
Naming Issues in the Design of
Transparently Distributed

Operating Systems

by

Robert J. Stroud

" ., ,",. .'
':'.:.;... l.1 ".

" ,',

Ph. D. Thesis

The University of Newcastle upon Tyne

Computing Laboratory

July 1987

Abstract

Naming is of fundamental importance in the design of transparently

distributed operating systems. A transparently distributed operating system

should be functionally equivalent to the systems of which it is composed. In

particular, the names of remote objects should be indistinguishable from the

names oflocal objects.

In this thesis we explore the implication that this recursive notion of

transparency has for the naming mechanisms provided by an operating system.

In particular, we show that a recursive naming system is more readily extensible

than a flat naming system by demonstrating that it is in precisely those areas in

which a system is not recursive that transparency is hardest to achieve. However,

this is not so much a problem of distribution so much as a problem of scale. A

system which does not scale well internally will not extend well to a distributed

system.

Building a distributed system out of existing systems involves joining the

name spaces of the individual systems together. When combining name spaces it

is important to preserve the identity of individual objects. Although unique

identifiers may be used to distinguish objects within a single name space, we

argue that it is difficult if not impossible in practice to guarantee the uniqueness

of such identifiers between name spaces. Instead, we explore the possibility of

Using hierarchical identifiers, unique only within a localised context. However,

We show that such identifiers cannot be used in an arbitrary naming graph

without compromising the notion of identity and hence violating the semantics of

the underlying system. The only alternative is to sacrifice a deterministic notion

of identity by using random identifiers to approximate global uniqueness with a

know probability of failure (which can be made arbitrarily small if the overall size

of the system is known in advance).

Acknowledgements

I would like to thank my supervisor, Professor Brian Randell, who has given

me the opportunity to work in this area and learn a great deal about transparency

and distribution by experimenting with the Newcastle Connection.

I would also like to thank Professor Peter Lee who has acted as an unofficial

supervisor for the last year and has read previous drafts of this thesis with

painstaking care. The comments of both my supervisors have greatly improved

the content and presentation of this thesis and I am grateful for the time and

trouble they have taken with it.

I have also enjoyed working with my other colleagues in the Computing

Laboratory, past and present, and have discussed many of the ideas in this thesis

with them. It is not possible to mention everybody but I would like to single out

Dr Lindsay Marshall who wrote the code for the Newcastle Connection practically

single-handed. Without the Connection none of this work would have been

possible or even conceivable. Lindsay and I have had many lively but fruitful

discussions about most of the topics covered by this thesis.

Last but not least I would like to thank my family and friends who have been a

great support to me and never lost faith me in me, even though I despaired of ever

completing this thesis on many occasions. In particular, I would like to thank

Laura Martin who gave me a reason for completing the thesis by agreeing to

marry me!

This research has been sponsored by the UK Science and Engineering

Research Council whose support I gratefully acknowledge.

Table of Contents
1. Introduction ... 1

1.1. Transparently Distributed Systems 1

1.2. Purpose of Thesis .. 4

2. Naming ... 7

2.1. First Principles .. 7

2.1.1. Naming and Identity .. 7

2.1.2. Binding, Bootstrapping, Contexts and Closures 10

2.1.3. Lifetime and Visibility 11

2.1.4. Naming Graphs ... 13

2.2. Some Naming Systems .. 17

2.2.1. A Database Naming System 18

2.2.2. A Capability Naming System 19

2.3. Naming in Unix .. 22

2.3.1. Inodes, Pathnames and Directories 22

2.3.2. Unix Pathnames and Contexts 24

2.3.3. The Unix Naming Tree and.. 27

2.3.4. Canonical Pathnames 30

2.3.5. An Alternative to.. .. 35

2.3.6. Symbolic Links .. 38

2.3.7. Other Unix Name Spaces 40

2.4. Conclusions .. 41

3. Joining Name Spaces Together 42

3.1. First Principles. .. 43

3.2. Joining Name Spaces Together wi thin a Unix System 46

3.2.1. Inodes and Devices ... 46

3.2.2. Joining Name Spaces Together with Mount '" 49

3.3. Non-Transparent Distributed Unix Systems.. 55

3.4. Transparent Distributed Unix Systems 57

3.4.1. The Newcastle Connection 58

3.4.2. NFS .. 62

3.4.3. RFS .. 64

3.4.4. LOCUS ... 65

3.5. Some Impediments to Transparency 69

3.5.1. Naming Graph Semantics 70

3.5.1.1. pwd .. 70

3.5.1.2. find .. 73

3.5.2. Low-Level Identifiers. .. 75

3.5.3. Ownership and Authorisation 78

3.5.4. Remote Execution .. 80

3.5.5. Summary ... 82

3.6. Conclusions .. 82

4. Distributed Systems and Global Identifiers 84

4.1. Global Naming and Name Resolution 84

4.2. Allocating Unique Identifiers. 87

4.3. Combining Name Spaces .. 89

4.3.1. Adding an Extra Level of Hierarchy 89

4.3.2. Heterogeneity ... 91

4.3.3. Dealing with Old Names 92

4.3.4. Merging Name Spaces 95

4.3.5. Random Identifiers. 97

4.4. Reorganising Name Spaces 98

4.5. The Power ofIndirection .. 99

4.6. Are Globally Unique Identifiers Realistic? 100

4.7. Conclusions .. 103

5. Recursive Transparency and the Newcastle Connection 105

5.1. Recursive Transparency 105

5.2. Connected Servers and the Newcastle Connection. 107

5.2.1. Remote Execution .. 109

5.2.2. Network Heterogeneity. 111

5.2.3. Name Space Management 112

5.2.4. Summary of Connected Servers 113

5.3. Connected Servers and Unix Pathnames 114

5.4. MUltiple Servers ... 115

5.4.1. Access Rights and Ownership 117

5.4.2. Resource Allocation and Locking 121

5.4.3. Flattening the Recursion 123

5.5. Remote Execution .. 125

5.6. Other Distributed Unix Systems ".............. 130

5.7. Towards a Solution - DIY 132

5.B. Conclusion ... 133

6. An Abstract Approach to Recursive Transparency 135

6.1. Introduction :........... 135

6.2. Name Resolution, Recursion and Transparency. 137

6.3. Combining Perform and Resolve 142

6.4. Other Pathname Algorithms 147

6.5. Summary and Conclusions 152

7. Conclusions .. 155

7.1. Summary of Thesis ... 155

7.2. Contributions of Thesis 160

7.3. Future Work ... 164

7.4. Concluding Remarks " 166

References .. 167

Introduction

1.1. Transparently Distributed Systems

1

Chapter 1

Introduction

A distributed system is a group of computer systems which are able to work

together and share resources via a network. Ideally, a distributed system should

appear to be ((a virtual uniprocessor" rather than a collection of individual

machines [Tanenbaum85]. If this ideal is achieved in practice, the distribution is

said to be transparent because users of the distributed system need not be aware

of which component system executes their programs or stores their files.

However, this is rather a strong requirement and may only be possible if the

distributed system is designed and built from scratch with this objective in mind.

Such distributed systems do exist: examples include Amoeba [Tanenbaum86],

Accent [Rashid81] and the Stanford V kernel [Cheriton84a].

A more pragmatic way of building distributed systems is to augment existing

software designed to run on stand-alone machines with the facilities necessary to

access remote resources. This approach takes into account existing functionality

and is therefore evolutionary rather than revolutionary. A distributed system

bUilt out of existing systems will be transparent if it is functionally equivalent to

the systems of which it is composed. In other words, a transparently distributed

system will appear to be a single system and will therefore act as a (virtual

Uniprocessor" in the sense discussed above.

A system may be characterised as an interface providing a set of objects and

operations to client programs. If distribution is to be added transparently then

the specification of this interface cannot be changed. For instance, it would not be

Possible to add an extra argument to an operation to indicate on which machine a

remote object is to be found. Instead, the mechanism used to identify local objects

Introduction 2

must be extended to include remote objects but without violating transparency by

changing the form of identification. Typically, objects are identified by name

where a name is a string of characters constructed in accordance with the

syntactic rules of the system. Consequently, extending the identification

mechanism involves finding a way to accommodate remote names as part of the

local name space so that the names of remote objects are indistinguishable from

the names of local objects, in form if not in content. For this reason, naming is of

fundamental importance in the design and construction of a transparent

distributed system.

In practice, there is more than one level within a given system at which an

interface can be extended transparently to include distribution. At the highest

level, distribution can be added to particular applications. For example, network

architectures such as the DoD Arpanet [Cerf83] and the Xerox XNS architecture

[Xerox81] include protocols for file transfer, remote terminal access, electronic

mail and so on.

Adding distribution at the application level is the approach taken by

international standardisation bodies in the move towards Open Systems

Interconnection (OS!) [Zimmerman80] because it is particularly appropriate for

heterogeneous networks composed of machines running different operating

systems. In such an environment, it would not be possible to implement a single

integrated system without making radical alterations to all the existing software,

even assuming it was possible to find enough commonality between the various

systems for a single integrated system to be achievable.

The problem with providing distribution in the form of specialised network

applications is that such services tend not to be well integrated with the local

system. For example, the command for copying files between machines may be

quite different from the command for copying files within a single machine, even

Introduction 3

though they perform basically the same function. Although it might be possible to

incorporate the network file transfer protocol into the local system copy

command, making it possible to access both local and remote files with a single

command, this would only make copying files across the network transparent.

Other operations on files (such as comparison) would not be affected so that the

concept of a remote file would remain confined to the copy command.

This difficulty can be overcome by providing transparent distribution at a

lower level of the system. For example, if the file system abstraction provided by

the operating system is extended to include remote files then all the applications

which use the file system will be able to benefit from the new facility

immediately.

It is more appropriate to add distribution at a lower level of the system if the

network is homogeneous and all the machines run the same operating system.

This is also true for a less homogeneous network provided that the various

systems on the network are sufficiently similar that a common abstraction such

as a file system can be identified and transparently extended to include remote

objects. However, the nature of the interface to be extended is also important

when considering at which level of the system to add distribution. Clearly, it is

easier to extend a simple interface rather than a complex one. Furthermore, since

transparent distribution involves the recursive notion of constructing a

distributed system which is functionally equivalent to the systems of which it is

composed, it follows that systems whose structure is already recursive in some

sense will be best suited to this method of constructing distributed systems.

Perhaps for these reasons, the Unix operating system [Ritchie78] with its

relatively simple system call interface and hierarchical contextual name space

has formed the basis of many such distributed systems. Examples include the

Introduction 4

Newcastle Connection [Brownbridge82], Locus [Walker83], NFS [Sandberg86]

and RFS [Rifkin86].

1.2. Purpose of Thesis

In this thesis we will be mainly concerned with the evolutionary problems of

building a distributed system out of existing systems rather than the

revolutionary approach of building new distributed systems from scratch. Taking

an evolutionary approach is obviously pragmatic because it protects investment

in hardware, software and human expertise. However, it is harder to achieve

transparency because certain design choices made during the construction of the

original system may be inappropriate for a distributed system. Although the

effort which must be expended in solving these problems might be viewed as

misguided ingenuity (since given a clean slate and the opportunity to take a

revolutionary approach, backwards compatibility would not be an issue), this

view is short-sighted. A distributed system built from scratch may initially be

self-contained but sooner or later it may be convenient to extend it or even to

merge it with a similar distributed system constructed independently. Joining

two transparent distributed systems should be no different from joining two

conventional systems if the distributed systems are really transparent and so the

same problems will arise, even in distributed systems which have been built from

scratch rather than constructed by joining a set of existing systems together. A

revolutionary design which ignores these issues will not scale properly.

It is usually taken for granted in the design of a distributed system that all

objects will be ultimately identified by globally unique names, sometimes unique

in time as well as space. We propose to question this received wisdom and argue

for a more structured approach based on names which are unique only within

some localised context and not necessarily unique across the entire system. We

believe that the very concept of uglobal uniqueness" is alien to the distributed

Introduction 5

nature of the sort of systems being considered and betrays centralised thinking,

at least in the design stage ifnot the actual implementation. Although ultimately

we may not have anything better to offer, we feel it is important to explore these

issues in more detail than they have hitherto received.

Specifically, this thesis will consider the problem of joining systems together

to form bigger systems and the implications this has for naming. Ideally a

transparent distributed system is indistinguishable from the systems of which it

is composed and consequently it should be possible to combine both single systems

and distributed systems recursively and, in theory at least, indefinitely.

However, if individual distributed systems are designed assuming unique

identifiers, there is no guarantee that those identifiers will continue to be unique

when two such systems are combined in this way. Since individual designers will

have their own ideas about the construction of unique identifiers, such a clash is

almost inevitable unless it is possible to impose a truly global (indeed universal)

diScipline which will ensure uniqueness not only within but also across all

possible distributed systems. In a world containing many different distributed

systems and vested interests this is not possible for political rather than technical

reasons. Even if agreement was possible, we believe that there are serious

management problems for really large systems which use globally unique

identifiers. Consequently, this thesis will explore ways of structuring name

spaces to overcome (or at least reduce) uniqueness problems and will examine

algorithms for merging independently managed name spaces and sharing the

names of objects between systems.

To summarise the structure of the rest of this thesis, chapter 2 will begin by

examining naming issues in detail with specific reference to the naming

mechanisms of Unix. Chapter 3 will consider the problems of joining names

spaces together, both within a single system and between systems across a

network to construct a distributed system. Again, Unix will be used to illustrate

Introduction 6

these ideas and highlight some of the difficult areas in constructing a transparent

distributed system. Both chapters will explore some of the weaknesses in the

Unix naming mechanisms that cause problems and discuss some alternatives. In

chapter 4, conventional distributed systems with names based on globally unique

identifiers will be studied to see how they tackle the problem of joining systems

together. Chapters 5 and 6 will then explore the idea of constructing distributed

systems recursively using names which are only unique within a local context.

Chapter 5 will examine the implications of recursion for the design of one

particular implementation of transparent distribution for Unix, the Newcastle

Connection, and highlight the basic issues. Then chapter 6 will analyse the

problem in more abstract terms and develop a distributed naming architecture

based on two operations, perform and resolve, which can be generalised to handle

recursively constructed systems. Finally, chapter 7 will pull all the threads

together and declare a final verdict on the relative merits of global versus local

identifiers.

Naming 7

Chapter 2

Naming
Naming is of fundamental importance to the construction of transparently

distributed systems and so this chapter explores some of the issues that arise in

the design of a naming system. After introducing some general principles of

naming, three systems will be discussed in particular: Aspect, Flex and Unix.

Each takes a different approach to naming. Unix is of particular interest because

it has a hierarchical naming structure and therefore the element of recursion

necessary for the construction of transparently distributed systems is already

bUilt in. However, the Unix naming algorithms have various deficiencies and

these will be analysed too. The concept of a canonical pathname will be

proposed as a way of overcoming some of these problems.

2.1. First Principles

This section will establish some basic concepts of naming. The terminology

used will be that established by Saltzer [Saltzer78]. For a more thorough

treatment of naming issues, see the thesis by Brownbridge [Brownbridge84].

2.1.1. Naming and Identity

A fundamental property of an object is its identity. Even if two discrete objects

are alike in every other way, they will retain their own identity. Consequently,

identity may be defined as that which distinguishes one object from another

[Copeland86].

Given a collection of identical objects, the only way in which it is possible to

identify a particular object unambiguously is literally to point at it and say ttthis

one here". However, this is not always practical, even in the real world, let alone

in the abstract world represented by the internal state of a computer system.

Naming 8

Names are a way of tagging objects so that they can be identified more abstractly

without such physical intervention.

In this sense a name is an abstraction of identity, making it possible to write

algorithms which manipulate objects without having to include those objects as

part of the algorithm. However, it does not follow that there is a one-to-one

relationship between names and identities. A given object may have more than

one name and two distinct objects may have the same name.

Of course, if the same name can denote more than one object at the same time,

the naming system is ambiguous. Without a means of identifying objects

explicitly (by pointing at them), names are the only substitute for the notion of

identity and must therefore be unambiguous to prevent confusion. However, it is

interesting to observe that in computer systems with an interactive graphical

interface where you can indeed point at objects directly, names are no longer

necessary to distinguish objects and cease to be so important. Only the icon

representing an object on the screen matters. There is a one-to-one mapping

between the image of an object on the screen and the identity of the object itself,

and in this sense, the actual image (as opposed to some label attached to that

image) is a name for the object that it represents.

For example, the electronic desktop implemented by the Xerox Viewpoint

system [Xerox85] represents documents on the screen as icons which can be

pointed at with a mouse. Although an icon may contain the name of the document

it represents, it is quite possible for two icons representing distinct objects to have

the same name because they remain physically distinct on the screen. In

particular, when an icon is copied, thereby making a copy of the document it

represents, the copy will have the same name but a different identity.

Similarly, the Flex capability-based system [Foster82] developed at RSRE

displays values on the screen in boxes called Cartouches. The text inside the box

Naming 9

may indicate how the box was created, and in particular it may be a name which

was looked up at some point in the past to get the value. However, it does not

follow that the name in the box is still valid or denotes the same value, or even

that the text has anything to do with where the object came from at all. It could

describe the type of object denoted by the Cartouche or simply be an arbitrary

label.

It could be argued that inside such a system there must be some value which

identifies an object uniquely and that this is simply a name which is known to the

system but not to its users. This is a reasonable point of view but so long as the

system preserves the distinction between the identities of distinct objects (and if

it did not, it would be broken), it is free to alter such a value as much as it chooses,

so that if the value is indeed a name, it has a very transitory existence. Such a

value is really a means of locating the object and could therefore be an address in

memory or on disk. There is nothing to stop the system from rearranging the

contents of its memory or disk and changing such values accordingly (for

example, during garbage collection), providing the identities of the corresponding

objects is preserved. The distinction between a name and an address is really only

one of degree or perhaps level of abstraction. From a fixed viewpoint, names tend

to be more permanent and more visible but less location dependent than

addresses, but the same criteria could be used to describe the difference between

virtual addresses and physical addresses in a paging system.

To summarise, a naming system is a mapping between names and identities.

This is a recursive notion; identities may be represented internally by low-level

identifiers which are themselves names in a lower level naming space. At each

level of such a hierarchy, as names are mapped into identifiers they become less

abstract and closer to physical storage locations. Adding extra levels of

Naming 10

indirection makes it possible for names to be location independent (Le.

transparent).

2.1.2. Binding, Bootstrapping, Contexts and Closures

It is not always practical to point at objects directly, especially in a non

interactive system. Nor is it feasible to embed objects directly in algorithms,

especially when writing general purpose reusable code. Binding the identity of a

specific object into an algorithm too tightly has a limiting effect on abstraction.

Names are a way of abstracting over identities and the process of replacing a

name with the identity of the object it denotes is called name resolution.

Delaying the time at which the name is resolved makes the system more flexible

but less efficient at run-time if names have to be looked up every time objects are

needed.

More formally, a binding may be defined as an association between a name

and an object (or rather its identity). This may be generalised to the notion of a

context which is a list of such bindings. Contexts are an important structuring

mechanism which allow a large name space to be subdivided into several smaller

name spaces. In particular, the meaning of a name depends on the context in

which it is resolved and although a given name can only have one meaning in a

particular context, each context in which it appears may bind it to a different

object and so give it a different meaning.

Contexts also have names relative to some other context which itself must be

named (relative to yet another context and so on). This potentially infinite

regression can only be prevented if there is at least one context which does not

require a name but is always known to the system. Such a context can then be

used as the basis for all names. However, because it cannot be named in the

conventional way, the definition of this context must be established as part of the

bootstrapping process by which the system is brought into existence initially.

Naming 11

Even if the bootstrap mechanism is able to name such contexts, these names will

have no meaning to the system being bootstrapped. Thus, all names are

ultimately relative to some point outside the system to which they belong.

When names are embedded in a program it is sometimes important that they

denote a particular object, so that the program's behaviour is independent of the

naming context in which it is executed. This may be achieved by making such

names relative to an absolute context which cannot be moved and has a global

definition known to all users of the system. Alternatively, a mechanism called a

closure may be used to bind such names statically (when the program is defined)

rather than dynamically (when it is executed). Although closures are a very

powerful concept, they are usually only found in implementations of

programming languages which encourage a functional style of programming

because static binding makes it possible to treat functions as first class values

unambiguously [Landin641. A facility for defining names statically would also be

useful in a general purpose operating system. However, without closures, the

alternative mechanism of using an absolute name (which is usually all that is

available) is not always adequate because it does not encourage modularity and is

not recursive.

2.1.3. Lifetime and Visibility

Another important issue is the relationship between the concepts of lifetime

and visibility. In any sane and self-consistent system an object will exist so long

as there is a name for it or some other way of accessing it. The same name will not

suddenly denote a different object or cease to denote any object at all.

Consequently, there should be a strong connection between the existence of a

name for an object and the lifetime of that object. Indeed, it is reasonable to argue

that if there is no way of accessing an object, by name or any other means, then

the object has effectively ceased to exist within the system. Certainly, its

Naming 12

existence can have no meaning or significance to a user of the system (although

internally the system may retain some knowledge of the non-existent object so

that the resources consumed by the object can be freed if necessary). However, it

is also important to realise that not all names are directly accessible (Le. visible)

at anyone time. For example, the names in a closure are not visible outside that

closure, although the objects they refer to will continue to exist for as long as the

closure itself exists.

Some systems allow the same object to have more than one name. In general,

deleting a name for an object will only delete the object itself if it has no other

names. So long as there is a name for an object somewhere in the system, that

object will continue to exist. However, with other systems, although objects can

still have several names, one name is distinguished as being the principal name

and all the other names for the object are merely aliases which provide a

convenient naming shorthand. For such a system, deleting the principal name for

an object could delete both the object and all its aliases. Alternatively, the system

might not allow an object to be deleted until all its aliases had also been deleted.

These precautions are necessary in order to guarantee that the system cannot be

left in an inconsistent state with dangling names pointing at objects which no

longer exist.

If a large name space can be decomposed into smaller name spaces, it may be

possible for part of the whole name space to become temporarily unavailable. This

could occur if the name space was spread across a network or a collection of

removable disks. When such a parti tioning of the name space occurs, each side of

the partition should remain self-consistent, regardless of whether it is otherwise

active or passive, until such time as the whole name space is reunited. References

from one partition to objects in the other partition must be treated with caution

during this time. Such references cannot be resolved without the cooperation of

both partitions and consequently the objects referred to will be temporarily

Naming 13

unavailable. Nor will it be possible to delete a reference to an object in another

partition or an object which is referred to by another partition and still guarantee

that the name space will be in a consistent state when the partitioning ends.

Nevertheless, it should be possible to override this protection if an inopportune

crash of part of the system leaves the name space in an inconsistent state.

Similarly, there should be a mechanism for detaching part of the name space

deliberately for backup purposes or in order to transport it elsewhere physically.

2.1.4. Naming Graphs

A naming system which only allows simple names relative to a single context

is not very interesting. More powerful naming systems provide the concept of a

pathname, a structured name involving several contexts. Pathnames start from

a known context and are divided up into components. Each component names the

context in which the next component is to be resolved with the last component

naming the object referred to by the pathname as a whole. A good way to model

such naming systems is with a naming graph.

Informally, a graph is a collection of nodes, some of which are joined together

by arcs. The nodes of the graph may be thought of as objects and the arcs as

naming paths. Therefore, if a given node represents a context, the arcs leading

from that node determine the name bindings in that context. However, there are

several ways of labelling such a graph and interpreting it as a naming system.

Other properties of the graph such as whether the arcs are directional or whether

the graph is acyclic are also important and characterise the naming system too.

For example, if the nodes rather than the arcs are labelled then each node will

only have one name, regardless of how many arcs lead to it. This means that in

order for the labelled graph to be well-formed as a naming graph it must satisfy a

local uniqueness property that ensures that all the arcs leading from a given node

reach nodes with different names. (If a node representing a context has two or

Naming 14

more arcs leading from it to nodes with the same name, that name is ambiguous

in this context.) An arbitrary labelled graph is not guaranteed to have this

B B

/ /
A A

~ ~C
B

(a) ambiguous (b) unambiguous

property and therefore not all labelled graphs are valid naming graphs.

Alternatively, the arcs could be labelled rather than the nodes, allowing a

given node to have many names, each name being the label on an arc leading to it

from another node. Again, there would need to be a consistency property which

• •
/ /

• •
~ • ~ •

(a) ambiguous (b) unambiguous

ensured that two arcs leading from the same node did not have the same label or

name since this would effectively give two bindings for the name in that context.

Quite apart from the actual form the graph labelling takes, there are also

questions about the nature of the arcs and the connectivity of the graph. If all the

arcs are bi-directional, every node can act as a context and name all the nodes

Naming 15

which can name it. In this case, it will be natural to label the nodes rather than

the arcs.

On the other hand, if the arcs are uni-directional then there are various ways

in which the graph can be connected. If every pair of interconnected nodes is

joined by two arcs, one in each direction, then each node can name the other. For a

B

~
• •
~

A

general purpose naming system, this degree of connectivity is very natural; there

is no point in introducing anomalies such as one-way naming paths

unnecessarily. However, if this kind of flexibility is needed, perhaps to restrict

access to (or from) parts of the naming graph, then there is no reason why it

should not be available.

Of course, having arcs leading from every node makes every node a naming

context. Whilst preserving full connectivity between those nodes which do act as

naming con texts, it is useful to recognise leaf nodes as a special case. A leaf node

acts as a sink for naming arcs. In other words, whilst a leaf node has arcs leading

to it and may therefore be named, it does not have arcs leading from it and hence

may not act as a naming context. In most real systems, the leaf nodes would be

the objects of interest and the other nodes that led to them in the graph would act

purely as contexts. However, the model is more general than this, at least in

theory if not in practice.

Naming 16

The opposite of a sink node is a source node which has arcs leading from it but

no arcs leading to it. A source node may act as a naming context but may not be

named from another context. Instead, it must be given an absolute name,

independent of any context. This name may then be used as the starting point for

apathname.

It is convenient to allow other nodes in the graph to be given special names so

that they too can act as a starting point for a pathname. However, whereas a

source node can have no other name, any other point in the graph will always

have at least one absolute pathname relative to some source node. Consequently,

such points can be redefined and may therefore serve as a current context,

making full absolute pathnames unnecessary. The difficulty with this is that the

interpretation of path names relative to a redefinable current context depends on

the dynamic definition of that context. If such pathnames are to be used in

algorithms unambiguously then some sort of closure mechanism is needed to

guarantee that the correct definition of the current context is used when they are

resolved. However, pathnames relative to source nodes may be used

unambiguously in any context because their interpretation only depends on the

fixed location of the source node.

One final property which characterises a naming graph is its overall topology

and in particular whether it contains cycles. A cycle is a closed sequence of nodes

joined together by naming arcs, in other words, a loop in the naming structure

that returns to its starting point. The presence of a cycle allows infinite

pathnames even in a finite graph and makes it difficult to visit each node in the

graph systematically. An acyclic graph contains no cycles and does not suffer

from these problems. A tree-structured graph is a special case of an acyclic

graph with the additional property that every node may be reached from the

unique source node of the tree (its base) in exactly one way. Each node can only be

Naming 17

named from one other node (its parent) and consequently every node in the tree

has a unique pathname from the base of the tree.

This discussion of naming graphs has described them as if they were static

entities with a fixed structure. Of course, in any real system modelled by a

naming graph the structure of the graph will change as objects (and names) are

created and destroyed. However, such operations in the real system should be

constrained so that invariant properties of the naming graph (such as whether or

not it is tree-structured) are preserved. The system should also remain self

consistent in the sense that all references must lead to a valid object and that all

objects which are not referenced from elsewhere in the system should be

destroyed. This is the problem of garbage collection. The system must detect when

the last reference to an object is deleted so that it can destroy the object itself. One

solution is to count the references to each object. However, a cyclic graph will

allow self-referential structures to exist in isolation, unreferenced by the rest of

the graph. This is another reason why cyclic graphs are awkward to handle,

making acyclic or tree-structured graphs more desirable. Nothing is gained by

introducing cycles into a naming graph since the new names will go nowhere but

it is difficult to give an algorithm for incrementally modifying an acyclic graph

without introducing cycles, short of scanning the entire graph for a cycle every

time a new arc is added.

2.2. Some Naming Systems

The Unix naming system provides an excellent example of a hierarchical

naming graph and will be used to illustrate many of the ideas in the rest of this

thesis. However, before considering Unix in detail, two other systems which take

a very different approach to naming will be discussed briefly.

Naming 18

2.2.1. A Database Naming System

Aspect [Ha1l85] is an Integrated Project Support Environment (or IPSE)

constructed from a relational database using the RMtr data model [Codd79]. In

the RMtr data model every object is identified by a surrogate. This is a unique

internal system identifier that need never be disclosed which will remain

associated with the object throughout its lifetime.

Aspect implements naming with a special relation in the database called

known-as. This associates a surrogate with an external name in the context of a

name space. Name spaces are themselves objects with surrogates and may have

their own external names in a further name space. However, objects do not have

to be given names in a name space because their surrogate is sufficient to identify

them and guarantee that they exist. The only restriction on the structure of a

name space is the requirement that a given external name can only appear once

within a single name space. This prevents ambiguity but still allows objects to

have more than one name, possibly from within the same name space.

Aspect is able to interpret pathnames which pass through several name spaces

in an obvious manner. Each user is given a default name space which can be used

as a starting point for all other names.

Here is an example which shows how a simple naming graph would be

represented in the database:

Robert s(5)

A A
test doc s(3) s(4)

A A
A B s(1) s(2)

The pathname Robe rtf tes tf A identifies the object whose surrogate is s(1). This

pathname is relative to a default name space whose surrogate is s(6). However,

Naming 19

surrogate external- name-space name

s(1) A s(3)

s(2) B s(3)

s(3) test s(5)

s(4) doc s(5)

s(5) Robert s(6)

s(6) does not have a name and therefore only appears in the name-space column of

the known-as relation.

The Aspect known-as relation is a relational representation of a naming graph

with mUltiple source nodes and unidirectional labelled arcs. The labels on the

arcs correspond to external names. The nodes are labelled with surrogates.

Surrogates are a way of separating the problem of accessing an object from the

problem of identifying an object. The known-as relation is a very flexible naming

mechanism which makes it easy for objects to have more than one name.

However, because objects are ultimately identified to the system by surrogates

rather than names, it is not necessary to give every object an external name.

Surrogates may also be stored in other relations allowing objects to be selected by

their properties rather than their names. The RMtr data model will guarantee

referential integrity by ensuring that all the surrogates stored in the data base

refer to objects which actually exist. Surrogates act as keys to relations which

define objects and this check effectively prevents them from being forged or used

before the corresponding object is defined (or after it has been destroyed).

2.2.2. A Capability Naming System

The Flex system [Foster82] is a Programming Support Environment built on

top of a capability machine. The Flex model of naming is equivalent in expressive

Naming 20

power to the Aspect known-as relation because surrogates and capabilities are

effectively the same thing, but the two systems are very different in the way in

which they implement naming. The Flex architecture supports closures which

makes it possible to use higher-order functions (returning other functions as

results) throughout the system interface. One consequence of this is that names

are less important to a Flex user than they would be to the user of a conventional

system. It is worth exploring the reasons why this is so.

Flex provides support for contexts in the form of Dictionary objects but its

model of naming is actually more general than this. Whenever the Flex command

interpreter curt is invoked, one of the arguments which must be supplied is a find

function which will be used to resolve names. In theory, this allows an arbitrary

naming scheme to be plugged into the system but in practice curt is always

invoked automatically (either as part of logging in or from the editor) and so a

default function is usually supplied. This default is a function to read dictionaries,

bound into a closure with a list of default system dictionaries and private

dictionaries. This version of the find function does not recognise pathnames so the

naming system is not recursive and there is no need for dictionaries to contain the

names of other dictionaries.

The Flex naming graph produced with this default naming scheme consists of

several sub-graphs, one for each dictionary, with only one level of structure. In

each graph, the source node corresponds to the dictionary and all the other nodes

are sink nodes and correspond to dictionary entries. The same leaf node will

appear in more than one graph if the corresponding object can be named from

more than one dictionary. Consequently, names are represented by labelled arcs

rather than labelled nodes.

Because Flex is a capability-based system, it can support structured files

containing a mixture of uninterpreted text and low-level identifiers for objects

Naming 21

(Le. capabilities). Whole files may be stored hierarchically in other files but need

not be named because they can be identified by position alone or from a

description in the surrounding text. Consequently, names are typically only used

to denote large objects at the outermost level, perhaps representing workspaces

for particular projects. When such a workspace is examined with the editor, the

objects it contains are displayed on the screen as Cartouches (or icons) which can

be selected with a mouse. A Cartouche represents a capability for an object rather

than an unresolved name. In effect, Flex files are closures in which references to

other files are represented as fully bound names in the form of capabilities.

In particular, the Flex separate compilation system, which is based on

modules, works by including in the program text a capability for each module

that a program fragment depends on, rather than just its name. This means that

the program is unambiguous and may be compiled in any context without fear of

picking up the wrong version of a library module by resolving its name in the

wrong context. The name has already been resolved so that the program text is

really a closure.

Similarly, a module is a closure containing references to its source code, object

code and interface specification. Once a module has been created these values can

be updated atomically without altering the capability for the module itself. This

use of indirection means that the capabilities for modules embedded in program

texts always refer to the latest version of those modules.

To summarise, Flex is able to dispense with names most of the time because it

has an iconic interface which allows objects to be pointed at directly and because,

being built on a capability machine, it can use capabilities to allow direct access

to identifiers safely, without compromising the integrity of the machine. In effect,

the capabilities for objects represented graphically on the screen by Cartouches

are really names but the interactive interface and two-dimensional presentation

Naming 22

of information give the illusion that names are not necessary and this is certainly

true in the conventional sense.

2.3. Naming in Unix

Aspect and Flex both rely on some form of globally unique identifier to

implement their naming schemes. In Aspect the identifiers are called surrogates

whereas in Flex they are called capabilities. Like any other naming system, Unix

must also rely on a unique identifier internally to identify objects unambiguously

but Unix differs by not requiring these identifiers to be globally unique and this

makes it possible to combine Unix name spaces recursively. In the rest of this

chapter we will consider the structure of a single Unix name space and in the next

chapter we will show how Unix supports more than one name space and allows

several name spaces to be combined more or less transparently.

Unix consists of an operating system kernel and a series of utilities. Although

the basic support for the various Unix naming spaces is provided by the kernel,

many of the utilities extend the naming facilities by adhering to a series of

conventions. Most of this section is concerned with naming in the Unix file system

but other forms of Unix naming are briefly discussed in section 2.3.7.

2.3.1. Inodes, Pathnames and Directories

The Unix file system supports a name space based on a tree-structured

naming graph. For the purposes of this discussion, the file system contains two

sorts of object: files and directories. Directories provide the naming contexts in

which the pathnames used to identify objects are resolved. Files are the leaf nodes

in which information belonging to users of the system is actually stored.

Internally, the Unix kernel represents all file system objects by inodes which

contain information about the location of the object, its owner, access rights,

creation date and so on. Inodes are identified by small consecutive integers called

Naming 23

inode numbers which are actually indexes into a table of inodes. An object's

inode number is an abstraction of its identity and inodes are used internally as

names by the kernel. However, inodes may not be accessed directly by the user of

the file system because objects may only be named with pathnames. The kernel

name resolution algorithm maps pathnames into inode numbers using the

information contained in directories.

A pathname starts from a known directory and progressively traverses the

naming graph via other directories until the object it names is reached. A Unix

directory is a context containing a list of bindings between simple names and

inode numbers. Name resolution proceeds by matching each component of the

pathname against an entry in the appropriate directory to obtain the inode

number of the next directory in the chain (or eventually, when the pathname is

exhausted, the inode number of the object the pathname denotes).

In the more abstract terminology of section 2.1.4, the bindings in a Unix

directory correspond to labelled naming arcs in the graph. Because the arcs

rather than the nodes are labelled, it is possible for an object to have more than

one name from the same context or to be reachable from more than one context.

Every reference to an object from a directory is called a link in Unix

terminology. Two directory entries denote the same object if they bind two names

to the same inode number. (The names need not be the same.) Apart from their

names, all the links to an object are equivalent and it is impossible to distinguish

the first link to an object from subsequent links. Since Unix does not support

anonymous objects, an object must always be created with a link (i.e. a name).

When the last link to an object is deleted, the object is no longer accessible and

can be destroyed by the kernel.

Although it is not possible to access inodes directly, it is possible to map

pathnames into inode numbers outside the kernel and hence determine whether

Naming 24

two pathnames denote the same object. This is the only way of testing for identity

which is unfortunate because making low-level identifiers visible in this way

makes it difficult to join name spaces together transparently. These difficulties

will be explored in chapter 3 and then again in chapter 6. However, there is no

easy solution.

2.3.2. Unix Pathnames and Contexts

A Unix pathname consists ofa series of simple names denoting the directories

it passes through, separated by I to prevent ambiguity. Thus, if the object faa

can be accessed as an entry in the directory B found in directory A then the

pathname to reach faa unambiguously from the directory which contains A is the

pathname A/B/foo. Notice that the directory from which the pathname starts

/
foo

B

A
/

•
/1"'"

B foo

may itself contain an entry called B or even faa but that these entries do not

necessarily refer to the same B and faa as the pathname A/B/foo. It should

therefore be clear that pathnames are only meaningful when their starting point

(Le. their context) is known. Consequently there needs to be a way of naming

contexts. This is the bootstrapping problem discussed in section 2.1.2. The base of

the Unix naming tree has an address known to the bootstrap program (inode 2)

and all other contexts are ultimately named relative to this point.

Unix pathnames may begin from either of two contexts. These contexts are

defined individually for each process rather than globally for all processes,

making all names not only context relative but also process relative. However, in

Naming 25

practice all processes share the same definition for one of these contexts, the root

context, and therefore to all intents and purposes root-relative names are

absolute names whose meaning does not depend on the process which uses them.

Strictly speaking, one naming context would suffice for all names but absolute

names are somewhat unwieldy and too precise. The provision of a second naming

context, the current directory context, makes it possible to use much shorter

names to refer to objects relative to some local point in the tree without needing to

know the absolute location of that point. This is a form of location transparency

which makes names more abstract. However, the dynamic definition of the

current directory context means that such names are only unambiguous from

within a closure which binds them to a particular directory. Unfortunately, Unix

does not provide such a mechanism (unlike Flex) and consequently names cannot

be statically bound in programs or passed between contexts unambiguously (see

section 2.1.2).

The syntax of pathnames makes it clear whether they begin from the root

context or the current directory context. If the pathname begins with I it is

relative to root; otherwise, it is relative to the current directory. Thus, the

pathname I A names object A in the root directory whereas simply A names a

different object A in the current directory (unless of course the current directory

happens to coincide with the root directory which is perfectly possible). I denotes

the root directory itself and therefore it would seem logical and consistent that

the empty pathname should denote the current directory. Historically, this was

indeed the case but nowadays the empty pathname is specifically excluded from

the definition of the pathname syntax given in at least one of the (regrettably

many) Unix standards documents, the System V Interface Definition, otherwise

known as the SVID [AT&T85]. A similar argument can be applied to interpret

malformed pathnames such as AI lB. By arguing that there is a null name

between the two slashes which by analogy names the context in which it is

Naming 26

interpreted, it becomes clear that AI IB is the same as A/B,just as AI is the same

as A. Again, these interpretations are illegal or at best undefined by the SVID

although they are perfectly consistent.

Of course, there are occasions where it is necessary to name the current

context explicitly and giving it an empty name is rather messy if not ambiguous

to the casual observer. There is a distinction between applying a command to no

arguments and applying it to an empty argument but it is too subtle a distinction,

even by Unix standards of brevity and obscurity. Instead, there is a convention

that every directory contains a entry for itself whose name is . {pronounced

((dot"). This guarantees that the pathname . always names the current context.

Similarly, pathnames such as AI . IB may be simplified to AlB and the

pathnames AI . and. I A may be written more simply as just A.

Unix allows both the root context and the current directory to be redefined.

Naturally the name of the new context in each case can only be given relative to

the old context (or to the other context which remains unaffected) and

consequently names will always be relative to some point in the naming tree.

There is no concept of an absolute name because there is no fixed name for the

base of the naming tree. (In this sense, the Unix naming graph does not have any

source nodes.) Even though the root context normally corresponds to the base of

the naming tree, it may be redefined by an individual process so that the

definition of root is not even guaranteed to be consistent throughout the system.

Despite this, it is normal (and indeed prudent) to keep the root context fixed at

the base of the naming tree so that to all intents and purposes it can be used as an

absolute naming point. The correct operation of the Unix system depends on the

existence of certain directories and files whose root-relative (and therefore

Supposedly absolute) names are embedded in various utilities and even the kernel

itself. If root were to be moved to an arbitrary point in the naming tree without

Naming 27

ensuring that these root-relative names were still valid from the new location,

then the Unix utilities which depended on their presence would not work

correctly. Indeed, serious breaches of Unix security would be possible if root could

be moved to an arbitrary location because it would be possible to substitute bogus

versions of these system files. Consequently, the root directory may only be

redefined by privileged users. However, there is no check to ensure that root is

only moved to a position in the naming tree which provides the necessary system

files and sub-directories. Unix really needs the concept of a root-directory type in

the file system to control the positioning of root or even some alternative

mechanism such as a closure for naming system objects.

Even with these difficulties and potential problems, there are still occasions

when the ability to redefine root is useful. The facility was originally introduced

to allow several subsystems to co-exist within a single Unix system. However,

although this might appear to be a recursive notion which generalises nicely to a

transparent distributed Unix system, in fact the idea of root denoting a system

context as well as an absolute naming point causes problems in a distributed

environment as we shall see in the next chapter.

2.3.3. The Unix Naming Tree and ..

For the reasons discussed at the end of section 2.1.4, it is highly desirable that

the Unix naming structure be a tree rather than an arbitrary graph. However,

nothing discussed so far has been sufficient to guarantee this. Indeed, because

Unix allows an object to have several different names (or links), any directory

may refer to any other object, file or directory, and consequently it is theoretically

possible to create circularities in the naming graph.

For example, suppose I contains a directory A which contains a directory B. If

B contains a link to IA called A, then the pathname IAIBIA is the same as lA,

and indeed the sequence IAIBIAIB etc. can be repeated indefinitely without

Naming 28

getting anywhere. On the other hand, there is no harm in providing a shorthand

D

notation for the directory / A / B / C/O by creating a link to it called /0 since this

does not create such circularities.

The difficulty is in deciding which links cause circularities and which do not.

One approach might be to allow links down the tree but not up the tree, but this

could not be made to work correctly for links between two separate branches of

the tree. Unix sidesteps the problems of defining such an algorithm by simply not

allowing links to be made to directories, thereby ensuring that each directory has

only one name. This restricts the Unix naming graph to a lattice-like structure in

which only the leaf nodes (i.e. the files rather than the directories) can have more

than one name. Although such a graph is not necessarily a tree structure because

it could have more than one starting point, it will be at most a forest of distinct

trees with some leaf nodes in common; it is impossible for two trees in such a

structure to share a branch node (Le. directory) without that directory having two

names or links (which is explicitly forbidden by construction). Indeed, since there

are only two starting contexts for pathnames (root and current directory), those

objects which can be named are restricted to the two trees whose starting nodes

are these two contexts. All other parts of the graph are unreachable with simple

directional pathnames. Imposing the restriction that the current directory

context can always be named from the root context ensures that the current

directory name tree is a subtree of the root name tree so that to all intents and

Naming 29

purposes the Unix naming graph is a single tree whose source is the root context

(hence the name ttroot"). This restriction is easy to enforce; it suffices for the

bootstrap process to bring the Unix system into existence in such a way that the

first process (from which all other processes are descended) has its current context

equal to its root context. All names thereafter will be relative to this original root

context which will naturally correspond to the base of the tree.

In fact, the Unix naming system is not quite as restricted as this description of

a unidirectional tree might imply. The main disadvantage of the scheme just

described is that names can only move down the tree. In particular, if the current

context is repositioned outside its naming subtree, its new position must be

described relative to the root context because there is no other way of naming

other parts of the tree. Although this may not matter if the current context is not

repositioned very often or ifit is repositioned to somewhere completely unrelated

to its current position so that a root relative name is more natural, this restriction

also prevents nearby objects in sideways related parts of the tree (such as uncle

and cousin nodes) from being named relative to the current context. The only way

in which such nodes could be named would be by repositioning the current context

at the common ancestor node (e.g. grandfather or great grandfather).

To overcome this difficulty, Unix directories always contain a second special

name .. (pronounced ttdotdot"). The .. entry in a directory refers to the unique

parent of that directory and this allows movement up the naming tree, one step at

a time, from the current context. Because the graph is tree-structured, no

directory can have two parents and hence .. is defined unambiguously.

Apart from. and .. links cannot be created to directories. Recognising. and

" as special cases allows the Unix file system to use reference counting to

implement its garbage collection. Every inode contains a link count and when the

last link to the inode is deleted, the file it represents is also deleted. Thus,

Naming 30

although. and .. permit circular or at least redundant pathnames, they do so in

a controlled manner.

For example, if the current context is positioned in IA/B then .. refers to IA

and .. IC refers to lAIC. However, any sequence of the form AI . . /B In a

pathname is clearly redundant and can be simplified to B.

I --. •

/"'"
A B

/I'\.

Thus, it is possible to transform a pathname involving. and .. into a canonical

form.

2.3.4. Canonical Pathnames

The concept of a canonical pathname is important and applicable to any

tree-structured naming graph (so in particular to the Unix file system naming

tree). Pathnames need not necessarily be in their simplest form (especially if they

are machine generated) and it is useful to be able to translate an arbitrarily

complex redundant pathname into the most direct route between the starting

context for the name and the object it denotes. Furthermore, because the naming

graph is tree-structured, it is possible to perform this translation without needing

to know about names elsewhere in the graph.

Being able to reduce an arbitrary pathname to its simplest form statically

(before it is resolved) rather than dynamically (as it is resolved) makes the name

resolution process more efficient. This is particularly important for a

transparently distributed system where a name might span several distinct

Naming 31

naming trees on systems linked only by a network. Clearly if name resolution

involves sending messages across a network, and if the number of messages

depends somehow on the complexity of the pathname, then it makes sense to

minimise the number of messages sent by simplifying the name as much as

possible before attempting to resolve it. We will be returning to this point in

chapters 5 and 6.

Canonical pathnames also make it possible to compare pathnames by first

reducing them to their canonical form and hence determining whether they are

equal (i.e. denote the same object). However, the concept of a canonical pathname

is only valid for a tree-structured graph and perhaps this is too restrictive. If the

naming graph is not tree-structured, it may be possible to reach a given object by

two equally acceptable paths of the same length, in which case no sensible

definition of the canonical (i.e. most natural) path will be possible. This poses

several questions. Ifmore general acyclic graphs which allow objects to have more

than one name are useful then is there an alternative algorithm which can

determine whether two pathnames are equal and is this a useful thing to do in

any case? Chapter 6 will consider this problem in more detail.

The canonical transformation for Unix pathnames seems relatively

straightforward at first glance. Every occurrence of . can be omitted (except

perhaps the first to prevent a null pathname) and every occurrence of .. preceded

by a name (other than. or ..) can also be eliminated along with that name. This

algorithm may be described by the following context-free transformations:

(a) ./X ~ X

(b) XI •• IY ~ Y

After performing these simplifications repeatedly, eventually any remaining ..

components of the pathname will move to the front of the path whilst the other

name components move to the back. In other words, a canonical Unix pathname

Naming 32

optionally goes up one or more levels using .. and then comes back down the tree

again through a series of named nodes.

But this algorithm has overlooked two important points. Firstly, there is the

question of what / .. means. In other words, is it possible to move upwards from

the root context? As we discussed earlier in section 2.3.2, although it is usual for

the root context / to correspond to the base of the naming tree, Unix allows / to be

redefined so that it is really a relative name rather than an absolute name.

Clearly, the base of the naming tree can have no parent directory and so by

convention its .. entry has the same meaning as its. entry and points to the

base directory itself. (It would be equally appropriate for it to have no .. entry at

all.) If / corresponds to the base directory as it nearly always does for an

individual Unix system then clearly / .. will be the same as /. However, as we

will see in the next chapter, if a group of individual Unix systems have been

grouped together in a larger naming tree to form a transparently distributed

U nix system and if / still refers to the root of a particular system, there may be an

arbitrary amount of naming structure between / and the base of the larger

naming tree. Therefore, in general / .. should have no special meaning but

should simply refer to the parent directory of root. Applying .. repeatedly to /

will eventually reach the base of the tree.

This interpretation of / .. gives a system with an open root. In view of the

fact that / is used to name important objects such as system directories and files

upon which the correct execution of the rest of the Unix system depends, there is

also a case for a closed root in which / .. is always defined as /, regardless of

whether it actually corresponds to the base of the naming tree or not. This might

seem perverse because it makes the part of the naming tree which is outside this

/ forever inaccessible but this is just what is required in order to create a self

contained subsystem (Le. a Unix system within a Unix system). This is inwards

recursion and the fact that it is possible on an unchanged Unix system bodes well

Naming 33

for the concept of outwards recursion, building bigger systems out of smaller

systems rather than decomposing bigger systems into smaller systems. However,

simply treating I .. as a special case in the name resolution algorithm is an

unpleasant compromise. Early Unix systems implemented an open root but more

recently the trend has been towards a closed root. Unfortunately, although I

should be just a naming context, it has acquired an extra significance as a way of

identifying a Unix system.

The second difficulty with this canonical transformation algorithm is that it is

too simplistic and does not always result in a pathname in its simplest form. For

example, suppose the current context is I AlBIC. Then the pathname

.. I . . /B/C, although apparently in canonical form, may be simplified to the

empty pathname <although this would more usually be written as .).

/
B

/1".

A

The named portion of the path simply retraces the steps made up the tree by the

.. portion. Similarly, .. I .. IBID could better be expressed as . . /0. In this case,

only part of the .. sequence has been undone, namely the innermost .. lB. The

redundant part of such pathnames is always centred around the highest point

they reach in the naming tree. We will refer to this point as the centre of a

pathname.

Eliminating this form of redundancy is much harder because it is context

dependent. The simplification is only possible if the full pathname of the starting

context is known. Notice that this really must be the full pathname from the base

of the tree, not just the pathname from the root context, since otherwise it would

Naming 34

be impossible to apply the simplification to pathnames which entered the

unknown region above root. Given this full pathname, the simplification consists

of matching the tail of the candidate pathname against the corresponding tail of

the full name of its starting context and eliminating matching entries and their

corresponding .. from the centre outwards until no further eliminations are

possible. Elimination must be from the centre outwards to prevent errors in a case

such as the path .. I • . /D/C relative to the context I AI B IC. Although the

trailing C may match, it occurs as part of a different subtree (from D rather than

B) and so no simplification is possible.

Whereas the Unix kernel need normally only store the inode number of the

current context to resolve pathnames, the canonical transformation algorithm

requires knowledge of its full pathname from the base of the tree. Although this

knowledge can be acquired incrementally as the context is changed, it still

requires having to store an arbitrary amount of non-local information about a

local context. Furthermore, the whole concept of a full pathname only works well

with an absolute immovable closed root context corresponding to the base of the

naming tree (in which case the full pathname is the same as the root-relative

pathname). If it is possible to add naming structure above the root context and in

particular to move the base of the naming tree further away from the root named

by I then the value of the full pathname will change as the base recedes from

root.

Naming 35

For example, if the full pathname was IX/Y IZ and then a directory

containing the original base as subdirectory W was made the base of the tree, the

new full pathname would be IW/X/Y IZ. Similar changes to the full pathname

would be necessary if structure was deleted from the top of the tree, perhaps in

splitting a recursively constructed system into subsystems.

All this complexity is caused by the fact that .. is essentially an anonymous

name for the parent directory. A sequence of the form .. I .. etc. may take a

pathname arbitrarily far from its starting point so that an arbitrary amount of

contextual information is required to apply the simplification. It is curious that

XI .. may always be eliminated whereas the symmetrical case .. IX cannot. The

difference is simply that in the first case the X provides enough knowledge of the

position relative to the unknown current context to cancel out the effects of ..

whereas in the second case the .. occurs first and simply compounds the

unknown. Pathnames should have the Markovian property that their meaning is

independent of the history of their starting context but the existence of .. makes

this impossible.

2.3.5. An Alternative to ..

There is actually a very simple alternative to .. which eliminates this

complexity and makes it much simpler to construct canonical pathnames. By

imposing a slight restriction on the choice of names in a given context, it is

possible to give a rule for simplifying redundant pathnames which does not

require an arbitrary amount of non-local knowledge to be stored but rather

depends on a locality property that is valid at every point in the naming tree.

The basic idea behind the new algorithm is to avoid the problems caused by ..

by always referring to directories explicitly by name. In a tree-structured naming

graph, every directory has only one parent and hence only one name. This name

can be used to replace the. entry in the directory itself and the .. entries in any

Naming 36

sub-directories it may have. Only the base of the naming tree is problematical

because it is unique amongst directories in having no name (i.e. no entry other

than .. for it in another directory). Clearly it must be named, however

arbitrarily. The name root or base spelled out would suffice,

It is not sufficient to simply replace the. and .. entries with the real names

of the directories they denote. To prevent ambiguity we must ensure that if a

directory is to be called A for example then no other entry in itself, its parent or

any of its child directories has the same name. Indeed, all of these directories

A

/""

/""
B A

(a) new form (b) old form

must already contain an entry called A if the tree is well-formed and fully

connected. These entries would be . or .. under the original Unix naming

scheme (apart from the entry which defines A in its parent directory).

This restriction prevents names of the form AI AI AI A etc. which will always

simplify to A of course but it does not go to the extreme of requiring that every

directory have a unique name. In fact, names must only be unique within pairs of

consecutive directories, allowing the parent and child of a given directory to use

the same name for a different object. Thus, AlBIC and C are not necessarily the

same but A/BI A is always the same as A. This observation is the essence of the

new canonical naming algorithm. Any sequence of the form X I Y I X in a pathname

may be replaced with simply X. After applying this transformation repeatedly

until no further simplification is possible, the pathname will be in canonical form.

Naming 37

B A

~C~
C B

(a) new form (b) old form

There is one exceptional case, namely a pathname which loops back to its

starting context. This will always simplify to PIC where P is the name of the

parent context and C is the name of the starting context. Introducing the

convention that all pathnames must begin with the name of their starting context

eliminates this problem. Instead of simplifying to PIC, the pathname reduces to

C/P/C which can further be simplified to C, effectively the null pathname. For

example, consider the pathname .. I .. /B/C in the context IAIBIC which

caused difficulties for the original algorithm. Under the new scheme, this would

be written as CIBIAIBIC which simplifies via CIBIC to just C. Similarly,

•. I .• IBID may be written as CIBI AIBIO which just simplifies to C/B/O. This

may be translated back into Unix notation as . I . . 10 or simply . .10.

Unfortunately, this algorithm is only applicable to a tree-structured graph. A

more general graph will allow there to be more than one path between two points

on the graph, making the whole concept of a canonical pathname meaningless.

Regrettably, the Unix naming graph is not a pure tree because files may have

more than one name. Consequently, this algorithm does not work with general

Unix pathnames but it can be used to simplify pathnames between directories

and hence ensure that a given pathname for a file does not visit more directories

Naming 38

than necessary, even though an alternative pathname may also exist. This is

particularly important for a distributed Unix system because it reduces the cost

of resolving pathnames which span more than one system, as we shall see in

chapter 6.

2.3.6. Symbolic Links

Some versions of Unix provide another naming feature which further

complicates the idea of a canonical path. A symbolic link is a third type of object

in the naming tree (besides directories and files) and contains a pathname. This is

used to provide an indirection or aliassing feature. During name resolution,

whenever a symbolic link is reached, the remainder of the pathname currently

being resolved is interpreted in the context denoted by the value of the symbolic

link. (In effect, name resolution continues after prefixing the contents of the link

to the unresolved portion of the pathname.) This redirection may occur several

times during name resolution but since a symbolic link may point to a directory

(or even to itself) loops are possible. Consequently, the kernel limits the number

of redirections that can be made during the resolution of a single pathname and

assumes that if this number is exceeded there is a loop in the naming graph.

Symbolic links are a useful way of hiding the directory structure and may be

used as a forwarding mechanism when a subtree in the name space is moved

elsewhere. For example, suppose individual user directories are stored as

subtrees of the Ius e r directory which has to be moved to Ius r If s for some

reason. If Ius e r is made into a symbolic link to Ius r If s, old pathnames of the

form luse rl robe rt will still work.

Symbolic links effectively allow links between directories so that the Unix

naming graph is no longer tree-structured. Without knowing which nodes in the

graph are really symbolic links, it is impossible to reduce an arbitrary pathname

to its simplest form statically. Of course, it may be reduced dynamically by

Naming 39

simulating the kernel name resolution algorithm and tracing it through the

naming graph but the whole point of the canonical naming algorithm is to able to

perform the transformation statically without requiring knowledge about names

elsewhere in the graph.

A further difficulty is the semantics of .. in the presence of symbolic links. If

Ius e r is a symbolic link to Ius r If s, does Ius e r I . . denote I or Ius r? The

answer will depend on whether .. is interpreted statically (nwhere I am now") or

dynamically (nhow did I get here"). Because . . is simply a special entry in a

directory and Unix keeps no record of the path by which a given context was

reached, its interpretation of .. is static, even though a dynamic interpretation

would work more naturally with symbolic links. Consequently, luse rl .. is

interpreted as Ius r rather than I. This can cause unexpected anomalies with

pathnames of the form .. I X when the current context has been reached

unknowingly via a symbolic link and breaks the canonical simplification of

XI • .IY to Y.

Symbolic links have another curious characteristic. Their value is a pathname

and if this begins with a I it is interpreted relative to root as might be expected.

However, ifon the contrary the pathname contained in the symbolic link does not

begin with a I, it is interpreted relative to the directory in which the link is found

rather than the current directory. Thus, absolute symbolic links are in fact

relative to a dynamic definition of root which may have changed since the link

was created whereas relative symbolic links are in fact absolute because they are

not affected by the definition of either root or the current directory at the time

when the link is resolved! This distinction is particularly important in a

transparent distributed system where processes from different systems may have

different definitions of root and may therefore interpret the same symbolic link in

different ways.

Naming 40

Symbolic links would be much more useful if they were implemented as true

closures, defining the context in which they were to be resolved. This would make

symbolic links not relative to root work sensibly. Their absolute semantics is

counter-intuitive and makes them behave differently from an ordinary Unix link.

Creating a link in another directory to a file in the current directory has a quite

different effect from creating a symbolic link in the same directory to the same

file! The problem is that the pathname value of the symbolic link is simply a

string of characters which is not interpreted in any way until the symbolic link is

resolved. Consequently, it is possible to create symbolic links to non-existent

objects and symbolic links do not behave like true aliases in the sense of section

2.1.3 because they are not deleted when the object they reference is deleted.

Although they were introduced to overcome some limitations of conventional

Unix links, they have managed to muddle Unix naming semantics by confusing

dynamic and static name resolution. If they behaved like real links or real aliases

they would be tolerable but instead they are an unpleasant kludge.

2.3.7. Other Unix N arne Spaces

The Unix file system naming space is based on hierarchical names, but the

other name spaces supported by the Unix kernel are completely flat. Processes

and users have unstructured names consisting of simple integers. There is no

equivalent of a directory or a pathname. These names are globally unique rather

than relative to some context. In effect, they are relative to some implicit system

context. However, because the context is implicit, it is difficult to extend such

names to a transparently distributed Unix system made up of individual systems.

Each system will contribute its own processes and users but their names will no

longer be globally unique nor will it be possible to distinguish names belonging to

different systems. We will return to this problem in chapter 3 when we have

discussed ways of joining name spaces together to build distributed systems.

Naming 41

2.4. Conclusions

We have discussed many naming concepts in theory and shown how they have

been implemented in practice by three different systems: Aspect, Flex and Unix.

Internally, all three systems use a unique identifier to identify objects but they

differ in the structure of the naming graph they allow. Aspect and Flex are built

on top of abstract machines which allow low-level identifiers to be manipulated as

first-class objects. It is impossible to forge identifiers or use them inconsistently

and consequently arbitrary naming structures can be created very easily.

However, this simplicity and flexibility is offset by the hidden cost of

implementing the underlying abstract machine. Unix takes a more pragmatic

approach, restricting the naming graph to a tree structure and not allowing

internal identifiers to be manipulated directly.

A tree-structured graph has the useful property that there is a unique

shortest path between any two points on the graph. We have shown that this

makes it possible to define the concept of a canonical pathname which can be used

to simplify redundant pathnames automatically. However, several features of

Unix such as the anonymous .. directory and the presence of links (especially

symbolic links) make this concept less useful than it could be, although arguably

a tree-structured naming graph is too restrictive in any case. Another problem

area is the way in which Unix depends on root-relative pathnames to name

system objects, confusing the concept of root as a naming context with the notion

of a system. Many of these difficulties could be alleviated by the use of closure

objects but the resulting system might look quite unlike Unix. However, it is

possible to use closures to solve naming problems, as the Flex system described in

section 2.2.2 demonstrates.

Joining Name Spaces Together 42

Chapter 3

Joining N arne Spaces Together
Chapter 2 discussed name spaces as if they were self-contained entities

existing in isolation of each other. In practice, when a group of systems is joined

together by a network, each system will have its own name space and these name

spaces must be merged in order to construct a transparent distributed system. If

the individual name spaces are still distinguishable in the distributed system

then transparency has not been achieved.

Joining name spaces together to build a distributed system is a useful way of

sharing objects and other resources between systems across a network. It is a

recursi ve mechanism for combining name spaces to build bigger name spaces.

Recursion can also be used to decompose name spaces into smaller name spaces

within a single system. This is a way of overcoming the management problems of

scale by dividing up a large name space into smaller domains which can be

administered independently. Thus, it is useful to consider mechanisms for joining

name spaces together, both within a single system and between systems. Ideally,

the same recursive mechanism should be applicable at both levels if the system

has a uniform naming scheme.

If it is possible to merge name spaces transparently so that the composite

name space is indistinguishable from the name spaces of which it is composed

then it should be possible to merge the composite name space with other name

spaces recursively. In this respect, a distributed name space designed from

scratch should be no different from a distributed name space built by combining

existing name spaces transparently. Thus, although this thesis is mainly

concerned with the evolutionary problems of building a distributed system from

Joining Name Spaces Together 43

existing systems, it should also be applicable to the revolutionary problems of

joining together distributed systems built from scratch.

In this chapter, we will discuss some mechanisms for joining name spaces

together. One approach, taken by systems such as Aspect and Flex, is simply to

assume the existence of globally unique identifiers. Obviously, if global

uniqueness can be attained in practice, it will be possible to combine independent

name spaces without conflict. However, the problem of managing a large flat

space of identifiers without any structure will remain. We will consider these

issues in more detail in the next chapter and explore whether global uniqueness

really is attainable. In the meantime, we will concentrate on the mechanisms

wi thin Unix for joining name spaces together.

Unix does not rely on globally unique identifiers and it is therefore possible to

combine Unix name spaces recursively wi thin a single Unix system to form a

larger name space. Although it is not quite transparent, this mechanism has been

generalised to allow Unix systems to be combined across a network to form

distributed systems. This chapter discusses some of the distributed Unix systems

which have been built and analyses some problematical areas of the Unix

semantics in greater detail. These problem areas are not specific to Unix but must

be tackled by the designer of any transparent distributed system, evolutionary or

revolutionary.

3.1. First Principles

The purpose of a naming system at any level is to map names into internal

identifiers. Thus, a naming system actually involves two name spaces: external

names visible to its clients and internal names known only to the system.

Typically, the internal names come from a flat naming space and are closely

related to the physical location of the object they identify. Conversely, the

external names come from a highly structured name space and are location

Joining Name Spaces Together 44

transparent, allowing names and hence objects to be grouped together in a way

which reflects the organisational needs of the user rather than those of the

system.

When two name spaces are joined together they may be merged at either of

these levels. If their internal name spaces are merged by extending the internal

names to identify objects in one naming system or the other, their external name

spaces need not be affected. Although the mapping from external name to

internal identifier will have been changed to reflect the larger internal name

space, this change has occurred internally. Externally, names will continue to be

location independent and there will be no indication that two name spaces have

been merged. In other words, the name given to an object need not depend on the

system from which it originates.

Of course, because the result of merging two name spaces transparently is

itself a name space, the external name spaces must be combined in some way.

Otherwise, unless it is possible to use internal identifiers directly, there will be no

way of referring to an object from another name space. The two naming graphs

may either be joined in their entirety at some extreme point, thus preserving

them intact within a larger graph, or else partially or even completely merged to

share some sub-structure.

Once two name spaces have been joined it will be possible to name objects from

either name space quite transparently. However, until the name spaces have

been joined there will be no transparent way of naming an object from the other

name space and consequently the actual join operation must use some non

transparent form of naming to indicate which parts of which name spaces are to

be joined. This requires some external scheme for naming name spaces outside

the naming system or perhaps the direct use of internal identifiers.

Joining Name Spaces Together 45

Merging name spaces involves resolving conflicts at both the internal and

external level of the system. Internal system identifiers are usually assumed to be

unique within the implicit context of a single naming system. When two such

systems are combined, their internal identifiers are no longer sufficient to

identify objects uniquely within the combined system. They must either be

qualified with the identity of the naming system to which they refer or else be

replaced with some other identifier that is unique in the larger scope of the

combined naming system.

Merging external name spaces is not so difficult because they are usually

already structured and therefore already have an explicit notion of context.

Rather than resolving conflicts across the implicit context of an entire flat name

space, conflicts need only be resolved locally within a limited context. Objects can

be renamed or the problem can simply be avoided by keeping both contexts in the

merged graph. It is always possible to combine two name spaces in their entirety

by simply giving their source nodes names in a new context and making no

further attempt to merge them. This approach may be used to combine two

contexts at any level in the system

The result of joining two name spaces together is another name space. If this

construction is truly transparent, it should be possible to apply it recursively,

joining composite name spaces together to produce even bigger name spaces. This

observation may be expressed in terms of the recursive structuring principle:

UA composite system should be functionally equivalent to

the systems of which it is composed."

Although full transparency is the ideal, it may not always be achievable in

practice. However, it is possible to compromise. The composite name space may

not attempt to hide the individual name spaces from which it is constructed but

simply group them together loosely, providing limited support for names which

Joining Name Spaces Together 46

cross the internal boundaries between name spaces. The overall effect will be to

give the illusion of a single naming space but peculiar restrictions on naming will

expose discontinuities at the points where individual name spaces were joined

together.

For example, the Unix mount mechanism (which will be discussed in section

3.2.2) joins name spaces together at a single point by making a leaf node in one

name space refer to a source node in the other. Apart from this single name that

crosses the name space boundary, there is no other way of creating a reference

from one name space to the other. This restriction tends to highlight the boundary

between the two name spaces because it does not apply to a single name space. If

the name spaces had been joined together completely transparently, there would

no such restriction.

3.2. Joining Name Spaces Together within a Unix System

The rather abstract principles of the previous section will be illustrated with a

concrete example, the Unix file system. During the discussion of U nix naming in

section 2.3 we deliberately described naming in terms of a single atomic name

space. In practice, the Unix name space can be subdivided into smaller name

spaces, even wi thin a single system.

3.2.1. Inodes and Devices

Section 2.3.1 described how the various objects in the Unix file system are

represented by inodes, with directories providing the association between names

and inode numbers needed to resolve pathnames. Inode numbers are simply small

integers but are not guaranteed to be unique across an entire Unix system.

Instead the Unix name space is partitioned into subspaces called devices in which

inode numbers are unique. Devices correspond to physical storage media such as

removable disk packs or partitions of fixed disks. Because inode numbers are not

Joining Name Spaces Together 47

unique and because directory entries contain no device identifier, an object must

be named from a directory on the same device on which it is stored. Directory

entries (or links) referring to objects on other devices are prevented by the

implementation. Although Unix provides a mechanism for joining the name

spaces stored on individual devices into a single composite name space, the

boundaries between the individual name spaces are still visible in the sense that

it is not possible to create a link to an arbitrary object from anywhere else in the

name hierarchy. Links are restricted to being within a single name space (or

device) and cross-device links are not allowed. This means that name spaces can

only be joined together at a single point in the naming graph and consequently

there is a strong correlation between the global pathname to an object and the

name space to which it belongs. Since name spaces are associated with physical

devices, names are no longer location independent and a useful form of

transparency has been lost.

Obviously, if Unix directory entries were to be extended to allow a device

number, this could be used together with the inode number to identify any object

on any device in the system uniquely and hence allow cross-device links.

However, there are two important issues to be considered here. Firstly, there is a

trade-off between the extra space taken up by the larger directory entries and the

frequency with which cross-device links will be required. In other words, there is

a trade-off between locality of reference and space-efficiency. Secondly, and more

importantly, it is possible for an object referred to by a cross-device link to become

temporarily unavailable, for example if the disk on which it resides were to be

removed. The complications this causes for the naming algorithms were discussed

in section 2.1.3.

Extending the size of the directory entry solves the problem at one level but is

not a recursive solution to the more general problem. Unless the low-level device

and inode number pairs are themselves globally unique across all possible Unix

Joining Name Spaces Together 48

systems, it will still not be possible to join Unix systems together recursively and

allow cross-system links for precisely the same reason that the non-uniqueness of

inode numbers prevented cross-device links. Again, the introduction of unique

system identifiers would appear to solve the problem, but only until it became

necessary to introduce more structure and recursively compose systems of

systems. The basic problem is that introducing a flat name space at any level

restricts the growth of the system beyond that point unless the global uniqueness

of names can be guaranteed between all existing and potential systems at that

level. On the other hand, extensible sequences of locally unique identifiers are

amenable to recursive construction techniques, providing it is feasible to use such

complex names at the lowest level in the system.

Ultimately, all objects must be uniquely identified by the system which

defines them, since otherwise there is no concept of identity and the distinction

between objects becomes meaningless. The difficulty is in deciding what form that

identifier should take and what constraints its choice of value should impose on

the construction of other systems which may be merged with the local system. In

particular, is it reasonable to hope for transparency at every level of a recursively

constructed system or is there a balance point at which the cost of providing the

extra level of transparency outweighs its benefits? Should we aim for the illusion

of a single system with its own internally unique set of identifiers or a

compromise solution in which internal system boundaries are visible because

implementation constraints make the use of globally unique identifiers

internally impossible? There is little point in providing functionality which will

not be used or is not required. Often the best compromise is to make the common

cases work well and the rare cases possible.

Joining Name Spaces Together 49

3.2.2. Joining Name Spaces Together with Mount

So far we have discussed the impact that joining name spaces together has on

the low-level identifiers used internally by a system. If it is possible to hide the

boundaries between name spaces internally by extending the range and

uniqueness property of the internal identifiers to cover the composite name space

then there is no reason why the high level pathnames seen by users of the system

need be affected. However, in general this kind of internal modification is not

possible and will be limited in scope in any case for the reasons discussed in the

previous section. Consequently, there will still be a need to extend the pathname

mechanism at the higher level as an additional way of joining name spaces

together. Some systems make no attempt to do this transparently but simply

make the full name of an object include a device name which is distinguished

from the rest of the name by a separator. This is not extensible. In contrast, the

Unix concept of mount is a genuinely recursive mechanism for joining name

spaces together transparently (although it does not tackle the problem of cross

device links).

The idea of mount is to join together two disjoint file systems to form a

continuous whole. As far as naming is concerned a file system is just a self

contained name space stored on a single device. Being tree structured it will have

a unique directory at the base of the tree and being self-contained this directory's

.. entry must point to itself. The mount operation consists of overlaying a leaf

directory in a local file system with the base directory of another file system (Le.

mounting one system onto another).

Joining Name Spaces Together 50

In achieving this, several problems must be overcome. Pathnames through the

directory which is overlaid (the mount point) must cross from one name space to

another. Similarly, pathnames from within the mounted volume which pass

through its base directory with .. will emerge at the mount point in the parent

name space and continue up the parent naming tree. It is possible to mount

further naming spaces, even onto volumes that are themselves mounted; in other

words, the process is recursive.

An example will illustrate these points. Suppose a naming system containing

the object Y II has been mounted at AlB. The base directory of the mounted

naming system will now coincide with the mount point AlB and so I will now be

accessible as AIBIY II.

A

/ '" B

/ '" C
/

D

/ '" y

'" Z

On the other hand, any objects previously accessible from B (such as a subtree

beginning I A/B/C/O) will be unreachable until the Y I I naming system is

unmounted. B will coincide exactly with the base directory of the mounted

volume, even as far as the. and .. entries are concerned. In particular, .. from

the base directory of the mounted volume will coincide with the original meaning

of BI .. (Le. A). This will clearly require some ingenuity in the kernel name

resolution because in effect .. in the base directory has become a cross-device

link, a concept that is supposedly forbidden because of the way in which directory

entries are implemented in terms of inode numbers which are purely local to one

device. The transition across the mount point must be handled from the inside

going out (..) as well as from the outside going in.

Joining Name Spaces Together 51

Mount is implemented by locking the inode for the mount point and the base

directory of the mounted volume into memory. Every time the name resolution

algorithm goes to fetch an inode from disk (in order to read the contents of the

directory it refers to and resolve the next portion of the name) it checks the table

of mount points first and indirects to the inode for the base directory of the

mounted volume if necessary. This handles crossing the mount point from

outside; crossing it from inside via .. is rather more complex. Essentially, there

has to be a special case for a .. entry occurring in the base directory of a mounted

system (this directory can be recognised by its inode number which always has

the same value). When a pathname includes such a .. component, it is

interpreted in the original inode for the mount point rather than the inode for the

base of the mounted volume. In this way, the kernel ensures that .. correctly

indicates the parent directory of the mount point rather than the parent of the

mounted volume's base directory which is always itself. Notice that it is not

possible to modify the .. entry in the base directory at mount time to make this

unnecessary because directory entries describe files just in terms of inode

numbers, unique only to a particular volume, and are therefore incapable of

naming files on another volume. An unfortunate consequence of this is that any

user-level program that reads directory entries and pays any attention to the

inode value must be particularly careful at mount points because the information

in the directory is not correct. Not only does an implementation detail make itself

visible but it does so in a way which violates the transparent bridging of the gap

between naming systems provided by mount.

One program that has to be aware of this subtlety is the algorithm used to

determine the root relative pathname of the current directory, the pwd program.

Although the pathname can be expressed from the current directory as a

sequence of .. segments corresponding to the depth of the current directory in

the tree, this is not very helpful! The pwd command must effectively reverse this

Joining Name Spaces Together 52

pathname and give a name to all the anonymous .. values. This involves

recursively searching the parent directory for an entry whose inode corresponds

to that of the current directory; the name of that entry is the ttreal" name of the

directory (in the sense discussed in section 2.3.5). Since the directory search will

not succeed at a mount point, further ingenuity is required. There is a stat system

call which returns details about a file, effectively the contents of its inode entry,

including the inode and device number. Naturally, the inode value returned by

stat should normally match that found in the directory entry for the file but in the

presence of a mount point they will differ since the indirection implied by the

mount will take place.

It is worth observing that the pwd algorithm would be trivial with the

alternative naming scheme proposed in section 2.3.5 that avoids the use of ..

altogether, provided it was possible to recognise the directory entry for the parent

directory (which under the new scheme would no longer have a uniform name

such as ..). Since by convention. and .. are respectively the first and second

entries in every directory, the same convention could be employed with the

revised naming system. The pwd command would then simply have to reverse the

chain formed by the second entry in every directory between the current context

and the root directory, the arrival at root being recognised by the use of stat to

match the prospective pathname against /. The disadvantage of this scheme

would be that the locality condition which ensured no ambiguity would have to

extend across the mount boundary, imposing restrictions on the names in a

physically distinct naming graph. This is a pessimistic way of looking at it; a

more optimistic view would be that the restrictions are imposed on the choice of

site for the mount point, perhaps an improvement on the current implementation

which allows a mount to occur at any point in the naming tree, possibly hiding a

sub-tree.

Joining Name Spaces Together 53

We have discussed in some detail the mechanisms by which mount joins two

name spaces together and ensures that the join (almost) doesn't show. The link

from inside the mounted volume via .. to the parent of the mount point has to be

implemented as a special case; in effect, .. is the single cross-device link allowed.

However, it would be possible to generalise this mechanism by adding a special

kind of inode for references outside the naming system. Mount would then be

more like completing part of a jig-saw puzzle by matching up these unresolved

references to the corresponding entries in the other system. Indeed, the result

would be more symmetrical, combining two name spaces to form one and

resolving some pairs of unbound references while leaving others still unbound in

the composite name space. Such an algorithm could be applied recursively to

generate bigger name spaces out of smaller ones providing the mechanism for

binding references across name spaces was extensible. This would tend to rule out

anything based on unique names for naming spaces; instead, references would

have to be resolved using relative names for adjoining name spaces. The idea

discussed in section 2.3.5 of eliminating .. and replacing it with a locally unique

name would suffice for this purpose and would give a pleasing symmetry between

the implementation of directories and larger naming spaces such as devices.

Cross-device links are effectively prevented in a standard Unix system by the

way in which inodes and links between directory entries are implemented.

However, there are other reasons for imposing such a restriction which must be

overcome before it is possible to propose an honest alternative which improves on

this situation. The fact that it is possible to mount and unmount name spaces

means that parts of the naming tree may not always be present. A cross-device

link is effectively unbound if the device which it refers to has not been mounted.

Furthermore, an object cannot be deleted while there is a remote reference to it

from some other name space. This effectively removes some of the autonomy from

Joining Name Spaces Together 54

each name space. The implementation of cross-device links requires

synchronisation and cooperation between name spaces.

Given that it is acceptable for an object to be absent sometimes, these

problems are soluble by using an extra level of indirection through a dummy

inode that has no local name, thereby ensuring that the reference count on a

remotely accessible object can never fall to zero so long as this shadow entry

exists. Deleting the cross-device link would therefore involve deleting this special

anonymous reference on the local disk, permitting the object to be reclaimed

when necessary. However, at mount time there would remain the difficulty of

matching up the two name spaces. Ifit were possible to mount a different volume

at the same mount point then confusion could ensue. Without introducing unique

identifiers over the space of all possible mountable volumes this is basically

insoluble although the probability of confusion can be made arbitrarily small by

using random numbers as upseudo-unique" identifiers. Perhaps this is not

actually a problem in practice since Unix makes no checks at mount time and

devices tend to be mounted in the same place. Otherwise well-known pathnames

would simply not work. Consequently, a simple interface signature based on

matching unresolved names would probably suffice although with malice

aforethought it would be possible to forge an interface and wreak havoc,

assuming the physical opportunity to substitute one volume for another was

available. Exchanging purely locally unique identifiers is all very well but could

theoretically fail since identical sets of such «unique" identifiers could be

generated independently on independent volumes.

Of course, the symbolic links discussed in section 2.3.6 also provide a solution

to the problem of creating cross-device links. Indeed, this is probably why they

were introduced in the first place. Because th 3 value of the symbolic link is a

pathname rather than an inode number, it can cross mount points and refer to

objects on other devices. However, the existence of a symbolic link to an object

Joining Name Spaces Together 55

does not guarantee the existence of the object itself because symbolic links are not

real links, unlike the genuine cross-device links discussed in the previous

paragraph. Because a symbolic link does not affect the reference count of the

object it denotes, that object may be deleted leaving the symbolic link behind as a

dangling pointer into thin air. A symbolic link is not an alias in the sense of

section 2.1.3.

In conclusion, mount provides a very elegant (if not quite perfect) way of

joining name spaces together. It is therefore not surprising to discover that many

of the attempts to construct a transparently distributed Unix system have been

based on a generalisation of mount. However before examining such transparent

distributed Unix systems in section 3.4, it is instructive to put this work into

historical perspective by considering some of the earlier attempts to build a

distributed Unix. The resulting systems were not transparent, and the problems

this caused were one of the main motivations in the development of the idea of

transparency.

3.3. Non-Transparent Distributed Unix Systems

Unix was developed in a research laboratory of Bell Telephone so it is perhaps

not surprising that since its very early days, attempts have been made to join

Unix systems together over networks to produce some sort of distributed system.

The UUCP system [Nowitz78] was one such attempt and is still in use today,

forming the basis of Use net, a worldwide collection of about 2000 Unix machines

which can transfer mail and news between each other.

UUCP usually operates over serial lines and other forms of wide area network.

It supports a point to point network, with the software recognising names of the

form system!pathname. It is possible to indicate a route by concatenating

system names. For example, A ! B I C would name a file C on machine B reached via

machine A. The local machine (which is not named in the path) need only know

Joining Name Spaces Together 56

about system A. It does not necessarily know about machine B and might even

know about a different machine B which is why it is necessary to designate a

route through machine A explicitly. However, at least within Usenet, system

names are supposed to be globally unique and it is therefore possible to rely on

automatic route finding software and simply use a name of the form B! C

unambiguously.

This kind of naming mechanism is far from transparent. It introduces a new

form of name with an unconventional separator (! rather than I) and thereby

distinguishes system names from file names quite explicitly. Special utilities are

required for accessing remote files as opposed to local files because no attempt has

been made to integrate the UUCP commands with their Unix equivalents. For

example, the Unix cp command cannot be used for remote file transfer because it

does not recognise UUCP pathnames. Instead, a special program called uucp

must be used to perform the copy. But perhaps this lack of transparency and

failure to integrate UUCP with Unix is reasonable considering that a loosely

coupled wide area network is being used for communications. After all, the

remote copy will take much longer than the local copy, the source or destination

machine may not always be available, special forms of authorisation may be

required and it may even be necessary to perform the actual transfer offline

rather than on demand. To pretend that the two types of copy operation are the

same by integrating them into one command might be misleading. This is the

dilemma that the designer of a transparent system must face. The whole point of

transparency is to mask the distinction between local and remote objects but if it

is not always natural to do so, is some transparency better than none at all (or is

transparency, like virginity, an all or nothing property)?

More recently, the University of California at Berkeley have implemented the

DoD Arpanet protocols in their version of Unix. As well as providing the ARPA

telnet and ftp protocols which were designed for remote terminal access and file

Joining Name Spaces Together 57

transfer between arbitrary operating systems, Berkeley have also provided more

Unix specific application protocols for remote login and remote copying of files

which take care of some of the authentication issues transparently. The Unix

specific utilities are more usable between Unix systems than the general purpose

ARPA utilities which have to be able to cope with heterogeneous systems with

little in common. There is also a facility for remotely executing shell commands

which makes it possible to pipe the output of a command on one machine into the

input of a command on a different machine. However, like UUCP, the naming

syntax for remote objects (in this case sy stem: path name) is only recognised by

certain applications. It is not possible to use an arbitrary Unix command such as

diffwith remote files unless they are first copied to the local machine. Nor is it

possible to move the current directory onto a remote machine.

Rewriting every application so that it understood the new naming syntax

would not help to solve the current directory problem since the current directory

is a property of the process rather than the application and is used internally by

the Unix kernel to resolve pathnames. It would be necessary to duplicate the

entire Unix name resolution algorithm in each application. A much better

solution would be to move the recognition of the new style of name from the

application into the Unix kernel itself, thereby making the ability to access

remote objects common to all applications. This is the idea behind the various

attempts to build a transparent distributed Unix system.

3.4. Transparent Distributed Unix Systems

Achieving transparency is not just a question of moving the resolution of

remote names into the kernel. Indeed, names of the form sy stem: pat h n arne are

not transparent at all. They are manifestly different from ordinary Unix

pathnames and make it quite explicit that the object being referred to is remote

rather than local. In order to achieve full transparency, it is necessary to find a

Joining Name Spaces Together 58

way of integrating remote names into the standard Unix pathname syntax. There

are several issues to be considered and not surprisingly the various

implementations of transparent distributed Unix systems have adopted different

solutions. We will discuss some of the naming possibilities now with particular

reference to four such distributed Unix implementations. For a more complete

survey and comparison of distributed Unix systems see [Barak86,

Brownbridge82,Vandome86,Wupit831.

3.4.1. The Newcastle Connection

The Newcastle Connection (or NC) [Brownbridge821 was designed solely from

the naming viewpoint, the chief issue being how remote objects would be named

in a distributed Unix system. It also reflects the recursive design philosophy

prevalent at Newcastle [Rande1l831, which led to the formulation of a version of

the recursive structuring principle described earlier in section 3.1 for distributed

systems:

((A distributed system should be functionally equivalent to

the systems of which it is composed."

There is some justification for this approach in the fact that a stand-alone Unix

system may be partitioned into subsystems by redefining the root directory as

described in section 2.3.2. Such a partitioning is effectively inwards recursion;

what the NC provides is outwards recursion. However, the difference is that

whereas a closed subsystem is intended to have a closed root, the NC is intended

to be used with an open root as we shall see shortly.

The NC ensures that the overall naming graph of the distributed Unix system

remains tree-structured by grouping the root directories of individual systems

together into what is sometimes referred to as a usuper-root" directory. The most

logical name for this usuper-root" directory is / .. because it is the parent

Joining Name Spaces Together 59

directory of all the individual root directories. This is why the NC requires an

open root semantics.

For example, consider three Unix systems named A, Band C, each with their

own root directory. The naming graph for the distributed system which results

from joining these three systems together with the NC would look like this:

/ .. -+~
/ -+ ABC

From system A, files on system B can be reached via a pathname that begins

/ .. / B. This leads to the root directory for B. Thus the directory / use r / rob e r t

on B would be named / .. /B/user/robert from A. Notice that the / ..

directory contains named entries for each system's root directory but that local

pathnames are not affected by the extra directories because the definition of / on

each system remains unchanged.

Although some distributed Unix systems have mistakenly made this ttsuper

root" into something special with its own naming syntax, in keeping with its

recursive structuring principle the NC treats / .. as just another directory and

the concept is therefore extensible. Instead of having a single directory above /, it

might sometimes be more appropriate to add further levels of structure.

For example, an organisation might wish to group its departments 0 into

institutions I and its institutions into regions R. With such a naming graph, a

pathname of the form / .. / .. / .. / R / I /0 would be required to reach an

arbitrary remote system but in a particular case a shorter name might be

possible. For example, / .. /0' would suffice for another department within the

same institution and similarly / .. / .. / I I would suffice for another institution

within the same region. It is always possible to construct the most general

Joining Name Spaces Together

1 .. 1 .. 1 ..

I .. I ..
~A
R R'

/ "-
I. . ~ I I'

I ~
/

D "- D'

60

pathname to a given point in the tree from the absolute name of that point

relative to the base of the tree and this name may then be reduced to its simplest

and most direct form with one of the canonical simplification algorithms

discussed in section 2.3.5.

One problem with the I .. naming scheme is that it is necessary to impose a

definite order on the naming hierarchy. In our example, departments are grouped

within institutions, rather than vice-versa. An alternative structure might

sometimes be more appropriate but it is not possible to allow two views of the

same naming structure to co-exist simultaneously because Unix does not allow

links between directories or across devices. Consequently, the naming tree is

fixed and every system shares the same global naming tree. This problem is

nothing new. The same ordering conflicts can arise in a hierarchical database and

this is one reason for introducing the flat relational model. The Aspect model of

naming described in section 2.2.1 allows greater flexibility because it does not

impose a pre-ordained order on the naming graph.

Of course, it is not always necessary to extend the hierarchy outwards like

this. In some cases the systems being united in the distributed naming tree might

not be on an equal footing but instead exist in some kind of client/server

relationship. It would then be natural for the server machine to recognise the

client as a sub-directory but to the client the server would still be above the root

(Le. somewhere in I .. or higher). The important point is that whenever systems

are joined together the directory structure which links them is shared. In effect,

Joining Name Spaces Together 61

the I .. directory is replicated across all systems or alternatively exists in its own

right on a separate system acting as a name server. However, although the NC

expects individual system administrators to set up the extended naming tree, it

does not implement replicated directories nor provide any other means of

enforcing consistency so the tree structure is not guaranteed.

Directories above root may cause problems for Unix utilities such as pwd

which assume that the current directory is always below root. This is discussed in

more detail in section 3.5.1.

Equating whole systems with directories as the NC does is all very well but

suffers from a lack of location transparency. If an object is named I .. /A/foo

then it is manifestly located on system A. If it were to be moved to system B, its

name would change to I . . I B I f 00. This is not very desirable from an

administrative point of view nor terribly friendly to the user since it highlights

the distinction between the individual systems that go to make up the distributed

system, making it less than fully transparent. Again, a more general linking

mechanism could be used to hide the underlying physical structure, making it

possible to group objects on semantic or functional grounds rather than purely by

location. However, it is possible to manage without this facility simply because

the individual systems do indeed remain distinct within the distributed whole

and so it is natural that projects which might require such a grouping of objects

remain confined to one system. But this is scarcely a justification and indeed

rather makes a nonsense of the whole idea of distribution. The problem is really

with Unix rather than the idea of transparent distribution. Names and locations

should be orthogonal concepts but instead of being separated cleanly they remain

entangled because Unix pathnames are overloaded with locational information

instead of just being purely structural or organisational.

Joining Name Spaces Together 62

Another problem with transparency is that a distributed Unix system

constructed with the NC does not have a proper concept of a user. Users remain

associated with individual systems rather than belonging to the distributed

system as a whole and so, at least in this respect, the distributed system is not

functionally equivalent to the systems of which it is composed. However, the NC

does allow system administrators to retain control of their machines and does not

require all the systems to support the same set of users. In fairness to the NC, the

concept of a user is problematical for all transparently distributed Unix systems

because it is so ill-defined by Unix itself and tied up with the concept of a system

directory pointed at by root. Whereas Unix file names are hierarchical and extend

nicely to a decentralised distributed environment, user names in Unix are taken

from a flat centralised name space without structure. Unix does not provide

adequate mechanisms for managing the user space of a large centralised system,

let alone a decentralised distributed system. Again the problem has more to do

with Unix itself than the idea of transparent distribution. An inadequate

centralised mechanism cannot be extended transparently to a decentralised

system. This problem is discussed in more detail in section 3.5.3.

3.4.2. NFS

A completely different approach to organising the distributed name space has

been adopted by the SUN Network File System (NFS) [Sandberg86]. Disk space is

limited on an individual workstation and a lot of space will be wasted in a

network of workstations by duplicate copies of system files. Sharing common but

perhaps infrequently accessed files (such as on-line manual pages and system

source code) will clearly save space and if the access to such remote files across the

network can be made comparable to the access time to a local disk, it will be

possible to share the entire system file structure and even support diskless clients

Joining Name Spaces Together 63

with centralised file servers. SUN claim to have achieved this performance goal,

and do indeed support diskless clients with NFS over Ethernet.

The NFS distributed name space is based on the concept of a remote mount.

The mount system call has been extended so that it may be used to join a name

space on one machine to a name space on another, across the network. However,

unlike the NC approach, this is inherently asymmetrical. The system which

performs the mount will extend its own naming space by gaining access to part of

the naming tree of another system but that is all. Although the remote system

must consent to being the target of a remote mount by publishing which parts of

its naming tree it is prepared to make available and must be prepared to access

and modify those parts of its naming tree on behalf of the remote client, once the

mount has occurred there is no reciprocal arrangement and no single, global view

of the distributed name space. Each system on the network will see a complete

tree beneath its root directory /, but each system will see a different tree and it

will not be possible to access any part of another system's file tree unless it has

been published by that system and integrated into the local hierarchy with a

remote mount. Even where the individual naming trees overlap, as for example

with a shared subtree, at the mount point (i.e. the base of the mounted subtree)

. . will lead back to the system which is enquiring rather than the system to

which the shared subtree belongs. In other words, the server which owns the

subtree will interpret .. at the mount point dynamically, with each system that

shares the subtree receiving a different interpretation. However, the view of the

naming tree from each system will be entirely self-consistent and this means that

there will be less problem with Unix utilities such as pwd and find which depend

on particular properties of the Unix naming graph (but see also section 3.5.1).

An NFS server indicates which parts of its naming tree may be remotely

mounted by publishing details in a system file called / etc / e x p 0 r t s. This is not

a proper distributed database but merely a local facility which can be used to

Joining Name Spaces Together 64

control the behaviour of the NFS mount protocol daemon on each machine acting

as a server. The server validates each mount request against its publication list

and it is possible to restrict the access of a particular subtree to a special group of

clients.

Regrettably, the client/server relationship implied by the remote mount

concept is only a convention and circularities are still possible if the server

machine itself performs a remote mount back to one of its clients. In this respect

the NFS is no better than the NC; both systems will behave naturally if they are

used as they were intended but without any enforcement of this implicit policy of

no cycles, both may easily be abused. Designing a distributed algorithm that

enforced a consistent naming tree and prevented the creation of circularities at

mount time is probably not worth the effort. Once a distributed system has been

set up its naming structure is unlikely to be changed significantly except to add

new systems. A reorganisation is likely to be traumatic in any case and this

provides additional inertia. A small distributed system on a LAN will have a very

simple naming structure in any case so there will not be much to change. A larger

system is most sensibly organised as clusters of smaller systems, each locally

administered. Circularities are only likely to occur accidentally if complex inter

mounting is allowed between these domains but this can either be forbidden by

design or decree. If the domains represent localities, geographically or

semantically, the need for such inter-mounting will be less apparent in any case.

3.4.3. RFS

The RFS Remote File System [Rifkin86] developed by AT&T is also based on

the concept of remote mount. Like NFS, there is no need for system names or

directories corresponding to entire systems to appear in the file hierarchy

(although there is nothing to stop a server from allowing its entire file system to

be remotely mounted). However, RFS goes further than NFS in achieving

Joining Name Spaces Together 65

location independence by mounting resources rather than specific subtrees on

specific systems. A resource is simply an extra naming level of indirection

between what is being published (the RFS term is advertised) and what is being

mounted. A system will advertise a portion of its file system as a particular

resource and RFS will maintain a distributed database which maps resource

names into physical locations. If for some reason a system becomes unavailable,

there is no reason why the same resource should not be provided by another

system because a potential client is not aware of the actual location of the

resource. Unlike NFS, the list of advertised resources really is distributed and if

the system acting as name server crashes or becomes unavailable because of a

network fault, another system will be configured for this role automatically.

As an organisational aid RFS provides an additional level of structuring on

resource names called a domain. A domain is simply a collection of unique

resource names (Le. a context) and it is possible to mount a resource from another

domain by using a qualified name of the form doma in. resou rce. However, this

scheme is not recursively extensible (with domains of domains) although there is

no reason in principle why it should not be. It is perhaps unfortunate that the

doma in. resou rce style of naming understood by the RFS database and remote

mount command introduces yet another form of name to Unix but the clean

separation between logical resources and physical pathnames is important.

Remote mount makes it unnecessary for system names to appear in the naming

tree at all.

3.4.4. LOCUS

Whereas the Newcastle Connection joins together whole Unix systems as

directories in a single tree and NFS/RFS join Unix systems into a forest of

overlapping trees, the LOCUS system [Walker83] adopts a third approach and is

perhaps the most transparently distributed of all the systems we have considered.

Joining Name Spaces Together 66

However, although a LOCUS system is certainly functionally equivalent to the

Unix systems of which it is composed, LOCUS is not really recursively structured

as we shall see.

The LOCUS distributed naming tree is identical to an ordinary Unix tree.

There is only one root directory / for the entire distributed system and therefore

all the system directories and files such as / etc / pas s w d only occur once in the

naming tree. This is not the performance bottleneck that it might seem because

LOCUS supports replicated files and the name of a file is unrelated to the location

of its nearest copy. In particular, all the important system files and even the root

directory itself are likely to be replicated locally on every machine, with the

LOCUS system ensuring that all updates to replicated files are propagated

automatically and consistently. This facility alone is an important

administrative convenience since otherwise it is all too easy for separate copies of

what is supposedly the same file to get out of step.

Although LOCUS maintains the illusion of a single virtual system, it does not

follow that one version of each file in the naming tree will suffice, however many

times it is replicated. Files containing executable code will only execute on one

type of processor, so in a heterogeneous environment it is not possible to maintain

a single version of the standard Unix utilities in /b i n (or indeed, any other

program that is to be available on all machines). Instead, one version is required

for each processor type but this fact must be concealed to preserve the illusion of a

single system with a single / bin directory. This is achieved by the use of hidden

directories. Each entry in / bin is actually a directory containing a version of the

program it represents for each possible processor type. Thus, although / bin / c p

may appear to be a simple program, it actually stands for one a series of programs

with names of the form /b i n/cp@/m68, /b i n/cp@/vax and so on, where the @

is an escape mechanism which allows the name to fall through into the hidden

directory. When LOCUS resolves a pathname such as /bin/cp, it applies a

Joining Name Spaces Together 67

context-dependent translation to pick an appropriate file in the hidden directory.

Part of the state of each process is a list of acceptable hidden directory names,

effectively indicating the processor types on which that process is prepared to run.

A second LOCUS facility is made necessary by the Unix convention of storing

system-related information in special files with well-known root-relative names.

This equates the notion of a system rather too closely with the concept of a root

subtree containing certain files. For example, I tmp is a directory used by

convention to store temporary files and let c I u tm p is a file used to record who

has logged on to the system and is currently using it. Although it would be

possible to have a single version of both these files for the entire LOCUS system,

it would not be very efficient or even appropriate to do so. There is no need for

Itmp to be a public directory and it would be inefficient and unnecessary to go to

the trouble of ensuring that every system had a globally consistent view of the

contents of Itmp.1t should be as local as possible rather than shared publicly. For

different reasons, it is not desirable to have only one version of I etc/u tmp. If the

file was shared by the entire LOCUS system then it would only be possible to find

out about the state of the entire distributed system rather than each local system

with a private version of letc/utmp. Consequently, even at the risk of violating

transparency, it is desirable to make pathnames such as Itmp or letc/utmp

special references to a unique version of the file on the local system. LOCUS

achieves this by maintaining a special sub-tree of site-specific files for each

system in the global naming tree and trapping the conventional Unix names for

these objects with a special form of symbolic link. Thus, letc/utmp in the shared

root directory is actually a symbolic link to (LOCAL)/utmp where the special

name (LOCAL) is automatically translated into a site-specific pathname in a

context-dependent way. (Again, this translation is part of the state of each

process, and may be manipulated by some new system calls.) See also section

3.5.4 for an alternative approach.

Joining Name Spaces Together 68

The hidden directory mechanism and < LOCAL) facility are controlled

breaches of transparency, making the individual systems which makes up the

distributed LOCUS system temporarily visible for reasons of expediency,

efficiency or necessity. However, the illusion of a single system is otherwise

remarkably complete. In particular, the sharing of a common / etc / pas s w d file

means that there need be no concept of a user belonging to a particular system

because the individual systems have effectively ceased to exist. They have all

coalesced to form a single virtual Unix system distributed across the network and

a LOCUS user belongs to this system. User ids and group ids remain globally

unique under LOCUS. Similarly, process ids are also allocated in such a way that

they too remain unique across the distributed system. This makes it possible to

send signals to remote processes without ambiguity, preserving the illusion of a

single centralised system.

But the almost total transparency of LOCUS has been achieved at a price.

Although it is recursively structured, the structure is effectively flat. Because a

LOCUS system does not have any sub-systems but is merely transparently

equivalent to a single system, the only way in which two LOCUS systems may be

joined is by merging them into one system, resolving all the conflicts that will

occur in the globally unique id spaces they both assume. It is simply not feasible

to carryon joining LOCUS systems together in this way, resolving more and more

conflicts and growing system files like / etc / pas s w d indefinitely. Without

introducing sub-structure the sheer size of the resulting system will make it

unmanageable but the very transparency of LOCUS prevents such sub-structure

from being added for then the LOCUS distributed system will not be identical to

its component systems.

Herein lies a paradox. Transparency may be a good thing in a small system,

but does it scale for a really large system? To be recursively extensible a system

must either have no structure (Le. be based on flat naming spaces) or else an

Joining Name Spaces Together 69

infinitely extensible structure (Le. be constructed from relative rather than

absolute pathnames). No compromise is possible because any finite limit on

structure will set a barrier to recursive extension.

3.5. Some Impediments to Transparency

Although the extensible hierarchical naming provided by the Unix file system

makes it easy to devise a transparent scheme for naming remote files, there are

many other subtle details which must be attended to before a genuinely

transparent distributed Unix system can be constructed [Marsha1l86]. Not every

aspect of Unix is recursive and indeed some features of the system call semantics

depend on flat naming spaces and are therefore extremely awkward to extend to a

distributed system without altering the interface and violating transparency

[Stroud86]. This difficulty only arises because an existing system, warts and all,

is being used as the basis for the transparent distributed system. Such an

evolutionary approach protects investment in software and expertise at the cost of

requiring backwards compatibility with unfortunate features which were never

designed with distribution in mind. A revolutionary design for a distributed

system, built from scratch without the need to be compatible with any previous

system, should not suffer from this kind of problem in theory. However, there is

still a need for the designers of revolutionary systems to be aware of these issues,

since otherwise they might fall into the same trap by accident. If a distributed

system is not properly recursive then it will be difficult to merge two such

systems for precisely the same reason that it is difficult to combine two

centralised systems into a distributed system transparently.

With this is mind, and in no particular order, we will consider some of the finer

points to be observed in constructing a transparent distributed Unix system and

extract some general principles about the construction of a distributed name

space in the process.

Joining Name Spaces Together 70

3.5.1. Naming Graph Semantics

Any alterations to the structure of the Unix naming graph may have subtle

and unexpected consequences for programs that assume a certain property. For

example, the pwd program used to print the root-relative pathname of the current

directory assumes that the current directory is always below root, and the find

program used to exhaustively search a portion of the directory hierarchy assumes

that the graph is tree-structured apart from multiple links to the same leaf nodes.

Both of these properties can be violated by the mechanism used to construct an

otherwise transparent distributed Unix system. However, because these are

special cases, it could be argued that such utilities should be altered non

transparently in order to preserve full transparency for the rest of the system,

rather than abandoning the concept of transparency altogether because it cannot

be made to work all the time.

In general, it is impossible to tell which aspects of the Unix naming graph

semantics have been taken for granted in the design of a particular algorithm.

Consequently, unless every aspect of these semantics is preserved (i.e. the

transparency is complete), something may break. In practice this is not such a

problem because Unix provides an environment of cooperating software tools,

rather than an uncoordinated bunch of competing utilities. Consequently, deep

knowledge about the file system semantics is only concentrated in a very few

system utilities (such as pwd and find), and these can be dealt with on an

individual basis.

3.5.1.1. pwd

Any distributed Unix system (such as the Newcastle Connection) which

preserves the tree-structure of individual Unix name spaces by making them sub

directories of a directory above their root directory will have to cope with Unix

utilities that assume the current directory is below the root directory. In

Joining Name Spaces Together 71

particular, any utility which attempts to deduce the full pathname of the current

context using the pwd algorithm must be prepared to cope with the possibility

that the current directory is positioned above root or in a subtree which is parallel

to the root context in some sort of cousin rather than son relationship.

The correct algorithm for discovering the full pathname to the current context

in an arbitrary tree where the root context is not necessarily positioned at the

base of the tree is as follows:

(a) Work up from. using the normal pwd algorithm until you

either find / or else encounter a directory which is its own

parent (i.e. the base of the naming tree).

(b) Assuming that / is not encountered en-route, start again

from / and work out how many .. steps are required to

reach the base of the tree.

(c) Prefix the appropriate number of / .. stages to the

pathname deduced in (a). This is the full pathname to an

arbitrary point in an extended naming tree.

This algorithm assumes that the tree has only one directory which is its own

parent, i.e. the base of the tree is unique. Consequently, the points discovered at

stages (a) and (b) will coincide. However, if this was not the case the tree would

not be a tree and so the concept of a unique full pathname would be meaningless

anyway.

Notice that this algorithm results in the most general pathname for the

current context via the base of the tree rather than the most direct or canonical

pathname. In general, although any two points in a tree will always have the base

of the tree as a common ancestor, there may be a less remote point in the tree at

Joining Name Spaces Together 72

which their paths back to the base coincide. Discovering this most recent common

ancestor amounts to calculating the canonical pathname between the two points.

Given a mechanism for comparing two pathnames for identity it is possible to

obtain the canonical pathname from the absolute pathname by progressively

simplifying the more complex name until no further reductions are possible

without invalidating or changing the meaning of the name. If the system relies on

globally unique identifiers to distinguish objects, and ifit is possible to derive the

identifier for an object from a pathname which denotes it, then it is possible to

streamline the simplification algorithm further. During stage (a) the unique

identifier for each ancestor encountered on the route back to the base of the tree is

stored so that as each potential common ancestor is visited at stage (b) its unique

identifier may be checked against the known ancestors from stage (a).

But even this algorithm may visit more nodes than is strictly necessary

because, although ideally there is no need to search up the tree beyond the

common ancestor, there is no way of recognising this point in advance. Since the

cost of visi ting a very remote node such as the base of the tree may be very high,

especially if the naming tree covers a large distributed system dispersed across a

wide area network, it is better to avoid ever having to calculate the full pathname

of the current context from first principles by keeping track of it at all times. If

the starting location is known (and ultimately this will be supplied as part of the

bootstrapping process) it will be possible to apply an incremental algorithm as the

context moves relative to this point and this will be much more practical. The

pathname can then be made available via a system call. Modern versions of the

Unix shell support pwd directly as a built-in command and do indeed keep track

of the pathname to the current context at all times. This is possible because the cd

command to change directories must also be built into the shell (since running cd

in a child process would have no effect on the parent shell).

Joining Name Spaces Together 73

Regardless of the algorithm used to calculate the full pathname to the current

context, hopefully every program that requires this information will either

invoke pwd directly or else use a library function (such as getwd which is defined

in the SVID). Consequently, the introduction of / .. and other directories above

the root should only affect a couple of utilities at most.

3.5.1.2. find

Some Unix systems impose a closed root and equate / .. with / automatically.

This makes it impossible to create directories above root. Consequently, remote

systems may only be positioned below root in the naming tree. If the distributed

name space is symmetrical and allows system A to access system B and vice-versa

then it will be possible to construct a circular pathname from A through B to A

again. For example, if by convention all remote systems were found in a / net

directory then from system A the pathname / net / B / net / A would denote A's root

directory and would be the beginning of an infinite loop. If the naming graph is

not tree-structured then any program which attempts to visit all the nodes in a

sub-graph systematically, such as find or an archiving program like tar, will not

work correctly because it will be based on a recursive algorithm for traversing a

tree rather than an arbitrary graph.

Programs such as find need to be able to detect the second time an inode on a

given device is visited in order to handle links correctly. This could be achieved by

using a bitmap for each device. However, it would be wasteful of memory to keep

a bitmap for every device visited and in any case device numbers are only unique

within a single system. Without an explicit system identification embedded in the

device number there would be a danger of confusion when traversing a name

space that spanned several systems because the same device number could occur

several times for different devices. It would also be reasonable because of the way

mount works for the find algorithm to assume that having exhaustively visited

Joining Name Spaces Together 74

all the files on one device there would be no further references to that device from

elsewhere in the naming tree. A given device may only be mounted in one place at

a time on a single system but although this is also true for a network of systems it

is no longer apparent that this is so because device numbers are no longer unique.

This problem is much harder to solve than the pwd problem because the

programs involved are fairly complex and there are more of them to deal with.

Until recently, Unix provided no primitive function or software tool (apart from

find which is rather cumbersome to use in practice) for recursively enumerating

all the nodes in a naming sub-tree systematically. Any program which needed

this functionality was written on an ad-hoc basis. Although the SVID now

provides such a function (ftw) it is unlikely that old programs will be converted to

use it. Even if they were, it would be difficult to modify ftw so that it worked

correctly in a distributed environment because of the inadequate Unix facilities

for identifying files uniquely, a direct consequence of making the flat name space

of device and inode numbers visible.

The best solution is probably not to tackle this problem of identification at all

but simply to prevent pathnames from passing through more than one remote

system. This will prevent loops in the naming graph caused by the connections

between systems but will also mean that name resolution is no longer

transparent for complex pathnames. We will explore the implications of this

further in chapter 5. However, in the meantime, a lingering difficulty is how to

deal with pathnames that cannot be resolved such as Inet/B/net/A. One

approach would be to make the point at which the naming graph loops behave

like an unreadable directory. (In our example, that would mean that

Inet/B/net was unreadable and consequently Inet/B/net/A could not be

resolved.) This is a transparent solution but it is not a truthful solution and could

have paradoxical consequences. It might be less confusing to violate transparency

by introducing a new type of file system object to denote a remote system. Of

Joining Name Spaces Together 75

course, this would require modifications to all the programs which know about

the various types of object in the file system (and in particular the Is program

which gives detailed information about the contents of directories). Unix is not

easily extensible in this way. The file system is not a general purpose repository

for arbitrary types of object. Instead, it supports a very limited number of

primitive objects and knowledge about the semantics of these objects is scattered

throughout the system in various utilities rather than concentrated in one place.

The best approach would probably be to adopt the solution used to prevent

looping symbolic links and introduce a new error code. This error code would be

returned whenever an attempt was made to use a pathname which passed

through more than one remote system. Unix has a uniform convention for

reporting the failure of a system call and since most programs are not interested

in the detailed cause of a problem they would be unaffected. Only the list of error

messages printed by the perror subroutine would need to be altered (although this

would require relinking every program which used perror unless dynamic linking

was supported).

This is a general solution to the problem. A more specific solution might be

appropriate for particular utilities. For example, SUN have added a flag to find

which restricts its search to local file systems. However, there is no compulsion to

use such a flag, and consequently loops must still be dealt with when they occur.

Furthermore, this is not a transparent solution since requiring the use of a new

flag would break old commands which invoked find indirectly. Restricting find to

local file systems by default is backwards compatible but rather defeats the

purpose of a transparent remote file system!

3.5.2. Low-Level Identifiers

We have already alluded to some of the difficulties caused by the fact that

Unix makes low-level identifiers visible to programmers. It is possible to map

Joining Name Spaces Together 76

pathnames into the device and inode number of the object they denote. Programs

as familiar as the Unix copy command cp use this facility to check whether the

source and destination of the copy operation are identical in order to prevent

accidentally destroying the contents of a file. Because device numbers are only

unique within a single system, it would be possible in a distributed system for a

local file and a remote file to share the same identity, even though they were

quite distinct. Although in theory it might seem unlikely that two particular files

on different machines could share the same inode number given that inodes are

effectively allocated independently and at random from a relatively large address

space, that in itself would be no reason for not addressing the problem. However,

in practice assumptions of independent random allocation are not always valid

because it is possible to create disk backups by taking a physical copy of the image

on the disk rather than a logical copy of its contents. Files with the same name

are guaranteed to have the same inode number on a backup disk created in this

way and hence clashes will be inevitable if individual files are copied between a

disk and its backup.

It would be easy to solve this problem by adding a system number to the device

and inode number already provided as identification but this would not be

transparent. Such a system identifier would have to be globally unique in any

case to allow further systems to be added to the network without the danger of a

clash of identity. A better approach would be to provide an extensible pathname

rather than a fixed hierarchy of values as a low-level identifier. However, this

would not be transparent either. Without modifying the existing interface, the

only viable solution is to encode the identifiers of remote objects so that they can

be distinguished from those of local objects. This is only possible if the address

space for low-level identifiers is sparsely populated and very few programs (and

preferably none) are interested in the exact value of the low-level identifiers they

manipulate. Fortunately, Unix appears to have these characteristics. In

Joining Name Spaces Together 77

particular, most Unix systems only support a handful of devices so very few of the

values possible in the device number field of an identifier are used in practice.

Although it would be possible to distinguish remote identifiers from local

identifiers by setting an otherwise unused bit in the device number, it would still

be possible to confuse two remote identifiers from different systems. The encoding

scheme used to distinguish remote identifiers from local identifers must be

sufficiently ingenious to allow the remote system to be identified precisely. This

will ensure that identifiers are not ambiguous but in fact there is a more subtle

reason for this requirement. Some versions of Unix include the ustat system call

which uses a low-level identifier to obtain statistics about a device. In order to

handle remote devices correctly the device number must include a system

identifier.

There is simply not enough space in a fixed size identifier to encode the

necessary information but it is possible to store an index into an auxiliary table

instead. However, this poses various problems in itself which are not actually

specific to Unix but must be solved by any non-trivial naming system. An

identifier can only be interpreted correctly while the corresponding table entry

exists. Without an explicit mechanism for destroying identifiers their lifetime is

theoretically infinite. Furthermore, since identifiers are supposed to be absolute

(Le. have the same meaning everywhere), the table must be known throughout

the system (or indeed the distributed system) so that identifiers can be

interpreted correctly from any context. Finally, it must be impossible to forge

identifiers and hence compromise the integrity of the system.

Although these problems might be soluble if the low-level identifiers provided

by Unix were large enough to include time-stamps or could be encrypted (and

whether this was so would depend on the size of the system in any case so that

such an approach would not scale well), in practice, limitations on the size of

Joining Name Spaces Together 78

identifier available make it impossible to provide full transparency. Nor is it

really necessary to do so. Although in theory identifiers may be manipulated by

programs in arbitrary ways, in practice they will only be used in one or two

standard ways and providing these work as expected the system will be

transparent to all intents and purposes. For example, it would be easy to

implement a scheme which gave identifiers transient non-unique values which

were only valid within the context of the process which generated them and this

would work perfectly well in practice even though it was not truly transparent.

Given knowledge of the mechanism used to implement this pseudo-transparency

it would obviously be possible to write a pathological program that violated the

transparency but this would not be a reasonable thing to do nor could such a

program be created by accident. Some variant of this approach to solving the low

level identifier problem has been adopted by all the distributed Unix systems

which have tackled this issue [Marsha1l86, Rifkin86].

3.5.3. Ownership and Authorisation

The Unix permission system is based on the use of numeric values called user

ids. (There is also a system of group ids but that does not concern us here.) Both

files and processes are owned by a particular user id. However, for human

convenience and in the interests of usability Unix also provides a mapping

between user names and user ids which is understood by all the appropriate

utilities. Consequently, it is always possible to work in terms of user names (such

as robe rt) rather than user ids (such as 42) except when using system calls

directly from wi thin programs because the Unix kernel itself does not understand

user names. This was perhaps an unfortunate design choice but it was made long

ago and no alternative approach has been proposed. The Unix facilities are not

really adequate for a large centralised system and because they do not scale well

within a single system they do not work well between systems either.

Joining Name Spaces Together 79

The correspondence between user ids and user names is recorded in a file

called let c I pas s w d. This file is not shared between systems so a particular

mapping between user name and user id is only valid on a particular system (or

more precisely, is only valid whilst the root directory is positioned at a particular

point in the naming tree). The user name robe rt may denote a completely

different person on another system or may correspond to a different user id. If

distribution is occurring at the operating system level rather than the application

level, it will be numeric user ids rather than textual user names that get passed

between machines. However, a user id on one machine may denote a completely

different person on another and it is not reasonable to require a common

letc/passwd file or a unique identifier for every user of the distributed system

(although NFS and LOCUS impose just this requirement). Instead, all user id

values must be intercepted as they are passed between systems and translated

accordingly. Ideally, this mapping should occur in both directions to ensure both

that local users have appropriate permissions on remote systems and also that

ownership of remote objects is reported in terms of local users. However, the

mapping will not necessarily be one-to-one; indeed, if a whole class of users are

only allowed guest status on a remote machine it will be many-to-one.

Furthermore, if a remote user is not allowed to use the local machine there will be

no suitable inverse mapping at all so a special user id must be provided to denote

remote objects which do not belong to anyone on the local system.

If Unix used pathnames instead of numeric values to represent user ids it

would be easier to represent such remote values providing system names were

visible in the naming tree explicitly. For example, I .. I AI robe rt could denote

user robe rt on system A and similarly I .. IBI robe rt could denote robe rt on

system B. However, if systems A and B were under the same management, so that

user robe rt on each referred to the same individual, it would be more

appropriate to use an unqualified robe rt within this context. From outside the

Joining Name Spaces Together 80

domain of A and B a fully qualified pathname would still be required. With such a

scheme, the natural hierarchy for user names might not follow the system

hierarchy exactly although it would probably coincide with some grouping of

systems at a higher level. It would be necessary to recognise when names passed

out of their defining domain and qualify them accordingly or alternatively to use

absolute pathnames for users which were valid from everywhere in the system.

Again, this problem is not unique to Unix and is usually solved by using fully

qualified absolute names which are guaranteed to be unique and have the same

meaning everywhere. However, the whole concept of an absolute name is alien to

the idea of recursively joining systems together because it imposes universal

constraints on the choice of names rather than purely local constraints.

3.5.4. Remote Execution

Providing transparent access to remote files is one thing but being able to run

programs transparently on any processor is quite another. At the file system level

of an operating system there is no concept of executing a program. The file system

is simply responsible for reading the contents of files into memory and does not

need to know whether such a request comes from a program which wants to read

some data or the operating system which wants to execute a program. If

distribution occurs at this level then there can be no concept of remote execution.

An operating system built on top of a transparently remote file system will

execute all programs locally, paging them across the network with the assistance

of the remote file system as necessary. For this reason, NFS and RFS, which are

both transparent remote filing systems, provide remote paging rather than

remote execution (although SUN have recently added a non-transparent remote

execution facility to NFS called REX).

On the other hand, if distribution occurs at the operating system level then the

concept of executing a file must be distributed in the same way that the concept of

Joining Name Spaces Together 81

reading a file is distributed. However, because an operating system not designed

with distribution in mind has no concept of other systems, transparency dictates

that the choice of execution site must be made automatically. Apart from the local

system, in the absence of an automatic load balancing facility, the only sensible

choice is the system where the program resides to avoid incurring the expense of

copying its object code across the network. The NC has implemented true remote

execution in this way. However, LOCUS has gone furthest of all towards being a

transparent distributed system in the strict sense discussed in section 1.1 by

providing a ((change working processor" command to control where programs are

executed. (Of course, such a facility is non-transparent being an addition to the

functionality provided by the original system. Automatic load-balancing would

provide full transparency.)

Remote execution poses some interesting problems for the name resolution

algorithms. As discussed in section 2.3.2, Unix has confused the concept of root as

a naming context with the idea of a system and many programs use root-relative

names to access system information such as the mapping between user ids and

user names in / etc / pas s w d. Executing a program does not change the meaning

of root and yet certain system programs which are supposed to report information

about the system they run on will only work correctly if root is moved to that

system. This would break the interpretation of other root-relative pathnames.

Unix should provide a special naming context for local files which works

regardless, irrespective of where programs are executed from (in effect, this would

be a closure), or else move the information which is presently stored in system

files below the kernel boundary so that root becomes a pure naming context as it

should be. In the absence of such a facility, the NC provides a special form of the

exec system call called excr which moves root to the remote execution site and this

covers most of these special cases. Because the interpretation of low-level

identifiers such as user ids and process ids is also tied to the location of root,

Joining Name Spaces Together 82

moving root in this way also is a useful way of reaching remote objects which

cannot be named with pathnames.

3.5.5. Summary

To summarise, building a transparently distributed operating system involves

solving various subtle problems mainly concerned with notions of identity. If a

naming mechanism does not scale wi thin a system it will be difficult to extend it

between systems. Consequently, a pragmatic rather than a fanatical attitude to

transparency is required in order to build realistic distributed systems out of

existing systems. Furthermore, many of these problems remain non-trivial, even

when designing a distributed system from scratch.

Although some of the difficulties discussed in this section are caused by

weaknesses in the Unix system call interface, where a lack of recursive generality

makes transparency difficult to achieve in practice, many of the issues raised

would apply to any distributed naming system. If names are not globally unique

but rather are relative to some context and if it is possible to pass names around

between contexts then they must be transformed en-route so that they still denote

the same object. Similarly, if names have a transient significance or are only

valid within an implicit context because they rely on hidden state information

then they must not be used outside their defining context or after they have

expired.

3.6. Conclusions

In this chapter, we have discussed the problems of joining name spaces

together, both within a single system and between systems to construct a

transparent distributed system. Because joining name spaces together is an

inherently recursive process it is not surprising to find that the same problems

must be tackled irrespective of the level at which systems are joined. It is

Joining Name Spaces Together 83

therefore natural to base the design of a transparent distributed Unix system on

an extension of the local mechanism for joining name spaces together, namely the

idea of mount. However, there are other ways of combining the name spaces of

individual Unix systems to form a transparent distributed system. The main

problem is whether to preserve the notion of system. The Newcastle Connection

maps systems onto directories and provides a single tree structure for the entire

distributed system. NFS and RFS use the concept of a remote mount to share

portions of the naming tree between systems but make no attempt to present a

consistent global picture. LOCUS hides the distribution and the individual

systems entirely by maintaining the illusion of a single Unix system. However,

this avoids the problem because there is no way of joining together two LOCUS

systems short of merging them entirely. Making the notion of a system explicit in

the naming hierarchy is a violation of transparency because Unix has no support

for such a concept but without such a notion it is impossible to build distributed

systems recursively. The real problem is that the Unix concept of a system is not

recursive so that there is no mechanism for introducing sub-structure into a large

centralised system which can be generalised to a distributed system.

Distributed Systems and Global Identifiers 84

Chapter 4

Distributed Systems and Global
Identifiers

In chapter 3 we considered evolutionary approaches to building distributed

systems by joining existing systems together. This involved exploring ways in

which the naming mechanisms of centralised systems, designed without

distribution in mind, could be extended to cope with remote objects. Structuring

mechanisms which simplify the administration of a large centralised system may

be generalised to a distributed system quite easily but in general a naming

system designed for a centralised environment is not adequate for a distributed

environmen t.

In this chapter we will consider some distributed naming systems which have

been designed from scratch without needing to be compatible with the naming

mechanisms of a centralised system. In particular, we will explore mechanisms

for joining name spaces together and resolving naming conflicts. Most of these

mechanisms rely on the concept of a universally unique identifier and we will

examine whether such universal uniqueness can be achieved in practice.

4.1. Global Naming and Name Resolution

Given the name of some remote resource in a distributed system, there are two

stages involved in making use of that resource. Firstly, the name must be

translated into the location of the resource and secondly, messages must be sent

to this location in order to perform operations on the object. The second of these

stages is well understood. Typically, locations are identified by unique network

addresses and routing algorithms make it possible to send a message across the

network to reach any particular location [Shoch78]. However, the first problem,

naming and locating objects, involves the design of a distributed naming service

Distributed Systems and Global Identifiers 85

and some sort of naming scheme, and this is what we will concentrate on in this

chapter.

It is worth observing that the action of resolving a name can be captured

within this model as an operation performed on a name server resource. This

poses the bootstrapping problem of locating the name server itself. As discussed

in section 2.1.2, bootstrapping must be solved outside the naming system. For

example, the name server may reside at a fixed well-known address or may

simply respond to a broadcast request issued as part of the initialisation sequence

whenever a new system is installed as part of the distributed system.

Of course, it would be possible to design a system that simply referred to

objects directly by their location (or address) instead of by a more abstract name.

However, such a system would be unfriendly to use and awkward to reconfigure

because it would be impossible to reassign objects to new locations without

changing their name. Names provide a useful level of indirection which distances

an application from the objects it manipulates.

In real life, human beings have various ways of resolving ambiguous names.

Although some attempts have been made to model the human naming process in

computer systems [Sollins85], it is simpler to assume that all objects can be

named unambiguously. An easy way to ensure this is to give every object a

unique name, thereby guaranteeing that there can be no ambiguity since no two

objects can have the same name. This is known as absolute naming.

Alternatively, with relative naming the name of an object depends on the system

which accesses it so that systems are in effect naming contexts. Within the

distributed system as a whole, objects can have more than one name and two

distinct objects can share the same name. To resolve this ambiguity, relative

names must be qualified with the name of the system from which they are valid if

they are to be used from outside that system.

Distributed Systems and Global Identifiers 86

Relative naming encourages a decentralised approach to storing name

bindings. Only a limited set of names are valid from a particular system and

consequently there is no need to store the entire name database at a centralised

location. However, unlike absolute names which have the same meaning

everywhere (Le. denote the same object), it is not possible to pass a relative name

from one system to another because it may no longer be valid or may even refer to

another object. A compromise which imposes more structure on an absolute name

space is the use of hierarchical names.

For example, the Xerox Grapevine mail system [Birre1l82] recognises names

of the form n arne. reg; s try whereas the more recent Xerox Clearinghouse

name server [Oppen81] (developed as a result of experience with Grapevine

[Schroeder84]) recognIses longer names of the form

n arne@dorna; n@organ; sat; on. In both cases, the hierarchy is offixed depth and

not extensible like Unix pathnames.

The Xerox name servers are intended to store high level names for objects

such as people, services and machines. It is therefore reasonable to assume that

new names will be created relatively infrequently so that uniqueness within a

certain level of the hierarchy can be ensured by coordinating all name allocation

through a central administrator. Consequently, this sort of name service is not

suitable for implementing a file system where names are chosen privately by

individuals, and the use of directories supports an arbitrary number of levels in

the naming hierarchy. For this reason, although the Xerox distributed systems

are constructed around a centralised name service, paradoxically they do not

support a uniform naming convention for every object they contain. Instead, they

use a uniform scheme for naming and locating services but thereafter each

service is responsible for managing its own name space.

Distributed Systems and Global Identifiers 87

Although some attempts have been made to design a Universal Directory

Service [Lantz85] that provides a uniform naming mechanism for all the objects

in a distributed system, it is perhaps more realistic to recognise that different

naming domains have different dynamic characteristics (choice of names,

frequency of update, etc.). Since these characteristics will lead to different design

choices and trade-offs in an optimal implementation, it is sometimes better to

implement specialised name services for each application if only to simplify

administration and improve efficiency.

4.2. Allocating Unique Identifiers

A name server maps possibly ambiguous names into unique identifiers used

by the distributed system to identify and locate objects. Consequently, an

application such as a distributed file system requires a mechanism for allocating

unique identifiers to file objects. Ideally, the allocation algorithm will be

decentralised to make the most of the distributed environment. Individual

systems should be able to allocate globally unique identifiers independently

without fear of conflict.

One approach is to use structured identifiers containing the address of the

server where the object resides and an identifier for the object which is only valid

at that server but is otherwise guaranteed to be unique within this limited scope

[Watson81]. This is effectively a relative address. It is very easy to locate objects

from their identifiers but then the identifier is not location independent. If an

object moves to a different server then its identity will change. This dependence

on the physical address of the server can be alleviated somewhat if the network

supports the use of logical addresses, in effect names at a different level of the

system. Alternatively, a multicast address could be used to identify a group of

servers, one of which would respond to requests for a particular object. This

approach to naming has been taken by the Stanford V kernel [Cheriton84b].

Distributed Systems and Global Identifiers 88

Even if objects are allowed to move around between systems, unique

identifiers can still be based on server addresses without necessarily tying the

object to a particular location. For example, in a homogeneous network based on

Ethernet [DEC81] each machine is assumed to have a unique 48-bit address

[DalaI81]. Machines on an Ethernet can independently allocate identifiers which

are guaranteed to be globally unique by making this address part of the identifier

for all the objects which they create. Two identifiers generated by the same

machine are guaranteed to be unique by basing the rest of the identifier on a

strictly increasing logical clock. This need not be synchronised with the clocks on

other machines but must never supply the same value twice, even in the face of

machine crashes.

By making the machine which creates an object responsible for giving it an

identifier, this scheme ensures that identifiers are allocated uniquely. However,

if objects may subsequently migrate to other machines, their identifier will only

reflect their creation site and not their present location. Consequently, there will

still be the problem of locating the object and, because it is possible for a

distributed system by its very nature to be in an inconsistent state, it is always

possible that the result of resolving a name will be incorrect. Applications must

be designed accordingly and, in the interests of efficiency, distributed systems

often use hints and other caching techniques to speed up the resolution process at

the risk of occasionally getting the wrong result [Terry85].

Many of the issues involved in choosing the exact form of a unique identifier

(or UID) and using it to locate objects in a distributed system are discussed in a

paper about the design of this aspect of the Apollo Aegis distributed system

[Leach82]. The Apollo hardware provides a 20-bit unique node identifier which is

concatenated with a 36-bit clock value to form the basis of a 64-bit UID used to

identify all the objects in the system. Rather than providing a centralised name

server to map UIDs into locations, objects are located by a series of heuristics

Distributed Systems and Global Identifiers 89

augmented by the use of a hint manager. In this respect, the Apollo system is not

as sophisticated as the Xerox designs (which are always able to locate an object

given its name) but on the other hand there is no natural partitioning of the name

space to simplify the design of the database. Although UIDs must ultimately be

translated into location-specific structured names, the designers of Aegis felt that

this binding should be delayed as long as possible so that the unbound UIDs could

be used uniformly throughout the system (except at the lowest levels). Absolute

location-independent identifiers have the advantage that they can be passed

freely from process to process across machine boundaries so that when an object

migrates, there is no need to locate and update all the references to it from

elsewhere in the system. This simplifies the problem of unmounting portions of

the object space stored on physical volumes and moving them between machines.

4.3. Combining Name Spaces

Given a mechanism for naming and locating objects unambiguously, it is

possible to construct a self-contained distributed name space. However, what

happens when it is necessary to combine two such name spaces into one, so that

the objects in each of the constituent distributed systems are equally accessible in

the composite system? Any assumptions about uniqueness used to justify the

construction of names or identifiers may no longer be valid in the composite

system, and the resulting ambiguities must be resolved. We will now explore

some of the problems which arise and the solutions which have been proposed.

4.3.1. Adding an Extra Level of Hierarchy

With a hierarchical naming scheme, an obvious approach to combining two

systems is to add an extra level to the hierarchy containing two domains, one for

each system. Since names need only be unique within a domain, any clashes

between the two names spaces will not cause problems providing names are not

used outside the domain for which they are defined. This approach was taken by

Distributed Systems and Global Identifiers 90

the telephone system when first area codes and then country codes were

introduced. Extra prefixes were added to the standard form of a telephone number

to give every telephone in the world a unique name under an absolute naming

scheme.

For example, the absolute telephone number of the Computing Laboratory at

Newcastle University is +44 912329233 where 44 is the country code for the UK

and 91 is the area code for Tyneside. This number may be used from anywhere in

the world that supports international dialling with the understanding that the +

prefix on the 44 be replaced by whatever the local convention is for reaching the

base of the telephone naming tree, that is, the context for resolving

internationally agreed country codes. This prefix (equivalent to / .. in Unix

naming terms) varies between countries. In France it is 19 and in the UK it is

010. In this sense, international telephone numbers are hierarchical names

defined absolutely except at the outermost level which has a relative name

(although the + is arguably an access code for the international network which is

not part of the name).

Of course, within the UK there is no need to use the absolute name for a UK

telephone number (the Computing Laboratory becomes 0 91 2329233 where 0 is

another nationally defined prefix for getting to the national level of the naming

tree, this time equivalent to / in Unix naming terms) and within the area to

which the telephone number refers there is no need to even use the area code

(from within Tyneside, the Computing Laboratory may be dialled as simply 232

9233 without any prefix). This scheme is possible because at each level of the

hierarchy names (or in this case numbers) are centrally controlled and

guaranteed to be unique. There are not two countries with the same code 44 nor

two areas wi thin the UK with the same area code 91. (There may be several

Distributed Systems and Global Identifiers 91

countries which each recognise an area code of 91 but this is not ambiguous

because an extra level of hierarchy has been added to resolve the conflict.)

4.3.2. Heterogeneity

The standardisation of international dialling prefixes for telephone numbers

has only affected naming at the outermost level. Each national telephone agency

is still responsible for defining the form of its own national telephone numbers.

These may include a regional code as well as an area code or may be completely

flat. The important point is that there need only be agreement on the form of

names at the level in the system at which the name spaces are joined.

Unfortunately, it is not so easy to join heterogeneous name spaces together in

general. Telephone numbers are taken from the limited alphabet of ten numeric

symbols. Consequently, it is possible to use alien telephone numbers from within

another telephone number space. They will be transmitted across the local

number space untouched and only interpreted in the alien number space to which

they refer. However, arbitrary semantic checks (such as the length of the number

dialled) or the presence of extra symbols (such as # and .) will cause problems and

this sort of difficulty is much more likely to arise when the names come from a

richer name space.

For example, heterogeneous file systems may not support the same alphabet

for generating filenames, may use a different character for separating the

components of a name or may simply impose different restrictions on the length

and form of a name or one of its components. VMS file names are much more

restrictive than Unix pathnames and this makes it difficult to combine a Unix

system with a VMS system transparently. From Unix, VMS names must appear

to be Unix names and vice-versa. This requires some form of mapping to be

defined at the boundary between the systems. (It is sometimes even necessary to

map file names in a distributed Unix system because of differences in directory

Distributed Systems and Global Identifiers 92

representation and hence the maXImum length of a filename [Fraser

Campbe1l86, Weinberger86].)

A similar problem arises when trying to combine two different network

architectures (such as SNA and OSI) at a gateway [Williamson87]. There must

either be a way of representing OSI names as SNA names or else the gateway

must maintain a mapping between the two name spaces, and intercept all

attempts to pass a name from one domain to the other.

In general, full transparency is probably unattainable between truly

heterogeneous systems. Joining systems together involves seeking a common

abstraction which can be transparently extended by enlarging the name space. If

the systems are really different this may be impossible. Even if it is possible to

achieve some measure of transparency it may only work in one direction if one

system offers a superset of the other's functionality because it will be impossible

to emulate the more general system on the more limited system.

4.3.3. Dealing with Old Names

Even ignoring the particular problems caused by heterogeneity, it is not

always possible to join two homogeneous systems together by adding an extra

level of hierarchy. Quite apart from the need to alter all the software to handle

names with extra structure (especially if the system only recognised a fixed depth

hierarchy originally), there is also the problem of old names embedded in

arbitrary programs and files throughout the system. It is usually quite impossible

to locate all these names and resolve potential ambiguities by translating them

into the new form.

One way of dealing with old names is to treat them like unqualified telephone

numbers found jotted down on bits of paper and assume that the names refer to

the domain in which they are found. This is only workable if both the original

Distributed Systems and Global Identifiers 93

system and the merged system use a fixed depth name hierarchy and require all

names to be absolute and fully qualified (Le. names cannot be abbreviated by

assuming a default context). Ifa tree of nested systems is built in accordance with

these requirements, it will always be possible to identify which level in the tree a

given absolute name belongs to by simply counting up the levels from the leaves

of the branch in which the absolute name is found. Even so, there is always a

danger that because all names are absolute, applications software will not

unreasonably assume they have the same meaning everywhere and will quite

inadvertently pass an old absolute name from one branch of the tree to another by

ad-hoc means, without converting it to its correct, fully qualified absolute form.

Transparency hides the boundaries between name spaces but there must be a

mechanism to intercept and convert unqualified names at the boundary before

they can escape into a context in which they are ambiguous. Unless each system

only manipulates names through an abstract interface which can easily be

intercepted at system boundaries, this problem is very difficult to solve. The Flex

system described in section 2.2.2 uses capabilities rather than character strings

for names and the underlying capability machine on which it is implemented

provides just such an abstract interface. Although Flex is difficult to implement

efficiently on conventional hardware, this capability machine solves many

naming problems. For example, Flex supports remote capabilities and this makes

it possible to pass names between systems without ambiguity because they can be

automatically transformed en-route to point back to the original system.

Without capabilities or a similar mechanism, old names are difficult to deal

with because combining name spaces makes absolute names into relative names.

Lampson has proposed a mechanism which prevents this by ensuring that

absolute names from old name spaces remain absolute in the new name space

[Lampson86].

Distributed Systems and Global Identifiers 94

Lampson's solution relies on an external mechanism for identifying

distributed name spaces uniquely. Absolute names are qualified with the unique

identifier for the base of the naming tree to which they belong. When naming

trees are combined, the unique identifier for the base of each old tree is recorded

together with its absolute name in the new tree. In this way, each naming tree

contains a historical record of every naming tree that ever had a separate

existence but now forms part of this tree. Although old absolute names might still

exist for such trees, it is possible to intercept all such old names as they are used

and translate them dynamically into new names.

This is best illustrated by an example from Lampson's paper. Suppose both

DEC and IBM have adopted the Lampson naming scheme and DEC names begin

with #333/0ECI whereas IBM names begin #6661 IBM/. If the DEC and IBM

name spaces are combined into an ANSI name space which begins #999/ANSII

then the new tree must record the fact that #333 is now known as

#999/ANSI/OEC and #666 is now #999/ANSI/IBM. When an attempt is made

to resolve an old name such as #333/0EC/SRC/Lampson, the mismatch between

the old UID #333 for the base of tree and the new UID #999 will be detected and

the name will be translated into #999/ANSI/OEC/SRC/Lampson before it is

resolved.

Recording historical information about name spaces is only feasible if name

spaces are combined infrequently so that the amount of historical information

that must be stored about old names remains manageable. This may be a

reasonable assumption but Lampson's scheme also requires universally unique

identifiers, unique not just within a single system but between every distributed

system that might ever be constructed. This is much less realistic as we shall see

in section 4.6.

Distributed Systems and Global Identifiers 95

4.3.4. Merging N arne Spaces

Without the possibility of extending the hierarchy by an extra level, name

spaces must be merged at the outermost level. Hopefully, this level will be

sparsely populated with names so that clashes can be avoided. This is particularly

likely if the names are taken from a rich alphabet.

For example, the Xerox name services support proper names rather than

numbers and with forethought and a centralised agency to control the names of

organisations for Clearinghouse and registries for Grapevine there should be few

problems. IBM are unlikely to choose an organisation name of Xerox (assuming

they were to adopt Clearinghouse as their naming standard) although a city

name such as Newcastle is certainly ambiguous without further qualification

(there are at least two places called Newcastle in the UK alone).

On the other hand, with a less rich alphabet (such as the numerical area codes

for telephone numbers) clashes are more likely. It may be possible to add a few

new area codes to the American phone system as America acquires new states,

but ifit were to acquire a whole continent with its own telephone system complete

with a large set of area codes, clashes would be inevitable and a new level of

hierarchy would have to be introduced.

A flat space of identifiers, perhaps based on unique network addresses, will

only extend if the uniqueness criterion continues to hold. This might be

reasonable when combining identifier spaces based on 48-bit Ethernet addresses,

but nobody would expect 8-bit Cambridge Ring addresses to remain unique. On

the other hand, it is not feasible to construct an internet from more than 256

Cambridge Ring stations unless something is done to extend the address space,

perhaps by adding a network number to the station number. Any network which

supports absolute addresses must identify each system uniquely since otherwise

it will be possible to deliver messages for the same address to more than one

Distributed Systems and Global Identifiers 96

location. Consequently, such an internet address may be used as the basis of a

unique identifier, with the advantage that it is more abstract and hardware

independent than say a 48-bit Ethernet address, making it possible to combine

heterogeneous network hardware into a single logical network and build a

consistent distributed name space based on unique identifiers.

For example, the Arpanet supports 32-bit internet addresses and these are

used as the underlying unique identifier in a hierarchical naming system based

on domains [Mockapetris83]. Unfortunately, a scheme based on logical identifiers

is not infallible. There is nothing to stop an individual site from setting up a

network unilaterally which conforms to the ARPA model but uses its own block of

addresses which may well be in use elsewhere on the ARPANET.

This is precisely what has happened at Newcastle where the supposedly

unique identifier 42, already offically allocated to another site, has been

unofficially adopted for use internally. So long as the Newcastle network remains

distinct from the official ARPANET this will cause no problems because

addresses generated at Newcastle which are based on the identifier 42 will be

used entirely locally within Newcastle and not propagated to the outside world.

However, if the Newcastle network were to be joined to a larger internet then

these private addresses would become public and their value would matter.

Newcastle would have to choose (or rather be given) a portion of the address space

that was unique in this wider context and the logical internet address of all the

machines at Newcastle would have to be changed. Fortunately, this would not be

too traumatic because no distributed systems have been constructed at Newcastle

using unique identifiers based on these logical addresses. However, this would

not be true in general. It should be possible to combine systems built out of unique

identifiers without having to change the addresses on which the unique

identifiers are based and this can only be achieved by allocating blocks of

Distributed Systems and Global Identifiers 97

addresses that are guaranteed not to clash in advance, through a centralised

agency.

4.3.5. Random Identifiers

There is one interesting technique for generating unique identifiers which

neatly sidesteps the problems of joining name spaces together. If it is possible to

generate identifiers randomly so that the probability of two systems

independently generating the same identifier is negligible then systems may be

joined together without worrying about name clashes.

For example, the Amoeba system [Mullender85] uses this technique to

generate interprocess communication port identifiers and protects resources by

relying on the fact that it is impossible to guess a valid port number in a

reasonable time. Mullender claims that for a large network with 2000 processes,

each with an average of 5 ports, a random 48-bit port identifier could be broken by

brute force in 2.8 x 1010 tries on average. At a rate of 50 tries per second, it would

take almost 18 years of continual trying to find just one port. The size of the

random identifier could be adjusted to suit the number of objects in the system

and their expected lifetime, giving a probabilistic guarantee that identifiers

would not clash.

U sing this approach, several Amoeba systems have successfully been joined

together over X.25 [Renesse86] without needing to worry about whether

identifiers clash. The only problem has been locating an object given its random

identifier. Because it is not feasible to use a broadcast algorithm over a WAN the

Amoeba solution is non-transparent and involves explicitly publishing identifiers

in remote domains.

Random identifiers are the most pragmatic solution to the unique identifier

problem. They do not require a centralised agency to allocate numbers nor do they

Distributed Systems and Global Identifiers 98

need agreement over the particular random number generation technique used

(since one random number should be very much like another). However. the

random numbers really must be random or else the assumption which guarantees

the correctness of the distributed system will break down. The guarantee is only

probabilistic in any case but the probability that it is violated can be made

arbitrarily small providing an upper bound can be put on the number of objects

that will ever be in the system and their lifetimes. For a system which grew

indefinitely with objects persisting for ever this approach might not be feasible

but the magnitude of such a system would be well outside the capacity of current

(or even forseeable) technology.

4.4. Reorganising N arne Spaces

As well as being combined to form larger name spaces. hierarchical name

spaces may also be reorganised by detaching particular subtrees and moving

them to another portion of the tree. This poses the same problem of dealing with

old names which refer to a part of the tree which has moved. The standard

solution is to use indirection in the form of an alias or symbolic link. A pointer to

the new location of the subtree is left behind at its old location (similar to the pre

recorded forwarding messages provided automatically by telephone companies

when telephone numbers are changed - ttthe number you have reached no longer

exists - please redial as) and the name resolution process automatically and

invisibly indirects to the new location. To take another example from Lampson's

paper [Lampson86]. if DEC were to buy IBM and move the entire IBM name space

so that it became a subtree of the DEC name space. then a symbolic link pointing

to #999/ANSI/DEC/IBM would be left behind at #999/ANSI/IBM. so that

pathnames of the form #999/ ANSI / IBM/ ... were automatically translated to

#999/ANSI/DEC/IBM/ ... (with old names of the form #666/IBM/ ... going

through two stages of rearrangement but still working).

Distributed Systems and Global Identifiers 99

This approach works very well but means that a given object may now have

two or more names, only one of which is a true direct absolute name, since the

others will pass through symbolic links. This is a considerable weakening of the

tree structure of a hierarchical name space and means that although objects still

have a canonical pathname (their unique direct absolute name), it is no longer

possible to simplify arbitrary pathnames into canonical form without knowing

about all the symbolic links in the system. This knowledge is distributed at the

nodes where the symbolic links reside and these must be visited as part of the

name resolution process to redirect the name back to its true path. Without

caching this can be expensive; the advantage of the canonical name algorithm

was that it relied on a global property of the naming graph and could therefore be

applied statically without arbitrary knowledge about remote names. However,

caching the name and value of symbolic links at the base of the tree should at

least make it possible to resolve such pathnames directly without being led down

false branches in the naming tree only to be redirected elsewhere.

4.5. The Power of Indirection

The use of indirect naming objects which are intercepted and interpreted by

the naming system automatically is a useful way of extending a name space.

Effectively, this is how distributed Unix systems such as the Newcastle

Connection and NFS are constructed and how the Unix mount mechanism works.

In a distributed system, this scheme can be used to leave forwarding addresses for

objects which have migrated elsewhere (as in the Emerald system [Black86]) and

may also be used to extend a centralised system to a distributed environment. For

example, some work has been done using this technique to extend the Smalltalk

object manager to handle remote objects [Decouchant86L Similarly, the Flex

architecture has been extended to include remote capabilities which are accessed

indirectly via local procedure objects that masquerade as a local copy of the

remote object [Foster86]. Message passing kernels such as Accent [Rashid81] or

Distributed Systems and Global Identifiers 100

Chorus [Guillemont82] send messages between machines using an indirect

network transfer agent and the ANSA project is also exploring the use of

indirection for this and several other aspects of communication [Herbert87].

There are even parallels with virtual memory systems. The LOOM virtual

memory system for Smalltalk [Kaehler86] uses stub objects which are

automatically paged in from the disk transparently by the object manager as

required. In effect, these are indirect objects that cause a page fault rather than a

network transfer. Indirection is a very powerful mechanism for extending the

semantics of a system without altering its functionality. Whoever said ~~any

problem in computer science can be solved by adding enough levels of indirection"

was probably correct!

4.6. Are Globally Unique Identifiers Realistic?

From the work discussed in this chapter it would appear that if it were

possible to construct name spaces using globally unique identifiers that really

were globally unique across all time and space then such name spaces could be

joined together freely without their internal identifiers clashing. This of course

assumes a certain degree of homogeneity, namely that all interested parties

would agree to a common naming scheme and allow a centralised authority to

control at least the top level of their name space. Even in the atmosphere of good

will fostered by international standardisation efforts such as OSI, this degree of

cooperation would be unprecedented. Indeed, the concept of a unique identifier or

well-known address is alien to the OSI model which prefers the use of locally

defined service access points, as witnessed by problems with the Ethernet

standard and the demise of a type field controlled by Xerox in favour of a length

field and a non-unique link service access point value.

In fact, it is likely that there will always be a need for gateways between

heterogeneous name spaces which will have to map from one form of name to

Distributed Systems and Global Identifiers 101

another and intercept directory service requests although it will be difficult to

prevent names from being passed from one naming space to another by other

means. Consequently, there will always be the problem of pathnames that pass

through several naming spaces or domains recursively, although since the

number of rival naming schemes will hopefully be relatively small, it will be

possible to use structured names of the form n arne. dorna in internally.

Ignoring the political problems of securing international agreement, is it

otherwise possible to allocate globally unique identifiers to objects and hence

construct vast distributed systems that can span the world with a single naming

graph? Perhaps in theory, but in practice, people make mistakes, Murphy's Law

will intervene and something will go wrong.

In theory, there is no problem with allocating globally unique identifiers.

Nobody has yet managed to create a computer system containing an infinite

number of objects and any finite collection of objects can be mapped one-to-one

onto a subset of the integers. Each object may be uniquely named by its image

under this mapping. Estimates vary, but if for the sake of argument the

observable Universe contains 1072 (or 2120) particles, a 120 bit unique identifier

should be more than enough for most computer systems (although it might be

somewhat unwieldy and space inefficient to use such an identifier exclusively).

The problem of course is counting (or rather naming) each object. The fact that

such a mapping exists in theory does not mean that it is known in practice. There

are many such mappings and the problem is agreeing on a particular one, so that

two sets of objects may be merged without any name clashes. Knowing that an

object has a unique name does not help to discover what that name is.

In practice, unique identifiers are usually generated from a machine address

(to guarantee uniqueness between machines) and a timestamp (to guarantee

uniqueness within a particular machine). Timestamps must be strictly increasing

Distributed Systems and Global Identifiers 102

and this may require special hardware and software to prevent human error and

avoid the problems caused by machine crashes. The granularity of the time stamp

must tread the delicate tightrope between being too short (so that all possible

timestamp values are used up too soon), and too long (so that UIDs cannot be

generated quickly enough).

Unique machine addresses are usually based on network hardware. For

example, Ethernet addresses are supposed to be unique 48-bit quantities and ifit

were possible to join together all the machines in the world onto a single

Ethernet, no two machines would have the same address. Or at least that is the

theory. In practice, uniqueness is ensured by allocating 24-bit blocks of the

Ethernet address space to individual computer manufacturers on application to a

centralised authority. The manufacturers are then responsible for ensuring that

they do not use the same address twice. However, it is possible for something to go

wrong in the manufacturing process and at least one manufacturer (who shall

remain nameless) is known to have allocated the same address twice by accident.

Quite apart from this, most Ethernet hardware allows the network address to be

altered by software which makes it impossible to guarantee uniqueness and

allows a malicious node to impersonate another.

Relying on an Ethernet address (or any other kind of hardware address) to

ensure uniqueness is only possible in a homogeneous network. In practice, this is

not realistic, except perhaps for a proprietary system based on proprietary

hardware. When an internet is constructed from a mixture of different networks,

each with their own addressing convention, a logical internet address must be

used to distinguish systems and this can be used as the basis of a unique

identifier. However, moving away from physical hardware addresses increases

the scope for human intervention and hence error in the allocation of values. For

example, the 32-bit internet addresses used by the ARPANET are associated with

network hosts simply by an entry in an editable file under Berkeley Unix. It is

Distributed Systems and Global Identifiers 103

much easier to change a logical address than a physical address because of the

extra levels of indirection between the abstract network protocol and the physical

communications medium. Although this makes it much easier to reconfigure and

merge networks, it causes several problems for distributed systems built over

such networks if they use such logical addresses as the basis of their unique

identifiers. All the identifiers in the system must be tracked down and modified

whenever changes are made to the logical addresses of hosts on the network. This

is simply not practical for a large distributed system but unfortunately a unique

logical address may be the only thing that distinguishes network hosts in a large

network.

Another approach to ensuring uniqueness is to use a random number as part

of the identifier (as discussed in section 4.3.5). If such values are genuinely

random then the probability of two systems inadvertently picking the same

identifier can be made arbitrarily small by making the random component large

enough. However, this is aesthetically unpleasing because it makes what should

be a deterministic problem into a nondeterministic problem and introduces the

possibility of errors resulting from undetected name clashes. It may be a

pragmatic solution to the difficulty but it is disappointing to find no deterministic

solution. Perhaps there is an analogy with Shannon's Statistical Theory of

Communication here: it is possible to transmit a message down a noisy channel

with an arbitrarily small probability of error by use of a suitable encoding scheme

but the probability can never be reduced to zero.

4.7. Conclusions

We have discussed various techniques for generating unique identifiers and

explored the ways in which systems based on such identifiers may be combined.

Unless identifiers are universally unique, it is difficult to combine naming spaces

transparently but we have argued that universal uniqueness is difficult to

Distributed Systems and Global Identifiers 104

achieve in practice. The problems of joining name spaces together which we

discussed in chapter 3 for evolutionary distributed systems must still be solved in

the design of revolutionary systems. There are no easy answers. This should come

as no surprise; after all, a truly transparent distributed system should be

indistinguishable from a centralised system. Both will define a self-contained

name space so that in both cases joining two such systems will involve merging

name spaces or at least providing mechanisms for crossing name space

boundaries transparently. Combining two centralised systems to form a

distributed system should be exactly analogous to combining two distributed

systems to form a larger distributed system.

Although it might be argued that combining individual systems was a much

more common event than combining whole distributed systems, it is still just as

important for the composite system to be transparently indistinguishable from

the systems of which it is composed. Any extension mechanism should be

recursively applicable at more than one level of system abstraction.

Consequently, in the next two chapters we will explore whether it is feasible to

build distributed systems recursively.

Recursive Transparency and the Newcastle Connection 105

Chapter 5

Recursive Transparency and the
Newcastle Connection

In this chapter we will explore the idea of building transparent distributed

systems recursively. If a transparent distributed system is really functionally

equivalent to the systems of which it is composed then it should be possible to use

it recursively as a component of a larger distributed system. To make this idea

more concrete, we will explore its implications for the Newcastle Connection by

studying how closely a recursive implementation of a distributed Unix system

built with the NC conforms to the Unix semantics and whether such a distributed

Unix system is indeed functionally equivalent to the systems of which it is

composed. We will also briefly consider how other distributed Unix systems have

tackled these problems before outlining a solution which will be examined in

more detail in the next chapter.

5.1. Recursive Transparency

An operating system such as Unix manages the resources of a machine and

makes them available to application programs as a series of abstractions invoked

through a well-defined system call interface. In effect, the operating system is an

interpreter for the objects and operations defined by a virtual machine. The idea

of transparent distribution is to extend this system call interface without altering

its functionality so as to allow an application running on one machine to access

objects on another machine. Ideally, all the individual systems should appear as

one system with a single interface.

Transparent distribution can be achieved by inserting a layer of software

between applications and the operating system which is transparent in the sense

that it looks exactly like the operating system to an application (and exactly like

Recursive Transparency and the Newcastle Connection 106

an application to the operating system). Such a layer must intercept every system

call and decide whether it refers to an object on a local system or a remote system.

Local operations will be passed on to the underlying operating system on the local

machine whilst remote operations will be sent across the network as Remote

Procedure Calls (or RPCs) to a server on the remote machine which performs the

operation and returns the result.

The server is really part of the transparent distribution layer on the remote

machine but will appear to be an application to the remote operating system. It

would therefore be possible to insert another transparent distribution layer

between the server and the operating system. This would give the server access to

r~mote resources and allow it to create servers for itself. However, just like an

application on the local machine, the server on the remote machine should be

unable to tell whether it is accessing remote resources if the transparent

distribution layer is really transparent. This is what we mean by the term

recursive transparency. A server which runs on top of a transparent

distributed layer is said to be connected. Conversely, a server which runs on top

of the operating system directly is said to be unconnected.

Of course, a server is no ordinary application because it is really part of the

transparent layer on the remote machine. It may seem strange to make it a client

of another transparent distributed layer and especially to do so when its code

already involves many of the details of the transparent distribution layer (such as

the format of RPC messages). However, the client part of a transparent

distributed layer is only responsible for intercepting system calls. It is not

concerned with the nature of the application whose system calls it is intercepting

and is quite different from the server part of the transparent distribution layer.

Consequently, it should be possible to maintain a strict separation between the

client and server part of the distribution layer and make no attempt to merge

them in a single server program. A connected server built in this way will not be

Recursive Transparency and the Newcastle Connection 107

able to tell which of its resources are remote and which are local. This can cause

problems as we shall see when we have investigated recursive transparency in

the context of a real system. In particular, we will consider whether connected

servers work with the NC, a transparent distributed layer for Unix.

5.2. Connected Servers and the Newcastle Connection

The NC joins together a collection of individual Unix systems into a single

distributed system by extending the name space on each machine. Entries in the

local naming tree may refer to remote systems and a pathname can start on one

system and cross the network to another. It is possible to access remote files and

to run programs on remote machines as if they were local, in other words

transparently.

The NC is implemented in the way described in section 5.1 as a layer of

software on the local machine which intercepts every system call and determines

whether it refers to a local object or a remote object. For the purposes of this

analysis, system calls fall into three categories: those which take pathname

arguments, those which take arguments such as file descriptors which have been

derived indirectly from a pathname by a previous system call and those which

take arguments such as user ids or process ids which implicitly refer to ttthis

system". Pathnames may be examined to see whether they contain a reference to

a remote system or start from a remote context. File descriptors will have been

created by a previous system call also intercepted by the NC and may therefore be

looked up in a table maintained by the NC. However, the third category is

problematical because there is no obvious recursive structure in a system

identifier which can be extended to a distributed system. The best solution is to

assume that such identifiers refer to the system where the root directory / is

located. This is in keeping with the way in which Unix utilities expect to find

system information in files with root-relati ve pathnames such as / etc / pas s w d.

Recursive Transparency and the Newcastle Connection 108

Once a system call has been analysed in this way it can be redirected with an

RPC to a server on a remote machine if necessary. If the server is connected it will

subject the system call to further analysis and possibly redirect it to a second

remote system. In particular, this makes it possible for a pathname to span

several remote systems without the local system which first analyses the

pathname needing to know anything about the naming structure of the

distributed system as a whole beyond its immediate neighbours. However, the

standard implementation of the NC has unconnected servers which run directly

on top of a Unix kernel wi thou t the insertion of a transparent N C layer (although

experimental versions with connected servers do exist). Consequently, a

pathname which passes through two remote systems will not be analysed by the

unconnected server on the first of these remote systems. Similarly, it will not be

possible to reach a second remote system with a pathname that starts from a

remote context. Such violations of transparency caused by the use of doubly

remote pathnames break the illusion ofa single distributed Unix system provided

by the NC.

For example, suppose that three Unix systems A, Band C are arranged at the

same level in a distributed Unix naming tree constructed with the NC. From

I.. --. •

/1""
I --. A B c

system A, C can be named directly as I .. IC and indirectly via B as I .. IBI . . /C.

The indirect pathname will fail because it involves accessing the remote system

I .. IC from an unconnected server on B. In this case, it is rather perverse to use

the indirect pathname when it is possible to name C directly although such

redundant pathnames are sometimes generated by programs (or even people)

accidentally. Indeed, a fully transparent distributed system which allowed

Recursive Transparency and the Newcastle Connection 109

arbitrary links between directory entries on different machines would make it

only too easy to use such pathnames by accident because the system boundaries

would be invisible.

In section 3.5.1.2 we argued that loops in the distributed naming graph could

be prevented by not interpreting doubly remote pathnames. However, sometimes

the use of such indirect pathnames is unavoidable. In the rest of this section we

will discuss three such occasions.

5.2.1. Remote Execution

As discussed in section 3.5.4, the NC implements true remote execution and

always runs a program on the machine where it resides. This effectively adds an

extra level of indirection during name resolution, making it impossible for a

remotely executing program to name some objects without using pathnames that

pass through more than one remote system. To understand why this is so, we

must consider the effect that remote execution has on naming.

The current directory and root directory ofa Unix process are not altered when

it executes a new program. Consequently, when a process moves to a remote

machine by executing a remote program, if its root and current directories were

originally on the local machine, they will now be remote as far as the remote

machine executing the client program is concerned and must therefore be

accessed via servers. Unix only provides the root and current directory as starting

contexts for naming files, so if these contexts are already remote and servers are

not connected, it will not be possible to name remote files on any other systems,

including files on the machine where the program is now executing. All

pathname calls will be sent to the server where their starting context is located

but that server will be unable to handle further remote names because it is

unconnected.

Recursive Transparency and the Newcastle Connection 110

For example, with the system configuration above, suppose a process on A

executes a program on B. Because the root and current directory of the process

remain on A, all pathname operations will be passed from B back to a server on A,

including pathnames beginning I .. lB. If the server on A is unconnected it will

be unable to handle such names and so there will be no way for the process now

running on B to name objects on B (unless the current directory is moved to B

before performing the remote execution).

Even with a connected server, there is no satisfactory way of naming local

objects because Unix does not implement closures or provide a naming context for

the local system. This makes it impossible to write a portable program that will

always create files on the machine where it runs. Root-relative pathnames are not

good enough because they must include system names. For example, a name

beginning I .. IB would only name local objects if the program which used it was

running on B. This is not location transparent and a program which used such

names could not be moved to another machine without alteration. (As discussed

in section 3.4.4, LOCUS has extended Unix naming to include a special

<LOCAL> facility to solve this problem.)

In an attempt to get round these naming difficulties (and also to tackle some of

the other problems of remote execution discussed in section 3.5.4) the NC provides

a special version of the Unix exec system call named excr which stands for

((execute with changed root". If a process executes a program with excr rather

than exec, its root directory will be moved to the machine where the program

resides (Le. the machine where execution will take place under the NC

interpretation of the Unix exec semantics). This allows both local and remote files

to be named with root-relative pathnames but unfortunately, because of

weaknesses in the Unix concept of a system, moving the root can have other

strange side-effects on things like the meaning of process ids and user ids.

Nevertheless, it could be argued that making excr the default remote execution

Recursive Transparency and the Newcastle Connection 111

semantics fixes more problems than it creates. This would tend to suggest that in

not moving the root directory during a remote exec the NC is interpreting the

Unix exec semantics too literally. In particular, the NC is ignoring the fact that

Unix often uses root to mean two things, an absolute location and the idea ofUthis

system". For a single system the two are equivalent but for a distributed Unix

system they may be differen t.

5.2.2. Network Heterogeneity

Another occasion when doubly remote names might be required would be if

the network was heterogeneous and not all the systems used the same network

protocol. For example, with the configuration above, suppose that A and C use

different protocols and cannot communicate with each other directly but 8

understands both protocols. Then it would be reasonable to expect a pathname of

the form I . . /81 . . IC to allow interworking between A and C using 8 as an

explicit gateway. However, without connected servers this would not work, even

though it is possible to access both A and C from 8. One solution would be to

invoke all commands involving A and C from 8 but this might not always be

convenient if 8 was inaccessible. Fortunately, remote execution provides a way

round this difficulty although excr must be used because of the naming difficulties

described above. Since using excr will change the meaning of I, all root-relative

pathname arguments must be re-written accordingly.

For example, here are three possible commands for copying a file from A to C:

(1) cp Ifoo 1 .. IC/bar

(2) cp Ifoo 1 .. /8/ . . IC/bar

(3) excr 1 .. /8 cp 1 .. /A/foo 1 .. IC/bar

The first is the most natural but fails because A cannot communicate with C

directly and 8 cannot be used as a transparent gateway. The second will also fail

Recursi ve Transparency and the Newcastle Connection 112

because it requires a connected server at B. Only the third possibility which uses

excr to invoke the copy program cp from B will work but it is significantly more

complex for the user than the other two commands.

This situation might seem rather bizarre and contrived but it has actually

arisen in practice at Newcastle on a single Ethernet. The same problem would

occur on a much larger scale if two large networks using incompatible protocols

were joined together to form a distributed system. It is usual to ignore this

problem when designing a distributed system and assume that all communication

occurs over a fully connected internet. For a really large distributed system this

may not be a realistic assumption. Making network boundaries visible at the

application level in this way is not very attractive but at least it makes it possible

to construct some kind of distributed system under these circumstances.

5.2.3. Name Space Management

A similar situation might arise if the replicated parts of the distributed

naming tree were inconsistent. Such an inconsistency could easily arise by

accident rather than design, especially since the naming tree must be maintained

by the collective action of all the system administrators.

For example, suppose that system C could only be named from system Band

not from system A. Then the only way in which a process on A could access files on

C would be via B with a pathname of the form I .. IBI .. IC. Although it could be

I.. -.. •

/""'/""-
I -. A B c

argued that limiting knowledge about system names and addresses to centrally

administered machines such as B would be desirable (or at least convenient),

Recursive Transparency and the Newcastle Connection 113

deliberate inconsistencies should be frowned upon because they violate the

recursive model of distribution on which the NC is based. The proper way of

dealing with this situation would be to return to a tree structure by making B the

parent of A and C, but this would require a connected server at B. This is

I.. --. B

/'"
I --. A c

unfortunate because for a very large distributed system it would make sense to

divide up the name space into smaller domains which could be independently

managed.

5.2.4. Summary of Connected Servers

Connected servers (or the equivalent functionality) are necessary before a

transparent distributed system can be said to be completely transparent. In

particular, connected servers are needed to make remote pathnames work

properly during remote execution and to resolve redundant pathnames correctly.

They are also required if the system naming tree is structured so that not every

system can name every other system directly. In these circumstances, the only

way of reaching an object in one domain from another would be via a connected

server on a machine that knew about both domains.

In the rest of this chapter we will examine the concept of a connected server in

more detail to see whether recursive transparency works in practice and whether

it is the best way of achieving the full level of transparency we require. In

particular, we will examine various aspects of the Unix semantics to see whether

it is possible to implement a transparent distributed Unix system recursively.

Recursive Transparency and the Newcastle Connection 114

5.3. Connected Servers and Unix Pathnames

Unix pathnames have no direction. A single pathname can move up or down

the naming tree and in the presence of symbolic links may even jump from one

part of the tree to another quite unexpectedly. As a result it can be difficult to

analyse a complex pathname spanning several systems in order to determine

which system it ultimately refers to.

When the NC intercepts a system call with a remote pathname argument, the

pathname is only analysed to identify the first reference to a remote system it

contains. The remainder of the pathname is passed to a server on that remote

system in an RPC. If the server is unconnected, the pathname will not be

analysed further but will simply be treated as if it were local. This leads to the

breaches of transparency with doubly remote pathnames discussed in section 5.2.

In contrast, a connected server will analyse the pathname further and will be able

to access further remote systems via its own servers. Consequently, arbitrarily

complex pathnames can be resolved (eventually) via a chain of connected servers.

However, it is not always appropriate to follow such a chain of servers if the

pathname loops back on itself with .. or encounters a symbolic link.

For example, suppose that a process has moved its current directory to a

remote system. All pathnames which are not root-relative will be passed to the

server on the machine where the current directory now resides. If the process now

moves its current directory back to the local system (or to some other remote

system) using a pathname which is not root-relative (such as ..), the ((change

directory" RPC will fail if the server is not connected. However, if the server has

been connected it will create itself a server on the new system to hold the

directory context, even if this is the local system. Consequently, all pathnames

relative to the current directory will now pass through at least two servers. Even

the simple sequence

Recursive Transparency and the Newcastle Connection

cd I .. I remote

cd .. /local

115

will lead to a process accessing all files named from the current directory via two

servers, one of which will be on the local machine.

Operations which affect the naming context are special and should be treated

with caution. However, any operation on a pathname involving .. or a root

relative symbolic link can cause similar problems. If a pathname passes from one

remote system to another (or simply loops back to the local system) then a

connected server will create a server for itself on the second system, even if there

is already a server on that system created more directly by the client. An object

can always be named in two ways, from root or from the current directory, but if

one of these directories is remote then the two pathnames will not necessarily

lead to the same server.

These examples demonstrate that the use of connected servers can lead to

objects being accessed indirectly via more than one server when a more direct

route is possible. Although this is inefficient, this is not in itself sufficient reason

to abandon the concepts of recursive transparency and connected servers.

However, as we shall see in the next section, the presence of more than one server

on the same machine can cause semantic difficulties and violate transparency

and so an alternative approach is needed to achieve the equivalent functionality

of a connected server.

5.4. Multiple Servers

An NC server is an extension of the state of a local process on a remote

machine. It acts as an agent on behalf of its client and has no independent

existence of its own. Every process using the NC will have a private server, not

shared with any other process, on each of the remote systems it accesses. This

Recursive Transparency and the Newcastle Connection 116

combination of a local process and its remote servers is called a Distributed

Sequential Process (or DSP) because, although it is a distributed collection of

processes, only one process is active at a time with the flow of control moving

between process and server just as it moves between procedures in an ordinary

program.

As we have just seen, if it is possible to name a system in two different ways

and a DSP built with connected servers accesses the system in both ways, the DSP

will end up having two servers on that machine. This might appear to be contrary

to the definition of a DSP (one server per process per machine) but in fact there

will be two DSPs. One of these will be recursively nested in the other and will

appear as a simple server at the higher level of abstraction.

Returning to our original example of three systems A, 8 and C arranged

symmetrically in a tree, if A accesses 8 and C directly as I .. 18 and I •. I C

respectively, the result will be a DSP with client at A and servers at 8 and C.

If A then accesses C indirectly as I . . /81 .. IC, a second server will be created on

C but this will actually belong to the DSP consisting of client at 8 and server at C.

This entire DSP will be indistinguishable from the server at 8 in the higher level

DSP with client at A. Since a system can always be named in two ways (relative to

root or relative to the current directory) this situation can easily arise in practice.

But what harm can come of having two servers on the same machine? Will the

recursively structured DSP continue to be indistinguishable from a single Unix

Recursive Transparency and the Newcastle Connection 117

A

process, or will it breach the normal Unix semantics in some way? In order to

answer these questions, we must consider how a DSP is implemented.

A DSP consists of a collection of processes spread across several Unix systems.

However, in the interests of transparency, this collection must masquerade as a

single virtual process running on a single virtual Unix system. On each

individual Unix system the identity of this virtual process is synonymous with

the identity of the real process that runs as its representative on that system.

Clearly if a single DSP has two component processes representing it on a given

system, there will be a conflict of identity and so it is in this area of the Unix

semantics that we must look for difficulties.

5.4.1. Access Rights and Ownership

Access rights are closely associated with identity. Unix permissions are based

on the concept of users and groups and every process has a user id and group id. A

server forming part of a DSP effectively has a user id belonging to another

system, specifically the user id of its client. As discussed in section 3.5.3, such a

remote user could be represented quite naturally with a pathname of the form

/ .. / remote/use r but unfortunately Unix uses small integers taken from a flat

name space to represent user ids and a name space without any structure cannot

be recursively extended to include the notion of a system. Instead, the NC derives

the identity of each server from the identity of its client by mapping what is

Recursive Transparency and the Newcastle Connection 118

effectively a pathname made up of the address of the client system and the user id

of the client process on that system into a specific local user id on the server

system. This allows each system administrator to control which remote systems

and individuals are allowed to access his system over the network. There is no

need for each system to support the same set of users as there is for some

distributed systems.

This scheme works well with unconnected servers where there is only one

level of mapping but is complicated by the presence of connected servers. If a

connected server becomes the client of another server in a recursively structured

nsp, the identity of the second server will be derived from the local identity of the

first server rather than the identity of the original client to whom the entire nsp

conceptually belongs. Otherwise the intermediate server would not be connected

transparently. In other words, it would be aware that it was a server and

therefore special. Because there is a natural tendency to give less permission to

remote users of a system, it follows that if there are two servers for the same

client of a recursive nsp on a given system, it is quite likely that they will have

different permissions associated with them, especially if one has been created

indirectly by another server rather than directly by the original client.

For example, returning once more to the three systems A, 8 and C arranged

symmetrically as subdirectories of I .. , suppose that there is a user id robe rt on

A and C but not on 8. If the two robe rts are the same person, then it makes sense

for C to map the conceptual user path I AI robe rt into the local user robe rt.

However, knowing nothing about robert, 8 will map IA/robert into

a. n. othe r, a default guest user with minimal access rights. Naturally C will

map 18/a.n.other into the local version of a.n.other. There is no

conceivable reason for C to map 181 a. n. othe r onto robe rt and indeed the real

Robert would not be pleased if his files on C were compromised in this way!

However, as a consequence of this, if user robe rt on A creates a server on C by

Recursive Transparency and the Newcastle Connection 119

using a pathname beginning I .. IC, the resulting server on C will have the

permissions of robe rt on C but if robe rt on A then uses a pathname beginning

I .. IBI .. IC to refer to the same object, a second server will be created on C with

only the permissions of a. n . 0 the r. In other words, the access that a user on A

has to objects on C depends on whether the pathname used to access them passes

through B.

Although there is clearly a difficulty here, it is not immediately obvious that

this apparent paradox is a violation of Unix semantics and a clinching argument

for dispensing with connected servers. Even on a single Unix system, a user must

have search permission on all the directories mentioned by a pathname in order

to use that pathname and therefore some pathnames to an object will work and

others will not. This is not quite the same as both pathnames working but

granting different access rights but there is some similarity. Indeed, one might

argue that it is quite reasonable to associate different permissions with different

pathnames and that this is a good way of providing security on a ttneed to know"

basis.

A more convincing paradox can arise with the chown system call which

changes the ownership of a file. If chown is applied to a remote file, the new owner

of the file must belong to the remote system rather than the local system.

Consequently, the user id supplied as parameter to the chown call on the local

system m.ust be mapped to an appropriate user id on the remote system. As

before, the mapping will depend on the pathname used to name the file and so the

owner of the file after the chown call will depend on this pathname too.

Wi th our example above

chown robert 1 .. /C/file

will result in the file being owned by rob e r t but

Recursive Transparency and the Newcastle Connection 120

chown robert 1 .. /B/ .. /e/file

will result in it being owned by a. n. othe r. This is certainly not the Unix

semantics.

Connected servers can interact with guest users such as a. n. othe r in

another interesting way. As explained in section 3.5.3, just as there is a need to

map user ids when creating servers on remote machines, so there is a need to

'perform the inverse mapping when reporting the ownership of remote files.

However, user id mapping is an expensive operation and as a compromise the NC

simply reports whether or not a remote file is owned by the local process. When

the ownership of a remote file is examined, the result is either the user id of the

local process or else a special default value to indicate that the remote file is not

owned by the local process. Since there is already a user id which is used to

indicate a user for whom there is no mapping (namely the default guest user

a. n. othe r), it is convenient to overload this value and use it for this purpose

too. So long as no process using the NC runs as a. n. othe r this overloading will

not cause any problems. Although servers may run as a. n . 0 the r they are

usually unconnected and do not use the NC. However, a connected server running

as a. n. othe r can cause the ownership of remote files to be reported incorrectly.

For example, with the user id mappings used in the previous example, suppose

that If i 1 e on e is owned by 1 i n d s ay. Examined from A as I .. I elf i 1 e by

rob e r tit will correctly appear to be owned by a . n . 0 the r. If a connected server

running as a. n. othe ron B examines the same file, the NC will also report that

the file is owned by a. n . 0 the r (Le. a user other than the equi valen t of

a. n. othe r on e). However, because the server on B runs as a. n. othe r, it will

mistakenly think that it owns the file and this will cause the NC to report that

the server's client on A owns the file too. Since a connected server on B created by

robe rt on A will run as a. n. othe r (because robe rt is not mapped by B), it

Recursive Transparency and the Newcastle Connection 121

follows that if robe rt on A examines I . . IBI .. lelf i 1 e it will appear to be

owned by rob e r t even though it is actually owned by 1 i n d s ay!

This problem is really caused by the fact that the user id a . n • 0 the r is being

used to represent two things: the default access rights for an unmapped user id

and the owner of a file on a remote system. It would be possible to resolve this

ambiguity by using different user ids for these two purposes but it is only

necessary to do so because connected servers break the assumption that made it

safe to overload one value in the first place.

All of these problems could be avoided by defining a consistent user id

mapping within each naming domain. If the mapping relation was transitive

then all the servers on a particular machine for a given DSP would be created

with the same user id, irrespective of the route by which they were created.

However, achieving a consistent mapping might involve an unusual degree of

cooperation between the individual system administrators. In effect, each system

would have to support the union rather than the intersection of all the other

systems' users. In the limit this would mean that the systems would share the

same list of users. Nevertheless, this cooperation would only need to extend to

users within a given naming domain because those systems which belong to two

naming domains form bottlenecks through which all names must eventually pass

if they are to reach another naming domain. (It must be assumed that there are

no circularities in the tree of naming domains since otherwise the problem will

rapidly become intractable.)

5.4.2. Resource Allocation and Locking

Another problem area with multiple servers also concerns the question of

identity. If a process acquires some resource from the kernel, the kernel will keep

a record of the allocation by recording that the resource is now owned by a

particular process id, a value taken from another flat numeric naming space. As

Recursive Transparency and the Newcastle Connection 122

with user ids, it is not possible to identify a remote process with a pathname and

consequently, when a resource is acquired remotely by a server on behalf of a

client, the remote process can only be identified with the server's process id.

However, this will dojust as well providing that all manipulations of the resource

are made through the same server. In general, this is no problem even in the

presence of multiple servers on the same machine because Unix resources are

strictly local to a process and cannot be shared with other processes. They are

usually acquired as the result of a pathname operation and consequently the NC

knows exactly which resources belong to which servers and there is no possibility

of confusion. So long as the same pathname is always used to access it, all

operations involving a given resource will automatically be passed on to the

correct server, if necessary via a chain of servers. However, difficulties will arise

if the effect of acquiring the resource is visible outside a single Unix process and

therefore operations such as locking which affect the global state ofa Unix system

will cause problems.

If a Unix process acquires an exclusive lock on a file using some pathname

then even if the file can be named in other ways, other Unix processes will not be

able to lock the same file. However, it is reasonable to expect that the process

owning the lock should be able to relock the file (possibly using a different

pathname) without ill effect. Within a single system, a Unix kernel is able to tell

whether two pathnames are equivalent and whether two processes are the same

because it works in terms oflow-Ievel identifiers which are unique within a single

system. Unfortunately, there is no way that the NC can persuade a Unix kernel

that two distinct Unix processes are actually part of the same process on some

virtual Unix system and so it follows that an attempt to lock the same file twice

using two different pathnames which pass through different systems to two

distinct servers on the same machine will fail, in deadlock if the process tries to

wait until the lock is released. However, unlike the Unix kernel, there is no way

Recursive Transparency and the Newcastle Connection 123

that a transparently connected nsp can recognise that two pathnames actually

refer to the same system and prevent this from happening because it uses

localised purely relative naming. There is no mechanism for taking a global view

of the system, especially dynamically on each pathname access.

This time there really is a problem with emulating the semantics of Unix in

the recursive system although it is not clear how likely this problem is to occur in

practice. A sequence oflocking calls involving the same object named in different

ways will succeed if the object is local but will fail if the pathnames pass through

remote systems by different routes. It is also very difficult to get round this

problem because there is no possibility of mapping the process identity so as to

fool the underlying kernel. Obviously it is possible to conceive of forms oflocking

or resource allocation which use an explicit unique id to represent the owner of

the resource and do not suffer from this problem but this would not be Unix. In

any case, such operations would not be based on pathnames and would therefore

be difficult to distribute transparently. The problem here is that the form of

identity used to record ownership should include a system identifier. However,

without unique ids, it is not possible to tell whether two pathnames are

equivalent and hence identify systems unambiguously, especially in the presence

of connected servers. Even if the kernel did understand pathname identifiers, it

would be unreasonable to expect it to be able to recognise equivalent but not

identical pathnames if a nsp cannot do so. We will return to the problem of

telling whether two pathnames are equivalent in section 6.4.

5.4.3. Flattening the Recursion

Multiple servers on the same machine only arise because connected servers

impose a strictly recursive interpretation upon the nsp model. It is perhaps

worth considering what might happen if the recursion was flattened by

preventing more than one server per nsp from being created on each machine.

Recursive Transparency and the Newcastle Connection 124

This would involve distributing the list of servers making up the DSP between

each server so that every server knew about every other. Every time a new server

was created its details would need to be propagated to the other servers. This

could be done using a broadcast or multicast protocol. Alternatively, the

knowledge could be propagated on a ((need to know" or ttlazy" basis. The current

list of servers (or the most recent changes to the list) could be incorporated into

the RPC protocol so that each server received the information the next time it was

invoked to perform some remote operation. One difficulty with this approach is

that it would require unique names in order to identify all the systems correctly.

There would also be reliability implications because the distributed list of servers

would not always be in a consistent state. However, the main problem concerns

the authorisation difficulties mentioned earlier. If the first server on a given

system is created indirectly by another server, it will not necessarily be given the

permissions it would have received had it been created by a more direct route. In

section 5.7 we will discuss a mechanism called DIY which tackles this problem by

ensuring that all server creations are initiated by the most direct route from a

central location.

Of course, it would be possible to go even further and abandon the DSP model

altogether. Multiple servers are only a problem because servers are private with

one server per system per process representing the state of the DSP everywhere.

If the concept of multiple private servers is abandoned in favour of a single public

server on each system then the problem does not arise. However, this public

server must be able to identify its client and without unique identifiers this

involves solving the same problem of determining whether two pathnames from

an arbitrary naming graph denote the same object. Unique identifiers are not

acceptable for this purpose because they are not recursive and therefore do not

scale or allow the name space to be divided up into individually managed

domains.

Recursive Transparency and the Newcastle Connection 125

5.5. Remote Execution

Remote execution is another area where connected servers fail to work

correctly and the idea of recursive transparency breaks down. However, in this

case the reason is that the NC server must assume it is unconnected in order to

implement remote execution correctly. This is because remote execution involves

a sort of bootstrapping process in which a new NC layer is inserted between the

server program and the Unix kernel as the server becomes a client.

The NC implements true remote execution rather than remote paging and this

involves rearranging the DSP. The client and the server on the system where the

remote execution takes place must change places because the controlling point of

the DSP from which all system calls are generated will move to the remote

machine. The server process will exec the new client program whilst the original

client process becomes a server acting as an agent for the new client. When the

A

original client has more than one server, those servers not involved in the remote

exec must re-establish communications with the new client as directly as possible.

With a single naming domain and network address space this is relatively

straightforward because direct communication is always possible. However, it is

during this rearrangement operation that the NC code assumes that its servers

are not connected.

The NC layer of software inserted between programs and the Unix kernel to

provide transparent distribution contains various data structures which are used

Recursive Transparency and the Newcastle Connection 126

to control name interpretation and indicate which of the resources owned by the

process are local and which are remote. Clearly, it is important that this state

information be preserved as one program executes another. When a remote

execution takes place, these data structures must be rearranged as the client part

of the nsp moves from one system to another to reflect the fact that resources

which were local are now remote and resources on the system where the exec is

taking place are now local.

The server on the system on which the remote exec takes place will become the

new client and must therefore construct an appropriate data structure for the new

NC layer in the client which will reflect the location of all resources relative to

the new client. The code in the server which constructs this data structure

assumes that all the resources which belong to the server itself are local. This is

certainly correct if the server is unconnected. However, if the server is connected

then some of its resources may actually be remote although there will be no way

of telling which resources are local and which are remote because the NC layer

attached to the server is transparent. Consequently, the NC data structure which

a connected server constructs for the program it is executing will not be correct.

More seriously, there will actually be two conflicting data structures because

the NC layer attached to the connected server will construct its own view of the

server's resources as part of the NC algorithm for what is an ordinary local exec

from this viewpoint. Just as the connected server is unaware of its own remote

resources, so its NC layer is unaware of the fact that the server is part of a nsp

and will inherit other servers as it becomes a client after the exec. Transparency

works in both directions and the correct overall picture can only be obtained by

merging both views. However, both views are correct in their own right because

they belong to separate nsps which are part of different virtual Unix system

abstractions. But unless these two distinct layers of abstraction are preserved in

the new client, one or other of the views they represent will be compromised and

Recursive Transparency and the Newcastle Connection 127

the whole algorithm will break down. In effect, servers in one DSP or the other

will be forgotten about and certain resources held by those servers which should

be remote will be treated incorrectly as if they were local. The most likely effect is

that the program being remotely executed simply does not work properly.

As an example, consider the three systems A, Band C again, arranged

symmetrically in a tree. Suppose that from A we wish to execute the cat program

remotely on B and use it to list its standard input. Because standard input will be

opened on A before cat is executed on B, its file descriptor (which may refer to a

local or remote file) will be one of the resources that will be inherited across the

exec boundary. The NC will have a record of whether the file descriptor is local or

remote and this must be adjusted to reflect the rearrangement of the client and

server. All of the following examples will work because none of them requires

connected servers and consequently only one level of DSP and virtual Unix

system is involved:

1 .. /B/bin/cat < file

1 .. /B/bin/cat < 1 .. /B/file

1 .. /B/bin/cat < 1 .. IC/file

On the other hand, if there is a connected server on B and an indirect pathname is

used to name a file on C then there will be two levels of DSP. The server on B will

be the client of another server on C which will hold the true file descriptor for the

standard in pu t of the cat command:

1 .. /B/bin/cat < I .. /B/ .. IC/file

In the topmost DSP with A as client in which the remote exec takes place the file

descriptor will be remote on A and local on B. Consequently, after the remote

execution has taken place B will have forgotten about its server on C and will

treat the file descriptor as ifit were local. This is incorrect and without a valid file

Recursive Transparency and the Newcastle Connection 128

descriptor for its standard input the cat program will tenninate without printing

anything.

At the risk of causing further confusion, here is a command that will work

with a connected server at 8:

I . . /C/bin/cat < 1 .. /8/ .. /C/file

Because the connected server is not involved in the remote execution, both A

beforehand and C afterwards will regard the file descriptor as being remote on 8

and even though it is actually handled by a server on C (which will be ridiculously

inefficient because cat is already running locally on C) this will not cause any

problems. In other words, the algorithm only breaks down when the exec in one

DSP takes place at a server which is part of another DSP and itself owns remote

resources on other servers. Furthermore, the key point is that a remote resource

owned by a connected server cannot be passed across an exec boundary. If it is

acquired after the exec there will be no problem. Consequently the following

examples will work with connected servers:

1 .. /8/bin/cat 1 .. /C/file

1 .. /8/bin/cat 1 .. /8/file

I . . /8/bin/cat I .. /8/ .. /C/file

In each case, the file to be listed is an argument to the cat program and is

therefore opened after the exec. None of the examples would work without

connected servers but each will involve at least two servers (the third will involve

three) where at most one server or even purely local access would be possible.

Connected servers do not give the most efficient solution by any means. The DIY

mechanism proposed in section 5.7 would be required to sort out the optimal route

from the client to the server and prevent the absurdity of creating a server next to

the client on 8 in two of the above examples.

Recursive Transparency and the Newcastle Connection 129

One further possibility, namely a connected server executing a program which

it thinks is local but is actually remote, will also fail to work correctly. What

should happen is that as the server tries to turn itself into a client it discovers at

the last minute in its NC layer that it should remain a server since the new client

is actually being created on another system. The DIY mechanism described in

section 5.7 avoids the problem of nested remote execs by tracing all pathnames to

the server on the system where the program resides.

What can be done about this problem of connected servers and remote

execution? Clearly it is not possible or practical to support two (or more!) NC

layers simultaneously. However, it should be possible to reimplement the file

server n exec with NC data" operation so that it merged the two levels of DSP

rather than replacing the state information of one with the other. This would

mean that the NC had to be able to tolerate the existence of two servers on the

same machine because it would not be possible to merge two servers from

different levels of DSP. However, the NC itself would never create such multiple

servers directly. They would only arise as a result of merging two recursively

structured DSPs and duplicate servers from the nested DSP would only exist as

long as their resources existed; they would never be used to acquire new

resources. (Presumably it would be sensible to promote a server from the inferior

DSP ifno duplicate existed at a higher level. However, as explained earlier, such

a server would not necessarily have the same access rights as a server created by

a more direct route.) Such a merge algorithm would be able to support connected

servers without significantly compromising transparency. Only the new n exec

with NC data" operation would not be transparent because by definition it is not

part of the Unix system call interface. However, some implementation of this

operation is required even when an unconnected server is implemented directly

on top of a Unix kernel so this is not really a problem.

Recursive Transparency and the Newcastle Connection 130

5.6. Other Distributed Unix Systems

So far we have only considered the implications that recursive transparency

has for the NC. Before looking at possible solutions to the problems it poses, we

will consider the other distributed Unix systems discussed in section 3.5 to see

how they have tackled these issues.

Both NFS and RFS are based on the idea of a remote mount. This means that

they can exploit the existing kernel mechanism for crossing mount points and

deal with .. correctly. RFS is closest to the NC in that its RPC protocol works in

terms of path names. In other words, if a remote mount point is encountered while

a pathname is being resolved, the entire system call is continued on the

appropriate remote system. However, this mechanism is not recursive because

the RFS server on the remote machine does not cross further remote mount points

in the same way. NFS looks up pathnames in their entirety before generating an

RPC for the required operation. Furthermore, it looks up remote names one

segment at a time, effectively reading remote directories and resolving names

locally, rather than passing the pathname across to the remote system for

resolution. One consequence of this is that the local system must be aware of all

the mount points on the remote system, even those for local file systems. This can

be very expensive and an administrative nightmare, even for a moderately sized

distributed system, and proposals have been made to hide at least internal file

system boundaries on remote systems so that only the root of each remote system

need be mounted in the local file system. Using one RPC to resolve each remote

segment of a pathname and then a further RPC to perform a remote operation is

also very expensive and NFS is only able to function efficiently because caching is

used to avoid the need for name lookup as much as possible. LOCUS also resolves

pathnames locally by reading remote directories and therefore has the same

problems.

Recursive Transparency and the Newcastle Connection 131

Both LOCUS and NFS require a single user id space across all systems and

hence overcome some of the identification problems arising out of mapping user

ids between systems. However, this requirement causes problems when two

independently managed systems are combined and, although conflicts can be

resolved by re-allocating user ids as systems are merged, this approach simply

does not scale since every system must know about every other. RFS does at least

support user id mapping like the NC.

One important difference between the NC and the other implementations of

distributed Unix is that only the NC uses private servers, one per process per

machine. The other distributed Unix systems effectively have a single public

server on each machine which provides the remote file system abstraction for

every client. The implications of this were discussed briefly at the end of section

5.4.3. The question of inadvertently creating multiple servers on the same

machine for a single client does not arise. However, because a public server

manages remote resources on behalf of many clients, each request for service

must be accompanied by the identity of the client making it. Consequently, the

same semantic conflicts can occur if a client can reach a server by more than one

route but may only be identifed using the route by which it reached the server. In

these circumstances, identity would be represented by a pathname and in order to

discover whether two clients were identical it would be necessary to test whether

their identifying pathnames led back to the same system. For an arbitrary

naming graph this problem is not soluble without introducing unique identifiers

(which are contrary to our recursive philosophy) as we shall see in section 6.4.

In conclusion, the problems of recursive transparency are not unique to the

NC but other distributed Unix systems do not have a solution to offer either.

Instead, they avoid the issue by making simplifying assumptions or imposing

unreasonable restrictions on the construction of the distributed system.

..

Recursive Transparency and the Newcastle Connection 132

5.7. Towards a Solution - DIY

We have seen in this chapter that although the functionality of a connected

server is needed in order to make a distributed system fully transparent and to

allow a name space to be partitioned into domains, the idea of recursive

transparency and connected servers simply does not work in practice. Connected

servers can lead to more than one server being created on the same machine and

this can cause semantic conflicts, especially over the notion of identity. Remote

execution cannot be implemented transparently with a connected server either,

and pathnames involving .. which pass in and out of systems cannot be resolved

satisfactorily.

The solution to these problems is to relax the strict view of transparency that

leads to the notion of recursive transparency and attempt to flatten the recursion.

To avoid creating extra servers unnecessarily, a connected server must be aware

of the fact that it is part of a nsp. Because other servers belonging to that nsp

might exist on other systems, the server must be careful about creating new

servers. Indeed, it would be better if all servers were created directly by the local

process, assuming there is only one naming domain and all systems are equally

accessible. The distribution layer cannot be added transparently to the server

because it is transparency that causes the extra servers to be created. Instead, the

distribution layer must somehow be merged with the server code.

The problem is that name resolution and performing remote operations have

been combined into a single RPC. Following a pathname through a chain of

connected servers will reach the correct system in the end but not by the most

direct route. Separating out the process of name resolution into a name lookup

RPC to servers that know whether pathnames are local or remote would be

simpler but less efficient because every remote operation would require an extra

RPC to look up the name first. Since most remote objects can be accessed directly

Recursive Transparency and the Newcastle Connection 133

with only one server, this approach will effectively double the number of RPC

calls.

Ifname resolution and performing remote operations are to be combined into a

single RPC in the interests of efficiency, a routing layer based on pathnames must

be added to the RPC protocol. If a pathname operation is directed to the wrong

server (Le. the pathname is not local to that system), the routing layer will

generate an exception and indicate a better pathname for the client to try again

with. Such an exception (called ttDo It Yourself' or simply ((DIY") will be

sufficient for a single naming domain because the client will always be able to

interpret the name itself. A DIY mechanism handles the current directory

problem nicely and also copes with redundant pathnames which go in and out of

systems because it ensures that servers are always created and accessed by the

most direct route through the naming graph. For mUltiple naming domains, the

routing layer must be able to determine whether the improved pathname is

indeed accessible to the client (lies within the same naming domain) or whether a

new server must be created. So long as there is only one chain of servers leading

into each naming domain from the client there is no danger of redundant servers

being created. However, this may be hard to guarantee when the overall naming

tree contains loops and it is possible to reach a naming domain via two different

routes which are sufficiently indirect for the algorithm to break down.

5.8. Conclusion

In the next chapter we will explore the idea of combining name resolution and

performing remote operations into a single RPC in more abstract terms. Although

we have used Unix and the NC to introduce the topic of recursive transparency,

we believe that the problem is more general than this and not simply an artifact

of strange characteristics of Unix. Identity and name equivalence are

fundamental issues in the design of any naming system but we have shown that it

..

Recursive Transparency and the Newcastle Connection 134

can be difficult for a recursively structured distributed system to achieve

transparency in these areas if it is implemented recursively using connected

servers. We must therefore find a way of achieving the same degree of

transparency without using a recursive implementation. The DIY mechanism

introduced in section 5.7 is the approach we shall take.

An Abstract Approach to Recursive Transparency 135

Chapter 6

An Abstract Approach to
Recursive Transparency

Chapter 5 introduced the concept of recursive transparency using Unix and

the NC as an example of a transparently distributed system. In this chapter we

will reconsider the topic of recursive transparency in the more general context of

an abstract model of recursive distributed systems. Our model is object-oriented

and its basic computational step is to perform an operation on an object. Objects

are identified by name, and names must be resolved in order to locate objects. We

will explore the implications of recursion for this model and consider mechanisms

for combining name resolution with the RPC used to perform remote operations.

This requires adding a pathname-based routing layer to the RPC protocol. We

will also examine algorithms for simplifying pathnames statically and

determining whether two pathnames denote the same object in a distributed

system constructed without the aid of globally unique identifiers.

6.1. Introduction

In section 5.1 we argued that an operating system can be thought of as an

interpreter for the objects and operations defined by a virtual machine. Programs

which use the services of an operating system by issuing a system call are in effect

performing operations on objects. We may therefore describe the system call

interface more abstractly in terms of a perform operator. The expression

perform(OP, NAME, ARGS) indicates that operation OP is to be performed on

object NAME with arguments ARGS.

A distributed system constructed from many such systems introduces the

concept of a location and the idea of local and remote objects. Although the

component systems of a transparent distributed system only allow operations to

An Abstract Approach to Recursive Transparency 136

be performed directly on local objects, the goal of transparency is to allow remote

objects to be accessed and manipulated from any system. Consequently,

constructing a transparent distributed system involves generalising the naming

scheme of individual systems to include remote objects and extending the perform

operation accordingly. This requires a resolve operator which maps the name of a

remote object into the address of a system and the name of the object on that

system. Given such a resolve operator and the ability to send messages between

systems, it is possible to construct a transparent distributed system by designing

an RPC protocol and using a client/server model to perform operations on remote

objects.

The essence of this construction technique is the way in which the local

perform operation is extended to handle remote objects. One possible

implementation of remote perform is given by the following algorithm:

perform(OP, NAME, ARGS)
{

}

[address, name] ~ resolve(NAME)
if (address = my-address)
~ OP(name, ARGS)

else
~ rpc(address, OP, name, ARGS)

fi

Notice that the resolve operation which converts the NAME argument denoting a

remote object into an {address, name} pair is quite distinct from the RPC that

actually leads to the desired operation being performed on a remote system. Also,

because resolve returns a name which is guaranteed to be local on the remote

system, there is no need for the server on that machine to resolve the name

further. (In other words, the server need not be connected.) Instead, it need only

evaluate OP(name, ARGS) locally and return the result. This may seem

unnecessarily restrictive and lacking in generality but it is a natural consequence

of the strict separation of the perform and resolve operators. In the rest of this

An Abstract Approach to Recursive Transparency 137

chapter, we will explore ways in which this separation may be relaxed and

develop a more recursive way of constructing distributed systems.

6.2. N arne Resolution, Recursion and Transparency

If a distributed system is to be functionally equivalent to the systems of which

it is composed then it must use the same form of naming. Furthermore, if

distribution is to be transparent, the names of remote objects must be

indistinguishable from the names of local objects. When the independently

managed name spaces of individual systems are combined to form a distributed

name space some name clashes may occur. Consequently, the resolve operator

must be able to map between names in the distributed system and names local to

a particular system. This allows names in the distributed system to coincide with

names on local systems provided that all names are interpreted by resolve so that

it is not possible to mix names belonging to individual systems with names from

the distributed system as a whole.

Such an overlap between the name spaces is desirable because if objects local

to a given system have the same name in the distributed system, programs which

are tied to that system by the use of local names will continue to work in the

distributed system because the same names will denote the same objects. If local

system names are relative to a system naming context then it will be easy for

names to retain their meaning in the distributed system providing each system

retains its own system naming context. Unfortunately, this is arguably a breach

in functional transparency because the component systems in the distributed

system will still be visible since each will have its own distinct view of the

naming space. The distributed system as a whole will not present itself as a single

system naming con text.

For a flat name space, names are either local or remote and the resolve

operator simply looks them up in a table. With a hierarchical name space a more

An Abstract Approach to Recursive Transparency 138

structured approach is possible. In chapter 2 we described how pathnames were a

natural naming mechanism for a hierarchical system and in chapter 3 we showed

how pathnames could readily be extended in a recursive and transparent manner

to a distributed System by introducing the concept of a remote context.

Implementing resolve for pathnames with remote contexts involves following the

pathname from its starting context until a remote context is encountered. This is

mapped into the address of a system and the name of a context on that system at

which the process of resolution can continue with the remainder of the pathname

until finally the object denoted by the pathname has been identified. The problem

with this approach is that the organisation of the name space reflects the location

of objects in the system. Any pathname which passes through a particular remote

context will denote objects on that system (or a more remote system reached from

it). Names are not entirely location transparent. The solution to this problem is to

allow remote leaf nodes as well as remote contexts. If a leaf node can refer to an

arbitrary remote node, then the structure of the naming graph can be made

independent of the location of objects. Names should not be confused with

locations but this is what pathnames have a tendency to do.

Name resolution will inevitably involve consulting some table or directory of

names and addresses at some stage, irrespective of the form of name used by the

distributed system. This table will either be stored locally on each system or else

stored at some centralised point accessible via a name server. A name server is a

single point of failure but storing the table locally involves replicating it across

all systems and maintaining consistency between the various copies (assuming

that all systems share the same view of the name space). It is also possible to use a

mixture of these two approaches, perhaps employing a recursive hierarchy of

name servers. Maintaining consistency across such a naming scheme can be

difficult, especially if the naming structure is dynamic and changes frequently,

An Abstract Approach to Recursive Transparency 139

but this problem is somewhat orthogonal to the topic of this thesis. Here we are

only concerned with the recursive aspects of this approach.

In the absence of a centralised name-server (or series of name-servers) with

absolute (or collective) knowledge of the location of all objects in the distributed

system and the ability to map a remote name into an address and local name, it is

possible to implement resolve in a decentralised way by letting every system

provide a limited name server capability. A partial-resolve is performed locally

which maps a given name into another name and a location at which this second

name may be resolved further. This forms the basis of a recursive implementation

of the full resolve which uses the RPC mechanism to pass a name through a series

of systems so that (hopefully) it gets progressively simpler (i.e. (more local") at

each stage until finally the local system for the name is reached and the object the

name denotes is located.

It is obviously desirable that this process of resolution gets closer at every

stage so that it converges rather than diverges but in the presence of aliases

names may sometimes become temporarily more complicated. Aliases are

problematical because although they should ideally have a static meaning which
,

is independent of the client that interprets them, in practice some naming

systems allow aliases to depend on a dynamic context belonging to the client who

expands the definition. (Root-relative symbolic links in Unix are an example of

such a feature.) If the server responsible for resolving the alias does not know the

location of this context, it will be unable to give a location at which the resolution

can be continued.

Quite apart from this complication, in the absence of centralised control over

naming, it may be difficult to define a measure of how close a name is to the object

it denotes and hence guarantee that the resolution process will eventually

terminate. However, assuming that the naming space has been set up

An Abstract Approach to Recursive Transparency 140

consistently so that this problem does not arise, the resolve algorithm may be

described as follows:

resolve(NAME)
{

}

[address, name, resolved?] -partial-resolve(NAME)
if (resolved?)

-+ [address, name]
else

-+ rpc(address, RESOLVE, name)
fi

The partial-resolve function returns a flag which indicates whether it succeeded

in resolving the entire name or whether it has only come up with a ((closer"

location from which the resolution may be continued. In a truly decentralised

system, the resolved? flag would simply depend on whether NAME proved to be

entirely local or not. The partial-resolve function would have no knowledge about

other systems. However, this approach would be less efficient than an

implementation that included non-local knowledge because the only way now of

guaranteeing that an object was located at a particular site would be to issue a

RESOLVE RPC to that site. Consequently, every remote operation would now

involve at least two RPCs, namely one to resolve the name of the object and one to

perform the operation at the remote site. Even worse, both of these RPCs would be

directed to the same site. We will return to this point in the next section.

However, it is worth noting a special case. If there is only one level of distribution

so that remote names cannot span more than one system, the partial-resolve

function will always be able to locate an object directly and no name resolution

RPCs will be necessary.

There is a problem with this version of the resolve algorithm. It generates a

recursive chain of RPC calls which might inadvertently lead back to a system

which had already been visited if the pathname contained a loop. An alternative

An Abstract Approach to Recursive Transparency 141

approach which would have only one outstanding RPC at a time would use a loop

as follows:

resolve(NAME)
{

}

[address, name] -[my-address, NAME]
repeat

ifCaddress = my-address)
[address, name, resolved?] - partial-resolveCname)

else
[address, name, resolved?] - rpc(address, PARTIAL-RESOLVE, name)

fi
until resolved?
-+ [address, name]

This version of the algorithm uses a PARTIAL-RESOLVE RPC rather than

relying on a recursive algorithm to completely resolve the name. Each RPC

merely checks whether a name is local and ifnot returns an [address, name] pair

which is ucloser" in the sense discussed above. The algorithm is controlled from a

single centralised point (the local system that initiated the operation in the first

place) rather than distributed throughout the named systems recursively. In fact,

this new algorithm will involve no more RPCs than the original algorithm and

may well involve less if a name loops back to the same system twice.

For example, if A and B are systems which have been mapped into remote

contexts of the same name, then an example ofa pathname which looped back on

itself would be IBI AI x. This could be resolved from A using one RPC to B with the

new iterative algorithm but would require two RPCs (from A to B and then from B

back to A) with the original recursive algorithm. Eliminating the recursion in

this way is desirable because it reduces the number of RPCs and prevents

unnecessary callbacks.

So far, little has been said about the address part of the result of these

operations. However, there is an implicit assumption that all the systems can

communicate equally with each other and that the addresses have a unique

global meaning. This makes it possible to pass these values around freely as the

An Abstract Approach to Recursive Transparency 142

results of RPCs. If the address space is partitioned into domains or the values are

not globally meaningful, more care is needed. The RPC mechanism must be

aware of when a value is passed from one domain to another and must either

massage the value accordingly or substitute a surrogate that can be used

correctly but transparently. Such surrogates will take the form of

va 1 ue@system and may be recursively nested. The RPC layer is responsible for

forwarding messages addressed to such surrogate addresses and mapping

surrogate values as they are passed between systems. In fact, the PARTIAL

RESOL VE algorithm should only be used within a single domain with the fully

recursive RESOLVE algorithm being used between domains.

6.3. Combining Perform and Resolve

In discussing recursive implementations of resolve we have so far deliberately

kept name resolution distinct from performing operations on remote objects.

However, as we remarked earlier, a completely recursive implementation of

resolve is inefficient because every name would have to be checked on the system

it purported to belong to before its location could be guaranteed. The final

RESOL VE RPC which verified the location would immediately be followed by a

PERFORM RPC to the same system to perform the required remote operation. If

the two operations were combined, an RPC could be saved.

The algorithm for a combined perform and resolve uses a purely local version

of resolve which either detects a local name or supplies an address where a better

name may be tried. It is in fact equivalent to the fully decentralised version of the

partial-resolve function with no knowledge of remote systems but has been

renamed local-resolve to avoid confusion.

An Abstract Approach to Recursive Transparency

perform(OP, NAME, ARGS)
{

}

[address, name] -local-resolve(NAME)
if (address = my-address)

-+ OP(name, ARGS)
else

-+ rpc(address, PERFORM, OP, name, ARGS)
fi

143

This is clearly very similar to the algorithms that have gone before. In fact, apart

from the use of local-resolve, the only real difference is that an explicit

PERFORM RPC is used to invoke this same code at the remote site recursively.

Of course, just as before, loops in the naming structure will cause a recursive

algorithm to loop back to a system which has already been visited. However, as

with PARTIAL-RESOLVE, the algorithm can be restructured so that all the

RPCs are coordinated from one place, namely the local site at which the operation

was initiated. The modified algorithm then becomes:

perform(OP, NAME, ARGS)
{

}

name-NAME
repeat

[address, name] -local-resolve(name)
if(address = my-address)

else

fi

-+ OP(name, ARGS)

repeat
[result, address, name] _ rpc(address, PERFORM, OP, name, ARGS)

while (result = DIY and address! = my-address)

while (result = DIY)
-+ result

When a server receives a PERFORM RPC it must resolve the name argument

locally to determine whether the object on which the operation is to be performed

is indeed local (to the server). If the object is local then the operation will be

performed and the result returned but if it is remote then the address of a new

remote system and a name on that system will be returned with an indication

that the client should try again at that location. This assumes that all systems

are equally accessible so that the client is able to communicate directly with any

An Abstract Approach to Recursive Transparency 144

system that a server knows about. (If the systems are not equally accessible and

the server is aware that the remote system is inaccessible to its client, the

algorithm must be started again with the server becoming a client in a nested

distributed system. As before, the iterative algorithm can only be used within a

single domain and the recursive algorithm must be used between domains.)

Assuming that all systems are equally accessible (Le. assuming a single

domain) the server algori thm may be described as follows:

server-perform(OP, NAME, ARGS)
{

}

[address, name] +-local-resolveCname)
if(address = my-address)

-+ [OP(name, ARGS), nil, nil]
else

-+ [DIY, address, name]
fi

Notice that if local-resolve discovers that NAME is local to the server, the

operation is performed locally and the last two components of the result structure

are irrelevant. The result of a PERFORM RPC is really a union of two possible

types: a success value indicating the result of the operation or a DIY exceptional

value indicating a ((better" (presumably ((closer") place to try the operation.

It is perhaps easier to visualise this combined implementation of perform and

resolve as three distinct layers. The top level actually performs the operation

(locally or remotely), the middle level resolves pathnames and the bottom level

relays RPCs between addresses on the network.

An Abstract Approach to Recursive Transparency

Perform

Name

RPC

A

Perform

Name

RPC

B

Perform

Name

RPC

C

145

Each perform operation enters the name layer on the local system and eventually

emerges from this layer on the system on which the object referred to is local. In

the meantime, the call will have been moved between systems by the RPC layer

according to the results of the local-resolve operation performed in the name layer

of each system. The recursive and iterative implementations only differ in the

routing algorithm used between systems: the iterative algorithm always routes

RPCs via the client system using a DIY mechanism, but the recursive algorithm

simply allows them to pass freely and directly between systems at each stage of

the resolution.

For example, consider performing an operation on an object named

I B I elf; 1 e from system A. The name of the object will be passed to the name

layer on A and resolved into the name IC/f i 1 e on system B. The RPC layer will

pass this name to B and the name layer at B will further resolve it as the name

If i 1 e at the address C. At this point the difference between the two possible

implementations will manifest itself. A recursive implementation of the RPC

layer will pass the message on directly to C; an iterative implementation will

return a DIY message to the effect Ittry again with If i 1 e at address C" to the

RPC layer on A.

An Abstract Approach to Recursive Transparency 146

IClfile Ifile

result result

(a) recursive

/c/fr.0
~y

result 8
(b) iterative

Since every RPC must return eventually, no extra inter-system messages or

RPCs are caused by the iterative algorithm and for a name that loops back to the

local system such as / B / A / f ; 1 e fewer RPCs are required. However, instead of

IA/file

8~0
~

DIY

(a) iterative

IA/file

~
0:==:0
~

result

(b) recursive

spreading the sending and receiving of messages evenly between the systems

referenced by a given pathname, the local system will take most of the load,

generating one RPC for each system in the pathname. Arguably, this is

reasonable because it avoids penalising remote systems unnecessarily for the

effect of remote operations performed by the local system.

Another advantage of the iterative algorithm is that in the absence of a

mechanism for resolving identical names statically it avoids creating more than

An Abstract Approach to Recursive Transparency 147

one server at each remote system for a given client on the local system, simply

because all RPCs and hence server creations are initiated by the local client

system. Although it would be possible to avoid this with the recursive algorithm,

it would require making every server for a particular client (or at least the RPC

layer on each system) aware of every other server for that client so that new

servers were only created when absolutely necessary. In fact, because of possible

permission problems caused by creating servers indirectly (via other servers), a

hybrid algorithm would probably be required, with all servers being created non

recursively from the local client system. The iterative algorithm is a much better

solution.

6.4. Other Pathname Algorithms

We have discussed various ways of resolving pathnames and developed an

algorithm which combines name resolution and performing remote operations

into a single RPC protocol implemented in three layers. We have in fact developed

a dynamic mechanism for simplifying pathnames based on the idea of bouncing a

name resolution RPC between systems until the most direct path to an object is

found. Ifit were possible to simplify a pathname statically before passing it to the

resolve algorithm, there would be no need to access systems mentioned in any

redundant part of the pathname and less RPCs would be generated. Instead of

using a dynamic sequence of RPCs to simplify the name, it could be analysed

statically and transformed into a canonical form. It would then be possible to

access the remote system denoted by the pathname by the most direct route,

without any unnecessary RPCs and without passing through any unnecessary

servers.

In practice the overhead of resolving pathnames is reduced by two factors.

Firstly, people tend to use pathnames in their simplest form (although computers

are not so considerate, so machine-generated pathnames may still be a problem).

An Abstract Approach to Recursive Transparency 148

If no simplification is possible then nothing will be gained by static analysis.

Secondly, because of the overhead associated with pathname resolution, even on a

single system not every operation requires a pathname. Instead, it is possible to

translate the pathname into a lower level name (effectively a capability) which is

simpler to resolve but has purely local and transient significance.

Such a capability is used for the duration of an extended sequence of

operations on an object more permanently referred to by a pathname and captures

the dynamic state of the computation. Its creation and subsequent destruction

mark the beginning and end of this extended sequence. A typical example of such

a facility is the concept of opening a file to get a file descriptor which is then used

in place of the filename in a series of read or write operations before the file is

finally closed and the descriptor is destroyed. Although the widespread use of

such descriptors means that in practice pathname resolution is less frequent an

operation than might be expected, it is still important to establish the most direct

route to the server which holds the descriptor for the remote object and it is

therefore worth considering an alternative approach to this simplification.

In section 2.3.4 we discussed a canonical form for Unix pathnames and in

section 2.3.5 we showed how .. could be eliminated to give a simple scheme for

reducing pathnames to their canonical form. For a suitable naming graph these

transformations would provide a useful simplification algorithm which could be

applied statically rather than dynamically without accessing remote systems.

However, the canonical pathname is only unique if the naming graph is tree

structured and consequently canonicalisation does not guarantee the most direct

path for an arbitrary graph, nor does it guarantee a unique path. In order to solve

the identity problem we must find a way of discovering whether two pathnames

denote the same object.

An Abstract Approach to Recursive Transparency 149

Given unique identifiers the problem is trivial. Each object will have an

identity which is guaranteed unique amongst all possible systems. One way of

achieving this would be to give identities a hierarchical structure which included

a unique system identifier. Mapping a pathname into the identity of the object it

denotes might require an RPC but, since each object has only one identity and no

two objects share the same identity, it is possible to compare identities directly to

determine whether pathnames are equivalent.

Even without a unique system identifier it is still possible to compare

pathnames from within a single process (or some other form of localised context)

providing there is only one naming path to each remote system. Every time a new

remote system is accessed the transparent distribution layer attached to the

process can allocate an arbitrary but unique (at least within this context)

identifier for that system. This can be used to qualify any internally unique

identifiers which are issued by the remote system so that they may be

distinguished from identifiers issued by other remote systems. However, such

qualified identifiers are only unique relative to a process rather than absolutely

unique and are therefore only valid during the lifetime of the process which

created them. They may not be published or used by other processes.

However, if the naming structure of the distributed system is a general graph

rather than a tree (so that a given system can have more than one name), it will

be impossible to tell whether two pathnames denote the same object wi thou t

introducing unique identifiers for all the systems. Although it is reasonable to

assume that individual systems are able to generate their own private sequence

of unique identifiers internally (e.g. timestamps), there is nothing to stop two

systems from independently generating the same ~~unique" identifier. Identifiers

which are only unique within a localised context cannot be used unambiguously

outside that context. Consequently, in order to prove that two pathnames are

equivalent, it is not sufficient to derive a system-specific unique identifier from

An Abstract Approach to Recursive Transparency 150

each of them and compare these for equality, although this test is certainly a

necessary condition for equivalence and could therefore be used to prove that two

pathnames were not equivalent.

For example, consider an algorithm which relies on the idea of marking the

object at the end of one pathname and then checking to see whether the object at

the end of the other pathname had been marked in the same way. The mark is an

internally unique token generated by the system checking the pathnames for

equivalence. However, because such tokens are not globally unique and are used

outside the context in which they are unambiguous, the algorithm is vulnerable

to an anti-symmetry argument. If system X generates some token T which is used

to mark object A before visiting object B, there is nothing to stop system Y from

independently generating the same token T simultaneously and using it to mark

object B before visiting object A. Both systems would find the second object

(0 (0
/ '" X •

• y
X •

• y

/ ~
G) G)

(a) mark with T (b) check mark

marked with the correct token and would incorrectly deduce that the two objects

were equivalent when they were not. Even if the objects added their own

qualifying mark to the token T they could still both generate the same qualifier

independen tly.

Admittedly this kind of failure is pathological in the extreme. By choosing the

identifying token randomly from a sufficiently large population the probability of

An Abstract Approach to Recursive Transparency 151

the algorithm failing by accident could be made arbitrarily small. However, the

probability of a clash can never be made zero and so what was originally a

deterministic problem has now only a probabilistic solution.

It could be argued that without globally unique identifiers the problem we are·

trying to solve is ill-defined and therefore cannot have a solution. Being able to

identify and distinguish individual systems amounts to defining a mapping from

each system onto a unique identifier. Without unique identifiers it is not possible

to define what is meant by two systems being the same and so it is impossible to

construct an algorithm which can do so. However, it is possible to come very close

to constructing an algorithm that works by approximating the idea of a unique

identifier with a random identifier as we have just seen. Furthermore, for certain

name spaces it is possible to determine whether two pathnames are the same from

knowledge of the naming graph structure.

For example, consider a graph where every node has two neighbours, 1 eft

and right, which are inverses of each other. Although there are no absolute

•
left
~

'---'"
right

•
left
~

'---'"
right

•
left
~

'---'"
right

•

names, all pathnames may be reduced to a canonical form very easily (so many

steps to the left or so many steps to the right) and so two pathnames relative to

the same system can be compared for equivalence by reducing them to their

canonical form.

It is always possible to introduce unique identifiers by providing a centralised

server which resides at a well-known address and supplies guaranteed unique

tokens to order. However, this incurs the additional overhead of allocating

An Abstract Approach to Recursive Transparency 152

identifiers dynamically as needed rather than statically in advance. The

identifiers would have to be random and transient in significance because if they

had any meaning and were associated with an absolute naming scheme, clients

would have to identify themselves to the server in order to get the correct

identifier. Furthermore, this is a centralised solution to a distributed problem.

Such a server would be critical to the correct functioning of a distributed system

which depended on it and there could only be one such server. This would cause

problems when two distributed systems, each with their own server, were joined

together.

6.5. Summary and Conclusions

In this chapter we have developed an abstract model of a transparently

distributed system in terms of two operators, perform and resolve. This has

enabled us to ignore the semantic details of any particular system and instead to

concentrate on the mechanisms by which a layer of software providing

transparent distribution can intercept operations, decide whether they refer to

local or remote objects and redirect them to the appropriate system accordingly.

The concept of name resolution, captured by the resolve operator, is central to this

process.

Although our model is general enough to include an implementation based on

a centralised name server, in keeping with our recursive philosophy we have

concentrated on a more decentralised approach in which each system has limited

knowledge of its immediate neighbours in the naming graph. Name resolution

may then proceed recursively by following a name from system to system or

iteratively by returning an indication to the calling system that a name is not

local together with an indication of a ttbetter" system to try. As demonstrated in

the previous chapter, a recursive implementation can lead to semantic difficulties

because it is liable to create multiple servers on the same machine and otherwise

An Abstract Approach to Recursive Transparency 153

confuse the notion of identity. Consequently, an iterative approach is preferable.

Iteration will also involve less inter-system messages if a name loops back on

itself. However, an iterative algorithm is unable to cope with a name space

structured into sub-spaces or domains because it assumes that the naming graph

is fully connected and every system knows about every other. Consequently, a

hybrid approach is required with iteration used within domains and recursion

between domains. However, this requires the domains to be organised in a tree

structure in order to guarantee a unique naming path between any two systems.

Once an object has been located by resolving its name, an RPC must be

directed to the system where it is to be found in order to perform the required

operation on the object. With a decentralised approach to name resolution, it

makes sense to combine the perform and resolve operators into a single RPC

protocol so as to avoid sending messages to the same system twice. The same

arguments about recursion and iteration apply and the result is an RPC design

which uses pathnames as addresses and includes a routing layer based on the idea

of DIY, a special exception which indicates that a remote operation should be

retried on another system.

The combined perform and resolve algorithm is effectively a dynamic

mechanism for simplifying pathnames by flattening the recursive structure of the

name space. The most direct route which an RPC can take through the naming

layer to a particular system corresponds to the canonical pathname for that

system. In chapter 2 we showed that it was possible to simplify pathnames to

their canonical form statically and hence avoid making any RPCs but this is only

appropriate for a tree-structured graph. The more general problem of

determining whether two pathnames from an arbitrary naming graph are

equivalent is basically insoluble without introducing globally unique identifiers.

An Abstract Approach to Recursive Transparency 154

Although we have been taking for granted the basic hypothesis that recursive

structuring is a good thing, this viewpoint has created many of the problems we

have had to solve. The fact that these difficulties do exist is an argument against

recursive structuring in favour of globally unique identifiers.

Conclusions

7.1. Summary of Thesis

155

Chapter 7

Conclusions

This thesis has analysed many of the surprisingly subtle naming issues that

arise in the construction of transparently distributed systems. In Chapter 1 we

argued that distributed systems should be constructed transparently. A

transparently distributed system built of existing systems should be functionally

equivalent to the systems of which it is composed. Naming is of fundamental

importance in achieving this.

In Chapter 2 we showed that the purpose of a naming system was to map high

level user names into internal system identifiers. A hierarchical naming

structure based on the use of contexts makes it possible to localise portions of the

name space and control which names are visible at anyone time. It is important

to be able to navigate in such a hierarchy and name one context from another.

Most systems provide a generic name for the parent context such as .. but we

argued that it was better to name the context explicitly. This makes it possible to

simplify redundant pathnames automatically without requiring global

knowledge of the entire naming graph. If the graph is tree structured then

pathnames may be reduced to a unique canonical form which is the most direct

route through the tree. Such a canonical pathname may be used to identify an

object unambiguously. However, the presence of naming aliases in the form of

multiple paths to the same node in a more general graph makes it impossible to

derive a unique canonical form. In a general graph some simplification of

redundant pathnames is still possible but there is no longer any guarantee that a

pathname can be reduced to its simplest form.

Conclusions 156

Chapter 3 considered the problems of joining hierarchical name spaces

together. A naming system maps external names to internal identifiers and name

spaces may be joined at either level. This involves resolving naming conflicts.

Internal identifers may need to be qualifed with the identity of the name space to

which they belong or else be replaced with identifiers which are unique in the

wider scope of the combined name spaces. Naming conflicts are not such a

problem externally because external names tend to be contextual. However, a

mechanism must be found for allowing external names to cross name space

boundaries. Ideally this should hide the boundary between name spaces so that

names remain location transparent. No restrictions should be imposed on the

grouping of names into a given context, irrespective of the location of the objects

they denote. Such granUlarity is difficult to achieve in practice since arbitrary

references between name spaces make garbage collection and other forms of

integrity checking difficult. Instead, a compromise which exploits locality of

reference may be adopted, reducing the granularity of inter-name space

references by making whole sub-spaces rather than just individual objects visible

through a mount mechanism.

The techniques used to join together name spaces within a single system may

also be used to join together whole systems to construct a transparent distributed

system. One of the difficulties in achieving full transparency is the presence of an

explicit naming context for system objects in the naming graph. It is difficult to

preserve individual system contexts in the naming graph of the distributed

system as a whole without violating transparency because a single system does

not need an explicit mechanism for identifying and distinguishing other systems

since there are none. This is more a problem of scale than of distribution because

the idea of a unique system context is not recursive or extensible. It would be

difficult to administer a large centralised system without a mechanism for

dividing it up into subsystems. If it existed, such a mechanism could easily be

Conclusions 157

extended and used to structure the design of a transparently distributed system

but without it some compromise is necessary.

Unix uses the root directory / as both a system naming context and a globally

agreed starting point for absolute pathnames. However, the implicit assumption

that these two meanings are the same is only valid for a single system and is

liable to break down for a transparently distributed system. The various

distributed Unix systems described in chapter 3 approached this problem in

different ways.

The Newcastle Connection represents systems as remote contexts and groups

them together into a new context which has no absolute name in its own right but

may only be named relative to an existing system. This approach preserves the

identity of individual systems in a shared global naming hierarchy.

An alternative approach adopted by NFS and RFS uses the concept of remote

mount to allow individual systems to share parts of their name space with other

systems while still retaining a single system view of the world. With this second

approach, there is no common view of the naming tree and each system may have

a private name space which is not visible to any other system.

Neither of these approaches is completely transparent because in the first case

individual systems are still visible and in the second case there is no single view

of the distributed name space. However, a third approach adopted by LOCUS

subsumes the individual systems entirely into a single virtual system. A

distributed system built with LOCUS has only one system naming tree and it is

shared by all the components of the distributed system. This is the only approach

which is completely transparent but it is essentially flat. It is not possible to join

two such virtual systems together in a hierarchy. Instead, they must be flattened

into a single system by resolving naming conflicts and renaming objects if

Conclusions 158

necessary. It would be difficult to administer a large LOCUS system because it

would be monolithic with no sub-structure.

Chapter 3 also contained a detailed discussion of various aspects of the Unix

semantics which do not extend easily to a transparently distributed system. Most

of these problems arise in areas where Unix is not recursively structured and

therefore less suitable as a component of a distributed system. Although the

details were specific to Unix, these issues must be tackled in the design of any

distributed system regardless of whether it is composed of existing systems or

built from scratch.

Chapter 4 examined distributed systems constructed from scratch rather than

built out of existing centralised systems. Such systems are usually built

assuming the existence of globally unique identifiers, and various techniques for

allocating such identifiers and guaranteeing their uniqueness were discussed. In

particular, the problem of combining such systems transparently without

identifier clashes was examined. The most pragmatic solution appeared to be

generating unique identifiers at random, giving only a probabilistic guarantee

that no clashes would occur. We argued that although globally unique identifiers

offer a theoretical solution, they cannot be relied on in practice, and concluded

that the problem of combining whole distributed systems was really no different

from that of combining individual systems if distribution is transparent.

Chapter 5 explored the idea of constructing transparent distributed systems

recursively by considering the implications this might have for the Newcastle

Connection, an implementation of a transparent distributed Unix system.

Semantic difficulties arise from the fact that in a recursively structured system

based on the notion of localised pathnames the concept of identity becomes

confused when it is possible to name objects in more than one way. For the

Newcastle Connection, identity is tied up in the concept of a Distributed

Conclusions 159

Sequential Process (nSP) consisting of a client process on the local machine and a

server process on each of the remote systems which the nsp has accessed. We

showed how a recursive implementation allows two servers representing the

same nsp to be created simultaneously on the same machine and how this crisis

of identity is responsible for various semantic problems (related to the notion of

identity) where the transparency breaks down and the distributed system is no

longer functionally equivalent to the systems of which it is composed. In fact, one

aspect of the Newcastle Connection, remote execution, cannot be implemented

transparently (and hence recursively) in any case because the server programs

need to be aware of any servers they may have acquired for themselves, contrary

to the notion of transparency. Other distributed Unix systems have either not

tackled this problem or else have relied on globally unique system identifiers to

avoid the difficulty.

Chapter 6 left Unix behind and examined the idea of recursive transparency

in more abstract terms. A distributed system must resolve names to locate objects

and then perform operations on those objects. The implications of combining

resolve and perform into a single operation, in effect an RPC based on pathname

routing, were explored, first for a flat system structure and then for a recursively

structured distributed system. It was shown that it is only possible to guarantee

that a given system can be reached by one naming path (hence identifying the

client system uniquely) if the overall naming graph remains tree structured. This

restriction can be lifted slightly by grouping systems into naming domains and

allowing each system to have limited knowledge about the global graph structure

in the form of information about its enclosing naming domain, provided that an

overall tree structure is retained between naming domains. Without a way of

giving systems a global identification, guaranteed unique amongst all possible

systems, it is not in general possible to tell whether two pathnames in an

arbitrary naming graph denote the same object or not and hence the crisis of

Conclusions 160

identity remains, although once again a pragmatic solution based on random

identifiers is possible. This is an argument against recursive structuring in

favour of globally unique identifiers.

Bringing together some of the ideas discussed in this thesis we see that by

using globally unique identifiers it is certainly possible to recognise pathnames

which denote the same object because there is a proper notion of identity.

However, except in those special circumstances where uniqueness can truly be

guaranteed across all possible systems, it is not possible to join two distributed

systems constructed with unique identifiers together to form a single system and

still guarantee that all identifiers are unique. Consequently, the problems of

identifying individual name spaces and mapping from one space of unique

identifiers to another must still be tackled. But putting a limit on uniqueness

amounts to introducing contextual names. This in effect opens up Pandora's box

and introduces the whole range of problems discussed in chapters 5 and 6.

7.2. Contributions of Thesis

Naming is of fundamental importance in the construction of a transparently

distributed system. If a distributed system is built out of existing systems then

the naming characteristics of the component systems will determine to what

extent the composite system is functionally equivalent to the systems of which it

Conclusions 161

is composed, in other words the degree of transparency which can be achieved. We

have shown that a recursive naming system is more readily extensible than a flat

naming system by demonstrating that it is in precisely those areas in which a

system is not recursive that transparency is hardest to achieve. In fact, this is not

so much a problem of distribution so much as a problem of scale. The introduction

of sub-structure is the only way to control the complexity of a large system

regardless of whether it is distributed or not. A system which does not scale well

internally will not extend well externally to a distributed system.

Naming is inextricably linked with the notion of identity. In any system it is

vital to be able to identify objects uniquely and unambiguously. It is usually

possible to translate a name into a unique identifer. However, such a facility is

not recursive because unstructured identifiers are only unique within their

defining context. The obvious solution to this problem is to identify objects with

extensible sequences of unique identifiers with one component for each level of

the hierarchy. This is in effect a pathname. However, such an identifier can only

be guaranteed unique if the naming graph of the overall system is tree

structured. Although this would be a natural consequence of a distributed system

being genuinely constructed recursively out of existing systems, in practice this is

usually not realistic. When systems are joined together their naming graphs are

connected in several places and the overall structure is not a tree. Naming

facilities such as aliases or links (multiple names for the same object) could not be

provided in a pure tree-structure.

We have shown that within a tree-structured graph it is possible to use the

concept of a canonical path to determine whether two pathnames are equivalent

statically. However, for a more general naming graph and a distributed system

with a high level of parallelism it is impossible to tell whether two pathnames are

equivalent without introducing globally unique identifiers or some other form of

synchronisation. For a very large scale distributed system, global uniqueness

Conclusions 162

would be difficult if not impossible to achieve in practice and consequently it is

not reasonable to expect a deterministic solution to this problem for such a

system. Probabilistic algorithms which use random numbers to approximate

globally unique identifiers are an attractive alternative because their behaviour

is predictable and the probability of an error can be made arbitrarily small.

The problem of name resolution in a distributed system amounts to

simplifying an arbitrary pathname dynamically using limited contextual

information. The most natural implementation of such an algorithm is recursive

but this will not work correctly if the pathname is redundant, compromising the

notion of identity and leading to various semantic difficulties which violate the

transparency of the distributed system. Although it is possible to flatten the

recursion somewhat by partitioning the name space into sub-domains, a recursive

algori thm will still be required between domains and this will lead to the same

difficulties if the partitioning is not tree-structured.

Although structured identifiers offer a solution to the problem of resolving

name clashes when name spaces are combined, they only work correctly under

the unrealistic and restrictive assumption that the overall name space is tree

structured. Universally unique identifiers are also unrealistic because they

require centralised coordination and are prone to human error unless guaranteed

unique by hardware. The only pragmatic approach is to rely on random

identifiers which offer no more than a probabilistic guarantee that naming and

identity will not be compromised.

The table on the next page illustrates the various techniques for identifying

objects discussed by this thesis and summarises their relative advantages and

disadvan tages.

In conclusion, the main contribution of this thesis has been to examine the

difficult problem of joining name spaces together without accepting the easy

Conclusions 163

solution of assuming unique identifiers (which on closer inspection poses severe

management problems). Very little work appears to have been done in this area.

Technique Advantages Disadvantages

canonical allow static name requires rigid tree
pathnames resolution structure and

cannot cope with
aliases or ""

unique identifiers work well for a flat structure
single naming clashes when

domain combining name
spaces

globally unique universal panacea unrealistic for large
identifiers systems requiring

centralised
coordination and
rigidly enforced

uniqueness

recursive name natural solution for cannot handle
lookup recursive name redundant names

system without confusing
notion of identity

iterative name solves identity cannot cope with
lookup (DIY) problem for single mUltiple domains

naming domain

combined recursive best deterministic domains must be
and interative solution possible joined in a pure

approach without requiring tree structure
global uniqueness

random identifiers good no longer
approximation to deterministic but
global uniqueness probablility of error

without can be made
management arbitrarily small

problems provided an upper
bound can be

placed on the size
of the system

Conclusions 164

7.3. Future Work

Although this thesis does not include detailed descriptions of any

implementation work, the insights it contains are based on extensive practical

work with the Newcastle Connection. Specifically the author was responsible for

the first implementation of the NC inside the Unix kernel and indeed the first

port of the NC code to another machine. He has also participated in much of the

development work, especially in the area of interworking with heterogeneous

implementations of Unix. Only the detailed knowledge thus gained about the

practical problems of implementing transparently distributed systems has made

it possible to write this thesis.

Given this experience with the Newcastle Connection, an obvious direction for

future work would be to incorporate the DIY mechanisms discussed in chapter 6

into the RPC protocol used by the NC. This would make it possible to provide the

functionality of connected servers required for full transparency without

compromising Unix semantics by confusing the notion of identity. It would also

address the problem of constructing a large distributed Unix system out of many

independent naming domains. However, it is not clear that the effort involved in

implementing the extra functionality, particularly in the area of remote

execution, would be justified by the use made of such a system.

Another possibility would be to monitor a real Unix system and determine

how the various Unix naming facilities are used in practice. For example, by

examining typical directory structures and the use of context-dependent

pathnames it would be possible to predict whether it would be useful to introduce

an alternative naming mechanism such as a closure or eliminate .. and use

canonical pathnames instead. Similarly, statistics collected about pathname

resolution could be used to determine the impact that introducing DIY

mechanisms would have on the performance of a distributed Unix system. Some

Conclusions 165

work already done in this area [Floyd87] indicates that pathnames tend to be

quite dense and name resolution is an expensive operation, making some sort of

caching essential for performance reasons.

The impact of caching on the design of a transparently distributed system is

also worth exploring. One of the difficulties with adding distribution to a system

transparently is picking an appropriate level at which to intercept operations on

objects. Since the layer of software inserted at this point must effectively simulate

the name resolution alogorithms of the underlying system, it is important to

minimise the extent to which existing mechanisms are duplicated. However,

despite Uend-to-end" arguments [Saltzer84], optimisations such as caching tend to

be applied at the lowest level of the system but distribution is added at a higher

level to maximise the functionality which is captured by the transparent layer.

This trade-off deserves more investigation.

One way of exploring these issues would be to develop from scratch a more

recursively extensible system based on the knowledge gained in this thesis of the

limitations of Unix. This would address such areas as user and process

identification whilst avoiding the problems caused by making low-level

identifiers visible. Such a system might use random numbers to solve some of the

identity problems caused by the use of local identifiers in a large distributed

system. However, one practical problem in evaluating such a system would be

that its particular advantages would only become apparent ifit was deployed on a

grand scale on top of many computers in an environment containing many sets of

users and many system administrators. This would not come about unless the

system was clearly better than Unix and offered more than just recursive

extensibility. Even then it is not clear that a system as pervasive as Unix (which

was once described as the ttFortran of Operating Systems") could ever be replaced

on such a scale. Certainly, the implementation effort and political intrigue

required would be very considerable. Unfortunately, research into the scaling

Conclusions 166

properties and management difficulties of very large distributed systems requires

the resources of a multinational organisation and a leisurely timescale.

A more realistic line of research would be to develop a formal model of naming

which treated names as first-class objects and captured the notion of passing

names between contexts. Treating names as typed objects makes it possible to

hide their internal representation and prevent them from being forged or passed

around between contexts by ad-hoc means. The Flex system contains several

interesting ideas such as remote capabilities and closures which offer promising

directions for future work. Basing such a model on Flex or a similar programming

environment would demonstrate that the ideas in this thesis are not just

applicable to the design of distributed operating systems but are also useful in the

design of other types of system too. It might be more realistic to construct a large

scale experiment with an IPSE than with an operating system.

7.4. Concluding Remarks

Given the opportunity, the domain of a naming space based on globally unique

identifiers may be enlarged by adding an extra level of hierarchy. This solution

has been adopted by the telephone network on several occasions but it requires

the ability to recognise old names and prevent them from being used out of

context. This could involve a major effort in redesigning the system and it is

perhaps more realistic to assume that this problem will arise from the start, not

just once but possibly indefinitely, and therefore to base the system design on

localised contextual names which will scale more easily. However, as we have

seen, these introduce their own problems, and in particular the problem of

identity. We are left with the unhappy conclusion that

ttGlobal identifiers apparently work but don't scale,

Local identifiers scale, but apparently don't work."

References 167

References

[AT&T85]

AT&T, The System V Interface Definition, AT&T, Indianapolis, USA, Spring

1985.

[Barak86]

A. Barak, D. Malki, and R. Wheeler, "AFS, BFS, CFS ... or Distributed File

Systems for Unix", Proceedings EUUG Autumn Conference 1986, pp. 461-472,

Manchester, UK, September 1986.

[Birre1l82]

A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder, "Grapevine: An

Exercise in Distributed Computing", Communications of the ACM, vol. 25, no.

4, pp. 260-274, April 1982. Also Xerox PARC CSL-82-4

[Black86]

A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object Structure in the

Emerald System", Proceedings OOPSLA '86 in ACM SIGPLAN Notices, vol.

21, no. 11, pp. 78-86, Portland, USA, November 1986.

[Brownbridge82]

D. R. Brownbridge, L. F. Marshall, and B. Randell, "The Newcastle

Connection - or UNIXes of the World Unite", Software Practice and

Experience, vol. 12, no. 12, pp. 1147-1162, December 1982.

[Brownbridge84]

D. R. Brownbridge, "Recursive Structures in Computer Systems", PhD Thesis,

Computing Laboratory, University of Newcastle upon Tyne, September 1984.

References 168

[Cerf83]

V. G. Cerf and E. Cain, "The DoD Internet Architecture Model", Computer

Networks, vol. 7, pp. 307-318, North Holland, 1983.

[Cheri ton84a]

D. R. Cheriton, "The V Kernel: A Software Base for Distributed Systems",

IEEE Software, pp. 19-42, April 1984.

[Cheriton84b]

D. R. Cheriton and T. Mann, "Uniform Access to Distributed Name

Interpretation", Proceedings 4th International Conference on Distributed

Computing Systems, May 1984.

[Codd79]

E. F. Codd, "Extending the Database Model to Capture More Meaning", ACM

Transactions on Database Systems, vol. 4, no. 4, December 1979.

[Copeland86]

G. P. Copeland and S. N. Khoshafian, "Object Identity", Proceedings

OOPSLA '86 in ACM SIGPLAN Notices, vol. 21, no. 11, pp. 406-416, Portland,

USA, November 1986.

[DEC81]

DEC, Intel, and Xerox, "The Ethernet, a Local Area Network: Data Link

Layer and Physical Layer Specifications - Version 1.0", ACM Computer

Communication Review, vol. 11, no. 3, pp. 20-66, July 1981.

[DalaI81]

Y. K. Dalal and R. S. Printis, "48-bit Absolute Internet and Ethernet Host

Numbers", Proceedings 7th Data Communications Conference, October 1981.

References 169

[Decouchan t86]

D. Decouchant, "Design of a Distributed Object Manager for the Smalltalk-80

System", Proceedings OOPSLA '86 in ACM SIGPLAN Notices, vol. 21, no. 11,

pp. 444-452, Portland, USA, November 1986.

[Floyd87]

R. Floyd and C. S. Ellis, "The High Cost of Opens in the UNIX Environment",

CS-1987-5, Department of Computer Science, Duke University, Durham,

North Carolina, USA, February 1987.

[Foster82]

J. M. Foster, 1. F. Currie, and P. W. Edwards, "Flex: A Working Computer

with an Architecture based on Procedure Values", Proceedings International

Workshop on High-Level Architectures, pp. 181-185, Fort Lauderdale, Florida,

December 1982.

[Foster86]

J. M. Foster and 1. F. Currie, "Remote Capabilities in Computer Networks",

RSRE Memorandum No. 3947, RSRE Malvern, UK, March 1986.

[Fraser-Campbell86]

W. Fraser-Campbell and M. B. Rosen, "An Implementation of NFS under

System V.2", Proceedings EUUG Conference Spring 1986, Florence, Italy,

April 1986.

[Guillemont82]

M. Guillemont, "The CHORUS Distributed Operating System: Design and

Implementation", ACM International Symposium on Local Computer

Networks, pp. 207-223, Florence, Italy, April 1982.

References 170

[Ha1l85]

J. A. Hall, P. Hitchcock, and R. Took, "An Overview of the Aspect

Architecture", in Integrated Project Support Environments, ed. J. McDermid,

pp. 86-99, IEE, 1985.

[Herbert87]

A. Herbert, and J. Monk, ANSA Reference Manual, ANSA, Cambridge, UK,

June 1987.

[Kaehler86]

E. Kaehler, "Virtual Memory on a Narrow Machine for an Object-Oriented

Language", Proceedings OOPSLA '86 in ACM SIGPLAN Notices, vol. 21, no.

11, pp. 87-106, Portland, USA, November 1986.

[Lampson86]

B. W. Lampson, "Designing a Global Name Service", Proceedings 5th ACM

Symposium on Principles of Distributed Computing, pp.1-10, Calgary, Canada,

August 1986.

[Landin64]

P. J. Landin, "The Mechanical Evaluation of Expressions", Computer Journal,

vol. 6, no. 4, pp. 308-320, January 1964.

[Lantz85]

K. A. Lantz, J. L. Edighoffer, and B. L. Hitson, "Towards a Universal

Directory Service", STAN-CS-85-1086, Department of Computer Science,

Stanford University, Stanford, California, August 1985.

References 171

[Leach82]

P. J. Leach, B. L. Stumpf, J. A. Hamilton, and P. H. Levine, "UIDS as Internal

Names in a Distributed File System", ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, pp. 34-41, Ottawa, Canada, August 1982.

[Marsha1l86]

L. F. Marshall and R. J. Stroud, "Remote File Systems Are Not Enough!",

Proceedings EUUG Autumn Conference 1986, pp. 93-99, Manchester, UK,

September 1986.

[Mocka petris83]

P. Mockapetris, "Domain Names - Concepts and Facilities", RFC 882,

November 1983.

[Mullender85]

S. J. Mullender, "Principles of Distributed Operating System Design", SMC,

Amsterdam, October 1985. PhD Thesis

[Nowitz78]

D. A. Nowitz and M. E. Lesk, "A Dial-Up network of UNIX Systems", in UNIX

Programmers Manual V7, August 1978.

[Oppen81]

D. C. Oppen and Y. K. Dalal, "The Clearinghouse: A Decentralized Agent for

Locating Named Objects in a Distributed Environment", Xerox Office

Products Division, Palo Alto, 1981.

[Rande1l83]

B. Randell, "Recursively Structured Distributed Computer Systems",

Proceedings 3rd Symposium on Reliability on Distributed Software and

Database Systems, pp. 3-11, IEEE, October 1983.

References 172

[Rashid81]

R. F. Rashid and G. Robertson, "Accent: A Communication Oriented Network

Operating System Kernel", Proceedings 8th ACM Symposium on Operating

Systems Principles, pp. 64-75, Asylomar, 1981. (ACM Operating Systems

Review, vol. 15, no. 5)

[Renesse86]

R. van Renesse and J. M. van Staveren, ''Wide-Area Communication under

Amoeba", Internal Report IR 117, Department of Mathematics and Computer

Science, Vrije University, Amsterdam, December 1986.

[Rifkin86]

A. P. Rifkin, M. P. Forbes, R. L. Hamilton, M. Sabrio, S. Shah, and K. Yueh,

"RFS Architectural Overview", Proceedings Usenix Conference Summer 1986,

pp. 248-259, Atlanta, USA, 1986.

[Ritchie74]

D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System",

Communications of the ACM, vol. 17, no. 7, pp. 365-375, July 1974.

[Saltzer78]

J. H. Saltzer, "Naming and Binding of Objects", in Operating Systems, An

Advanced Course, ed. R. Bayer, R. M. Graham, G. Seegmuller, Springer, 1978.

(Lecture Notes in Computer Science, vol. 60)

[Saltzer84]

J. H. Saltzer, D. P. Reed, and D. D. Clark, "End-To-End Arguments in System

Design", ACM Transactions on Computer Systems, vol. 2, no. 4, pp. 277-288,

November 1984.

References 173

[Sandberg86]

R. Sandberg, "The Sun Network Filesystem: Design, Implementation and

Experience", Proceedings EUUG Conference Spring 1986, Florence, Italy,

April 1986.

[Schroeder84]

M. D. Schroeder, A. D. Birrell, and R. M. Needham, "Experience With

Grapevine: The Growth of a Distributed System", ACM Transactions on

Computer Systems, vol. 2, no. 1, pp. 3-23, February 1984.

[Shoch78]

J. F. Shoch, "Internetwork Naming, Addressing and Routing", Proceedings

17th IEEE Computer Society International Conference (COMPCON), pp. 72-79,

September 1978.

[Sollins85]

K. R. Sollins, "Distributed Name Management", PhD Thesis MITILCStrR-

331, Laboratory for Computer Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts, February 1985.

[Stroud86]

R. J. Stroud, "Beyond Unix", Internal Report SRM/409, Computing

Laboratory, University of Newcastle upon Tyne, May 1986.

[Tanenbaum85]

A. S. Tanenbaum and R. van Renesse, "Distributed Operating Systems", ACM

Computing Surveys, vol. 17, no. 4, December 1985.

References 174

[Tanenbaum86]

A. S. Tanenbaum and S. J. Mullender, "The Design of a Capability-Based

Distributed Operating System", Computer Journal, vol. 29, no. 4, pp. 289-300,

1986.

[Terry85]

D. B .. Terry, "Distributed Name Servers: Naming and Caching in Large

Distributed Computing Environments", PhD Thesis, Xerox Palo Alto

Research Centre, CSL-85-1, February 1985.

[Vandome86]

G. Vandome, "Comparative Study of some UNIX Distributed File Systems",

Proceedings EUUG Autumn Conference 1986, pp. 73-82, Manchester, UK,

September 1986.

[Walker83]

B. Walker, G. J. Popek, R. English, C. Kline, and G. Thiel, "The LOCUS

Distributed Operating System", Proceedings 9th ACM Symposium on

Operating System Principles, pp. 49-70, Bretton Woods, New Hampshire,

October 1983.

[Watson81]

R. W. Watson, "Identifiers (Naming) in Distributed Systems", in Distributed

Systems - Architecture and Implementation, pp. 191-210, Springer-Verlag,

New York, 1981. (Lecture Notes in Computer Science, vol. 105, Chapter 9.)

[Weinberger86]

P. J. Weinberger, "The 8th Edition Network File System", Proceedings EUUG

Conference Spring 1986, Florence, Italy, April 1986.

References 175

[Williamson87]

R. Williamson, "The SNAJOSI Gateway", Systems Research Group Seminar,

Computing Laboratory, University of Newcastle upon Tyne, February 1987.

[Wupit83]

A. Wupit, "Comparison of UNIX network systems", Proceedings 6th

SIGSMALL, ACM, San Diego, USA, December 1983.

[Xerox81]

Xerox, "Internet Transport Standard", XSIS 028112, Stamford, Connecticut,

USA, December 1981.

[Xerox85]

Xerox, "Viewpoint Series Reference Library", 600P88821, Rank Xerox, UK,

1985.

[Zimmerman80]

H. Zimmerman, "OSI Reference Model - The ISO Model of Architecture for

Open Systems Interconnection", IEEE Transactions on Communications, vol.

28, no. 4, pp. 425-432, April 1980.

	378326_001
	378326_002
	378326_003
	378326_004
	378326_005
	378326_006
	378326_007
	378326_008
	378326_009
	378326_010
	378326_011
	378326_012
	378326_013
	378326_014
	378326_015
	378326_016
	378326_017
	378326_018
	378326_019
	378326_020
	378326_021
	378326_022
	378326_023
	378326_024
	378326_025
	378326_026
	378326_027
	378326_028
	378326_029
	378326_030
	378326_031
	378326_032
	378326_033
	378326_034
	378326_035
	378326_036
	378326_037
	378326_038
	378326_039
	378326_040
	378326_041
	378326_042
	378326_043
	378326_044
	378326_045
	378326_046
	378326_047
	378326_048
	378326_049
	378326_050
	378326_051
	378326_052
	378326_053
	378326_054
	378326_055
	378326_056
	378326_057
	378326_058
	378326_059
	378326_060
	378326_061
	378326_062
	378326_063
	378326_064
	378326_065
	378326_066
	378326_067
	378326_068
	378326_069
	378326_070
	378326_071
	378326_072
	378326_073
	378326_074
	378326_075
	378326_076
	378326_077
	378326_078
	378326_079
	378326_080
	378326_081
	378326_082
	378326_083
	378326_084
	378326_085
	378326_086
	378326_087
	378326_088
	378326_089
	378326_090
	378326_091
	378326_092
	378326_093
	378326_094
	378326_095
	378326_096
	378326_097
	378326_098
	378326_099
	378326_100
	378326_101
	378326_102
	378326_103
	378326_104
	378326_105
	378326_106
	378326_107
	378326_108
	378326_109
	378326_110
	378326_111
	378326_112
	378326_113
	378326_114
	378326_115
	378326_116
	378326_117
	378326_118
	378326_119
	378326_120
	378326_121
	378326_122
	378326_123
	378326_124
	378326_125
	378326_126
	378326_127
	378326_128
	378326_129
	378326_130
	378326_131
	378326_132
	378326_133
	378326_134
	378326_135
	378326_136
	378326_137
	378326_138
	378326_139
	378326_140
	378326_141
	378326_142
	378326_143
	378326_144
	378326_145
	378326_146
	378326_147
	378326_148
	378326_149
	378326_150
	378326_151
	378326_152
	378326_153
	378326_154
	378326_155
	378326_156
	378326_157
	378326_158
	378326_159
	378326_160
	378326_161
	378326_162
	378326_163
	378326_164
	378326_165
	378326_166
	378326_167
	378326_168
	378326_169
	378326_170
	378326_171
	378326_172
	378326_173
	378326_174
	378326_175
	378326_176
	378326_177
	378326_178
	378326_179
	378326_180
	378326_181

