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Abstract 

Naming is of fundamental importance in the design of transparently 

distributed operating systems. A transparently distributed operating system 

should be functionally equivalent to the systems of which it is composed. In 

particular, the names of remote objects should be indistinguishable from the 

names oflocal objects. 

In this thesis we explore the implication that this recursive notion of 

transparency has for the naming mechanisms provided by an operating system. 

In particular, we show that a recursive naming system is more readily extensible 

than a flat naming system by demonstrating that it is in precisely those areas in 

which a system is not recursive that transparency is hardest to achieve. However, 

this is not so much a problem of distribution so much as a problem of scale. A 

system which does not scale well internally will not extend well to a distributed 

system. 

Building a distributed system out of existing systems involves joining the 

name spaces of the individual systems together. When combining name spaces it 

is important to preserve the identity of individual objects. Although unique 

identifiers may be used to distinguish objects within a single name space, we 

argue that it is difficult if not impossible in practice to guarantee the uniqueness 

of such identifiers between name spaces. Instead, we explore the possibility of 

Using hierarchical identifiers, unique only within a localised context. However, 

We show that such identifiers cannot be used in an arbitrary naming graph 

without compromising the notion of identity and hence violating the semantics of 

the underlying system. The only alternative is to sacrifice a deterministic notion 

of identity by using random identifiers to approximate global uniqueness with a 

know probability of failure (which can be made arbitrarily small if the overall size 

of the system is known in advance). 
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Introduction 

1.1. Transparently Distributed Systems 

1 

Chapter 1 

Introduction 

A distributed system is a group of computer systems which are able to work 

together and share resources via a network. Ideally, a distributed system should 

appear to be ((a virtual uniprocessor" rather than a collection of individual 

machines [Tanenbaum85]. If this ideal is achieved in practice, the distribution is 

said to be transparent because users of the distributed system need not be aware 

of which component system executes their programs or stores their files. 

However, this is rather a strong requirement and may only be possible if the 

distributed system is designed and built from scratch with this objective in mind. 

Such distributed systems do exist: examples include Amoeba [Tanenbaum86], 

Accent [Rashid81] and the Stanford V kernel [Cheriton84a]. 

A more pragmatic way of building distributed systems is to augment existing 

software designed to run on stand-alone machines with the facilities necessary to 

access remote resources. This approach takes into account existing functionality 

and is therefore evolutionary rather than revolutionary. A distributed system 

bUilt out of existing systems will be transparent if it is functionally equivalent to 

the systems of which it is composed. In other words, a transparently distributed 

system will appear to be a single system and will therefore act as a (virtual 

Uniprocessor" in the sense discussed above. 

A system may be characterised as an interface providing a set of objects and 

operations to client programs. If distribution is to be added transparently then 

the specification of this interface cannot be changed. For instance, it would not be 

Possible to add an extra argument to an operation to indicate on which machine a 

remote object is to be found. Instead, the mechanism used to identify local objects 
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must be extended to include remote objects but without violating transparency by 

changing the form of identification. Typically, objects are identified by name 

where a name is a string of characters constructed in accordance with the 

syntactic rules of the system. Consequently, extending the identification 

mechanism involves finding a way to accommodate remote names as part of the 

local name space so that the names of remote objects are indistinguishable from 

the names of local objects, in form if not in content. For this reason, naming is of 

fundamental importance in the design and construction of a transparent 

distributed system. 

In practice, there is more than one level within a given system at which an 

interface can be extended transparently to include distribution. At the highest 

level, distribution can be added to particular applications. For example, network 

architectures such as the DoD Arpanet [Cerf83] and the Xerox XNS architecture 

[Xerox81] include protocols for file transfer, remote terminal access, electronic 

mail and so on. 

Adding distribution at the application level is the approach taken by 

international standardisation bodies in the move towards Open Systems 

Interconnection (OS!) [Zimmerman80] because it is particularly appropriate for 

heterogeneous networks composed of machines running different operating 

systems. In such an environment, it would not be possible to implement a single 

integrated system without making radical alterations to all the existing software, 

even assuming it was possible to find enough commonality between the various 

systems for a single integrated system to be achievable. 

The problem with providing distribution in the form of specialised network 

applications is that such services tend not to be well integrated with the local 

system. For example, the command for copying files between machines may be 

quite different from the command for copying files within a single machine, even 
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though they perform basically the same function. Although it might be possible to 

incorporate the network file transfer protocol into the local system copy 

command, making it possible to access both local and remote files with a single 

command, this would only make copying files across the network transparent. 

Other operations on files (such as comparison) would not be affected so that the 

concept of a remote file would remain confined to the copy command. 

This difficulty can be overcome by providing transparent distribution at a 

lower level of the system. For example, if the file system abstraction provided by 

the operating system is extended to include remote files then all the applications 

which use the file system will be able to benefit from the new facility 

immediately. 

It is more appropriate to add distribution at a lower level of the system if the 

network is homogeneous and all the machines run the same operating system. 

This is also true for a less homogeneous network provided that the various 

systems on the network are sufficiently similar that a common abstraction such 

as a file system can be identified and transparently extended to include remote 

objects. However, the nature of the interface to be extended is also important 

when considering at which level of the system to add distribution. Clearly, it is 

easier to extend a simple interface rather than a complex one. Furthermore, since 

transparent distribution involves the recursive notion of constructing a 

distributed system which is functionally equivalent to the systems of which it is 

composed, it follows that systems whose structure is already recursive in some 

sense will be best suited to this method of constructing distributed systems. 

Perhaps for these reasons, the Unix operating system [Ritchie78] with its 

relatively simple system call interface and hierarchical contextual name space 

has formed the basis of many such distributed systems. Examples include the 
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Newcastle Connection [Brownbridge82], Locus [Walker83], NFS [Sandberg86] 

and RFS [Rifkin86]. 

1.2. Purpose of Thesis 

In this thesis we will be mainly concerned with the evolutionary problems of 

building a distributed system out of existing systems rather than the 

revolutionary approach of building new distributed systems from scratch. Taking 

an evolutionary approach is obviously pragmatic because it protects investment 

in hardware, software and human expertise. However, it is harder to achieve 

transparency because certain design choices made during the construction of the 

original system may be inappropriate for a distributed system. Although the 

effort which must be expended in solving these problems might be viewed as 

misguided ingenuity (since given a clean slate and the opportunity to take a 

revolutionary approach, backwards compatibility would not be an issue), this 

view is short-sighted. A distributed system built from scratch may initially be 

self-contained but sooner or later it may be convenient to extend it or even to 

merge it with a similar distributed system constructed independently. Joining 

two transparent distributed systems should be no different from joining two 

conventional systems if the distributed systems are really transparent and so the 

same problems will arise, even in distributed systems which have been built from 

scratch rather than constructed by joining a set of existing systems together. A 

revolutionary design which ignores these issues will not scale properly. 

It is usually taken for granted in the design of a distributed system that all 

objects will be ultimately identified by globally unique names, sometimes unique 

in time as well as space. We propose to question this received wisdom and argue 

for a more structured approach based on names which are unique only within 

some localised context and not necessarily unique across the entire system. We 

believe that the very concept of uglobal uniqueness" is alien to the distributed 
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nature of the sort of systems being considered and betrays centralised thinking, 

at least in the design stage ifnot the actual implementation. Although ultimately 

we may not have anything better to offer, we feel it is important to explore these 

issues in more detail than they have hitherto received. 

Specifically, this thesis will consider the problem of joining systems together 

to form bigger systems and the implications this has for naming. Ideally a 

transparent distributed system is indistinguishable from the systems of which it 

is composed and consequently it should be possible to combine both single systems 

and distributed systems recursively and, in theory at least, indefinitely. 

However, if individual distributed systems are designed assuming unique 

identifiers, there is no guarantee that those identifiers will continue to be unique 

when two such systems are combined in this way. Since individual designers will 

have their own ideas about the construction of unique identifiers, such a clash is 

almost inevitable unless it is possible to impose a truly global (indeed universal) 

diScipline which will ensure uniqueness not only within but also across all 

possible distributed systems. In a world containing many different distributed 

systems and vested interests this is not possible for political rather than technical 

reasons. Even if agreement was possible, we believe that there are serious 

management problems for really large systems which use globally unique 

identifiers. Consequently, this thesis will explore ways of structuring name 

spaces to overcome (or at least reduce) uniqueness problems and will examine 

algorithms for merging independently managed name spaces and sharing the 

names of objects between systems. 

To summarise the structure of the rest of this thesis, chapter 2 will begin by 

examining naming issues in detail with specific reference to the naming 

mechanisms of Unix. Chapter 3 will consider the problems of joining names 

spaces together, both within a single system and between systems across a 

network to construct a distributed system. Again, Unix will be used to illustrate 
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these ideas and highlight some of the difficult areas in constructing a transparent 

distributed system. Both chapters will explore some of the weaknesses in the 

Unix naming mechanisms that cause problems and discuss some alternatives. In 

chapter 4, conventional distributed systems with names based on globally unique 

identifiers will be studied to see how they tackle the problem of joining systems 

together. Chapters 5 and 6 will then explore the idea of constructing distributed 

systems recursively using names which are only unique within a local context. 

Chapter 5 will examine the implications of recursion for the design of one 

particular implementation of transparent distribution for Unix, the Newcastle 

Connection, and highlight the basic issues. Then chapter 6 will analyse the 

problem in more abstract terms and develop a distributed naming architecture 

based on two operations, perform and resolve, which can be generalised to handle 

recursively constructed systems. Finally, chapter 7 will pull all the threads 

together and declare a final verdict on the relative merits of global versus local 

identifiers. 
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Chapter 2 

Naming 
Naming is of fundamental importance to the construction of transparently 

distributed systems and so this chapter explores some of the issues that arise in 

the design of a naming system. After introducing some general principles of 

naming, three systems will be discussed in particular: Aspect, Flex and Unix. 

Each takes a different approach to naming. Unix is of particular interest because 

it has a hierarchical naming structure and therefore the element of recursion 

necessary for the construction of transparently distributed systems is already 

bUilt in. However, the Unix naming algorithms have various deficiencies and 

these will be analysed too. The concept of a canonical pathname will be 

proposed as a way of overcoming some of these problems. 

2.1. First Principles 

This section will establish some basic concepts of naming. The terminology 

used will be that established by Saltzer [Saltzer78]. For a more thorough 

treatment of naming issues, see the thesis by Brownbridge [Brownbridge84]. 

2.1.1. Naming and Identity 

A fundamental property of an object is its identity. Even if two discrete objects 

are alike in every other way, they will retain their own identity. Consequently, 

identity may be defined as that which distinguishes one object from another 

[Copeland86]. 

Given a collection of identical objects, the only way in which it is possible to 

identify a particular object unambiguously is literally to point at it and say ttthis 

one here". However, this is not always practical, even in the real world, let alone 

in the abstract world represented by the internal state of a computer system. 
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Names are a way of tagging objects so that they can be identified more abstractly 

without such physical intervention. 

In this sense a name is an abstraction of identity, making it possible to write 

algorithms which manipulate objects without having to include those objects as 

part of the algorithm. However, it does not follow that there is a one-to-one 

relationship between names and identities. A given object may have more than 

one name and two distinct objects may have the same name. 

Of course, if the same name can denote more than one object at the same time, 

the naming system is ambiguous. Without a means of identifying objects 

explicitly (by pointing at them), names are the only substitute for the notion of 

identity and must therefore be unambiguous to prevent confusion. However, it is 

interesting to observe that in computer systems with an interactive graphical 

interface where you can indeed point at objects directly, names are no longer 

necessary to distinguish objects and cease to be so important. Only the icon 

representing an object on the screen matters. There is a one-to-one mapping 

between the image of an object on the screen and the identity of the object itself, 

and in this sense, the actual image (as opposed to some label attached to that 

image) is a name for the object that it represents. 

For example, the electronic desktop implemented by the Xerox Viewpoint 

system [Xerox85] represents documents on the screen as icons which can be 

pointed at with a mouse. Although an icon may contain the name of the document 

it represents, it is quite possible for two icons representing distinct objects to have 

the same name because they remain physically distinct on the screen. In 

particular, when an icon is copied, thereby making a copy of the document it 

represents, the copy will have the same name but a different identity. 

Similarly, the Flex capability-based system [Foster82] developed at RSRE 

displays values on the screen in boxes called Cartouches. The text inside the box 
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may indicate how the box was created, and in particular it may be a name which 

was looked up at some point in the past to get the value. However, it does not 

follow that the name in the box is still valid or denotes the same value, or even 

that the text has anything to do with where the object came from at all. It could 

describe the type of object denoted by the Cartouche or simply be an arbitrary 

label. 

It could be argued that inside such a system there must be some value which 

identifies an object uniquely and that this is simply a name which is known to the 

system but not to its users. This is a reasonable point of view but so long as the 

system preserves the distinction between the identities of distinct objects (and if 

it did not, it would be broken), it is free to alter such a value as much as it chooses, 

so that if the value is indeed a name, it has a very transitory existence. Such a 

value is really a means of locating the object and could therefore be an address in 

memory or on disk. There is nothing to stop the system from rearranging the 

contents of its memory or disk and changing such values accordingly (for 

example, during garbage collection), providing the identities of the corresponding 

objects is preserved. The distinction between a name and an address is really only 

one of degree or perhaps level of abstraction. From a fixed viewpoint, names tend 

to be more permanent and more visible but less location dependent than 

addresses, but the same criteria could be used to describe the difference between 

virtual addresses and physical addresses in a paging system. 

To summarise, a naming system is a mapping between names and identities. 

This is a recursive notion; identities may be represented internally by low-level 

identifiers which are themselves names in a lower level naming space. At each 

level of such a hierarchy, as names are mapped into identifiers they become less 

abstract and closer to physical storage locations. Adding extra levels of 
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indirection makes it possible for names to be location independent (Le. 

transparent). 

2.1.2. Binding, Bootstrapping, Contexts and Closures 

It is not always practical to point at objects directly, especially in a non

interactive system. Nor is it feasible to embed objects directly in algorithms, 

especially when writing general purpose reusable code. Binding the identity of a 

specific object into an algorithm too tightly has a limiting effect on abstraction. 

Names are a way of abstracting over identities and the process of replacing a 

name with the identity of the object it denotes is called name resolution. 

Delaying the time at which the name is resolved makes the system more flexible 

but less efficient at run-time if names have to be looked up every time objects are 

needed. 

More formally, a binding may be defined as an association between a name 

and an object (or rather its identity). This may be generalised to the notion of a 

context which is a list of such bindings. Contexts are an important structuring 

mechanism which allow a large name space to be subdivided into several smaller 

name spaces. In particular, the meaning of a name depends on the context in 

which it is resolved and although a given name can only have one meaning in a 

particular context, each context in which it appears may bind it to a different 

object and so give it a different meaning. 

Contexts also have names relative to some other context which itself must be 

named (relative to yet another context and so on). This potentially infinite 

regression can only be prevented if there is at least one context which does not 

require a name but is always known to the system. Such a context can then be 

used as the basis for all names. However, because it cannot be named in the 

conventional way, the definition of this context must be established as part of the 

bootstrapping process by which the system is brought into existence initially. 
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Even if the bootstrap mechanism is able to name such contexts, these names will 

have no meaning to the system being bootstrapped. Thus, all names are 

ultimately relative to some point outside the system to which they belong. 

When names are embedded in a program it is sometimes important that they 

denote a particular object, so that the program's behaviour is independent of the 

naming context in which it is executed. This may be achieved by making such 

names relative to an absolute context which cannot be moved and has a global 

definition known to all users of the system. Alternatively, a mechanism called a 

closure may be used to bind such names statically (when the program is defined) 

rather than dynamically (when it is executed). Although closures are a very 

powerful concept, they are usually only found in implementations of 

programming languages which encourage a functional style of programming 

because static binding makes it possible to treat functions as first class values 

unambiguously [Landin641. A facility for defining names statically would also be 

useful in a general purpose operating system. However, without closures, the 

alternative mechanism of using an absolute name (which is usually all that is 

available) is not always adequate because it does not encourage modularity and is 

not recursive. 

2.1.3. Lifetime and Visibility 

Another important issue is the relationship between the concepts of lifetime 

and visibility. In any sane and self-consistent system an object will exist so long 

as there is a name for it or some other way of accessing it. The same name will not 

suddenly denote a different object or cease to denote any object at all. 

Consequently, there should be a strong connection between the existence of a 

name for an object and the lifetime of that object. Indeed, it is reasonable to argue 

that if there is no way of accessing an object, by name or any other means, then 

the object has effectively ceased to exist within the system. Certainly, its 
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existence can have no meaning or significance to a user of the system (although 

internally the system may retain some knowledge of the non-existent object so 

that the resources consumed by the object can be freed if necessary). However, it 

is also important to realise that not all names are directly accessible (Le. visible) 

at anyone time. For example, the names in a closure are not visible outside that 

closure, although the objects they refer to will continue to exist for as long as the 

closure itself exists. 

Some systems allow the same object to have more than one name. In general, 

deleting a name for an object will only delete the object itself if it has no other 

names. So long as there is a name for an object somewhere in the system, that 

object will continue to exist. However, with other systems, although objects can 

still have several names, one name is distinguished as being the principal name 

and all the other names for the object are merely aliases which provide a 

convenient naming shorthand. For such a system, deleting the principal name for 

an object could delete both the object and all its aliases. Alternatively, the system 

might not allow an object to be deleted until all its aliases had also been deleted. 

These precautions are necessary in order to guarantee that the system cannot be 

left in an inconsistent state with dangling names pointing at objects which no 

longer exist. 

If a large name space can be decomposed into smaller name spaces, it may be 

possible for part of the whole name space to become temporarily unavailable. This 

could occur if the name space was spread across a network or a collection of 

removable disks. When such a parti tioning of the name space occurs, each side of 

the partition should remain self-consistent, regardless of whether it is otherwise 

active or passive, until such time as the whole name space is reunited. References 

from one partition to objects in the other partition must be treated with caution 

during this time. Such references cannot be resolved without the cooperation of 

both partitions and consequently the objects referred to will be temporarily 
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unavailable. Nor will it be possible to delete a reference to an object in another 

partition or an object which is referred to by another partition and still guarantee 

that the name space will be in a consistent state when the partitioning ends. 

Nevertheless, it should be possible to override this protection if an inopportune 

crash of part of the system leaves the name space in an inconsistent state. 

Similarly, there should be a mechanism for detaching part of the name space 

deliberately for backup purposes or in order to transport it elsewhere physically. 

2.1.4. Naming Graphs 

A naming system which only allows simple names relative to a single context 

is not very interesting. More powerful naming systems provide the concept of a 

pathname, a structured name involving several contexts. Pathnames start from 

a known context and are divided up into components. Each component names the 

context in which the next component is to be resolved with the last component 

naming the object referred to by the pathname as a whole. A good way to model 

such naming systems is with a naming graph. 

Informally, a graph is a collection of nodes, some of which are joined together 

by arcs. The nodes of the graph may be thought of as objects and the arcs as 

naming paths. Therefore, if a given node represents a context, the arcs leading 

from that node determine the name bindings in that context. However, there are 

several ways of labelling such a graph and interpreting it as a naming system. 

Other properties of the graph such as whether the arcs are directional or whether 

the graph is acyclic are also important and characterise the naming system too. 

For example, if the nodes rather than the arcs are labelled then each node will 

only have one name, regardless of how many arcs lead to it. This means that in 

order for the labelled graph to be well-formed as a naming graph it must satisfy a 

local uniqueness property that ensures that all the arcs leading from a given node 

reach nodes with different names. (If a node representing a context has two or 
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more arcs leading from it to nodes with the same name, that name is ambiguous 

in this context.) An arbitrary labelled graph is not guaranteed to have this 

B B 

/ / 
A A 

~ ~C 
B 

(a) ambiguous (b) unambiguous 

property and therefore not all labelled graphs are valid naming graphs. 

Alternatively, the arcs could be labelled rather than the nodes, allowing a 

given node to have many names, each name being the label on an arc leading to it 

from another node. Again, there would need to be a consistency property which 

• • 
/ / 

• • 
~ • ~ • 

(a) ambiguous (b) unambiguous 

ensured that two arcs leading from the same node did not have the same label or 

name since this would effectively give two bindings for the name in that context. 

Quite apart from the actual form the graph labelling takes, there are also 

questions about the nature of the arcs and the connectivity of the graph. If all the 

arcs are bi-directional, every node can act as a context and name all the nodes 
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which can name it. In this case, it will be natural to label the nodes rather than 

the arcs. 

On the other hand, if the arcs are uni-directional then there are various ways 

in which the graph can be connected. If every pair of interconnected nodes is 

joined by two arcs, one in each direction, then each node can name the other. For a 

B 

~ 
• • 
~ 

A 

general purpose naming system, this degree of connectivity is very natural; there 

is no point in introducing anomalies such as one-way naming paths 

unnecessarily. However, if this kind of flexibility is needed, perhaps to restrict 

access to (or from) parts of the naming graph, then there is no reason why it 

should not be available. 

Of course, having arcs leading from every node makes every node a naming 

context. Whilst preserving full connectivity between those nodes which do act as 

naming con texts, it is useful to recognise leaf nodes as a special case. A leaf node 

acts as a sink for naming arcs. In other words, whilst a leaf node has arcs leading 

to it and may therefore be named, it does not have arcs leading from it and hence 

may not act as a naming context. In most real systems, the leaf nodes would be 

the objects of interest and the other nodes that led to them in the graph would act 

purely as contexts. However, the model is more general than this, at least in 

theory if not in practice. 
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The opposite of a sink node is a source node which has arcs leading from it but 

no arcs leading to it. A source node may act as a naming context but may not be 

named from another context. Instead, it must be given an absolute name, 

independent of any context. This name may then be used as the starting point for 

apathname. 

It is convenient to allow other nodes in the graph to be given special names so 

that they too can act as a starting point for a pathname. However, whereas a 

source node can have no other name, any other point in the graph will always 

have at least one absolute pathname relative to some source node. Consequently, 

such points can be redefined and may therefore serve as a current context, 

making full absolute pathnames unnecessary. The difficulty with this is that the 

interpretation of path names relative to a redefinable current context depends on 

the dynamic definition of that context. If such pathnames are to be used in 

algorithms unambiguously then some sort of closure mechanism is needed to 

guarantee that the correct definition of the current context is used when they are 

resolved. However, pathnames relative to source nodes may be used 

unambiguously in any context because their interpretation only depends on the 

fixed location of the source node. 

One final property which characterises a naming graph is its overall topology 

and in particular whether it contains cycles. A cycle is a closed sequence of nodes 

joined together by naming arcs, in other words, a loop in the naming structure 

that returns to its starting point. The presence of a cycle allows infinite 

pathnames even in a finite graph and makes it difficult to visit each node in the 

graph systematically. An acyclic graph contains no cycles and does not suffer 

from these problems. A tree-structured graph is a special case of an acyclic 

graph with the additional property that every node may be reached from the 

unique source node of the tree (its base) in exactly one way. Each node can only be 
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named from one other node (its parent) and consequently every node in the tree 

has a unique pathname from the base of the tree. 

This discussion of naming graphs has described them as if they were static 

entities with a fixed structure. Of course, in any real system modelled by a 

naming graph the structure of the graph will change as objects (and names) are 

created and destroyed. However, such operations in the real system should be 

constrained so that invariant properties of the naming graph (such as whether or 

not it is tree-structured) are preserved. The system should also remain self

consistent in the sense that all references must lead to a valid object and that all 

objects which are not referenced from elsewhere in the system should be 

destroyed. This is the problem of garbage collection. The system must detect when 

the last reference to an object is deleted so that it can destroy the object itself. One 

solution is to count the references to each object. However, a cyclic graph will 

allow self-referential structures to exist in isolation, unreferenced by the rest of 

the graph. This is another reason why cyclic graphs are awkward to handle, 

making acyclic or tree-structured graphs more desirable. Nothing is gained by 

introducing cycles into a naming graph since the new names will go nowhere but 

it is difficult to give an algorithm for incrementally modifying an acyclic graph 

without introducing cycles, short of scanning the entire graph for a cycle every 

time a new arc is added. 

2.2. Some Naming Systems 

The Unix naming system provides an excellent example of a hierarchical 

naming graph and will be used to illustrate many of the ideas in the rest of this 

thesis. However, before considering Unix in detail, two other systems which take 

a very different approach to naming will be discussed briefly. 
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2.2.1. A Database Naming System 

Aspect [Ha1l85] is an Integrated Project Support Environment (or IPSE) 

constructed from a relational database using the RMtr data model [Codd79]. In 

the RMtr data model every object is identified by a surrogate. This is a unique 

internal system identifier that need never be disclosed which will remain 

associated with the object throughout its lifetime. 

Aspect implements naming with a special relation in the database called 

known-as. This associates a surrogate with an external name in the context of a 

name space. Name spaces are themselves objects with surrogates and may have 

their own external names in a further name space. However, objects do not have 

to be given names in a name space because their surrogate is sufficient to identify 

them and guarantee that they exist. The only restriction on the structure of a 

name space is the requirement that a given external name can only appear once 

within a single name space. This prevents ambiguity but still allows objects to 

have more than one name, possibly from within the same name space. 

Aspect is able to interpret pathnames which pass through several name spaces 

in an obvious manner. Each user is given a default name space which can be used 

as a starting point for all other names. 

Here is an example which shows how a simple naming graph would be 

represented in the database: 

Robert s(5) 

A A 
test doc s(3) s(4) 

A A 
A B s(1) s(2) 

The pathname Robe rtf tes tf A identifies the object whose surrogate is s(1). This 

pathname is relative to a default name space whose surrogate is s(6). However, 
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surrogate external- name-space name 

s(1 ) A s(3) 

s(2) B s(3) 

s(3) test s(5) 

s(4) doc s(5) 

s(5) Robert s(6) 

s(6) does not have a name and therefore only appears in the name-space column of 

the known-as relation. 

The Aspect known-as relation is a relational representation of a naming graph 

with mUltiple source nodes and unidirectional labelled arcs. The labels on the 

arcs correspond to external names. The nodes are labelled with surrogates. 

Surrogates are a way of separating the problem of accessing an object from the 

problem of identifying an object. The known-as relation is a very flexible naming 

mechanism which makes it easy for objects to have more than one name. 

However, because objects are ultimately identified to the system by surrogates 

rather than names, it is not necessary to give every object an external name. 

Surrogates may also be stored in other relations allowing objects to be selected by 

their properties rather than their names. The RMtr data model will guarantee 

referential integrity by ensuring that all the surrogates stored in the data base 

refer to objects which actually exist. Surrogates act as keys to relations which 

define objects and this check effectively prevents them from being forged or used 

before the corresponding object is defined (or after it has been destroyed). 

2.2.2. A Capability Naming System 

The Flex system [Foster82] is a Programming Support Environment built on 

top of a capability machine. The Flex model of naming is equivalent in expressive 
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power to the Aspect known-as relation because surrogates and capabilities are 

effectively the same thing, but the two systems are very different in the way in 

which they implement naming. The Flex architecture supports closures which 

makes it possible to use higher-order functions (returning other functions as 

results) throughout the system interface. One consequence of this is that names 

are less important to a Flex user than they would be to the user of a conventional 

system. It is worth exploring the reasons why this is so. 

Flex provides support for contexts in the form of Dictionary objects but its 

model of naming is actually more general than this. Whenever the Flex command 

interpreter curt is invoked, one of the arguments which must be supplied is a find 

function which will be used to resolve names. In theory, this allows an arbitrary 

naming scheme to be plugged into the system but in practice curt is always 

invoked automatically (either as part of logging in or from the editor) and so a 

default function is usually supplied. This default is a function to read dictionaries, 

bound into a closure with a list of default system dictionaries and private 

dictionaries. This version of the find function does not recognise pathnames so the 

naming system is not recursive and there is no need for dictionaries to contain the 

names of other dictionaries. 

The Flex naming graph produced with this default naming scheme consists of 

several sub-graphs, one for each dictionary, with only one level of structure. In 

each graph, the source node corresponds to the dictionary and all the other nodes 

are sink nodes and correspond to dictionary entries. The same leaf node will 

appear in more than one graph if the corresponding object can be named from 

more than one dictionary. Consequently, names are represented by labelled arcs 

rather than labelled nodes. 

Because Flex is a capability-based system, it can support structured files 

containing a mixture of uninterpreted text and low-level identifiers for objects 
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(Le. capabilities). Whole files may be stored hierarchically in other files but need 

not be named because they can be identified by position alone or from a 

description in the surrounding text. Consequently, names are typically only used 

to denote large objects at the outermost level, perhaps representing workspaces 

for particular projects. When such a workspace is examined with the editor, the 

objects it contains are displayed on the screen as Cartouches (or icons) which can 

be selected with a mouse. A Cartouche represents a capability for an object rather 

than an unresolved name. In effect, Flex files are closures in which references to 

other files are represented as fully bound names in the form of capabilities. 

In particular, the Flex separate compilation system, which is based on 

modules, works by including in the program text a capability for each module 

that a program fragment depends on, rather than just its name. This means that 

the program is unambiguous and may be compiled in any context without fear of 

picking up the wrong version of a library module by resolving its name in the 

wrong context. The name has already been resolved so that the program text is 

really a closure. 

Similarly, a module is a closure containing references to its source code, object 

code and interface specification. Once a module has been created these values can 

be updated atomically without altering the capability for the module itself. This 

use of indirection means that the capabilities for modules embedded in program 

texts always refer to the latest version of those modules. 

To summarise, Flex is able to dispense with names most of the time because it 

has an iconic interface which allows objects to be pointed at directly and because, 

being built on a capability machine, it can use capabilities to allow direct access 

to identifiers safely, without compromising the integrity of the machine. In effect, 

the capabilities for objects represented graphically on the screen by Cartouches 

are really names but the interactive interface and two-dimensional presentation 
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of information give the illusion that names are not necessary and this is certainly 

true in the conventional sense. 

2.3. Naming in Unix 

Aspect and Flex both rely on some form of globally unique identifier to 

implement their naming schemes. In Aspect the identifiers are called surrogates 

whereas in Flex they are called capabilities. Like any other naming system, Unix 

must also rely on a unique identifier internally to identify objects unambiguously 

but Unix differs by not requiring these identifiers to be globally unique and this 

makes it possible to combine Unix name spaces recursively. In the rest of this 

chapter we will consider the structure of a single Unix name space and in the next 

chapter we will show how Unix supports more than one name space and allows 

several name spaces to be combined more or less transparently. 

Unix consists of an operating system kernel and a series of utilities. Although 

the basic support for the various Unix naming spaces is provided by the kernel, 

many of the utilities extend the naming facilities by adhering to a series of 

conventions. Most of this section is concerned with naming in the Unix file system 

but other forms of Unix naming are briefly discussed in section 2.3.7. 

2.3.1. Inodes, Pathnames and Directories 

The Unix file system supports a name space based on a tree-structured 

naming graph. For the purposes of this discussion, the file system contains two 

sorts of object: files and directories. Directories provide the naming contexts in 

which the pathnames used to identify objects are resolved. Files are the leaf nodes 

in which information belonging to users of the system is actually stored. 

Internally, the Unix kernel represents all file system objects by inodes which 

contain information about the location of the object, its owner, access rights, 

creation date and so on. Inodes are identified by small consecutive integers called 
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inode numbers which are actually indexes into a table of inodes. An object's 

inode number is an abstraction of its identity and inodes are used internally as 

names by the kernel. However, inodes may not be accessed directly by the user of 

the file system because objects may only be named with pathnames. The kernel 

name resolution algorithm maps pathnames into inode numbers using the 

information contained in directories. 

A pathname starts from a known directory and progressively traverses the 

naming graph via other directories until the object it names is reached. A Unix 

directory is a context containing a list of bindings between simple names and 

inode numbers. Name resolution proceeds by matching each component of the 

pathname against an entry in the appropriate directory to obtain the inode 

number of the next directory in the chain (or eventually, when the pathname is 

exhausted, the inode number of the object the pathname denotes). 

In the more abstract terminology of section 2.1.4, the bindings in a Unix 

directory correspond to labelled naming arcs in the graph. Because the arcs 

rather than the nodes are labelled, it is possible for an object to have more than 

one name from the same context or to be reachable from more than one context. 

Every reference to an object from a directory is called a link in Unix 

terminology. Two directory entries denote the same object if they bind two names 

to the same inode number. (The names need not be the same.) Apart from their 

names, all the links to an object are equivalent and it is impossible to distinguish 

the first link to an object from subsequent links. Since Unix does not support 

anonymous objects, an object must always be created with a link (i.e. a name). 

When the last link to an object is deleted, the object is no longer accessible and 

can be destroyed by the kernel. 

Although it is not possible to access inodes directly, it is possible to map 

pathnames into inode numbers outside the kernel and hence determine whether 
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two pathnames denote the same object. This is the only way of testing for identity 

which is unfortunate because making low-level identifiers visible in this way 

makes it difficult to join name spaces together transparently. These difficulties 

will be explored in chapter 3 and then again in chapter 6. However, there is no 

easy solution. 

2.3.2. Unix Pathnames and Contexts 

A Unix pathname consists ofa series of simple names denoting the directories 

it passes through, separated by I to prevent ambiguity. Thus, if the object faa 

can be accessed as an entry in the directory B found in directory A then the 

pathname to reach faa unambiguously from the directory which contains A is the 

pathname A/B/foo. Notice that the directory from which the pathname starts 

/ 
foo 

B 

A 
/ 

• 
/1"'" 

B foo 

may itself contain an entry called B or even faa but that these entries do not 

necessarily refer to the same B and faa as the pathname A/B/foo. It should 

therefore be clear that pathnames are only meaningful when their starting point 

(Le. their context) is known. Consequently there needs to be a way of naming 

contexts. This is the bootstrapping problem discussed in section 2.1.2. The base of 

the Unix naming tree has an address known to the bootstrap program (inode 2) 

and all other contexts are ultimately named relative to this point. 

Unix pathnames may begin from either of two contexts. These contexts are 

defined individually for each process rather than globally for all processes, 

making all names not only context relative but also process relative. However, in 
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practice all processes share the same definition for one of these contexts, the root 

context, and therefore to all intents and purposes root-relative names are 

absolute names whose meaning does not depend on the process which uses them. 

Strictly speaking, one naming context would suffice for all names but absolute 

names are somewhat unwieldy and too precise. The provision of a second naming 

context, the current directory context, makes it possible to use much shorter 

names to refer to objects relative to some local point in the tree without needing to 

know the absolute location of that point. This is a form of location transparency 

which makes names more abstract. However, the dynamic definition of the 

current directory context means that such names are only unambiguous from 

within a closure which binds them to a particular directory. Unfortunately, Unix 

does not provide such a mechanism (unlike Flex) and consequently names cannot 

be statically bound in programs or passed between contexts unambiguously (see 

section 2.1.2). 

The syntax of pathnames makes it clear whether they begin from the root 

context or the current directory context. If the pathname begins with I it is 

relative to root; otherwise, it is relative to the current directory. Thus, the 

pathname I A names object A in the root directory whereas simply A names a 

different object A in the current directory (unless of course the current directory 

happens to coincide with the root directory which is perfectly possible). I denotes 

the root directory itself and therefore it would seem logical and consistent that 

the empty pathname should denote the current directory. Historically, this was 

indeed the case but nowadays the empty pathname is specifically excluded from 

the definition of the pathname syntax given in at least one of the (regrettably 

many) Unix standards documents, the System V Interface Definition, otherwise 

known as the SVID [AT&T85]. A similar argument can be applied to interpret 

malformed pathnames such as AI lB. By arguing that there is a null name 

between the two slashes which by analogy names the context in which it is 
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interpreted, it becomes clear that AI IB is the same as A/B,just as AI is the same 

as A. Again, these interpretations are illegal or at best undefined by the SVID 

although they are perfectly consistent. 

Of course, there are occasions where it is necessary to name the current 

context explicitly and giving it an empty name is rather messy if not ambiguous 

to the casual observer. There is a distinction between applying a command to no 

arguments and applying it to an empty argument but it is too subtle a distinction, 

even by Unix standards of brevity and obscurity. Instead, there is a convention 

that every directory contains a entry for itself whose name is . {pronounced 

((dot"). This guarantees that the pathname . always names the current context. 

Similarly, pathnames such as AI . IB may be simplified to AlB and the 

pathnames AI . and. I A may be written more simply as just A. 

Unix allows both the root context and the current directory to be redefined. 

Naturally the name of the new context in each case can only be given relative to 

the old context (or to the other context which remains unaffected) and 

consequently names will always be relative to some point in the naming tree. 

There is no concept of an absolute name because there is no fixed name for the 

base of the naming tree. (In this sense, the Unix naming graph does not have any 

source nodes.) Even though the root context normally corresponds to the base of 

the naming tree, it may be redefined by an individual process so that the 

definition of root is not even guaranteed to be consistent throughout the system. 

Despite this, it is normal (and indeed prudent) to keep the root context fixed at 

the base of the naming tree so that to all intents and purposes it can be used as an 

absolute naming point. The correct operation of the Unix system depends on the 

existence of certain directories and files whose root-relative (and therefore 

Supposedly absolute) names are embedded in various utilities and even the kernel 

itself. If root were to be moved to an arbitrary point in the naming tree without 
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ensuring that these root-relative names were still valid from the new location, 

then the Unix utilities which depended on their presence would not work 

correctly. Indeed, serious breaches of Unix security would be possible if root could 

be moved to an arbitrary location because it would be possible to substitute bogus 

versions of these system files. Consequently, the root directory may only be 

redefined by privileged users. However, there is no check to ensure that root is 

only moved to a position in the naming tree which provides the necessary system 

files and sub-directories. Unix really needs the concept of a root-directory type in 

the file system to control the positioning of root or even some alternative 

mechanism such as a closure for naming system objects. 

Even with these difficulties and potential problems, there are still occasions 

when the ability to redefine root is useful. The facility was originally introduced 

to allow several subsystems to co-exist within a single Unix system. However, 

although this might appear to be a recursive notion which generalises nicely to a 

transparent distributed Unix system, in fact the idea of root denoting a system 

context as well as an absolute naming point causes problems in a distributed 

environment as we shall see in the next chapter. 

2.3.3. The Unix Naming Tree and .. 

For the reasons discussed at the end of section 2.1.4, it is highly desirable that 

the Unix naming structure be a tree rather than an arbitrary graph. However, 

nothing discussed so far has been sufficient to guarantee this. Indeed, because 

Unix allows an object to have several different names (or links), any directory 

may refer to any other object, file or directory, and consequently it is theoretically 

possible to create circularities in the naming graph. 

For example, suppose I contains a directory A which contains a directory B. If 

B contains a link to IA called A, then the pathname IAIBIA is the same as lA, 

and indeed the sequence IAIBIAIB etc. can be repeated indefinitely without 
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getting anywhere. On the other hand, there is no harm in providing a shorthand 

D 

notation for the directory / A / B / C/O by creating a link to it called /0 since this 

does not create such circularities. 

The difficulty is in deciding which links cause circularities and which do not. 

One approach might be to allow links down the tree but not up the tree, but this 

could not be made to work correctly for links between two separate branches of 

the tree. Unix sidesteps the problems of defining such an algorithm by simply not 

allowing links to be made to directories, thereby ensuring that each directory has 

only one name. This restricts the Unix naming graph to a lattice-like structure in 

which only the leaf nodes (i.e. the files rather than the directories) can have more 

than one name. Although such a graph is not necessarily a tree structure because 

it could have more than one starting point, it will be at most a forest of distinct 

trees with some leaf nodes in common; it is impossible for two trees in such a 

structure to share a branch node (Le. directory) without that directory having two 

names or links (which is explicitly forbidden by construction). Indeed, since there 

are only two starting contexts for pathnames (root and current directory), those 

objects which can be named are restricted to the two trees whose starting nodes 

are these two contexts. All other parts of the graph are unreachable with simple 

directional pathnames. Imposing the restriction that the current directory 

context can always be named from the root context ensures that the current 

directory name tree is a subtree of the root name tree so that to all intents and 
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purposes the Unix naming graph is a single tree whose source is the root context 

(hence the name ttroot"). This restriction is easy to enforce; it suffices for the 

bootstrap process to bring the Unix system into existence in such a way that the 

first process (from which all other processes are descended) has its current context 

equal to its root context. All names thereafter will be relative to this original root 

context which will naturally correspond to the base of the tree. 

In fact, the Unix naming system is not quite as restricted as this description of 

a unidirectional tree might imply. The main disadvantage of the scheme just 

described is that names can only move down the tree. In particular, if the current 

context is repositioned outside its naming subtree, its new position must be 

described relative to the root context because there is no other way of naming 

other parts of the tree. Although this may not matter if the current context is not 

repositioned very often or ifit is repositioned to somewhere completely unrelated 

to its current position so that a root relative name is more natural, this restriction 

also prevents nearby objects in sideways related parts of the tree (such as uncle 

and cousin nodes) from being named relative to the current context. The only way 

in which such nodes could be named would be by repositioning the current context 

at the common ancestor node (e.g. grandfather or great grandfather). 

To overcome this difficulty, Unix directories always contain a second special 

name .. (pronounced ttdotdot"). The .. entry in a directory refers to the unique 

parent of that directory and this allows movement up the naming tree, one step at 

a time, from the current context. Because the graph is tree-structured, no 

directory can have two parents and hence .. is defined unambiguously. 

Apart from. and .. links cannot be created to directories. Recognising. and 

" as special cases allows the Unix file system to use reference counting to 

implement its garbage collection. Every inode contains a link count and when the 

last link to the inode is deleted, the file it represents is also deleted. Thus, 
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although. and .. permit circular or at least redundant pathnames, they do so in 

a controlled manner. 

For example, if the current context is positioned in IA/B then .. refers to IA 

and .. IC refers to lAIC. However, any sequence of the form AI . . /B In a 

pathname is clearly redundant and can be simplified to B. 

I --. • 

/"'" 
A B 

/I'\. 

Thus, it is possible to transform a pathname involving. and .. into a canonical 

form. 

2.3.4. Canonical Pathnames 

The concept of a canonical pathname is important and applicable to any 

tree-structured naming graph (so in particular to the Unix file system naming 

tree). Pathnames need not necessarily be in their simplest form (especially if they 

are machine generated) and it is useful to be able to translate an arbitrarily 

complex redundant pathname into the most direct route between the starting 

context for the name and the object it denotes. Furthermore, because the naming 

graph is tree-structured, it is possible to perform this translation without needing 

to know about names elsewhere in the graph. 

Being able to reduce an arbitrary pathname to its simplest form statically 

(before it is resolved) rather than dynamically (as it is resolved) makes the name 

resolution process more efficient. This is particularly important for a 

transparently distributed system where a name might span several distinct 
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naming trees on systems linked only by a network. Clearly if name resolution 

involves sending messages across a network, and if the number of messages 

depends somehow on the complexity of the pathname, then it makes sense to 

minimise the number of messages sent by simplifying the name as much as 

possible before attempting to resolve it. We will be returning to this point in 

chapters 5 and 6. 

Canonical pathnames also make it possible to compare pathnames by first 

reducing them to their canonical form and hence determining whether they are 

equal (i.e. denote the same object). However, the concept of a canonical pathname 

is only valid for a tree-structured graph and perhaps this is too restrictive. If the 

naming graph is not tree-structured, it may be possible to reach a given object by 

two equally acceptable paths of the same length, in which case no sensible 

definition of the canonical (i.e. most natural) path will be possible. This poses 

several questions. Ifmore general acyclic graphs which allow objects to have more 

than one name are useful then is there an alternative algorithm which can 

determine whether two pathnames are equal and is this a useful thing to do in 

any case? Chapter 6 will consider this problem in more detail. 

The canonical transformation for Unix pathnames seems relatively 

straightforward at first glance. Every occurrence of . can be omitted (except 

perhaps the first to prevent a null pathname) and every occurrence of .. preceded 

by a name (other than. or .. ) can also be eliminated along with that name. This 

algorithm may be described by the following context-free transformations: 

(a) ./X ~ X 

(b) XI •• IY ~ Y 

After performing these simplifications repeatedly, eventually any remaining .. 

components of the pathname will move to the front of the path whilst the other 

name components move to the back. In other words, a canonical Unix pathname 
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optionally goes up one or more levels using .. and then comes back down the tree 

again through a series of named nodes. 

But this algorithm has overlooked two important points. Firstly, there is the 

question of what / .. means. In other words, is it possible to move upwards from 

the root context? As we discussed earlier in section 2.3.2, although it is usual for 

the root context / to correspond to the base of the naming tree, Unix allows / to be 

redefined so that it is really a relative name rather than an absolute name. 

Clearly, the base of the naming tree can have no parent directory and so by 

convention its .. entry has the same meaning as its. entry and points to the 

base directory itself. (It would be equally appropriate for it to have no .. entry at 

all.) If / corresponds to the base directory as it nearly always does for an 

individual Unix system then clearly / .. will be the same as /. However, as we 

will see in the next chapter, if a group of individual Unix systems have been 

grouped together in a larger naming tree to form a transparently distributed 

U nix system and if / still refers to the root of a particular system, there may be an 

arbitrary amount of naming structure between / and the base of the larger 

naming tree. Therefore, in general / .. should have no special meaning but 

should simply refer to the parent directory of root. Applying .. repeatedly to / 

will eventually reach the base of the tree. 

This interpretation of / .. gives a system with an open root. In view of the 

fact that / is used to name important objects such as system directories and files 

upon which the correct execution of the rest of the Unix system depends, there is 

also a case for a closed root in which / .. is always defined as /, regardless of 

whether it actually corresponds to the base of the naming tree or not. This might 

seem perverse because it makes the part of the naming tree which is outside this 

/ forever inaccessible but this is just what is required in order to create a self

contained subsystem (Le. a Unix system within a Unix system). This is inwards 

recursion and the fact that it is possible on an unchanged Unix system bodes well 
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for the concept of outwards recursion, building bigger systems out of smaller 

systems rather than decomposing bigger systems into smaller systems. However, 

simply treating I .. as a special case in the name resolution algorithm is an 

unpleasant compromise. Early Unix systems implemented an open root but more 

recently the trend has been towards a closed root. Unfortunately, although I 

should be just a naming context, it has acquired an extra significance as a way of 

identifying a Unix system. 

The second difficulty with this canonical transformation algorithm is that it is 

too simplistic and does not always result in a pathname in its simplest form. For 

example, suppose the current context is I AlBIC. Then the pathname 

.. I . . /B/C, although apparently in canonical form, may be simplified to the 

empty pathname <although this would more usually be written as .). 

/ 
B 

/1". 

A 

The named portion of the path simply retraces the steps made up the tree by the 

.. portion. Similarly, .. I .. IBID could better be expressed as . . /0. In this case, 

only part of the .. sequence has been undone, namely the innermost .. lB. The 

redundant part of such pathnames is always centred around the highest point 

they reach in the naming tree. We will refer to this point as the centre of a 

pathname. 

Eliminating this form of redundancy is much harder because it is context 

dependent. The simplification is only possible if the full pathname of the starting 

context is known. Notice that this really must be the full pathname from the base 

of the tree, not just the pathname from the root context, since otherwise it would 
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be impossible to apply the simplification to pathnames which entered the 

unknown region above root. Given this full pathname, the simplification consists 

of matching the tail of the candidate pathname against the corresponding tail of 

the full name of its starting context and eliminating matching entries and their 

corresponding .. from the centre outwards until no further eliminations are 

possible. Elimination must be from the centre outwards to prevent errors in a case 

such as the path .. I • . /D/C relative to the context I AI B IC. Although the 

trailing C may match, it occurs as part of a different subtree (from D rather than 

B) and so no simplification is possible. 

Whereas the Unix kernel need normally only store the inode number of the 

current context to resolve pathnames, the canonical transformation algorithm 

requires knowledge of its full pathname from the base of the tree. Although this 

knowledge can be acquired incrementally as the context is changed, it still 

requires having to store an arbitrary amount of non-local information about a 

local context. Furthermore, the whole concept of a full pathname only works well 

with an absolute immovable closed root context corresponding to the base of the 

naming tree (in which case the full pathname is the same as the root-relative 

pathname). If it is possible to add naming structure above the root context and in 

particular to move the base of the naming tree further away from the root named 

by I then the value of the full pathname will change as the base recedes from 

root. 
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For example, if the full pathname was IX/Y IZ and then a directory 

containing the original base as subdirectory W was made the base of the tree, the 

new full pathname would be IW/X/Y IZ. Similar changes to the full pathname 

would be necessary if structure was deleted from the top of the tree, perhaps in 

splitting a recursively constructed system into subsystems. 

All this complexity is caused by the fact that .. is essentially an anonymous 

name for the parent directory. A sequence of the form .. I .. etc. may take a 

pathname arbitrarily far from its starting point so that an arbitrary amount of 

contextual information is required to apply the simplification. It is curious that 

XI .. may always be eliminated whereas the symmetrical case .. IX cannot. The 

difference is simply that in the first case the X provides enough knowledge of the 

position relative to the unknown current context to cancel out the effects of .. 

whereas in the second case the .. occurs first and simply compounds the 

unknown. Pathnames should have the Markovian property that their meaning is 

independent of the history of their starting context but the existence of .. makes 

this impossible. 

2.3.5. An Alternative to .. 

There is actually a very simple alternative to .. which eliminates this 

complexity and makes it much simpler to construct canonical pathnames. By 

imposing a slight restriction on the choice of names in a given context, it is 

possible to give a rule for simplifying redundant pathnames which does not 

require an arbitrary amount of non-local knowledge to be stored but rather 

depends on a locality property that is valid at every point in the naming tree. 

The basic idea behind the new algorithm is to avoid the problems caused by .. 

by always referring to directories explicitly by name. In a tree-structured naming 

graph, every directory has only one parent and hence only one name. This name 

can be used to replace the. entry in the directory itself and the .. entries in any 
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sub-directories it may have. Only the base of the naming tree is problematical 

because it is unique amongst directories in having no name (i.e. no entry other 

than .. for it in another directory). Clearly it must be named, however 

arbitrarily. The name root or base spelled out would suffice, 

It is not sufficient to simply replace the. and .. entries with the real names 

of the directories they denote. To prevent ambiguity we must ensure that if a 

directory is to be called A for example then no other entry in itself, its parent or 

any of its child directories has the same name. Indeed, all of these directories 

A 

/"" 

/"" 
B A 

(a) new form (b) old form 

must already contain an entry called A if the tree is well-formed and fully 

connected. These entries would be . or .. under the original Unix naming 

scheme (apart from the entry which defines A in its parent directory). 

This restriction prevents names of the form AI AI AI A etc. which will always 

simplify to A of course but it does not go to the extreme of requiring that every 

directory have a unique name. In fact, names must only be unique within pairs of 

consecutive directories, allowing the parent and child of a given directory to use 

the same name for a different object. Thus, AlBIC and C are not necessarily the 

same but A/BI A is always the same as A. This observation is the essence of the 

new canonical naming algorithm. Any sequence of the form X I Y I X in a pathname 

may be replaced with simply X. After applying this transformation repeatedly 

until no further simplification is possible, the pathname will be in canonical form. 
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B A 

~C~ 
C B 

(a) new form (b) old form 

There is one exceptional case, namely a pathname which loops back to its 

starting context. This will always simplify to PIC where P is the name of the 

parent context and C is the name of the starting context. Introducing the 

convention that all pathnames must begin with the name of their starting context 

eliminates this problem. Instead of simplifying to PIC, the pathname reduces to 

C/P/C which can further be simplified to C, effectively the null pathname. For 

example, consider the pathname .. I .. /B/C in the context IAIBIC which 

caused difficulties for the original algorithm. Under the new scheme, this would 

be written as CIBIAIBIC which simplifies via CIBIC to just C. Similarly, 

•. I .• IBID may be written as CIBI AIBIO which just simplifies to C/B/O. This 

may be translated back into Unix notation as . I . . 10 or simply . .10. 

Unfortunately, this algorithm is only applicable to a tree-structured graph. A 

more general graph will allow there to be more than one path between two points 

on the graph, making the whole concept of a canonical pathname meaningless. 

Regrettably, the Unix naming graph is not a pure tree because files may have 

more than one name. Consequently, this algorithm does not work with general 

Unix pathnames but it can be used to simplify pathnames between directories 

and hence ensure that a given pathname for a file does not visit more directories 
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than necessary, even though an alternative pathname may also exist. This is 

particularly important for a distributed Unix system because it reduces the cost 

of resolving pathnames which span more than one system, as we shall see in 

chapter 6. 

2.3.6. Symbolic Links 

Some versions of Unix provide another naming feature which further 

complicates the idea of a canonical path. A symbolic link is a third type of object 

in the naming tree (besides directories and files) and contains a pathname. This is 

used to provide an indirection or aliassing feature. During name resolution, 

whenever a symbolic link is reached, the remainder of the pathname currently 

being resolved is interpreted in the context denoted by the value of the symbolic 

link. (In effect, name resolution continues after prefixing the contents of the link 

to the unresolved portion of the pathname.) This redirection may occur several 

times during name resolution but since a symbolic link may point to a directory 

(or even to itself) loops are possible. Consequently, the kernel limits the number 

of redirections that can be made during the resolution of a single pathname and 

assumes that if this number is exceeded there is a loop in the naming graph. 

Symbolic links are a useful way of hiding the directory structure and may be 

used as a forwarding mechanism when a subtree in the name space is moved 

elsewhere. For example, suppose individual user directories are stored as 

subtrees of the Ius e r directory which has to be moved to Ius r If s for some 

reason. If Ius e r is made into a symbolic link to Ius r If s, old pathnames of the 

form luse rl robe rt will still work. 

Symbolic links effectively allow links between directories so that the Unix 

naming graph is no longer tree-structured. Without knowing which nodes in the 

graph are really symbolic links, it is impossible to reduce an arbitrary pathname 

to its simplest form statically. Of course, it may be reduced dynamically by 
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simulating the kernel name resolution algorithm and tracing it through the 

naming graph but the whole point of the canonical naming algorithm is to able to 

perform the transformation statically without requiring knowledge about names 

elsewhere in the graph. 

A further difficulty is the semantics of .. in the presence of symbolic links. If 

Ius e r is a symbolic link to Ius r If s, does Ius e r I . . denote I or Ius r? The 

answer will depend on whether .. is interpreted statically (nwhere I am now") or 

dynamically (nhow did I get here"). Because . . is simply a special entry in a 

directory and Unix keeps no record of the path by which a given context was 

reached, its interpretation of .. is static, even though a dynamic interpretation 

would work more naturally with symbolic links. Consequently, luse rl .. is 

interpreted as Ius r rather than I. This can cause unexpected anomalies with 

pathnames of the form .. I X when the current context has been reached 

unknowingly via a symbolic link and breaks the canonical simplification of 

XI • .IY to Y. 

Symbolic links have another curious characteristic. Their value is a pathname 

and if this begins with a I it is interpreted relative to root as might be expected. 

However, ifon the contrary the pathname contained in the symbolic link does not 

begin with a I, it is interpreted relative to the directory in which the link is found 

rather than the current directory. Thus, absolute symbolic links are in fact 

relative to a dynamic definition of root which may have changed since the link 

was created whereas relative symbolic links are in fact absolute because they are 

not affected by the definition of either root or the current directory at the time 

when the link is resolved! This distinction is particularly important in a 

transparent distributed system where processes from different systems may have 

different definitions of root and may therefore interpret the same symbolic link in 

different ways. 
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Symbolic links would be much more useful if they were implemented as true 

closures, defining the context in which they were to be resolved. This would make 

symbolic links not relative to root work sensibly. Their absolute semantics is 

counter-intuitive and makes them behave differently from an ordinary Unix link. 

Creating a link in another directory to a file in the current directory has a quite 

different effect from creating a symbolic link in the same directory to the same 

file! The problem is that the pathname value of the symbolic link is simply a 

string of characters which is not interpreted in any way until the symbolic link is 

resolved. Consequently, it is possible to create symbolic links to non-existent 

objects and symbolic links do not behave like true aliases in the sense of section 

2.1.3 because they are not deleted when the object they reference is deleted. 

Although they were introduced to overcome some limitations of conventional 

Unix links, they have managed to muddle Unix naming semantics by confusing 

dynamic and static name resolution. If they behaved like real links or real aliases 

they would be tolerable but instead they are an unpleasant kludge. 

2.3.7. Other Unix N arne Spaces 

The Unix file system naming space is based on hierarchical names, but the 

other name spaces supported by the Unix kernel are completely flat. Processes 

and users have unstructured names consisting of simple integers. There is no 

equivalent of a directory or a pathname. These names are globally unique rather 

than relative to some context. In effect, they are relative to some implicit system 

context. However, because the context is implicit, it is difficult to extend such 

names to a transparently distributed Unix system made up of individual systems. 

Each system will contribute its own processes and users but their names will no 

longer be globally unique nor will it be possible to distinguish names belonging to 

different systems. We will return to this problem in chapter 3 when we have 

discussed ways of joining name spaces together to build distributed systems. 
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2.4. Conclusions 

We have discussed many naming concepts in theory and shown how they have 

been implemented in practice by three different systems: Aspect, Flex and Unix. 

Internally, all three systems use a unique identifier to identify objects but they 

differ in the structure of the naming graph they allow. Aspect and Flex are built 

on top of abstract machines which allow low-level identifiers to be manipulated as 

first-class objects. It is impossible to forge identifiers or use them inconsistently 

and consequently arbitrary naming structures can be created very easily. 

However, this simplicity and flexibility is offset by the hidden cost of 

implementing the underlying abstract machine. Unix takes a more pragmatic 

approach, restricting the naming graph to a tree structure and not allowing 

internal identifiers to be manipulated directly. 

A tree-structured graph has the useful property that there is a unique 

shortest path between any two points on the graph. We have shown that this 

makes it possible to define the concept of a canonical pathname which can be used 

to simplify redundant pathnames automatically. However, several features of 

Unix such as the anonymous .. directory and the presence of links (especially 

symbolic links) make this concept less useful than it could be, although arguably 

a tree-structured naming graph is too restrictive in any case. Another problem 

area is the way in which Unix depends on root-relative pathnames to name 

system objects, confusing the concept of root as a naming context with the notion 

of a system. Many of these difficulties could be alleviated by the use of closure 

objects but the resulting system might look quite unlike Unix. However, it is 

possible to use closures to solve naming problems, as the Flex system described in 

section 2.2.2 demonstrates. 
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Chapter 3 

Joining N arne Spaces Together 
Chapter 2 discussed name spaces as if they were self-contained entities 

existing in isolation of each other. In practice, when a group of systems is joined 

together by a network, each system will have its own name space and these name 

spaces must be merged in order to construct a transparent distributed system. If 

the individual name spaces are still distinguishable in the distributed system 

then transparency has not been achieved. 

Joining name spaces together to build a distributed system is a useful way of 

sharing objects and other resources between systems across a network. It is a 

recursi ve mechanism for combining name spaces to build bigger name spaces. 

Recursion can also be used to decompose name spaces into smaller name spaces 

within a single system. This is a way of overcoming the management problems of 

scale by dividing up a large name space into smaller domains which can be 

administered independently. Thus, it is useful to consider mechanisms for joining 

name spaces together, both within a single system and between systems. Ideally, 

the same recursive mechanism should be applicable at both levels if the system 

has a uniform naming scheme. 

If it is possible to merge name spaces transparently so that the composite 

name space is indistinguishable from the name spaces of which it is composed 

then it should be possible to merge the composite name space with other name 

spaces recursively. In this respect, a distributed name space designed from 

scratch should be no different from a distributed name space built by combining 

existing name spaces transparently. Thus, although this thesis is mainly 

concerned with the evolutionary problems of building a distributed system from 
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existing systems, it should also be applicable to the revolutionary problems of 

joining together distributed systems built from scratch. 

In this chapter, we will discuss some mechanisms for joining name spaces 

together. One approach, taken by systems such as Aspect and Flex, is simply to 

assume the existence of globally unique identifiers. Obviously, if global 

uniqueness can be attained in practice, it will be possible to combine independent 

name spaces without conflict. However, the problem of managing a large flat 

space of identifiers without any structure will remain. We will consider these 

issues in more detail in the next chapter and explore whether global uniqueness 

really is attainable. In the meantime, we will concentrate on the mechanisms 

wi thin Unix for joining name spaces together. 

Unix does not rely on globally unique identifiers and it is therefore possible to 

combine Unix name spaces recursively wi thin a single Unix system to form a 

larger name space. Although it is not quite transparent, this mechanism has been 

generalised to allow Unix systems to be combined across a network to form 

distributed systems. This chapter discusses some of the distributed Unix systems 

which have been built and analyses some problematical areas of the Unix 

semantics in greater detail. These problem areas are not specific to Unix but must 

be tackled by the designer of any transparent distributed system, evolutionary or 

revolutionary. 

3.1. First Principles 

The purpose of a naming system at any level is to map names into internal 

identifiers. Thus, a naming system actually involves two name spaces: external 

names visible to its clients and internal names known only to the system. 

Typically, the internal names come from a flat naming space and are closely 

related to the physical location of the object they identify. Conversely, the 

external names come from a highly structured name space and are location 
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transparent, allowing names and hence objects to be grouped together in a way 

which reflects the organisational needs of the user rather than those of the 

system. 

When two name spaces are joined together they may be merged at either of 

these levels. If their internal name spaces are merged by extending the internal 

names to identify objects in one naming system or the other, their external name 

spaces need not be affected. Although the mapping from external name to 

internal identifier will have been changed to reflect the larger internal name 

space, this change has occurred internally. Externally, names will continue to be 

location independent and there will be no indication that two name spaces have 

been merged. In other words, the name given to an object need not depend on the 

system from which it originates. 

Of course, because the result of merging two name spaces transparently is 

itself a name space, the external name spaces must be combined in some way. 

Otherwise, unless it is possible to use internal identifiers directly, there will be no 

way of referring to an object from another name space. The two naming graphs 

may either be joined in their entirety at some extreme point, thus preserving 

them intact within a larger graph, or else partially or even completely merged to 

share some sub-structure. 

Once two name spaces have been joined it will be possible to name objects from 

either name space quite transparently. However, until the name spaces have 

been joined there will be no transparent way of naming an object from the other 

name space and consequently the actual join operation must use some non

transparent form of naming to indicate which parts of which name spaces are to 

be joined. This requires some external scheme for naming name spaces outside 

the naming system or perhaps the direct use of internal identifiers. 
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Merging name spaces involves resolving conflicts at both the internal and 

external level of the system. Internal system identifiers are usually assumed to be 

unique within the implicit context of a single naming system. When two such 

systems are combined, their internal identifiers are no longer sufficient to 

identify objects uniquely within the combined system. They must either be 

qualified with the identity of the naming system to which they refer or else be 

replaced with some other identifier that is unique in the larger scope of the 

combined naming system. 

Merging external name spaces is not so difficult because they are usually 

already structured and therefore already have an explicit notion of context. 

Rather than resolving conflicts across the implicit context of an entire flat name 

space, conflicts need only be resolved locally within a limited context. Objects can 

be renamed or the problem can simply be avoided by keeping both contexts in the 

merged graph. It is always possible to combine two name spaces in their entirety 

by simply giving their source nodes names in a new context and making no 

further attempt to merge them. This approach may be used to combine two 

contexts at any level in the system 

The result of joining two name spaces together is another name space. If this 

construction is truly transparent, it should be possible to apply it recursively, 

joining composite name spaces together to produce even bigger name spaces. This 

observation may be expressed in terms of the recursive structuring principle: 

UA composite system should be functionally equivalent to 

the systems of which it is composed." 

Although full transparency is the ideal, it may not always be achievable in 

practice. However, it is possible to compromise. The composite name space may 

not attempt to hide the individual name spaces from which it is constructed but 

simply group them together loosely, providing limited support for names which 
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cross the internal boundaries between name spaces. The overall effect will be to 

give the illusion of a single naming space but peculiar restrictions on naming will 

expose discontinuities at the points where individual name spaces were joined 

together. 

For example, the Unix mount mechanism (which will be discussed in section 

3.2.2) joins name spaces together at a single point by making a leaf node in one 

name space refer to a source node in the other. Apart from this single name that 

crosses the name space boundary, there is no other way of creating a reference 

from one name space to the other. This restriction tends to highlight the boundary 

between the two name spaces because it does not apply to a single name space. If 

the name spaces had been joined together completely transparently, there would 

no such restriction. 

3.2. Joining Name Spaces Together within a Unix System 

The rather abstract principles of the previous section will be illustrated with a 

concrete example, the Unix file system. During the discussion of U nix naming in 

section 2.3 we deliberately described naming in terms of a single atomic name 

space. In practice, the Unix name space can be subdivided into smaller name 

spaces, even wi thin a single system. 

3.2.1. Inodes and Devices 

Section 2.3.1 described how the various objects in the Unix file system are 

represented by inodes, with directories providing the association between names 

and inode numbers needed to resolve pathnames. Inode numbers are simply small 

integers but are not guaranteed to be unique across an entire Unix system. 

Instead the Unix name space is partitioned into subspaces called devices in which 

inode numbers are unique. Devices correspond to physical storage media such as 

removable disk packs or partitions of fixed disks. Because inode numbers are not 
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unique and because directory entries contain no device identifier, an object must 

be named from a directory on the same device on which it is stored. Directory 

entries (or links) referring to objects on other devices are prevented by the 

implementation. Although Unix provides a mechanism for joining the name 

spaces stored on individual devices into a single composite name space, the 

boundaries between the individual name spaces are still visible in the sense that 

it is not possible to create a link to an arbitrary object from anywhere else in the 

name hierarchy. Links are restricted to being within a single name space (or 

device) and cross-device links are not allowed. This means that name spaces can 

only be joined together at a single point in the naming graph and consequently 

there is a strong correlation between the global pathname to an object and the 

name space to which it belongs. Since name spaces are associated with physical 

devices, names are no longer location independent and a useful form of 

transparency has been lost. 

Obviously, if Unix directory entries were to be extended to allow a device 

number, this could be used together with the inode number to identify any object 

on any device in the system uniquely and hence allow cross-device links. 

However, there are two important issues to be considered here. Firstly, there is a 

trade-off between the extra space taken up by the larger directory entries and the 

frequency with which cross-device links will be required. In other words, there is 

a trade-off between locality of reference and space-efficiency. Secondly, and more 

importantly, it is possible for an object referred to by a cross-device link to become 

temporarily unavailable, for example if the disk on which it resides were to be 

removed. The complications this causes for the naming algorithms were discussed 

in section 2.1.3. 

Extending the size of the directory entry solves the problem at one level but is 

not a recursive solution to the more general problem. Unless the low-level device 

and inode number pairs are themselves globally unique across all possible Unix 
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systems, it will still not be possible to join Unix systems together recursively and 

allow cross-system links for precisely the same reason that the non-uniqueness of 

inode numbers prevented cross-device links. Again, the introduction of unique 

system identifiers would appear to solve the problem, but only until it became 

necessary to introduce more structure and recursively compose systems of 

systems. The basic problem is that introducing a flat name space at any level 

restricts the growth of the system beyond that point unless the global uniqueness 

of names can be guaranteed between all existing and potential systems at that 

level. On the other hand, extensible sequences of locally unique identifiers are 

amenable to recursive construction techniques, providing it is feasible to use such 

complex names at the lowest level in the system. 

Ultimately, all objects must be uniquely identified by the system which 

defines them, since otherwise there is no concept of identity and the distinction 

between objects becomes meaningless. The difficulty is in deciding what form that 

identifier should take and what constraints its choice of value should impose on 

the construction of other systems which may be merged with the local system. In 

particular, is it reasonable to hope for transparency at every level of a recursively 

constructed system or is there a balance point at which the cost of providing the 

extra level of transparency outweighs its benefits? Should we aim for the illusion 

of a single system with its own internally unique set of identifiers or a 

compromise solution in which internal system boundaries are visible because 

implementation constraints make the use of globally unique identifiers 

internally impossible? There is little point in providing functionality which will 

not be used or is not required. Often the best compromise is to make the common 

cases work well and the rare cases possible. 
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3.2.2. Joining Name Spaces Together with Mount 

So far we have discussed the impact that joining name spaces together has on 

the low-level identifiers used internally by a system. If it is possible to hide the 

boundaries between name spaces internally by extending the range and 

uniqueness property of the internal identifiers to cover the composite name space 

then there is no reason why the high level pathnames seen by users of the system 

need be affected. However, in general this kind of internal modification is not 

possible and will be limited in scope in any case for the reasons discussed in the 

previous section. Consequently, there will still be a need to extend the pathname 

mechanism at the higher level as an additional way of joining name spaces 

together. Some systems make no attempt to do this transparently but simply 

make the full name of an object include a device name which is distinguished 

from the rest of the name by a separator. This is not extensible. In contrast, the 

Unix concept of mount is a genuinely recursive mechanism for joining name 

spaces together transparently (although it does not tackle the problem of cross

device links). 

The idea of mount is to join together two disjoint file systems to form a 

continuous whole. As far as naming is concerned a file system is just a self

contained name space stored on a single device. Being tree structured it will have 

a unique directory at the base of the tree and being self-contained this directory's 

.. entry must point to itself. The mount operation consists of overlaying a leaf 

directory in a local file system with the base directory of another file system (Le. 

mounting one system onto another). 
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In achieving this, several problems must be overcome. Pathnames through the 

directory which is overlaid (the mount point) must cross from one name space to 

another. Similarly, pathnames from within the mounted volume which pass 

through its base directory with .. will emerge at the mount point in the parent 

name space and continue up the parent naming tree. It is possible to mount 

further naming spaces, even onto volumes that are themselves mounted; in other 

words, the process is recursive. 

An example will illustrate these points. Suppose a naming system containing 

the object Y II has been mounted at AlB. The base directory of the mounted 

naming system will now coincide with the mount point AlB and so I will now be 

accessible as AIBIY II. 

A 

/ '" B 

/ '" C 
/ 

D 

/ '" y 

'" Z 

On the other hand, any objects previously accessible from B (such as a subtree 

beginning I A/B/C/O) will be unreachable until the Y I I naming system is 

unmounted. B will coincide exactly with the base directory of the mounted 

volume, even as far as the. and .. entries are concerned. In particular, .. from 

the base directory of the mounted volume will coincide with the original meaning 

of BI .. (Le. A). This will clearly require some ingenuity in the kernel name 

resolution because in effect .. in the base directory has become a cross-device 

link, a concept that is supposedly forbidden because of the way in which directory 

entries are implemented in terms of inode numbers which are purely local to one 

device. The transition across the mount point must be handled from the inside 

going out ( .. ) as well as from the outside going in. 
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Mount is implemented by locking the inode for the mount point and the base 

directory of the mounted volume into memory. Every time the name resolution 

algorithm goes to fetch an inode from disk (in order to read the contents of the 

directory it refers to and resolve the next portion of the name) it checks the table 

of mount points first and indirects to the inode for the base directory of the 

mounted volume if necessary. This handles crossing the mount point from 

outside; crossing it from inside via .. is rather more complex. Essentially, there 

has to be a special case for a .. entry occurring in the base directory of a mounted 

system (this directory can be recognised by its inode number which always has 

the same value). When a pathname includes such a .. component, it is 

interpreted in the original inode for the mount point rather than the inode for the 

base of the mounted volume. In this way, the kernel ensures that .. correctly 

indicates the parent directory of the mount point rather than the parent of the 

mounted volume's base directory which is always itself. Notice that it is not 

possible to modify the .. entry in the base directory at mount time to make this 

unnecessary because directory entries describe files just in terms of inode 

numbers, unique only to a particular volume, and are therefore incapable of 

naming files on another volume. An unfortunate consequence of this is that any 

user-level program that reads directory entries and pays any attention to the 

inode value must be particularly careful at mount points because the information 

in the directory is not correct. Not only does an implementation detail make itself 

visible but it does so in a way which violates the transparent bridging of the gap 

between naming systems provided by mount. 

One program that has to be aware of this subtlety is the algorithm used to 

determine the root relative pathname of the current directory, the pwd program. 

Although the pathname can be expressed from the current directory as a 

sequence of .. segments corresponding to the depth of the current directory in 

the tree, this is not very helpful! The pwd command must effectively reverse this 
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pathname and give a name to all the anonymous .. values. This involves 

recursively searching the parent directory for an entry whose inode corresponds 

to that of the current directory; the name of that entry is the ttreal" name of the 

directory (in the sense discussed in section 2.3.5). Since the directory search will 

not succeed at a mount point, further ingenuity is required. There is a stat system 

call which returns details about a file, effectively the contents of its inode entry, 

including the inode and device number. Naturally, the inode value returned by 

stat should normally match that found in the directory entry for the file but in the 

presence of a mount point they will differ since the indirection implied by the 

mount will take place. 

It is worth observing that the pwd algorithm would be trivial with the 

alternative naming scheme proposed in section 2.3.5 that avoids the use of .. 

altogether, provided it was possible to recognise the directory entry for the parent 

directory (which under the new scheme would no longer have a uniform name 

such as .. ). Since by convention. and .. are respectively the first and second 

entries in every directory, the same convention could be employed with the 

revised naming system. The pwd command would then simply have to reverse the 

chain formed by the second entry in every directory between the current context 

and the root directory, the arrival at root being recognised by the use of stat to 

match the prospective pathname against /. The disadvantage of this scheme 

would be that the locality condition which ensured no ambiguity would have to 

extend across the mount boundary, imposing restrictions on the names in a 

physically distinct naming graph. This is a pessimistic way of looking at it; a 

more optimistic view would be that the restrictions are imposed on the choice of 

site for the mount point, perhaps an improvement on the current implementation 

which allows a mount to occur at any point in the naming tree, possibly hiding a 

sub-tree. 
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We have discussed in some detail the mechanisms by which mount joins two 

name spaces together and ensures that the join (almost) doesn't show. The link 

from inside the mounted volume via .. to the parent of the mount point has to be 

implemented as a special case; in effect, .. is the single cross-device link allowed. 

However, it would be possible to generalise this mechanism by adding a special 

kind of inode for references outside the naming system. Mount would then be 

more like completing part of a jig-saw puzzle by matching up these unresolved 

references to the corresponding entries in the other system. Indeed, the result 

would be more symmetrical, combining two name spaces to form one and 

resolving some pairs of unbound references while leaving others still unbound in 

the composite name space. Such an algorithm could be applied recursively to 

generate bigger name spaces out of smaller ones providing the mechanism for 

binding references across name spaces was extensible. This would tend to rule out 

anything based on unique names for naming spaces; instead, references would 

have to be resolved using relative names for adjoining name spaces. The idea 

discussed in section 2.3.5 of eliminating .. and replacing it with a locally unique 

name would suffice for this purpose and would give a pleasing symmetry between 

the implementation of directories and larger naming spaces such as devices. 

Cross-device links are effectively prevented in a standard Unix system by the 

way in which inodes and links between directory entries are implemented. 

However, there are other reasons for imposing such a restriction which must be 

overcome before it is possible to propose an honest alternative which improves on 

this situation. The fact that it is possible to mount and unmount name spaces 

means that parts of the naming tree may not always be present. A cross-device 

link is effectively unbound if the device which it refers to has not been mounted. 

Furthermore, an object cannot be deleted while there is a remote reference to it 

from some other name space. This effectively removes some of the autonomy from 
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each name space. The implementation of cross-device links requires 

synchronisation and cooperation between name spaces. 

Given that it is acceptable for an object to be absent sometimes, these 

problems are soluble by using an extra level of indirection through a dummy 

inode that has no local name, thereby ensuring that the reference count on a 

remotely accessible object can never fall to zero so long as this shadow entry 

exists. Deleting the cross-device link would therefore involve deleting this special 

anonymous reference on the local disk, permitting the object to be reclaimed 

when necessary. However, at mount time there would remain the difficulty of 

matching up the two name spaces. Ifit were possible to mount a different volume 

at the same mount point then confusion could ensue. Without introducing unique 

identifiers over the space of all possible mountable volumes this is basically 

insoluble although the probability of confusion can be made arbitrarily small by 

using random numbers as upseudo-unique" identifiers. Perhaps this is not 

actually a problem in practice since Unix makes no checks at mount time and 

devices tend to be mounted in the same place. Otherwise well-known pathnames 

would simply not work. Consequently, a simple interface signature based on 

matching unresolved names would probably suffice although with malice 

aforethought it would be possible to forge an interface and wreak havoc, 

assuming the physical opportunity to substitute one volume for another was 

available. Exchanging purely locally unique identifiers is all very well but could 

theoretically fail since identical sets of such «unique" identifiers could be 

generated independently on independent volumes. 

Of course, the symbolic links discussed in section 2.3.6 also provide a solution 

to the problem of creating cross-device links. Indeed, this is probably why they 

were introduced in the first place. Because th 3 value of the symbolic link is a 

pathname rather than an inode number, it can cross mount points and refer to 

objects on other devices. However, the existence of a symbolic link to an object 
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does not guarantee the existence of the object itself because symbolic links are not 

real links, unlike the genuine cross-device links discussed in the previous 

paragraph. Because a symbolic link does not affect the reference count of the 

object it denotes, that object may be deleted leaving the symbolic link behind as a 

dangling pointer into thin air. A symbolic link is not an alias in the sense of 

section 2.1.3. 

In conclusion, mount provides a very elegant (if not quite perfect) way of 

joining name spaces together. It is therefore not surprising to discover that many 

of the attempts to construct a transparently distributed Unix system have been 

based on a generalisation of mount. However before examining such transparent 

distributed Unix systems in section 3.4, it is instructive to put this work into 

historical perspective by considering some of the earlier attempts to build a 

distributed Unix. The resulting systems were not transparent, and the problems 

this caused were one of the main motivations in the development of the idea of 

transparency. 

3.3. Non-Transparent Distributed Unix Systems 

Unix was developed in a research laboratory of Bell Telephone so it is perhaps 

not surprising that since its very early days, attempts have been made to join 

Unix systems together over networks to produce some sort of distributed system. 

The UUCP system [Nowitz78] was one such attempt and is still in use today, 

forming the basis of Use net, a worldwide collection of about 2000 Unix machines 

which can transfer mail and news between each other. 

UUCP usually operates over serial lines and other forms of wide area network. 

It supports a point to point network, with the software recognising names of the 

form system!pathname. It is possible to indicate a route by concatenating 

system names. For example, A ! B I C would name a file C on machine B reached via 

machine A. The local machine (which is not named in the path) need only know 
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about system A. It does not necessarily know about machine B and might even 

know about a different machine B which is why it is necessary to designate a 

route through machine A explicitly. However, at least within Usenet, system 

names are supposed to be globally unique and it is therefore possible to rely on 

automatic route finding software and simply use a name of the form B! C 

unambiguously. 

This kind of naming mechanism is far from transparent. It introduces a new 

form of name with an unconventional separator (! rather than I) and thereby 

distinguishes system names from file names quite explicitly. Special utilities are 

required for accessing remote files as opposed to local files because no attempt has 

been made to integrate the UUCP commands with their Unix equivalents. For 

example, the Unix cp command cannot be used for remote file transfer because it 

does not recognise UUCP pathnames. Instead, a special program called uucp 

must be used to perform the copy. But perhaps this lack of transparency and 

failure to integrate UUCP with Unix is reasonable considering that a loosely 

coupled wide area network is being used for communications. After all, the 

remote copy will take much longer than the local copy, the source or destination 

machine may not always be available, special forms of authorisation may be 

required and it may even be necessary to perform the actual transfer offline 

rather than on demand. To pretend that the two types of copy operation are the 

same by integrating them into one command might be misleading. This is the 

dilemma that the designer of a transparent system must face. The whole point of 

transparency is to mask the distinction between local and remote objects but if it 

is not always natural to do so, is some transparency better than none at all (or is 

transparency, like virginity, an all or nothing property)? 

More recently, the University of California at Berkeley have implemented the 

DoD Arpanet protocols in their version of Unix. As well as providing the ARPA 

telnet and ftp protocols which were designed for remote terminal access and file 
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transfer between arbitrary operating systems, Berkeley have also provided more 

Unix specific application protocols for remote login and remote copying of files 

which take care of some of the authentication issues transparently. The Unix 

specific utilities are more usable between Unix systems than the general purpose 

ARPA utilities which have to be able to cope with heterogeneous systems with 

little in common. There is also a facility for remotely executing shell commands 

which makes it possible to pipe the output of a command on one machine into the 

input of a command on a different machine. However, like UUCP, the naming 

syntax for remote objects (in this case sy stem: path name) is only recognised by 

certain applications. It is not possible to use an arbitrary Unix command such as 

diffwith remote files unless they are first copied to the local machine. Nor is it 

possible to move the current directory onto a remote machine. 

Rewriting every application so that it understood the new naming syntax 

would not help to solve the current directory problem since the current directory 

is a property of the process rather than the application and is used internally by 

the Unix kernel to resolve pathnames. It would be necessary to duplicate the 

entire Unix name resolution algorithm in each application. A much better 

solution would be to move the recognition of the new style of name from the 

application into the Unix kernel itself, thereby making the ability to access 

remote objects common to all applications. This is the idea behind the various 

attempts to build a transparent distributed Unix system. 

3.4. Transparent Distributed Unix Systems 

Achieving transparency is not just a question of moving the resolution of 

remote names into the kernel. Indeed, names of the form sy stem: pat h n arne are 

not transparent at all. They are manifestly different from ordinary Unix 

pathnames and make it quite explicit that the object being referred to is remote 

rather than local. In order to achieve full transparency, it is necessary to find a 
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way of integrating remote names into the standard Unix pathname syntax. There 

are several issues to be considered and not surprisingly the various 

implementations of transparent distributed Unix systems have adopted different 

solutions. We will discuss some of the naming possibilities now with particular 

reference to four such distributed Unix implementations. For a more complete 

survey and comparison of distributed Unix systems see [Barak86, 

Brownbridge82,Vandome86,Wupit831. 

3.4.1. The Newcastle Connection 

The Newcastle Connection (or NC) [Brownbridge821 was designed solely from 

the naming viewpoint, the chief issue being how remote objects would be named 

in a distributed Unix system. It also reflects the recursive design philosophy 

prevalent at Newcastle [Rande1l831, which led to the formulation of a version of 

the recursive structuring principle described earlier in section 3.1 for distributed 

systems: 

((A distributed system should be functionally equivalent to 

the systems of which it is composed." 

There is some justification for this approach in the fact that a stand-alone Unix 

system may be partitioned into subsystems by redefining the root directory as 

described in section 2.3.2. Such a partitioning is effectively inwards recursion; 

what the NC provides is outwards recursion. However, the difference is that 

whereas a closed subsystem is intended to have a closed root, the NC is intended 

to be used with an open root as we shall see shortly. 

The NC ensures that the overall naming graph of the distributed Unix system 

remains tree-structured by grouping the root directories of individual systems 

together into what is sometimes referred to as a usuper-root" directory. The most 

logical name for this usuper-root" directory is / .. because it is the parent 
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directory of all the individual root directories. This is why the NC requires an 

open root semantics. 

For example, consider three Unix systems named A, Band C, each with their 

own root directory. The naming graph for the distributed system which results 

from joining these three systems together with the NC would look like this: 

/ .. -+~ 
/ -+ ABC 

From system A, files on system B can be reached via a pathname that begins 

/ .. / B. This leads to the root directory for B. Thus the directory / use r / rob e r t 

on B would be named / .. /B/user/robert from A. Notice that the / .. 

directory contains named entries for each system's root directory but that local 

pathnames are not affected by the extra directories because the definition of / on 

each system remains unchanged. 

Although some distributed Unix systems have mistakenly made this ttsuper

root" into something special with its own naming syntax, in keeping with its 

recursive structuring principle the NC treats / .. as just another directory and 

the concept is therefore extensible. Instead of having a single directory above /, it 

might sometimes be more appropriate to add further levels of structure. 

For example, an organisation might wish to group its departments 0 into 

institutions I and its institutions into regions R. With such a naming graph, a 

pathname of the form / .. / .. / .. / R / I /0 would be required to reach an 

arbitrary remote system but in a particular case a shorter name might be 

possible. For example, / .. /0' would suffice for another department within the 

same institution and similarly / .. / .. / I I would suffice for another institution 

within the same region. It is always possible to construct the most general 
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pathname to a given point in the tree from the absolute name of that point 

relative to the base of the tree and this name may then be reduced to its simplest 

and most direct form with one of the canonical simplification algorithms 

discussed in section 2.3.5. 

One problem with the I .. naming scheme is that it is necessary to impose a 

definite order on the naming hierarchy. In our example, departments are grouped 

within institutions, rather than vice-versa. An alternative structure might 

sometimes be more appropriate but it is not possible to allow two views of the 

same naming structure to co-exist simultaneously because Unix does not allow 

links between directories or across devices. Consequently, the naming tree is 

fixed and every system shares the same global naming tree. This problem is 

nothing new. The same ordering conflicts can arise in a hierarchical database and 

this is one reason for introducing the flat relational model. The Aspect model of 

naming described in section 2.2.1 allows greater flexibility because it does not 

impose a pre-ordained order on the naming graph. 

Of course, it is not always necessary to extend the hierarchy outwards like 

this. In some cases the systems being united in the distributed naming tree might 

not be on an equal footing but instead exist in some kind of client/server 

relationship. It would then be natural for the server machine to recognise the 

client as a sub-directory but to the client the server would still be above the root 

(Le. somewhere in I .. or higher). The important point is that whenever systems 

are joined together the directory structure which links them is shared. In effect, 
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the I .. directory is replicated across all systems or alternatively exists in its own 

right on a separate system acting as a name server. However, although the NC 

expects individual system administrators to set up the extended naming tree, it 

does not implement replicated directories nor provide any other means of 

enforcing consistency so the tree structure is not guaranteed. 

Directories above root may cause problems for Unix utilities such as pwd 

which assume that the current directory is always below root. This is discussed in 

more detail in section 3.5.1. 

Equating whole systems with directories as the NC does is all very well but 

suffers from a lack of location transparency. If an object is named I .. /A/foo 

then it is manifestly located on system A. If it were to be moved to system B, its 

name would change to I . . I B I f 00. This is not very desirable from an 

administrative point of view nor terribly friendly to the user since it highlights 

the distinction between the individual systems that go to make up the distributed 

system, making it less than fully transparent. Again, a more general linking 

mechanism could be used to hide the underlying physical structure, making it 

possible to group objects on semantic or functional grounds rather than purely by 

location. However, it is possible to manage without this facility simply because 

the individual systems do indeed remain distinct within the distributed whole 

and so it is natural that projects which might require such a grouping of objects 

remain confined to one system. But this is scarcely a justification and indeed 

rather makes a nonsense of the whole idea of distribution. The problem is really 

with Unix rather than the idea of transparent distribution. Names and locations 

should be orthogonal concepts but instead of being separated cleanly they remain 

entangled because Unix pathnames are overloaded with locational information 

instead of just being purely structural or organisational. 
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Another problem with transparency is that a distributed Unix system 

constructed with the NC does not have a proper concept of a user. Users remain 

associated with individual systems rather than belonging to the distributed 

system as a whole and so, at least in this respect, the distributed system is not 

functionally equivalent to the systems of which it is composed. However, the NC 

does allow system administrators to retain control of their machines and does not 

require all the systems to support the same set of users. In fairness to the NC, the 

concept of a user is problematical for all transparently distributed Unix systems 

because it is so ill-defined by Unix itself and tied up with the concept of a system 

directory pointed at by root. Whereas Unix file names are hierarchical and extend 

nicely to a decentralised distributed environment, user names in Unix are taken 

from a flat centralised name space without structure. Unix does not provide 

adequate mechanisms for managing the user space of a large centralised system, 

let alone a decentralised distributed system. Again the problem has more to do 

with Unix itself than the idea of transparent distribution. An inadequate 

centralised mechanism cannot be extended transparently to a decentralised 

system. This problem is discussed in more detail in section 3.5.3. 

3.4.2. NFS 

A completely different approach to organising the distributed name space has 

been adopted by the SUN Network File System (NFS) [Sandberg86]. Disk space is 

limited on an individual workstation and a lot of space will be wasted in a 

network of workstations by duplicate copies of system files. Sharing common but 

perhaps infrequently accessed files (such as on-line manual pages and system 

source code) will clearly save space and if the access to such remote files across the 

network can be made comparable to the access time to a local disk, it will be 

possible to share the entire system file structure and even support diskless clients 
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with centralised file servers. SUN claim to have achieved this performance goal, 

and do indeed support diskless clients with NFS over Ethernet. 

The NFS distributed name space is based on the concept of a remote mount. 

The mount system call has been extended so that it may be used to join a name 

space on one machine to a name space on another, across the network. However, 

unlike the NC approach, this is inherently asymmetrical. The system which 

performs the mount will extend its own naming space by gaining access to part of 

the naming tree of another system but that is all. Although the remote system 

must consent to being the target of a remote mount by publishing which parts of 

its naming tree it is prepared to make available and must be prepared to access 

and modify those parts of its naming tree on behalf of the remote client, once the 

mount has occurred there is no reciprocal arrangement and no single, global view 

of the distributed name space. Each system on the network will see a complete 

tree beneath its root directory /, but each system will see a different tree and it 

will not be possible to access any part of another system's file tree unless it has 

been published by that system and integrated into the local hierarchy with a 

remote mount. Even where the individual naming trees overlap, as for example 

with a shared subtree, at the mount point (i.e. the base of the mounted subtree) 

. . will lead back to the system which is enquiring rather than the system to 

which the shared subtree belongs. In other words, the server which owns the 

subtree will interpret .. at the mount point dynamically, with each system that 

shares the subtree receiving a different interpretation. However, the view of the 

naming tree from each system will be entirely self-consistent and this means that 

there will be less problem with Unix utilities such as pwd and find which depend 

on particular properties of the Unix naming graph (but see also section 3.5.1). 

An NFS server indicates which parts of its naming tree may be remotely 

mounted by publishing details in a system file called / etc / e x p 0 r t s. This is not 

a proper distributed database but merely a local facility which can be used to 
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control the behaviour of the NFS mount protocol daemon on each machine acting 

as a server. The server validates each mount request against its publication list 

and it is possible to restrict the access of a particular subtree to a special group of 

clients. 

Regrettably, the client/server relationship implied by the remote mount 

concept is only a convention and circularities are still possible if the server 

machine itself performs a remote mount back to one of its clients. In this respect 

the NFS is no better than the NC; both systems will behave naturally if they are 

used as they were intended but without any enforcement of this implicit policy of 

no cycles, both may easily be abused. Designing a distributed algorithm that 

enforced a consistent naming tree and prevented the creation of circularities at 

mount time is probably not worth the effort. Once a distributed system has been 

set up its naming structure is unlikely to be changed significantly except to add 

new systems. A reorganisation is likely to be traumatic in any case and this 

provides additional inertia. A small distributed system on a LAN will have a very 

simple naming structure in any case so there will not be much to change. A larger 

system is most sensibly organised as clusters of smaller systems, each locally 

administered. Circularities are only likely to occur accidentally if complex inter

mounting is allowed between these domains but this can either be forbidden by 

design or decree. If the domains represent localities, geographically or 

semantically, the need for such inter-mounting will be less apparent in any case. 

3.4.3. RFS 

The RFS Remote File System [Rifkin86] developed by AT&T is also based on 

the concept of remote mount. Like NFS, there is no need for system names or 

directories corresponding to entire systems to appear in the file hierarchy 

(although there is nothing to stop a server from allowing its entire file system to 

be remotely mounted). However, RFS goes further than NFS in achieving 



Joining Name Spaces Together 65 

location independence by mounting resources rather than specific subtrees on 

specific systems. A resource is simply an extra naming level of indirection 

between what is being published (the RFS term is advertised) and what is being 

mounted. A system will advertise a portion of its file system as a particular 

resource and RFS will maintain a distributed database which maps resource 

names into physical locations. If for some reason a system becomes unavailable, 

there is no reason why the same resource should not be provided by another 

system because a potential client is not aware of the actual location of the 

resource. Unlike NFS, the list of advertised resources really is distributed and if 

the system acting as name server crashes or becomes unavailable because of a 

network fault, another system will be configured for this role automatically. 

As an organisational aid RFS provides an additional level of structuring on 

resource names called a domain. A domain is simply a collection of unique 

resource names (Le. a context) and it is possible to mount a resource from another 

domain by using a qualified name of the form doma in. resou rce. However, this 

scheme is not recursively extensible (with domains of domains) although there is 

no reason in principle why it should not be. It is perhaps unfortunate that the 

doma in. resou rce style of naming understood by the RFS database and remote 

mount command introduces yet another form of name to Unix but the clean 

separation between logical resources and physical pathnames is important. 

Remote mount makes it unnecessary for system names to appear in the naming 

tree at all. 

3.4.4. LOCUS 

Whereas the Newcastle Connection joins together whole Unix systems as 

directories in a single tree and NFS/RFS join Unix systems into a forest of 

overlapping trees, the LOCUS system [Walker83] adopts a third approach and is 

perhaps the most transparently distributed of all the systems we have considered. 
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However, although a LOCUS system is certainly functionally equivalent to the 

Unix systems of which it is composed, LOCUS is not really recursively structured 

as we shall see. 

The LOCUS distributed naming tree is identical to an ordinary Unix tree. 

There is only one root directory / for the entire distributed system and therefore 

all the system directories and files such as / etc / pas s w d only occur once in the 

naming tree. This is not the performance bottleneck that it might seem because 

LOCUS supports replicated files and the name of a file is unrelated to the location 

of its nearest copy. In particular, all the important system files and even the root 

directory itself are likely to be replicated locally on every machine, with the 

LOCUS system ensuring that all updates to replicated files are propagated 

automatically and consistently. This facility alone is an important 

administrative convenience since otherwise it is all too easy for separate copies of 

what is supposedly the same file to get out of step. 

Although LOCUS maintains the illusion of a single virtual system, it does not 

follow that one version of each file in the naming tree will suffice, however many 

times it is replicated. Files containing executable code will only execute on one 

type of processor, so in a heterogeneous environment it is not possible to maintain 

a single version of the standard Unix utilities in /b i n (or indeed, any other 

program that is to be available on all machines). Instead, one version is required 

for each processor type but this fact must be concealed to preserve the illusion of a 

single system with a single / bin directory. This is achieved by the use of hidden 

directories. Each entry in / bin is actually a directory containing a version of the 

program it represents for each possible processor type. Thus, although / bin / c p 

may appear to be a simple program, it actually stands for one a series of programs 

with names of the form /b i n/cp@/m68, /b i n/cp@/vax and so on, where the @ 

is an escape mechanism which allows the name to fall through into the hidden 

directory. When LOCUS resolves a pathname such as /bin/cp, it applies a 
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context-dependent translation to pick an appropriate file in the hidden directory. 

Part of the state of each process is a list of acceptable hidden directory names, 

effectively indicating the processor types on which that process is prepared to run. 

A second LOCUS facility is made necessary by the Unix convention of storing 

system-related information in special files with well-known root-relative names. 

This equates the notion of a system rather too closely with the concept of a root 

subtree containing certain files. For example, I tmp is a directory used by 

convention to store temporary files and let c I u tm p is a file used to record who 

has logged on to the system and is currently using it. Although it would be 

possible to have a single version of both these files for the entire LOCUS system, 

it would not be very efficient or even appropriate to do so. There is no need for 

Itmp to be a public directory and it would be inefficient and unnecessary to go to 

the trouble of ensuring that every system had a globally consistent view of the 

contents of Itmp.1t should be as local as possible rather than shared publicly. For 

different reasons, it is not desirable to have only one version of I etc/u tmp. If the 

file was shared by the entire LOCUS system then it would only be possible to find 

out about the state of the entire distributed system rather than each local system 

with a private version of letc/utmp. Consequently, even at the risk of violating 

transparency, it is desirable to make pathnames such as Itmp or letc/utmp 

special references to a unique version of the file on the local system. LOCUS 

achieves this by maintaining a special sub-tree of site-specific files for each 

system in the global naming tree and trapping the conventional Unix names for 

these objects with a special form of symbolic link. Thus, letc/utmp in the shared 

root directory is actually a symbolic link to (LOCAL)/utmp where the special 

name (LOCAL) is automatically translated into a site-specific pathname in a 

context-dependent way. (Again, this translation is part of the state of each 

process, and may be manipulated by some new system calls.) See also section 

3.5.4 for an alternative approach. 
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The hidden directory mechanism and < LOCAL) facility are controlled 

breaches of transparency, making the individual systems which makes up the 

distributed LOCUS system temporarily visible for reasons of expediency, 

efficiency or necessity. However, the illusion of a single system is otherwise 

remarkably complete. In particular, the sharing of a common / etc / pas s w d file 

means that there need be no concept of a user belonging to a particular system 

because the individual systems have effectively ceased to exist. They have all 

coalesced to form a single virtual Unix system distributed across the network and 

a LOCUS user belongs to this system. User ids and group ids remain globally 

unique under LOCUS. Similarly, process ids are also allocated in such a way that 

they too remain unique across the distributed system. This makes it possible to 

send signals to remote processes without ambiguity, preserving the illusion of a 

single centralised system. 

But the almost total transparency of LOCUS has been achieved at a price. 

Although it is recursively structured, the structure is effectively flat. Because a 

LOCUS system does not have any sub-systems but is merely transparently 

equivalent to a single system, the only way in which two LOCUS systems may be 

joined is by merging them into one system, resolving all the conflicts that will 

occur in the globally unique id spaces they both assume. It is simply not feasible 

to carryon joining LOCUS systems together in this way, resolving more and more 

conflicts and growing system files like / etc / pas s w d indefinitely. Without 

introducing sub-structure the sheer size of the resulting system will make it 

unmanageable but the very transparency of LOCUS prevents such sub-structure 

from being added for then the LOCUS distributed system will not be identical to 

its component systems. 

Herein lies a paradox. Transparency may be a good thing in a small system, 

but does it scale for a really large system? To be recursively extensible a system 

must either have no structure (Le. be based on flat naming spaces) or else an 
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infinitely extensible structure (Le. be constructed from relative rather than 

absolute pathnames). No compromise is possible because any finite limit on 

structure will set a barrier to recursive extension. 

3.5. Some Impediments to Transparency 

Although the extensible hierarchical naming provided by the Unix file system 

makes it easy to devise a transparent scheme for naming remote files, there are 

many other subtle details which must be attended to before a genuinely 

transparent distributed Unix system can be constructed [Marsha1l86]. Not every 

aspect of Unix is recursive and indeed some features of the system call semantics 

depend on flat naming spaces and are therefore extremely awkward to extend to a 

distributed system without altering the interface and violating transparency 

[Stroud86]. This difficulty only arises because an existing system, warts and all, 

is being used as the basis for the transparent distributed system. Such an 

evolutionary approach protects investment in software and expertise at the cost of 

requiring backwards compatibility with unfortunate features which were never 

designed with distribution in mind. A revolutionary design for a distributed 

system, built from scratch without the need to be compatible with any previous 

system, should not suffer from this kind of problem in theory. However, there is 

still a need for the designers of revolutionary systems to be aware of these issues, 

since otherwise they might fall into the same trap by accident. If a distributed 

system is not properly recursive then it will be difficult to merge two such 

systems for precisely the same reason that it is difficult to combine two 

centralised systems into a distributed system transparently. 

With this is mind, and in no particular order, we will consider some of the finer 

points to be observed in constructing a transparent distributed Unix system and 

extract some general principles about the construction of a distributed name 

space in the process. 
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3.5.1. Naming Graph Semantics 

Any alterations to the structure of the Unix naming graph may have subtle 

and unexpected consequences for programs that assume a certain property. For 

example, the pwd program used to print the root-relative pathname of the current 

directory assumes that the current directory is always below root, and the find 

program used to exhaustively search a portion of the directory hierarchy assumes 

that the graph is tree-structured apart from multiple links to the same leaf nodes. 

Both of these properties can be violated by the mechanism used to construct an 

otherwise transparent distributed Unix system. However, because these are 

special cases, it could be argued that such utilities should be altered non

transparently in order to preserve full transparency for the rest of the system, 

rather than abandoning the concept of transparency altogether because it cannot 

be made to work all the time. 

In general, it is impossible to tell which aspects of the Unix naming graph 

semantics have been taken for granted in the design of a particular algorithm. 

Consequently, unless every aspect of these semantics is preserved (i.e. the 

transparency is complete), something may break. In practice this is not such a 

problem because Unix provides an environment of cooperating software tools, 

rather than an uncoordinated bunch of competing utilities. Consequently, deep 

knowledge about the file system semantics is only concentrated in a very few 

system utilities (such as pwd and find), and these can be dealt with on an 

individual basis. 

3.5.1.1. pwd 

Any distributed Unix system (such as the Newcastle Connection) which 

preserves the tree-structure of individual Unix name spaces by making them sub

directories of a directory above their root directory will have to cope with Unix 

utilities that assume the current directory is below the root directory. In 
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particular, any utility which attempts to deduce the full pathname of the current 

context using the pwd algorithm must be prepared to cope with the possibility 

that the current directory is positioned above root or in a subtree which is parallel 

to the root context in some sort of cousin rather than son relationship. 

The correct algorithm for discovering the full pathname to the current context 

in an arbitrary tree where the root context is not necessarily positioned at the 

base of the tree is as follows: 

(a) Work up from. using the normal pwd algorithm until you 

either find / or else encounter a directory which is its own 

parent (i.e. the base of the naming tree). 

(b) Assuming that / is not encountered en-route, start again 

from / and work out how many .. steps are required to 

reach the base of the tree. 

(c) Prefix the appropriate number of / .. stages to the 

pathname deduced in (a). This is the full pathname to an 

arbitrary point in an extended naming tree. 

This algorithm assumes that the tree has only one directory which is its own 

parent, i.e. the base of the tree is unique. Consequently, the points discovered at 

stages (a) and (b) will coincide. However, if this was not the case the tree would 

not be a tree and so the concept of a unique full pathname would be meaningless 

anyway. 

Notice that this algorithm results in the most general pathname for the 

current context via the base of the tree rather than the most direct or canonical 

pathname. In general, although any two points in a tree will always have the base 

of the tree as a common ancestor, there may be a less remote point in the tree at 
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which their paths back to the base coincide. Discovering this most recent common 

ancestor amounts to calculating the canonical pathname between the two points. 

Given a mechanism for comparing two pathnames for identity it is possible to 

obtain the canonical pathname from the absolute pathname by progressively 

simplifying the more complex name until no further reductions are possible 

without invalidating or changing the meaning of the name. If the system relies on 

globally unique identifiers to distinguish objects, and ifit is possible to derive the 

identifier for an object from a pathname which denotes it, then it is possible to 

streamline the simplification algorithm further. During stage (a) the unique 

identifier for each ancestor encountered on the route back to the base of the tree is 

stored so that as each potential common ancestor is visited at stage (b) its unique 

identifier may be checked against the known ancestors from stage (a). 

But even this algorithm may visit more nodes than is strictly necessary 

because, although ideally there is no need to search up the tree beyond the 

common ancestor, there is no way of recognising this point in advance. Since the 

cost of visi ting a very remote node such as the base of the tree may be very high, 

especially if the naming tree covers a large distributed system dispersed across a 

wide area network, it is better to avoid ever having to calculate the full pathname 

of the current context from first principles by keeping track of it at all times. If 

the starting location is known (and ultimately this will be supplied as part of the 

bootstrapping process) it will be possible to apply an incremental algorithm as the 

context moves relative to this point and this will be much more practical. The 

pathname can then be made available via a system call. Modern versions of the 

Unix shell support pwd directly as a built-in command and do indeed keep track 

of the pathname to the current context at all times. This is possible because the cd 

command to change directories must also be built into the shell (since running cd 

in a child process would have no effect on the parent shell). 
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Regardless of the algorithm used to calculate the full pathname to the current 

context, hopefully every program that requires this information will either 

invoke pwd directly or else use a library function (such as getwd which is defined 

in the SVID). Consequently, the introduction of / .. and other directories above 

the root should only affect a couple of utilities at most. 

3.5.1.2. find 

Some Unix systems impose a closed root and equate / .. with / automatically. 

This makes it impossible to create directories above root. Consequently, remote 

systems may only be positioned below root in the naming tree. If the distributed 

name space is symmetrical and allows system A to access system B and vice-versa 

then it will be possible to construct a circular pathname from A through B to A 

again. For example, if by convention all remote systems were found in a / net 

directory then from system A the pathname / net / B / net / A would denote A's root 

directory and would be the beginning of an infinite loop. If the naming graph is 

not tree-structured then any program which attempts to visit all the nodes in a 

sub-graph systematically, such as find or an archiving program like tar, will not 

work correctly because it will be based on a recursive algorithm for traversing a 

tree rather than an arbitrary graph. 

Programs such as find need to be able to detect the second time an inode on a 

given device is visited in order to handle links correctly. This could be achieved by 

using a bitmap for each device. However, it would be wasteful of memory to keep 

a bitmap for every device visited and in any case device numbers are only unique 

within a single system. Without an explicit system identification embedded in the 

device number there would be a danger of confusion when traversing a name 

space that spanned several systems because the same device number could occur 

several times for different devices. It would also be reasonable because of the way 

mount works for the find algorithm to assume that having exhaustively visited 
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all the files on one device there would be no further references to that device from 

elsewhere in the naming tree. A given device may only be mounted in one place at 

a time on a single system but although this is also true for a network of systems it 

is no longer apparent that this is so because device numbers are no longer unique. 

This problem is much harder to solve than the pwd problem because the 

programs involved are fairly complex and there are more of them to deal with. 

Until recently, Unix provided no primitive function or software tool (apart from 

find which is rather cumbersome to use in practice) for recursively enumerating 

all the nodes in a naming sub-tree systematically. Any program which needed 

this functionality was written on an ad-hoc basis. Although the SVID now 

provides such a function (ftw) it is unlikely that old programs will be converted to 

use it. Even if they were, it would be difficult to modify ftw so that it worked 

correctly in a distributed environment because of the inadequate Unix facilities 

for identifying files uniquely, a direct consequence of making the flat name space 

of device and inode numbers visible. 

The best solution is probably not to tackle this problem of identification at all 

but simply to prevent pathnames from passing through more than one remote 

system. This will prevent loops in the naming graph caused by the connections 

between systems but will also mean that name resolution is no longer 

transparent for complex pathnames. We will explore the implications of this 

further in chapter 5. However, in the meantime, a lingering difficulty is how to 

deal with pathnames that cannot be resolved such as Inet/B/net/A. One 

approach would be to make the point at which the naming graph loops behave 

like an unreadable directory. (In our example, that would mean that 

Inet/B/net was unreadable and consequently Inet/B/net/A could not be 

resolved.) This is a transparent solution but it is not a truthful solution and could 

have paradoxical consequences. It might be less confusing to violate transparency 

by introducing a new type of file system object to denote a remote system. Of 
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course, this would require modifications to all the programs which know about 

the various types of object in the file system (and in particular the Is program 

which gives detailed information about the contents of directories). Unix is not 

easily extensible in this way. The file system is not a general purpose repository 

for arbitrary types of object. Instead, it supports a very limited number of 

primitive objects and knowledge about the semantics of these objects is scattered 

throughout the system in various utilities rather than concentrated in one place. 

The best approach would probably be to adopt the solution used to prevent 

looping symbolic links and introduce a new error code. This error code would be 

returned whenever an attempt was made to use a pathname which passed 

through more than one remote system. Unix has a uniform convention for 

reporting the failure of a system call and since most programs are not interested 

in the detailed cause of a problem they would be unaffected. Only the list of error 

messages printed by the perror subroutine would need to be altered (although this 

would require relinking every program which used perror unless dynamic linking 

was supported). 

This is a general solution to the problem. A more specific solution might be 

appropriate for particular utilities. For example, SUN have added a flag to find 

which restricts its search to local file systems. However, there is no compulsion to 

use such a flag, and consequently loops must still be dealt with when they occur. 

Furthermore, this is not a transparent solution since requiring the use of a new 

flag would break old commands which invoked find indirectly. Restricting find to 

local file systems by default is backwards compatible but rather defeats the 

purpose of a transparent remote file system! 

3.5.2. Low-Level Identifiers 

We have already alluded to some of the difficulties caused by the fact that 

Unix makes low-level identifiers visible to programmers. It is possible to map 
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pathnames into the device and inode number of the object they denote. Programs 

as familiar as the Unix copy command cp use this facility to check whether the 

source and destination of the copy operation are identical in order to prevent 

accidentally destroying the contents of a file. Because device numbers are only 

unique within a single system, it would be possible in a distributed system for a 

local file and a remote file to share the same identity, even though they were 

quite distinct. Although in theory it might seem unlikely that two particular files 

on different machines could share the same inode number given that inodes are 

effectively allocated independently and at random from a relatively large address 

space, that in itself would be no reason for not addressing the problem. However, 

in practice assumptions of independent random allocation are not always valid 

because it is possible to create disk backups by taking a physical copy of the image 

on the disk rather than a logical copy of its contents. Files with the same name 

are guaranteed to have the same inode number on a backup disk created in this 

way and hence clashes will be inevitable if individual files are copied between a 

disk and its backup. 

It would be easy to solve this problem by adding a system number to the device 

and inode number already provided as identification but this would not be 

transparent. Such a system identifier would have to be globally unique in any 

case to allow further systems to be added to the network without the danger of a 

clash of identity. A better approach would be to provide an extensible pathname 

rather than a fixed hierarchy of values as a low-level identifier. However, this 

would not be transparent either. Without modifying the existing interface, the 

only viable solution is to encode the identifiers of remote objects so that they can 

be distinguished from those of local objects. This is only possible if the address 

space for low-level identifiers is sparsely populated and very few programs (and 

preferably none) are interested in the exact value of the low-level identifiers they 

manipulate. Fortunately, Unix appears to have these characteristics. In 
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particular, most Unix systems only support a handful of devices so very few of the 

values possible in the device number field of an identifier are used in practice. 

Although it would be possible to distinguish remote identifiers from local 

identifiers by setting an otherwise unused bit in the device number, it would still 

be possible to confuse two remote identifiers from different systems. The encoding 

scheme used to distinguish remote identifiers from local identifers must be 

sufficiently ingenious to allow the remote system to be identified precisely. This 

will ensure that identifiers are not ambiguous but in fact there is a more subtle 

reason for this requirement. Some versions of Unix include the ustat system call 

which uses a low-level identifier to obtain statistics about a device. In order to 

handle remote devices correctly the device number must include a system 

identifier. 

There is simply not enough space in a fixed size identifier to encode the 

necessary information but it is possible to store an index into an auxiliary table 

instead. However, this poses various problems in itself which are not actually 

specific to Unix but must be solved by any non-trivial naming system. An 

identifier can only be interpreted correctly while the corresponding table entry 

exists. Without an explicit mechanism for destroying identifiers their lifetime is 

theoretically infinite. Furthermore, since identifiers are supposed to be absolute 

(Le. have the same meaning everywhere), the table must be known throughout 

the system (or indeed the distributed system) so that identifiers can be 

interpreted correctly from any context. Finally, it must be impossible to forge 

identifiers and hence compromise the integrity of the system. 

Although these problems might be soluble if the low-level identifiers provided 

by Unix were large enough to include time-stamps or could be encrypted (and 

whether this was so would depend on the size of the system in any case so that 

such an approach would not scale well), in practice, limitations on the size of 
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identifier available make it impossible to provide full transparency. Nor is it 

really necessary to do so. Although in theory identifiers may be manipulated by 

programs in arbitrary ways, in practice they will only be used in one or two 

standard ways and providing these work as expected the system will be 

transparent to all intents and purposes. For example, it would be easy to 

implement a scheme which gave identifiers transient non-unique values which 

were only valid within the context of the process which generated them and this 

would work perfectly well in practice even though it was not truly transparent. 

Given knowledge of the mechanism used to implement this pseudo-transparency 

it would obviously be possible to write a pathological program that violated the 

transparency but this would not be a reasonable thing to do nor could such a 

program be created by accident. Some variant of this approach to solving the low

level identifier problem has been adopted by all the distributed Unix systems 

which have tackled this issue [Marsha1l86, Rifkin86]. 

3.5.3. Ownership and Authorisation 

The Unix permission system is based on the use of numeric values called user 

ids. (There is also a system of group ids but that does not concern us here.) Both 

files and processes are owned by a particular user id. However, for human 

convenience and in the interests of usability Unix also provides a mapping 

between user names and user ids which is understood by all the appropriate 

utilities. Consequently, it is always possible to work in terms of user names (such 

as robe rt) rather than user ids (such as 42) except when using system calls 

directly from wi thin programs because the Unix kernel itself does not understand 

user names. This was perhaps an unfortunate design choice but it was made long 

ago and no alternative approach has been proposed. The Unix facilities are not 

really adequate for a large centralised system and because they do not scale well 

within a single system they do not work well between systems either. 
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The correspondence between user ids and user names is recorded in a file 

called let c I pas s w d. This file is not shared between systems so a particular 

mapping between user name and user id is only valid on a particular system (or 

more precisely, is only valid whilst the root directory is positioned at a particular 

point in the naming tree). The user name robe rt may denote a completely 

different person on another system or may correspond to a different user id. If 

distribution is occurring at the operating system level rather than the application 

level, it will be numeric user ids rather than textual user names that get passed 

between machines. However, a user id on one machine may denote a completely 

different person on another and it is not reasonable to require a common 

letc/passwd file or a unique identifier for every user of the distributed system 

(although NFS and LOCUS impose just this requirement). Instead, all user id 

values must be intercepted as they are passed between systems and translated 

accordingly. Ideally, this mapping should occur in both directions to ensure both 

that local users have appropriate permissions on remote systems and also that 

ownership of remote objects is reported in terms of local users. However, the 

mapping will not necessarily be one-to-one; indeed, if a whole class of users are 

only allowed guest status on a remote machine it will be many-to-one. 

Furthermore, if a remote user is not allowed to use the local machine there will be 

no suitable inverse mapping at all so a special user id must be provided to denote 

remote objects which do not belong to anyone on the local system. 

If Unix used pathnames instead of numeric values to represent user ids it 

would be easier to represent such remote values providing system names were 

visible in the naming tree explicitly. For example, I .. I AI robe rt could denote 

user robe rt on system A and similarly I .. IBI robe rt could denote robe rt on 

system B. However, if systems A and B were under the same management, so that 

user robe rt on each referred to the same individual, it would be more 

appropriate to use an unqualified robe rt within this context. From outside the 
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domain of A and B a fully qualified pathname would still be required. With such a 

scheme, the natural hierarchy for user names might not follow the system 

hierarchy exactly although it would probably coincide with some grouping of 

systems at a higher level. It would be necessary to recognise when names passed 

out of their defining domain and qualify them accordingly or alternatively to use 

absolute pathnames for users which were valid from everywhere in the system. 

Again, this problem is not unique to Unix and is usually solved by using fully 

qualified absolute names which are guaranteed to be unique and have the same 

meaning everywhere. However, the whole concept of an absolute name is alien to 

the idea of recursively joining systems together because it imposes universal 

constraints on the choice of names rather than purely local constraints. 

3.5.4. Remote Execution 

Providing transparent access to remote files is one thing but being able to run 

programs transparently on any processor is quite another. At the file system level 

of an operating system there is no concept of executing a program. The file system 

is simply responsible for reading the contents of files into memory and does not 

need to know whether such a request comes from a program which wants to read 

some data or the operating system which wants to execute a program. If 

distribution occurs at this level then there can be no concept of remote execution. 

An operating system built on top of a transparently remote file system will 

execute all programs locally, paging them across the network with the assistance 

of the remote file system as necessary. For this reason, NFS and RFS, which are 

both transparent remote filing systems, provide remote paging rather than 

remote execution (although SUN have recently added a non-transparent remote 

execution facility to NFS called REX). 

On the other hand, if distribution occurs at the operating system level then the 

concept of executing a file must be distributed in the same way that the concept of 
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reading a file is distributed. However, because an operating system not designed 

with distribution in mind has no concept of other systems, transparency dictates 

that the choice of execution site must be made automatically. Apart from the local 

system, in the absence of an automatic load balancing facility, the only sensible 

choice is the system where the program resides to avoid incurring the expense of 

copying its object code across the network. The NC has implemented true remote 

execution in this way. However, LOCUS has gone furthest of all towards being a 

transparent distributed system in the strict sense discussed in section 1.1 by 

providing a ((change working processor" command to control where programs are 

executed. (Of course, such a facility is non-transparent being an addition to the 

functionality provided by the original system. Automatic load-balancing would 

provide full transparency.) 

Remote execution poses some interesting problems for the name resolution 

algorithms. As discussed in section 2.3.2, Unix has confused the concept of root as 

a naming context with the idea of a system and many programs use root-relative 

names to access system information such as the mapping between user ids and 

user names in / etc / pas s w d. Executing a program does not change the meaning 

of root and yet certain system programs which are supposed to report information 

about the system they run on will only work correctly if root is moved to that 

system. This would break the interpretation of other root-relative pathnames. 

Unix should provide a special naming context for local files which works 

regardless, irrespective of where programs are executed from (in effect, this would 

be a closure), or else move the information which is presently stored in system 

files below the kernel boundary so that root becomes a pure naming context as it 

should be. In the absence of such a facility, the NC provides a special form of the 

exec system call called excr which moves root to the remote execution site and this 

covers most of these special cases. Because the interpretation of low-level 

identifiers such as user ids and process ids is also tied to the location of root, 
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moving root in this way also is a useful way of reaching remote objects which 

cannot be named with pathnames. 

3.5.5. Summary 

To summarise, building a transparently distributed operating system involves 

solving various subtle problems mainly concerned with notions of identity. If a 

naming mechanism does not scale wi thin a system it will be difficult to extend it 

between systems. Consequently, a pragmatic rather than a fanatical attitude to 

transparency is required in order to build realistic distributed systems out of 

existing systems. Furthermore, many of these problems remain non-trivial, even 

when designing a distributed system from scratch. 

Although some of the difficulties discussed in this section are caused by 

weaknesses in the Unix system call interface, where a lack of recursive generality 

makes transparency difficult to achieve in practice, many of the issues raised 

would apply to any distributed naming system. If names are not globally unique 

but rather are relative to some context and if it is possible to pass names around 

between contexts then they must be transformed en-route so that they still denote 

the same object. Similarly, if names have a transient significance or are only 

valid within an implicit context because they rely on hidden state information 

then they must not be used outside their defining context or after they have 

expired. 

3.6. Conclusions 

In this chapter, we have discussed the problems of joining name spaces 

together, both within a single system and between systems to construct a 

transparent distributed system. Because joining name spaces together is an 

inherently recursive process it is not surprising to find that the same problems 

must be tackled irrespective of the level at which systems are joined. It is 
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therefore natural to base the design of a transparent distributed Unix system on 

an extension of the local mechanism for joining name spaces together, namely the 

idea of mount. However, there are other ways of combining the name spaces of 

individual Unix systems to form a transparent distributed system. The main 

problem is whether to preserve the notion of system. The Newcastle Connection 

maps systems onto directories and provides a single tree structure for the entire 

distributed system. NFS and RFS use the concept of a remote mount to share 

portions of the naming tree between systems but make no attempt to present a 

consistent global picture. LOCUS hides the distribution and the individual 

systems entirely by maintaining the illusion of a single Unix system. However, 

this avoids the problem because there is no way of joining together two LOCUS 

systems short of merging them entirely. Making the notion of a system explicit in 

the naming hierarchy is a violation of transparency because Unix has no support 

for such a concept but without such a notion it is impossible to build distributed 

systems recursively. The real problem is that the Unix concept of a system is not 

recursive so that there is no mechanism for introducing sub-structure into a large 

centralised system which can be generalised to a distributed system. 
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Chapter 4 

Distributed Systems and Global 
Identifiers 

In chapter 3 we considered evolutionary approaches to building distributed 

systems by joining existing systems together. This involved exploring ways in 

which the naming mechanisms of centralised systems, designed without 

distribution in mind, could be extended to cope with remote objects. Structuring 

mechanisms which simplify the administration of a large centralised system may 

be generalised to a distributed system quite easily but in general a naming 

system designed for a centralised environment is not adequate for a distributed 

environmen t. 

In this chapter we will consider some distributed naming systems which have 

been designed from scratch without needing to be compatible with the naming 

mechanisms of a centralised system. In particular, we will explore mechanisms 

for joining name spaces together and resolving naming conflicts. Most of these 

mechanisms rely on the concept of a universally unique identifier and we will 

examine whether such universal uniqueness can be achieved in practice. 

4.1. Global Naming and Name Resolution 

Given the name of some remote resource in a distributed system, there are two 

stages involved in making use of that resource. Firstly, the name must be 

translated into the location of the resource and secondly, messages must be sent 

to this location in order to perform operations on the object. The second of these 

stages is well understood. Typically, locations are identified by unique network 

addresses and routing algorithms make it possible to send a message across the 

network to reach any particular location [Shoch78]. However, the first problem, 

naming and locating objects, involves the design of a distributed naming service 
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and some sort of naming scheme, and this is what we will concentrate on in this 

chapter. 

It is worth observing that the action of resolving a name can be captured 

within this model as an operation performed on a name server resource. This 

poses the bootstrapping problem of locating the name server itself. As discussed 

in section 2.1.2, bootstrapping must be solved outside the naming system. For 

example, the name server may reside at a fixed well-known address or may 

simply respond to a broadcast request issued as part of the initialisation sequence 

whenever a new system is installed as part of the distributed system. 

Of course, it would be possible to design a system that simply referred to 

objects directly by their location (or address) instead of by a more abstract name. 

However, such a system would be unfriendly to use and awkward to reconfigure 

because it would be impossible to reassign objects to new locations without 

changing their name. Names provide a useful level of indirection which distances 

an application from the objects it manipulates. 

In real life, human beings have various ways of resolving ambiguous names. 

Although some attempts have been made to model the human naming process in 

computer systems [Sollins85], it is simpler to assume that all objects can be 

named unambiguously. An easy way to ensure this is to give every object a 

unique name, thereby guaranteeing that there can be no ambiguity since no two 

objects can have the same name. This is known as absolute naming. 

Alternatively, with relative naming the name of an object depends on the system 

which accesses it so that systems are in effect naming contexts. Within the 

distributed system as a whole, objects can have more than one name and two 

distinct objects can share the same name. To resolve this ambiguity, relative 

names must be qualified with the name of the system from which they are valid if 

they are to be used from outside that system. 
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Relative naming encourages a decentralised approach to storing name 

bindings. Only a limited set of names are valid from a particular system and 

consequently there is no need to store the entire name database at a centralised 

location. However, unlike absolute names which have the same meaning 

everywhere (Le. denote the same object), it is not possible to pass a relative name 

from one system to another because it may no longer be valid or may even refer to 

another object. A compromise which imposes more structure on an absolute name 

space is the use of hierarchical names. 

For example, the Xerox Grapevine mail system [Birre1l82] recognises names 

of the form n arne. reg; s try whereas the more recent Xerox Clearinghouse 

name server [Oppen81] (developed as a result of experience with Grapevine 

[Schroeder84]) recognIses longer names of the form 

n arne@dorna; n@organ; sat; on. In both cases, the hierarchy is offixed depth and 

not extensible like Unix pathnames. 

The Xerox name servers are intended to store high level names for objects 

such as people, services and machines. It is therefore reasonable to assume that 

new names will be created relatively infrequently so that uniqueness within a 

certain level of the hierarchy can be ensured by coordinating all name allocation 

through a central administrator. Consequently, this sort of name service is not 

suitable for implementing a file system where names are chosen privately by 

individuals, and the use of directories supports an arbitrary number of levels in 

the naming hierarchy. For this reason, although the Xerox distributed systems 

are constructed around a centralised name service, paradoxically they do not 

support a uniform naming convention for every object they contain. Instead, they 

use a uniform scheme for naming and locating services but thereafter each 

service is responsible for managing its own name space. 
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Although some attempts have been made to design a Universal Directory 

Service [Lantz85] that provides a uniform naming mechanism for all the objects 

in a distributed system, it is perhaps more realistic to recognise that different 

naming domains have different dynamic characteristics (choice of names, 

frequency of update, etc.). Since these characteristics will lead to different design 

choices and trade-offs in an optimal implementation, it is sometimes better to 

implement specialised name services for each application if only to simplify 

administration and improve efficiency. 

4.2. Allocating Unique Identifiers 

A name server maps possibly ambiguous names into unique identifiers used 

by the distributed system to identify and locate objects. Consequently, an 

application such as a distributed file system requires a mechanism for allocating 

unique identifiers to file objects. Ideally, the allocation algorithm will be 

decentralised to make the most of the distributed environment. Individual 

systems should be able to allocate globally unique identifiers independently 

without fear of conflict. 

One approach is to use structured identifiers containing the address of the 

server where the object resides and an identifier for the object which is only valid 

at that server but is otherwise guaranteed to be unique within this limited scope 

[Watson81]. This is effectively a relative address. It is very easy to locate objects 

from their identifiers but then the identifier is not location independent. If an 

object moves to a different server then its identity will change. This dependence 

on the physical address of the server can be alleviated somewhat if the network 

supports the use of logical addresses, in effect names at a different level of the 

system. Alternatively, a multicast address could be used to identify a group of 

servers, one of which would respond to requests for a particular object. This 

approach to naming has been taken by the Stanford V kernel [Cheriton84b]. 
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Even if objects are allowed to move around between systems, unique 

identifiers can still be based on server addresses without necessarily tying the 

object to a particular location. For example, in a homogeneous network based on 

Ethernet [DEC81] each machine is assumed to have a unique 48-bit address 

[DalaI81]. Machines on an Ethernet can independently allocate identifiers which 

are guaranteed to be globally unique by making this address part of the identifier 

for all the objects which they create. Two identifiers generated by the same 

machine are guaranteed to be unique by basing the rest of the identifier on a 

strictly increasing logical clock. This need not be synchronised with the clocks on 

other machines but must never supply the same value twice, even in the face of 

machine crashes. 

By making the machine which creates an object responsible for giving it an 

identifier, this scheme ensures that identifiers are allocated uniquely. However, 

if objects may subsequently migrate to other machines, their identifier will only 

reflect their creation site and not their present location. Consequently, there will 

still be the problem of locating the object and, because it is possible for a 

distributed system by its very nature to be in an inconsistent state, it is always 

possible that the result of resolving a name will be incorrect. Applications must 

be designed accordingly and, in the interests of efficiency, distributed systems 

often use hints and other caching techniques to speed up the resolution process at 

the risk of occasionally getting the wrong result [Terry85]. 

Many of the issues involved in choosing the exact form of a unique identifier 

(or UID) and using it to locate objects in a distributed system are discussed in a 

paper about the design of this aspect of the Apollo Aegis distributed system 

[Leach82]. The Apollo hardware provides a 20-bit unique node identifier which is 

concatenated with a 36-bit clock value to form the basis of a 64-bit UID used to 

identify all the objects in the system. Rather than providing a centralised name 

server to map UIDs into locations, objects are located by a series of heuristics 
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augmented by the use of a hint manager. In this respect, the Apollo system is not 

as sophisticated as the Xerox designs (which are always able to locate an object 

given its name) but on the other hand there is no natural partitioning of the name 

space to simplify the design of the database. Although UIDs must ultimately be 

translated into location-specific structured names, the designers of Aegis felt that 

this binding should be delayed as long as possible so that the unbound UIDs could 

be used uniformly throughout the system (except at the lowest levels). Absolute 

location-independent identifiers have the advantage that they can be passed 

freely from process to process across machine boundaries so that when an object 

migrates, there is no need to locate and update all the references to it from 

elsewhere in the system. This simplifies the problem of unmounting portions of 

the object space stored on physical volumes and moving them between machines. 

4.3. Combining Name Spaces 

Given a mechanism for naming and locating objects unambiguously, it is 

possible to construct a self-contained distributed name space. However, what 

happens when it is necessary to combine two such name spaces into one, so that 

the objects in each of the constituent distributed systems are equally accessible in 

the composite system? Any assumptions about uniqueness used to justify the 

construction of names or identifiers may no longer be valid in the composite 

system, and the resulting ambiguities must be resolved. We will now explore 

some of the problems which arise and the solutions which have been proposed. 

4.3.1. Adding an Extra Level of Hierarchy 

With a hierarchical naming scheme, an obvious approach to combining two 

systems is to add an extra level to the hierarchy containing two domains, one for 

each system. Since names need only be unique within a domain, any clashes 

between the two names spaces will not cause problems providing names are not 

used outside the domain for which they are defined. This approach was taken by 
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the telephone system when first area codes and then country codes were 

introduced. Extra prefixes were added to the standard form of a telephone number 

to give every telephone in the world a unique name under an absolute naming 

scheme. 

For example, the absolute telephone number of the Computing Laboratory at 

Newcastle University is +44 912329233 where 44 is the country code for the UK 

and 91 is the area code for Tyneside. This number may be used from anywhere in 

the world that supports international dialling with the understanding that the + 

prefix on the 44 be replaced by whatever the local convention is for reaching the 

base of the telephone naming tree, that is, the context for resolving 

internationally agreed country codes. This prefix (equivalent to / .. in Unix 

naming terms) varies between countries. In France it is 19 and in the UK it is 

010. In this sense, international telephone numbers are hierarchical names 

defined absolutely except at the outermost level which has a relative name 

(although the + is arguably an access code for the international network which is 

not part of the name). 

Of course, within the UK there is no need to use the absolute name for a UK 

telephone number (the Computing Laboratory becomes 0 91 2329233 where 0 is 

another nationally defined prefix for getting to the national level of the naming 

tree, this time equivalent to / in Unix naming terms) and within the area to 

which the telephone number refers there is no need to even use the area code 

(from within Tyneside, the Computing Laboratory may be dialled as simply 232 

9233 without any prefix). This scheme is possible because at each level of the 

hierarchy names (or in this case numbers) are centrally controlled and 

guaranteed to be unique. There are not two countries with the same code 44 nor 

two areas wi thin the UK with the same area code 91. (There may be several 
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countries which each recognise an area code of 91 but this is not ambiguous 

because an extra level of hierarchy has been added to resolve the conflict.) 

4.3.2. Heterogeneity 

The standardisation of international dialling prefixes for telephone numbers 

has only affected naming at the outermost level. Each national telephone agency 

is still responsible for defining the form of its own national telephone numbers. 

These may include a regional code as well as an area code or may be completely 

flat. The important point is that there need only be agreement on the form of 

names at the level in the system at which the name spaces are joined. 

Unfortunately, it is not so easy to join heterogeneous name spaces together in 

general. Telephone numbers are taken from the limited alphabet of ten numeric 

symbols. Consequently, it is possible to use alien telephone numbers from within 

another telephone number space. They will be transmitted across the local 

number space untouched and only interpreted in the alien number space to which 

they refer. However, arbitrary semantic checks (such as the length of the number 

dialled) or the presence of extra symbols (such as # and .) will cause problems and 

this sort of difficulty is much more likely to arise when the names come from a 

richer name space. 

For example, heterogeneous file systems may not support the same alphabet 

for generating filenames, may use a different character for separating the 

components of a name or may simply impose different restrictions on the length 

and form of a name or one of its components. VMS file names are much more 

restrictive than Unix pathnames and this makes it difficult to combine a Unix 

system with a VMS system transparently. From Unix, VMS names must appear 

to be Unix names and vice-versa. This requires some form of mapping to be 

defined at the boundary between the systems. (It is sometimes even necessary to 

map file names in a distributed Unix system because of differences in directory 
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representation and hence the maXImum length of a filename [Fraser

Campbe1l86, Weinberger86].) 

A similar problem arises when trying to combine two different network 

architectures (such as SNA and OSI) at a gateway [Williamson87]. There must 

either be a way of representing OSI names as SNA names or else the gateway 

must maintain a mapping between the two name spaces, and intercept all 

attempts to pass a name from one domain to the other. 

In general, full transparency is probably unattainable between truly 

heterogeneous systems. Joining systems together involves seeking a common 

abstraction which can be transparently extended by enlarging the name space. If 

the systems are really different this may be impossible. Even if it is possible to 

achieve some measure of transparency it may only work in one direction if one 

system offers a superset of the other's functionality because it will be impossible 

to emulate the more general system on the more limited system. 

4.3.3. Dealing with Old Names 

Even ignoring the particular problems caused by heterogeneity, it is not 

always possible to join two homogeneous systems together by adding an extra 

level of hierarchy. Quite apart from the need to alter all the software to handle 

names with extra structure (especially if the system only recognised a fixed depth 

hierarchy originally), there is also the problem of old names embedded in 

arbitrary programs and files throughout the system. It is usually quite impossible 

to locate all these names and resolve potential ambiguities by translating them 

into the new form. 

One way of dealing with old names is to treat them like unqualified telephone 

numbers found jotted down on bits of paper and assume that the names refer to 

the domain in which they are found. This is only workable if both the original 
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system and the merged system use a fixed depth name hierarchy and require all 

names to be absolute and fully qualified (Le. names cannot be abbreviated by 

assuming a default context). Ifa tree of nested systems is built in accordance with 

these requirements, it will always be possible to identify which level in the tree a 

given absolute name belongs to by simply counting up the levels from the leaves 

of the branch in which the absolute name is found. Even so, there is always a 

danger that because all names are absolute, applications software will not 

unreasonably assume they have the same meaning everywhere and will quite 

inadvertently pass an old absolute name from one branch of the tree to another by 

ad-hoc means, without converting it to its correct, fully qualified absolute form. 

Transparency hides the boundaries between name spaces but there must be a 

mechanism to intercept and convert unqualified names at the boundary before 

they can escape into a context in which they are ambiguous. Unless each system 

only manipulates names through an abstract interface which can easily be 

intercepted at system boundaries, this problem is very difficult to solve. The Flex 

system described in section 2.2.2 uses capabilities rather than character strings 

for names and the underlying capability machine on which it is implemented 

provides just such an abstract interface. Although Flex is difficult to implement 

efficiently on conventional hardware, this capability machine solves many 

naming problems. For example, Flex supports remote capabilities and this makes 

it possible to pass names between systems without ambiguity because they can be 

automatically transformed en-route to point back to the original system. 

Without capabilities or a similar mechanism, old names are difficult to deal 

with because combining name spaces makes absolute names into relative names. 

Lampson has proposed a mechanism which prevents this by ensuring that 

absolute names from old name spaces remain absolute in the new name space 

[Lampson86]. 
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Lampson's solution relies on an external mechanism for identifying 

distributed name spaces uniquely. Absolute names are qualified with the unique 

identifier for the base of the naming tree to which they belong. When naming 

trees are combined, the unique identifier for the base of each old tree is recorded 

together with its absolute name in the new tree. In this way, each naming tree 

contains a historical record of every naming tree that ever had a separate 

existence but now forms part of this tree. Although old absolute names might still 

exist for such trees, it is possible to intercept all such old names as they are used 

and translate them dynamically into new names. 

This is best illustrated by an example from Lampson's paper. Suppose both 

DEC and IBM have adopted the Lampson naming scheme and DEC names begin 

with #333/0ECI whereas IBM names begin #6661 IBM/. If the DEC and IBM 

name spaces are combined into an ANSI name space which begins #999/ANSII 

then the new tree must record the fact that #333 is now known as 

#999/ANSI/OEC and #666 is now #999/ANSI/IBM. When an attempt is made 

to resolve an old name such as #333/0EC/SRC/Lampson, the mismatch between 

the old UID #333 for the base of tree and the new UID #999 will be detected and 

the name will be translated into #999/ANSI/OEC/SRC/Lampson before it is 

resolved. 

Recording historical information about name spaces is only feasible if name 

spaces are combined infrequently so that the amount of historical information 

that must be stored about old names remains manageable. This may be a 

reasonable assumption but Lampson's scheme also requires universally unique 

identifiers, unique not just within a single system but between every distributed 

system that might ever be constructed. This is much less realistic as we shall see 

in section 4.6. 
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4.3.4. Merging N arne Spaces 

Without the possibility of extending the hierarchy by an extra level, name 

spaces must be merged at the outermost level. Hopefully, this level will be 

sparsely populated with names so that clashes can be avoided. This is particularly 

likely if the names are taken from a rich alphabet. 

For example, the Xerox name services support proper names rather than 

numbers and with forethought and a centralised agency to control the names of 

organisations for Clearinghouse and registries for Grapevine there should be few 

problems. IBM are unlikely to choose an organisation name of Xerox (assuming 

they were to adopt Clearinghouse as their naming standard) although a city 

name such as Newcastle is certainly ambiguous without further qualification 

(there are at least two places called Newcastle in the UK alone). 

On the other hand, with a less rich alphabet (such as the numerical area codes 

for telephone numbers) clashes are more likely. It may be possible to add a few 

new area codes to the American phone system as America acquires new states, 

but ifit were to acquire a whole continent with its own telephone system complete 

with a large set of area codes, clashes would be inevitable and a new level of 

hierarchy would have to be introduced. 

A flat space of identifiers, perhaps based on unique network addresses, will 

only extend if the uniqueness criterion continues to hold. This might be 

reasonable when combining identifier spaces based on 48-bit Ethernet addresses, 

but nobody would expect 8-bit Cambridge Ring addresses to remain unique. On 

the other hand, it is not feasible to construct an internet from more than 256 

Cambridge Ring stations unless something is done to extend the address space, 

perhaps by adding a network number to the station number. Any network which 

supports absolute addresses must identify each system uniquely since otherwise 

it will be possible to deliver messages for the same address to more than one 
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location. Consequently, such an internet address may be used as the basis of a 

unique identifier, with the advantage that it is more abstract and hardware 

independent than say a 48-bit Ethernet address, making it possible to combine 

heterogeneous network hardware into a single logical network and build a 

consistent distributed name space based on unique identifiers. 

For example, the Arpanet supports 32-bit internet addresses and these are 

used as the underlying unique identifier in a hierarchical naming system based 

on domains [Mockapetris83]. Unfortunately, a scheme based on logical identifiers 

is not infallible. There is nothing to stop an individual site from setting up a 

network unilaterally which conforms to the ARPA model but uses its own block of 

addresses which may well be in use elsewhere on the ARPANET. 

This is precisely what has happened at Newcastle where the supposedly 

unique identifier 42, already offically allocated to another site, has been 

unofficially adopted for use internally. So long as the Newcastle network remains 

distinct from the official ARPANET this will cause no problems because 

addresses generated at Newcastle which are based on the identifier 42 will be 

used entirely locally within Newcastle and not propagated to the outside world. 

However, if the Newcastle network were to be joined to a larger internet then 

these private addresses would become public and their value would matter. 

Newcastle would have to choose (or rather be given) a portion of the address space 

that was unique in this wider context and the logical internet address of all the 

machines at Newcastle would have to be changed. Fortunately, this would not be 

too traumatic because no distributed systems have been constructed at Newcastle 

using unique identifiers based on these logical addresses. However, this would 

not be true in general. It should be possible to combine systems built out of unique 

identifiers without having to change the addresses on which the unique 

identifiers are based and this can only be achieved by allocating blocks of 
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addresses that are guaranteed not to clash in advance, through a centralised 

agency. 

4.3.5. Random Identifiers 

There is one interesting technique for generating unique identifiers which 

neatly sidesteps the problems of joining name spaces together. If it is possible to 

generate identifiers randomly so that the probability of two systems 

independently generating the same identifier is negligible then systems may be 

joined together without worrying about name clashes. 

For example, the Amoeba system [Mullender85] uses this technique to 

generate interprocess communication port identifiers and protects resources by 

relying on the fact that it is impossible to guess a valid port number in a 

reasonable time. Mullender claims that for a large network with 2000 processes, 

each with an average of 5 ports, a random 48-bit port identifier could be broken by 

brute force in 2.8 x 1010 tries on average. At a rate of 50 tries per second, it would 

take almost 18 years of continual trying to find just one port. The size of the 

random identifier could be adjusted to suit the number of objects in the system 

and their expected lifetime, giving a probabilistic guarantee that identifiers 

would not clash. 

U sing this approach, several Amoeba systems have successfully been joined 

together over X.25 [Renesse86] without needing to worry about whether 

identifiers clash. The only problem has been locating an object given its random 

identifier. Because it is not feasible to use a broadcast algorithm over a WAN the 

Amoeba solution is non-transparent and involves explicitly publishing identifiers 

in remote domains. 

Random identifiers are the most pragmatic solution to the unique identifier 

problem. They do not require a centralised agency to allocate numbers nor do they 
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need agreement over the particular random number generation technique used 

(since one random number should be very much like another). However. the 

random numbers really must be random or else the assumption which guarantees 

the correctness of the distributed system will break down. The guarantee is only 

probabilistic in any case but the probability that it is violated can be made 

arbitrarily small providing an upper bound can be put on the number of objects 

that will ever be in the system and their lifetimes. For a system which grew 

indefinitely with objects persisting for ever this approach might not be feasible 

but the magnitude of such a system would be well outside the capacity of current 

(or even forseeable) technology. 

4.4. Reorganising N arne Spaces 

As well as being combined to form larger name spaces. hierarchical name 

spaces may also be reorganised by detaching particular subtrees and moving 

them to another portion of the tree. This poses the same problem of dealing with 

old names which refer to a part of the tree which has moved. The standard 

solution is to use indirection in the form of an alias or symbolic link. A pointer to 

the new location of the subtree is left behind at its old location (similar to the pre

recorded forwarding messages provided automatically by telephone companies 

when telephone numbers are changed - ttthe number you have reached no longer 

exists - please redial as ..... ) and the name resolution process automatically and 

invisibly indirects to the new location. To take another example from Lampson's 

paper [Lampson86]. if DEC were to buy IBM and move the entire IBM name space 

so that it became a subtree of the DEC name space. then a symbolic link pointing 

to #999/ANSI/DEC/IBM would be left behind at #999/ANSI/IBM. so that 

pathnames of the form #999/ ANSI / IBM/ ... were automatically translated to 

#999/ANSI/DEC/IBM/ ... (with old names of the form #666/IBM/ ... going 

through two stages of rearrangement but still working). 
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This approach works very well but means that a given object may now have 

two or more names, only one of which is a true direct absolute name, since the 

others will pass through symbolic links. This is a considerable weakening of the 

tree structure of a hierarchical name space and means that although objects still 

have a canonical pathname (their unique direct absolute name), it is no longer 

possible to simplify arbitrary pathnames into canonical form without knowing 

about all the symbolic links in the system. This knowledge is distributed at the 

nodes where the symbolic links reside and these must be visited as part of the 

name resolution process to redirect the name back to its true path. Without 

caching this can be expensive; the advantage of the canonical name algorithm 

was that it relied on a global property of the naming graph and could therefore be 

applied statically without arbitrary knowledge about remote names. However, 

caching the name and value of symbolic links at the base of the tree should at 

least make it possible to resolve such pathnames directly without being led down 

false branches in the naming tree only to be redirected elsewhere. 

4.5. The Power of Indirection 

The use of indirect naming objects which are intercepted and interpreted by 

the naming system automatically is a useful way of extending a name space. 

Effectively, this is how distributed Unix systems such as the Newcastle 

Connection and NFS are constructed and how the Unix mount mechanism works. 

In a distributed system, this scheme can be used to leave forwarding addresses for 

objects which have migrated elsewhere (as in the Emerald system [Black86]) and 

may also be used to extend a centralised system to a distributed environment. For 

example, some work has been done using this technique to extend the Smalltalk 

object manager to handle remote objects [Decouchant86L Similarly, the Flex 

architecture has been extended to include remote capabilities which are accessed 

indirectly via local procedure objects that masquerade as a local copy of the 

remote object [Foster86]. Message passing kernels such as Accent [Rashid81] or 
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Chorus [Guillemont82] send messages between machines using an indirect 

network transfer agent and the ANSA project is also exploring the use of 

indirection for this and several other aspects of communication [Herbert87]. 

There are even parallels with virtual memory systems. The LOOM virtual 

memory system for Smalltalk [Kaehler86] uses stub objects which are 

automatically paged in from the disk transparently by the object manager as 

required. In effect, these are indirect objects that cause a page fault rather than a 

network transfer. Indirection is a very powerful mechanism for extending the 

semantics of a system without altering its functionality. Whoever said ~~any 

problem in computer science can be solved by adding enough levels of indirection" 

was probably correct! 

4.6. Are Globally Unique Identifiers Realistic? 

From the work discussed in this chapter it would appear that if it were 

possible to construct name spaces using globally unique identifiers that really 

were globally unique across all time and space then such name spaces could be 

joined together freely without their internal identifiers clashing. This of course 

assumes a certain degree of homogeneity, namely that all interested parties 

would agree to a common naming scheme and allow a centralised authority to 

control at least the top level of their name space. Even in the atmosphere of good 

will fostered by international standardisation efforts such as OSI, this degree of 

cooperation would be unprecedented. Indeed, the concept of a unique identifier or 

well-known address is alien to the OSI model which prefers the use of locally 

defined service access points, as witnessed by problems with the Ethernet 

standard and the demise of a type field controlled by Xerox in favour of a length 

field and a non-unique link service access point value. 

In fact, it is likely that there will always be a need for gateways between 

heterogeneous name spaces which will have to map from one form of name to 
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another and intercept directory service requests although it will be difficult to 

prevent names from being passed from one naming space to another by other 

means. Consequently, there will always be the problem of pathnames that pass 

through several naming spaces or domains recursively, although since the 

number of rival naming schemes will hopefully be relatively small, it will be 

possible to use structured names of the form n arne. dorna in internally. 

Ignoring the political problems of securing international agreement, is it 

otherwise possible to allocate globally unique identifiers to objects and hence 

construct vast distributed systems that can span the world with a single naming 

graph? Perhaps in theory, but in practice, people make mistakes, Murphy's Law 

will intervene and something will go wrong. 

In theory, there is no problem with allocating globally unique identifiers. 

Nobody has yet managed to create a computer system containing an infinite 

number of objects and any finite collection of objects can be mapped one-to-one 

onto a subset of the integers. Each object may be uniquely named by its image 

under this mapping. Estimates vary, but if for the sake of argument the 

observable Universe contains 1072 (or 2120) particles, a 120 bit unique identifier 

should be more than enough for most computer systems (although it might be 

somewhat unwieldy and space inefficient to use such an identifier exclusively). 

The problem of course is counting (or rather naming) each object. The fact that 

such a mapping exists in theory does not mean that it is known in practice. There 

are many such mappings and the problem is agreeing on a particular one, so that 

two sets of objects may be merged without any name clashes. Knowing that an 

object has a unique name does not help to discover what that name is. 

In practice, unique identifiers are usually generated from a machine address 

(to guarantee uniqueness between machines) and a timestamp (to guarantee 

uniqueness within a particular machine). Timestamps must be strictly increasing 
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and this may require special hardware and software to prevent human error and 

avoid the problems caused by machine crashes. The granularity of the time stamp 

must tread the delicate tightrope between being too short (so that all possible 

timestamp values are used up too soon), and too long (so that UIDs cannot be 

generated quickly enough). 

Unique machine addresses are usually based on network hardware. For 

example, Ethernet addresses are supposed to be unique 48-bit quantities and ifit 

were possible to join together all the machines in the world onto a single 

Ethernet, no two machines would have the same address. Or at least that is the 

theory. In practice, uniqueness is ensured by allocating 24-bit blocks of the 

Ethernet address space to individual computer manufacturers on application to a 

centralised authority. The manufacturers are then responsible for ensuring that 

they do not use the same address twice. However, it is possible for something to go 

wrong in the manufacturing process and at least one manufacturer (who shall 

remain nameless) is known to have allocated the same address twice by accident. 

Quite apart from this, most Ethernet hardware allows the network address to be 

altered by software which makes it impossible to guarantee uniqueness and 

allows a malicious node to impersonate another. 

Relying on an Ethernet address (or any other kind of hardware address) to 

ensure uniqueness is only possible in a homogeneous network. In practice, this is 

not realistic, except perhaps for a proprietary system based on proprietary 

hardware. When an internet is constructed from a mixture of different networks, 

each with their own addressing convention, a logical internet address must be 

used to distinguish systems and this can be used as the basis of a unique 

identifier. However, moving away from physical hardware addresses increases 

the scope for human intervention and hence error in the allocation of values. For 

example, the 32-bit internet addresses used by the ARPANET are associated with 

network hosts simply by an entry in an editable file under Berkeley Unix. It is 
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much easier to change a logical address than a physical address because of the 

extra levels of indirection between the abstract network protocol and the physical 

communications medium. Although this makes it much easier to reconfigure and 

merge networks, it causes several problems for distributed systems built over 

such networks if they use such logical addresses as the basis of their unique 

identifiers. All the identifiers in the system must be tracked down and modified 

whenever changes are made to the logical addresses of hosts on the network. This 

is simply not practical for a large distributed system but unfortunately a unique 

logical address may be the only thing that distinguishes network hosts in a large 

network. 

Another approach to ensuring uniqueness is to use a random number as part 

of the identifier (as discussed in section 4.3.5). If such values are genuinely 

random then the probability of two systems inadvertently picking the same 

identifier can be made arbitrarily small by making the random component large 

enough. However, this is aesthetically unpleasing because it makes what should 

be a deterministic problem into a nondeterministic problem and introduces the 

possibility of errors resulting from undetected name clashes. It may be a 

pragmatic solution to the difficulty but it is disappointing to find no deterministic 

solution. Perhaps there is an analogy with Shannon's Statistical Theory of 

Communication here: it is possible to transmit a message down a noisy channel 

with an arbitrarily small probability of error by use of a suitable encoding scheme 

but the probability can never be reduced to zero. 

4.7. Conclusions 

We have discussed various techniques for generating unique identifiers and 

explored the ways in which systems based on such identifiers may be combined. 

Unless identifiers are universally unique, it is difficult to combine naming spaces 

transparently but we have argued that universal uniqueness is difficult to 
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achieve in practice. The problems of joining name spaces together which we 

discussed in chapter 3 for evolutionary distributed systems must still be solved in 

the design of revolutionary systems. There are no easy answers. This should come 

as no surprise; after all, a truly transparent distributed system should be 

indistinguishable from a centralised system. Both will define a self-contained 

name space so that in both cases joining two such systems will involve merging 

name spaces or at least providing mechanisms for crossing name space 

boundaries transparently. Combining two centralised systems to form a 

distributed system should be exactly analogous to combining two distributed 

systems to form a larger distributed system. 

Although it might be argued that combining individual systems was a much 

more common event than combining whole distributed systems, it is still just as 

important for the composite system to be transparently indistinguishable from 

the systems of which it is composed. Any extension mechanism should be 

recursively applicable at more than one level of system abstraction. 

Consequently, in the next two chapters we will explore whether it is feasible to 

build distributed systems recursively. 
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Chapter 5 

Recursive Transparency and the 
Newcastle Connection 

In this chapter we will explore the idea of building transparent distributed 

systems recursively. If a transparent distributed system is really functionally 

equivalent to the systems of which it is composed then it should be possible to use 

it recursively as a component of a larger distributed system. To make this idea 

more concrete, we will explore its implications for the Newcastle Connection by 

studying how closely a recursive implementation of a distributed Unix system 

built with the NC conforms to the Unix semantics and whether such a distributed 

Unix system is indeed functionally equivalent to the systems of which it is 

composed. We will also briefly consider how other distributed Unix systems have 

tackled these problems before outlining a solution which will be examined in 

more detail in the next chapter. 

5.1. Recursive Transparency 

An operating system such as Unix manages the resources of a machine and 

makes them available to application programs as a series of abstractions invoked 

through a well-defined system call interface. In effect, the operating system is an 

interpreter for the objects and operations defined by a virtual machine. The idea 

of transparent distribution is to extend this system call interface without altering 

its functionality so as to allow an application running on one machine to access 

objects on another machine. Ideally, all the individual systems should appear as 

one system with a single interface. 

Transparent distribution can be achieved by inserting a layer of software 

between applications and the operating system which is transparent in the sense 

that it looks exactly like the operating system to an application (and exactly like 
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an application to the operating system). Such a layer must intercept every system 

call and decide whether it refers to an object on a local system or a remote system. 

Local operations will be passed on to the underlying operating system on the local 

machine whilst remote operations will be sent across the network as Remote 

Procedure Calls (or RPCs) to a server on the remote machine which performs the 

operation and returns the result. 

The server is really part of the transparent distribution layer on the remote 

machine but will appear to be an application to the remote operating system. It 

would therefore be possible to insert another transparent distribution layer 

between the server and the operating system. This would give the server access to 

r~mote resources and allow it to create servers for itself. However, just like an 

application on the local machine, the server on the remote machine should be 

unable to tell whether it is accessing remote resources if the transparent 

distribution layer is really transparent. This is what we mean by the term 

recursive transparency. A server which runs on top of a transparent 

distributed layer is said to be connected. Conversely, a server which runs on top 

of the operating system directly is said to be unconnected. 

Of course, a server is no ordinary application because it is really part of the 

transparent layer on the remote machine. It may seem strange to make it a client 

of another transparent distributed layer and especially to do so when its code 

already involves many of the details of the transparent distribution layer (such as 

the format of RPC messages). However, the client part of a transparent 

distributed layer is only responsible for intercepting system calls. It is not 

concerned with the nature of the application whose system calls it is intercepting 

and is quite different from the server part of the transparent distribution layer. 

Consequently, it should be possible to maintain a strict separation between the 

client and server part of the distribution layer and make no attempt to merge 

them in a single server program. A connected server built in this way will not be 
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able to tell which of its resources are remote and which are local. This can cause 

problems as we shall see when we have investigated recursive transparency in 

the context of a real system. In particular, we will consider whether connected 

servers work with the NC, a transparent distributed layer for Unix. 

5.2. Connected Servers and the Newcastle Connection 

The NC joins together a collection of individual Unix systems into a single 

distributed system by extending the name space on each machine. Entries in the 

local naming tree may refer to remote systems and a pathname can start on one 

system and cross the network to another. It is possible to access remote files and 

to run programs on remote machines as if they were local, in other words 

transparently. 

The NC is implemented in the way described in section 5.1 as a layer of 

software on the local machine which intercepts every system call and determines 

whether it refers to a local object or a remote object. For the purposes of this 

analysis, system calls fall into three categories: those which take pathname 

arguments, those which take arguments such as file descriptors which have been 

derived indirectly from a pathname by a previous system call and those which 

take arguments such as user ids or process ids which implicitly refer to ttthis 

system". Pathnames may be examined to see whether they contain a reference to 

a remote system or start from a remote context. File descriptors will have been 

created by a previous system call also intercepted by the NC and may therefore be 

looked up in a table maintained by the NC. However, the third category is 

problematical because there is no obvious recursive structure in a system 

identifier which can be extended to a distributed system. The best solution is to 

assume that such identifiers refer to the system where the root directory / is 

located. This is in keeping with the way in which Unix utilities expect to find 

system information in files with root-relati ve pathnames such as / etc / pas s w d. 
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Once a system call has been analysed in this way it can be redirected with an 

RPC to a server on a remote machine if necessary. If the server is connected it will 

subject the system call to further analysis and possibly redirect it to a second 

remote system. In particular, this makes it possible for a pathname to span 

several remote systems without the local system which first analyses the 

pathname needing to know anything about the naming structure of the 

distributed system as a whole beyond its immediate neighbours. However, the 

standard implementation of the NC has unconnected servers which run directly 

on top of a Unix kernel wi thou t the insertion of a transparent N C layer (although 

experimental versions with connected servers do exist). Consequently, a 

pathname which passes through two remote systems will not be analysed by the 

unconnected server on the first of these remote systems. Similarly, it will not be 

possible to reach a second remote system with a pathname that starts from a 

remote context. Such violations of transparency caused by the use of doubly 

remote pathnames break the illusion ofa single distributed Unix system provided 

by the NC. 

For example, suppose that three Unix systems A, Band C are arranged at the 

same level in a distributed Unix naming tree constructed with the NC. From 

I.. --. • 

/1"" 
I --. A B c 

system A, C can be named directly as I .. IC and indirectly via B as I .. IBI . . /C. 

The indirect pathname will fail because it involves accessing the remote system 

I .. IC from an unconnected server on B. In this case, it is rather perverse to use 

the indirect pathname when it is possible to name C directly although such 

redundant pathnames are sometimes generated by programs (or even people) 

accidentally. Indeed, a fully transparent distributed system which allowed 
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arbitrary links between directory entries on different machines would make it 

only too easy to use such pathnames by accident because the system boundaries 

would be invisible. 

In section 3.5.1.2 we argued that loops in the distributed naming graph could 

be prevented by not interpreting doubly remote pathnames. However, sometimes 

the use of such indirect pathnames is unavoidable. In the rest of this section we 

will discuss three such occasions. 

5.2.1. Remote Execution 

As discussed in section 3.5.4, the NC implements true remote execution and 

always runs a program on the machine where it resides. This effectively adds an 

extra level of indirection during name resolution, making it impossible for a 

remotely executing program to name some objects without using pathnames that 

pass through more than one remote system. To understand why this is so, we 

must consider the effect that remote execution has on naming. 

The current directory and root directory ofa Unix process are not altered when 

it executes a new program. Consequently, when a process moves to a remote 

machine by executing a remote program, if its root and current directories were 

originally on the local machine, they will now be remote as far as the remote 

machine executing the client program is concerned and must therefore be 

accessed via servers. Unix only provides the root and current directory as starting 

contexts for naming files, so if these contexts are already remote and servers are 

not connected, it will not be possible to name remote files on any other systems, 

including files on the machine where the program is now executing. All 

pathname calls will be sent to the server where their starting context is located 

but that server will be unable to handle further remote names because it is 

unconnected. 
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For example, with the system configuration above, suppose a process on A 

executes a program on B. Because the root and current directory of the process 

remain on A, all pathname operations will be passed from B back to a server on A, 

including pathnames beginning I .. lB. If the server on A is unconnected it will 

be unable to handle such names and so there will be no way for the process now 

running on B to name objects on B (unless the current directory is moved to B 

before performing the remote execution). 

Even with a connected server, there is no satisfactory way of naming local 

objects because Unix does not implement closures or provide a naming context for 

the local system. This makes it impossible to write a portable program that will 

always create files on the machine where it runs. Root-relative pathnames are not 

good enough because they must include system names. For example, a name 

beginning I .. IB would only name local objects if the program which used it was 

running on B. This is not location transparent and a program which used such 

names could not be moved to another machine without alteration. (As discussed 

in section 3.4.4, LOCUS has extended Unix naming to include a special 

<LOCAL> facility to solve this problem.) 

In an attempt to get round these naming difficulties (and also to tackle some of 

the other problems of remote execution discussed in section 3.5.4) the NC provides 

a special version of the Unix exec system call named excr which stands for 

((execute with changed root". If a process executes a program with excr rather 

than exec, its root directory will be moved to the machine where the program 

resides (Le. the machine where execution will take place under the NC 

interpretation of the Unix exec semantics). This allows both local and remote files 

to be named with root-relative pathnames but unfortunately, because of 

weaknesses in the Unix concept of a system, moving the root can have other 

strange side-effects on things like the meaning of process ids and user ids. 

Nevertheless, it could be argued that making excr the default remote execution 
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semantics fixes more problems than it creates. This would tend to suggest that in 

not moving the root directory during a remote exec the NC is interpreting the 

Unix exec semantics too literally. In particular, the NC is ignoring the fact that 

Unix often uses root to mean two things, an absolute location and the idea ofUthis 

system". For a single system the two are equivalent but for a distributed Unix 

system they may be differen t. 

5.2.2. Network Heterogeneity 

Another occasion when doubly remote names might be required would be if 

the network was heterogeneous and not all the systems used the same network 

protocol. For example, with the configuration above, suppose that A and C use 

different protocols and cannot communicate with each other directly but 8 

understands both protocols. Then it would be reasonable to expect a pathname of 

the form I . . /81 . . IC to allow interworking between A and C using 8 as an 

explicit gateway. However, without connected servers this would not work, even 

though it is possible to access both A and C from 8. One solution would be to 

invoke all commands involving A and C from 8 but this might not always be 

convenient if 8 was inaccessible. Fortunately, remote execution provides a way 

round this difficulty although excr must be used because of the naming difficulties 

described above. Since using excr will change the meaning of I, all root-relative 

pathname arguments must be re-written accordingly. 

For example, here are three possible commands for copying a file from A to C: 

(1) cp Ifoo 1 .. IC/bar 

(2) cp Ifoo 1 .. /8/ . . IC/bar 

(3) excr 1 .. /8 cp 1 .. /A/foo 1 .. IC/bar 

The first is the most natural but fails because A cannot communicate with C 

directly and 8 cannot be used as a transparent gateway. The second will also fail 
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because it requires a connected server at B. Only the third possibility which uses 

excr to invoke the copy program cp from B will work but it is significantly more 

complex for the user than the other two commands. 

This situation might seem rather bizarre and contrived but it has actually 

arisen in practice at Newcastle on a single Ethernet. The same problem would 

occur on a much larger scale if two large networks using incompatible protocols 

were joined together to form a distributed system. It is usual to ignore this 

problem when designing a distributed system and assume that all communication 

occurs over a fully connected internet. For a really large distributed system this 

may not be a realistic assumption. Making network boundaries visible at the 

application level in this way is not very attractive but at least it makes it possible 

to construct some kind of distributed system under these circumstances. 

5.2.3. Name Space Management 

A similar situation might arise if the replicated parts of the distributed 

naming tree were inconsistent. Such an inconsistency could easily arise by 

accident rather than design, especially since the naming tree must be maintained 

by the collective action of all the system administrators. 

For example, suppose that system C could only be named from system Band 

not from system A. Then the only way in which a process on A could access files on 

C would be via B with a pathname of the form I .. IBI .. IC. Although it could be 

I.. -.. • 

/""'/""-
I -. A B c 

argued that limiting knowledge about system names and addresses to centrally 

administered machines such as B would be desirable (or at least convenient), 
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deliberate inconsistencies should be frowned upon because they violate the 

recursive model of distribution on which the NC is based. The proper way of 

dealing with this situation would be to return to a tree structure by making B the 

parent of A and C, but this would require a connected server at B. This is 

I.. --. B 

/'" 
I --. A c 

unfortunate because for a very large distributed system it would make sense to 

divide up the name space into smaller domains which could be independently 

managed. 

5.2.4. Summary of Connected Servers 

Connected servers (or the equivalent functionality) are necessary before a 

transparent distributed system can be said to be completely transparent. In 

particular, connected servers are needed to make remote pathnames work 

properly during remote execution and to resolve redundant pathnames correctly. 

They are also required if the system naming tree is structured so that not every 

system can name every other system directly. In these circumstances, the only 

way of reaching an object in one domain from another would be via a connected 

server on a machine that knew about both domains. 

In the rest of this chapter we will examine the concept of a connected server in 

more detail to see whether recursive transparency works in practice and whether 

it is the best way of achieving the full level of transparency we require. In 

particular, we will examine various aspects of the Unix semantics to see whether 

it is possible to implement a transparent distributed Unix system recursively. 
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5.3. Connected Servers and Unix Pathnames 

Unix pathnames have no direction. A single pathname can move up or down 

the naming tree and in the presence of symbolic links may even jump from one 

part of the tree to another quite unexpectedly. As a result it can be difficult to 

analyse a complex pathname spanning several systems in order to determine 

which system it ultimately refers to. 

When the NC intercepts a system call with a remote pathname argument, the 

pathname is only analysed to identify the first reference to a remote system it 

contains. The remainder of the pathname is passed to a server on that remote 

system in an RPC. If the server is unconnected, the pathname will not be 

analysed further but will simply be treated as if it were local. This leads to the 

breaches of transparency with doubly remote pathnames discussed in section 5.2. 

In contrast, a connected server will analyse the pathname further and will be able 

to access further remote systems via its own servers. Consequently, arbitrarily 

complex pathnames can be resolved (eventually) via a chain of connected servers. 

However, it is not always appropriate to follow such a chain of servers if the 

pathname loops back on itself with .. or encounters a symbolic link. 

For example, suppose that a process has moved its current directory to a 

remote system. All pathnames which are not root-relative will be passed to the 

server on the machine where the current directory now resides. If the process now 

moves its current directory back to the local system (or to some other remote 

system) using a pathname which is not root-relative (such as .. ), the ((change 

directory" RPC will fail if the server is not connected. However, if the server has 

been connected it will create itself a server on the new system to hold the 

directory context, even if this is the local system. Consequently, all pathnames 

relative to the current directory will now pass through at least two servers. Even 

the simple sequence 
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cd I .. I remote 

cd .. /local 
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will lead to a process accessing all files named from the current directory via two 

servers, one of which will be on the local machine. 

Operations which affect the naming context are special and should be treated 

with caution. However, any operation on a pathname involving .. or a root

relative symbolic link can cause similar problems. If a pathname passes from one 

remote system to another (or simply loops back to the local system) then a 

connected server will create a server for itself on the second system, even if there 

is already a server on that system created more directly by the client. An object 

can always be named in two ways, from root or from the current directory, but if 

one of these directories is remote then the two pathnames will not necessarily 

lead to the same server. 

These examples demonstrate that the use of connected servers can lead to 

objects being accessed indirectly via more than one server when a more direct 

route is possible. Although this is inefficient, this is not in itself sufficient reason 

to abandon the concepts of recursive transparency and connected servers. 

However, as we shall see in the next section, the presence of more than one server 

on the same machine can cause semantic difficulties and violate transparency 

and so an alternative approach is needed to achieve the equivalent functionality 

of a connected server. 

5.4. Multiple Servers 

An NC server is an extension of the state of a local process on a remote 

machine. It acts as an agent on behalf of its client and has no independent 

existence of its own. Every process using the NC will have a private server, not 

shared with any other process, on each of the remote systems it accesses. This 
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combination of a local process and its remote servers is called a Distributed 

Sequential Process (or DSP) because, although it is a distributed collection of 

processes, only one process is active at a time with the flow of control moving 

between process and server just as it moves between procedures in an ordinary 

program. 

As we have just seen, if it is possible to name a system in two different ways 

and a DSP built with connected servers accesses the system in both ways, the DSP 

will end up having two servers on that machine. This might appear to be contrary 

to the definition of a DSP (one server per process per machine) but in fact there 

will be two DSPs. One of these will be recursively nested in the other and will 

appear as a simple server at the higher level of abstraction. 

Returning to our original example of three systems A, 8 and C arranged 

symmetrically in a tree, if A accesses 8 and C directly as I .. 18 and I •. I C 

respectively, the result will be a DSP with client at A and servers at 8 and C. 

If A then accesses C indirectly as I . . /81 .. IC, a second server will be created on 

C but this will actually belong to the DSP consisting of client at 8 and server at C. 

This entire DSP will be indistinguishable from the server at 8 in the higher level 

DSP with client at A. Since a system can always be named in two ways (relative to 

root or relative to the current directory) this situation can easily arise in practice. 

But what harm can come of having two servers on the same machine? Will the 

recursively structured DSP continue to be indistinguishable from a single Unix 



Recursive Transparency and the Newcastle Connection 117 

A 

process, or will it breach the normal Unix semantics in some way? In order to 

answer these questions, we must consider how a DSP is implemented. 

A DSP consists of a collection of processes spread across several Unix systems. 

However, in the interests of transparency, this collection must masquerade as a 

single virtual process running on a single virtual Unix system. On each 

individual Unix system the identity of this virtual process is synonymous with 

the identity of the real process that runs as its representative on that system. 

Clearly if a single DSP has two component processes representing it on a given 

system, there will be a conflict of identity and so it is in this area of the Unix 

semantics that we must look for difficulties. 

5.4.1. Access Rights and Ownership 

Access rights are closely associated with identity. Unix permissions are based 

on the concept of users and groups and every process has a user id and group id. A 

server forming part of a DSP effectively has a user id belonging to another 

system, specifically the user id of its client. As discussed in section 3.5.3, such a 

remote user could be represented quite naturally with a pathname of the form 

/ .. / remote/use r but unfortunately Unix uses small integers taken from a flat 

name space to represent user ids and a name space without any structure cannot 

be recursively extended to include the notion of a system. Instead, the NC derives 

the identity of each server from the identity of its client by mapping what is 
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effectively a pathname made up of the address of the client system and the user id 

of the client process on that system into a specific local user id on the server 

system. This allows each system administrator to control which remote systems 

and individuals are allowed to access his system over the network. There is no 

need for each system to support the same set of users as there is for some 

distributed systems. 

This scheme works well with unconnected servers where there is only one 

level of mapping but is complicated by the presence of connected servers. If a 

connected server becomes the client of another server in a recursively structured 

nsp, the identity of the second server will be derived from the local identity of the 

first server rather than the identity of the original client to whom the entire nsp 

conceptually belongs. Otherwise the intermediate server would not be connected 

transparently. In other words, it would be aware that it was a server and 

therefore special. Because there is a natural tendency to give less permission to 

remote users of a system, it follows that if there are two servers for the same 

client of a recursive nsp on a given system, it is quite likely that they will have 

different permissions associated with them, especially if one has been created 

indirectly by another server rather than directly by the original client. 

For example, returning once more to the three systems A, 8 and C arranged 

symmetrically as subdirectories of I .. , suppose that there is a user id robe rt on 

A and C but not on 8. If the two robe rts are the same person, then it makes sense 

for C to map the conceptual user path I AI robe rt into the local user robe rt. 

However, knowing nothing about robert, 8 will map IA/robert into 

a. n. othe r, a default guest user with minimal access rights. Naturally C will 

map 18/a.n.other into the local version of a.n.other. There is no 

conceivable reason for C to map 181 a. n. othe r onto robe rt and indeed the real 

Robert would not be pleased if his files on C were compromised in this way! 

However, as a consequence of this, if user robe rt on A creates a server on C by 



Recursive Transparency and the Newcastle Connection 119 

using a pathname beginning I .. IC, the resulting server on C will have the 

permissions of robe rt on C but if robe rt on A then uses a pathname beginning 

I .. IBI .. IC to refer to the same object, a second server will be created on C with 

only the permissions of a. n . 0 the r. In other words, the access that a user on A 

has to objects on C depends on whether the pathname used to access them passes 

through B. 

Although there is clearly a difficulty here, it is not immediately obvious that 

this apparent paradox is a violation of Unix semantics and a clinching argument 

for dispensing with connected servers. Even on a single Unix system, a user must 

have search permission on all the directories mentioned by a pathname in order 

to use that pathname and therefore some pathnames to an object will work and 

others will not. This is not quite the same as both pathnames working but 

granting different access rights but there is some similarity. Indeed, one might 

argue that it is quite reasonable to associate different permissions with different 

pathnames and that this is a good way of providing security on a ttneed to know" 

basis. 

A more convincing paradox can arise with the chown system call which 

changes the ownership of a file. If chown is applied to a remote file, the new owner 

of the file must belong to the remote system rather than the local system. 

Consequently, the user id supplied as parameter to the chown call on the local 

system m.ust be mapped to an appropriate user id on the remote system. As 

before, the mapping will depend on the pathname used to name the file and so the 

owner of the file after the chown call will depend on this pathname too. 

Wi th our example above 

chown robert 1 .. /C/file 

will result in the file being owned by rob e r t but 
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chown robert 1 .. /B/ .. /e/file 

will result in it being owned by a. n. othe r. This is certainly not the Unix 

semantics. 

Connected servers can interact with guest users such as a. n. othe r in 

another interesting way. As explained in section 3.5.3, just as there is a need to 

map user ids when creating servers on remote machines, so there is a need to 

'perform the inverse mapping when reporting the ownership of remote files. 

However, user id mapping is an expensive operation and as a compromise the NC 

simply reports whether or not a remote file is owned by the local process. When 

the ownership of a remote file is examined, the result is either the user id of the 

local process or else a special default value to indicate that the remote file is not 

owned by the local process. Since there is already a user id which is used to 

indicate a user for whom there is no mapping (namely the default guest user 

a. n. othe r), it is convenient to overload this value and use it for this purpose 

too. So long as no process using the NC runs as a. n. othe r this overloading will 

not cause any problems. Although servers may run as a. n . 0 the r they are 

usually unconnected and do not use the NC. However, a connected server running 

as a. n. othe r can cause the ownership of remote files to be reported incorrectly. 

For example, with the user id mappings used in the previous example, suppose 

that If i 1 e on e is owned by 1 i n d s ay. Examined from A as I .. I elf i 1 e by 

rob e r tit will correctly appear to be owned by a . n . 0 the r. If a connected server 

running as a. n. othe ron B examines the same file, the NC will also report that 

the file is owned by a. n . 0 the r (Le. a user other than the equi valen t of 

a. n. othe r on e). However, because the server on B runs as a. n. othe r, it will 

mistakenly think that it owns the file and this will cause the NC to report that 

the server's client on A owns the file too. Since a connected server on B created by 

robe rt on A will run as a. n. othe r (because robe rt is not mapped by B), it 
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follows that if robe rt on A examines I . . IBI .. lelf i 1 e it will appear to be 

owned by rob e r t even though it is actually owned by 1 i n d s ay! 

This problem is really caused by the fact that the user id a . n • 0 the r is being 

used to represent two things: the default access rights for an unmapped user id 

and the owner of a file on a remote system. It would be possible to resolve this 

ambiguity by using different user ids for these two purposes but it is only 

necessary to do so because connected servers break the assumption that made it 

safe to overload one value in the first place. 

All of these problems could be avoided by defining a consistent user id 

mapping within each naming domain. If the mapping relation was transitive 

then all the servers on a particular machine for a given DSP would be created 

with the same user id, irrespective of the route by which they were created. 

However, achieving a consistent mapping might involve an unusual degree of 

cooperation between the individual system administrators. In effect, each system 

would have to support the union rather than the intersection of all the other 

systems' users. In the limit this would mean that the systems would share the 

same list of users. Nevertheless, this cooperation would only need to extend to 

users within a given naming domain because those systems which belong to two 

naming domains form bottlenecks through which all names must eventually pass 

if they are to reach another naming domain. (It must be assumed that there are 

no circularities in the tree of naming domains since otherwise the problem will 

rapidly become intractable.) 

5.4.2. Resource Allocation and Locking 

Another problem area with multiple servers also concerns the question of 

identity. If a process acquires some resource from the kernel, the kernel will keep 

a record of the allocation by recording that the resource is now owned by a 

particular process id, a value taken from another flat numeric naming space. As 
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with user ids, it is not possible to identify a remote process with a pathname and 

consequently, when a resource is acquired remotely by a server on behalf of a 

client, the remote process can only be identified with the server's process id. 

However, this will dojust as well providing that all manipulations of the resource 

are made through the same server. In general, this is no problem even in the 

presence of multiple servers on the same machine because Unix resources are 

strictly local to a process and cannot be shared with other processes. They are 

usually acquired as the result of a pathname operation and consequently the NC 

knows exactly which resources belong to which servers and there is no possibility 

of confusion. So long as the same pathname is always used to access it, all 

operations involving a given resource will automatically be passed on to the 

correct server, if necessary via a chain of servers. However, difficulties will arise 

if the effect of acquiring the resource is visible outside a single Unix process and 

therefore operations such as locking which affect the global state ofa Unix system 

will cause problems. 

If a Unix process acquires an exclusive lock on a file using some pathname 

then even if the file can be named in other ways, other Unix processes will not be 

able to lock the same file. However, it is reasonable to expect that the process 

owning the lock should be able to relock the file (possibly using a different 

pathname) without ill effect. Within a single system, a Unix kernel is able to tell 

whether two pathnames are equivalent and whether two processes are the same 

because it works in terms oflow-Ievel identifiers which are unique within a single 

system. Unfortunately, there is no way that the NC can persuade a Unix kernel 

that two distinct Unix processes are actually part of the same process on some 

virtual Unix system and so it follows that an attempt to lock the same file twice 

using two different pathnames which pass through different systems to two 

distinct servers on the same machine will fail, in deadlock if the process tries to 

wait until the lock is released. However, unlike the Unix kernel, there is no way 
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that a transparently connected nsp can recognise that two pathnames actually 

refer to the same system and prevent this from happening because it uses 

localised purely relative naming. There is no mechanism for taking a global view 

of the system, especially dynamically on each pathname access. 

This time there really is a problem with emulating the semantics of Unix in 

the recursive system although it is not clear how likely this problem is to occur in 

practice. A sequence oflocking calls involving the same object named in different 

ways will succeed if the object is local but will fail if the pathnames pass through 

remote systems by different routes. It is also very difficult to get round this 

problem because there is no possibility of mapping the process identity so as to 

fool the underlying kernel. Obviously it is possible to conceive of forms oflocking 

or resource allocation which use an explicit unique id to represent the owner of 

the resource and do not suffer from this problem but this would not be Unix. In 

any case, such operations would not be based on pathnames and would therefore 

be difficult to distribute transparently. The problem here is that the form of 

identity used to record ownership should include a system identifier. However, 

without unique ids, it is not possible to tell whether two pathnames are 

equivalent and hence identify systems unambiguously, especially in the presence 

of connected servers. Even if the kernel did understand pathname identifiers, it 

would be unreasonable to expect it to be able to recognise equivalent but not 

identical pathnames if a nsp cannot do so. We will return to the problem of 

telling whether two pathnames are equivalent in section 6.4. 

5.4.3. Flattening the Recursion 

Multiple servers on the same machine only arise because connected servers 

impose a strictly recursive interpretation upon the nsp model. It is perhaps 

worth considering what might happen if the recursion was flattened by 

preventing more than one server per nsp from being created on each machine. 
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This would involve distributing the list of servers making up the DSP between 

each server so that every server knew about every other. Every time a new server 

was created its details would need to be propagated to the other servers. This 

could be done using a broadcast or multicast protocol. Alternatively, the 

knowledge could be propagated on a ((need to know" or ttlazy" basis. The current 

list of servers (or the most recent changes to the list) could be incorporated into 

the RPC protocol so that each server received the information the next time it was 

invoked to perform some remote operation. One difficulty with this approach is 

that it would require unique names in order to identify all the systems correctly. 

There would also be reliability implications because the distributed list of servers 

would not always be in a consistent state. However, the main problem concerns 

the authorisation difficulties mentioned earlier. If the first server on a given 

system is created indirectly by another server, it will not necessarily be given the 

permissions it would have received had it been created by a more direct route. In 

section 5.7 we will discuss a mechanism called DIY which tackles this problem by 

ensuring that all server creations are initiated by the most direct route from a 

central location. 

Of course, it would be possible to go even further and abandon the DSP model 

altogether. Multiple servers are only a problem because servers are private with 

one server per system per process representing the state of the DSP everywhere. 

If the concept of multiple private servers is abandoned in favour of a single public 

server on each system then the problem does not arise. However, this public 

server must be able to identify its client and without unique identifiers this 

involves solving the same problem of determining whether two pathnames from 

an arbitrary naming graph denote the same object. Unique identifiers are not 

acceptable for this purpose because they are not recursive and therefore do not 

scale or allow the name space to be divided up into individually managed 

domains. 
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5.5. Remote Execution 

Remote execution is another area where connected servers fail to work 

correctly and the idea of recursive transparency breaks down. However, in this 

case the reason is that the NC server must assume it is unconnected in order to 

implement remote execution correctly. This is because remote execution involves 

a sort of bootstrapping process in which a new NC layer is inserted between the 

server program and the Unix kernel as the server becomes a client. 

The NC implements true remote execution rather than remote paging and this 

involves rearranging the DSP. The client and the server on the system where the 

remote execution takes place must change places because the controlling point of 

the DSP from which all system calls are generated will move to the remote 

machine. The server process will exec the new client program whilst the original 

client process becomes a server acting as an agent for the new client. When the 

A 

original client has more than one server, those servers not involved in the remote 

exec must re-establish communications with the new client as directly as possible. 

With a single naming domain and network address space this is relatively 

straightforward because direct communication is always possible. However, it is 

during this rearrangement operation that the NC code assumes that its servers 

are not connected. 

The NC layer of software inserted between programs and the Unix kernel to 

provide transparent distribution contains various data structures which are used 
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to control name interpretation and indicate which of the resources owned by the 

process are local and which are remote. Clearly, it is important that this state 

information be preserved as one program executes another. When a remote 

execution takes place, these data structures must be rearranged as the client part 

of the nsp moves from one system to another to reflect the fact that resources 

which were local are now remote and resources on the system where the exec is 

taking place are now local. 

The server on the system on which the remote exec takes place will become the 

new client and must therefore construct an appropriate data structure for the new 

NC layer in the client which will reflect the location of all resources relative to 

the new client. The code in the server which constructs this data structure 

assumes that all the resources which belong to the server itself are local. This is 

certainly correct if the server is unconnected. However, if the server is connected 

then some of its resources may actually be remote although there will be no way 

of telling which resources are local and which are remote because the NC layer 

attached to the server is transparent. Consequently, the NC data structure which 

a connected server constructs for the program it is executing will not be correct. 

More seriously, there will actually be two conflicting data structures because 

the NC layer attached to the connected server will construct its own view of the 

server's resources as part of the NC algorithm for what is an ordinary local exec 

from this viewpoint. Just as the connected server is unaware of its own remote 

resources, so its NC layer is unaware of the fact that the server is part of a nsp 

and will inherit other servers as it becomes a client after the exec. Transparency 

works in both directions and the correct overall picture can only be obtained by 

merging both views. However, both views are correct in their own right because 

they belong to separate nsps which are part of different virtual Unix system 

abstractions. But unless these two distinct layers of abstraction are preserved in 

the new client, one or other of the views they represent will be compromised and 



Recursive Transparency and the Newcastle Connection 127 

the whole algorithm will break down. In effect, servers in one DSP or the other 

will be forgotten about and certain resources held by those servers which should 

be remote will be treated incorrectly as if they were local. The most likely effect is 

that the program being remotely executed simply does not work properly. 

As an example, consider the three systems A, Band C again, arranged 

symmetrically in a tree. Suppose that from A we wish to execute the cat program 

remotely on B and use it to list its standard input. Because standard input will be 

opened on A before cat is executed on B, its file descriptor (which may refer to a 

local or remote file) will be one of the resources that will be inherited across the 

exec boundary. The NC will have a record of whether the file descriptor is local or 

remote and this must be adjusted to reflect the rearrangement of the client and 

server. All of the following examples will work because none of them requires 

connected servers and consequently only one level of DSP and virtual Unix 

system is involved: 

1 .. /B/bin/cat < file 

1 .. /B/bin/cat < 1 .. /B/file 

1 .. /B/bin/cat < 1 .. IC/file 

On the other hand, if there is a connected server on B and an indirect pathname is 

used to name a file on C then there will be two levels of DSP. The server on B will 

be the client of another server on C which will hold the true file descriptor for the 

standard in pu t of the cat command: 

1 .. /B/bin/cat < I .. /B/ .. IC/file 

In the topmost DSP with A as client in which the remote exec takes place the file 

descriptor will be remote on A and local on B. Consequently, after the remote 

execution has taken place B will have forgotten about its server on C and will 

treat the file descriptor as ifit were local. This is incorrect and without a valid file 
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descriptor for its standard input the cat program will tenninate without printing 

anything. 

At the risk of causing further confusion, here is a command that will work 

with a connected server at 8: 

I . . /C/bin/cat < 1 .. /8/ .. /C/file 

Because the connected server is not involved in the remote execution, both A 

beforehand and C afterwards will regard the file descriptor as being remote on 8 

and even though it is actually handled by a server on C (which will be ridiculously 

inefficient because cat is already running locally on C) this will not cause any 

problems. In other words, the algorithm only breaks down when the exec in one 

DSP takes place at a server which is part of another DSP and itself owns remote 

resources on other servers. Furthermore, the key point is that a remote resource 

owned by a connected server cannot be passed across an exec boundary. If it is 

acquired after the exec there will be no problem. Consequently the following 

examples will work with connected servers: 

1 .. /8/bin/cat 1 .. /C/file 

1 .. /8/bin/cat 1 .. /8/file 

I . . /8/bin/cat I .. /8/ .. /C/file 

In each case, the file to be listed is an argument to the cat program and is 

therefore opened after the exec. None of the examples would work without 

connected servers but each will involve at least two servers (the third will involve 

three) where at most one server or even purely local access would be possible. 

Connected servers do not give the most efficient solution by any means. The DIY 

mechanism proposed in section 5.7 would be required to sort out the optimal route 

from the client to the server and prevent the absurdity of creating a server next to 

the client on 8 in two of the above examples. 
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One further possibility, namely a connected server executing a program which 

it thinks is local but is actually remote, will also fail to work correctly. What 

should happen is that as the server tries to turn itself into a client it discovers at 

the last minute in its NC layer that it should remain a server since the new client 

is actually being created on another system. The DIY mechanism described in 

section 5.7 avoids the problem of nested remote execs by tracing all pathnames to 

the server on the system where the program resides. 

What can be done about this problem of connected servers and remote 

execution? Clearly it is not possible or practical to support two (or more!) NC 

layers simultaneously. However, it should be possible to reimplement the file 

server n exec with NC data" operation so that it merged the two levels of DSP 

rather than replacing the state information of one with the other. This would 

mean that the NC had to be able to tolerate the existence of two servers on the 

same machine because it would not be possible to merge two servers from 

different levels of DSP. However, the NC itself would never create such multiple 

servers directly. They would only arise as a result of merging two recursively 

structured DSPs and duplicate servers from the nested DSP would only exist as 

long as their resources existed; they would never be used to acquire new 

resources. (Presumably it would be sensible to promote a server from the inferior 

DSP ifno duplicate existed at a higher level. However, as explained earlier, such 

a server would not necessarily have the same access rights as a server created by 

a more direct route.) Such a merge algorithm would be able to support connected 

servers without significantly compromising transparency. Only the new n exec 

with NC data" operation would not be transparent because by definition it is not 

part of the Unix system call interface. However, some implementation of this 

operation is required even when an unconnected server is implemented directly 

on top of a Unix kernel so this is not really a problem. 
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5.6. Other Distributed Unix Systems 

So far we have only considered the implications that recursive transparency 

has for the NC. Before looking at possible solutions to the problems it poses, we 

will consider the other distributed Unix systems discussed in section 3.5 to see 

how they have tackled these issues. 

Both NFS and RFS are based on the idea of a remote mount. This means that 

they can exploit the existing kernel mechanism for crossing mount points and 

deal with .. correctly. RFS is closest to the NC in that its RPC protocol works in 

terms of path names. In other words, if a remote mount point is encountered while 

a pathname is being resolved, the entire system call is continued on the 

appropriate remote system. However, this mechanism is not recursive because 

the RFS server on the remote machine does not cross further remote mount points 

in the same way. NFS looks up pathnames in their entirety before generating an 

RPC for the required operation. Furthermore, it looks up remote names one 

segment at a time, effectively reading remote directories and resolving names 

locally, rather than passing the pathname across to the remote system for 

resolution. One consequence of this is that the local system must be aware of all 

the mount points on the remote system, even those for local file systems. This can 

be very expensive and an administrative nightmare, even for a moderately sized 

distributed system, and proposals have been made to hide at least internal file 

system boundaries on remote systems so that only the root of each remote system 

need be mounted in the local file system. Using one RPC to resolve each remote 

segment of a pathname and then a further RPC to perform a remote operation is 

also very expensive and NFS is only able to function efficiently because caching is 

used to avoid the need for name lookup as much as possible. LOCUS also resolves 

pathnames locally by reading remote directories and therefore has the same 

problems. 
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Both LOCUS and NFS require a single user id space across all systems and 

hence overcome some of the identification problems arising out of mapping user 

ids between systems. However, this requirement causes problems when two 

independently managed systems are combined and, although conflicts can be 

resolved by re-allocating user ids as systems are merged, this approach simply 

does not scale since every system must know about every other. RFS does at least 

support user id mapping like the NC. 

One important difference between the NC and the other implementations of 

distributed Unix is that only the NC uses private servers, one per process per 

machine. The other distributed Unix systems effectively have a single public 

server on each machine which provides the remote file system abstraction for 

every client. The implications of this were discussed briefly at the end of section 

5.4.3. The question of inadvertently creating multiple servers on the same 

machine for a single client does not arise. However, because a public server 

manages remote resources on behalf of many clients, each request for service 

must be accompanied by the identity of the client making it. Consequently, the 

same semantic conflicts can occur if a client can reach a server by more than one 

route but may only be identifed using the route by which it reached the server. In 

these circumstances, identity would be represented by a pathname and in order to 

discover whether two clients were identical it would be necessary to test whether 

their identifying pathnames led back to the same system. For an arbitrary 

naming graph this problem is not soluble without introducing unique identifiers 

(which are contrary to our recursive philosophy) as we shall see in section 6.4. 

In conclusion, the problems of recursive transparency are not unique to the 

NC but other distributed Unix systems do not have a solution to offer either. 

Instead, they avoid the issue by making simplifying assumptions or imposing 

unreasonable restrictions on the construction of the distributed system. 
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5.7. Towards a Solution - DIY 

We have seen in this chapter that although the functionality of a connected 

server is needed in order to make a distributed system fully transparent and to 

allow a name space to be partitioned into domains, the idea of recursive 

transparency and connected servers simply does not work in practice. Connected 

servers can lead to more than one server being created on the same machine and 

this can cause semantic conflicts, especially over the notion of identity. Remote 

execution cannot be implemented transparently with a connected server either, 

and pathnames involving .. which pass in and out of systems cannot be resolved 

satisfactorily. 

The solution to these problems is to relax the strict view of transparency that 

leads to the notion of recursive transparency and attempt to flatten the recursion. 

To avoid creating extra servers unnecessarily, a connected server must be aware 

of the fact that it is part of a nsp. Because other servers belonging to that nsp 

might exist on other systems, the server must be careful about creating new 

servers. Indeed, it would be better if all servers were created directly by the local 

process, assuming there is only one naming domain and all systems are equally 

accessible. The distribution layer cannot be added transparently to the server 

because it is transparency that causes the extra servers to be created. Instead, the 

distribution layer must somehow be merged with the server code. 

The problem is that name resolution and performing remote operations have 

been combined into a single RPC. Following a pathname through a chain of 

connected servers will reach the correct system in the end but not by the most 

direct route. Separating out the process of name resolution into a name lookup 

RPC to servers that know whether pathnames are local or remote would be 

simpler but less efficient because every remote operation would require an extra 

RPC to look up the name first. Since most remote objects can be accessed directly 
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with only one server, this approach will effectively double the number of RPC 

calls. 

Ifname resolution and performing remote operations are to be combined into a 

single RPC in the interests of efficiency, a routing layer based on pathnames must 

be added to the RPC protocol. If a pathname operation is directed to the wrong 

server (Le. the pathname is not local to that system), the routing layer will 

generate an exception and indicate a better pathname for the client to try again 

with. Such an exception (called ttDo It Yourself' or simply ((DIY") will be 

sufficient for a single naming domain because the client will always be able to 

interpret the name itself. A DIY mechanism handles the current directory 

problem nicely and also copes with redundant pathnames which go in and out of 

systems because it ensures that servers are always created and accessed by the 

most direct route through the naming graph. For mUltiple naming domains, the 

routing layer must be able to determine whether the improved pathname is 

indeed accessible to the client (lies within the same naming domain) or whether a 

new server must be created. So long as there is only one chain of servers leading 

into each naming domain from the client there is no danger of redundant servers 

being created. However, this may be hard to guarantee when the overall naming 

tree contains loops and it is possible to reach a naming domain via two different 

routes which are sufficiently indirect for the algorithm to break down. 

5.8. Conclusion 

In the next chapter we will explore the idea of combining name resolution and 

performing remote operations into a single RPC in more abstract terms. Although 

we have used Unix and the NC to introduce the topic of recursive transparency, 

we believe that the problem is more general than this and not simply an artifact 

of strange characteristics of Unix. Identity and name equivalence are 

fundamental issues in the design of any naming system but we have shown that it 
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can be difficult for a recursively structured distributed system to achieve 

transparency in these areas if it is implemented recursively using connected 

servers. We must therefore find a way of achieving the same degree of 

transparency without using a recursive implementation. The DIY mechanism 

introduced in section 5.7 is the approach we shall take. 
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Chapter 6 

An Abstract Approach to 
Recursive Transparency 

Chapter 5 introduced the concept of recursive transparency using Unix and 

the NC as an example of a transparently distributed system. In this chapter we 

will reconsider the topic of recursive transparency in the more general context of 

an abstract model of recursive distributed systems. Our model is object-oriented 

and its basic computational step is to perform an operation on an object. Objects 

are identified by name, and names must be resolved in order to locate objects. We 

will explore the implications of recursion for this model and consider mechanisms 

for combining name resolution with the RPC used to perform remote operations. 

This requires adding a pathname-based routing layer to the RPC protocol. We 

will also examine algorithms for simplifying pathnames statically and 

determining whether two pathnames denote the same object in a distributed 

system constructed without the aid of globally unique identifiers. 

6.1. Introduction 

In section 5.1 we argued that an operating system can be thought of as an 

interpreter for the objects and operations defined by a virtual machine. Programs 

which use the services of an operating system by issuing a system call are in effect 

performing operations on objects. We may therefore describe the system call 

interface more abstractly in terms of a perform operator. The expression 

perform(OP, NAME, ARGS) indicates that operation OP is to be performed on 

object NAME with arguments ARGS. 

A distributed system constructed from many such systems introduces the 

concept of a location and the idea of local and remote objects. Although the 

component systems of a transparent distributed system only allow operations to 
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be performed directly on local objects, the goal of transparency is to allow remote 

objects to be accessed and manipulated from any system. Consequently, 

constructing a transparent distributed system involves generalising the naming 

scheme of individual systems to include remote objects and extending the perform 

operation accordingly. This requires a resolve operator which maps the name of a 

remote object into the address of a system and the name of the object on that 

system. Given such a resolve operator and the ability to send messages between 

systems, it is possible to construct a transparent distributed system by designing 

an RPC protocol and using a client/server model to perform operations on remote 

objects. 

The essence of this construction technique is the way in which the local 

perform operation is extended to handle remote objects. One possible 

implementation of remote perform is given by the following algorithm: 

perform(OP, NAME, ARGS) 
{ 

} 

[address, name] ~ resolve(NAME) 
if (address = my-address) 
~ OP(name, ARGS) 

else 
~ rpc(address, OP, name, ARGS) 

fi 

Notice that the resolve operation which converts the NAME argument denoting a 

remote object into an {address, name} pair is quite distinct from the RPC that 

actually leads to the desired operation being performed on a remote system. Also, 

because resolve returns a name which is guaranteed to be local on the remote 

system, there is no need for the server on that machine to resolve the name 

further. (In other words, the server need not be connected.) Instead, it need only 

evaluate OP(name, ARGS) locally and return the result. This may seem 

unnecessarily restrictive and lacking in generality but it is a natural consequence 

of the strict separation of the perform and resolve operators. In the rest of this 
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chapter, we will explore ways in which this separation may be relaxed and 

develop a more recursive way of constructing distributed systems. 

6.2. N arne Resolution, Recursion and Transparency 

If a distributed system is to be functionally equivalent to the systems of which 

it is composed then it must use the same form of naming. Furthermore, if 

distribution is to be transparent, the names of remote objects must be 

indistinguishable from the names of local objects. When the independently 

managed name spaces of individual systems are combined to form a distributed 

name space some name clashes may occur. Consequently, the resolve operator 

must be able to map between names in the distributed system and names local to 

a particular system. This allows names in the distributed system to coincide with 

names on local systems provided that all names are interpreted by resolve so that 

it is not possible to mix names belonging to individual systems with names from 

the distributed system as a whole. 

Such an overlap between the name spaces is desirable because if objects local 

to a given system have the same name in the distributed system, programs which 

are tied to that system by the use of local names will continue to work in the 

distributed system because the same names will denote the same objects. If local 

system names are relative to a system naming context then it will be easy for 

names to retain their meaning in the distributed system providing each system 

retains its own system naming context. Unfortunately, this is arguably a breach 

in functional transparency because the component systems in the distributed 

system will still be visible since each will have its own distinct view of the 

naming space. The distributed system as a whole will not present itself as a single 

system naming con text. 

For a flat name space, names are either local or remote and the resolve 

operator simply looks them up in a table. With a hierarchical name space a more 
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structured approach is possible. In chapter 2 we described how pathnames were a 

natural naming mechanism for a hierarchical system and in chapter 3 we showed 

how pathnames could readily be extended in a recursive and transparent manner 

to a distributed System by introducing the concept of a remote context. 

Implementing resolve for pathnames with remote contexts involves following the 

pathname from its starting context until a remote context is encountered. This is 

mapped into the address of a system and the name of a context on that system at 

which the process of resolution can continue with the remainder of the pathname 

until finally the object denoted by the pathname has been identified. The problem 

with this approach is that the organisation of the name space reflects the location 

of objects in the system. Any pathname which passes through a particular remote 

context will denote objects on that system (or a more remote system reached from 

it). Names are not entirely location transparent. The solution to this problem is to 

allow remote leaf nodes as well as remote contexts. If a leaf node can refer to an 

arbitrary remote node, then the structure of the naming graph can be made 

independent of the location of objects. Names should not be confused with 

locations but this is what pathnames have a tendency to do. 

Name resolution will inevitably involve consulting some table or directory of 

names and addresses at some stage, irrespective of the form of name used by the 

distributed system. This table will either be stored locally on each system or else 

stored at some centralised point accessible via a name server. A name server is a 

single point of failure but storing the table locally involves replicating it across 

all systems and maintaining consistency between the various copies (assuming 

that all systems share the same view of the name space). It is also possible to use a 

mixture of these two approaches, perhaps employing a recursive hierarchy of 

name servers. Maintaining consistency across such a naming scheme can be 

difficult, especially if the naming structure is dynamic and changes frequently, 
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but this problem is somewhat orthogonal to the topic of this thesis. Here we are 

only concerned with the recursive aspects of this approach. 

In the absence of a centralised name-server (or series of name-servers) with 

absolute (or collective) knowledge of the location of all objects in the distributed 

system and the ability to map a remote name into an address and local name, it is 

possible to implement resolve in a decentralised way by letting every system 

provide a limited name server capability. A partial-resolve is performed locally 

which maps a given name into another name and a location at which this second 

name may be resolved further. This forms the basis of a recursive implementation 

of the full resolve which uses the RPC mechanism to pass a name through a series 

of systems so that (hopefully) it gets progressively simpler (i.e. (more local") at 

each stage until finally the local system for the name is reached and the object the 

name denotes is located. 

It is obviously desirable that this process of resolution gets closer at every 

stage so that it converges rather than diverges but in the presence of aliases 

names may sometimes become temporarily more complicated. Aliases are 

problematical because although they should ideally have a static meaning which 
, 

is independent of the client that interprets them, in practice some naming 

systems allow aliases to depend on a dynamic context belonging to the client who 

expands the definition. (Root-relative symbolic links in Unix are an example of 

such a feature.) If the server responsible for resolving the alias does not know the 

location of this context, it will be unable to give a location at which the resolution 

can be continued. 

Quite apart from this complication, in the absence of centralised control over 

naming, it may be difficult to define a measure of how close a name is to the object 

it denotes and hence guarantee that the resolution process will eventually 

terminate. However, assuming that the naming space has been set up 
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consistently so that this problem does not arise, the resolve algorithm may be 

described as follows: 

resolve(NAME) 
{ 

} 

[address, name, resolved?] -partial-resolve(NAME) 
if (resolved?) 

-+ [address, name] 
else 

-+ rpc(address, RESOLVE, name) 
fi 

The partial-resolve function returns a flag which indicates whether it succeeded 

in resolving the entire name or whether it has only come up with a ((closer" 

location from which the resolution may be continued. In a truly decentralised 

system, the resolved? flag would simply depend on whether NAME proved to be 

entirely local or not. The partial-resolve function would have no knowledge about 

other systems. However, this approach would be less efficient than an 

implementation that included non-local knowledge because the only way now of 

guaranteeing that an object was located at a particular site would be to issue a 

RESOLVE RPC to that site. Consequently, every remote operation would now 

involve at least two RPCs, namely one to resolve the name of the object and one to 

perform the operation at the remote site. Even worse, both of these RPCs would be 

directed to the same site. We will return to this point in the next section. 

However, it is worth noting a special case. If there is only one level of distribution 

so that remote names cannot span more than one system, the partial-resolve 

function will always be able to locate an object directly and no name resolution 

RPCs will be necessary. 

There is a problem with this version of the resolve algorithm. It generates a 

recursive chain of RPC calls which might inadvertently lead back to a system 

which had already been visited if the pathname contained a loop. An alternative 
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approach which would have only one outstanding RPC at a time would use a loop 

as follows: 

resolve(NAME) 
{ 

} 

[address, name] -[my-address, NAME] 
repeat 

ifCaddress = my-address) 
[address, name, resolved?] - partial-resolveCname) 

else 
[address, name, resolved?] - rpc(address, PARTIAL-RESOLVE, name) 

fi 
until resolved? 
-+ [address, name] 

This version of the algorithm uses a PARTIAL-RESOLVE RPC rather than 

relying on a recursive algorithm to completely resolve the name. Each RPC 

merely checks whether a name is local and ifnot returns an [address, name] pair 

which is ucloser" in the sense discussed above. The algorithm is controlled from a 

single centralised point (the local system that initiated the operation in the first 

place) rather than distributed throughout the named systems recursively. In fact, 

this new algorithm will involve no more RPCs than the original algorithm and 

may well involve less if a name loops back to the same system twice. 

For example, if A and B are systems which have been mapped into remote 

contexts of the same name, then an example ofa pathname which looped back on 

itself would be IBI AI x. This could be resolved from A using one RPC to B with the 

new iterative algorithm but would require two RPCs (from A to B and then from B 

back to A) with the original recursive algorithm. Eliminating the recursion in 

this way is desirable because it reduces the number of RPCs and prevents 

unnecessary callbacks. 

So far, little has been said about the address part of the result of these 

operations. However, there is an implicit assumption that all the systems can 

communicate equally with each other and that the addresses have a unique 

global meaning. This makes it possible to pass these values around freely as the 
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results of RPCs. If the address space is partitioned into domains or the values are 

not globally meaningful, more care is needed. The RPC mechanism must be 

aware of when a value is passed from one domain to another and must either 

massage the value accordingly or substitute a surrogate that can be used 

correctly but transparently. Such surrogates will take the form of 

va 1 ue@system and may be recursively nested. The RPC layer is responsible for 

forwarding messages addressed to such surrogate addresses and mapping 

surrogate values as they are passed between systems. In fact, the PARTIAL

RESOL VE algorithm should only be used within a single domain with the fully 

recursive RESOLVE algorithm being used between domains. 

6.3. Combining Perform and Resolve 

In discussing recursive implementations of resolve we have so far deliberately 

kept name resolution distinct from performing operations on remote objects. 

However, as we remarked earlier, a completely recursive implementation of 

resolve is inefficient because every name would have to be checked on the system 

it purported to belong to before its location could be guaranteed. The final 

RESOL VE RPC which verified the location would immediately be followed by a 

PERFORM RPC to the same system to perform the required remote operation. If 

the two operations were combined, an RPC could be saved. 

The algorithm for a combined perform and resolve uses a purely local version 

of resolve which either detects a local name or supplies an address where a better 

name may be tried. It is in fact equivalent to the fully decentralised version of the 

partial-resolve function with no knowledge of remote systems but has been 

renamed local-resolve to avoid confusion. 
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perform(OP, NAME, ARGS) 
{ 

} 

[address, name] -local-resolve(NAME) 
if (address = my-address) 

-+ OP(name, ARGS) 
else 

-+ rpc(address, PERFORM, OP, name, ARGS) 
fi 
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This is clearly very similar to the algorithms that have gone before. In fact, apart 

from the use of local-resolve, the only real difference is that an explicit 

PERFORM RPC is used to invoke this same code at the remote site recursively. 

Of course, just as before, loops in the naming structure will cause a recursive 

algorithm to loop back to a system which has already been visited. However, as 

with PARTIAL-RESOLVE, the algorithm can be restructured so that all the 

RPCs are coordinated from one place, namely the local site at which the operation 

was initiated. The modified algorithm then becomes: 

perform(OP, NAME, ARGS) 
{ 

} 

name-NAME 
repeat 

[address, name] -local-resolve(name) 
if(address = my-address) 

else 

fi 

-+ OP(name, ARGS) 

repeat 
[result, address, name] _ rpc(address, PERFORM, OP, name, ARGS) 

while (result = DIY and address! = my-address) 

while (result = DIY) 
-+ result 

When a server receives a PERFORM RPC it must resolve the name argument 

locally to determine whether the object on which the operation is to be performed 

is indeed local (to the server). If the object is local then the operation will be 

performed and the result returned but if it is remote then the address of a new 

remote system and a name on that system will be returned with an indication 

that the client should try again at that location. This assumes that all systems 

are equally accessible so that the client is able to communicate directly with any 
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system that a server knows about. (If the systems are not equally accessible and 

the server is aware that the remote system is inaccessible to its client, the 

algorithm must be started again with the server becoming a client in a nested 

distributed system. As before, the iterative algorithm can only be used within a 

single domain and the recursive algorithm must be used between domains.) 

Assuming that all systems are equally accessible (Le. assuming a single 

domain) the server algori thm may be described as follows: 

server-perform(OP, NAME, ARGS) 
{ 

} 

[address, name] +-local-resolveCname) 
if(address = my-address) 

-+ [OP(name, ARGS), nil, nil] 
else 

-+ [DIY, address, name] 
fi 

Notice that if local-resolve discovers that NAME is local to the server, the 

operation is performed locally and the last two components of the result structure 

are irrelevant. The result of a PERFORM RPC is really a union of two possible 

types: a success value indicating the result of the operation or a DIY exceptional 

value indicating a ((better" (presumably ((closer") place to try the operation. 

It is perhaps easier to visualise this combined implementation of perform and 

resolve as three distinct layers. The top level actually performs the operation 

(locally or remotely), the middle level resolves pathnames and the bottom level 

relays RPCs between addresses on the network. 
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Each perform operation enters the name layer on the local system and eventually 

emerges from this layer on the system on which the object referred to is local. In 

the meantime, the call will have been moved between systems by the RPC layer 

according to the results of the local-resolve operation performed in the name layer 

of each system. The recursive and iterative implementations only differ in the 

routing algorithm used between systems: the iterative algorithm always routes 

RPCs via the client system using a DIY mechanism, but the recursive algorithm 

simply allows them to pass freely and directly between systems at each stage of 

the resolution. 

For example, consider performing an operation on an object named 

I B I elf; 1 e from system A. The name of the object will be passed to the name 

layer on A and resolved into the name IC/f i 1 e on system B. The RPC layer will 

pass this name to B and the name layer at B will further resolve it as the name 

If i 1 e at the address C. At this point the difference between the two possible 

implementations will manifest itself. A recursive implementation of the RPC 

layer will pass the message on directly to C; an iterative implementation will 

return a DIY message to the effect Ittry again with If i 1 e at address C" to the 

RPC layer on A. 
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Since every RPC must return eventually, no extra inter-system messages or 

RPCs are caused by the iterative algorithm and for a name that loops back to the 

local system such as / B / A / f ; 1 e fewer RPCs are required. However, instead of 
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spreading the sending and receiving of messages evenly between the systems 

referenced by a given pathname, the local system will take most of the load, 

generating one RPC for each system in the pathname. Arguably, this is 

reasonable because it avoids penalising remote systems unnecessarily for the 

effect of remote operations performed by the local system. 

Another advantage of the iterative algorithm is that in the absence of a 

mechanism for resolving identical names statically it avoids creating more than 
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one server at each remote system for a given client on the local system, simply 

because all RPCs and hence server creations are initiated by the local client 

system. Although it would be possible to avoid this with the recursive algorithm, 

it would require making every server for a particular client (or at least the RPC 

layer on each system) aware of every other server for that client so that new 

servers were only created when absolutely necessary. In fact, because of possible 

permission problems caused by creating servers indirectly (via other servers), a 

hybrid algorithm would probably be required, with all servers being created non

recursively from the local client system. The iterative algorithm is a much better 

solution. 

6.4. Other Pathname Algorithms 

We have discussed various ways of resolving pathnames and developed an 

algorithm which combines name resolution and performing remote operations 

into a single RPC protocol implemented in three layers. We have in fact developed 

a dynamic mechanism for simplifying pathnames based on the idea of bouncing a 

name resolution RPC between systems until the most direct path to an object is 

found. Ifit were possible to simplify a pathname statically before passing it to the 

resolve algorithm, there would be no need to access systems mentioned in any 

redundant part of the pathname and less RPCs would be generated. Instead of 

using a dynamic sequence of RPCs to simplify the name, it could be analysed 

statically and transformed into a canonical form. It would then be possible to 

access the remote system denoted by the pathname by the most direct route, 

without any unnecessary RPCs and without passing through any unnecessary 

servers. 

In practice the overhead of resolving pathnames is reduced by two factors. 

Firstly, people tend to use pathnames in their simplest form (although computers 

are not so considerate, so machine-generated pathnames may still be a problem). 
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If no simplification is possible then nothing will be gained by static analysis. 

Secondly, because of the overhead associated with pathname resolution, even on a 

single system not every operation requires a pathname. Instead, it is possible to 

translate the pathname into a lower level name (effectively a capability) which is 

simpler to resolve but has purely local and transient significance. 

Such a capability is used for the duration of an extended sequence of 

operations on an object more permanently referred to by a pathname and captures 

the dynamic state of the computation. Its creation and subsequent destruction 

mark the beginning and end of this extended sequence. A typical example of such 

a facility is the concept of opening a file to get a file descriptor which is then used 

in place of the filename in a series of read or write operations before the file is 

finally closed and the descriptor is destroyed. Although the widespread use of 

such descriptors means that in practice pathname resolution is less frequent an 

operation than might be expected, it is still important to establish the most direct 

route to the server which holds the descriptor for the remote object and it is 

therefore worth considering an alternative approach to this simplification. 

In section 2.3.4 we discussed a canonical form for Unix pathnames and in 

section 2.3.5 we showed how .. could be eliminated to give a simple scheme for 

reducing pathnames to their canonical form. For a suitable naming graph these 

transformations would provide a useful simplification algorithm which could be 

applied statically rather than dynamically without accessing remote systems. 

However, the canonical pathname is only unique if the naming graph is tree

structured and consequently canonicalisation does not guarantee the most direct 

path for an arbitrary graph, nor does it guarantee a unique path. In order to solve 

the identity problem we must find a way of discovering whether two pathnames 

denote the same object. 
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Given unique identifiers the problem is trivial. Each object will have an 

identity which is guaranteed unique amongst all possible systems. One way of 

achieving this would be to give identities a hierarchical structure which included 

a unique system identifier. Mapping a pathname into the identity of the object it 

denotes might require an RPC but, since each object has only one identity and no 

two objects share the same identity, it is possible to compare identities directly to 

determine whether pathnames are equivalent. 

Even without a unique system identifier it is still possible to compare 

pathnames from within a single process (or some other form of localised context) 

providing there is only one naming path to each remote system. Every time a new 

remote system is accessed the transparent distribution layer attached to the 

process can allocate an arbitrary but unique (at least within this context) 

identifier for that system. This can be used to qualify any internally unique 

identifiers which are issued by the remote system so that they may be 

distinguished from identifiers issued by other remote systems. However, such 

qualified identifiers are only unique relative to a process rather than absolutely 

unique and are therefore only valid during the lifetime of the process which 

created them. They may not be published or used by other processes. 

However, if the naming structure of the distributed system is a general graph 

rather than a tree (so that a given system can have more than one name), it will 

be impossible to tell whether two pathnames denote the same object wi thou t 

introducing unique identifiers for all the systems. Although it is reasonable to 

assume that individual systems are able to generate their own private sequence 

of unique identifiers internally (e.g. timestamps), there is nothing to stop two 

systems from independently generating the same ~~unique" identifier. Identifiers 

which are only unique within a localised context cannot be used unambiguously 

outside that context. Consequently, in order to prove that two pathnames are 

equivalent, it is not sufficient to derive a system-specific unique identifier from 
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each of them and compare these for equality, although this test is certainly a 

necessary condition for equivalence and could therefore be used to prove that two 

pathnames were not equivalent. 

For example, consider an algorithm which relies on the idea of marking the 

object at the end of one pathname and then checking to see whether the object at 

the end of the other pathname had been marked in the same way. The mark is an 

internally unique token generated by the system checking the pathnames for 

equivalence. However, because such tokens are not globally unique and are used 

outside the context in which they are unambiguous, the algorithm is vulnerable 

to an anti-symmetry argument. If system X generates some token T which is used 

to mark object A before visiting object B, there is nothing to stop system Y from 

independently generating the same token T simultaneously and using it to mark 

object B before visiting object A. Both systems would find the second object 

(0 (0 
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(a) mark with T (b) check mark 

marked with the correct token and would incorrectly deduce that the two objects 

were equivalent when they were not. Even if the objects added their own 

qualifying mark to the token T they could still both generate the same qualifier 

independen tly. 

Admittedly this kind of failure is pathological in the extreme. By choosing the 

identifying token randomly from a sufficiently large population the probability of 
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the algorithm failing by accident could be made arbitrarily small. However, the 

probability of a clash can never be made zero and so what was originally a 

deterministic problem has now only a probabilistic solution. 

It could be argued that without globally unique identifiers the problem we are· 

trying to solve is ill-defined and therefore cannot have a solution. Being able to 

identify and distinguish individual systems amounts to defining a mapping from 

each system onto a unique identifier. Without unique identifiers it is not possible 

to define what is meant by two systems being the same and so it is impossible to 

construct an algorithm which can do so. However, it is possible to come very close 

to constructing an algorithm that works by approximating the idea of a unique 

identifier with a random identifier as we have just seen. Furthermore, for certain 

name spaces it is possible to determine whether two pathnames are the same from 

knowledge of the naming graph structure. 

For example, consider a graph where every node has two neighbours, 1 eft 

and right, which are inverses of each other. Although there are no absolute 
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names, all pathnames may be reduced to a canonical form very easily (so many 

steps to the left or so many steps to the right) and so two pathnames relative to 

the same system can be compared for equivalence by reducing them to their 

canonical form. 

It is always possible to introduce unique identifiers by providing a centralised 

server which resides at a well-known address and supplies guaranteed unique 

tokens to order. However, this incurs the additional overhead of allocating 
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identifiers dynamically as needed rather than statically in advance. The 

identifiers would have to be random and transient in significance because if they 

had any meaning and were associated with an absolute naming scheme, clients 

would have to identify themselves to the server in order to get the correct 

identifier. Furthermore, this is a centralised solution to a distributed problem. 

Such a server would be critical to the correct functioning of a distributed system 

which depended on it and there could only be one such server. This would cause 

problems when two distributed systems, each with their own server, were joined 

together. 

6.5. Summary and Conclusions 

In this chapter we have developed an abstract model of a transparently 

distributed system in terms of two operators, perform and resolve. This has 

enabled us to ignore the semantic details of any particular system and instead to 

concentrate on the mechanisms by which a layer of software providing 

transparent distribution can intercept operations, decide whether they refer to 

local or remote objects and redirect them to the appropriate system accordingly. 

The concept of name resolution, captured by the resolve operator, is central to this 

process. 

Although our model is general enough to include an implementation based on 

a centralised name server, in keeping with our recursive philosophy we have 

concentrated on a more decentralised approach in which each system has limited 

knowledge of its immediate neighbours in the naming graph. Name resolution 

may then proceed recursively by following a name from system to system or 

iteratively by returning an indication to the calling system that a name is not 

local together with an indication of a ttbetter" system to try. As demonstrated in 

the previous chapter, a recursive implementation can lead to semantic difficulties 

because it is liable to create multiple servers on the same machine and otherwise 



An Abstract Approach to Recursive Transparency 153 

confuse the notion of identity. Consequently, an iterative approach is preferable. 

Iteration will also involve less inter-system messages if a name loops back on 

itself. However, an iterative algorithm is unable to cope with a name space 

structured into sub-spaces or domains because it assumes that the naming graph 

is fully connected and every system knows about every other. Consequently, a 

hybrid approach is required with iteration used within domains and recursion 

between domains. However, this requires the domains to be organised in a tree 

structure in order to guarantee a unique naming path between any two systems. 

Once an object has been located by resolving its name, an RPC must be 

directed to the system where it is to be found in order to perform the required 

operation on the object. With a decentralised approach to name resolution, it 

makes sense to combine the perform and resolve operators into a single RPC 

protocol so as to avoid sending messages to the same system twice. The same 

arguments about recursion and iteration apply and the result is an RPC design 

which uses pathnames as addresses and includes a routing layer based on the idea 

of DIY, a special exception which indicates that a remote operation should be 

retried on another system. 

The combined perform and resolve algorithm is effectively a dynamic 

mechanism for simplifying pathnames by flattening the recursive structure of the 

name space. The most direct route which an RPC can take through the naming 

layer to a particular system corresponds to the canonical pathname for that 

system. In chapter 2 we showed that it was possible to simplify pathnames to 

their canonical form statically and hence avoid making any RPCs but this is only 

appropriate for a tree-structured graph. The more general problem of 

determining whether two pathnames from an arbitrary naming graph are 

equivalent is basically insoluble without introducing globally unique identifiers. 
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Although we have been taking for granted the basic hypothesis that recursive 

structuring is a good thing, this viewpoint has created many of the problems we 

have had to solve. The fact that these difficulties do exist is an argument against 

recursive structuring in favour of globally unique identifiers. 
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Chapter 7 

Conclusions 

This thesis has analysed many of the surprisingly subtle naming issues that 

arise in the construction of transparently distributed systems. In Chapter 1 we 

argued that distributed systems should be constructed transparently. A 

transparently distributed system built of existing systems should be functionally 

equivalent to the systems of which it is composed. Naming is of fundamental 

importance in achieving this. 

In Chapter 2 we showed that the purpose of a naming system was to map high 

level user names into internal system identifiers. A hierarchical naming 

structure based on the use of contexts makes it possible to localise portions of the 

name space and control which names are visible at anyone time. It is important 

to be able to navigate in such a hierarchy and name one context from another. 

Most systems provide a generic name for the parent context such as .. but we 

argued that it was better to name the context explicitly. This makes it possible to 

simplify redundant pathnames automatically without requiring global 

knowledge of the entire naming graph. If the graph is tree structured then 

pathnames may be reduced to a unique canonical form which is the most direct 

route through the tree. Such a canonical pathname may be used to identify an 

object unambiguously. However, the presence of naming aliases in the form of 

multiple paths to the same node in a more general graph makes it impossible to 

derive a unique canonical form. In a general graph some simplification of 

redundant pathnames is still possible but there is no longer any guarantee that a 

pathname can be reduced to its simplest form. 
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Chapter 3 considered the problems of joining hierarchical name spaces 

together. A naming system maps external names to internal identifiers and name 

spaces may be joined at either level. This involves resolving naming conflicts. 

Internal identifers may need to be qualifed with the identity of the name space to 

which they belong or else be replaced with identifiers which are unique in the 

wider scope of the combined name spaces. Naming conflicts are not such a 

problem externally because external names tend to be contextual. However, a 

mechanism must be found for allowing external names to cross name space 

boundaries. Ideally this should hide the boundary between name spaces so that 

names remain location transparent. No restrictions should be imposed on the 

grouping of names into a given context, irrespective of the location of the objects 

they denote. Such granUlarity is difficult to achieve in practice since arbitrary 

references between name spaces make garbage collection and other forms of 

integrity checking difficult. Instead, a compromise which exploits locality of 

reference may be adopted, reducing the granularity of inter-name space 

references by making whole sub-spaces rather than just individual objects visible 

through a mount mechanism. 

The techniques used to join together name spaces within a single system may 

also be used to join together whole systems to construct a transparent distributed 

system. One of the difficulties in achieving full transparency is the presence of an 

explicit naming context for system objects in the naming graph. It is difficult to 

preserve individual system contexts in the naming graph of the distributed 

system as a whole without violating transparency because a single system does 

not need an explicit mechanism for identifying and distinguishing other systems 

since there are none. This is more a problem of scale than of distribution because 

the idea of a unique system context is not recursive or extensible. It would be 

difficult to administer a large centralised system without a mechanism for 

dividing it up into subsystems. If it existed, such a mechanism could easily be 
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extended and used to structure the design of a transparently distributed system 

but without it some compromise is necessary. 

Unix uses the root directory / as both a system naming context and a globally 

agreed starting point for absolute pathnames. However, the implicit assumption 

that these two meanings are the same is only valid for a single system and is 

liable to break down for a transparently distributed system. The various 

distributed Unix systems described in chapter 3 approached this problem in 

different ways. 

The Newcastle Connection represents systems as remote contexts and groups 

them together into a new context which has no absolute name in its own right but 

may only be named relative to an existing system. This approach preserves the 

identity of individual systems in a shared global naming hierarchy. 

An alternative approach adopted by NFS and RFS uses the concept of remote 

mount to allow individual systems to share parts of their name space with other 

systems while still retaining a single system view of the world. With this second 

approach, there is no common view of the naming tree and each system may have 

a private name space which is not visible to any other system. 

Neither of these approaches is completely transparent because in the first case 

individual systems are still visible and in the second case there is no single view 

of the distributed name space. However, a third approach adopted by LOCUS 

subsumes the individual systems entirely into a single virtual system. A 

distributed system built with LOCUS has only one system naming tree and it is 

shared by all the components of the distributed system. This is the only approach 

which is completely transparent but it is essentially flat. It is not possible to join 

two such virtual systems together in a hierarchy. Instead, they must be flattened 

into a single system by resolving naming conflicts and renaming objects if 
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necessary. It would be difficult to administer a large LOCUS system because it 

would be monolithic with no sub-structure. 

Chapter 3 also contained a detailed discussion of various aspects of the Unix 

semantics which do not extend easily to a transparently distributed system. Most 

of these problems arise in areas where Unix is not recursively structured and 

therefore less suitable as a component of a distributed system. Although the 

details were specific to Unix, these issues must be tackled in the design of any 

distributed system regardless of whether it is composed of existing systems or 

built from scratch. 

Chapter 4 examined distributed systems constructed from scratch rather than 

built out of existing centralised systems. Such systems are usually built 

assuming the existence of globally unique identifiers, and various techniques for 

allocating such identifiers and guaranteeing their uniqueness were discussed. In 

particular, the problem of combining such systems transparently without 

identifier clashes was examined. The most pragmatic solution appeared to be 

generating unique identifiers at random, giving only a probabilistic guarantee 

that no clashes would occur. We argued that although globally unique identifiers 

offer a theoretical solution, they cannot be relied on in practice, and concluded 

that the problem of combining whole distributed systems was really no different 

from that of combining individual systems if distribution is transparent. 

Chapter 5 explored the idea of constructing transparent distributed systems 

recursively by considering the implications this might have for the Newcastle 

Connection, an implementation of a transparent distributed Unix system. 

Semantic difficulties arise from the fact that in a recursively structured system 

based on the notion of localised pathnames the concept of identity becomes 

confused when it is possible to name objects in more than one way. For the 

Newcastle Connection, identity is tied up in the concept of a Distributed 
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Sequential Process (nSP) consisting of a client process on the local machine and a 

server process on each of the remote systems which the nsp has accessed. We 

showed how a recursive implementation allows two servers representing the 

same nsp to be created simultaneously on the same machine and how this crisis 

of identity is responsible for various semantic problems (related to the notion of 

identity) where the transparency breaks down and the distributed system is no 

longer functionally equivalent to the systems of which it is composed. In fact, one 

aspect of the Newcastle Connection, remote execution, cannot be implemented 

transparently (and hence recursively) in any case because the server programs 

need to be aware of any servers they may have acquired for themselves, contrary 

to the notion of transparency. Other distributed Unix systems have either not 

tackled this problem or else have relied on globally unique system identifiers to 

avoid the difficulty. 

Chapter 6 left Unix behind and examined the idea of recursive transparency 

in more abstract terms. A distributed system must resolve names to locate objects 

and then perform operations on those objects. The implications of combining 

resolve and perform into a single operation, in effect an RPC based on pathname 

routing, were explored, first for a flat system structure and then for a recursively 

structured distributed system. It was shown that it is only possible to guarantee 

that a given system can be reached by one naming path (hence identifying the 

client system uniquely) if the overall naming graph remains tree structured. This 

restriction can be lifted slightly by grouping systems into naming domains and 

allowing each system to have limited knowledge about the global graph structure 

in the form of information about its enclosing naming domain, provided that an 

overall tree structure is retained between naming domains. Without a way of 

giving systems a global identification, guaranteed unique amongst all possible 

systems, it is not in general possible to tell whether two pathnames in an 

arbitrary naming graph denote the same object or not and hence the crisis of 
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identity remains, although once again a pragmatic solution based on random 

identifiers is possible. This is an argument against recursive structuring in 

favour of globally unique identifiers. 

Bringing together some of the ideas discussed in this thesis we see that by 

using globally unique identifiers it is certainly possible to recognise pathnames 

which denote the same object because there is a proper notion of identity. 

However, except in those special circumstances where uniqueness can truly be 

guaranteed across all possible systems, it is not possible to join two distributed 

systems constructed with unique identifiers together to form a single system and 

still guarantee that all identifiers are unique. Consequently, the problems of 

identifying individual name spaces and mapping from one space of unique 

identifiers to another must still be tackled. But putting a limit on uniqueness 

amounts to introducing contextual names. This in effect opens up Pandora's box 

and introduces the whole range of problems discussed in chapters 5 and 6. 

7.2. Contributions of Thesis 

Naming is of fundamental importance in the construction of a transparently 

distributed system. If a distributed system is built out of existing systems then 

the naming characteristics of the component systems will determine to what 

extent the composite system is functionally equivalent to the systems of which it 
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is composed, in other words the degree of transparency which can be achieved. We 

have shown that a recursive naming system is more readily extensible than a flat 

naming system by demonstrating that it is in precisely those areas in which a 

system is not recursive that transparency is hardest to achieve. In fact, this is not 

so much a problem of distribution so much as a problem of scale. The introduction 

of sub-structure is the only way to control the complexity of a large system 

regardless of whether it is distributed or not. A system which does not scale well 

internally will not extend well externally to a distributed system. 

Naming is inextricably linked with the notion of identity. In any system it is 

vital to be able to identify objects uniquely and unambiguously. It is usually 

possible to translate a name into a unique identifer. However, such a facility is 

not recursive because unstructured identifiers are only unique within their 

defining context. The obvious solution to this problem is to identify objects with 

extensible sequences of unique identifiers with one component for each level of 

the hierarchy. This is in effect a pathname. However, such an identifier can only 

be guaranteed unique if the naming graph of the overall system is tree

structured. Although this would be a natural consequence of a distributed system 

being genuinely constructed recursively out of existing systems, in practice this is 

usually not realistic. When systems are joined together their naming graphs are 

connected in several places and the overall structure is not a tree. Naming 

facilities such as aliases or links (multiple names for the same object) could not be 

provided in a pure tree-structure. 

We have shown that within a tree-structured graph it is possible to use the 

concept of a canonical path to determine whether two pathnames are equivalent 

statically. However, for a more general naming graph and a distributed system 

with a high level of parallelism it is impossible to tell whether two pathnames are 

equivalent without introducing globally unique identifiers or some other form of 

synchronisation. For a very large scale distributed system, global uniqueness 
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would be difficult if not impossible to achieve in practice and consequently it is 

not reasonable to expect a deterministic solution to this problem for such a 

system. Probabilistic algorithms which use random numbers to approximate 

globally unique identifiers are an attractive alternative because their behaviour 

is predictable and the probability of an error can be made arbitrarily small. 

The problem of name resolution in a distributed system amounts to 

simplifying an arbitrary pathname dynamically using limited contextual 

information. The most natural implementation of such an algorithm is recursive 

but this will not work correctly if the pathname is redundant, compromising the 

notion of identity and leading to various semantic difficulties which violate the 

transparency of the distributed system. Although it is possible to flatten the 

recursion somewhat by partitioning the name space into sub-domains, a recursive 

algori thm will still be required between domains and this will lead to the same 

difficulties if the partitioning is not tree-structured. 

Although structured identifiers offer a solution to the problem of resolving 

name clashes when name spaces are combined, they only work correctly under 

the unrealistic and restrictive assumption that the overall name space is tree

structured. Universally unique identifiers are also unrealistic because they 

require centralised coordination and are prone to human error unless guaranteed 

unique by hardware. The only pragmatic approach is to rely on random 

identifiers which offer no more than a probabilistic guarantee that naming and 

identity will not be compromised. 

The table on the next page illustrates the various techniques for identifying 

objects discussed by this thesis and summarises their relative advantages and 

disadvan tages. 

In conclusion, the main contribution of this thesis has been to examine the 

difficult problem of joining name spaces together without accepting the easy 
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solution of assuming unique identifiers (which on closer inspection poses severe 

management problems). Very little work appears to have been done in this area. 

Technique Advantages Disadvantages 

canonical allow static name requires rigid tree 
pathnames resolution structure and 

cannot cope with 
aliases or "" 

unique identifiers work well for a flat structure 
single naming clashes when 

domain combining name 
spaces 

globally unique universal panacea unrealistic for large 
identifiers systems requiring 

centralised 
coordination and 
rigidly enforced 

uniqueness 

recursive name natural solution for cannot handle 
lookup recursive name redundant names 

system without confusing 
notion of identity 

iterative name solves identity cannot cope with 
lookup (DIY) problem for single mUltiple domains 

naming domain 

combined recursive best deterministic domains must be 
and interative solution possible joined in a pure 

approach without requiring tree structure 
global uniqueness 

random identifiers good no longer 
approximation to deterministic but 
global uniqueness probablility of error 

without can be made 
management arbitrarily small 

problems provided an upper 
bound can be 

placed on the size 
of the system 
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7.3. Future Work 

Although this thesis does not include detailed descriptions of any 

implementation work, the insights it contains are based on extensive practical 

work with the Newcastle Connection. Specifically the author was responsible for 

the first implementation of the NC inside the Unix kernel and indeed the first 

port of the NC code to another machine. He has also participated in much of the 

development work, especially in the area of interworking with heterogeneous 

implementations of Unix. Only the detailed knowledge thus gained about the 

practical problems of implementing transparently distributed systems has made 

it possible to write this thesis. 

Given this experience with the Newcastle Connection, an obvious direction for 

future work would be to incorporate the DIY mechanisms discussed in chapter 6 

into the RPC protocol used by the NC. This would make it possible to provide the 

functionality of connected servers required for full transparency without 

compromising Unix semantics by confusing the notion of identity. It would also 

address the problem of constructing a large distributed Unix system out of many 

independent naming domains. However, it is not clear that the effort involved in 

implementing the extra functionality, particularly in the area of remote 

execution, would be justified by the use made of such a system. 

Another possibility would be to monitor a real Unix system and determine 

how the various Unix naming facilities are used in practice. For example, by 

examining typical directory structures and the use of context-dependent 

pathnames it would be possible to predict whether it would be useful to introduce 

an alternative naming mechanism such as a closure or eliminate .. and use 

canonical pathnames instead. Similarly, statistics collected about pathname 

resolution could be used to determine the impact that introducing DIY 

mechanisms would have on the performance of a distributed Unix system. Some 
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work already done in this area [Floyd87] indicates that pathnames tend to be 

quite dense and name resolution is an expensive operation, making some sort of 

caching essential for performance reasons. 

The impact of caching on the design of a transparently distributed system is 

also worth exploring. One of the difficulties with adding distribution to a system 

transparently is picking an appropriate level at which to intercept operations on 

objects. Since the layer of software inserted at this point must effectively simulate 

the name resolution alogorithms of the underlying system, it is important to 

minimise the extent to which existing mechanisms are duplicated. However, 

despite Uend-to-end" arguments [Saltzer84], optimisations such as caching tend to 

be applied at the lowest level of the system but distribution is added at a higher 

level to maximise the functionality which is captured by the transparent layer. 

This trade-off deserves more investigation. 

One way of exploring these issues would be to develop from scratch a more 

recursively extensible system based on the knowledge gained in this thesis of the 

limitations of Unix. This would address such areas as user and process 

identification whilst avoiding the problems caused by making low-level 

identifiers visible. Such a system might use random numbers to solve some of the 

identity problems caused by the use of local identifiers in a large distributed 

system. However, one practical problem in evaluating such a system would be 

that its particular advantages would only become apparent ifit was deployed on a 

grand scale on top of many computers in an environment containing many sets of 

users and many system administrators. This would not come about unless the 

system was clearly better than Unix and offered more than just recursive 

extensibility. Even then it is not clear that a system as pervasive as Unix (which 

was once described as the ttFortran of Operating Systems") could ever be replaced 

on such a scale. Certainly, the implementation effort and political intrigue 

required would be very considerable. Unfortunately, research into the scaling 
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properties and management difficulties of very large distributed systems requires 

the resources of a multinational organisation and a leisurely timescale. 

A more realistic line of research would be to develop a formal model of naming 

which treated names as first-class objects and captured the notion of passing 

names between contexts. Treating names as typed objects makes it possible to 

hide their internal representation and prevent them from being forged or passed 

around between contexts by ad-hoc means. The Flex system contains several 

interesting ideas such as remote capabilities and closures which offer promising 

directions for future work. Basing such a model on Flex or a similar programming 

environment would demonstrate that the ideas in this thesis are not just 

applicable to the design of distributed operating systems but are also useful in the 

design of other types of system too. It might be more realistic to construct a large

scale experiment with an IPSE than with an operating system. 

7.4. Concluding Remarks 

Given the opportunity, the domain of a naming space based on globally unique 

identifiers may be enlarged by adding an extra level of hierarchy. This solution 

has been adopted by the telephone network on several occasions but it requires 

the ability to recognise old names and prevent them from being used out of 

context. This could involve a major effort in redesigning the system and it is 

perhaps more realistic to assume that this problem will arise from the start, not 

just once but possibly indefinitely, and therefore to base the system design on 

localised contextual names which will scale more easily. However, as we have 

seen, these introduce their own problems, and in particular the problem of 

identity. We are left with the unhappy conclusion that 

ttGlobal identifiers apparently work but don't scale, 

Local identifiers scale, but apparently don't work." 
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