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Abstract 

This thesis is devoted to the construction and analysis of models which can be used to 

evaluate the performance and reliability of distributed systems. The general object of the 

research therefore is to extend the types of queueing models with breakdowns which have 

been solved, with a particular interest in networking structures. 

The systems that are studied involve various collections of servers and their associated 

queues. These range from isolated nodes, though parallel nodes coupled by the effect of 

breakdowns on arrivals, to pipelines of such parallel stages and more general networks. 

The issues that are explored include the influence of breakdowns and repairs on delays, 

job losses and optimal routeing. Obtaining performance measures for interacting queues 

is difficult, however a degree of abstraction has been used here which allows long run 

averages to be calculated (exactly in many cases) for quite complex systems. A variety of 

different techniques are used in order to obtain solutions to these models, including exact 

equations, exact numerical and approximate numerical techniques. 
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Chapter 1 

Introd uction 

1.1 Overview 

Computer and communications systems playa vital role in everyday life, from aircraft 

navigation to the supermarket checkout we rely on them. The consequences of system 

failure can be serious, either in terms of safety, financial cost or just plain inconvenience 

to the user. Therefore a great amount of effort goes in to making these systems reliable, 

both in terms of hardware and software. Clearly some means of predicting performance 

and reliability would greatly assist in the design and management of these systems. 

In traditional engineering systems, like construction, well known physical equations 

exist to predict the strength of a structure, however in computer systems the physical 

component level is far too complex to study, hence failures appear to the observer as 

random events. It is perhaps a natural step therefore to model systems of this type as 

collections of randomly occuring events which alter the state of the system in some way. 

If a processor is looked at as a 'black box' it appears to accept requests from some outside 
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source, perform some actions based on the request and deliver a response. In all but 

the simplest systems processors will receive many requests from several different sources 

(users, peripherals, other processors, etc) but will only be able to respond to a certain 

number at a time, and so the requests will need to be queued to await attention. Thus a 

computer system can be modelled as a system of one or more queues which are affected by 

randomly occuring events. The events of interest might be new requests arriving into the 

system, the service of requests being completed, or something that affects one or other of 

these, e.g. a breakdown in the system. The study of these models is known as queueing 

theory. 

Queueing theory has long been a major method for predicting the performance of 

computer systems and queueing networks have long been a major topic of research interest. 

As computer systems have become increasingly powerful (and complex) so greater reliance 

has been put on them. As a result a greater amount of effort has been made to access 

the reliability of computer systems, therefore a substantial amount of attention has been 

given to incorporating breakdowns into queueing models. This thesis is devoted to the 

construction and analysis of models which can be used to evaluate the performance and 

reliability of distributed systems. The general object of the research therefore is to extend 

the types of queueing models with breakdowns which have been solved, with a particular 

interest in networking structures. 

The systems that are studied involve various collections of servers and their associated 

queues. These range from isolated nodes, though parallel nodes coupled by the effect of 

breakdowns on arrivals, to pipelines of such parallel stages and more general networks. 

The issues that are explored include the influence of breakdowns and repairs on delays, 
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job losses and optimal routeing. Obtaining performance measures for interacting queues 

is difficult, however a degree of abstraction has been used here which allows long run 

averages to be calculated (exactly in many cases) for quite complex systems. A variety of 

different techniques are used in order to obtain solutions to these models, including exact 

equations, exact numerical and approximate numerical techniques. 

Our initial motivation for studying models of this kind came from the telecommuni

cations industry, where the servers are alternative gateways through which messages or 

packets may be routed. The pipeline and network structures presented in the later chap

ters are easily applicable to systems in manufacturing industries, where a node consisting 

of several servers may represent a stage in the manufacturing process of a product, rep

resented by a job. Equally servers may represent computers in a network, and thus a set 

of parallel servers may represent a set of replicated World Wide Web servers, or database 

gateways. 

1.2 Literature Review 

General 

The modelling literature contains many studies dealing with the performance and 

availability of systems subject to breakdowns and repairs. Problems of this type arise in 

areas as diverse as computing, communications, manufacturing and transport. However, 

most of the work has concentrated on models involving a single job queue served by one or 

more processors (e.g., see Avi-Itzhak and Naor [3], Gaver[30], Mitrani and Avi-Itzhak [72], 

Sengupta [92], Thiruvengedam [99] and White and Christie [108]). Very few results are 

available for systems with more than one queue, although several exist when processors are 
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statistically identical, e.g. Chakka and Mitrani [13], Mikou [68] and Neuts and Lucantoni 

[83]. An approximate solution for a general Jackson network of unreliable nodes was 

suggested by Mitrani in [70]. 

There are a number of texts which provide a general introduction into queueing theory 

in general, queueing networks and modelling queues with breakdowns in particular, among 

those I have consulted are Ajmone Marsan et al [1], Gelenbe and Pujolle [32], King [48], 

Kleinrock [50], Mitrani [69] and Sauer and Chandy [89]. Also a number of papers have 

been published which are useful in directing the reader to relevant work, notable amongst 

these are the surveys of Doshi [17, 18] and Disney and Konig [16] and the bibliography 

com piled by Takagi [96]. 

Single Server Models with Breakdowns 

White and Christie [108] were the first to specifically consider server repair following 

breakdowns, or server vacations, in a queueing system. They presented a model single 

MIMI 1 queue subject to random (negative exponentially distributed) breakdowns and 

repairs where no jobs are lost. They also considered the case where breakdowns can 

occur during the repair process, so that when one repair is completed, another must begin 

immediately before any service takes place (Le. breakdowns join a higher priority queue). 

Heathcote [39] modified White and Christie's model such that breakdowns can only 

occur when the job queue is non-empty and the service time is k-Erlang. Jaiswal [43] 

obtained a solution of White and Christie's model with multiple failures and generally 

distributed service and repair times, using a method referred to as 'inclusion of supplemen

tary variable technique'. Thiruvengedam [99] used Jaiswal's method to derive solutions 

for White and Christie's and Heathcote's models where the service and repair times are 
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generally distributed. 

Gaver [30] also considered a single server model with negative exponentially distributed 

time before failure. Jobs arrive in batches according to a compound Poisson process and 

service time and time to repair are generally distributed. Interruptions are considered 

to be preemptive resume, postponable or preemptive repeat, with several performance 

measures derived and compared for each. 

A vi-Itzhak and N aor [3] considered 5 similar single server models, in each arrivals are 

assumed to be Poisson and service time and time to repair are generally distributed. The 

first two of these models were considered earlier by Jaiswal [43] and Thiruvengedam [99], 

that is, negative exponentially distributed time before failure with preemptive priority, 

either occuring at any time or only when the queue is non-empty. The next model assumes 

a negative exponentially distributed time before failure, preemptive and at any time, with 

repair withheld until the queue is non-empty. The fourth model assumes that the speed 

of service degrades with time, a job may request that the server repairs to an optimum 

level with a given fixed probability. The final model again assumes negative exponentially 

distributed time before failure, but only when the queue is empty. 

Federgruen and Green [25] studied a more complicated version of the model considered 

by both Thiruvegedam [99] and Avi-Itzhak and Naor [3], where the failure and repair times 

are generally distributed. This is shown to be a far from trivial extension of the earlier 

work and only bounds and approximations were derived for the most general case, although 

exact forms are produced when the repair time is assumed negative exponential. Nicola [84] 

considered an M/G/1 queue subject to failures and repairs where many different types of 

interruption are possible (e.g. preemptive resume, preemptive repeat, postponable). The 
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Laplace Stieltjes transform for the completion time is derived and steady state results 

obtained for the case where only single failures are allowed. 

A single server queue with 2 distinct classes of customer and threshold type service was 

studied by Nain [80]. Class 2 customers have priority until the amount of work required by 

class 1 type customers exceeds a certain threshold. Clearly this model is closely related to 

the failure models above, except that class 1 customers build up to cause an interruption 

of normal (class 2 customer) service. Arrivals in this model are assumed Poisson for both 

classes of customer, service times are exponentially and generally distributed for class 1 

and 2 respectively, and the Laplace Stieltjes transform for the stationary joint distribution 

of server workload is derived. A slightly simpler version of this model (with exponential 

service time for class 2 jobs) was studied by Boxma et al [7], who determined the joint 

queue length distribution using both analytic techniques and the power series algorithm. 

Sengupta [92] again considered a single server queue with 2 states, with generally 

distributed time spent in each state. Jobs arrive in Poisson streams of different type and 

rate depending on the server state, the interpretation for this being that more urgent jobs 

will be directed away from a broken server, thus changing the job profile. There is no 

priority associated with each job type, but the service times may have different means and 

distributions. A comparison is made with the GI/G/1 queue is made and exact closed 

form is derived for the case when failures and repairs are exponentially distributed. 

Lucantoni et al [61] studied a single server model where a vacation is taken every time 

the queue becomes empty, and the queue is still empty when the vacation is over then 

another is taken (ad infinitum). The interpretation for this model is that the server has 

another associated queues of lower priority which only receive service when this queue is 
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empty. The duration of the vacation therefore is a period of service at the other (lower 

priority) queue. Service and vacation times are generally distributed and the arrivals are 

subject to a general Markovian arrival process, which includes the Markov modulated 

Poisson process. Arithmetically tractable equations are derived for several performance 

measures and comparisons are made with the GI/G/l and M/G/l queues with vacations. 

Doshi [17, 18] has produced two surveys of queues with generally distributed service 

times and vacations based around a secondary class of jobs, which include several of 

the above models. Fischer and Meier-Hellstern [26] produced an excellent review of the 

literature of the Markov-Modulated Process (MMP). 

Multi-server Models with Breakdowns 

Mitrani and Avi-Itzhak [72] considered a model where a single queue is attached to 

several identical servers which are subject to independent failures and repairs. Arrivals 

are assumed Poisson and service time, time before failure and time to repair are all as

sumed to be negative exponentially distributed. This was the first multi-server model 

with breakdowns to be published. This problem was returned to in a study by Neuts 

and Lucantoni [83] with the added feature that only a limited number of servers could 

be repaired at a time. Mitrani and King [74] compared the model in [72] with an earlier 

model of theirs [75] where failures arrive into the queue as preemptive priority jobs. They 

used these models to test the hypothesis that a single server performs less well than many 

slower servers when failures occur, unlike the case where servers are reliable (assuming the 

same overall service capacities). 

In [70] Mitrani studied a Jackson network where each node consists of a single queue 

and server subject to exponentially distributed breakdowns and repairs. Jobs arrive at each 
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node in independent Poisson streams such that every node is saturated, after completion of 

a service of exponentially distributed duration the job leaves the system. Jobs in a queue 

may transfer to another queue at any time, the rate of transfer being dependent on the 

operative state of the server. Exact performance measures are derived for this situation 

and an approximation technique is describe where the network is not saturated. 

Mikou [68] analysed a tightly coupled two-node network with simultaneous breakdowns 

and repairs, by a far from trivial reduction to a boundary value problem. Jobs arrive in a 

Poisson stream to the first of the servers, after an exponentially distributed service time 

the job either departs the system, or passes on to the second server. After service at 

the second server, all jobs return to the first. Failures halt service at both servers, but 

the queues remain intact, both time before failure and time to repair are exponentially 

distributed. This problem is revisited (as an example) in chapter 7. 

More recently, Mitrani and Wright [77] examined a system with N parallel queues 

where the consequences of a breakdown are (a) the loss of all jobs in the corresponding 

queue and (b) the re-direction or loss of all arrivals to that queue during the subsequent 

repair period. Those assumptions imply that the queue of a broken server is necessarily 

empty. The solution of this model utilises the quasi-separable nature of the system in the 

same way as in chapter 3 of this thesis. Idrissi-Kacemi et al. [40] have studied the case of 

two queues, only one of which is subject to breakdowns; all jobs present are transferred, 

and new jobs are redirected, to the other queue after a breakdown. A pipeline structure 

was considered by Ezhilchelvan et al [21], here the nodes were tri-modular redundant (a 

highly reliable architecture) and a good approximate solution was found. 

Of the above citations, only Mitrani and Wright [77] obtain exact performance mea-
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sures for a model with more than two queues. 

In forming the network model in chapter 7 it was necessary to consult several reliable 

network models from the literature and consider the effect of imposing failures. Foremost 

in this literature are the survey of Disney and Konig [16] and the class of models of open 

and closed networks considered by Baskett et al [5]. The model in chapter 7 is based 

on one the earliest queueing network models proposed by Jackson [41], in which there 

are M nodes (called departments), each consisting of a single queue with nM associated 

servers. Jobs arrive from outside the system in a Poisson stream at each node, and upon 

completion of an exponentially distributed service time may either leave the system or 

move on to another node with fixed probability. Clearly a job will eventually leave the 

system, but the number of services it receives and the route it takes through the system 

is random. Two examples are also considered in chapter 7, one based on a 2 node model 

proposed by Mikou [68] (outlined above) and another an extension of a 3 node model 

studied by Mitrani [71], where each node is a simple M/M/1 queue. All jobs arrive in a 

Poisson stream at node 1, and after completion of service are divided between nodes 2 and 

3. All jobs completing service at node 2 move on to node 3 and all jobs completing service 

at node 3 leave the system. Essentially this is a simple network that allows overtaking, 

but without any reliability issues involved, the model presented in chapter 7 has the same 

structure but with independent random failures and repairs at each node. 

Priority Queues 

Closely related to models of server breakdowns and vacations is the area of priority 

queues. In a priority queue there are k classes of jobs, each with an independent arrival 

and service rate. Jobs of class i have greater priority of service than jobs of class i - 1 
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(0 < i :S k) and as such are chosen for service in preference, either preemptively, or non

preemptively. In the preemptive case the service of a job of class i will be interrupted by 

the arrival of a job of class j if j > i (i,j :S k), whereas in the non-preemptive case the 

service of a job cannot be interrupted. In both cases the highest priority job available 

in the queue will be served in FIFO order (within its class) when the server becomes 

available. Clearly therefore a server breakdown is a special case of a preemptive priority 

queueing system where there are 2 classes of jobs and the arrival of a high priority job 

(failure) precludes any further such events until after its service is complete. 

The earliest priority queueing models to be studied were all non-preemptive, notable 

amongst these are Cobham [14] and Morse [78]. The first preemptive models were produced 

by White and Christie [108] who studied a 2 class MIMl1 queue as well as making the first 

models of server breakdowns (see above). Further single server models were presented by 

Heathcote [39], Jaiswal [43] (see Single Server Models above) and Miller [67] who surveyed 

the existing literature on priority queues and added additional performance measures to 

the models of Morse [78] and White and Christie [108]. More recently much effort has been 

made to derive performance measures for multi-server priority systems, notable amongst 

these are Mitrani and King [75], Buzen and Bondi [11] and Gail et al [27]. In addition 

Takine and Hasegawa [97] tackled the problem of re-sequencing a preemptive M/M/2 

queue with 2 classes of job, Kouvatsos and Tabet-Aouel [57] developed an approximation 

method for a large class of general closed networks and Epema studied a general feedback 

model with either preemptive or non-preemptive scheduling. Some of these results and 

their significance is discussed by Doshi [18, 17]. 
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Solution Methods 

The matrix solution method used to solve many of the models in this thesis, known 

as spectral expansion, was developed by Chakka, Mitra and Mitrani [12, 13, 76]. The idea 

of spectral expansion has been known about for some time (see Neuts [82]) although few 

examples of its use in performance evaluation exist in the literature (see Elwalid et al [19] 

and Mitrani and Mitra [76]). There are other solution methods which would be applicable 

to these models, notably one based on the matrix geometric representation of the invariant 

vector used by Neuts [82]. More recently Haverkort [35] has proposed a further matrix 

geometric method based upon earlier work by Tijms et al [102]. A completely different 

approach based upon statistical methods from other fields has been taken by Kouvatsos 

([56]) and others. The choice of which solution method to use depends on the size and 

structure of the model. Some evidence was given by Mitrani and Mitra [76] which suggests 

spectral expansion is the quickest of these. Having said that though, spectral expansion 

does have its limitations, notably when the number of eigenvalues to be found is large. 

Any comparative study of these solution methods is going to be a major task and one 

out of the range of this work, however it is a study worth undertaking before the number 

of possible methods extends further. The approximation technique used in chapters 5,6 

and 7 is similar to an approach suggested by Marie [62], where the number of states in a 

Markov chain can be reduced by grouping together states with similar properties. 

1.3 Contents of Subsequent Chapters 

The initial direction of this research was to build a family of related single server queueing 

models with failures, based around the well known simple MIMl1 queue. These are pre-
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sented in chapter 2, with a closed form solution presented for each model and appropriate 

performance measures derived. 

In chapter 3 a general model is presented of the quasi-birth-and-death type. A model 

is defined whereby a server can be in one of n possible operative states, with different 

arrival and service characteristics in different states, and with transitions between states 

governed by an arbitrary Markov chain. In solving this model the spectral expansion 

method is introduced, this solution method becomes the mainstay of the solution of many 

of the models in the following chapters. 

In chapter 4 a number of server/queue nodes of the type considered in chapter 2 

are considered to operate in parallel, with a single arrival stream. In general the joint 

distribution of queue sizes is an intractable problem, but it is possible to derive certain 

long run averages as performance measures (notably the average number of jobs in the 

system) by considering the marginal queue size distribution for each queue. The solution 

of the marginal queue size distributions is a special case of the quasi-birth-death model 

presented in the previous chapter. As well as providing an interesting problem to solve, 

this model also raises several points regarding routeing issues in unreliable systems, and 

so some analysis of different routeing strategies is included here. 

One of the main problems in solving queueing of this type is that the operational state 

space of the system becomes very large very quickly, therefore the question of approxi

mate solutions needs to be addressed. In chapter 5 approximations are used to predict the 

optimal routeing strategy for the models defined in chapter 4, as well as predicting the 

performance measures involved. Here the ideas of Markov modulated arrival processes and 

lumping are introduced and the models defined in chapter one are used as simple approx-
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imations. Numerical results are presented to illustrate the accuracy of the approximate 

methods. 

The ideas introduced in chapter 5 are applied to an extended model in chapter 6. Here 

a pipeline model is defined where each node in the line has the structure of the model 

defined in chapter 4. Clearly, in the general case, this gives rise to a much larger state 

space than previously encountered and also the dependencies between the nodes mean that 

an exact solution is, in general, an intractable problem. However, the methods developed 

in chapter 5 can be applied to give a good approximation in most cases, which again 

is illustrated by numerical results compared with simulation. The question of optimal 

routeing is again addressed in this chapter as it is necessary to find whether the existence 

of previous nodes has an effect on optimal routeing policy. 

Chapter 7 takes the obvious next extension beyond the pipeline model discussed in 

chapter 6 to take on the problem of more general networks. A network model is defined and 

the techniques illustrated in previous chapters are used to derive approximated solutions 

to this model. Two examples are also considered in chapter 7, one an extension of a 2 

node model with feedback proposed by Mikou [68] and another an extension of a 3 node 

model with overtaking studied by Mitrani [71]. 

Much of the work presented in chapters 3, 4 and 5 has already been published elsewhere 

[100, 101] and we hope to publish more papers from this thesis in the near future. 
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Chapter 2 

Models of Isolated Servers 

Suffering Breakdowns and Repairs 

2.1 Summary 

Before studying systems of many servers it is often necessary to consider the behaviour 

of these servers in isolation. These models form the foundations for larger models. In all 

the models presented here there is assumed to be a Poisson arrival stream, an unbounded 

queue and a FIFO scheduling strategy, i.e. these are all M/M/1 servers, but differ in the 

nature and effect of their failures and in the way in which their queues behave during 

repair periods. In each case the performance measures sought are the average number 

of jobs in the queue (including the job being served) and the related measure of average 

response time. In the final two models failures of more than one type can occur, these 

models are special cases of the more general model presented in chapter 3. 
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2.2 Model Definition 

All the models in this section are based around the simplest of queueing models, known 

as M/M/l. An MIMII queue consists of a single server with an associated unbounded 

queue. Jobs arrive into the queue in a Poisson stream of rate A and receive service 

(depart) sequentially in order of arrival with service (inter-departure) times exponentially 

distributed with mean II J.L. 

-L 118-

Figure 2.1: A simple MIMII queue 

In the simple MIMII queue the server is assumed to be available at all times, therefore 

if there are one or more jobs in the queue then service will take place. This is unlikely to 

be the case in practice since most systems will have periods when the server is unavailable 

for some reason. In the models described here it is assumed that a server is available 

except when it suffers an unscheduled (random) breakdown. In the literature the word 

'breakdown' is often replaced with 'vacation', implying the server is 'away' doing something 

else, both phrases are used synonymously to mean a period of unavailability. 

It is easy to envisage scenarios for the various different causes and effects of failures. 

Server and queue may physically be parts of the same machine, therefore a catastrophic 

failure of that machine will not only suspend service, but will wipe clean the contents of 
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the queue, possibly irrevocably. Conversely, the server and queue may be entirely separate, 

and so failure of the server will not affect the operation of the queue, it may even still 

accept jobs. In some situations, e.g. in a printer queue, the head job is passed from the 

queue directly to the server, where it remains until service is completed, failure in this 

instance will result in only the head job being lost, the remainder of the queue may be 

unaffected. In this situation a failure of the queue will not immediately suspend service, 

as the head job will remain in service, however once that job is completed the server will 

be idle until the queue returns to operation and new jobs arrive. It is also possible to 

envisage situations where more than one type of failure occurs, for example where the 

server and queue are collocated a failure may be catastrophic, or it may just affect part 

of the system, i.e. the server. 

In the first 5 models the server can suffer only one kind of failure, i.e. there is no 

distinction between the various possible causes of failure, the server is simply 'broken'. 

When a failure occurs the server goes through a period of repair, which when completed 

delivers the server back to full operation. The duration of the periods of operation and 

repair are exponentially distributed random variables with means 1/t;, and 1/1] respectively. 

What happens to the jobs in the queue on failure and to any jobs arriving during the period 

of repair constitutes the differences between the models. 

In the 6th model only the queue suffers failure, but it is assumed that the head job 

can continue in service as it is physically (and / or logically) located at the server, the 

remainder of the queue is lost. 

In the final 2 models the server may suffer two different sorts of failure, each of which 

has a different rate of occurrence, different rate of repair and different consequences for 
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the jobs in the queue and those arriving. It is further assumed that a server may pass from 

one failed state to the other (with appropriate consequences), hence there are 6 possible 

transitions, each one of which has an associated exponentially distributed random variable. 

2.3 Solution Method 

Each of the models outlined above forms a Markov process, where the system state at time 

t is described by the pair I(t), J(t) : t ~ 0, where where I(t) C {O, ... , n - I} represents 

the operational state of the system and J(t) is the number of jobs in the queue. In the 

first six models described here there are just two operational states, broken and working 

(0 and 1 respectively) and in the final two there are three operational states; fully broken, 

partially broken and working (0,1 and 2 respectively). 

Exact solutions are obtained in all cases. Performance measures are derived for these 

models by first finding the probability generating function of the number of jobs in the 

queue, g(z), defined by, 
00 

g(z) = ~zjPj (2.1) 
j=O 

where Pj is the steady-state probability that there are exactly j jobs in the queue. Clearly, 

g(l) = 1 (2.2) 

by definition. Also, it is then a relatively straight forward matter to derive the average 

number of jobs in the queue, n by differentiating (2.1), 

00 

n = g'(l) = ~jPj (2.3) 
j=O 

When the systems in the models concerned have more than one state of operation it 

is convenient to consider the joint generating functions of operative state i and queue size 
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j. The the queue size generating function can be decomposed into, 

n-l 

g(z) = L gi(Z) (2.4) 
i=O 

where n is the total number of operational states, 

00 

gi(Z) = L ZjPi,j (2.5) 
j=O 

and, Pi,j is the steady-state probability that the server is in operational state i and there 

are exactly j jobs in the queue. In the models presented in this chapter expressions for 

the joint generating functions can be derived from the balance equations in order to find 

a closed form solution for the queue size generating function and hence expressions for 

relevant performance measures. 

It is clearly possible to form expressions for the probabilities Pi,j directly from the 

queue size generating functions gi (z). This can be done by finding the partial fractions 

of gi (z) and expressing them as geometric series. The probabilities Pi,j can then easily be 

found using 2.5. Alternatively expressions for the probabilities Pi,j can often be formed 

with much less effort directly from the balance equations in terms of the derived constants. 

2.4 Queue retained but arrivals lost during inoperative pe-

riods 

A simple MIMII queue has a Poisson arrival stream of rate A. Jobs are served in order of 

arrival with service times negative exponentially distributed with mean II f.l. In addition 

the server suffers breakdowns and repairs with operative and inoperative periods negative 

exponentially distributed with means 1/~ and 1/"7 respectively. Incoming jobs are accepted 
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into the queue only when the server is operative. Let PO,j and Pl,j be the steady-state 

probabilities that the server is broken or operative respectively, with exactly j jobs in the 

queue. 

These probabilities satisfy the following balance equations, 

(~ + A)P1,0 = rtPo,o + J-LP1,1 (2.6) 

(~+ A + J-L)P1,j = rtPO,j + J-LP1,j+1 + AP1,j-1 ... j ~ 1 (2.7) 

rtPO,j = ~P1,j ... j ~ 0 (2.8) 

Writing the queue size probability generating function as the sum of the joint queue 

size generating functions representing the operative and inoperative states, gives, 

(2.9) 

It is then a simple matter to re-write the balance equations in terms of the joint queue 

size probability generating functions go(z) and g1 (z) using the definitions given in (2.5) 

and (2.9), 

(2.10) 

(J-L - AZ)g1 (z) = J-Lg1 (0) (2.11) 

hence, by (2.9) and (2.10), 

rt+~ g(z) = -g1 (z) 
rt 

(2.12) 

This, together with (2.2) and (2.9), yields the steady state probabilities that the server 

is operative, g1(1), or inoperative, go(l), 

~ 
go(l) = (rt + ~) 
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so substituting z = 1 in (2.11) gives, 

Thus (2.9), (2.12) and (2.15) give, 

(fL- A) 
g(z) = (fL - AZ) 

(2.14) 

(2.15) 

(2.16) 

Which is exactly the same generating function as for the M/M/1 queue without break-

downs. Thus the average number of jobs is given by, 

Furthermore, it follows from (2.10), (2.11), (2.13), (2.14), and (2.15), that, 

and, 

where, 

_ ~(fL - A) _ 1 ~ 
go(z) - (77 + ~)(fL - AZ) - go( ) 1 - pz 

A 
p= -

fL 

(2.17) 

Which means that the state of the server and the size of the queue are independent of 

each other. This is the only model presented here with that property. 

The average response time for a successfully completed job is given by Little's Theorem 

to be the average number of jobs n divided by the average arrival rate (of successful jobs), 

thus, 

The ergodicity condition is the same as for the M/M/1 queue, namely A < fL. 
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2.5 Queue retained and arrivals continue during inoperative 

period 

This model has two forms, the general case where arrivals during the repair periods have a 

different arrival rate than during normal operation and the special case where the arrival 

rate is not affected by failures. This special case is given as an example by King [48], so 

the result is only given as a simplification of the more general model, which is derived in 

full. Servers of this type were modelled in a parallel system by Neuts and Lucantoni [83], 

but the closed-form for a single server was not derived. 

The Poisson arrival rate during operative periods is AI. During periods of repair the 

queue continues to accept jobs, but the Poisson arrival stream has a different rate, Ao. 

The other assumptions are the same as the previous model. The system state diagram for 

this model is illustrated below. 

As previously, let PO,j and P1,j be the steady-state probabilities that the server is broken 

or operative respectively, with exactly j jobs in the queue. 

These probabilities satisfy the following balance equations, 

(~+ A1)P1,0 = fJPo,o + f-lP1,1 

(~+ Al + f-l)P1,j = fJPO,j + f-lP1,j+1 + A1P1,j-1 ... j 2 1 

26 

(2.18) 

(2.19) 



(7] + AO)pO,O = ~Pl,O (2.20) 

(7] + AO)pO,j = ~Pl,O + AIPO,j-1 ... j;::: 1 (2.21) 

The balance equations can then be re-written in terms of the joint queue size probability 

generating functions go(z) and gl(Z) using the definitions given in (2.5) and (2.9), 

[Aoz(1 - z) + 7]z]go(z) = ~zgl(Z) (2.22) 

Adding (2.22) and (2.23), and substituting z = 1, gives, 

(2.24) 

As previously, the steady-state probabilities that server is broken or operative are given 

by (2.13) and (2.14), hence (2.24) gives, 

(2.25) 

Substituting (2.22) in (2.9) gives, 

() Ao(1 - z) + 7] + ~ () 
9 z = gl z 

Ao(1 - z) + 7] 
(2.26) 

Equations (2.22), (2.23) and (2.24) yield, 

[Ao(1- z) + 7]][(fL - Alb - AO~] 
gl (z) = (7] + ~)[7](fL - A1Z) + AO(fL(1- z) - A1Z(1 - z) _ ~z)] (2.27) 

Hence, 

[Ao(1 - z) + 7] + ~][(fL - A1)7] - AO~] 
g(z) = (7] + ~)[7](fL - AIZ) + AO(fL(1- z) - A1Z(1 - z) - ~z)] (2.28) 

with the ergodicity given by 7]fL > 7]A1 + ~ AO 
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Clearly if AO = 0 then the same generating function as the previous case is obtained. 

Similarly if AO = Al = A then (2.28) gives the well known result (see King [48]), 

[A(l - z) + 1] + ~][(fL - A)1] - A~] 9 ( z) - ------=-----'----'------'---=.;'-"--.:.......:....--''-=--

- (1] + ~) [(fL - AZ) (A (1 - z) + 1]) - A~ z] 
(2.29) 

The average number of jobs in the queue can now be easily obtained by differentiation, 

so, 

n = gl(l) = (1]AI + ~AO)(1] +~) + Ao~(fL - Al + AO) 
(1] + ~)(1](fL - AI) - AO~) 

(2.30) 

This expression reduces to (2.17) in the special case AO = O. Since there are no jobs 

lost from the queue, the arrival rate of successful jobs is the same as the average arrival 

rate, namely, 

So, by Little's Theorem, the average response time is given by, 

w = (1]AI + ~AO)(1] +~) + Ao~(fL - Al + AO) 
(1]AI + ~Ao)(1](fL - Ad - AO~) 

(2.31) 

In the simpler case where AO = Al = A, (2.30) coincides with the known result [3, 72], 

and, 

(2.32) 

2.6 Job in service and arrivals during repair lost 

In this model it is assumed that when a failure occurs it is impossible to resurrect the job 

that was being served so that it's service can be resumed after the completed repair. This 
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means that the head job is lost from the queue. Apart from that the characteristics for 

this model are exactly the same as for the first model in this chapter, i.e. Poisson arrivals 

at rate A whilst operative, no arrivals during repair, jobs served in order of arrival with 

service times negative exponentially distributed with mean 1/ f-t and the server breakdowns 

and repairs with operative and inoperative periods negative exponentially distributed with 

means 1/1;, and 1/T] respectively. Let PO,j and Pl,j be the steady-state probabilities that 

the server is broken or operative respectively, with exactly j jobs in the queue. 

These probabilities satisfy the following balance equations, 

(I;, + A)Pl,O = T]Po,o + f-tPl,l 

(I;, + A + f-t)Pl,j = T]PO,j + f-tPl,j+l + APl,j-l ... j 2:: 1 

T]Po,o = I;,Pl,O + I;,Pl,l 

T]PO,j = I;,Pl,j+l ... j 2:: 1 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

The balance equations can then be re-written in terms of the joint queue size probability 

generating functions go(z) and gl(Z) using the definitions given in (2.5) and (2.9), 

T]zgO(z) = I;,gl (z) - 1;,(1 - Z)gl (0) 

(f-t + I;, - AZ)gl (z) = (f-t + I;,)gl (0) 

Putting z = 1 in (2.38) gives, 

(f-t + /;,)gl (0) = (f-t + I;, - A)gl (1) 
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As previously, the steady-state probabilities that server is broken or operative are given 

by (2.13) and (2.14), hence, 

Re-writing (2.37) and (2.38) gives, 

Thus substituting (2.40) and (2.39) in (2.9) gives, 

(z) _ [(1] + ~)(J.l +~) + ~>'(1 - z)](J.l + ~ - >.) 
9 - (J.l + ~)(1] + ~)(J.l + ~ - >.z) 

(2.41) 

So the average number of jobs in the queue is given by, 

This includes jobs that will be lost before completing service. The probability of a job in 

the queue completing service successfully is, 

J.l rr=--
J.l+~ 

(2.42) 

Thus the probability that there exactly j successful jobs in the queue, qi, is given by, 

00 

qi = L 0) rri(l- rr)k- i pk 
k=i 

where Pk = PO,k + Pl,k· 

The generating function s(z) for the number of successfully completing jobs in the 

queue is given by, 

00 00 00 

s(z) = L ziqj = L zjrri L 0) (1 - rr)k-
j
pk 

j=O j=O k=j 
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so, 

8(Z) = g(l - IT + ITz) (2.43) 

hence the average number of successfully completing jobs is given by, 

00 /-In 
81(1) = IT L kPk = --c 

k=O /-l +.." 
(2.44) 

The arrival rate of successfully completing jobs is the total job arrival rate minus the rate 

at which jobs are lost, given by, 

Thus, by Little's Theorem, the average response time (for a successfully completed job) 

is given by, 

w = A~ + 1](/-l + ~) 
1](/-l + ~)(/-l + ~ - A) 

and the ergodicity condition is /-l + ~ > A 

(2.45) 

2.7 Job in service is lost, arrivals continue during inopera-

tive periods 

In this model we make the same assumptions as the previous case, however it is further 

assumed that jobs arrive during the repair period. The arrival rate when the server is 

operative is Al and Ao when it is broken, in both cases the arrivals are Poisson. The 

system state diagram for this model is illustrated below. 
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Taking the same approach as before, let PO,j and PI,j be the steady-state probabilities 

that the server is broken or operative respectively, with exactly j jobs in the system. 

These probabilities satisfy the following balance equations, 

(~+ >'1)PI,O = "7Po,o + f..tPI,1 

(~+ Al + f..t)PI,j = "7PO,j + f..tPI,j+1 + API,j-1 ... j ~ 1 

("7 + AO)PO,O = ~PI,O + ~PI,I 

("7 + AO)PO,j = ~PI,j+1 + AOPO,j-1 ... j ~ 1 

(2.46) 

(2.4 7) 

(2.48) 

(2.49) 

The balance equations can then be re-written in terms of the joint queue size probability 

generating functions go(z) and gl(Z) using the definitions given in (2.5) and (2.9), 

[AIZ(l- z) +~z - f..t(1- Z)]gl(Z) = "7zgo(z) - f..t(1- Z)gl(O) (2.50) 

(Aoz(l - z) + "7z)go(z) = ~gl (z) - ~(1 - Z)gl (0) (2.51) 

Adding (2.50) and (2.51) gives, 

(2.52) 
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As previously, the steady-state probabilities that server is broken or operative are given 

by (2.13) and (2.14), hence z=l in (2.52), gives, 

Substituting (2.51) in (2.9) gives, 

9(Z) = [~+ Aoz(l- z) + 1]Z]91(Z) - ~(1- Z)91(0) 
Aoz(l - z) + 1]Z 

And eliminating 90(Z) from (2.51) and (2.50) yields, 

91 (z) = [I£ Ao(l - z) + 1](1£ + ~)]91 (0) 
~(1] - AOZ) + (1£ - A1Z)[Ao(1- z) + 1]] 

Hence, substituting (2.55) in (2.54) gives, 

Differentiating (2.56) at Z = 1 gives the average number of jobs in the system, 

'if = 9/(1) = (1£ + ~)[~AO(I£ +~) + 1](1]A1 + ~AO)] + ~(I£AO - 1]A1)(AO - Ad 
[1](1£ + ~ - A1) - ~Ao](1£ + ~)(1] +~) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

As previously this includes jobs that will be lost before completing service. The prob-

ability of a job in the queue completing service successfully is given by (2.42) and the 

relation between the average number of jobs in the queue and the average number of suc-

cessful jobs in the queue is given by (2.43) and (2.44). The rate at which jobs are lost is 

given by the failure rate multiplied by the probability that there are one or more jobs in 

the queue when the server is active, i.e. ~[gl(l) - 91(0)]. The arrival rate of successfully 

completing jobs is the total job arrival rate minus the rate at which jobs are lost, given 

by, 

1]A1 + ~AO ~(1]A1 + ~AO) 1£(1]A1 + ~AO) 
1] + ~ - (1£ + ~)( 1] +~) - (1£ + ~)( 1] + ~) 
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So, by Little's Theorem, the average response time is, 

w = (fl + ~)[~Ao(fl +~) + T/(T/AI + ~AO)] + ~(flAO - T/AI)(AO - Ad 
[T/(fl + ~ - Ad - ~Ao](fl + ~)(T/AI + ~AO) 

where the ergodicity condition is given by, T/(fl +~) > T/AI + ~AO. 

Clearly substituting AO = 0 and Al = A gives the same results as the previous model. 

For the special case where the arrival rate is unaffected by failures, i.e. substituting 

AO = Al = A, the average number of jobs in the queue is given by, 

and the average response time is given by, 

W= ~(fl+~)+T/(T/+~) 
[T/(fl +~) - A(T/ + ~)](T/ +~) (2.57) 

2.8 Entire queue lost at breakdown and arrivals lost during 

inoperative periods 

In the previous models it was assumed that the server was in some sense independent of 

the queue to the extent that following a failure and subsequent repair it was possible to 

recover most, if not all, of the jobs in the queue. Clearly this is not always going to be 

the case, since in many situations the server and queue will physically be part of the same 

machine and so any interruption of service will also have a negative effect on the queue. 

In this model the case is considered where a failure of the server results in all the jobs in 

the queue being irrevocably lost. 

A Poisson stream of rate A enters a queue with an associated server which serve jobs 

in FIFO order with service times negative exponentially distributed with mean 1/ fl. The 
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server suffers breakdowns and subsequent repairs with operative and inoperative periods 

negative exponentially distributed with means liE, and 1/17 respectively, as before. On 

failure all jobs in the queue, including the one currently being served, are lost, and there 

are no arrivals during the repair period. Intuitively this system will always be ergodic if 

E, > 0, since failures will empty the queue, thus preventing it from becoming infinite. This 

type of server was considered in a parallel system by Mitrani and Wright [77], but the 

closed form solution for a single server was not derived. 

Once again, let PO,j and P1,j be the steady-state probabilities that the server is broken 

or operative respectively, with exactly j jobs in the queue. 

These probabilities satisfy the following balance equations, 

(2.2) and (2.58) give, 

00 

17Po,o = E, L P1,j 
j=O 

(f, + oX)P1,0 = 17Po,o + J1P1,1 

(E, + oX + J1)P1,j = J.LP1,j+1 + oXP1,j-1 ... j 2:: 1 

f, 
Po,o = 17 + f, 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

The balance equations can then be re-written in terms of the joint queue size probability 

generating function gl (z) using the definitions given in (2.5) and (2.9), 

(2.62) 

where gl (z) is the queue size probability generating function for the number of jobs in the 

system when the server is operative, such that gd 1) = 171 (17 + f,). 
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In the previous models it has been possible to find expressions for the constants (g1 (0)) 

by setting z = 1 in the equation for the relevant generating function. Unfortunately that 

is not the case here. An equation for g1 (0) can be obtained by noting that if the quadratic 

polynomial multiplying g1 (z) in (2.62) has a root at Zo, such that 1 Zo 1< 1, then the right 

hand side of (2.62) must vanish at z = zoo Consider the function J(z) equivalent to the 

left hand side of (2.62), 

J(z) = ~z + 'xz(l - z) - JL(l - z) 

Clearly, J(l) = ~ and J(O) = -JL, therfore, if ~ > 0 and JL > 0, there must be some value 

Zo between 0 and 1 for which J(zo) = O. Consider also the value of J(z) as z --+ 00, 

lim J(z) --+ -00 
z-+oo 

Hence the other root of the square polynomial J(z), Z1 must lie in the range [1,(0). The 

values of the roots are given by, 

-b ± Jb2 - 4ac 
Zi = ... i = 0,1 

2a 

where a = -,x, b = (~ + JL + ,x) and c = -fl. Clearly, 

which is always positive, so both roots are real. Since Zo ::; Zl and Jb2 - 4ac ~ 0 then 

(2.63) 

so substituting (2.63) in (2.62) gives, 
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If ~ = 0 then both roots coincide at Z = 1, if /1 = 0 then Zo = 0, but then there would 

never be any service. 

The average number of jobs can be found by differentiating (2.62), 

Once again this includes jobs which will be lost without successfully completing service. 

If there are n jobs in the queue then the probability that exactly j of them will successfully 

complete their service is given by [/1/(/1 + ~)Ji[~/(/1 + ~)] for j = 0,1, ... , n - 1 and [/1/(/1 + 

~)]n when j = n. Thus qj, the probability that there are j jobs in the queue that will 

successfully complete is given by, 

qj = 7r
j 

(Pl,j + (1 - 7r) f Pl,k) ... j ~ 1 
k=j+l 

(2.64) 

and, 

qo = PO,o + Pl,O + (1- 7r)[gl(1) - Pl,O] (2.65) 

where 7r is the probability that the job in service will complete successfully, given by, 

From this it is possible to derive an expression for s(z), the probability generating function 

for the number of jobs in the queue that will successfully complete, 

00 00 ( (0) 
s(z) = L zjqj = Po,o + ?=(7rz)j Pl,j + (1 - 7r) L Pl,k 

j=O J=O k=J+l 

= Po,o + 9, (~z) + (1 - ~) t,(~Z)j (g, (1) - 1;/"k) 
1-7r 1-7r = g(7rz) + --gl(l) - -1 -gl(7rZ) 
1-7rz -7rZ 
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1 - rr rr(1 - z) 
8(Z) = -- + g(rrz) 

1-rrz 1-rrz 

so the average number of successful jobs in the queue is given by, 

81(1) = ~ [1 - g(rr)] 

The arrival rate of successful jobs is given by the total arrival rate minus the rate of job 

loss, namely, 

~). 
). - - - ~gl(1) 

1]+~ 

which, by Little's Theorem, gives the average response time to be, 

W = f.l(1] + ~)[1 - g(rr)] 
~[1]). - ~(1] + ~)n] 

2.9 Queue lost but head job retained 

In the previous model it was assumed that on failure of the server the queue was lost 

in entirety. Another way to view this would be that the queue had suffered catastrophic 

failure causing all jobs to be lost, but the server was still functional, albeit without any 

jobs to serve in the queue. In two of the earlier models the case was considered where the 

head job is passed to the server (rather than remaining in the queue), and so is lost when 

the server fails. In this model the case is considered where a failure occurs in the storage 

device where jobs are queued (e.g. a disk) resulting in all the jobs in the queue being 

irrevocably lost, except the head job which has been passed on to the (still functional) 

server. The head job will continue its service during the repair of the disk, if it completes 

service before repair is completed then the server will remain idle until the arrival of the 

first job after the queue is repaired, or alternatively if repair is completed first then the 

system state will return to active with one job 'in' the queue. 
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A Poisson stream of rate A enters a queue with an associated server which serve jobs 

in FIFO order with service times negative exponentially distributed with mean 1/ J.l. The 

disk suffers breakdowns and subsequent repairs with operative and inoperative periods 

negative exponentially distributed with means 1/~ and l/rJ respectively, as before. On 

failure all jobs in the queue, excluding the one currently being served, are lost, and there 

are no arrivals during the repair period. This is similar to the type of server considered in 

the previous chapter, however a system of exactly this type does not appear in any of the 

literature. Intuitively this queue will always be ergodic if ~ > 0, since failures will empty 

the queue (save the head job), thus preventing it from becoming infinite. The system state 

diagram for this model is illustrated below. 

As previously, let PO,j and PI,j be the steady-state probabilities that the server is broken 

or operative respectively, with exactly j jobs in the queue. 

These probabilities satisfy the following balance equations. 

rJPo,o = ~PI,O + J.lPO,1 (2.66) 

00 

(rJ + J.l )PO,1 = ~ L PI,j (2.67) 
j=l 

(~+ A)PI,O = rJPo,O + J.lPI,1 (2.68) 

(~+ A + J.l)PI,1 = rJPO,1 + J.lPI,2 + API,O (2.69) 
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(~ + A + /-l)P1,j = /-lP1,j+1 + AP1,j-1 ... j ~ 2 (2.70) 

The balance equations can be re-written in terms of the joint queue size probability gen-

erating function gl (z) using the definitions given in (2.5) and (2.9), 

[~z + Az(l - z) - /-l(1 - Z)]gl (z) = 'fJzpo,o + 'fJ Z2PO,1 - /-l(1 - Z)gl (0) (2.71) 

where gl (z) is the queue size probability generating function for the operative periods, 

such that gl(l) = 'fJ/('fJ + ~), Po,o is the probability that the disk is broken and there is 

no job in service and PO,l is the probability that the disk is broken and there is a job in 

service, given by (2.2), (2.66) and (2.67) to be, 

Po 1 = -~- (_'fJ_ - gl (0)) 
, 'fJ+/-l 'fJ+~ 

(2.72) 

From (2.66) and (2.72) it follows of course that, 

~ 
Po,o + PO,l = 'fJ + ~ (2.73) 

As in the previous model it is not possible to find an expression for the constant, gl (0), 

which can be evaluated at z = 1, so once again it is necessary to find a value of z (I z 1< 1) 

such that 

(2.74) 

Consider the function J(z) at z = 1 and z = 0, J(l) = ~ and J(O) = -/-l, therfore, 

if ~ > 0 and /-l > 0, there must be some value Zo between 0 and 1 for which J(zo) = o. 

Consider also the value of J(z) as z ---7 00, 

lim J (z) ---7 -00 
z--+oo 
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Hence the other root of the square polynomial f(z), Z1 must lie in the range [1,(0). The 

values of the roots can be found using the well known quadratic roots equation 

-b ± v'b2 - 4ac 
2a 

where a = -A, b = (~ + fl, + A) and c = -fl,. Clearly, 

which is always positive, so both roots are real. Since Zo ::; Z1 and v'b2 - 4ac 2: 0 then 

Substituting (2.74) in (2.71) gives, 

91 (0) = 'TJZo (po,o + ZOPO,1) 
fl,(1- zo) 

And substituting (2.72) and (2.73) in (2.76) gives, 

o _ 'TJ~zo(fl, + 'TJZo) 
9t( ) - ('TJ + ~)(1 - zO)[('TJ + fl,)fl, - 'TJ~zo] 

(2.75) 

(2.76) 

(2.77) 

If ~ = 0 then both roots coincide at z = 1, if fl, = 0 then Zo = 0, but then there would 

never be any service. 

The average number of jobs can be found by differentiating (2.71), 

substituting (2.72) and (2.73) gives, 

_ 'TJ[~('TJ+~) - ('TJ+fl,)(fl,- A)]+91(0)('TJ+~)[fl,('TJ+fl,) -~('TJ+~)] 
n= ~('TJ+~)('TJ+fl,) 

Once again this includes jobs which will be lost without successfully completing service. If 

there are n jobs in the system then the probability that exactly j of them will successfully 
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complete their service is given by [ILI(IL + ~)Ji-1[~/(IL + ~)] for j = 0,1, ... , n - 1 and 

[ILl (IL + ~)Ji-1 for j = n. Thus qj, the probability that there are j jobs in the system that 

will successfully complete is given by, 

and 

qj = 7r
j

-
1 

[P1,j + (1 - 7r) f P1,k] ... j ~ 2 
k=j+1 

00 

q1 = PO,l + P1,1 + (1 - 7r) LP1,k 
k=2 

qo = Po,o + P1,O 

(2.78) 

(2.79) 

(2.80) 

where 7r is the probability that the job in service will complete before the next failure, 

given by, 

From (2.78), (2.79) and (2.80) it is possible to derive an expression for s(z), the probability 

generating function for the number of jobs in the queue that will successfully complete, 

00 00 ( 00 ) s(z) = L zjqj = Po,o + ZPO,l + P1,O + L 7r
j

-
1 zj P1,J + ~ P1,k 

j=O J=l k=J+1 

1 -7r. 1 
00 [ j] = go(z) + P1,O + -; (gl (7rz) - P1,O) + -7r- [;(7rz)J gl (1) - {; P1,k 

(l-z) (l-7r)z 
s(z) = go(z) + 1- Z7r g1 (Z7r) + 1- Z7r gl(l) 

so the average number of successful jobs in the queue is given by, 

1(1) = + gl (1) - gl (7r) 
S PO,l 1 

-7r 

Jobs are only lost from the queue if a failure occurs when there are 2 or more jobs in 

the system (including the head job), thus the average number of jobs lost when a failure 
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occurs is given by, 
00 

L(i - I)Pl,j = 9'1(1) - [91(1) - 91(0)] 
j=2 

Where Pl,j is the probability that the queue is operative and contains exactly j jobs 

(including the head job). Thus the arrival rate of successful jobs is given by the total 

arrival rate minus the rate of job loss, namely, 

which, by Little's Theorem, gives the average response time to be, 

w _ (17 + ~)[(1 - :rr)PO,1 + 91(1) - 91 (:rr)] 
- (1-:rr) (17).. - (17+~)~[9'(1) - 91(1) + 91(0)]) 

2.10 Two types of failure where queue remains intact after 

. 
repaIr 

In this model as well as the state where the server behaves normally (denoted by state 

2), there are two states where no service occurs (states 1 and 0). In state 2, jobs arrive 

into the queue in a Poisson stream of rate )..2 and are served in FIFO order with service 

times negative exponentially distributed with mean 1/ p,. In state 1 jobs arrive into the 

queue in a Poisson stream rate )..1 but there is no service. In state 0 there are no arrivals 

and no service, but the queue remains intact. Transitions between states are negative 

exponentially distributed random variables with mean time to transition from state i to 

statej equal to 1/f3i,j. 

Using the same approach as before, the probability generating function can be written 

as,1 

9(Z) = 92(Z) + 91 (z) + 9o(z) (2.81) 
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And the balance equations are, 

[Al (1 - z) + f3l,2 + f3l,O] gl (z) = f32,lg2(Z) + f30,lgO(Z) 

[f30,2 + f30,1] go(z) = f32,Og2(Z) + f3l,Ogl (z) 

Two of these equations, along with g(l) = 1, give the steady state probabilities, 

g2(1) = f3l,2(f30,2 + f3o,d + f30,2f3l,O 
f3l,2(f32,O + f30,2 + f3o,d + (f30,1 + f3l,O)(f32,1 + f32,O) + f30,2(f3l,O + f32,1) 

(1) _ f30,df32,1 + f32,O) + f30,2f32,1 
gl - f3l,2(f32,O + f30,2 + f3o,d + (f30,1 + f3l,O)(f32,1 + f32,O) + f30,2(f3l,O + f32,d 

go(l) = f3l,O(f32,1 + f32,O) + f3l,2f32,O 
f3l,2(f32,O + f3o,2 + f3o,d + (f30,1 + f3l,O)(f32,1 + f32,O) + f3o,2(f3l,O + f32,d 

(2.82) 

(2.83) 

(2.84) 

The unknown g2(O) can be found by adding 2.82 and z times 2.83 and 2.84, to give, 

(2.85) 

substituting z=l gives, 

(2.86) 

Combining (2.81), (2.83) and (2.84) gives, 

() 
f32,1(f30,2 + f30,1 + f3l,O) + f32,o(b(z) + f3o,d + b(Z)(f30,2 + f30,1) - f3o,lf3l,O () 

g z = g2 Z 
b(Z)(f30,2 + f30,1) - f30,1f3l,O 

(2.87) 

and (2.85), (2.83) and (2.84) give, 

( ) [b(Z)(f30,2 + f30,1) - f30,1f3l,O]JLg2(O) 
g2 z = (JL - A2 Z)[b(z)(f30,2 + f30,l) - f30,1f3l,O]- A1Z[f32,1(f30,2 + f30,1) + f32,of3o,d (2.88) 
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where, 

So the average number of jobs can be calculated by differentiating (2.87) and (2.88) to 

give, 

+ (A2 + A1)[,81,2(,80,2 + ,80,1) + ,80,2,81,0] 
[(fL - A2)(,81,2(,80,2 + ,8o,d + ,80,2,81,0]- Al [,80,1 (,82,1 + ,82,0) + ,80,2,82,1] 

and, 

The ergodicity condition is fL92(1) > A292(1) + A191(1) 

2.11 Two types of failure, one with entire queue lost, the 

other where the queue remains intact 

As in the previous model the server can be in on of three possible states; the state where 

the server behaves normally (denoted by state a) or one of two states where no service 

occurs (states 1 and 0). In state a jobs arrive into the queue in a Poisson stream of rate A2 

and are served in FIFO order with service times negative exponentially distributed with 

mean 1/ fL. In state 1 jobs arrive into the queue in a Poisson stream rate Al but there is 

no service. In state 0 there are no arrivals and no service and no jobs are retained in the 

queue. Transitions between states are negative exponentially distributed random variables 

with mean time to transition from state i to state j equal to 1/ f3ij. 
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Using the same approach as before, the probability generating function can be written 

as, 

g(z) = g2(Z) + gl (Z) + Po (2.89) 

Where Po is the probability of being in state 0 and g(z) is such that g(l) = 1. Thus the 

balance equations are, 

(2.91) 

(2.92) 

Two of these equations, along with g(l) = 1 - Po, give the steady state probabilities, 

g2(1) = /31,2(/30,2 + /30,t) + /30,2/31,0 
/31,2(/32,0 + /30,2 + /30,1) + (/30,1 + /31,0)(/32,1 + /32,0) + /30,2(/31,0 + /32,t) 

gl (1) = /30,1 (/32,1 + /32,0) + /30,2/32,1 
/31,2(/32,0 + /30,2 + /30,1) + (/30,1 + /31,0)(/32,1 + /32,0) + /30,2(/31,0 + /32,1) 

/31,0(/32,1 + /32,0) + /31,2/32,0 

The method employed in the last model to find the unknown j.lg2(0) cannot be used 

here as the elements of (2.92) will not cancel with those in (2.90) and (2.91). Substituting 

(2.91) in (2.90) gives, 

where, a(z) = A2z(1 - z) + /32,lz + /32,oz - j.l(1 - z) and b(z) = Al (1- z) + /31,2 + /31,0 

Define the function J(z) as, 

J(z) = a(z)b(z) - /32,1/31,2 z 
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If Zo exists such that 1 Zo 1< 1 and J(zo) = a(zo)b(zo) - /32,d31,2Z0 = 0, then it is possible 

to equate J.lg2(0) in (2.93). If there is only one possible value of Zo then this solution of 

J.lg2(0) is unique. 

Like the earlier model where the queue was lost on failure, this queue will intuitively 

always be ergodic, since all catastrophic failures will empty the queue, thus preventing 

it from becoming infinite. Consider the value of the function J(z) at z = 0 and z = 1, 

J(O) = -J.l(/31,2 + /31,0) and J(l) = /32,0(/31,2 + /31,0) + /32,1/31,0, Clearly J(O) < 0 and 

J(l) > 0, by definition, so at least one root exists in the range (0,1). Now consider the 

value of J(z) as z -+ 00, 

lim J(z) -+ 00 
z-+oo 

and also, 

Therefore one root lies in each of the following ranges, (0,1), (1,(/31,2 + /31,0 + >"1)/ >"d and 

((/31,2 + /31,0 + >"d/>"1,(0). 

The value of Zo, and hence J.lg2(0), can easily be found by any numerical search method. 

Substituting (2.91) in (2.89) gives, 

( ) _ g2(z)(b(z) + /32,1) + /30,1PO 
9 z - b(z) 

Hence, 

n = (1 - po)gf(l) = g2(1)>"1 + /31,2 + /31,0 + /32,1 (1 - Po)gf2(1) 
(/31,2 + /31,0)2 /31,2 + /31,0 

where, 

J.lg2(0)(/31,2 + /31,0) + Po (/31,2>"1[/30,1(/32,1 + /32,1) + /30,2/32,1]) 
/32,0(/31,2 + /31,0) + /32,1/31,0 [/32,0(/31,2 + /31,0) + /32,1/31,0]2 
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+ Po ((,81,2 + ,81,0)(A2 - pH,80,2(,81,2 + ,81,0) + ,80,1,81,2]) 
[,82,0(,81,2 + ,81,0) + ,82,1,81,0]2 

The average arrival rate of successfully completing jobs is given by, 

where 

gll(l) = gl2(1),82,1(,81,2 + ,81,0) + Al(,82,lg2(1) + ,80,IPO) 
,81,2 + ,81,0 

so, Little's theorem gives, 

2.12 Numerical Results 

n 
W--

- Xsucc 

Although these models are included here primarily to be used in later chapters to ap-

proximate more complicated scenarios, some interesting numerical comparisons can be 

made. 

Consider two servers with identical service, failure and repair processes, one receives 

jobs during repair, the other does not, and neither lose jobs on failure. If the average 

arrival rate into both queues is the same, i.e. 'rJA = 'rJAl + €AO then it is easy to show that 

the server not receiving jobs when broken will always out perform the one which does with 

respect to average response time. 

(2.94) 

where WI and W2 are the the average response time for a server not receiving jobs when 

broken and a server receiving jobs when broken respectively. 
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Now consider the two servers with the same arrival streams (7]A = 7]Al + ~AO)' but 

where the head job is lost on failure. Clearly in this situation the probability that there 

is at least one job in the queue when failure occurs will affect the average response time 

and there will also be the additional performance measures of job loss and throughput 

of successful jobs. However, (2.53) shows that the probability of the queue being empty 

when the server is working depends on the average arrival rate over all time, i.e. 

and not on the arrival rates in the working and broken states (AI and AO). Thus if, as 

above, the average arrival rate at each server is the same (7]A = 7]Al + ~AO) then the 

job loss in each case will be identical. Clearly this is not an intuitive result as it would 

be reasonable to expect that varying the balance of the arrivals between the broken and 

operative periods, whilst keeping the overall arrival rate constant, would affect the job 

loss. Although the job loss at each server is identical when 7]A = 7]Al + ~AO, there is still 

a variation in the average response time with arrival rates AO and AI. A condition can 

be obtained in the same way as (2.94) to determine whether it is preferable to send jobs 

during repair or not. This condition can be simplified greatly if the arrival rate during 

repair is assumed to be the same as during normal service (i.e. AO = Al = X), then (2.45) 

and (2.57) give the simple condition, 

which determines whether the average response time at the server receiving jobs during 

repair is greater than that for the server not receiving jobs during repair. In most cases 

this condition will hold, i.e. a server not receiving jobs whilst broken will out perform a 
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server with identical characteristics which does, but there are scenarios where this is not 

true. One such scenario is where the servers are quite heavily loaded and the repair rate 

exceeds the service rate, as illustrated in figure 2.2. Although this is an extreme case it is 

worth looking at more closely, since it is counter intuitive and not easily explained. 

The intuitive explanation for this phenomenon would be that the probability of a job 

being lost on failure would be higher if more jobs are sent during the operative period, 

however it was stated earlier that this is not true since the rate of job loss is dependent 

only on the average arrival rate, and not on the proportion of jobs sent during active and 

broken periods. A more likely explanation would be that, since the load is high, sending 

jobs during the inoperative period will decrease the likelihood that the server will be idle 

when service resumes, furthermore, since the repair rate is high (compared with the service 

rate), few jobs will arrive during the repair period and will not experience an appreciable 

delay due to the repair process. This can be shown to be true by finding an expression for 

the probability that the queue is empty when the server is broken and jobs arrive during 

inoperative periods: 

Eliminating g1 (z) from (2.50) and (2.51) gives, 

['1] + Ao(1- Z)][A1 Z(1 - z) - fL(1 - z) + ~z] - ~'1]go(z) = ~(z - 1)[A1(1- z) + fL + ~]g1 (0) 

Substituting z = 0 in (2.95) gives, 

go(O) = ~(A1 + fL + ~) 
'1](fL +~) + fLAo 

(2.95) 

Thus it is clear that the greater the proportion of jobs which arrive during inoperative 

periods the less chance there is of the server being idle when repair is complete. 
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Now consider the case where proportion of time spent broken or operative is constant, 

but the average length of the operative and inoperative periods varies, as illustrated in 

figure 2.3. As in figure 2.2 the arrival rate is assumed either to be unaffected by failures 

in the case where arrivals can occur during repair periods (i.e. )\1 = A2) or equal on a pro 

rata basis where arrivals do not continue during repair (i.e. 1]A = 1]Al + ~A2)' 

In section 2.4 it was stated that the only model where its queue size is independent 

of its operational state is the model where no jobs are lost on failure and there are no 

arrivals during repair. In the model where no jobs are lost but arrivals continue during 

repair it is intuitively clear that increasing the length of operative and inoperative periods, 

whilst keeping the proportion of time spent broken or operative constant, will increase the 

average size of the queue. This is because the longer inoperative periods will lead to a 

greater backlog of jobs to be served once repair is complete. This can easily be proved by 

simple manipulation of (2.31). 

In the case where the head job is lost on failure and arrivals continue during repair 

the number of jobs in the queue will grow during long inoperative periods, in the same 

way as in the previous case. However, the loss of the head job on failure means that fewer 

jobs will be in the queue when service resumes than in the previous case. This causes 

the average response time to be lower than in the previous model, particularly when the 

failure rate is high, despite an apparent 'wastage' of service time on jobs that are destined 

not to complete. The same effect is more marked when there are no arrivals during repair. 

Here the average response time initially increases as the repair and failures rates decrease 

before levelling out at a value slightly less than for the case where no jobs are lost and 

there are no arrivals during repair. It might be expected that as the likelihood of failure 
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decreases that this model would converge to the same value as the case where no jobs are 

lost, indeed that would be the case if the failure rate decreased and the repair rate was 

constant. However, in this example the proportion of time that the server is inoperative 

is constant, hence even when failures are very rare there are still fewer jobs in the queue 

for the same proportion of time. 

2.13 Conclusions 

Expressions have been derived for various performance measures for 7 simple single server 

queueing systems suffering breakdown. Whilst further models involving single M/M/1 

queues with breakdowns could easily be defined, the models presented here represent the 

extent of the realistic systems which can be expressed as simple equations. These models 

are principally to be used later as approximations to more complex systems, although 

four of the models have had their performance compared in a given set up to determine 

whether there are cases when it can be advantageous to send jobs to a broken server. 

It was found that under a no job loss situation a server not receiving jobs when broken 

will always perform better than a server which does, given the same overall arrival rate. 

However, when the models where the head job only is lost are considered, it is found that 

there are some cases where a server receiving jobs whilst broken can perform better than 

a server which does not. 
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Figure 2.2: Average response time as a function of the average arrival rate 

for identical servers with different arrival streams 

It = 10, rJ = 20, E = 1 
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Figure 2.3: Average response time as a function of the repair rate 

where the proportion of time operative is constant 

J1, = 10, 'rJ = ~/10, A1 = A2 = 1, A = 1.1 
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Chapter 3 

A Quasi-Birth-Death Markov 

Process 

3.1 Summary 

In many practical situations a system's potential for failure varies in some known fashion 

that can be monitored. There are several different reasons for the operating state to 

change, for instance it may become more prone to failure, or be able to give a faster 

service, or (as in the previous chapter) the arrival rate may change, but in general two or 

more of these factors will be involved. Here a model is introduced where a server has n 

possible states of operation. 

3.2 A general single server model 

Consider a simple M/M/1 queue which has, in general, n distinct states of operation, 

numbered 1 to n. In state i (i ~ n) the queue accepts jobs in a Poisson stream of rate Ai 
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and jobs are served in FIFO order with service time exponentially distributed at rate !-li. 

Transition from state i to state if (i, if ~ n) has no effect on jobs in the queue and takes 

place with time to transfer exponentially distributed at rate f3i,i'. 

There are a number of scenarios which this model can be applied to. In general a 

change of state from state i to state i-I (i > 1) indicates that the server is experiencing 

a degradation of service. This may either be that the service rate decreases, the arrival 

rate increases, transition to a "worse" state is more likely (i.e. f3i,i' < f3i-l,il where i ~ n 

and i-I > if 2: 1), or any combination of these factors. In most practical situations 

one of these factors will be dominant and the others can, to some extent at least, be 

manipulated to improve performance. For instance if arrival rate is is determined by some 

outside factor, it might be desirable to react to an increased arrival rate by similarly 

increasing the service rate (temporarily freeing more power), however this may cause the 

system to become more unstable and so increase the possibility of complete failure (no 

service). Alternatively, if service rate is the dominant factor, it might be desirable to 

divert a proportion of the arriving jobs elsewhere. In many cases the likelihood of failure 

is increased by the amount of work a server is required to perform, so the transfer from a 

given state rates could be dependent on the arrival rate in that state. 

This model is clearly one which has many applications and can be used to illustrate 

several different tradeoffs, it is therefore a very powerful single server model and one for 

which a solution would be very useful. 

The system state at time t is specified by the pair [I(t), J(t)], where I(t) indicates the 

current state (I(t) E {1,2, ... ,n}), and J(t) is an integer whose value is the number of 

jobs in the queue at time t. 
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The condition for ergodicity of X is that the overall arrival rate is lower than the 

overall service capacity: 
n n 

L Aip( i) < L /-liP ( i) (3.1) 
i=l i=l 

where p( i) is the probability that the server is in state i. 

In this model the process X is a reducible Markov chain because the arrivals into, and 

departures from the queue during a small interval (t, t + ~t) depend only on the server 

state and the size of the queue at time t. 

The equilibrium distribution of X: 

p(i,j) = lim P[I(t) = i, J(t) = j] , i = 1, ... , n , j = 0, 1,... (3.2) 
t--+oo 

Given the probabilities p( i, j), the average size of the queue is obtained from 

00 n 

L = LjLP(i,j) (3.3) 
j=l i=l 

3.3 Queue size distributions 

The process X is of the block tri-diagonal, or Quasi-Birth-and-Death type. Its possible 

transitions are: 

(a) from state (i, j) to state (i', j), if i i- i' and the transition rate from state i to state 

., a' . 
Z , fJi,i', IS non-zero, 

(b) from state (i, j) to state (i, j + 1), if the arrival rate in state i, Ai, is non-zero; 

(c) from state (i,j) to state (i,j - 1), if j > 0 and the service rate in state i, /-li, is 

non-zero. 
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The balance equations for X are best written in vector and matrix form. Define the 

(row) vector of equilibrium probabilities of all states with j jobs in the queue: 

v(j) = [P(1, j),p(2, j), ... , p(n, j)] , j = 0,1, ... (3.4) 

Let A = (f3i,i/) (i, if = 1, ... , n) be the matrix of instantaneous transition rates correspond-

ing to transitions ( a). It is also useful to introduce the diagonal matrix, D A, whose i 'th 

diagonal element is the i 'th row sum of A (i = 1, ... , n). 

Let B be the diagonal matrix whose i 'th diagonal element is equal to Ai and 0 else-

where; these elements are the instantaneous transition rates corresponding to transitions 

(b). Also, let C be the diagonal matrix whose i 'th diagonal element is equal to f.Li and 0 

elsew here; these are the instantaneous transition rates corresponding to transitions (c). 

When j > 0, the vectors (3.4) satisfy the balance equations 

v(j)(D A + B + C) = v(j)A + v(j - 1)B + v(j + 1)C , j = 1,2, . .. (3.5) 

For j = 0, the equation is slightly different: 

V(O)(DA + B) = v(O)A + v(1)C (3.6) 

In addition, all probabilities must sum up to 1: 

00 

Lv(j)e= 1 (3.7) 
j=O 

where e is a column vector with n elements, all of which are equal to 1. 

The above equations can be solved by several methods, see for example Neuts [82] 

and Haverkort [35]. Perhaps the best approach is to use spectral expansion (see Mitrani, 

Chakka and Mitra [12, 13,73, 76]). Rewrite (3.5) in the form 

v(j)Qo + v(j + 1)Q1 + v(j + 2)Q2 = 0 , j = 0,1, ... (3.8) 
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where Qo = B, Q1 = A-DA -B-C and Q2 = C. This is a homogeneous vector difference 

equation of order 2, with constant coefficients. Associated with it is the characteristic 

matrix polynomial, Q(z), defined as 

(3.9) 

Denote by Ze and "pi the generalised eigenvalues and left eigenvectors of Q (z). These 

quantities satisfy 

"piQ(Ze) = 0 , £= 1,2, ... ,d (3.10) 

where d = degree{det[Q(z)]}. 

The eigenvalues do not have to be simple, but it is assumed that if Ze has multiplicity 

r, then it has r linearly independent left eigenvectors. This is invariably observed to be 

the model in practice. Under that assumption, any solution of (3.8) is of the form 

d 

v(j) = L xe"piz~ , j = 0,1, ... (3.11) 
e=1 

where Xe (£ = 1,2, ... , d), are arbitrary (complex) constants. 

Moreover, since only solutions which can be normalised are acceptable, if Izel ?:: 1 for 

some £, then the corresponding coefficient Xe must be set to O. Numbering the eigenvalues 

of Q(z) in increasing order of modulus, the spectral expansion solution of equation (3.8) 

can be written as 
c 

v(j) = L xe"piz~ , j = 0,1, ... (3.12) 
e=1 

where c is the number of eigenvalues strictly inside the unit disk (each counted according 

to its multiplicity). 

In the numerical experiments carried out with this model, the eigenvalues and eigen-

vectors of Q(z) have always been observed to be simple, real and positive. 

59 



Substituting (3.12), for j = 0 and j = 1, into (3.6), yields a set of homogeneous linear 

equations for the unknown coefficients Xe. There are n - 1 independent equations in this 

set (rather than n) because the generator matrix of the Markov process is singular. A 

further, non-homogeneous equation is provided by (3.7), which now becomes 

These equations can be solved uniquely for the coefficients Xe, if c = n. This turns out 

to be the model when (3.1) is satisfied. Indeed, the ergodicity condition is equivalent to 

the requirement that Q(z) has exactly n eigenvalues strictly inside the unit disk. 

Having determined the coefficients Xe, the average number of jobs in the queue IS 

obtained by substituting (3.12) into (3.3): 

(3.13) 

3.4 Conclusions 

The quasi-birth-death Markov model defined in this section is the most general model in 

this thesis and its solution forms the mainstay of much of the analysis that follows. The 

applications of the model introduced here are many and varied. Several applications are 

studied in the following chapters, yet more are outlined in section 8.2. 
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Chapter 4 

Systems of Servers in Parallel 

where No Jobs are Lost 

4.1 Summary 

Jobs generated by a single Poisson source can be routed through N alternative gateways, 

modelled as parallel MIMl1 queues. The servers are subject to random breakdowns 

which leave their corresponding queues intact, but may affect the routeing of jobs during 

the subsequent repair periods. 

The marginal equilibrium queue size distributions are determined by spectral expan

sion. This can be done, at least in principle, for any number of queues. Several routeing 

strategies are evaluated and compared empirically. Numerical results, including optimal 

routeing, are presented and possible generalisations are considered. 
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4.2 The model 

Jobs arrive into the system in a Poisson stream with rate A. There are N servers, each 

with an associated unbounded queue, to which incoming jobs may be directed. Server 

k goes through alternating independent operative and inoperative periods, distributed 

exponentially with means I/~k and I/'f/k, respectively. While it is operative, the jobs 

in its queue receive exponentially distributed services with mean 1/ {lk, and depart upon 

completion. When a server becomes inoperative (breaks down), the corresponding queue, 

including the job in service (if any), remains in place. Services that are interrupted in 

this way are eventually resumed from the point of interruption. The system model is 

illustrated in figure 4.1. 

Figure 4.1: A single source split among N unreliable nodes 

The system configuration at any moment is specified by the subset, (J", of servers that 

are currently operative (that subset may be empty, or it may be the set of all servers): 

(J" C ON, where ON = {I, 2, ... , N}. There are of course 2N possible system configurations. 
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The steady-state marginal probability, Pa, of configuration a is given by 

II 'l}k II ~k Pa = ~ , a C ON, 
kEa k + 'l}k kEu~k + 'l}k 

(4.1) 

where if is the complement of a with respect to ON and an empty product is by definition 

equal to 1. These expressions follow from the fact that servers break down and are repaired 

independently of each other. 

If, at the time of arrival, a new job finds the system in configuration a, then it is 

directed to node k with probability qk (a). These decisions are independent of each other, 

of past history and of the sizes of the various queues. Thus, a routeing policy is defined 

by specifying 2N vectors, 

(4.2) 

such that for every a, 

The system state at time t is specified by the pair [I(t),J(t)], where I(t) indicates the 

current configuration (the configurations can be numbered, so that I(t) is an integer in 

the range 0,1, ... , 2N - 1), and J(t) is an integer vector whose k'th element, Jk(t), is the 

number of jobs in queue k (k = 1,2, ... , N). Under the assumptions that have been made, 

x = ([I(t) , J(t)], t ~ O} is an irreducible Markov process. The condition for ergodicity of 

X is that, for every queue, the overall arrival rate is lower than the overall service capacity: 

'" 'l}k >. L...J Paqda) < /-lk ,k= 1,2, ... ,N. 
~k + 'l}k 

(4.3) 

When the routeing probabilities depend on the system configuration, the process X is 

not separable (Le., it does not have a product-form solution). Consequently, the problem 
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of determining its equilibrium distribution is intractable for N > 2. In the case N = 2, 

a solution may be possible, but both the mathematical analysis and the implementation 

would be difficult, an outline of the solution required was given by Thomas and Mitrani 

[101]. On the other hand, the quantities of principal interest are expressed in terms of 

averages only; they are the steady-state mean queue sizes, Lk, and the the overall average 

response time, W, given by 

(4.4) 

To determine those performance measures, it is not necessary to know the joint dis-

tribution of all queue sizes; the marginal distributions of the N queues in isolation are 

sufficient. Unfortunately, the isolated queue processes, {Jk(t) , t ~ O} (k = 1,2, ... , N), 

are not Markov. However, the performance measures can be determined by studying the 

stochastic processes Yk = {[I(t), Jk(t)] , t ~ O} (k = 1,2, ... , N), which model the joint 

behaviour of the system configuration and the size of an individual queue. The state 

space of Yk is infinite in one dimension only, which simplifies the solution considerably 

and makes it tractable for reasonably large values of N. The important observation here 

is that Yk is an irreducible Markov process, for every k. This is because the arrivals into, 

and departures from queue k during a small interval (t, t + ~t) depend only on the system 

configuration and the size of queue k at time t, and not on the sizes of the other queues. 

The next task, therefore, is to find the equilibrium distribution of Yk : 

Pk(i,j) = lim P[I(t) = i, Jk(t) = j] , 
t--+oo 

i = 0,1, ... , 2N - 1 , j = 0, 1, .... (4.5) 
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Given the probabilities Pk (i, j), the average size of queue k is obtained from 

00 2N_1 

Lk = Lj L Pk(i,j) . (4.6) 
j=1 i=O 

The process Yk is of the block tri-diagonal, or Quasi-Birth-and-Death type described 

in the previous chapter and can easily be solved in exactly the same manner to find the 

probabilities Pk (i, j). 

4.3 Evaluation of scheduling strategies 

In order to reduce the number of parameters that have to be given values when defining 

the routeing strategy, we shall evaluate and compare several strategies based on a single 

routeing vector, q = (q1, q2,"" QN). In each case, the optimisation problem is to chose 

the elements of that vector so as to minimise the average response time, given by (4.4). 

1. The fixed strategy. 

The most straightforward way of splitting the incoming stream is to send each job to 

node k with probability Qk, regardless of the system configuration. Then the N nodes are 

independent of each other; node k can be considered in complete isolation, as an M/M/1 

queue with breakdowns and repairs. In this simple case, there is a well known explicit 

formula for the average queue size (see chapter 2): 

Lk = AQk[(~k + l7k)2 + ~kJkk] 
(~k + l7k)[l7Wk - AQk(~k + 17k)] 

(4.7) 

2. The selective strategy. 

Intuitively, it seems better not to send jobs to nodes where the server is inoperative, 

unless that is unavoidable. This suggests the following strategy: If the subset of operative 

65 



servers in the current system configuration is (1, and that subset is non-empty, send jobs 

to node k only if k E (1, with probability proportional to qk : 

If (1 is empty (i.e. all servers are broken), send jobs to node k with probability qk (k = 

1,2, ... , N). 

3. The fixed(m) strategy. 

It is possible that some nodes are unable, under any circumstances, to receive jobs 

when broken. Suppose that the last N - m nodes are of this type (m > 0), and that jobs 

are sent to the first m nodes regardless of their state. Thus, when the system configuration 

is (1, an incoming job can be directed to any node k for which k ~ m or k E (1, or both, 

with probability 

qk ( (1) = qk , (k ~ m) V (k E (1) • 

LeE{1,2, ... ,m}u(7 qe 

4. The selective(m) strategy. 

This strategy, like the selective one, does not send jobs to broken nodes unless that 

is unavoidable. In addition, the last N - m nodes are completely unable to receive jobs 

when broken (m > 0). In other words, if the system configuration is (1, and (1 i= 0, an 

incoming job is directed to node k, only if k E (1, with probability proportional to qk: 

If (1 is empty, the job is sent to one of the first m nodes, with probability 
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Clearly, the fixed strategy is a special case of the fixed (m) one, when m = N. Similarly, 

the selective strategy is a special case of the selective ( m) one, when m = N. All strategies 

except the fixed are evaluated by the spectral expansion method. 

Intuitively it would seem that, for a given routeing vector, the selective strategy should 

perform better than the others, since it appears to make the best use of all servers. 

The fixed strategies may be expected to perform poorly, since they largely or completely 

disregard the current availability of servers. When the majority of the servers are quite 

reliable, the performance of a selective(m) strategy should not depend much on m and 

should resemble that of the selective strategy (since the only differences arise when all 

servers are broken). 

This intuition is confirmed by the results in figure 4.2, where a 3-node model is solved 

under the three fixed and three selective scheduling strategies. In all cases, the overall 

average response time, W, is plotted against the job arrival rate. The nodes have different 

characteristics (see caption), but no advantage is taken of those differences. The routeing 

vector is (~,~, ~), i.e. the a-priori splitting of the input stream is into three equal sub

streams. 

There is a clear separation between the two groups of curves; every selective strategy 

out-performs every fixed one. The selective strategies are quite close, although the servers 

are not very reliable. Within the fixed strategies, it is worth noting that fixed (1) and 

fixed(2) start off better than fixed, but become worse when the load increases. This is 

because the prohibition on sending jobs to some servers when they are broken helps to 

balance the load at low arrival rates, but saturates the other servers when the load is high. 

If, instead of keeping the routeing vector constant, it is optimised for each value of A, then 
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the corresponding plots do not cross: fixed(l) becomes uniformly better than fixed (2) , 

which in turn becomes better than fixed. 

Despite their plausibility, the above remarks are not universally valid. In particular, 

it is possible to construct examples where the fixed strategy performs better than the 

selective (e.g. N = 2, >. = 10, PI = 30, P2 = 10,6 = 100, 6 = 1, 'TJI = 100, 'TJ2 = 100000; 

admittedly, that example is rather contrived, with one fast and fairly unreliable server, 

while the other is slower and extremely reliable). 

The rest of the experiments illustrate various aspects of optimal routeing, which is 

discussed further in the following chapter. 

Figure 4.3 concerns a 2-node system where the routeing vector, (q,l - q), is varied 

on the range 0 S; q S; 1 (remember that that vector is used in making routeing decisions 

only when both servers are operative or, in the case of the selective strategy, when both 

are broken). The average response time is plotted against q. The system parameters (see 

caption) are such that each server is operative approximately 90% of the time, while server 

1 is 50% faster than server 2. The figure suggests the following observations, of which the 

first is obvious (from the definitions of the strategies), the next two are quite intuitive, 

and the last is somewhat counter-intuitive: 

(a) When q = 1, the fixed and fixed(l) strategies are identical, as are the selective and 

selective(l) ones; when q = 0, the fixed(l) and selective(l) strategies are identical. 

(b) The curves corresponding to the selective strategies are not only lower, but also 

flatter than those of the fixed ones; in other words, the selective strategies are less 

sensitive to changes in the routeing vector. 
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(c) For the fixed and two selective strategies, the best rou teing vector sends the majority 

of the jobs (70% - 80%) to the faster server. 

(d) For the fixed(l) strategy, it is best to send fewer jobs (40%) to the faster server than 

to the slower one. 

To explain (d), note that under the fixed(l) strategy, node 1 is obliged to receive all jobs 

whenever server 2 is broken, regardless of its own state. This load should be compensated 

by sending it fewer jobs when there is a choice, i.e. when both servers are operative. 

Figure 4.4 shows the performance of a 5-node system as a function of the job arrival 

rate, under an approximately optimal routeing vector. For each value of A, a gradient 

search method was used to get close to the optimal vector, and the corresponding value 

of the average response time was plotted. The parameters are chosen so that the faster 

servers are also more reliable. As in figure 4.2, there is almost no difference between 

the selective strategies. However, the fixed strategy curves no longer cross each other. 

The general conclusion concerning those strategies seems to be that the more one avoids 

sending jobs to broken servers, the better the performance that can be achieved, provided 

that an appropriate routeing vector is employed. 

It was shown in chapter 2 that the performance of a server can degrade significantly 

as the length of breakdowns increases, even when the server is fairly reliable. Figure 4.5 

shows the performance of a fairly reliable 2-node system as a function of the routeing vector 

(q, 1 - q), where one node is significantly faster and more reliable than the other. The 

reliability of this system is of the same order as figure 4.2, but the repair and failure rates 

are about a factor of ten less (proportionally to the other characteristics). The effect of this 

is not only an across the board increase in the average response time, but also a dramatic 
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steepening of the curves such that the fixed and fixed m=1 curves are not finite over the 

given limited range of q. Clearly this may add to the difficulty of finding an optimal 

routeing vector and increases the penalty caused when a system is not optimised. Figure 

4.6 takes this argument one step further by considering the performance of a symmetrical 

2-node system as a function of the repair rate whilst keeping the proportion of time spent 

broken a constant. The figure shows the same effect observed in figure 1.3, namely that 

the continued arrival of jobs during repair means that the average queue size (and hence 

average response time) increases significantly as the repair rate decreases. Predictably this 

effect is much more marked for the fixed routeing strategy than the selective as the rate 

of arrivals during repair is much greater in the fixed strategy case. 

A numerical search for the optimal routeing vector is expensive, and rapidly becomes 

more so when the number of nodes increases. It is desirable, therefore, to find a good 

heuristic that avoids the search and yet produces a nearly optimal performance. One 

candidate for such a heuristic is the following: Assign to node i a weight, Wi, given by 

J-li''li 
Wi = --- , i = 1,2, ... , N . 

~i + "Ii 

This is the available service capacity of server i (the average amount of service it can 

provide per unit time). Let the ith element of the routeing vector be 

Wi 
qi= N ' i=1,2, ... ,N. 

2::j=l Wj 

Thus the suggestion is to ignore the job arrival rate and simply split the input stream in 

proportion to the available service capacities. 

In figure 4.7, the performance of the above heuristic is compared to that of the optimal 

routeing vector (which does depend on A), and also to the 'dumb' splitting based on the 
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vector (-k, h' ... , h)' The experiment is carried out on a 5-node system under the selective 

routeing strategy. The servers have the same breakdown and repair characteristics (about 

90% operative), but different speeds. The average response time is plotted against A. It 

can be seen that, while the heuristic is very close to the optimal performance throughout 

the range of arrival rates, the equal splitting clearly fails to balance the loads at the 

different servers. The penalty of not using a good routeing vector can be very large. 

Figure 4.8 shows the accuracy of the heuristic in predicting the optimal routeing 

weights for both the fixed(m) and selective(m) strategies in a 5 node system. Clearly 

in the selective(m) case the heuristic performs well for all values of m and as we would ex

pect the simple fixed strategy gives a very good approximation. However, for the fixed(m) 

case where mjN the heuristic prediction rapidly diverges from the optimal solution, and 

for lower values of m gives a very poor approximation indeed. It is also worth observing 

here that the selective-m minima and the fixed-m minima converge as m decreases. This 

is because as m decreases more servers refuse to accept jobs when they breakdown. In 

the selective-m case this means that in the relatively rare event of all the servers being 

broken, more jobs will be sent to the remaining servers which will accept jobs, thus causing 

a greater backlog of work at those servers, and hence a slight rise in the average response 

time. In the fixed-m case this means that fewer jobs will be directed to the queues of 

broken servers, hence reducing m improves the performance in the fixed-m strategy as 

more servers become selective. 

Unfortunately, the fine performance of the heuristic under the selective routeing strat

egy is not replicated under the fixed ones. In particular, it performs very poorly with the 

fixed ( m) strategy for small values of m. Another heuristic, better able to handle those 
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strategies, is needed, this problem is tackled in the following chapter. 

Clearly most of the effects illustrated here are made more extreme by the choice of 

parameters and a more reliable system would not exhibit such diverse characteristics, 

however these effects do exist and are worthy of consideration. 

4.4 Conclusions 

The system considered here has a property which may loosely be described as quasi-separ

ability. An individual node can be analysed in isolation of the others, provided that the 

full server configuration is included as a state variable. Because of that property, one can 

determine exactly the performance measures in models with more than two nodes. It is 

also possible to optimise the splitting of the input stream among the nodes, under different 

routeing policies. However, such an optimisation involves a search in a multidimensional 

space, together with the solution of many instances of the model. Computationally, this 

can be very expensive. A simple heuristic has been proposed, that appears to work well 

for selective routeing policies, but not for fixed ones. Further progress can be made either 

by discovering more generally applicable heuristics, or by developing fast approximate 

solutions whose complexity does not grow exponentially with N. Both these avenues of 

further research are worth pursuing. 
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Chapter 5 

Approximate Solution of Systems 

of Parallel Servers 

5.1 Summary 

In the previous chapter a model of servers with queues in parallel was presented and a 

method to obtain exact numerical solution of certain performance measures was derived. 

It was observed that there are cases where the exact solution was impractical due to the 

number of system states which have to be considered, this is particularly true when an 

optimal solution, with respect to the job share vector q(a), is to be obtained. In this 

chapter a series of approximations are considered, both from the view of predicting the 

optimal job share and in approximating the performance measures themselves,. In order to 

compare the exact and approximate solutions a number of numerical results are presented 

and the limitations of the numerical solutions are discussed. A brief explanation of the 

optimisation routines is also included here. 
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5.2 Simple Approximations 

Here an attempt is made to improve the heuristic by finding an approximate, but much 

faster solution of the model. The idea is to treat node i as an isolated single server 

queue modulated by a two-state Markov process. During operative periods, distributed 

exponentially with mean l/~i, jobs arrive in a Poisson stream at rate Ail, and are served 

at rate /-li. During inoperative periods, distributed exponentially with mean 1/1]i, jobs 

arrive in a Poisson stream at rate AiD, and the service rate is O. For a given strategy and 

routeing vector, the two arrival rates are easily determined. Let O(i) be the set of all server 

configurations in which server i is operative, and O( i) be the set of all configurations in 

which it is inoperative. Then 

where the probabilities Pa are given by, 

(5.1) 

where (j is the complement of (J with respect to ON and an empty product is by definition 

equal to 1. 

Thus the approximation consists of replacing a modulating process with 2N states (all 

possible server configurations), by one with just 2 states. It should be pointed out that 

this approximation affects only the arrival process, not the services. Moreover, in the case 

of the fixed routeing strategy, the approximation coincides with the exact solution. The 

two arrival rates are then equal: Ail = AiO = Aqi. 
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Under the simplifying assumption, it is not difficult to derive a closed-form solution 

for the isolated node i. The average number of jobs in it is given by 

Li = "l)l.il + ~iAiO + ~AiO(J.li + AiO - Ail) 

"liJ.li - "liAil - ~iAiO 
(5.2) 

Note that if AiO = 0, i.e. if node i does not accept jobs while broken, then (5.2) reduces 

to the standard result for the average queue size in an M/M/1 queue with parameters 

A slight improvement can be made to this approximation for the selective and selec-

tive(m) strategies, without a significant increase in workload, by using the two stage failure 

model defined in section 2.10. Here state 2 will be equivalent to the operative state, state 

1 will be the state where all servers are broken and state 0 will be the remaining states 

where node i is broken. There are no arrivals or service in state 0, and no service in state 

1. The arrival rate in state 1 will be sim ply qi A and the service in state 2 is J.li. The arrival 

rate in state 2 is calculated in exactly the same way as above, i.e., 

~i + "li 
Aia = -- A L p<7Qi(a) , 

"li <7Cn(i) 

The transition rates from state 1 are simple, namely, f3ba = "li , f3be = ~f=l,#:i "lj 

The transition rates from states 2 and 0 are based on the occupation probabilities P<7' 

so, 

f3ab = ~iP( i) / Pa 

and, 

Pea = "li 
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h - 'fIi andp-~ fIN ~ were, Pa - 'fIi+ei 'c - 'fIi+ei - j=l 'fIj+ej 

The following optimisation procedure is now suggested: for a given strategy, find the 

routeing vector which minimises the approximate average response time, Wapprox. The 

search for that vector is considerably facilitated by the ease of computing Wapprox. 

This procedure performs extremely well, not only for the selective strategy (where the 

crude heuristic is already quite good), but also for the various fixed(m) and selective(m) 

strategies. The exact value of W computed after the approximate optimisation is prac-

tically indistinguishable from that obtained by optimising exactly. The relative error is 

much less than 1%, and would not show up on a figure. 

Another question of interest concerns the accuracy of the approximation itself, as 

opposed to that of its optimal routeing vector. A comparison between the exact and ap-

proximate values of W, in the context of a 5-node system under several routeing strategies, 

is illustrated in figures 5.1 and 5.2. In figure 5.1, the fixed(4) and the selective strategies 

are evaluated for different values of>. and the corresponding optimal routeing vector. In all 

cases, the approximation underestimates the exact response time, since the bursty nature 

of the arrivals in the exact solution is smoothed out in the approximation. The relative 

error is greater for the selective strategy than for the fixed one. These observations are 

not surprising, since the approximation reduces the variability of the arrival stream, and 

that reduction is greater for the selective strategy. Even the larger error does nor exceed 

10%. 

Figure 5.2 shows the effect of changing m in the fixed(m) and selective(m) strategies. 

In the former, the variability of the arrival stream increases when m decreases, and so the 

accuracy of the approximation decreases. The influence of m on the selective strategies is 
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negligible because in this system the probability that all servers are broken is very small. 

Again, the error is on the order of 10% or less. As in the previous chapter the parameters 

used in these figures are for a very unreliable system and if more realistic parameters 

are used then the approximations become substantially more accurate, since the arrival 

streams being approximated become much less bursty. 

The parameters used in these two figures are the same as in figure 4.6, so a comparison 

of the effectiveness of heuristic prediction against approximation is worth making. As N 

becomes large an exact solution becomes increasingly more costly, so the approximation 

may be the only method which can be used, or at least substantially faster (except when N 

is sufficiently small). In the selective(m) case the heuristic performs very well and with this 

unreliable system is much more accurate than the approximation, however the heuristic 

fails to proved a reasonable estimate of the routeing weights for the fixed(m) strategy and 

in this case the approximation far out performs the heuristic. In either case the most 

rapid exact solution is obtained by optimising the approximation to give a near exact 

estimate of the optimal routeing weights. It is worth stressing here the difference between 

figures 5.2 and 4.8. Figure 4.8 compared the performance of the system solved exactly 

when the routeing vector was both estimated by a simple heuristic and calculated to give 

a minimum value of average response time. Figure 5.3 compares the exact solution with 

an approximation, in both cases using the routeing vector optimised with respect to the 

average response time. There is no advantage in comparing the plotted approximation in 

figure 5.2 with the exact solution obtained using the heuristic routeing vector in figure 4.8, 

as they are quite different, however it is quite clear that the routeing vectors obtained by 

optimising the approximations derived in this chapter is massively superior to the heuristic 
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used in the previous chapter. 

Figure 5.3 illustrates the performance of a 2-node system as a function of the routeing 

vector (q, 1 - q). The parameters used here are such that the server is fairly reliable but 

the length of breakdowns is fairly long and so the curve of the average response time is 

relatively steep. As such it is only possible to show a small range of q before one or other of 

the curves extends beyond a reasonable value. Clearly the approximation to the selective 

strategy is very poor, being consistently less than half that of the exact calculation. As in 

the earlier figures the approximation for the fixed m=l strategy performs somewhat better 

than for the selective. This approximation technique is most accurate for a single node 

when the arrival rate at that node is least affected by failures at other nodes. Therefore 

it is clear that the best approximation for an N -node system will be found when the 

routeing vector is chosen such that the sum of such effects is minimised. In this example 

the approximation of the selective strategy performs best when q is larger and for the fixed 

m=l strategy when q is less. For both strategies the number of jobs redirected due to 

failures will be reduced in those cases. 

In earlier chapters it has been seen that the duration of a breakdown will have a strong 

effect on the average response time, even when the reliability is maintained, It seems logical 

therefore to expect some negative effect on the accuracy of approximation if the length 

of breakdowns is increased. In figure 5.4 such a scenario is illustrated for a symmetrical 

2-node system where the proportion of time each node is operative is kept constant, but 

the length of operative and inoperative periods is varied. As expected the approximations 

perform worst when the repair rate is least and significantly better the larger it becomes. 

The explanation for this has already been stated a number of times in this thesis, namely 
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that the longer the duration of the breakdown the more jobs will be accumulated in the 

queue, causing an increase in the average number of jobs and a markedly higher server 

usage when service resumes than the average. Hiding the breakdowns in the way described 

to form the approximations smooths out these effects and thus causing the approximation 

to greatly underestimate the average response time. 

It is worth stating here that the effects observed in these final 2 examples are much 

more pronounced due to the presence of only 2 nodes. In general it would be unnecessary 

to use such approximations on 2 node systems as an exact solution can be easily calculated. 

If there were more nodes the burstiness of arrivals would normally be much less severe 

and therefore the approximations would perform better, although these inaccuracies would 

still exist. 

5.3 More complex numerical approximations 

So far only approximations giving simple equation solutions have been considered, but 

there is no reason why more complicated matrix solution methods should not be employed 

to solve more complex approximations with a far greater number of states of operation, 

but without the exponential growth in state space with N of the exact solution. One such 

model is to consider node i as either working or broken, with 0,1 or up to N - 1 of the 

other servers working, giving an 2N operational states. The solution method involving 

spectral expansion has already been described, and will be revisited in subsequent chapters, 

therefore for the purpose of this approximation it is sufficient to express the matrices A, B 

and C needed to carry out this solution, corresponding to transitions between operative 

states, resulting from arrivals and resulting from service completions respectively. 
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Inoperative states are numbered 0 to N - 1 and operative states N to 2N - 1. State 

o represents all servers broken, 1 represents node i broken and only 1 other working, etc, 

and state N represents node i working and all others broken, state N + 1 represents node 

i working and only 1 other working, etc. So, 

aj,N+j='f7i, j=O ... N-l 

aj,j-N = ~i , j = N . .. 2N - 1 

aj,j+1 = C .. ,{;1.,=/( a) v.Eeu qk) / p(j) , j = 0 .. ,N - 2, N , , ,2N - 2 

aj,j-l = ( L: p(a) L: 6) /p(j) , j = 1. .. N - 1, N + 1. . . 2N - 1 
Vu s.t.S( u )=j Vks.t.kEu 

bj = >. ( L .p(a)qi(a))/ p(j) , j = O ... 2N-l 
vus.t.S(u)=J 

Cj = /-li , j = N ... 2N - 1 

The number of states can be reduced further without loss of accuracy for servers which 

do not receive jobs when broken to just N + 1 by lumping together all the states where 

node i is broken. Under the selective(m) strategy for servers receiving jobs when all servers 

are broken the number of states can be reduced to 2N - 1 + 2, as the states where node i 

is broken can be expressed as 2 states, all broken and node i broken, but not all broken. 

If these reductions in state space are made then the transitions from the 'lumped' state 

have to be modified using the occupation probabilities, Pu, in the same way as for the two 

stage failure model earlier in this chapter. 

Clearly in all but the most extremely unreliable systems, the most likely states are 

going to be where one or fewer servers are broken. However, the more other servers which 

are broken, the more jobs will be directed towards node i, so these unlikely states are 
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significant with respect to arrivals, this is most true in the selective case where every 

failure causes a change in job distribution. In general it is possible to expand anyone 

of the 'lumped' states (where j, or j - N, other servers are broken) into its constituent 

configurations to improve the approximation. Expanding states j and j+N (where j < N) 

into their constituent configurations will add (2(N - 1)!/ j!(N - 1 - j)!) - 2 states, which 

is clearly a large potential increase. It is possible to minimise the increase in state space 

by expanding only those states where 1 other server is broken or 1 other server is working, 

thus considering the most likely server configurations and also those configurations where 

service rate is highest. In general this will increase the state space by 4N - 8, however 

in the selective(m) strategy and the fixed(m) strategy where servers do not receive jobs 

when broken, no advantage is gained by considering more configurations where node i is 

broken and so only 4N - 4 additional states need to be considered. 

5.4 Numerical Limitations 

Before we leave this section, some remarks on the complexity of the exact numerical 

solution are in order. To compute the distribution and/or the mean of one queue in an 

N -node system requires the determination of 2N eigenvalues and eigenvectors, and the 

solution of a set of 2N simultaneous linear equations. The complexity of that task is on 

the order of 23N. Since there are N queues, the total complexity of the full solution, for 

one set of parameters, is O(N23N
). This is a large computational effort even for systems 

of even moderate size. In addition, when the number of eigenvalues is very large, one 

begins to encounter numerical problems associated with ill-conditioned matrices. 

The largest system we have been able to tackle had 8 nodes (256 server configurations), 
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then the solution for a single queue took an hour. The approximate solution is of course 

applicable for much larger values of N. 

5.5 Conclusions 

Several approximate solutions to the model presented in the previous chapter have been 

derived subjected to several criteria including, accuracy of predicted performance mea

sures, accuracy of predicted routeing weights and complexity of solution. Results derived 

in chapter 2 were used to provide simple approximations which give a rapid solution with 

a good prediction of optimal routeing weights without the need to optimise the complex 

functions derived in chapter 4. This method of predicting optimal routeing weights gives 

far greater accuracy than the simple heuristics presented earlier and with only a slight 

increase in overheads. More complex approximations were also presented which necessi

tated the use of the spectral expansion solution method. Although these solutions are a 

lot more involved than for the simpler approximations the level of accuracy in predicting 

the performance measures has been shown to be greatly improved and a large saving in 

overheads is made over the exact solution, especially when there number of servers in 

parallel is large. Thus, a set of approximations has been presented which allow a rapid 

optimisation and accurate prediction of performance for potentially large parallel systems 
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Figure 5.1: Exact and approximate solutions of average response time 

with optimal routeing vector for different strategies 
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Figure 5.2: Exact and approximate solutions of average response time 

with optimised routeing vector, as a function of job arrival rate 

N = 5, oX = 350, J.Ll = 150, J.L2 = 160, J.L3 = 170, J.L4 = 180, J.L5 = 190, 
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Chapter 6 

A Pipeline with Nodes of Servers 

in Parallel 

6.1 Summary 

Jobs from a single Poisson input stream receive [{ independent stages of service, one at 

each node in the pipeline. At stage i jobs are routed through one of the Ni available nodes, 

modelled as MIM/1 queues. These nodes are subject to random failure and repairs which 

leave their corresponding queues intact, but may affect the routeing of jobs arriving at 

that stage during the subsequent repair period. Two possible approximate solutions for 

the marginal queue size distributions are obtained by spectral expansion and are compared 

with solutions obtained by simulation techniques. Two routeing strategies are considered, 

fixed and selective, and the relative accuracy of the approximate solutions and predicted 

optimal routeing vectors are discussed. 
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6.2 The Model 

Jobs arrive into the system in a Poisson stream with rate A. There are [{ stages in series 

and in stage i there are Ni nodes in parallel, each with an associated unbounded queue, 

to which incoming jobs may be directed. Server j at stage i goes through alternating in-

dependent operative and inoperative periods, distributed exponentially with means 1/~i,j 

and 1/7]i,j respectively. While it is operative, the jobs in its queue receive service of an 

exponentially distributed duration with mean 1/ J-li,j, and leave the stage upon comple-

tion to proceed to the next (if any) stage of service. When a node becomes inoperative 

(breaks down), the corresponding queue, including the job in service (if any), remains in 

place. Services that are interrupted in this way are eventually resumed from the point of 

interruption. The system model is illustrated in figure 6.1. 

.......................... · . · . · . 

A KY -0---
____-----}'J --- K 

r~~_1 
~

q(l,2) :J! 
I i 

: ............... ~~~.:~ .. ~ .............. J.U] ................................................ . 

Figure 6.1: A single source to a pipeline of [( stages, split between the nodes in each stage 
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The arrival rate at stage i is given in figure 6.1 as Ai, but since no jobs are lost the 

overall arrival rate at all stages will be the same as the external Poisson arrival rate 

A. However, since the arrivals at stage i depend on the departures from stage i-I 

then the arrival stream will, in general, cease to be Poisson. The system configura-

tion at any moment is specified by the subset, u, of nodes that are currently opera-

tive (that subset may be empty, or it may be the set of all nodes): U C ON, where 

ON = {(I, 1), (1,2), ... , (1,N1), (2, 1), ... , (I<,NI<)}' where the pair i,j represents node j 

at stage i. There are of course 2N possible system configurations, where N = L:{~l Ni. 

In general it is more convenient to consider the subset Ui whose elements are those nodes 

at stage i which are operative. The set of all nodes at stage i is denoted by ONi' Clearly 

Ui CONi C ON and Ui CU. The steady-state marginal probability, PeTi' of configuration 

Ui at stage i is given by 

- II 'Tli,j II ~i,j 
PeTi -

jEeT; ~i,j + 'Tli,j jEa; ~i,j + 'Tli,j 

And the steady-state marginal probability, PeT, of configuration U is given by 

PeT = II "'Tli,j,, II "~i,j,, ' U C ON , 
i,jEeT ~t,) + 'Tlt,) i,jEa ~t,) + 'Tlt,) 

(6.1) 

(6.2) 

where (ji is the complement of Ui with respect to ONi' (j is the complement of U with 

respect to ON and an empty product is by definition equal to 1. These expressions follow 

from the fact that nodes break down and are repaired independently of each other. 

If, at the time of arrival at stage i, a new job finds the stage in configuration Ui, then 

it is directed to node j with probability qi,j (Ui). These decisions are independent of each 

other, of past history, of the sizes of the various queues and of the state of any other stage 
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in the pipeline. Thus, a routeing policy at stage i is defined by specifying 2Ni vectors, 

(6.3) 

such that for every (Ti, 

Ni 
L qi,j((Ti) = 1 
j=l 

The system state at time t is specified by the pair [I(t), J(t)], where I(t) indicates the 

current configuration (the configurations can be numbered, so that I(t) is an integer in 

the range 0,1, ... , 2N - 1), and J(t) is an integer vector whose k 'th element, Jk(t), is the 

number of jobs in queue k (k = 1,2, ... , N). The integer k is used here instead of the pair 

i, j for simplicity, the relationship between k and i, j is a simple 1 to 1 mapping such that 

i-1 

j+ 'LNx=k 
x=l 

Under the assumptions that have been made, X = ([I(t), J(t)], t ?: O} is an irreducible 

Markov process. The condition for ergodicity of X is that, for every queue i, j, the overall 

arrival rate is lower than the overall service capacity: 

" ( ) 17i,j L.JAiPuiqi,j (Ti < J.Li,j~ + ' i = 1,2 ... ,I<,j= 1,2, ... ,Ni. 
VUi i,j 1]i,j 

(6.4) 

When the routeing probabilities and the transfer jobs between stages of depend on 

the system configuration, the process X is not separable (i.e., it does not have a product-

form solution). Consequently, the problem of determining its equilibrium distribution is 

intractable in general. On the other hand, the quantities of principal interest are expressed 

in terms of averages only; they are the steady-state mean queue sizes, Lk, and the the 

overall average response time, W, given by 

(6.5) 
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To determine those performance measures, it is not necessary to know the joint dis

tribution of all queue sizes; the marginal distributions of the N queues in isolation are 

sufficient. Unfortunately, the isolated queue processes, {Jk(t), t;::: O} (k = 1,2, ... ,N), 

are not Markov. As mentioned earlier the arrival stream at stage i (i ;::: 2) is not Poisson 

since it depends on the activity of all the previous stages, this makes an exact solution of 

the marginal queue size distributions almost as intractable a problem as solving the joint 

distribution of all queue sizes. However, it is possible to obtain good approximate solu

tions for the marginal queue size distributions by assuming the arrival stream at stage i to 

be Markov-Modulated Poisson. Some discussion as to how best to form the approximated 

arrival streams is presented afterwards. 

Consider the stochastic processes Yi,j = ([I*(t),Ji,j(t)] , t ;::: O} (i = 1,2, ... , I<,j = 

1,2, ... , Ni), which model the joint behaviour of the configuration and the size of an 

individual queue i, j, where I*(t) indicates the current approximated system configuration. 

In general each possible approximated system configuration, I*(t), will represent a set of 

one or more of the exact system configurations, a. The number of approximated system 

configurations considered, from now on referred to as Imax, will, in general, determine the 

accuracy of the solution and the amount of computation required. The value of Imax will 

therefore be limited at the upper bound by the amount of computational power available 

and the desired rapidity of the solution and at the lower bound by the desired accuracy 

of the solution. 

The state space of Yi,j is infinite in one dimension only, which simplifies the solution 

considerably and makes it tractable for reasonably large values of Imax. The important 

observation here is that, with the assumption of a Markov-Modulated arrival process, 
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Yi,j is an irreducible Markov process, for every i, j. This is because the arrivals into, 

and departures from queue i, j during a small interval (t, t + ~t) depend only on the 

approximated system configuration and the size of queue i, j at time t, and not on the 

sizes of the other queues. As mentioned earlier, without the approximation of the arrival 

stream to a Markov-Modulated arrival process, this statement would not be true, since a 

job only arrives at stage i + 1 after successfully completing service at stage i, therefore 

making the queue size at any stage dependent on all previous stages of service. 

The next task, therefore, is to find the equilibrium distribution of Yi,j : 

Pi,j(X, y) = t~~ P[I(t) = x, Ji,j(t) = y] , 

x = 0,1, ... , Imax - 1 , y = 0, 1, ... (6.6) 

Given the probabilities Pi,j(X,y), the average size of queue i,j is obtained from 

00 Imax-1 

Li,j = LY L Pi,j(X, y) . (6.7) 
y=l x=O 

6.3 Approximated system configurations 

In this model there are 2N possible system configurations, which is clearly too large a 

number to solve for in any practical situation, hence the need for a reduced solution. In 

general, the arrivals at node i are dependent on all the preceding stages of service (or node 

configurations), however it is obvious that the nature of the arrivals at each node are most 

strongly linked to the configuration at the immediately preceding node. Thus one possible 

reduced solution method is clear, namely, 

1. perform the solution described in chapter 3 on the first node - this will be an exact 

solution since there are no preceding nodes to affect arrivals 
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2. extract from that solution the appropriate performance measures and the probabil-

ities Pl,j(O"l),j = O .. Nt, where Pi,j(O"i) is the probability that queue j (at node i) is 

non-empty given that the configuration of node i is O"i. 

3. perform the solution described above with the approximated system configurations 

merely the configuration of this node and that immediately preceding it, thus IMax = 

2Ni+Ni-l and the arrival rate at node j (assumed Poisson) in configuration 1* is given 

by 
Ni-l 

qj(ai) 2: (Pi-l,k(O"i-t}/ti-l,k) 
k=O 

where O"i-l and O"i represent the configurations at node i-I and node i respectively 

at given approximated system configuration 1*. 

4. extract from this solution the appropriate performance measures and the probabili-

5. repeat steps 3 and 4 for the next node until all nodes have been solved. 

Clearly this solution is only possible when Ni is relatively small for all i (if Ni+ Ni-l ~ 8 

then the solution becomes very large) and so an alternative needs to be found. The sim-

pi est idea is to ignore all previous nodes in the solution of node i and take the arrival 

rate at that node to be Poisson rate A, i.e. the same as the external arrival stream. This 

allows the solution of much larger parallel nodes (see chapter 3), but at the expense of all 

consideration of the staged nature of service. A much better alternative would be for some 

halfway measure, allowing reasonably large systems to be solved with some knowledge of 

the preceding stage taken into account. In the preceding chapter some approximate meth-

ods for the solution of a single stage parallel system were presented, the best approximate 
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solution coming when the most significant arrival periods were treated independently and 

the remainder were amalgamated into logical groups. Applying the same technique here 

one such solution would be to have approximated system configurations based on the 

current server (i,j) either working or broken, with 0,1, or up to Ni - 1 other servers at 

node i working, and 0,1, or up to Ni-l servers working at the previous stage, giving a 

total of 2Ni(Ni-l + 1) possible configurations. Another possibility is to consider all the 

possible configurations of node i together with those arising from having 0,1 or up to Ni-l 

servers operative at node i - 1. These are just two examples, the best set of approximated 

system configurations will be determined by the server characteristics and the available 

computational resources and some discussion on this is included in the previous chapter. 

It is assumed that approximated system configurations will be chosen such that node i, j 

will be either operative or inoperative in any approximated configuration, but not both. 

The process Yi,j is of the block tri-diagonal, or Quasi-Birth-and-Death type and so is 

a special case of the model presented in chapter 3. It can therefore be solved by spectral 

expansion in exactly the same way to find the probabilities Pi,j (x, y). 

6.4 Scheduling strategies 

As in [100] which considered the single stage parallel system, here several strategies based 

on a single routeing vector are evaluated and compared, q = (ql, q2, ... , qN). In each case, 

the optimisation problem is to chose the elements of that vector so as to minimise the 

average response time. 

1. The fixed strategy. 

The most straightforward way of splitting the incoming stream at stage i is to send 

101 



each job to queue j with probability qj, regardless of the system configuration. In this 

simple case in the single stage model a simple equation could be used to determine the 

performance measures, however with the introduction of several stages this is no longer 

true, as the arrival process at a given stage is affected by node failures at earlier stages. 

2. The selective strategy. 

Intuitively, it seems better not to send jobs to stages where the node is inoperative, 

unless that is unavoidable. This suggests the following strategy: If the subset of operative 

nodes at stage i in the current system configuration is ai, and that subset is non-empty, 

send jobs to queue j only if j E ai, with probability proportional to qj : 

If a is empty (i.e. all nodes are broken), send jobs to queue j with probability qj (j = 

Note that neither of these strategies take account of the states of nodes at other stages 

in the system, however the existence of other stages may have an effect on the optimal 

routeing vector for a given strategy. 

6.5 Numerical results 

Numerical experiments were carried out in order to determine both the accuracy of the 

approximations suggested and the characteristics of the behaviour of the pipeline system. 

In most practical situations it is normal to find nodes with a high degree of reliability, 

however, as is the case with most models involving node breakdowns, systems of such 

nodes may behave much like nodes without breakdowns. It has been necessary, therefore, 
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to consider here nodes with somewhat extreme characteristics in order to highlight the 

strengths and weaknesses of the approximations and to show the limiting behaviour of 

such a system of nodes. However, it is also true to say that even nodes with a high degree 

of reliability may suffer rare, but prolonged, breakdowns which can have a significant effect 

on performance measures. 

If few arrivals occur during a period of breakdown (i.e. 'r/ '" A) then the effect of 

a failure on the sizes of the queues at a stage will be minimal, assuming the node is 

reasonably reliable, just as for the single stage parallel node models considered previously. 

Also if the service rate is of a similar order (J.L ;:::::: A) then the departures will not be unduly 

interrupted by failures, so the arrivals at the following stage may be assumed to be nearly 

Poisson, hence the single stage approximation will work well for either routeing strategy. 

However, if the repair rate is small compared to the arrival rate, then many arrivals 

will occur during a breakdown period. Under the selective routeing strategy this will cause 

the other nodes at that stage to be more heavily loaded, causing the queues at those nodes 

to grow. With the fixed routeing strategy the queue of a broken node will grow larger 

during a period of breakdown, leading to a large backlog of jobs if the load is sufficiently 

high. The solution of the model for the stage where this behaviour occurs is still exact, 

but the arrivals at the next stage are now distinctly 'bursty', rather than nearly Poisson 

and so the accuracy of the approximations is in question. 

If Ni is large then the effect of an individual failure at stage i will be reduced, since 

one node failing out of Ni identical nodes will mean a reduction of at most I/Ni in the 

overall service at stage i. In fact the reduction could be considerably less than 1/ Ni if the 

load at stage i is not excessively high and the selective routeing strategy is used, since the 
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remaining nodes will be less likely to be idle. Since the arrivals at stage i + 1 are in fact 

the departures from stage i then any reduction in the effect offailures at stage i will result 

in an improvement in the approximation of the arrivals at stage i + 1 as a Poisson stream. 

Thus, although the 2-stage approximation becomes too costly to use when Ni is large, the 

accuracy of the simple approximation can be seen to improve in general (assuming the 

repair rates are sufficiently great). 

Figures 6.2 and 6.3 show the average response time of a 2 stage pipeline where the 

are 2 nodes at each stage and all the nodes are identical. In figure 6.2 the routeing 

strategy is selective and in figure 6.3 it is fixed, in both cases the routeing vectors are 

simple and identical for each node, i.e. (~, ~). Results are given for the simple (Poisson) 

approximation, the 2-stage (full Markov modulated) approximation and simulation. In 

both figures as the arrival rate increases the response time increases as expected and the 

average response time is higher under the fixed strategy. When the load is light all three 

methods give very similar results (for both strategies), but as the load increases the simple 

approximation becomes somewhat less accurate than the 2-stage approximation. In figure 

6.4 the differences between the two approximate methods are highlighted further. Here 

the structure of the pipeline is the same, but the nodes are not reliable. 

As mentioned earlier the simple approximation becomes much less accurate when the 

duration of the periods of inoperation is increased. This is shown in figure 6.5, where once 

again there are 4 identical nodes in a 2 stage pipeline, showing results for the selective 

strategy. The overall reliability of the nodes ('r/ / ('r/ + ~)) remains constant, but the d ura

tions of the periods of operation and inoperation are increased exponentially. When the 

failure and repair rates are relatively large the effect of failures is minimal and so both 
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approximations work well, however as the repair and failure rates decrease the simple 

approximation become highly inaccurate as the arrivals become more and more 'bursty'. 

The 2-stage approximation does not always give such accurate results as those shown 

above. With the fixed routeing strategy in particular a large backlog of jobs may build 

up during a period of failure, thus the probability of the queue being non-empty may be 

significantly less for sometime immediately following a failure than after a long period 

of operation. However such node characteristics would be somewhat extreme, average 

number of jobs in the queue would have to be small during operation, but large during 

inoperation, thus>. would have to be significantly less than I-" (>. = 1-"/2 say) and the period 

of inoperation would have to be very long (", ~ >.,,,, < >./104 say). A simulation of such a 

pipeline would take an exceedingly long time to produce an accurate result. 

In general the optimal routeing weights are not greatly affected by the presence of 

preceeding stages, but an unbalanced system will perform significantly worse as a result 

of increased 'burstiness'. This is illustrated in the following 4 graphs, each of which 

show the performance at the final stage of a pipeline only. Figure 6.6 shows the average 

response time at the second of 2 stages as a function of the proportion of jobs sent to node 

1 when both are available (q) under a selective routeing strategy with routeing vector 

(q,l - q). The 2-stage approximation takes account of the behaviour at a preceeding 

stage which has long periods of inoperation whereas the simple approximation considers 

the same stage in isolation, the arrival rate is identical in both cases. Figure 6.7 shows 

the same system operating the fixed routeing strategy. Clearly in this (extreme) case the 

the optimal routeing vector is slightly altered by considering a preceeding change, but 

perhaps more significant is the much greater steepness exhibited by the curve of the 2-
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stage approximation. Thus a routeing vector which gives a near optimal average response 

time when the stage is considered in isolation could give a very poor response time when 

the preceeding stage is taken into account. 

Figures 6.8 and 6.9 compare similar results as the two previous figures with results 

obtained from simulations. The performance measures displayed are the average response 

times taken at a stage of a pipeline with either one or two previous stages. Again there 

is a slight difference in the optimal routeing vector between the approximations, but the 

2-stage approximation is fairly accurate when compared to the optimal routeing vector 

found by simulation. As would be expected in this case the 2-stage approximation gives 

a much more accurate fit to the simulated models than does the simple approximation, 

although there is still an appreciable error. 

In figure 6.8 a 3-stage pipeline is also illustrated. It is interesting to note that there is a 

significant increase in average response time calculated by simulation for the 3rd stage of a 

3-stage pipeline as opposed to the 2nd stage of a 2-stage pipeline with the same parameters. 

Unfortunately the same cannot be said for calculations made by approximation where 

there is only a slight difference between the 2 and 3 stage results. Clearly therefore the 

earlier assertion that the performance of one stage of a pipeline is heavily dominated 

by its preceeding stage is not an altogether accurate one. In both figures the M-stage 

approximations accurately ape the curve of the simulations, albeit with some displacement. 

There is some deviation from this as one moves away from the optimum routeing vector, 

although this is much more marked in the simple approximation. 

106 



6.6 Conclusions 

Under many common practical situations a good approximation to this pipeline model 

can be made by considering each of the stages in isolation, this is particularly true when 

the nodes are highly reliable, periods of inoperation are relatively short and the number of 

nodes at a stage is relatively large. When these conditions do not apply it is necessary to 

use a more involved Markov-modulated approximation such as the 2-stage approximation 

suggested here. In certain circumstances it may be advantageous to look for alternative 

approximations, more detailed than the simple approximation, but less costly than the 2-

stage approximation. The exact choice of what approximation to consider will depend on 

many variables (the node characteristics, available computational power, desired accuracy, 

etc) which are out of the scope of this thesis, but are worthwhile directions of research 

none the less. Also it may be worth considering other heuristics to predict the optimal 

routeing vectors in light of the increased penalties to an unbalanced system when previous 

stages of service are involved. 

For models with characteristics like some of those illustrated here, i.e. Ni small and 

fairly long periods of inoperation, simulations need too be run for a very long time before 

producing a steady-state result. This in itself is clear justification for attempting to find 

suitable approximations for these models and the inaccuracy in the predictions will, in 

most circumstances, be sufficiently small for the speed of the calculation to be a definite 

bonus. 
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Figure 6.2: Average response time as a function of arrival rate for a 2 stage service 

where each stage has 2 identical servers and a fixed routeing strategy 

M = 2, Ni = 2, j.li,j = 10, ~i,j = 0.01, 'r/i,j = 0.1, 

i=1,2,j=1,2 
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Figure 6.5: Average response time as a function of repair rate for a 2 stage service 

where the proportion of time operative is a constant 
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Figure 6.6: Average response time as a function of job share q 

at the 2nd stage of a 2 stage pipeline with a selective routeing strategy 
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Figure 6.7: Average response time as a function of job share q 

at the 2nd stage of a 2 stage pipeline with a fixed routeing strategy 

M = 2, Ni = 2, A = 17, /-l1,j = 10, /-l2,1 = 14, /-l2,2 = 9, 
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Figure 6.8: Average response time as a function of job share q 

at the final stage of a pipeline with a selective routeing strategy 

Ni = 2, A = 15, ~i,j = 0.01, j.L1,j = 10, "ll,j = 0.2, i = 1..3, j = 1,2 
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Figure 6.9: Average response time as a function of job share q at the final stage 

of a pipeline with a fixed routeing strategy 
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Chapter 7 

Networks of Servers suffering 

Breakdowns and Repairs 

7.1 Summary 

The general model presented in this section is an extension of one of the first models of a 

network of queues proposed, Jackson [42], by considering stages to be parallel systems of 

queues of the type introduced in chapter 4. Jackson studied networks from the perspective 

of job scheduling in an assembly plant, but the model is equally valid for a computer 

network. He was able to show that in a system without failures stages can be studied 

in isolation without loss of accuracy, i.e. in the network arrivals at each stage may be 

assumed to be Poisson. It was demonstrated in the previous chapter that this does not 

hold true when there are failures, however in chapter 6 approximations were introduced 

that enabled a model of multiple stage service to be solved by breaking the system down 

into its separate stages. This was feasible because jobs were seen to progress from one 
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stage to the next in a strict order, however, in a general Jackson network this is not the 

case as jobs may arrive from outside at any stage and upon completion of service at a 

stage may depart from the system or pass on to anyone of the other stages. Therefore 

an iterative approach has been suggested using repeated approximations of the kind used 

in chapter 6. Two specific examples are taken from the literature to illustrate how these 

techniques can be adapted to suit differing requirements. 

7.2 The Model 

There are M stages in the system (numbered 1 to M), at stage i there are Ni servers 

in parallel, each with an associated unbounded queue, to which incoming jobs may be 

directed. Jobs from outside the system arrive at stage i in a Poisson stream with rate 

Ai. Server j at stage i goes through alternating independent operative and inoperative 

periods, distributed exponentially with means 1/~i,j and 1/T/i,) respectively. While it is 

operative, the jobs in its queue receive service of an exponentially distributed duration 

with mean 1/ Ili,j Upon completion of service at a stage i, jobs either depart from the 

system with probability Pi,O, or move on to stage k for additional service with probability 

Pi,k (pi,i may be non-zero). Clearly, 

M 

LPi,k = 1 
k=O 

When a server becomes inoperative (breaks down), the corresponding queue, including 

the job in service (if any), remains in place. Services that are interrupted in this way 

are eventually resumed from the point of interruption. The system model is illustrated in 

figure 7.1. 
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Figure 7.1: A 3 stage Jackson Network with stages of 1 or more servers in parallel 

In many ways the unbounded nature of the random walk performed by jobs traversing 

the network is unrealistic, but may approximate the behaviour of a real system with an 

extremely large number of non-prioritised types of jobs. An alternative approach is the 

progressive staged service of the pipeline model in chapter 6, however this negates any 

notion offeedbacks (an important problem in network behaviour). 
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7.3 Approximated system configurations 

In this model there are 2N possible system configurations (where N is the total number 

of servers given by N = 2:f'!1 Ni)' which is generally too large a number to solve for in 

any practical situation, hence the need for a reduced solution. In general, the arrivals 

at stage i are dependent on all the preceding stages of service (which with feedback may 

mean all stages), however it is obvious that the nature of the arrivals at each stage are 

most strongly linked to the configuration at the immediately preceding stages. Clearly the 

existence of feedback loops means that a sequential, or progressive, solution is no longer 

possible, since it is impossible to know the arrival rate of jobs at a stage in a loop without 

knowing the arrival rates at all the other stages in that loop. Thus one possible reduced 

solution method is clear, namely, 

1. select a stage i for which the rate of arrivals can be most accurately predicted 

2. perform the solution described in chapter 4 on stage i 

3. extract from that solution the appropriate performance measures and the probabil

ities Pi,j(ai),j = O .. Ni, where Pi,j(ai) is the probability that queue j (at stage i) is 

non-empty given that the configuration of stage i is ai. 

4. select a new stage k for which arrivals can be most accurately predicted using the 

calculations already made 

5. perform the solution described in chapter 6 with the approximated system configu

rations based on the configuration of this stage and those immediately preceding 
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6. extract from this solution the appropriate performance measures and the probabili-

7. repeat steps 4, 5 and 6 until all stages have been solved. 

8. repeat the whole process using the calculated probabilities to improve the estimation 

of the arrival rates and hence the accuracy of the calculated performance measures 

and probabilities until a satisfactory level of accuracy is achieved 

The best set of approximated system configurations will be determined by the server 

characteristics and the available computational resources and some discussion on this is in

cluded in the previous chapter. It is assumed that approximated system configurations will 

be chosen such that server i, j will be either operative or inoperative in any approximated 

configuration, but not both. 

Clearly there is a large amount of scope for work in how to best perform this iterative 

process in order to minimise the number of iterations needed to achieve satisfaction, in 

particular the choice of which stage to select and the estimation of arrival rates is crucial. 

In both the examples presented here the choice of which stage to solve first is obvious as 

in both cases all arrivals from outside are directed to one stage. This is not the case in the 

general model and so some care may be needed to select stages in an order that will most 

quickly lead to an reasonably accurate solution, although in many practical situations the 

choice will either be obvious or make little difference to the eventual outcome. 

The simplest estimation of arrival rates is merely to assume that the only arrivals at 

stage originate from outside the system or from stages which have already been solved. 

Such an estimate is likely to be reasonably accurate only for networks having a predom-
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inant direction of progression of jobs or in later iterations. In the general case it may 

take several iterations before such a level of accuracy is achieved, therefore it would be 

advantageous to speed up this process somewhat, two broad approaches to doing this are 

suggested. Firstly the use of cruder approximations of the type used in chapter 5 will 

greatly reduce the number of calculations needed to obtain a reasonable approximation 

of the arrival streams at each stage, from then on more complex approximations of the 

kind used in chapter 6 can be used to derive more accurate estimate of the performance 

measures with fewer iterations. Even with this improvement the initial estimate of the 

arrivals at a stage may be so inaccurate that a reasonable level of accuracy may still take a 

long time to achieve, furthermore it may be that the system may be so unstable as to make 

such any reasonable level of accuracy impossible to achieve without a good first estimate. 

In such cases a heuristic is needed to predict the arrival rates at each stage, although such 

a heuristic is likely to be determined by the characteristics of individual networks and so 

is the subject of much more detailed study than is possible here. 

7.4 Example: A 3 stage network with overtaking subject to 

failures 

This example is an extension of a 3 stage network model studied by Mitrani [71]. A 

job arriving into the network from outside is sent to the queue at stage 1, after being 

served there it either proceeds to stage 2 with probability p, or proceeds to stage 3 with 

probability q = 1 - p. After service at stage 2 all jobs are sent to the queue at stage 3 and 

after service at stage 3 all jobs leave the system. All service times for stages 1, 2 and 3 are 
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independent and exponentially distributed with means 1/ J.Ll , 1/ J.L2 and 1/ J.L3 respectively. 

Failures occur randomly and independently at each stage with time before failure and time 

to repair are exponentially distributed with means l/~i and l/1]i respectively at stage i. 

In all queues the service discipline is FIFO and interruptions are preemptive resume. 

The system model is illustrated in figure 7.2 below. 

q 

stage 1 
p 

stage 2 

m~ 
JIJ~-\ 
I cVl -----+-I I 
I I 
I I 

m N 3 

stage 3 

Figure 7.2: A 3 stage Network with overtaking, subject to breakdowns 

Clearly the state space involved in an exact solution of even this relatively simple 

network model is extremely large, even obtaining exact long run average performance 

measures using the principal of quasi-separability is in general intractable. However, it is 

possible to obtain an approximate steady state performance measures using some of the 

models described in earlier chapters. 

Applying the principal of quasi-separability gives rise to 3 separate models of queues 

in parallel which can be combined to give an approximate solution for the average number 
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of jobs in the system and hence, by Little's theorem, the average response time. Since 

stage 1 has no preceding stages to disrupt the Poisson arrival stream it can be modelled 

in isolation without approximation as a simple system of M/M/1 queues in parallel with 

breakdowns and no jobs lost (see chapter 4). Stages 2 and 3 do have preceding stages 

and so arrivals at these stages will exhibit some 'bursty' behaviour. Clearly obtaining an 

approximate solution for stages 2 and 3 is a slight extension of the 2-stage approximation 

described in chapter 6. In the case of stage 2 the only difference will be that some jobs 

leaving stage 1 are not directed to stage 2 and for stage 3 there are in effect 2 preceeding 

stages in parallel. 

The accuracy of the approximation described here should be as good as for the pipeline. 

However, if the number of servers at stages 1 and 2 is large then deriving a good approx

imation at stage 3 may be numerically impractical, i.e. the number of states required 

will be too large. In the case of the pipeline model it was argued that if Ni is large then 

a sim pIe approximation for stage i + 1 would be reasonably accurate as the effect of a 

single breakdown at stage i would not significantly affect the arrivals at stage i + 1. In 

this example, however, it will take half the number of servers at each stage for a good 

approximation to be practical, therefore in such cases the accuracy of approximation it is 

possible to achieve may be significantly less than for the pipeline model. 

In a model of this kind where there is no feedback of jobs it is possible to derive a 

relatively good approximation relatively easily when only performance measures of long 

run averages are of interest. If transient performance measures are required then the 

presence of an overtaking loop may significantly increase the difficulty in obtaining a 

solution. 
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7.5 Example: A 2 stage Jackson Network subject to break-

downs 

Mikou [68] has suggested a model of a tightly coupled 2 stage Jackson network. In this 

model jobs arrive at from outside the system in a Poisson stream of rate A. A job arriving 

into the network is sent to the queue at stage 1, after being served it either leaves the 

network with probability p, or proceeds to stage 2 with probability q = 1 - p. After service 

at stage 2 jobs are sent to the queue at stage 1. Service times for stages 1 and 2 are expo-

nentially distributed with means 1/ J.ll and 1/ J.lz respectively. When a breakdown occurs 

service is suspended at both stages and is resumed from the point of interruption when 

repair is complete. Time before failure and time to repair are exponentially distributed 

with means 1/~ and l/ry respectively. In both queues the service discipline is FIFO. 

The system model is illustrated in figure 7.3 below. 

L 11118 t 
(0 '--'---1-11 I - -----'-

q 

Figure 7.3: Mikou's 2 stage Jackson Network subject to breakdowns 

Mikou [68] derived the generating function of the joint distribution of the sizes of the 

2 queues in terms of an homogeneous Riemann-Hilbert boundary value problem. Such a 

solution is far from trivial, but is the only way to attain an exact solution to this model. 
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7.5.1 General Model 

Clearly this model is not of the same form as the other models in this thesis as the same 

failure and repair process affects both queues, hence there are only 2 states operation; both 

servers operative or both broken. Whilst examples may be found where this is indeed the 

case, it is more common to think, as here, of non-catastrophic failures of this sort as being 

independent at each server in a system. To apply this kind of architecture to the general 

case described above each stage would consist of Ni (i = 1,2) server / queue pairs and 

each server would have it's own independent failure and repair processes. Such a model is 

illustrated in figure 7.4. 

Applying the iterative process described in section 7.3 gives rise to the following pro-

cess; 

1. perform the solution described in chapter 4 on stage 1 using just the single external 

arrival stream 

2. derive the probabilities Pl,k(at) for k = O .. Nl - 1 

3. perform the solution described in chapter 6 on stage 2 using the values of the prob

abilities Pl,k(al) found earlier to estimate the arrivals at stage 2 

4. derive the probabilities P2,k(a) for k = O .. N2 - 1 

5. perform the solution described in chapter 6 on stage 1 using the values of the prob

abilities P2,k (a) found earlier to estimate the arrivals at stage 1 

6. repeat steps 2 to 5 until a steady state is reached 

From earlier chapters it is clear that in general the fewer servers there are at each stage, 
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Figure 7.4: A general 2 stage Jackson Network subject to breakdowns 

the longer the repair periods are and the greater the load, there worse the approximations 

will be. This is due principally to the same 'back-log' problem as described above for 

the coupled failure/repair process, although the mechanics are somewhat complicated by 

the presence of a feedback loop. If a failure occurs at either stage then there will be a 

reduction of the service capacity at that stage, causing an increase in the number of jobs 

in its queues. If the number of servers at the stage is small, then that reduction will be 

proportionally large and if the load is high the increase in queue size will be significant, 
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especially if the failure lasts for some time. This argument is true of all the models in 

previous chapters also, however in this case the reduction of service capacity at one stage 

will reduce the arrival tate at the other. Therefore there will be fewer jobs to be served 

at that queue, so the departure rate will decrease. This will mean there are fewer arrivals 

at the stage affected by the breakdown, so there will be a less dramatic build up of jobs. 

Thus the presence of the feedback loop may increase the accuracy of the approximation, 

especially when the external arrival rate, A, is small and the proportion of jobs sent through 

the feedback, p, is large. 

7.5.2 Simple approximation with correction, Ni = 1 

Applying the methods used earlier a simple approximation to Mikou's 2 server model 

(Ni = 1), expanded to include independent failures at each server, is easily derived as 

follows. The first step of the iterative process entails solving stage 1 as an isolated MIMl1 

queue with breakdowns and arrivals during repair (see section 2.5), thus the average 

response time at stage 1 is estimated by (2.31). Now consider stage 2 as a single server 

with 4 states of operation; both stages operative, stage 1 only operative, stage 2 only 

operative and both stages broken. The arrival rate in the first two states, A2 is easily 

found as, 

where p is the proportion of jobs directed towards stage 2, gl (0) is the probability that 

the queue is empty and the server is operative, given by (2.25) and gl (1) is the probability 

that the server is operative, given by (2.14). There are no arrivals in the remaining 2 

states as the server at stage 1 is then broken. It is then a simple matter to perform a 
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spectral expansion solution of this model as described in chapter 3 to obtain an estimates 

for the average response time and the probability that the queue is empty during operative 

periods at stage 2. The first estimate for the average response time of the system has now 

been made, but unless p is particularly small, it is likely to be a gross underestimate. 

The next iteration now begins with stage 1 considered as a 4 state single server model in 

the same was as above with the arrival rate at stage 1 being estimated from the previous 

solution of stage 2. If p is sufficiently large this iterative process will need to be carried 

out several times over before a suitable level of accuracy is obtain in the estimation of the 

average response time of the system. 

Clearly this solution is approximate since during its repair the number of jobs in the 

queue at stage 1 will grow, so that for some period immediately following repair the server 

at stage 1 will not be idle. This will mean that the arrival rate at stage 2 will be somewhat 

higher during this time than the average arrival rate, A2. This in turn will mean that the 

queue size at stage 2 may grow somewhat and thus the arrival rate at stage 1 may be 

higher. This effect may feed back through the queues many times before a steady state is 

reached, the longer the repair period and the greater the load then the longer the time to 

steady state will be. 

A correction can be made to the approximation derived above by the operative state 

of each M/M/1 queue into 2 states, a steady state, s, and a busy state, b. The number 

of jobs which arrive at stage 1 during a repair period will be on average, Ad7Jl , but in 

the time taken to clear this 'backlog' a further AV(7JIJ.Ll) jobs will have arrived. If the 

feedback from stage 2 is ignored, then on average approximately (AIJ.Ll)/(7Jl(J.Ll - AI)) jobs 

will arrive before the steady state is reached, hence the average length of stay in state b 

128 



will be, 

The proviso 'approximately' is made in the above statement as that assumes a stable 

Poisson arrival stream at stage 1 of rate AI. Clearly this will not be the case as this 

does not take account of the increased load now applied to stage 2 and the potential for 

failures there. The failure rate from both new operative states, sand b, will remain as 

6 and the repair rate to state b will be T/l' Thus, if the rate of transfer from state b 

to state s is assumed to be exponentially distributed with mean AI(T/(fL - A)) and the 

feedback from stage 2 is ignored, the approximation is modified to the solution of two 5 

state MIM/1 queues with no job loss. A similar argument can be applied to stage 2 to 

improve estimation of the arrivals at stage 1 also. 

7.6 Conclusions 

A practical method for obtaining approximate performance measures for a general model 

of Jackson queueing networks with breakdowns. This model is consistent with the models 

presented in the previous chapters, and the approximation technique is an extension of the 

solution methods already used. Two specific cases of this general model, based on examples 

taken from the literature, are considered in somewhat greater detail. These specific models 

can be used to demonstrate the accuracy and stability of this approximation technique, 

there is scope for a large amount of work in this direction. In addition much work remains 

to be done in examining more specific examples to explore the questions of stability and 

accuracy, and also to attempt to derive any generic issues in how best to implement the 

approximation technique. Such a study remains outside the scope of this thesis and as 
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such is left as an open problem. 
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Chapter 8 

Conclusions 

8.1 Contributions 

This thesis has been concerned with a family of models with breakdowns based around the 

simple single server MIM/1 model with negative exponentially distributed breakdowns 

and subsequent repairs. Several structures have been considered, from single server models, 

through models of servers in parallel and pipelines with stages consisting of servers in 

parallel, to general Jackson networks. Many of the models and almost all the results 

obtained here are new to the literature, and as such must be considered a contribution to 

extending the type of models which can be solved. 

In the case of the single server models the objective was met of obtaining exact closed 

form solutions to many logical variations of the basic MIM/1 model. These models were 

principally derived in order to define the family of models of interest and to be used to 

approximate the more complicated scenarios in later chapters. In addition some interesting 

numerical comparisons were made between some of the models. 
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In general it is not possible to derive closed form solutions for servers in parallel, so 

a method was developed to consider each node in isolation and derive exact solutions to 

performance measures of long run averages. Four routeing strategies were defined based 

around a simple routeing vector, and the behaviour of systems under these strategies was 

compared numerically. In order to solve the models derived in this section a numerical 

method known as spectral expansion was employed. This method, like virtually all matrix 

solution methods, becomes very expensive (in terms of computational effort involved to 

obtain a solution) when the number of nodes in parallel is large. As a result of this it was 

considered necessary to derive approximations to the models of nodes in parallel based 

around the closed form solutions of the single server models. These approximations were 

seen to be successful in predicting optimal routeing vectors and also in predicting the 

performance measure under certain circumstances, particularly when the number of nodes 

is large, the nodes are reasonably reliable and the duration of breakdowns is not too long. 

Additionally more complex approximations were proposed that still required the use of 

the spectral expansion technique, although unlike the exact solutions the amount of work 

needed does not grow exponentially with the number of node in the system. 

The techniques used to derive solutions to models consisting of servers in parallel posed 

an interesting question: if it was possible to consider a node in isolation in a parallel system, 

would it be possible to consider a node in isolation in a sequential system? In order to 

anSwer this question a model was defined of a pipeline of stages, where each stage is a 

system of nodes in parallel. Clearly the dependencies between stages are strong, and the 

presence of breakdowns at earlier stages means that the jobs arriving at a stage are no 

longer Poisson. An approximation method is described as an extension of the previous 
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methods and its accuracy is compared with simulation. In general the approximations 

are seen to perform well, especially when the advantageous circumstances described above 

hold. The circumstances in which the approximations perform worst are also those where 

the system is most unstable, therefore simulations need very long run times to obtain 

satisfactory results. This is clear justification for pursuing this approach. 

The pipeline model described above can clearly be seen to be a special type of Jackson 

network where there is a specific direction of flow. The final model defined in this thesis is 

a more general Jackson network, where each stage once again consists of nodes in parallel. 

In the general case a job may revisit a stage many times before leaving the system. In the 

presence of such feedbacks an iterative approach is suggested where each iteration consists 

of the solution of a model of the complexity of the pipeline case above. If no feedbacks 

exist then this model is seen to be of similar complexity to the pipeline model as only long 

run performance measures are considered. 

8.2 Further Work 

The literature contains many models of single servers, some similar in nature to the ones 

described here. The limiting factor in obtaining an exact closed form solution for this 

class of model is the existence of only one unknown constant in the balance equations, 

in practice this means that there is only one operational state where service takes place. 

It is doubtless possible to derive closed form solutions to many more models than those 

described here or before, however, without a specific problem to solve it would appear to 

be a purely academic exercise to do so. 

The solution methodology described in chapter 3 can be applied to many more general 
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models involving routeing and breakdowns. For example, a breakdown may be accompa

nied by the loss of the job in service (if any), with a given probability. The only effect of 

that assumption is to complicate slightly the Death transitions of the process Yk: these 

can now be from state (i, j) to state (if, j - 1) (if = i if the departure is due to a service 

completion and if =I=- i if to a breakdown). The matrix Ck is no longer diagonal but the 

solution procedure remains unchanged. 

Similarly, a breakdown may be caused, with a certain probability, by the arrival of a 

job into a node. That complicates the Birth transitions of Yk, making them from state 

(i, j) to state (if, j + 1). The matrix Bk is then no longer diagonal. Both the above effects 

may be present in the same model. In addition the likelihood of breakdowns may increased 

by the number of jobs in the queue passing some threshold level, or a series of thresholds. 

It would be easy to modify the selective and selective-m strategies, used in chapters 4 

and 5, by making them lose incoming jobs when all servers are broken. In all these models 

where losses are possible, the average number of jobs lost per unit time is an important 

performance measure. That quantity is obtained directly from the probabilities (4.1) and 

from the distributions of the processes Yk. 

Another possible generalisation concerns the introduction of more operative states. 

For instance, instead of being just operative or broken, a server may be fully operative, 

partially operative and broken. Perhaps when fully operative the server can both accept 

and serve jobs, when partially operative it can accept but not serve, and when broken it can 

neither accept nor serve. In general, a server could be in one of n possible operative states, 

with different arrival and service characteristics in different states, and with transitions 

between states governed by an arbitrary Markov chain. Provided that those transitions, 
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and the routeing decisions, do not depend on how many jobs are present at other queues, 

the analysis proceeds as in chapter 3. 

Of course, the price paid for such an increase in generality is a corresponding increase 

in complexity. Changing the composition of the matrices Ak, Bk and Ck does not alter 

significantly the computational complexity of the solution, but changing their size does. 

That size is determined by the number of system configurations. If, instead of the 2 

possible operative states for each server there are n states, the total number of system 

configurations grows from 2N to nN . This imposes obvious limitations on the size of 

problems that can be solved numerically. 

Approximation techniques have been applied successfully in this thesis, and numerical 

analysis has shown the circumstances where these approximation perform well or poorly. 

As well as knowing this it would be advantageous to be able to estimate the degree 

of error, an so possibly apply a correction to the approximation. Since it is possible 

to analyse why an approximation performs badly it also seems logical that it would be 

possible to derive a heuristic or further approximation to estimate this correction, such as 

the approach suggested in chapter 7 No numerical analysis was carried out for the general 

network model in this thesis. Such an analysis would be a very large undertaking, possibly 

sufficient for an entire thesis, as such it has been left as an open problem for the future. 
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