UNIVERSITY OF NEWCASTLE UPON TYNE
DEPARTMENT OF COMPUTING SCIENCE

A MIDDLEWARE SERVICE FOR FAULT-TOLERANT GROUP
COMMUNICATIONS

Ph.D. THESIS

BY

Graham Morgan

NEWCASTLE UPON TYNE

SEPTEMBER 1999

Thesis LbS522-

Abstract

Many distributed applications require multicast group communication services,
enabling an entity to interact with a group of other entities. Providing the reliability
and ordering guarantees required by group based applications is not a trivial task in
distributed systems where computation and communication delays might not be
known accurately. Furthermore, the approaches available to support these guarantees
are diverse. The choice of approach may significantly effect the performance of an
application and/or may not be suitable for some application types.

Nowadays, distributed applications are frequently built as a Middleware service.
The Thesis develops techniques for providing group communication support in
Middleware environments. A group communication service has been designed and
implemented in such a way as not to hinder the interoperability/portability of
applications built using it. The service provides a variety of functions that may be
tailored to suit many different types of applications.

Group communication protocols are presented that ensure reliability and ordering
guarantees. Furthermore, the reliability and ordering guarantees of such protocols
may be tailored to suit a wide variety of applications. Mechanisms that provide a
variety of approaches to inter-member and inter-group interactions that are suitable
for satisfying the requirements of many different types of applications (e.g., fault-
tolerant, collaborative) are also supported. The service can work over local and wide

area networks (Internet).

Acknowledgements

I would like to express my sincere gratitude to several people who have contributed
in various ways to the completion of the Thesis.

First and foremost, I thank my supervisor, Professor Santosh K. Shrivastava.
His guidance and technical contributions throughout this work have been invaluable.
The enthusiasm and encouragement Santosh consistently showed throughout my PhD
studies have been essential for the completion of the Thesis.

Many thanks to Hewlett Packard laboratories in Bristol (United Kingdom)
and the Engineering and Physical Science Research Council (United Kingdom) for
providing financial support for the research presented here. Special thanks to Mr.
Roger Flemming for his contributions and advice during my stays at the Hewlett
Packard research laboratory in Bristol.

I am indebted to Dr. Paul Ezhichelvan for the countless discussions I have
had with him relating to work presented by the Thesis. I declare that the research
presented by the Thesis relating to group membership and total ordering is partly the
work of Dr. P. Ezhichelvan and Dr. R. J. de A. Macedo. Their earlier research efforts
made the Thesis possible.

I would like to thank colleagues who have helped in various ways during my
Ph.D studies, in particular Dr. M. Little, Dr. S. Wheater, Dr. F. Ranno, Dr. C. Angus,
Dr. J. Steggles, Dr. D. Nelson, Mr. R. Smith, Mr. B. Arief, Mr. I. Welch, Mr. A,
McGough, Mr. M. Beet, Mr. A. Garmew and Mr. L. Lloyd.

Finally, I would like to thank my wife, Tanya, and my family for their help
and support.

Chapter 1 - Introduction
1.1 Distributed Systems
1.2 A Group Communication Service
1.2.1 Failures and Group Membership
1.2.2 Message Ordering
1.2.3 Overlapping Groups
1.2.4 Clients and Server Groups
1.2.5 Summary of Group Communications
1.3 Use of Group Communications
1.3.1 Collaborative Services
1.3.2 Highly Available Services
1.4 Middleware
1.5 Contributions of the Thesis
1.6 Thesis Outline

Chapter 2 - Background

2.1 Middleware
2.1.1 Properties of Middleware
2.1.2 The Proxy/Stub Method
2.1.3 Distributed Objects
2.2 Object-Oriented Middleware Technologies
2.2.1 Java-RMI
2.2.2 DCOM
2.2.3 CORBA
2.2.4 Evaluation of Surveyed Middleware
2.3 OMG & CORBA
2.3.1 Overview of the ORB
2.3.2 CORBA Interface Architecture

Contents

Contents

p—

O 0 N NN A WNNN

10
10
11
12
13
13
14
16
17
20
20
21

Page i

2.3.3 Interface Repository
2.3.4 Object Services
2.3.5 Summary

2.4 Application Requirements

2.4.1 Properties of a Group Communication Service

2.4.2 Collaborative Services
2.4.3 Highly Available Services
2.4.4 Summary
2.5 Group Communications
2.5.1 The Multicast Mechanism
2.5.2 Message Ordering
2.5.3 Group Membership
2.5.4 Models of Faulty Behaviour
2.5.5 Group Membership and Virtual Synchrony
2.6 Introducing Group Communications to CORBA
2.6.1 Integration Approach
2.6.2 Interception Approach
2.6.3 Service Approach
2.6.4 Evaluation
2.7 Related Work
2.7.1 Orbix+Isis
2.7.2 Electra
2.7.3 Eternal
2.7.4 Object Group Service
2.8 Summary and Contribution Made by Thesis

Chapter 3 - The NewTOP Protocol Suite
3.1 Basic Concepts
3.2 Ordering Protocols

3.2.1 Symmetric Total Order in a Single Group
3.2.2 Symmetric Total Order in Multiple Groups

Contents

23
23
23
24
24
25
26
28
28
28
29
31
32
34
36
37
37
38
39
40
41
42
43
44
45

49
49
53

53
55

Page ii

3.2.3 Asymmetric Total Order Version in a Single Group
3.2.4 Asymmetric Total Order Version in Multiple Groups
3.2.5 Generic total order version
3.2.6 Causal Ordering Protocol
3.2.7 Arbitrary Ordering Protocol

3.3 Introducing Dynamic Groups
3.3.1 Message Stability
3.3.2 Managing Group Membership

3.4 Group Formation

3.5 Protocol Optimizations and Extensions for Overlapping Groups
3.5.1 Shared Sequencer
3.5.2 Event Driven and Lively Groups

3.6 Summary

Chapter 4 - The NewTOP Service

4.1 Overview
4.1.1 Enabling Service/Client Interaction
4.2 Services
4.2.1 Management service
4.2.2 Invocation/multicast service
4.2.3 Group membership service
4.3 Implementation Issues
4.3.1 The Creation of an NSO
4.3.2 Handling Application Related Message Contents by an NSO
4.3.3 Group Transparency
4.3.4 Threading Model

4.4 Summary

Chapter 5 - Protocols for Clients and Servers

5.1 Overview of Client/Server Group Interactions

5.1.1 The Overlapping of Groups

Contents

56
57
57
58
58
59
59
60
63
65
65
66
66

68
68
68
69
70
71
72
73
73
74
75
76
77

78

78
79

Page iii

5.1.2 Client Requests and Server Replies
5.2 Enabling Open and Closed Groups
5.2.1 Valid Group Structures
5.2.2 Message Types and Structures
5.2.3 Failures and Exceptions
5.3 Enabling Closed Groups
5.4 Enabling Open Groups
5.4.1 Redirecting Messages that Hold Client Requests
5.4.2 Handling Requests Issued by an Emulated Client
5.4.3 Handling Replies Associated to Emulated Client Requests
5.4.4 Returning Server Replies to a Client
5.4.5 Client and Server Side Algorithms
5.5 Optimizations to Open Group Structures
5.5.1 Restricted Open Group Structure
5.5.2 Asynchronous Message Forwarding
5.6 When Clients are Groups
5.6.1 Client Group Requests
5.6.2 Client Group Replies
5.7 Summary

Chapter 6 - Performance of the NewTOP Service
6.1 Experiments

6.1.1 Request/Reply Scenario

6.1.2 Peer Participation

6.1.3 Environment
6.2 Results

6.2.1 CORBA RPC

6.2.2 Request Reply, Non-Replicated Server

6.2.3 The Restricted Open Group Approach (Compared to Non-Replicated)

6.2.4 The Closed Group Approach
6.2.5 The Standard Open group Approach

Contents

80
80
80
81
83
83
85
86
88
88
88
89
90
90
91
92
93
96
98

101

101
102
103
104
105
105
106
109
110
112

Page iv

Contents

6.2.6 The Restricted Open Group Approach 114
6.2.7 Peer Participation 115
6.3 Summary 116
Chapter 7 - Conclusion 117
7.1 Thesis Summary 117
7.1.1 A CORBA Service 117
7.1.2 Group Communication Protocols 118
7.1.3 Interactions Between Clients and Server Groups 118
7.1.4 Performance of the NewTOP Service 119
7.2 Main Contributions 119
7.3 Future Work 120
7.3.1 Merging Groups that are a Result of a Partition 120
7.3.2 Economical Asynchronous Communications 120
7.3.3 Replication Support for Transactional Objects 121
References 122

Page v

2.1 - Client server implementation using stubs and proxies

2.2 - A Java interface suitable for specifying a remote service

2.3 - ADCOM IDL interface suitable for specifying a remote service
2.4 - A CORBA IDL interface suitable for specifying a remote service
2.5 - ORB and object services

2.6 - The structure of CORBA interfaces

2.7 - Fault Lattice

2.8 - Virtual synchrony

2.9 - The partitioning of groups

2.10 - The integration approach to CORBA group communications
2.11 - The interception approach to CORBA group communications
2.12 - The service approach to CORBA group communications

2.13 - Architecture of the Eternal system

3.1 - Total order message delivery in overlapping groups
3.2 - Total ordering via symmetric protocol

3.3 - Failure detection

4.1 - Clients of the NewTOP service and associated NSOs
4.2 - NewTOP services

4.3 - Summary of NSO operations

4.4 - Message interactions in a group multicast

4.5 - Allocating an NSO

5.1 - Layering protocols

5.2 - Achieving closed and open groups

5.3 - A mechanism for handling client requests for open groups
5.4 - Client request redirection at a request manager

5.5 - Valid and non-valid restricted open group structures

List of Figures

List of Figures

12
14
15
17
20
22
34
35
36
37
38
39
44

52
56
63

69
69
70
72
74

79
79
86
87
91

Page vi

List of Figures

5.6 - When clients are groups

5.7 - Reducing client group requests from multicasts to unicasts
5.8 - Ensuring all requests are forwarded

5.9 - Returning replies back to a client

5.10 - Problems with slow members of the client request group
5.11 - Different approaches to open group approaches

5.12 - Ordering of related client requests

6.1 - Request/Reply and peer participation scenarios

6.2 - The closed and open group approach to client/server interaction

6.3 - Peer participation

6.4 - Performance of a non-replicated service

6.5 - Message passing between NSOs and application objects

6.6 - Comparing the performance of non-replicated server and replicated server

6.7 - Comparing asymmetric and symmetric protocols in the closed group approach for
request/reply experiments

6.8 - Comparing asymmetric and symmetric protocols in the standard open group approach for
request/reply experiments

6.9 - Comparing asymmetric and symmetric protocols in the restricted open group approach for
request/reply experiments

6.10 - Comparing asymmetric and symmetric protocols in peer groups

92
94
96
96
97
99
99

101
102
104
106
107
109

110

112

114
115

Page vii

List of Tables

List of Tables

6.1 - Performance of CORBA RPC 106

Page viii

Introduction - Chapter I

Chapter 1

Introduction

Networked computer systems offer several advantages:

e High availability of services - It is possible to structure a network of computers in such a way that
there exists no single point of failure. This enables a network of computers to endure a degree of
component failure (computer and/or part of the network) and still carry out computational tasks
(be it in a full or restricted manner). In a centralized system, failure of the computer will result in
complete failure, with no further completion of computational tasks.

* Collaborative tasks - Organizations are by their nature distributed, with individuals working in
different locations but nevertheless requiring the ability to exchange information. Geographically
associating computers to users ensures that only computational tasks that require inter-computer
communication may endure network delays, whereas other tasks may be carried out on a user’s
computer without the need to endure communication delay overheads. In a centralized system

(consisting of a central computer and distributed "dumb” terminals) all computational tasks must

endure network delay.

Applications that are implemented in a distributed manner over a computer network are commonly
termed distributed applications. The development of distributed applications is made difficult if a
variety of operating systems and communication protocols are involved. This is because computer
networks tend to be heterogeneous in nature (many different types of platform may exist) with
propriety service application programming interfaces (API) present on a per-platform basis.

Middleware systems present an application developer with services that ease the development
of distributed applications. These services shield the application developer from platform specific
type services; a programmer may develop applications wherever suitable Middleware services exist,
irrelevant of underlying propriety services. To ensure different vendors provide Middleware services
that interoperate, standards are required; services are defined via a standard interface language and
communications between them is accomplished via a standard protocol.

Currently there is no support for a group communications service in Middleware standards. A
group communication (commonly termed multicast) describes the sending of a message to multiple
recipients simultaneously. A group communication service would be highly desirable: applications

exist that have requirements more suitably satisfied by such a service than a one-to-one (unicast) type

Page 1

Introduction - Chapter 1

communication service. Providing a group communication service that may satisfy a wide variety of

application requirements within a Middleware environment is the subject of the Thesis.

1.1 Distributed Systems
A distributed system may be characterized by the nature of its interconnection network. [Bal90] uses
the terms tightly coupled and loosely coupled to differentiate between types of distributed systems.

These two types may be described as follows:

e Tightly coupled - Processes are physically close to one another and communication is fast and
reliable. Examples of such systems are hypercubes [Ranka88] and Transputer networks [May84].
Communication times are measured in micreseconds.

e Loosely coupled - Processors are physically dispersed and communications can be relatively slow
and unreliable. An example of the communication and processor provision for these systems is a
workstation local area network (LAN). Communication times may be measured in milliseconds.
However, in a wide area network (WAN) this can rise to over ten/one hundred milliseconds and

in long haul networks (e.g., Internet) this time could be more reasonably measured in seconds.

From the above descriptions, loosely coupled is the term that best describes the systems that are the

concern of the Thesis.

1.2 A Group Communication Service

A group is defined as a collection of distributed entities (objects, processes) in which a member can
communicate with other members by sending messages to the full membership of the group
(multicasting). With a group is usually associated a name to which applications may refer, making
transparent the location of the distributed entities forming the group. This section continues with
descriptions of how entity failure, message ordering guarantees and overlapping groups make the

Provision of group communications a non-trivial exercise.

1.2.1 Failures and Group Membership

A desirable property is that a given multicast be failure atomic: if a process crashes while
multicasting a message, either all or none of the functioning members deliver the message. It is worth
noting at this point that group communication protocols make a distinction between the receiving of a
message and the delivery of such a message to the application layer (see 2.5.2). An additional
property of interest is guaranteeing total order: all the functioning members are delivered messages in

identical order (each member delivers the same set of messages in the same order). As an example,

Page 2

Introduction - Chapter 1

these properties are ideal for replicated data management for high availability: each member manages
a copy of data, and given atomic delivery and total order, it can be ensured that copies of data do not
diverge. However, as discussed below, achieving these properties in the presence of process and
network failures is not simple.

Assume that group members could be geographically widely separated, say communicating
over the Internet. Therefore the communication environment is assumed such that message
transmission times cannot be accurately estimated, and the underlying network may well get
partitioned, preventing functioning members from communicating with each other.

Suppose that a multicast is interrupted due to the crash of the member making the multicast;
this can result in some members not receiving the message. Member crashes should ideally be
handled by a fault tolerant protocol in the following manner: when a member does crash, all
functioning members must promptly observe that crash event and agree on the order of that event
relative to other events in the system. In the type of environment considered here this is impossible to
achieve: when members are prone to failures, it is impossible to guarantee that all functioning
members will reach agreement in finite time [Fischer85]. This impossibility stems from the inability
of a process to distinguish slow members from crashed or disconnected ones. One way to circumvent
this impossibility result is to permit processes to suspect process crashes (sometimes incorrectly) and
to reach agreement only among those processes that do not suspect each other [Chandra91,
Schiper93]. This leads to a membership service which ensures that the functioning members that do
not suspect each other install an identical sequence of membership views, with each view installation

being identically synchronized with respect to message delivery events.

1.2.2 Message Ordering

There are instances when multicast messages need to be delivered in such a way that some specific
order is not violated. As mentioned in the last section (see 1.2.1), total ordering together with failure
atomicity are ideally suited to the management of replicated data. Causal ordering [Lamport78] is
another type of message ordering that may be required within a group. Causal ordering guarantees
that messages are delivered with respect to any causal relationship that may exist between messages;
If message m could have caused message m’ then every member of a group should delivery m before
m’,

As an example of the need for causal ordering consider the following. Three users (U1, U2,
and U3) participate in a text based conference via a distributed conferencing application. Messages
sent by a user are multicast to the full membership of the group. Ul multicasts a message mi1. U2
receives ml and multicasts m2. U3 then receives m2 followed by mi. U3 may not understand the
Conversation occurring between U/ and U2 as it appears (to U3) that U2 sent m2 before Ul sent m].

To ensure discussions are understandable by all users messages should be causally ordered.

Page 3

Introduction - Chapter 1

There are two distinct types of protocol for achieving total ordering:

® Asymmetric - A single member of the group is responsible for ordering.

* Symmetric - All members of the group share the responsibility for ordering.

In an asymmetric scenario the member responsible for ordering is commonly termed the sequencer.
Each member of a group may unicast the message they wished distributed throughout the
] membership of the group to the sequencer. The sequencer is responsible for multicasting such
messages to all members of the group. In a symmetric scenario a member simply multicasts their
messages to the whole membership of the group.

The choice of asymmetric or symmetric ordering techniques can affect the performance of a
distributed application that makes use of group communications; symmetric ordering favors
Groupware applications whereas asymmetric ordering favors highly available applications

[Morgan99] (for descriptions of these different types of applications see 1.3).

1.2.3 Overlapping Groups
In some applications, entities are required to simultaneously participate in multiple groups
[Birman91c, Garcia-Molina91]. For example, a computer based conferencing application may allow
users to participate in a number of conferences simultaneously. Guaranteeing message ordering across
groups is not trivial as the following example shows:

An entity X that is a member of multiple groups generates a message m2 in a group B as a
consequence of a message ml delivered to X in group A. Other entities that also participate
simultaneously in groups A and B would then be required to deliver mI before m2, even though they

originated in different groups. There must be a way of informing members of both A and B of the

causal relationship between m/ and m2.

1.2.4 Clients and Server Groups
The provision of a service may be accomplished via a group of objects/entities. Such a group is
‘termed a server group. Clients may gain service from a server group (issue requests and receive

replies). A server group may provide a service to clients via an open group or closed group approach:

1. Closed group - A client is considered a member of the server group and multicasts requests to
each member of the server group. When message latency is high between a client and a server
group (e.g., geographically separated by large distances) client requests will take far longer to
service than if the server group was a singleton. Furthermore, transport level multicast may not be

available due to the heterogeneous nature of the networks that connect a client to a server group

Page 4

Introduction - Chapter 1

(this is the case when communications between a client and a server group is enabled via the
Internet). As a member of the server group, a client may be required to participate in group
communication protocols as a member of a server group (e.g., group management, message
ordering), possibly requiring further multicasting on behalf of the client and possibly the delaying
of messages until ordering guarantees are satisfied. For this reason, closed groups are more
appropriate when clients and a server group exist on the same LAN or neighboring LANS.

2. Open group - A client is not considered a member of the server group and issues requests to just a
single member of the server group. Unlike the closed group, clients do not participate in group
communication protocols as a member of the server group. This makes the open group approach
more suitable than the closed group approach for use in wide area networks (WANSs), such as the

Internet, when message latency between a client and a server group may be high.

1.2.5 Summary of Group Communications
To summarize, the aim of a group communication service is to aid communications between entities

that collaborate to perform a task. To achieve this, the following mechanisms are required:

®* Multicast - a single entity to send a message to multiple entities simultaneously.

® Ordering - a protocol to guarantee total message ordering within a group. Other ordering
guarantees may be required (see 2.5.2) but total ordering is a necessity to enable members of a
group to attain mutual agreement of group membership.

® Group membership - Enable members of a group to agree on group membership.

® Ordering protocol - message ordering may be achieved via asymmetric or symmetric ordering
protocols.

® Closed and open groups - a client may interact with a server group via a closed or open group

approach.

1.3 Use of Group Communications

Applications that require fault-tolerant services (highly available applications) and collaborative
services (groupware applications) are the prominent application types driving the development of
group communication services. This is because each of these applications are commonly structured as
Co-operating processes/objects over a computer network. The following sections describe the

relevance a group communication service has for these two types of applications.

Page 5

Introduction - Chapter 1

1.3.1 Collaborative Services

Groupware applications are primarily concerned with the sharing and presentation of information for
groups of users. This information may be presented in a visual way, textural way, via audio or a
combination of these. For example, users participating in a teleconference expect to see images of
other users and hear what they are saying. Furthermore, such applications may present users with a

mechanism for distributing textual messages throughout the group. The benefits of a group

communication service to a groupware application are:

® Multicast - Information (visual, audio, textual) needs to be sent from a single user to multiple
users simultaneously.

® Message ordering - The understanding of information by users should not be inhibited by the
order with which such information is presented to users.

* Group membership - Users may maintain 'up to date’ views of the participating user list.

® Ordering protocol - Experiments suggest that symmetric style protocols tend to perform better
than asymmetric protocols in collaborative services [Morgan99]. Therefore, symmetric style
protocols should be available.

® Closed and open groups - The closed group approach ensures that users are aware of all other

users in a group. An open group approach may hinder this awareness as a client only interacts

directly with a single group member.

1.3.2 Highly Available Services

A common method used to increase the availability of a service is to replicate the service over nodes
in a network. A service that is replicated is commonly termed a replica group. The aim of a replica
group is to allow the failure of nodes, parts of the network, or a number of objects that provide the
service to be tolerated before the service becomes unavailable. When there is more than one replica in
a group there is a possibility that different clients can make use of different replicas simultaneously,
Perhaps attempting to modify their states in a conflicting manner. If this occurs then different replicas
may have different states, resulting in a number of replicas possibly providing contradicting
information to a client request. A replica consistency protocol is necessary to ensure than concurrent
invocations on different replicas leave all replicas in a mutually consistent state. There are two

Categories of replica consistency protocols:

® Active - Operations are invoked on all replicas of a given group. All replicas may return replies to

the client.

Page 6

Introduction - Chapter 1

® Passive - Operations are invoked on only one member of the replica group (the primary). This
replica returns a reply to the client. To ensure that the states of the other (passive) replicas are
updated, the primary checkpoints its state to the other members of the group. Failure of the

primary requires the passive members to participate in an election process that results in one of

the passive members assuming the role of the primary.

The benefits of a group communication service to an application that makes use of replicas in an

. attempt to increase the availability of a service are:

® Multicast - Enable client invocations to be sent to all replicas (active). Allow a primary to send
values relating to its state to passive replicas (passive).

® Message ordering - Client requests are delivered in a total order to prevent state divergence
(active). Aid the provision of failure atomicity (total ordering) when enacting a protocol to elect a
new primary.

* Group membership - Realise the failure of a replica (active and passive). In the case of primary
replication, if a primary fails then the protocol used to elect a new primary may be initiated by
any of the passive replicas.

® Ordering Protocol - Experiments suggest that asymmetric protocols tend to perform better than
symmetric protocols when used to support a replication protocol [Morgan99]. Therefore
asymmetric protocols should be available.

® Closed and open groups - Open groups enable a client to perceive a replica group as a singleton
(the replication becomes transparent to the client). This is not the case with a closed group, as a

client is aware of all replicas.

1.4 Middleware

A remote procedure call (RPC) [Birrell84] is commonly used primitive for communication between
entities of a distributed application. In essence, a client may access the services of a remote server in a
similar way as a client may access the services of a function within its own addressable space, via a
procedure call. However, such a call actually results in inter-process communication (possibly over a
network). The mechanisms that enable such communications are hidden from the application
developer.

Common Middleware services have extended this notion of inter-process communication to
that of inter-object communications, allowing programmers to apply object-oriented programming

techniques to their distributed applications; objects are regarded as the unit of distribution. Examples

Page 7

Introduction - Chapter 1

of such Middleware are Sun Microsystems’ Java-Remote Method Invocation (Java-RMI), Microsoft’s
Distributed Component Object Model (DCOM) and the Object Management Group’s Common
Object Request Broker Architecture (CORBA).

1.5 Contributions of the Thesis

This Thesis addresses the problems related to the provision of group communications for use by
middleware services. In particular, we attempt to identify and support group communication
mechanisms that may benefit both groupware and fault-tolerant applications.

The NewTOP protocol suite [Ezhilchelvan95] is described. These protocols provide a number
of ordering protocols (arbitrary, causal and total) across overlapping groups. Furthermore, protocols
for the management of group membership are provided allowing multicasts to be failure atomic,
ensuring members maintain a mutually consistent view of group membership. The protocols provided
by NewTOP are not restricted to any type of computer network allowing NewTOP to operate on
networks as diverse as LANs and the Internet. Symmetric and asymmetric ordering protocols may be
used on a per group basis. Multi-group members may use symmetric ordering in one group while
using asymmetric ordering in another.

Protocols are described that are suitable for enabling clients to access a service provided by a
group (server group) in an open or closed manner. Clients gain service by invoking operations on the
server group. Invocations may be synchronous or asynchronous. These protocols are then extended to
allow situations when a client issuing requests at a server group may be a group itself.

The mechanisms and protocols described in the Thesis are implemented as the NewTOP
service. The NewTOP service is provided as a CORBA service. Implementation issues of the
NewTOP service are described. Experiments involving the NewTOP service are described and the
results of such experiments presented. The analysis of the results gained from these experiments aim
to identify suitable protocol configurations for highly available and groupware applications.

The novelty/contribution of the Thesis may be summarized as follows:

* Implementing a Middleware service that supports object groups (chapter 4) - The CORBA
environment has been extended to support group communications in a standard way. This ensures
that applications built using the NewTOP service may benefit from the interoperability benefits
associated with CORBA.

Allowing clients of an object group to use either an open or closed group approach (chapter 5) -
The ability of the NewTOP service to support overlapping groups and ensure total ordering of
messages over such groups has been exploited to provide open and closed client/server group

invocation protocols.

Page 8

Introduction - Chapter 1

® Analyzing the performance of the object group service that is described in chapter 4 (chapter 6) -
These experiments were devised to determine the performance of protocol configurations that
may be appropriate in the support of highly available and groupware applications over LAN and

WAN environments.

1.6 Thesis Outline

The Thesis is structured as 7 chapters. Background material is presented in chapter 2. Chapter 3
describes the group communication protocols of the NewTOP protocol suite. Chapter 4 describes the
implementation of these protocols via the NewTOP service. Chapter 5 describes the invocation
protocols that enable clients to issue requests for server groups. Chapter 6 presents results from a
number of experiments carried out using the NewTOP service. Finally, chapter 7 gives the

conclusions and possibilities for future work arising from the work presented in the Thesis.

Page 9

Background - Chapter 2

Chapter 2

Background

In this chapter the relevant issues related to the provision of an object group communication service
for use in Middleware environments are described. A description of the most popular of these
Middleware technologies is presented. The mechanisms that may be required to provide a group
communication service are described. Finally, recent research related to group communications

support for Middleware is presented and the novelty of the work described in the Thesis is identified.

2.1 Middleware

Middleware systems present an application developer with services that ease the development of
distributed applications. These services shield the application developer from platform specific type
services. The term platform, as used here, indicates low level services and processing elements
defined by processor architecture, an operating system’s application programming interface (API) and
communication primitives (such as sockets for inter-process communication). This section defines
Middleware technologies via the properties they seek to exhibit and describes the mechanisms that

are common in the enabling of such technologies.

2.1.1 Properties of Middleware
Middleware is commonly understood to mean the layer that sits between applications and operating
systems, its function is to ease the development of distributed applications. Existing literature

[Bernstein96] characterize Middleware by four properties:

1. Platform independence - Implementations should be available over a number of different
operating systems and hardware configurations. The types of available platforms should not
hinder an application developers use of a Middleware.

2. Distribution - Capable of providing support for services that are not restricted, geographically, to
a single location.

3. Provision of standard interfaces and protocols - Irrelevant of implementation environment,
protocols used by Middleware and interfaces to the Middleware remain the same. As networked
systems tend to be heterogeneous in nature, propriety service APIs may be present on a per-

platform basis. A developer that becomes proficient on one platform may not be able to easily

Page 10

Background - Chapter 2

transfer his/her skills to another type of platform. To avoid this, a Middleware technology should
seek to provide an API that does not deviate, irrespective of which platforms it resides.

4. Generic - Meets a wide variety of application requirements across many industries.

The client/server model is commonly used in Middleware in an attempt to satisfy property 2 and
property 4. This is because clients and servers are suitable units for distribution (property 2) and have
been used to build a wide variety of application types (property 4). In the client/server model a server
satisfies the service requirements of one or more clients. A service is defined by an interface. This
interface indicates to a client the manner of interaction a client must assume to gain service from a
server. Interaction is realized by a client issuing requests via a suitable message passing protocol and
the server replying to client request via the same protocol. Achieving property 1 and property 2 has
Proven more difficult. This is due to the variety of low level services and the large number of
different organizations involved in the development of such services. Organizations have to cooperate
to formulate and agree on industrial standards and adhere to them to ensure that programming APIs
and protocols remain consistent over various platforms, irrelevant of the vendor supporting the
Middleware implementation. This section continues with a description of a method commonly used to

implement the client/server model in Middleware.

2.1.2 The Proxy/Stub Method

The proxy/stub method has been used for more than fifteen years to enable distributed application
development. Most notably, this method is used to enable a remote procedure call (RPC) [Birrell84].
In essence, a proxy resides in the same address space as a client and presents the client with an
interface to a service. This interface is presented in a manner that would suggest to the client that this
Service is no different than any other service located within its own address space. However, requests
directed at the proxy interface are then forwarded, by the proxy, across process boundaries, and more
Usually a network, to the actual service implementation. At the service side a stub, located in the same
address space as the server, is responsible for receiving these requests and then forwarding them to
the service implementation, receiving any replies, and then returning these replies to the proxy.

Replies received by the proxy are then returned to the client.

Page 11

Background - Chapter 2

Address space (A) Address space (B)
Client Server
Proxy < P Stub

Figure 2.1 - Client server implementation using stubs and proxies.

Simply stated, mechanisms involved in the implementation of the proxy/stub method hide from the
application developer many of the technical details involved in passing information across process
boundaries and networks. For example, ensuring data types are structured in a suitable manner for

Passage over a network (marshaling) and managing low level transport protocols.

2.1.3 Distributed Objects

There are three dominant types of Middleware that provide an object-oriented approach to distributed

application development:

* Sun Microsystems’ Java with Remote Method Invocation (Java-RMI) [Sun97]

* Microsoft’s Distributed Component Object Model (DCOM) [Brown96]

¢ The Object Management Group’s Common Object Request Broker Architecture (CORBA)
[OMG95a]

To ease the production of proxies and stubs for use within distributed applications, Java RMI, DCOM
and CORBA provide:

A language for defining an interface of a service.
Some mechanism for automating stub/proxy generation from an interface definition.
A method, appropriate to the target languages of the client and server, for integrating proxies and

stubs into client and server code.

More detailed descriptions of Java-RMI, DCOM and CORBA are presented in the following section.

Page 12

Background - Chapter 2

2.2 Object-Oriented Middleware Technologies
The purpose of this section is to describe Java-RMI, DCOM and CORBA. Due to the substantial

subject areas each of these may cover, a simplified view of the processes required to produce
proxy/stub code and the enabling of inter-object communication via this code is described. At the end
of this section these technologies are compared to the original four properties that aid in defining

Middleware (see 2.1.1).

" 2.2.1 Java-RMI

The Java programming language enables application developers to write object-oriented programs
that may be executed on a variety of platforms without alteration. This is achieved via an environment
that provides a consistent APT within which a Java program may execute. This environment is termed
the Java virtual machine (JVM).

Once written and compiled, Java code will work wherever a JVM exists. However, it was not
until 1997 that support was added to the Java language that enabled objects in different address
Spaces to communicate using the proxy/stub mechanism. This support took the form of the Java
Remote Method Invocation (Java-RMI).

The use of Java-RMI is specified within the Java language definition and a simplified view of

its use is thus:

1. Specify a service using a Java interface - An interface in Java is simply a construct that defines
methods, like a class, but does not provide any implementations for these methods.

2. Implement interface - It is necessary to implement a service interface with a class.

Create server program - A program that acts as the "server" is required to create an instance of
the service defined by an interface and makes the interface available for remote clients.

4. Create proxy and stub code - The Java development environment supplies a tool, rmic, that
creates the proxy and stub codes automatically from the original interface definition of the
service.

S. Publicize server to clients - There is a service, the registry service (supplied with the Java
development environment), that is required to be run to enable clients to find servers and retrieve
the appropriate stub code to use a remote service. Servers register all the information required by
clients to enable clients to contact them via the registry service.

6. Enable client server interaction - A client retrieves a reference (in reality the proxy code) from a

server via the registry service.

Page 13

Background - Chapter 2

Fig. 2.2 shows how an interface may be used to define a simple service that takes two numbers and
returns their sum. The interface is easily understood and trivial to develop. By inheriting from the
interface "java.rmi.Remote" the appropriate functionality is included to enable networked
communications (which are hidden from the application developer). A further addition needed for a
remote service is that all methods must be declared to throw a "java.rmi.RemoteException". This is
because many various exceptions may be thrown due to communication failures, such as timeouts and

crashed servers, which do not occur in single address space application development.

Public interface AddUp extends java.rmi.Remote {
int addItems(int x, int y) throws java.rmi.RemoteException;

)

Figure 2.2 - A Java interface suitable for specifying a remote service.

Java-RMI is designed to work when clients and servers are implemented in Java. There is no support

for clients and servers if they are implemented in other programming languages.

222 DCOM

Microsoft’s DCOM, previously known as Network OLE (Object Linking and Embedding), is an
extension of the COM (Component Object Model) designed to network applications. The underlying
objective of COM is to permit the independent development of software components that can
intercommunicate, regardless of language or function. The unit of distribution in the DCOM
environment is commonly termed a component.

A component exports one or more interfaces that defines its functionality. Interfaces may be
Constructed in an object-oriented fashion, allowing application developers to make use of
Polymorphism and inheritance. A component consists of an array of function pointers, each pointer
indicates the physical address of a method supported by the interface. By placing components into a
dynamic link library (DLL.) applications may link to (bring into their own address space) components
at run time that are implemented in arbitrary languages. This increases code reuse and allows
Components to be distributed amongst applications. Examples of popular components are buttons that
Mmay be found on toolbars that form part of a user interface. The functionality and appearance
associated with a button may be implemented in C++, BASIC or Java. Once the implementation
details of the button have been encapsulated by a component the button may be used by programmers
in many different types of applications written in any language (e.g., Visual Basic, Visual C++).

Extending COM to DCOM required the introduction of an interface definition language
(IDL) that aided the production of proxies and stubs for use by clients and servers respectively. The
IDL used by DCOM is based on the IDL standard specified by the Open Software Foundation (OSF)

Page 14

Background - Chapter 2

for use with its Distributed Computing Environment (DCE) [Rosenberry92]. A simplified view of

producing a service to be used remotely by clients in the DCOM environment is thus:

1. Build the component that implements the service and register it with the windows environment.

2. Specify the service using IDL - Include in this definition the identity of the component that
implements the service.

3. Pass the IDL that specifies the service through the Microsoft IDL (MIDL) compiler - A number of
different files (in the C language) are produced that provide the proxy/stub code.

4. Compile and link the C code produced by the MIDL compiler - The aim is to produce a
proxy/stub DLL.

5. Register the proxy/stub DLL with the windows environment - Microsoft supply tools to enable
this.

6. Indicate to the windows environment where the remote service for a proxy/stub DLL resides - Use
the DCOM configuration tool to indicate to the windows environment on which machine in a
network the service (together with an associated proxy/stub DLL) resides.

7. Enable client/server interaction - Clients may use the proxy DLL in the same way as any other
DLL. However, care must be taken to ensure that the proxy DLL is on the same machine as the
clients. The operating system is responsible for incorporating DLLs into application code once

the DLL has been registered.

PrOducing components is not a trivial matter. Component and IDL interface design do not present as
easily understandable object-oriented code as in C++ or Java. This is because DCOM is tightly
Coupled to the Microsoft operating system and therefore relies heavily on mechanisms that may not
appear intuitive to a programmer that is not well versed in the Microsoft environment. To exemplify
this an interface that provides the same functionality as the Java-RMI "AddUp" example is shown in
fig. 2.3.

object,
uuid(32bb8324-b41b-11cf-a6bb-0080c7b2d682),
helpstring("AddUp Interface"),
pointer_default(unique)

1

interface AddUp : [Unknown
{

)

HRESULT addltems([in] int x, [in] int y, [out] ans);

Figure 2.3 - A DCOM IDL interface suitable for specifying a remote service.

Page 15

Background - Chapter 2

The interface in fig. 2.3 requires information additional to that described in the Java example (fig.
2.2), such as specifying the component identifier for this interface and what type of pointer
manipulation is required for marshaling purposes (unique in this case - can be NULL, change in the
function but cannot be made into aliases within the function). In the function definition parameters
have to be specified as in or out. This aids the marshaling process when determining suitable memory
allocation for message structures. For example, if all parameters are classed as in then there is no need
to allocate message space or even marshal them for the reply message. The answer is returned as an
. out parameter and not as the value of the function. This is because the return value of a function
contains information regarding the success of the remote call. If there are any exceptions they are
returned via this value (HRESULT).

Programming tools (Microsoft’s Visual C++ 6 and Visual Java 6) have automated the
production of components and their distribution with easy to use mechanisms. A developer simply
creates a class in the normal way associated with the programming language being used, and then
indicates to the programming tool that this class is to be turned into a component. IDL generation,
MIDL parsing and component registration within the windows environment are all taken care of by

the programming tool.

2.2.3 CORBA

The Object Management Group’s (OMG) Common Object Request Broker Architecture (CORBA) is
a widely accepted standard for Middleware. Over 700 companies endorse the standard with
implementations of the standard existing on most operation systems.

Objects may interact irrespective of the languages used for their implementation; service
Providers may be implemented in C++ whereas clients of such a service may be implemented in
COBOL. This interoperability is achieved by ensuring all service providers specify the services they
Provide via a standard language (IDL). Unlike DCOM, the IDL language used by CORBA resembles
a4 more traditional object-oriented language (C++). CORBA and DCOM approach the issue of
Separating implementation from interface in the same manner; via an IDL.

To produce the appropriate proxy/stub code required to enable clients and servers to interact,
an IDL interface is passed through a parser (supplied by a vendor). The language of the code
Produced depends on the parser. Most parsers accommodate C++ or Java. There is support for other
languages, such as COBOL and C. The proxy/stub code produced implements a layer of abstraction
known as the Object Request Broker (ORB) within the CORBA environment (see 2.3.1). To ensure
Cross compatibility over different platforms between IDL and target languages the CORBA standard
Specifies mappings from IDL data types to data types found in various languages. A simplified view

of the production of a (possibly) remote service is thus:

Page 16

Background - Chapter 2

1. Specify a service using CORBA IDL

2. Create Proxy and stub code - Pass the interface through a parser supplied by a vendor.

Implement the service - The object that implements the service is written in the same language as
the proxy/stub code. Most parsers present developers with "ready to use” skeleton code suitable
for implementing the service.

4. Write a server program to support the service - The server program creates an instance of the
object that implements the service and activates the required mechanisms within the CORBA
environment to ensure communications between the service and clients may occur.

5. Publicize server to clients - A mechanism is required to enable clients to retrieve a reference to
the service. This may be done via the Naming Service (a service where clients can request
services by a well known name and retrieve appropriate service references). Alternatively, service
references may be cast into the form of a string and passed to a client by other methods (email,
command line parameters, etc.).

6. Create client - A client is created with the appropriate proxy code included in the client source
code.

7. Enable client/server interaction - Clients retrieve the object reference of a desired service (either
via the naming service or by other means). Once a reference is retrieved communications between

client and server may commence.

interface AddUp
{

exception addFailure {string reason;};

short addItems(in short x, in short y) raises addFailure;

Figure 2.4 - A CORBA IDL interface suitable for specifying a remote service.

Fig. 2.4 shows the AddUp service specified by a CORBA IDL interface. Notice, as with DCOM,
Parameters must be defined as in or out to aid parameter marshaling. However, unlike DCOM, it is
Possible for functions to have value. Exceptions are treated in a similar way as in Java RMI.
Developers may define their own exceptions and then apply them to functions via the "raises"
Mmechanism. Any call to a remote object, irrespective of the existence of user defined exceptions, may

Taise an exception and be handled by the client that enacted the function call.
2.2.4 Evaluation of Surveyed Middleware

Java-RMI, DCOM and CORBA will now be evaluated with respect to the four desirable properties of
Middleware (see 2.1.1).

Page 17

Background - Chapter 2

® Platform independence

Java-RMI - The presence of the JVM on most operating systems ensures that platform
dependency is all but removed from issues relating to Java application development.
However, it is assumed that Java is the only language that a developer may wish to use.
Although dependency is removed from low-level platform services (operating system,
network architecture, etc.), application dependency is now placed on the JVM.

DCOM - Support for DCOM, and therefore COM, development is well supported on
Microsoft operating systems. Microsoft operating systems (such as Windows95, Windows98,
and WindowsNT) specify their APIs with the aid of COM ensuring that application
developers familiar with Microsoft programming environments understand COM and
therefore produce their own COM objects. As Microsoft operating systems are more wide
spread than any other, there exists a wealth of applications for them. This has resulted in the
existence of many COM objects ready made for use by application developers (such as
interface components). Unfortunately, due to the tight coupling of DCOM and COM with the
Microsoft environment, presenting DCOM and COM on other platforms has proved difficult
and for this reason is not widespread on non-Microsoft environments.

CORBA - CORBA is the industry standard for specifying Middleware services. This has
allowed many vendors to implement services that are capable of working over a large number
of platforms. Application developers may develop CORBA services in a number of
programming languages on many different operating systems using tools supplied by many

different vendors with the knowledge that such applications may interoperate.

* Distribution -

As already mentioned, Java-RMI, DCOM and CORBA incorporate distribution into their

architectures via the proxy/stub method.

* Provision of standard interfaces and protocols -

Java-RMI - As Java is the only language used the interface to Java-RMI remains consistent.
The protocol used to enable Java-RMI is a propriety protocol built on top of TCP/IP. This is
adequate to enable JVM to JVM communication but does not allow communications with
non-JVM environments. To overcome this, the latest release of the JVM (1.2) allows a
developer to specify the use of a different protocol to enable communications with CORBA
objects.

DCOM - The IDL standard supplied by the OSF for defining services coupled with the
language independent way COM objects may be specified ensures that all services may be
defined in a consistent manner in the Microsoft environment. The protocol used for

communications is a RPC protocol, originally specified by the OSF for use within DCE. As

Page 18

Background - Chapter 2

the protocol and the IDL standards are taken from existing technologies (DCE) there is scope
for other vendors to produce tools that enable the communication of DCOM objects with
objects on non-Microsoft platforms that are also enabled via DCE interfaces and protocols.
However, services based on DCE were never widely implemented and so other cross
platform solutions are provided for use with DCOM. Most notably CORBA/DCOM bridges
are available which enable DCOM objects and CORBA objects to communicate.

CORBA - CORBA is a standard. This ensures that the IDL and the protocol that enables
inter-object communication, commonly termed the Internet Inter-ORB Protocol (IIOP),
remain consistent, irrelevant of implementation. However, due to the large number of vendors
that are involved, additional propriety protocols and interface extensions have appeared
[Tona95] [OOC98]. Services that rely on such extensions may be unavailable to clients that

have been developed on ORBs that do not have access to such extensions.

* Generic -

Java-RMI, DCOM and CORBA all enable communication via an RPC, with all details of
transport protocol services hidden. This is adequate for the majority of applications, however,
there exists applications that may be more suited to other types of transport services not
provided by existing Middleware. For example, teleconferencing requires a video image to be
sent to a large number of receiving clients on a regular basis. There are transport level
protocols [Savets96] that are more suited to managing the transfer of large quantities of data
between objects. This has been recognized by the OMG and there is scope in the next release
of CORBA to allow transport protocols (other than IIOP) to be used by an application

developer.

Java-RMI, DCOM and CORBA are very popular in the area of distributed application development.
The WWW has ensured the success of Java, Microsoft has ensured the success of DCOM and the

acceptance of CORBA by all major computing companies has ensured the success of CORBA.

Deciding which Middleware, from these three, to choose when developing a distributed application is

difficult, as many requirements (such as those relating to an application and that of the organization

developing the application) have to be considered. For the purposes of the research presented in the

Thesis I have chosen CORBA. The main reason for this choice is the acceptance CORBA has as an

industrial standard and the availability of CORBA over many different platforms. The following

section describes the CORBA standard in more detail.

Page 19

Background - Chapter 2

2.3 OMG & CORBA
In the OMG’s book "Object Management Architecture Guide" [Soley95], the OMG identified it’s

approach to distributed application development:

"To adopt interface and protocol specifications that define an object management architecture
supporting interoperable applications based on distributed interoperable objects. The specifications
are to be based on existing technology that can be demonstrated to satisfy OMG’s Technical

* Objectives"

The OMG developed a conceptual model, known as the core object model, and a reference
architecture, termed the Object Management Architecture (OMA). The OMA consists of four
components: Object Request Broker (ORB), Object Services (OS), Common Facilities (CF), and
Application Objects (AO). CF relate to object services that aim to satisfy quite specific application
requirements (e.g., e-commerce, database management systems) and AQ relate directly to
applications. As the Thesis is concerned with the development of services that aid the development of
a wide variety of application types, the ORB and OS components are of concern and will be

€xamined in more detail in following sections.

2.3.1 Overview of The ORB
The core of the OMA is the ORB. The ORB is a communication bus for objects. Fig. 2.5 shows how

the ORB and object services are commonly displayed.

ORB

O00O0O

Object Services

Figure 2.5 - ORB and object services.

The ORB architecture specifies an IDL for defining objects and a protocol, Internet Inter-ORB
Protocol (IIOP), for enabling inter-object communications. IIOP is a protocol that specifies how
detailed information representing a CORBA request is laid out on a network transport service. IIOP
ensures multi-vendor interoperability between ORB implementations. Any functional enhancements
to the ORB are achieved via object services. This ensures that applications will work on any ORB,

irrelevant of the vendor supplying the ORB.

Page 20

Background - Chapter 2

The IDL is simply a declarative language that supports no scope for programming
implementation details. This is left to a programming language of the developer’s choice. IDL is
network neutral and operating system neutral, thus preventing developers from introducing platform
dependent mechanisms into a service’s IDL definition.

An Interoperable Object reference (IOR) is used to uniquely identify objects in CORBA. An
IOR is a sequence of object-specific protocol profiles, plus a type identifier. The IOR is not intended
to be visible to application programmers. Programmers are presented with a suitable structure
. avaijlable in the programming language of their choice to represent an IOR. For example, in the case
of C++ this appears as a pointer to an object. As service interfaces defined in IDL may inherit other
interfaces (also defined in IDL), mechanisms are provided that are capable of casting pointers to
CORBA objects between class definitions in a similar manner as pointers to non-CORBA objects
may be cast between class definitions.

The IDL allows an object reference to be passed as a parameter in a function call. This is the
mechanism that enables the distribution of object references between objects. In addition to this
mechanism, a developer may derive a string representation of an IOR and derive an IOR from a string

representation. This is useful for passing object references by other methods (e.g., email).

2.3.2 CORBA Interface Architecture

The CORBA specification defines a number of interfaces to allow clients and servers to participate in

inter-object communication. Following are descriptions of these interfaces:

¢ IDL Proxy - The IDL Proxy (sometimes termed IDL stub) presents an interface derived from an
IDL definition of a service and is linked into the client program. IDL interfaces are commonly
termed static as they define how a service may be used at compile time and may not change after
compile time.

¢ IDL Stub - The IDL Stub (sometimes termed IDL skeleton) is simply the server side counterpart
of the IDL proxy.

* Dynamic Interfaces - Statically including proxy/stub code derived from an IDL into client and
server programs to enable inter-object communication satisfies the communication requirements
for many applications. However, there are instances when this is not adequate. The static
mechanism assumes clients are aware of servers and that servers are aware of the way they must
satisfy client requests at compile time. This may restrict the way an application may evolve;
allowing existing clients to use new services which are introduced during the lifetime of an
application becomes difficult. To overcome this problem dynamic interfaces are supported by the

CORBA standard.

Page 21

Background - Chapter 2

» Dynamic Invocation Interface (DII) - Enables the specifying and building of requests at run
time, rather than calling linked-in proxy code. Operations supported by the DII include:
create_request, invoke, send, get_response. Invocations made by the static and dynamic
methods are indistinguishable by the server object.

® Dynamic Skeleton Interface (DSI) - The server side analogue to the client side DII. The DSI
inspects the parameters of an incoming request to determine a target object and method. This
interface allows a service to assume the role of another service.

_ ® ORB Interface - Enables direct access of the ORB by clients and servers. Only a few operations
are supported, such as those for deriving IOR from strings and visa-versa.

* Basic Object Adapter Interface - The server program that supports the objects that implement
services (defined by IDLs) is aided by the Basic Object Adapter (BOA). The server program
registers objects ready for use with the BOA. Once this has occurred the BOA manages requests
on behalf of the server’s objects. Due to the fact that interaction occurs directly between an
application and an ORB (and the possibility of an application to be programmed in any one of
many languages), defining this interaction was left to vendors. This has resulted in the
presentation of these mechanisms in a number of different ways, making it difficult to port code
from one vendor’s ORB to another. To overcome this, the next release of the CORBA
specification identifies a Portable Object Adapter (POA) that seeks to standardize direct

application to ORB communications.

The diagram in fig. 2.6 indicates how the interfaces of an ORB are integrated and which interfaces

interact with clients and which interact with servers.

DIl IDL ORB DSI IDL| | BOA
Proxy| Stub

ORB

Figure 2.6 - The structure of CORBA interfaces.

Page 22

Background - Chapter 2

2.3.3 Interface Repository

The interface repository [OMG95b] allows a service to register its interface. This enables clients to
search for services at run-time. By using the interface repository, a client is able to locate an object
that may have been unknown at compile time, enquire about its interface, and then issue requests via
the DII to the newly created service. Furthermore, an existing service may identify an interface in the

interface repository and assume the role of this service with the aid of the DSI.

- 2.3.4 Object Services

Following are brief descriptions of object services which are in common use:

® Naming Service - Supports name-to-object association. A hierarchical naming structure (similar
to that used for UNIX file systems) has been adopted. This allows clients to retrieve the IOR of
an object using a reasonable name. For example, an object that governs the bank account of a
company may be registered as "/financial/bank/account/MicroSmart". The mechanism that
enables a client to gain the IOR of the naming service is left to the ORB vendor.

® Event Service - De-couples the communication between objects. Objects may assume the roles of
supplier or consumer. The service defines two approaches for initiating event communication: the
push model and the pull model. A supplier uses the push model to transfer event data to
consumers. Consumers use the pull model to request event data from a supplier. The event
channel is simply an intervening object that allows multiple suppliers to communicate with
multiple consumers simultaneously in an asynchronous manner.

® Lifecycle service - Represents a framework for creating, deleting, copying and moving objects.
The creation facility is most commonly available in CORBA applications. As there is no
existence of a basic creation facility in CORBA IDL (akin to a constructor in C++) factory
objects are used to create instances of particular types of objects. There is no standard interface
for a factory object, an application developer has to develop their own in a manner they see as
appropriate. Usually, for each type of object there is a factory object.

® Persistence Service - Provides common interfaces to the mechanisms used for retaining and
managing the persistent state of objects in a data store in an independent manner.

® Transaction service - Ensures that a computation of one or more operations on one or more

objects provides properties of atomicity, consistency, isolation and durability (ACID properties).
2.3.5 Summary

After ten years and three release versions the CORBA standard is approaching a state of maturity

With which organizations are showing increased confidence. This is shown by the drive in industry to

Page 23

Background - Chapter 2

migrate existing legacy systems to CORBA environments [Morin98]. The service approach ensures
that the interoperability of applications may be maintained irrelevant of any new functionality that
may enhance an ORBs service provision. However, CORBA, JAVA-RMI and DCOM standards only
support point-to-point (one-to-one) communications. Applications wishing to make use one-to-many
communications (object groups) are not yet accommodated. The OMG is starting to address this issue
[OMG98a]. This chapter continues by identifying the types of applications that may benefit from a

service that may enable an application developer to make use of object groups.

2.4 Application Requirements

This section identifies groupware applications and applications that are required to exhibit a high
degree of availability as two benefactors of object groups. Firstly, a service that provides object
groups via group communication mechanisms is defined via the properties such a service aims to
satisfy. This is a brief description designed to aid in the understanding of application requirements. A
more detailed description of the properties of a group communication service are presented later in
this chapter (2.5). By referring to these properties, the necessity for object groups to enable

groupware and highly available applications are described.

2.4.1 Properties of a Group Communication Service

The term “group communications” infers the collaboration of entities/objects to perform tasks via
messages directed at multiple recipients (group of entities/objects), rather than at a singleton. This
type of message passing, one-to-many, is commonly termed a multicast.

In addition to providing a multicast mechanism systems that depend on group
communications may also require quite sophisticated protocols to manage message delivery. For
example, messages to be delivered at each member of a group in the same order. Furthermore, groups
may be dynamic; members may leave and join a group during the lifetime of a group. To enable a
Mmulticast to be directed at actual members of a group (not including departed members), a mechanism
is required which ensures that all members of a group have a mutually consistent view of group
membership. A mechanism of this type is usually called a group membership service.

To summarize; A service that provides developers with mechanisms that support the

integration of group communications into a distributed system should consist of the following:
* A multicast mechanism.

* Protocols for managing message delivery, with certain ordering and reliability properties.

* A group membership service.

Page 24

Background - Chapter 2

A service that provides these properties will be referred to by the Thesis as a group communication
service. This chapter continues with descriptions of distributed applications that may benefit from the

presence of a group communication service.

2.4.2 Collaborative Applications

There is a steady increase in the popularity of computer applications that enable groups of people to
work productively together. These applications (commonly referred to as Groupware) are perceived
. as replacing more traditional methods of working, such as face-to-face meetings, paper mail and
telephone conversations. Groups of individuals that benefit from the use of these applications tend to
be geographically seperated, making regular physical meetings difficult. Popular applications that
may be considered groupware are: conferencing applications, Internet Relay Chat (IRC), bulletin
boards.

Groupware applications are primarily concerned with the sharing and presentation of
information for groups of users. A simple text based conferencing system that has three participants
can be used as an example to show the important role a group communication service may provide
within a groupware application:

A conference consists of a number of users that share information by sending messages to
each other. A user may join a conference and leave a conference at any time. When a user wishes to
send a message to a conference a single copy of the message is created and a single send operation is
enacted by the user. If a participant in the conference receives a message, then all participants in the
conference should receive the same message. As a result of receiving a message M1 from user U]
another user (U2) may wish to respond to the content of M1 with a message M2 (M2 is commonly
known as a follow-up message). A user (U3) that receives M2 may be unable to understand the
content of M2 if U3 has not yet received M. Furthermore, U3 may respond to M2 before receiving
M1, making discussions within the conference difficult, misleading and ultimately unproductive.
Therefore, all participating users should receive a follow-up message after they have received all the
messages that the follow-up message may relate to. In our example, this results in everybody
receiving M1 before receiving M2. The type of relationship between messages that our example
highlights is commonly termed a dependent relationship or a causal relationship; M2 depends on M1,
M2 is caused by MI. When ordering of messages is accomplished with respect to causality messages
are said to be causally ordered.

Our example identifies the three requirements that a group communication service aims to

satisfy in the following manner:

Page 25

Background - Chapter 2

s Sending a single copy of a message to multiple recipients via a single send operation - A
multicast mechanism is required to enable a user to send a single message to multiple users
simultaneously.

® Ensuring messages are presented to end users in an order that does not inhibit the understanding
of discussions within the conference - Protocols that preserve the causal ordering of messages and
ensure reliable (all members of a group receive message) message delivery are required.

® Managing new users and departing users - To enable users to maintain "up-to-date" views of the

participating user list of a conference a group membership service is required.

2.4.3 Highly Available Services

A common method used to increase the availability of a service is to replicate the service over nodes
in a network. A service that is replicated is commonly termed a replica group. The aim of a replica
group is to allow the failure of a number nodes, parts of the network, or a number of objects that
provide the service to be tolerated before the service becomes unavailable. There are two main

techniques available for providing service replication:

® Active Replication
In active replication client requests are directed at each replica. Each replica then attempts to
process the request and may reply to client requests. The active replication of an object requires

two conditions to be met:

1. Agreement - All the non-faulty replicas of an object receive identical input messages.

2. Order - All the non-faulty replicas process messages in an identical order.

Therefore, if all the non-faulty replicas have identical initial states then identical output messages
in an identical order will be produced by them (assuming that an action performed by an object
on a selected message is deterministic). To ensure the message ordering requirement is satisfied
suitable protocols must be available that can provide guaranteed identical ordered message
delivery within the replica group.

When member failures occur clients of an active replica group may not suffer from gaps
in service. The only time an actively replicated group cannot service requests is when all replicas
have failed, or the replica group is unreachable by a client due to network failures.

Detecting member failures is required to satisfy the agreement condition. Inconsistent
views of group membership may lead to the failure of client requests reaching non-faulty replicas

and/or the inclusion by some members of faulty members in their group views.

Page 26

Background - Chapter 2

e Passive Replication

Passive replication requires only one member of the replica group, the primary (sometimes
referred to as the coordinator), to receive, process, and reply to client requests. To ensure that
members of the replica group stay mutually consistent the primary must send a checkpoint of its
state to the passive group members, usually when the state of the primary has changed.

In the event of the primary failing the remaining members use a protocol to elect a new
primary, which then takes over the duties of the failed primary.

As opposed to active replication, it is not necessary for computations performed by the
replicated objects to be deterministic: state is imposed upon the passive members of the group by

the primary guaranteeing that all members of the group will remain mutually consistent.

An example of a bank account service made highly available via active replication may be used to
demonstrate the benefit a group communications service may bring to a fault tolerant applications:

Copies of a bank account B reside at three of a bank’s branches. This degree of replication
allows routine audit checks of an account to be carried out at a branch (making the inspected account
unavailable for a short time) while still allowing access to the other two copies of the account. The
account is accessible via an Automatic Teller Machine (ATM). Each branch has an ATM (A1, A2 and
A3). Each copy of the bank account should present the same balance whenever queried via an ATM.
When a transaction is requested at an ATM, information relating to the transaction request are
formulated into a single message and sent to all copies of the bank account. Each account then acts on
the request and replies with a suitable answer. The requesting ATM takes the first answer only and
discards the rest. Whenever an account balance falls below zero, bank charges are incurred.

Let us concentrate on the functioning of a single account held jointly by a husband and wife.
The husband deposits $50 (generating a message M) at Al and then withdraws $20 (generating a
message M2), again via Al. We may identify M1 and M2 as being causally related and expect M to
be received by all copies of the account before M2 is received. If this is not so, then some accounts
may actually become overdrawn (there will be a time when some accounts would show a balance of -
$20) causing bank charges to be incurred.

We now extend our example and assume the wife is requesting a withdrawal of $20 (M3) at
A2 at the same time the husband is at Al. As there is no causal relationship between M3 and the other
two messages (M1 and M2) M3 may be received at any time by the replica accounts. If M3 arrives
before M1 then bank charges will be incurred, if M3 arrives after MI bank charges will not be
incurred. Therefore, we have a scenario, where some accounts may incur charges while others do not.
To overcome this inconsistency, we must ensure that messages arrive at the same order at each
account. This type of ordering is commonly termed total ordering (identical ordering while

Preserving causality).

Page 27

Background - Chapter 2

In the same manner as our previous groupware example identified the three requirements that

a group communication service aims to satisfy, so the observation is repeated for the highly available

account example (for the sake of completeness passive replication is also mentioned):

An ATM is required to send a single copy of a message to multiple bank accounts - A multicast
mechanism is required to allow an ATM to send a single message to all bank accounts
simultaneously.

Prevent the balance of the replica accounts from deviating, the consequences of which could
result in users been presented with bank charges - Protocols that preserve the total (while still
preserving causal) ordering of messages are required.

Allowing the audit of a replica account without inhibiting the operation of the other accounts - A
group membership service may identify when an audit is taking place (remove replica) or when
an audit is completed (add replica) during the lifetime of a group. In passive replication there is
still a need to determine if a member has failed/departed to ensure suitable passive members exist

or a failed primary may be replaced.

2.4.4 Summary

The examples described in this section indicate that the existence of a group communication service

may benefit the development of distributed services that support groupware and highly available

applications. This was achieved by relating the requirements of such applications to properties

exhibited by a group communication service. This chapter continues with a detailed description of the

mechanisms involved in the provision of a group communication service.

2.5 Group Communications

This section describes the mechanisms commonly associated with a group communication service

(originally identified in 2.4.1):

A multicast mechanism.
Protocols for managing message delivery.

A group membership service.

2.5.1 The Multicast Mechanism

To allow a multicast communication each individual member of a group must realise the group

membership. This is achieved by allowing each member to maintain a group view. By maintaining a

Page 28

Background - Chapter 2

group view a member may identify the address of each group member to which messages may be
sent. Each entry in a group view should be an addressable location suitable for enabling the sending
of messages to each group member. When a member wishes to multicast a message, the message is
sent to every member that appears in the group view.

A desirable property of a multicast mechanism is that a given multicast be reliable (failure
atomic): if a member crashes while multicasting a message, either all or none of the functioning
members deliver the message. Consider the interaction of a client and an active replica group.
_ Multicasts that are not failure atomic may cause problems in maintaining consistency of state between
the individual replicas; one replica fails to receive a state-modifying client request but continues to
receive and respond to other client requests.

It is sometimes desirable for entities to simultaneously participate in multiple groups
[Birman93]. This is certainly true of video conferencing, where users may participate in more than
one conference at a time. When an entity belongs to multiple groups a group view for each group

must be maintained by the entity. This will enable multicasts to be directed to specific groups.

2.5.2 Messages Ordering

When dealing with a single entity events occur sequentially, each event resulting from some action
carried out by the entity. These events are naturally ordered by the sequence in which they happen. A
system model may be based on a group of these single entities. Each entity has the ability to send and
receive messages to and from other members of the group. The ordering of events in a group is based

on two assumptions:;

1. The sending of a message m occurs before the receiving of m.
2. If two events occur at the same member then they retain their natural ordering in relation to each

other.

A partial ordering of events for distributed systems has been established [Lamport78] based on
message passing and the above two assumptions. The notion of "happens before" (—) is used to
indicate partial ordering. The following ordering properties may be derived from previous

observations:

¢ If the event X occurs before the event Y at the same member then X —Y.

* If the event A is the sending of a message m, and the event B is the receiving of the message m
then A —B.

® If C—D and D—E, then C—E.

Page 29

Background - Chapter 2

It is possible to state that if A—B then A may have caused B. When no causal relationship exists
between two events then the ordering between them is arbitrary and two such events may be
considered concurrent.

A protocol that introduces ordering highlights a difference between the receiving of a

message and the delivery of a message:

* A sends the message m, B receives message m, B delivers m.

Only after a message is delivered may it be accepted by a member for processing. When ordering is
relevant a protocol may block the delivery of a message until such a time when ordering requirements
are fulfilled. Under certain circumstances a message may never be delivered and so discarded by an
order preserving protocol. Following are more detailed descriptions relating to different types of

ordering that are common in the support of group communications:

e Causal Ordering
The rules regarding the causal ordering of deliverable messages by a protocol may be derived
from the assumption made about causal ordering in an event driven system. As a protocol may
concern itself only with the sending and delivery of messages to retain causality it is necessary to
block the delivery of a message m until all messages that may have caused m have been delivered.
s Total Ordering
There are situations in group communications where the delivery of messages to each member
should occur in the same order (and preserve causality). Protocols that achieve this are known as
total order protocols. Protocols that enforce total ordered message delivery must block the
delivery of a message until all members of a group mutually agree on the order in which such a
message is to be delivered. Total ordering that lacks causal preserving qualities is commonly

termed identical ordering [Macedo95].

There are two distinct types of protocol for achieving total ordering:

* Asymmetric - A single member of the group is responsible for determining the order of delivery.

* Symmetric - All members of the group share the responsibility for determining ordering.
In an asymmetric protocol the member responsible for ordering is commonly termed the sequencer.

Each member of a group may unicast the message they wished distributed throughout the

membership of the group to the sequencer. The sequencer is responsible for multicasting such

Page 30

Background - Chapter 2

messages to all members of the group. In a symmetric protocol, members simply multicast their
messages to the whole membership of the group.

The asymmetric protocol tends to favor groups that only have a subset of the membership
regularly multicasting. Such scenarios arise when clients request a service from a group (as in highly
available applications). In a symmetric protocol, ensuring client requests may be suitably ordered for
delivery requires all members to participate in a message passing round. This message passing round
has to be prompted (on the receiving of a client request) and such message passing may solely exist to
_order client requests (no computational value to the application). However, if an asymmetric protocol
is used members receive client requests already totally ordered and may deliver such messages
without the need for further message passing. When all members frequently multicast in a group the
symmetric protocol is favored. Such scenarios arise in Groupware applications. In Groupware
applications members wish to share information (such as a video image in teleconferencing).
Members tend to multicast in an asynchronous fashion (do not wait for reply). As every member
frequently multicasts, message passing rounds will be completed. There is no need to prompt message
passing solely for the purpose of message ordering. Furthermore, the redirection of messages through
a sequencer (as in the asymmetric approach) adds unnecessary message latency in Groupware

applications.

2.5.3 Group membership

It is necessary for all members of a group to have a mutually consistent view of the membership of
the group (group views of individual members of a group remain mutually consistent). When
members do not agree on group membership actions within a group may lead to inconsistencies
between the functionality of the group and the group’s expected behavior as identified in a
specification. For example, consider a simple system that consists of a group of three members (A, B,

and C) that service client requests. The following 5 points identify the group’s specification:

B and C are backup members for A (the primary member).
Only the primary member may service client requests.
When A fails B should become the primary.

When A and B fail C should become the primary.

“ AWy -

There should always be one, and only one, primary in operation at any one period in time.

An inability to satisfactorily determine mutually consistent group views for each member may result

in either one of the following faulty scenarios:

Page 31

Background - Chapter 2

e No primary exists - Assume A fails. However, B does not register this and still includes A in its
group view. B fails to take up the responsibility of becoming the primary, and as C does not
assume B to have failed does not take on the role of primary.

* Multiple primaries exist - Assume C incorrectly suspects A and B to have failed, reducing its

group view to only include itself. This may result in two primaries, A and C.

As groups are dynamic (members may join or leave a group), a mechanism that enables some form of
~ consensus on group membership is necessary. The difficulties encountered when determining group
membership is referred to as the Group Membership Problem (GMP), sometimes referred to as the
consensus problem.

To aid in solving GMP a failure detection mechanism is required to indicate the event of
member failure to non-faulty members. This will then enable non-faulty members to install a new
group view, excluding any failed members. To enable failure detection it is first necessary to establish

the correctness of a member.

2.5.4 Models of Faulty Behavior
Presented here is a classification for expressing faulty behavior of members; this material is taken
from [Shrivastava91b, Cristian91a, Ezhilchelvan86].

Assume that the response of a member for a given input is considered to be correct if the
output value is as expected and produced on time. This assumption then allows the characterization of
failures with respect to both the value and time:

Let a member receive at time # an input requiring a response from the member and as a result

produce an output value v at time #j. For that input, the response v at time ¢ is correct iff:

i The value is as expected: v = w, where w is the expected value consistent with the
specification; and,
ii. it is produced on time: tmin < tj - ti < tmax, where , [ti + tmin, ti + tmax] is the interval

during which the specified output is expected to be produced.

The values #min and tmax are constants of a given member. First of all, note that the response of a
member cannot be instantaneous to a given input but must experience a finite minimum amount of
delay (which is specified by the parameter tmin). The maximum delay time, tmax indicates the upper
bound on the output delay.

A correctly functioning member does not arbitrarily produce responses. In particular, when

there is no input (null input) or when no response is expected for an input, naturally no output value is

Page 32

Background - Chapter 2

produced (output is null). The values tmin and tmax are meaningful only when a member is expected
to produce a response.

If v # w, then the output value will be termed incorrect; similarly, if tj < t; + tmin (output
produced too early) or ¢j > #; + typgx (output produced too late), then the response time will be termed

incorrect.
Given the above definitions of correct and incorrect responses, there can be four possible ways by

which a response can deviate from that specified. This leads to the following types of faults.

1. Timing Fault - A fault that causes a member to produce the expected value for a given input
either too early or too late will be termed a timing fault and the corresponding failure a timing

failure.
v=w and (j - tj < tmin O tj - t; > tmax).

A late timing fault is also referred to as a performance fault [Cristian91a].
2. Value Fault - A fault that causes a member to respond, for a given input, within the specified time
interval, but with a wrong value will be termed a value fault and the corresponding failure a value

failure:

v # w and tpin <t - tj < tmax-

3. Omission Fault - A fault which causes a member, for a given input requiring a non-null response,
not to produce a response will be termed an omission fault and the corresponding failure an
omission failure. The act of ‘not producing a response’ is regarded as equivalent to ‘producing a
null value on time’, thereby treating an omission fault as a special case of a value fault. An
omission fault can also be treated as a special case of a timing fault by regarding ‘not producing a

response’ as equivalent to ‘producing a correct value at infinite time’.

4. Byzantine Fault - A Byzantine fault is responsible for a Byzantine (fail-uncontrolled) failure
which is any violation from the specified behavior. In particular, it includes the possibility of a
member producing a response when no input was supplied. A Byzantine member is customarily

considered in the literature to be capable of being ‘malicious’ in its responses [Lamport82].

Page 33

Background - Chapter 2

omission

value timing

Byzantine
Figure 2.7 - Fault Lattice.

A Byzantine fault (failure) subsumes all the other three types of faults (failures). The relationships
among these four types of faults (failures) can be expressed by the fault (failure) lattice shown in fig.
2.7, where an arrow from A to B, indicates that fault (failure) type A is a special case of fault (failure)
type B. (The relation ‘=’ is transitive.) An important observation can now be made which is that a
fault-tolerant algorithm designed to tolerate m, m > 0, timing failures (value failures) can also tolerate
m omission failures and further that an algorithm designed to tolerate m Byzantine failures can
tolerate m failures of any type. The top of the lattice represents the fault type with most restrictions
and the bottom with the least. .

The above classification is based on the behavior of a component with respect to a single
output. When a sequence of outputs over a given time interval is considered, the type of fault in the
component will be taken to be the least restrictive one of which all types of failures occurred during
that interval can be considered to be special cases. If a given faulty behavior persists for a
‘sufficiently’ long time, then that failure can be considered to be permanent. In particular, a
component that suffers a persistent omission failure will be said to have failed in a fail-silent manner
(also referred to as a crash-failure). Non persistent failures are called transient failures. In the Thesis,
members will be assumed to be fail-silent. This is the assumption made in all other group

communication services (some of them will be reviewed later in this chapter).

2.5.5 Group Membership and Virtual Synchrony

The nature of the distributed computer system environment is an important consideration when

solving GMP. There are two basic ways of modeling computer system environments:

® Synchronous - Process and network delays are known and bounded.

* Asynchronous - Process and network delays are bounded but unknown.

Page 34

Background - Chapter 2

As the Thesis is concerned with group communication protocols for Middleware, an asynchronous
environment is assumed. This is because Middleware is commonly presented over computing systems
which are heterogeneous in nature and communicating via the Internet. Ensuring synchronous
assumptions hold in such an environment is unrealistic.

The asynchronous environment assumption has a strong implication on failure detection,
since under the circumstances it is impossible to distinguish between a member that has suffered
4 failure (or disconnected from the network) and a member that is simply slow. If a member does suffer
from failure, it is important that non-faulty members forming a group come to some agreement on
that failure event and remove the failed member from the group; this is impossible to achieve in finite
time [Fischer85]. To circumvent this impossibility result group communication protocols permit
members to be suspected of failure [Chandra91, Schiper93]. This enables members of a group to
mutually agree on the membership of a group. Of course, there is the possibility of a correctly
functioning member to be erroneously removed from a group [Chandra91].

Group membership and protocols that ensure ordered atomic message delivery are combined
within a group to enable the virtual synchrony model [Birman87]. The virtual synchrony model orders
group membership changes with respect to computational messages multicast within a group. It
ensures that view changes are "seen" identically by members. Furthermore, the virtual synchrony
model ensures that two members that proceed together from one view of group membership to the

next deliver the same messages in the first view.

—_— Time —_— Time

vi v2 vi v2

P1 P1

" N

P2 P2
P3 ﬁ P3

¢

P4 P4

0} (i)
Figure 2.8 - Virtual synchrony.

The diagram in fig. 2.8.i illustrates non-virtual synchronous communications. The multicast of p2 is
delivered in view vI by pl and p2, whereas p4 delivers the multicast of p2 in v2; members that

proceed together from one view of group membership to the next are not delivering the same

Page 35

Background - Chapter 2

messages in the first view. The diagram in fig. 2.8.ii does illustrate virtual synchronous
communications. The multicast of p2 is delivered by all members in the same view; members that
proceed together from one view of group membership to the next are delivering the same messages in
the first view.

A partitioning of a group is reflected in the group views of the members. For example, in fig.

2.9.i D and E have failed resulting in A, B, and C, removing D and E from their group views.

% G

(i) D & E leave group (ii) Partitionable (ii) Primary operation
operation

Figure 2.9 - The partitioning of groups.

After a network partition has occurred more than one group may exist. In our example A, B, and C
may suspect D and E to have failed, and so exclude them from the group during a group view update.
However, a network partition may have occurred, leaving two groups (fig 2.9.ii). In this scenario, A,
B, and C will have excluded D and E from their group views while D and E will have excluded A, B,
and C from their group views. Due to the ability of a failure detector to suspect non-faulty members it
is also possible for a subgroup of members to wrongly agrée on one or more correctly functioning and
connected processes that may still be participating in the group as having failed. This will lead to
groups partitioning themselves with no failures present (a virtual partition).

In a primary partition membership service only a single group (usually the one with the
majority of members) is maintained (fig. 2.9.iii), whereas in a partitionable membership service, all
the subgroups survive (fig. 2.9.ii). At a later time these subgroups may be merged.

This chapter continues by describing the various ways the group communication mechanisms

detailed in this section may be introduced to CORBA.

2.6 Introducing Group Communications to CORBA

Providing group communication support for use in the CORBA has been approached in three ways
[Felber98b]

® Integration - A group communication service has been integrated into an ORB. .

® [nterception - Messages issued by an ORB are intercepted and mapped onto an underlying group

communication service.

Page 36

Background - Chapter 2

e Service - Group communications are supplied as an object service.

These approaches are now described in more detail.

2.6.1 Integration Approach

To enable group communications an existing group communication service is imbedded within the
structure of an ORB. Object groups are managed within the ORB by an application via extensions to
. the standard interfaces presented by the ORB BOA interface or via information stored in information

stores commonly used to identify information relating to services (commonly termed repositories).

Client Server Objects

OO0

ORB /

N J S

Group Communication Service

Figure 2.10 - The integration approach to CORBA group communications.

Group transparency is associated to client requests; the client views invocations directed at a group in
the same manner as those directed at a singleton. For this reason only one reply is returned to the
client per request. To return more replies requires an enhancement to the IDL definition of a service.
This enhancement takes the form of changing return values to a list of the same return values,
enabling each server’s response to be placed in an element of the list. Lists are adequately
accommodated for in IDL by the sequence data structure, a data structure that may be of variable
length and hold data items of arbitrary type. This has resulted in the need for two types of proxy code
to be produced to satisfy a clients needs. The standard type that returns values as if a group is a

singleton or the less transparent type that is capable of returning a number of server replies.

2.6.2 Interception Approach

The interception approach requires no alteration to the infrastructure of the ORB to enable object
groups. The messages sent between objects are intercepted and, if group communications are

required, mapped onto an underlying group communications service.

Page 37

Background - Chapter 2

Client Server Objects

Q OO

ORB

N/ [/ /

N /7 7 7

Group Communication Service

Figure 2.11 - The interception approach to CORBA group communications.

To retain the interoperability qualities of the ORB, the enhancement of the BOA to provide group
management functionality is not an option. Therefore, services for managing object groups (member
departures/joins, group creation, group deletion) are presented to the application developer either as
object services or via a management service interface directly exposing the underlying group
communication service to applications. In effect, even when the object service approach is used
functionality is still mapped to the underlying group communication service.

Gaining multiple replies (reply from each group member) from a single client request

requires the type of IDL enhancements of those mentioned in the integration approach.

2.6.3 Service Approach

The service approach adds a group communication service as an object service. The object service
approach is recognized by the OMG as the standard method for enhancing ORB functionality and is
therefore more in line with CORBA application development. However, to ensure the interoperability
of an object service, only the standard ORB message passing mechanisms are available (point-to-
point RPC) for enabling multicasts. Therefore, a multicast actually consists of a number of RPCs,
each one directed to a group member. A problem with this method of enabling multicasts is the
synchronous nature of the communications supported by an ORB; a method invocation to a remote
object blocks the calling object’s processing until the request has been handled by the server object
(this happens even when no reply is expected). As a message ordering protocol may block message
delivery, or even discard a message, the availability of an asynchronous message passing environment
is essential to ensure the progress of an application’s execution during any group communication
activity; a client that makes an RPC may continue processing as the RPC is handled by the server.

There are two methods to enable this:

e OneWay Call - The oneway call represents an asynchronous message passing mechanism within

CORBA. Unfortunately, the specification describing the oneway call indicates that the use of

Page 38

Background - Chapter 2

oneway does not guarantee message delivery. Some ORBs may never deliver a oneway call,
whereas others will always deliver a oneway call. The various ways vendors have interpreted and
implemented the oneway call over a number of ORBs makes the oneway call unsuitable for
distributed application development; the requirements placed on the oneway call by an object
may not be satisfied on some ORBs.

e Thread - When an asynchronous RPC is required a process spawns a thread which handles the
RPC.

The choice between thread and oneway depends on application requirements and the ORB been used.
However, the thread approach ensures the correct working of an object service irrelevant of the

vendor that supplied the ORB.

Client Server Objects

O] 1000

ORB

QOO0

Group Communication Service

Figure 2.12 - The service approach to CORBA group communications.

A group communication service may be implemented as one or more services (CORBA objects) that

implement all the required mechanisms to satisfy an application’s group communication requirements.

2.6.4 Evaluation
The choice of approach when providing group communications via the methods expressed in this

section effect the following two properties of an application:
1. Interoperability - The ability of a service to work with any ORB, irrelevant of underlying network

services and operating system.

2. Performance - The message latency incurred when using group communication mechanisms.

Page 39

Background - Chapter 2

Of the three approaches the service approach has the potential to incur the greatest performance
overhead. This is because each multicast is split into a series of RPCs, each RPC passing through the
ORB infrastructure and therefore incurring overheads related to time taken up by IIOP and ORB
dependent mechanisms (e.g., marshaling and unmarshaling). This may not be too drastic a problem,
but all protocol related messages, not just application related, must pass through this expensive route.
Such messages may be required to force message delivery or agree on group membership. The
integration and interception approach, however, restricts only application derived request/reply
messages to passage through an ORB. All other messages, related to the management of the group
communication protocols themselves, are restricted to transport level protocols. This allows the
integration and interception approaches to make use of existing network technologies that
significantly increase the performance of group communications (e.g., IP multicast, LAN broadcast).
It is expected that CORBA will be extended with multicast facilities to enable exploitation of
transport level multicast/broadcast facilities. Then the service approach will no longer be associated
with poor performance.

The benefit of the service approach is its ability to preserve the interoperability qualities
currently enjoyed by applications developed in the CORBA environment. The integration approach
relies on a non-standard extension to the ORB interfaces to enable object groups. This makes
applications dependent on a particular vendor’s ORB. The interoperability aspects of the interception
approach are not as severe as the integration approach, however, reliance is placed on underlying
network and operating system services.

Making a request directed at an object group appear the same as a request directed at a
singleton (group transparency) is slightly more difficult in the service approach. This is because,
unlike the integration and interception approach, there is no scope for presenting an IOR that
represents a group. The existence of such an IOR is not possible in CORBA. However, there is an
ability to present an IOR that conforms to the format as identified by the CORBA specification but
has additional information imbedded within it to enable group communication services that are
integrated or interception based to associate an object group to such an IOR. The objects in the
CORBA environment are thus presented with group IORs that appear indistinguishable from those
IORs that belong to a singleton. To achieve the same transparence in the service approach requires the
use of a proxy object. A single object with an IOR that presents a single interface representing the
functionality of the group. Clients direct requests to the proxy object, the proxy object then forwards

requests and receives replies, returning replies back to the client.

2.7 Related Work

I shall now describe existing implementations that attempt to provide group communication

mechanisms for use by application developers in CORBA.

Page 40

Background - Chapter 2

2.7.1 Orbix+Isis

Orbix+Isis [Iona94] is an example of the integration approach. An existing group communication
service (Isis [Birman93]) has been integrated into an ORB (Orbix [Iona94]). The description of
Orbix-+Isis continues with a brief overview of the Isis system itself.

Isis provides the low-level communication abstractions required to build fault-tolerant
distributed systems. A reliable multicast service with multiple ordering primitives is supplied. The
CBCAST protocol guarantees causal order, while ABCAST is a total order protocol built on top of
CBCAST. Causal multicast over multiple overlapping groups is provided by an extension of the
CBCAST protocol.

By integrating the multicast service with a membership protocol Isis provides virtual
synchronous process group communication (the first system to achieve this). When a group is
partitioned (be it network or virtual), the continuation of group services are undertaken by the primary
partition (usually the partition with the most members), all former group members that are not
members of the primary partition are killed off. Note that circumstances may arise when no distinct
group may attain the status of primary, indicating the failure of the group.

Multicast based communications in Orbix+Isis are handled by Isis. Point-to-point
communications are handled by Orbix. Orbix+Isis aims to provide highly available services via
replica object groups. The virtual synchronous, total ordered message delivery protocols provided by
Isis enable object groups to remain mutually consistent. When communicating with an object group in

a synchronous manner a client may enable one of the following communication mechanisms:

® Choice - Invoke method of a single member only. Due to the possibility of state deviation this
should be limited to read-only accesses.

® Multicast - Invoke method at all objects in a group.

e Coordinator/cohort - Invoke method of a single member only. However, this member is then
responsible for indicating to the other members of the group any changes in state that may have

occurred. This ensures that states remain mutually consistent.

Support exists for asynchronous client-to-group communications. This support resembles the CORBA
Event Service. Clients place messages on what Orbix+Isis terms an event stream, servers take
messages from an event stream. The major difference between the event stream and the event service
is that the event stream is actually replicated, enabling the event stream to be highly available.
Information that govern client/group interaction and group management issues are dictated by

information stored in two repositories:

Page 41

Background - Chapter 2

o Implementation repository - Enabling the correct directing of client requests to suitable CORBA
objects.
e Isis Repository - Indicates the group management aspects of a group, such as the number of

replies to be returned and the communication mechanism to use.

2.7.2 Electra

Electra [Maffeis95] is another example of the integration approach. Electra describes the complete
programming environment, including the ORB. Rather than combining existing group
communication technologies with an existing ORB, the developers of Electra built the ORB complete
with group communications as an integral part of the ORB’s design. This has allowed the Electra
environment to be tailored to make use of a variety of existing group communication services, such as
Isis. The well known implementation of Electra (as described by its author in his Ph.D. Thesis
[Maffeis95]) utilizes the Horus group communication service. For completeness, a brief overview of
Horus is now given.

Based on the lessons learned when using the Isis system, the Isis research team developed
Horus [Renesse96]. Horus provides a flexible group communication model with the ability to support
virtual synchrony when required. Protocols that support group communications may be created by
stacking protocol modules that have uniform interfaces. Each protocol module has a separate
responsibility. For example, a module located near the top of the stack may be responsible for
ordering guarantees relating to message delivery, whereas a module located at the base of the stack
may be responsible for accessing the appropriate interface to the underlying network. The structured
framework for protocol composition incorporates ideas from such systems as the UNIX "streams"
framework [Ritchie84] and the X-Kernel [O'Malley89]

There is an ability to tailor Horus to suit a wide variety of application types. If the stacking of
existing protocol modules does not suit an application’s requirements new protocol modules may be
created by a developer. An additional feature of the Horus system is its ability to extend the virtual
synchrony model of Isis to reduce the need for message blocking. This new virtual synchrony model
is termed weak virtual synchrony. In the weak virtual synchrony model messages are still guaranteed
to be delivered in the view they were sent, however, the notion of which view a message was actually
sent in is slightly weaker. The membership protocol of Transis [Kramer91] (that allows partitionable
operation) is the basis for the membership protocol of Horus.

The ability to configure transport level protocols to suit a wide variety of application types is
one of the popular features of Horus. However, the stacking of protocols is assumed to have been
accomplished before use with Electra may commence. Electra does not provide high level interfaces

that allow the configuring of protocol stacks.

Page 42

Background - Chapter 2

Electra extends the BOA interface with mechanisms suitable for group management. As all
objects have access to the BOA interface, any object may participate in group communications.
However, supplying these mechanisms to all objects may be viewed as wasteful, as not all objects
will participate in group communications.

From an IDL interface that defines a service supported by an object group, Electra may
generate two versions for each method present. One method, the standard version, enables group
transparency whereas the second method, enhanced version, enables a client to receive replies from

all members of a group.

2.7.3 Eternal

The Eternal system [Narasimhan97] is an example of the interception approach. Invocations that
objects make on each other via the IIOP are intercepted by the Eternal system. When group
communication is required, Eternal maps these invocations onto a reliable, total order, group
communication service. The underlying group communication service used by Eternal is Totem
[Agarwal94].

Totem provides reliable, totally ordered multicasting of messages over LANs and exploits the
broadcast facility of such networks to achieve high performance. The replication of information to
improve availability was an important consideration in the development of Totem. The total ordering
of messages allows the consistency of such information to be achieved.

Totem manages group view updates and message delivery in accordance to the extended
virtual synchrony model [Melliar-Smith94]. Unlike the virtual synchrony model [Birman93], the
extended virtual synchrony model allows partitionable operation and guarantees that messages are
delivered in a unique order within disconnected (partitioned) components. Achieving faster message
delivery by utilizing network multicast technologies within a virtual synchronous type group
communication environment for partitionable group operation are the main goals of the Totem
research efforts.

Fig. 2.13 shows an architectural overview of the Eternal system. The four parts that constitute

the Eternal system are:

® Fault Tolerance Management Services - Enable application developers to describe the high
availability properties of an application.

e Fault Tolerance Core Services - Enable an application program to exercise dynamic control over
high availability mechanisms (such as replication of service and recovery from failures).

® Fault Tolerance Mechanisms - Provides an efficient implementation of the infrastructure required
by the previous two services.

® Multicast Engine- The multicast engine provides group communications via Totem.

Page 43

Background - Chapter 2

Fault
Tolerance
Management Fault
Service Tolerance
Core
Service
ORB
Fault
Tolerance
Mechanisms
Multicast Engine

Figure 2.13 - Architecture of the Eternal system.

The services are implemented as object services and provide application developers with interfaces to

the lower level fault tolerance mechanisms.

2.7.4 Object Group Service

The Object Group Service (OGS) [Felber98a, Felber98b] Provides group communications as a
CORBA service. This ensures that the interoperability and portability associated with CORBA are
preserved: the ORB requires no special enhancement (as in the integration approach) and there is no
need for operating system and network service dependent communication mechanisms (as in the
interception approach).

Mechanisms are provided that allow an application developer to choose between arbitrary,
causal or total ordered message delivery within a group. Further mechanisms are supported to enable
the management of replica groups (e.g., state transfers), and to allow two distinct flavors of
replication protocols (active and passive) to be used on a per message basis. Mechanisms are

presented to the application developer via the following services:

® Messaging Service - Provides reliable asynchronous point-to-point and multicast
communications.

® Monitor Service - Monitors objects and acts as a failure detector.

e Consensus Service - Enable protocols for managing multicasts and group membership.

* Group Service - Provide group multicasts and group membership.

Page 44

Background - Chapter 2

A client may determine the type of replies expected from a group; a wait for all replies, wait for
majority of replies, wait for first reply. OGS allows clients to interact with object groups via the
sending of untyped messages or typed messages. An untyped message is a message that is passed to
OGS for multicasting to an object group. The client is aware that a multicast is occurring, and is
responsible for marshaling the parameters of a call into a suitable data structure to allow OGS to
enable the multicast. The data type used is the CORBA type any. The any data type is capable of
holding any CORBA data type, including sequences, and is therefore ideal for use in marshaling. This
method of interacting with a group allows a client to trivially identify the number of replies to be
expected from the group (e.g., wait for all, wait for majority). The drawback to this method is the
problems associated with marshaling data, an error prone task, and the exposure of the group
communications to the client (non-transparent groups). Clients issuing typed messages assume that
they are directing messages at a singleton, as opposed to a group (group transparency). These
messages actually arrive at OGS, which performs the multicast, filters replies, and returns a single
reply to the client. This is achieved with the aid of the DSI and DII. The OGS gains knowledge of a
service interface at runtime via the interface repository, uses the DSI to enable client requests
directed at this service to be handled by OGS. OGS then uses the DII to actually perform the multiple

RPCs that make up a multicast on the server objects. Finally, a single reply is returned to the client

2.8 Summary and Contribution Made by Thesis

This chapter concentrated on a number of existing Middleware technologies for enabling distributed
application development in an object-oriented style. The three most popular Middleware technologies
(Java-RMI, DCOM, CORBA) were briefly described, followed by a more in-depth description of
CORBA. The lack of support for object groups in the CORBA (and also Java-RMI and DCOM)
standard was highlighted, followed by descriptions of two types of applications (highly available,
Groupware) that may benefit from such support. Services (multicast, message ordering, atomic
message delivery, membership) that enable group communications were then described in more detail
followed by the three methods (integration, interception, service) that may be used to incorporate
such services into CORBA. Finally, works related to this area of research were presented that
exemplify the three approaches to incorporating group communications into CORBA.

As can be seen from this chapter, research into group communications for Middleware
environments has resulted in a number of services that enable an application developer to make use of
group communication protocols in their applications. However not every service supports all the
functionality that may be required. This reduces application developers to a choice that will “best fit”

an application's requirements.

Page 45

Background - Chapter 2

Evaluation of the application requirements and the functionality provided by existing group
communication services surveyed in this chapter has resulted in the following list of items that, if
configurable by an application developer, may ease the suitability of a group communication service

for an application’s requirements:

e Ordering and reliability guarantees — Causally or totally ordered atomic message delivery.

e Protocol used to enable message ordering — Symmetric or asymmetric.

e Overlapping groups - Group members may participate in multiple groups simultaneously.

e Per group ordering protocols - Multi-group members may participate in an asymmetric ordering
protocol in one group while participating in a symmetric ordering protocol in another group.

e Protocol timeouts used for failure suspicion — set on a per node, member, or group basis.

e The existence of groups in the presence of network partitions — Partitionable operation or insist on
a primary partition.

e Flexible client/server interaction - A client does not have to multicast to the full membership of a
group in order to access services provided by a group. This is particularly important in an Internet
environment, as discussed below.

e Middleware service - The increased functionality that is required to support group
communications should be provided in way that does not inhibit the interoperability an

application would otherwise enjoy in a Middleware environment.

The group communication services surveyed in this chapter concentrate only on presenting an
environment suitable for object replication. Such environments ensure, in part, replicas remain
mutually consistent by totally ordering message delivery within a group. OGS allows an application
developer to choose between total and causal ordering. Other approaches (integration and
interception) shield the application developer from protocol details and so inhibit any manipulation of
them. Furthermore, no existing system allows the application developer to choose the type of protocol
used to order messages; an application developer may not choose between symmetric or asymmetric
message ordering protocols. There are group communication protocols that enable objects to
participate in multiple groups, however, to the best of our knowledge, there are no group
communication protocols that allow a multi-group member to use, say, asymmetric ordering in one
group while using symmetric ordering in another group. As mentioned earlier in this chapter (see
2.5.2), asymmetric protocols are more suited to replica service provision whereas symmetric
protocols are suited to Groupware applications.

Existing group communication protocols presented as Middleware services enable client
access of server groups by regarding clients as full and/or special members of the server group. The

term "special member" indicates a client that communicates with the server group by multicasting to

Page 46

Background - Chapter 2

the full membership of the server group, however, the client does not appear in the group views of the
server group nor does it participate in group membership agreement with the server group. In this
scenario, server group members must decide upon the ordering and delivery guarantees of client
requests vié extra message passing or network related timestamps associated to the requests
[Agarwal94]. This type of client/server group interaction is sometimes termed closed. There are
instances when a client may wish to access the services provided by a group by sending a request as a
unicast. For example, when a client is geographically separated from a server group (such as a client
accessing services over the Internet) sending a message to each member of the server group will be
substantially more time consuming than simply sending a single message to a single server due to the
large message latency experienced on a WAN (e.g., Internet). This method of client/server group
interaction is commonly termed open.

Services that rely on non-standard mechanisms to be present in the Middleware environment
inhibit the interoperability of applications built using them. Orbix+Isis and Electra extend the
functionality of an ORB making applications built using them ORB dependent; ORBs supported by
other vendors will not be able to support applications built utilizing the group communication
mechanisms found in these tools. The Eternal system does not extend the functionality by altering the
infrastructure of the ORB, but does use an interception method that is operating system dependent
(UNIX) and relies on the existence of a group communication sub-system (Totem) that depends on
the existence of a network broadcast facility that is limited to a LAN and is not suitable for use in a
WAN. This, again, reduces interoperability; ORBs that do not have access to such an operating
system and/or support applications that are distributed over a WAN may not make use of the Eternal
group communication service. The OGS does maximize interoperability as all multicast operations
are carried out using CORBA compliant point-to-point communications (i.e., via the ORB). There is
no reliance on any group communication sub-system or non-standard protocols that enhance the
ORB. However, OGS does not provide support for open groups nor does it allow overlapping groups.

In summary, existing group communication services do not support all of the requirements
stated earlier. The Thesis presents the results of research into the provision of a CORBA object group
service that is suitable for a wide variety of application types as it supports all the requirements stated
earlier. Due to the interoperability qualities, the OGS approach is adopted by the Thesis to enable the
provision of group communications for use in CORBA. Furthermore, protocols are presented that
enable open and closed client/server group interaction. This service is called the NewTOP service. In
chapter 3 protocols that enable fault-tolerant group communication within the service are described.
These protocols were developed earlier at Newcastle University [Macedo95, Ezhilchelvan95].
Chapter 4 describes how these protocols were implemented as a CORBA service. Chapter 5 describes

invocation protocols for allowing clients to interact with server groups via open and closed methods.

Page 47

Background - Chapter 2

The performance of the NewTOP service is presented in chapter 6. Chapters 4, 5 and 6 represent the

main contribution of the Thesis. Finally, chapter 7 summarizes the Thesis.

Page 48

The NewTOP Group Communication Protocols - Chapter 3

Chapter 3

- The NewTOP Group Communication Protocols

In this chapter the protocols that are suitable for implementing a Middleware service that may provide
group communications for a wide variety of application types are described. The initial work related
to the design of the protocols described in this chapter may be found in [Macedo95] and
[Ezhilchelvan95]. These works describe the NewTOP (Newcastle Total Ordered Protocol) protocol
suite. NewTOP provides reliable causality preserving total order message delivery to members of a
group, ensuring that total order message delivery is preserved for multi-group members. The initial
sections of this chapter describe the basic concepts and provides descriptions of the protocols in a
static group (membership remains constant) scenario. This constraint is lifted and the mechanisms
required to ensure the correctness of the protocols when group membership may be dynamic are then
described. Mechanisms related to the optimization of these protocols in the presence of multi-group
members are then presented. Finally a summary of the work presented in this chapter is provided,
comparing the protocols presented here with the equivalent protocols developed for use in similar

works.

3.1 Basic Concepts

A group is defined as a collection of distributed entities (process, object or module) in which a
member communicates with other members only by multicasting to the full membership of the group.
A given entity can be a member of more than one group. A member execution consists of a sequence
of events, each event corresponding to the execution of an action by a member. sendj(m), receive;(m)
and deliveryj(m) will be used to denote the events of sending, receiving and delivering a message m
by a member P; respectively. (The suffix { may be dropped if the identity of the member executing
the action is not important).

An assumption is made that the underlying network supports uncorrupted and sequenced
message transmission between sender and destination (first in first out, FIFO, message transmission),
if the sender and destination are functioning correctly and the destination is not partitioned from the
sender. Communication failures could lead to network partitions causing the members of a group to
be split into disjoint sub-groups, with the functioning members in one subgroup unable to
communicate with the functioning members in the other sub-groups. As an asynchronous
communication environment is assumed (see 2.5.5), no assumption about message transmission time

will be made.

Page 49

The NewTOP Group Communication Protocols - Chapter 3

Let G; be the set of groups P; belongs to: G; = {g, | P; € g,J. The membership of P; in a
given group will be denoted as g,, g, € G; and let g, = {P;, Py, ... P,J. When P; multicasts (or

delivers) a message m with m.g = 2. it actually does so only to (or from) those entities which it views

as functioning members of g,. P; delivers its own messages also by executing the protocol in
operation. When g, is initially formed, each functioning P; installs an initial view Vox’ i say, Vox’ i=
{P}, Py, ... P,J. If P; is unable to communicate with some Py € Vox, ; (this could be because Py has

failed or disconnected or departed from gy), it installs a new view that does not include Py. Let Vox, b

vl X, sz’ oo vr xi be the series of views P; has sequentially installed over a period of time, until it
fails or leaves the group gx. Note that once P; leaves gy, it maintains no membership view for gy
Each P; is provided with a group view process, denoted as GV, ;, for each gy, gy € G;. The group-

view process GV, ; makes judicious use of timeouts for suspecting the absence of member processes;
,

it executes a membership protocol with other members of the group to reach agreement on these
suspicions, which if confirmed lead to an update of membership view (installation of a new view) of
P; for group g,.

A new view will always be a proper subset of the old view(s) since entities do not join the
group they have departed. Entities wishing to join their former co-members do so by forming a new
group. An entity can take part in the formation of a new group while retaining its existing
memberships. This eliminates the need to support an explicit facility for process joins. Former
members creating a new group is the equivalent to the former members of a group rejoining the same
group with new identifiers.

The service membership protocol maintains view consistency in the presence of (real or
virtual) partitions by permitting a group of entities to partition themselves into two or more sub-

groups of connected members with the property that:

1. The functioning members within any given subgroup will have identical views about the
membership; and
2. The views of members belonging to different subgroups are guaranteed to stabilize into non-

intersecting groups.

When a group partitions into subgroups, members of every subgroup will consider themselves as the
sole surviving members of the original (unpartitioned) group, and will not know the existence of other
subgroups and their memberships. It is left to applications to decide whether or not to maintain more

than one subgroup.

Page 50

The NewTOP Group Communication Protocols - Chapter 3

View updates must satisfy certain conditions so that message delivery can be ’atomic’ with

respect to view updates (see 2.5.5 - group membership and virtual synchrony). Therefore, view

updates performed by members of a group gy satisfy the following view consistency (VC) properties:

VC1: The sequence of views installed by any two functioning members of g, that do not suspect
each other are identical (validity).

VC2: If a Py ¢ V' ; leaves g, or fails or gets disconnected from P; and if P; does not fail, then
P; will eventually install V" ,x,i such that r’ > rand Py € V" ,x, i (liveness).

VC3: any two functioning members deliver the same set of messages between two consecutive

views that are identical. That is, er,i = er,j and Vr"'lx'i =yr+ Ix,j = the set of m, m.g = g,,

delivered by P; and P; in V7, is identical.

In the presence of member failures and departures, the following message delivery (MD) properties

for all m and m’ multicast with m.g = m’g = gx (in stating them the suffix x will be dropped when

only the group gy is considered). We will use the notation m.s to denote the sender of m and the

symbol — will denote "happens before" relationship:

MD1 (validity): for any m and r = 0: deliveryym,r) = m.s € V';. In words: a member will

deliver a message m in view V7, only if the sender of m is in V.

MD2 (liveness): for any m and r’ > r > 0: sendj(m,r)= either sendij(m,r) — deliveryym,r’} or
sendij(m,r) — failure of P; . In words: if a P; sends m in view V7;, then provided it continues to
function, it will eventually deliver m in some view V7 'i, rzr.

MD3 (atomicity): V' P;, Pj s.t. Vi = V’j A V’+1i = VH'Ij : delivery(m,r) < deliveryj(m,r).

This property is implied by VC3.

Properties MD1 to MD3 together ensure live, atomic delivery in the presence of dynamic membership

changes. The additional property MD4 (and its extension for multiple groups, MD4’) ensure causality

preserving total order message deliveries:

Page 51

The NewTOP Group Communication Protocols - Chapter 3

* MDA (total order, single group): V P, Pj s.t. VI; = Vrj A Vr+1i =yr+ Ij: delivery(m,r) —
delivery(m’r) < deliveryj(m,r) - deliveryj(m',r); if delivery;(m,r) and delivery;(m’r’) occur for

a given Pi then m — m’ = delivery)(m,r) — delivery;(m’r’).

The above delivery order is extended for messages multicast in different groups, ensuring a total

delivery order when the same messages are delivered to entities that simultaneously belong to

multiple groups. Let & be a message with i.g = gy and p > 0 be an integer:

e MDA’ (total order, multiple groups): V P; Pjs.t. Vi, i = er,j AVt Ix,i =yrt Ix,j AVPy =
pr,j A Vp+1y,i = VP““Iy,j: deliveryj(m,r) — deliveryj(u,p) < deliveryj(m,r) — deliveryj(,u,p);
if deliveryym,r) and delivery(u,p) occur for a given Pj then m — u = delivery(m,r) —

delivery;(u,p).

For a given delivered m’, MDS5 states the situations in which the delivery of a causally precedent m, m

— m’, is guaranteed:

* MDS (causal prefix): for any m and m’s.t. m — m’: deliveryy(m’,r’) = deliverym, r). In words:
if m’is delivered to P; in view V7 'i then every m, m — m’and m.g=m'g, is delivered to P; in
some view V7;. (Note that MD4 implies that delivery(m,r) — deliverym’r’).). MDS5 is also

respected in overlapping groups (see [Ezhilchelvan95}).

® (i) (i)

Figure 3.1 - Total order message delivery in overlapping groups.

Page 52

The NewTOP Group Communication Protocols - Chapter 3

The diagrams in fig. 3.1 aid in the understanding of causality preserving total ordered message
delivery for overlapping groups. Message ml is multicast in group GI by pl. However, before m/ can
be received by p2 a network partition occurs (fig. 3.1.i). pI then multicasts a message (m2) in group

G2 (fig. 3.1.ii). p3 receives message m2 and then proceeds to muilticast a message m3 in group G3

(fig. 3.1.iii). There exists a causal chain of messages such that mI — m2 — m3. Members that receive

these messages should delivery them in an order that respects the causal relationship between them.

Therefore, p2 can only deliver m3 if one of the two following scenarios can be satisfied:

e ml is somehow retrieved and delivered to p2 before m3 is delivered by p2.
e If ml cannot be retrieved by p2 before m3 is delivered by p2 then pI should be excluded from
p2’s view for G1 before m3 is delivered by p2.

In the latter case, the network failure that occurred during the multicast of ml is perceived by p2 to
have happened before the multicast of m1; the total ordering of events by p2 would indicate that p/

was excluded from p2’s view of G1I before m1 was multicast.

3.2 Ordering Protocols

As mentioned in the last chapter, message ordering may be achieved via asymmetric or symmetric
protocols. These protocols are now explained. The protocol of importance is total ordering. Causal
and arbitrary ordering is achieved by relaxing the delivery constraints of total ordering and will be
described in relation to total ordering. To simplify explanations, the initial descriptions assume a
single group (no overlapping groups). This assumption is later removed and overlapping groups of the
same protocol are described. Finally, ho.w entities that participate in different groups simultaneously,
using say an asymmetric protocol in one group and a symmetric protocol in another group, is

described. Dynamic groups and fault-tolerant issues are considered later (see 3.3).

3.2.1 Symmetric Total Order in a Single Group

Consider only a single group, g, = {P}, Py, ..., P,} and assume that no P;,] <i < n, ever fails or
leaves gx. This means that the initial membership view of P; is gx and that P; installs no other view.
So, if Vy ; denotes the (current) membership view of P; at any given time, then Vy ; = Vox’ i = &x
Each P; maintains a logical clock (a counter) denoted as LC;, that is used for numbering messages as

in [Lamport78]:

Page 53

The NewTOP Group Communication Protocols - Chapter 3

e CA1 (Counter Advance during sendij(m)). Before sending m, P; increments LC; by one, and

assigns the incremented value to the message number field m.c; and,

o CA2 (Counter Advance during receivej(m)). When P; receives m, it sets LC; = max{LC;, m.c}.

Based on CA1 and CA2, the following two properties can be stated:

e prl: sendy(m) — sendy(m’) > m.c < m’.c; and,

o pr2:foranym, Pj eEm.g: deliveryj(m) - sendj(m”) =2m.c<m’c.

Together these two properties imply that for any distinct m, m” send(m)— send(m’) = m.c <m'c

[Lamport78].

Each P; maintains a vector called the Receive Vector, denoted as RVy ; This vector has one

integer field for every Pj € Vy,; this field records the counter value of the latest message received
from Pj. Let Dy ; denote the minimum value in RVy ;: Dy j = min{RVy[j] | Pj € Vyj}. As Vy,i
includes Pj, Dy ; < LCj at any given time. As the underlying network is FIFO (see 3.1) messages
from a given member are sent with increasing numbers and received in FIFO. Therefore, Dy ; <LC;
for all Pj € Vx; and P; is guaranteed not to receive any new m such that m.c < Dy ;. So P;j can

‘safely’ deliver all received m, m.c < Dy .

e safel: areceived m, m.g = gy, is deliverable if m.c < Dy j;

e safe2: deliverable messages are delivered in the non-decreasing order of their numbers; a fixed

pre-determined delivery order is imposed on deliverable messages of equal number.

The two safety conditions ensure that the received messages are delivered in total order provided they
become deliverable. A received message can be guaranteed to become deliverable, only if members

in Vy, ; remain lively by sending messages so that Dy ; increases with time. Each member is provided

with a simple mechanism, called the timesilence mechanism, that enables a member to remain lively
by sending null messages during those periods it is not generating computational messages. It is

assumed that this mechanism for a given P; prompts P; to send a null message, if no (null or non-null)
message was sent by P; in the past interval of a fixed length, say, w. Null messages contain only

protocol related information (such as number, destination group identifiers etc.). When a null message

Page 54

The NewTOP Group Communication Protocols - Chapter 3

is sent or received by P;, LC; is advanced as per CA1 and CA2; however, when it is due for delivery,

it is not supplied for processing. In brief:

e The timesilence mechanism exists solely to ensure pending (received) messages may become

deliverable.

3.2.2 Symmetric Total Order in Multiple Groups

The single group assumption will now be removed, permitting P; to be a member of more than one
group. Let G; be the set of groups P; belongs to: G; = {g, | P; € g,}, 1G;| > 1. Each member in the

system maintains only one LC, irrespective of the number of groups it belongs to; further, this LC is
advanced as per CA1 and CA2 irrespective of the group in which the member sends or receives (null
or non-null) messages. Therefore the properties prl/ and pr2 will be true for all messages in the

system. Every P; maintains a distinct receive vector RV, ; for each group g, in G;, representing m.c of
the last m received from every Pj € Vy ;. Let D; be the minimum of all Dy, ; computed for every gy in

Gi: D; = min{Dy ;| V gx € G;}. Then, it is only necessary to modify the delivery condition safel to:

e safel’: areceived m is deliverable if m.c < Dj.

The timesilence mechanism of P; will operate independently for each g, in G;, prompting P; to send a
null message in a given group gy, if no (null or non-null) message was sent by Pj in that group g, for
the past w time units. This ensures that D, ; of different g, in G; advance independent of each other
and that the value of Dj increases with time, ensuring that any received m will eventually become

deliverable.

Conditions safel’ and safe2 ensure that a received m becomes deliverable for P; only after a
m’, m'.c 2 m.c, is received from every Pj € Vy ; and for all gx in G;. These conditions, together with

the timesilence mechanism can therefore cope with arbitrarily complex group structures.

Page 55

The NewTOP Group Communication Protocols - Chapter 3

Figure 3.2 - Total ordering via symmetric protocol.

The diagrams in fig. 3.2 aid in the understanding of symmetric total ordering for overlapping groups.
Consider a simple situation (fig. 3.2.i), where mI and m2 are messages with the same number (say x);
there is a requirement that p/ and p2 deliver these messages in an identical order, and before the
delivery of any messages with numbers > x. Assume p3 has a fast communication path to p/ and p2,
m2 is still in transit. Conditions safel’ and safe2 will nevertheless ensure that messages with a

number > x are delivered only after x messages have been delivered. Fig 3.2.ii illustrates a cyclic

group structure. Assume that m/ — m2 — m3, and ml is still in transit as m3 is received at p3. Causal

delivery at p3 (ml1 — m3) is however guaranteed (p3 will maintain a receive vector each for g2 and

g3).

3.2.3 Asymmetric Total Order Version in a Single Group

The asymmetric protocol uses one of the members of a group as a sequencer for ordering messages.

Consider the case of P; belonging to group gx. To multicast a message m in gy, P; unicasts m to a
member of the group, called the sequencer, which P; selects out of the members in its (current)
membership view of gy using a deterministic algorithm (so members that have the same view are

guaranteed to choose the same sequencer). A simple deterministic algorithm could be; each group-
view held by the members of a group lists members in the same order (based on a weighting derived
from their ASCII representation), the member at the head of this list is always selected to be the
sequencer. The sequencer multicasts the unicast messages it receives to all members in its view in the
received order and P; delivers messages (including its own) in the order they are received from the
sequencer. The sequencer, when wishing to multicast to the group, simply multicasts.

Logical clocks are still maintained for each member according to the rules CAl and CA2;
sending and receiving of unicasts update the logical clock exactly in the same manner as multicasts

do. This ensures that the messages that were consecutively unicast by a given process will be

Page 56

The NewTOP Group Communication Protocols - Chapter 3

multicast by the sequencer with increasing message numbers. So, when P; receives a multicast
message m, it will no longer receive a message with numbers smaller than m.c and hence P; can

deliver m straightaway. In effect, messages are deliverable as soon as they are received.

3.2.4 Asymmetric Total Order Version in Multiple Groups
Before extending the above scheme to the case where P; can belong to multiple groups, we will
observe that when P; is not the sequencer, it disseminates its message m to the group members (not by

a direct multicast as in symmetric version, but) indirectly through another member. When the
sequencer multicasts m, it assigns a new m.c which will be different from, and larger than, the number

P; assigned to m in its unicast. P; cannot know the new m.c of its own m until it receives m from the

sequencer. Therefore P; observes the following blocking rule when it is a member of multiple groups:

e Asymmetric Send Blocking Rule: A multi-group member P; must delay unicasting of a message

m (to the sequencer), until it has received (from the relevant sequencers) all the previous m’, m' g

m.g, which it has unicast.

The above rule ensures that the number given to m by P; (and therefore by the sequencer of m.g) will

be larger than the number given to m’ by the sequencer of m’g. That is, consecutive messages

disseminated by P; in different groups are guaranteed to be multicast by respective sequencers with
increasing numbers.

Let G; = (g, | P; € g,/ and |G;l = 1. P; does not maintain a receive vector as it can compute
Dy, ; simply as the number of the last received message from the sequencer of gy. It computes D;
exactly as in the symmetric version, ie., D; = min{Dy i | V gx € G;}, and uses conditions safel’ and

safe2 for delivery.
Only the objects that are members of more than one group, need to operate the timesilence

mechanism. This will ensure that the value of D; increases with time and the protocol is lively.

3.2.5 Generic total order version
The generic protocol enables an entity P; to execute the symmetric protocol version in one group (say
8y) and the asymmetric protocol version in another (say gz). Let G; = {g, | P; € g,/ and IG;l > 1.

Such mixed-mode working is made possible because both the protocols use the same message

numbering scheme. The asymmetric blocking rule needs to be modified as follows:

Page 57

The NewTOP Group Communication Protocols - Chapter 3

¢ Mixed-mode Blocking Rule: A multi-group member process P; must delay unicasting or

multicasting of a message m, until it has received (from the relevant sequencers) all the previous

m’, m’.g # m.g, which it has unicast.

In addition, P; will operate the timesilence mechanism and compute Dy, ; for each g, € G;, depending
on whether symmetric or asymmetric version is being run in g,. It computes D; as D; = min{Dy ;| V

gx € G;} and uses conditions safel’ and safe2 for delivery.

3.2.6 Causal Ordering Protocol

To enable the protocol to be only causal ordering a slight amendment is required to safe2:

safe2: messages are delivered in the non-decreasing order of their numbers; there is no need to fix a
pre-determined delivery order for deliverable messages of equal number, their ordering requirements

are of no importance.

Reducing delivery guarantees from total ordering to causal ordering does not significantly increase
the rate at which messages may be delivered. The simple approach of using receive vectors adopted
by NewTOP ensures that messages that become deliverable are causally ordered and messages with
the same numbers need to be delivered in some pre-determined order to satisfy total ordering.
Therefore, it is only this process of imposing an ordering on deliverable messages of equal number

that may be discarded if causal ordering alone is required.

3.2.7 Arbitrary Ordering Protocol
To enable the protocol to ensure arbitrary ordering amendments are required to safel. The message

delivery conditions of safel’ and safe2 are not required.
e safel: areceived m, m.g = gx is deliverable
The safel described above states that messages are deliverable when they are. received. When

arbitrary ordering is imposed view management is supported but computational messages may be

delivered in different group views by members of a group; virtual synchrony does not hold.

Page 58

The NewTOP Group Communication Protocols - Chapter 3

3.3 Introducing Dynamic Groups

How to enable groups to be dynamic and fault-tolerant is now described: ordering and liveness is
preserved even if membership changes occur due to (suspected) entity failures, voluntary entity
departures and new group formations. This requires every entity to operate the timesilence
mechanism independently in every group in which the object is a member. This is necessary even if

simple atomic delivery of messages is sufficient, since failures cannot be detected otherwise. As
stated earlier, each P; has a group-view process, denoted as GVx’ i» for each g,, g, € G;. GVx, i is
responsible for maintaining P;’s view of the group membership of g,. Informally, this extension has

the following aspects:

1. GVy ; uses timeouts to suspect a failure of some member (Pj) that does not seem to be

responding;

2. in which case GV, ; can initiate a membership agreement on Pj, the outcome of which is that
either non-suspected members agree to eliminate Pj from the group view, with an agreement on
the last message sent by Pj, or Pj continues to be a member and P;j is able to retrieve any missing

messages of P;.

3.3.1 Message Stability

It is necessary to ensure that a member can always retrieve a missing message from another
functioning member. This in turn requires a mechanism that enables a member to safely discard a

received message. To develop such a mechanism, message stability is defined:

e Message Stability: A message m becomes stable in P; if P; knows that all members in the current

view of m.g have received m.

Message stability information is piggybacked on the transmitted messages. That is, when a message

m, m.g = gy, is transmitted by P;, a field m.ldn (1dn: largest deliverable message number) will have
the current value of D, ;. To identify stable messages, P; maintains a vector called SVy, i (Stability

Vector) for each gx. At member Pj, SV, ;[j] represents the latest m.ldn value received from Pj. If
min(SVx, ;) represents the minimum value in SVx’ i» then all m, m.c < min(SVx,i) will be stable. A

process can safely discard stable messages after delivery.

Page 59

The NewTOP Group Communication Protocols - Chapter 3

3.3.2 Managing Group Membership
Group-view process GV, ; of P; works as if P; is not a member of any other group. So, we can ignore
the fact that P; can be a member of more than one group, and will describe the GV ; of P; for a given
8y dropping for convenience suffix x when no confusion is likely.

GV; uses a communication primitive called mcast(m) to transmit its message m to all GV
processes of Pj € Vy ; and the messages are delivered to (functioning and connected) destination GV
processes in the sent order. GV; has a failure suspector module, S;, which monitors the liveliness of

every Pj,j #iand Pj € Vy,;. If S; observes that no multicast message has been received from P; for a
period W > w (w = the timesilence timeout duration) then it suspects the failure of Pj and notifies
GV; of its suspicion. Application developers may assign w a value that best suits the network

environment. As a guide, w may be set to larger delay than the expected transit time of a message in a
network yet small enough to minimize the possibility of unfounded suspicions.

The algorithm for GV; is given below, dropping the suffix i for all the set variables used
exclusively by GVj; these set variables are initialized to empty and a Boolean variable consensus is
initialized to false, when the group gx is formed. The algorithm describes the steps taken by GVj,
once a certain condition holds. The algorithm for GVj has two components, membership agreement

(for reaching agreement on entities suspected to have failed) and view installation.

Membership Agreement:

i notification { Py, In} received from Sj: suspicions := suspicions U {Py, In}; mcast(i, suspect,
{Py, In});
ii. (j. suspect, { Py, In}) received: if Py # P; then record the suspicion {Py, in} of GVj in gossip;

if Py = P;then discard the received message;
i suspicion {Py, In} of GV; is recorded in gossip A (m, m.c > In, is received from Py): mcas(i,
refute, {Py, In}); /* P; has received a message from Py numbered > In, so refute GVjs

suspicion of P; all received m of Py, m.c > In, can be piggybacked on the refute message */
iv. (j, refute, {Py, In}) received A {Py, In} € suspicions: suspicions := suspicions - {Py, In};

recover the missing m, m.c > In of Py, mcast(i, refute, {Py, In});

Page 60

The NewTOP Group Communication Protocols - Chapter 3

v. for every [Py, In} € suspicions, suspect messages received from every GVj of Pj EV- (P
{P, In} € suspicions] U failed}: detection := suspicions; suspicions := {}; mcast(i,
conﬁrmed, detection); consensus := true;

Vi (j, confirmed, detectionj) received A detectionj < suspicions: detection := detectionj;

suspicions := suspicions - detection;; mcast(i, confirmed, detection); consensus := true;
Vil (j, confirmed, detectionj) received A (P, In} &€ detectionj for some In: force S to suspect Pj; /*

Pj has succeeded in suspecting Pj, so reciprocate by suspecting Pj */

It is worth noting at this point that messages directly responsible for resolving group membership
(suspicion, suspect, gossip) are multicast by members of a group and are not the responsibility of an

ordering protocol.

A notification from S; to GV; will be of the form Py, In} - indicating that Py is suspected to
have failed and In is the number of the last message P; has received from Pj. GV; maintains a set
suspicions; where notifications from Sj are entered. GV; also multicasts a suspect message (i, suspect,
{Py, In}) to GV processes of all members (including GV}) that are in its current membership view V;.
If GV, receives confirmation that all other unsuspected members in V; also suspect each {Py, In} in its
suspicions;, it decides to treat each Py of suspicions; as having failed and P is added to a set called
Jfailed;. P; discards any messages received from Py and GVy, if either Py € failed; or Py & V;. Also,
once suspicion {Py, In} has been added to suspicions;, GV; will keep the messages received from Py
and GVj as pending. If suspicion {Pj, In} is subsequently refuted, the pending messages will be
assumed to have been just received, and will be handled appropriately; if, however, suspicion {Py, in}
is confirmed as a failure, then the pending messages of Py and GV}, are discarded.

Suppose that GVj receives the message (i, suspect, {Py, In}) from GV;. If {Py, In} is already
in suspicions;, GVj regards GV; as yet another process that holds the same suspicion as itself; if
however {Py, In} is not in suspicionsj', it records this suspicion from P; in gossipj, but suspends
judgement on it pending confirmation from its own Sj. If in the mean time Pj receives a message m
from Py with m.c > In, then GVj removes {Py, In} from gossipj and multicasts a refute message (j,
refute, { Py, In}). When GVj receives this refute message, it stops suspecting Py for In, and removes
{ Py, In] from suspicions;; it also initiates an attempt to recover the missing messages of Py (a missing

m can be piggybacked in the refute message; by definition any missing m is unstable, so would not

Page 61

The NewTOP Group Communication Protocols - Chapter 3

have been discarded by Pj; Pj can therefore always piggyback m.). After recovery of the missing
message, P; multicasts (i, refute, {Py, In}) message. If GV; ever receives a message (k, suspect, {P;,
In}), it takes no action in the hope that some GVj will refute that suspicion. When GV; confirms all of

its suspicions (condition (v)) or a subset of them (condition (vi)) into agreed failure detection, it sets
the Boolean consensus to true. Functioning members that hold identical views and do not suspect
each other, will confirm identical detection sets in an identical order. (A proof of this can be seen in
[Mishra91].) Every agreement on a new detection set leads to the installation of a new view that

excludes the members of the detection set.

View Installation:

viii. (consensus = true): failed := {Py | Py € {Py, In}€ detection); In,,, := min{in | {Py, In}€
detection); for every Py € failed do instruct P to discard any m received from Py with m.c >
Iny,, od; update_view(failed, Iny,y); for every Py, € failed do RV[k] := oo; SV[k] := oo; od;

failed := { }; consensus:=false;

The view installation component assumes the use of a primitive update-view(F, N) which, upon being

invoked, will be executed asynchronously and will install a new view before any m, m.c > N+1, is

delivered to P;. The algorithm is as follows:

® update_view(F: set_of processes; N: integer):

{ wait until P; is delivered the last m, m.c < N; V.=V -F;}

Absent or rejected messages from suspected members of the detection set prevents D from increasing

beyond Ingy, and any received m, m > Ilngyy, of any group will be blocked from delivery. Setting
RV[k] := SV[k] := oo will allow D to increase more than In,,, and message delivery to resume if the
value of D has been stuck at Iny,,. Before setting RV/k] and SV/[k] to infinity, a message m of a failed
Py with m.c > In;y,y is discarded, even though it has been agreed that m was sent before Pk failed.

This is a safety measure, necessary to preserve MD5.

After treating all the members in a given set detection; as having failed "together" and

ignoring their messages with m.c > Iny,,, GV;j calls the primitive update_view (failed;, In,,,) to

install the new view, V- failed;, just before any m, m.c > In,,,+1, is to be delivered to P;. RV and SV

Page 62

The NewTOP Group Communication Protocols - Chapter 3

are also updated to reflect the new view. As new view is installed only after the last m, m.c < Ingyp+1,
is delivered, m.s will be in the current view for any m delivered in group g (MD1 is met).

The diagram in fig. 3.3 is used to aid the understanding of the group membership service.
Assume Pk multicasts m] in group GI and then multicasts m2 in G2. After receiving m2, pl
multicasts m3 in group G3. This provides a causal relationship between m/, m2 and m3; ml — m2 —
m3. Let pi and pj get permanently partitioned from pk while mI was been multicast, and let them not
receive ml at all. Since m1 — m4, m4.c > ml.c and pi cannot deliver m4 until Dg; ; increases beyond
ml.c which will not happen until pk is detected to have failed. The prolonged silence of pk will cause
GV, to suspect { Pk, Ink} for some lnk < ml.c, and then to reach agreement with GV; en that suspicion.
Pk will be removed from Vg, ;before any m, m.c = Ink +1, is delivered. Thus, when m4, m1 — m4 is

being delivered to pi, ml.s is guaranteed not to be in Vg, ;, if mI cannot be delivered to Pi at all.

Figure 3.3 - Failure detection.

3.4 Group Formation

The group formation protocol is now described. There is an assumption that the formation of a new
group can be initiated by any of the prospective group members. Selection of a potential to initiate
group creation and the names of other entities that should belong to the group are dictated by higher

level applications; we therefore assume that P; (initiator) has the names of the intended members of a
new group gn. P; must not be a member of any gx such that Vy ; = gn. The protocol given below has
the following characteristics. A two phase protocol is used (with P; as the coordinator) to form the

group (steps 1-3). If this succeeds, then a member uses timesilence and group view process to monitor

liveliness of other members (step 4); the first message Py sends in the new group gn is a special

message start-group that is multicast for reaching agreement (in step 5) on the minimum value for

Page 63

The NewTOP Group Communication Protocols - Chapter 3

message number (m.c) with which application-related computational messages are to be multicast in

Stepl: P; sends ‘form group g, message to each intended member of g5, inviting them to form a

group; the message contains the entity-ids of the intended members of gy.
Step2: When a Pj, j # i, receives an invitation to form g,, it diffuses this message to each
P Jo J &n g

intended member of g, piggybacking its ’yes’ or 'no’ decision.
Step3: A 'no’ message acts as a 'veto’; P; sends its 'yes’ message if it receives a 'yes ’ from the rest
within some time duration, else it sends a no’.

Step4: If a Py € gy receives a 'yes’ message from every proposed member of gy, it activates the

timesilence mechanism and a process GVp, i for the newly-formed gy; the initial view VO,,’ k is set
to gn and RVy is initialized to 0. The first message Pg sends in the new group is a special

message start-group which contains an integer field called the start-number that is set to the m.c

of the message. This number indicates Pg’s proposed minimum value for message number with
which application-related computational messages are to be multicast in gy,.
Step5: Py, waits for the following condition to be satisfied before it can send any application

related, computational message in gy: receive a start-group message from every Pj in its current

view Vp k. (Note that the current view need not be Von, k due to view updates by GV, r which is
executing in parallel; also, P is not blocked from sending null messages in g5 when prompted by
the timesilence). While P is waiting for the condition to become true, Dy, k is not allowed to be
modified except when Py receives a start-group message with start-number larger than Dy, g, in
which case Dy, is increased to the proposed start-number of the incoming message. Once all the
required start-group messages are received, Pk sets Dy k to start-number-max = the maximum of
start-numbers proposed by all Pj in view Vp k; LCy is set to start-number-max if start-number-

max is larger; Py then starts sending and delivering application-related computational messages of

8n-

To see the correctness of the group formation protocol, suppose that P is already a member of one or

more groups when it is attempting to form a new g,. While it is waiting for the condition of step 5 to

become true, the value of Dy i is incremented cautiously so that Pk is not delivered any m, m.c >

start-number-max, until that condition becomes true. Any computational message that was multicast

Page 64

The NewTOP Group Communication Protocols - Chapter 3

in g, will have m.c > start-number-max. This ensures that Py can be delivered the messages multicast

in g, together with those multicast in other groups, in a non-decreasing order of message numbers.

3.5 Protocol Optimizations and Extensions for Overlapping Groups

In overlapping groups a degree of message blocking is inevitable to ensure total ordering across
groups (see 3.2.2). Such message blocking may be reduced for groups that are overlapped in a
specific manner and the ordering protocols involved have advanced knowledge of the overlapping
group structure. There are instances when an application developer will know exactly the overlapping
strategies that are necessary for satisfying application requirements. Therefore, it is desirable to make
available to an application developer such optimizations when they are appropriate. Following are
descriptions of enhancements that may be applied to the previously described ordering protocols that

seek to reduce message blocking in overlapping groups.

3.5.1 Shared Sequencer
If an entity (P;) participates in only one group, and an asymmetric protocol is used within this group
to guarantee the totally ordered delivery of messages, there is no need for P; to block message
delivery as all messages arrive from a single source (sequencer). If Pi assumes simultaneous
membership of more than one group, irrespective of the ordering protocols used within these groups,
message blocking would be incurred due to conditions safel’ and safe2. If, however, only one
sequencer was present, shared by all groups that Pi is a member (assuming all these groups are
asymmetric), then blocking may be unnecessary as all messages are arriving from a single source
(shared sequencer) and are therefore totally ordered. This is because the blocking of messages is only
necessary when there is the possibility of messages arriving with a lower LC of an already received
message. This is not possible as Pi will only receive messages from a single source (the shared
sequencer), which will always multicast a message with a higher LC than all preceding messages.
Overlapping groups that may benefit from a common sequencer are classified as shared
sequencer groups. Groups classified as shared sequencer do not block the delivery of messages.
However, to ensure the correctness of a shared sequencer group the two shared safety conditions must

be observed:
e shared-safetyl: Non -shared sequencer groups may not overlap with shared sequencer groups.

e shared-safety2: The election of a new sequencer must share the membership of the same groups

as its predecessor.

Page 65

The NewTOP Group Communication Protocols - Chapter 3

Ensuring the shared-safety conditions is left to application developers. A violation of either/or both

shared-safety conditions will result in the totally ordered protocol defaulting to arbitrary ordering.

3.5.2 Event Driven and Lively Groups

In the protocols described in this chapter a member is required to stay lively within a group to avoid
being suspected of failure by other members and to ensure pending messages become deliverable.
The protocols described here enable a member to remain lively by sending null messages during those
periods it is not generating computational messages. The mechanism responsible for this action is
termed the timesilence mechanism. The rate of computational messages generated within a group is
application dependent. If the rate is high then the timesilence mechanism will not be generating "null"
messages, alternatively, a low rate may result in large numbers of "null" messages. In situations
where there is a high number of "null” messages compared to computational messages, the primary
purpose of the timesilence mechanism reduces to failure detection.

There is a possibility of using the failure detection mechanism only when necessary to save
networking resources. For example, an application may provide a service to a number of occasional
clients. A conferencing style application may be structured as a group of participating clients, each
client represented as a member of a group. Clients are provided with mechanisms that allow the
distribution of text messages throughout the membership of the group. Clients may be geographically
separated by large distances and message passing is infrequent. The benefits of detecting failure
during quiet periods (no client messages) may not be any greater to the end user as detecting failure
when attempting to send a text message to the group. Therefore, an application developer may

classify a group as follows:

e Lively — timesilence mechanism and failure detection is active throughout the lifetime of a group;
the duration of the timesilence period is specified at the creation time.

e Event — The timesilence mechanism is only active when computational messages exist within the
group. Once all these messages are delivered to group members the failure suspicion and
timesilence mechanisms are shutdown. The appearance of further application dependent

messages reactivates these mechanisms.

3.6 Summary

The protocols and mechanisms presented in this chapter enable a group communication service that
may satisfy a wide variety of application requirements. Protocols capable of two ordering types have
been specified (total and causal) together with two methods for accomplishing these orderings

(asymmetric and symmetric). Mechanisms have been described that are capable of handling dynamic

Page 66

The NewTOP Group Communication Protocols - Chapter 3

groups (failure detection, membership agreement, view installation). Mechanisms that ease the
development and optimize the performance of a distributed application are presented (shared
sequencer, event driven and lively groups). In the following paragraphs the group communication
protocols of NewTOP are compared to protocols developed for use in similar works.

The Trans and Transis family of protocols [Melliar-Smith91, Amir92, Dolev93] use
symmetric protocols for providing total order delivery, but are not as general purpose as NewTOP, as
they rely on network level broadcast communication; further, the issue of an entity belonging to
multiple groups has not been addressed. ISIS was the first system to include support for multiple
groups; however the vector clock based protocols of ISIS [Birman91] become quite difficult and
expensive to implement for arbitrary group structures. All previously published symmetric total order
protocols require multicast messages to contain explicit information about causally preceding
messages, and represent the received messages in a directed acyclic graph. The task of maintaining
such a graph is much more complicated - especially for multiple groups - than the simple approach of
using receive vectors adopted in NewTOP. NewTOP is able to offer this advantage because it does
not attempt to precisely represent the absence of causal relations among multicasts as this is not
essential for total order message delivery. The net effect is that NewTOP has low and bounded
message space overhead (the protocol related information contained in a multicast message is small)
and is relatively easy to implement even when process groups overlap in an arbitrary manner. Further,
NewTOP has the capability, not available on any existing protocols, of supporting both symmetric
and asymmetric protocols.

The membership algorithm of NewTOP coordinates view updates with message delivery.
NewTOP maintains view consistency in the presence of (real or virtual) partitions by permitting a
group of entities to partition themselves into two or more sub-groups of connected processes with the
property that: (i) the functioning entities within any given subgroup will have identical views about
the membership; and (ii) the views of entities belonging to different subgroups are guaranteed to
stabilize into non-intersecting ones. This makes NewTOP more powerful than many other protocols
[Ricciardi91, Mishra91] that can guarantee continued group operation only when the group partitions
in such a way that exactly one subgroup can be uniquely identified as the primary. Due to the ability
to enable partitionable operation the membership service of NewTOP is essentially similar in
functionality to those of Transis [Amir92], the protocols of [Melliar-smith91, Schiper93] and Relacs
[Babaoglu94].

NewTOP supports dynamic formation of new groups. The formation protocol exploits the
fact that processes are permitted to belong to several groups. The group formation facility is more
powerful than ’joining an existing group’ facility of current protocols, as the effect of joining a group

can be obtained by processes forming a new group and exiting the previous ones.

Page 67

The NewTOP Service - Chapter 4

Chapter 4

The NewTOP Service

The NewTOP service is a CORBA service that implements the protocols described in the previous

chapter. This chapter describes the design and implementation of this service.

4.1 Overview

The NewTOP service is a CORBA service. Clients of the service may issue a request to a group of
objects with a single invocation and retrieve responses from such a request. Members of a group are
CORBA objects. Clients of the service may also manage the creation, deletion and membership of
object groups. Due to the varied group communication requirements that applications may place on
the NewTOP service, a developer may configure the functionality of the underlying protocols
supported by the NewTOP service on a per group basis. Objects may participate in more than one
group simultaneously, allowing the membership of groups to overlap.

Only CORBA compliant mechanisms have been used in the implementation of the NewTOP
service. This enables the NewTOP service to run on any CORBA compliant ORB, allowing
applications to benefit from the interoperability and portability associated with the CORBA
environment. As with any CORBA service, the NewTOP service is presented via an IDL interface.
This interface specifies the methods available for application developers to allow the integration of

group communication related services into their applications.

4.1.1 Enabling Client/Service Interaction

An application developer creates potential group members as CORBA objects. Such objects are
presented via an IDL interface. A single group member is addressable via a single object reference
(IOR). This enables the NewTOP service to identify group members and associate them to groups. A
group member may also be referred to as a client of the NewTOP service.

The NewTOP service is a distributed service and achieves distribution with the aid of the
NewTOP Service Object (NSO). Each client (group member) is allocated an NSO. Group related
communications required by a client are handled by its NSO. A client, irrespective of how many
groups the client participates in, requires only one NSO. The underlying ORB handles

communication between a client and its NSO. Therefore, the NSO may reside within the same

Page 68

The NewTOP Service - Chapter 4

address space, in a different address space, or on a different node in the network to its associated
client. The most efficient configuration would be the client and its NSO residing within the same
address space. Fig. 4.1 shows the communication relationships between NewTOP service clients and

their NSOs.

Messages governed by
Newtop protocols
v
‘/
NSO (B) aE
- ? 4> Application dependent
NSO (A) ! messages
NSO (©) nE

Newtop service

Figure 4.1 - Clients of the NewTOP service and associated NSOs.

4.2 Services

The NewTOP service consists of three services implemented by corresponding objects within the

NSOs: (i) membership, (ii) invocation/multicast, (iii) group management (see fig. 4.2).

Client

| Group management service objectl

v

l Invocation/multicast service object

L Membership service object

NSO: Newtop service object

Figure 4.2 - NewTOP services.

The management service provides clients with create, delete and leave group operations. The
invocation/multicast service provides four group invocation operations (wait for responses from all,
from majority, from one and an asynchronous, no wait invocation). The membership service
maintains the membership information and ensures that this information is mutually consistent at each
member. This is achieved with the help of a failure suspector that initiates membership agreement as
soon as a member is suspected to have failed. The client can obtain the current membership

information by invoking the ’groupDetails’ operation. Fig. 4.3 summarizes the main operations

Page 69

The NewTOP Service - Chapter 4

provided by an NSO.

NSO

createGroup()
deleteGroup()
leaveGroup()

invokeWaitForAll()
invokeWaitForMajority(

invokeWaitForFirst()
invokeWaitForNone()

groupDetails()

Figure 4.3 - Summary of NSO operations.

A more detailed description of each service is now presented.

4.2.1 Management Service
The management service manages the creation of new groups, the deletion of existing groups, and the

change of membership for existing groups.

e Creating a group — The creation of a group is initiated by a client of the NewTOP service; it is
assumed that the relevant NSOs have already been created. The client is required to give the
group an identifier that can aid the client and the NewTOP service in differentiating between
groups. This identifier should be unique and consists of a string of ASCII characters. The client is
also required to supply an initial member list containing the IORs of the NSOs. The objects
identified by the list are considered group members at the start of a group’s life.

e Ordering - A client may specify what ordering guarantees are required for enabling message
delivery (total, causal, arbitrary) and what style of ordering protocol is to be used (asymmetric or
symmetric) within a group.

o Type - A group may be designated as lively or event driven. In an event driven group the
timesilence mechanism (used for detecting member failure and to advance message delivery) is
only active in the presence of computational messages derived from a client. In a lively group the
timesilence mechanism is active all of the time.

e Deleting a group — A client may specify, at any time, that a group is to be deleted. The deletion of
a group does not result in the deletion of the individual group members, but only of the abstract
group entity. When a group has been marked for deletion all group members are told by the

management service to voluntarily leave the group. The group membership service may, due to

Page 70

The NewTOP Service - Chapter 4

members leaving and/or members failing, indicate to the management service that the
membership of a group has reduced to a singleton. This results in the management service
deleting this group.

e Leaving a group - At any time during the lifetime of a group a member may request to leave the

group.

The underlying protocols do not support an explicit join facility. Since members are permitted to
belong to several groups a similar effect can be obtained by members forming a new group and
exiting the previous group. Joining a group in this manner results in the identifier of the group
changing after each join is accomplished. As the joining of a group may result in computations that
are application dependent (e.g., state transfer in replica groups), it is left to the application developer

to implement a join facility that tackles any inconvenience associated with changing group identifiers.

4.2.2 Invocation/Multicast Service
The Invocation/multicast service manages all aspects of messages related to the delivery of client
requests to object groups and server replies to clients. It is worth noting that the next chapter provides

a detailed description of the protocols that the invocation/multicast service implement.

e Invocation - A client may issue a request in an asynchronous or synchronous style.

e Server replies - A client issuing a synchronous request may dictate the number of server replies to
wait for (all, majority or one) and how these replies are handled by an NSO in the event of failure
within the server group.

e Protocols - The invocation/multicast service provides the protocols for guaranteeing the ordering
(total, causal or arbitrary) and delivery atomicity (with respect to group view updates) of

messages.

The NewTOP service relies on the message passing capabilities of the ORB for enabling multicast
communication between group members. Since, at present, ORBs only provide one to one
communication, multicasting has been implemented by making invocations in turn to all the
members. CORBA supports synchronous and asynchronous RPC. The asynchronous style RPC is
termed oneway and allows an RPC to be sent while enabling the calling client to continue execution
(no blocking of client). However, the CORBA specification indicates that a oneway RPC does not
need to be attempted by an ORB. Some ORBs do implement oneway, some do not. For this reason,
synchronous RPC has been chosen for use in the NewTOP Service. Multiple threads of execution are

used to obtain parallelism and prevent client blocking.

Page 71

The NewTOP Service - Chapter 4

1
Clientn > :
i
1
i

mb m7

ml mi2 m2 {m3|ml0 [mll

Figure 4.4 - Message interactions in a group multicast.

The principal message exchanges involved in making a group invocation are now explained. Assume
a group of n identical objects and object] wants to make a synchronous group invocation on some
operation of the objects; this invocation will have to be made via the group service. Fig. 4.4 shows
two of these objects and their respective NSOs. The client of the NewTOP service making the
invocation is required to marshall the invocation request, consisting of the name of the function and
associated parameter list, into a single structure and send it to its NSO. Message 1 (m! for short) is
such a message; m2 is its reception. As a result, NSO1 sends NewTOP specific messages to other
NSOs; in fig. 4.4, m3 is such a message and m4 is its reception at NSOn. NSOn responds by
composing and sending the appropriate invocation message, m5, to its target object (objectn); m6 is
its reception at objectn. The response from objectn (m?7) is received by NSOn (m8); NSOn then sends
NewTOP specific message (m9), it is received at NSOI (ml0), from here ml1 and mi2 indicate the
final journey back to the invoker. An NSO (such as NSOn) that is receiving an invocation on behalf of
its target object must be able to compose the type specific invocation on the fly; this is made possible
by making use of the Dynamic Invocation Interface (DII) feature of the ORB (in the fig. 4.4, the

invocation represented by the message pair mS5, m8 uses DII).

4.2.3 Group Membership Service
The group membership service maintains a mutually consistent view of a group membership for each

member of a group.

e Detecting member failure — The NewTOP service may suspect member failures with the aid of a
timeout based failure suspicion protocol and/or exceptions thrown by the underlying ORB when
attempting an RPC. As described in the previous chapter, suspecting a member of failure results
in the execution of the membership agreement protocol; the suspected member will be removed
from the group or will remain in the group with all suspicions removed. Whatever the outcome of
the protocol, group members will retain mutually consistent views of the group membership.

o Single group membership — When membership of a group falls to singleton the group is marked

Page 72

The NewTOP Service - Chapter 4

for deletion, the management service is informed and all information relating to the group is

removed.

Changes in group membership are reported to the invocation/multicast service to enable pending
messages to be appropriately managed (i.e., delivered or disregarded). The group membership service
also provides clients with a mechanism that enables clients to gain current group views of any group

which the client is a member.

4.3 Implementation Issues

This section describes issues relating to the manner in which the NewTOP service was implemented.
The creation of NSOs, representing application information within messages, group transparency and

a suitable threading model for ensuring the correct functioning of protocols are covered.

4.3.1 The Creation of an NSO

The function of creating NSOs is handled by an NSO factory (NSOF). An NSOF is a CORBA object,
the sole purpose of which is to create NSOs and manage existing NSOs that it has created. An object
wishing to participate in group communications is allocated an NSO by an NSOF. Further to this
action, an NSOF indicates to a newly created NSO the IOR of the object that it is to service. This
enables an NSO to issue requests (derived from other group members) on its associated client object
when such an object is acting as a server in a group. The allocation of an NSO to a client object may

be achieved in two ways:

o Direct allocation - An object issues a request to an NSOF that results in the NSOF allocating an
NSO to the requesting object (fig. 4.5.1).

e Indirect allocation - The NSO is allocated to an object which is unaware of such an allocation. A
request is issued by an object (not the object to be associated with the NSO) that results in the

allocation (fig. 4.5.ii).

Page 73

The NewTOP Service - Chapter 4

(i) Direct (ii) Indirect
allocation allocation

Figure 4.5 - Allocating an NSO.

Indirect allocation is used when the object that is associated with an NSO is unlikely to issue requests
or retrieve group related information. An example of this is when a number of objects implement a
service via a server group. These objects are not required to have knowledge of the server group, they
are simply required to service client requests. Client requests manifest themselves within a server
group as a request issued by an NSO via the DII. As a request issued by an NSO via the DII appears
no different than a request issued by any other object it is possible to accomplish an arrangement
where members of a server group are unaware of their participation in a group. In the indirect
allocation approach an NSOF does not indicate to an object the IOR of their allocated NSO. The
direct approach enables objects to gain the IOR of their NSO from the NSOF allowing such objects to
immediately start issuing requests to object groups.

An NSOF maintains a record of all the NSOs that it has created. An NSOF provides a
function that allows clients to delete selective NSOs. Further to this, a client may request a complete
list of all the NSOs an NSOF has created. There may be any number of NSOFs in a system. NSOs
may participate in groups together irrelevant of the NSOF that created them.

NSOs may be created as distinct processes or as threads within the process of the NSOF. By
creating NSOs as distinct processes the failure of an NSOF will not hinder the functioning of the
NSOs created by it. Whereas the failure of an NSOF also results in the failure of any NSOs created as
threads by it.

4.3.2 Handling Application Related Message Contents by an NSO

When a client issues a request to an object group the client does so via an NSO. As a request is
application dependent their structure and content are application specific. Therefore, such messages
have to be formed into a structure that is suitable for handling in a generic way by NSOs. Formulating
such a structure from information that may be of arbitrary type and length is commonly termed
marshaling. The opposite of marshaling is termed unmarshaling.

The CORBA type CORBA::any together with the CORBA sequence data structure are used

Page 74

The NewTOP Service - Chapter 4

by an NSO for carrying client requests within multicast messages. The type CORBA::any may hold,
literally, any CORBA type, including CORBA::any, and any CORBA data structure. A sequence is a
list of items, all items in a sequence are the same and are specified as a CORBA type. There are two
types of application related messages (request and reply), each of which have their own marshaling

rules that should be adhered to by application developers:

® Request - The function name (represented by a string) together with all parameters are
transformed into values of type CORBA::any. They are then placed within a sequence in the order
they appear in the function definition. The resultant sequence is itself transformed into a single
value of type CORBA::any.

e Reply - Replies from a function call (return values and changes in parameter’s values) are
transformed into values of type CORBA::any. They are then placed in order of return (i.e., return
value first followed by out parameters in the order they appear in a function definition) in a

sequence. This sequence is then transformed into a single value of type CORBA::any.

A client is responsible for marshaling a request and unmarshalling replies to such a request. An NSO
is responsible for unmarshalling a request, issuing a request at a server object via the DII and
marshaling the replies. An NSO is also responsible for marshaling multiple server replies (a possible
result of wait for all, wait for majority calls) into a single value. The structure of such a return value is
that of a CORBA::any value that contains within it a sequence of CORBA::any values, each entry in
the sequence is a server reply. The client is responsible for unmarshaling multiple server replies

structured in this manner.

4.3.3 Group Transparency

Clients participating in group communications directly via an NSO are aware of server groups. The
need to gain an NSO from an NSOF, marshal requests, unmarshal replies and identify the group to
which their requests are to be directed results in non-transparent group communication for clients.
However, servers may not be aware of any participation within a server group due to the indirect
approach to NSO creation (see 4.3.1).

Providing group transparency for clients may be desirable for applications that seek high
availability via the replication of a service. For example, a service may become highly available by
replicating an object capable of supporting the service over a number of nodes in a network. By using
a suitable replication protocol (active or passive) the service may remain available assuming that at
least one object that supports the service remains correct and reachable by clients. By making the
replica group transparent a client is unable to make a distinction between a service that is highly

available and one which is simply provided by a singleton. This allows services to be made highly

Page 75

The NewTOP Service - Chapter 4

available without the need to alter the clients of such a service.

A method for introducing group transparency to the NewTOP service is accomplished via a
proxy object. The proxy object serves as a representation of a server group for a client and is placed
between a client and its NSO (see 2.6.4). There are two ways in CORBA to implement a proxy

object:

e Hard coded per group - An application developer codes a proxy object on a per group basis.
e Generic - An application developer writes a proxy object that is capable of using the DSI to

assume the role of a number of different server groups.

4.3.4 Threading Model

Enabling an asynchronous message passing environment within the NewTOP service is achieved via

the use of threads. Six types of threads exist within an NSO:

1. Receive - Accept incoming messages and place such messages into the pending buffer.

2. Delivery - Take messages sent by other NSOs (other group members) from the pending buffer,
ensure the ordering and delivery guarantees of messages are satisfied and deliver messages to the
application layer. If replies are forthcoming from the application layer, and the request that raised
them is synchronous, formulate replies and multicast them to the appropriate group (via multicast
thread). Alternatively, if open group message forwarding is required, create an emulated client
thread and pass the message that resulted in this creation to the newly created emulated client (see
next chapter for detailed description of open groups, emulated clients and message forwarding).

3. Issue - Take messages sent by the client/emulated client (group requests) and multicast them to
the appropriate group.

4. Emulated client - Formulate group request and issue such a request to the appropriate group.
Accept replies and formulate a reply message to send to appropriate group.

5. Multicast - Issues multiple RPCs to enable a multicast. If an exception is raised by the ORB
indicating RPC failure during the sending of a message, the target of the RPC is suspected of
failure and it’s IOR is placed in the suspect buffer.

6. Failure Detector - Monitors the liveness of group members and the entries in the suspect buffer to

determine if the group membership algorithm is to be executed.

The emulated client and the multicast threads are created when required by other threads in the NSO.
There may be many emulated client threads (multiple open group requests) and many multicast
threads (multiple requests for multicasts) in existence simultaneously. However, a thread of this type

terminates after the completion of its task. The other threads are in singular existence during the

Page 76

The NewTOP Service - Chapter 4

lifetime of an NSO and collaboratively implement the functionality supported by an NSO.

4.4 Summary

In this chapter a service has been described that enables application developers to integrate group
communications into their CORBA applications. The CORBA environment has been extended to
support group communications in a standard way (i.e., the service approach). This approach is the
same as that adopted by OGS [Felber98a]. This ensures that applications built using the NewTOP
service may benefit from the interoperability benefits associated with CORBA; there is no reliance on
any group communication sub-system [Narasimhan97] or non-standard protocols that enhance the
ORB [Birman93, Maffeis95]. The NewTOP service and OGS provide asynchronous message passing
via different methods; OGS uses oneway function calls to achieve asynchronous message passing
whereas the NewTOP service uses threads. The use of threads to enable asynchronous message
passing ensures that the NewTOP service will operate correctly on ORBs that may not implement
oneway function calls. Furthermore, OGS does not support overlapping groups and does not allow an
application developer to choose between different types of message ordering protocol (i.e.,

asymmetric, symmetric).

Page 77

Protocols for clients and servers - Chapter 5

Chapter 5

Protocols For Clients and Servers

The provision of a service may be accomplished via a group of objects/entities. Such a group is
termed a server group. Clients may gain service from a server group (issue requests and receive
replies). The overlapping group functionality of NewTOP provides a very flexible way of

implementing client/server group interaction protocols. This chapter describes such protocols.

5.1 Overview of Client/Server Group Interactions

Clients may gain service from a server group via an open group or closed group approach:

1. Closed group - A client is considered a member of the server group and multicasts requests to
each member of the server group. When message latency is high between a client and a server
group (e.g., geographically separated by large distances) client requests will take far longer to
service than if the server group was a singleton. As a member of the server group, a client may be
required to participate in group communication protocols as a member of a server group (e.g.,
group management, message ordering), possibly requiring further multicasting on behalf of the
client and possibly the blocking of messages. For this reason, closed groups are more appropriate
when clients and a server group exist on the same LLAN or neighboring LLANs.

2. Open group - A client is not considered a member of the server group and issues requests to just a
single member of the server group. Unlike the closed group, clients do not participate in group
communication protocols as a member of the server group. This makes the open group approach
more suitable than the closed group approach for use in wide area networks (WANs), such as the

Internet, when message latency between a client and a server group may be high.

The NewTOP service is capable of supporting both the above approaches. The protocols presented
here that enable open and closed group client/server interaction benefit from the existence of
NewTOP. A layered approach may be used to structure these protocols together with the application
and communication network. Fig 5.1 shows this layered approach and also describes the type of
message passing that occurs between the layers of a client and a member of a server group. The
invocation layer contains the protocols suitable for enabling open and closed group client/server

interaction.

Page 78

Protocols for clients and servers - Chapter 5

Client Server
| Application layer | | Application layer I
Issued requests ¢ T Server replies Server replies ¢ T Issued requests
I Invocation layer | Invocation layer |
Multicast request Deliverable messages ~ Multicast replies T Deliverableimessages
| NewTOP J I NewTOP |
Outgoing messages + + Incoming messages Outgoing messages + + Inggming messages
ORB

Figure 5.1 - Layering protocols.

The remainder of this section provides an overview of the techniques used by the invocation layer to

accomplish open and closed client/server group interactions.

5.1.1 The Overlapping of Groups

The invocation layer achieves the open and closed group approaches to client/server group
interactions via the overlapping of groups. A single group containing members that support some
service is identified as a server group. Clients wishing to access services provided by a server group
create a group containing themselves that overlaps with (shares membership of) the server group. A
group that contains clients and servers is termed a client/server group. To satisfy open and closed

groups, the overlapping of client/server and server groups may be achieved thus:

1. Closed group - Client/server group contains client and all members of the server group (fig 5.2.1).
2. Open group - Client/server group contains client and only one member of the server group

(fig.5.2.ii).

Member @
Client @)
Client/server‘
group
Server
group

Figure 5.2 - Achieving closed and open groups.

Page 79

Protocols for clients and servers - Chapter 5

There is no limit to the number of client/server groups a client may form. Nor is there any limit to the
number of client/server groups the members of a server group may participate in. Furthermore, the
open and closed group approaches may be used simultaneously by both clients and members of a
server group. For example, the members of a server group may be participating in closed and open
client/server groups simultaneously and/or a client may participate simultaneously with a number of

server groups via closed and open groups.

5.1.2 Client Requests and Server Replies

A client obtains service from a server group by directing requests at the server group via a
client/server group. Members that act as servers within a client/server group handle such requests.
The underlying group communication protocols ensure ordering and delivery guarantees of client
requests and server replies when servers participate in multiple client/server groups. Requests may be

classified by the number of replies the issuing client is prepared to wait for:

e One way send - A request requires no reply. A client that issues such a request does not wait for
replies and may continue processing; asynchronous message passing.

e Wait for first - Only wait for a reply from a single member of the server group; synchronous
message passing.

o Wait for majority - Wait for replies from a majority of the server group; synchronous message
passing.

e Wait for all - Wait for replies from all members of the server group; synchronous message

passing.

Replies generated from client requests are sent to a client directly (closed group approach) or

indirectly via a member of a server group (open group approach).

5.2 Enabling Open and Closed Groups

This section defines the group structuring and message delivery rules concerning the interaction
between client/server and server groups. Furthermore, how such rules are implemented is described.
Initially, aspects common to both closed and open approaches are described. Later in this chapter the

open and closed approaches are described in more detail.

5.2.1 Valid Group Structures

All communication between clients and servers is accomplished via the underlying group

communication service. All participants (clients and servers) are members of groups and therefore

Page 80

Protocols for clients and servers - Chapter 5

have access to the underlying group communication protocols. Group views are maintained by the

underlying group communication protocols and are available for inspection by the invocation layer.
Let G; be the set of groups P; belongs to: G; = {g, | P; €g,/}. Let g, = {P}, Py, ... P,}. P;

assuming a role of client in group g, is indicated as CPj(x), Pj assuming a role of server in group gy is

indicated as SPj(x). Ensuring the validity of client/server and server group structures is accomplished

via the following group structuring rules:

e Structure rule 1 - For P; to assume a role of client within a group g,, Pj must be a member of

group g,.

e Structure rule 2 - In a client/server group there exists only one client. The remainder of the
membership assumes the role of server.

e Structure rule 3 - A member of a client/server group g, that is not a client (and therefore a

server) must participate in another group 8y The membership of gy must contain all of the

servers of group g,. 8y is the server group.

5.2.2 Message Types and Structures
Protocols that manage client requests and server replies classify messages (delivered by the group

communication layer or received from the application layer) thus:

e Request - a message that contains a client request (m.req).

e Reply - a message that contains a reply to a client request (m.rep).

e Oneway - A message that contains a client request but does not require a reply (m.one).

e Null - A message that contains no relevant information for the request/reply protocols (m.null).
This type of message relates to underlying group communication protocol information (such as
guaranteeing message ordering and group management issues) and is ignored by the invocation

layer.

A CP; maintains a logical clock used for numbering each request CP;([CK) that is issued by the
application layer. Only one LCK is required irrelevant of the number of client/server groups CP;

participates in. Before a request is issued LCK is advanced by 1. This value is added to a message
containing the request and is known as the invocation number (m.in). Further to this information, the

name of the issuing client (m.originator) and the name of the client/server group (m.g,) within which

the message is sent attached. The two values of m.in and m.originator may be used to identify client

requests and are cumulatively termed a request identifier (m.id). The uniqueness of a request

Page 81

Protocols for clients and servers - Chapter 5

identifier is assured as member identifiers arg unique and subsequent requests issued from the same
client contain increasing invocation numbers.iReply messages are assigned the same request identifier
as the request which resulted in their genera’tion. The need for this uniqueness may be exemplified
thus: a client A issues a synchronous (wait for first) request m.req to a server group containing two
servers (B and C). A receives B’s reply to m.req (m.rep), acts upon this reply, and issues another
synchronous request (wait for first) m’.req. A then receives C’s reply m.rep to the first request
(m.req). If it was not for the unique identification that associates request and reply pairings A would
not be able to distinguish between out of date replies and current replies (m.rep and m’.rep).

The delivery of a request, classified as synchronous, to the application layer requires the
generation of a message suitable for holding replies from the application layer. If the application layer
returns no reply such a message is still required to satisfy the synchronous nature of the request. In
such circumstances, the part of the reply message that would contain the application reply is left
blank. Alternatively, if the request is classified as asynchronous no reply message is generated. This
is the case even if replies from the application layer are provided. Such replies in this scenario are
discarded.

The invocation layer implements the following rules to enable a decision to be made

regarding the delivery of requests and replies to the application layer:

* Reply delivery rule - If (m.rep.originator = P;) A (m.rep.in = Piy(| CK)) then deliverable /* Pj is
the originator and the LCK of P; is the same as the invocation number of the message */

e Request delivery rule - If (m.req.originator # P;) v ((m.req.originator = P;) A (SP; €
m.req.gy)) then deliverable /* Pj is not the originator or Pj is the originator and acts as a server

in the group within which the message was sent */
The above reply delivery rule may be extended to suit the four classification of request:

e Oneway send delivery rule - Do not deliver, even if delivery rule is satisfied.

s Wait for first delivery rule - Deliver when the reply delivery rule is satisfied.

s Wait for majority delivery rule - Deliver when the number of messages that satisfy the reply
delivery rule exceeds half the number of members of the server group.

¢ Wait for all delivery rule - Deliver when the number of messages that satisfy the reply delivery

rule equals the number of members of the server group.

Page 82

Protocols for clients and servers - Chapter 5

5.2.3 Failures and Exceptions
A synchronous invocation terminates successfully if the appropriate reply delivery rule is satisfied,
else the invocation may terminate exceptionally in two ways (returning a wair_exception message to

the application layer):

1. Group - Membership of client/server group reduces to one (only includes issuing client) before
any replies can be supplied
2. Timing - A period of time (specified by the application layer) elapses before a reply delivery rule

is satisfied.

The group wait_exception may occur if the client has partitioned from all other functioning members
of the client/server group or all other members of the client/server group have failed. In both of these
cases a client will have received no replies in response to a request. A timing wait_exception occurs
when the correct number of replies has not been received to satisfy a reply delivery rule within a
timeout period. The application layer may specify this timeout.

The failure of a client results in the deletion of the client/server group associated to the failed
client; the client/server group is no longer considered correct, structure rule 2 violated. If a client (say
A), a member of client/server group gx, fails during the processing of a request issued by A (i.e., while
A is still waiting for replies) then the virtual synchrony properties of the underlying group
communication protocols ensure that all servers within gx are delivered the request or no servers in gx
are delivered the request. In effect, the client/server group is deleted after the request from A is
delivered or before the request from A can be delivered. If the request from A is delivered then
(assuming request from A to be synchronous) replies may be generated by servers of gx. As with the
initial request of A, the virtual synchrony properties of the underlying group communication protocols
ensure that all members of gx receive replies to A’s request or no members of gx receive replies to A’s
request. In effect, the client/server group is deleted after the delivery of replies or deleted before the
replies can be delivered. Virtual synchrony ensures that events relating to message delivery, member

failure and group deletion are viewed in the same order by every member of gx.

5.3 Enabling Closed Groups

In a closed group the client/server group of a client contains the client and all the service providers.

This requires an extension to one of the group structuring rules:

Page 83

Protocols for clients and servers - Chapter 5

e Structure rule 3’ - A member of a client/server group g, that is not a client (and therefore a

server) must participate in another group 8y- The membership of 8y contains all of the servers of

group g, and only the servers of group g,. 8y is the server group.

Groups that adhere to Structure rule 3’ are termed closed client/server and closed server groups.

The algorithm used at the client side is thus:

ClosedClientSend {
receive(m); {// from application layer}
compute LCK; update m.originator, m.in, m.g

multicast(m);

if m is asynchronous — skip;
O m is synchronous —
if reply delivery rule not satisfied — skip;

O reply delivery rule is satisfied —

receive(m); {// returned replies or exception)

return(m); {// return replies to application layer}

fi

}
The algorithm used for the server side:

ClosedRequestReceive{

receive(m); {// from group communication layer}

if request delivery rule not satisfied — skip;

0 request delivery rule satisfied —
formulate request from m;

issue request to application layer;

if m is asynchronous — skip;

O m is synchronous —

receive(m); {//from application layer}
multicast(m); {// return replies to client}
fi
fi

Page 84

Protocols for clients and servers - Chapter 5

In a closed group approach the failure of group members may result in an indeterminate number of
replies returned to the application layer. For example, a client issues a request to a server group that
contains 7 members and associates the majority delivery rule with this request. A client may be aware
that the group has 7 members when the request is issued and expects 4 replies in return. However, if 4
members fail during the processing of the request (before they have issued their replies), resulting in
membership reducing to 3 members, then the majority delivery rule will return when only two replies
have been received. A further complication occurs when replies have been received from members
that have subsequently failed before a reply delivery rule may be satisfied. To allow the application
layer to dictate the type of behavior exhibited by a reply delivery rule in the presence of member

failures a delivery rule may be classified as:

e D1 - The group view before the issue of a request is used when deciding if a delivery rule is
satisfied. Replies received from members that may no longer appear in the current group view are
considered valid.

e D2 - The current group view is used when deciding if a delivery rule is satisfied. Replies received

from members that no longer appear in the current group view are considered valid.

When a client issues a request and associates a D1 rule with such a request a reduction in the
membership of the group view of the issuing client before the delivery rule is satisfied may result in a
timing wait_exception. In the example described previously (7 servers reducing to 3 servers, members
failing before replies may be sent) there is no possibility of ever receiving 4 replies, therefore, the

reply will block until a timing wait_exception is raised.

5.4 Enabling Open Groups
Open groups require the redirection of messages from a receiving SP; to members of a server group

and an extension to one of the group structuring rules:

e Structure rule 3"’ - A member of a client/server group g, that is not a client (and therefore a
server) must participate in another group 8y The membership of g, is limited to two (one client
one server). The membership of 8y contains all of the servers (one server in this case) of group

&x 8y is the server group.

Groups that adhere to Structure rule 3” are termed open client/server and open server groups.

Page 85

Protocols for clients and servers - Chapter 5

In open client/server groups requests are directed at only a single server. Therefore, a mechanism that
will propagate such messages throughout the server group and collect replies ready for returning to a

client is necessary. This mechanism is described, with reference to fig 5.3, as follows:

quUCSt manager

(1) Receiving client request (ii) Distributing client request

(iii) Receiving server replies (iv) Returning server replies to client

Figure 5.3 - A mechanism for handling client requests for open groups.

1 Receiving client request - A request (m) sent within a client/server group is received by a
server. This server is considered to be the request manager for this particular client request.

il. Distributing client request - The request manager ensures that m is reorganized into a request
m’ and issued as a request within the server group. The difference between m’and a request
issued in the closed group fashion is that m’ must also be delivered to the issuing client (the
request manager).

1ii. Receiving server replies — Each member of the server group multicasts replies within the
group. For clarity only the messages destined for the request manager are shown.

iv. Returning server replies to client - Server replies are gathered and returned to the client.

This section continues with more detailed descriptions of the open group request/reply handling

mechanism.
5.4.1 Redirecting Messages Containing Client Requests

The message flow involved in client request redirection at a request manager is shown in figure 5.4.

When the invocation layer of a request manager is delivered a message from the group

Page 86

Protocols for clients and servers - Chapter 5

communication layer that contains a client request sent within an open client/server group the
message is not delivered to the application layer. Instead, the invocation layer creates a process thread
that acts as a client for the purposes of redirecting the client request (m1). This process is known as an
emulated client. The invocation layer passes the client request (m2) to the emulated client. The
invocation layer records the value of LCK+1 (the invocation number that will be attached to a request
emanating from the emulated client). As a server may participate in more than one open client/server
group simultaneously and therefore serve as a request manager for a number of client/server groups,
there is a possibility that more than one client request may be present in the request manager. This
will result in the simultaneous existence of a number of emulated clients. Emulated clients are
identified by the invocation layer via the number associated to the requests that they issue. Therefore,
the invocation layer maintains a list of invocation numbers that relate to emulated clients

(EmulatedClientList = {m.in}j, m.iny, m.in3, m.in,}). This information is used by the invocation layer

to direct replies to the appropriate emulated clients.

The emulated client formulates a request that has the same classification as the original client
request (e.g., wait for majority, wait for ail). The new request is then issued to the server group in the
same manner that the application layer would issue a request (via the invocation layer) (m3). The
invocation layer treats this in the same manner as a request generated from the application layer; the
request manager is identified as the originator of the new message, the name of the server group

replaces the name of the client/server group in the m.g, field of the message and a new invocation

number is associated to the message. Finally, the invocation layer uses the group communication

layer to multicast the request to the server group (m4).

Application layer I

m3
m2 Emulated client]/__\

Invocation layer |

i ‘"

| Group communication layer |

Figure 5.4 - Client request redirection at a request manager.

A client request that is classified as oneway will result in the deletion of the emulated client once m3

has been issued.

Page 87

Protocols for clients and servers - Chapter 5

5.4.2 Handling Requests Issued by an Emulated Client

Servers that are delivered messages from their group communication layers that contain requests
generated by an emulated client are handled in the same manner as requests generated by the
application layer of a client in the closed group approach. However, in the closed group approach the
invocation layer does not deliver to the application layer if the member identified in the originator
field of the message (the issuing client) is itself. In the open group approach this is desired. The

request delivery rule identified in 5.2.2 ensures this type of operation.

5.4.3 Handling Replies Associated to Emulated Client Requests

The reply delivery rule identified in 5.2.2 is only suitable for replies destined for the application layer.
This is because the reply delivery rule assumes only one possible recipient (the application layer).
However, replies may be destined for an emulated client (of which there may be many) or the
application layer. For this reason the reply delivery rule needs to be updated for members of open

server groups:

¢ Open group reply delivery rule - ((m.rep.originator = Pj) A (m.rep.in = PyLCK)) V
((m.rep.originator = Pj) A (P; € EmulatedClientList}) /* P; is the originator and the LCK of P;

is the same as the invocation number of the message or P; is the originator and there exists an

emulated client that has the same identifier as the message invocation number */

As in the case of the original reply delivery rule, the open group reply delivery rule may be extended
to cover the four classifications of client requests. The classification of the open group reply delivery
rule is the same as that of the reply delivery rule associated to the request issued within the

client/server group that resulted in the creation of the emulated client.

5.4.4 Returning Server Replies to a Client
After the reply delivery rule has been satisfied server replies are delivered by the invocation layer to
the appropriate emulated client (emulated client is specified by the invocation numbers associated
with such replies). On receiving these replies the emulated client formulates a single reply message
and places all the server replies received from the invocation layer within this message. The message
identifier of the client/server request that resulted in the creation of the emulated client is associated
to the reply message as is the name of the client/server group.

Once the group communication layer has delivered the reply to the invocation layer the
invocation layer observes the original reply delivery rule when determining if the reply is deliverable.

As there are only two members in an open client/server group the synchronous classification

Page 88

Protocols for clients and servers - Chapter 5

extensions to the reply delivery rule do not hinder a single reply delivery. Hence, the D1 and D2 types
of delivery rule do not apply. As the classification of the reply delivery rule specified by the issuing
client is also adhered to by the request manager when propagating a request, the client may still
receive a number of replies within the returned message. This facilitates the ability to gain multiple

replies via the open group approach.

5.4.5 Client and Server Side Algorithms
For completeness the algorithms for client and server side operations for open group client/server
communications are described. The ClientSend algorithm described previously is used by the issuing

client in the client/server group.

OpenRequestReceive(

receive(m); {// from group communication layer}

if request delivery rule not satisfied — skip;

O request delivery rule satisfied —

formulate request from m;
create emulated client;
update emulated client list; {// add new emulated client ID to list}

deliver(m); {// deliver m to newly created emulated client}

if m is asynchronous — skip;
0O m is synchronous —
if reply delivery rule not satisfied — skip;

O reply delivery rule satisfied —

deliver(m1); {// deliver replies to emulated client}
fi
fi
fi

EmulatedClient {
receive(m1l); {// from OpenRequestReceive}
create m2 from m1; {// create request to forward to server group}
update m1.originator, ml.in, m1.g;

multicast(m1); {// multicast to server group}

if m1 is asynchronous — skip;

O m is synchronous —

receive(m); {// receive replies from application layer}

Page 89

Protocols for clients and servers - Chapter 5

multicast(m); {// return replies to client}

5.5 Optimizations to Open Group Structures

This section describes methods that may be employed by an application developer to reduce message
blocking (arising when a protocol enforces some ordering and delivery guarantee) and/or reduce the

volume of messages.

5.5.1 Restricted Open Group Structure

A client/server group used to accomplish open group communications always has two members
(client and member of server group - Structure rule 3”). Therefore, a client request, originating from a
client/server group, received by a server (SP;) within such a group may be instantly deliverable if
there is no possibility of a causal relationship existing between such a message and other messages
received by SP; from other groups. This will allow a client request to be received by the invocation
layer without the need to block its delivery at the group communication layer. Message delivery and
ordering guarantees are known to be satisfied without the need for message passing round completion
in other groups that overlap directly, or indirectly, with the server group that SP; is a member. An
application developer may take advantage of this scenario by classifying an open server group as
restricted. Fig 5.5.i identifies a suitable overlapping structure where the server group may be
considered restricted. The existence of only a single request manager within a server group ensures
that all messages generated outside a server group are distributed throughout the server group via a
single point of entry. The request manager may immediately distribute throughout the server group,
and deliver to the application layer, a message (say ml) received from a client/server group as there is

no possibility that another member of the server group has received a message (say m2) from a

client/server group such that m2 — mi. However, when more than one member of a server group may
act as a request manager (fig 5.5.ii) the immediate delivery and distribution of messages is not
possible as there is the possibility that more than one request manager may simultaneously deliver
different messages, ignoring any causal relationship that may exist between them. The rule governing

the validity of a restricted open server group is fairly trivial:
e Restricted group rule - Only one member of an open server group may act as a request manager.

Electing a single request manager in a restricted server group would be achieved via a

deterministic algorithm. A simple deterministic algorithm could be; each group-view held by the

Page 90

Protocols for clients and servers - Chapter 5

members of a group lists members in the same order (based on a weighting derived from their

ASCII representation), the member at the top of this list assumes the role of request manager.

—p Client request

(i) Valid restricted open (ii) Non-valid restricted
group structure open group structure

Figure 5.5 - Valid and non-valid restricted open group structures.

5.5.2 Asynchronous Message Forwarding

A client request is propagated by the request manager in the format it was received. Synchronous
client requests will be propagated by a request manager in a synchronous fashion. This enables a
client to gain multiple server replies via the open group approach. When a client simply requires a
single reply the propagation of client requests in an asynchronous style is sufficient (assuming the
request manager is capable of returning a reply to the issuing client itself). This reduces message
volume per client request in the open group approach as members of a server group are not required
to reply to a client request emanating from an emulated client. With regard to fig. 5.3, step (iii) would
be eliminated.

The rule governing asynchronous message forwarding is thus:

e Asynchronous group rule - Client requests are issued as asynchronous to every member of the
server group except the request manager dealing with the client request. The request manager is

sent the request in a wait for one style.

The above rule ensures that an emulated client only receives one reply, which can then be sent (as a
reply message) back to the original client. This approach is suited to the support of passive replication
protocols (see 2.4.3).

Combining the restricted open group and asynchronous message forwarding approaches
provides suitable support for passive replication protocols. The request manager may assume the role
of the primary: receiving, processing and replying to client requests. The remainder of the server

group are passive members, receiving (but not necessarily acting upon) client requests.

Page 91

Protocols for clients and servers - Chapter 5

5.6 When Clients are Gfoups

A group that issues a request is termed a client group and such a request is termed a client group
request. This scenario commonly occurs when members of a server group (say gx), during the
processing of a client request from a singleton, issue a request to another server group (say gy). This
scenario is shown in figure 5.6. Unfortunately, the handling of a client group request is not a trivial
task. This is because members of a server group, when satisfying a request issued by a client group,
receive the same request multiple times; each member of a client group issues the request.
Furthermore, if such a request is synchronous in nature the client group would receive multiple
replies from each server. The diagram in fig. 5.6 will be used as an example to clarify the number of

messages involved in a client group request.

Server group (gy)

Server group (gx)

Client

Figure 5.6 - When clients are groups.

Assume a client issues a synchronous request to a server group (gx, 2 members). During the
processing of this client request each member of gx issues a synchronous request to another server
group (gy, 3 members). At this point gx assumes the role of a client group. As gx has two members,
each member of gy will receive 2 requests (6 requests received in total). Each member of gy will reply
to each request issued by gx. As 6 requests have been received at gy then each member of gx will
receive 6 replies, a total of 12 replies. To aid clarity in the diagram, the replies have not been shown.
This scenario is an example of a nested operation; an operation that results in the invocation of yet
another operation or, in the case of client groups, the invocation of one object group leading to the
invocation of another object group [Narasimhan97]. The problem of reply message duplication is
compounded when a chain of nested operations involving client groups is present

The remainder of this section describes in detail how client group communications are
accomplished by the NewTOP service while solving the problems associated with message

duplication. In the following descriptions group members are assumed to act deterministically; two

Page 92

Protocols for clients and servers - Chapter 5

members of a group (say, ml and m2) will output identical messages in identical order, provided they

are delivered input messages in identical order.

5.6.1 Client Group Requests
The initial problem to overcome is that of reducing the multiple copies of the same client group
request arriving at each member of a server group. This is achieved, in part, by adhering to the

following client group rule:

e Client group rule 1 - Client groups interact with server groups via the open group approach. This
requires each member of the client group forming a client/server group with a member of a server

group (see fig 5.7).

The above rule ensures that each request sent by a member of a client group to a server group is sent
as a single message as opposed to a multicast. This reduces multicasts to unicasts. The next step is to
ensure that a client request is represented within a server group by a single message. This is achieved

with the aid of two further rules:

e Client group rule 2 - Multiple requests emanating from a client group that cumulatively
represent a single client group request are all handled by the same request manager.
e Client group rule 3 - A group exists that consists of all the members of a client group and the

request manager of the server group. This group contains no other members.

Client group rule 2 ensures that a single request manager receives requests issued by members of a
client group (that represent a single group request) and client group rule 3 enables a request manager
to realise such requests are the result of a client group request. The diagram in fig. 5.7 aids in the
following description that identifies the importance of these two rules in allowing a request manager
to decide which messages to forward and which to discard. The group described in client group rule 3
is termed a client monitor group. A request manager (of say, gy) receiving requests from members of
a client group (say gx), via open client/server groups, expects requests from all members, excluding

itself, of the client monitor group (say gz).

Page 93

Protocols for clients and servers - Chapter 5

Figure 5.7 - Reducing client group requests from multicasts to unicasts.

The request manager associates to each client monitor group that it participates in a Boolean variable
BLOCK_FORWARD. Initially, before any requests have been received from the client group by the
request manager, BLOCK_FORWARD is set to FALSE. A request manager that deems requests
suitable for forwarding stores such requests in the pending forward request list. Each monitor client
group has associated with it a pending forward request list. The following rule aids the request

manager in determining if a request from a client group is to be forwarded.

e Client group rule 4 - Add a message to a pending forward request list iff
i. Message received from client/server group and
ii. Membership of client server group is a true subset of a monitor client group (say gz) and
iii. BLOCK_FORWARD of gz is FALSE

If client group rule 4 is satisfied (i.e., message added to pending forward request list of gz) then the
request manager sets the BLOCK_FORWARD variable of the monitor client group which is
associated to the forwarded request (gz) to TRUE. A message is taken from the pending forward
request list and forwarded by the request manager in the order which they were placed on the list. The
request manager may simultaneously handle group requests that were sent by different client groups
(messages from different pending forward request lists). However, with regard to requests on the
same pending froward request list, only one request may be handled at a time by a request manager
(i.e., when a request is synchronous in nature replies must be gathered and returned to a client group
(say, gx) before further replies from gx may be handled). The request manager forwards the request in
the usual manner (i.e., via emulated client). Client group rule 4 is adequate for handling synchronous
requests. In practice, client group rule 4.iii ensures that only one message at a time may reside on the

forward request list. When requests are asynchronous in nature it is possible a client group request

Page 94

Protocols for clients and servers - Chapter 5

may arrive before previous client group requests have been handled by the request manager. To

prevent such requests from been discarded client group rule 4 needs the following addition:

e Client group rule 4 -
iii. ((BLOCK_FORWARD of gz is FALSE) or (BLOCK_FORWARD of gz is TRUE and

the issuer of the message already has a message in the pending forward request list of

[49))

The correctness of the client group request forwarding scheme relies on the rules:

e Client group rule 5 - The individual member requests emanating from a client group that
cumulatively represent a client group request are totally ordered.
e Client group rule 6 - client/server groups created by an application developer for the purposes of

enabling client group requests should not be used to enable non-client group requests.

The diagram in fig. 5.8 identifies the importance of client group rule 5. Two clients each multicast a
request simultaneously to group gx. Each client request results in gx issuing a synchronous request to
group gy (say req3 and req4). If requests are not totally ordered each member of gx may issue reg3
and reg4 in an arbitrary order (e.g., MI may issue req3 before req4 whereas M2 may issue reg4
before req3). Such ordering of requests may result in requests not been forwarded. For example, if the
request manager receives req3 from M1 before req4 from M2 then req3 will be forwarded. Now,
assume that req3 has been dealt with and the request manager is ready for accepting requests (this
will be described fully in the next section). The request manager now receives reg3 from M2 before
req4 from M1. This will result in the forwarding of req3 again. Furthermore, req4 is discarded and
never actually gets forwarded. By totally ordering requests, we ensure that both members of the client
group always multicast requests in the same order. For example, M! and M2 send req3 followed by
req4, or visa versa, as they were delivered req/ and req2 in the same order, ensuring both requests are

forwarded.

Page 95

Protocols for clients and servers - Chapter 5

Arbitrary or causal ordering Total ordering

Reql

Req2

(i) Inappropriate ordering (i) Appropriate ordering
Figure 5.8 - Ensuring all requests are forwarded.

Client group rule 6 guarantees that all requests emanating from a client group are actually client
group requests. Individual members of a client group (say, gx) are inhibited from issuing requests at a

server group (say, gy) that are not part of a client group request when gx is a client group of gy.

5.6.2 Client Group Replies

Replies received by a request manager (fig. 5.9.1) that are the result of a client group request are sent
as reply type messages back to the members of the issuing client. This is achieved via client/server
groups (fig.5.10.ii). These client server/groups are the same as the client/server group initially used to

send the client group request.

(i)Receiving replies (ii)Returning replies

Figure 5.9 - Returning replies back to a client.

The completion of a request (sending replies back to the client group for synchronous requests or

simply forwarding an asynchronous request) results in BLOCK_FORWARD been set to FALSE.

Page 96

Protocols for clients and servers - Chapter 5

There may be instances when a client group member receives a reply before it has actually
sent the request. This can lead to request duplication. Fig. 5.10 aids in the description of this scenario;
member A of client request group gx issues a request m/ to server group gy. This request is satisfied
and replies sent (figl0.ii and figl0.iii) before member B has issued request m/. Member B (after
receiving the reply to m/) issues the request m/. The problem of request duplication arises when the
request manager receives m/ from member B. The request manager assumes ml/ to be another

request.

(i) A issuing request m1 (ii) Receiving replies

(iii) Issuing replies (iv) B issuing request ml

Figure 5.10 - Problems with slow members of the client request group.

To overcome this problem of request duplication a final client group rule is required (using fig. 5.7 as

a reference):
e Client group rule 7 - Replies are returned to group gx if messages have been received from

every member of monitor group gz (excluding request manager and including the message that

turned BLOCK_FORWARD to TRUE from FALSE).

Page 97

Protocols for clients and servers - Chapter 5

5.7 Summary

In this chapter protocols suitable for enabling clients to issue requests to and receive replies from
server groups in a number of ways have been presented. Furthermore, clients may interact with server
groups in an open or closed group fashion.

The invocation protocol design exploits the properties of the NewTOP protocol suite.
NewTOP provides: a number of message ordering and delivery guarantees within a virtual
synchronous environment, failure detection, partitionable operation, overlapping groups, a choice
between symmetric and asymmetric message ordering protocols.

The characteristics of the approach to client/server group interaction presented in this chapter

are:

e Overlapping groups - Clients interact with server groups via the overlapping of groups.

e Open and closed group support - A client is not required to realise the full membership of a
server group.

o Closed group support - A client must realise the full membership of a server group.

® Regquest tailoring - A client may tailor a request with regard to the number of expected server
replies and how to handle replies when server failures are present.

e Optimized message delivery - An application developer may take advantage of restricted server
groups and asynchronous message passing to decrease possible delays via the reduction of

message blocking and the lowering of message volumes related to client requests.

In the following paragraphs the protocols described in this chapter are compared to protocols
developed for use in similar works.

[Karamanolis99] propose client-access protocols suitable for modeling both the closed group
and open group approaches. These protocols are specifically designed to satisfy the requirements of
applications that use the state machine approach for service replication (active replication). The
closed group approach is similar in functionality to the closed group approach presented in this
chapter, which is initially presented in the Isis group communication service [Birman93]. However,
the open approach advocated by [Karamanolis99] is significantly different from the open approach
presented here.

The protocols presented in this chapter enable open group access via group communication
protocols (fig. 5.11.i). In the approach presented by [Karamanolis99] a client does not use a group
communication protocol when communicating with a group (fig 5.11.ii). A client issues a request via
an invocation layer which directly communicates with a peer invocation layer of one of the servers of

a server group. This server then distributes (multicasts) the client request throughout the server group

Page 98

Protocols for clients and servers - Chapter 5

via a group communication service. Only the server that originally received the client request replies.

Replies from other servers are filtered in their invocation layers, preventing them from been sent.

Client Server Client Server
Application layer Application layer Application layer
Invocation layer Invocation layer Application layer Invocation layer

- Group comms
Group comms layer| Group comms layer| Invocation layer layer
Network] Network]
(i) NewTOP Service (it) Karamanolis

Figure 5.11 - Different approaches to open group approaches.

The functionality provided by [Karamanolis99] is similar to that provided by the open group
approach with asynchronous message forwarding presented in this chapter. However, as the group
communication protocols do not aid the sending of a client request to a member of the server group,
there is no possibility of ensuring client requests can be causally ordered. Consider the diagram in fig.
5.12.i. A group gx consists of two members (A and B). B issues an open group request to gy (ml). B
then multicasts a message to gx (m2). During the processing of m2 A issues an open group request to
gy (m3). In the [Karamanolis99] approach the order with which m{ and m3 are handled by gy is
always arbitrary (whichever arrives at the server first). However, the protocols presented in this
chapter (if required) may ensure that ml is handled before m3 by gy. Fig 5.12.ii describes how
overlapping groups may be used to accomplish the same effect as that shown in fig. 5.12.i, yet still

ensure that messages are delivered with respect to the causal relationship that exists between them

(i.e., ml — m2 — m3). Client/server groups gz and gw are used to enable open group requests by A

and B respectively.

()] (i)

Figure 5.12 - Ordering of related client requests.

Page 99

Protocols for clients and servers - Chapter 5

The need to ensure that the causal ordering between ml and m3 is adhered to by gy may be
exemplified thus (related to fig. 5.12):

Assume group gx represents a group of companies (A and B) that trade with each other. A
bank provides an account which is used to enable the transfer of monetary funds between the
companies A and B. Furthermore, this account is made highly available (replicated) and is presented
in the diagram by group gy. B wishes to pass funds to A. B deposits funds into the account (m7) and
informs A that money is waiting (m2). A attempts to retrieve funds from the account (m3). To ensure
that m3 may be satisfied (funds are available), m/ must be delivered before m3 (the causal
relationship between m1 and m3 must be realized by gy).

I know of only one other group communication service that attempts to solve the "when
clients are group” problem; Eternal [Narasimhan97]. Eternal places dependency on the underlying
network services to enable such communications, limiting the use of the system to a LAN. The
approach described here has no such dependencies. Furthermore, Eternal is unable to support open

groups, client requests are enabled via closed group mechanisms.

Page 100

Performance of the NewTOP Service - Chapter 6

Chapter 6

Performance of the NewTOP Service

In this chapter the performance results obtained from a series of experiments conducted with the
NewTOP Service are presented. During these experiments the throughput of groups and the time
taken for a client request to be satisfied were monitored. Experiments are described followed by the
results of such experiments.

Experiments are performed in LAN and WAN environments. To the best of my knowledge,
other Middleware group communication services have not been the subject of experiments in a WAN
environment. Therefore, this chapter presents the first set of figures that indicate the performance of a

Middleware group communication service in a WAN environment.

6.1 Experiments

This section describes the experiments in detail. The different types of experiments are first
described, followed by the environment within which the experiments were carried out. The

experiments are classified into two scenarios:

1. Request/Reply - A client issues a request to multiple servers and waits for their replies; this
represents a commonly occurring scenario when a service is replicated, fig. 6.1.1.

2. Peer Participation - All the members are regularly multicasting by using the asynchronous
method invocation operation; this represents a commonly occurring scenario when the purpose of

an application is to share information between members, fig. 6.1.ii.

@ (ii)

Figure 6.1 - Request/Reply and peer participation scenarios.

Page 101

Performance of the NewTOP Service - Chapter 6

These two scenarios are treated separately in the experiments presented here. However, it is possible
for applications to combine the two scenarios in the provision of services.

The performances of the asymmetric and symmetric total ordering protocols are of interest in
all experiments and the open and closed methods for enabling clients to gain services from a server
group are of interest in the request reply experiments. These experiments aim to identify the
appropriate protocol configuration for request/reply and peer group scenarios (i.e., open or closed
group approach to client/server group interactions and what ordering protocol is suitable: asymmetric

or symmetric).

6.1.1 Request/Reply Scenario

The request/reply experiments presented here aim to identify the suitability of the NewTOP service
for supporting object replication. The NewTOP service alone does not provide all the mechanisms
required to satisfy object replication. For example, issues related to state transfer and the election of a
primary in passive replication schemes are not addressed. However, the NewTOP service does

provide the application developer with group communications suitable for a replication service:

e Active replication (1), (fig. 6.2.i) - The closed group approach (see 5.3). Clients multicast directly
to every member of the server group. Each server processes client requests in the same order. A
client may receive responses from all servers.

e Active replication (2), (fig. 6.2.ii) - The standard open group approach using synchronous
message forwarding (see 5.4). Clients multicast indirectly to every member of the server group
via any group member. Each server receives client requests in the same order. A client may
receive responses from all servers.

e Passive replication, (fig. 6.2.iii) - The restricted open group approach using asynchronous
message forwarding (see 5.5). All clients multicast indirectly to every member of the server group
via the same server. Each server receives client requests in the same order. A client may receive a

response from only one server, the primary (the request manager).

Server .
Client O

Server group

(ii) (iii)

Figure 6.2 - The closed and open group approach to client/server interaction.

Page 102

Performance of the NewTOP Service - Chapter 6

In these experiments measurement of the time taken to service a client request by a server group has
been taken. In the asymmetric closed group experiment the shared sequencer optimization technique
was used (see 3.5.1). In the asymmetric standard and restricted open group experiments only a single
sequencer was used in the server group and all open client/server groups were symmetric. Due to
open client/server groups only having two members the use of a sequencer would be wasteful as the
redirection of messages by a sequencer within such groups would not aid the ordering of messages.
The use of symmetric open client/server groups together with asymmetric open server groups displays
the ability of the NewTOP service to allow members of multiple groups to use asymmetric and
symmetric ordering techniques in different groups simultaneously.

During the experiments a client issues a single request and waits for the appropriate number
of replies before issuing another request. In the closed group and standard open group scenarios the
client waits for all server replies. The client may have waited for just a single reply or a majority of
replies. However, a decision was made to wait for all replies. In the restricted open group scenario
asynchronous message forwarding was used. This resulted in the client receiving just a single reply
from the server group.

Clients issue requests as frequently as possible; as soon as a client has been serviced by a
server group a client issues another request. Clients are run simultaneously. This ensures different
client requests are produced simultaneously. Client numbers are increased 1 through 20. At each of
these increments each participating client is timed for 1000 requests. This timed figure is then divided
by 1000 to determine how long a single request takes (average/mean) per client. The sum of these
client request times are then divided by the number of clients to gain the average time taken to service
a request from any client. This figure is then used to derive the throughput of the server group on a
per second basis.

At the application level a server is a pseudo random number generator. Random numbers are
always three digits long. A client request is a request for a random number. The server group

consisted of three members in all experiments with all groups designated as event driven (see 3.5.2).

6.1.2 Peer Participation
The peer participation scenario is commonly associated with applications wishing to share
information across a number of participants. Groupware applications are typical examples of such
applications (e.g., teleconferencing, shared whiteboards, Internet Relay Chat (IRC)). In the peer
participation scenario presented here there is no notion of client and server (request/reply). Members
simply distribute messages (via multicast) throughout the group.

The intuitive method for enabling users to share information is to consign such users to a

single group.

Page 103

Performance of the NewTOP Service - Chapter 6

Figure 6.3 - Peer participation.

Fig. 6.3 highlights the group structure used in the peer participation experiments. Of particular
interest is the performance of the asymmetric and symmetric ordering protocols. Due to the nature of
the application requirements (only a single group) there is no notion of open/closed client access and
so these are not of issue here.

All members issue multicasts as frequently as possible. Performance is measured by assessing
how long a multicast takes to become deliverable at all members within a group from the time of the
multicast’s issue. The time taken for 1000 multicasts from each member to become deliverable at
every other member of the group is measured. This results in a figure per client (as all clients are
multicasting). Each of these figures are then divided by a 1000 to gain a figure for the time taken for a
single multicast. The resultant figures are then summed to allow a throughput figure for the group to
be gained.

At the application level the body of the message consists of a CORBA string type of 100

characters in length. The group was designated as lively (see 3.5.2).

6.1.3 Environment
In every case, group members reside within the same address space as their NSOs. The NewTOP
service and the application objects were written in C++. The two different environments that were

used in the experiments are described.

s Local Area Network - The system consists of 9 Pentium PCs running Red Hat Linux 2.0.34, each

with 64 megabytes of RAM, connected together using 100 Mbits fast Ethernet.

o Internet - The network is global. Machines may be geographically separated by large distances.
The machines used during the experiments were located in Newcastle (United Kingdom),
London (United Kingdom) and Pisa (Italy). These machines were Pentium PCs also running

Red Hat Linux 2.0.34 (as above).

Page 104

Performance of the NewTOP Service - Chapter 6

The distribution of group members was thus:

e Request/reply

= LAN - No two servers appeared on the same machine. Clients were equally distributed on the

same LLAN.

= Jnternet(1) - Servers were located on the same LAN in Newcastle. No two servers appeared

on the same machine. Clients were equally distributed between London and Pisa.
» Internet(2) - Servers were geographically separated and clients were geographically
separated between Newcastle, London and Pisa.
e Peer participation
» LAN - Members were distributed over the LAN.

= [nternet - Members were distributed between Newcastle, London and Pisa.

6.2 Results

In this section the results of the experiments are presented. To enable an analysis of the figures
presented here an initial experiment to derive the RPC time for two CORBA objects that do not
communicate via the NewTOP Object Group Service are presented. To further enhance analysis of
request/reply scenarios, figures gained from an experiment that involved a non-replicated server and

a number of clients are presented.

All figures are presented in milliseconds. Throughput may be read as per second.

6.2.1 CORBA RPC

The server used in this experiment is a CORBA object that simply returns a pseudo random number
of three digits when requested to do so by a client (the client is also a CORBA object of the same
type as the server). The experiment consisted of one client and one server. The client issues a request
and waits for a reply (synchronous communications) via CORBA RPC. The client issues requests as

frequently as possible; as soon as a request is serviced another request is issued.

Page 105

Performance of the NewTOP Service - Chapter 6

Without NewTOP Object group Service Timed request Throughput
Client and server on distinct nodes in LAN 0.9 1111.11
Client in Pisa and server in Newcastle 78.0 12.82
Client in London and server in Newcastle 81.0 12.34
Client in Pisa and server in London 86.0 11.62

Table 6.1 - Performance of CORBA RPC.

6.2.2 Request Reply, Non-Replicated Server

The same type of CORBA object as in the CORBA RPC experiment was used (pseudo random
number generator). However, communications were achieved via NSOs. Clients issue requests and
wait for a reply before issuing another request. Clients issue requests as frequently as possible. The

results of these experiments are shown in fig. 6.4.

RPC: Non replicated server with clients on same Throughput: Non replicated server with clients on
LAN same LAN

-~ 60 8 500
'g 50 § & 400
g 40 Eg 300
EX 8] 200
E 2 53
L 10 g "o
T oo £ 0 A

1 6 1 16 1 6 11 18

Number of clients Number of clients
RPC: Non replicated server with distant clients Throughput: Non replicated server with distant
clients
500
g oo i o
fw) | %
£ i
o -3
3 100 3 4 10
B o s e g -
1 6 1 16 1 6 n 16
Number of clients Number of clients

Figure 6.4 — Performance of non-replicated server.

The first observation to be made is that a single client making an RPC via the NewTOP service was
approximately half the performance of a single client making an RPC without the NewTOP service in

the LAN environment. This drop in performance may be explained by the manner with which an

Page 106

Performance of the NewTOP Service - Chapter 6

NSO manages messages. This message passing process is shown in fig. 6.5 and is now described. A

more detailed description of how client requests are handled is given in chapter 5.

Client

gl

Client’s NSO _/V Server’s NSO

Figure 6.5 - Message passing between NSOs and application objects.

When an NSO receives a message from the application level it is queued in a multicast pending list. A
thread is then created which handles the multicasting of queued messages. In the case of these
experiments a request by a client for a random number is received by the client’s NSO (ml7). The
client’s NSO then multicasts this message to the replica group (m2). The server’s NSO receives this
message and queues this message as pending. Messages in the pending queue that satisfy ordering
and delivery guarantees are then delivered to the NSO’s associated application object (random
number generator object) (m3). This delivery takes the form of an invocation. Results from the
invocation are then queued by the server’s NSO in the multicast pending list (m4). A thread is then
created which handles the multicasting of messages held in this list. Finally, the client’s NSO receives
this return message (m5) and queues it in the messages pending list, awaiting delivery back to the
client object of the NSO (m6). Assuming the client (server) NSO to be in the same address space as
the client (server), request-reply message pairs m1-m6, m3-m4 will not generate any network traffic.
On the other hand, message m2 as well as message m5 are each a CORBA RPC. The expected
availability of asynchronous messaging and multicast services in next generation ORBs (see 7.3.2)
will remove the main source of the inefficiency.

The percentage drop in performance for point-to-point communications indicates that the
majority of overhead incurred by using the NewTOP service is due to the need for two RPCs as
opposed to just a single RPC. There is a slight anomaly which is assumed to be processing and/or

connection management overheads.

Another observation to be made from this experiment is that throughput for LAN decreases
as the number of clients increases, whereas, in the Internet environment the throughput rises as the

number of clients increases. There are two factors governing the throughput of a service:

Page 107

Performance of the NewTOP Service - Chapter 6

1. The rate at which client requests arrive at a server.

2. The time taken to process a client request by a server.

Assuming processing time and message latency remain constant; if a server, after satisfying a client
request, experiences some idle time before the next client request is received then the throughput of
the server has the potential to rise. However, if a server, after satisfying a client request, experiences
no idle time before the next client request is received then the throughput of the server may not rise.
In practice, the throughput will decrease due to the increased processing demands made by

underlying network protocols when managing client requests.

The server in both experiments (ILAN and Internet) is the same. Therefore, the time taken by
a server to process a client request is the same. This indicates that it is the rate at which client
requests arrive at a server that results in a far lower throughput for the server servicing clients over
the Internet compared to the server servicing clients over the LAN. As message transit times have
been shown to be far greater over the Internet than those over a LAN (see 6.2.1), client requests
arrive more infrequently at the Internet server than they do at the LAN server. This results in server

idle time in the Internet server and explains why throughput is far lower than that of the LAN server.

As client requests are synchronous and a server services such requests sequentially, the only
way to increase the frequency of messages arriving at a server is to increase the number of clients. In
the LAN experiment increasing client numbers, even from 1 to 2, has a negative effect (all be it very
small) on throughput . This indicates that throughput does not have the potential to rise and has
reached it’s maximum at around 410 requests per second. As the server in the Internet experiment is
the same as that in the LAN experiment, the Internet server has the potential of reaching a
throughput of 410 requests per second. Increasing the number of clients does substantially increase
throughput. However, the extra processing required by the communication protocols to manage
substantial numbers of clients may result in the throughput of the Internet server not reaching 410

requests per second irrespective of client numbers.

Page 108

6.2.3 The Restricted Open Group Approach (Compared to Non-Replicated Server)

Performance of the NewTOP Service - Chapter 6

RPC (milliseconds): Clients & server(s) on the same Throughput (req/sec): Clients & server(s) on the
LAN same LAN

- 60 % 500
° 50 3
S ——Non-Replcated | | T 4% W““‘“““ —a—Non-Replicated
32 0 Sarver :§ 300 Server
£ % —— Optimized Open | | 2 % 200 —e—Optimized Open
E 10 Asynchronous gg 100 Asynchronous
c o Ffr—rrrrrrrrrrrrrrrrr 15 0 v

1 6 1 16 1 6 11 16

Number of clients Number of clients
RPC: Server(s) on the same LAN and clients Throughput: Server(s) on the same LAN and
distant clients distant
. 500 s 60
) § 50
g 400 i Non-Replicated
g 300 /4"'-'“‘ —a— Non-Replicated gg 40 +SSW
server E 30 o

Z 200 —e— Optimized Open —e— Optimized Open
£ Asynchronous % g Asynchonous
9 100 2 10
Y S S E oK S

1 6 " 16 1 6 1 16

Number of clients Number of clients
RPC (milliseconds): Geographically distributed Throughput (req/sec): Geographically distributed
server(s) and cllents gerver(s) and clients

@ 500 i 60
B 400 50
3 —a— Non-Replicated §F 4 —a— Non-Replicated
_g 300 server - 20 Server
E 200 —e— Optimized Open 3 2 —e— Optimized Open
= Asynchronous 53 Asynchronous
o 100 3
& g 10
0t — . E ol

1 6 11 16 1 6 1 16

Number of clients Number of clients

Figure 6.6 — Comparing the performance of non-replicated server and replicated server.

The next set of experiments to be considered were those relating to a group invocation requiring a
reply from a single server (wait for first). These experiments present the performance of the scheme
depicted in fig. 6.2.iii incorporating the restricted open group with asynchronous message forwarding
(e.g., passive replication). The server group used the asymmetric ordering protocol in these
experiments. However, the performance gained from using asymmetric instead of symmetric was
found to be minimal (see 6.2.6). This will enable a comparison of performance between group
invocation with that of non-replicated invocation discussed in the previous subsection: in both the
cases, the client invokes a single server; the only additional work required for group invocation is that
the request manager is required to forward the request to all the members. Since this is performed
asynchronously, there is an expectation that the performance of the restricted open group invocation

to closely match that of the non-replicated invocation. This is indeed the case, with the role of the

Page 109

Performance of the NewTOP Service - Chapter 6

sequencer, request manager and primary all undertaken by the same group member. Fig. 6.6 presents

the figures relating to these experiments.

6.2.4 The Closed Group Approach

1400

1200

APC

- 38388

RPC (millisaconds): Closed group - Clients & servers on the same
LAN

—o— Asymmetric
—a— Symmetric

1 s 1" 18
Number of clients

Throughput (reg/sec): Closed group - Clients & servers on the same
LAN

—e— Asymmeric
~—m— Symmetic

s " 18
Number of cllents

P

RPC (milliseconds): Closed group - Servars on the same LAN cllents
distant

—— Asymmstric
~@— Symmetric

1 L] " 16
Nurnber of clients

Throughput {req/sec): Closed group: Servers on tha same LAN and

A

clients distant

—o— Asymmetric
—a— Symmetiic

L] n 16
Number of cllents

RPC (milliseconds): Closed group - Geographically seperated sarvers

& cllents

—o— Asymmatric
—a— Symmetric

1 € 3l 16
numbar of clients.

): Closed group - 9 P d
servers & clients

gnp L4

—o— Asymmetic
—a— Symmetnc

6 u 16
Numbar of cllents

Figure 6.7 — Comparing asymmetric and symmetric protocols in the closed group approach for request/reply experiments.

The symmetric protocol blocks message delivery until each member of a group mutually agrees on

the order of message delivery. Such agreement is accomplished via further message passing between

group members. All message passing using a symmetric protocol is achieved via multicasting. The

asymmetric protocol, aided by a shared sequencer, requires no message blocking and no additional

message passing to determine message ordering. Furthermore, only the sequencer multicasts, greatly

reducing the volume of messages compared to the symmetric approach.

Page 110

Performance of the NewTOP Service - Chapter 6

Due to no requirement to block messages and no additional message passing required to
ensure message ordering the asymmetric protocol outperforms the symmetric protocol in both the
LAN and Internet experiments. However, the difference in throughput between asymmetric and
symmetric is far less in the Internet experiments compared to that in the LAN experiment. This is
because the time taken to service a request is dominated in both protocols by the slow Internet
connection between clients and server group. As a client receives each server reply in a different
multicast, so a client has to wait for three messages to be sent over the Internet in both the
asymmetric and symmetric protocols. This is the reason why the performance of the non-replicated
Internet server of the previous experiment is 3 to 4 that of the asymmetric protocol here. In addition
to receiving three replies in distinct multicasts the symmetric approach has to receive three further
multicast messages, required for message ordering, (one from each server). This identifies why the
performance of the asymmetric protocol is approximately 3 times that of the symmetric protocol in

the Internet experiment.

The time taken for a server group to collectively process a client request is different in the
symmetric and asymmetric protocols. The blocking of messages and the extra message passing
required to guarantee message ordering results in a server group using the symmetric protocol taking
far longer than a server group using the asymmetric protocol to satisfy a client request. This is
evident in the LAN experiment, where the symmetric throughput is far lower than that of the
asymmetric throughput. Furthermore, the asymmetric throughput rises for the first 5 clients whereas
symmetric throughput remains static. This slight rise may be attributed to the doubling of a client
request’s transit time; a client request first arrives at the sequencer and is then multicast to the group.
This increase in message transit time may be sufficient to ensure that peak throughput requires 5

clients for the asymmetric protocol in the LAN experiments.

Page 111

6.2.5 The Standard Open Group Approach

Performance of the NewTOP Service - Chapter 6

RPC (milllssconds): Restricted open group - Clients & servers Throughput (req/sec): Standard open group - Clients & servers on
on the same LAN the same LAN
[y 60
s0 50
© ;)
4 ~o—Asymmetric 30 —o— Asymmelric
g% ~—m— Symmetric g —~8— Symmeric
20 Fa
10 10
0+ 04
1 6] 18 6 1" 18
Number of clients Numbar of clients
RPC (milliseconds): Standard open group - Servers on the same LAN Throughput (req/sec): Standard open group - Servers on the same
and clients distant LAN and clients distant
450 L
400
50
350
300 4
§ 260 —e—Asymmetric - ——Asymmotic
200 —8— Symmebic —a— Symmetic
160 20
100
10
50
04 L S e e e L A e s e e e 0+
1 [il 18 6 " 16
Number of chents Number of clients
RPC (milll open group - ghput (req/sec) dard open group - G hicall
servers & clients seperated servers & clients
6000 .
5000 -
4000 . 2
2 2000 —— Asymmebic % —o— Asymmatric
= —a— Symmetric H 15 —a Symmetrc
2000 [
1000 s
ot 0¥
1 s " 16 [1" 16
Number of chents
Number of clients
L

Figure 6.8 — Comparing asymmetric and symmetric protocols in the standard open group approach for request/reply

experiments.

The performances of the symmetric and asymmetric protocols are very similar when servers are co-

located. The symmetric protocol slightly outperforming the asymmetric protocol in both the LAN

and the Internet 1 (co-located servers) experiments. The reason for their close correlation is due to

the similar degrees of message volume and message blocking experienced by both protocols. The

multicasting and message ordering associated to a client request is limited to a group of 3 members

(the server group) whereas in the closed server group client involvement was required (a group of 4

members). The performance of a 3 member asymmetric group is still better than that of a 3 member

symmetric group. Therefore, there is an expectation that the asymmetric should still outperform the

symmetric. Unfortunately, due to the ability of any one of the servers to become request managers,

message blocking will occur as client/server groups are synchronous and messages arriving at

Page 112

Performance of the NewTOP Service - Chapter 6

different request managers may be causally related (see chapter 5). Furthermore, as any member of
the server group may be a request manager the ability to use a shared sequencer is not an option. The
message blocking encountered far outweighs any benefit gained from sequencer based ordering
when the number of clients are relatively large compared to the size of the asymmetric server group
as here. In practice the redirection of messages by a sequencer is more time consuming than simple

multicast.

The Internet experiments are dominated by the slow Internet connection between clients and
a server group. Such is this dominance that there is very little difference between a locally replicated
server and a non-replicated server (fig. 6.4). This is because the only messages passing between a
client and a server group are the RPC required to carry a request to a request manager and the RPC
required to carry the replies from the request manager to the client. The same as a non-replicated
server. Similar to the non-replicated server, as client numbers rise so the throughput rises. When
servers are geographically separated then the asymmetric protocol does outperform the symmetric
protocol. In the symmetric protocol message passing is required to ensure the ordering and reliability
guarantees are satisfied. This is not the case in the presence of a shared sequencer as messages are
deliverable as they are received. When servers are geographically distributed such message passing

is time consuming, as message latency is high compared to that of co-located servers.

Page 113

6.2.6 The Restricted Open group Approach

Performance of the NewTOP Service - Chapter 6

RPC (mllliseconds): Restricted opan group - Cllents & servers on the

Throughput (req/sec): Restricted opsn group - Clients & servars on

1 L " 16
Number of chents

same LAN the same LAN
60 450
400 -~
50 -
350
w w0 /",—
2 50 —e— Asymmetic 250 —o—Asymmetic
= —a— Symmaic 200 —8— Symmasric
20 150
100
10
50
L o e o e B S s S e s S S ¢ 04
1 6 " 18 1 [" 18
Number of clients Number of cllents
RPC (millisaconds): Restricted opan group - Servers on the same Throughput (req/sec): Restricted open group - Servers on the same
LAN and cllents distant LAN clients distant
450 60
400
50
350
300 40
e 250 —e— Asymmetric 2 —o— Asymmaetic
€ 200 —~8— Symmeltiic —m— Symmeric
150 20
100
10
50
0+ 04
1)] 6 1 [] " 10
Number of clients Number of clents
RPC (milli ds): R ited open group - G Throughput (reg/sec): Restricted open group - Geographically
saparated servers & ciients separated servers and clients
450 0
400 50
350
200 40
g 20 —a— Asymmetic
& 200 —4— Asymmaetric 0 —8— Symmetic
—a— Symmetric

1 L] n 16

Number of clients

Figure 6.9 — Comparing asymmetric and symmetric protocols in the restricted open group approach for request/reply

experiments.

In the LAN and Internet asymmetric experiments the sequencer chosen for the server group is the

request manager. This produces identical message volume per request for both protocols; request

manager receives client request, request manager asynchronously directs the request to other

members of the group, request manager sends single reply. Furthermore, a client request may be

serviced without the need for the asymmetric and symmetric protocols to experience message

blocking or message passing for the sake of message ordering delivery guarantees (see 5.5.1). As

message volume and message blocking is the same in both protocols there is an expectation that the

Page 114

Performance of the NewTOP Service - Chapter 6

performance of both protocols would be the same, which is borne out by the results presented in fig.

6.9.

6.2.7 Peer Participation

In the peer participation experiments the symmetric ordering scheme is superior to the asymmetric
ordering scheme. In the LAN environment the volume of messages that result from persistently
sending asynchronous multicasts has resulted in a deterioration of performance in both the
symmetric and asymmetric protocols as group membership rises. This deterioration is more extreme
in the asymmetric protocol than the symmetric protocol. This indicates that the sequencer is
receiving more messages than it can handle. The sequencer is a bottleneck. This bottleneck effect
explains why the asymmetric performance deteriorates significantly as group membership rises. This
deterioration is not evident in the symmetric scenario as the handling of messages and multicasting is
more evenly spread throughout the group. In the Internet scenario, due to the large message transit
times involved, the sequencer does not present a bottleneck. However, the cost of redirection is
evident; the performance of the asymmetric protocol is approximately half that of the symmetric

protocol. The results of the peer participation experiments are shown in fig. 6.10.

T hroughout (megsec): Pear Partidpdtion, menbars onthesams Throughaut (meg/sec): Peer Partidipdlion, geographiodiy separdied
LAN 4] menbers

0

a0 ©

w b ASYBBIC x +A; "

0 e Syemetic 0 -

100 0

04 —_— ol
0 5 10 15 2 0 5 0 15)
Meaters Martes

Figure 6.10 — Comparing asymmetric and symmetric protocols in peer groups.

To satisfy a synchronous request two messages must become deliverable; the initial request must
become deliverable in the server group and the reply of the servers must become deliverable at the
client. Considering this, there is an expectation that the throughput of the peer group should be twice
that of the server group as the time taken for an asynchronous request to become deliverable is
measured (in effect, the time taken for a request to become deliverable at the server only). This is not
the case. The performance of the symmetric peer group is approximately the same as that of the
highest performing request/reply group (restricted open) in both the LAN and WAN experiments.

This can be explained by the frequency that members are sending asynchronous requests in the peer

Page 115

Performance of the NewTOP Service - Chapter 6

group approach. The expense of persistently multicasting asynchronous requests is costly with regard
to the processing resources available. Therefore, the protocol layer spends approximately the same

amount of time sending multicasts as receiving them.

6.3 Summary

This chapter described a set of experiments involving the NewTOP service and presented the results
from these experiments. These experiments were devised to determine the performance of protocol
configurations that may be appropriate in the support of highly available and Groupware
applications. The performance of the protocol configurations were measured as the throughput of
client requests per second in a group. From the analysis of performances gained from the

experiments presented in this chapter the following may be stated:

e The closed group approach provides the poorest performance of all request/reply approaches.

e Restricted open group provides the better performance of all the request reply scenarios.
However, if the request manager fails (e.g., primary in passive replication) then a client may

spend some time rebinding to another server.

e When clients are geographically distant from a server group, and the server group is located
within the same LAN, there is little difference between the standard open group approach and
the restricted open group approach. Furthermore, the cost of replication/group communication is

negligible when Internet latency dominates.

e When clients and members of a server group are geographically separated the restricted open

group approach significantly outperforms the standard open group approach.

e Asymmetric protocols are more appropriate for request/reply approaches, whereas symmetric

protocols are more suitable to peer group approaches.

Page 116

Conclusions - Chapter 7

Chapter 7

Conclusions

This chapter will summarize the material which has been covered in the Thesis and give an indication

of the possible areas of future research.

7.1 Thesis Summary

In the Thesis, main issues concerning the design and implementation of a fault-tolerant group
communication service suitable for use in object-oriented Middleware environments have been
presented. Such a service eases the development of applications that require group communications.
There are a number of different types of applications that may benefit from a group communication
service (e.g., highly available services, Groupware). Each type of application’s group communication
requirements may be different. For maximum generality, an asynchronous environment has been
assumed. Therefore, it is possible that message transmission times can not be accurately estimated
and the network may become partitioned. The Thesis contributes to the area by presenting a
comprehensive approach to the provision of group communications suitable for satisfying the
requirements of a wide variety of application types within object-oriented Middleware environments.

The NewTOP service described here has been fully implemented.

7.1.1 A CORBA Service

An approach for providing a group communication service within the CORBA domain using only
mechanisms as defined by the CORBA standard is presented. This ensures that such a service places
no dependencies on underlying platforms or non-standard enhancements to CORBA. This approach
(commonly termed the service approach) has the benefit of ensuring that the interoperability and
portability of an application built using the service is preserved. Other approaches to service creation

have been proposed:
e Integration - Group communication functionality is integrated into the ORB.
o Interception - IIOP messages are intercepted and mapped onto an underlying group

communication sub-system.

These other approaches do not present the same interoperability and portability qualities as the

service approach. The OGS also advocates the service approach (see 2.7.4). However, the OGS is not

Page 117

Conclusions - Chapter 7

flexible enough to support a wide variety of application types as it does not support overlapping
groups. Furthermore, OGS does not support a choice between asymmetric and symmetric type

ordering protocols.

7.1.2 Group Communication Protocols
Symmetric and asymmetric message ordering protocols, capable of handling dynamic groups have
been presented. These protocols were originally designed to support total ordered message delivery
only. In an attempt to satisfy a wider range of application requirements, these protocols have been
extended to provide an application developer with a choice between causal ordering, arbitrary
ordering and total ordering on a per group basis. Furthermore, additional functionality has been added
to the causal and total ordering protocols to reduce the necessity of message blocking and therefore
potentially increase message throughput within overlapping asymmetric groups that share the same
sequencer. As with message ordering, the developer may choose when to employ such optimization
techniques. Although related works do allow overlapping groups (see 3.6) they do not allow members
that simultaneously participate in multiple groups to use say, symmetric ordering protocols in one
group while using asymmetric ordering protocols in another. To the best of my knowledge there are
no other related works that provide application developers with a choice of functionality that has the
potential for reducing message latency within causal and total ordering protocols via overlapping
groups.

A failure suspector based on the causal relationships between messages and timeouts has
been developed. Based on this failure suspector, a membership protocol has been developed that
ensures network partitions do not lead to group members forming inconsistent views of the

membership of a group. Message delivery is kept atomic with respect to view change installations.

7.1.3 Interactions Between Clients and Server Groups

Protocols for open and closed client/server group interactions have been developed. Such protocols
enable clients to interact with server groups via the overlapping of groups. Two types of groups are
identified; client/server and server groups. Clients participate in client/server groups with one (open
group approach) or more servers (closed group approach). In principle, clients issue requests and

receive replies from a server group g, by participating in a client/server group that overlaps with the
server group g,.

For open groups, a mechanism has been presented that enables a client to issue requests to all
members of a server group and receive server replies via a single member of the server group (request
manager). An application developer may identify an open server group as restricted. Restricted server

groups only have one request manager. The existence of only one request manager in a server group

Page 118

Conclusions - Chapter 7

ensures a single point of entry into the server group for client requests. Such a scenario reduces the
need for message blocking in the underlying group communication protocols when ensuring the
ordering and delivery guarantees of messages associated with client requests.

In both approaches (open and closed groups) the number of replies a client waits for as a
result of a request may be specified on a per request basis. Furthermore, the manner in which such
replies are handled when members of the server group fail during the processing of a client request

may be specified by an application developer.

7.1.4 Performance of the NewTOP Service

The implementation of the NewTOP Object Group Service has been described. Experiments have
been run to evaluate the service in two different network environments; (i) all objects restricted to a
LAN, (ii) objects separated geographical by large distances enabling inter-object communication via
the internet.

Experiments were performed and data was gathered that aided in the comparison of the
performance of symmetric and asymmetric total ordering protocols under different types of group
strategies (client/server groups, peer groups). As a brief summary; in client/server group type
interactions (where it is common for only a single member to multicast while other members are idle)
the asymmetric protocol outperforms the symmetric protocol, whereas, in peer group (where it is
common for all members to be frequently multicasting) the symmetric protocol outperforms the
asymmetric protocol. An advantage of the NewTOP service over other group communication services
is that the NewTOP service provides both asymmetric and symmetric ordering, the choice of which is

left to the application developer.

7.2 Main Contributions

The contributions made by this Thesis can be summarized as follows:

i. A service suitable for satisfying the group communication requirements of a wide variety of
application types has been presented within an object-oriented Middleware environment
(CORBA). There has been no need to enhance CORBA in a non-standard way, nor has any
reliance been placed on underlying network technologies. This ensures that applications built
using the service retain the interoperability and portability associated with CORBA.

ii. The Thesis has discussed and developed group communication protocols. These protocols
enable overlapping groups while retaining low message overheads. Asymmetric and

symmetric message ordering protocols are presented that may be used on a per group basis,

Page 119

Conclusions - Chapter /

permitting groups that are asymmetric to overlap with groups that are symmetric.
Furthermore, these protocols may be tailored to suit a wide variety of application types.

iii. Client/server group interactions of an open and closed type have been addressed within the
group communication protocols via overlapping groups. Furthermore, the problems relating
to message repetition when a client is itself a group have been addressed.

iv. The work presented here has been implemented as a CORBA service and an array of
experiments have been carried out on it. The analysis of these experiments suggest the
overlapping group and configurability strategies available for application developers do allow
the service to be tailored to suit applications of quite different types in various network

environments.

7.3 Future Work

The work presented here can be extended in several directions:

7.3.1 Merging Groups that are a Result of a Partition
The membership protocol presented in the Thesis is capable of dealing with network and virtual
partitions. A partition leads to situations where a group is divided into sub-groups of functioning
objects. These sub-groups have no knowledge of each other, are completely disconnected and share
the same group identifier. The membership protocol presented here is designed so that message
delivery will be kept atomic with respect to view installations in each of the partitioned sub-groups.
However, the problem of merging sub-groups holding the same group identifier, which could happen,
for instance, after a partitioned network has been "fixed" is not addressed by the Thesis.

This problem has been addressed for different sets of minimal repair and recovery conditions
[Ezhilchelvan99, Lotem97]. We intend to integrate [Ezhilchelvan99] with the NewTOP service in the

near future.

7.3.2 Economical Asynchronous Communications

The NewTOP service accomplishes a multicast by directing synchronous RPCs at each member of a
group. This is made asynchronous (required to ensure correct working of the group communication
protocols) by assigning each multicast request to its own thread of control. Using a synchronous RPC
to enable the inter-object communication is costly. This is because a synchronous RPC results in a
redundant message; the message sent from the server to the client carrying server replies.
Furthermore, the ORB will marshal and unmarshal the contents of an RPC even though such
functionality is provided at the invocation layer of the NewTOP service. To overcome the waste of

network and process resources, that are an inevitable result of redundant message passing and

Page 120

wonciusions - Lnapier 7

marshaling/unmarshaling functions, and to allow application developers to use other transport

protocols apart from IIOP the latest CORBA standard (CORBA3) provides:

* Messaging service [OMG98b] - A CORBA service that provides application developers with
asynchronous message passing.
e Alternate transport protocols - Application developers may introduce their own transport level

protocols to the CORBA environment.

The NewTOP service can be refined to exploit these new facilities.

7.3.3 Replication Support for Transactional Objects
Atomic transactions ensure that only consistent state changes take place to objects despite concurrent
access and failures. However, they may be insufficient to ensure that an application makes forward
progress. Although data replication techniques using transactions are well known, in distributed
object environments, facilities for server replication as provided by group communications can
provide additional flexibility [Little99].

Given that CORBA supports a transaction service (Object Transaction Service - OTS), work
on using a group communication service and OTS together to support a highly available transactional

approach to distributed application design would be very interesting.

Page 121

References

References

[Agarwal94] D. A. Agarwal, "Totem: A Reliable Ordered Delivery Protocol for Inter-connected Local Area
Networks", PhD Thesis, Department of Electrical and Computing Engineering, University of California,

Santa Barbara, 1994.

[Amir92] Y. Amir et al, "Transis: A Communication Sub-system for High Availability”, Digest of Papers,
FTCS-22, p 76-84, 1992

[Babauglu94] O. Babaoglu et al, "On Group Communications in Large-Scale Distributed Systems",
Proceedings of the 6th ACM SIGOPS European Workshop, pages 17 - 22, Germany, 1994,

[Babaoglu94] O. Babaoglu et al, "Relacs: a communications Infrastructure for Constructing Reliable
Applications in Large-Scale Distributed Systems", BROADCAST Project deliverable report (available
from Dept. of Computing Science, University of Newcastle upon Tyne, UK).

[Bal90] H.E. Bal, " Programming Distributed Systems", Silicon Press, 1990

[Barrett90] P. A. Barrett et al, "The Delta-4 Extra Performance Architecture (XPA)", Proceedings of FTCS-
20, Newcastle upon Tyne, June 1990.

[Bernstein96] P. A. Bernstein, "Middleware: A Model for Distributed System Services", Communications

of the ACM, Vol. 39, No. 2, pages 86 - 98, 1996.

[Birman87] K. Birman et al, "Exploiting Virtual Synchrony in Distributed Systems", Proceedings of the
11th Symposium on Operating Systems Principles, 1987.

[Birman91] K. Birman et al, "Design Alternatives for Process Group Membership and Multicast",

Technical Report TR91-1257, Department of Computing Science, Cornell University, December 1991.

[Birman93] K. P. Birman, "The Process Group Approach To Reliable Distributed Computing",
Communications of the ACM, 36(12), pages 37 - 52, 1993.

[Birrell84] A. D. Birrel et al, "Implementing Remote Procedure Calls", ACM Transactions on Computing
Systems, vol. 2, pages 39 - 59, 1984,

Page 122

References

[Brown96] N. Brown et al, "Distributed Component Object Model Protocol - DCOM/1.0" Microsoft Inc.,
1996.

[Chandra91] T. D. Chandra et al, "Unreliable Failure Detectors for Asynchronous Systems", Proceedings of
the Tenth Annual ACM Symposium on Principles of Distributed Computing, p 325-340, ACM, August
1991.

[Cristian91a] F. Cristian, "Understanding Fault-Tolerant Distributed Systems", Communications of the

ACM, 34(2), February 1991.

[Cristian91b] F. Cristian, "Reaching Agreement On Processor Group Membership In Synchronous
Distributed Systems", Distributed Computing, 4(4), pages 175 - 187, 1991.

[Cristian96] F. Cristian, "Synchronous and Asynchronous Group Communications", Communications of

The ACM, 39(4), pages 88 - 97, 1996.

[Dolev87] D. Dolev et al, "On the Minimal Synchronisation Needed For Distributed Consensus", Journal of
the ACM, 34(1), pages 77 - 97, January 1987.

[Dolev93] D. Dolev et al, "Early Delivery Totally Ordered Multicast in Asynchronous Environment",
Digest of Papers, FTCS-23, Toulouse, p544-553, 1993.

[Dwork88] C. Dwork et al, "Consensus in The Presence of Partial Synchrony", Journal of the ACM, 35(2),
pages 288 - 323, April 1988.

[Ezhilchelvan86] P. Ezhilchelvan and S.K. Shrivastava, A characterization of faults in systems. Proc. of
5th IEEE Symp. on Reliability in Distributed Software and Database Systems, Los Angeles, pp. 215-222,
January 1986.

[Ezhilchelvan95] P. Ezhilchelvan95 et al, “Newtop: a fault-tolerant group communication protocol”, 15th

IEEE Intl. Conf. on Distributed Computing Systems, Vancouver, pp. 296-306, May 1995,
[Ezhilchelvan99] P. Ezhilchelvan and S K Shrivastava, "Enhancing Replica Management Services to

Tolerate Group Failures", Proceedings of the second International Symposium on Object oriented Real-

time Computing (ISORC), May 1999, St Malo, France

Page 123

References

[Felber98a] P. Felber, R. Guerraoui and A. Schiper, "The implementation of a CORBA object group
service", Theory and Practice of Object Systems, 4(2), 1998, pp. 93-105.

[Felber98b] P. Felber, "The CORBA Object Group Service: a Service Approach to Object Groups in
CORBA", PhD thesis, Ecole Polytechnique Federale de Lausanne, 1998.

[Fischer85] M. Fischer, "The Consensus Problem in Unreliable Distributed Systems", Proceedings of the

International Conference on Foundations of Computing Theory, Sweden, 1983.

[Garcia-Molina91] H. Garcia-Molina, "Ordered and Reliable Multicast Communication", ACM
Transactions on Computing Systems, Vol. 9, No. 3, p 242-271, August 1991

[Grand98] M. Grand, "Patterns in Java, Volume 1", Wiley, 1998.

[Hadzilacos93] J. Y. Hadzilzcos, S. Toueg, "Fault-Tolerant Broadcasts and Related Problems", Chapter 5,
pages 97-145, ACM Press Frontier, Addison-Wesley, 2nd edition, 1993.

[Iona94] Iona Technologies Ltd. And Isis Distributed Systems, "An Introduction to Orbix+Isis", 1994.
[Iona95] Iona Technologies Ltd. "Orbix 2 Programming Guide", 1995.

{Karamanolis96] C. T. Karamanolis, "Configurable Highly Available Distributed Services", PhD Thesis,
Department of Computing, Imperial College of Science, Technology and Medicine, 1998.

[Karamanolis99] C. T. Karamanolis et al, "Client Access Protocols for Replicated Services", IEEE

Transactions on Software Engineering, Vol. 25, No. 1, p3-22, January, February 1999.
[Kennington96] S. Kenington, "Netscape Communicator 4.0 Made Simple", Made Simple, 1996.

[Kramer91] S. Kramer et al, "Transis: A Communication Sub-System for High Availability”, Technical
Report TR 91-13, Computer Science Department, The Hebrew University of Jerusalem, 1991.

[Lamport78] L. Lamport, "Time Clocks and The Ordering Of Events in a Disrtibuted System",
Communications of The ACM, 21(7), Pages 558 - 565, 1978.

[Lamport82] L. Lamport et al, "The Byzantine Generals Problem", ACM Transactions of Prog. Lang. And
Systems 4, 3, pages 382-401, 1982.

Page 124

References

[Little92] M. C. Little, "Object Replication in a Distributed System", PhD Thesis, University of Newcastle
upon Tyne, 1992.

[Little99] M.C. Little, S.K. Shrivastava, "Implementing high availability CORBA applications with Java",
Proceedings of the IEEE Workshop on Internet Applications, San Jose, California, June 1999.

[Lotem97] E. Y. Lotem, I. Keidar and D. Dolev, "Dynamic Voting for Consistent Primary Components",
Proceedings of ACM Symposium on Principles of Distributed Computing (PODC), pp. 63-71, 1997.

[May84] D. May et al, "The Transputer Implementation of occam", Proc. Int. Conf. On Fifth Generation
Computer Systems, p 533-541, November 1984

[Macedo95] R. J. De A. Macedo "Fault-Tolerant Group Communication Protocols For Asynchronous

Systems", PhD Thesis, Department of Computing Science, University of Newcastle upon Tyne, 1995.

[Maffeis95] S. Maffeis, "Run-time Support for Object-Oriented Distributed Programming”, PhD Thesis,
University of Zurich (Switzerland), 1995.

[Melliar-Smith91] P. M. Melliar-Smith, "Membership Algorithms for Asynchronous Distributed Systems”,
Proc. Of 12th Intl. Conf. On Distributed Comp. Systems, p 480-488, 1991

[Melliar-Smith94] P. M. Mellier-Smith et al, "Extended Virtual Synchrony", Proceedings of the 14th IEEE
International Conference on Distributed Computing Systems, Poland, pages 56 - 65, 1994.

[Melliar-Smith97] P. M. Mellier-Smith et al, "Replica Consistency of CORBA Objects in Partitionable
Distributed Systems”, Distributed Systems Engineering 4, p 139-150, 1997

[Mishra91] S. Mishra et al, "Consul: A Communications Substrate for Fault-Tolerant Distributed

Programs", Distributed Systems Engineering, p 87-103, 1993.

[Morgan99] G. Morgan et al, "Design and implementation of a CORBA fault-tolerant object group

service", Proceedings of the conference on Distributed Applications and Interoperable Systems, 1999.

[Morin98} T. Morin, "Migrating Legacy Systems To CORBA", Object Magazine, "http://www.sigs.com",
p39-43, January 1998.

Page 125

http://www.sigs.com

References

[Narasimhan97] P. Narasimhan et al, "Replica Consistency of CORBA Objects in Partitionable Distributed
Systems", Distributed Systems Engineering (4), pages 139 - 150, 1997.

[OMG95a] The Object Management Group, "The Common Object Request Broker Architecture and
Specification”, 1995.

[OMG95b} The Object Management Group, "Interface Repository”, Framingham MA, version 1.0.2
edition, OMG TC Document 95-1-147, 1995.

[OMG98a] The Object Management Group, "Fault Tolerant CORBA Using Entity Redundancy Request
For Proposal”, OMG document: orbos/98-04-01, "http://www.omg.org", April, 1998.

[OMG98b] The Object Management Group, "CORBA Messaging”, OMG document: orbos/98-05-0S,
"http://www.omg.org", May, 1998.

[OOC98] Object Oriented Concepts Inc. "http://www.orbacus.com”.

[O'Malley89] S. O'Malley et al, " RPC in the x-kernel: Evaluating New Design Techniques”, Proceedings
of the 12th Symposium on Operating Systems Principles, Litchfield Park, Arizona, 1989.

[Ranka88] S. Ranka et al, "Programming a Hypercube Multicomputer”, IEEE Software, Vol. 5, No. 5, p
66-77, September 1988

[Renesse96] R. van Renesse et al, "Horus, a flexible Group Communication System", Communications of

the ACM, 1996.

[Ricciardi91] A. M. Ricciardi et al, "Using Process Groups to Implement Failure Detection in

Asynchronous Environements", Proc. Of Annual ACM Symposium on PoDC, p 341-352, 1991.

[Ritchie84] D. M. Ritchie, "A Stream Input-Output System", Bell Laboratories Technical Report, Journal
63, 1984,

[Rosenberry92] W. Rosenberry et al, "Understanding DCE, OSF Distributed Computing Environment",
Addison Wesley, 1992.

[Savets96] K. Savets, "MBONE", IDG Books World Wide, 1996.

Page 126

http://''http://www.omg.org'',
http://''http://www.omg.org'',
http://www.orbacus.com

References

[Schiper93] A. Schiper et al, "Virtual Sunchronous Communication Based on a Weak Failure Suspector”,

Digest of Papers, FTCS-23, Toulouse, p 534-543, 1993.

[Schlichting83] R. D. Schlichting, F. B. Schneider, "Fail-Stop Processors: An Approach To Designing
Fault-Tolerant Computing Systems”, ACM Transactions on Computer Systems, August 1983.

[Schmidt93] D. C. Schmidt, "ADAPTIVE: A Dynamically Assembled Protocol Transformation,
Integration and Evaluation Environment", Concurrency: Practice and Experience, vol. 5, no. 4, pages 269 -

286, 1993 .

[Shrivastava90) S. K. Shrivastava et al, "Fail-Controlled Processor Architectures For Distributed Systems",

Technical Report, Department of Computing, University of Newcastle upon Tyne, 1990 .

[Shrivastava9la] S. K. Shrivastava et al, "A Overview of the Arjuna Distributed Programming System",
IEEE Software, 1991.

[Shrivastava91b] S.K. Shrivastava, “Fault-tolerant system structuring concepts”, Software Engineer’s

Reference Book (ed. J. McDermid), Chapter 61, Butterworth-Heinemann, 1991.

[Soley95] R. M. Soley et al, "The Object Management Architecture Guide", John Wiley & Sons Inc., third
edition, 1995.

[Sloman87] M. Sloman et al, "Distributed Systems and Computer Networks", Prentice Hall, 1987

[Stevens98] W. R. Stevens, "TCP/AP Illustrated Volume 1 : The Protocols", Addison Wesley, 1998.

[Stevens99] W. R. Stevens, "UNIX Network Programming, Network APIs : Sockets and XTI", Prentice
Hall, 1999.

[Sun97] Sun Microsystems, "Java Remote Method Invocation Specification”, JDK 1.1, February 1997.

[Tanenbaum85] A. S. Tanenbaum et al, "Distributed Operating Systems", ACM Computing Surveys, Vol.
17, No. 4, pages 419-470, December 1985

Page 127

