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Abstract

The Petri Box Calculus (PBC) consists of an algebra of box expressions, and
a corresponding algebra of boxes (a class of labelled Petri nets). A compo-
sitional semantics provides a translation from box expressions to boxes. The
synthesis problem is to provide an algorithmic translation from boxes to box
expressions. The axiomatisation problem is to provide a sound and complete
axiomatisation for the fragment of the calculus under consideration, which
captures a particular notion of equivalence for boxes.

There are several alternative ways of defining an equivalence notion for
boxes, the strongest one being net isomorphism. In this thesis, the synthesis
and axiomatis@tion problems are investigated for net semantic isomorphism,
and a slightly weaker notion of equivalence, called duplication equivalence,
which can still be argued to capture a very close structural similarity of con-
current systems the boxes are supposed to represent.

In this thesis, a structured approach to developing a synthesis algorithm
is proposed, and it is shown how this may be used to provide a framework
for the production of a sound and complete axiomatisation. This method is
used for several different fragments of the Petri Box Calculus, and for gener-
ating axiomatisations for both isomorphism and duplication equivalence. In
addition, the algorithmic problems of checking equivalence of boxes and box
expressions, and generating proofs of equivalence are considered as extensions

to the synthesis algorithm.
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Chapter 1

Introduction

This chapter introduces the Petri Box Calculus, and the synthesis and ax-
iomatisation problems that are investigated in the remainder of the thesis.
Section 1.2 presents the algebra of box expressions, together with an informal
description of the intended semantics of each type of expression. Labelled
nets, which are used to give a formal semantics to box expressions are intro-
duced in Section 1.3.2. The translation from expressions to nets is described
in Section 1.3, and some notions of equivalence in the Petri Box Calculus,
based on the structure of nets, are given in Section 1.4. The synthesis and
axiomatisation problems are introduced, followed by a survey of some related
work on the derivation of algebraic representations for net based models and
axiomatisations for process algebra based models. Finally, a summary of the

remainder of the thesis is given in Section 1.7.

1.1 The Petri Box Calculus

Formal models for concurrent systems are used for specifying, modelling,
designing, simulating and verifying complex systems that involve multiple
threads of control and communication between concurrent components of the
system. A specification for a concurrent system consists of set of properties,

expressed in a formal manner, that should hold for any implementation of the
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system. Properties may include the absence of deadlocks, termination (or non-
termination), and the ability to perform certain actions in particular states.
Formal models for concurrent systems can be used to model existing systems,
or to design new systems. Verification tools can be used to check properties,
such as those used in specifications, of a formal model. Simulation can be used
to examine the behaviour of a formal model, and is useful for testing and de-
bugging the design of a concurrent system. Examples of areas in which formal
models of concurrency have been applied include the verification of communi-
cations protocols, the giving of a formal semantics to concurrent programming
languages, the modelling of workflow in businesses, and the simulation of the

interaction between a pilot and his aircraft.

Two important models for concurrency are Petri nets [46] and process
algebras [2, 41]. The Petri net model is graphical in nature, whereas pro-
cess algebras use an algebraic approach. Petri nets have a partial order, or
“true concurrency” behaviour, allowing reasoning about causal relationships
between events. This allows systems to be debugged easily — for example, in a
Petri net model of a system that could deadlock, it is possible to find the chain
of events that lead to the deadlocking behaviour. In comparison, process al-
gebraic models are generally based on less rich interleaving behaviours, where
causality information is not available. During the simulation of Petri nets,
the current state of the system, and the available set of actions that can be
performed are easily visible, due to the graphical form of the Petri net model.
However, it may be more difficult to follow the simulation where the system

is so large that it is not practical to use a global view of the entire net.

Both Petri net and process algebra models for concurrency have well de-
veloped tools for the automatic verification of properties. Petri net tools are
generally based on the generation of structures that contain information about
the reachability of the various states of the system. Process algebra verifica-
tion tools are usually based around an axiomatisation of the algebra, together

with procedures for applying the axioms. Process algebras consist of a set of
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operators, where each operator corresponds to a particular type of behaviour.
In comparison, Petri nets allow the arbitrary interconnection of components,

which in some respects, gives much greater flexibility.

The major deficiency of the Petri net model is that it does not readily sup-
port the composition of nets. This makes it more difficult to produce modular
designs for systems than in a process algebra based framework. Without com-
positionality, it is not possible to take a top-down decompositional approach
to designing a system, or to design systems at different levels of abstraction,
where a high level, less detailed design can be refined to a lower level more de-
tailed design. Of course, with careful planning, it is possible to model systems
in a modular fashion using Petri nets. In doing so, some bf the flexibility of

the expressiveness of nets is inevitably lost.

The Petri Box Calculus [5, 6], one of the results of the Esprit Basic Research
Action, DEMON and its successor, CALIBAN, has been designed to provide
the advantages of both Petri nets and process algebras. The calculus consists of
the box algebra, a process algebraic domain of box expressions, and a semantic
domain of Petri boxes, classes of labelled Petri nets. A compositional semantics
provides a translation from box expressions to Petri boxes. Earlier approaches
to giving a Petri net interpretation to a process algebra, [24, 48], have been
based on algebras with an existing semantics in a model other than Petri nets.
Note that the design of the Petri Box Calculus does not preclude a semantics
being given in purely algebraic terms [35, 37]. For example, [35] gives a partial
order 6perational semantics for box expressions, which is consistent with the

corresponding partial order semantics of Petri boxes.

One of the aims of the box calculus is to allow the semantics of high level
programming constructs to be simulated, verified and reasoned about at the
level of Petri nets. In this respect, the box algebra lies midway between high
level concurrent programming languages such as occam [31], and B(PN)2, [7].
Semantics for both of these high level languages have been given using the Box

Calculus [7, 30].
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The class of nets that belong to the domain of Petri boxes is very much
smaller than the general class of labelled Petri nets. The existence of trans-
lations from high level languages such as occam to the Petri Box Calculus
demonstrate that the calculus is sufficiently expressive for real applications.
An analogy can be drawn with standard sequential programming languages,
where Petri nets can be seen as an assembly language, the Petri Box Calcu-
lus an intermediate p-code, and languages such as B(PN)? and occam as high
level languages. High level languages are compiled into an intermediate p-
code, then into assembly language. There is usually a simple translation from
programs represented by p-code into assembly language. Developing systems
at the lowest level (assembly language/Petri nets) will often give more flexibil-
ity, and more compact and efficient designs. However, the disadvantages are

the difficulty of maintaining, debugging and modifying the system.

1.2 Syntax

Table 1.1 gives the BNF description of the algebra of box expressions. This
algebra forms the syntactic domain of the Petri Box Calculus, which is de-
scribed in detail in [5]. In this section, an informal description of the intended
semantics of each of the operators in Table 1.1 is given. Section 1.3 introduces
a formal semantics for box expressions based on a translation from expres-
sions to labelled Petri nets. [35] gives a detailed and formal description of an
operational semantics for box expressions, based on annotated expressions.
In the following description of the operators in Table 1.1, the notions of
executing an expression, and the successful or unsuccessful termination of
an expression are discussed. In effect, expressions can be considered to be
concurrent programs whose execution proceeds by performing basic actions
which are regarded as atomic. Since there is an element of concurrency, it
is possible that sets of actions are executed simultaneously. The execution

of an expression terminates when no more actions can be performed. For
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E = o Atomic action

E|E Parallel composition
EUOFE Choice composition

|
|
| E;E Sequential composition
| [E*FExE] Iteration

|

Ersa Restriction
| stop Stop
| Esya Synchronisation
| [a:E] Scoping .
| E[f] Relabelling
| X Variable

| E[X < E] Refinement
| uX.E Recursion

Table 1.1: Box expression syntax

certain expressions, the execution may terminate unsuccessfully by entering a

deadlocked state.

An infinite set of basic action names, B is assumed. For the purposes of
the investigation into the synthesis and axiomatisation problems, the lower
case letters (i.e. a,b,c,...) will generally be used. However, it will be usual in
practical applications of the Petri Box Calculus to use more meaningful names.
The ~ symbol is used to denote conjugation, which is a bijection,”: B — B
such that for any basic action b, g = b, and b # b. For example, the basic
actions b and b are conjugates of each other. The mapping ~ can be extended
to sets and multisets! of actions, A, with A = {a | a € A}. It will be seen
below that conjugate actions are required for the synchronisation and scoping

operations.

multisets are an extension of sets to allow multiple occurrences of elements. Section 1.3.1

gives a formal definition.
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Atomic action (FE := )
An atomic action, « is a finite multiset of basic actions. For example:
a = {a,b,q,a,c}

When an atomic action expression is executed, every basic action in the mul-
tiset is perforrﬁed simultaneously, and the execution of the expression success-
fully terminates.

If an atomic action consists of a single basic action, then, as shorthand
notation, the braces will usually be omitted — 7.e. a = a is shorthand for
o = {a}. Unless illustrating: some point requiring the use of multiactions,
future examplés will contain only atomic actions consisting of a single basic

action.

Parallel composition (E ::= E || E)

When an expression of the form, F; || E, is executed, the subexpressions E;
and E, are executed concurrently. Any concurrent execution must arise as the
result of a parallel composition operator. The execution of E || E; terminates
when the execution of both F; and F, has terminated. If either F; or E,
deadlocks during execution, then E; || E, will eventually deadlock, resulting

in an unsuccessful termination.

Choice composition (E := E [l E)

When an expression of the form, F; [l F, is executed, either subexpression
E; or subexpression F, is executed. Once execution of one subexpression
has begun, no part of the other subexpression can be executed. However, the
choice of subexpression is not fixed ~ for example, if a choice expression Ey 0 FE,
appears as a subexpression of an iteration expression then it is possible for E;
to be chosen during the first iteration and E, to be chosen during the next

iteration. The execution of a choice composition expression terminates when
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the execution of the chosen subexpression terminates, and the success of the

execution depends on the success of the execution of that subexpression.

Sequential composition (F ::= E; E)

An expression of the form, Fi; F, is executed by executing subexpression F;
followed by subexpression F,. The execution of Es cannot begin until the
execution of E; has terminated, and will never begin if the execution of E)
terminates ﬂnsuccessfully. The execution of E;; Fy terminates successfully if

and only if the execution of both E; and Ej; is successful.

Iteration (E ::= [E «x E x E])

When an expression of the form [E; * F» * E3] is executed; subexpression E) is
executed once, then Es is executed zero or more times (i.e. it is possible that
E, is not executed at all); finally, subexpression Ej is executed once.

The form of the iteration expression is partly motivated by the Petri net
semantics given to box expressions. The inclusion of subexpressions E) and Ej
in [E4 * By x E3] ensure that some of the desirable properties for Petri boxes also
hold for nets derived from iteration expressions. An iteration operator was not
included in the initial presentation of the Petri Box Calculus, [6], where it was
left to the recursion operator to provide the capability of infinite behaviour.
The iteration operator first appeared in [5], where the semantics allowed unsafe
nets to be obtained. The net semantics of iteration were updated in [4] to

guarantee that every net derived from an iteration expression was safe.

Restriction (F ::= FE rs a)

Restriction on a basic action name, a, prevents the execution of all atomic
actions within the scope of the restriction operator that contain a basic action

a, or its conjugate, a. For example, in:

(({a,b} || ¢) rs a) U {a,d}

14



the execution of the atomic action {a, b} is prevented by the restriction oper-
ator. However, the atomic action {a,d} may still execute as it is not in the
scope of the restriction operation. The restriction operator is most often used

in conjunction with the synchronisation operator to provide scoping.

Synchronisation (E ::= FE sy a)

Consider an expression E synchronised by a basic action a. Whenever E has
the capability to execute an a and @ concurrently, then F sy a also offers the
alternative of synchronising the execution of the a and @ actions. When a
pair of conjugate basic actions are executed synchronously, the execution of
the pair of basic actions that synchronise is hidden, but the system ends up
in the same state as if that pair of actions were executed normally. In this
sense, synchronisation can be seen as a generalisation of the choice composition
operator, allowing a choice between normal and hidden execution of synchro-
nised actions. While synchronisation occurs between pairs of basic actions, it
is pairs of atomic actions that are executed synchronously. For example, the
expression: |
({a,0} || {@,c,d}) sy a

could either execute the two atomic actions {a, b} and {@,c,d} concurrently,
or execute the multiset of basic actions, {b,¢c,d} in a single step, where the
basic action b originates from {a, b} and the ¢ and d basic actions come from
the action {@,c,d}. In addition to the synchronisation of pairs of actions,
the synchronisation operator permits multi-way synchronisation where multi-
ple atomic actions are executed synchronously. This is a consequence of the

multiset representation for atomic actions. For example, in the expression:

({a. 0,0} || {b,¢} 1| {d,5}) sy b

all three atomic actions are synchronised, permitting the execution of the
expression to complete in a single step by performing the multiset of basic

actions {a,c,d}. The semantics for the synchronisation operator are given
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in Section 1.3. An alternative, more intuitive, but equivalent semantics for
synchronisation is described in Chapter 4 together with an investigation into

some properties of synchronisation.

Scoping (E ::=[a: E])

The semantics of the scoping operator can be defined syntactically in terms of

the synchronisation and restriction operators:
[a:E]=FEsyarsa

Whereas synchronisation provides the choice between executing synchronised
actions normally or synchronously, the scoping operator forces the synchronous
execution. It is possible to obtain deadlocking behaviour using the scoping
operator. A deadlock occurs when a pair of actions that cannot be executed
concurrently are scoped. For example, the expression [a : b;a;a] deadlocks
after performing the atomic action b because the ¢ and @ cannot be executed
concurrently.

Although the scoping operator does not increase the expressive power of
the syntax in Table 1.1, the inclusion of scoping is nevertheless important, as
this operator represents the normal use of the synchronisation and restriction
operators. In this respect, the scoping operator can be seen as a shorthand

notation.

Stop (E ::= stop)
The semantics of stop can be defined syntactically in terms of either the
scoping or restriction operators:

stop=[a:a]j=arsa

Hence, stop does not make any contribution to the expressive power of the
syntax in Table 1.1. The main use of stop is to enforce an explicit deadlock,

or unsuccessful termination.
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Relabelling (F := E[f])

The relabelling operator provides a means of associating a relabelling function
with a box expression. The relabelling function acts on basic action names
and variables. By changing this function, a class of relabelled expressions
can be obtained. There is some interplay between relabelling and operators
such as synchronisation and restriction. For example, in (@ || b) sy a[b —
a] no synchronisation takes place. The relabelling operator is most useful
when used in cohjunction with recursion. It is possible to show that for any
expression that involves relabelling, but not recursion, there is an equivalent
expression that contains neither relabelling nor recursion operators. Hence,
relabelling does not increase the expressive power of the calculus, unless used

in conjunction with the recursion operator.

Variable (£ ::= X )

Variables are used in conjunction with the refinement or recursion operators.
When every variable in an expression occurs in the scope of an enclosing
refinement or recursion operator acting on that variable, the expression is said
to be closed. The compositional semantics given in Section 1.3 only defines

the behaviour of closed expressions.

Refinement (F ::= E[X + E})

The purpose of refinement is to provide a basis for the recursion operator. The
idea of refinement is that in an expression such as E,[X « Fj], the behaviour
. of open occurrences of the variable X in F is obtained by executing F, in their
place. Refinement is not exactly the same as syntactic substitution because
there is an interplay between refinement and operators such as synchronisation,
restriction and scoping. For example, if refinement was equivalent to syntactic

substitution then in the expression:

((a | X[ b) sy a)[X « a]

17



there would be the possibility of a synchronisation between the a and @ ac-

tions. However, the intended semantics of refinement do not permit such a

synchronisation to occur.

Recursion (E ::= puX.F)

Recursion is defined inductively in terms of a succession of refinements. For

example, for yX.E, the inductive definition:

Ey = stop
Ei-i-l = E[X(—'El]

gives a sequence of expressions Fy, F1, Fs, ... whose behaviour successively ap-
proximates that of uX.E. In this respect it is very difficult to explicitly de-
scribe how the execution of expressions involving the recursion operator will
proceed. What is certainly clear is that the inclusion of recursion in the box
expression syntax in Table 1.1 greatly enhances the expressive power of the
calculus. In general, expressions involving the recursion operator result in in-
finite nets. For this reason, recursion is not investigated further in this thesis.
For more details on recursion in the Petri Box Calculus, the reader is referred

to [4] and [12].

1.3 Semantics

In this section, a formal basis for describing the semantics of the syntax in
Table 1.1 is presented. The semantics are given in terms of labelled Petri nets.
Some examples of the translation from expressions to nets are presented, and
the general form of the translation is discussed. However, detailed presenta-
tions of the semantics are given only for a subset of the syntax in Table 1.1.
A complete description of the semantics is contained in [5].

A formal description is given for multisets, which among other things are

used to represent atomic actions. A definition of labelled Petri nets is given
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in Section 1.3.2, followed by a brief description of the execution behaviour of
such nets. Some operators, used to compose labelled nets are described in
Section 1.3.4. The semantics of the syntax in Table 1.1 are given in terms of
these operators. Finally, in Section 1.3.5, the ideas behind the translation from
expressions to nets are discussed, and the semantics for some of the operators

in Table 1.1 are presented.

1.3.1 Multisets

A particular set S can be described using a characteristic function?, Z : U —
{0,1}. The domain of Z, U is known as the universe of S, and is the set of all
elements that could conceivably bé present in S. For all u € U, the value of
Z(u) indicates whether u is actually present in S, with Z(u) = 1 if and only if
u€eS:
T(w) = 1 ifues
0 otherwise

For example, suppose S = {1,3,4} is a set of natural numbers (hence the
universe of S is the set of all natural numbers, V'), and Z : N' — {0, 1} is the
characteristic function for S, then Z(1) = Z(3) = Z(4) = 1 and Z(0) = Z(2) =
Z(n) =0for alln > 5.

The functional notation for sets is more formal than the standard set no-
tation as it makes the universe of the set explicit. A definition of multisets is
obtained by extending the range of the characteristic function from {0,1} to
the set of natural numbers, A. Intuitively, this allows each element to appear
multiple times in the set. Hence, a multiset with universe X is a function,
p: X — N, where for each x € X, u(z) gives the multiplicity of the element
z. Multisets will usually be written in standard set notation — for'example a
multiset z : {a,b,c,d} — N with p(a) = 2, u(b) = 1, u(c) = 0, and p(d) = 3

can be written as {a,a,b,d,d,d}.

* 2This notation is most often encountered in proofs that the number of subsets of a set S

is 2151,
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Let py and po be multisets with universe X. The standard set operations
union (U), intersection (N) and difference (—), together with multiset sum (+)
and multiplication (-) operations can be defined for yu; and p,. For all z € X

and n € N:

(1 U pe)(2) = max(u(z), pa(z))

(1N p2)(z) = min(py(z), pa(x))
{ (x) = () i (z) > palz)

(1 — p2)(z) = ,
0 otherwise

(1 +p2)(z) = m(z) + po(z)

(n-p)z) = n-(u(z))

Let © be a multiset with universe X, and X’ € X be a subset of X. The
multiset u | X’ denotes p restricted to the domain (or universe) X'. This
follows the usual notation for restricting a function to a particular domain
— i.e. where f |4 denotes the function f restricted to the domain A. For
example, let X = {a,b,¢,d}, 1 = {a,a,b,¢,d,d,d} and uy = {a,b,b,d,d}
then:

mUpe = {a,a,bbecddd mNp = {a,bd, d}
p—pp = {a,cd} pe—p1 = {b}
pr+pe = {a,a,0a,b,b,bcd,d,d,d,d} P ey = {a,a,b}
2.4, = {a,a,b,b,b,b,d, d, d d}

It follows directly from the definition of multisets that every set can be treated
as a multiset. It is easy to check that the definition of union, intersection,
difference and restriction for multisets is consistent with the definition for

sets.

1.3.2 Labelled nets

A labelled net is a tuple, ¥ = (S, T, W, A), where S and T are sets of places,

and transitions respectively, collectively known as nodes. The set of arcs of
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the net is given by W : (SUT) x (SUT) — N. W(ny, nz) returns a non-zero
value n to indicate the presence of an arc from node n; to node ny with Wéight
n. If W{(ni,ny) returns 0, then there is no arc from n,; to ns.

As a shorthand notation, the set of arcs of the net may be written as a
multiset of 'pairs of nodes, such that (nl,ng) appears exactly n times if and
only if W(ni,n;) = n. It is assumed that labelled nets are bipartite, with
bipartition (S,T). Therefore there are no arcs between pairs of places, or

pairs of transitions:
V81,32 € S, tl,tz eT: W(Sl, 82) + W(tl,tg) =0

A is a labelling function, such that a place is labelled e for an entry place, 0
for an internal place, and x for an exit place. T and X°* are the set of entry

and exit places respectively:

T = {seS|As)=¢e}
¥ = {seS|As)=x}

Transitions are labelled with atomic actions (i.e. multisets of basic action

names).

t| a tro| @
o® O
t2| b trs| b

YORO

(1) (i)

Figure 1.1: Labelled Petri nets
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Figure 1.1 shows two nets that may be derived from the expression E = a; b.

Net (7) is the graphical representation of the labelled net:

Y = ({317 S2, 33}’ {tla t2}’ {(51’ tl)a (tla 32)7 (52’ t2)a (tZ’ 83)}’
{(51’ e)’ (827 @), (33?)()7 (tl’ {a})’ (t2’ {b})})

Transitions and places are represented by rectangles and circles respectively.
In giving a semantics to box expressions, it is both necessary and desirable
to abstract away from place and transition names. This is reasonable since
the choice of names for nodes iﬁ the net has no effect on either the structure
or the behaviour of the net. The only purpose of such names is to give a
means of identifying particular nodes. Hence, nets (i) and (4¢) in Figure 1.1
are considered to be equivalent. It will be shown in Section 1.4 that such an
abstraction away from node names amounts to defining a class of nets that are
unique up to isomorphism. Therefore, place and transition names will usually

be omitted where they are not required to illustrate a particular point.

1.3.3 Behaviour of labelled nets

Just as box expressions may be regarded as concurrent programs, so can la-
belled Petri nets. In this section, the process by which a labelled net is exe-
cuted is described. The translation from an expression to a labelled net given
in Section 1.3.5 is such that the execution of the net proceeds in a manner
that matches the intended semantics described in Section 1.2.

During the execution of a labelled net, the current state of the system is
recorded by a marking. Every place in the net may be marked by one or more
tokens, and the sets of tokens in places determine the marking of the net. The
initial marking (or state) df a labelled net is obtained by placing a single token
in each entry place, and no tokens on any other place. The final marking of
a net is reached when each exit place contains a single token, and every other
place contains zero tokens. When the final marking is reached, the execution

of the net has completed successfully.
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The set of pre-places (post-places) of a transition is the set of places that
have an arc to (from) that transition. The presence of tokens in the net
may enable the execution of certain transitions. A transition is enabled if
every pre-place contains sufficient tokens. The minimum number of tokens
that each pre-place must contain is given by weight of the arc between that
place and the transition. An enabled transition may be executed (or fired)
by removing tokens from the pre-places and adding tokens in the post-places
of the transition, where the number of tokens that are removed and added
are determined by the arc weights. If several transitions are simultaneously
enabled then it may be possible to execute them concurrently, or if they share
common pre-places, there may be a choice between which transition is to be
executed. A deadlocked state is reached, and the execution terminates when
the current marking does not enable any transitions. If a deadlocked state is
reached where the marking is not the final marking then the termination is

unsuccessful.

The class of nets that can be derived from expressions over the syntax in
Table 1.1 are such that during any execution of a net, no place will contain
more than one token. An immediate corollary of this observation is that any

transition that is connected by an arc with weight greater than one can never

be enabled.

Figure 1.2 illustrates the execution of a net that has been obtained from the
_expression a; b. The initial marking enables the transition labelled a, which can
fire by executing an a action to reach the state where only the internal place
contains a token. The final marking is reached from this state by performing
a b action. Once the final marking has been reached, there are no enabled
transitions. Hence the execution terminates successfully. This behaviour can

be seen to correspond with the intended semantics of the sequence operator.

In investigating the structural properties of nets in relation to the synthesis
and axiomatisation problems, the behaviour and markings of nets do not need

to be considered. Therefore, future diagrams that contain nets will not indicate
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Initial marking Final marking

Figure 1.2: Behaviour of labelled nets

any marking — only the structure of the net will be shown.

1.3.4 Operations on labelled nets

Four operators on labelled nets, U, ©, ® and @ are used to implement the
translation from box expressions to labelled nets. The first operator, net union
(LJ) is only defined for disjoint nets. Two labelled nets, £; = (S;, 71, W1, A1)
and Xy = (Sz, Ty, Wa, A2) are disjoint if (S;UT1)N(S2UT,) = @. The ability to
generate disjoint nets relies on the abstraction away from place and transition
names that was introduced in Section 1.3.2.

For disjoint nets, 3; and X5, the net union, ¥; U ¥, is defined by:
YUY, = (Sl USy, i UTs, W, A1 U )\2)
Where W : (Sl U Sz uTiu T2) X (Sl U S2 Uy T2) — N is given by

Wl(nl,ng) if ny,Na S Sl UT1
W(n1,ng) = Wa(ni,ne) ifny,my € SoUT,

0 otherwise

The © operator can be used to remove a set of nodes, NV, from a net ¥ =
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(S, T, W, ):
LON=(5—-N,T— N,W |(sur)-nx((Sur)-N)s A |(sur)-N)

The place multiplication operator, ®, is used to create a new set of places from
a collection of disjoint sets of existing places. For a net, X = (5,7, W, ), let
S1, ..., Sk be non-empty, disjoint subsets of S. The set of new places, $;®...®S5k
is defined by:

S1®..Q0 5 = {{81,...,Sk} | s; €85 for1<i< k‘}

A set of new places, created using the ® operator can be added to the net
using the @ operator. Let P = 51 ® ... ® Sk be a set of new places, and
[ € {e,0,x} be the label which is to be assigned to each place in P. The net,
¥ & (P,1), obtained by adding the set of new places to ¥ is defined by:

S@ (Pl)=(SUP,T,W,X)

where W' : (SUPUT) x (SUPUT) — N, and X are defined as follows:

( W (n1,n9) | ifni,np e SUT
neny W(N, ifny € Pnge SUT

W’(m,nz) = 9 nem, (n,n) it my 2

EnEng W(nl,n) if n; € SUT, Nno € P

0 otherwise

\

A ifneSUT
Nn) = (n) ifn
! ifneP

The & operator may also be used to add a set of new transitions to a net. Let
X be a set of new transitions, where each new transition is a multiset of the
set, T, of existing transitions in the net ¥ = (S, T, W, A), and [ be the labelling
function which assigns a label to each new transition in X. The net Z& (X, 1),

obtained by adding the set of new transitions to X, is defined by:

S@(X,1) = (S,TUX,W',X)
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where W' : (SUTUX) x (SUTUX) = N, and X are defined as follows:

(

W(ny, ng) if ny,mpe SUT
Yonem, W(n,np) ifng € X,np e SUT

W'(nl,ng) =
Yonen, W(ni,n) ifny € SUT,np e X

| 0 otherwise

Aln) ifneSUT
I(n) ifneX

N(n) =

The addition of transitions to the net is more flexible than the addition of
places as each transition in the set X added by ¥ & (X,[) can be given a
different label — i.e. [ is a labelling function. In the case of addition of places,

Y@ (P,l), | is a label that is common to every place p € P.

1.3.5 Translation from expressions to nets

A Petri box is an equivalence class of labelled nets. The equivalence class
is obtained by abstracting away from the place and transition names in the
net, and it will be shown later that this corresponds to isomorphism3. For
every box expression, F, there is a corresponding Petri boxv, denoted box(FE).
The compositional semantics of the box calculus describe a translation from
box expressions to Petri boxes. This translation is achieved by associating
a semantic rule with each syntactic operator in Table 1.1. The omission of
place and transition names of labelled nets in diagrams corresponds to a rep-
resentation of a Petri box. For such diagrams the representation can either
be thought of as a class of structurally equivalent (isomorphic) nets, or as a
particular net where the labelling of node names is omitted. Of course, it is
easy to obtain the Petri box corresponding to a particular labelled net, and
vice versa.

The semantic rules are compositional, which means that in constructing

the Petri box for, for example E, [l E5, the Petri boxes for F; and F, are

3[6] uses a weaker equivalence relation, duplication equivalence.
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constructed, then combined using the semantic rule for choice composition.
The important point is that the rule for choice composition works no matter
how complex the expressions E), and F, are.

The semantics of the box expression syntax in Table 1.1 are implemented
in terms of the operators on labelled nets: U, &, © and ® described in the
previous section. In this Section, the semantics for atomic actions, paral-
lel composition, choice composition, sequential composition and iteration are
described, together with a semantics for the restriction and synchronisation
operators, which in turn allow the semantics for expressions involving stop
and scoping to be derived. The semantics for the remaining operators may be
found in [6].

Figure 1.3 shows some example Petri boxes obtained from simple box ex-
pressions, illustrating the use of each of the operators whose semantics are
described below. The parallel composition, choice, sequence and iteration se-

mantic rules have a general form which consists of three components:

1. The union of a collection of nets, ; for 1 < ¢ < k, for some k, is formed,
using the Ui operator. The nets ¥, correspond to subexpressions of the

expression being translated into a Petri box.

2. Sets of new places are created, using the ® operator, applied to entry
and exit interfaces of some of the nets, 3;, used in 1. These sets of places
are added to the result of 1, using the @& operator. The entry and exit

interfaces of each X; are used at most once in this step.

3. The original entry and exit interfaces used in 2 are removed from the

result of 2, using the © operator.

The semantic rules for the synchronisation and restriction operators, use a set
of transitions T, which is the set of transitions in T that have an @ or @ in

their label. For a net, ¥ = (S, T, W, \), T* is defined by:
T*={teT|At)N{a,a} # 0}
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o
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4+ 0 e

Iteration Restriction Synchronlsatlon

Figure 1.3: Box calculus semantics
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In the following, [X] denotes the class of nets equivalent to ¥ when the

abstraction away from place and transition names is made.

Atomic action

box(a) = [({81, 32}? {t}’ {(81’ t1)> (tla 32)}’ {(81, e)’ (32’ X)7 (t’ a)})]

An atomic action is implemented by explicitly creating the Petri box
given in Figure 1.3. The transition of the net is labelled with the multiset

of basic actions that is the atomic action.

Parallel composition
box(E; || E2) = box(E}) || box(E2)

where, for ¥; € box(E;) and £y € box(E;) such that ¥; and 3, are
disjoint,

box(E1) || box(E;) = [£1 U 4]

The net corresponding to the parallel composition of two expressions is
constructed by taking the disjoint union of the nets for these expressions.

The subnets are completely independent of each other, and can therefore

execute concurrently.

Choice composition
box(E; [ E») = box(Ey) 0 box(E»)

where, for £; € box(E;) and ¥y € box(F,) such that ¥; and ¥, are

disjoint,

bOX(El) D bOX(EQ) = [21 ] 22 &) (.21 ® '22, e)
57) (21. ® 22.1 X)
O (TIUTUT UL,
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When the choice composition of two expressions is taken, the entry and
exit interfaces of the nets corresponding to these expressions are com-
bined in the manner shown in Figure 1.3. In the example for choice
composition in Figure 1.3, a token in the entry place can take one of
two paths — executing either the “a” action, or the “b” action. This

corresponds with the intended semantics of the choice operator.

Sequential composition
box(E1; Es) = box(E}); box(E»)

where, for ; € box(E;) and ¥y € box(F:) such that ¥; and X, are

disjoint,

box(E1);box(E;) = [Z,U T2 @ (Z1° ® T, 0)
) (21. U ‘22)]

When the sequential composition of two expressions is taken, the nets
corresponding to these expressions are combined by joining the exit in-
terface of the first net with the entry interface of the second net. The
result is that the final marking of the first net is coincident with the
initial marking of the second net — i.e. the second net does not begin

execution until the execution of the first net has completed.

Iteration
box([E; * By * E3)) = [box(E;) * box(Es) * box(Es3)]

where, for 211,212 € bOX(El), 221,222 € bOX(Eg), and 231,232 €
bOX(Eg)
such that Xq1, 210, 201, Xo9, X31 and X3 are mutually disjoint,

[bOX(El) * bOX(EQ) * bOX(E3)] = [211 L 212 ] 221 ] 222 L 231 L 232
® (T @ iz, €)
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D (Z31° Q@ X32°, %)

© (L1 U Tip U Xg° U B3o°)
(Z11° ® T @ Tao® ® X317, D)
(Z12° ® Lo ® Xn* ® L2, 0)

O (X11° U %1 U Xge® ULy

U X12° U g U Eg* U Esgy)]

When the iteration operator [E) * Ey * E3] is used the nets corresponding
to the three expressions are combined as shown in the example in Fig-
ure 1.3. Notice that two copies of each net are used in this construction
— this is to ensure that the resulting net is pﬁre, which means there is
no pair of nodes n; and n, such that there are arcs both from n; to ns
and from n, to n;. If only a single copy of the nets are used, then, for
example, the implementation of [a * b * ¢] would not be pure because
the transition labelled b would have an arc both to and from the same
place. In fact, only two copies of the nets corresponding to E; and Ej
are required to ensure that the construction is pure. A second copy of
the net corresponding to E} is included to make the net (and the set
of reachable states) symmetrical, allowing Petri net based verification
algorithms to more easily detect the redundancy in the implementation
of iteration expressions. At the initial marking of an iteration net, there
are two possible paths of execution. The behaviour of the net will be the
same whichever path is taken. In the example net, note that there is a
cycle consisting of the two copies of the net corresponding to the expres-
sion “b”. Once an a transition has been executed, b transitions can be
executed any number of times (ihcluding zero), before one of the ¢ tran-
sitions is executed and the final marking is reached. This corresponds to

the intended semantics of iteration expressions.
Restriction
box(E rs a) = box(E) rs a
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where, for ¥ = (S,T, W, A) € box(E),
box(E) rs a = [LE 6T

The restriction of an expression ny a basic action name is achieved by
removing every transition that has a label containing that action name
or its conjugate, from the net corresponding to that expression. This
results in certain paths of the execution being blocked, and means that
the final marking of the net may no longer be reachable. The restriction
operator is generally used in conjunction with synchronisation, in such

a way that the final marking remains reachable.

Synchronisation
box(E sy a) = box(E) sy a

where, for £ = (S,T,W, ) € box(E), let 7, be a finite multiset of the
set of transitions, 7%, such that 7 contains at least two elements. 7 is a
valid synchronisation if and only if the multiset sum of the labels of the
transitions in 7 contains at least |7| — 1 a and @ basic actions. Hence,
the set of new transitions created by synchronising ¥ by a basic action,
a is given by:

Toy'= {7 | |7] > 2 Amin(d_ A(¢)(a), > A(t)(@)) > |7| — 1}

ter teT
The labelling function, ! defines the label of 7 to be the multiset sum of

the labels of the transitions in 7 minus |7| — 1 copies of the a and @ basic

actions:

=2 A®) = (7] - 1) - {a,a})

ter

The synchronisation operation on Petri boxes is defined by:

box(E) sy a = [ & (Tyy, )]
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The semantics for synchronisation presented here are slightly different
from those in [6], where the condition requiring |7| > 2 is not imposed.
Hence, the semantics in [6] create a duplicate of every transition in the
set T°.- While these duplicate transitions are not significant for the du-
plication equivalence of [6], they are for the stronger equivalence of iso-

morphism investigated here.

The synchronisation of an expression by a basic action, a, is achieved by
adding new transitions to the net corresponding to the expression being
synchronised. A new transition is added for every pair of synchronising
transitions — i.e. a pair of transitions, with one transition label contain-
ing the synchronising action, a, and the other containing the conjugate
of the synchronising action, a@. Each new transition inherits the arcs from
the pair of synchronising transitions, and is labelled with the multiset
union of the labels of the synchronising transitions, minus the two basic
actions, a and @ that contributed to the synchronisation. For example,
the () transition in the net in Figure 1.3 arises from the synéhronisation

of the ¢ and & transitions.

A labelled net, ¥ is called an implementation of a box expression, E, if

¥ € box(F). Note that:
¥ € box(E) < [Z] = box(FE)

An implementation of an expression, E' can be constructed from disjoint im-
plementations of the subexpressions of E. For example, an implementation,
Y, of E = Ey; E,, can be constructed from disjoint implementations, 3; and

3, of E} and E», using:

L =5US 6 (5°®%,,0)
e (21' U'EQ)

A similar procedure can be used for the other operators in Table 1.1.

33



1.4 Equivalence of expressions and nets

One of the motivations for the design of the Petri Box Calculus was the ability
to define notions of equivalence in a process algebra framework that were tra-
ditionally only found in the domain of Petri nets. In this section, it is shown
how the equivalence of box expressions can be based on an equivalence for
labelled nets. There are many candidates for the equivalence of Petri nets.
An idea of the range of possible equivalences can be obtained from [45]. Two
structural equivalences, isomorphism and duplication (renaming) equivalence,
are formally defined in this section. These notions are used in the remainder
of the thesis as a basis for the investigation into the synthesis problem and the
production of an axiomatisation. Structural, rather than behavioural equiva-
lences are chosen for the investigation because the synthesis and axiomatisation
problems are simpler, and the work should provide a basis for an investigation
into behavioural equivalences. Chapter 6 discusses an approach to the synthe-
sis problem for behavioural equivalences, that is based on structural analysis
similar to those used for isomorphism and duplication equivalence. Structural
equivalences are much stronger than behavioural equivalences, and any rea-
sonable notion of behavioural equivalence will encompass equivalences such as
isomorphism and duplication equivalence. Therefore, it should be expected
that an axiomatisation for a structural equivalence could form the basis of an
axiomatisation of a behavioural equivalence, while the reverse is not true.
For an equivalence relation, =,, over nets, a corresponding equivalence =,

can be defined over box expressions as follows:
E) =, E; & 3 =, L, where £, € box(E)) and 2, € box(E,)

This definition of equivalence for box expressions requires that the equivalence
relation, =,,, encompasses isomorphism — i.e. if the nets ¥; and ¥, are isomor-
phic, then ¥; =, ¥,. This is a reasonable assumption, because isomorphism
simply abstracts away from node names, which have no effect on the seman-

tics of the net. Any reasonable notion of equivalence should be expected to
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preserve the abstraction.

The notation [E], is used to represent the class of nets equivalent, according
to the relation =,, to an arbitrary member of the Petri box constructed for
E. When =, corresponds to isomorphism, then [E],, and box(E) describe the
same class of labelled nets. For any other reasonable notion of equivalence, =,,,
box(E) C [E],, which amounts to saying that =, encompasses isomorphism.

Two equivalence relations based on the structure of labelled nets are con-
sidered. The stronger equivalence is isomorphism, which corresponds to the
abstraction away vfrom place and transition names. Duplication equivalence,
in addition, abstracts away from the duplication of nodes in the net. Writing
¥ :i;o' o (X1 =qup 22') indicates that the nets £; and X, are isombrphic
(duplication equivalent). Similarly, £y =;,, Ea (E; =4up E2) indicates that E}
is equivalent to Ey according to net isomorphism (duplication equivalence).
However, if it is clear what notion of equivalence is being used, the = symbol
will often be used in place of =, or =g4,.

The motivation for investigating the synthesis and axiomatisation problems
for net semantic isomorphism is that for any expression, F, the class of nets
[Eliso is identical to that described by box(E). This correspondence signifi-
cantly simplifies the synthesis problem. For equivalence relations weaker than
isomorphism, members of the equivalence class of boxes will only be equiva-
lent, under that relation, to the implementation of some box expression. They
may not necessarily be implementations of a box expression themselves. The
investigation into duplication equivalence gives an idea of the additional prob-
lems that are encountered when the correspondence between equivalent nets,

and Petri boxes is weakened.

1.4.1 Isomorphism

Isomorphism is possibly the strongest equivalence relation over nets (apart
from identity). Two nets are isomorphic if there is a one-to-one correspondence

between the nodes that preserves adjacency and node labelling. Formally, the
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nets ¥y = (53,71, Wi, A1) and Tp = (Sp, To, Wa, Ay) are isomorphic if there
exists a sort-preserving bijection p : (S UTy) — (Sp UT5) such that:

an,ng € Sl UT] : Wl(nl,n2) = Wg(p(nl),p(ng))
Vne S;UTy : A(n) = A(p(n))

[Z]iso, which is the same as [Z], is used to denote the class of labelled nets
that are isomorphic to X. If ¥; =, X, then the sets of nodes n, C S, UTh,
ny C S,UT, are isomorphic, denoted ny =;;, ng if there exists an isomorphism,
p for X; and X,, such that ny = {p(n) | n € n1}. This can be extended to the
isomorphism of sets of sets of nodes in the obvious way.

Under isomorphism, there is an epimorphism (many-to-one, onto relation)
from box expressions to labelled nets — i.e. there may be several expres-

sions that produce isornorphic nets. For example, the implementations of

((a;b);¢) rs b and ( ) rs d are isomorphic, as shown in Figure 1.4.
G—P @© ©® ©
¢ c a

DO O o

(a;(b;e)) rs b (a;(d;c)) rs d

Figure 1.4: Isomorphic nets

1.4.2 Duplication equivalence

Duplication (or renaming) equivalence is the equivalence relation defined and
used in [6] to correspond to the class of nets that is a Petri box. Duplication
equivalence is weaker than isomorphism:

21 and X5 isomorphic = ¥; and ¥, duplication equivalent
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but:
¥, and ¥, duplication equivalent # ¥; and ¥, isomorphic

Duplication equivalence is based on an equivalence relation over the elements
of a labelled net. In a net £ = (S, T, W, ), two nodes n;,n, € SUT are
duplicates of each other, written n; =g, n2, if A(n1) = A(n2) and for all
n € SUT, both W(n,,n) = W(ng,n) and W(n,n;) = W(n,ny). Duplication
equivalence is defined by extending the relation “to duplicate each other” to an
equivalence relation on labelled nets. Formally, the nets £; = (S, T1, W1, A1)
and Xy = (Sy, Ty, Wa, A2) are duplication equivalent if there exists a relation

p C (S1UTy) x (S2UT3) such that:

e The relation is surjective (onto), and sort-preserving on places and tran-

sitions — i.e. p(S1) = Sa, p71(S2) = Si1, p(Ty) = Ty, and p~1(T3) = Th.

e The relation preserves arcs, and arc weights — i.e. if (s1,s2) € p and

(tl,tg) € p, then W(Sl,tl) = W(Sz,tz) and W(tl, 81) = W(tg, 82).
e The relation preserves labels — i.e. if (ny,ny) € p, then A(n;) = A(ng).

e The relation is injective (one-to-one) on classes of duplicate nodes - i.e.
if (n1,n2) € p, and (my,my) € p then ny =4, m; in I, if and only if

Ty =dup M2 in 22.

e The relation is full for classes of duplicate nodes — i.e. if n; =g, m; in

¥, and ny =g My in Ly then (n1,n2) € p if and only if (my, ms) € p.

[£]4up is used to denote the class of labelled nets that are duplication equivalent
to 3. |

A canonical representative, up to isomorphism, of a class of duplication
equivalent nets can be obtained by removing all but one of each set of duplicate
nodes. Hence, two nets are duplication equivalent if and only if their canonical

representatives are isomorphic. In Figure 1.5, net (i) shows the implementation

of:
E=(((allb)U(all®) ]l ((allb)D(all b)) rsd
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Figure 1.5: Duplication equivalent nets

and net (ii) shows the canonical representative for net (i). Although there is
a strong relationship between isomorphism and duplication equivalence, Fig-
ure 1.5 illustrates a possible source of difficulty in extending a synthesis algo-
rithm and axiomatisation for isomorphism to one for duplication equivalence.
While net (i) is the implementation of a box expression, there is no box ex-
pression with an implementation isomorphic to net (ii). Even worse, net (ii)
is the natural choice for a canonical representative for net (i). This problem

is discussed further in Chapter 5.

1.5 Synthesis and axiomatisation problems

The synthesis problem is to provide an algorithmic translation from labelled
nets to box expressions — ¢.e. given an arbitrary labelled net as input, try
to synthesise an expression whose implementation is equivalént (under some
particular equivalence relation) to the input net. For a particular notion of

equivalence, =,, the decision problem associated with the synthesis problem
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can be stated as:

Box EXPRESSION SYNTHESIS
INSTANCE: Labelled net, X.
QUESTION: Does there exist a box expression, E,

such that box(E) = [X],.

The problem may be simplified slightly by allowing only those inputs for
which there exists a solution. This restriction does not affect the time complex-
ity of the problem. For a particular notion of equivalence, =,, the synthesis

problem can be restated thus:

Box EXPRESSION SYNTHESIS
INSTANCE: Net, ¥, for which there exists a synthesisable expression.

SOLUTION: Box expression, E, such that box(E) = [Z],.

The motivation for investigating the synthesis problem is twofold: Firstly,
the investigation provides a detailed analysis of the semantics of box expres-
sions, allowing an axiomatisation of the box algebra to be obtained, and sec-
ondly, a solution to the synthesis problem allows process algebraic represen-
tations to be derived for a class of Petri nets. While the class of nets for
which an expression can bé synthesised is small for structural equivalences, it
will be much larger, perhaps even covering the entire class of Petri nets, for
behavioural equivalences. Bearing this in mind, a synthesis algorithm for be-
havioural equivalences is a much more attractive proposition, and could have
immense practical applications. An initial investigation into isomorphism and
duplication equivalence will hopefully provide insight into, and a solid basis
for the extension to behavioural equivalences. Bearing these motivations in

mind, there are two desirable properties that a synthesis algorithm may have:

e Determinism: Given two equivalent nets as input, the algorithm should
synthesise identical expressions. This means that the synthesis algorithm
implicitly defines a canonical form for the equivalence classes of box ex-

pressions. Designing an algorithm which has the determinism property
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will not be trivial because there is a many-to-one relation between box
expressions and classes of Petri boxes, even under the strongest equiva-
lence relation, isomorphism. The determinism property is useful from a
theoretical point of view, in that it allows the synthesis algorithm to be
used to show that an axiomatisation of the Petri Box Calculus is com-
plete. While a non-deterministic algorithm can still be of use in proving
completeness, the task is significantly easier using a completely deter-
ministic synthesis algorithm. Section 2.4 in Chapter 2 discusses in detail
the means by which an analysis of a synthesis algorithm can be used to

derive an axiomatisation.

Efficiency: The time complexity of the synthesis algorithm should be,
at most, polynomial in the size of the input net. An efficient algo-
rithm for synthesis would give more scope for practical applications of
the algorithm. While a solution to the synthesis problem for structural
equivalences such as isomorphism and duplication equivalence has lim-
ited practical use, the investigation provides a basis for the extension
to more reasonable (from a practical point of view) net equivalences.
The extension to behavioural equivalences is discussed in Chapter 6.
The efficiency of the synthesis algorithm has no effect on the possibility
of deriving an axiomatisation, although an efficient synthesis algorithm
may lead to efficient procedures for the automatic generation of proofs,
using the axiomatisation. In this respect, efficiency should be regarded
as secondary to minimising the amount of non-determinism in the algo-

rithm.

It is not imperative that the expression synthesised from a particular input net

is unique. There will often be a tradeoff between the amount of determinism

in the algorithm and the efficiency of the algorithm. An analysis of the points

of non-determinism in the synthesis algorithm, may still provide a means for

defining a canonical form for box expressions.
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The problem of finding an axiomatisation is not an algorithmic problem.
For a particular notion of equivalence =,, over labelled nets, an axiomatisation
characterises the corresponding equivalence over expressions, =,, by means of
a set of axioms (rewriting rules). It is important for an axiomatisation to be
both sound and complete. For an axiom system to be sound, whenever the
system equates two expressions, E; and FE,, then it is true that ¥; =, X,,
where X, and X, are implementation of F; and F,. An axiom system is
complete if, for every pair of expressions E; and E, such that B, =, E», it is

possible to show the equivalence of F; and E, by applying axioms.

As an example, a sound, but not complete axiom system for net semantic
isomorphism is presented, and used to show that the expressions ((a;b);c) rs b
and (q; (d; c)) rs d are equivalent. The axiom system consists of three axioms,
dealing respectively with associativity of sequential composition, propagation

of the restriction operator, and restriction of atomic actions.

Ey; (Ey; Es) = (B Ey); Es AXIOM 1
(Ey;E;)rs a = (B rsa);(Eprs a) AXIOM 2
stop ifa €«

arsa = AXIOM 3
o otherwise

Implementations of E; = ((a;b);¢) rs b and E» = (a; (d; c)) rs d are shown in
Figure 1.4, where it can be seen that they are isomorphic, and hence E; =,

E,. A proof that E; =, E, is possible, by applying the three axioms as
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follows:

((a;b);¢) rs b = ((a;b) rs b);(crs b) by AXIOM 2
= ((ars b);(brs b));(crs b) by AXIOM 2
= (a;(brs b));c by AXIOM 3
= (a;stop);c by AXIOM 3
= q;(stop;c) by AXIOM 1
= aq;((drs d);c) by AXIOM 3
= (ars d);((drs d);(crs d)) by AXIOM 3
= (ars d);((d;c) rs d) by AXIOM 2
= (a;(d;c)) rs d by AXIOM 2

As well as characterising an existing notion of equivalence from the domain
of Petri nets using an axiom system, it is possible to define new notions of
equivalence by introducing a set of axioms that are used to determine whether

expressions are equivalent. However, this possibility is not considered further.

1.6 Related work

In this section, work relating to the Petri Box Calculus is described together

with some of the work on the synthesis of process algebraic terms from Petri

nets, and the axiomatisation of process algebras.

1.6.1 The Petri Box Calculus

The main theoretical results relating to the Petri Box Calculus are brought
together in a practical form in the PEP (Programming Environment based on
Petri Nets) tool [10]. PEP is a simulation, modelling and verification tool that
can work with B(PN)? (Basic Petri Net Programming Notation) programs,
high level and elementary Petri Box expressions, and high level and elemen-
tary Petri nets. Figure 1.6 illustrates the relationship between the various

components of PEP.
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B(PN)? Program

High level Petri Box Petri Box Calculus
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High level Petri Net Petri Net

e~

Net Unfolding
(for Model Checking)

Figure 1.6: Components of the PEP tool

B(PN)? [7] is a high level concurrent programming language with support
for various types including stacks and queues, and programming constructs
such as loops and procedures. The semantics of B(PN)? programs are given
in terms of Petri Box Expressions. PEP allows a B(PN)? program to be
translated to a high level Box expression [9, 22], or to an elementary Petri Box
Expression [7]. High level and elementary Petri Box expressions are essen-
tially the same, except that actions in high level box expressions have values
associated with them.

The Petri Box Expression may then be translated into a corresponding net
[8, 5]. The high level, or M-net, representation of a program is generally less
complex structurally, and is much more suited to representing data types and
operations on variables than the elementary net representation of a program
[22]. The Petri net is concrete representation of the semantics of a B(PN)?
program, and can be used to simulate the execution of the program. PEP

has the facility to relate the firing of actions in the net directly back to the
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execution of statements in the B(PN)? program. The work on operational
semantics for the Box Algebra, [36, 37, 35] provides the basis for a similar
relationship between the execution of Box Expressions and the execution of

statements in the B(PN)? program.

The model checking algorithm in PEP is based around the work in [20],
where a representation of the unfolding is constructed from the Petri Net. The
validity of logical statements about the net/Box expression/B(PN)? program
may be checked using the unfolding. The specification for a concurrent system
may be given in terms of properties that such a system must satisfy. The PEP
tool could be used to model a system at the level of a B(PN)? program, a
Petri Box Expression, or even a Petri net, and the model checker used to verify

that the model satisfies the specification.

The remainder of this section considers how any work on a synthesis algo-
rithm or axiomatisation for the Petri Box Calculus would fit into the framework
illustrated in Figure 1.6. At the moment, it is only possible to go from a high
level representation of a system (B(PN)? program or Box Expression) to a
lower level one. A synthesis algorithm provides a translation from a Petri net
to a Petri Box Expression. This would give the flexibility of being able to work
at any level, and may give the scope to design concurrent systems at the net
level, or reuse existing net based designs, and synthesise them to higher level
and simpler representations in the form of Box Expressions, or even B(PN)?

programs.

Recall that both the synthesis algorithm and axiomatisation problems are
predicated on a net equivalence. While the class of nets that are equivalent to
implementations of Box Expressions is relatively small for structural semantics
such as isomorphism and duplication equivalence, a much larger class of nets
will be synthesisable for behavioural net semantics. This is borne out by the
fact that the class of Petri Boxes is expressive enough to encode the semantics
of high level languages such as B(PN)? and OCCAM |7, 30, 31]. The impli-

cation is that for a particular behavioural net equivalence, it will be possible
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to synthesise an:expression for any net whose behaviour can be described by
a B(PN)? or OCCAM program. It is relatively easy to show that if the net
equivalence is weak enough, for example string equivalence [32, 45], then the
entire class of Petri nets is synthesisable to Box expressions.

The benefits of an axiomatisation for the Box Algebra are that it would
then be possible to manipulate a model for a concurrent system at the Box
expression level, with a corresponding effect at the net and B(PN)? level. For
example, such manipulations may be carried out to optimise a system. The
advantage of using axioms to perform the manipulations is that the behaviour
of the system is guaranteed to be preserved (for whichever net semantic the
axioms system is based on). The result is that if manipulations are carried out
on a system that has already been model checked, then it will not be necessary

to recheck the system after the manipulations.

1.6.2 Synthesis of terms from nets

The Petri Box Calculus is unusual in that the semantics of the algebra of Box
expressions is defined in terms of a class of Petri nets. Generally, the semantics
of process algebras are originally defined in some other way, although there
has been several pieces of work on giving net semantics to CCS and TCSP
[21, 24, 26, 43, 44, 48)]. Since this work can be considered an extension of the
original work on CCS and TCSP (28, 41], it is perhaps unsurprising that there
has been little or no work on the synthesis of process algebraic terms from the
classes of nets described by these semantics. Instead, the majority of the work
on the synthesis of terms from nets has considered the problem for the class
of all place transition nets [1, 14, 16, 17, 18].

In [14], Boudol, Roucairol and De Simone synthesise a term consisting
of a large number of parallel components corresponding to the places and
transitions in the net. The arcs of the net are encoded by the communication
capabilities of the parallel components, which represent the ability to pass a

token from one place to another. The term representation is a very low level
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representation of the net, and corresponds almost directly to the structure of
the net. |

In comparison, Dietz and Schrieber [18] and Christensen [17] base the syn-
thesis on behavioural equivalences, bisimulation equivalence and branching
process equivalence, and construct terms where the parallel components rep-
resent parallelism in the behaviour, rather than the structure of the net. The
term semantics is close to the the idea of processes [46], and the branching
processes of a net [19]. Unlike the usual infinite lattice branching process rep-
resentation of [19], the term representation constructed by [18] is finite given
a finite place transition net. The work in [18] restricts the class of input nets
to those with binary synchronisation and binary choice. The synthesis process

is based around the following steps:

e An intermediate “synchronisation free” (SF) net representation is used,
where every transition has at most one incoming arc. A modified firing
rule which encodes information about the synchronisations in the original
net is applied to the SF net, so that an arbitrary place trénsition net
is bisimilar to its synchronisation free version with the modified action

firing rule.

e The term representation is derived from the synchronisation free net,

and the reachable markings (under the modified firing rule) of that net.

e Synchronisation in the term representation is enforced by means of re-
striction. ‘'This is shown to be equivalent to the step from the standard
firing rule to the modified firing rule in the SF net. It follows that the

restricted term representation is bisimilar to the original input net.

The work by Baeten and Bergstra [1] and Basten and Voorhoeve [16] is
more similar to that of [14]. The term representation of [16] is slightly dif-
ferent to other work in that actions in the algebraic term do not correspond

to transitions in the net. Instead, actions correspond to the production and
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consumption of tokens in the net. Basten and Voorhoeve synthesise an ACP
[2] style term representation called PTNA (Place/Transition Net Algebra) for
an arbitrary place transition net. An operational semantics for PTNA is in-
troduced such that the algebraic semantics is consistent with the interleaving
semantics of the net from which the PTNA term is synthesised. This work
easily extends to high level Petri nets, provided the range of values of tokens
is finite.

The synthesis problem for the Petri Box Calculus is made simpler by the
fact that it is only necessary to consider a limited class of nets as input to the
problem — i.e. the class of nets that may be derived from Box expressions. It
appears that the problem will be simpler for structural equivalences such as
isomorphism and duplication equivalence due to the fact that the reachable
markings of the net do not need to be considered. It seems most likely that the
synthesis process will produce terms where the actions in the algebraic term
correspond to transitions in the input net (rather than the representation used

by [16]), as this is way in which the semantics for Box expressions are currently

defined.

1.6.3 Axiomatisation of Process Algebra

The aim of relating the synthesis and axiomatisation problems for the Petri
Box Calculus is to create a framework in which results for a particular subset
of the calculus, and for a particular net equivalence can easily be reused for
different subsets/net semantics.

Work on axiomatisation of process algebras, such as CCS and CSP, [41, 28,
23, 11] is generally for behavioural semantics such as observation equivalence,
or bisimulation. The most difficult part of any axiomatisation is showing that
the axiom system is complete. The completeness proof for the axiomatisation

of observation congruence in [42] is based around the following steps [23]:

1. It is shown that any expression can be rewritten in a form where the
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expression is guarded.

2. A standard set of equations relating to guarded expressions is presented,

and it is shown that any guarded expression satisfies these equations.

3. Any standard set of equations can be converted into a saturated one,
while preserving the property of being provably satisfied by an expres-

sion.

4. Two congruent processes that each provably satisfy a saturated stan-
dard guarded set of equations, provably satisfy a common guarded set

of equations.

5. Finally, if two guarded expressions satisfy the same guarded set of equa-

tions, then they are provably equal.

In moving from the domain of observation congruence [41] to branching bisim-
ulation [27], only those steps above that rely purely on axioms for strong
congruence (which is stronger than both observation congruence and branch-
ing congruence) may be reused. The remainder of the proof in [23] had to be
reworked for the new semantics. |

What is interesting that Glabbeek proved the completeness theorem for
branching congruence on recursion free process expressions in two different
ways. In [23] a proof specific to that particular problem is presented. In
[27], a proof based on graph transformations [11] is used. While the proof in
[23] is much shorter, the graph transformation method used in [27] is more
generic, and allows completeness proofs to be generated for arbitrary inter-
leaving equivalences with little effort.

The lessons that can be learned for the investigation into the axiomatisation
problem for the Petri Box Calculus are that it is perhaps easier to move from
a stronger equivalence to a weaker one than the other way round. If this
approach is used, then the axioms and proofs for the stronger equivalence can

be reused for the weaker equivalence. The only work that then needs to be
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done is to capture the essence of the difference between the two notions of
equivalence. Also, while a generic proof technique or framework may involve
more work for a single subset of the calculus or single net semantic, that work
will be worthwhile if the results can be reused for different subsets of the

calculus and different net semantics.

1.7 Summary

Chapter 2 describes possible approaches to solving the synthesis problem, and
gives details of the relationship between synthesis and the problem of finding
an axiomatisation. Some other problems, such as checking equivalence of ex-
pressions and nets, and generating a proof of equivalence are introduced, and
their relationship to the synthesis problem in terms of runtime complexity dis-
cussed. Chapter 2 concludes by investigating various properties of nets, useful
for the analysis reciuired for a solution to the synthesis problem. Chapter 3
presents a solution to the synthesis problem for a basic subset of the Petri Box
Calculus. The algorithm described is shown to be correct, and an axioma-
tisation is derived. Solutions to some of the related problems introduced in
Chapter 2 are also presented.

Chapter 4 extends the investigation to a subset of the Petri Box Calculus
that contains the synchronisation operator. The synthesis problem is shown
to be NP-hard. However, by using a more expressive syntax to represent the
synthesised expression, a polynomial time solution can be given. As with
Chapter 3, the synthesis algorithm is shown to be correct, an axiomatisation
is derived, and the related problems are discussed.

In Chapter 5, the axiom systems derived for the basic subset of the cal-
culus in Chapter 3, and the basic calculus with synchronisation operator in
Chapter 4 are extended from isomorphism to duplication equivalence. While
extending the axiomatisation for the basic calculus requires relatively little

work, a different approach to that in Chapter 4 is taken to produce an ax-
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iomatisation for synchronisation.

Chapter 6 concludes the thesis with a summary of the results of the in-
vestigation into the synthesis and axiomatisation problems for the structural
equivalences, isomorphism and duplication equivalence, and describes possi-
ble directions for future work, including the extension of the synthesis and
axiomatisation problems to behavioural equivalences.

Appendix A provides a list of cross references for the main concepts and
definitions, and Appendix B gives a summary of the different subsets of the
Petri Box Calculus that are considered during the various investigations into

the synthesis and axiomatisation problems.
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Chapter 2

Properties

2.1 Introduction

This chapter begins by describing the alternative top-down and bottom-up
approaches to solving the synthesis problem. In Section 2.2.3, the motiva-
tion for the selection of one of these épproacheé for further investigation is
given. In Section 2.4, the relationship between the synthesis and axiomatisa-
tion problems is investigated. A collection of problems related to the synthesis
and axiomatisation problems are presented, and the relationships between the

time complexity of these problems are discussed.

In the second half of the chapter, various definitions and properties of
Petri nets are described. Some definitions provide further insight into the
relationship between box expressions, and the structure of menibers of the
class of Petri boxes, while others will be used later for the analysis of nets
given as input to the synthesis algorithm. In that sense, the definitions and
properties described in this chapter can be thought of as a collection of tools

for use in synthesising expressions from nets.
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2.2 Solving the synthesis problem

In this section the alternative approaches of top-down synthesis and bottom-
up synthesis are described, and their advantages and disadvantages discussed.
In order to decide which of the two methods is most worthy of further investi-
gation it is perhaps important to consider the properties that a good solution
to the synthesis problem should have.

Useful criteria for selecting the approach to investigate include the ability of
the method to produce a solution on any input, the efficiency of the method,
and the relationship between the method and the problem of producing an
axiomatisation. The ability to find an axiomatisation relies on analysing the
points of non-determinism in producing a synthesised expression. Where there
is a choice in the synthesis process allowing several syntactically different but
semantically equivalent expressions to be generated, any axiomatisation must
be able to equate the different forms of expressions that can be produced. The
relationship between the synthesis problem and generating an axiomatisation
is investigated further in Section 2.4.

If the synthesis problem is NP hard, then there is little hope of ﬁnding
an algorithm that is both efficient and guarantees to find a solution on every
input. It is also less likely that a heuristic approach will provide enough insight
into the problem to allow an axiomatisation to be generated. In this respect,
the importance of an efficient solution should be regarded as secondary to the
other criteria.

In describing the top-down and bottom-up approaches to synthesis, the

simple net in Figure 2.1 is considered as an example input.

2.2.1 Top-down approach

The top-down approach to synthesis requires that the main connective of the
synthesised expression can be found by analysing the structure of the input

net. The input net can then be decomposed into a collection of smaller nets

52



Figure 2.1: Implementation of E = (a || b);c

corresponding to the subexpressions of the synthesised expression. The pro-
cess is applied recursively to each of the decomposed subnets until no further
decomposition can be applied. Each step of the recursion adds further detail
to the expression being synthesised, finally resulting in an expression whose

implementation is equivalent to the input net.

For example, consider the net in Figure 2.1, and the problem of synthesising
an expression whose implementation is isomorphic to that net. Using the top-
down approach, the synthesised expression would initially be set to F, where E
is the unknown expression corresponding to the input net. An analysis of the
structure of the net determines that the main connective of E is the sequence
operator, and that the input net can be decomposed into two components.
Therefore, the synthesised expression can be refined from E to E; E; where
E, and E; are unknown expressions corresponding to the two decomposed
subnets. A recursive application of the top-down synthesis process to the first
subnet determines that the main connective of E; is the parallel composition
operator and that this subnet can be decomposed into two further components.
At this stage, the synthesised expression is (E3 || E4); E; where Fy, E3 and
E4 are unknown expressions corresponding respectively to implementations

of atomic actions with labels ¢, a and b. Hence, after further analysis, the
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recursion terminates with the output expression (a || b);c.

The top-down approach takes a global view, and tries to decompose the
problem into a collection of smaller problems. From the point of view of syn-
thesis, the size of the problem corresponds with the size of the input net. For
the top-down approach to be successful, there needs to be a strong relation-
ship between the structure of the net and the structure of the expression from
which the net was derived. While this relationship certainly seems to exist
for operators such as parallel, choice, sequence and iteration, it is not so clear
for operators such as synchronisation and restriction. For example, when the
restriction operator is applied to a net, the structure of the net may alter
radically when transitions are removed. |

In the description above, the synthesis process proceeds directly to a solu-
tion — i.e. once a particular connective has been identified for the synthesised
expression, it is not necessary to revise the choice of connective in the light of
new information. Should a situation arise, where the choice of connectives for
the synthesised expression is found to be incorrect, then the synthesis algo-
rithm would need to backtrack to the point where the wrong choice was made,
and a different search path taken. Any algorithm in which backtracking is
necessary is likely to be both less efficient and less amenable to the production

of an axiomatisation than an algorithm which does not involve backtracking.

2.2.2 Bottom-up approach

The bottom-up approach to synthesis begins by synthesising expressions for
small pieces of the input net, then performs an analysis of the interfaces be-
tween the pieces of net corresponding to the already synthesised subexpressions
to determine how those subexpressions should be combined.

For example, for the net in Figure 2.1, three subexpressions, F; = a, E; = b
and E3 = c are synthesised from the transitions, ¢,, t; and t3 respectively. An
analysis of the pre and post places of these transitions determines that ¢;

and t, share no common places, and there is a directed path from ¢, and ¢,
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to t3 via places s3 and sy respectively. The analysis allows the conclusion
that ¢, and ¢, were combined using parallel composition, and the resulting
net composed in sequence with an atomic action t3. Therefore, the three
synthesised subexpressions are combined to give (E; || E»); Ej3, resulting in
the final expression (a || b);c.

The bottom-up approach only requires a local analysis of the input net,
and proceeds by analysing the relationships between sets of transitions which
share common places. This approach is certainly more suitable than the top-
down method for providing a partial solution when the input net is not exactly
equivalent to the implementation of a box expression. It also seems that the
bottom-up approach may be better suited to dealing with input nets that
involve the synchronisation, and particularly the restriction operator.

The interfaces between subnets for which expressions have already been
synthesised are easily identified, since they consist of those places that are
common to the subnets. For example, in Figure 2.1, s3 and s4 are the common
places between the subnet containing ¢; and ¢, and the subnet containing 3.
However, there is likely to be many interfaces to analyse at each step of the
synthesis process, and it may be difficult to determine a suitable order to deal
with the interfaces. This problem Iriay lead to the use of heuristics and the
possibility of backtracking in a solution to the synthesis problem, making the

problem of generating an axiomatisation much more difficult.

2.2.3 Choice of method

For both approaches to the synthesis problem, there is some uncertainty that
the method will provide a good solution, partly because it is not yet known
how inherently difficult the synthesis problem is. The main motivation behind
the investigation into the synthesis problem is to provide a framework for gen-
erating an axiomatisation of the Petri Box Calculus. The top-down approach
appears to give a better framework for the production of an axiomatisation,

provided that the main connective of the synthesised expression can be found
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by analysing the structure of the input net, and the synthesis process can
proceed without resorting to heuristics or backtracking. For this reason, the

top-down approach to synthesis is chosen for further investigation.

The compositional nature of the semantics for the parallel, sequence, choice
and iteration operators suggest that a top-down decomposition should be pos-
sible for input nets that have been constructed using only these operators.
However, it may not be so easy to synthesise expressions from nets that in-
volve the synchronisation and restriction operators. Therefore, an initial in-
vestigation into a subset of the Petri Box Calculus that does not contain these
operators is more likely to produce results than immediately attempting to

deal with sy and rs.

2.3 Example

In this section the synthesis of an example net, using a top-down approach,
is described. The algorithm presented here is limited in that it is only ap-
plicable to a very small subset of the Petri Box Calculus, whose syntax is
given in Table 2.1. The synthesis algorithm of this section is predicated on the
equivalence relation of isomorphism. The purpose of presenting the algorithm
is to introduce a general framework for synthesis, and to illustrate the type
of problems that need to be solved when extending the scope of synthesis to

larger subsets of the box calculus.

E = o Atomic action
| E || E Parallel composition

| E;E  Sequential composition

Table 2.1: Small subset of the box expression syntax
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2.3.1 Algorithm

The synthesis algorithm takes as input a net, ¥, which is an implementation of
a box expression from the syntax in Table 2.1. The output of the algorithm is
an expression, F, such that any implementation of E is isomorphic to the inpﬁt
net, ©. The pseudo-code for an algorithm which synthesises a box expression

from the input net using a recursive top-down approach is shown below.

Box EXPRESSION SYNTHESIS(X)

—

13

The algorithm is based on the idea of a set of synthesis rules, with one rule
for each operator in the box expression syntax - i.e. atomic actions, parallel
composition, and seqﬁence composition. The function ANALYSE determines
which synthesis rule to apply, by examining structural properties of the input
net. Using the syntax in Table 2.1, only one of the three synthesis rules will
be applicable at each step of the algorithm. In general, when a larger subset
of the Petri Box Calculus is used, there may be a choice of several synthesis

rules to apply at each step. The pseudo-code for ANALYSE is presented below.

type=ANALYSE(X)
if type=atomic then
return A(t)
else
¥1,29=DECOMPOSE(X,type)
FE,=Box EXPRESSION SYNTHESIS(X;)
E>;=B0X EXPRESSION SYNTHESIS(X;)
if type=parallel then
return F, || E,
else
return E;; E,
end if
end if
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A formal definition for “¥ is disjoint” is deferred until Section 2.5.2, and the
correctness of the decision procedure presented here is a result of Propositions 3

and 5 in Chapter 3.

ANALYSE(X = (S, T, W, )))
if |T| =1 then
return atomic
else

if ¥ is disjoint then

else
return sequence
end if

1

2

3

4

) return parallel
6

7

8

9 endif

2.3.2 Synthesis rules

The synthesis rule for atomic actions forms the base case of the recursion.
When ¥ is isomorphic to the implementation of an atomic action, then E = a,
where o is the label of the single transition in ¥ is a solution. The synthesis
rules for parallel and sequence composition decompose ¥ into a pair of smaller
nets, 3; and X;. The output for the synthesis algorithm is obtained by re-
cursively synthesising expressions E; and FE, using ¥; and X, as input nets.
- Ey and E, are combined as F; || Es (Ey; E2) when the synthesis rule being
applied is parallel (sequence).

The DECOMPOSE function, which performs the decomposition is not de-
scribed explicitly in this section. A simple decomposition scheme which is

sufficient to deal with the example input net in Figure 2.2 is:

Parallel composition: The net is decomposed into two connected components.
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Sequential composition: The set of internal places in the input net which cor-
responds to the interface created by the semantics for sequential com-
position is identified. The input net is decomposed into two disjoint
subnets by analysing the arcs from and to the set of internal places, and

reconstructing the original interfaces.

This scheme does not cope with nets obtained from arbitrary expressions from
the syntax in Table 2.1. For example, an implementation of (a || b) || ¢ contains
three connected components. The net is disjoint, so the parallel composition
synthesis rule is applied. However, the decomposition scheme requires that the
net is decomposed into two connected components, which is not possible. A

generally applicable decomposition scheme is described in detail in Chapter 3.

2.3.3 Example execution of the algorithm

a |t b t2 d tq
0 )ss }) S4 C@ 57
C |t3 € |5

o o

Figure 2.2: Example input to the synthesis algorithm

The net in Figure 2.2 is constructed from the box expression:
E=((allb);c) || (d;e)

Table 2.2 and Figure 2.3 describe the execution of Box EXPRESSION SYN-
THESIS, when given the net in Figure 2.2 as input. Each line in Table 2.2

corresponds to an execution of the body of BOXx EXPRESSION SYNTHESIS.
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The depth of recursion of each step of execution is shown in the Depth col-
umn. The depth of recursion corresponds to the distance from the root of
the tree in Figure 2.3. The input net to the particular execution of Box Ex-
PRESSION SYNTHESIS is named in the Net column, together with the name of
the expression to be synthesised in the Fzp column. For the purposes of this
exarhple, the expression F; corresponds to the net X;, for all values of i. Each
of the nets involved in the execution of the synthesis algorithm are contained
in Figure 2.3. The synthesis rule to be applied is shown in the Rule column
of Table 2.2. If the rule to be applied is sequence or parallel, then the names
of the pair of nets obtained by decomposing the net are given in successive
columns. The final two columns of Table 2.2 show how the expression from the
Ezp column is refined by the application of the synthesis rule, and how that
refinement affects the overall synthesised expression. The path of execution in

Figure 2.3 proceeds in a depth first fashion, and from left to right.

Step | Depth | Net | Exp. | Rule Subnet 1 | Subnet 2 | Expression | Synthesis

1 0 T |E parallel | £, o Ei || Eo Ei || B2

2 1 o | By sequence | X3 34 E3; By (E3;Eq) || B2

3 2 Y3 | E3 parallel | ¥s e Es || Ee ((Bs || Ee); Eq) || E2
4 3 55 | Es atomic - —-= a {(a || E6); Eq) || En

5 3 ¢ | B¢ | atomic | —— - b ((a ]l b); Eq) || B2

6 2 T4 | E4 |atomic | —— -= c ((allb)ic) || B2

7 1 L2 | B2 | sequence | T s Eq; Eg ((a |l b); ) || (E7; Es)
8 2 7 | Eq atomic —— - d ((a |l b); ) || (d; Es)
9 2 s Eg atomic - -— [ ((all b);c) |l (d;€)

Table 2.2: Example execution of the synthesis algorithm

In the following, the execution of Box EXPRESSION SYNTHESIS(X) is de-
scribed, where ¥ is the net in Figure 2.2, and at the root of the tree in Fig-
ure 2.3. Each step of the execution given in Table 2.2 is described in more

detail:

Step 1: The call to ANALYSE(X) determines that the input net is disjoint,

and contains more than one transition. Therefore, ANALYSE returns

60



<] o] 4]
® © @©=
<]
& ®
E=FE | E;
& O e
o] [t] 4]
® O ©
]
() ©
E, = B3, E4 E; = Eq; Ey
/\ /\
© © O O
] [ e [
OO © ©
E3 = Fs || Eg
A
(® O
G
() ()

Figure 2.3: Example execution of the synthesis algorithm

61



parallel as the synthesis rule to be applied. ¥ is decomposed into two
connected components ¥; and Yo, shown in Figure 2.3, and the synthe-
sised expression is refined to be E = E; || E,. Recursive calls to Box
EXPRESSION SYNTHESIS are made to synthesise expressions for ¥; and

2.

Step 2: Box EXPRESSION SYNTHESIS(Y,) is called from Step 1 to recur-
sively synthesise an expression for ¥, and to refine E) in E = E || E,.
The analysis of ¥; determines that the sequence synthesis rule should be
applied. The pair of internal places in ¥J; is decomposed, and the nets, X3
and X, are obtained. Hence, F) and E are refined to E; = Ej3; Ey4, and
E = (E3; E,) || E> respectively. Finally, the recursive calls Box Ex-
PRESSION SYNTHESIS(X;) and Box EXPRESSION SYNTHESIS(X,) are

made.

Step 3: The last step recursively calls Box EXPRESSION SYNTHESIS(Z;)
to find the expression for E3. The parallel synthesis rule is applied,
since X3 is disjoint. ¥3 is decomposed into X5 and Xg, refining F3 to
E3 = E5 || Eg. Hence E is refined to F = ((Es; Eg); Ey) || Eo. A further

level of recursion is performed to find the expressions Es and FEs.

Step 4: The net Xy is analysed, and found to contain only a single transi-
tion. Hence the atomic action synthesis rule is applied, and no further
decomposition of the net takes place. The expression Es becomes fully
refined (i.e. there are no unknown subexpressions) to Es = a. Hence,
at the end of this step, the synthesised expression has been refined to
E = ((a; Eg); E4) || E5. Step 4 does not make any recursive calls to Box

EXPRESSION SYNTHESIS.

Step 5: Box EXPRESSION SYNTHESIS(Zg) is called from Step 3, and pro-

ceeds in a manner similar to Step 4, refining Eg to Fs = b and hence E

to E = ((a;b); E4) || Es.
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Step 6: The second recursive call, BOXx EXPRESSION SYNTHESIS(X4), made
from Step 2, applies the atomic action synthesis rule to refine F4 to
E4 = ¢. Hence, E becomes E = ((a;b);c) || E2, and the control of

execution returns to Step 1.

Step 7: Step 1 makes a second recursive call, this time to synthesise an ex-
pression for the net 3,. The analysis of X5 determines that the sequence
synthesis rule should be applied, and the net is decomposed into ¥; and
Ys. The expression, Es, is refined to Ey = Ey; Eg, refining the output
expression, E, to E = ((a;b);c) || (Er; Es). Finally, two recursive calls,

to synthesise expressions for ¥; and.Xg are made.

Step 8: ¥; contains a single transition. Therefore, the atomic action syn-
thesis rule is applied, and E is refined to F; = d. Hence, E becomes
E = ((a;b);¢) || (d; Es). No recursive calls to Box EXPRESSION SYN-

THESIS are made during this step of the execution.

Step 9: The second recursive call made in Step 7 is BoX EXPRESSION
SYNTHESIS(Xs). Again, the atomic action synthesis rule is found to
be applicable, and Ej is refined to Eg = e, producing the fully refined
output expre‘ssion E = ((a;b);¢) || (d;e). Once the expression is fully
refined, there are no outstanding recursive calls to be dealt with, and

the execution can terminate.

2.3.4 Discussion

The algorithm for Box EXPRESSION SYNTHESIS, described in Section 2.3.1
directly refines the output expression during the synthesis process. In practice,
it would be more beneficial to construct a parse tree representation of the
expression, especially if the expression is to be manipulated in some way once
it has been synthesised. Figure 2.4 shows the parse tree for the expression

E = ((a;b); ¢) || (d;e) synthesised from the input net given in Figure 2.2. There
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Figure 2.4: Parse tree of the synthesised expression

is a strong correspondence between the parse tree and the manner in which
the recursive calls to Box EXPRESSION SYNTHESIS are made, as illustrated
in Figure 2.3.

The algorithm described in this section presents a general framework for
the solution of the synthesis problem when the notion of equivalence being
used is isomorphism. In Chapter 5, the extension of the framework to support
synthesis under weaker structural equivalences is described, and Chapter 6
contains a discussion of how the synthesis problem may be approached when
behavioural equivalences are being used. In the remainder of this section, the
approach to solving the synthesis problem, using isomorphism as the equiva-
lence relation, is discussed.

Given a subset of the Petri Box Calculus for which a synthesis algorithm is
to be designed, there are two main areas for investigation, relating to different
aspects of the synthesis rules. Firstly, a decision procedure needs to be devel-
oped to identify which of the synthesis rules can be applied at each step of
the synthesis process. Secondly, for each synthesis rule, a method needs to be
produced which will decompose the input net into a collection of smaller nets,
while simultaneously refining the output expression. Normally, there will be
a synthesis rule for each operator in the subset of the box calculus for which
the synthesis algorithm is being developed.

To produce a decision procedure to determine which synthesis rule is to
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be applied, the characteristic structural properties of the implementations of
each type of box expression need to be investigated. For each synthesis rule,
which corresponds td a particular type of expression, what is required is a
property that holds for every net obtained from an expression of that type,
and does not hold for any net that cannot be obtained from an expression of
that type. Then, whenever that particular property is found to hold for the
input net, it will be known that the synthesis rule is applicable. There may be
several different, but equally suitable structural properties that can be used.
For example, for the fragment of the box calculus in Table 2.1, either of the
following properties could be used to identify that the atomic action synthesis

rule should be applied:
e The net contains exactly one transition.
e The net contains exactly two places.

Some operators in the Petri Box Calculus are redundant. For example, any
expression involving the scoping operator has an equivalent form which uses
synchronisation and restriction in place of scoping. There is no need to have a
synthesis rule for redundant operators. In other cases, there may be a partial
overlap between operators. For example, the choice expression (a || @) 00 has
an implementation that is isomorphic to the synchronisation expression (a ||
@) sy a. In such cases, several synthesis rules may be found to be applicable,
and it does not matter which one is applied.

For each synthesis rule, the input net must be decomposed into smaller
nets. This involves identifying the interfaces between components of the input
net, and using them to reconstruct the original interfaces. When the synthesis
ruie corresponds to an associative operator, there may be several different
interfaces that can be decomposed. The example input given in Figure 2.2
was chosen to avoid this problem arising. For example, the expressions a; (b; c)
and (a;b); ¢ have isomorphic implementations. When the sequence synthesis

rule is applied, two interfaces will be identified, and the choice of the one to
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decompose will affect the bracketing of the synthesised expression.

The parallel and sequence synthesis rules presented in this section decom-
pose the input net into two smaller nets, ¥; and Y. For the sequence synthesis
rule, it is possible to order the pair of nets obtained from the decomposition of
the input net, by setting ¥; (X) to be the net that contains the entry (exit)
places of the input net. However, for the parallel synthesis rule, there are
two possibilities for the assignment to ¥; and ¥,. For example, in Step 1 of
the execution given in Table 2.2, the assignment to ¥; and ¥, (shown in Fig-
ure 2.3) could have been reversed. This would result in the output expression
produced by Box EXPRESSION SYNTHESIS being E = (d;e) || ((a;b);c). The
implementatién of E is isomorphic to the input net shown in Figure 2.2. The
possibility of this type of alternative decomposition arises when the synthesis
rule corresponds to an operator that is commutative (such as parallel composi-
tion). A scheme for dealing with the problems caused by the associativity and
commutativity properties of operators in the Petri Box Calculus is presented

as part of the investigation carried out in Chapter 3.

2.4 Relationship between synthesis and

axiomatisation problems

In this section, the way in which an analysis of a synthesis algorithm can be
used to produce an axiomatisation is described. As with the previous section,
the equivalence relation used is isomorphism, and it is left until Chapter 5 to
explain how the technique can be extended to other structural equivalences,
such as duplication equivalence. In Chapter 6, there is a discussion on how
the problem of finding an axiomatisation for behavioural equivalences inay be -
tackled.

Corresponding to the framework for the synthesis algorithm described in

Section 2.3.1, there is a general framework for a formal verification that the
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algorithm is correct. It is this framework that can be used to guide the produc-
tion of an axiomatisation, and the verification of the synthesis algorithm also

serves as a proof that the axiom system obtained is complete. The remainder
of this section describes the framework for the verification of the synthesis

algorithm, and the techniques by which sets of axioms can be found.

2.4.1 Verification of the synthesis algorithm

The framework for the synthesis algorithm consists of a set of synthesis rules,
and a corresponding set of properties used to identify which synthesis rule to
apply. In general, each synthésis rule contains a method for the decomposition
of the input net into smaller nets, and a means for representing the decom-
position using a box expression. In verifying that the synthesis algorithm is

correct, the following properties need to be shown:

e For any net that is isomorphic to the implementation of some box ex-
pression, the synthesis algorithm will synthesise an expression from that

net.

e For any execution of the synthesis algorithm the implementation of the

output expression will be isomorphic to the input net.

The proof that the synthesis algorithm is correct relies on showing that the
decision procedure used to select the synthesis rule to apply works, and that
the decomposition scheme for each synthesis rule is sound. In addition, several
support proofs are needed to tie all the results together. The support proofs
will be much the same for synthesis algorithms for different subsets of the Petri
Box Calculus given in Table 1.1.

The decision procedure used to identify the synthesis rule to apply effec-
tively associates a set of preconditions with each synthesis rule. The precon-
ditions for a synthesis rule must hold before the rule can be applied. For

structural equivalences, such as isomorphism, the preconditions take the form
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of structural properties of the input net. For each synthesis rule, a proof is
required that shows that whenever the preconditions hold, then there exists an
expression whose main connective is the same as that of the refined expression
produced by the synthesis rule, and the implementation of that expression is
isomorphic to the input net.

The second proof associated with each synthesis rule ié required to show
that the decomposition performed by the synthesis rule is sound. The synthesis
rule decomposes the input net into a collection of smaller subnets. The proof
must show that each decomposed subnet is isomorphic to the implementation
of a box expression, and that when the subnets are recombined according to
the refinement made to the synthesised expression by the synthesis rule, then
a net isomorphic to the input net is obtained.

Two support proofs complete the verification of correctness for the synthe-
sis algorithm. The first shows that for any net isomorphic to the implemen-
tation of a box expression, at least one of the synthesis rules is applicable to
that net. The second puts all of the results together, using an inductive argu-
ment, to show that on any valid input, the synthesis algorithm will produce

the correct output.

2.4.2 Obtaining an axiom system

There are two (possibly empty) sets of axioms associated with each synthesis
rule. The first set of axioms is related to the structural properties used as
preconditions for the synthesis rule, and are such that for any expression whose
implementation is a net that satisfies the preconditions, the axioms can be used
to rewrite that expression into the form of the refined expression produced by
applying the synthesis rule.

The second set of axioms is associated with the decomposition method of
the synthesis rule, and is affected by the amount of non-determinism present
in the method for decomposition. For each synthesis rule, all possible ways

of decomposing the input net and/or refining the synthesised expression must
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be analysed. By the soundness proof for net decomposition, the different
outcomes of a non-deterministic decomposition method must be equivalent —
either immediately, or after further applications of synthesis rules. For the
purposes of analysis, and producing an axiomatisation, it is better if the de-
composition method can be designed so all outcomes are equivalent after a
single application of a synthesis rule. The set of axioms must be such that
. it is possible to rewrite between all possible outcomes introduced by the non-
determinism in the synthesis rule.

If all of the synthesis rules can be made to produce completely deterministic
results, then the expression obtained from the synthesis process will be in a
canonical form. However, it is not imperative to define a canonical form,
or eliminate every point of non-determinism. The cost is the extra analysis
required to produce an axiomatisation. The benefit of this flexibility is that
it may be easier to design an efficient synthesis algorithm. In practice there
will be a balance between the amount of work that is done in eliminating non-
determinism from the synthesis algorithm, and the amount of work done in
finding the set of axioms associated with the decomposition scheme for each

synthesis rule.

2.4.3 Related problems

In this section, several problems that are related to the synthesis algorithm
are introduced. Each of these problems extend the scope of BOX EXPRESSION
SYNTHESIS in some way. The extensions described here include the problem
of synthesising a unique, or canonical, expression from the input net, and the
problem of checking whether two Petri boxes are equivalent. These two prob-
lems are recast in purely algebraic terms — i:e. the algorithm which solves
the problem must work entirely in the domain of box expressions. This is an
important consideration from the point of view of efficiency, because imple-
mentations of certain forms of box expression are exponential in the size of the

expression. Finally, the automatic generation of a proof of equivalence for two
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box expressions is considered. All of the problems described in this section are
introduced in terms of the net equivalence isomorphism. The majority of the
problems have analogues for other notions of equivalence, such as duplication
equivalence. As well as describing each of the extensions, the complexity the-
oretic relationships between BOX EXPRESSION SYNTHESIS and the problems

introduced in this section are investigated.

Domain of Petri boxes

CANONICAL BOX EXPRESSION SYNTHESIS imposes the extra condition on
the synthesis process that the expression produced by the algorithm is in
canonical form. This means that given two isomorphic nets, ¥; and %,
exactly the same expression is produced by CANONICAL BOX EXPRESSION
SYNTHESIS(X;), and CANONICAL Box EXPRESSION SYNTHESIS(X3). This
property is not true for Box EXPRESSION SYNTHESIS, which may contain
elements of non-determinism. The extension from the standard synthesis al-
gorithm to one which produces canonical form expressions essentially involves
the elimination of all points of non-determinism in the s-ynthesis process. The
non-determinism of the decomposition performed by each synthesis rule can
be eliminated independently of the rest of the algorithm. If all of the syn-
thesis rules are completely deterministic, then a canonical expression will be
synthesised. Alternatively, an expression can be synthesised as normal, and
then manipulated into a canonical form. This approach involves the explicit

definition of the form of canonical expressions.

CANONICAL BoxX EXPRESSION SYNTHESIS
INSTANCE: Net, ¥, member of the class of Petri boxes.

SoLuTION: Canonical box expression, E, such that box(E) = [Z].

PETRI BOX ISOMORPHISM
INSTANCE: Nets, X1, X9, members of the class of Petri boxes.

QUESTION: Is X1 =50 297

70



The problem of PETRI BOX ISOMORPHISM is to check whether two nets,
which are implementations of box expressions, are isomorphic to each other.
It is easy to see that given a solution to CANONICAL BOX EXPRESSION, an

algorithm for PETRI Box ISOMORPHISM can be constructed as follows:

PETRI BOx ISOMORPHISM(X1, )
E;=CANONICAL BOXx EXPRESSION SYNTHESIS (%)
E;=CANONICAL BOX EXPRESSION SYNTHESIS (%)
if E; = E, then

| return yes
else

return no

end if

N O Ot s W=

PETRI BOX ISOMORPHISM is a restricted case of the more general graph
isomorphism problem. The graph isomorphism problem is interesting because
it is one of very few well known problems for which the complexity of the
problem has not been settled. No proof showing that the graph isomorphism
problem is NP-complete has been produced, nor has a polynomial time algo-
rithm been developed. There are classes of graphs for which polynomial time
algorithms are known. For example isomorphism of trees, and planar graphs
can be checked in polynomial time. However, the class of Petri boxes does not
seem to be a subset of any of the classes of graphs for which polynomial time
algorithms are known. It has been shown that an efficient solution to CANON-
ICAL BoxX EXPRESSION SYNTHESIS provides an efficient method for checking
the isomorphism of Petri boxes. Hence, the investigation into the synthesis
problem may provide some insight into the graph isomorphism problem. In
Chapter 4, it is shown that the Petri Box Calculus of Table 1.1 is expres-
sive enough to encode arbitrary instances of the graph isomorphism problem.

The implication of this result is that for sufficiently large subsets of the Petri
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Box Calculus, the problem of extending the synthesis algorithm to produce
canonical form expressions has the same complexity as the graph isomorphism
problem.

The close relationship between synthesising canonical form expressions;
and the graph isomorphism problem motivates an investigation into graph
isomorphism. The following describes how an efficient solution to the graph
“isomorphism problem allows Box EXPRESSION SYNTHESIS, for any subset
of the Petri Box Calculus, to be extended to CANONICAL BOX EXPRESSION
SYNTHESIS. Although the complexity of the graph isomorphism problem is
not known, there are algorithms based on a heuristic approach that perform

well in practice [40].

GRAPH ISOMORPHISM
INSTANCE: Graphs G = (V,E), G' = (V, E')
QUESTION: Are G and G’ “isomorphic”, that is, is there a one-to-one

function f : V — V such that {u,v} € E if and only if {f(u), f(v)} € E'?

Equivalent in complexity to GRAPH ISOMORPHISM is the problem of find-
ing a canonical labelling ([40]) for the nodes of the graph. A method for
obtaining such a labelling is not presented in this section. However, it is worth
noting that tools such as nauty [40] provide the facility for canonically rela-
belling a given graph. The following pseudo-code shows how CANONICAL Box
EXPRESSION SYNTHESIS can be implemented in terms of Box EXPRESSION
SYNTHESIS, and CANONICAL RELABEL, a routine that returns a canonically

labelled graph isomorphic to the given graph.

CANONICAL BOX EXPRESSION SYNTHESIS(X)
1  ¥'=CANONICAL RELABEL(Y)

2  return Box EXPRESSION SYNTHESIS(Y')

Any non-determinism in the BoXx EXPRESSION SYNTHESIS is due to the

different ways in which isomorphic nets can be represented (i.e. different la-
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Figure 2.5: Canonical relabelling of a graph

bellings for the node names in the net). The call to CANONICAL RELABEL
ensures that isomorphic graphs (or nets) have identical node name labellings —
Figure 2.5 illustrates the behaviour of CANONICAL RELABEL on a pair of iso-
morphic graphs. Hence, the synthesis algorithm produces a unique expression
for each class of isomorphic nets. The downside of this method for producing
canonical form expressions is that in order to obtain a complete axiomati-
sation, a detailed analysis of the points of non-determinism in the synthesis

algorithm is still required.

Domain of box expressions

A solution to CANONICAL BOX EXPRESSION SYNTHESIS allows the canonical
form for a box expression to be found. This can be achieved by constructing

an implementation of the expression, then synthesising the canonical form
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expression from the net. Similarly, a solution to PETRI BOX ISOMORPHISM
can be used to check whether two expressions are equivalent. The problem
with this approach is that a net needs to be constructed from expressions,
and in some cases the size of the net will be exponential in the size of the
expression. For example, the implementations of the following expressions are

exponential in size:

= (al..la)0...0(]|..|a)

= [axax[axax][.[ax*axa].]]

An implementation of E contains an exponential number of entry and exit
places in comparison to the number of actions in the expression. When nested
iteration expressions are implemented in terms of nets, the net contains at
least 2" transitions for n levels of nesting.

These observations lead to the question whether the problems of finding
the canonical form of an expression, and checking whether two expressions are

equivalent, can be solved without resorting to the domain of Petri boxes.

CANONICAL Box EXPRESSION
INSTANCE: Box expression, £

SOLUTION: Canonical box expression, E’, such that box(E) = box(E").

Box EXPRESSION ISOMORPHISM

INSTANCE: Box expressions Ey, Fs.

QUESTION: Is box(E;) = box(E»)?

It is likely that the algorithms for CANONICAL Box EXPRESSION and
Box EXPRESSION ISOMORPHISM will work by manipulating the parse trees
for the input expressions. A solution to these problems can be derived from
the corresponding problems in the domain of Petri boxes by analysing the way
in which the synthesis rules 'for the algorithm CANONICAL Box EXPRESSION
SYNTHESIS refine the expression that is synthesised. This analysis should al-

low the algorithm to be abstracted to the level of box expressions. In general,
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it seems that if there is a polynomial time algorithm for CANONICAL BoOx
EXPRESSION SYNTHESIS, then there will be corresponding polynomial time
algorithms for CANONICAL BOX EXPRESSION and Box EXPRESSION Iso-
MORPHISM. Even if an input net to the synthesis algorithm has exponential
size, the synthesised expression, and therefore the number of refinements to

the expression, will be small.

Box EXPRESSION ISOMORPHISM PROOF
INSTANCE: Box expressions E, Ep, such that box(E;) = box(Ey).

SoLUTION: A proof that the expressions are equivalent.

A natural extension of Box EXPRESSION ISOMORPHISM, showing that
two expressions are equivalent, is BOX EXPRESSION ISOMORPHISM PROOF,
which automatically generates a proof that the expressions are equivalent. A
proof generéted by Box EXPRESSION ISOMORPHISM PROOF will take the
form of a series of applications of axioms, such as that seen in Section 1.5.
Recall that there are two sets of axioms associated with each synthesis rule.
This means that up to two schemes for applying the axioms will be required
for each synthesis rule used by the synthesis algorithm. As with CANONICAL
Box EXPRESSION and Box EXPRESSION ISOMORPHISM, it should be possi-
ble to abstract away from the domain of Petri boxes, and work purely with
box expressions. The algorithm for Box EXPRESSION ISOMORPHISM PROOF
will follow that of Box EXPRESSION ISOMORPHISM, except that each manip-
ulation that is carried out to the input expressions needs to be supported by

an axiomatic proof that the manipulation is valid.

2.5 Definitions and properties

This section introduces the notation and definitions used by the synthesis
algorithms algorithms presented in the following chapters. The first set of

definitions is concerned purely with the domain of nets. These include the
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classification of places and transitions in the net, the definition of connect-
edness properties in the net, the notion of clusters of places, and relations
on the connectivity of transitions in the net. The remaining definitions have
applications to both the domain of box expressions, and the domain of Petri
boxes. An ordering over atomic actions (and hence transition labels) is de-
fined. There is an investigation into the mapping between atomics actions in
an expression, and the transitions in a net constructed from that expression.
Finally, an auxiliary operator, ® is defined which is used to relate the synchro-
nisation of actions in an expression, with the synchronisation of transitions in
the corresponding net. For each of the following definitions, the motivation for
the introduction of the definition, and its applications to the synthesis problem

are discussed.

2.5.1 Classifying places and transitions

The following table defines various classifications for the nodes (i.e. places

and transitions) of a labelled net, ¥ = (S, T, W, \):

Name Definition
Entry places Se={se€S|As)=¢e}
Internal places | S;={s e S| A(s) =0}
Exit places Sx ={s€ S| A(s)=x}
All nodes Na=SUT

Internal nodes N, =5 UT
Entry transitions | Te = {t € T' | 3s € Se : W (s,t) # 0}
Exit transitions | Tx = {t € T'| s € Sx : W(t,s) # 0}

The set of internal nodes contains only those nodes which do not form part
of an entry or exit interface. The entry (exit) transitions are those transitions
with an arc from an entry place (to an exit place). The notation Se(X’) is used
to represent the entry places of the net ¥’'. Similarly for the other classifications

of nodes. When no net is specified, the net ¥ should be assumed.
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Recall, *~ and X* are used to represent the set of entry places and exit
places respectively. Hence ** = Se and ¥* = Sx. This notation is extended to
single nodes, and sets of nodes. *n and n® are used to represent the set of pre
and post nodes respectively, of a node, n. Similarly, °N and N°® can be defined

for a set of nodes, N.

n = {neSuT|W({'n)#0}
n* = {n' e SUT|W(n,n') #0}
N = {neSUT|3In'e N:W(n,n') #0}
N* = {neSuUT|3In' e N:W(n' n)+#0}

A place, s is isolated if it has no incoming or outgoing arcs. The set of all

isolated places of a net, ¥ = (S, T, W, }), is given by:

IX)={seS|VteT: W(st)+W(ts)=0}

2.5.2 Connectedness properties

In this section, the relations ~y and ~ are defined. Ry is an undirected
connectedness relation, defined over the domain N, some subset of Na. ~ is a
directed connectedness relation defined over the domain N3. Figure 2.6 shows
a net which is the parallel composition of two subnets, (i) and (ii). This net

will be used to illustrate examples of these connectedness relations.

Undirected connectedness

For the undirected connectedness relation, ~y, the direction of the arcs of
the net are ignored. When the domain of the relation is the set of all nodes,
the equivalence classes of ~ N4 correspond to the connected components of the
net. The other domain of interest is the set of internal nodes, N;. The undi-

rected connectedness relation, ~y, is the least relation satisfying the following
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C |tz
@ b
t1| a b [tz d |ts

(1) (i)

Figure 2.6: Example connectedness properties

properties:

Vne N : nr@Nn
an,nz € N: W(?’Ll,ng) # ov W(ng,nl) 75 0= nlﬁan

as “ ~
an,ng,ng € N: NI~ NNe A g~ NNy = T~ NTL3

The relation, ~y, is an equivalence relation over the domain N. A net, ¥ is
connected if: Yny,ny € Ny : nlszanz, otherwise, X is disjoint. ¥ is mternally

connected if: Vni,ny € N; - Ny~ N2 otherwise ¥ is internally disjoint.

Examples

The net in Figure 2.6 is disjoint because, for example s;% N, S3. Both sub-
net (i) and subnet (ii) are connected. However, only subnet (ii) is internally

connected. Subnet (i) is internally disjoint because t;2 N to.

Connected components

The undirected connectedness relation, ~ N can be used to define a mapping,

G : 25T — 25YT ' which, for any set of nodes, N, gives the set of nodes in the

78



connected component(s) containing at least one node of N.
G(N)={n€ Na|3n' € N :ny,n'}

For example, in Figure 2.6: G({s2,t1}) returns the set of nodes in subnet (i),
and G({s4, s1}) returns the set of all nodes.

The subcomponent of the net ¥ = (5,7, W, A), that contains the set of
nodes, N C SUT is given by X |y, where:

Yn=(SON,TON,W |(surnn)x(sum)nny, A (sur)nn)

Hence, for the net, ¥ in Figure 2.6: ¥ |g({s,+,)) is subnet (i), and ¥ |g((s,})
is subnet (ii). Usually, N will be chosen to be some equivalence class of the
relation, ~ Ny, although the sequence synthesis rule of Chapter 3 uses ¥ |y to

extract a component from a connected net.

Directed connectedness

The directed connectedness relation, ~, is defined over the domain of the set of
all nodes, Na. The directed connectedness relation, ~, is the smallest relation

satisfying the following properties:

Vny,my € Na: W(ng,ny) # 0= ni~ny

— — —
an,nz,ng € N;: ni~Ng A No~Ng = Ny~nN3

For example, in Figure 2.6, t3~s5 and s;~s,, but, s,72s; and t42t;.

2.5.3 Clusters of places

An equivalence relation, =, is defined on the set of places of a net, so that
for any implementation, ¥, of a box expression, E, there is a correspondence
between the equivalence classes of ~,, and the applications of the ® oper-
‘ator used in constructing an implementation of E. This correspondence is

formalised by Proposition 6 in Section 3.4.
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A binary relation, ~, is defined on the places of a net, ¥ = (S, T, W, A). A

pair of places are related if they have a common pre- or post-transition — s.e.:
Vs1,82 € S:s1~vsg & €T Wi(sy,t) W(se,t)+Wi(t,s1) W(t,s2) #0

The relation ~ is reflexive and symmetric. By taking the transitive closure of
~, an equivalence relation, ~~,, is obtained. The equivalence classes of =,
partition the places of the net into clusters.

Figure 2.7 shows the net which is an implementation of the box expression:

(((@lla)U(alla))iai(al @) [l (@]l a)Dali(e;a;a))

The relation, o, partitions the places of this net into nine equivalence classes,

P1 to po, Wlth7 fOI' examplea P2 = {85a 36, 57, 38}'

(Q0:0-0) (@ @)

a tq a‘ tg| @ to| @ zwalzu’a

t1| a | ta| Q@ ty

TR

W

ts| @
SCHE)
tg| Q a ity

AEION RO (éD/ @‘5) Po

Figure 2.7: Partitioning the places into clusters
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A function, C : S — 25 is used to obtain the equivalence class (cluster) of

places to which a given place belongs:
VsE.S:C(s):{s'ES|s:ps'}
The set of all clusters of internal places of a net, ¥, is given by:
Gi(X) = {C(s) | s € S}
For example, for the net, ¥ in Figure 2.7,

0(83) = {81,82783,34}

Ci(X) = {{ss5,56,57,58}, {59,510}, {515}, {516} }

2.5.4 Connectivity of transitions

For anet & = (S,T, W, \), and transitions t, ¢y, ..., t; € T, define ¢ < {t1, ..., tx}
to mean that the transition £ has the same connectivity as, collectively, the
multiset of transitions, {ti,...,tx}. Formally, ¢ > {¢1,..., %} if and only if for

allne SUT:

-
—

W(t,n) = thl,n)
k
)

(
W(n, t) = Z W(n, ti

-
—

For example, in Figure 2.8, t4 & {t1, 6}, t5 D4 {t2, 27} and ¢4 > {¢5}.
An equivalence relation, ~gp;, can be defined over the set of transitions, T,
as follows:

th,tQ eT: i ~dpl ity & 11 X4 {tg}

The relation captures the notion of duplication of transitions, without any
requirement that the transition labels are the same. Figure 2.8 shows the
equivalence classes of transitions defined by ~gp for an implementation of the

expression:

E=(((a0{b,c}) |l (d0d0{b,a})) sy b0a);a
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For a transition, ¢ € T', let Dpl(t) be the equivalence class of ~4, to which ¢
belongs:
Dpl(t)={t' e T |t ~gu t'}

For example, in Figure 2.8, Dpl(t3) = {t1,ts,t3} and Dpl(ts) = {ts}.

Figure 2.8: Duplication equivalence classes

By defining a total order over the transitions in the net, it is possible to
define a unique or canonical representative for the equivalence class Dpl(t),
for each ¢t € T, given by min(Dpl(t)). A total ordering over transitions, and

the function, min, are defined in Section 2.5.6.

2.5.5 Synchronising transitions

In this section, a set of transitions is defined that is central to the synthesis
algorithm for synchronisation, presented in Chapter 4. Although the definition
is applicable to any net, it is only useful when the net has been derived from a
box expression over a syntax that includes synchronisation, but not restriction,
recursion or stop (see Table 4.1).

Let ¥ = (S,T,W, ) be an implementation of a box expression from the
syntax in Table 4.1. The set of transitions in ¥ that have the same connectivity

as a pair of transitions is given by:
TSC(E) = {t e’l | 3t1,t2 €Tt {tl,tg}}
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For example, in Figure 2.8, T;, = {t4,t5}, and in Figure 2.9, Ty, = {to, 13}
The set of transitions, T;.(¥) contains every transition in ¥ that has arisen as
a result of a synchronisation operation. An underlying net for ¥ is obtained
by removing the set of transitions T.(X), giving the net ¥ © Ty(X). The
remaining transitions, 7' QTSC(E) are known as the base transitions. Section 4.5
in Chapter 4 shows several useful properties associated with the definition of
T, including that ¥ © T,.(X) is the implementation of a box expression from

the basic syntax and every transition in ¥ arising from a synchronisation

operation is a member of T, .(X).

S1 e 82 @

tsw t4 b

Q)

t1]| G t2

s3 \ X s4 | X

Figure 2.9: Synchronising transitions

Figure 2.10 shows implementations of the expressions:

E1 = G,”b
E; = ((d0d0{ba}) |l (a0 {b,c}));a

2, and ¥, are isomorphic to the underlying nets of the nets in Figures 2.9,

and 2.8, respectively.

For every transition, ¢ € T, a multiset of base transitions, T;(t), can be

associated with ¢, such that ¢ b Tj,(¢). For all t € T, Ty(¢) is defined as follows:

Tb(tl) + Tb(tz) ifte TSC(E) At {tl, t2}

Tp(t) =
{min(Dpl(t))} otherwise

For example, in Figure 2.9, Ty(t2) = {t1,%4}, and Ty(t3) = {t1,t1, 24}
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s1\ € s2 { €

t1 d to ba i3 d te| @ ty be

S1 CGP e ) sz s3 {0 sa (9
1| a b |ta ts| a
53 C)g é 54 %5 é

¥ o

Figure 2.10: Base nets

2.5.6 Ordering of transitions

An ordering, <4, over atomic actions can be defined. Let <, be any fixed
ordering over the set of basic actions, B. A unique word, A(a) € B* can be
associated with each atomic action, a by writing the basic actions in « in order

defined by <;. For any atomic actions, a; and «;:
a; <gq Qo & A(al) <lex A(az)

where <., is a lexicographic ordering, using <.

For a finite net ¥ = (S, T, W, A), let <; be an arbitrary fixed total order
over the transitions in 7. In general, where transition names are ¢, s, ..., it
will be assumed that ¢; <; t; if and only if ¢ < j. Hence a total order, <;, of
the set of transitions 7', based on transition labels can be defined using <4

and <t
th,tg eT: <t (/\(tl) <a /\(tg)) \% (.A(/\(tl)) = A(/\(tg)) Nt < tg)

For a set of transitions, 7 C T, define min(7") to be the smallest transition

with respect to <;:
min(T") =t T":Vt' e T' - {t},t <, t'
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For example, for transitions t; = {d}, to = {b,a}, ts = {d}, and t;, = {a,c},
ta <ty <p 81 < B3 Therefore, min({tl,tg,tg,t4}) = tq, a,Ild min({tl,tg}) = 1.

2.5.7 Actions and transitions

For any implementation of an expression from the basic syntax, shown in
Table 2.3, there is a mapping from atomic actions in the expression to tran-
sitions in the implementation. The mapping is one-to-many — i.e. there may
be several transitions associated with a single action. If the expression does
not contain the iteration operator, then the mapping is one-to-one. In this
section, the mapping between actions and transitions is formalised, and used
to define an equivalence relation that relates transitions arising from the same

atomic action.

E = o Atomic action
| E|E Parallel composition
| EOF Choice composition
| E}E Sequential composition
|

[Ex E* E] Iteration

Table 2.3: Basic box expression syntax

The representation of atomic actions is modified so as to consist of a set
of atomic action names, together with a labelling function that associates a
multiset of basic actions with each atomic action name. This representation
is based on that used for transitions. For example, let 1, 2, ..., 25 be a set of

atomic action names, and p a labelling function such that:
p(zr) = p(zs) = p(zs) = a
p(z2) = p(zs) = {a, b}

An expression written using atomic action names, together with the labelling

function, p represents a unique expression from the standard notation. For
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example, let:
E = (z1 || 22) 0 ((z3;74) || 75) ‘ (2.1)

then F| u denotes the following standard notation expression:

E' = (a |l {a,0}) 0 ((a;a) || {a,b})

The purpose of such a representation for atomic actions is to distinguish actions
which are the same multiset of basic actions. For example, o and z5 in FE
allow the two {a,b} actions in E’ to be distinguished.

Let E be an expression containing exactly the set of action names X =
{z1, ..., zp}, 1 alabelling function for X, and ¥ = {S, T, W, A}, an implemen-
tation of E, u. Define ¢ : X — 27 to be a function such that for all x € X,
#(x) is the set of transitions in ¥ that have arisen from z. The function ¢
is defined inductively on the structure of E, and constructed for a particular
implementation, ¥’ of F, 4. The mapping can be extended from the particular
implementation, ¥’ to any implementation, ¥, by establishing an isomorphism
between ¥’ and X. Hence, the mapping is unique up to automorphism of X.
Given F, u, the function ¢ is obtained by constructing an implementation X'

of E, i, and recording the origin of each transition in %'

e E =z: The net ¥’ = ({s1, 52}, {t}, {(51, 1), (¢, s2) }, {(s1, &), (52, %),
(t,u(z))}) is an implementation of E. ¢ is defined by ¢(z) = {t}.

e E=F, || Ex, E=E UE,, E = Ej; Ex: Let &} and X be disjoint
implementations of F; and F,, with mappings ¢;, and ¢, respectively.
Let ¥’ be the implementation of E constructed from 3} and ¥, and ¢
be the mapping between action names in E and sets of transitions in X'
¢ is given by:

¢=¢1Uo,

The union operation for ¢ is defined below.

o E = [Eyx Ey* E3] : Let 5 for 1 <i < 3,1 < j < 2 be disjoint
implementations of E;, with mappings ¢;; respectively. Let ¥’ be the

86



implementation of E constructed from the ¥;, and ¢ be the mapping

between action names in E and sets of transitions in ¥'. ¢ is defined by:

¢= U ¢4
1<21<3

<j<?

For 1 < i < 3, ¢;; and ¢;; have the same domain. Hence, the size of
the set, ¢(z) is doubled for each level of iteration that encloses z in the

expression.

An auxiliary function, f is defined, which given an action name, z € X, and

a mapping ¢ returns @ if = is not in the domain of ¢, and ¢(z) otherwise:

é(z) if z € dom(¢)

1) otherwise

flz,0) =

The union of mapping functions, ¢, U@, is defined using the auxiliary function,

f. Forall z € X:
(91U ¢2)(z) = f(z,¢1) U f(z, $2)

An example construction of ¢ is given for the expression:
E”—“.’L‘1D[II}2*$3*$4]D$5

where p(z1) = p(z2) = plzs) = {a}, p(zs) = {b}, and p(zs) = {a}. An
implementation, ¥ of E, u is shown in Figure 2.11. The particular implémen—
tation, ¥’ of E, u, used in constructing ¢, is chosen carefully so that there
exists an isomorphism between 3’ and ¥ that preserves transition names. By

the inductive definition of ¢:

¢=¢1UgyUd3

where ¢;, for 1 < ¢ < 3 is a mapping from the subexpression E; to the

transitions in an implementation of E;, with: E; = z,, By = [z3 * T3 * T4],
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Figure 2.11: Equivalence classes of transitions arising from the same action
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and E3 = z5. The implementations of E; and E3 are chosen to contain the

transitions ¢4 and ts respectively. Hence ¢; and ¢3 are defined by:
$1(z1) = {ta}
¢3(zs) = {ts}

¢, is defined inductively by ¢, = U¢;;, for < i < 3,1 < j < 2. Each ¢;
encodes the mapping between an atomic action and its implementation. The

implementations are chosen so that the ¢;; are defined by:

dulz2) = {t1} P (zs) = {ts} pa1(zs) = {t7}
p12(x2) = {i2} b(z2) = {t6} pa2(zs) = {ts}

Hence, by the definition of the union of mapping functions, ¢, is given by:
da(z2) = {t1,t2} ¢a(x3) = {t3,%6} da(zs) = {tr,ts}
Therefore, ¢ is defined by:

¢(z1) = {ta} $(z2) = {t1,t2} d(zs) = {ts,te}
¢(zs) = {tr,ts} ¢(zs) = {ts}

Given a mapping, ¢, between the set of action names, X, in an expression, and
the set of transitions, T, in an implementation of the expression, an equivalence

relation, ~g4, can be defined by:
Vi, ta € T it ~y ta & 3z € X such that {t1,t2} C ¢(2)
Define ¢(t) to be the equivalence class of ~, to which the transition ¢ belongs:
VieT:¢(t)={t' €T |t~yt'}

Figure 2.11 indicates the equivalence classes of ~4 for the mapping ¢ con-
structed above. In Chapter 4, Section 4.3 describes an algorithm for con-
structing the set of equivalence classes of ~4 for any implementation of a box

expression from the basic syntax.
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2.5.8 The © operator

The © operator is used to relate the synchronisation of actions in expressions

with the sets of transitions that are created in the corresponding net. This is

achieved using the equivalence classes of ~,. Define an auxiliary function, 6,

which allows each parameter of ® to be either a multiset, or a set of multisets:
{t} ifteT

t otherwise

o(t) =
Then, © is defined by:
T 0Ty ={0(t1) + 0(t2) | t1 € Th,t2 € Tn}

The ® operator produces a set of multisets, rather than a multiset of multisets.

Hence, there is only one copy of, for example, {t4, ts, 7} in:

({t4’ t5} © {tﬁv t7}) © {t4’ t5} = {{t‘l’ tﬁ}a {t4’ t7}a {t57 tﬁ}’ {t57 t7}} © {t4’ t5}
= {{ta,ta,t6},{ts,ts, %6}, {ta, ta, t7},

{ta,ts,t2}, {ts, ts, t6}, {ts, ts, t7}}

Using the example construction for ¢ for the expression, E, (2.1) and the
net in Figure 2.11, the sets of transitions that would be produced by the
synchronisation operation in £ sy a can be found using the ® operator. The
pairs of actions in E which synchronise are (z1,z4),(2,z4) and (x4, z5). The

corresponding sets of transitions generated by the three synchronisations are:

¢(z1) © ¢(z4)

{ta} © {t7, 18}

= {{ta, 17}, {ts, s}}
$(z2) © p(z4) = {t1,%2} © {tr,1s}

= {{tu,tr}, {t1, ts}, {22, tr}, {t2, ts}}
¢(z1) © (zs) = {tr,18} © {ts}

= {{ts,t7}, {ts, s} }

Hence, for example, the synchronisation of the actions x; and x4 generates two

transitions ¢} and t,, such that ¢] > {t4,t7}, th o< {ts, ts}-
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Chapter 3

Basic synthesis

3.1 Introduction

E := o Atomic action
| E|E Parallel composition
| EUE Choice composition
| E;E Sequential composition
l

[Ex E x E] Iteration

Table 3.1: Basic box expression syntax

Table 3.1 contains a subset of the full box expression syntax given in Table 1.1
and [6]. The syntax in Table 3.1, christened the basic box expression syntax,
was chosen for an initial investigation into the synthesis and axiomatisation
problems because the operators in Table 3.1 preserve a strong correspondence
between the structure of a net, and the structure of the expression from which
that net is derived. This correspondence would not be so strong if operators
such as synchronisation and restriction were included. For the remainder of
this chapter, every box expression should be assumed to be a member of the
language generated by the syntax in Table 3.1, unless otherwise stated.

Sections 3.2 and 3.3 present a solution to the synthesis problem for the
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class of input nets that can be obtained from an expression over the syntax
in Table 3.1. In Section 3.4, the correctness of the synthesis algorithm is
shown. The detailed analysis carried out in Section 3.4 forms the basis for
the discussion,  and solutions to related problems presented in Section 3.5.
A canonical form for box expressions is defined in Section 3.5. This allows
the synthesis algorithm, described in Sections 3.2 and 3.3 to be modified to
synthesise canonical form expressions, and provides a basis for the derivation
of a complete axiom system for the fragment of the Petri Box Calculus given
in Table 3.1. Section 3.5 concludes with an investigation into the possibility
of the automatic generation of proofs of equivalence for expressions from the

syntax in Table 3.1.

3.2 The synthesis algorithm

The synthesis algorithm takes as input a net, ¥, which is an implementation of
some unknown box expression. The output is a box expression, F, such that X
is an implementation of E. The algorithm is based on a set of synthesis rules,
with one rule for each operator in the box expression syntax of Table 3.1.
Each synthesis rule has a set of preconditions which must hold for the rule to
be applied. These conditions are based on the structural properties of nets
described in Section 2.5 in Chapter 2. When a synthesis rule is applied, the
input net is decomposed into a collection of subnets, and at the same time,
the expression corresponding to the input net is refined. The rules are applied
recursively to each subnet obtained by net decomposition, until the expression
is fully refined.

A tree data structure is used by the synthesis algorithm. A node of the
tree has the form shown in Figure 3.1. Initially, only the net field of the node
contains any data. Once the preconditions of the synthesis rules have been
checked, and the rule to apply has been identified, the type field of the node
is set. The type field is used to indicate which synthesis rule is to be applied.
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If the rule to be applied is the atomic action rule, then the node is a leaf node
of the tree, and the action field is set to be the atomic action synthesised from
the input net. Otherwise, the node is internal, and the list field is used to point
to a collection of children, with each child node containing a subnet obtained
by the net decomposition of the synthesis rule. Once the synthesis process
has completed, the tree structure can be interpreted to obtain the synthesised
expression. For this interpretation, only the type and action/list fields of the

nodes are required - the net field can be ignored.

Net

Type

Action/List

Figure 3.1: Data structure of a node

The pseudo-code for the synthesis algorithm is given below. Box Ex-
PRESSION SYNTHESIS creates a root node, and initialises the net field with
the input net. SYNTHESISE is a recursive procedure which takes as input the
root node of a (sub)tree, and expands it into a tree structure corresponding
to an expression for the net at the root node. EXPRESSION performs a depth
first traversal of the fully expanded tree, and uses the type and action fields

of the nodes to find the synthesised expression.

Box EXPRESSION SYNTHESIS(X)
1 N=new node

2 N.et=X

3 SYNTHESISE(N)

4

return EXPRESSION(V)

SYNTHESISE(N)
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sequence

S

X
atomic atomic atomic atomic
c d a b

Figure 3.2: Tree produced by the synthesis algorithm
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N.type=ANALYSE(N.net)
case N.type
atomic: AToMIC(N)
parallel: PARALLEL(N)
choice: CHOICE(N)
iteration: ITERATION(N)
sequence: SEQUENCE(N)

for each node N’ in N.list

© 00 g O Ut ks W N =

do SYNTHESISE(N’)

For example, given the net, 2, in Figure 2.6, the call to Box EXPRESSION
SYNTHESIS(X) will construct the tree shown in Figure 3.2. Performing a depth
first traversal of this tree obtains the expression (c;d) || (¢ ). Note that in

general, the tree will not be binary.

3.2.1 Preconditions

The preconditions of the synthesis rules are based on four structural properties

of nets:

1. Number of transitions: This property is true if there is more than

one transition in the net, and false if there are zero or one transitions.

P’I’1:‘T|>1

2. Connectedness: This property is true if there is an undirected path
between every pair of nodes in the net, and false if the net consists of at

least two disjoint components.

>
Pry =Vni,ny € Na : ni~nyng

3. Internal connectedness: This property considers the connectedness

of the net when all entry and exit places are removed. The property is
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true if the net is connected after deleting the entry and exit places, and

false if there are at least two disjoint internal components.

>
Pr3 =Vni,ny € N; ML~ T2

4. Internal Interface: This property is true if there is no undirected path
from an entry place to an exit place, when some cluster of internal places

is removed.

Pry=3s € Si : Vs, € Se, 50 € S%: Slg(Na_c(s))Sz

Type Property 1 | Property 2 | Property 3 | Property 4
Atomic action false true true false
Parallel true false false false
Choice true true false false
Iteration true true true false
Sequence true true true true

Table 3.2: Preconditions for the synthesis rules

Table 3.2 shows which properties hold for each type of expression. Fig-
ure 3.3 illustrates how the four properties provide a simple decision procedure,
to identify the synthesis rule to apply. This procedure is implemented by the
ANALYSE function, given below. Using this approach, all four properties of
the net are only tested in the worst case, when the sequence or iteration rule

is to be applied.

ANALYSE(X)

1 if Pr; holds for

2 then if Pr, holds for ¥

3 then if Pr; holds for ©
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4 then if Pr, holds for &
) then return sequence
6 else return iteration
7 else return choice
8 else return parallel
9 else return atomic
Property 1
& %

atomic action  Property 2

W

parallel Property 3
W
choice Property 4
7]
W
iteration sequence

Figure 3.3: Decision procedure for identifying synthesis rule to apply

3.3 Synthesis rules

This section describes the five synthesis rules that are used by the algorithm.
These correspond to the procedures, ATOMIC, PARALLEL, CHOICE, ITERA-
TION and SEQUENCE, called by the SYNTHESISE procedure. For each rule,
the method for expression refinement and net decomposition is given, followed
by optional checks that can be carried out to ensure that the input net is
the implementation of a box expression. These checks allow the synthesis al-

gorithm to be used to recognise the class of nets that can be derived from
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expressions over the syntax in Table 3.1. Finally, an example illustrating the
use of the rule is given. The expression refinement involves determining the
number of components that the input net should be decomposed into. The
examples show how a node of the tree data structure, described in Section 3.2,
is expanded by a rule application. Each example has been chosen so that the
preconditions of the particular rule are satisfied.

The tree structure that is constructed by the synthesis algorithm does not
correspond directly to a parse tree of the synthesised expression. For example,
an implementation of E = (a || b) || (¢ || d) will be synthesised to a tree
containing a root node with four child leaf nodes. Advantage is taken of the
associativity of the parallel, choice and sequence operators, which means that _4
E can be written unambiguously as a || b || ¢ || d. The EXPRESSION function .
produces a properly bracketed expression from the tree by imposing a right-
associative bracketing order, giving the expression a || (b (c || d)), for E.

A further operator on labelled nets, W, is defined. This operator is used in
the decomposition of the input net to the synthesis algorithm by some of the
synthesis rules in this section. Let ¥ = (S,T, W, X) be a labelled net, P be a
set of new places, and ! € {e, 0, x} be the label which is to be assigned to the
places in P. Each place, p € P has the form (73,T3), where T} C T is the
set of transitions which have an arc to p, and T, C T is the set of transitions
which have an arc from p. The net, ¥ & (P, 1), obtained by adding the set of

new places to ¥ is defined by:
S (P,l) = (SUPT,W',\)

where W' : (SUPUT) x (SUPUT) — {0,1}, and X are defined as follows:

4

W(ny,ng) ifng,ny € SUT
1 ifn, = (11, T) € Pny €T
Wi — | 1= (T, T) € Py € T
1 if n, € Tl,ng = (Tl,Tz) e P
{ 0 otherwise
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An) ifneSUT
! ifnepP

N(n) =

In Section 1.3.5, a general form for the semantics of the parallel, choice,
sequence and iteration operators was described. There is a corresponding
general approach that can be used for the net decomposition performed by
the synthesis rules for these operators. Let ¥ be a net which is known to
have arisen from a particular semantic rule. The & operator can be used in
a general technique for decomposing ¥ into its subnets, ¥; for 1 < ¢ < k for

some k:
1. The sets of transitions belonging to each subnet, ¥; are identified in .

2. The clusters of places, corresponding to the interfaces between the ¥;
components in ¥ are identified. Each cluster is decomposed into sets of
new places corresponding to the original entry and exit interfaces of the

subnets. These sets of places have the form used by the W operator.

3. The clusters of places identified in 2 are removed, using the © operator,
and the sets of new places are added to the resulting net using the &

operator.

4. The net, ¥', obtained in 3 corresponds to the disjoint union of the subnets
;. For 1 <4 <k, the subnet ¥; can be obtained from ¥, using ¥’ |g(z),

where T; is the set of transitions belonging to ¥;, identified in step 1.

In the descriptions of the synthesis rules, the following conventions should
be assumed: ¥ is the input net to be decomposed, and E is the unrefined
expression corresponding to ¥. The subnets obtained by decomposing ¥ are

¥;, with corresponding unrefined expressions F;, for 1 < ¢ < k (for some

k>1).
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3.3.1 Atomic action

The synthesis rule for atomic actions is the only base case rule — i.e. the
recursion of the SYNTHESISE procedure ends with an application of the atomic
action rule. No net decomposition is performed, and the refined expression

contains no free variables.
Expression refinement

The expression is refined to be the label of the single transition in the net:

E = A\(t) where T = {t} (3.1)

Optional checks

There should be exactly two places in ¥, one an entry place, with an arc to ¢,
and the other an exit place with an arc from t. These additional checks ensure

that the input net is an implementation of an atomic action.

Example

Figure 3.4 shows an implementation of the expression £ = {a}. Applying the
atomic action synthesis rule, (3.1), to this net gives the fully refined expression

E = {a}.

a it

atomic
a

Figure 3.4: Atomic action
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3.3.2 Parallel composition
Expression refinement

The equivalence classes of the relation ~ N, Partition the net ¥ into its disjoint
components. Let C be the set of equivalence classes and n be the cardinality
of C. Hence n is the number of disjoint components in X. The expression is
refined to:

E=FE || E| .|| En (3-2)

Net decomposition

Let C1, ...,C, be the equivalence classes in C - 1.e. C = {C1,C,...,C,}. For
1<i<n:

Si=3c, | (3.3)

Optional checks

No additional checks are required for this synthesis rule.

Example

Figure 3.5 shows an implementation of the expression a || ((b0c¢) || (d;e)).
This net is disjoint, therefore, by Table 3.2, the parallel composition synthesis
rule is applicable. The set of equivalence classes, C, given by the relation ~ N3
is:

C = {{ss,t2,t3, 54}, {S5,ta, S6, t5, S7}, {51, t1, 82} }

Therefore, n = 3, and by (3.2), E is refined to:
E=E1 “E2 ||E3

The decomposed nets, ¥;,%,, and 33 are shown in Figure 3.5. Using (3.3)
with, for example, C5 = {s1, 11, s} gives, by (3.3):

23 :‘({81’ 52}’ {tl}’ {(Sl’ tl)’ (tl’ 82)}’ {(517 e)’ (SZ’X)a (tl’ {a})})
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d | ta
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ta| b c |ts e lts
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> Yo

Figure 3.5: Parallel composition
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3.3.3 Choice composition
Expression refinement

Define ~, a relation over the set of entry transitions, Te, of ¥, such that two

transitions are related if there is no entry place with an arc to both of them.
Vi, to € Te : 1y ~ ty & Vs € Se: W(S,tl) =0V W(S,tg) =0

Let ~} be the transitive closure of ~|. A relation, ~e is defined over the set

of entry transitions:
Viy, by €Te:t ~vety &ty ~jtaV tlﬁNitz

Proposition 11, proved in Section 3.4, shows that ~e is an equivalence relation
whenever ¥ is an implementation of a choice expression. Let Pr, be the
set of equivalence classes of Te, formed by the relation ~e. Corollary 2, in
Section 3.4, shows that a corresponding set of equivalence classes of the exit

transitions, Tx can be given by:
Pr,={{teTx |3t eP: tfiNit'} | P € Pr} (3.4)

Let n be the number of equivalence classes of P, — i.e. n = |Pp,|. The

expression, F is refined to:

E=FE0E0..0E, (3.5)

Net decomposition

The equivalence classes Pr,, and Pr, are used to decompose the entry and

exit interfaces of ¥ as follows:

Xe={(0,s*NP)|P€ Pr,,s€ Se}
XXI{(.SOP,(Z))IPEPTX,SES)(} (36)

An auxiliary net, 3,, is constructed by removing the entry and exit interfaces

of X, and adding the interfaces defined by (3.6):
Y, =L (Xe, €)W (Xx,z) © (Se USx) (3.7)
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Y, is an implementation of the parallel composition of the decomposed nets
X1, ..., 2p. It is not necessarily true that there will be n disjoint components
— there will be more if any 3; is the implementation of a parallel composition
expression. The set of equivalence classes Pr, = {P, Py, ..., P,} (or, equally

Pry), can be used to decompose ¥, into Xy, ..., X,.

Zi = Ea |Q(Pi) for 1 < 1 <n (38)

Optional checks

If the input net is the implementation of a box expression, then the sets of
equivalence classes, Pr, and Pr, will be such that |Pr,| = |Pr| and |Pr| >
1. If the sets of equivalence classes do not satisfy these properties, then the
synthesis algorithm has detected that the input net is not an implementation

of a box expression.

It remains to check that the decomposition of the entry and exit interfaces
of ¥ is valid. This is achieved by recombining the decomposed interfaces
and checking that they match the original interfaces in ¥. The set of new
places, Xe can be partitioned into X, ..., X, where n = |Pr,| according to
the equivalence class of Pr, that each place in Xe arises from. The places in Xe
have the form (@, T"), where T" is a set of transitions belonging to . In order
to check that the decomposition is valid, it is necessary to combine the sets
of places X, ..., X,,, and match the result against Se(X). Since Xe. is a set of
places, rather than a multiset, it is sufficient to check that | X;|-|Xs|-... | X,| =
|Se(X)], and for any set of places (§,T;) € X; for 1 < 4 < n, there exists a
place s € Se(X) such that s* = T3 U ... UT,. A similar procedure is used
to check that the set of new places, Xx is a valid decomposition of the exit

interface of Y.
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Example

Figure 3.6 shows an implementation of the expression

(all (40c))U(d;(e0 ) D(gllR)

This net is connected, but not internally connected — for example tﬁZNitz.
Therefore, the choice composition synthesis rule is applicable.

The sets of entry and exit transitions are Te = {t1,...,ts}, and Tx =
{t1,...,t5,t7,ts} respectively. The set of equivalence classes of Te, given by
the relation ~j is {{¢1,%4, %5}, {t6}, {t2,¢3}}. There is no internal path be-
tween any pair of transitions in Te. Therefore, the equivalence classes of the

entry and exit transitions are:

Pry = {{t1,ta, 5}, {t2, s}, {t6}}
PTx = {{th 178 t5}’ {t2’ tS}’ {t7’ tS}}

Hence, by (3.5), the expression F is refined to:
E=E0EE;s

The new entry and exit interfaces, defined by (3.6) are:

Xe = {s10=(0,{t1}), 51 = (0, {ts,t5}), 512 = (0, {t2}), 513 = (B, {ts}),
s = (0,{te})}

Xx = {s1s = ({t1},0), 516 = ({t1,25},0), 517 = ({2}, 0), 518 = ({t:}, 0),
s19 = ({t7,1s},0)}

Where sy, ..., 519 are introduced as shorthand for the identifiers of the new
places — i.e. the real place identifier for the place labelled s;q in Figure 3.6 is
@, {t:}).

When the entry and exit interfaces of ¥ are removed, and the entry and
exit interfaces given by Xe and Xx are added, the net ¥, = X; U X, LU X3 is
obtained. The disjoint components of 3, are related according to the three

equivalence classes of Pry,, decomposing ¥, into ¥, ¥ and X3. For example,

105



S10

ti| a t4b ts| C

ta| g h t3
unknown unknown
21 22

Figure 3.6: Choice composition
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by (3.8), using the equivalence class {t2,3}:

Yo = Zalo(tats))
= ({s12, 513, 817, 518}, {2, t3}, { (512, 22), (513, 3), (t2, s17), (t3, S18) },
{(812’ e)’ (313’ e)? (317’X)7 (518: X)7 (t2’ {g})’ (t37 {h})})

since G({t2,t3}) = {S12, 513, 817, S18, 2, 13 }.

3.3.4 Sequence

Expression refinement

Define S; to be the set of clusters of internal places such that for each cluster,
c € S, there is no undirected path between an entry and exit place in the net

YOec:
S, = {C c CI(E) | Vs, € Se,Sg € Sx : 312(1\]3_0)82} _ (39)

n = |S;] + 1 is the number of subnets that will be formed when the net is

decomposed. Therefore, the expression, F, is refined to:

Net decomposition

Removing any cluster of places ¢ € S; partitions ¥ into two components — one
component consists of the collection of nodes connected to some entry place,
and the other contains the nodes connected to some exit place. The function
Ce(c) is defined to give the set of nodes in the component containing the entry

places:

Ce(c)={n"€ SUT |3Is € Se: sz(Na_c)n'} (3.11)

A total order, <,, over the clusters of places in JS; can be defined. For
C1,Co € S,

1 <s ¢z & |Ce(ar)| < |Celcz)|
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<;s is used to obtain an order cy, ¢y, ..., ¢(n-1) Of the clusters of places in S;.
The auxiliary nets X, for 1 < i < n, are obtained by removing the clusters of

places in S; from X:

2 |ce(e) ifi=1
%=1 Zliceter-(Celernue) Hf1<i<n (3.12)

% |(Na-(Celcnosy)Uenr)) T =1

Two functions, one for the entry interface (Ie), and one for the exit interface
(Ix) are defined. These functions decompose a cluster of places ¢’ € S;, into

the corresponding entry or exit interface:

Ie(d) = {(0,5*) | s € '}
Ix(d) ={(°s,0) | s € '} (3.13)

The decomposed subnets X, .., X, are obtained by adding new interfaces to
the nets X},..,%, defined by (3.12). The new interfaces are generated by

applying the interface functions le and Ix to the clusters ¢, ¢z, ..., cn-1 € S;:

2 W (Ix(ey), x) ifi=1
Yi=1q Tl (le(cie),e) W (Ix(c),z) ifl<i<n (3.14)
YW (le(ep-1),€) ifi=n

Optional checks

If the input net is the implementation of a box expression, then S; is guar-
anteed to contain at least one cluster of places. If S; = (0, then the synthesis
algorithm has detected that the input net is not an implementation of a box
expression.

It remains to check that the decomposition of each cluster in S; is valid.
This is achieved by recombining the decomposed interfaces and checking that
they match the original clusters in X. For each cluster, ¢ € S, Ie(c) (Ix(c)) are

sets of pairs of sets of transitions, such that the first (second) set of transitions
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in the pair is @. Since Ie(c) and Ix(c) are sets, rather than multisets, it is

sufficient to check that for each cluster ¢ € S;, |Ix(c)| - |le(c)| = |¢| and:
V(T1,0) € Ix(c), (B, Ty) € Ie(c) : 3s € csuch that s =Ty As* =T,

If a cluster does not match the recomposition of the decomposed interfaces,
then the net decomposition was not valid. This implies that the input net, ¥,

is not the implementation of a box expression.

Example

Figure 3.7 shows the net, ¥ which is an implementation of the expression:

a; ((b;¢) Ud); (ell (f;9))

Y is connected, and also internally connected. Removing the place s, leaves no
path between an entry and exit place. Therefore, the sequential composition

synthesis rule is applicable. The set of | internal clusters is given by S’ =
{{s2},{s3}, {84,585}, {s7}}. Therefore, by (3.9):
S; = {{s2}, {s4,s5}}

The net, ¥ will be decomposed into three subnets, because there are two

interface clusters in S;. Therefore, by (3.10), the expression F is refined to:
E = Ei; Ey; E3
The two clusters of places in S; are ordered ¢; = {s2},c; = {s4,55} because
|Ce(c1)| <s |Celca)l:
Ce(c1) = {s1,t1}
Ce(C2) = {517 tl) S2, t2) t3’ 83, t4}
(3.12) applied to ¥ in Figure 3.7 yields the three nets in Figure 3.8. For
example, (Ce(c2) — (Cel(ey) Uer)) = {ss, ta, t3, t4} — Therefore:
Ty = T l(Celer)-(Celer)uer)
= ({3}, {t2, ta, ta}, {(t2, 53), (53, t4) }, { (53, 0), (t2, {b}),
(3, {d}), (ts, {c})})
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Figure 3.7: Sequential composition
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Figure 3.8: Partially decomposed sequence net

The interfaces obtained by applying the functions Ie and Ix (given by
(3.13)) to the clusters ¢; and ¢, added to the nets in Figure 3.8 produce the
subnets £, &, and T3 shown in Figure 3.7. For example, the interfaces for

¥, are produced using:

Ie(c1) = {s10 = (0, {t2, t3})}
Ix(Cg) = {811 = ({t3>t4}am)}

Where s19 and s;; are introduced as shorthand for the place identifiers.

3.3.5 Iteration
Expression refinement

The expression F is always refined to:

E:[El*Eg*Eg]

Net decomposition

During the decomposition of the net, ¥, four auxiliary nets (X, — £4) are
constructed. The first, ¥,, is obtained by decomposing the entry and exit in-
terfaces of X.. The interface clusters given by S;s (in (3.15) below) are partially
decomposed in ¥, to give ;. Proposition 15 shows that for any implementa-

tion, ¥, of a box expression which satisfies the preconditions of the iteration
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synthesis rule, the decomposition of ¥ is such that X, consists of two disjoint
components which are isomorphic to each other. X, is taken to be one of these
subnets. ¥, contains all the information required to produce the decomposi-
tion into subnets ¥;, ¥, and 3.

The implementation of an iteration expression, [E; x E, x Es], involves
two implementations of each of the expressions F;, E5 and FE3. The two
implementations of F; are named ¥;; and X15. The two implementations of
E5 and FE5 are named similarly.

Proposition 14 shows that the set of clusters, S;¢, defined below will contain
the two clusters of places arising from the interfaces £;;° ® g ® 2£92° ® 231

and ¥12° ® g ® Yo1° ® Vss.

Sif = {ce Ci(Z) | (3t € Te,Vt € Tx : tegNa_(seUc)t)
/\(Htx € Tx,vt € Te : tz;Na—(Sch)t)} (315)
Pe (Px) is defined to be a partition of the entry (exit) transitions of ¥ into two

sets corresponding to those entry transitions arising from 3;; and ;5 (exit

transitions arising from ¥3; and X3s).
Pe = {{t € Te ! Vt, € TX . tha—(SeUc)tl} l cE Szf}

P = {{teTx |Vt €Te:thny—(squot'} | ¢ € Sis}

The entry and exit interfaces of ¥ can be decomposed in a fashion similar to
that used for the choice synthesis rule, (3.6), using Pe and Px as the set of

equivalence classes determining the decomposition:

Xe={(0,s°NP)|Pe€ Pe,s € Se}
Xx:{(.SﬂP,@)lpepx,SGSx} (316)

The first auxiliary net, 3,, is constructed by removing the entry and exit

interfaces of ¥, and adding the interfaces defined by (3.16):

Ea =X (Xe, 6) I\ (Xx,.’l?) e (Se U Sx)
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Attention now turns to the internal interfaces of ¥,, which are given by S;f.
Firstly, the set of all places comprising the internal interfaces is obtained:

ir = {8 3C € Sis : s € C}. This set of places is decomposed into two new
interfaces X; and X, obtained by taking just the incoming and outgoing arcs

of the places in Sj;, respectively:

X1 ={(,0) | s € Sis}
X, ={(0,5°) | s € Sis} (3.17)

The net %, is constructed by removing the original internal interface, and
replacing it with the interfaces defined by X; and X,. As shown in Propo-
sition 15, ¥, will consist of two disjoint nets, which are isomorphic to each
other. There are two isomorphic nets in the partial decomposition because of
the redundancy in the semantics for the iteration operator — one of the two

nets is discarded, and the remaining one is named %..
Yy =E, W (X1,0) w (X2,0) © S

The sets of entry and exit transitions of X, given by Te(X.) and Tx (%) re-
spectively, are required later. The net ¥, can be regarded as being isomorphic
to a composition of implementations, ¥, 35, £3 of E;, Fs and Ej; in sequence,
but with X5 reversed — i.e. the entry interfaces of ¥, and X3, and the exit
interfaces of ¥; and %5 are joined. Therefore, these two interfaces can be easily
identified as they consist of internal places with no incoming or outgoing arcs

respectively:

= {se5(Z.)|s =0}
= {s€S(Z)|s=0} (3.18)

h
Iy
The pre-transitions of Si17 and the post-transitions of Si2 are partitioned into

two sets according to whether there is a directed path from an entry place, or

to an exit place respectively. The sets of transitions in B, are such that every

transition in the first set belongs to ¥;, and those transitions in the second
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set belong to Xp. Similarly with the partition P, :

= {{t €S, |35 € Se(Z) : 571}, {t € °5;, | Bs € Se(Se) : s~t}}
= {{t€S%, | 3s € Sx(Te) : t~s}, {t € %, | Bs € Sx(Te) : t~s(B}19)

I
Iz
These partitions are used to decompose the interfaces Sil (Si2) into the exit
interfaces of X; and ¥, (entry interfaces of 3, and ¥3). The decomposition

relies on the fact that no Petri box contains any duplicate places, as shown by

Proposition 1 in Section 3.4.

X, ={(snP0) | Pe P, ses5}

lo?

X, ={0,s*nP)|Pe P ,s€ S5} (3.20)

The old internal interfaces (S; and S ) are removed from ¥, and the new

interfaces given by (3.20) are added:
Yi=2W (Xil,x) ! (Xiz’ e) o (Sil U Si2)

The three subnets, ¥;, X9 and X3 can be identified in ¥4 as the connected
component(s) containing the set of entry transitions, Te(%.), the connected
component(s) containing neither the entry transitions nor the exit transitions,
and the connected component(s) containing the set of exit transitions, Tx(Z.),

respectively:

Y1 = Zalg(se(se))
Yo = Zal(v3-6(Se(Ee)usx(Se)))

23 = Ed |g(5x(2c)) (3.21)

Optional checks

If the input net is the implementation of a box expression, then S;; is guaran-
teed to contain exactly two clusters of places. If |S;f| # 2 then the synthesis
algorithm has detected that the input net is not an implementation of a box

expression. The optional checks for the choice and sequence synthesis rules
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can be reused to check that the net decomposition performed by the iteration
synthesis is valid. If any of the checks fail, then it is known that the input net,
¥, is not the implementation of a box expression from the syntax in Table 3.1.

The decomposition of the entry and exit interfaces of £, given by Xe and
Xx is similar to that used for the net decomposition in the choice synthesis rule.
The optional checks for the choice synthesis rule can be reused here to ensure
that the decompbsitions given by Xe and Xx are valid. The decomposition
of the pair of clusters in S;; is the same as the decomposition of a cluster of
places described in the sequence synthesis rule. The optional checks for the
sequence synthesis rule can be used to check that the decomposition given by
X and X, (3.17) is valid.

If the input net is the implementation of a box expression, then %, is
guaranteed to consist of two isomorphig components, of which only one is
required. In order to check that the input net really is the implementation of
a box expression, both components of ¥, must be checked. This means that
the synthesis process needs to be applied to each component of ¥;, and the
resulting synthesised expressions checked for equivalence!. An algorithm for
checking the equivalence of expressions is given in Section 3.5. The following
considers the checks that need to be carried out on ¥, one of the componehts
of ¥;. The checks for the other component of ¥, will be identical. The
decomposition given by X i\ and X iz (3.20) is the same as the decomposition of
a cluster of places described in the sequence synthesis rule. The optional checks
for the sequence synthesis rule can be reused to check that the decomposition

is valid.

Example
Figure 3.9 shows an implementation of the expression:

[(aDb) x (c; (]l €)) x (f || 9)]

1The expressions should be equivalent, though not necessarily identical
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This net contains more than one transition, is internally connected, and there
is no cluster of places which, when removed, leaves no path between an entry
and exit place. Therefore, the iteration synthesis rule is applicable. The set

of internal clusters is given by

C|(E) = {{827 53, 54, 35}} {510, 811}, {sﬁa S7, 88, 39}) {8127 513}}

as shown in Figure 3.9. (3.15) identifies the two internal clusters of interest

as:
Sir = {{s2, 53, 54,55}, {86, 57, 58, S0 }}

This provides the following partitioning of the entry and exit transitions:

Pe = {{t1,t2},{ts,ta}}
Px = {{tu,t12}, {t13, t1a}}

The net ¥, constructed from X, by adding the interfaces defined by (3.16), is
shown in Figure 3.10. Note that the identifiers s;g to sp3 have been introduced

as shorthand:

Xe = {s18=(0,{t1,t2}),519 = (0, {ts,24})}
Xx = {s0=({tu},0),501 = ({t12,0}), 502 = ({13}, 0), 23 = ({t14},0)}

The set of places in the internal interfaces is Sj; = {s,...,s9}. By (3.17),

- the decomposition of these places is given by:

Xi = {su=({ti,t2,t10},0), 525 = ({t1, 2,20}, 0), 526 = ({ts,24,%6},0),
sor = ({ts, ta, 17}, 0)}

Xy = {28 = (0, {ts,211}), 520 = (8, {ts,12}), 530 = (B, {ts, t13}),
s31 = (0, {ts, t1a})}

Once these interfaces have been added to the net in Figure 3.10, and one of

the two isomorphic nets discarded, the net X. is obtained. This net is shown
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Figure 3.10: Auxiliary net, X,
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Figure 3.11: Auxiliary net, X,
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in Figure 3.11. The entry and exit places of ¥, are Se(X.) = {s1s} and
Sx(Ze) = {522, s23} respectively.

The internal interfaces in 3, (those internal places with no incoming or
outgoing arcs) are: S = {524,525} and Sj = {830, s31}. Therefore, by (3.19),

the partitioning of the transitions is given by:

Pi1 = {{tl,tz},{tgatlo}}
P = {{tis tus}, {ts}}

Hence the decomposition of the interfaces described by (3.20) produces the

disjoint union of the nets 3, 25 and Y3 in Figure 3.9. The interfaces are:

Xi, = {sn = ({t1,t2},9), s34 = ({te},0), 535 = ({t10}, D)}
Xi2 = {833 = (@, {ts}), S36 = ((0, {t13})’ 837 = (@, {t14})}

Where s39, ..., 837 are used as shorthand for the place identifiers. The set of
places and transitions for ¥; is given by G({s1s}), and G({sa2, se3}) for Zs.
Therefore, the three subnets ¥;, ¥, and ¥3 can be identified, using (3.21).

3.4 Verification of the synthesis algorithm

This section verifies the correctness of the synthesis algorithm described in
Sections 3.2 and 3.3.

Section 3.4.2 shows that the four properties of nets used to identify the
synthesis rule to apply are correct. The following section proves that the de-
composition performed by each synthesis rule is sound — ¢.e. if the decomposed
nets are recombined according to the refined expression, a net isomorphic to
the input net to the synthesis rule is obtained. In addition, it is shown that
each decomposed subnet is the implementation of some expression from the
language defined by Table 3.1. Finally, the correctness result of the algorithm
is given in Section 3.4.4.

In the following proofs, let ¥ = (S,T,W, A) be any implementation of a

box expression, E, and, without loss of generality, assume for 1 < 5 < k (for
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some k), X; = (S;, Tj, Wj, );) is the implementation of the subexpression E; of
E, such that every node in NV;(X;) appears in X, and the connectivity between

the nodes in N;(3;) is the same in both ¥; and ¥ - z.e.:
Vni,ng € Ni(E5) : Wi(ng, ng) = W(ng, ng) A Wi(ng,ny) = Wi(ng,n1)

Similarly, for the subnets X, for 1 < j < 3,1 < %k < 2 used in the iteration
rule. For a set of places, S’ in ¥, which corresponds to an application of the
® operator, it is not necessary to decompose S’ into sets of places S;, S, such

that S} ® So = S’. Any decomposition such that S; ® Sy, =;, S’, can be used.

3.4.1 Support proofs
Isolated and duplicated places

Proposition 1 For every box expression, E, no implementation of E contains

any 1solated or duplicated places.

Proof: By structural induction over the box expression syntax.

Base case: Any implementation of an atomic action, «, by definition,

contains no isolated or duplicated places.

Induction step: The net semantics for each of the expressions £ = E ||
Ey, E = E;Ey, E = E\ 1 F,y and E = [E; % E, * E3] combines suitably
disjoint implementations, ¥; of the subexpressions, E;. By the induction
hypothesis no implementation of one of the subexpressions contains any
isolated or duplicated places. A scheme for obtaining an implementation
of E is described, and it is argued that such a scheme can not produce
a net with either isolated or duplicated places. Furthermore, any net
isomorphic to such an implementation will not contain any isolated or

duplicated places.
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1. The disjoint union of a collection of £ disjoint subnets is taken:
Y= U...UZg

By the definition of U, Z(3,) = Ui<i<k Z(X:). Therefore, by the
induction hypothesis, Z(X,) = 0, and ¥, does not contain any iso-
lated places. For 1 <4, j <k, such that ¢ # j, no place originating
from ¥; duplicates a place originating from X; because every place
in ¥;, and no place in Y; is connected to some transition in ;.

Therefore, ¥, contains no duplicate places.

2. A set of places may be removed from the result of (1):
2p=X,06X

Where X is the union of 2m (possibly zero) sets of places of the
form *%; or ¥;°, for some 1 < ¢ < k. Every place is only connected
to transitions, not to other places. Therefore, ¥, does not contain

any isolated or duplicated places.

3. The sets of places removed in (2) are combined using zero or more
applications of the ® operator, and the resulting sets of places added

to 3. For example:
E=50XeY)e..0Xne®Yn)

In the case of iteration, the sets of places may be combined using

nested applications of the ® operator:
Ee = L@ ((X19Y1)®(X20Y2))®...8 (Xm-1®Yin-1) @ (Xm ®Y))

Note that every set of places is unique, no place appears in more
than one set, and for 1 < i < m, the sets of places X; and Y;
are from different subnets. By the induction hypothesis, the sets
of places X; and Y}, for 1 < i < m, do not contain any isolated or

duplicated places. By the definition of the ® operator, each place in
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X;®Y; inherits the arcs of some place from X;, and some place from
Y;, in such a way that no pair of places in X; ® Y; duplicate each
other. Hence, the result of a nested application of the ® operator
contains no isolated or duplicated places. Therefore, by definition
of the & operator, ¥, does not contain any isolated places. The
sets of places X; and Y; are no longer present in X, and were either
an entry or exit interface of one of the subnets. Hence each place
in the sets resulting from an application of the ® operator contains
an arc to a transition, such that no place in ¥, has a similar arc.

Therefore ¥, contains no duplicate places.

Hence, no implementation of a box expression contains any isolated or

duplicated places. 0O

Place multiplication operator

Proposition 2 For any application of the ® operator, S; ® Ss, used in con-
structing an implementation of a bozr expression, every place in S; ® Sy s
connected to some transition in °S; U S1*, and to some transition in *So U S5°,
and every transition in *°S; U S1°* U °Se U S2° is connected to some place in
S1 ® Sy. Furthermore, for any pair of places, s1,82 in S} ® Ss, there is an
undirected path between s, and sz, and s; ~, s —i.e. s1 and sy belong to the

same cluster.

Note: With, for example, S; = £,°, and S, = "X, then every place in 5;® S,
is connected to some transition in °S; = Tx(2;), and to some transition in
Syt = Te(Z,), since S,* = @ (exit places have no outgoing arcs), and °Sy = ()
(entry places have no incoming arcs). This property can be extended to all

sets of places involved in nested applications of the ® operator.

Proof: By Proposition 1, the sets of places, S; and S; do not contain any

isolated places. By the definition of the ® operator, for each pair of
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places s; € S; and s, € S,, there is a place in S; ® Sy which inherits
the arcs of s, and s,. Hence every place in S; ® S, is connected to some
transition in °S; U $;°, and to some transition in °S55 U S2°, and every
transition in *S; U S;® U *Sy U S»°® is connected to some place in 57 ® Ss.
For any pair of places, x; and z; in S; ® Ss, the arcs of z; and z, must
‘have been inherited from pairs of places pi,p, and p!,ph respectively,
where py,p} € Sy, and po,py € Sz. By the definition of the ® operator,
there exists a place z in S; ® Sy which inherits its arcs from p; and pj,.
Therefore, there is an undirected path between x; and z,. By definition
of ~ in Section 2.5.3, 1 ~ z, and = ~ x5. The cluster relation =, is the

transitive closure of ~, therefore z; ~, z,. O

3.4.2 Verification of preconditions
Number of transitions (Precondition 1)

Proposition 3 Any implementation of an atomic action expression contains
exactly one transition, and every implementation of any other expression con-

tains more than one transition.

Proof: By structural induction over the box expression syntax.

Base case: The implementation of an atomic action, a, by definition,

contains exactly one transition.

Induction step: By the induction hypothesis, the implementations of
" the subexpressions, F;, in E = E, || Ey, E = Ey; E>, E = E; 1 E; and
E = [E; x Ey * E3), contain at least one transition. By the compositional
semantics of box expressions, and the definition of the Ll operator, the
cardinality of the set of transitions in an implementation of F is given
by the sum of the number of transitions of the implementations of the

subexpressions, E;. Therefore, any implementation of £ must contain

123



at least two transitions. Note that the © and ® operators operate only

on places, and so do not affect the number of transitions in a net. O

Connectedness properties (Preconditions 2 and 3)

Proposition 4 For any bor expression, E, and any implementation, ¥, of
E, every node in N;(X) is connected with respect to the relation, 2Ni’ to some

transition t € Te(X), and to some transition t € Tx(X).

Proof: By structural induction over the box expression syntax.

Base case: By definition, in any implementation of «, N; consists of a
single transition, ¢t and Te = Tx = {t}. Hence, the property holds for

atomic actions.

Induction step: By the induction hypothesis, for any implementation,
¥; of subexpression, Ej, every node in V;(%;) is connected to some transi-
tion in Te(%;), and some transition Tx(X;). Let ¥ be an implementation

of F, constructed from disjoint implementations of the subexpressions.

e E=EFE, || Ey, or, E = F, ] E;: By the compositional semantics of

the parallel and choice operators:

Ni(Z) = Ni(Z1) U Nj(Z2)
Te(X) = Te(Z1) U Te(X)
Tx(X) = Tx(Z1) U Tx(X22)

Hence, every node in N;(X) is connected to some transition in Te (%)

and some transition in Tx(X).

e F = E;; E;: By the compositional semantics of the sequence oper-

ator:
Ni(Z) = Ni(Z) UN(Z) u X
Te(X) = Te(X2)
Tx (L) = Tx(XZ,)



where X = ¥;°®*%,. By Proposition 2, every transition in Tx(¥;)U
Te(X,) is connected to some place in X, and every place in X is
connected to some transition in 7Tx(X;), and to some transition
in Te(33). Therefore, every> node in N;(X) is connected to some

transition in Te(X) and some transition in Tx(X).

E = [E) * Ey x E3): By the compositional semantics of the iteration

operator:

N;(B) = (Urgjcaich<e N;(Z5e)) U X1 U X
Te(X) = Te(X11) U Te(X12)
Tx(2) = Tx(Zs1) U Tx(Zs2)

where X; = ¥11°® %01 @ T92* @31, and Xp = £12° QL0 ®Xn*®
"Y32. By Proposition 2, every transition in °X; U X;* U X, U X,* is
connected to some place in X; U X5, and every place in X; (respec-
tively X5) is connected to some transition in Tx(X;;) (respectively
Te(X31)). Therefore, by the induction hypothesis, every node in
N;(%) is connected to some transition in Te(X) and some transition

in Tx(z)

Therefore, by the properties of isomorphism, for any implementation, X’

of E, every node in N;(¥') is connected with respect to the relation, Y N

to some transition in Te(X'), and some transition in Tx(X'). O

Corollary 1 For any implementation, 3, of a box expression, E, every node

in X is connected with respect to the relation, 'QNaf to some transition t €

Te(X), and to some transition t € Tx(X).

Proof: By Proposition 4, every node in N;(X) is connected to some transition

t € Te(X), and to some transition ¢t € Tx(XZ). By definition of Te and T,

and Proposition 1 every entry and exit place is connected to some node

in Vi(X) (more particularly some node in Tg(X) U Tx(X)). Therefore,
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every node in ¥ is connected with respect to the relation, ~ Ny» to some

transition ¢t € Te(X), and to some transition ¢ € Tx(X). O

Proposition 5 Let ¥ be any implementation of a bor expression, E. If the
main connective of E is ||, then ¥ is disjoint, otherwise ¥ is connected. If the
main connective of E is || or U, then ¥ is internally disjoint, otherwise ¥ is

internally connected.

Proof: By Proposition 4 every internal node of X is connected to some

transition in Te(X), and to some transition in Tx(X).

e F = o - By definition, any implementation of « is both connected,

and internally connected.

e E = E; || E; — By Proposition 3, there are transitions, ¢; in ¥4
and ¢, in X5. By the compositional semantics of parallel compo-
sition, t; and t, are not connected to each other. Therefore, ¥ is
disjoint. When the entry and exit places of ¥ are removed, the
transitions corresponding to ¢; and t, are still present. Therefore,

Y is internally disjoint.

e E = E, [l E; — By Proposition 2, and the compositional semantics
of choice, there is an undirected path between any pair of entry
places in T, and by Proposition 1, every exit place of ¥ is connected
to some transition in Tx(X). Therefore, by Proposition 4, ¥ is
connected. By the compositional semantics of parallel and choice
operators, any implementation of E; [] E; with entry and exit places
removed is isomorphic to an implementation of E; || E with entry

and exit places removed. Hence, ¥ is internally disjoint.

o £ = E,; Ey - Let ¥’ be an implementation of E, constructed from
disjoint implementations, 3;, ¥s of E; and E5. By the composi-
tional semantics of the sequence operator, and Propositions 2 and 4,

every internal node of £’ is connected to some place in £,°*®*2,, and
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there is an undirected path between any pair of places in ¥;°* ® .
Therefore, ¥’ is internally connected. Hence, by the properties of
isomorphism, ¥ is internally connected. By Proposition 1, every en-
try and exit place of ¥ is connected to some transition. Therefore

¥ is connected.

o E = [E; * Ey % E3] — Let ¥ be an implementation of E constructed
from disjoint implementations of the subexpressions E;, E, and
E5;. By the compositional semantics of the iteration operator, and
Propositions 2 and 4, every internal node of ¥’ is connected to
some place in X; = X;° ® o1 ® Yn® ® Nz, or Xy = Up° @
Yoo ® L91* ® %39. By Proposition 2, and Proposition 4, applied
to either g1, or Xoq, every place in X, is connected to some place
in X,. By Proposition 2 there is an undirected path between any
pair of places in X5. Therefore, ¥/ is internally connected. Hence
by the properties of isomorphism, ¥ is internally connected. By
Proposition 1, every entry and exit place of ¥ is connected to some

transition. Therefore ¥ is connected.

Cluster properties (Precondition 4)

Proposition 6 Let ¥ be an implementation of a box expression, E. The set
of clusters of internal places of ¥ is given by:

’

0 ifE = a
G(E) =i { or E=E JE,

Cl(El) U CI(EQ) U {21. ® '22} ZfE = El; E2
| Uicicanch<a Gi(E5x) U{X1, Xo} if E = [Ey * By x By

where X1 = ¥11° ® To1 ® Lp2® ® Vg1, and Xo = L12° @ oy @ Xo1® @ Lso.
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Proof: Any implementation of «, contains no internal places, and therefore,

no clusters of internal places. By the definition of Li:
Ci(E1 U Es) = G(X1) UG(E)

Hence, by the compositional semantics of box expressions, there is a
unique cluster of internal places in ¥ corresponding to each cluster of

internal places in the implementations of the subexpressions of F.

By the compositional semantics of box expressions, for any implemen-
tation X' of an expression, E', *Te(X') = Se(¥’) and Tx(X')* = Sx(¥).
Therefore, the places in the new clusters of internal places, constructed
by the semantics of the sequence and iteration operators, are not related
by =, to places in any existing cluster of internal places. Hence, C;(X)

gives the set of clusters of internal places of X. a

Proposition 7 Let ¥ be an implementation of a box expression, E. If the
main connective of E is sequence, then there exists a cluster of internal places
in ¥, which, when removed, leaves no undirected path between an entry place

and an exit place in 3, otherwise ¥ contains no such cluster of places.

Proof: The property is shown for an particular implementation, ¥/, con-
structed from disjoint implementations of the subexpressions of E. By
the properties of isomorphism, the proof also holds for an arbitrary im-

plementation of E.

e E = o - By definition, any implementation of o contains no internal
places.

e E=EFE || E; and E = F, 0 E, ~ By Proposition 6, any candidate
cluster of internal places, X, in ¥’ originates from either ¥; or X,.
By the compositional semantics of the parallel and choice operators
Te(Y) = Te(T1) U Te(Xs), and Tx(Y') = Tx(X;) U Tx(X2). There-
fore, if X originates from ¥; (respectively X,), there remains a path

from an entry to exit place through X, (respectively ).
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e E = E;; E; - By Proposition 6, and the compositional semantics of
sequence the interface between ¥; and 3, formed by X = 31°*®@ %,
is a candidate cluster. By the definition of LI, the components X,
and X, are disjoint in ¥; U X5. Therefore, by definition of the
© operator, there is no path between an entry place and an exit
place in the net X, = X; U Xy © (X;* U *E;). By the compositional
semantics of sequence, X, is isomorphic to ¥’ with the candidate

cluster X removed.

e £ = [E; x Ey x E3) vBy the compositional Semantics of iteration,
and Proposition 6, the candidate clusters of internal places must
originate entirely within one of the subnets, or from X; = ¥1,° ®
a1 @ Lp® ® Lz, or Xp = ¥pp° @ Loy @ Xo1® @ T3z, By the

compositional semantics of iteration:

Te(¥) = Te(311) UTe(Zr2)
Ix(Z) = Tx(Za1)UTx(Es)

By Proposition 2, every transition in Tx(21;) (Tx(X12)) is connected
to each transition in Te(X3;) (Te(Xs2)) via a place in X; (Xb).
Therefore, if X originates from ¥, ¥3; or X; (respectively X1o, X9
or X;), there remains a path from an entry to exit place through
Y12, X and X3 (respectivgly Y11, X1 and Z3;). If X originates
from X5, or g, there remain paths from an entry to exit place

through X5, X, and X39, and through ¥;;, X; and j;.

Preconditions

Proposition 8 For any implementation, ¥ of a bozx expression, E from the
syntaz in Table 3.1, ezxactly one of the synthesis rules will be identified as

applicable.
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Proof: By Propositions 3, 5, and 7, and Figure 3.3. O

3.4.3 Synthesis rule decomposition is sound
Atomic action

Proposition 9 Let ¥ be an implementation of a bozx expression. Whenever
the atomic action synthesis rule is applicable to X, any implementation of the

refined expression produced by the rule, is isomorphic to X.

Proof: By Proposition 8, ¥ contains exactly one transition, t. By Propo-
sition 3, ¥ is the implementation of an atomic action. By the compo-
sitional semantics of atomic actions, the label of ¢ is the same as the
atomic action expression. Therefore, the synthesis to £ = A(t) is such

that any implementation of E' is isomorphic to 2. 0

Parallel composition

Proposition 10 Let ¥ be an implementation of a bozx expression. Whenever
the parallel composition synthesis rule is applicable to ¥, the recomposition of
the decomposed subnets, according to the refined expression produced by the
rule, is isomorphic to ¥. Furthermore each of the decomposed subnets is an

implementation of some box expression over the syntax in Table 3.1.

Proof: By Proposition 8, ¥ is an implementation of F; || ... || Ek, for some
k > 1, where each E; does not have || as the main connective. By the
associativity of the parallel composition operator, shown in Lemma 5.15
in [6], no ambiguity is introduced by omitting the bracketing of subex-
pressions in E) || ... || Ex. Therefore, it is valid to decompose ¥ directly

into k subnets. By the compositional semantics of parallel:
Y= U...UX

By Proposition 5, ¥ contains exactly k£ disjoint components (s.e. the

number of connected components determines the value of k). By the def-
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inition of the undirected connectedness relation, the equivalence classes
of ’(;)’Na correspond to the sets of nodes in each disjoint component of
Y. Hence ¥ is decomposed into k subnets, corresponding to the un-
known expressions Ej, ..., Fx, and the recomposition of these nets using
the compositional semantics of parallel produces a net isomorphic to .
By the associativity and commutativity of the parallel composition op-
erator (Lemma 5.15 in [6]), the ordering of the subexpressions in the

refined expression is unimportant. O

Choice composition

Proposition 11 For any choice expression, E = E; 0 E; 0 ... [] Ex, where for
1 < i <k, the subezpression E; does not have choice composition as its main
connectibe, the relation ~e is an equivalence relation over the set of entry
transitions, Te(X), and the set of equivalence classes, Pr,, partitions Te(X)

nto Te(zl), Te(zg), ...,Te(zk).
Proof: By the compositional semantics of choice:

2 =iso 21 L...u Ek
B(L1Q..0 Tk, e) D (X* ® ... ® Ti*, %)
O U U UE U UE®) (3.22)

Therefore, by definition of the @ operator, the entry interface of ¥ is
isomorphic to ¥ ® L2 ® ... ® 2. Hence, by definition of ®, and'Te:

Te(X) = U Te(Z)
1<i<k
Hence each ¢t € Te(X) belongs to exactly one Te(%;), for some 1 < i < k.
For t; € Te(X;),t2 € Te(X;) such that 1 < 4,5 < k and ¢ # j, it will be
shown that t; 7le to. By definition of ~e: |

) ~ety &1 Nﬁ ity V tlf\H-'Nitz
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Since ¢, and t; belong to different subnets, ¥; and %;, they cannot be
internally connected in the net ¥. Therefore ¢, % N t2. By definition of ®,
1 76|‘i t2. Hence two entry transitions obtained from different subexpres-
sions of the choice expression are not related by ~e. The second part of
the proof involves showing that for any 1 < i < k, and t1,t; € Te(%;),
then ¢; ~e t;. The main connective of F; is not choice. It remains to

check the other possibilities for the main connective:

e E; is an atomic action: ¥; contains a single transition. Therefore
t; ~e ty since t; = t, and both the relations 2Ni and er are reflex-

ive.

o Main connective of F; is sequence or iteration: By Proposition 5

tl’t)’Nitz. Therefore, t; ~e t5.

o Main connective of E; is parallel: E; can be written as Fy || Fz ||
oo || Frn, where m > 1, and the main connective of each Fj, for 1 <
j <mismot |. Let Xf;, for 1 < j < m be disjoint implementations
of F;. By the compositional semantics of ||:

Te(S) = | Te(Sr)

1<j<m

Hence each ¢ € Te(X;) belongs to exactly one Te(XZF,), for some
1 < j < m. If t; and ¢, arise from different subexpressions, F, and
Fj, then by the compositional semantics of ||, and definition of ®,
ty ~ to. Therefore t, Ni'[ ty. If, however, ¢; and ¢, arose from the
same subexpression, F}, then there exists a transition ¢3 € X.p, such
that g # j. By the compositional semantics of ||, and definition of

®, t; ~ t3 and ¢y ~ t3. Therefore ¢, ~|*| ta2. In either case, t; ~e 5.

Hence ~e partitions Te(X) into Pr, = {Te(X1), Te(X2), ..., Te(Xx)}, and

~e is an equivalence relation over Te(X). a
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Corollary 2 For any choice ezpression, E = E; U E, 0 ... 0 Ey, where for 1 <
i < k, the subexpression E; does not have choice composition as its main con-
nective, the set of equivalence classes Pry, partitions Tx(X) into Tx(Z,), Tx(X2),

...,Tx(zk).

Proof: By Proposition 4, for 1 < i < k,. every transition ¢t € Tx(X;) is
connected with respect to ~ N, to some transition ¢’ € Te(%;). Further-
more, by the compositional semantics of the choice operator, there is
no transition t' € Te(X;), such i # j with tzNit’ . Hence Pr, as de-
fined by (3.4) is a set of equivalence classes which partitions Tx(X) into

Tx(Z1), oy Tx(Zk)- ]

Proposition 12 Let E be an implementation of a box expression. Whenever
the choice composition synthesis rule is applicable to %, the recomposition of
the decomposed subnets, according to the refined expression produced by the
rule, is tsomorphic to ¥. Furthermore each of the decomposed subnets is the

implementation of some box expression over the syntax in Table 3.1.

Proof: By Proposition 8, ¥ is an implementation of E; [... ] E; for some
k > 1, where each E; does not have [J as the main connective. By
the associativity and commutativity of the choice composition operator
(Lemma 5.12 in [6]), no ambiguity is introduced by the omission of brack-
ets, or the ordering of the subexpressions in E; (... ] E;. Therefore, it
is valid to decompose ¥ directly into k subnets. By Proposition 11, and
Corollary 2, PTe and PTX correspond to the partitioning of Te and Tx
into Te(X1), ..., Te(Xx) and Tx(X1), ..., Tx(Xx) respectively. Hence |Prg|
determines the value of k. Note that by the semantics of choice compo-

sition, and the definition of Pr, |Pr| = |Prg|.

By the compositional semantics of choice, and definition of the & opera-
tor, the entry and exit interfaces of ¥ are isomorphic to ;@2 ®...Q Ty
and 2;° ® ¥5° ® ... ® Li* respectively. Therefore, by definition of the ®
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operator, for each place s € °X (s € X*), s has arcs to (from) some non
empty set of transitions in Te(%;) (T%(%;)) for 1 <7 < k. Again by the
definition of ® and @, the arcs to (from) a particular set of transitions
T € Te(%;) (T' € Tx(Z;)) were inherited from a single entry (exit) place
of ;. By Proposition 1, there are no isolated or duplicated places in the
nets ¥; for 1 < ¢ < k. Hence Xe and Xy, defined in (3.6) are the decom-
position of ¥ and X* into the entry and exit interfaces of the subnets ¥;
for 1 <4 < k. Therefore (3.7) defines a net ¥, which is isomorphic to the
disjoint union of ¥;, ¥, ..., X; by replacing the entry and exit interfaces
of ¥ with Xe and Xy respectively. By Corollary 1, for each 1 < i < k,
every node in ¥; is connected to some transition ¢ € Tx(%;). Therefore
G(Tx(Z;)) is the set of nodes in ;. By Corollary 2 Pr, is the partition
of Tx(X,) into Tx(XZ1), Tx(Xs), ..., Tx(Xk). Therefore, (3.8) decomposes
Y, into the subnets X, 3, ..., 3, such that their choice composition is
isomorphic to ¥, and for 1 < ¢ < k, %; is the implementation of the
subexpression E;. Note that since the choice operator is associative and
commutative, the ordering of the subexpressions in the refined expression

is unimportant. )

Sequence

Proposition 13 Let ¥ be an implementation of a bozr expression. Whenever
the sequentidl composition synthesis rule is applicable to ¥, the recomposition
of the decomposed subnets, according to the refined expression produced by the
rule, 1is 1somorphic to ¥. Furthermore each of the decomposed subnets is an

implementation of some bor expression over the syntaz in Table 8.1.

Proof: By Proposition 8, ¥ is the implementation of Ei;...; Ex for some
k > 1, where each E; does not have sequence as the main connective.
By the associativity of the sequential composition operator (Lemma 5.9
in [6]), no ambiguity is introduced by omitting the bracketing of subex-

pressions in Fy; ...; E. Therefore, it is valid to decompose ¥ directly into
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k subnets. By the compositional semantics of sequence:

Y =ise iU UXg
B(Z1° ® T2,0) B ... D (Sh-1° ® T, 0)
O(E*U.. U 1° U U ... USy) (3.23)
By Proposition 7, ¥ contains exactly k& — 1 internal clusters, each of
which, when removed leaves no path between an entry and exit place.
Note that the number of internal clusters determines the value of k.

Hence, S;, defined by (3.9) is the set of interface clusters which contains

elements isomorphic to:
S @ T forl<i<k-—1

Removing any cluster of placesc € S : partitions X into two components,
X, and X, corresponding to the connected components containing the
entry and exit places respectively. By (3.23):
Yo Zigo 21U .U
B(Ei*® %, 0) D ... (Z-1* %, 0)
S(E,°U.. UL UT,U...UTY)
Yo Ziso Mip1 U ... U Xy
B(Zit1* ® Tig2,0) D ... B (Zp-1°* @ T, 0)

O(Zif1° U U UT 2 U UTy)

where c is isomorphic to ¥;*®%; 1, and by definition (3.11), Ce(c) = X,.
By Proposition 3, each X; contains at least one transition. Therefore,
<s defines an ordering of the clusters in S, with z; =5, 3;° ® Xiyy, for

1 <4 < k— 1. Therefore, by (3.12):

IR PHY ifi=1
Yi=4 Lio(Tiuse) ifl<i<k-—1
S © Ty ifi=k
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For any net X, every place in Xx* has no outgoing arcs, and every place
in Xy has no incoming arcs. Therefore, by definition of ® operator, for
each place s € z; (for each z; € §;), the incoming arcs to s must have
arisen from some place in ;*, and the outgoing arcs from s must have
arisen from some place in *%;,;. Furthermore, the arcs of every place
in 3;* and *¥;;; are represented at least once (possibly many times) in
the places in z;. By Proposition 1, there are no duplicate places in X;.
Therefore, the functions Ie and Ix, (3.13) can be used to decompose the
clusters into £;* and X, ;, for 1 <4 < k — 1. Hence the decomposition
in (3.14) constructs implementations of the, as yet unknown, expressions
Eq, ..., Ey, aﬁd the recomposition of these nets using the compositional

semantics for the sequence operator produces a net isomorphic to . O

Iteration

Let ¥, be any implementation of a box expression, such that ¥ satisfies the
preconditions of the the iteration rule. By Proposition 8, and the composi-
tional semantics of iteration, there exists nets X, for 1 < j < 3,1 <k <2

such that:

Y =i B Ui U ¥gy U 3 U X3 U3,
B (X1 ® Tz, e) B (X11° @ L12°,X)
O U U 231 UXs®)
O(X11° ® Lo @ ® ® Wy, B)
B(Z12° ® L @ L1 * @ '23% 0)
S(Z11° UZ12° U g Uy ® U o UEgn® U3 UTs,)

Proposition 14 For any implementation, ¥, of a box expression, E, such
that ¥ satisfies the preconditions of the iteration rule. The set of internal

clusters, S5, defined in (8.15) gives the two clusters:

Sit =iso (Z11° @ T ® Loe® ® X1, 0)
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Siz =iso (Z12° ® Loz @ Lo1®* @ Lz, 0)

Proof: By Proposition 6, the set of clusters of internal places, C;(X) is given

by:
CI(E) —iso cl(211)UCI(212)UCI(221)Ucl(222)UCI(Z31)UC|(232)US”USI2
The following points are used in the proof:

1. By the compositional semantics of iteration:

Te(X) = Te(X11)UTe(X12)
Ix(X) = Tx(E31) U Tx(Z32)

2. By Proposition 4, for each subnet, ¥’ € {Z11, L12, Zo1, L22, Y31, L2 }
Vi, € Te(X'), ta € TX(Z') : tlﬁNi(E,)tZ

3. By definition of the ® and & operators, for any pair of transitions
t; € Tx(X11), and ty € Te(X21), or tp € Te(X31) then there exists a
place in S;; which has arcs connected to both ¢ and t,. Similarly,
for any pair of transitions t; € Tx(Z12), and ts € Tx(Za1), or 2 €
Te(X32) then there exists a place in S;, which has arcs connected

to both t; and ¢,.

Firstly, it is shown that an internal cluster, c, arising from one of the

subnets of ¥ cannot satisfy the conditions for inclusion in S;;.
e cis from ¥;; or X415 : By 1, 2, and 3:
Vt € Tx(Z)3ty € Tx(Z11), bz € Tx(Z12 @ tnrty A tR ity

where N = Ni(231)UNi(E32)UNi(Egl)USilUSi2UTx(E]_1)UTx(212).
If ¢ is from X1y or X¥yp, then N’ C Na — (Sx U c). Hence, by 2, if ¢

is from X;; then:
Vt € Tx(Z)3 € Te(Ti2) : tRny—(syue)t
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and if ¢ is from X, then:
Vt € Tx ()3t € Te(Sn1) : tny—(syuet’

Therefore, by 1 and (3.15), ¢ cannot belong to S; s

e cis from %3, or ¥y, : By 1, 2, and 3:
Vt € Te(Z)3t' € Tx (D) : tRpit’

where N' = NI(EM) U N|(212) U Sll U SI2 U NI(Egl) U NI(Egg) If ¢
is in ¥9; or Xogp, then N’ C N3 — (Se U ¢). Hence:

Vi € Te(Z)3t' € Tx(E) : t ¥, —(seuet’

Therefore, by (3.15), ¢ cannot belong to S;;.

e cis from Y3, or X3, : Symmetric to the case where c is from ¥y,

or 212.

Secondly, the two clusters, S;; and S;, are shown to satisfy the condi-
tions for inclusion in S;;. By the compositioﬁal semantics of iteration,
removing S;; and Se (S, and Sx) from X leaves a net in which the nodes
of N;(211) (Vj(Za1)) are disjoint from the other subnets. Hence, by 1, no
transition in Te(X1;) (in Tx(X31)) is connected to a transition in Tx ()
(in Te(X)). Therefore, by (3.15), S;, belongs to S;s. A similar argument
can be applied to S, with subnets ¥;5 and X3;. Hence S;y = {S;,, S}, }.
W]

Proposition 15 Let ¥ be an implementation of a box expression. When-
ever the iteration synthesis rule is applicable to X, the recomposition of the
decomposed subnets, according to the refined expression produced by the rule,
18 1somorphic to X. Furthermore each of the decomposed subnets is isomor-

phic to the natural implementation of some box expression over the syntazx in

Table 3.1.
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Proof: By Proposition 14, S;y = {Sj;, S;,}. By the compositional semantics

of iteration, removing Se and S;, (Se and Sj,) from ¥ leaves a net in

which the nodes of Nj(Z11) (V;(X12)) are disjoint from the other subnets.
However, the nodes of Nj(£12) (Vj(X11)) remain connected to the exit

places by S;, (S;;). Hence:
Pe = {Te(X11), Te(X12) }

A similar argument applied to the removal of Sx(X), and either S, or
S;, shows:

Px = {Tx(Es1), Tx(Zs2)}
By the semantics of iteration, Te(X) = Te(X11) U Te(Z12) and Tx(X) =
Tx(X31) U Tx(X32). Therefore, by Proposition 1, Xe and X, defined in
(3.16) are the decomposition of X and £°* into the entry interfaces of

Y11 and ¥i2, and the exit interfaces of ¥35; and ¥3,. Hence:

Yo Ziso 211 U 1o U o U Xop U X L Es
B(X11° ® T @ Tn® @ %31, 0)
B(Z12° ® T ® Lo1°* @ gy, 0)

O(Z11°UZ12° U Ty UX9® U Ty UXg® U3 UDs,)

By Proposition 14, and (3.17), X corresponds to the set of places (£1;°®
222.) U (212. X 221.) and _X2 corresponds to ('231 ® .221) @] ('232 ® .222).

Therefore:

Yp =iso 11U Yoo U3y
D(Z11° ® T2®,0) @ (Lo ® Lo, B)
O(E11° U T U Ep0° U L)
U Ygg U Yoy U
B(X12° ® £21°,0) & (o1 ® Ty, 0)
O(Z12° U gy U Egy® U 3y)
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Since, for 1 < i < 3, ¥;; and X;5 are isomorphic implementations of E;,
then ¥, consists of two isomorphic nets. Hence, ¥, which is defined to

be one of the two nets can be given by:

2c =iso E1 J E2 U Z3
@(21. ® EQ., (Z)) @ ('22 ® .23, @)
O(%;,° U Ty U Xp* U %3)

By (3.18), S; corresponds to the set of places ¥;* ® X,* and S, corre-
sponds to "X, ® *¥3. By the compositional semantics of 3., Se(X.) =
Se(X1) and Sx(Z.) = Sx(Z3). Therefore:

= {Tx(Z), Tx(Z2)}
= {Te(S3), Te(Z2)}

Therefore, by Proposition 1, X; and X , defined in (3.20) are the de-
composition of S; and S; into the entry interfaces of ¥, and X3, and the

exit interfaces of X; and ¥,. Hence:
Ed - El (] 22 ] 23

By the compositional semantics of ., Te(X.:) = Te(X;) and Tx(Z,) =
Tx(X3). Therefore, by Proposition 4, the definition of Te and Tx, and

the compositional semantics of ¥4:

Zilgse=) = 1
Ydlgsgze) = T3

Ya |Na-g(se(ousx(ze)) = o

The nets 3;, ¥ and X3 are implementations of the, as yet unknown,
expressions Ey,Es,and E3, and the recomposition of these nets using the

compositional semantics for iteration produces a net isomorphic to ¥. O
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3.4.4 Correctness of the algorithm

Theorem 1 For any implementation, &, of a box expression, E, from the
syntaz in Table 3.1, given the input net, X, the synthesis algorithm termi-
nates with an output expression, E', such that any implementation of E' is

isomorphic to X.

Proof: By induction on the number of transitions in the net.

Base case (number of transitions=1): By Proposition 3, the syn-
thesis rule applied is the atomic action rule. By Proposition 9, the net
is synthesised to an expression, E’, such that any implementation of E'

is isomorphic to X.

Induction step (number of transitions=n): By Proposition 8, one
of the synthesis rules will be applied, producing a refined expression, R.
By Propositions 10, 12, 13 and 15, ¥ will be decomposed into a finite
collection of subnets, ¥1,..., X, for some k£ > 1, and the sum of the
number of transitions in X, ..., ¥k is equal to n (the number of transi-
tions in ¥). The refined expression R, will contain Ej, ..., E, references
to the, as yet, unknown expressions, of which, the nets ¥;,..., X, are
implementations. By Propositions 10, 12, 13 and 15, Ei, ..., By can be
represented using the box expression syntax in Table 3.1. Hence, by
Proposition 3, each of the nets Xy, ..., ¥x must contain at least one tran-
sition, and therefore less than n transitions. Therefore, by the induction
hypothesis, the synthesis algorithm, given each of the nets ¥, ..., X as
input will terminate with output expressions EI,..., E}, such that for
1 < i < k, the implementation of E; is isomorphic to ¥;. The output
expression, E’ is obtained by replacing the references F, ..., Ex in R, by
the expressions E7, ..., E;. Hence the synthesis algorithm terminates on
input ¥. By the Propositions in Section 3.4.3, any implementation of E’

will be isomorphic to the input net, X. d

141



3.5 Related problems

In this section, the time complexity of the synthesis algorithm is shown to
be polynomial. This result is used to show that the solutions, presented for
those related problems which use the synthesis algorithm, are efficient. The
points of non-determinism in the algorithm, highlighted by the analysis in Sec-
tion 3.4 are discussed. This leads to a definition of a canonical form for box
expressions from the language generated by the syntax in Table 3.1, and an al-
gorithm for CANONICAL Box EXPRESSION SYNTHESIS. Solutions to PETRI
Box IsoMORPHISM and BOX EXPRESSION ISOMORPHISM are presented in
Section 3.5.4. A set of axioms is introduced, and shown to be complete. These
axioms are used in the proofs generated by BoX EXPRESSION ISOMORPHISM
PROOF. The algorithm for Box EXPRESSION ISOMORPHISM PROOF is pre-
sented in Section 3.5.6. Finally, examples of the use of each of the algorithms

are given in Section 3.5.7.

3.5.1 Time complexity

The analysis of the time complexity in this section is based on the size of the
input net, ¥ = (S, T, W, A). For simplicity, it will be assumed that the size of
each transition label is bounded by some constant. Let n = |S| + |T, and a
be the number of nodes and arcs respectively, in ¥. The number of arcs, a, is
bounded by |S| - |T| < n? because ¥ is bipartite, and there is at most one arc
between any pair of nodes. Hence, the time complexity of Box EXPRESSION
SYNTHESIS will be given in terms of n.

The time complexity of checking the four structural properties in the
ANALYSE function is given in Table 3.3. In the worst case, all four prop-
erties must be checked. Therefore, ANALYSE has time complexity O(n?®). The
properties Pry, Pry and Pry can be checked using variants of the depth-first
search algorithm, which has time complexity O(n+ a). Property Pr, requires

at most |S| applications of depth-first search.
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Property Time complexity
Property Pr; O(1)
Property Pry O(n?)
Property Pr; O(n?)
Property Pr, O(n®)

- Table 3.3: Time complexity of checking properties

The five synthesis rules have the time complexity shown in Table 3.4. The
net decomposition for PARALLEL uses an extension of the algorithm for check-
ing property Pry. In CHOICE, computing the equivalence‘classes of the relation
~e, involves looking at every pair of arcs of every pair of entry transitions.
The number of such pairs of arcs is bounded by |T'|* - |S|? < n*. The time
complexity of SEQUENCE is dominated by the time taken to find the set of
clusters of internal places (an extension of the algorithm for checking property
Pry). A similar procedure is .used in ITERATION to identify the set of clusters,

Siy.

Synthesis rule | Time complexity
AToMIC O(1)
PARALLEL O(n?)
CHOICE O(n?)
SEQUENCE O(nd)
ITERATION O(n?)

Table 3.4: Time complexity of the synthesis rules

Each decomposition has time complexity O(n*) where n is the number of
nodes in the net at the node being decomposed, and each decomposed net has
fewer nodes than the original net. During the decomposition of ¥, transitions
are either discarded when the iteration rule is applied, or are synthesised to

an atomic action. Therefore, the tree produced by the synthesis algorithm has
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at most |T| leaf nodes. The parallel, choice, sequence and iteration synthesis
rules decompose the input net into at least two subnets. Hence, the total
number of nodes in the tree?, is bounded by 2 - |T| — 1 Therefore, given the
input net, 3, there will be at most 2 - |T'| — 1 applications of the SYNTHESISE
procedure, with the time taken for each application bounded by c-n*, for some
constant, c. Hence, the time complexity of SYNTHESISE is O(n®).

The time taken to produce an expression from the tree data structure
is O(n). Therefore, the time complexity of BOX EXPRESSION SYNTHESIS,

dominated by the call to SYNTHESISE, is O(n°).

3.5.2 Non-determinism

The analysis of the synthesis algorithm in Section 3.4 highlights three areas
of non-determinism: The bracketing order of (sub)expressions whose main
connectiveis [, ;, or ||, the ordering of the subexpressions of choice and parallel
(sub)expressions, and the choice between the two connected components in the
partially decomposed iteration net, ¥,. In this section, each of these points of
non-determinism is discussed in more detail.

The synthesis algorithm produces an expression tree which abstracts away
from a bracketing order for the associative operators, ||, and ;. The Ex-
PRESSION function imposes a right-associative bracketing order, to produce a
properly bracketed expression. For example, an implementation of the expres-

E=(allo)l{cllad)le

could be synthesised to the equivalent expression:

E'=al @l (cll(dle))

2 Assuming |T| leaf nodes, and a binary decomposition. If an internal node has more

than two children, then there will be fewer than 2 - |T'| — 1 nodes in total.
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There are 42 possible bracketing orders3, of E, and all of them give an expres-
sion equivalent to E.

In the parallel and choice synthesis rules, an arbitrary ordering of a set
of equivalence classes is chosen. This determines the ordering of the subnets
in the list field of the node being decomposed, and hence the ordering of the
subexpressions in the synthesised expression. For example, an implementation

of the expression E, above could be synthesised to the equivalent expression:

E'=d| [ (el (clla)

There are 120 (=5!) different orderings of the subexpressions a, b, c,d and e in
E. Each ordering gives an expression equivalent to F.

In the iteration synthesis rule, the partial decomposition, X, is a net con-
sisting of two connected components. One component is chosen at random,
and the other is discarded. Proposition 15 demonstrates that the two con-
nected components of ¥, are isomorphic to each other. Therefore, whichever
component is chosen, there will be no difference in the synthesised expression,
other than, perhaps, the ordering of subexpressions.

The analysis of the non-determinism in the synthesis algorithm allows the
number of expressions equivalent to a given expression to be computed. For
example, the size of the equivalence class, to which the expression E belongs

is given by 42 x 120 = 5040.

3.5.3 Canonical form

A standard form for box expressions is described, and extended to an ordered
standard form by introducing a total ordering over expressions. Imposing
a fixed bracketing order, such as the right-associative scheme used by Ex-
PRESSION, on an ordered standard form expression, gives a canonical form

expression. A modification of the synthesis algorithm, to give a solution to

n+1
n

2
3Given by the 5th Catalan number, C(n) = -1 ( " ) .
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CANONICAL BoXx EXPRESSION SYNTHESIS is described. Finally, an imple-
mentation for CANONICAL Box EXPRESSION is presented, which rearranges

a box expression into its canonical form.

Standard form

The standard form for box expressions abstracts away from a bracketing order
for the associative operators, ||, and ;. Hence the standard form of, for

example:

E=(al(®llec)D(((de);(f;i9)0h)

is given by:

E'=(a|lbllc)0(dse; f;9)0h

The SYNTHESISE procedure of the synthesis algorithm finds a standard form
expression, which is bracketed by EXPRESSION. Therefore, by Theorem 1, for
any box expression, EF, the standard form of E, is an unambiguous represen-
tation of E. Repeatedly applying the term rewriting rules in Table 3.5 allows

any box expression to be rewritten into standard form.

E | (B2 || B3) — Ei|| Ex|l Es
(Bi | E2) | Bs — Ev|| B || Es
E,0(E,0E) — E,0E,0E;
(B,\0E)0E; — E 0E,0E;
Ey; (Eq; E3) — Ey Eg Es
(Ey; Ea); B3 —  Ey; Ey; Es

Table 3.5: Rules for rewriting an expression into standard form
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Ordered standard form
A standard form expression has choice and parallel subexpressions of the form:

Ei || E2 || - || Ex
E0E,[..0E;

for some k > 2. The analysis of the synthesis algorithm shows that for any
ordering of FE\,..., Et, the Petri box corresponding to the expression is the
same. Imposing a particular ordering on E), ..., B} in such (sub)expressions
results in an ordered standard form expression. An ordering of E, ..., B} can
be obtained‘by defining a total order, <., over expressions, and finding a
permutation Ej, ..., E} of Ey, ..., By such that for 1 <i < k, E] <. E}_,, where

for expressions E and F :.
E<L . F&E<., FVE=F

Firstly, an ordering, <a over atomic actions is defined. Let <, be any fixed
ordering over the set of basic actions, B. A unique word, A(a) € B* can be
associated with each atomic action, o by writing the basic actions in « in order

defined by <. For any atomic actions, o; and aq:
o) <p Q9 & .A(Oll) <lex .A(az)

where <., is a lexicographic ordering, using <. For example, suppose <y

-~

is such that a <p @ <p b <p b <p ¢ <p ..., then for atomic actions, a3 =

{b,@,c,a}, o = {@,d}, and a3 = {a,c,d}:

Hence, by the definition of <a: a3 <a oy <a 3.

Let <,p be any fixed ordering on the types of box expressions - for example:

atomic <p parallel <o, choice <., sequence <, iteration
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<. is defined inductively, with comparison between atomic actions as the

base case:

0] <e O = 1 <A Q2

Let F' and G be non-atomic standard form expressions, with types op; and
op, and subexpressions Fi,..., F;, and Gy, ..., G, respectively. By induction
<. is defined for the subexpressions of F' and G. Therefore, without loss of
generality, it can be assumed that if the type of F' (G) is choice or parallel, then
F,.., F, (Gy,...,Gy) are such that for 1 <i<m, F; <, Fiyq (for 1 <i <n,
G; <e Giy1) — i.e. if the subexpressions do not have this ordering, then they
can be rearranged, using <. into such an order. Expressions F' and G can be

compared as follows:

F<.G & op1 <op OP2
vV (op; =ops A m < n)
V (opr=opp A m=nA (Fi<m:(Vj<i:F;=G;) A
Fi <. Gy))

Arbitrarily bracketed expressions, F, and E, can be compared, by applying
< to the standard forms E] and Ej of E, and FE.

The definition of ordered standard form follows from <.. For a standard

form box expression, E, the ordered standard form, Ord(E), is given by:

r

Q ifF =«
ELE | - || B} if E=E || Bz || ... || Bk
Ord(E)=4 E!0E,0..0E, ifE=E0ED..0E

Ord(E,); Ord(E,); ...;Ord(Ey) if E = Ey; Ey; .. By
| [Ord(EL) x Ord(E2) Ord(Es)] if E = [E) * E5 % E3]

where Ej, ..., B} is a permutation of Ord(E)),...,Ord(Ey) such that E] <.
E ,,for1<i<k.
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Canonical form

A canonical expression can be obtained from an ordered standard form ex-
pression by imposing a fixed bracketing order on (sub)expressions of the form
E), op E; 0p ... op Ex_y op Ey, where k > 1, and op € {||, ,;}. A suitable

bracketing order is the right-associative scheme:
E, op (Ey 0p (... op (Egx—y 0p E)...))

This is the bracketing order that the EXPRESSION function produces.

Canonical box expression synthesis

A small modification to the synthesis algorithm described in Sections 3.2
and 3.3 provides a solution to CANONICAL BOX EXPRESSION SYNTHESIS.

The pseudo-code for the modified algorithm is presented below:

CANONICAL Box EXPRESSION SYNTHESIS(XL)
1  N=new node

2 N.net=X%

3  ORDERED SYNTHESISE(N)

4

return EXPRESSION(N)

ORDERED SYNTHESISE(N)
N.type=ANALYSE(N.net)
case N.type
atomic: AToMIC(N)
parallel: PARALLEL(N)
choice: CHOICE(N)
iteration: ITERATION(N)

sequence: SEQUENCE(N)

o ~ O Ot b W N

for each node N’ in N.list
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9 do ORDERED SYNTHESISE(N’)
10 if N.type=parallel or choice
11 then sort(N.list)

The additional work performed by CANONICAL BOX EXPRESSION SYNTHE-
s1s, to find a canonical form expression does not affect the overall time com-

plexity of the algorithm, which remains at O(n®).

Canonical box expression

The ideas used in CANONICAL BoXx EXPRESSION SYNTHESIS can be applied
to finding the canonical form of a box expr’es'sion,. without constructing an
implementation of the expression. It is not possible to obtain an efficient solu-
tion to CANONICAL Box EXPRESSION by constructing an implementation of
the input expression, and using it as input to CANONICAL BoX EXPRESSION
SYNTHESIS, because the size pf the implementation of an expression can be ex-
ponential in the size of the expression itself. For example, any implementation
of:
(a|l...la)0(] ...|a)0..0@]| ... | a)

has an exponential number of places, and any implementation of an expression
with n levels of nested iteration has at least 2" transitions.

The algorithm for CANONICAL BOX EXPRESSION uses an expression tree
corresponding to the standard form of the input expression. A node of this tree
is similar to that used in the synthesis algorithm, Figure 3.1, except that the
net field is omitted. The standard form is rearranged into ordered standard
form by the method used in ORDERED SYNTHESISE. A properly bracketed,
canonical form expression is obtained from the ordered standard form, using

EXPRESSION.

CANONICAL BOX EXPRESSION(E)

1  N=expression tree corresponding to standard form of £
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2 VisIT(N)

3 return EXPRESSION(N)

VisiT(N)

1 . if N.types#atomic

2 for each node N’ in N.list
3 do VisiT(N\’)

4 if N.type=parallel or choice
5 then sort(N.list)

Let a be the number of atomic actions in a box expression, E. The time
complexity of the VISIT procedure is O(a? - loga), because there are at most
a nodes in the expression tree, and for each node, N, the size of N.list is at
most a. To sort a list of size a requires a - loga comparisons, each of which
requires O(1) time (assuming that the size of the multiset of basic actions in

each atomic action is bounded by some constant).

Uniqueness of canonical form

The analysis of the non-determinism of the synthesis algorithm in Section 3.5.2
led to the definition of a canonical form, and modifications to the synthesis
algorithm so that it produces deterministic results. The resulting CANONICAL
Box EXPRESSION SYNTHESIS algorithm is used to show that there is a unique

canonical form box expression associated with each Petri box.

Proposition 16 Let ¥ be an implementation of a bor expression, E. The
expressions produced by CANONICAL BOxX EXPRESSION SYNTHESIS(YL) and

CaNoNIcAL Box EXPRESSION(E) are in canonical form.

Proof: By the algorithms for CANONICAL BOX EXPRESSION SYNTHESIS,
and CANONICAL Box EXPRESSION, and the definition of Ord(FE), an
expression tree corresponding to the ordered standard form of E' is pro-

duced. The EXPRESSION function, produces an expression, C, with
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right-associative bracketing order from this tree. By the definition of the

canonical form, C is in canonical form. ]

Proposition 17 Let ¥, and ¥, be tmplementations of box expressions, such
that ¥, =50 Ly. The ezpressions, C1 and Cy obtained from calls to CANONI-
CAL Box EXPRESSION SYNTHESIS with nets £, and ¥, respectively are such
that Cy = Cs.

Proof: By induction on the number of transitions in ¥; and X, it is shown
that the ordered standard form expressions E, and Ej;, corresponding to
the expression trees synthesised from X, and ¥, respectively, are such
that £, = E,,. | By the definition bf =;s0, the number of transitions in X,
is the same as the number of transitions in ¥,. The proof relies on the
fact that all of the definitions and properties defined in Section 2.5, do
not rely on transition or place names — i.e. their effect on isomorphic

nets is identical.

Base case: ¥, and ¥, contain one transition. By Propositions 3 and 8,
the atomic action synthesis rule will be applied to X, and ¥, to produce

expressions oy and ay. By the definition of =5, a1 = .

Induction step: ¥, and I, contain n transitions, for some n > 1. By
Proposition 8, and the definitions of Properties 1-4, the same synthesis

rule will be applied to both X, and %,:

Parallel: By (3.3), and definitions of 31\;3 and =5, 5y and X, are
decomposed into nets Xy,...,X; and X, ..., ¥} respectively, such
that there exists a permutation, 6 : 1.k — 1..k, with £, =, g(i),

for1 <i<k.

Choice: By the definitions of Pr, and =5, ¥, and %, are decomposed
into k subnets, for some k > 1. By (3.6), (3.7) and (3.8), and the

definition of =,, ¥; and X, are decomposed into nets X, ..., X
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and X, ..., 3} respectively, such that there exists a permutation,

Sequence: By (3.9), and definition of =;;,, the set of clusters of internal
places, S‘;, has the same cardinality, k, for both ¥; and ¥,. Hence
Y, and ¥, are decomposed into the same number of subnets. By
the definitions of <, and =;,,, the ordered set of clusters zi, ..., 7
for X, and yi, ..., yx for &, are such that for 1 < i < k, z; =50 ¥i.
Therefore, by (3.12), (3.13), and (3.14), and definition of =, X,
is decomposed into nets i, ..., X, and %, is decomposed into nets

¥, ..., 2y such that for 1 < i <k, Z; =5, 1.

Iteration: Let ¥y, and X, be the partial decompositions of X; and ¥,
respectively, corresponding to ¥, in the description of the iteration
synthesis rule. Similarly for £.; and X.,, corresponding to £.. By
(3.15), (3.16), (3.17), and definitions of ¥,, £y and =i See =iso
Yy. Proposition 15 shows that the two components of ¥, and Xy,
are isomorphic to each other. Therefore, ¥.; =50 Xy. By (3.18),
(3.19), (3.20), and (3.21), and the definition of =;,, X, and X, are
decomposed into nets ¥, Xy, X3, and X}, 3, ¥ respectively, such

that for 1 < i<k, ¥; =4 X}

The same synthesis rule is applied to both ¥£; and ¥,. In the decom-
position performed by the synthesis rule applied to ¥; and ,, no new
transitions are created. Therefore, by Proposition 3, the subnets X; and
¥, for 1 <4 < k produced by the decomposition of the synthesis rule
each contain fewer than n transitions. Hence, by the induction hypoth-
esis, for 1 < 4 < k, the ordered standard form expressions E; and E!,

synthesised from ¥; and ¥} are such that:

B - E,’,(i) if rule applied is parallel or choice

E;  otherwise
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Suppose the parallel or choice synthesis rule was applied. Let Fi, ..., F
and Fj, ..., F} be the reordering of the sets of expressions FEj, ..., E; and
E1, ..., E} according to <.. This reordering corresponds to lines 10 and 11
of ORDERED SYNTHESISE. By the definition of <, for 1 < ¢ < k,
F; = F;y. Therefore, the fully refined expressions E; and E,, synthesised
from ¥, and X, are such that £, = E,. The EXPRESSION function,
imposes a right-associative bracketing order on E,; and E, to produce

expressions C; and C,. Therefore C; = Cs. )

Proposition 18 Let E; and E, be box expressions, with canonical forms Cy
and C, respectively. The definition of canonical form is such that box(E;) =

box(Es) if and only if Cy = Cs.

Proof: Let ¥; and ¥, be any implementations of F; and E; respectively.
By Proposition 16, C;=CANONICAL BOX EXPRESSION SYNTHESIS(X;),

and C,=CANONICAL B0oX EXPRESSION SYNTHESIS(EQ).

Suppose box(E;) = box(F,), then by definition of box(), X1 =i Zo.
Therefore, by Proposition 17, C, = Cs.

Suppose C; = C;. By Theorem 1, and definition of box(): box(C;) =
box(E1), and box(C,) = box(F;). Therefore box(E;) = box(Es). O

3.5.4 Decision problems

The two decision problems, PETRI Box IsOMORPHISM, and BoX EXPRES-
SION ISOMORPHISM can be solved using CANONICAL BOX EXPRESSION SYN-
THESIS and CANONICAL BOX EXPRESSION respectively. In both cases, two
canonical form expressions are found, and compared. The pseudo-code for the

two problems is presented below:

PETRI BOoX ISOMORPHISM(X,, £3)

1 C;=CANONICAL BoXx EXPRESSION SYNTHESIS (¥;)
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C,=CANONICAL Box EXPRESSION SYNTHESIS(X,)
if C, =Cy

then return yes

[ B I

else return no

Box EXPRESSION IsoMORPHISM(E, Ej)

1 C;=CANONICAL Box EXPRESSION(FE))
2  (Cy=CANONICAL Box EXPRESSION(E,)
3 ifC,=0C

4 then return yes

5

else return no

When comparing atomic actions, a; and oy in canonical form expressions, C;
and Cy, the words A(c;) and A(as) should be compared. The correctness of

the algorithms follow from Proposition 18.

3.5.5 Axiom system

Table 3.6 contains the set of axioms that were referred to by the proof of
correctness of the synthesis algorithm, in Section 3.4. All of these axioms are

introduced in [6], and their soundness is shown there?

. In this section, it is
shown that the axioms can be used to rearrange any box expression into its

canonical form, and therefore, the set of axioms in Table 3.6 is complete.

Proposition 19 The associativity azioms in Table 3.6 allow any boz expres-
sion, E, to be rearranged to give an equivalent expression E', which has right-

associative bracketing order.

Proof: By structural induction over the box expression syntax. Note that
since the axioms in Table 3.6 are sound, the rearranged expression, E'

is equivalent to the original expression, E.

4Although the soundness proofs are in the context of renaming equivalence, they also

hold for the stronger equivalence of isomorphism.
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Associativity (E1; E2); Es = Ey; (Ea; E3)
(E;0E;)0E; = E,0(E; 0 E3)
(Er || E2) || E3 = Ey || (B2 || E3)

Commutativity F,0E, = E,[FE;
Ei\|| Ex=E, || B4

Table 3.6: Axioms

Base case: The expression E = « has right-associative bracketing order.

Induction step: If E = [E; x E»x Fj3], then by the induction hypothesis,
E,, E,, and Ej3 can be rearranged, using the associativity axioms, to give
right-associatively bracketed expressions Ej, E; and Ej. Hence, E can
be rewritten to [E] *x E * Ej], which has right-associative bracketing

order.

If E = Ey op E,, where op € {||, U,;}, then by the induction hy-
pothesis, Iy can be rearranged to give a right-associatively bracketed
expression, E. If E] has the form Fj op F5, i.e. has the same main con-
nective as F/, then by the associativity axiom, E' can be rewritten in the
form Fy op (F, op E5). By the induction hypothesis, the subexpression,
F, op E,, can be rearranged to give a right-associatively bracketed ex-
pression, Fy, which results in the right-associatively bracketed expression
Fy op F} for E. If the main connective of E] is not op, then E, can be
rearranged into E7, with right-associative bracketing order. Therefore,
E can be rewritten to E] op Ej, which has right-associative bracketing

order. O

Proposition 20 The azioms in Table 3.6 allow any bozx expression, E, to be

rearranged into an equivalent expression, C, such that C is in canonical form.
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Proof: By structural induction over the box expression syntax. The rear-
ranged expression, C' is equivalent to the original expression, F, because

the axioms in Table 3.6 are sound.
Base case: The expression E = « is in canonical form.

Induction step: By Proposition 19, E can be rearranged into an equiv-
alent expression, E’, which has right-associative bracketing order. By
the induction hypothesis, the subexpression, E; of E' can be rearranged,

using the axioms in Table 3.6 to give the canonical form expression, E..

e E' = E; op E,, where op € {||, 0}: By the induction hypothesis,
E', and therefore, E, can be rewritten to E{ op E}. By the def-
inition of right-associative bracketing order, E| cannot have main

connective op. Therefore, there are four possible cases:

1. Ej does not have main connective op, and E} <. Ej: By the

commutativity axiom:
E,op Ey = Eyop Ey

E can be rewritten to EY, op E}, which is in canonical form.

2. Ey does not have main connective op, and E} >, Ej: The
expression E] op Ej is in canonical form.

3. E; has the form Fy op F, and F; <. Ej: i.e. E can be

rewritten to E] op (F} op F3). By the associativity and com-

mutativity axioms:
Elop(FiopFy) = (EjopF\)opF, Associativity
(Fy op EY) op F; Commutativity
Fy op (E} op F») Associativity
By the induction hypothesis, E{ op F, can be rearranged into

canonical form, F, resulting in the canonical form expression,

EFyopF,for E.
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4. Ej has the form Fy op F, and F; >, Ej: The expression

E{ op (Fy op F3) is in canonical form.
e E' = E; Ey: By the induction hypothesis, and the associativity ax-
iom for sequential composition, E’, and therefore, E, can be rewrit-

ten to canonical form.

e E' = [E; x E; x E3): By the induction hypothesis, E’, and therefore,

E, can be rewritten to [E] * E} % Ej], which is in canonical form.

a
Theorem 2 The aziom system in Table 3.6 is complete.

Proof: By Proposition 20, for any box expressions E; and F,, the axioms in
Table 3.6 can be used to rearrange F; and E, into canonical forms C

and C, respectively. By Proposition 18:
C, = C2 ~ bOX(El) = bOX(Eg)

Hence, if E; is equivalent to Ej, there exists a sequence of axiom ap-
plications which rearranges E) into F,. Therefore, the axiom system in

Table 3.6 is complete. 0O

3.5.6 Generating proofs

In this section, an algorithm for Box EXPRESSION ISOMORPHISM PROOF is
presented which generates a proof that two box expressions are equivalent,
using the axioms in Table 3.6. The algorithm uses CANONICAL PROOF which
generates a proof that the input expression is equivalent to its canonical form.
CANONICAL PROOF is based on the structure of the proofs of Propositions 19,
and 20.

In the following pseudo-code, it is assumed that the variables Proof and
T’ are accessible globally. Proof is a list of parse trees, and is initialised in

line 2 of CANONICAL PROOF to be the parse tree corresponding to the input
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expression, E. T' is a global pointer which always points to the root of the
parse tree being manipulated by the BRACKET, SORT and ORDER procedures.

The statement Proof=Proof+T’ appends a copy of the parse tree, T’ to the

list of parse trees, Proof.

CaNoNicaL Proor(E)
1  T’= parse tree of E
2 Proof=[T"]

3 'BRACKET(T’)
4  Sorr(T’)
5

return Proof

BRACKET(T)

1 case T.type

2 atomic: do nothing

3 iteration: BRACKET(T left)

4 BRACKET(T.middle)

5 BRACKET(T .right)

6 sequence,choice,parallel:

7 BRACKET(T left)

8 current=T

9 while current.left.type=T.type
10 temp=current.left

11 current.left=temp.left

12 temp.left=temp.right

13 . temp.right=current.right
14 current.right=temp

15 Proof=Proof+T’

16 current=current.right

17 BRACKET(current.right)
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Sort(T)

1 case T.type

2 atomic: do nothing

3 iteration: SORT(T.left)

4 SoRrT(T.middle)

5 SORT(T.right)

6 sequence,choice,parallel:

7 temp=T

8 while temp.type=T.type
9 do SORT(temp.left)
10 temp=temp.right
11 SORT(temp)

12 if T.type=parallel or choice

13 then ORDER(T)

ORDER(T)

1 do temp=T

2 while temp.right.type=T.type

3 do if temp.right.left <. temp.left
4 then swap temp.left and temp.right.left
5 Proof=Proof+T’
6 temp=temp.right

7 if temp.right- <. temp.left

8 then swap temp.left and temp.right
9 Proof=Proof+T’

10 while at least one swap is performed

Figure 3.12 shows the tree manipulations carried out in lines 10-14 of

BRACKET, and lines 4 and 8 of ORDER, together with the corresponding ex-
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BRACKET ORDER

—_— —_—
E3 B E) By
E; E2 E2 E3

Eg Eg Eq E3
(E1 op E2) op E3 = Ei op (Ez op E3) E) op (E2 op E3) = E:2 op (E) op E3)
ORDER
/\ /\
Eq Eo Eg E,

" EiopEy = Eyop E)

Figure 3.12: Manipulation of the parse tree

pression manipulation. The first and third manipulations correspond directly
to an application of the associativity and commutativity axioms respectively.
The second manipulation involves both the associativity and commutativity

axioms, as follows:

Eyop (Eyop E3s) = (F,opE,)op E3 Associativity

(E; op E)) op E3  Commutativity
E; op (B, op E3)  Associativity

The correctness of CANONICAL PROOF follows from the correspondence of the
code with the structure of the proofs in Propositions 19, and 20. Note that the
BRACKET procedure contains an optimisation, because a direct translation of
the the proof structure of Proposition 19 results in an inefficient algorithm.
The optimisation rearranges an expression of the form E), op E,, where E; =

(E{ op (E} op (... op (Ex—1 op E})...))), for some k > 1 has right-associative
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bracketing order into:

E) op (E; op (... op (Eg-1 op (Ey op Ez))...))

by repeatedly applying the associativity axiom. A right-associatively brack-
eted expression for, F, can be obtained by rearranging F, to have right-
associative bracketing order.

Let a be the number of atomic actions in a box expression, E. The time
complexity of the BRACKET procedure is O(a?), and O(a?) manipulations
(axiom applications) are performed. The time complexity of SORT is O(a?)
because there are at most a nodes in the parse tree, and the ORDER procedure
has time complexity O(a?). ORDER is an implementation of bubble sort,
and for each call, it sorts at most a subexpressions. Therefore, at most a?
comparisons are made, each having time complexity O(1) (assuming that the
size of the multiset of basic actions in each atomic action is bounded by some
constant). Hence the number of axiom applications performed by SORT is
O(a®).

Let Fi, E, be box expressions, such that box(E;) = box(F,). By Proposi-
tion 18, the canonical forms of F), and F, will be the same. Therefore, Box
EXPRESSION ISOMORPHISM PROOF can produce a proof that £y, = E; by con-
catenating the proofs generated by CANONICAL PROOF(FE;) and CANONICAL
PROOF(Es).

Box EXPRESSION ISOMORPHISM PROOF(E;, E»)
1  Proofj=CANONICAL PROOF(E))
2 Proofy;=CANONICAL PROOF(E,)
3  Output Proof;
4

Output Proof, in reverse order.

The time complexity of BoX EXPRESSION ISOMORPHISM PROOF, on input

E, and E, is O(a%), where @ = max{a;,as}, and a; and a, are the number of
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atomic actions in F; and E, respectively. The length of the proof generated

by Box EXPRESSION ISOMORPHISM PROOF is O(a?).

3.5.7 Examples

LOTEEOTE

21 22

Figure 3.13: Example nets

Figure 3.13 shows two 'nets, ¥, and ,, which are implementations of unknown
expressions. The synthesis algorithm can be used to find expressions E; and
E, such that box(E;) = [X;], and box(E;) = [X;]. The expressions produced
by BoX EXPRESSION SYNTHESIS, with inputs ¥; and ¥,, will not necessarily

be in canonical form. For example:

Box EXPRESSION SYNTHESIS(XZ;) = a | (b0 (c0d)) |l e)

Box EXPRESSION SYNTHESIS(X;) = (c0(d0b)) | (a |l e)

Using CANONICAL BOX EXPRESSION SYNTHESIS, canonical expressions C
and Cy, corresponding to ¥; and ¥, can be found. The same result is obtained
by applying CANONICAL Box EXPRESSION to the synthesised expressions, E;
and FEs:

Ci = all (el (00(cUd)))
C; = all (el (00(cOd)))

Hence the calls to PETRI Box ISOMORPHISM(Z, ¥3) and BOX EXPRESSION

IsoMORPHISM(E), E3) both give the output “yes”.
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Box EXPRESSION ISOMORPHISM PROOF performs the rearrangement of
an expression info canonical form, using the application of a set of axioms.
Hence a proof that an expression is equivalent to its canonical form is produced.
Given equivalent expressions, F; and F, as input, the algorithm generates
proofs that £; = C; and E, = C,, where C, and C, are the canonical forms
of E; and FE, respectively. As F; and F, are equivalent, C; = Cs, and a proof
that £y = E, can be obtained by concatenating the proof of Ey = C; with the

proof of Fy = C, reversed:
Ei = af ((60(cUd)) |l e

= ajl (¢l (@0(cOd) = C1 = C
= al ((b0(cOd) e

= (all (60(cOa) |l e
= ((b0(cOd) [la) ] e
= (00(cUd) I (alle)
= (009 0d) | (alle)
= ((cBb)0d) |l (alle)
= (cU@®Od)ll(alle)
= (cO(@0®) |l (alle

In general, the proof will not be the shortest possible. However, it has length

at most polynomial in the size of the input expressions.
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Chapter 4

Synchronisation synthesis

4.1 Introduction

This chapter considers the extension of the synthesis algorithm of Chapter 3
by including support for the synchronisation operator. The semantics for syn-
chronisation operaté globally on the net, which makes the synthesis problem

more difficult than for the operators in the basic syntax.

E = Q Atomic action
E|FE - Parallel composition
EQE Choice composition

|
|
| E;E Sequential composition
| [ExExE] Iteration

|

Esy A Synchronisation

Table 4.1: Language defining class of synthesisable Petri boxes

The synthesis problem is to provide an algorithmic tranélation from an
implementation, ¥, of an unknown box expression, to an expression, F, such
that any implementation of F is isomorphic to X. ‘The aim is to extend the
class of Petri boxes allowed as input to the synthesis algorithm presented in

Chapter 3, to cope with input nets which are implementations of box expres-

165



sions involving the synchronisation operator — ¢.e. an implementation of any
expression from the syntax in Table 4.1 is allowed as input to the synthe-
sis algorithm presented here. Unless stated otherwise, every box expression
should be assumed to be a member of the language generated by the syntax

in Table 4.1, and every net an implementation of such a box expression.

Box EXPRESSION SYNTHESIS

INSTANCE: Net, X, member of the class of Petri boxes allowed as input.
SOLUTION: Box expression, E from the syntax in Table 4.1,

such that box(E) = [Z].

Section 4.2 investigates some of the issues affecting the synthesis of syn-
chronisation, andvshows that the synthesis problem is NP-hard. The hardness
result arises because of the difficulty of identifying a grouping for the tran-
sitions to be represented by a particular synchronisation operator in the ex-
pression. Alternative approaches to the synthesis problem in the light of this
result are discussed in Section 4.2. Sections 4.3 and 4.4 present a solution to
the synthesis problem for the class of input nets that can be obtained from
an expression over the syntax in Table 4.1. The solution reuses the synthesis
algorithm of Chapter 3. In Section 4.5, the correctness of the synthesis algo-
rithm is shown. The analysis carried out in Section 3.4 forms the basis for the
discussion, and solutions to related problems presented in Section 4.6. The
complexity of the problem of finding a canonical form is investigated in Sec-
tion 4.6.3. The investigation in Section 4.6.2 provides a basis for the derivation
of a complete axiom system for a fragment of the Petri Box Calculus containing
the synchronisation operator, presented in Section 4.6.4.

The semantics for the synchronisation and restriction operators, given in
Chapter 1 were given in terms of the synchronisation and restriction by a
single basic action. It is notationally convenient (and possible) to be able
to synchronise and restrict by a set of basic actions. The ability to use this

extended notation follows from the properties:
Esyasyb = Esybsya (4.1)
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Ersarsb = Ersbrsa (4.2)

Hence, for any set of basic actions A = {ay,...,a,}, and expression £ =
E’ sy A (respectively E = E' rs A), the Petri box, box(E), can be constructed
by applying the semantics below to the equivalent expressiéns
E' sy a;... sy a, (respectively E' rs a;... rs a,). The correctness of (4.2) fol-
lows directly from the definition of restriction. The correctness of (4.1) is less
obvious, and is discussed further in Section 4.2.2.

L(F) is defined to be the set of basic actions that appears in the transition
labels of an implementation of E. The definition of £ is limited to expres-
sions which do not contain the restriction or scoping operators — i.e.' for any

expression, E, from the syntax in Table 4.1:

({lea) if E= o
L(E) = L(E)) U L(E,) if E = EjopE, forope {||, 0,;}
L(Ey) U L(Ey) U L(By) if E = [Ey % By * Ey]
| C(Ey) ifE=FE sy A

Figure 4.1 shows implementations of two simple box expressions, involving
the synchronisation and restriction operators. Note that by the definition of
scoping, the implementation of (a || @) sy a rs a is also an implementation of

the expression [a : a || @].

P

ula] u[0] wfa ai (0] lal
5 ® &
E=(a|la)sya E=(a|la)syarsa
Synchronisation Restriction

Figure 4.1: Synchronisation and restriction

The semantics for synchronisation used here are slightly different from
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those of [6], in that originally a candidate synchronisation, 7 could consist
of a single element. In effect this means that a synchronisation operation
performed on a net would create a duplicate of each transition that takes
part in a synchronisation. Where duplication equivalence is used as the net
semantic, the duplicates that are produced by a synchronisation operation are
insignificant. However, the duplicates are significant for isomorphism, and it
seems counter-intuitive for the synchronisation operation to produce them. It
would require only minor modifications to the synthesis algorithm presented
in Sections 4.3 and 4.4 to cope with the original semantics of synchronisation

given in [6], should it be necessary to do so.

4.2 Synchronisation

In this section an alternative semantics for the synchronisation operator are
presented, some general properties of synchronisation are discussed, and the
factors affecting the synthesis of expressions from nets containing synchronisa-
tion are investigated. In Section 4.2.4, BOX EXPRESSION SYNTHESIS is shown
to be NP-hard. Section 4.2.5 discusses various approaches to dealing with the
hardness result and concludes by restating Box EXPRESSION SYNTHESIS in

a form that allows an efficient solution.

4.2.1 Semantics of synchronisation

The semantics for synchronisation presented in Section 1.3 is based on a deci-
sion procedure which determines whether a particular multiset of transitions
constitutes a synchronisation or not. In this section, an iterative version of
the semantics for the synchronisation operation is described. The purpose
of introducing an alternative semantics is to provide greater intuition into the
workings of the synchronisation operator, and to allow the observation that ev-
ery synchronised transition can be viewed as arising from the synchronisation

of a pair of transitions.
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A multiset of transitions, v(t) is associated with each transition ¢. Initially:
Vi e T :v(t) = {t}

The purpose of 7 is to ensure the correct number of synchronised transitions
are created. If the duplication equivalence of [6] is used in place of isomor-
phism, then v is not required, because duplicates are not significant. When

synchronising an implementation of a box expression on a basic action, a:

1. Find a pair of transitions, ¢; and ¢, with a € A(¢;) and @ € A(¢;), such
that there is no transition, ¢ with v(¢) = y(t1) + v(¢2).

2. Synchronise ¢; and ¢, to obtain a new transition ¢ with:

Wi(t,s) = W(t,s)+W(ty,s) (forseSuT)
Wi(s, t) = W(s, t1)+W(s,ts) (forseSUT)
A®) = (A(t) + A(t2)) — {a, 8}
Y1) = (t) +(t2)

3. Repeat the process until no new synchronisations are available.

Figure 4.2: Example of the iterative synchronisation scheme

The new transitions created in Step 2 are themselves candidates for syn-
chronisation, provided they have an a or @ action in their labels. It is possible
for a transition to synchronise with itself (i.e. ¢, = t, in Step 1). If such a
synchronisation occurs, then the synchronisation process will be infinite. In-

finite synchronisations are discussed in Section 4.2.2. Figure 4.2 shows an
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implementation of the expression:

E= ({a, a'} ” {a7 b} ” {a> C}) sy a

The transitions arising from the synchronisation operator are shown with dot-

ted arcs and boxes. The following table illustrates the synchronisation process:

synchronisation | new transition | A 07
t1, ta ts {a,0} | {t1,t2}
to, t3 ts {a,c} | {t2,t3}
t1,%4 g {b,b} | {t1,t1,t2}
3, t5 tr {c,c} | {t2, t3,t3}
t1, 5 ts {b,c} | {t1,12, 13}

In the final row of the table, the transitions ¢3 and t4 could have been syn-
chronised instead of ¢; and ts, to obtain identical results. Once t; and ¢
have been synchronised, the synchronisation of ¢3 and ¢, is prevented because
Y(t3) + v(ta) = {t1,t2,t3}, which is the same as y(tg). Using the iterative
semantics for synchronisation the transitions ¢4 and ¢s in Figure 4.2 must be
created before the transitions ¢g,t; and tg, while the semantics of Section 1.3
allows every synchronised transition to be created independently.

The following proposition shows that the two alternative semantics for

synchronisation are consistent with each other.

Proposition 21 For every box expression, E from the syntaz in Table 4.1,
and basic action, a, let ¥, and ¥y be implementations of E sy a constructed,
respectively, using the semantics for synchronisation of Section 1.8, and using

the iterative semantics for synchronisation presented here - then ¥; =;,, Xo.

Proof: Follows from Lemma 6.3 in [6]. 0

4.2.2 Properties of synchronisation

[6] shows that, in the context of duplication equivalence, the synchronisation

operator is both idempotent and commutative. The idea of the proof for com-
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mutativity of sy in [6] holds for the slightly different semantics for synchroni-
sation used here, and in context of isomorphism. For example, any implemen-
tations of F; = ({a,¢} || (@;¢)) sy a sy c and Es = ({a,¢} || (@;¢)) sy csy a
are isomorphic. Figure 4.3 shows a net which is an implementation of both E;
and F>. Applying the iterative semantics of Section 4.2.1 illustrates how the

transition ¢s in Figure 4.3 arises in different ways for E, and E,:

expression | operation | synchronisation | new transition | A 0%
E, sy a t,to ty {e} | {t1,t2}
E, sy ¢ t1,1t3 te {a} | {t1,t3}
E, "8y ¢ ts,t4 ts 0 | {t,t2,t3}
E, Sy ¢ t1,t3 te {a} | {t1,t3}
E, sy a t1, to t4 {e} | {t1,t2}
E, sy a t2,t6 ts 0 | {t1,t2,t3}

The commutativity of the synchronisation operator means that it is possible
to synchronise on a set of basic actions without ambiguity. Theorem 6.4 (i) in
[6] shows that commutativity holds in the context of duplication equivalence.

The idea of the proof also works when the net semantic used is isomorphism.

s1{ € sol €
C |ts @ 5 1@ |t
ac t1 (0 83
a |te C |tz

Figure 4.3: Commutativity of synchronisation

The synchronisation operator is not idempotent in the context of isomor-

phism. This is because synchronising twice produces a second set of syn-
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chronised transitions which are significant for isomorphism. For example,
Figure 4.4 shows %, and X,, implementations of (a || @) sy a and (a ||
a) sy a sy a respectively. While ¥; and ¥, are duplication equivalent, they

are not isomorphic.

N - N w

t1| a m ts a to t1] Q 0 ts @ ta a ta
-
sz | X 84 s2 i X X )s4
El E2

Figure 4.4: Idempotence of synchronisation

Multi-way synchronisation

A multi-way synchronisation is obtained when a transition arising from a syn-
chronisation operation is involved in a further synchronisation. An indirect
multi-way synchronisation occurs when the synchronised transition, and fur-
ther synchronisation are obtained from different applications of the sy op-
erator. The multi-way synchronisation is direct when both transitions arise
from the same application of a sy operator. For example, in Figure 4.2, the
transitions g, t7 and tg are direct 3-way synchronisations, while in Figure 4.3,
transition ¢s is an indirect 3-way synchronisation.

When synchronising on a basic action, a, a direct multi-way synchronisa-
~ tion can only be obtained if there exists a transition, ¢, in the scope of the sy
operator, with A(¢)(a) > 1 or A(t)(a) > 1. For example, ¢, in Figure 4.2 has a
label containing two a actions. Hence, the transitions ¢, and 5, arising respec-
tively from the synchronisations t1,¢, and t,,t3, both have labels containing
an a action, and can therefore take part in further synchronisations.

To produce an indirect n-way synchronisation, there must be a transition,

t which is in the scope of n sy operations, on different basic actions, by, ..., b,
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for some n > 1, such that for 1 < i < n, b; € A(¢), or b; € A(t). For example, in
Figure 4.3, the transition, ¢; is the the scope of synchronisations on the basic
actions, @ and ¢, a € A(t1), and € € A(ty).

Two restrictions on the form of atomic actions, which affect the type of

synchronisations that can be obtained are described below:

e If the action is restricted from being a multiset of basic actions to being a
set of basic actions, with the corresponding modifications to the seman-
tics of synchronisation, then it is not possible to obtain a direct multi-way
synchronisation. However, indirect multi-way synchronisations can still

be produced.

e Further restricting actions to be either a single basic action, or () pre-
vents the creation of either type of multi-way synchronisation. With this

restriction, every transition arising from a synchronisation operation has

the label, 0.

Intuitively, imposing one of these restrictions could make the synthesis
problem easier. However, it will be shown in Section 4.2.4 that the computa-

tional complexity of the problem is not affected by either of the restrictions.

Infinite synchronisation

Under certain circumstances, an application of the sy operator can produce
infinitely many synchronised transitions. Using the iterative semantics for
synchronisation, presented in Section 4.2.1, an infinite synchronisation is de-
tected when a synchronisation is performed which produces a new transition
with the same label as one of the synchronising transitions. For example if ¢,
and t, synchronise to give a new transition, ¢, such that A(t) = A(t;), then
it will be possible to synchronise ¢ and ¢, and so on. The simplest example
of an infinite synchronisation occurs when a transition can synchronise with
itself: E; = {a,d} sy a. A more complex example is E, sy {a,b}, where

Ey = ({a,a} || {@,b} || {@,b}). Figure 4.5 shows implementations of both E,
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and E,. Table 4.2, demonstrates that an infinite synchronisation is detected,

when applying the iterative semantics for synchronisation to E, sy {a, b}.

n
2
adl|t, |adlts - |a@it, - aalt, |ab|ty |ab|ts
2
n
E1 E2

Figure 4.5: Infinite synchronisations

operation | synchronisation | new transition A 07 o0- Sy
sy a t1, to ta {a,b} | {t1,t2} no
sy a t1,t3 ts {a,b} | {t1,13} no
sy a to, tg te {b,b} | {t1,t2,22} | no
sy a t3, 4 tr {0, 5} {t1,t2,t3} no
sy a ts, ts tg {b,b} | {t1,t3,23} | no
sy b ta, 13 to {@,a} | {t2,ts} no
sy b ta, ts tio {a,a} | {t2,ts5} no
sy b ty, t7 tn {a,b} | {t2,t7} yes

Table 4.2: Detecting infinite synchronisations

It is impractical to consider infinite nets as input to the synthesis algo-
rithm. Hence, it is not possible to synthesise expressions from the entire class
of implementations of box expressions from the syntax in Table 4.1. This im-
plies that, unlike the synthesis algorithm described in Chapter 3, an analysis
of the synthesis algorithm for synchronisation cannot provide a complete ax-
iomatisation of the subset of the Petri Box Calculus defined by the syntax in

Table 4.1.
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An important point regarding infinite synchronisations is that from a be-
havioural view, only a finite number of the infinite number of synchronised
transitions are significant, and the remainder can never be enabled. There-
fore, it may be possible to modify the synchronisation operator semantics so
that insignificant transitions, from a behavioural point of view, are not cre-
ated. However, for structural semantics, such as isomorphism, every transition

created by an infinite synchronisation is significant.

4.2.3 Synthesis with synchronisation

In this section, some properties of the synchronisation operator are investi-
gated. This investigation is intended to give some insight into the synthesis
problem, and motivate approaches to a synthesis algorithm for the syntax in
Table 4.1, possibly by extending the algorithm described in Chapter 3. The

following areas are investigated:

e The overlap between expressions from the basic syntax, and those in-

volving the synchronisation operator.

e Equivalence when synchronising on different basic actions — i.e. expres-
sions F such that any implementation of FE sy a is isomorphic to an

implementation of E sy b.

e Positioning of the synchronisation operators.

Only synchronisations that create at least one transition in the implementation
of the expression are considered. For example, the synchronisation operation
in (a || b) sy a has no effect, and is therefore not considered.

The underlying expression of an expression involving the synchronisation
operator is obtained by removing all instances of sy . For example, E; is the

underlying expression of F;, where:

By = ((allallb)syal(clielib)sy c)syb
E, = (all@a|b)0(clielb)
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One approach to dealing with synchronisation is to try and identify in the
input net those transitions which have arisen from synchronisation, and remove
them. This would leave an implementation of the underlying expression, which

can be synthesised using the basic syntax synthesis algorithm.

Overlap with the basic syntax

The simplest example of the overlap between synchronisation and the basic
syntax is given by the expressions (a || @) 00 and (a || @) sy a which have

isomorphic implementations. Let F; and F; be:

Fi = ((e0E) | (@0E:)D0
F, = ((cUE) || (@0E)) sya (4.3)

In general, the expressions F} and F; are equivalent, provided (L{E))UL(E3))N
{a,@} = 0 - i.e. the subexpressions F; and F; do not contain any a or @ basic
actions:

The condition that E) and F, must not contain any a or @ actions causes
problems in the identification of transitions that have arisen from synchroni-
sation. For example, Figure 4.6 shows an implementation of the expression
E = ((@0a) || @)00. The transition t4, at first, appears to have arisen from
the synchronisation of ¢, and ¢3. However, any synchronisation operation with
to and %3 in scope must also have ¢, and ¢, in scope. The absence of an §
transition ¢, such that ¢ 0 {¢;,t,} indicates that ¢, cannot have arisen from
a synchronisation operator. This example demonstrates that a general proce-
dure for identifying those transitions arising from synchronisation can only be
achieved by examining the net globally.

The class of equivalent expressions determined by F; and F5 in (4.3) can
be extended to multi-actions. For example, Figure 4.7 shows a net which is

isomorphic to implementations of G; and Go:

Gi = (({a,c}0{b,c,d}) || ({a,d} 0b)) sy a
G = ((({a,c}0{b,c,d}) || ({g,d} 0))) O {c,d}
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Figure 4.7: Overlap between synchronisation and basic syntax

From the point of view of synthesis, implementations of expressions involv-
ing only these limited forms of synchronisation can be synthesised using the

basic syntax algorithm described in Chapter 3.

Equivalent synchronisations

A transition arising from a synchronisation operation inherits the connectivity
of the synchronising transitions. Hence, if there are transitions present in the
net which have the same connectivity, it may be possible to synchronise on
different basic actions to produce equivalent results. For example, the net in

Figure 4.7 is isomorphic to implementations of H; and Hj:

H = (({e,c}0{b,c,d}) | ({a,d}0b)) sy a
Hy = (({a,c}0{b,c,d}) || ({a,d}Ob)) sy b
In order to represent synchronised transitions which can be obtained from

a number of equivalent synchronisations, a synthesis algorithm must choose

exactly one of the equivalent synchronisations. As with the overlap between
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synchronisation and the basic syntax, identifying equivalent synchronisations
entails examining the input net globally. For example, in Figure 4.8, it ap-
pears that g can be obtained by a synchronisation operation on either a or b.
However, the absence of a synchronisation between ¢, and f; means that only

the synchronisation on a is valid.

e )s; € )sa

((a00) [| ((@0B);) sy a

Figure 4.8: Finding equivalent synchronisations

Position of the sy operators

A synchronisation operation over a basic action, a, has no effect on an expres-
sion or subexpression which does not contain any a or @ basic actions. There-
fore, there is some flexibility in the positioning of synchronisation operators,

which preserve equivalence of the corresponding Petri boxes. For example:
El Sy a || E2 = (E1 ” EQ) Sy a

provided that there are no atomic actions containing a or @ in E, (i.e. L(E3)N
{a,a} = 0). Similarly for the sequence and choice operators. This property
does not apply to the iteration operator because the semantics of [E} * E * E3|

use two copies of the implementations of F;, F; and E3;. Hence, for example,
[(a;@) sy axbxc] # [a;axbxc] sy a
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Nets (i) and (ii) in Figure 4.9 are implementations of [(a;@) sy a * b * ¢] and
[a;@*bx*c| sy a respectively. When the synchronisation operator is at the top

level, extra synchronisations take place between the two copies of a;a.

@ (i)

Figure 4.9: Synchronisation and iteration

4.2.4 Synthesis with synchronisation is NP hard

In this section, the complexity of synthesising expressions from nets which are
implementations of expressions from the syntax in Table 4.1 is investigated.
When the syntax of Table 4.1 is used to represent the synthesised expression,
the synthesis problem is shown to be NP hard. Some approaches to deal
with this result are discussed in Section 4.2.5. The NP hardness result for
the synthesis problem is demonstrated using a transformation from ONE-IN-

THREE 3SAT [47, 25] to SYNCHRONISATION ASSIGNMENT.
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ONE-IN-THREE 3SAT
INSTANCE: Set, U of variables, collection C of clauses over U such
that each clause ¢ € C has |c| = 3.
- QUESTION: Is there a truth assignment for U such that each clause in C |

has exactly one true literal?

SYNCHRONISATION ASSIGNMENT

INSTANCE: Net, ¥, the implementation of a basic syntax box expression,
and set, X, of new transitions.

QUESTION: Is the net ¥ @ (X, 0) an implementation of a box expression

from the syntax in Table 4.17

Let U = {uy,...,un}, and C = {C}, ..., Cy,}, where each C; = {¢;,, ci,, i, }, be
an arbitrary instance of ONE-IN-THREE 3SAT. A corresponding instance of
SYNCHRONISATION ASSIGNMENT can be constructed from U and C. Let &

be an implementation of F = E;; E,; F3, where:

Ei = ((m0-wm)0..0( 0-)...)
Ey, = (((e1, Oery) Oerg)s e ((emy Oemy) Oemg)--2)
Es = ((u10-wy);..; (un 0-wy)..)

There is a correspondence between the atomic actions in E, and the transitions
in ¥ (formalised in Section section-action-transitions). Hence ¢(u), can be used
to unambiguously refer to the transition in %, corresponding to the action, u,
in E, since no action appears more than once in E. Every pair of transitions
t1, o arising from atomic actions in E; has the same connectivity, i.e. ¢; b< ts.
Similarly, for each choice subexpression of F5 and F3. The set of transitions,

X, is given by X; U X,, where:

X1 = {{t(@), tu)} | 1 < i < n}

Xo = {{t(w), (e, } [1 < i < m}
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Every transition in X, individually, is a valid synchronisation. However, all
the transitions can be represented by the addition of synchronisation oper-
ations to F if and only if there is a satisfying assignment to the instance of
ONE-IN-THREE 3SAT. The set of transitions, X, is designed to enforce choices
between equivalent synchronisations. The form of the subexpressions, E;, Es
and Fj3, ensure that the choices between equivalent synchronisations corre-

spond to choices of assignment to literals in the instance of ONE-IN-THREE

3SAT.

e E, provides the conjugates of the set of literals. Every synchronisation
in X contains exactly one transition arising from FE|. In the implemen-
tation of E, every transition has the same connectivity. Hence, for each
synchronisation £ € X, no constraints on the choice of action for the syn-
chronisation operation used to create z are imposed by the transitions

arising from Fj.

e E, represents the set of clauses, C, of the instance of ONE-IN-THREE
3SAT. Each clause is represented by a choice construct. There is one
synchronisation between each choice construct, and F;, enforcing the

choice of exactly one of the three literals in the clause.

e Fjsis used to enforce the choice between each literal and its negation (e.g.
a and —a). There is one synchronisation between each choice construct
in F3, and E,. The form of E means that the choice between a literal
and its negation must be maintained throughout the set of clauses, C,
because any synchronisation operation used to create a transition in the
set X, (synchronisations of transitions arising from FE; and F3) must be

in the scope of E;, Ej3, and therefore also F.

The implementation, £, of E' can be constructed in polynomial time. Each

new transition, x € X has the form {¢,%,}, where ¢, and t, are transitions in

2.
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As an example, the transformation from ONE-IN-THREE 3SAT to SYN-
CHRONISATION ASSIGNMENT is illustrated using the instance of ONE-IN-

THREE 3SAT given by:

U = {a,bc}
C = {{a,b,-a},{b,c,~a},{b, —a,c}}

The corresponding instance of SYNCHRONISATION ASSIGNMENT is shown in
Figure 4.10. The transitions in X are indicated using dotted arcs. The ex-

pression, F is given by:

E = (al=a050-%020=%)
; (a0b0-a); (-b0cO-a); (b0 —all=c)
; (a0=a); (00 -b); (cU—e)

The net in Figure 4.10 is an implementation of E sy {a, b, ~c}. This
corresponds to a satisfying assignment, a = true,b = false,c = false to the
instance of ONE-IN-THREE 3SAT. In this example, there are no other possi-
bilities for the synchronisation set, and hence no other satisfying assignments.
There is some flexibility in the position of the synchronisation operators. How-
ever, the form of E sufficiently constrains the allowed positions for the sy
operators to ensure that any valid synchronisation assignment corresponds to
a satisfying assignment of the instance of ONE-IN-THREE 3SAT. In addition,
no transition arising from F can be obtained as the result of a synchronisation
operation, and no synchronised transition from X can be represented using
the basic syntax.

The NP hardness result for SYNCHRONISATION ASSIGNMENT does not
immediately imply that the synthesis of synchronisation is NP hard, because
it is assumed that the input to the synthesis algorithm is an implementation of
a Petri box. Instances of ONE-IN-THREE 3SAT for which there is no satisfying
assignment are transformed into nets that are not the implementation of any

box expression. Fortunately, a simple argument can be used to show that any
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Figure 4.10: Transformation from an instance of ONE-IN-THREE 3SAT
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efficient solution to BoOXx EXPRESSION SYNTHESIS can be extended to provide
a solution to ONE-IN-THREE 3SAT.

Suppose there is an efficient algorithm for Box EXPRESSION SYNTHESIS.
The behaviour of this algorithm is undefined on an input that is not the
implementation of a box expression: An incorrect result may be obtained, or
the algorithm may not terminate at all. For any polynomial time algorithm,
there exists fixed values ¢, d such that for an input of size n, the algorithm
terminates in at most ¢ - n? steps. Thus, the case of non-termination can be
detected in polynomial time by maintaining a count of the number of steps
made by the algorithm. As soon as the upper bound has been exceeded, it is
known that the input was not an implementation of a box expression.

Given an arbitrary instance of ONE-IN-THREE 3SAT the corresponding in-
stance of SYNCHRONISATION ASSIGNMENT can be constructed in polynomial
time, and passed as input to BoOX EXPRESSION SYNTHESIS. The synthesis
algorithm can be modified to recognise a non-termination condition, in which
case it is known that there is no satisfying assignment for the instance of
ONE-IN-THREE 3SAT. If the algorithm terminates with a synthesised expres-
sion, then a candidate satisfying assignment for the instance of ONE-IN-THREE
3SAT has been found. The candidate assignment can be checked in polyno-
mial time. If the assignment does not satisfy the instance of ONE-IN-THREE
3SAT then the input to the synthesis algorithm cannot be an implementation
of a box expression - therefore there is no satisfying assignment. Hence, an
efficient solution to Box EXPRESSION SYNTHESIS can provide an efficient solu-
tion to ONE-IN-THREE 3SAT. Therefore, under the assumption that P # NP,

there is no efficient algorithm for BoX EXPRESSION SYNTHESIS.

Proposition 22 The synthesis problem, BOX EXPRESSION SYNTHESIS, as
defined in Section 4.1 is NP-hard.

Proof: Follows from the argument and construction given above. |
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4.2.5 Tractable solutions to synthesis with synchronisa-
tion

In this section, some possible approaches to dealing with the NP hardness
result of Section 4.2.4 are discussed. It is possible that any of these approaches

could be used to produce a satisfactory solution to the synthesis problem.

e Restrict the input language: The class of nets allowed as input to
the synthesis algorithm could be restricted to be implementations of
expressions derived from some subset of the syntax in Table 4.1. For
example, if the use of the synchronisation operator is forbidden, the
syhthesis problem becomes tractable, as demonstrated in Chapter 3.
A less severe restriction is to restrict the choice operator so that no
atomic actions are allowed to appear in a choice context — s.e. all choice

expressions have the form:
E,0E,0..0F,

where no E;, for 1 <14 <n, is an atomic action. This certainly prevents
the form of expression constructed by the transformation from ONE-IN-
THREE 3SAT, and more generally, significantly reduces the scope for
equivalent synchronisations. Another restriction that, intuitively, makes
the problem simpler is to restrict atomic actions to be single basic ac-
tions, or sets of basic actions, instead of multisets of basic actions. How-
ever, the NP hardness result is based on expressions that contain only
single basic actions as atomic actions. Of course, there is the possibility
that the synthesis problem will be even more difficult when multisets of

basic actions are permitted.

e Heuristic solution: Heuristics are generally more suited to optimisa-
tion problems where there is a range of acceptable solutions. In such
cases, an algorithm may be efficient, but does not guarantee to give

the best possible solution. Instead, heuristics are used to give a “good”
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solution most of the time. The synthesis problem, however, is not an
optimisation problem, as the result must be an expression whose imple-
mentation is isomorphic to the input net. In cases where there is more
than one possible expression, every solution is regarded as equally good.
Hence, any heuristic algorithm for the synthesis of synchronisation will
take an exponential amount of time for some inputs, and therefore can-
not be regarded as a tractable solution. The aim of the heuristics are to

synthesise an expression quickly, for the majority of input nets.

Increase expressiveness of output language: For certain problems,
increasing the size of the solution space eliminates the constraints which
make the problem hard. For example, INTEGER PROGRAMMING is NP-
complete [33, 15, 25]. However, if the solution is allowed to be a set of
real numbers rather than a set of integers, the problem becomes LIN-
EAR PROGRAMMING [34] which has a polynomial time solution. For
the synthesis algorithm, increasing the size of the solution space involves
adding new operators to the syntax used to represent the synthesised
expression, or replacing existing operators with more expressive ones. A
new operator could be designed specifically to cope with the NP-hardness
result. Alternatively, an additional operator from the box calculus could
be added to the syntax of Table 4.1. Using an existing operator is more
desirable because there is already justification for its inclusion in the box
calculus. Two such operators are refinement and scoping. The refine-
ment operator allows subexpressions to be moved outside the scope of a
synchronisation operator. For example, using the refinement operator,

the net in Figure 4.6 can be synthesised to:
(X Oa) | 8) sy a)[X «a]

In addition, an expression, E,, for the net in Figure 4.10 can be synthe-

sised without having to find a satisfying assignment to the corresponding
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instance of ONE-IN-THREE 3SAT:

E, = ((@0=a0b0-b0e0=¢)
; (X1 0=a); (Xo 0-a); (X530 -a)
i (al=a); (60 -b); (cl—c)) sy {—a,b,c})
[X; + a0b][ Xy « =b0c|[X5 + b0 (]

With the introduction of new basic actions not used elsewhere, the scop-
ing operator can be used to represent each synchronised transition in-
dependently of every other synchronised transition. For example, using
the scoping operator, and a new basic action, n, the net in Figure 4.6

can be synthesised to:
[n:(@0aln) | (@07)]

As with refinement, the scoping operator allows an expression, Ej, for the
net in Figure 4.10 to be synthesised without entailing the production of
a satisfying assignment to the corresponding instance of ONE-IN-THREE

3SAT:

E, = [{n,n9,n3,n4,n5,n6}: (@0=a0b0-b0¢0=c0m 0m0
m0m0m0m)
. (a0b0-alny); (=b0 ¢l —a0ny); (b0 ~a 0 ~cOny)
. (a0 -a0ng); (60-b0ns); (c0-cne)]

The scoping operator is used in place of the synchronisation operator,

rather than in addition to it, as with refinement.

Use a different notion of equivalence: An alternative structural
equivalence to isomorphism could be used as a basis for equality of Petri
boxes. For example, if duplication equivalence is used, then it is possible

to produce multiple copies of each synchronised transition. Hence, the
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net in Figure 4.10 can be synthesised to:
E, = (@0=a0b0-b020=e)
; (a0b0-a); (-b0c0=a); (b0-al-c)
. (a0-a); (60-b); (c0~c)) sy {a,a,b, b, c, ~c}

The implementation of Ey is duplication equivalent to the net in Fig-

ure 4.10, although not necessarily isomorphic to it.

E = o Atomic action
| E|E Parallel composition
| ENE Choice composition
| E;E Sequential composition
| [E*Ex*E] Iteration
| [A:E] Scoping

Table 4.3: Output box expression syntax

Of the possible approaches described above, the extension of the output
syntax by replacing the synchronisation operator with the scoping operator was
chosen to be investigated further. The syntax used to represent synthesised
expressions is given in Table 4.3. The use of the scoping operator has several

desirable properties:

e The overlap between the basic syntax, and the scoping operator is such
that transitions that can be represented using the scoping operator can
be identified by a local analysis of the net. Identifying transitions arising
from the synchronisation operator required a global analysis of the net,

as shown by the example in Figure 4.6.

e The scoping operator allows synchronised transitions to be represented
independently of each other. In particular, this resolves the choice be-
tween equivalent synchronisations, and eliminates the constraints that

the NP-hardness result relied upon.
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e To represent synchronised transitions using the scoping operator, new
basic actions are introduced. These basic actions do not appear in the
labels of the transitions of the input net. Hence, there is a reasonable
degree of flexibility in the positioning of the scoping operators. Placing
the scoping operators so that they enclose as large a subexpression as

possible, means that the possible positions-are limited to:

— The top level of the expression.

— Immediately inside an iteration operator.

e It is possible to represent multi-way synchronisations using the scoping
operator. For example, the net in Figure 4.2 can be synthesised to [N :

E), where:

N {na,ns, ne, n7, ng, N9, M110, M11 }
E = ({a,a}0{ns}0{n4,a,b} 0 {ne ns,b,b} 0{ns} U0 {711})
({a, b} 0 {na} U{ne} O {n7} O {f1e})

({a’ C} D {C, c, Ng, ng} D {b7 ¢, Mo, nll} D {a'7 ¢, nS})

Although the synthesised expression is much larger than the original
expression, it has a regular structure. This is illustrated by Figure 4.11,
which shows the implementation of E (i.e. before the application of the

scoping operator).

The technique of representing synchronised transitions using the scoping
operator cannot be applied to infinite synchronisations. However, infinite nets
are not considered as input to the synthesis algorithm. The synthesis problem
is restated with the modification to represent the synthesised expression using
the scoping operator. It is this definition of the problem that is used for the

remainder of the chapter.
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Figure 4.11: Synthesis of multi-way synchronisation using the scoping operator

Box EXPRESSION SYNTHESIS
INSTANCE: Net, 3, member of the class of Petri boxes allowed as input.
SOLUTION: Box expression, E from the syntax in Table 4.3,

such that box(E) = [X].

4.3 The synthesis algorithm

Box EXPRESSION SYNTHESIS takes as input a net, X, which is the imple-
mentation of some unknown box expression from the syntax in Table 4.1. The
output of the algorithm is a box expression, E, from the syntax in Table 4.3,

such that ¥ is an implementation of E.

In this section, an algorithm for Box EXPRESSION SYNTHESIS, based
on the CANONICAL Box EXPRESSION SYNTHESIS algorithm of Chapter 3, is
presented. A new synthesis rule, SCOPING is introduced. This rule is described

in detail in Section 4.4.
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4.3.1 Outline of the algorithm

Let ¥ be an implementation of an expression from the syntax in Table 4.1.
The underlying net, ¥,, of ¥ is obtained by removing the set of transitions,
T,o(5): "

X, =2 6T (%)

Theorem 3 in Section 4.5 shows that ¥, is the implementation of a basic syntax
box expression. Hence, a canonical form expression, F,, can be synthesised
from the underlying net, ,, by the CANONICAL Box EXPRESSION SYN-
THESIS algorithm of Chapter 3. E, is known as the underlying expression for
z.

The pseudo-code for BoXx EXPRESSION SYNTHESIS is given below. The
root node, N, is initialised with the underlying net of the input net, . The
SYNTHESISE procedure, described in Section 4.3.4, finds the underlying expres-
sion for ¥, and constructs the equivalence classes of the relation ~,. PRUNE
discards those parts of the expression tree constructed by SYNTHESISE, whose
purpose was purely for the computation of the equivalence classes of ~4. The
pruned expression tree is similar to the one that would be obtained using
CANONICAL Box EXPRESSION SYNTHESIS. The SCOPING rule deals with
the set of transitions, T,.(X), by augmenting the underlying expression with
applications of the scoping operator. The SCOPING synthesis rule is described

in Section 4.4.

Box EXPRESSION SYNTHESIS(X)
1  N=new node

2 Nunet=XoT,
3 SYNTHESISE(N)
4 PRUNE(N)

5 SCOPING(N, X)
6

return EXPRESSION(V)
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Thé remainder of this section is concerned with the modifications to the
CANONICAL Box EXPRESSION SYNTHESIS algorithm to compute the equiva-
lence classes of the relation ~4. These equivalence classes partition the set of
transitions in the underlying net of ¥, and are used by the SCOPING synthesis

rule.

4.3.2 Data structure

The synthesis algorithm constructs a tree data structure which represents the
synthesised expression. Each node of the tree has the form shown in Fig-
ure 4.12. The net field contains the net to be synthesised. The synthesis
algorithm analyses the net to determine the synthesis rule to be applied, and
sets the type field accordingly. If the type is atomic action, then the node is
a leaf node, and the action field is set. Otherwise, the node is internal, and
the list field is used to store an ordered list of subnets obtained by the net

decomposition performed by the synthesis rule.

Net

Type

Partition

Action List

Figure 4.12: Data structure of a Node

The data structure has been modified from Chapter 3 to include the parti-
tion field. This field is an ordered list of sets of the transitions contained in the
net field, and represents the partitioning of the transitions corresponding to
the equivalence relation ~4. The mapping between actions in the expression

and sets of transitions is implicit in the ordering of the list. The order atomic
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action nodes are reached using a depth-first traversal of the tree match the

ordering of the sets of transitions in the list.

4.3.3 Modified synthesis rules

Extended versions of the atomic action and iteration synthesis rules are de-
scribed in this section. The extension from the original rules, described in
Chapter 3, are to allow the transitions in the input net to be partitioned

according to the equivalence relation, ~.

Atomic action

The atomic action synthesis rule is applied when the input net contains a
single transition, t. The partition field of the node is initialised to contain a
single set {t}. Figure 4.13 shows the effect of the atomic action synthesis rule

on the implementation of an expression E = a.

a |t

atomic

[{t:}]

a

Figure 4.13: Atomic action synthesis rule

Iteration

Let ¥ be a implementation of a basic syntax box expression which satisfies

the preconditions of the iteration synthesis rule (see Chapter 3). The itera-
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tion synthesis rule performs a partial decomposition of ¥, resulting in a net
containing two connected components, ¥, and ¥, which are isomorphic to
each other (shown in Chapter 3). For example, for an implementation of the
expression E = [axbxc], the partial decomposition shown in Figure 4.14 would

be performed.

decomposition

Figure 4.14: Decomposition performed by iteration synthesis rule

Instead of discarding one component, and decomposing the other compo-
nent into three subnets, corresponding to the subexpressions F;, E; and E3
in [E} x Ey % Ej3), the modified iteration synthesis rule decomposes both ¥,
and Y. Hence, six subnets, ¥, ..., X, are produced by the net decomposi-
tion performed by the iteration synthesis rule. Let E;, for 1 < i < 6, be the
canonical form expression synthesised from ¥;. Since the two components in
the partial decomposition are isomorphic, the expression [E; * Es x E3] will be
identical to [E4 * Es * Eg]. Hence, an isomorphism between the transitions in
2, and Y., can be obtained, allowing the transitions of ¥ to be partitioned
according to the relation, ~.

For example, for an implementation of the expression, £ = [a * b * ¢],
the decomposition shown in Figure 4.15 will be obtained. The method for
computing the partition field of the root node in Figure 4.15 will be explained
in Section 4.3.4.

Once the entire expression tree and the equivalence classes of the relation

~g¢ have been constructed, the PRUNE function discards the second set of
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Figure 4.15: Iteration synthesis rule



three child subtrees of each iteration node. Hence, the modifications described
here have no effect on the output of the algorithm. The analysis of the time
complexity in Chapter 3 assumes that no portion of the input net is discarded
during the synthesis process. Therefore, the time complexity of the algorithm
(not taking into account the time complexity of SCOPING), remains at O(n’),

where n is the number of nodes in the input net.

4.3.4 Partitioning the transitions

The pseudo-code below gives the SYNTHESISE procedure called by Box Ex-
PRESSION SY¥NTHESIS. This code is the ORDERED SYNTHESISE procedure,
presented in Chapter 3, extended by lines 12 and 13 to compute the partition
field of the node data structure. The remainder of the synthesis algorithm,
including the ANALYSE function, and the synthesis rules PARALLEL, CHOICE
and SEQUENCE is exactly as described in Chapter 3, and is not repeated here.
The AToMIC and ITERATION synthesis rules are as described in Chapter 3,
with the modifications of Section 4.3.3. The sorting of the list field of the
node, performed in line 11, is based on a total order of box expressions, such

as that used in Section 3.5.3 in Chapter 3.

SYNTHESISE(N)
N.type=ANALYSE(N.net)
case N.type
atomic: ATomIC(N)
parallel: PARALLEL(N)
choice: CHOICE(N)
iteration: ITERATION(N)
sequence: SEQUENCE(N)

for each node N’ in N.list

© 00 N O U ks W N

do SYNTHESISE(N’)
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10 if N.type=parallel or choice

11 then sort(N.list)

12 if N.type#atomic

13 then N.partition = PARTITION(N)

The PARTITION function computes the partitioning of the transitions of the
net, N.net, from the partition fields of the child nodes of N. Two operations
on lists, + and U, are used in the computation. + is an append operation,

with, for example:

[{tl’ t4}7 {t2}] + [{t57 t3}’ {t77 tS}] = [{tl’ t4}’ {tQ}’ {ts’ t3}7 {t7? tS}]

The empty list is represented by ¢, and for any list L, L + ¢ = L. The list
union operation, U, is defined for pairs of lists of equal length, and the result
list has the same length as the operand lists. For lists L; = [Aj, A, ..., Ay,
and L, = [By, By, ..., B,}, The list union, L; U L, is defined by:

L1 U L2 = [A1 U Bl, erey Ai U Bi, aeey An U Bn]
Hence, for example:

[{t1,ta}, {2 U [{ts, t}, {tr, ta}] = [{t1, tas 15, 23}, {22, 17, s}]

PARTITION(N)
1 X=]]
2 if N.type = iteration
3 then let ¢1, ..., ¢¢ be the partition fields
of the child nodes of N (in order)
fori=1to3
X =X+ (¢iUiys)
else for each node N’ in N.list (in order)

X = X + N’.partition

coO N O Ut

return X
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For example, the PARTITION function applied to the root node in Fig-

ure 4.15 returns the list:

[{t1, 2}, {ta, ta}, {5, t6}]

which is constructed from the partition fields of the leaf nodes in Figure 4.15

as follows:

(e U [{}]) + ([{ta} U [{2s 1) + (e} U [{2s}])

4.3.5 Example

In this section, an example input to the synthesis algorithm is introduced.
The results of Box EXPRESSION SYNTHESIS up to, but not including, the
call to SCOPING are presented. The action of the scoping synthesis rule on
this example is described in Section 4.4.

The net used as input to BOX EXPRESSION SYNTHESIS is shown in Fig-
ure 4.16. This net, ¥, is an implementation of the expression:

-~

(d; [(; (00 ({a, a} || {@, 0} || {@,c})) sy a);d) sy d*ax[cxbxC] sy ) sy d

Those transitions arising from synchronisation operations are indicated by
dotted boxes and arcs in Figure 4.16. Since all the synchronisation operations
are finite, ¥ is a suitable input to the synthesis algorithm. An underlying net,
¥4, unique up to isomorphism with ¥ — T;.(X), is shown in Figure 4.17. ¥, is
used to initialise the net field of the node, N.

The call SYNTHESISE(V) constructs the tree data structure given in Fig-
ure 4.18. The net fields of the nodes are omitted in Figure 4.18. The partitions
corresponding to the partition field entries, ¢; to ¢g are given in Table 4.4.

The call to PRUNE in Line 4 of Box EXPRESSION SYNTHESIS results in
the expression tree shown in Figure 4.19. The underlying expression, which

can be obtained from the tree data structure, is:

d; [d; ({a,a} [| {@, 8} || {@,c});d*ax[cxb+2]
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Figure 4.16: Input to the synthesis algorithm
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Figure 4.17: Underlying net
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({t1}]
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é1
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Iteration

SaRReE

T

\

Sequence Atomic Iteration Sequence] [Atomic Iteration
$3 [{t12}] $s %4 [{t13}] %6
4] {a} /[\[\[11/]\ L {a} ARRANAN
Atomic ' Parallel Atomic Atomic Atomic Atomic| . | Parallel Atomic| Atomic] Atomic
{{t2}] b7 {t10})| ([{t14}] [{t23}] [{ts}] és [t Y]] |[{tre}] ({t25})
{d} I {d} {c {c} {d} ] {d} {c} {c}
Atomic Atomic Atomic Atomic Atomic Atomic Atomic Atomic Atomic Atomic]
[{ts}] [{ta}] [{te}] [{t18}] {ti1o}] [{ts}] {tz}] [{to}) {{t20}] ({t21}]
{e,a} {a, b} {a,c} {b,}/ \(\b} {a,a} {a, b} {a,c} {b} {b}
Atomic Atomic Atomic Atomic|
[{t22} {t15}] {({t24}] {{t17}]
{c} {c} {c} {c}

Figure 4.18: Tree structure constructed by SYNTHESISE

201




b1

b2

¢3
4
s
b6
b7
s

= [{ti},{ta, ta}, {t5, ts}, {ta, 27}, {t6, ta}, {t10, t11 }, {t12, t13},

{t14, t15, t1e, taz}, {t1s, t19, too, t21 }, {t22, t23, t24, t2s }]

- [{t2a t3}7 {t57 ts}a {t47 t7}7 {tﬁ’ t9}7 {t107 tll}) {t121 t13}a

{t14, tis, tis, tar ), {t1s, tio, t20, t21 }, {22, to3, taa, tas }]
= [{t2}, {ts}, {ta}, {te}, {t10}]
= [{ts}, {ts}, {ts}, {to}, {t01}]

= [{tis, t15}, {t1s, t1o}, {t22, t2s}]

= [{twe, t17}, {t20, tar }, {toa, to5}]

= [{ts}, {ta}, {t6}]
= [{ta}, {tr}, {ta}]

Table 4.4: Partitioning of the transitions in the underlying net

No

Sequence

(23]

Atomic

Iteration

N [{ta}]

No

anE

{j}/

\

Sequence Atomic Iteration
N3 @3 Nio| [{t12}] Nu o5
/ ) l l \\{\a} ] l l \\

Atomic Parallel Atomic Atomic Atomic Atomic
Na| [{t=}] Ns| o7 No| [{tio] | MNiz| ({814} | Nis| [{tais}] | Niq| [{te2}]

{d})/ 2nRN (@ {} {6} ©

Atomic Atomic Atomic
Ne| [{ts}] Nr| [{ta}] Ns| [{te}]

{a,a} {a,b} {a,c}

Figure 4.19: Pruned expression tree
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4.4 Scoping synthesis rule

The scoping synthesis rule is applied after an expression tree for the underlying
net, ¥ — Ty.(X), has been synthesised. The scoping rule inserts scoping opera-
tors, and atomic actions into expression tree in such a way that they generate
exactly the set of transitions, Ts.(X), that were removed from the input net.
Central to the scoping synthesis rule is the relation between the transitions in
the underlying net and the atomic actions in the synthesised expression. This
relation is represented in the expression tree by the partition field of the nodes
in the tree.

A set of new basic actions, {ni, 71, ny, M3, ...}, is assumed to be available.
These actions do not appear anywhere in the labels of transitions in the input
net. Every atomic action added to the expression tree by the scoping synthesis
rule contains at least one new basic action, and each new basic action used,
is scoped by one of the scoping operators inserted by the synthesis rule. The
positions in the expression tree where the scoping operators are inserted are

at the top level, and immediately inside each iteration operator.

The scoping synthesis rule, SCOPING deals with the set of transitions
Ts.(X), that were removed at the beginning of the synthesis process. SCOP-
ING takes the pruned expression tree, IV, synthesised from the underlying net,
Y — T,(X2), and the input net, ¥, and modifies N so that it represents an ex-
pression whose implementation is isomorphic to X. SCOPING begins by calling
SCOPE to insert a scoping operator at the top level of the synthesised expres-
sion (i.e. at the root node, N, of the expression tree). At this point, the set of
transitions to be dealt with is given by T,.(X). T'r is initialised to be the set

of transitions remaining to be dealt with after the top level scoping operator
has been added. '

SCOPING(N, L)
1 Tr = Score(N,Ts.(X))
2 VisiT(N,Tr)

VisIT(N,Tx)
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if N.type=iteration
then for i=1 to 3
do T'ry = Scope(N.list[i],Tr N N.listi].partition)
VisIT(N list[i],Tr1)
if N.type=choice or parallel or sequence

then for each node N’ in N.list

N O v bR W N =

VisIT(N’, Tr N N’.partition)

The recursive procedure, VISIT traverses the expression tree in a depth first
fashion. The parameters of VISIT are N, the node currently being visited, and
T'r, the set of transitions remaining to be dealt with in the current subtree
(i.e. the subtree with root node N). When VISIT reaches a node whose type
is iteration, SCOPE is called three times to modify the iteration expression
from [E) * Ey * E3) to [[A1 : Fy] % [A2 : E}]  [A3 : Ej])]. At each node, the
set of transitions yet to be represented by a scoping operator is partitioned
between the child nodes. For each t € T'r, the nodes representing transitions
from the set T3(t) must all be contained in the same subtree, otherwise they
would have been represented by a higher level scoping operator. Hence, Tr

can be partitioned using the partition field, ¢, of each child node as follows:
Trn¢g={tecTr |Vt eT(t),3T" € ¢ :t' €T}

A call to SCOPE(N, T'r) determines the subset of T'r that can be created by
a scoping operator inserted into the expression tree at the node N. If the set
of transitions that can be represented is non-empty, INSERT SCOPING is called °
to modify the expréssion tree. The pseudo code for SCOPE is given below.

ScopPg(N,Ty)

1 U=Tr

2 X=90

3 whileU #9

4 choose any t € U

5 Ty = ¢(t1) © 4(t2) © ... © $(tn)

where Ty(t) = {t1,...,tn} and ¢ = N.partition
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6 T' = a minimal set
(' eT| ) =) ABAET, : To(t) = A)}
such that Vt',u € T' : Tp(u) = T(t') = u =1t

7 if 7] = |7}
8 then X = X + {t}
9 Tr=Tr-T
10 U=U-T

11 if X # 0 then INSERT SCOPING(N,X)
12 return Tr

The variable U stores the transitions from 7' that still need to be checked.
In Line 1, U is initialised to be Tr. The multiset X records a representative
transition from T'r for each new basic action to be scoped at this level. The
while loop (Lines 3-10) chooses an arbitrary transition, ¢, from U. T,(t) gives
the unique set of base transitions that, collectively, have the same connectivity
as t. For every base transition, there is a corresponding atomic action in the
expression tree. The partition field of node N gives the mapping between
the atomic actions of the subexpression, E’, represented by the subtree with
foot N, and the transitions in the underlying net of the input net. Hence,
any scoping operation on E’ that synchronises the set of transitions Ty(t) =

{t1, ..., t,} will create the set of transitions T}, given by:

T, = ¢(t1) @ 6(t2) © ... © ¢(tn)

where ¢(t) is the equivalence class of ~4 containing ¢. The scoping operation
represented by ¢ can be inserted into the expression tree at the node /N only
if, for every set of base transitions in A € T}, there is a transition ¢’ in U with
Ty(t') = A and A(t') = A(t). Hence, if the set of transitions, 7' computed
in Line 6 has the same size as T}, then ¢ is a suitable representative for a
scoping operation at this point in the expression tree, ¢ can be added to the
set X, and T' can be removed from Tr. The set of transitions 7" will always
contain at least one transition, as ¢ satisfies the conditions for inclusion in
T'. Hence, for each iteration of the while loop, U will decrease in size. If

there are some transitions that can be created by a scoping operator at the
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node N in the expression tree, then INSERT SCOPING is called. Let X be the
multiset of transitions to represent using a scoping operation. Every transition
in X can be represented independently of any other transition. This approach
requires O(] X |?) new basic actions to be introduced. In some cases it is possible
to impose a hierarchy (partial order) on X, based on the size of the set of
base transitions for each z € X. In such cases, only one new basic action is
required for each x € X, giving an upper bound on the number of new actions
introduced equal to | X|.

INSERT ScOPING(N,X)

1 A=90

2 for each z,in X

3 do L = {(t,{m:}) | t € Ty(z) and each n; is a distinct new action}

4 choose any pair (¢,1) € L

5 C={n|{,{n}) e LAY £t}

6 A=AUC

7 replace (¢,1) in L by (t,C + A(z))

8 for each node N’ (visited in depth-first order, starting at N)

9 if N’.type=atomic

10 then while 3(t,,!,) € L such that t' €N.partition(t,)
where N’.partition=[{¢'}]

11 ADD(N',1,)

12 remove (t4,1,) from L

13 ADD ScoOPING(N,A)

The set A, initialised in Line 1 of INSERT SCOPING is used to record the
sets of new actions introduced for each z € X. During each iteration of the
main loop (Lines 2-12), the new actions used in that iteration are added to A
in Line 6. Every new action is scoped by the node with type scoping inserted
into the expression tree by Line 13.

Each transition, z in the multiset X is dealt with independently by the
main loop. Lines 3-7 construct a set, L of pairs of transitions and actions
(transition labels). The presence of an element (¢,!) in L indicates that a

transition with the same connectivity as ¢, and with the label [ is required.
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L is initialised in Line 3 to consist of entries (¢, {n;}), where t € T,(z),
is a member of the unique multiset of base transitions for the synchronised
transition to be represented, and each n; is a new basic action that has not
already been used. One of the elements, (¢,/) of L is chosen (at random) as
distinguished, and the new basic action contained in [ is discarded. The set C,
constructed in Line 5, records the new actions introduced during the current
iteration of the main loop, excluding the one discarded from the distinguished
element of L. The new label assigned to the distinguished element of L in
Line 7 is constructed from C, and the label of z. It is relatively simple to
verify that scoping the set of transitions represented by L by the set of actions

C results in a transitidn with the same connectivity and label as z.

Lines 8-12 traverse the expression tree in a depth-first manner, starting at
N. When an atomic action node, N’, which has a corresponding transition
t, such that (¢,,l,) € L, then ADD is called to create an atomic action node
to represent (t,,l,). Once all of the entries in L have been dealt with, ADD

SCOPING is called to ensure all the new actions are scoped.

ADD(N',1) is used to insert a new atomic action with label ! in a choice
context with an existing atomic action, represented by the node N’ in the
expression tree. Figure 4.20 shows the two ways in which the expression tree
may be modified by a call to ADD(N’,l). If the atomic action represented
by N'is in a choice context (i.e. the parent node of N’ has type choice),
then the new atomic action is added to the existing choice context. If the
existing atomic action is not part of a choice context, then a new choice node
is inserted into the expression tree, as illustrated by (ii) ih Figure 4.20. The
new atomic action nodes inserted into the expression tree by ADD are given
a partition field containing the empty partition, €, indicating that the action
was not originally part of the input net. Labelling the partition fields in this
way has the property that the relationship between partition fields, given by
PARTITION in Section 4.3.4, is preserved, since for any list X, X + ¢ = X.

Hence, for example, in Figure 4.20 (ii), the partition field of the new choice
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node is defined to be [{t}] + €, which is [{¢}] — therefore the partition field of

the sequence node remains as P.

ADD(N',1) is never called with N’ equal to the root node of the expression
tree — such a case could only arise if the synthesised expression is a single
atomic action, a, which implies that any synchronised transitions must arise
as a synchronisation between « and itself. However, it has been shown in
Section 4.2 that synchronising a transition with itself produces an infinite

synchronisation, and only finite nets are considered as input to the synthesis

algorithm.

Sequence Sequence

P P

- T

Choice Choice Atomic ADD Choice

P P ({t} —— {t}]

T, T~ NANE A R
== N /[ \
Atomic Atomic Atomic Atomic Atomic
[{t}] {tH € [{t}] €
At) A(t) 1 At) i

(i) Choi (ii) Non-choice context
1 oice context

Figure 4.20: Adding actions to the expression tree

ADD ScoPING(N, A) is used to insert a new scoping operation at the point
N in the expression tree. Figure 4.21 illustrates the modification made by ApD
ScoOPING. The new node, with type scoping inherits the parent of N, and the
partition field of N. N is made a child of the new node. The scoping operation
acts on the set of new basic actions introduced during the execution of INSERT

SCOPING.
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Scoping
P

ADD ScoOPING
P ————————

/ / \\
Figure 4.21: Adding a scoping operator to the expression tree

4.4.1 Example

In this section, the example introduced in Section 4.3.5 is continued. The net

to be synthesised, ¥, is defined to be an implementation of the expression:

(d5[(d; (00 ({a,a} || {2, 0} || {@,c})) sy a);d) sy dxax[cxbxd sy c]) sy d

The underlying net for 3 is shown in Figure 4.17, and the set of transitions,
Ts.(X), which are not included in Figure 4.17, are tabulated in Table 4.5. Each -
T, entry in Table 4.5 consists of a multiset of base transitions that, collectively,
have the same connectivity as the corresponding transition from T,.(X). For
example, t44 inherits the connectivity of the multiset of transitions {4, t4, %5}
Hence, t44 has arcs of weight 2 that duplicate those of ¢4, and also arcs of
weight 1 duplicating those of ¢t5. Note that every base transition appears in
Figure 4.17.

The scoping synthesis rule is called with SCOPING(Ny, X), where Nj is the
root node of the expression tree shown in Figure 4.19. Line 1 of SCOPING finds
the subset of T, that can be represented by a scoping operation at the top
level of the synthesised expression by calling SCOPE(Ny, Ts.(X)). Table 4.6
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d T, id T,
tas {t1,t0} tar {t1,tun} tos  {t2,ti0}
o {t2,tn} tso {ts3, tw0} ts1 {ts,ti1}

A A wd Ty
0 0
0 0

taa {tus,t22} 0 tss {tis,tas} 0 tas {tis,t22}
0 0
0 0
0

tss {t1s,t23} tss {ti6,taa} tsr {tis, tos}
tss {t17,t24} tsg {ti7,t2s} tao {t2,ti0}
ta {t3, t11} t4o {t4, t5} {a, b} t43 {t5, tﬁ} {a, C}
tas {ta,ta,ts} {b,0} |tas {ta,ts,t6} {b,c} |tss {ts,t5,t6} {c,c}
tyr {tr,ts} {a,b} | tss {ts,to} {a,c} | tag {t7,t7,ts} {b,b}
tso {t7,t8,t9} {b,c} ts51 {tg,tg,tg} {C,C}

s e s S 2| >

Table 4.5: Transitions to be represented by scoping

‘summarises the behaviour of SCOPE(Np, Tsc(X)). The partition field of the

root node, N is:

&1 = [{t1}, {2, t3}, {ts, s}, {ta, tr}, {te, ta}, {t10, t11 }, {t12, t1s},
{t14, t15, t1s, t17}, {t18, t19, t20, tar }, {t22, 23, toa, s }]

Hence, for example, the transitions, tig, t19, t2g, and to; all arise from the same
atomic action in the synthesised expression ({b}, represented by the node Ni3
in Figure 4.19).

The call SCOPE(Ny, T.(X)) performs 9 iterations of the while loop (Lines 3-
10). Table 4.6 shows no, the number of the iteration of the while loop, the
values of the variables U and X at the start of each iteration of the loop, t
the transition chosen in Line 4, T(t), the set of base transitions for ¢, the size
of the set T}, calculated in Line 5, and 7" the set of transitions constructed in
Line 6. If |T"| = |T;], as in iterations 1 and 2, then ¢ is added to X, and the set
T' is removed from the variable T'r. Hence Tr becomes {tag, ..., 151} after the
first iteration, and {tos, t31, ..., t39, ta2, ..., t51 } after the second and subsequent

iterations. Once, U becomes 0, at the beginning of iteration 10, the while loop
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no U X t At) T, (t) |Té| T
1 {tze,...,t51} 0 123 1] {tl,tlo} 2 {tge,t27}
2 | {tes, .- t51} {t26} tos 0 {t2,t10} 4 | {t29,t30,t40,t41}
3 {tgs,t;;l,...,t39,t42,...,t51} {tze,tzs} tog 0 {tz,tlo} 4 {igg,t31}
4 | {taz,...,t30,t42,...,t51} {t26,t28} | ta2 0 {t14,t22} 16 {taz,...,t3g}
5 | {taz,...,ts1} {t2s,t28} | ta2 | {a,b} {t4,t5} 4 {taz,ta7}
6 | {taa,..,t46,t48,...,¢51} {t26,t28} | tas | {a,c} {ts,ts} 4 {t43,ta8}
7 | {taa,ta5,t46,t40,t50, 51} {t26,t28} | taa | {b,b} | {ta,ta,ts} | 6 {t44,t20}
8 | {tas,ta6,t50,851} {t2s,t2s} | tas | {b,c} | {ta,ts,t6} | 8 {tas,ts0}
9 | {tae,t51} {t26,t28} | tas | {c,c} | {ts,t5,26} | 6 {tse,ts51}
100 {t26,t28} | — - - - -

Table 4.6: Call to SCOPE(Ny, Ts.(X))

terminates with X = {26, 28}, and the call INSERT SCOPING(Ny, {t26,t28}) is

made in Line 11.

z | Az)| Tp(z) L C
tas | O | {ti,tio} | {(ts, {71}), (tr0, {ma D} | {1}
tag | O | {t2,ti0} | {(t2, {P2}), (t10, {n2})} | {n2}

Table 4.7: Construction of L for INSERT SCOPING(Ny, {t6, tas})

Table 4.7 summarises the construction of L for the transitions ¢ and tog.
There is a separate entry for each transition z € X (i.e. each iteration of
the main loop). The column labelled T;(z) gives the multiset of base tran-
sitions used to construct the elements of L. The value given for L is that
after Line 7, when the distinguished action has been chosen, and its label
updated. The column labelled C' contains the set of new basic actions in-
troduced during each iteration of the main loop. There are many different,
but equally valid possibilities for the value of L - the new basic actions, and

the element chosen as distinguished could both be different. For example,

L= {(tl, {7242}), (tl(), {’I’/L,E})} is valid for z = t26.
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The calls ADD(Ny, {f1}) and ADD(Ng, {n,}) are made for the iteration of
the main loop of INSERT SCOPING where x = t55. The correspondence between
nodes in the expression tree and base transitions can be seen in Figure 4.19. For
example, NV; and Ny correspond to ¢; and t1o respectively. ADD(N,, {nz}) and
ADD(Ny, {ny}) are called for z = to5. Finally, ADD SCOPING(Ny, {n1,n2}) is
called in Line 13 to scope the two new actions, n; and n,.

The calls to ADD and ADD ScOPING modify the expression tree from
that shown in Figure 4.19 to the one shown in Figure 4.22, representing the

expression:

[{n1,n2} : (@0 7); [(d073); ({a,a} || {8,8} | {@,¢}); (A0 7 Ong)vax[exbxd]] -

The call to SCOPE(Ny, Ts.(X)) made in Line 1 of SCOPING returns with
the set of remaining transitions {tog,t31, ..., t39, t42, ..., t51}, which is used to
initialise the variable T'r. VisIT(Ny, T'r), called in Line 2 of SCOPING traverses
the expression tree in Figure 4.22 in depth-first order (hence the nodes N, to
Ny4 are visited in order). When an iteration node is reached, three calls to
ScOPE are made. For example, when node N, is visited, the following calls

are made:

SCOPE(N3, {t2s, taz, ta3, tas, tas, tac}) (4.4)
SCOPE(N1o, 0) (4.5)
SCOPE(Nu1, {t32, 833, taa, tas }) (4.6)

since, for example, TrN N3.partitz'0n = {tgg,t42,t43,t44,t45,t46}. Table 4.8

summarises the behaviour of (4.4), which results in a call to
INSERT SCOPING(N;;, {t28, t42, t43, t44, t45, t46})

Table 4.9 describes the construction of the set L for each transition to be
represented by the scoping operator. The calls to ADD made from INSERT
ScoOPING are shown in Table 4.10. Line 13 of INSERT SCOPING calls ADD

SCOPING(N3, {ns, ...,n11}), resulting in an expression tree representing the
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Scoping
b1
{n1,n2}
Sequence
No ®1
// [
Choice .
{1 }]
// l \\
Atomic Atomic Iteration
Ni[[{t:}) € Na|  ¢2
{d} n/’ Ly \\
ISequence Atomic » Iteration
N3| ¢3 Niofl{t12}] Nii| ¢s
//ll\\{a} //[[\\
Choice Choice Atomic Atomic Atomic
{{t2}] [{t10}] Nia[[{t14})| Ni3|[{t18}])] Nia|[{t22}]
// | \\ // \\ {c} {b} {<}
Atomic Atomic Parallel Atomic Atomic Atomic
Ng| [{t2}] € Ns| ¢z No|[{t10}] € €
{d} nz//T [ {4} ng ny
Atomic Atomic Atomic
Ng|({ts}] | N7[[{ta}l| Ns|[{te}]
{a,a} {e, b} {a,c}

Figure 4.22: Scoped expression tree
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no U X t | A Ty(t) 7,1 | T
1| {t2s,ta2, - ta6} 0 tag | 0 {t2,ti0} | 1 | {t2s}
2 | {taz, .- tas} {t2s} tsz | {a,b} | {ta,t5} 1 ! {ts2}
3| {tas, - tas} {tos,ta2} tas | {a,c} | {ts,te} 1 | {ta3}
4 | {tsa,..-,ta6} {tos,taz,taz} | taa | {b,0} | {ta,ta,ts} | 1 | {taa}
5| {ta5,t16} {tas,tag, ..., taa} | tas | {b,c} | {ta,ts,t6} | 1 | {tas}
6 {t46} {tzs,t42, .rtas} | tas | {c,c} {t5,t5,t6} 1 {t46}
700 {tos, taz, .. tas} | — | - - - -

Table 4.8: Call to SCOPE(Ng, {tzg, t49, t43, La4, t4s5, t46})

expression:

E = [{ni,ne}: (dO@);[[{ns,....nu}: E)xax[cxbxd]
where B' = (d073 0m);
(({a,a} Bany O7gg O {7} D {b,b,m6, n7} 0725 0 {a, b, n4})
| ({@, b} 07 Unz 0 ng 0ng)
| {@,c} B {c, ¢, 0, n11} O {b,c,n8,n9} 0 {a,¢,ns}) )

(d0ns Ony Ony)
z | AMzx) Ty(z) L C
tag ] {t2,t10} | {(t2, {n3}), (t10, {na})} {ns}
taz | {a,0} | {ta s} | {(t4, {Ra}), (t5, {@,b,na})} {na}
tas | {a,c} | {ts,te} | {(ts, {Ms}). (t6, {a, c,ns )} {ns}
taa | {0,0} | {tastasts} | {(ta, {M6}), (s, {7 }), (t5, {b, b, m6, n7})} {ne,n7}
tas | {b,c} | {ta,ts,t6} | {(ta, {Rs}), (t5, {Rs}), (6, {b,c,m8,m0})} {ns,no}
tass | {c,c} | {ts,ts,t6} | {(ts, {R10}), (¢, {11}, (26, {c, ¢, m10,n11 D)} | {n10,m11)}

Table 4.9: INSERT SCOPING (Ng, {t28, t42, ta3, L4, La5, t46}) — Construction of L
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z | Calls

tos | ADD( n3}) (
ts2 | ADD(N7, {73}) (
ty3 | ADD(Ng, {5}) ADD(N3, {a,c,ns})
ty | ADD(N7,{6}) ADD(Ny,{n7}) ADD(Ng, {b,b,ng,n7})
tys | ADD(Ny7,{7g}) ADD(Ng, {7z}) ADD(Ng, {b, ¢, ng,n9})
tss | ADD(Ng, {Ri10}) ADD(Ng, {711}) ADD(Ng, {c, ¢, n10,111})

Table 4.10: INSERT SCOPING (N3, {tog, taz, ta3, t4a, tas, tas}) — Calls to ADD

The call to SCOPE(Nyg, ), (4.5), has no effect on the expression tree be-
cause there are no transitions from T, to be represented, and hence no need
for an additional scoping operator.

The call to SCOPE(Ni1, {t32, t33, 34, t35}) finds X = {t35}', and hence calls
INSERT SCOPING (Ny1, {t3s5}).

INSERT SCOPING constructs L = {(ts, {712}), (t23, {n12})}, since Ty(t3s) =
{t15,t23}. The nodes in the expression tree representing the atomic actions cor-
responding to the transitions ¢;5 and ;3 were removed by the call to PRUNE.
However, these transitions are still present in Nj,.partition, which has the
value [{t14,t15},{t18,t19}., {t22,t23}]. Therefore the nodes in the expression
tree corresponding to {t15} and {t23} are respectively Ny, and N4, where
Ny corresponds to the transition ¢;; and Ny4 corresponds to t;. Hence
the calls ADD(NVy2,712) and ADD(Ni4, 7o) are made. Finally, the call ADD

SCOPING(Ny1, {n12}) is made, resulting in a tree representing the expression:

[{n1,n2} : (d071); [[{ns, ..., nu1 } = (d D73 07)
; ({a,a} O7n 070 O {7s} 0 {b, b,n6, 17} U725 U {a, b, na})
| ({@, b} Ung U7y 0ng 0 7z)

1X could equally have been chosen to be any of {ts2}, {33} or {t34}
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| ({@,c} O{c,c,ni0,n11} 0 {b,c,ng,ng} U{a,c,ns}))
: (JD ngUne 0ng)] *a* [{ni2}: [(c0772) * b * (€0 n12)]]]]

In each case, the set of transitions returned by the calls to SCOPE, (4.4),
(4.5), and (4.6) is empty. Hence the recursive calls to VISIT have no further
effect on the expression tree because all of the transitions in T, have already
been represented by scoping operations.

During the traversal of the pruned expression tree made by VISIT, some
transitions in T, are effectively ignored. The transitions that are ignored are
those that were created by the action of taking two copies of a net in the
semantics for the iteration operator. Hence, for example the transitionsbin

Table 4.5 that are discarded are:

{ts1,t36, ..s tag, taz, ...y ts1 }

For each discarded transition ¢, the set T,(t} consists entirely of transitions
for which the corresponding node in the expression tree was removed by the
- call to PRUNE. For example, T;(t3;) = {¢3,t11}, and it can be seen from Fig-
ures 4.18 and 4.19 that the nodes corresponding to ¢3 and t;; were pruned.
The construction by SCOPE used to represent the transition . also implic-
itly represents the transition t3; by virtue of the copy of a subnet made in
constructing an implementation of an iteration expression. By looking at Fig-
ure 4.18 it can be seen that t; and t;, which are the base transitions of tsg,

correspond respectively to t3 and ¢;;, the base transitions of t3;.

4.5 Verification of the synthesis algorithm

The proof that the synthesis algorithm presented in Sections 4.3 and 4.4 is
split into two parts. The first part of the proof shows that removing the set of
transitions, 7., from the input net leaves a net which is the implementation
of a box expression from the basic syntax. This result is fundamental to the

reuse of the basic synthesis algorithm described in Chapter 3. The second part
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of the proof shows that the manipulations to the synthesised expression, made
by the SCOPING synthesis rule, results in an expression whose implementation
is isomorphic to the original input net. The essence of the proof is in showing
that the additions made to the synthesised expression by SCOPING correspond
to the creation of a new set of transitions that exactly matches T, the set of

transitions removed at the start of the synthesis process.

4.5.1 Part 1 — Removing transitions

Firstly, it is shown that every transition arising from a synchronisation op-
eration satisfies the conditions for inclusion in T,,. This means that for any
implementation X, of a box expression, F, the transitions in T,.(X) can be
classified into two disjoint sets, Ty, (X), the set of transitions arising from syn-
chronisation, and T,:(X), the set of transitions arising from atomic actions.
This classification, of course, depends on the form of the expression, E, from
which ¥ is derived. For example, the impleméntations Yiof By =(al|@)00
and ¥, of Fy = (a || @) sy a are such that ¥, =;,, 5. However, T,.(X;) con-
sists of a single transition classified as belonging to T,;(X;), while T, (22) = 0,
and the transition in T (23) belongs to Ty, (22).

Proposition 23 Let ¥ be an implementation of a box expression, E, from
the syntax in Table 4.1. Every transition that is added to ¥ by the operation

¥ sy a satisfies the conditions for inclusion in Ty (X sy a).

Proof: Follows directly from the definition of T, the iterative semantics for

synchronisation, and proposition 21. O

The following propositions serve to simplify the problem by showing that
for any net 3, which is the implementation of a box expression from Table 4.1,
the net ¥ © Ty (X) is isomorphic to £' © Ty, (X), where &' = £ © Ty, (%) is the
implementation of a basic syntax expression. This means that the remainder
of the proof in this section does not need to consider the synchronisation

operator.
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Some properties are shown for the net operations LI, @, and © used to give

semantics to box expressions from the syntax in Table 4.1.

Proposition 24 For disjoint nets X1, X, a set of new transitions, T, such
that each t € T is a multiset of transitions from %1, a set of new places S, and

a subset of the places of £,, S’, the following hold:

(El @ (T, l)) Lt 22 = (21 U 22) @ (T, l)
(T D)) (Sl = & (S)e(T,])
e (T, )es = (Ze58)a(T,])

Proof: Each new transition ¢t € T is a multiset of transitions {¢i, ..., tx} from
¥, such that ¢ > {¢;, ..., ¢k} in £; @ (T, ). By the definition of the place
addition operator, each s € S has the form {s, so}, where s, and s, are
existing places. Hence, by their definition, the net operations U, &(S,!")
and ©S preserve the property t < {¢1,...,tx}. Therefore the addition of
transitions commutes with net union, the addition of new places, and

the removal of places. m|

Proposition 25 For any net X, and sets of transitions, Ty and T the follow-

ing hold:
e = X
Te ) = T
Yool = 2o (ThuTy)
e (h,he(T) = %

Proof: Follows directly from the definition of the © and & operators. ]

Let E be any expression over the syntax in Table 4.1, and ¥ be an im-
plementation of E. The next proposition shows that, if all of the transitions

that were added by the synchronisation operator during the construction of

¥ are removed from X, then the remaining net is an implementation of E
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with all of the instances of the sy operator removed. Given the semantics of

synchronisation, this result is intuitively obvious.

Proposition 26 Let ¥ be an implementation of a box expression, E, from
the syntaz in Table 4.1, and E' be the expression obtained by removing every

instance of sy from E. Then ¥ 6 T,,(X) is an implementation of E'.

Proof: By structural induction over the box expression syntax. In the fol-
lowing let ¥ be an implementation of E, and ¥’ be an implementation
of E', the expression obtained by removing all instances of sy from E.
The induction hypothesis is that X is isomorphic to ¥’ @ (T, (X), 1), for
some labelling function [. It immediately follows that X0 T, (X) =i, 2,
by Proposition 25.

Base case: F = «. By definition, E' = F, and any implementation of £
(and therefore E’), ¥, is such that T, (X) = 0. Hence, by Proposition 25,
=X (Ty(X),).

Induction step: In the following let ¥; and ¥} for 1 < 1 < 3 be disjoint

implementations of E;, and E; respectively, where E] is obtained from

E by removing all instances of the synchronisation operator.

e E = FE;sya ¥ =i 2 ® (Tey(X1),!4) follows from the induc-
tion hypothesis. By the semantics for synchronisation, ¥ =,
¥, @ (T, 15), where T is the set of new transitions created by the
synchronisation operation. Hence, ¥ =5, L1 (T (1), l1)®(Ts, Is).
By the definition of Ty, T}y (X) = T}y (Z1) U Ts. Therefore, by defi-
nition of the & operator, ¥ =5, £y & (Tyy(X),1) for I =1, UL,

e FE =F, || B2, E= E\UF,, E = E|;E,: By the induction
hypothesis, £; =5, I} ® (T4 (%;),l;) for 1 < 7 < 2. By the
semantics of parallel, choice and sequence, and Proposition 24,
Y =i B ® (Ty(X1), 1) @ (T5y(Z2),l2). By the definition of Ty,
Tyy(X) = T5y(E1) U Ty (X2). Hence, ¥ =5, X' @ (T, (X), 1), where
I=LuUl.
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e E = [E; x E5 x Ej3]: Follows the proof for the parallel, choice and
sequence operators. It is worth noting, however, that there are two
copies of each ¥; used in the construction of ¥X. Therefore, in X,
there are two sets of transitions corresponding to Ty,(%;) for each
1 < i < 3. By definition, T}, (%) is the union of all the Ty, (%;) used
in the construction of 3. Hence, there is no problem introduced by

the use of two copies of each subnet in the semantics for iteration.

a

Proposition 26 shows that for any net ¥, the implementation of an expres-
sion over the syntax in Table 4.1, then ¥’ =;,, X6T,(X) is the implementation
of a basic syntax expression. The aim is to show that X © T;.(X) is also the
implementation of a basic syntax expression. A crucial observation, is that
Tt (E) = Toi(X © T5y(X)). Hence, all that needs to be shown is that for any
net, ¥, the implementation of a basic syntax expression, then ¥ © T,,(X) is
also the implementation of a basic syntax expression.

The following propositions characterise the form of (sub)expressions that
give rise to transitions that satisfy the conditions for inclusion in Ty, (i.e. those
transitions of T, that are classified as belonging to Ty;). Firstly, it is shown
that every transition that is connected to every entry and exit place in a net
derived from a basic syntax box expression arises from choice composition

(unless the net is an implementation of an atomic action).

Proposition 27 Let ¥ = (5,7, W, \) be an implementation of a basic syn-
tax expression, E. If 3t € T such that %t = X and t* = L° then ¥ is an
implementation of either x or E' (1 z, where A(z) = A(t) and é(z) = {t}.

Proof: By structural induction over the box expression syntax.

Base case: By definition, any implementation, X, of an atomic action

consists of a single transition, ¢t with % = *¥ and ¢* = X°.
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Induction step: In the following let ¥ be an implementation of E, and

Y; for 1 <7 < 3 be disjoint implementations of F;.

e £ = E, || E;: Each connected component of ¥ contains at least one
entry place and one exit places. Suppose there is a transition ¢ such
that % = °X, then X is connected. However, by the semantics of
parallel composition, 3 consists of at least two disjoint components
(corresponding to £, and ¥,). Therefore there is no such transition

t.

e E = E, [J E;: By the definition of ® and the semantics of choice
composition, ¥ contains a transition ¢ such that % = > and ¢* = ¥°
if and only if 3; or ¥, contains a transition connected to every entry
and exit place.‘ Hence, by the induction hypothesis, either E; or E,
has the form z or E' [z, where ¢(z) = {t}. If E; (E,) is x, then
by the éomrﬁutativity of choice composition F can be rewritten as
E,0z (E = E,0z). If E, (E;) has the form E’[Jz, then by the
associativity and commutativity of choice composition, E can be
rearranged into E” [}z where E" = F'0 E, (E" = E, 0 E'), which
is the required form.

e E = E,;E,, E = [Ey x E5 x E3]: By Proposition 5 of Chapter 3,
Y is internally connected. Suppose there exists transition ¢ such
that % = *¥ and ¢* = ¥°. If the entry and exit places of ¥ were
removed, then ¢t would become an isolated transition. Therefore,
to be internally connected, ¥ must consist of entry and exit places
and a single transition ¢{. By the semantics of sequential composi-
tion and iteration, X contains more than one transition. Hence, a

contradiction has been obtained, and there is no such transition, ¢.

O

The next proposition shows that for any net obtained from a basic syntax

expression, and any transition in that net, all the places in the pre-set of that
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transition have the same label (e, @, or x). Similarly for the post-set of the

transition.

Proposition 28 Let £ = (S, T, W, \) be an implementation of an expression

from the syntaz in Table 2.5. For everyt € T:

Vsi,s2 €% 1 A(s1) = A(s2)
Vsi,82 €1° @ A(s1) = Asy)

Proof: By structural induction over the box expression syntax in Table 2.3,

and using the semantics of box expressions. a

It can now be shown that every transition in the implementation of a basic
syntax expression that satisfies the conditions for inclusion in Ty, (i.e. is a

member of T,;) arises from an atomic action in a choice context.

Proposition 29 Let ¥ = (S, T, W, ) be an implementation of a basic syntaz
expression, E. If 3t € T and T' C T such that |[T'| > 2 and t < T" then E
contains a subezpression E' Dz (or 0 E'), where A(z) = A(t) and t € ¢(z).

Proof: By structural induction over the box expression syntax.

Base case: By definition, any implementation, %, of an atomic action

consists of a single transition, . Hence there is no set of transitions

T' C T such that |T"| > 2.

Induction step: In the following let 3 be an implementation of E, and
¥; for 1 <7 < 3 be disjoint implementations of E;. Let ¢ be a transition
in one of the subnets, ¥;, used to construct ¥. The set of transitions
which have at least one arc similar to ¢ in ¥; are given by C' = (%)*N*(t*).

Hence the set T for X; must be such that 7" C C.

e E=E, || E,, E = Ey; E,, E = [E) x Ey % E3): By the compositional
semantics of parallel, sequence, and iteration, the set of transitions

which have at least one arc similar to ¢ in ¥ is preserved from the
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subset ¥; and given by C. Hence, by the induction hypothesis every
transition that inherits the connectivity of a set of transitions arises

from an atomic action in a choice context.

E = E, [0 E;: We consider the case where ¢t € T;. The argument is
symmetric when ¢t € T5. Suppose 7" C T;. By the compositional
semantics of choice, t 1 T" in ¥ if and only if ¢ >t 7" in ¥;. There-
fore, by the induction hypothesis, ¢ arises from an atomic action in

a choice context in this case.

Now suppose T” contains at least one transition from 5. By the
semantics of choice composition, the only point of contact between
¥; and X5 is at the entry and exit interface. Hence every transition
t' € T' which comes from X5 must be connected only to entry and
exit places. Since t > T”, and by proposition 28, ¢ is connected only
to entry and exit places.

By the definition of ®, and the semantics of choice composition,
every place in %t ® *X; has an arc to t’. Hence, by t < 7", ¢t must
be connected to every entry place of ¥, (i.e. % = °L;). A similar
argumént shows t* = ¥,°. Therefore, by proposition 27, ¥, is an
implementation of z or E} [ &, where ¢(z) = {t}. Hence, E has the
form z 0 E,, or (E; 0z) 0 E,.

a

Proposition 29 does not prove the existence of a transition ¢ that has the

same connectivity of a set of transitions, 7’. Instead, it shows that if ¢ does

exist, then it must arise from an atomic action in a choice context. An example

which demonstrates that such transitions do exist is provided by Figure 4.7

in Section 4.2 where t5 >x1 {t1,t4}. The general form of basic syntax expres-

sions that give rise to transitions that have the same connectivity as a set of

transitions is:

E=(E || Bzl ... || En) Oz
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where each E; has the form z; or E} ] z;. For any implementation of E, the set
of transitions 7" = {¢(z1), ..., #(z,)}, is such that ¢(z) >t T'. Proposition 26
shows that removing the set of transitions classified as belonging to Ty, leaves
the implementation of a basic syntax expression. The following proposition
is an analogue of Proposition 26, applied to those transitions classified as

belonging to Ty;.

Proposition 30 Let ¥ be an implementation of a box expression, E, from
the basic syntax. Then X6 Ty (X) is an implementation of a basic syntaz boz

eTpression.

Proof: By Proposition 29, and the commutativity of the choice operator,
every transition in ¢t € T,,(X) arises as the result of a (sub)expression of
the form F (J z, where A(z) = A(t) and ¢ € ¢(z). Let ¥ be an implemen-
tation of E. By the semantics of choice composition, £ & (Tj(t), A(t)) is
an implementation of E [l z. Hence, it has been shown that every tran-
sition belonging to T,; can be represented semantically in the same form
as transitions arising from synchronisation. The remainder of the proof
follows that of Proposition 26, and is a consequence of the commutativ-
ity of the & operator with the other net operators used to implement
the semantics for basic syntax éxpressions. Therefore, ¥ 6 T,(X) is an

implementation of a basic syntax box expression. O

Propositions 26 and 30 are combined in Theorem 3 to give the result that
removing the set of transitions T, (X) from the input net, &, leaves a net that

is a suitable input to the synthesis algorithm of Chapter 3.

Theorem 3 Let ¥ = (S,T, W, )\) be the implementation of a box expression,
E from the syntaz in Table 4.1. The net £ S Ty (X) is the implementation of

an expression from the syntaz in Table 2.5.

Proof: By proposition 26, ¥ © Ts(X) =ise L' © T,:(X), where ¥’ is the

implementation of a basic syntax box expression, and 7,,(X) the set of
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transitions that satisfy the conditions for inclusion in Ty(%), and have
arisen from atomic actions in E. Since T, and T, are disjoint sets
of actions, Tp(X) = Ta(X'), and ¥ © Tye(X) =40 L' © Toe(X'). By
Proposition 30, ¥’ © T,(X') is the implementation of a basic syntax

expression. O

4.5.2 Part 2 - Adding transitions back again (Sound-

ness)

Proposition 31 shdws that the expression tree constructed by the start of line 5
of BOX EXPRESSION SYNTHESIS corresponds to the net ¥ & Ty.. This section
shows that the call to SCOPING in line 5 modifies the expression tree in such
a way that exactly those transitions in T, are represented, and the modified
expression tree corresponds to the input net, ¥.

" Consider the code for Box EXPRESSION SYNTHESIS in Section 4.3.1. A
corollary of Theorem 3, is that the net used to initialise N.net in line 2, can
be synthesised to an expression using the basic syntax synthesis algorithm
described in Chapter 3. Firstly, it is shown that lines 3 and 4 of Box Ex-
PRESSION SYNTHESIS result in an expression tree the same as the one that
would be produced using the synthesis algorithm of Chapter 3 (apart from, of

course, the addition of the Partition field in each node in the tree).

Proposition 31 For any net, ¥ obtained from an expression over the syntax
in Table 4.1, the expression tree obtained by the end of line 4 of Box EXx-
PRESSION SYNTHESIS(X) in Section 4.8.1 is the same as the expression tree
obtained from the CANONICAL BOX EXPRESSION SYNTHESIS algorithm of
Chapter 3 on input LT, (X), provided the same total ordering of box ezpres-
sions is used. Two trees are considered “the same” when they are identical if

the Partition fields of nodes are ignored.

Proof: Follows from the similarity of SYNTHESISE in Section 4.3.1 and OR-

DERED SYNTHESISE in Chapter 3, and the fact that PRUNE removes
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exactly those additional subtrees generated by the modified iteration

synthesis rule.

The modified iteration synthesis rule generates an ordered set of six
subnets (rather than an ordered set of three subnets). For the purposes
of this proof, these subnets will be named %;,...,Xs. The first three
subnets, X; to X3 are obtained in exactly the same way as in the original
iteration synthesis rule in Chapter 3. The expression subtrees synthesised
from second set of three subnets, ¥4 to ¥g are those that are discarded

by PRUNE. m)

It is the construction of the Partition fields that require the two steps
(SYNTHESISE and PRUNE) to generate an expression tree. The Partition field
of a node N encodes a relationship between atomic actions in the expression
represented by the (sub)tree with root N, and the transitions in the net stored
in the Net field of N. It has already been seen that in constructing the net
corresponding to a particular expression, several transitions may arise from
each atomic action in the expression. The Partition field encodes a mapping
representing one way in which the transitions in the net may arise from the
atomic actions in the synthesised expression.

The following proposition demonstrates that the bottom-up construction of
the Partition fields by SYNTHESISE and PARTITION provides a valid mapping
from atomic actions in the synthesised expression to transitions in the net

being synthesised.

Proposition 32 The partition field of each node in the synthesised ezpression
tree created by SYNTHESISE represents a valid mapping between atomic actions
and transitions in the net field of that node. A valid mapping is one where there
exists a construction of the net from the expression such that for each atomic
action, o in the expression, the set of transitions corresponding to « (given by

the mapping) arise from a.
Proof: By structural induction over the synthesised expression.
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Base case: The modified atomic action synthesis rule of Section 4.3.3
sets the partition field of the node to [{¢;}] where ¢, is the name of the
transition in the net being synthesised. Clearly, {a} — {t:} is a valid

mapping for E = a.

The mapping represented by the partition field is from atomic actions
to sets of transitions. The partition field itself is a sequence of sets of
transitions. The correspondence between an atomic action and a set of
transitions in the partition field can be found by traversing the expression
tree in a depth-first fashion. The set of transitions corresponding to first
atomic action visited is given by the first entry in the sequence, and so on.
Once consequence of this representation for the mapping is that it is no
longer possible to manipulate the expression tree so easily. For example,
to change the order of the children of a node it is necessary to update the
partition field of that node, and of all the ancestors of the node. This
is why a canonical ordering is imposed in line 11 of SYNTHESISE before

the partition fields are constructed for that node, and its ancestors.

Induction step: In the folléwing let @1, ..., ¢, be the partition fields
of the nodes Ny, ..., N, respectively, where Ny, ..., N,, are the children of
the node,'N , in order. By the induction hypothesis, ¢; is a valid mapping
for V;, for 1 <1 < n. Consider the type of connective that is represented

by node N.

e N.type = parallel, N.type = choice, N.type = sequence: Per-
forming a depth-first search starting a N visits the nodes of N; in
depth-first order, followed by those of Ns,..., N,. Hence, a valid
mapping is given by concatenating the sequences ¢y, ..., ¢, in order.

This is the partition field created by line 7 of PARTITION.

e N.type = iteration: For the expression E = [E) * Ey x E3}, two
copies of each of the nets corresponding to, E;, E,, E3 are used the

the construction of an implementation of E. The modified synthesis
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rule for iteration, described in Section 4.3.3, synthesises expression
trees NVi,...,Ng. N; and N, both represent the subexpression E,
derived from the two copies of the net corresponding to E;. Since
canonical form expressions are synthesised, the structure of the sub-
trees with roots Ny and Ny will be identical. Hence the order in
which atomic actions are visited in a depth-first search of N; and
N, will be the same. Therefore, the mapping given by ¢; U ¢y,
where U is the list union operation defined in in Section 4.3.4 is a
valid mapping for F; in [E; * Ey * E3]. A similar argument can be

applied to the pairs of subtrees N,, Nj and N3, Ng.

O

The definitions of synchronisation in Chapter 1, and Section 4.2.1 have
been given in terms of the synchronisation of transitions in nets. The following
proposition formalises the relationship between the notion of synchronisation
of sets of actions, and the corresponding synchronisation of transitions, using

the semantics for synchronisation given in Section 1.3.5 in Chapter 1.

Proposition 33 Let F = E) sy a be a synchronisation expression, and ¥ =
(S, T, W, X) be an implementation of E1, and T be a finite multiset of the set
of transitions, T. The multiset of actions in Ey, corresponding to T is given
by: ‘

™ ={¢7'(t) |t e 7}
where ¢ is the mapping from actions in F, to transitions in T, as defined in

Section 2.11. If T is a valid synchronisation, then every synchronisation in:

T, = ¢(a1) © (02) © ... © ¢(a)

where 74 = {a, ..., 0}, is also valid. Furthermore, any synchronisation oper-
ation applied to E; where T is a valid synchronisation, will necessarily create

all the synchronisations in T;.
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Proof: The validity of a synchronisation, 7, depends only on the labels of
the transitions in 7. By the definition of ¢, for an atomic action, «, every
transition in ¢(a) has the same label. Therefore, each synchronisation in
T, is valid if and only if 7 is valid. Suppose 7 is a valid synchronisation,

then every atomic action in 74

must be in the scope of the synchro-
nisation operator. The set of synchronisations, T, consist entirely of
transitions derived from actions in 74. Therefore, every synchronisation

in T, is valid. 0

Corollary 3 The set of transitions arising from synchronisation can be parti-
‘tioned into groups according to the corresponding synchronisation of multisets

of actions in the expression from which they were derived.

The following proposition is central to the approach used to synthesise
synchronisation. It shows that the scoping operator can be used to represent
transitions arising from the synchronisation operator. In fact, the stronger
result that the set of transitions, T, can be represented using the scoping

operator is shown.

Proposition 34 Let E be an expression from the syntaz in Table 4.1, and X
be an implementation of E. There exists an expression, E', from the syntaz in
Table 4.3, such that the implementation of E' is isomorphic to X, and every

transition in Ts(X) results from an application of the scoping operator.

Proof: By induction over the structure of E, it is shown that every syntactic
structure giving rise to transitions belonging to Ty.(X), has an equivalent

form which uses the scoping operator.

Base case: The implementation of o does not contain any transitions

that satisfy the conditions for inclusion in T,.

Induction step:

e E = E,[a: By Proposition 29, the transition, ¢, arising from «

may satisfy the conditions for inclusion in Ty.. If so, there is a
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set of atomic actions in E; which give rise to the transitions T}(t).
By definition of T}, no transition in the set T;(t) is a member of
T,.. Hence, there is an atomic action in E) corresponding to each
transition in Ty(¢). Therefore suppose Ty(t) = {t1,...,ts}, and the
actions aj, ..., a, in E; correspond to ti,...,t,. E} is constructed
from FE) by introducing n — 1 new basic actions, ny, ..., n,_1, which
are not used elsewhere, and replacing each action a; in E;, for
1 <i<n-1by (a;0{m;}). Finally, the action, o, is replaced
by (e, 0{ni1,...,nn-1} + A(t)). The modified form of E is given by
E' = [{n1,...,nn—1} : E}]. By the semantics of choice, the imple-
mentation of E] is isomorphic to the implementation of E; with
transitions duplicating «, .., &, added. By the definition of scop-
ing, the implementation of E’ is constructed from an implementa-
tion of E{ by synchronising then restricting on the set of actions,
ni,...,Nn—1. By the semantics of synchronisation, only one tran-
sition which does not contain any of n,,...,n,_; is created by the
synchronisation operation. This transition, t', is obtained by syn-
chronising the n new transitions added to E;, and has the label
A(t). Therefore, the effect of the scoping operation on Ej is to re-
move the n transitions that were added, and create a single new
transition ¢’ such that ¢' < T;(t). Hence, the implementation of E’

is isomorphic to X.

E = FE, sy A: By Proposition 23, every transition created by the
synchronisation operation satisfies the conditions for inclusion in
T,.. For each transition, ¢ created by the synchronisation operation,
there is a corresponding set of base transitions, T;(t) = {t1,...,tn}-
Let a4, ..., o, be the actions in E) corresponding to ti,...,t,. By
Proposition 33 and Corollary 3, there will be a set of transitions
in T}, corresponding to each of the synchronisations derivable from

ay, ..., op (i.e. ¢(ar) © ¢(as) © ... ® ¢(an)). This set of transitions
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can be dealt with simultaneously using the construction described

above. Repeated application of this process can be used to deal with

all of the transitions created by the synchronisation operation.

e F has a form different from the two cases above: By Propositions 26

and 29, E does not give rise to any transitions that satisfy the

conditions for inclusion in Tj..

a

The construction described in Proposition 34 inserts scoping operators at

the positions in the expression where the original choice or synchronisation

operations were. However, SCOPING and VISIT only consider adding scoping

operators at the root and as children of iteration nodes in the expression tree.

The following proposition justifies this restriction on the position of scoping

operators.

Proposition 35 The only positions that need to be considered for adding the

scoping operators in SCOPING and VISIT are as the root node of the expression

tree, and as children of an iteration node.

Proof: Follows from the soundness of the following axioms:

[Ny« [Ny 2 E]]
[N : Ev] || E»
N :E|0E;

E1; [N : Ey)
[N : Ey); By

[N1 U N3 : E] provided NyN N, =

[N :
N :
N -
N :

E, || B3] provided Vn € N : L(Ey) N {n,A} =0
Ey 1 E;] provided Vn € N : L(Ey) N {n,A} =0
E\; Ey) provided Vn € N : L(E;) N {n,An} =0
Ey; Ey) provided Vn € N : L(Ey) N {n,7} =0

Each set of new basic actions used to create a transition via scoping is

unique, and those basic actions are not used elsewhere. Therefore, there

is freedom in positioning of the scoping operator, provided:

e The scoping operator encloses all of the transitions that contain the

basic actions on which scoping is performed.
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e The scoping operator does not move across an iteration opera-
tion because the mapping between atomic actions and transitions
changes across iteration, and this affects the set of transitions cre-

ated by the scoping operator.

g0

It remains to show that the scoping synthesis rule partitions the set of
transitions, Ty., so that each partition of T,. can be represented using the

scoping operator.

Theorem 4 The call to SCOPING in line 5 of BOX EXPRESSION SYNTHESIS
modifies the synthesised expression tree so that it represents the set of transi-

tions, Ty, that was removed from the input net.

Proof: By induction on the depth of the candidate location for the insertion

of a scoping operator.

Base case: Transitions in T, dealt with by a scoping operator inserted
at the root node of the expression tree. By Propositions 32 and 33,
for any candidate transition, ¢t € Ty, the set of actions in the synthe-
sised expression that should be synchronised to generate ¢ is given by
¢* = {¢7*(#') | t' € Ti(t)}. By Proposition 33 and the definitions of
synchronisation and @, the set of transitions that would be created if
¢* = {a, ..., } were synchronised is given by T; = ¢(c;) ® ... © day,
where each transition in 7; has the same label as t. If every transition
in T; appears in T, then by adding a scoping operation to create t the
group of transitions T; C T, will be dealt with. If not every transitions
appears, it follows by Proposition 34 that the set of transitions Ty, N T;
must be dealt with by a scoping operator inserted at a lower level in the
expression tree. Each iteration of the while loop of SCOPE chooses a
candidate transition from those remaining to be dealt with. If the group

of transitions that would be generated appears in T'r, then the candidate
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transition is added to X, and the group of transitions removed from 7'r.
Once all of the groups in Tr have been checked, those that can be dealt
with are represented by modifications to the expression tree, as described
in Proposition 34. The remaining transitions are returned to the calling

procedure to be dealt with at a lower level in the expression tree.

Induction step: By the induction hypothesis, all transitions that can
be dealt with at a higher level have been removed from the set of transi-
tions remaining to be represented, Tr. It follows that when considering
inserting a scoping operator above a node N in the expression tree, those
transitions ¢ € T'r, such that the atomic actions corresponding to each
t' € T,(t) appear as descendents of n, can be considered as candidates
to be represented at this location. By Proposition 35 the locations for
inserting scoping operators considered by SCOPING and VISIT are suffi-
cient to deal with every transition in Ty.. The argument given above for
the base case can be used again to show that the groups of transitions
that can be represented at each candidate location are identified, and
the expression tree is modified to represent those groups of transitions.

O

Corollary 4 Given any finite net, ¥, which is derived from an expression over

the syntaz in Table 4.1, a call to BOX EXPRESSION SYNTHESIS(X) synthesises

an expression from the syntazx in Table 4.3 whose implementation is isomorphic

4.6 Related problems

The time complexity of the algorithm for Box EXPRESSION SYNTHESIS pre-

sented in this chapter is shown to be polynomial in Section 4.6.1. Section 4.6.2

analyses the areas of non-determinism in the algorithm and presents some

evidence that modifying the algorithm to efficiently produce canonical form

233



expressions may be difficult. A sound axiom system is introduced in Sec-
tion 4.6.4, and the analysis of non-determinism in Section 4.6.2, together with
the results from Section 4.5 are used to show that the axiom system is com-

plete.

4.6.1 Time complexity

The analysis of the time complexity in this section is based on the size of
the input net ¥ = (S, T, W, ). Recall that infinite synchronisations are not
considered, and hence X is finite in size. For simplicity, it is assumed that the
size of each transition label is bounded by some constant. Let n = | S|+ |T| be
the number of nodes in X. There is at most one arc between any pair of nodes
(although this arc may have a weight), and ¥ is bipartite, with bipartition
S,T. Therefore the number of arcs in ¥ is at most |S| - |T| < n?. Hence, it
is sufficient to consider the time complexity of the algorithm in terms of the
number of nodes, n.

The synthesis algorithm of this chapter is largely based on the basic syn-
thesis algorithm of Chapter 3. In extending the analysis of the time complexity
of the basic synthesis synthesis to the algorithm of this chapter, the following

areas are considered:

e The computation of the set of transitions, T},., removed from the input

net in Line 2 of Box EXPRESSION SYNTHESIS in Section 4.3.1.

e The synthesis of an underlying expression, and the computation of the
partition information associated with the nodes in the expression tree

representing the underlying expression.

e The complexity of SCOPING (i.e. SCOPE, VISIT and INSERT SCOPING)
which modify the expression tree to represent the set of transitions T},

that were removed from the input net.
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An investigation into the time complexity of each of the above areas is pre-
sented, followed by an overall analysis of the time complexity for the synthesis

algorithm.

Time complexity of computing T,

The method for computing T, described and analysed in this section is chosen
so that the base transitions T,(t) for ¢ € T can also be found, with relatively
little extra work. The base transitions are used later in the SCOPE and INSERT
ScoPING procedures. The most efficient approach is to compute 7}, once at
the start of the algorithm and store the results for later use, rather than re-
compute T} each time it is needed.

In the analysis below, it is assumed that there is a total order, <; over
the transitions in the input net, such as that defined in Section 2.5.6, and the
comparison t; <; t; between transitions ¢; and t, takes O(1) time?. The fol-
lowing describes the steps that may be used to compute the set of transitions,
T,., and the function Tj.

The transitions are grouped into equivalence classes, according to the rela-
tion ~gp, defined in Section 2.5.4 in Chapter 2. Testing whether ¢; ~gp t, for
transitions ¢; and t, takes O(n) time3. To compute the equivalence classes of
~gpi, cOmparing every pair of transitions in the input net is sufficient. Hence
the time complexity is O(n3). Note that it is also possible to find the canonical
representative for each equivalence class, based on the ordering <;, without
any impact on the overall time complexity.

In computing T, only the canonical representative from each equivalence
class of ~gp need be considered, since if ¢, € T,, and t; ~gu 2, then it

immediately follows that t, € T,.. This optimisation does not have any effect

2This is a safe assumption provided there is some fixed upper bound on the size of

transition labels.
3The analysis in this section assumes an adjacency matrix representation for the net. It

is likely that in practice that an adjacency list representation would be much more efficient.
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on the theoretical time complexity of the algorithm as there will be O(n)
equivalence classes of ~gp.

To check whether a transition, ¢ belongs to Ty, the brute force approach
of taking every pair of transitions ¢;, ¢y and testing whether ¢ > {¢1,72} may
be used. Checking if such a pair of transitions exists takes O(n?) time. There-
fore, computing the set of transitions, Ty, has time complexity O(n?). For
each transition ¢, found to belong to Ty, the canonical representatives of the
equivalence classes of ~g4, to which ¢; and ¢, belong, may be stored without
any additional impact on the time complexity.

T, may be calculated using the recursive definition given in Section 2.5.5,
- and the information computed in the previous steps. As above, T, only needs
to be found for the canonical representative of each equivalence class of ~gy.

It is important to place a bound on the size of Ty(t) for each ¢t € Ty.. From
the definition of 7, it appears that T, may not be computable efficiently, and
that an exponential number of transitions may be introduced to represent a
transition ¢t € Ty, using the scoping operator. However, it can be shown that

for any t € T |T,(¢t)| < n:
Proposition 36 For anyt e T, |Ty(t)| < |T|.

Proof: The input net ¥ = (S,T, W, )) is derived from some expression, F,
from the Box Expression syntax in Table 4.1. By induction over the
structure of E, it is shown that every syntactic structure gives rise to

transitions ¢ that satisfy the property |T(t)| < |T.

Base case: E = a. By the semantics of atomic actions, |T'| = 1(= {t}),
and by the definition of Ty, and Propositions 26 and 29, |T,(¢)| = 1.
Hence, |T;(t)| < |T).

Induction step: By the induction hypothesis, every transition ¢; in the
implementation ¥; = (S;, T;, Wy, A; of E; (for i = 1,2,3) is such that
|T5(t:)| < |Ti|. It is shown that for every transition ¢ in the implementa-

tion, £ = (S, T, W, X) of E, |Ty(¢)| < |T.
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e E=E, || By, E = Ey; E,, E = [E * Ey x E3): By Propositions 26
and 29, every transition in T keeps the same set of base transitions
asin ¥; (4 = 1,2 or 3). That is, suppose t € T (in X) arises from
t; € T, (in X;), then Ty(t) in ¥ is the same set as Tp(t;) in X;.
Therefore, it immediately follows that for all t € T, |T,(¢)| < |T).

e £ = E; U E,: By Proposition 29, it is possible that some t € T,
satisfies the conditions for inclusion in T.. By Proposition 29, every
arc connected to ¢ has weight 1 (i.e. Yz € SUT, W (t,z)+W(z,t) <
1). Therefore, every transition in 73(¢) must be different, and so
Ty(t)| < |T).

e F = E, sy a: Consider a transition ¢ € X, which arises as a result
of the synchronisation operation. It follows from the iterative se-
mantics of synchronisation presented in Section 4.2.1 that there are
a pair of transitions ¢;, ¢, that synchronise to produce t. Without
loss of generality, suppose that there is an a € A(t;), and a @ € A(t2)
which are used to synchronise ¢; and ¢, to obtain ¢. By the assump-
tion that the input net to the synthesis algorithm is finite, ¢, # t.
Consider a transition t' € T,(t), and suppose T;(t)(¢') = 1, then the
problem reduces to showing that |T,(t)—{t'}| < |[T—{t'}|. Now sup-
pose that T;(t)(t') = z. By the definition of the semantics for syn-
chronisation in Section 1.3, it follows that there are valid synchro-
nisations ¢si, ..., ts;—1 such that Ty(¢s;) is the same as Ty(t), except
that there are i copies of t’ rather than x copies. Hence, the problem
reduces to showing that |T;(¢) — z - {t'} < |T — {t/, ts1, ..., tSz-1}|.
Therefore, |T,(t)| < |T.

a

For the analysis of the time complexity of SCOPING, it is useful to be able
to place a bound on the number of additional actions that will be added to

the synthesised underlying expression to represent the set of transitions, T..

237



Corollary 5 The bound on the number of actions that will be added to the

synthesised underlying ezxpression is O(n?).

Proof: The number of actions in Ty, is O(n). By Proposition 36, for each
transition ¢t € Ty, the number of actions in Ty(¢) is O(n). By the code
for SCOPE, it can be seen that INSERT SCOPING is called at most once
to deal with each transition ¢ € T,,, and from INSERT SCOPING, the
number of new actions that are added to represent ¢ in the synthesised
expression is |T;(t)|. Therefore, the bound on the number of new actions

required to deal with all the transitions is T}, is O(n?). O

Time complexity of synthesising underlying expression

This section considers the time complexity of the calls to SYNTHESISE and
PRUNE in Lines 3 and 4 of Box EXPRESSION SYNTHESIS. As has already
been noted the synthesis algorithm is largely based on that of Chapter 3.

There are three differences in the SYNTHESISE procedure:

e The modified atomic action synthesis rule. It takes O(1) time to initialise
the partition field of the node. Hence, the time complexity, of the atomic

action rule remains at O(1), the same as in Table 3.4 in Chapter 3.

e The modified iteration synthesis rule. The synthesis rule described in
Chapter 3 decomposes the iteration net into two isomorphic subnets.
One of these nets is discarded, and the other is decomposed further into
three components. The analysis in Chapter 3 shows that these two steps
take O(n®) time. The modified iteration rule of this chapter decomposes
both of the isomorphic subnets obtained from the first decomposition.

Hence, the time complexity is 2.0(n?), i.e. it remains at O(n?).

There is a further consideration associated with the modified iteration
synthesis rule. Clearly the modification results in a much greater amount

of work for the synchronisation synthesis algorithm compared to the basic
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synthesis algorithm of Chapter 3, since there are an extra three subnets
to synthesise expressions for after an application of the iteration synthe-
sis rule. However, the analysis of time complexity in Chapter 3 does not
take into account the fact that part of the input net is discarded during
an application of the iteration synthesis rule in the basic synthesis algo-
rithm. Hence, the overall time complexity of SYNTHESISE as analysed

in Chapter 3 is not impacted by the modified iteration synthesis rule.

Computing the partition fields. A call to PARTITION is made after each
application of a synthesis rule other than the atomic action rule. By def-
inition, the size of the partition field in a node is bounded by the number
of transitions in the net corresponding to the expression represented by
the node. When the call to PARTITION is made after the application of
the parallel, choice or sequence synthesis rules, the partition fields are
appended to each other, taking O(n) time (assuming a linked list repre-
sentation for the partition field). After the iteration synthesis rule has
been applied, the call to PARTITION performs three list union operations

(each taking O(n) time).

Hence, the inclusion of the call to PARTITION in SYNTHESISE adds an
additional O(n) time to the application of each synthesis rule, apart from
the atomic action rule. Since these synthesis rules have a time complexity
of at least O(n?), there is no impact on the overall time complexity of

the synthesis algorithm.

The most efficient way to implement PRUNE in line 4 of BOX EXPRESSION

SYNTHESIS is to deleted the second set of three subtrees of an iteration node

in the PARTITION procedure. The only purpose of synthesising expressions for

both copies of the subnets of a iteration net is to compute the correct partition

field for the iteration node. Once the partition field of the iteration node has

been computed, the three subtrees can safely be removed from the expression

tree. Marking a subtree as deleted can be done in O(1) time. Hence, PRUNE
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does not have any impact on the overall time complexity of the synthesis

algorithm.

Time complexity of SCOPING

The call to SCOPING in line 5 of BOX EXPRESSION SYNTHESIS uses VISIT
to perform a depth-first traversal of the underlying expression tree and calls
SCOPE at the root node, and the three nodes immediately below each iteration
node. The time complexity of the depth first traversal is O(n?) 4, and SCOPE
will be called O(n) times.

The size of the set of transitions passed to SCOPE is at most |T| (i.e.
O(n)), and decreases as the transitions in T, are represented by additions to
the expression tree. Therefore, the while loop in lines 3-10 is executed O(n)
times during each call to SCOPE.

It is not clear whether T} in line 5 of SCOPE can be computed efficiently.
However, notice that 7} is only used in the construction of 7" in line 6, so
the assumption is made that 7} is not constructed explicitly, when considering
the time complexity of finding 7”. Instead, the multiset of sets of transitions,
é(t1), ..., (ta) is constructed, taking O(n?) time.

Consider #', a candidate transition for inclusion in 7’. By the assumption
on transition label sizes, it takes O(1) time to compare A(t') and A(t). By the
construction used to find Ty, the value of Ty(z) is already available for every
transition x € T'. |

From the definition of ¢, it folows that:

(.’L‘l € ¢(t1)) A (l‘l € ¢(t2)) St =1y

Therefore, to check whether 34 € T : T,(¢') = A, it is sufficient to mark
every transition in the sets ¢(ty),..., ¢(t,) that also appears in Ty(t'), then
JA € T} : Ty(t') = A if and only if at least one transition in each ¢(t;) for

4This is based on Corollary 5, which shows that by the completion of the synthesis

algorithm, the bound on the size of the expression tree will grow to O(n?)
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1 < i < n is marked. The time complexity of this check is O(n3). Lines 7-
10 of SCOPE require O(n) time. Hence, the while loop of SCOPE has time
complexity O(n?).

The size of the set of transitions passed to INSERT SCOPING is O(n). For
each iteration of the loop, the construction of L in lines 3-7 of INSERT SCOPING
takes O(n) time. The depth-first traversal of the expression tree takes O(n?)
time, although at most O(n) nodes will pass the test in line 9 (assuming new
transitions added by ADD are marked so that they are ignored). The while
loop in lines 10-12 has time complexity O(n?), with calls to both ADD and
ADD ScOPING requiring O(1) time. Therefore, the overall time complexity
of both INSERT SCOPING, and therefore SCOPE is O(n*). Hence, the time

complexity of SCOPING is O(n?®).

Time complexity of BoXx EXPRESSION SYNTHESIS

Table 4.11 summarises the analysis of the time complexity of Box EXPRES-

SION SYNTHESIS carried out above.

Line Time complexity
1 N=new node 0O(1)

2 N.net=X e Tse O(n*)

3 SYNTHESISE(N) O(n®)

4 PRUNE(N) not applicable
5 SCOPING(N, X) O(n5)

6 return EXPRESSION(N ) O(n?)

Table 4.11: Time complexity of Box EXPRESSION SYNTHESIS

The analysis of BOX EXPRESSION SYNTHESIS has shown that the theo-
retical bound on time complexity is not any greater for the synchronisation
synthesis algorithm than for the basic synthesis algorithm in Chapter 3. This

is perhaps a reflection that the bound on time complexity found here and in
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Chapter 3 is rather loose. The important result of the analysis carried out in
this section is that the time complexity is polynomial, and hence the algorithm

is efficient.

4.6.2 Non-determinism

In this section, the points of non-determinism in the synthesis algorithm for
synchronisation are investigated. The purpose of the investigation is to provide
a basis for the production of a sound and complete axiom system. Consid-
eration is also given to the possibility of extending the algorithm so that a

canonical form expression is synthesised.

Synthesis of underlying expression

There is one important source of non-determinism in lines 1-4 of Box Ex-
PRESSION SYNTHESIS. The set of transitions, T, used in line 2 is uniquely
defined for any input net, ¥, and the synthesis algorithm for the underlying
net produces a canonical form expression tree. However, in removing T}, from
the input net, ¥, some information about the structure of ¥ is lost. The result
of this is some non-determinism introduced into the step which synthesises the
underlying expression tree.

For example, the implementation of £ = (a;a) || ((a;@) sy a) is shown
Figure 4.23, with the transition belonging to Ty, indicated by dotted lines.
It can be seen that once the set of transitions, T,., has been removed from
the net, the two disjoint subnets are isomorphic to each other. Hence, when
synthesising the underlying expression, the ordering of the subexpressions cor-
responding these subnets does not affect the canonical form of the expression.
The ordering does become important, however, once the SCOPING procedure
is called and further actions are added to the underlying expression. This

source of non-determinism means that the net in Figure 4.23 could equally be
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synthesised to either of the following expressions:

E = [{m}:((m0a);@0n)) |l (a;d)]
E = [{ni}:(a;a@) || ((ny Oa);(@0n))]

¢ ¥

)
)

,
’
/
;
,
.
.
’
’
,
, ’
.
’
,
;

Figure 4.23: Non-determinism as a result of removing T,

Of course, the example in Figure 4.23 is very simple. When each subnet
contains many transitions belonging to T,., and there are transitions in T,

linking subnets together, then the problem becomes much more complex.

SCOPING procedure

There are several points of non-determinism in SCOPING. Each of these are
considered in turn below. An assessment is given of whether each point of
non-determinism has any effect on the output of the synthesis algorithm, and
if so, how difficult it would be to remove.

The while loop in SCOPE considers transitions ¢t € U in an arbitrary order.
Lines 5 and 6 determine whether ¢ can be represented by a scoping operator
at the current location in the expression tree. The check in lines 5 and 6 is
independent of choice of order in which transitions from U are considered.
However, note that in line 10 of SCOPE, several transitions may be removed
from U for each iteration of the while loop. Hence, the order in which tran-

sitions are considered from U, will affect the resulting set of transitions X.
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Recall that each ¢ € X is a representative of a set of transitions that all have
the same base transitions. It can be seen from INSERT SCOPING that it is
the base transitions of ¢ € X that are used to determine the location for the
addition of new actions to the expression tree, rather than ¢ itself. Therefore,
the order in which transitions from U are considered does not affect the form
of the resulting synthesised expression.

The definition of the set of base transitions, T,(t), for each t € T, is based
on an ordering, <; over the transitions in the input net. To some extent, <;,
defined in Section 2.5.6, is based on transition names. Hence, it is conceivable
that the choice of transition names may influence the form of the synthesised

expression. T is used in two places as a result of a call to SCOPING:

e In line 5 of SCOPE, T;(t) is used in the construction of T}, a multiset of
transitions that determines whether ¢ may be represented by a scoping
operator at the current point in the expression tree. This use of T} is not
sensitive to any change in the transition names of the input net because
such a change will affect T;(¢') and T(u), used in line 6 of SCOPE, in the

same way.

e T} is used in the construction of L in line 3 of INSERT SCOPING. L
determines the locations in the expression tree where new actions are
inserted using ADD. Suppose that the choice of transition names in the
input net affects the ordering of ¢; and ¢, and causes a new action to be
inserted at the action corresponding to ¢ instead of ¢;. By the definition
of <;, A(t1) = A(t2), and by the definition of T}, t; < t;. Hence, it
follows that ¢; and t, are synthesised to atomic actions the same choice
context. Therefore, provided the transition ordering <; is taken into
account when sorting subexpressions in SORT (line 11 of SYNTHESISE),
the ordering of the atomic actions corresponding to ¢; and ¢ will change
as the ordering of ¢; and ¢, changes. Note that in SORT, <; will only come

into play when comparing syntactically equivalent expressions. Hence,
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this modification does not have any effect on the underlying expression

that is synthesised.

There is some non-determinism in the construction of 7" in line 6 of Scop-
ING. The definition of 7" ensures that every transition ¢’ € T' has a unique
set of base transitions. Hence, the order in which transitions are considered
as candidate members of T’ will affect the contents of 7'. However, it is only
the size of T" that is important, and not the exact transitions contained in 7".
Therefore, the choices in construction of 7" have no effect on the form of the
synthesised expression.

The order in which the transitions x € X are considered in INSERT SCOP-
ING has an impact on the ofder in which new action names are used in the
synthesised expression, and where several new actions are added at the same
point, on the ordering of the new actions in the expression tree. The num-
ber of outcomes for the synthesised expression can be reduced by imposing
a deterministic order on the transitions in X. One possibility is to associate
a word with each transition z € X, constructed by writing down in order
the transitions in T;(x). The ordering could be defined by the location of the
corresponding atomic action in the underlying expression tree (for example,
an ordering based on a depth-first search of the expression tree would be suit-
able). Then, the lexicographic ordering of the words determines an ordering
for the transitions in X. This ordering could also be used to provide a canon-
ical choice for (¢,!) in line 4 of INSERT SCOPING. Finally, a fixed order (for
example, n,,ng, N3, ...) for the new action names that are introduced in line 3
of INSERT SCOPING could be imposed.

Unfortunately, the choice of transition names in the input net can still
have an effect on the location of new actions, due to the problem with the
information lost about the structure of the input net when Ty, is removed. For

example, Figure 4.24, shows the implementation of

E=((all (b)) sy a) || (|| (@c)) sy a)
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where the dotted transitions are those belonging to T,.. Depending on the
choice of ordering of transition names, the synthesised expression may be either

of the following:

E = [{n,ne}: (m0a) |l (n20a) || (72 0@);0) || (A2 D@); )]
E = [{nine}: (mlUa) |l (n2Ua) |l (72 02);0) || (A1 0@);c)]

& ‘\ &

Figure 4.24: Non-determinism when adding new actions to represent transi-

tions in T5,

Summary

The investigation into the points of non-determinism of the synthesis algorithm
presented in this chapter has shown that in order to generate canonical form
expressions, some account of the structure, that the set of transitions Ty,
provides to the input net, needs to be taken.

The main result is that if a canonical ordering for the transitions in the
input net is available, and it is used-, then the synthesis algorithm will provide
a canonical form expression. In Section 4.6.3, this result is used to place some
bounds on the time complexity of an algorithm for the syntax in Table 4.1,

which synthesises canonical form expressions.
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4.6.3 Bound on time complexity of canonical synthesis

algorithm

In this section, the complexity of synthesising canonical form expressions is

related to the complexity of GRAPH ISOMORPHISM, defined in Section 2.4.3.

Box isomorphism

X ) ) Net
%24 1%
< <
2l o =18
= T AR
[ 3 B ~ 10
2, 2,
w w
Equality
E 1 ) E 2 Expression
) 2
< <
2| ~ ~ |8
1] w
Equality
Ci C, Canonical
® Expression

Figure 4.25: Relationship between the complexity of problems

Figure 4.25 gives a diagrammatic view of the relationship between the time
complexity of the equivalence problem for nets, expressions, and canonical form

expressions, for net semantic isomorphism.

e Nets: Let 3,, ¥, be implementations of expressions over the syntax
in Table 4.1. The complexity of checking whether ¥; =;,, ¥, is clearly
bounded by the complexity of GRAPH ISOMORPHISM. Note that it may
be the case that the class of nets to which ¥, and ¥, is sufficiently
restricted that the problem is éasier than that of the generic GRAPH
ISOMORPHISM problem (such as is the case for the basic Box expression

syntax used in Chapter 3).

e Expressions: Suppose that ¥; and ¥, are synthesised to expressions
E,, E, over the syntax in Table 4.3. It has been shown that the synthesis
can be completed in polynomial time in Section 4.6.1. Therefore, if the

equality of F; and E,, for net semantic isomorphism, can be compared
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in time polynomial in the size of ¥; and ¥,, then it follows that the

comparison of ¥; and ¥, can be completed in polynomial time.

e Canonical Expressions: It is a trivial task to compare thé equality
of canonical form expressions C; and C3. Therefore, using the same
argument as above, if a polynomial time algorithm (based on the size of
the nets ¥; and ;) can be found to rewrite an expression into canonical
form, then the tasks of comparing nets, and comparing expressions must

also have polynomial time complexity.

Hence, the unknown time complexities, indicated by (?) in Figure 4.25 are
all related. Based on the fact that it is not known whether an efficient algo-
rithm for GRAPH ISOMORPHISM exists (i.e. it is not known whether GRAPH
ISOMORPHISM is P or NP), it may be difficult to classify the unknown com-

plexities in Figure 4.25.

In the following section, it is shown that for arbitrary expressions over the
syntax in Table 4.3, the problem of checking the equality of expressions (or the
nets that may be derived from them) for net semantic isomorphism, necessarily

has the same time complexity as the generic GRAPH ISOMORPHISM problem.

Scoping equivalence and GRAPH ISOMORPHISM

In this section, it is shown that any solution to SCOPING EQUIVALENCE pro-
vides a solution to GRAPH ISOMORPHISM. This results places an upper bound
on the time complexity of SCOPING EQUIVALENCE to be the time complexity
of GRAPH IsOMORPHISM (It also places a lower bound on the complexity of

GRAPH ISOMORPHISM
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SCOPING EQUIVALENCE

INSTANCE: Expressiohs E,, E, over the syntax in Table 4.3.
QUESTION: Is E) =;,, E57

(i.e. Are the implementations of E; and E, isomorphic?)

GRAPH [SOMORPHISM

INSTANCE: Graphs G = (V, E), G' = (V, E')

QUESTION: Are G and G’ “isomorphic”, that is, is there a one-to-one

function f : V' — V such that {u,v} € E if and only if {f(u), f(v)} € E'?

Let G = (V,E), G' = (V',E’) be an arbitrary instance of GRAPH ISO-
MORPHISM. A corresponding instance of SCOPING EQUIVALENCE can be con-
structed from G and G'. Here, the construction of an expression E;, from G
is described. The construction of Ey from G’ follows an identical process.

Suppose V = {v1, v2, ..., v, } is the set of vertices in G. A base expression,
E, is constructed, which represents the vertices in GG, but not the edges. Let
Ey =1z, || 22 || ... || n, where z; is an action name corresponding to vertex v;,
for 1 <4 < n. The labelling function, x, mapping action names to actions is
such that u(z;) = {a} for 1 £ i < n. Each edge, (vj,v;;) € FE is represented
by a synchronisation between the corresponding pair of actions in E,. For
example, suppose (vi,v3) € E, then the representation of the edge could be

added to E} as follows:
[N :(ziOm) | 22 || (23 077) || ... || 2]

where N is the set of new actions, that have been added to represent the syn-
chronisation (i.e. N = {n;} in this case). Every edge in E may be represented
in the same way — the only constraint is that a different “new” action is used
to represent each edge.

It is clear that the construction of E; and F5 from G and G’ can be com-
pleted in polynomial time. Also, the form of expressions used to represent
graphs are such that the size of the nets corresponding to these expressions

are polynomial in the size of the expression. Therefore, the problem of check-
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ing the isomorphism of nets X, X,, which are implementations of expressions
over the syntax in Chapter 4.3 necessarily has the same time complexity as
the generic GRAPH ISOMORPHISM problem. Hence, the time complexity of
SCOPING EQUIVALENCE is the same as the time complexity of GRAPH Iso-
MORPHISM.

U3

v Vg
0

Figure 4.26: Construction of an expression from a graph

Figure 4.26 shows a graph, GG, and the implementation of the expression

E1, constructed from G, where:
G = ({v1,v2,v3,v4}, {(v1,v3), (v1, va), (v2, v3), (v2, va), (v3, v4)})
The base expression, representing the vertices of G is given by:
Ey=allallalla
The resulting expression, E;, constructed from E, by representing the set of
edges in G is:
E = [{ni,ng,n3,n4,n5}: (e0ny O0ny) || (@0 n30ny) || (a 077 073 Ons) ||

(a 075 Ong 073)]
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Conclusion

The investigation into the time complexity and non-determinism of the syn-
chronisation synthesis algorithm has not ruled out the possibility of an efficient

algorithm that synthesises a canonical form expression:

e The proof of the equivalence of complexity of SCOPING EQUIVALENCE
and GRAPH ISOMORPHISM uses a construction that is more expressive
than can be derived from a expression over the syntax in Table 41
The semantics of the synchronisation operator place some quite severe
restrictions on the structure of nets that may be represented, in compar-
ison to the scoping operator. For example, it is possible to represent the
structure of an arbitrary graph, but this is at the expense of every action
representing a vertex of the graph having a unique label. Therefore, it
is conceivable that the class of expressions over the syntax in Table 4.3
that can be derived from an expression over the syntax in Table 4.1 may
be sufficiently constrained that the problems of checking equivalence and

finding the canonical form become easier.

e The time complexity of GRAPH ISOMORPHISM has not been classified as
either P or NP. It is an open problem whether an efficient algorithm exists
for GRAPH ISOMORPHISM, and if one is found, the implication is that
there is an efficient algorithm to synthesise canonical form expressions

for nets derived from the syntax in Table 4.1.

The results of the investigation into the time complexity and non-determinism
of the synthesis algorithm do not affect the possibility of the production of a
sound and complete axiom system. However, these results do bear a relation
to the time complexity of any proof strategy that would be used to apply the
axioms and show the equivalence of a pair of expressions over the syntax in
Table 4.1.

There are tools, such as nauty that use a heuristic approach to solve GRAPH

IsoMORPHISM. Nauty also allows an arbitrary graph (or net!) to be relabelled
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in a canonical form. Such a tool could be used to provide an algorithm that
synthesises canonical form expressions, and also drive the application of axioms

in a proof strategy.

4.6.4 Axiom system

In this section, an axiomatisation for the Box expression syntax in Table 4.1
is presented. The axiomatisation, like the synthesis algorithm, relies on the
extra expressiveness provided by the scoping operator. Hence, the normal
and canonical forms of expressions will use the syntax in Table 4.3 — i.e. all
occurrences of the synchronisation operator will be rewritten in a form using

the scoping operator. The axioms are presented in four groups:

e The axioms which provided the axiomatisation for the basic syntax in

Chapter 3 are reused here.

e The axioms introduced in Proposition 35, which allow all scoping opera-
tors to be moved to immediately inside the enclosing iteration operator,
or the top level of the expression, if there is no enclosing iteration oper-

ator.

e An axiom which allows the actions from the basic syntax, which are at
the overlap between the basic syntax and synchronisation to be rewritten

in scoping form, and vice versa.

e An axiom which allows all instances of the synchronisation operator to
be rewritten in scoping form, and vice versa. For simplicity, this axiom
is presented as a symmetric pair of rewriting rules that may be applied

from left to right only.

Each of the axioms is shown to be sound. In Section 4.6.4, the axiom system
is shown to be complete as well. Finally some examples of the application of

the axiom system are presented in Section 4.6.5
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The axioms relating to the basic syntax are shown below. The soundness
for these axioms was discussed in Section 3.5.5 in Chapter 3, and will not be

repeated here.

(Ev; B); B3 = Ey;(Ey; Es)
(E,\0E,)0E; = E 0(E;0E3)
(Ev || B2) || Bs = En|l (B2 || Es)
E.0E, = E,0E
E\||E; = Ex| E
The axioms which allow the positions of the scoping operators to be moved

into the same positions used by the synthesis algorithm are given below. The

soundness of these axioms follows directly from the semantics of the scoping

operator.
[N1:[N2:E]] = [N1UN,: E] provided NN Ny = ()
[N:E\]||E; = [N:E;| E] provided Vn € N : L(E;) N {n,n} =0

[N:E]0E;, = [N:E,[E;] provided Vn € N : L(E;) N {n,A} =0
Ey;[N:E)) = [N:Ey;E;) providedVn e N: L(E)N{n,A} =0
[N:E\);E;, = [N:Ey;E,) provided Vn € N: L(E) N {n,A} =0

The following axiom allows certain atomic actions in the basic syntax to
be rewritten in a form using the scoping operator. This axiom is more general
than required to cope with the overlap between the basic syntax and synchro-

nisation, but nevertheless does not cover all possible representations that are

valid semantically.
(By || Bo || - || (=1 || Ex)--)) Ua = [{n1, .., nea} - (B1 O) || (B2 0%3) ||
o | ((Be=1 Ome2y) || (B O ({n1, ooy i1} + @))).)]

When applying the axiom from left to right, note that each new basic action,
n; should not already be used elsewhere. The soundness of this axiom follows

from the semantics of scoping, and from Proposition 27.
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& 6

Figure 4.27: Choice axiom and multiple subexpressions

It is necessary for the axiom to consider multiple subexpressions, rather
than a pair, because it needs to match the behaviour of INSERT SCOPING.
For example, for an implementation of E = (((a || ) U¢) || d) e, shown in
Figure 4.27, t. satisfies the conditions for inclusion in T, (as does T;), and
Ty(te) = {ta,ts ta}. Therefore, the expression can be synthesised to (among

others):
E' = [{ni,ng,na} : (al{ny,c} Oz) || (0071 O7) || (d 0 {n2,n3,e})]

The subexpressions E; for 1 < i < k in the axiom above can be restricted to be
of the form E! {1 z for some atomic action, z, without affecting the completeness
of the axiomatisation. Since the axiom is sound in the form presented, the only
effect of imposing the restriction is to complicate the axiom.

The definition of the semantics for synchronisation given in Section 1.3.5
is used in the rewriting rules which convert between synchronisation form
and scoping form. The first rule converts the synchronisation operation in an

expression to scoping form:
Esya— [N :FE|

There is a condition in that F is required not to contain any synchronisation
operations — i.e. the conversion from synchronisation to scoping form must be
done in a bottom up fashion. The set of scoping actions, N’, and the modified
expression, E' are derived as follows:

Let A® denote the set of action names, z, in E such that {a,a} Nu(z) # 0,

and 7 be a finite multiset of A*. A function, f is defined, which expands
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every action arising from a previous rewriting of a synchronisation operator in
the multiset 7. Suppose N, is the set of basic actions appearing in scoping
operations in F, A is the set of all action names in F, and for a multiset 7,
define X = {z € 7 | p(z) N Nsc = 0}. The expanded multiset corresponding
to 7 is given by:
flr) =7+ (Ux)x € A (u(=) N (u(z) N Nyo)) # 0)
T—

The set of synchronisations and corresponding labels are given by:

Ay = (1) |17l 2 2 A min(Zoer p(2)(0), Boerp(z) (@) 2 |7| - 1}
() = ((Beern(@) = ((I7] = 1) - {a,a})) -

A,y and ! are the equivalent action based synchronisations corresponding to
the transition based synchronisation semantics given in Section 1.3. The use
of the function f ensures that each a,, € A,, corresponds to the net based
definition of base transitions for a synchronised transition. In fact, f does
not find the exact base actions corresponding to the base transitions, but
instead representatives from the same atomic choice contexts as the real base
transitions.

The set of actions to scope by, N’ (initially empty), and the modified
expression, E' are constructed from F by applying the following process for

each synchronisation a,y € A,y
e Construct L = {(z, {7:}) | z € as, and each n; is a distinct new action}.

e Choose any pair (z,1) € L, and define C = {n | (¢/,{A}) € LAz #
z}. Add the set of new basic actions, C to N'. Replace (z,!) in L by
(z,C + l(asy))-

e For each (z,!) € L, replace z in F by (z 01).

Notice that this process follows the algorithm for INSERT SCOPING described

in Section 4.4. The process is simpler when working on expressions, compared
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to nets, because no account needs to be taken of the one to many mapping
between actions in expressions and transitions in nets. The soundness of this
rewriting rule follows from the semantics of synchronisation and scoping, and
the correctness of INSERT SCOPING.

The second rewriting rule implements the reverse process of the first rule.
Rather than a complex procedure to construct the resulting expression, there
is a complex precondition that must hold before the rule can be applied. The
precondition ensures that there is a representative in scoping form for every
synchronisation that would be created by the application of the syrichronisa—
tion operator.

[N:E] > E'sya

A similar condition to the first rewriting rule is required, in that £ must not
contain any applications of the synchronisation operator — i.e. the conversion
from scoping to synchronisation form must be done in a top down fashion.

E' is constructed from F by removing every atomic action «, such that
NnNna # 0. An intuitive notion of the construction of E’ from FE is given
by the fact that £ = F rs N. The precondition to the application of this
rewriting rule is that the first rewriting rule may be applied to E' sy a to
produce [N : E].

Formally, and eliminating the need to make the correct choices a£ the points

of non-determinism, the precondition may be checked by the following process:
e Construct E' from F, as described above, and set N' = N.

e Find the set of synchronisations, and corresponding labels, by applying

the definitions for A,, and [ to E’ sy a.

e For each synchronisation as;, € Ay, suppose asy = {z1,22,...,2,} and

find a set of actions z, 5, ...,z in F, such that for 1 <i < n:

— (@) N (N UN) £
— 2} is in an atomic choice context with z;
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— 31 < j < n such that u(z})ﬂﬁ’ #0

— p(25) NN = Urcicn,izj #(x)

If there is no set of actions meeting the conditions above, then the rewrit-
ing rule may not be applied. Otherwise, remove p(z;) NN’ from N', and

continue with the next element of A,,.

e When all synchronisations in A, have been checked, the rewriting rule

may be applied if and only if N’ = 0.

The soundness of this rewriting rule follows from the soundness of the first

rewriting rule, and the associativity and commutativity of the choice operator.

Completeness

Let ¥ = (S, T, W, A) be an implementation of an expression, E, over the syntax
in Table 4.1. There are many possible output expressions from the synthesis
algorithm, given input X, due to the points of non-determinism in the synthesis
algorithm. The idea of the completeness proof presented in this section is to
show that for any member, E’, of the class of output expressions, F can be

rewritten as E', using the axioms introduced in the previous section.

Proposition 37 Let E be an ezpression over the syntaz in Table 4.1, and E'
be the output of the synthesis algorithm, when given an implementation of E

as input. It is possible to rewrite E into E', using the azioms of Section 4.6.4.

Proof: The aim of the proof is to show that any expression produced by the
the synthesis algorithm can also be obtained using the axiom system. In
order to do this, two areas need to be addressed. Firstly, the synthe-
sis algorithm proceeds in a different order to the way in which axioms
are intended to be applied. The synthesis algorithm proceeds by the

following two steps:

e Synthesise the underlying expression, and rearrange the order of

subexpressions.
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e Add new actions and scoping operators into the underlying expres-

sion to produce the final synthesised expression.

In comparison, the strategy for applying the axioms of Section 4.6.4 is

as follows:

e Convert all synchronisation operators, and those actions arising
from the basic syntax, which overlap with the expressiveness of

the synchronisation operator, to scoping form.

e Move all the scoping operators outwards as far as possible (i.e. until

an iteration operator, or the outermost expression is reached.)

e Rearrange the order of the subexpressions.

Secondly, for each point of non-determinism in the synthesis algorithm,
as analysed in Section 4.6.2, it is necessary to show that the possible
outputs associated with the non-determinism can be generated using

the axiomatisation.

Consider an arbitrary expression E over the syntax in Table 4.1, with ¥
being an implementation of £. The underlying expression produced by
the synthesis algorithm, given input ¥ is effectively E with all synchro-
nisation operators and some atomic actions in choice context removed,
and the order of subexpressions in E rearranged. Bearing this in mind,
the representation of the set of transitions, Ty, is treated first. The ax-
iom which converts a synchronisation operator to scoping form follows
the procedure INSERT SCOPING. All that needs to be shown is that for a
synchronisation, 7, corresponding to a transition ¢ € T,,, the expanded

multiset of actions, f(r) corresponds to T(t).

It is valid to consider 7 in terms of actions in an expression rather than
the normal transitions in a net because E does not contain any synchro-
nisation operators. When every action z € 7 is such that u(z) N\ Ny, = 0

(i.e. z has not arisen from a previous conversion from synchronisation
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to scoping form), 7 matches T},(t) exactly. Note that if 7 were used in
place of f(7), the axiom would still be sound — however, the form of

expression produced would not match that of the synthesis algorithm.

The expanded multiset of actions is necessary to deal with actions that
take part in a scoping operation. Suppose 7 contains an action z such
that p(z) N Ny, # 0. Without loss of generality it may be assumed
that u(z) is of the form {n;,...,ni,aj1,...,ajm}, where n;; € Ny for
1< g <k, and aj, € N, for 1 < h < m. Furthermore, there are actions
Tty ..., Tix in E such that p(z;,) = {R,} for 1 < g < k. In other words,
the set of actions A, = z;;, ..., Ty, T is a scoping form representation of
a synchronisation. The expanded synchronisation, f(7) replaces z by |
the set of actions, A;. By the definition of INSERT SCOPING and the
synchronisation to scoping form axiom, it can be seen that the actions
in A; are in atomic choice contexts with the actual actions that were
synchronised. Hence, in terms of choice contexts (in expressions) and

connectivity (in nets), the multiset f(7) matches T} ().

The axiom for reWriting actions in atornic choice contexts into scoping
form is more flexible than is required for rewriting the set of actions
corresponding to T,;. No expansion, similar to that needed for syn-
chronisation, is required here. However, in the synthesis algorithm an
atomic choice transition may be included in T,; by virtue of another tran-
sition arising from synchronisation - for example in an implementation
of ((a || {@,b}) sy a || b) 00. If a transition arising from synchronisation
is used in this way, then it is necessarily the case that the base transitions
are all in the same choice context, and this is covered by the fact the
axiom deals with an arbitrary number of subexpressions in the choice

context (rather than a pair of subexpressions).

INSERT SCOPING adds the scoping operator at the highest possible point

in the expression tree. In comparison, the application of the synchroni-
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sation to scoping axiom places the scoping operator at the same point as
the synchronisation operator it replaces. By definition, the basic actions
which are scoped only appear within the scope of the scoping opera-
tor. Therefore, by the set of scoping axioms, and Proposition 35, the
axiomatisation can be used to move the scoping operators into the same

positions that would be obtained from the synthesis algorithm.

All the points of non-determinism in INSERT SCOPING, such as the choice
of new action names, and the choice of the distinguished element of
L are present in the corresponding axiom. Therefore, the same class
of expressions resulting from these points of non-determinism can be

obtained from both the axiomatisation and the synthesis algorithm.

The remaining point to deal with is the positions that new actions are
added by calls to ADD. So far, it has been show that the axiomatisa-
tion will not necessarily add the actions in exactly the same location,
but only in the same atomic choice context. However, the associativity
and commutativity axioms for choice allow an arbitrary reordering of
subexpressions in a choice context. A similar argument applies to the
rearrangement of subexpressions to match the order in the underlying
expression produced by the synthesis algorithm. Note that when all the
scoping operators have been moved to match the locations used by the
synthesis algorithm (i.e. immediately with iteration (sub)expressions,
and surrounding the entire expression), then there are no constraints
on the reordering of choice and parallel composition contexts, and on
the bracketing of choice, sequence, and parallel composition contexts.
Therefore, for any output expression E’ from the synthesis algorithm on
input ¥, the axiom system can be used to rewrite E as E’, where ¥ is

an implementation of E. 0O

Theorem 5 The aziom system presented in Section 4.6.4 is complete.
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Proof: Let E; and E, be two expressions over the syntax in Table 4.1,
and X; and X, be implementations of E; and F, respectively. Suppose
Y1 =iso L2, then it must be shown that F; may be rewritten as Ey using

the axiom system.

Given X; as input to the synthesis algorithm, any one of the expressions
in the class E¢ may be produced as output, due to the non-determinism
in the synthesis algorithm. By Proposition 37, E; may be rewritten,
using the axiomatisation, into any member of E¢. Since £y =5, X1, the
output of the synthesis algorithm on input ¥, will be some member of
Ec¢. Therefore E; may be rewritten, using the axiomatisation, into any

member of E¢.

Suppose F is some member of E¢, then by applications of the axioms,
both F; and E; may be rewritten as E. Therefore, E; may be rewritten
as F, by concatenating the proof E; = FE with the proof that Ey =
E written in reverse order (The synchronisation to scoping axiom may
only be applied in one direction. However, the corresponding scoping to

synchronisation axiom allows rewriting in the reverse direction). a

4.6.5 Examples

In this section, some properties of the synchronisation operator are demon-
strated using the axiom system of Section 4.6.4. A list of all the axioms is
presented in Table 4.12.

The axiomatisation consists of axioms (BS1-BS5) dealing with ordering and
bracketing of subexpressions from the basic syntax, axioms (SP1-SP5) relating
to the position of scoping operators, axiom CS1 for rewriting actions in atomic
choice contexts in scoping form, and rewriting rules (SS1-SS2) dealing with the
conversion between synchronisation and scoping forms. The axioms marked
by “*” have preconditions which must be satisfied before the axiom can be

applied — see Section 4.6.4. The procedure to apply the rewriting rules SS1
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Axiom Name
(E1; By); B3 = Ey; (Ey; E3) BS1

(E1 0 Ey) D Es = E, 0 (B, 0 Bs) BS2
(Ev|| B2) || B3 = By || (B2 || Es) BS3
E.0E,=F,0F; BS4
Ei || B2 = E; || B BS5

[N :[N2: E]] =[NiUN;: E] SP1*
[N:E\] || E2 =[N : Eq || By Sp2*
[N:E|0E; =[N : E 0B, SP3*

Ei;[N : Ej) =[N : Ey; Es)] SP4*

[N : E\;E; =[N : E); Es) SP5*
(B | B || || (Bt | B)-)) D= | Os1

[{n1, cyme—r} : (B O || (B2 0%2) || ... ||
((Bx—1 Om2y) || (Bi O ({m1, ..., mk-1} + @)))..)]

Esy a— [N':E' SS1*

[N:E]|-> E'sya SS2*

Table 4.12: Axiomatisation of Box expression syntax in Table 4.1

and SS2 may also be found in Section 4.6.4.

Equivalent synchronisations

In this section, the equivalence of the following expressions is shown, using the

axioms of Table 4.12:

E; = ((@]b) | @Dv)sya
E; = (@l @0v))syb
By = ((all®) | (@00) D0

The implementation of the (equivalent) expressions is shown in Figure 4.28.
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Figure 4.28: Implementation of E;, E, and E3

Er = (@]l (@0b) sya
= [{m}:(aDa10%) | @0n, 0b)) (SS1)
= ((a|lb) |l @00) sy b (SS2)
= E,
= [{m}:(a0b0@) || @060n1)] (SS1)
= ((a|lb) | @Db)00 (Cs1)
= E; '

Order of synchronisation

In this section, the equivalence of the following expressions is shown, using the

axioms of Table 4.12:

B = ((a]l {ab}) sy allB)syb
B, = (({@b} %) sy blla)sya
By = (((all ab})0b) 1|D) sy b
B, = ({ab} 115)0a) | a) sy a

The implementation of the (equivalent) expressions is shown in Figure 4.29.

The first proof demonstrates that E; = Es.
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<
a b ab 0

Q)
<o

X X X

Figure 4.29: Implementation of E;, FE5, E5 and Ey

By = ((@|l{ab}) sy a|lb)syb

= ({{m}: (a0m) || ({ab} O {nab})] || B) sy b (SS1)
= [{ne,na,ne} - [{m}: (@Un1 U7) ||

({ab} 0 0 {n1b} 073)] || (00 {n4a} O {nang})] ~ (SS1)
= [{ni,n2,n3,na: ((a0n1073) || ({ab} 0na b

{ny0} 073)) || (60 {n4a} U {nans})] (SP1)
= [{ni,n2,n3,n4: (@07 0R3) ||

(({ab} 073 O {n1b} 03) || (60 {nsa} O{nons}))] (BS3)
= [{n1,n2,n3,nq : (({@b} 072 0 {nad} O 73) ||

(60 {n4a} 0 {nans})) || (e 071 O73)] (BSS)
= [{n1,m2,m3} : [na : ({@b} D74 O {n10} U73) ||

(60 {n4a} 0 {nons})) || (a 071 O 7)) (SP1)
= [n: ({80} 073) || (00 {n4a})) ll o] sy a (552)
= ([na: (({@b} 07) || 30 {na@}))] Il @) sy @ (SP2)
= (({@} B syblla)sya (552)

= F,

From the above proof, E; = ([{ni} : (a0#@7) || ({@b} 0 {n1b})] || ) sy b.

Therefore:

Er = ({m}:(aOm) | ({ab}0{nd})] (D) sy b

= (((all {ab})U0d) [l b) sy b (CS1)
= Es

Similarly, E; = ([ng : ({@b} 07z) || (00 {n4a}))] || a) sy a from the above
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proof. Therefore:

B = ([na:(({ab}07) || 60 {n@})]lla) sy a
= (({ab} 1) Da) | a) sy a (CS1)
- E,

Hence, it has been shown that E} = F; = E3 = Ejy.

Partially equivalent synchronisations

In this section, the equivalence of the following expressions is shown, using the

axioms of Table 4.12:

B = ((a08) ] @02 (Do) || @03) sy o
B, = (((a08) | @02)00):((a0e) | @0B)00) sy bsy c

e e
o] 6] [0] [a] [e
0 0 0 0 0 0
al [o] [0] [a] [e¢
X X

Figure 4.30: Implementation of E}, and E,

The implementation of E) and FE, is shown in Figure 4.30.
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((«0b) | @09);((ale) || (@00))) sy a
[{n1,n2,n3,n4} : (071 0ne 00) || (@0ny Ung 08));

((a0n3 073 0¢) || @07 Dng 00))] (SS1)

[n3 : [{n1,ne,n4} : (@07 Ona00) || (@0ny D7z 08));

((a0ns 073 0¢) || @073 0ng 00))]] (SP1)

[{r1,n2,ma} - (@0A1 02 00) || @Uny 02));

((a0ma0c) || (@07 0ng 0B))] sy c (SS2)

[n2 : [{n1,m4} : (a0 Ony 00) || (@0 ng O€));

(a0 0¢) || @07 0n,08)))] sy ¢ (SP1)

[{n1,n4} : ((@07100) || (@0ny 09));

((@0@30¢) || @0ny00))] sy bsy c (SS2)

[ng:[n1: ((e0n100) || (@0ny 08));

(a0 0¢) || (@0ns00))]) sy bsy c (SP1)

[ng i [n1: ((@0P1UB) | @00y UE)));

((@0730¢) || @0ny0B))] sy bsy c (SP5)

[n1: ((e0n00) || (@0n, UE))];

[na: (a0A0¢) || @0na08))] sy bsy ¢ (SP4)

[n1: ((@0b0m) || (@0e0m)];

[ns: ((aDecOms) || @0b0ny))] sy bsy c (BS2)
(BS4)

(((a00) || (@02)00); .

[ng: (a0c0m) || @0b0n,))] sy bsy c (CS1)
((a0d) | @02 00);((ac) || @05))00)) sy bsy ¢ (CS1)
E,

~~
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Chapter 5
Duplication Equivalence

- In this chapter, the synthesis and axiomatisation problems are investigated for
net semantic duplication equivalence. When duplication equivalence is used for
identifying nets, the synthesis problem, for input net, ¥, which is duplication
equivalent to the implementation of some unknown box expression, is to find
a box expression, F, such that ¥ is duplication equivalent to the implemen-
tation of E. The important difference between isomorphism and duplication
equivalence is that the input net is not necessarily an implementation of a box
expression. For example, for the the basic syntax described by Table 2.3 in
Chapter 2, the net shown in Figure 5.1 (i) is an implementation of E = aq,
while there is no expression whose implementation is net (ii) in Figure 5.1.
However, the nets in Figure 5.1 are duplication equivalent, and are both valid

inputs to a synthesis algorithm where the net semantic used is duplication

0 Qg

a a

© ©

Figure 5.1: Duplication equivalent nets

equivalence.
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The axiomatisation problem, for duplication equivalence, is to find a sound
and complete set of axioms that characterise the notion of duplication equiv-
alence of expressions. There are two approaches to constructing such an ax-

iomatisation:

e Extend the axiomatisation for isomorphism. This approach relies on the
fact that any pair of isomorphic nets are necessarily duplication equiv-
alent (i.e. duplication equivalence encompasses isomorphism). A set of
axioms that exactly characterises the differences between isomorphism
and duplication equivalence need to be found. Such a set of axioms,
together with the axiomatisation for isomorphism provide an axiomati-

sation for duplication equivalence.

e Construct a completely new axiomatisation. This approach is more flex-
ible in that it does not require a subset of the axioms to characterise
the differences between isomorphism and duplication equivalence. How-
ever, no advantage is taken of the work that has already been done in

producing an axiomatisation for isomorphism.

Section 5.1 briefly discusses the synthesis and axiomatisation problems
for the basic syntax, and the basic syntax with the synchronisation opera-
tor added. The following sections provide a more in-depth investigation into
duplication equivalence. Section 5.2 extends the work in Chapter 2 from the
domain of isomorphism to that of duplication equivalence; Section 5.3 gives
an overview of how the investigation into synchronisation of Chapter 4 can
be extended for duplication equivalence; and Section 5.4, motivated by the
result of Proposition 22 constructs a completely new axiomatisation for the

synchronisation operator, for net semantic duplication equivalence.
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5.1 Extension from isomorphism to duplica-

tion equivalence

5.1.1 Basic syntax

The approach taken in investigating duplication equivalence for the basic syn-
tax is to define a canonical form for input nets to the synthesis algorithm
presented in Chapter 3. Let E be an expression from the basic syntax in
Table 3.1, and ¥ be the implementation of E. The input to the synthesis al-
gorithm for net semantic duplication equivalence shall be ', constructed from
3 by removing all duplicate places and transitions.

This approach allows the results of Chapter 3 to be reused. However, there
is an assumption here that ¥’ is, in fact, the implementation of some expression
over the basic syntax. The axiomatisation of Chapter 3 will be extended to
allow the rewriting of E to E', where the implementation of E' is ¥'.

Section 5.2 demonstrates that this approach is possible and extends the
synthesis algorithm and axiomatisation of Chapter 3 from net semantic iso-

morphism to duplication equivalence.

5.1.2 Synchronisation

In Chapter 4, Proposition 22 demonstrated that the synthesis problem for
nets obtained from expressions over the syntax in Table 4.1 is NP hard. It is
possible to recast this result in terms of the equivalence of expressions, which
rules out any efficient proof strategy for an axiomatisation of the syntax in
Table 4.1.

The analysis in Section 4.2.5 demonstrated that the NP hardness result no
longer held when duplication equivalence was used in place of isomorphism.
Hence there are two general approaches to finding an axiomatisation for du-

plication equivalence.
e Re-investigate the possibility of producing an axiomatisation purely in
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the domain of the syntax in Table 4.1 — i.e. without moving to the

scoping form representation for synchronisation.

e Extend the axiomatisation of Chapter 4, which rewrites synchronisation
operations into scoping form, to capture the difference between isomor-

phism and duplication equivalence.

Section 5.4 briefly discusses the extension of the axiomatisation of Chap-
ter 4, and presents a detailed investigation into an axiomatisation for duplica-
tion equivalence which stays with the domain of the syntax in Table 4.1, and

does not resort to the use of a scoping representation.

5.2 Basic syntax

In order to use the synthesis algorithm and axiomatisation of Chapter 3 as a
basis for an investigation into duplication equivalence, it is necessary to show
that for any implementation, X, of an expression, E, the duplicate free version
of ¥ is an implementation of some expression from the basic syntax.
Proposition 1 shows that duplicated places never arise in the implemen-
tation of a basic syntax box expression. Therefore, only the duplication of
transitions needs to be considered. Firstly, it is shown that it is not possible
for the implementation of a basic syntax box expression to contain an isolated

transition:
Proposition 38 For any implementation, & = (S,T,W, ), of an ezpression
from the syntaz in Table 8.1, every transition t € T is such that % # 0 and
t* £ 0.

Proof: Follows directly from the semantics for the syntax in Table 3.1. O
Proposition 39 Let E be an expression over the syntazx in Table 3.1, such
that E does not contain atomic actions with the same label in the same choice

context. Let ¥ be an implementation of E. ¥ does not contain any duplicate

transitions.
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Proof: By structural induction over the box expression syntax in Table 3.1.

Base case: E = a: By definition, the implementation of « contains a

single transition. Therefore no duplicate transitions are present.

Induction step: By the induétion hypothesis, the implementation,
¥ = (S, T;, Wi, A;) of subexpression, F;, does not contain any duplicate
transitions. Let ¥ be an implementation of E, constructed from disjoint
implementations of the subexpressions. Therefore, the only possibility
for duplicate transitions, t;, t, is where ¢; and ¢, arise from different

subexpressions, E;, Ex of E.

e E = F | Ezi Without loss of generality, consider transitions
t, € T7 and ¢, e T,. By Proposition 38, ¢; and t, are not isolated
transitions %,. Therefbre, by the semantics of parallel composition,
t; cannot be a duplicate of ¢, because, ¢; and t, are in different dis-

joint subnets. Hence ¥ does not contain any duplicate transitions.

e E = E; Ey: Without loss of generality, consider transitions t; €
T} and t; € T,. By Proposition 38, t; and t; are not isolated
transitions. By the semantics of sequence, and Proposition 7 and 4,
there exists a cluster of places, which when removed is such that
115N, Te(X) and 1,78, T (X), but for any t, € To(), t, € To(T)
there is no undirected path between t, and t;. Therefore, t; and
to are not duplicates of each other, and ¥ does not contain any

duplicate transitions.

e E = E; [ E,: Without loss of generality, consider transitions t; €
Ty and ¢t € T5. By the semantics of choice composition an Proposi-
tion 4, ¢; and ¢, cannot be duplicates if either transition is connected
to any internal place. Suppose there exists s; € S¢(Z;) such that
81 & *1, and there exists s, € S.(X;) such that s, € %;. Then by
the semantics of choice composition, there is an arc from {s;, s3}

to ty to t;. Therefore ¢; is not a duplicate of ¢, if there is an entry

271



place s, € S; such that s, & *%;. A similar argument can be applied

to the entry places of ¢5, and to the exit places of both transitions.

Now consider transitions t; € 11, t, € T3 such that:

% o= S.(%)
te = S(Th)
t o= S.(%)
B = Su(T2)

By the semantics of choice composition, then t; is a duplicate of ¢,,
provided A(t;) = A(t2). By Proposition 27, the transitions ¢; and
to arise from atomic actions in the same choice context. However,
E has been restricted not to contain atomic actions with the same
label in the same choice context. Therefore, ¥ does not contain any

duplicate transitions.

e [E, x E5 x E3]: Recall that two copies of each of the subnets ¥;,
and Y3 are used in the construction of ¥. Denote the two copies
of ¥; by 2;; and ¥;5 for 1 < ¢ < 3. The following sources for
the transitions ¢; and ¢, need to be considered (not all possible
combinations need to be considered because of the symmetry of the

semantics for iteration):

Number | Source of t; | Source of t,
1 i NP
2 Y Yo
3 Xn Yoo
4 Xn 231
5 i 232
6 Xn Yoo
7 Yo 3}
8 Yo Y32
9 Y3 Y32
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A similar argument to that used for sequence composition can be
used to show that #; and ¢ cannot be duplicates for cases 2-8. In
case 1, it is not possible for ¢; and £, to share post places. Similarly,
in case 9, it is necessarily the case that %; # ;. Therefore, by
Proposition 38, ¢; and ¢, are not duplicates in cases 1 and 9. Hence

3 does not contain any duplicate transitions.

O

Corollary 6 Duplicate transitions may only arise in the basic syntaz from

atomic actions which have the same label, and are in the same choice context.

Proof: Proposition 39 shows that duplicate transitions cannot arise in any
other way. The fact that duplicate transitions may only arise from atomic
actions which have the same label, and are in the same choice context
follows from Proposition 27, and the sefnantics for choice composition.

O

All of the results of this section follow from Corollary 6. For each of the
areas investigated for isomorphism in Chapter 3, the corresponding result for

duplication equivalence is presented here.

5.2.1 Synthesis Algorithm

The synthesis algorithm of Chapter 3 is modified so that a canonical form
for the input net is constructed before the synthesis process takes place. The
canonical form net is constructed by removing all duplicate places and tran-
sitions from the input net. By Proposition 1 and Corollary 6, it is guaranteed
that if the input net is duplication equivalent to an implementation of a ba-
sic syntax box expression, then the canonical form net is isomorphic to the
implementation of a basic syntax expression. The modified version of Box

EXPRESSION SYNTHESIS is given below.
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Box EXPRESSION SYNTHESIS(X)
1 N=new node

2 N.net=CAaNoNICAL NET(XL)
3  SYNTHESISE(N)
4

return EXPRESSION(N)

5.2.2 Time complexity of the Synthesis Algorithm

Let ¥ = (S,T,W, ), and N = SUT. The time complexity of CANONICAL
NET (i.e. identifying and removing all duplicate places and transitions) is
O(n®), where n = |N| is the number of nodes in the input net. A check can be
made whether a pair of nodes, n; and n,, duplicate each other in O(n) time by
comparing W(ny,n) and W(n,n;) with W(ny,n) and W(n,n,) for alln € N.
The time complexity of O(n3) is obtained from the time it takes to check all
n? possible pairs of nodes.

Therefore, from the results in Section 3.5.1, the time complexity of Box
EXPRESSION SYNTHESIS is O(n®) + O(n3) - i.e. the time complexity remains
at O(n®).

5.2.3 Canonical Box Expression Synthesis

The CANONICAL Box EXPRESSION SYNTHESIS algorithm can be modified in
exactly the same way so that it is possible to synthesise canonical expressions in
the domain of duplication equivalence. In a similar way to Box EXPRESSION
SYNTHESIS, the overall time complexity of the algorithm is not affected by

these modifications.

CANONICAL Box EXPRESSION SYNTHESIS(X)
1 N=new node

2 N.net=CANONICAL NET(X)
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3 ORDERED SYNTHESISE(N)

4  return EXPRESSION(NV)

5.2.4 Canonical Box Expression

In order to deal with duplicate transitions, the CANONICAL BOX EXPRESSION
algorithm needs to be able to identify and remove identically labelled atomic
actions appearing the the same choice context.

The definition of the ordered standard form of Section 3.5.3 guarantees that
atomic actions giving rise to duplicate transitions will be adjacent in ordered
expressions. Therefore,.it is a simple task to remove such adjacent transitions
in choice contexts in the expression. The modified code for CANONICAL Box

EXPRESSION is given below:

CANONICAL Box EXPRESSION(E)

1  N=expression tree corresponding to standard form of F
2 VIsIT(N)

3 return EXPRESSION(N)

VisIT(N)
if N.type#atomic
for each node N’ in N.list

do VisIT(N’)

then sort(N.list)

1

2

3

4 if N.type=parallel or choice
5

6 if N.type=choice

7

then remove duplicates(N.list)

The time comlexity of removing duplicates is O(a), where a is the number
of atomic actions in the box expression, E. Therefore, the time complexity of

the VIsIT procedure remains at O(a? - loga).
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5.2.5 Decision Problems

The decision problems PETRI BOX DUPLICATION EQUIVALENCE and Box
EXPRESSION DUPLICATION EQUIVALENCE can be solved using the modified
versions of CANONICAL Box EXPRESSION SYNTHESIS and CANONICAL Box
EXPRESSION presented in this section. The pseudo code, which is identical to

the corresponding algorithms for isomorphism is shown below.

PETRI BoX DUPLICATION EQUIVALENCE(Y, £s)
1 C;=CANONICAL Box EXPRESSION SYNTHESIS (%)
2  Cy=CANONICAL BOX EXPRESSION SYNTHESIS(Z,)
3 ifC =0

4 then return yes
)

else return no

Box EXPRESSION DUPLICATION EQUIVALENCE(E, E»)
1 C;=CaANoNICcAL Box EXPRESSION(E)

2  (C,=CANONICAL BOX EXPRESSION(E;)
3 ifC =0,

4 then return yes

5

else return no

When comparing atomic actions, a; and a5 in canonical form expressions, C}

and Cs, the words A(a;) and A(cz) should be compared.

5.2.6 Axiom system

Only one additional axiom is required above those in Table 3.6, namely a 0 o =
«. This follows from the fact that subexpressions in the same choice context
may be arbitrarily reordered using the axioms relating to associativity and

commutativity of the choice operator. The complete axiom system is shown

in Table 5.1.
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Associativity (El, Ez); E3 = El; (EQ; E3)
(E,0Ey))0E; = ) U (E; 0 Es)
(E1 || E2) || Es = Ey || (B2 || Es)

Commutativity E,0E, = E,[E,;
E ||E,=E; || Ey

Duplication alla=a

Table 5.1: Axioms

5.2.7 Generating Proofs

In this section, the CANONICAL PROOF algorithm of Section 3.5.6 is extended
to provide a proof that an expression is equivalent to its canonical form for
net semantic duplication equivalence.

The algorithm for CANONICAL PROOF can be modified by checking for
adjacent atomic actions with the same label in choice contexts. Such atomic
actions are guaranteed to be adjacent due to the fact that the choice context
is rearranged by a call to SORT. The pseudo-code for BRACKET, SORT, and
ORDER is not repeated here as no changes are required to these procedures.
Recall that the variables Proof and T’ are accessible globally, where Proof is
a list of parse trees, and T’ is a pointer to the root of the parse tree that
is manipulated by the algorithm. The statement Proof=Proof+T’ appends a
copy of the parse tree, T’ to Proof.

CANONICAL PROOF(E)

1  T’= parse tree of E
Proof=[T"

2

3  BRACKET(T’)
4 Sort(T’)
)

REMOVE DUPLICATES(T?)
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6

return Proof

REMOVE DUPLICATES(T)

1
2
3
4
3
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

case T.type
atomic: do nothing
iteration: REMOVE DUPLICATES(T .left)
REMOVE DUPLICATES(T.middle)
REMOVE DUPLICATES(T .right)
sequence,parallel:
REMOVE DUPLICATES(T left)
REMOVE DUPLICATES(T .right)
choice:
if T left.type=atomic then
case T.right.type
atomic:
if T.left.action=T.right.action then
T=T.right
Proof=Proof+T’
REMOVE DuUPLICATES(T)
choice:
if T.right.left.type=atomic then
if T.left.action=T.right.left.action then
temp=T left
T.left=T.right
T.right=T.left.right
T.left.right=temp
Proof=Proof+1”
T.left=T.left.right
Proof=Proof+T’

REMOVE DuUPLICATES(T)

278



28 parallel,sequence,iteration:

29 REMOVE DUPLICATES(T .right)
30 else

31 : REMOVE DUPLICATES(T left)

32 REMOVE DUPLICATES(T.right)

REMOVE DUPLICATES (line 14)

/\_,

a o

R e

ala = a
REMOVE DUPLICATES (lines 20-23) REMOVE DUPLICATES (line 25)
0 0 .0
0
D —_— 0 ] —_— A
a : E E
. a E
o EBE a a a «
(a0(@0E)) = (e0a)DE) ((e0a)BE) = («0E)

Figure 5.2: Manipulation of the parse tree

Figure 5.2 shows the tree manipulations carried out in line 14 and in
lines 20-25 of REMOVE DUPLICATES, together with the corresponding ex-
pression manipulations. The manipulations in lines 14 and 25 correspond to a
application of o[l @ = @, and the manipulation in lines 20-23 corresponds to
an application of the associativity axiom for choice composition.

Let a be the number of atomic actions in a Box expression, E. The time
complexity of the REMOVE DUPLICATES procedure is O(a), and O(a) axiom
applications are performed.

Let E,, E; be Box expressions such that box(E;) = box(E2). A proof that
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E, = E; can be generated using the proofs provided by CANONICAL PROOF

as follows:

Box EXPRESSION DUPLICATION EQUIVALENCE PROOF(E}, E,)
1 Proof;=CANONICAL PROOF(E))
2 Proof;=CANONICAL PROOF(E))
3 Output Proof;
4

Output Proof, in reverse order.

The time complexity of the algorithm, on input E; and E, is O(a®), where
a = max{ai,as}, and a; and a, are the number of atomic actions in E; and E,
respectively. The length of the proof generated by Box EXPRESSION DUPLI-
CATION EQUIVALENCE PROOF is O(a®). In other words, the time complexity
and bound on proof length is not affected by the extension from isomorphism

to duplication equivalence.

5.2.8 Examples

Figure 5.3 shows nets Y;, duplication equivalent to an implementation of
E; = (a;b); (cO¢); Xy, duplication equivalent to an implementation of Fy =
(a0a); (b0 (b00));c); and =53 the canonical form net for ; and ¥y by re-
moving duplicate places and transitions. The synthesis algorithm produces

the following outputs given ¥; and ¥, as input:

Box EXPRESSION SYNTHESIS(Z;) = (a;b);c

Box EXPRESSION SYNTHESIS(E;) = a;(b;c)

Using CANONICAL BOX EXPRESSION SYNTHESIS, both input nets re-
sult in the synthesised expression a; (b;c). The same result is obtained from

CANONICAL Box EXPRESSION on inputs F; and E,. Hence, PETRI Box
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Figure 5.3: Example nets

DUPLICATION EQUIVALENCE(X;,Y;), and BOX EXPRESSION DUPLICATION

EQUIVALENCE(E1, F») both produce the output “yes”.

A call to Box EXPRESSION DUPLICATION EQUIVALENCE PROOF(E), E»)

generates the following proof that F; and E, are equivalent (via their canonical

forms C) and C5):

E,

(a;0); (cOe)

a; (b;(clUc))
a;(bc) =Ch = C,
a; (b0 bd); ¢)

a; (((b0b) 0 bd);c)

a; (00 (60 b)) )
(alUa); (00 (600));¢)
E,

As with Box EXPRESSION ISOMORPHISM PROOF, the proof will not generally
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be the shortest possible. However, the generated proof has a length at most

polynomial in the size of the input expressions.

5.3 Synchronisation (Part I)

This section gives an overview of how the axiomatisation for the syntax in
Table 4.1 may be extended to duplication equivalence. A similar approach to
that taken in Section 5.2 for the basic syntax is used. A rigorous treatment of

the problem is not given — rather an outline of a solution is presented.

5.3.1 Background

The synthesis algorithm of Chapter 4 can be extended in the same way as
described in Section 5.2 by removing all the duplicate places and transitions
from the input net. Propositions 1 and 38 are easily extended to a syntax
which includes the synchronisation operator. Therefore, in order to show that
this approach to the synthesis algorithm is valid, it remains to show that for
any implementation, ¥, of a box expression, E over the syntax in Table 4.1,
then the net obtained by removing all duplicate transitions from ¥ is the im-
plementation of a Box expression over the syntax in Table 4.3. It has already
been shown that duplicate transitions arising from the basic syntax can be
removed. For duplicates arising from synchronisation, there is ng problem be-
cause the scoping form represents each transition independently. In fact the
property still holds if it is required that the duplicate free version of ¥ is an im-
plementation of an expression from the syntax in Table 4.1. This is due to the
fact that synchronisation operations cannot overlap each other — i.e. the oper-
ations must either operate on disjoint subexpressions, or one synchronisation
must be entirely within the scope of the second synchronisation.

When the scoping form is used, there may be several atomic actions relating
to a single duplicated transition. For example, in Figure 5.4, net (i) shows the

implementation of ({a,b} || @) sy a sy a. A scoping form representation for
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net(z) net (1)

Figure 5.4: Duplication arising from synchronisation

this expression (i.e. in the form that would be produced by the synthesis

algorithm given net (i) as input) is:
E = [{n1,m2} : ({a,0} 071 0 {ns,}) || (@073 0 {n1,5})]

The duplicate transitions in net (i) arise from the two pairs of actions 727, {n1, b}
and {ng,b},nz in E. Net (ii) in Figure 5.4 shows the implementation of E
before the scoping operation is applied. It can be seen that the representation
of the duplicated transitions is distributed throughout the expression, and that
each action composing part of the representation of one of the transitions is in
an atomic choice context with an action composing part of the representation

of the duplicate transition.

5.3.2 Axiomatisation

The axiomatisation of Section 4.6.4 is extended with the axiom for duplicates
arising from the basic syntax introduced in Section 5.2, and rewriting rules to

capture the notion of “distributed duplication” described above.

alla = «
[NIUNQZE]—)[NIZEI]
[Nl E] ——)[N1UN2!E,]
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The preconditions and procedure for applying the rewriting rule, [N;UN, :

E] — [Ny : E'] are as follows. Let X be the set of action names in E.

e For each basic action n € N; UN,, F must contain an action whose label
is {n}:
Vn € Ny UN,, V€ X : 7 € pu(z) = plx) = {A}

Furthermore, no other action should have a label containing 7:

Vne NiUNy,Vz € X : 7 € p(z) = (Vz' € X7 € u(z') = 2’ = 1)

e E must have an action whose label contains one copy of every basic action
in N;. Similarly, there must be an action in E whose label contains one

copy of every basic action in N,.
for1<i<2,3z€ X:ulz)NN; =N;

Furthermore, there can only be one such action for each N; — the following

precondition must hold for 1 <1 < 2:
{ze X pu@)NN; #0} =1

Let z; (22) be the action whose label contains all the basic actions in
Ny (N2). It is a precondition of the rewriting rule that the labels of the

transitions obtained by scoping on sets N; and N, must match:
plar) — Ny = p(z2) — Ny
e Define X; (X3) to be the set of actions in E corresponding to N; (V;):
X;={z e X |ul)n(N;UN) 0}

It order for the rewriting rule to be applied, it is necessary that there is
a bijective mapping, 8 : X; — X, such that for all z € X, z [l 8(z) ap-
pears in E. If all the preconditions have been met, then E’ is constructed

from E by replacing z 1 8(z) by z, for all z € X;.
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The procedure for applying the symmetrical rewriting rule, [V; : E] —
[N1 U N, : E'] is as follows: Let X be the set of action names in E.

e For each basic action n € N;, E must contain an action whose label is

{n}:
Vn € Ni,Vz € X : 71 € p(z) = p(z) = {7}

Furthermore, no other action should have a label containing 7:

/

Vne NL,Vz e X :A€ ulr)= (V' e Xn € u(z') =2’ =1)

e F must have an action whose label contains one copy of every basic
action in Nj.

3$€XZ/J,(.’E)ON1=N1

Furthermore, there can only be one such action — the following precon-

dition must hold:
{z € X :p) NN # 0} =1

Let z; be the action whose label contains all the basic actions in N, and
N, be a set of | N;| new basic actions that are not already being used. A

new action, s is created, such that u(z;) = Ny + (u(z;) — Ny).
e Define X; to be the set of actions in E corresponding to Ni:
X1 ={z € X | u(z) N (N UN,) # 0}

Let XQ' be set of actions comprising z, and the set of new actions X' =
Zyy e a:i Nal corresponding to each member of N, such that for each n €
N,, 3z’ € X : u(z') = {n}. Choose any bijective mapping, 8: X; = X,
and construct E’ from F by replacing each z € X; in E byi (z 0 B(z1)).

5.4 Synchronisation (Part IT)

The main result of the investigation in this section is a sound and complete

axiomatisation of duplication equivalence for a fragment of recursion-free PBC
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containing the synchronisation operator. The important difference to the work
in Chapter 4, and Section 5.3 is that the axiomatisation is given purely in terms
of the synchronisation operator, and the scoping representation is not used.
This approach may give a greater insight into properties of the synchronisation
operator.

In Section 5.4.1 a class of Petri nets is defined which are used throughout
the rest of this Chapter. Section 5.4.2 discusses the relationship between the
operation of synchronisation and duplication equivalence. Section 5.7 transfers
the results on duplication equivalence obtained for boxes to the domain of box
expressions. Section 5.8 contains the proposed axiomatisation of duplication
equivalence. It is followed by the proofs of soundness and completeness of that
axiomatisation, presented respectively in Sections 5.9 and 5.10. Finally, some

of the issues related to the proposed axiomatisation are briefly discussed.

5.4.1 Labelled nets

A transition t is simple if W(s,t) <1 and W (t, s) < 1, for every place s. The
net is T-restricted if the pre-set and post-set of every transition are non-empty.
A labelled net is a T-restricted net without isolated places. Figure 5.5 shows
a labelled net ¥ that corresponds to the box expression ((al|c) U b);d.

The different components of the net ¥ will often be decorated with the
index 5. The same convention will apply to other notations subsequently
introduced. The notation n;...ng > my...m; means that the ‘sum’ of the
weight functions of nodes n,...,n; is the same as the ‘sum’ of the weight

functions of nodes my,...,m;. That is, for every node n in &,

k l k l

> W(nin)=> W(m;,n) and Y W(n,n)=> W(n,m).

=1 i=1 =1 =1
In other words, the nodes n,, ..., n; have the same connectivity as mq, ..., my.
Note that for the net of Figure 5.5, ¢; < tots. To simplify some of the

definitions, 6 will be used to denote a ‘dummy’ simple transition which, if

present, would satisfy *6 = *Y and §* = X°*. For example, t gz du should
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be interpreted as signifying that W (s,t) = W(s,u) + 1, for all s € *%, and
W(s,t) = W(s,u) otherwise; and that W(t,s) = W(u,s) + 1, for all s €
¥, and W(t,s) = W(u,s) otherwise. The nodes ny,...,n, have constant

connectivity with a set of nodes N if, for all n,m € N,

k k k

k
Y W(n,n) = Y W(n,m) and Y W(n,n) = > W(m,n;)

i=1 i=1 i=1 i=1

Constant connectivity will be denoted by (n;...ng, N) € constg. For ex-
ample, in Figure 5.5, (tote, {0, 51}) € consts. Directly from the definition of

D

Proposition 40 If ny bxamy,...,ng > my then ny...ng > my...mg. Con-
versely, if ny...ng >Xmy...mg and ny...ng_1 DI My ... Mk then ng < my.

O

n =~ m is used to indicate that nodes n,m of a net, ¥ are duplicates
(i.e. n =g4y4p m). Clearly, ~ is an equivalence relation; its equivalence class

containing node n will be represented by [n]~.

so\ € s1{ €

tla| | b e

t3d

©

5

Figure 5.5: A labelled net.
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Net union

Net union is a partial operation defined only for pairs of unionable nets which
means that their transition sets are disjoint and their label functions coincide
on the common places. The union X; U X, of two unionable nets, ¥; and X,
is defined as a net with the node set being the union of the nodes of ¥, and
¥,, and the weight and label functions being inherited from ¥; and £, (if the
value for a weight of the new net cannot be found in the original nets, it is
set to zero). Figure 5.6 shows two unionable nets, ¥; and ¥, and their union

YU,

21 22
50 to 81 t1 S2

21U,

Figure 5.6: Net union.

Net union will usually be applied when the common places can be parti-
tioned into ®-sets created by the operation of place multiplication. Let 3,
and ¥, be unionable nets. A non-empty set of places P C Sy, NSy, is a ®-set
if for all s,r € P there is p € P such that s ~y, p and r ~5, p.

Proposition 41 Let P be a ®-set for two unionable nets ¥, and ¥,. If
ti,...,tn are transitions in ¥; and vy,...,,..., Uk are transitions in X,

such that m,l > 1, £k > 0 and
t1... by ... Uk DAs,usg Vk+1 - - - Ukt

then *t; Ut,°U... U, Uty,® C Sg, N Sx, and (t1...tm, P) € consty,.

Proof: The first part follows directly from the definitions of > and net

union. To show (¢;...t,, P) € consty,, assume s,7 € P. Then, by P being a
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®-set, there is p € P such that s ~g, p and r ~5, p. Denote, for z € {s,r,p},
k+l k m '
k() = > Wy(z,v) =Y Ws,(z,v) and p(z) = ) Wy (z,t).
1=k+1 =1 i=1 :
From t;...tmv1 ... Uk Xx,us, Vk+1 - .- Ukt it follows that p(x) = x(z) for z €

{s,r,p}. Moreover, from s ~5, p and r ~gz, p respectively, u(s) = u(p) and

k(r) = k(p) are obtained. Hence

This and symmetry of the argument yield (¢; ...¢n,, P) € constg,. O

Duplication equivalence

Let ¥ be a labelled net. The duplication quotient of ¥ is defined to be a
labelled net

Sl = ({lsl|s€S}, {HalteT}, W', N)

where for nodes n and m in £, A(n) = X ([n]~) and W (n,m) = W'([n]x, [m]~).
Figure 5.7 shows a labelled net ¥ and its duplication quotient [X]~. A notion
central to the approach used is now introduced. Labelled nets ¥, and ¥, are
duplication equivalent if their duplication quotients are isomorphic nets. This
is denoted by ¥, ~ X3 or ¥; ~, £, where h is an isomorphism for [Z;]~ and
[Z2]~. In the latter case n ~), m may be written if n and m are two nodes of
respectively £; and ¥y such that h([n]~) = [m]~. As it was shown in [5], ~ is
an equivalence relation. This can be slightly strengthened as follows: For all

labelled nets ¥;, ¥ and X3,
22 >~ 22 and 22 ~y 23 implies 21 ™hog 23. (5].)

The next result establishes some basic relationships between being a du-

plicate, having the same connectivity, and being duplication equivalent nets.

Proposition 42 Let ¥; ~;, ¥, be duplication equivalent labelled nets.
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$0 G 51 e @ [so]~ = [s1]~
>

tol a | 1} a a | [to]x = [ti]~
% [Z]-

Figure 5.7: Labelled net and its duplication quotient.
1. If ny o ma, oo gy 20 Mgy (k0> 1) and ny .. .ng DX, Mgty - .- Mg
then my... Mg Xy, My -. - Meyy-
2. If nxig, n' >~ m' g, m and Ag, (n) = Ag,(m) then n >~ m.

3. If n ~p m<g, m' ;-1 n' then n i<y, n'.

Proof: (1) Let m be a node in ¥5. Then there is a node n in ¥; such that

n ~p m. For every i < k + 1, by n; ~, m;, Wg,(n,n;) = Ws,(m,m,;). Hence

k k Kt kot
S We,(mymy) = > Wy (n,n) = Y, Wy(n,n) = Y, We,(m,my).
i=1 i=1 i=k+1 i=k+1

This and symmetry of the argument yield m; ... my Xx, Mgyq ... Mpr.

(2) There is q such that n ~, ¢. It suffices to show that m p<g, g. Take any
node 7 in X,. It is only shown that Wy, (m,r) = Wy, (g, 7). There is p in &;
such that p ~, r. Ws1(n,p) = Wsa(g,r) and Wg, (n',p) = Wx,(m/, r). More-
over, by n <g; n' and m <z, m', Wy, (n,p) = Wg,(w/,p) and Wx,(m,r) =
Ws,(m/,r). Hence Wg,(m,r) = Wy,(m',7) = Wg,(n/,p) = Wy, (n,p) =
Ws,(q,r).

(3) Suppose that p is a node in £;. Then there is r such that p ~, r. By
m g, m', Wg,(m,r) = Wg,(m',r). Moreover, by n ~, m and n' ~, m/,
Wy, (n,p) = Ws,(m,r) and Wy, (n',p) = Wx,(m',r). Hence Wy, (n,p) =
Wy, (v, p). Similarly, Wy, (p,n) = Wx,(p,n'). Thus n g, n'. 0

290



Place-sharing nets

Labelled nets £; and ¥, are known as place-sharing, if their place sets and place
labellings are exactly the same (no conditions are imposed on the transition
sets of the two nets). In such cases, for all transitions, t in Y1 and u in X,

t ~s 5, uif Ag, () = Ag,(u) and for every place s in £; (and so in X5),
Ws, (t,s) = Wx,(u,s) and Wy, (s,t) = Wg,(s,u).

Intuitively, ¢ ~5, 5, u means that ¢ and u are ‘remote’ duplicates since they
have the same connectivity if one looks at the places of the two nets. Moreover,
an isomorphism A for the duplication quotients of ¥; and X, establishing
duplication equivalence of ¥; and X, will be called place—preserving if s ~, s,
for every place s in the two nets. This is denoted by X, ¢, X, or ¥ &
Y5. The following proposition is a fundamental result concerning duplication

equivalence of place-sharing nets.

Proposition 43 Let X; and X, be place-sharing labelled nets.

1. If ¥, = X, then for all transitions, ¢ in ¥; and u in X, t ~; u if and

only if t 5,5, u."

2. If TEl = {t | t s, ’U,} and Tzl = {u | t a5 319 3P u} then 21 = 22.

Proof: Denote S = Sy, = Sy,.

(1) Suppose t =, u. Then Ay, (t) = Ag,(u). Let s be any place in S. Since
s ~p s, Ws, (t,s) = Ws,(u, s) and Wy, (s,t) = Wx,(s,u). Hence t ~5,5, u.

Suppose t ~5, 5, . Then Ag, () = Ag,(u). Let t o, w and s be a place in
S. Therefore Wx, (u, s) = Wy, (t,s) = Wg,(w, s) and Wy, (s,u) = Wg,(s,t) =
Ws, (s, w). Hence u ~5, w and so t ~) u.

(2) Define a mapping from the nodes of the duplication quotient of X, to
the nodes of the duplication quotient of ¥4 thus:

heo= {12 1812) | s € S} U {([2, [wW]Z?) | t ~m,3, u}.

291



One can see that ¥, =, ¥,. To show that A is a bijection, it suffices to
show that: (i) if s,7 € S and s ~g5, r then s ~g, r; and (ii) if ¢,u,t’,u’ are
transitions such that u ~y,5, t ~5, t' ~5 5, v’ then u ~g, u'. To show (i),
take any y € Ty,. Then, by the assumption made in 43(2), there is z € T,

such that z ~5 5, y. Therefore:
Ws,(y, s) = Wx, (2, 8) = Wy, (2,7) = Wy, (y, 7).

The proof that Wy, (s,y) = Wy, (r, y) is similar. To show (ii), take any s € S.
Then
Ws,(s,u) = Wy, (s,t) = Wg,(s,t') = Wg, (s, ).

The proof that Wy, (u, s) = Wg, (v, s) is similar.

What remains to be shown is that if s € S and ¢ ~y 5, u then the weight
of the arc between [s]Z! and [t]Z! in [Z;]. is the same as the weight of the
arc between [s]Z? and [u]Z? in [T5]~. This, however, follows directly from

Wy, (s,t) = Wg, (s, u). m|

Note that from the first part of the proposition it follows that there can be
at most one place-preserving isomorphism (between the respective duplication

quotients) establishing duplication equivalence of two place-sharing nets.

5.4.2 Synchronisation

A synchronisation set is a set of communication actions A which contains the
conjugates of all its actions, i.e. A= A. For every communication action a,
a denotes the synchronisation set {a,a}. As in CCS, it is implicitly assumed
that two transitions labelled with conjugate communication actions can be
synchronised to yield a new transition labelled with the internal action.! Two
transitions, ¢t and u, whose labels are conjugates belonging to a synchronisation

set A are called A-synchronisable, (t,u) € syn,.

!The synchronisation mechanism used in this section is basically that of CCS, since multi

actions are not used
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The synchronisation of a labelled net ¥ by a synchronisation set A is a
net X sy A which is defined as ¥ extended by a set of new transitions. Ex-
actly one new transition, ¢t o u, is added for every pair of A-synchronisable
transitions of £, ¢t and u. The label of t o u is @ and the weight function is
extended so that t o u Xy sy 4 tu. It is assumed that t o u is the same as
u o t. Figure 5.8 shows two consecutive applications of the synchronisation
operator. Note that ¥ sy a and (¥ sy a) sy a are duplication equivalent, but
not isomorphic. Thus synchronisation is not idempotent with respect to net
isomorphism. However, it is idempotent with respect to duplication equiva-

lence which was one of the reasons for introducing duplication equivalence in

[5].
00 @ o 9 s
a a a 0 a a 0 |0 a
> Ysya (X sy a) sy a

Figure 5.8: Synchronisation (place labels omitted).

Having the same connectivity is preserved through synchronisation.

Proposition 44 Let ¥ be a labelled net with nodes ny,...,ng, my,...,my

and A be a synchronisation set. Then

ny... Ry mp...ny ifandonlyif n1...Ng Xyg Sy AMmy...my.

Proof: That (<=) implication holds follows directly from the definition
of synchronisation. Denote ¥' = ¥ sy A. To show the reverse implication,
suppose t =uow € Iy —Tx. By ny...ng xg my,...,my,

k ! k

Y Ws(n,u) = > Ws(mi,u) and Y We(n,w) = > We(m;, w).

i=1 i=1 =1 i=1
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Hence,

NgES
5
B
=

|
M=

(Wgr(n,, ) + Wy (ni, w))
= Z Ws(ng, ) + Ei:l Wy (ni, w)
= Z Ws(ms, u) + Zl‘_,l Ws(my, w)

(ng(m,, ) + Wsy (m,-, w))

-
Il
-
~.
—

£l

I
M-I

—

1

= Z WE’(mu )

e~

k !
Similarly, one may show that Y, Wx/(t,n;) = ¥ Wy (t,m;). 0
=1 i=1

Duplication equivalence is preserved through synchronisation. What is

more, the isomorphism establishing the equivalence can also be preserved.

Proposition 45 Let ¥, ~;, ¥, be duplication equivalent labelled nets and A
be a synchronisation set. Then there is an isomorphism g such that ¥; sy A ~,
Y5 sy A and, for all nodes n and m in respectively ¥, and ¥y, n ~ m if and

only if n ~, m.

Proof: Denote ¥, = ¥; sy A and £, = X3 sy A. Define

{2, m2) [nom} U {([toulz, [vow]2)

| ((,u) Esyng At~ vAu~, wl.

A straightforward yet rather lengthy argument can show that g is a required

isomorphism. O

¥; and ¥; sy A are place-sharing nets. Hence, directly from proposition
43, a necessary and sufficient condition for the existence of a place-preserving

isomorphism for the duplication quotients of ¥; and ¥; sy A is obtained.

Corollary 7 Let ¥ be a labelled net and A be a synchronisation set. Then
Y =2 ¥ sy Aif and only if for every transition ¢ in 3 sy A there is u in X such
that ¢ jad 3 Sy A u. '
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Proof: The (=) implication follows from proposition 43(1), and the (<)

implication from proposition 43(2). O

The next result can be interpreted as saying that being duplication equiv-

alent to a synchronised net makes the synchronisation implicit.

Proposition 46 Let ¥; and X, be labelled nets and A be a synchronisation
set such that ¥; ~ 35 sy A. Then ¥, ¥ X; sy A.

Proof: Let ¥, = ¥; sy A and ¥, = £, sy A. By corollary 7, it suffices
to show that for every transition uow € Ty, — T, there is t € Ty, such that
t ~y5, uow. Suppose that X, ~, 3,. There are v and z such that u ~; v and
w =~y z. Clearly, vo 2 € Tx,. Hence there is t € Tx, such that t ~, v o 2.
By proposition 42(1) and v ¢ z i<y, vz, t <y, uw which in turn means that

t~p, uow. 0O

The next proposition gathers together a number of simple facts involving
synchronisation and duplication equivalence. Note that the second item im-
plies that as far as duplication equivalence is concerned, synchronisation is

idempotent and commutative.

Proposition 47 Let ¥ be a labelled net, and A and B be synchronisation

sets.
1. L~Ysy Aifand only if ¥ & ¥ sy A.
2. Xsy Asy B=X sy (AUB).
3. f sy A~X sy Bthen ¥sy A~Y sy B.
4. f ACBand ¥~ X sy Bthen X 23 sy A.

5 f ¥ ~Y sy Aand ¥~ ¥ sy Bthen X ¥ sy (AU B).

Proof: (1) Follows directly from proposition 46 and the definition of .
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(2) Follows directly from proposition 43(2) and the definition of synchro-
nisation.

(3) By £ sy A~ X sy B and proposition 46, there are g and f such that
Ysy A= Ysy Asy B and Y sy B = Lsy Bsy A.
Moreover, by proposition 47(2), there are d and e such that
sy Asy B 2; ¥sy (AUB) and Lsy Bsy A =, sy (BUA).

Hence, by property (5.1) and AUB = BUA, h = godoelo flisan
isomorphism satisfying ¥ sy A &, ¥ sy B.

(4) Follows from ¥ sy B = X sy (B—A) sy A and proposition 46.

(5) From propositions 47(2) and 45, ¥ ~ ¥ sy A ~ Y sy Bsy A ~
¥ sy (AU B). Then proposition 47(1) may be applied. a

Finally, it is shown that being a ®-set is preserved through synchronisation.

Proposition 48 If P is a ®-set for unionable labelled nets ¥; and 35, and
A, B are synchronisation sets then P is also a ®-set for ¥; sy A and X, sy B.

Proof: Follows directly from the definition of ®-sets and proposition 44.
0

If one looks at the last item of proposition 47 then it is obvious that for
every net ¥, there exists the mazimal ? synchronisation set A such that ¥, ~

Y1 sy A. This set will be denoted by maxg,. Note that
maxs, = | J{A | 1 ~ Z; sy A}.

Hence, by proposition 46, if 3; ~ ¥, then maxg, = maxg,.

Net union, duplication equivalence and synchronisation

Crucial to the further development is the way in which combining the net union

and synchronisation operations affect duplication equivalence. Firstly, it is

2Maximal w.r.t. set inclusion.
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shown that from the point of view of duplication equivalence, synchronisation

propagates through net union.

Proposition 49 Let 3, ..., Z; be pairwise unionable labelled nets and A be

a synchronisation set. Then

(ZiU...UZ)sy A = ((Z1sy AU...U(Z sy A)) sy A

Proof: Let ¥ = (5, U...UX)syAdand ¥ = ((Z;sy 4 U...U
(Xx sy A)) sy A. Since ¥ and ¥’ satisfy the condition in proposition 43(2),
Yy, O

A key result on the relationship between net union, synchronisation and

duplication equivalence is now formulated.

Proposition 50 Let ¥ = ¥,U...UZ; where Xy, . .., ¥ are pairwise unionable
nets, and let 4 and B be synchronisation sets such that for all distinct 1, <k,

the following hold.
e ¥, 8y A~Y; sy B.

e Forallt € T; and v € Ty, if (t,v) € syn, (or (t,v) € synp) then there is
w € Tx such that Ax(w) = @ and tv <z w, or there are u,w € Ty such

that (u,w) € syng (resp. (u, w) € syn,) and tv >y uw.

Then ¥ sy A= Y sy B.

Proof: Let ¥, = ¥ sy A and ¥, = ¥ sy B. From propositions 47(3) and
43(1) it follows that proposition 43(2) may be applied. Hence ¥, & %,. O

Later, a specific instance of the last result will be used for B = AUa.
Corollary 8 Let ¥ = ¥; U...U X, where X,...,Y; are pairwise unionable

nets, and let A be a synchronisation set and a € A be a communication action

such that for all distinct ¢, j < k, the following hold.
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e ¥, sy (AUa) ~ %; sy A.

e For all (¢,v) € (T; x T;) Nsyn, there is w € Ty such that Ax(w) = @ and

tv s w, or there are u, w € Ty such that (u,w) € syn, and tv g uw.

Then ¥ sy (AUa) = ¥ sy A. O

Reversing Corollary 8

The aim is to reverse corollary 8 for £ = 2. This result is required to charac-
terise maximal synchronisation sets of nets which are obtained through com-
position. In particular, it needs to be shown that if (Z;UX,) sy (AUa) ~
(3 U 22) sy A then ¥; sy (AU a) ~ %, sy A. However, such a result does

not, in general, hold. For example, consider the following two nets (note that

the union of the two nets in this example corresponds to the box expression

(al2) 00).
tola | t| @ t2| 0

OO B
> pIVY

Then, clearly, (¥, U X;) sy a ~ £; U X, but ¥, sy a ¢ X;. Intuitively,
the reason why there is a problem here is that, in ¥; U ¥,, the transition
ty can be interpreted both as coming from ¥, and as coming from %; (e.g.
by being the ‘result’ of synchronising transitions ¢, and t¢;). Therefore, some
constraints are placed on the two nets, ¥; and ¥,, before trying to reverse
the corollary. To this end, suppose that ¥; and ¥, are two unionable labelled
nets, A is a synchronisation set, a ¢ A is a communication action, and the six

assumptions, A1-A6 below also hold.
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Al In ¥; and X,, all the transitions labelled with _communication actions
are simple, and every @-labelled transition ¢ satisfies W(s,t) < 2 and

W(t,s) < 2, for every place s.

A2 There exist two disjoint non-empty sets of places, F and X, of
Sigma, such that for every transition ¢ in £;, t*NE =°tNX = 0.

A3 If t is a transition in ¥; labelled with a communication action then

““NE=0V *tCFandt*'NX =0V t* CX.
A4 The set of common places of ¥, and % is either QorEor Xor FUX.

A5 If E (or X) is included in Sy, N S, then E (resp. X) is a ®-set for ¥,
and X,.

A transition t in (X, U Xy) sy (A U a) is called an EX-transition, and
denoted te TEx, if °t = E, t* = X and (t,E), (t,X) € COﬂSt(glUEz) Sy (Aua)-

A6 Iftisan EX-transition in (£,UX,) sy A whose label belongs to AU{0},

then there is u € Ty, sy 4 such that ¢ ~,us,) sy 4 u.

Intuitively, E and/or X form the interface between £; and ¥y, F being
derived from the entry, and X being derived from the exit places of ¥; (later,
the sets E and X will be derived through the place multiplication and addition
operators, which will, in particular, guarantee that A5 holds). In the last
example, E = {sg,s1} and X = {s2, s3}. Note also that this example fails to
satisfy A6 for t = t5. It is worth mentiohing that A1-A5 are conditions which
will be satisfied by all the nets associated with box expressions or being used
in the definitions of the composition operators (see proposition 53). However,
the nature of condition A6 is different, as the last example has demonstrated.

The next result can be seen a reverse of the first part of corollary 8.

Proposition 51 If (3;UL,) sy (AUa) ~ (Z;UX;) sy Athen I, sy (AUa) ~
Y, sy A.
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Proof: By corollary 7 and proposition 47(2), it suffices to show that
if t € Ty, sy (ava) — Tk, sy a then t =g sy (ava) w for some transition
w in ¥y sy A. From (Z; U X3) sy (AU a) ~ (£; UZL,) sy A, corollary
7 and proposition 47(2), it follows that there is u in (£; U ;) sy A such
that t ~z,us,) sy (ava) u. If u € Ty, sy 4 then w = u may be used. If
u € Ty, sy 4 then, from propositions 41 and 48, A2, A4 and A5, it follows that
u € Tgx. Hence, by A6, there is w € Ty, sy 4 such that w ~(x,uz,) sy a u.
Thus t ~5, sy (ava) w. Finally, assume that u = v ¢ 2 where v € Ty, and
z € Tx,. Then, again from propositions 41 and 48, A2, A4 and A5, it fol-
lows that z € Tgx. Hence, by A6 (note that a ¢ A), there is y € Tx, such
that z ~(x,us,) sy 4 ¥y- Thus w =voy, which belongs to ¥, sy A, satisfies

t 5, sy (Aua) W- a

The second part of corollary 8, may now be partially reversed.

Proposition 52 Let (; UX,;) sy (AUa) ~ (5, UX,) sy A and (t,v) €
(T, x (T, — Tgx)) N syny. Moreover, whenever ¢ € Tgx, there is no z €
Ts, sy asuch that tov ~(x,ux,) sy (4ua) . Then there are transitions (u,w) €

(Tg, x Tg,) Nsyn, such that ¢ g, u and v Xy, w.

Proof: By corollary 7 and proposition 47(2), there is an z € T(s,us,) sy 4
such that t o v ~,ux,) sy (ava) - If z € Tx, sy 4 (or z € Ty, sy 4) then,
from propositions 41 and 48, A1, A2, A4 and A5, it follows that ¢t € Tgx (resp.
v € Tgx), a contradiction with the assumptions about ¢ (resp. v) that were
made. Hence z = u o w where u € Ty, and w € Ts,. By proposition 43(1),
tv g, ux, uw. Hence it is required to show that ¢ bdyp, v and v b<ag, w. By
proposition 40, it suffices to show the latter.

Suppose v iz, w does not hold. Without loss of generality, and by Al,
it may be assumed that Wg,(s,v) = 1 and Wy, (s,w) = 0, for some s € Sy,.
If s ¢ Sy, N Sy, then a contradiction is obtained with tv <g,uz, vw. If
s € Sg, NS, then, by tv s, s, vw and A1, Wy, (s,t) = 0 and Wy, (s,u) = 1.
By s € *vand A2, s € E. If *tNE = () then, by A2, there is ¢ € Sy, —(FUX)

300



such that Wy, (q,t) = 1. On the other hand, by A3 and s € *u, Ws, (g, u) =0,
contradicting tv <y, p, uw. Hence *¢t C E. As a result, there is r € E such
that Wy, (r,t) = 1. By A5, there is p € F such that r ~g, p and s ~5, p.

Therefore
WEl(p’t) + sz(p,’l)) = 1+1

and Wy, (p,u) + Wg,(p,w) < 140

contradicting tv Xy, ux, vw. O

5.5 Composition operators

In this section', the semantics of the choice, parallel, sequence and iteration
operators are given in terms of the composition of place sharing nets. It is
a relatively simple exercise to check that the semantics presented here are
consistent with the earlier semantics given in Chapter 1. The definitions of
the four operators are preceded by three auxiliary notions, viz. place addition,
place multiplication and gluing of nets.

To begin with, a mechanism is formalised by which a place may be replaced
by a set of other places which inherit its connectivity. Let & be a labelled net -
and sy,...,5s¢ be its places. Moreover, let S,..., S, be disjoint non-empty

sets of places not in ¥ and [,,...,l; € {e,0,x}. Then
)y & {(317 Sl, l1)7 reey (Sk, Ska lk)} = (S,7T’7 W’) ’\’)

is a net such that ' =5 — {s;,...,8}U(S;U...USk), T" = T and, for all
nmeS uT,

W(n,m) ifn,meSuUT
W(si,m) ianSi, meSuUuT

W!'(n,m) =
W(n,s;) ifneSUT, meS;
| 0 ifnesS;, mesS;
N(n) = Aln) fneSUT

li ifne S,'.
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Let ¥,...,Z; be disjoint labelled nets, and A be a gluing set. The latter
is defined by:

A = {(S},..., S, l),. . (ST, Sy k) }

where m,71,...,7m > land Ly, ..., I € {e,0,x} and each S is the set of entry
places or the set of exit places of one of the nets ¥;,..., 5. It is assumed
that, for every j < k, both *Z; and £;° can appear in A at most once and
never in the same element of A. With these assumptions, ¥, : A for j <k, is

defined by:

50 = 50{(s[Si®.. ®5 k) |s€ UL A seSiU.. US})

where[S{:®...®S};i]3:{pES{@...@Sﬁi|sep}. Then the net
(21,.A..,Zk):AA = (Z1:A)U...U(Z:A)

where U denotes net union, is a glued net obtained from nets 34, ..., X using
* the gluing set A.
The composition operators are defined for a class of nets called pre-boxes.

A pre-boz is a labelled net ¥ such that the following hold:
1. Z* #£Q #°%.
2. () =°("2) =0.

3. All the transitions labelled with communication actions are simple, and
every (-labelled transition ¢ satisfies W(s,t) < 2 and W(t,s) < 2, for

every place s.

Let £, X, and I3 be disjoint pre-boxes. The four composition operators

are defined thus.
e Sequential  Xp; Xy = (81,22) : {(Z:°,°22,0)}.

e Choice 108 = (21, 5) : {(°Z1, *Es,8), (1%, 22°,x) }
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e Concurrent %;||X2 = 3, UZ,.
e Iteration [T % Ty x T3] = (21,50, 83, 87,25, 25) - A

where in the last case ¥} is a disjoint copy of E.i, fori =1,2,3,and A is a

gluing set given by

A = {(.21’ .2,17 e)a (21.7 .22a 212., .23) 0),
(2,1.’ 22.’ .2,27 .Eé’n @), (23.a Eg.a X)}

The sets of places resulting from place multiplication in the definition of
the three composition operators can easily be seen as ®-sets of the composed

nets. Consider, for example, the sequential composition

S50 = ZaZ = D {510, 0)) U D (50,5, 0)}

Then ¥;°* ® *X; is a ®@-set for the nets ¥, and X,. Indeed, s,7 € £,°* ® *%, is 4
taken then s = {s1,s2} and r = {r, 7}, where s;,7, € ,* and s;,7; € 5.

Then p = {s1,72} also belongs to £;°* ® *Y, and satisfies s ~s_ p and r ~5, p.

5.6 Boxes

A class of process expressions is now considered. In this section a subset of the

Petri Box Calculus [5] described by the following syntax of box ezxpressions:

E = a|EsyA|EE|EQE | E|E | [ExE+E]  (52)

In the above, o is an action in A U {@} and A is a synchronisation set.
The five operators correspond to those introduced for labelled nets. There
is a mapping which associates with every box expression, E, a labelled net,

box(E), in the following way:
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box(a) -

box(E sy A) = box(E) sy A
box(E; F) = box(E); box(F)
box(E [ F) = box(E) 0 box(F)
box(E||F) = box(E)||box(F)

box([E * F * G]) = [box(E) x box(F) * box(G)].
In what follows, a boz is a net which can be derived from a box expression
through the box() mapping. In general, isomorphic boxes will be identified.
The following collection of simple facts about boxes can easily be proven by

induction on the structure of expressions generating them.

Proposition 53 Let ¥ be a box, ¢ be its transition and s be its place.
1. ¥ is a pre-box (and so also a labelled‘net).
2. If ¢ is labelled with a communication action then

(a) *tN°*Y # 0 implies *t C *%,
(b) t* N X* # 0 implies t* C £°, and
(c) *t C *¥ and t* C X° together imply that *¢t = *L if and only if

t* ="

3. 5 has no duplicates other than itself, and if *s = @ (or s* = 0) then
s € °L (resp. s € 2°).

4. If t is not a simple transition, or if *SUX* is a proper subset of *tUt* then
t is labelled by @ and there are transitions v and w in ¥ with conjugate

labels such that t o<z uw. |
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5.6.1 Duplication equivalent boxes

The first goal (crucial from the point of view of dealing with axiomatisation
of duplication equivalence of box expressions) is to structurally characterise
the maximal synchronisation sets of boxes. To this end some auxiliary sets of
transitions, called ez-transitions and choice context transitions are introduced.

An ez-transition of a box X is a simple transition ¢ such that °t = *¥ and
t* = X*. This is denoted by ¢t € EX5 and use exs to denote the set of labels
of all ex—transitions of .3 Choice context transitions duplicate each other
except that they may have different (communication) labels. The terminology
is motivated by the fact that such transitions always result from applying the
choice composition operator. A set of choice context transitions of a box ¥ is a
maximal non-empty set U of transitions labelled with communication actions

and all having the same connectivity. In addition, ccalls is defined as
ccally = {Ag(U) | U is a set of choice context transitions}

If the transitions in U are not ez-transitions then U is a set of internal choice

context transitions and ccinty, is defined as
ccints = {As(U) | U is a set of internal choice context transitions}.

Note that exs is a set of actions, and ccally and ccinty are sets of sets of

communication actions. For the boxes in Figure 5.9, exg, = {a}, ccallg, =

{{a,5},{e}, {a}}, ccints, = {{8,5}, {}}, exs, = {a, b, ¢, B}, ccally, = {{a, b,c}}

and ccintg, = 0.
Ey = ((@0b);(@00))0a and E, = (a05) 0 (c00)
Proposition 54 Let ¥ be a box and ¢ be its transition.

1. If t <y, 0 for some transition u in ¥ labelled by a communication action,
then EX): 75 (0

3The notion of an ez-transition as well as other auxiliary notation introduced in this

section are defined for boxes; however, they extend without any change to labelled nets.
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Figure 5.9: Boxes generated by £; and Ej

2. Ift=°%,t* =%, (t,°L) € consty, (t,%*) € consty and ¢ is not an ez-
transition then there are two ez-transitions u and w in ¥ with conjugate

labels satisfying t by uw.

Proof: (1) The result will follow if it can be shown that, for every ¥
obtained from a synchronisation-free expression, the following hold: (i) it is
impossible that ¢ >xix; ud; and (ii) if v, w are transitions such that vw g ud
then v or w or u is an ez-transition.

Firstly, it can be observed that (i) follows from the fact that all transitions
in ¥ derived from a synchronisation-free expression are simple. Thus ¢ b3y ud
would imply, also due to proposition 53(2a,2b),* *u = u* = ), a contradiction.

Part (i) can be proved by induction on the structure of the synchronisation-
free expression E generating ¥. In the cases when F = F;G or E = F||G
or E = [F x G * H|, one can conclude that vw <z ud is simply impossible to
satisfy. Suppose E = F [ G. Two cases are considered:

Case 1: v € box(F') and w € box(G). Also, without loss of generality, let

4Note that if ¥ is derived from a synchronisation-free expression, then in the formulation
of proposition 53(2) it does not matter whether ¢ is labelled by a communication or internal

action.
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u € box(F). Consider a slightly modified expression, £ = (F10) JG. Then
VW Mpox(E') U2 Where 2 is the only transition of box(@). Hence, by proposition

41, w is an ez-transition in box(G) and so also in .

Case 2: v,w € box(F). If u € box(F') then vw Mye(r) ud and the induction
hypothesis can be used. If u € box(G) then the same E’ as in the first case

can be used to conclude that v is an ex-transition in X.

(2) Since t is not a simple transition, it must have arisen as a synchronisa-
tion of two transitions u and w with conjugate labels and satisfying *uU*w C
*Y and u* Uw* C X°. Moreover, by (¢,°X) € consty and (¢,X*) € consty,

‘u="w="Y and u* = w®* = X*. Hence u and w are ex-transitions. a

The basic idea behind the structural characterisation of maximal synchro-
nisation sets is that one can apply an a-synchronisation, without losing du-
plication equivalence, if for every pair of a-synchronisable transitions ¢ and
u it is possible to find a duplicate of their synchronisation in at least one of
two different ways: as a syntactically generated (-transition, or as a synchro-
nisation of two transitions with the same connectivity as ¢t and u. To make
the latter point explicit, suppose that (X,]|3;) sy A ~ (31]|Z2) sy 4 sy a.
Then, if ¢ is a transition in ¥; and u is a transition in ¥, then it must be
possible to find A-synchronisable transitions, ¢ in ¥; and v’ in Xy, with the
same connectivity as respectively ¢ and u. In other words, a necessary condi-
tion for (X;]|X2) sy A ~ (£1]|Z;) sy A sy a to hold is that for every pair of
a-synchronisable transitions ¢ and u from respectively £; and ¥, there is a
pair of A-synchronisable transitions, ¢ and u’, which have the same connec-
tivity as respectively ¢ and u. This can be expressed rather conveniently using
the sets ccally, and ccally, and some auxiliary notation. Let Z and W be two
sets of sets of actions and A be a synchronisation set. Then cov4(Z, W) is the
set of all communication actions a such that if Z € Z and W € W satisfy

aeZNaceWora€ ZAa € W then thereisce Asuchthatce ZAce W.
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Define, for a synchronisation set A and boxes X1, ¥,
cova‘:lé122 = cov¥(ccallg,, ccallg,).

The above necessary condition for (X,]|¥2) sy A ~ (£,]|X2) sy A sy a simply
amounts to saying that a and @ belong to covallglzz. Note that for the nets
in Figure 5.9, covall%l,32 = A — c. Characterising maximal synchronisation
sets is rather straightforward in the case of sequential, parallel and iteration

composition.

Proposition 55 Let T; (i = 1,2, 3) be boxes and A be a synchronisation set.
Then

2
MaX(s;;5,) Sy A — Cova”glzg N (] maxs; sy 4
P 151
max(s,|s;) sy 4 = covallgy, N N maxs; sy 4
z§1
and maX[zl*zz*Ea] sy A = covallélzzza N inl maXg, Sy A-

Proof: Only the most complicated case is considered, viz. iteration. To
show the (C) inclusion, suppose that a ¢ A (clearly, if @ € A then a €

covallglzzzs and a € maxg; sy 4, for i =1,2,3) and
[1 % Xo % 23] sy (AUa) >~ [Z) * Xy x I3] sy A.

Let ¥ =3 : {(*Z,°X),e), (1%, °%,, £5°,°23,0)} where each X} is a copy
of ¥; (in the same way as in the definition of the iteration operator). Moreover,
let ¥ = (9, 23,31, %5, %) : A be the union of all the remaining nets in the
definition of [£q * ¥z X3). It will be shown that a € maxg, sy 4, fori=1,2,3,
and a € covallglzzz3 using the results and notation from section 5.4.2.

Let E=°'L,®°Y)and X = 2,°® *X, @ &,° ® *Z3. It can be observed
that A1-A5 hold by the definition of thg iteration operator and proposition
53(1,2). To show that A6 also holds, suppose that w is an FX-transition in
(X UX') sy A. It is easy to see that then w belongs to ¥ sy A because every

transition in Y’ is connected to at least one place not in £ U X.
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Since A1-A6 hold, by proposition 51, a € maxs sy 4. Moreover, ¥ ~ %,,
where £, is X; with the label of each exit place changed to §. Hence a €
maxg, sy 4. Lherefore, by proposition 53(3), [Za]~ is [Z1]~ with the label of
every exit place changed to (. Hence a € maxsg, sy 4. In a similar way, one
may show that a € maxg, sy 4 and a € maxg, sy 4.

To show that a € covallglzzza suppose that (t,v) € (Ty x Tx) Nsyny. It
suffices to show that there are (u,w) € (ITy X Tyx) Nsyny such that ¢ t<ap u
and v g w (note that the operations of place multiplication and addition
do not affect the relationship of having the same connectivity, and that by
construction of the iteration operator it is not possible for two transitions
coming from different nets forming ¥’ to have the same connectivity in ¥').
To be able to apply proposition 52, it is first observed that v € Tgx since
no transition in ¥’ is an EX-transition. Suppose then that t € Tgx and
y,z € Ty are such that tv >gysr y2z. Then, without loss of generality, y € Tx
and z € T - Consequently, there are s € Sg:l —*Y] and r € 5212 — 3,° such
that s € *v and p € v*, a contradiction. If it is assumed that tv gy y then
a contradiction follows in a similar way. Hence there is no z € Ty sy A such
that ¢t o v ~(zuz) sy (aua) . Hence proposition 52 can be applied.

Thus the (C) inclusion holds. The reverse one follows from proposition 50.

Note that by setting A = 0 it is immediately shown that, e.g., maxs, .z, is
the set of all @ € maxg, sy 4 M maxg, sy 4 such that if a transition labelled a
or @ appears in X, then there is no transition with the conjugate label in X,.

A similarly pleasant characterisation does not hold for the choice composi-
tion. One of the reasons is that a synchronisation of ex—transitions can some-
times be obtained by a syntactically introduced (-transition. For example, if
%1 = box(a|[@) and Xy = box(0) then a € maxx, g5,) sy ¢ but a & maxs, sy .
Another example is provided by the boxes ©; and X, in Figure 5.9 for which
a € maxy g5,y sy b but a & maxy, sy b = maxg,. Note that if the previous

discussion were repeated for (X;0%,) sy A ~ (¥, 0X,) sy A sy a then it
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would no longer be true that ¢ and »’ had to have the same connectivity as ¢
and u if, e.g., u is an ex—transition in ¥, since in such a case an ez—transition
¢’ in X; could provide a suitable ‘match’ for ¢'.

The characterisation of the maximal synchronisation sets for the choice
composition is more complicated. For a box ¥;, let & be the set of all sets
of internal choice context transitions U such that if ¢ € U then there is no
transition v in X; satisfying u <y, 0¢. Intuitively, this means that if ¢ were
to be synchronised with a conjugate ex-transition coming from the box ¥,
in the context X; ] X, then the resulting transition would not have the same
connectivity as any of the transitions present in ;. ccnoexy, is defined as
follows ccnoexy, = {Ag,(U) | U € U} and, for all boxes £; and ¥, and a
synchronisation set A,

A

covnoexg 5. = cov?(ccnoexs, sy 4, {exs,}) N

A

ccinty,, ccally,) N cov4(ccinty,, ccally;,)

(

cov#(ccnoexs, sy 4,{exs,})
covmixg z, = cov4(
(

4(ccintg, , ccints, ).

covint,’;‘122 = cov
The above definitions closely follow that of covall. For the nets in Figure 5.9,
ccnoexs, = {{a,b},{é}}, covnoexd v = A — ¢, covmixgl):2 = A — c and
covint‘,’é122 =A.

A syntactic restriction on the type of expressions used to derive boxes is
introduced. Let Exp, denote those box expressions E for which there is no
subexpression F [1G and a communication action a such that a € €Xbox(F)

and @ € expox(g).- Let Boxg denote boxes which can be derived from the box

expressions in Exp,.

Proposition 56 Let ¥ be a box in Box,.

1. There are no transitions ¢t and u in X with conjugate labels and satisfying

*t ="*u and t* = u°.

2. There is no @-labelled transition in ¥ such that all the arcs adjacent to

it have weight 2.
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Proof: (1) By straightforward induction on the structure of the expression
generating boxes in Boxg.

(2) Follows immediately from the first part. O

A partial characterisation of the maximal synchronisation sets of boxes

involving choice composition is then obtained.

Proposition 57 Let £ = (; 0 X;) sy A be a box in Boxg and A be a syn-

chronisation set such that
exy N (A U {0}) C €Xg, sy A M exs, Sy A- (53)

Then
2

maxyg = covnoexglz2 N covintg122 N ﬂ maxs,; sy A
=1
Proof: Using notation from section 5.4.2, let F = *%L, = *%, and X =

Y. = X,°, where

Ea = 21 : {(.El,.zg,e),(21.,22.,X)}
Zb = 22 . {(.21,.22,6),(21.,22.,X)}.

Note that 3, 0 Xy =, U L.

Suppose that a € maxs and a ¢ A (if a € A then a clearly belongs to the
rhs of the equality from the formulation of this proposition). Using proposition
53(1,2) and the definition of the choice operator, one can see that A1-A5 are
satisfied. Moreover, A6 holds which follows from (5.3) and Tgx N Ty = EXyy,
for ¥’ € {X,%; sy A, L, sy A} (note that the latter follows from propositions
53(1) and 56(2)). Hence, by proposition 51, a € maxg, sy 4. Since £, ~ X,
a € maxg, sy 4 and, by symmetry, a € maxs, sy a.

To show a € covintgazb = covintf 5 it needs to be shown that if (¢,v) €
((Ts, — EXs,) X (Tx, — EXg,)) N syny then there are (u,w) € (Tx, x Tx,) N
syn, such that ¢ <y, u and v >y, w. This, however, follows directly from

proposition 52 (note that ¢t,v & Tgx).
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To show a € covnoexg 5, = covnoexs 5, by symmetry, it is sufficient to
prove that if ¢ € EXg, = EXg, is an a-labelled transition, and v € U €
CCNOEXs, sy A = CCNOEXs, Sy A4 1S an @-labelled transition then there are (u, w)
€ (Tx, x Tx,) Nsyn, such that ¢t >z, u and v <z, w. This, however, follows
directly from proposition 52 (the proposition can be applied since v € Tgx,
and ift € Tgx and tov ~5 sy (aua) T where z € Tx, sy 4 then vd s, sy 4 2,
.contradicting the choice of v).

The (C) inclusion has been shown. To show the reverse one, corollary 8
is used. That it can be applied is shown by the following argument. Suppose
that (¢,v) € (Tx, x Tx,) Nsyn,, where a belongs to the rhs of the equality from
the formulation of this prbposition. Three cases are considered.

Case 1: t ¢ EXy, and v € EXy,. By a € covintélzz, there are (u,w) €
(Tx, % Tx,) Nsyn, such that ¢ <z, v and v o<y, w. Hence tv g, us, uw.

Case 2: t € EXg, and v ¢ EXg, (note the argument is symmetric for
t ¢ EXs, and v € EXy,). If it is not the case that there is 2 € T, sy 4 such
that tv ~y z then there is U € ccnoexy, sy 4 such that ¢ € U and the fact
that @ € covnoexg ;. can be used to reach the desired conclusion, i.e. to find
u and w as in Case 1.

Case 3: t € EXg, and v € EXg,. This produces a contradiction with

proposition 56. O

Finally, it is observed that the various sets of communication actions intro-
duced and used in this section are preserved through duplication equivalence

and synchronisation.

Proposition 58 Let A, B, C be synchronisation sets and ¥,, ¥, ¥, X4 be
boxes such that ¥, ~ ¥, and ¥, ~ ;.

1. sety, = sets, for set € {ex, ccall, ccint, ccnoex}.
A — A - -
2. sety y, = setg 5, for set € {covall, covmix, covint, covnoex}.
3. setd 5 = setf sy B,z, syloF set € {covall, covmix, covint}. a
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Note that covnoexg 5 = covnoexg sy B,s, sy ¢ does not, in general, hold.
For example, if £, = box(@) and £, = box(a U (a; #)) then covnoex?_ 5 sy a=

A but a & covnoex? 5 .

5.7 Box expressions

The notion of duplication equivalence formulated for boxes is now transferred
to the domain of box expressions. Two box expressions, F and F, are duplica-
tion equivalent if box(E) ~ box(F'). This is denoted by E ~ F. The maximal
synchronisation set of a box expression F is defined as maxg = mMaxpox(x)-
Clearly, many properties of duplication equivalence that hold for boxes can be
transferred to box expressions. In particular, it is immediately obtained that
~ is a congruence in the domain of box expressions.

Moreover, directly from propositions 46 and 47:

Proposition 59 Let E and F be box expressions, and A and B be synchro-

ni’sation sets.
1. Esy Asy B~ Esy (AUB,).
2.If E~FEsy Band AC B then F ~ E sy A.
3. fE~FEsy Aand E~ FE sy B then E ~ E sy (AU B).

4. f E~ F sy Athen F~ E sy A. !

The main aim of this section is to axiomatise dgplication equivalence of
box expressions. A crucial difficulty to be solved is the development of a
structural characterisation of maximal synchronisation sets, both in order to
obtain a set of sound axioms and to define normal form box expressions needed
for a completeness proof. Such a characterisation is based on that obtained
for boxes; Therefore, the expression’ counterparts of ez—transitions and choice

context transitions as well as other notations introduced in the previous section
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are defined. For a box expression F, let exg and potexy be sets of actions

defined by induction on the structure of F, as follows:

e, = {a} potexgp = (exg N éxp) U (exp N €xg)
eXgpr = exgUexp potexgyp = potexg U potexg
pOteXE Sy A == pOtexE

exg U {0} if potexgN A #0
EXE sy A=
exp otherwise
In all the remaining cases, exgp and potexy are defined as empty. The meaning
of exg is that of exyoxr). The auxiliary set potexy represents potential 0-
labelled ez-transitions which can be generated by applying synchronisation

using the actions in potexg. For example, potex , nyi@oh = Y b.

Proposition 60 For every box expression E, exg = eXpox(p) and potexp =
Abox(E> (To), where T is the set of all transitions ¢, u in box(E) labelled with

conjugate communication actions such that tu oy gy d.

Proof: By induction on the structure of E. O

Choice context transitions are now considered. For a box expression F,
let ccintg and ccallg be two sets of sets of communication actions defined by

induction on the structure of E, as follows:

ccint, = 0 ccintigursgy = ccallg U ccallp U ccallg

ccallg U ccallg

ccintggr = ccintg Uccintp ccintgyr

ccintg,p = ccallg Uccallp ccintg sy 4 = ccintg

ccintgU{exg N A} ifexgNA#D
ccallg =
ccCintg otherwise.

Moreover, a set of sets of communication actions ccnoexg, is defined as follows:

CcCnoexr g = ccnhoexp U ccnoexg

and ccnoexp gy 4 = {C € ccnoexp | CNexpNA = 0}
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and by setting ccnoexg = ccintg in all the remaining cases.

Proposition 61 For every box expression E, ccallg = ccallpox(r),

cCintg = CCintpox(g) and CCNOEXE = CCNOXpox(E)-

Proof: By induction on the structure of E and using proposition 60. O

Let E, F and G be box expressions and A be a synchronisation set. Then:

covallip, = covA(ccallg, ccally)

covnoexp = covA(ccnoexg sy 4, {exr}) N covA(ccnoexr sy 4, {exg})
covmixap = cov?(ccintg, ccallp) N cov?(ccintp, ccallg)
covinti, = covA(ccintg, ccinty)

and covallpps = ﬂ{covall,‘%y | X, € {E,F,G}}. The sets of communication
actions that have just been defined are direct counterparts of similar notions

introduced for boxes.

Proposition 62 Let E, F' and G be expressions and A be a synchronisation

set.
1. sethp = set{,“ox(E)box(F), for set € {covall, covint, covmix, covnoex}.
A A
2. Cova”EFG = Cova||b°x(E)b°x(F)box(G).

Proof: Follows from propositions 60 and 61. O

As a result, the relationship between maxgz and the structure of E can
be captured by adapting the results obtained for boxes. Below, for a pair of
expressions E and F, simexgr denotes the set of all synchronisation sets A

such that

exeor) sy aN(AU{0}) C exgsy aNexrsy a

315



Proposition 63 Let E; (1 = 1,2,3) be box expressions and A be a synchro-

nisation set. Then

2
Max(g,,E,) Sy A = covallglE2 N maxg, sy 4
z-—2-1
Maxg, ||E,) Sy A = covallgll_,72 N ) maxg,; sy a
131
and MaX(g,+E,«B5) Sy A = covallglEzEa N iﬂl maxg; sy A-

Moreover, if (E; [ E;) sy A € Exp, and A € simexg, g, then

2

A A
MaX(g, gE,) Sy 4 = COVNOeXg, g, N covintg z, N (] maxg, sy .
i=1

Proof: Follows from propositions 55, 57 and 62. m|

The above characterisation of maximal synchronisation sets of expressions
involving the choice operator is only partial. For that reason, two results on

specific usages of choice composition are now provided.

Proposition 64 Let E = (E,||E;) sy A be a box expression in Exp, and a be
a communication action such that a € maxgggp—maxg. Then exg, Nexg,Na #
and

2

a € covmixa . N () maxg, sy 4.
E1E2 1 y
i=1

Proof: Let ¥ = box(0) and ¥; = box(E;), for i = 1,2. Since |*X| = |Z*| =
1, it may be assumed that (Z;||Z;) 0 X = £, U 3 U X3 where
23 =X @ {(S, .El U .22, e), (7‘, 21. U 22.,X)}
and s and r are places satisfying {s} = *E and {r} = 2°. Therefore

(ElLJEz) SyA ¢ (21UE2) Sy (AUB)

and (Z;UX2UX3)sy A ~ (Z1UXU%;3) sy (AUa)

Since (£, UX,) sy A and (£, UX,UX;) sy A differ only by a single f-labelled
transition ¢t € EXs,us,ux,, from proposition 43(2) it follows that there must
be a-synchronisable transitions u, w in ¥; U ¥, such that § <z, g, uw. Hence

exp, Nexg, Na # .
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To prove the second part, the results and notation from section 5.4.2, are
used with boxes ¥; and ¥, U X3, and sets of places E = *%; and X = %,°.
It is easy to see, using proposition 53, that A1-A5 hold. Moreover, the only
E X-transitions (if any) in (X, U (X2 UX3)) sy A are those in ¥; sy A. Hence
A6 also holds and, by proposition 51, a € maxg, sy 4 is obtained and, by
symmetx;y, a € MAXg, Sy A-

It can also be observed that proposition 52 can be applied for (¢,v) €
((Tg, — EXg,) X Tx,us;) N syny since then t,v ¢ Tgx. From this, and by

symmetry, a € covmixg1 By m)
Proposition 65 Let a € A be such that a € max(gga,n..00) sy 4 Where
ay,...o4 are actions and EQ e, 0 ... Joy is an expression in Exp,.

1. If the topmost operator of F is sequence or iteration then a € maxg.

2. If the topmost operator of E is parallel composition and a ¢ maxg then

a € maxg sy Aoy and o; = 0, for some i < k.

Proof: Let ¥ = box(E) and ¥; = box(c;) for i = 1,...,k. Since |°%;| =

|;°| = 1 for every i < k, it may be assumed that
Yo=box(Elay0...0)=Sulju...UZ;
where in the above, fori=1,...,k,
2;. =%, ®{(s:,°%,e), (r;, 2%, %) }

and s; and r; are places satisfying {s;} = °%; and {r;} = Z;*.
By proposition 47(3), ¥, sy A = ¥, sy (AU a). If a ¢ maxg then, by
proposition 43(1,2) and a € MaX(ggq,p..004) Sy 4, there are t,u € Ty such

that (t,u) € syny and one of the following holds:
(a) There is w € Txju.ux, such that tou ~5, sy (4va) w-

(b) There are v € Ty and w € Txyy. ux, such that t o u ~g, sy (ava) vow.

317



(c) There are v,w € Tgrlu___ug;c such that t o u ~5, sy (ava) v o w.

Clearly, (c) is impossible because the weights of all the arcs adjacent to v o w
would be equal to 2, contradicting proposition 56(2). Three cases are consid-
ered.

Case 1: E = F;G. Then (a) leads to a contradiction since tou is connected
to at least one internal place in ¥, sy (A U a). That (b) also leads to a
contradiction can be shown in the following way. Since *w = *Y and w* = £*
it must be the case that, without loss of generality, ¢ is a transition from box(F)
and u is a transition from box(G). Then, again without loss of generality, v
is a transition from box(F'). Note now that box(E) is the union of £; =
box(F) : {(box(F)®,*box(G),0)} and =, = box(G) : {(box(F)*,*box(G), )}
and observe that there is a non-entry place s in box(E) which is also in *u.
Hence, s also has to be in *v. But the only places shared by £; and %, are
those in box(F)* ®°*box(G). This means that box(F)*N®v # 0, a contradiction.

Case 2: E = [F x G x H]. Proceed similarly as in Case 1.

Case 3: F = F||G. Then (b) leads to a contradiction since it is obtained
from proposition 53(2) that, without loss of generality, *t C *box(F'), *u C
*box(G), t* C box(F)* and u®* C box(G)®. Moreover, *Y C *tU*u and £°* C
t*Uu®. Hence t € EXpox(r) and u € EXpox(g). But this means that *v = v* =0.
If (a) holds then, clearly, a; = @, where 7 is such that w is the only transition of

¥;. Moreover, a € maxg sy app can be shown easily using proposition 43(2).

a

This section concludes with a useful result which states that the various
sets and relations introduced in this section are preserved through duplication

equivalence and synchronisation.

Proposition 66 Let A, B, C' be synchronisation sets and F, F, G, H be
boxes such that F ~ G and F ~ H.

1. setp = setg for set € {ex, ccall, ccint, ccnoex}.
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2. setp =setg sy 4 for set € {ccall, ccint}.
3. sethp =setdy for set € {covall, covmix, covint, covnoex}.
4. setip = sety sy B, sy c for set € {covall, covmix, covint}.

5. simexgr = SImexgy-

Proof: Follows from propositions 58, 60, 61 and 62. a

5.8 An axiomatisation of duplication equiva-

lence

The axioms for duplication equivalence of box expressions are structured into
six groups. Below, o stands for an arbitrary action, A and B for synchronisa-
tion sets, and a for a communication action. |

Structural Identities. The first group of axioms (STR1-STRS5) capture
some basic structural identities. The axioms are sound not only with respect to
duplication equivalence, but also with respect to net isomorphism. What they
express is that the choice, parallel and sequential compositions are associative’,
and that the first two are also commutative operators.

Propagation of synchronisation. The first two of the next group of
axioms (PROP1-PROP7) express simple (structural) facts about synchronisa-
tion, namely that applying synchronisation to a single action expression, or
using the empty synchronisation set, has no effect at all. The third axiom al-
lows one to collapse consecutive applications of the synchronisation operator.
The remaining four axioms amount to saying that synchronisation propagates

through the four composition operators.

5Therefore the parentheses in nested applications of sequence, choice and parallel com-

position operators may be omitted.
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(E;F);G
(EOFR UG
EQOF
(EIFIG
E||F

o

E

Esy Asy B
(E;F) sy A
(EDF) sy A
(E|F) sy A
[E+F+G]sy A

ada

E;(F;G)

EDFDG)

FOE

E|(FIIG)

F||E

asy A

Esy

E sy (AUB)

(Esy A);(Fsy A) sy 4
(Esy A)D(Fsy A) sy 4
((E sy A)I(F sy 4)) sy 4
(E sy A) * (F sy A)* (G sy A)] sy 4

(8

STR1
STR2
STR3
STR4
STR5
PROP1
PROP2
PROP3
PROP4
PROP5S
PROP6
PROP7
DUPL

320




Duplication. This group comprises only one axiom (DUPL). It captures
the essence of duplication equivalence whereby a choice between two copies of

the same action is ignored.

ex-actions. The next axiom (EX) is used to deal with ex—actions as it
allows these to be moved within a box expression. This is necessary, in par-
ticular, in order to make an expression with the main choice composition

connective satisfy the first of the premises in the next axiom (LIFT1).

a€ A > VB € ccnoexg sy 40 € B
EX
(Esy A)la=(EQa)sy 4
A € simexg sy a,F sy a and a € covintiy N covnoexf Sy a,F sy a
: LIFT1
(Esya)l(Fsya)sy A=(EQ0F)sy Asy a
a € covalliy
LIFT2
((E sy a);(F sy a)) sy A= (E;F)sy Asy a
a € covallg
LIFT3
((E sy a)||(F sy a)) sy A= (E||F)sy Asy a
a€ covaIIgFG
LIFT4
[(Esya)*(Fsya)*x(Gsya)sy A=[ExF+G]sy Asy a
((EQa)|(FO@) sy a)00 = ((EQa)||(FDa)) sy a INT1
a € covmixfp Nexg N &XF
INT2
(((E sy a)||(F sy a)) sy A)00 = (E||F) sy Asy a
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Lifting of synchronisation. The following four axioms (LIFT1-LIFT4)
allow one to lift synchronisation sets to a higher level in the syntax tree of a
box expression. The main application of these axioms is in the construction
of maximal synchronisation sets.

Internal actions. The last axioms (INT1-INT2) capture two different ways
in which a syntactically generated internal action can find its duplicate gener-
ated through synchronisation.

From now on only the box expressions which belong to Exp, are considered.
Note that by applying any of the axioms to a box expression in Exp, one always
produces an expression which also belongs to Exp,. It will also be assumed

that the set of communication actions A is finite.

5.9 Soundness of the axiom system

The first property of the axiom system that is established is soundness. Using
the results obtained for nets and, in particular, the structural characterisation
of the maximal synchronisation sets, it is fairly routine to show that the axiom
system is indeed sound. If two box expressions, E' and F', can be shown to be

equivalent using these axioms, E = F' will be written.

Theorem 6 For every box expression F in Exp,, if E = F' then E ~ F.

Proof: As shown in [5], duplication equivalence is a congruence with re-
spect to all the operators used in this paper. Hence it suffices to show that
each of the axioms is sound. This is true for STR1-STR5 (since these are
sound w.r.t. net isomorphism), PROPl,‘PROP2 and DUPL (which follows di-
rectly from the definition of J, sy and ~), PROP3 (using proposition 59(1)),
PROP4-PROP7 (using proposition 49 and the property that synchronisation
distributes over place multiplication and place addition), LIFT1-LIFT4 (using
propositions 66(4, for covint) and 63, as well as axioms PROP4-PROP7) and EX
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(using propositions 43(2) and 60), INT1 and INT2 (using proposition 43(2)).
0

Note that EX, DUPL and STR2 imply the soundness of two useful derived

axioms, EX1 and EX2, where in the former E [J o can be equal to a.

(Ela)sy A)la = (E0a)sy A EX1

ag A

EX2
(Esy A)la=(Ela)sy A

5.10 Completeness of the axiom system

The proof of completeness is much more involved and is structured into two
parts. The first one deals with maximal synchronisation sets showing that it
is always possible to make the maximal synchronisation set of a box expres-
sion the outermost synchronisation, i.e., for every box expression F in Expy,
E = E sy maxg. The proof of this result relies heavily on the structural
characterisation of the maximal synchronisation sets of box expressions. The
second part begins with the development of a normal form for box expressions
and ends up with the completeness proof.

Firstly, an auxiliary notion of context is introduced. A contezt is a term N

derived from the following syntax:
Nu=zsyA| ROR)sy A | (R[IR) sy 4 | (;R) sy A | [R«RxX] sy A

where A is a synchronisation set and z is a place-holder (variable). It is

assumed that within a given context, all the place holders are distinct. An
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n-context is a context N with exactly n place holders. It can be denoted by
N[Z1,...,Zn|, where z1, ..., T, are the place-holders of R listed in the order in
which they occur in R. For every 7 < n let A4 denote the synchronisation set
such that sy A% was the synchronisation directly applied to the i-th place-
holder, i.e., ;. Moreover, for all 7,7 < n let Ag denote the union of all sets A

such that z; and z; are in the scope an application of sy A. For example, if

R[z,y,2] = ((((z sy a)l|(y sy ¢)) sy d)||(z sy e)) sy f

then A2 = ¢, A = cudUf and A} = dUf. R[py,...,p,] is used to denote the
term resulting from replacing the place holders z1,...,z, by terms py,...,p,.
Note that if each p; is a box expression then so is R[pi,...,pn]. A context W

is saturated (reduced) if, for every subcontext

of X, BC A (resp. BN A=0).

A box expression F is in standard form if E = R|oy,...,a,], for some
n-context N and actions a4, ..., a,. Moreover, E is saturated (reduced) if X is
saturated (resp. reduced). For a box expression E (or context R), (E) (resp.
(X)) is used to denote the term resulting from deleting all the occurrences of
the synchronisation operator. Note that (E) is always a box expression. For
example, E = ((a sy a)||/(b sy (aUc))) sy a is a saturated box expression in
standard form such that (E) = al|b.

It is always possible to transform an expression into one in standard form,
saturated or reduced. In the first of the two results that follow, a suitable F’
can be obtained by applying axioms PROP2 and PROP3, and in the second
one by applying axioms PROP4-PROP?7.

Proposition 67 For every expression E there is an expression in standard

form F such that (E) = (F) and E=F. |
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Proposition 68 Let £ = R[Fy,...,E,] be a box expression in standard
form. Then there is a saturated (resp. reduced) n-context X' such that

E=VW[E,,...,E,;] and (R) = (N} and AY = A¥, for all i, < n. O

For example, if E = ((a sy a)||/(bsy c)) sy a then E = ((asy a) |
(b sy (aUc))) sy a (exemplifying saturation) and E = ((a sy 0)||(b sy c)) sy a

(exemplifying reduction).

5.10.1 Constructing maximal synchronisation sets

This section contains two results. The first, an auxiliary one, states that it is

always possible to propagate an ex-action to the outside of a box expression.

Proposition 69 For every box expression E in Exp, and every a € exg,

E=FEla.

Proof: By DUPL and STR2, it suffices to show that E = F' [ «, for some
expression F'. Induction on the structuré of (E) is used. By pfoposition 67,
it may be assumed that E is in standard form. The base case is E = o sy A.
Then exg = {a} and, by EX1, a sy A = (a sy A)Ja. The induction step is
split into three cases.

Case 1: E = (F;G)sy Aor E = [FxG % H) sy A. Then exg = ) and
there is nothing to prove.

Case 2: E = (F||G) sy A. Then, by the definition of ex, & = @ and there is
a € A such that a € exr and @ € exg. By the induction hypothesis, F = F [ a
and G = G @. Thus, by INT1, PROP3 and EX2,

E = (Fla)|(GDa))syasy A
= ((FOa)ll(GDa)) sy all0) sy A
= ((FUa)|(GD@)) sy asy ADO.

Case 3: E = (F UG) sy A. Then, by proposition 68, there is a saturated n-
context R, n > 2, and box expressions E, ..., E, such that E = R[E, ..., E,],
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N uses only choice and synchronisation, and, for every i < n, the topmost
operator of E; (if E; is not a single action expression) is neither choice nor
synchronisation. It may now be observed that from A% = A§ for every i <n
(as N is saturated) and the definition of ex, it follows that there is k < n
such that o € exg, Sy Ak- Hence, by the induction hyp‘othesis, Ey sy Ak =
(Ex sy AL)Oa. Then, by repeatedly applying STR2, STR3 and EX1 , one can
show that £ = H [l a, for some H. O

The next result shows that it is always possible to make the maximal

synchronisation set of an expression the outermost synchronisation.

Proposition 70 For every expression E in Exp,, £ = E sy maxg.

Proof: By PROP3 and the finiteness of A, it suffices to show that for
every expression E and action a € maxg, E = F sy a for some expression
F. The proof is by induction on the structure of (E). By proposition 67, it
may be assumed that F is in standard form (note that applying proposition
67 does not change the expression if the occurrences of the synchronisation
operator are disregarded; hence as far as the inductive proof on the structure
of (E) is concerned, applying the proposition is harmless). The base case is

E = a sy A. Then, using PROP1 and PROP3, the following is obtained
asy A=asy Asy A=asy A=asy Asy a.

In the induction step, if F = (F;G) sy A then, by proposition 63, a €
maxp sy 4 M maxg sy 4 and a € covaIIﬁG. By the induction hypothesis, F' =

F sy a and G = G sy a. Hence, by LIFT2,
E=((Fsya)(Gsya))sy A= (F;G) sy Asy a.

If E = (F||G) sy Aor E = [ExFxG] sy A then the proof follows in a similar
way. |
The only complicated case to consider is that of E = (F UG) sy A. Then

there is an n-context X', n > 2, and box expressions Ej,..., E, such that
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E = N[E,..., Ey], N uses only choice and synchronisation, and, for every
i < m, the topmost operator of every E; (if E; is not a single action expression)
is different from choice and synchronisation.

For every i < n, let F; = E;0a,0... Ua, where {ai1,...,an} = {E; |
E; € A A j # i} (if m = 0 then F; = E;). A three-stage transformation of
E into an expression whose structure will allow us to apply proposition 63 is
performed. It may be assumed, by proposition 68, that E is reduced.

In the first stage, by applying STR2, STR3, DUPL and EX2, E = F where
F = ¥[F,,...,F,]. In the second stage, if } € exgz then, using proposition
69 and axioms STR2, STR3, DUPL and EX2, F may be transformed into an
equivalent expression H =N [Hy,...,Hy,] where H; = F;[00, for every ¢ <
n. In the third stage, using proposition 68, H may be transformed into an
equivalent expression J = R[Hy, ..., H,] such that (R) = (¥'), X is saturated
and Ai{ = Aff;, foralli,j7 < n.

It may now be observed that for every subcontext
X[z, - ] ORo[Tig, - ., Tm)) sY AR

of R, the expression (R;[Hy,..., H]ORy[Hy1,..., Hy]) sy AE™ does satisfy
the pre-condition in the second part of proposition 63. In particular, this and
the fact that R is saturated imply that, for every i < n, a € maxy, sy aj-

It is now shown that for every i < n, H; sy A, = K sy a, for some K.
Firstly it is observed that if a € A% = A% then by PROP3 nothing further is
required. Moreover, if it is the case that H; = E; then the induction hypothesis
may be used. So suppose that a ¢ A} and H; = (E; [ 4). Note that in such a
case, by construction, neither a nor @ occurs in 1. Four cases are considered:

Case 1: E; = a. Then H; = H; sy a which follows from PROP1, STR2,
STR3, EX2 and the fact that ¢ does not contain a nor . Hence, by PROP3,
H; sy AL = H; sy A} sy a.

Case 2: E; = F;G. Then, by proposition 65(1), a € maxg, sy i and,

since (E;) is a proper subexpression of (E), by the induction hypothesis and
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axioms PROP3 and PROPS5,

(E;O09) sy Ay, = ((Eisy AY) D (v sy 4Y)) sy AL
= ((Ei sy asy A}) 0 (v sy 4})) sy Ak
= ((E; sy a)0y) sy Aj.

It then follows that since 1 contains neither a nor @, by PROP3 and EX2, the
last expression may be rewritten to (E; 1) sy A} sy a.

Case 3: E; = [F * G x H]. Similar to Case 2.

Case 4: E; = F||G. If a € maxg, gy i then proceed in a similar way to

Case 2. Otherwise, by propositions 64 and 65(2):
A
a € MaXp gy Aj N maxg gy Al M covmixpe;

and (without loss of generality and by applying STR2 and STR3, if necessary)
a € exp, G € exg and ¥ = Q0 4. By the induction hypothesis and PROP3,
F sy Ay = F sy asy Al and G sy A, = G sy a sy A%. Hence, by PROP6
and INT2,

(FIIG) sy 4400 = ((F sy A)I(G sy A}) sy 4,00
((F sy a)|l(G sy ) sy A 00
(F||G) sy A sy a.

Then proceed as in Case 2 to show that H; sy A% = ((F||G)0¢) sy A} sy a.
Hence, it has been shown that for every : < n, H; sy A4 = K sy a, for
some K. Thus, by PROP3, H; sy AL = H; sy A} sy a, for every i < n. The
last part of the proof is carried out assuming that n = 2 (the argument extends
easily to n > 2).
Assume J = ((Hy sy A;) 0(H, sy A;)) sy B. It has been shown that
H; sy A; = H; sy A; sy a, for i = 1,2. Moreover, as has already been ob-

served, B € simexy, sy a,,H, Sy A,- Hence, by proposition 63,

. . B B
a € covinty, sy A, H, Sy A, (1 COVNO€Xy, sy A, H, SY A,
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Also, by proposition 66(3,5):

B € simexy, sy a, Sy a,H, Sy A, Sy a

B
a € CovnoeXHl sy A Sy a, Hs Sy A2 Sy a-

Hence LIFT1, may be applied in the following way

J = ((Hysy A; sy a)l(H, sy Az sy a)) sy B

= ((Hl Sy Al) D (H2 Sy AQ)) sy B Sy a

which completes the proof. 0

5.10.2 De-synchronisation

An auxiliary operator on nets is now introduced. This can be thought of as an
‘inverse’ of the synchronisation operator, or de-synchronisation. For a labelled
net 3 and a synchronisation set A, let ¥ unsy A denote the net obtained from ¥
by deleting all the (-labelled transitions ¢ for which there are A-synchronisable

transitions v and w such that ¢ o<y uw.

Proposition 71 Let ¥; and X, be labelled nets, and A and B be synchroni-

sation sets.

p—

. Siunsy =X,

2. If ¥; ~ ¥y then ¥; unsy A ~ ¥, unsy A.

3. If A C maxg, then ¥, ~ (£, unsy A) sy A.

4. If A C B then (X, sy A)unsy B = % unsy B.

5. If ¥; is a pre-box then ¥; unsy A is also a pre-box.

6. The unsy A operator distributes over the sequence, parallel and iteration

composition.
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Proof: (1), (4) and (5) follow directly from the definitions of sy and
unsy .

(2) Suppose that X; =, X,. Observe that if ¢t o~ u then ¢t € Ty unsya
if and only if u € Tx,unsya which follows directly from proposition 42(1).
Moreover, it is easy to see that for all nodes n and n' in ¥ unsy A, n <y, n' if
and only if n g, unsy 4 7. And, similarly, for all nodes m and m’ in 5 unsy A,

m g, m' if and only if m >z, unsy 4 m’. One can then show that
g = {([nZY"Y 4, [m]Z ™Y 4) | n € Sz, U Ts unsy a A n =, m}

is an isomorphism such that 3, unsy A >~, X5 unsy A.

(3) Since ¥; ~ ¥; sy A, it suffices to show that ¥; sy A ~ (X;unsy A)
sy A. The latter follows directly from proposition 43(2) and the definitions
of sy and unsy (essentially, ) sy A is (X, unsy A) sy A with possibly du-
plicates of some @-labelled transitions added).

(6) It suffices to observe that, by proposition 41, if ¥, is any of the nets (Z;
or 2!) used in the definition of sequence, concurrent or iteration composition
3, and t is a transition in Y5, then there are no transitions, © and w, of which

at least one belongs to the remaining nets forming ¥, such that ¢ <z vw. 0O

De-synchronising a box does not necessarily yield a box. For example,
if E = (((a0b);b)||(@0b)) sy b then box(E) unsya is the net in Figure 5.10
which, as one can easily see, is neither a box nor is duplication equivalent to
any box. But what can be said about a de-synchronised box is that it is a box

with some transitions added in a way which resembles ‘local’ synchronisation.

Proposition 72 Let ¥', & = [Z' unsy A]~, be boxes, and A be a synchronisa-
tion set. Then there is a box ¥, generated by a synchronisation-free expression
and a set of @-labelled transitions T of ¥ such that X, is isomorphic to X with
the transitions T deleted. Moreover, for every transition ¢ € T there are

transitions u,w € Tx, — T such that t <y uw.
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Proof: Let ¥’ = box(E). Observe that if the result is shown for the
modified box obtained by omitting all the transitions which resulted from
synchronisations, then the proposition will also hold for the original box. In
other words, it suffices to show the result assuming that E does not contain
any application of the synchronisation operator. Then, one can show that ¥ is
isomorphic to box(F'), where F is the expression obtained from E by removing,
from each subexpression G = G; [ ... J G all the expressions G; = « such
that there is j < i satisfying G; = G; and, moreover, if potexg N A # () then
also all the expressions of the form G; = @ (the proof can be carried out by

induction on the structure of E and using proposition 71(6)). O

An ez-path of a labelled net ¥ is a sequence of nodes m = ng ... 1k such ng
is an entry place, ny is an exit place, and n,_; € *n;, for every 1 < k. X is ex-
connected, if for every place s in ¥ there is an ex—path to which s belongs. The

following is an easy corollary of the last result and the fact proved in Chapter 3

that boxes generated by synchronisation-free expressions are ex-connected.
Corollary 9 If ¥ is a box and A is a synchronisation set then Y unsy A is

ex-connected. 0

De-synchronisation distributes over the sequence, parallel and iteration
composition. However, this does not extend to the choice operator. For ex-
ample, if ¥, = box(a||@) and T, = box(b||b) then

(Zasya)l(Zysy b))unsya = B, 08 # Z,0(Zs sy b)
= ((X, sy a)unsya) 0 ((X, sy b)unsya).

An important case when de-synchronisation distributes over choice is pro-

vided by the next resuit.

Proposition 73 Let £;,...,%, and ¥ = ;[ ... I £ be boxes in Boxy and
A be a synchronisation set such that, for every ¢ < k, A C maxg, and if

exs,; # 0 then ¥; = box(a) for some action a. Then

ZunsyA = (Zyunsy A)0 ... 0(Zkunsy A).
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Proof: To show the result it suffices to prove that if t € Ty, and there are
A-synchronisable transitions « and w in ¥ satisfying ¢ g uw, then u, w € Ty,.
Two cases are considered.

Case 1: exy, = 0. If u,w ¢ Tx, then a contradiction is obtained with
propositions 41 and 54(2) and ¢ € EXy and ; € Boxg. If u € Ty, and w ¢ T¥,
then, by proposition 41, w € EXs. Hence ¢ i<y, ué and from proposition 54(1)
it follows that EXy, # 0, a contradiction. Thus u, w € T¥,.

Case 2: exg, # 0. Then X; = box(0) and, using proposition 41, one can
easily see that both u and w belong to the same ¥;. Hence, by A C maxy;

and uw g, §, exg, # 0, a contradiction. a

Figure 5.10: De-synchronised box may not be a box.

The next definition and the proposition that follows deal with the problem
of a unique representation of a net as a composition of other, smaller, nets.
Below, a pre-box ¥ is choice-decomposable (sequence-decomposable) if there
are pre-boxes X, and ¥, such that ¥ ~ X, %, (resp. & ~ %,;%;). Note
that box(c) is choice-decomposable, for every action a. An iteration / parallel
/ sequence / choice decomposition of a pre-box ¥ is a sequence of pre-boxes

X1,-.., 2 such that, respectively, the following hold:
e k=3 and ¥ ~ [E; * Ly x 33].
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e k>2and ¥ ~ ¥,|...||Zk and, for every i < k, ¥; is connected.

ek >2and ¥ ~ %;;...;% and, for every ¢ < k, X; is not sequence-

decomposable.

ek >2and X ~ X;0... 0% and, for every 7 < k, if ¥; is choice-
decomposable then ¥; ~ box(a) for some action o and L; % Z; for all

j#i.
Proposition 74 Let ¥ be a box and A be a synchronisation set.

1. Yunsy A has at most one (up to dupl:lcation equivalence and permuta-

tion) parallel decomposition and choice decomposition.

2. Yunsy A has at most one (up to'duplication equivalence) sequence de-

composition and iteration decomposition.

Proof: This proposition is proved using the results obtained in Chapter 3.
A sketch of how this can be done for the case of sequence decomposition is
give below.

To start with, one can show that if 21, ..., 2} is a sequence decomposition
of a pre-box X' then [Zf]., ..., [Z}]~ is a sequence decomposition of [¥]~ such
that 2]~ = [E}]~;. . -; [E})~. Hence it suffices to show that £, = [Sunsy 4]~
has at most one sequence decomposition ¢, ..., 3 such that ¥, = ¢;...; .

By proposition 72, it may be assumed that there is a box ¥, generated by a
synchronisation-free expression E (for which the results obtained in Chapter 3
can be applied) and transitions t,u, w in ¥, such that ¢ g, uw, (u, w) € syny,
and X, is X, with ¢ deleted (i.e. it is assumed that |T| = 1 where T is as in
the formulation of proposition 72; the argument is similar for |T| > 1). Then

the following hold:

(i) Every representation of ¥, as a sequential composition of pre-boxes in-

duces a corresponding representation of ¥,. More precisely, if ¥, =
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X1;...; Xk, for some pre-boxes X;, and ¢ € Ty, then ¥y = Xy ;... %,
where Y, is ¥; with ¢ deleted, and X, = ¥;, for all 4 # 1.

It was shown in Chapter 3 that there is a unique sequence of boxes
Ehyooy0f, for Xy sﬁch that whenever X, = X, ;...;%, there are
(unique) integers 0 = my < m; < ... < my; = m such that, for ev-
ery ¢ <1, Xy, = Xf 5+« -5 5, (in particular, this means that no F;
is sequence decomposable). This and (i) implies that for X, there is at
most one sequence of non-sequence-decomposable pre-boxes £p,...,
such that ¥, = ¥);...; Xy (basically, if u € Ty, and w € Ts,, (z <vy)
then X,,..., % is

S Do (Bi Bporis - 58 ) gt -0 D) O

5.10.3 Normal form box expressions

A box expression E in Exp, is in normal form if it is in one of the following

five types. Below, A = maxg and each F; is an expression in normal form

such that A C maxg,. Moreover, ¥ denotes box(F)unsy A and X; denotes
box(E;) unsy A.

Type-a E = o for some action a.
Type-i E = [E; x Ey x E3] sy A.

Type-p E = (Ei||...||Ex) sy A and X,...,%; is a parallel decom-

position of X.

Type-c E=(E,0...0E) sy Aand y,..., % is a choice decom-

position of %.

Type-s E=(E;...;E)sy Aand ,,..., %% is a sequence decom-

position of 3.
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The next task is to show that duplication equivalent expressions in normal
form are equal (up to permutation of subexpressions in choice and parallel
composition contexts). The first step is to show that any two duplication
equivalent expressions are of the same type. The proof will rely on the notions
of internal connectedness and internal interface, introduced in Chapter 2. Note
that the application of the results based on internal connectedness and internal
interfaces from Chapter 3 is possible due to corollary 9. The relevant proofs
from Chapter 3 can easily be adapted and therefore their detailed exposition
is omitted here, referring instead to the appropriate parts of Chapter 3.

A pre-box ¥ is internally connected if it is connected after removing all
the entry and exit places. It has an internal interface if there is a set of
internal places P such that if P is deleted then £ can be divided into two
disjoint subgraphs with the nodes N; and N, such that: (i) each node in NV,
is connected to an entry place and not connected to any exit place; (ii) each
node in N, is connected to an exit place and not connected to any entry place;
and (iii) if ¥; is taken to be ¥ with the nodes NV; deleted (i = 1,2), then P is
a ®-set for ¥; and ¥,. For example, P = {32, s3} is the only internal interface

of the net in Figure 5.5.

Proposition 75 Let E be an expression in normal form and m be the number

of transitions in £ = box(E) unsy maxg.
1. If F is of type-a then m = 1.

2. If E is of type-p then m > 1 and ¥ is not connected.

3. If E is of type-c then m > 1 and ¥ is connected and not internally

connected.

4. If E is of type-i then m > 1 and ¥ is connected and internally connected

and has no internal interface.

5. If E' is of type-s then m > 1 and ¥ is connected and internally connected

and has at least one internal interface.
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Proof: Let the ¥’s and k be as in the definition of normal form. Note that,
by proposition 71(5) and corollary 9, each ¥; is an ez-connected pre-box.

(1) obviously holds as well as m > 1 in (2)—(5).

(2) Then & ~ %,||...||Zx. This and k > 2 means that ¥ is not connected.

(3) Then ¥ ~ X, 00 ... 0Zk. Since k > 2 and each ¥; is ex-connected, it
follows that ¥ is connected but not internally connected (c.f. Proposition 5 in
Chapter 3). |

(4) Then ¥ ~ [, x £y % Z3). Since each ¥; is ez-connected, it follows
that ¥ is connected, internally connected, and has no internal interface (c.f.
Propositions 5 and 7 in Chapter 3).

(5) Then ¥ ~ %;;...;X;. Since k > 2 and each X; is ex-connected, it
follows that ¥ is connected, internally connected, and has an internal interface

(c.f. Propositions 5 and 7 in Chapter 3). m|

Directly from propositions 71(2) and 75, and the fact that connectedness,
internal connectedness and having an internal interface are all net properties

preserved by duplication equivalence, the following result is obtained.

Corollary 10 Duplication equivalent normal form expressions are of the same

type. O

Moreover, one can show that duplication equivalent normal form expres-

sions are equal.

Proposition 76 If F and F are duplication equivalent expressions in normal
form then £ = F up to permutation of the components in subexpressions of

the form F,||...||Ex and E; 0 ... 0 E;.

Proof: Clearly, maxg = maxry = A and, by corollary 10, both E and F
are of the same type. The proof proceeds by induction on the structure of E.

The base case is E = o and F = o' which clearly implies E = F.
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In the inductive step, suppose that F and F' are of type-p and, more-
over, that E = (Ei||...||Ex) sy A and E = (Fi||...||Fn) sy A. By propo-
sition 71(2), box(E)unsy A ~ box(F)unsy A. Hence, by proposition 74(1),
- k = m and, without loss of generality (one can always use STR4 and STRS5),

box(E;) unsy A ~ box(F;) unsy A and so
box(E;) unsy A sy A ~ box(F;) unsy A sy A,

for every 7 < k. Thus, by A C maxg, = maxg, and proposition 71(3), E; ~ Fj,
for every i < k. Now, since both E; and F; are in normal form, by the induction
hypothesis, E; = F; (up to permutation of subexpressions in choice and parallel
contexts). Hence the proposition holds. The proofs for E of type-c, type-i and

type-s are similar. ’ ]

The next proposition is an auxiliary result used later, in proposition 78, to

transform an expression into a normal form expression.

Proposition 77 Let £ be a normal form expression and A C maxg be a

synchronisation set.

1. If E is of type-p and box(E) unsy A is not connected then there is F' =
(Fil| .. .||Fx) sy A (k > 2) such that E = F and, for every i < k,

A C maxpg, and box(F;) unsy A is connected.

2. If E is of type-s and box(E)unsy A is choice decomposable then there
is an expression F' = (Fy;...;F;)sy A (k > 2) such that E = F
and, for every 1 < k, A C maxp, and box(F;) unsy A is not sequence-

decomposable.

3. If E is of type-c, exg = 0 and box(E)unsy A is choice decomposable
then there is an expression F' = (F; 1 ... 0 F;) sy A (k > 2) such that
E = F and, for every i < k, A C maxp, and box(F;)unsy A is not

choice-decomposable.
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Proof: (1) Suppose E = (E||...||En) sy B. Define a relation p on
{1,...,m} in such a way that (¢,j) € pif i # j and

(Ei||E;) sy B # (Ei||E;) sy A. (5.4)

From the definition of type-p and A C B it follows that F; ~ E; sy B ~
E; sy A and box(E;) unsy A is connected, for every | < m. Hence (z,7) € p if
and only if ¢ # j and box((E;||E;) sy B)unsy A is a connected pre-box. The
graph of the relation p can be divided into k& connected components. Without
loss of generality (one can always use STR4 and STR5) it may be assumed
that 0 = mp < my < ... < mg = m are such that, for every i < k, the
integers 1 + m;_1,...,m; are the vertices of the i-th connected component of
the graph of p. Denote G; = Fiim, || ... ||Fm,, for every ¢ < k. Clearly, for
every i < k, box(G;) sy Bunsy A is connected. Thus, since box(E) unsy A is
not connected, £ > 2. It may then be observed that from proposition 55,

corollary 8 and A C B, it follows that
((Gy sy B)||... (G sy B)) sy B~ ((G1 sy B)||...[(Gk sy B)) sy A.

Denote F; = G; sy B, for every ¢ < k, and F = (Fi||...||Fx) sy A. Therefore
E = (F||...||Fkx) sy B ~ (Fy||...||Fx) sy A. Hence, by proposition 70 and
PROP3, E = F.

(2,3) Proceed similarly as in the case of type-p expression. The main
difference is that in the case of type-s expression, 0 =my < m; < ... < my =
m are assumed to be integers such that, for every ¢ < k, there is a path in the
graph of p between 1+ m;_; and m; and, for every 1 < j < k, there is no path

between z and y if x < m; < y. O

Not every expression in Exp, can be rewritten into a normal form box
expression. For example, if E = ((a;0) 0 @) sy all (#;a) then maxg = A — a
and the only decomposition of box(E) unsy (4 — a) = box(E) into boxes X;
which could satisfy one of the parts 6f the definition of normal form expression,

are the three nets shown in Figure 5.11 (note that box(E)unsy (A — a) =
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¥, 0%, 0X3). While the first two nets do not create any problems, the third
one does, as it is easy to see that there is no box expression F3 such that 33 is
duplication equivalent to box(Ej3) unsy A, for any synchronisation set A. Hence
E has no normal form in the sense defined above. Therefore the applicability
of the choice operator needs to be restricted. The definition below is motivated
by the way in which the fourth case in the definition of normal form has been
formulated (and, indirectly, by the characterisation of the situation when the

unsy operator distributes over choice).

a a ]
21 22 E3

Figure 5.11: Decomposition of a de-synchronised box.

A box expression E € Exp, is choice-restricted if every subexpression F of
E which has choice as the topmost operator is of the form oy 0 ... Doy U H
and satisfies exg sy 4 = 0, where A is the union of all the synchronisation
sets B such that F lies within the scope of an application of sy B (k =0 is
allowed, and H may be missing if ¥ > 0).® Then, let Exp, denote the set of
all box expressions G € Exp, such that G = E, for some choice-restricted box
expression E. Note that the definition of Exp, is not fully syntactic. However,
one can give simple syntactic conditions which guarantee that a box expression

which is not choice-restricted belongs to Exp;.

6Note that H can be an expression whose main connective is choice.
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Proposition 78 If E is an expression in Exp, then there is an expression in

normal form F such that £ = F'.

Proof: It may be assumed that E is choice-restricted, and then proceed by
induction on the number of transitions in the duplication quotient of (E). The
base case is (E) = a or (E) = all ... 0 a, for some action a. Then F = a or
E =al ... [ awhich can be shown using PROP1, PROP2, PROP3 and PROPS.
Moreover, in the latter case, using DUPL, STR2 and STR3, a ... J o may be
transformed into a. In the inductive step a number of cases are considered,
depending on the form of (E).

Case 1: (E) = FE'||E". By PROP3, PROP6, and proposition 70, E =
(F sy A||G sy A) sy A, where A = maxg and F,G € Exp;. By the induction
hypothesis, E = (Fy||Go) sy A, where Fy = F sy A and Gy = G sy A, and
both Fy and Gy are in normal form. If both box(Fp) unsy A and box(Gg) unsy A

are connected, then the result is shown since, by proposition 71(2,4,6),

box(E)unsy A ~ box((Fp||Go) sy A)unsy A
= box(Fo||Go) unsy A = (box(Fp) unsy A)||(box(Go) unsy A).

Otherwise, without loss of generality, it may be assumed that box(Fp) unsy A
is not connected and Gounsy A is connected. Then, by proposition 77(1),
Fo = (Fil|...||Fx) sy A where k¥ > 2, A C maxp, and box(F;)unsy A is
connected, for every i < k. The induction hypothesis may be applied k-
times to obtain that E = ((Hi||...||Hk) sy Al|Go) sy A, where each H; is
a normal form expression for every F;. Next, by PROP3 and PROP5, F =
(Hi|l ... ||Hk||Go) sy A which completes the discussion of this case since, by
proposition 71(2,4,6),

box(E)unsy A =~ box((Hy||...||Hkl|Go) sy A)unsy A

box(H,|| .. .||Hkl|Go) unsy A

= (box(H;)unsy A)|...||(box(Hy) unsy A)
||(box(Gq) unsy A).
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Case 2: (E) = [E' * E" x E"]. By PROP3, PROP6, and proposition 70,
E=[Fsy AxG sy AxH sy A| sy A, where A = maxg and F,G, H € Exp,.
By the induction hypothesis, F = [F * G * Hy| sy A, where Fy, Gy and H,
are in normal form and Fy = F sy A, Gy = G sy A and Hy = H sy A.

Case 3: (E) = E’; E". Proceed similarly as in Case 1.

Case 4: (EY = E'0E". By the definition of Exp;, PROP3, PROP6, and
proposition 70, £ = (0 ... Dax UG sy A) sy A, where G € Exp;, A =
maxg and exg sy 4 = 0. Moreover, by DUPL, it may be assumed that o; # a;,
for every ¢ # j. By the induction hypothesis, E = (on 0 ... Dax 0 Go) sy A,
where Gy = G sy A and Gy is in normal form. If Gounsy A is not choice-

decomposable, then the result is shown, since, by proposition 73,

box(E)unsy A =~ box((eq 0 ... DaxUGy) sy A)unsy A
= box((a1 U ... Doax 0Gy)) unsy A
= (box(a;)unsy A) 0 ... 0 (box(cy) unsy A)
0 (box(Go) unsy A) 0 (box(Gy) unsy A).
Otherwise, proposition 77(3) may be applied, and then proceed similarly as in

case 1. O

Finally, it is possible to prove the main result of the second part of this

section.

Theorem 7 For all box expression E, F in Exp,, if E~ F then E=F. O

Proof: Follows from propositions 76 and 78. O

5.11 Conclusion

A sound and complete axiomatisation of duplication equivalence has been
developed for a subset of box expressions. In doing so, it turned out that
a crucial problem to be solved was that of a structural characterisation of

maximal synchronisation sets of box expressions. It has been demonstrated
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that such a characterisation is rather complicated for box expressions whose
main connective (other than synchronisation) is the choice composition. This
has led to a restriction on the set of box expressions for which the sound-
ness and completeness results directly apply. The duplication equivalence is
a very strong notion of equivalence which resembles the strong equivalence of
CCS [41]. It is therefore natural to envisage that the future research will be
concentrated on developing an axiomatisation of a weaker equivalence on box
expressions, similar to the observational congruence of CCS. From this point
of view the results obtained here are highly relevant since any axiomatisation
of a weaker behavioural equivalence would encompass the axiomatisation of
duplication equivalence. Moreover, the restrictions imposed on the type of box
expressions for which the soundness and completeness results hold seem to be
rather mild when considering a weaker notion of equivalence. Without going
into details, if F,..., F} are the subexpressions of a box expression £ which
cause the latter not to belong to Exp, then it should be possible (under any
reasonable notion of observational equivalence which ignores internal moves)
to replace each F; by F}; 0, within E, and the resulting expression, call it E®,
would now belong to Exp,;. It is also conjectured that the same transformation
can be used to extend in a somewhat unusual way the completeness result
obtained here, in the following way. If F and F' are arbitrary box expres-
sions such that E ~ F then E® = F® where it is assumed that for a box

expression E in Exp,, B9 = E.

The final remark concerns the non-standard way in which some of the ax-
ioms were formulated since they refer to various sets (even sets of sets) of
actions, such as covall. The reader might question whether this leads to a sig-
nificant increase in the algorithmic complexity of the axiomatisation developed
here when compared, e.g., with that presented in [41]. The answer is that it

does not, as it is not difficult to see that all the sets involved are ‘small’ which
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is due to an easy observation that it is always the case that

> JAl € k and |exg| < k

Acccallg .

where £ is the number of action occurrences in a box expression E.
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Chapter 6

Conclusion

In this chapter, a summary of the main results of the thesis are given, together
with a discussion of possible areas for future investigation, building upon the

work of the previous chapters.

6.1 Summary of Results

In Chapter 3 a detailed investigation into the synthesis and axiomatisation
problems was carried out for a basic subset of the Petri Box Calculus shown

in Table 6.1.

E = o Atomic action
| E|E Parallel composition
| EOE Choice composition
| E;FE Sequential composition
I

[E x E x E] Iteration

Table 6.1: Basic box expression syntax

Efficient algorithms for the problems listed in Table 6.2 were presented in
Chapter 3. The time complexities of these algorithms is given in terms of n,

the number of nodes in the input net, and a, the number of atomic actions
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in the input expression. In addition, it has been shown that for any box
expression, E, the number of expressions, E’, such that box(E') = box(E) can

be calculated.

Problem Time complexity
Box EXPRESSION SYNTHESIS O(n®)
CANONICAL Box EXPRESSION SYNTHESIS | O(n’)
CanonicAL Box EXPRESSION O(a? - loga)
PETRI BoX ISOMORPHISM O(n®)

Box EXPRESSION ISOMORPHISM O(a? - loga)
Box EXPRESSION ISOMORPHISM PROOF | O(a®)

Table 6.2: Time complexity for basic syntax algorithms

Based on the framework provided by the synthesis algorithm, the axiom
system in Table 3.6 was shown to be complete. In addition, a proof strategy
for applying the axioms was presented, which allows the automatic generation
of proofs.

In Chapter 4, the synthesis and axiomatisation problems were extended
to the syntax in Table 6.3, which includes the synchronisation operator. The
synthesis problem for this syntax was shown to be NP-hard. However, when
the synthesised expression is allowed to contain the scoping operator in place
of synchronisation, the extra expressiveness means that the synthesis problem
is no longer NP-hard, and has an efficient solution.

The various algorithms investigated in Chapter 3 were revisited in Chap-
ter 4. It was found that the extra work involved in the synthesis of synchro-
nisation does not affect the overall time complexity of the algorithm, which
remains at O(n®). An efficient algorithm was not found for the problem of
synthesising a canonical form expression, and the related problems of rewrit-
ing an expression into canonical form and generating a proof of equivalence.

Nor were these problems shown to be NP-hard. Instead, some evidence was
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E ::= o Atomic action

| E||E Parallel composition
| EUFE Choice composition
| E;E Sequential composition

| [E*FExE] Iteration
| Esy A Synchronisation

Table 6.3: Box expression syntax with synchronisation

presented that the time complexity of finding a canonical form expression is

related to the complexity of the graph isomorphism problem.

As in Chapter 3, the framework of the synthesis algorithm provided the
basis for the production of an axiomatisation and aided the proof of complete-
ness. The work in Chapter 3 was almost totally reused in the investigation

into synchronisation.

In Chapter 5, consideration was given to extending the results for the
syntaxes in Table 6.1 and Table 6.3 from the domain of net isomorphism to that
of duplication equivalence. The existing results for isomorphism were reused,
and only a minimal amount of work was required to extend the algorithms

and axiomatisation to the domain of duplication equivalence.

Section 5.4 provides an investigation into the axiomatisation of the syntax
in Table 6.3, where the framework for the synthesis algorithm is not reused.
This work provides a contrasting approach to the axiomatisation problem. The
investigation is motivated by the fact that the NP hardness result of Chap-
ter 4 no longer holds when the net semantic is changed from isomorphism to
duplication equivalence. Also, despite its location, the work in Section 5.4 was
carried out in parallel and completed before the investigation into synchro-
nisation in Chapter 4. The two approaches to finding an axiomatisation for
the syntax in Table 6.3 for duplication equivalence demonstrate some of the

benefits of re-use provided by the framework of the synthesis algorithm.
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6.2 Extensions and Areas for Further Investi-

gation

The framework provided by the synthesis algorithm allows the investigation
into the synthesis and axiomatisation problems to be tackled in a modular
fashion, based on particular subsets of the Petri Box Calculus, and particular
notions of equivalence. The two main areas for further work involve extending
the subset of the Box Algebra considered in this thesis, and investigating the
problem for further notions of equivalence, particularly behavioural equiva-
lences. In this section, some notes on these problems together with ideas for

other avenues of further work are presented.

6.2.1 Additional Operators

In this section, some observations are made on the problem of extending the
investigation into synthesis and axiomatisation to deal with the operations of

restriction, scoping and recursion.

Restriction

Restriction can be regarded as a global operator, as it can affect any of the
transitions in the net it operates on. It is different from the other operators in
the Petri Box Calculus in that it is destructive in nature. The structure of a net
may be radically changed by the application of the restriction operator. From
this point of view, the top-down approach to the synthesis algorithm, which
relies on the constructive nature of the semantics for box expressions, does not
appear to be particularly suited to dealing with the restriction operator.

The simplest example of a restriction expression is £ = a rs a. The ex-
pression E can be rewritten in constructive terms as E = stop. The second
form for E is constructive because the a labelled transition that is removed

in a rs a is never created in stop. This scheme can be extended to any ba-
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sic syntax expression involving restriction, simply by replacing every atomic
action that is restricted by stop, and removing all of the rs operators. The
following axioms may be used to rewrite an expression involving the restriction

operator, but not the synchronisation operator, into stop form.

Ers Ars B = Ers (AUB)
a fVae A:anf{a,a} =0

ars A =
stop otherwise

(E1||Es)rs A = Eyrs A||Exrs A

)
(E;0E))Ts A = Eyrs AQF,rs A
(Ey; E))rs A = 'El rs A;E,rs A
]

[Ey* EyxE3lrs A = [Eyrs AxEyrs Ax E3 rs A

From the point of view of synthesis, there are still several problems, the
greatest of which is the fact that the properties used in Chapter 3 to identify
which synthesis rule to apply are no longer valid. For example, Figure 6.1,
shows the implementation of a sequence expression, F = a;stop;c. The net
in Figure 6.1 is disjoint, so would be identified by the standard synthesis

algorithm as being the implementation of an expression whose main connective

%)@

® ©

Figure 6.1: Disjoint net obtained from a sequence expression

is parallel composition.

Figure 6.2, shows a net which is the implementation of any of the following

expressions:
E, = (a;stop;c) || (b;stop;d)
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E, = (a;stop;d) || (b;stop;c)

The net in Fligure 6.2 is also duplication equivalent to an implementation of:

E3 = (a || b); stop; (c || d)

@@%}@

a c b d

@@.@

Figure 6.2: Problem of matching subnets

'

A partial investigation into the restriction operator leads to the following
crucial observation. The implementation of the expression F = stop consists
of -a single isolated entry place, and a single isolated exit place. If the ex-
pressiveness of the Box Calculus is modified slightly so that it is possible to
represent the isolated entry and exit places independently of each other, then
- it seems a large part of synthesis algorithm of Chapter 3 can be reused - in
particular, every disjoint input net can be synthesised as an expression whose
main connective is parallel composition.

The natural way to represent isolated places, especially in domain of iso-
morphism (where the numbers of each type of isolated place is significant),
is to introduce an isolated places operator. The new operator has the syntax
O: , and a semantics that creates A isolated entry places, B isolated internal

c

places and C isolated exit places.

Using the isolated places operator, the net in Figure 6.1 could be repre-

sented by the expression
1 0
E=(a;00 )| (Oo ;0)
0 1
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and the net in Figure 6.2 by
1 1 0 0
E=(a;00 ) || (500 ) 1 (Oo 5¢) | (Oo ;)
0 0 1 1

Of course the synthesis rules for choice, sequence and iteration would need to
be modified to cope with restriction, although it seems that the modifications
would take the form of extensions rather than replacement by completely new
rules.

It would appear that moving from the domain of isomorphism to that of du-
plication equivalence may simplify the axiomatisation and synthesis problems
due to the fact that the presence of restriction permits duplicated places to be
generated, and the'move to dupiication equivalence removes the significance

of the number of duplicates of each place.

Scoping

The semantics for the scoping operator are given syntactically in terms of the

synchronisation and restriction operators:
[@a:E]=FEsyarsa (6.1)

This means that any synthesis algorithm that deals fully with restriction
and synchronisation will automatically work for nets derived from expressions
involving the scoping operator. Any complete axiomatisation that includes
support for synchronisation and restriction can be extended to the scoping

operator by adding the axiom (6.1).

Recursion

Expressions which involve the recursion operator generally produce infinite
nets. For this reason, the framework relating the synthesis and axiomatisation
problems is not suitable for dealing with recursion. An approach such as
using fix-points would be required for axiomatising recursion. However, from

a pragmatic view, the iteration operator provides the capability for infinite
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behaviour, and in fact the translation from B(PN)? and OCCAM to Box
expressions does not require the use of the recursion operator. In this respect,
the Box Algebra can be considered expressive enough without the recursion

operator.

6.2.2 Behavioural Equivalences

It seems unlikely that the framework in its present form can be used to solve the
synthesis and axiomatisation problems, once the move is made from structural
equivalences to behavioural equivalences. However, it may be possible to reuse
the results for isomorphism and duplicatibn equivalence in any investigation

into behavioural equivalences.

Algebraic
Representation

Semantics Synthesis ehavioural Synthesis

Operational Semantics

Net Synthesis

Structural - Behavioural
Representation Unfolding ™ Representation

Figure 6.3: Synt_hesis for Behavioural Equivalences

Figure 6.3 illustrates a framework in which the synthesis and axiomatisa-
tion problems may be investigated for behavioural equivalences. As before,
the axiomatisation would be derived as a result of a detailed analysis of the
synthesis algorithm. There will be three different domains involved in any

investigation:
e Algebraic representation: The domain of Box expressions.

e Structural representation: The domain of Petri Boxes.
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e Behavioural representation: Some structural representation of the

behaviour of a net, such as a net unfolding.

The work in this thesis concentrates on the algebraic and structural repre-
sentations only, where a structural representation may be constructed from
an algebraic one using the semantics of Box expressions, and the algebraic
representation derived from a structural one using the synthesis algorithm.

A representation of the behaviour of a net may be constructed from the
net itself, for example by unfolding the net. Through transitivity. this gives a
representation for the behaviour of a Box expression. It may also be possible,
using an operational semantics for the Box Algebra, to directly create the
representation of the behaviour of an e}{pression.

There are two possible approaches to a synthesis algorithmn for a behavioural
equivalence. The first is to synthesise a net from the representation of the be-
haviour of the system. The important point here, is that the synthesised net
must be structurally equivalent to the implementation of a Box expression.
Such an approach would require an investigation into the types of structures
that arise in the behavioural representation as a result of particular constructs
in the Box Calculus. The second method would be to synthesise a Box expres-
sion directly from the behavioural representation.

It is preferable that the behavioural representation is flexible enough to
represent the behaviour of an arbitrary net. In this way the possibility of syn-
thesising expressions for nets that are not implementations of Box expressions
bécomes feasible.

In the work for structural net equivalences, it was found that it was pos-
sible to reuse results when moving from one equivalence to another. It is
expected that a similar re-use could be taken advantage of in the domain of
behavioural equivalences. In [45], a two dimensional relationship between var-
ious net equivalences is illustrated, for example dividing equivalences into step
semantics, interleaving semantics and partial order semantics. It is hoped that,

for example, an investigation into partial order semantics would be applicable
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to the various flavours of partial order semantics.

6.2.3 Net Based Operations

The framework proposed for the synthesis algorithm uses a set of structural
properties of nets used to identify which of several synthesis rules to apply.
These structural properties are, in part, based on properties of the net based
operators, L, ®, © and ®, and their form of usage in describing the semantics
of box expressions.

For example, usage of the LI operator, which directly corresponds to parallel
composition, can be identified by checking whether the net is connected or
not. Similarly, the definition of clusters of places matches the usage of the
construction &(S; ® S;) (where S; and S, are sets of places) in the semantics
of box expressions. It is therefore, in some ways, not surprising that it was
possible to reuse much of the work of Chapter 3 when extending the synthesis
algorithm and axiomatisation to the syntax in Table 6.3.

One observation is that it shouldn’t be too difficult to extend the sy>nthesis
algorithm and axiomatisations of Chapters 3 and 4 to cope with new operators
defined in terms of the LI, ®,© and ® net based operators.

Given a particular notion of equivalence, it may be possible to axiomatise
the properties of the net based operators. These axioms could be considered
as meta-axioms, and be used to derive properties of the operators in the Box

Calculus which are defined in terms of the net operators.

6.2.4 Alternative semantics

One of the problems with the current semantics for the Box Algebra is that
the size of the implementation of a Box expression may be exponential in the
size of the expression itself. A benefit of having a complete axiomatisation is

that it provides a basis for checking designs of alternative semantics for the

Box Algebra.
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Given a new semantics, it would be necessary to show that all the properties
encoded by the axiomatisation still hold, and that no additional properties
hold (i.e. expressions that are not equivalent for the standard semantics do
not become equivalent with the new semantics).

The main motivation for constructing a new semantics is to make the se-
mantics more efficient in terms of the ‘size of the representation. However, care
is needed because it is unlikely that any new semantics will be consistent with
the standard semantics over the whole range of possible equivalence relations.
It is a different matter, of course, if a particular application requires only one

notion of equivalence to be considered.

6.2.5 Time Complexity and Graph Isomorphism

An interesting point for further investigation from a complexity theoretic view-
point is whether, for a particular notion of equivalenc_e, the problem of checking
the equivalence of a pair of box expressions has the same complexity (in terms
of space and time) as checking the equivalence of an arbitrary pair of nets, (or,
for structural equivalences, an arbitrary pair of graphs).

The investigation for isomorphism shows that, for example, checking equiv-
alence of basic syntax box expressions is less complex than checking equivalence
of an arbitrary pair of nets. However, when the synchronisation operator is
added to the basic syntax, the problems of checking equivalence of a pair of
expressions, and an arbitrary pair of graphs seems to become equally complex.
When scoping is added to the syntax, the problem of checking equivalence of
a pair of expressions provably becomes as difficult as the graph isomorphism
problem.

The graph isomorphism problem is one of a small number of problem for
which it is not known whether a tractable solution exists. Applying some of
the ideas from the investigation into the synthesis problem for synchronisation
and scoping may provide enough insight into the graph isomorphism problem

to allow the question of its complexity to be resolved.
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6.3 Conclusion

The work in this thesis has demonstrated a general approach to the the synthe-
sis and axiomatisation problems for various subsets of the Petri Box Calculus
for the structural equivalences isomorphism and duplication equivalence.

To an extent the investigation took a pragmatic approach which resulted
in effictent algorithms for synthesis and in some cases the generation of proofs.
In this respect, the algorithms presented may be suitable for inclusion in a
modelling and verification tool such as PEP.

It is also believed that the work here could provide a solid basis for an
investigation into the axiomatisation and synthesis problems. for behavioural

equivalences, such as a partial order semantics.
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Appendix A

Definitions

This appendix provides cross references for the main definitions and concepts
that have been introduced. The list of definitions are categorised into the

following areas:
e Multisets
e Actions and basic actions
e Box expressions
e Classes of expressions
e Nets and net operators
e Equivalence of nets/expressions
e Ordering of nodes and expressions
e Sets of nodes
e Connectedness of nodes
e Equivalence of nodes

o Classes of nodes

Action/transition mapping
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e Synchronisation transitions
e Synchronisation sets

e Construction of maximal sy-sets

A.1 Multisets

multiset Multisets: Section 1.3.1, Page 19.
U Multiset union: Section 1.3.1, Page 20.
N Multiset intersection: Section 1.3.1, Page 20.

— Multiset difference: Section 1.3.1, Page 20.
+ Multiset sum: Section 1.3.1, Page 20.
Multiset multiplication: Section 1.3.1, Page 20.

| Multiset restriction: Section 1.3.1, Page 20.

A.2 Actions and Basic Actions

Conjugation of basic actions: Section 1.2, Page 12.

A(a) Unique word generated from an atomic action, a: Sec-

tion 2.5.6, Page 84.

<A Ordering of atomic actions: Section 2.5.6, Page 84.
<p Ordering of basic actions: Section 2.5.6, Page 84.
1 Labelling function which associates atomic actions with

action names: Section 2.5.7, Page 85.

A® The set of action names whose label contains the basic

action a or @: Section 4.6.4, Page 254.

357



exXy

The set of labels of all ez-transitions of ¥: Section 5.6.1,

Page 305.

The set of basic actions appearing in the expression, E:

Section 4.1, Page 167.

A.3 Box Expressions

Ey || B,

E\[0E,

E; E,

[Ey1 % Eq * E3]

Ersa

Esya

Atomic action: Section 1.2, Page 13 - informal descrip-
tion of intended behaviour, Section 1.3.5, Page 29 - for-

mal semantics.

Parallel composition: Section 1.2, Page 13 - informal de-
scription of intended behaviour, Section 1.3.5, Page 29 -

formal semantics.

Choice composition: Section 1.2, Page 13 - informal de-
scription of intended behaviour, Section 1.3.5, Page 29 -

formal semantics.

Sequential composition: Section 1.2, Page 14 - informal
description of intended behaviour, Section 1.3.5, Page 30

- formal semantics.

Iteration: Section 1.2, Page 14 - informal description of
intended behaviour, Section 1.3.5, Page 30 - formal se-

mantics.

Restriction: Section 1.2, Page 14 - informal description
of intended behaviour, Section 1.3.5, Page 31 - formal

semantics.

Synchronisation: Section 1.2, Page 15 - informal descrip-

tion of intended behaviour, Section 1.3.5, Page 32 - for-
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[a: E]

stop

E[F]

El [X < Eg]

uX.E

A
Oe
C

mal semantics.

Scoping: Section 1.2, Page 16.

Stop box: Section 1.2, Page 16.
Relabelling operator: Section 1.2, Page 17.

Refinement: Section 1.2, Page 17 - informal description of
intended semantics, Section 4.2.5, Page 186 - refinement
is considered as a means of overcoming the NP hardness

result for synchronisation synthesis.
Recursion: Section 1.2, Page 18.

Isolated places operator: Section 6.2.1, Page 349.

A.4 Classes of Expressions

Exp,

BOXO

Exp,

Syntactic restriction of the box expression syntax defined

by (5.2) in Section 5.6: Section 5.6.1, Page 310.

Restricted class of boxes corresponding to Expy: Sec-

tion 5.6.1, Page 310.

Choice-restricted expression from Exp,: Section 5.10.3,

Page 339.

A.5 Nets and Net operators

box(FE)

z

Mapping from expressions to Petri Boxes: Section 1.3.5,

Page 26.

Net ¥ = (S,T, W, A): Section 1.3.2, Page 20.
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implementation

unsy

A net, unique up to isomorphism, derived from a Box

expression: Section 1.3.5.
Net union: Section 1.3.4, Page 24.

Net union operation for unionable nets: Section 5.4.1,

Page 288.

Operator to remove a set of nodes from a net: Sec-

tion 1.3.4, Page 24.

Operator to add a set of nodes to a net (Note: this oper-
ator has different definitions depending whether the set
of nodes consists of places or transitions): Section 1.3.4,

Page 25.

Place replacement operator (alternative style of adding a

set of places to a net): Section 5.5, Page 301.

Gluing set used in construction of boxes: Section 5.5,

Page 302.
Place multiplication: Section 1.3.4, Page 25.

Net based operator to add a set of places to a net: Sec-

tion 3.3, Page 98.

De-synchronisation operator: Section 5.10.2, Page 329. -

A.6 Equivalence of Nets/Expressions

X]
[E ]iso

[E ] dup

Equivalence class of nets: Section 1.3.5, Page 29.
Class of isomorphic expressions: Section 1.4, Page 35.

Class of duplication equivalent expressions: Section 1.4,

Page 35.
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[Eln

=iso
=dup
[E]iso

[E]dup

Class of expressions equivalent with respect to the rela-

tion, n: Section 1.4, Page 35.

Isomorphic: Section 1.4, Page 35.

Duplication equivalent: Section 1.4, Page 35.
Class of isomorphic nets: Section 1.4.1, Page 36.

Class of duplication equivalent nets: Section 1.4.2,

Page 37.
Duplication quotient of net X: Section 5.4.1, Page 289.

Place-preserving duplication equivalence of nets: Sec-

tion 5.4.1, Page 291.

A.7 Ordering of Nodes and Expressions

<t

<y

min(7T)

<e

Ord(E)

Arbitrary fixed ordering of transitions: Section 2.5.6,

Page 84.
Ordering of transitions in a net: Section 2.5.6, Page 84.

The smallest transition in the set T, with respect to the

ordering, <;: Section 2.5.6, Page 84.

Ordering over basic syntax expressions: Section 3.5.3,

Page 147.

Ordered standard form for basic syntax expressions: Sec-

tion 3.5.3, Page 148.

A.8 Sets of Nodes

o

Entry places of a net: Section 1.3.2, Page 21.
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E.

N

N.

(%)

FE X -transition

Tgx

EXs

Exit places of a net: Section 1.3.2, Page 21.

Pre-places of a node (place or transition): Section 2.5.1,

Page 77.

Post-places of a node (place or transition): Section 2.5.1,

Page 77.

Pre-places of a set of nodes (places or transitions): Sec-

tion 2.5.1, Page 77.

Post-places of a set of nodes (places or transitions): Sec-

tion 2.5.1, Page 77.

Entry places of a net: Section 2.5.1, Page 76.
Internal places of a net-: Section 2.5.1, Page 76.

Exit places of a net: Section 2.5.1, Page 76.

The set of all nodes of a net: Section 2.5.1, Page 76.

The set of all internal nodes of a net: Section 2.5.1,

Page 76.

The set of transitions directly connected to an entry place:

Section 2.5.1, Page 76.

The set of transitions directly connected to an exit place:

Section 2.5.1, Page 76.
The set of isolated places in a net: Section 2.5.1, Page 77.

Transition which has constant connectivity with every

entry and exit place: Section 5.4.2, Page 299.
The set of FX-transitions: Section 5.4.2, Page 299.
The set of ez-transitions of 3: Section 5.6.1, Page 305.
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A.9 Connectedness of Nodes

g

toaT

consts,

ex-path

ex-connected

Undirected connectedness relation: Section 2.5.2, Page 77.

The set of connected components containing the set of

nodes, N: Section 2.5.2, Page 78.
Directed connectedness relation: Section 2.5.2, Page 79.

Connectivity relation: Section 2.5.4 , Page 81 - transition
t has the same connectivity as the set of transitions, T,
Section 5.4.1, Page 286 - extension of the definition to
allow the connectivity of two sets of transitions to be

compared.

A duinmy transition which, if it were present, would
connect to every entry and exit place of the net: Sec-

tion 5.4.1, Page 286.
Constant connectivity: Section 5.4.1, Page 287.

Connected sequence of nodes starting with an entry place

and finishing with an exit place: Section 5.10.2, Page 331.

A net'is ez-connected if every place in the net belongs to

an ezx-path: Section 5.10.2, Page 331.

A.10 Equivalence of Nodes

~dpl

Dpl(t)

Duplication equivalence of transitions (based on connec-

tivity only, not labels): Section 2.5.4, Page 81.

The set of transitions which duplicate ¢ (Note: these tran-

sitions do not necessarily have the same label as t): Sec-

tion 2.5.4, Page 82.
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R

=55,

Duplication equivalence relation: Section 5.4.1, Page 287.

Duplication equivalence relation for nodes in place shar-

ing nets ¥; and ¥,: Section 5.4.1, Page 291.

Equivalence class of duplication equivalent nodes which

contains n: Section 5.4.1, Page 287.

A.11 Classes of Nodes

<s

Equivalence relation which partitions places into clusters:

Section 2.5.3, Page 79.

The cluster of places to which s belongs: Section 2.5.3,
Page 80.

The set of clusters of internal places of the net, ¥: Sec-

tion 2.5.3, Page 81.

Equivalence classes of entry places arising from choice

decomposition: Section 3.3.3, Page 103.

Partitioning of entry places arising from choice decom-

position: Section 3.3.3, Page 103.

Partitioning of exit places arising from choice decompo-

sition: Section 3.3.3, Page 103.

Clusters of places forming interfaces between subnets in

sequence decomposition: Section 3.3.4, Page 107.

Ordering of the clusters of places in S;: Section 3.3.4,
Page 107.

Clusters of places which form the interfaces between sub-

nets in iteration decomposition: Section 3.3.5, Page 112.
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®-sets

Cluster of places created by the operation of place mul-

tiplication: Section 5.4.1, Page 288.

A.12 Action/Transition Mapping

¢

~e

Mapping from an action name in an expression to the set
of transitions derived from that action in the implemen-

tation of the expression: Section 2.5.7, Page 86.

Equivalence class of transitions arising from the same

action: Section 2.5.7, Page 89.

Relates the synchronisation of actions in an expression
with the synchronisation of transitions in the correspond-

ing net: Section 2.5.8, Page 90.

A.13 Synchronisation Transitions

Ta

Ty(2)

Set of transitions with an @ or @ in their label: Sec-

tion 1.3.5, Page 27.

Set of transitions created by a synchronisation operation

on a net: Section 1.3.5, Page 32, Section 4.5.1, Page 217.

The set of transitions that can be represented by the
scoping operator in the synthesised expression:

Section 2.5.5, Page 82.

The subset of T,, that may be represented by atomic
actions in the synthesised expression: Section 4.5.1,

Page 217.

The base transitions of a transition, ¢: Section 2.5.5,

Page 83.
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SynA

t10t2

The set of all pairs of A-synchronisable transitions: Sec-

tion 5.4.2, Page 292.

Synchronisation of transitions #; and ty: Section 5.4.2,

Page 293.

A.14 Synchronisation sets

maxy

simexgr
N

(E)

ij
AN

Maximal synchronisation set: Section 5.4.2, Page 296.
Set of synchronisation sets: Section 5.7, Page 315.
A context: Section 5.10, Page 323.

The expression resulting from the deletion of all synchro-

nisation operations in E: Section 5.10, Page 324.

The context resulting from the deletion of all synchroni-

sation operations in X: Section 5.10, Page 324.

The synchronisation set directly applied to the i-th place
holder of the context R: Section 5.10, Page 324.

The union of synchronisation sets, A, such that the i-th
and j-th place holders of the context, X are in the scope

of an application of sy A: Section 5.10, Page 324.

A.15 Construction of maximal sy-sets

ccalls;

ccinty,

The set of labels of all choice context transitions: Sec-

tion 5.6.1, Page 305.

The set of labels of internal choice context transitions:

Section 5.6.1, Page 305.
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covallglzz

CCNOEXy,

covnoexg 5.

covmixj L5,

it A
covinty, »,

Auxiliary notation used in the definition of maximal syn-

chronisation sets: Section 5.6.1, Page 308.

The set of labels of internal choice context transitions
satisfying some additional conditions: Section 5.6.1,

Page 310.

Auxiliary notation used in the definition of maximal syn-
chronisation sets for choice composition: Section 5.6.1,

Page 310.

Auxiliary notation used in the definition of maximal syn-
chronisation sets for choice composition: Section 5.6.1,

Page 310.

Auxiliary notation used in the definition of maximal syn-
chronisation sets for choice composition: Section 5.6.1,

Page 310.
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Appendix B

Subsets of the Petri Box

Calculus

During the course of the investigations into the synthesis and axiomatisation
problems for isomorphism and duplication equivalence, various subsets of the
Petri Box Calculus have been used. In this appendix, a short description of
the subset of the calculus, and a discussion of any restrictions is given for the

following areas which were investigated in the previous chapters of this thesis:
e Basic syntax, isomorphism, Chapter 3.

Synchronisation synthesis, isomorphism, Section 4.3.

Synchronisation axiomatisation, isomorphism, Section 4.6.4.

e Basic syntax, duplication equivalence, Section 5.2.

Synchronisation, duplication equivalence (1st approach),

Section 5.3.

Synchronisation, duplication equivalence (2nd approach),

Section 5.4.
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B.1 Basic syntax (isomorphism)

Chapter 3 presents an investigation into the synthesis and axiomatisation prob-
lems for isomorphism, restricted to the domain of the basic box expression

syntax given in Table B.1.

E:= o Atomic action
| E|E Parallel composition
| EUE Choice composition
| E;FE Sequential composition
|

[Ex FEx E] Iteration

Table B.1: Basic box expression syntax

Note: No restriction is placed on the form of atomic actions (i.e. multi-
actions are allowed).
| The input to the synthesis algorithm of Chapter 3 can be the implementa-
tion of any expression over the syntax in Table B.1. Similarly, the output of
the synthesis algorithm is guaranteed to be a member of the box expression
syntax of Table B.1.

The axiom system of Section 3.5.5 is closed with respect to the basic box
expression syntax of Table B.1 — that is, applying any axiom from Table 3.6 to
an expression from the syntax in Table B.1 will always result in a basic syntax

box expression.

'B.2 Synchronisation Synthesis (isomorphism)

The synthesis algorithm of Section 4.3 considers as input a net which is the
implementation of an expression from a restricted class of the syntax shown
in Table B.2.

Note: The semantics for the synchronisation operator used when con-

structing an implementation of an expfession are slightly different from the
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E = o Atomic action

| E|FE Parallel composition
| EOE Choice composition
| E;FE Sequential composition

| [ExE«*FE] Iteration
| Esy A Synchronisation

Table B.2: Synchronisation synthesis box expression syntax

original semantics presented in [5]. The modified semantics ensure that dupli-
cates of atomic actions which take part in a synchronisation are not created
(these are significant for isomorphism, but not for the duplication equivalence

used in [5]). See Section 1.3.5 for details.

B.2.1 Restriction of expression syntax

No restriction is placed on the form of atomic actions, and, in particular,
multiactions are permitted. The class of input nets to the synthesis algorithm
is restricted to finite nets. Hence, attention is restricted to those expressions
over the syntax in Table B.2 whose implementation is finite. For example, this
means that the expression {a,@} sy a is not considered. Section 4.2.2 describes
a procedure for detecting when an expression has an infinite implementation.

The reasoning behind restricting the class of expressions considered in this

way is twofold:

e One of the aims of the investigation into the synthesis algorithm is the
production of an efficient synthesis process. From an algorithmic view-

point, it is impractical to consider infinite input nets.

e When an infinite synchronisation occurs, only a finite number of the
infinite number of synchronised transitions can ever be enabled during

execution of the net. While these transitions are significant for structural
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semantics such as isomorphism, once behavioural semantics are consid-
ered, transitions that cannot be enabled are not significant, and can be

“ignored.

B.2.2 Form of synthesised expressions

The synthesis algorithm of Chapter 4 differs from the basic syntax synthesis
algorithm in that the box expression syntax used for the synthesised expression
is different from the syntax used to define the class of input nets. Table B.3
shows that for synthesised expressions, the scoping operator is used in place

of synchronisation.

E .= a Atomic action
E|E Parallel composition
EUE Choice composition

[E « E x E] Iteration

|
|
| E;E Sequential composition
|
| [A:E] - Scoping

Table B.3: Output box expression syntax

Clearly, the syntax of Table B.3 is more expressive than that of Table B.2
because the scoping operator has the expressive power of both the synchro-
nisation and the restriction operators. However, the form of synthesised ex-
pressions produced by the synthesis algorithm of Chapter 4 is restricted as

follows:

e Scoping operators may only appear immediately inside an iteration op-

erator, or acting on the entire expression.

e No basic action is scoped more than once. That is, for any pair of scoping

operations in the expression, scoping by sets of basic actions, /N; and Ny,

then N1 N N2 = @
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e For each basic action, n, that is scoped, there will be exactly one action
labelled 7, and no other action contains 7 in its label. Furthermore,

there will be exactly one action whose label contains the basic action, n.

B.3 Synchronisation Axiomatisation
(isomorphism)

The aim of the axiom system presented in Section 4.6.4 is to provide the ability
to rewrite a suitable expression, F, from the syntax in Table B.2 into the form
6f the synthesised expression that would be produced if the implementation of
E were given as input to the synthesis algorithm of Chapter 4. As such, it is
necessary for subset of the box calculus used by the axiom system to include
both the synchronisation and scoping operators. This box expression syntax

is given in Table B.4.

E = o Atomic action
E|E Parallel composition
EUE Choice composition
EE Sequential composition

|
|
|
| [E=*E xE] Iteration
| Esy A Synchronisation
|

[A: E] Scoping

Table B.4: Axiom system expression syntax

The restrictions of Section B.2.1 also apply to the expression syntax for
the axiom system of Section 4.6.4. In addition, two of the three restrictions
on the form of synthesised expressions apply to the axiom system expression

syntax — namely:

e No basic action is scoped more than once. That is, for any pair of scoping

operations in the expression, scoping by sets of basic actions, N; and N,

372



then N; N Ny = 0.

e For each basic action, n, that is scoped, there will be exactly one action
labelled 7, and no other action contains 7 in its label. Furthermore,

there will be exactly one action whose label contains the basic action, n.

Note that no restriction is placed on the position of the scoping operators,
and there are axioms which allow those movements of scoping operators which

preserve soundness.

B.4 Basic syntax (duplication equivalence)

Section 5.2 presents an investigation into the synthesis and axiomatisation
problems for duplication equivalence, restricted to the domain of the basic
box expression syntax given in Table B.1.

All the notes in Section B.1 equally apply to the synthesis algorithm and

axiom system of Section 5.2.

B.5 Synchronisation (duplication equivalence)

- Approach 1

Section 5.3 gives a discussion on the synthesis and axiomatisation problems
for duplication equivalence restricted to the domain of those box expressions

from the syntax in Table B.2 whose implementation is a finite net.

The box expression syntaxes of Tables B.2, B.3, and B.3 are used respec-
tively for defining the class of nets suitable as input to the synthesis algorithm,
for the synthesised expression, and for the axiom system. Those restrictions to
the various syntaxes described in Section B.2.1 also apply to the investigation

in Section 5.3.
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B.6 Synchronisation (duplication equivalence)
- Approach II

The second approach to the investigation into an axiomatisation for duplica-
tion equivalence for the syntax in Table B.2 is different in that the scoping
operator is not used. The axiom system is entirely within the domain of the
box expression syntax of Table B.2.

The biggest restriction placed of the form of expressions (nets) is that
atomic actions (transition labels) may consist of only a single basic action, or
the empty action. Note that this restriction means that it is not possible to
generate an infinite synchronisation, and so all nets derived from the restricted
syntax are guaranteed to be finite.

A syntactic restriction on choice (sub)expressions is introduced, so that in
E, [ E,, the implementations, ¥, X3 of F; and E, cannot contain transitions,

t1, 12, labelled a and @ such that:

% o=
Lt = X,°
T = %o
ta* = ¥5°

This class of restricted expressions is named Exp,, and the corresponding class
of boxes, Boxg. The restriction is introduced to simplify the characterisation
of maximal synchronisation sets for choice composition.

The applicability of the choice operator is restricted further to allow the
de-synchronisation operator, unsy to distribute over choice. This restriction
is described fully by the definition of the class of expressions,. Expl-in Sec-

tion 5.10.3, Page 339.

374



Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

J.C.M.Baeten, J.A.Bergstra Non Interleaving Process Algebra In Proceed-
ings CONCUR’93, Springer-Verlag Lecture Notes in Computer Science
Volume 715, 308-323 (1993).

J.C.M.Baeten, W.P.Weijland: Process Algebra. Cambridge Tracts in
Theoretical Computer Science, Volume 18 (1990).

E.Best: Partial Order Verification with PEP Proceedings of Partial Order
Methods in Verification (1996).

E.Best, R.Devillers, J.Esparza: General Refinement and Recursion Op-
erators for the Petri Box Calculus. Springer-Verlag Lecture Notes in

Computer Science Volume 665, 130-140 (1993).

E.Best, R.Devillers, J.Hall: The Petri Boz Calculus: a New Causal Al-
gebra with Multi-label Communication. Advances in Petri Nets 1992,

Springer-Verlag Lecture Notes in Computer Science Volume 609, 21-69
(1992).

E.Best, J.Hall: The Boz Calculus: a New Causal Algebra with Multi-
label Communication. Technical Report No. 373, Computing Laboratory,
University of Newcastle upon Tyne (1992).

E.Best, R.P.Hopkins: B(PN)? - a Basic Petri Net Programming Notation.
Proceedings of PARLE-93, Springer-Verlag Lecture Notes in Computer
Science Volume 694, 379-390 (1993).

375



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

E.Best, H.Fleischhack, W.Fraczak, R.P.Hopkins, H.Klaudel, E.Pelz: A
Class of Composable High Level Petri Nets. Application and Theory of
Petri Nets 1995, Springer-Verlag Lecture Notes in Computer Science Vol-
ume 935, 102-120 (1995).

E.Best, H.Fleischhack, W.Fraczak, R.P.Hopkins, H.Klaudel, E.Pelz: An
M-net Semantics of B(PN)? Proceedings of STRICT’95, Berlin, J.Desel
(ed), Springer-Verlag, Workshops in Computing, 85-100 (1995).

E.Best, B.Grahlmann: PEP - more than a Petri Net Tool. Tools and
Algorithms for the Construction and Analysis of Systems, 2nd Interna-
tional Workshop, TACAS’96, Springer-Verlag Lecture Notes in Computer
Science Volume 1055, 387-401 (1996).

J.A.Bergstra, J.W.Klop: Algebra of communicating processes with ab-
straction Theoretical Computer Science 37, 77-121 (1985).

E.Best, M.Koutny: Solving Recursive Net FEgquations. Proceedings of
ICALP-95, Springer-Verlag Lecture Notes in Computer Science Volume
944, 605-623 (1995).

E.Best, H.G.Linde-Goéers:  Compositional Process Semantics of Petri
Bozes Proceedings of Mathematical Foundations of Programming Se-
mantics, Springer-Verlag Lecture Notes in Computer Science Volume 802,

250-270 (1993).

G.Boudol, G.Roucairol, R.De Simone: Petri Nets and Algebraic Calculi
of Processes Advances in Petri Nets 1985, Springer-Verlag Lecture Notes
in Computer Science Volume 222, 41-58 (1985).

I.Borosch, L.B.Treybig: Bounds on positive integral solutions of linear
Diophantine equations Proceedings of American Math. Society Volume

55, 299-304 (1976).

376



[16) T.Basten, M.Voorhoeve An Algebraic Semantics for Hierarchical P/T
Nets Application and Theory of Petri Nets 1995 , Springer-Verlag Lecture
Notes in Computer Science Volume 935, 45-65 (1995).

[17] S.Christensen: Decidability and Decomposition in Process Algebras Re-
port ECS-LFCS-93-278, University of Edinburgh, Department of Com-
puter Science (1993).

[18] C.Dietz, G.Schreiber: A Term Representation of P/T Systems Appli-
cation and Theory of Petri Nets 1994 , Springer-Verlag Lecture Notes in
Computer Science Volume 815, 239-257 (1994).

[19] J.Engelfriet: Branching Processes of Petri Nets Acta Informatica 28
(1991).

[20] J.Esparza: Model Checking Using Net Unfoldings Proceedings of TAP-
SOFT"93, Springer-Verlag Lecture Notes in Computer Science Volume
668, 613-628 (1993).

[21] P.Degano, R.De Nicola, U.Montanari: A Distributed Operational Seman-
tics for CCS Based on Condition/Event Systems. Acta Informatica 26
(1-2), 59-91 (1988).

[22] H.Fleischhack, B.Grahlmann: A Petri Net Semantics for B(PN)? with
Procedures which Allows Verification Hildesheimer Informatikbericht

21/96 (1996)

[23] R.J.Van Glabbeek: A Complete Aziomatization for Branching Bisimula-

tion Congruence of Finite-State Behaviours

[24] U.Goltz: On Representing CCS Programs by Finite Petri Nets. Ar-
beitspapiere der GMD 290 (1988).

[25]) M.R.Garey, D.S.Johnson Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H.Freeman and Company (1979).

377



[26] R.J.Van Glabbeek, F.W.Vaandrager: Petri Net Models for Algebraic
Theories of Concurrency PARLE’87 Volume 11, Springer-Verlag Lecture
Notes in Computer Science Volume 259, 224-242 (1987). Information
Processing ’89, 613-618 (1989).

[27] R.Van Glabbeek, W.Weijland: = Branching Time and Abstraction in
Bisimulation Semantics. Technical Report TUM-19052, Institut fiir In-
formatik, Technische Universitdat Miinchen (1990).

[28] C.A.R.Hoare: Communicating Sequential Processes Prentice Hall (1985).

[29] J.G.Hall: An Algebra of High-level Petri Nets PhD Thesis, University of
Newcastle upon Tyne (1996).

[30] J.Hall, R.P.Hopkins, O.Botti: A Basic-Net Algebra for Program Se-
mantics and its Application to OCCAM Advances in Petri Nets 1992,

Springer-Verlag Lecture Notes in Computer Science Volume 609, 179-214
(1992).

[31] INMOS: OCCAM 2 Reference Manual Prentice Hall (1988).
[32] M.Jantzen: Language Theory of Petri Nets in BRR’87 397-412 (1987).

[33] R.M.Karp: Reducibility among combinatorial problems Complexity of
Computer Communications, Plenum Press, 85-103 (1972).

[34] L.G.Khachian: A polynomial algorithm in linear programming (English
trauslation) Soviet Math. Dokl. Volume 20, 191-194 (1979).

[35] M.Koutny: Partial Order Semantics of Bozx Exrpressions. Proceedings
of Application and Theory of Petri Nets 1992, Springer-Verlag. Lecture
Notes in Computer Science Volume 815, 318-337 (1994).

[36] M.Koutny, J.Esparza, E.Best: Operational Semantics for the Petri Boz
Calculus Proceedings of CONCUR’94 Springer-Verlag Lecture Notes in
Computer Science Volume 836, 210-225 (1994).

378



[37] M.Koutny, E.Best: Operational and Denotational Semantics for the Box
Algebra. Technical Report, Computing Laboratory, University of New-
castle upon Tyne (1995).

[38] H.Klaudel, E.Pelz: Handling Abstract Data Types in the Petri Box Cal-
culus CS&P’94 (1994)

[39] J.Lilius, E.Pelz: An M-net Semantics for B(PN)? with Procedures. 11th
International Symposium on Computer and Information Science, Antalya

(1996).

[40] B.D.McKay: Practical Graph Isomorphism Congress Numerantium 30,
45-87 (1981).

[41] R.Milner: Communication and Concurrency. Prentice Hall (1989).

[42] R.Milner: A complete aziomatisation for observational congruence of
finite-state behaviours. Information and Computation Volume 81, 227-

247 (1989).

[43] U.Montanari, D.Yankelevich: Combining CCS and Petri Nets via Struc-
tural Azioms Fundamenta Informaticae 20 (1-3), 193-229 (1994).

[44] E.Olderog: Petri Nets and Algebraic Calculi of Processes Advances in
Petri Nets 1987, Springer Verlag Lecture Notes in Computer Science Vol-
ume 266, 196-223 (1987).

[45] L.Pomello, G.Rozenberg, C.Simone: A Survey of Equivalence Notions for
Net Based Systems. Advances in Petri Nets 1992, Springer-Verlag Lecture
Notes in Computer Science Volume 609, 410-467 (1992).

[46] W.Reisig: Petri Nets, An Introduction. EATCS Monographs on Theo-
retical Computer Science, Volume 4, Springer-Verlag (1985).

[47] T.J.Schaefer: The complezity of satisfiability problems. Proceedings 10th
Annual ACM Symposium on Theory of Computing, 216-226 (1978).

379



[48] D.Taubner: Finite Representation of CCS and TCSP Programs by Au-
tomata and Petri Nets. Springer-Verlag Lecture Notes in Computer Sci-

ence, Volume 369 (1989).

380



