
Synthesis and Axiomatisation for Structural

Equivalences in the Petri Box Calculus

Martin Hesketh

24th June 1998

NEWCASTLE UNIVERSITY LIBRARY
098 14256 5

Acknowledgements
The author would like to thank his supervisor, Dr. Maciej Koutny, for all

the support and encouragement that helped to ensure the completion of this

thesis.

The author would also like to thank his manager at Nortel, Jonathan Atkinson,

for his flexibility and understanding when allowing extra time to work on the

thesis as deadlines were looming.

2

Abstract

The Petri Box Calculus (PBC) consists of an algebra of box expressions, and

a corresponding algebra of boxes (a class of labelled Petri nets). A compo-

sitional semantics provides a translation from box expressions to boxes. The

synthesis problem is to provide an algorithmic translation from boxes to box

expressions. The axiomatisation problem is to provide a sound and complete

axiomatisation for the fragment of the calculus under consideration, which

captures a particular notion of equivalence for boxes.

There are several alternative ways of defining an equivalence notion for

boxes, the strongest one being net isomorphism. In this thesis, the synthesis

and axiomatisation problems are investigated for net semantic isomorphism,

and a slightly weaker notion of equivalence, called duplication equivalence,

which can still be argued to capture a very close structural similarity of con-

current systems the boxes are supposed to represent.

In this thesis, a structured approach to developing a synthesis algorithm

is proposed, and it is shown how this may be used to provide a framework

for the production of a sound and complete axiomatisation. This method is

used for several different fragments of the Petri Box Calculus, and for gener-

ating axiomatisations for both isomorphism and duplication equivalence. In

addition, the algorithmic problems of checking equivalence of boxes and box

expressions, and generating proofs of equivalence are considered as extensions

to the synthesis algorithm.

Keywords: Petri nets, process algebra, equivalence, axiomatisation, synthe-

sis, structure, isomorphism

Contents

1 Introduction 8

1.1 The Petri Box Calculus. 8
1.2 Syntax .. 11

1.3 Semantics 18
1.3.1 Multisets 19
1.3.2 Labelled nets 20
1.3.3 Behaviour of labelled nets 22
1.3.4 Operations on labelled nets 24
1.3.5 Translation from expressions to nets 26

1.4 Equivalence of expressions and nets 34
1.4.1 Isomorphism. 35
1.4.2 Duplication equivalence 36

1.5 Synthesis and axiomatisation problems 38
1.6 Related work 42

1.6.1 The Petri Box Calculus. 42
1.6.2 Synthesis of terms from nets 45
1.6.3 Axiomatisation of Process Algebra 47

1.7 Summary 49

2 Properties 51

2.1 Introduction 51
2.2 Solving the synthesis problem 52

2.2.1 Top-down approach . . 52

2

2.2.2 Bottom-up approach 54
2.2.3 Choice of method 55

2.3 Example 56
2.3.1 Algorithm 57
2.3.2 Synthesis rules 58
2.3.3 Example execution of the algorithm. 59
2.3.4 Discussion 63

2.4 Relationship between synthesis and

axiomatisation problems 66
2.4.1 Verification of the synthesis algorithm 67
2.4.2 Obtaining an axiom system 68
2.4.3 Related problems 69

2.5 Definitions and properties 75
2.5.1 Classifying places and transitions 76
2.5.2 Connectedness properties . 77
2.5.3 Clusters of places 79
2.5.4 Connectivity of transitions 81
2.5.5 Synchronising transitions . 82
2.5.6 Ordering of transitions 84
2.5.7 Actions and transitions. 85
2.5.8 The 0 operator 90

3 Basic synthesis 91

3.1 Introduction 91
3.2 The synthesis algorithm 92

3.2.1 Precondi tions 95
3.3 Synthesis rules 97

3.3.1 Atomic action 100
3.3.2 Parallel composition 101
3.3.3 Choice composition 103

3

3.5 Related problems ..

3.5.1 Time complexity

3.5.2 Non-determinism

3.5.3 Canonical form

3.5.4 Decision problems .

3.5.5 Axiom system .

3.5.6 Generating proofs .

3.5.7 Examples

107

111

119

120

123

130

141

142

142

144

145

154

1Ei5

158

163

165

165

168

3.3.4 Sequence.

3.3.5 Iteration.

3.4 Verification of the synthesis algorithm.

3.4.1 Support proofs .

3.4.2 Verification of preconditions

3.4.3 Synthesis rule decomposition is sound .

3.4.4 Correctness of the algorithm .

4 Synchronisation synthesis

4.1 Introduction..

4.2 Synchronisation

4.2.1 Semantics of synchronisation. 168

4.2.2 Properties of synchronisation 170

4.2.3 Synthesis with synchronisation. 175

4.2.4 Synthesis with synchronisation is NP hard 179

4.2.5 Tractable solutions to synthesis with synchronisation 185

4.3 The synthesis algorithm

4.3.1 Outline of the algorithm

4.3.2 Data structure

4.3.3 Modified synthesis rules

4.3.4 Partitioning the transitions

4.3.5 Example......

190

191

192

193

196

198

4

4.4 Scoping synthesis rule

4.4.1 Example

4.5 Verification of the synthesis algorithm.

203

209

216

4.5.1 Part 1 - Removing transitions . 217

4.5.2 Part 2 - Adding transitions back again (Soundness) 225

4.6 Related problems

4.6.1 Time complexity

4.6.2 Non-determinism

233

234

242

4.6.3 Bound on time complexity of canonical synthesis algorithm247

4.6.4 Axiom system

4.6.5 Examples ..

252

261

5 Duplication Equivalence 267

5.1 Extension from isomorphism to duplication equivalence 269

5.1.1 Basic syntax ..

5.1. 2 Synchronisation

269

269

270

273

274

274

275

276

276

277

280

282

282

283

285

286

5.2 Basic syntax

5.2.1 Synthesis Algorithm

5.2.2 Time complexity of the Synthesis Algorithm

5.2.3 Canonical Box Expression Synthesis .

5.2.4 Canonical Box Expression

5.2.5 Decision Problems

5.2.6 Axiom system . . .

5.2.7 Generating Proofs.

5.2.8 Examples

5.3 Synchronisation (Part I)

5.3.1 Background ..

5.3.2 Axiomatisation

5.4 Synchronisation (Part II) .

5.4.1 Labelled nets . . .

5

5.4.2 Synchronisation

5.5 Composition operators

292

301

303

305

313

319

322

323

325

329

334

341

5.6 Boxes

5.6.1 Duplication equivalent boxes.

5.7 Box expressions

5.8 An axiomatisation of duplication equivalence.

5.9 Soundness of the axiom system ..

5.10 Completeness of the axiom system.

5.10.1 Constructing maximal synchronisation sets

5.10.2 De-synchronisation .

5.10.3 Normal form box expressions

5.11 Conclusion.

6 Conclusion

6.1 Summary of Results

344

344

347

347

351

353

353

354

355

6.2 Extensions and Areas for Further Investigation.

6.2.1 Additional Operators ...

6.2.2 Behavioural Equivalences.

6.2.3 Net Based Operations

6.2.4 Alternative semantics.

6.2.5 Time Complexity and Graph Isomorphism

6.3 Conclusion.

A Definitions

A.l Multisets
A.2 Actions and Basic Actions

A.3 Box Expressions. . . .

A.4 Classes of Expressions

A.5 Nets and Net operators.

A.6 Equivalence of Nets/Expressions.

A.7 Ordering of Nodes and Expressions

356

357

357

358

359

359

360

361

6

A.8 Sets of Nodes 361

A.9 Connectedness of Nodes 363

A.10 Equivalence of Nodes 363

A.ll Classes of Nodes .. 364

A.12 Action/Transition Mapping 365

A.13 Synchronisation Transitions 365

A.14 Synchronisation sets 366

A.15 Construction of maximal sy-sets 366

B Subsets of the Petri Box Calculus 368

B.1 Basic syntax (isomorphism) ... 369

B.2 Synchronisation Synthesis (isomorphism) 369

B.2.1 Restriction of expression syntax 370

B.2.2 Form of synthesised expressions 371

B.3 Synchronisation Axiomatisation

(isomorphism) 372

B.4 Basic syntax (duplication equivalence) 373

B.5 Synchronisation (duplication equivalence) - Approach I 373

B.6 Synchronisation (duplication equivalence) - Approach II . 374

7

Chapter 1

Introduction

This chapter introduces the Petri Box Calculus, and the synthesis and ax-

iomatisation problems that are investigated in the remainder of the thesis.

Section 1.2 presents the algebra of box expressions, together with an informal

description of the intended semantics of each type of expression. Labelled

nets, which are used to give a formal semantics to box expressions are intro-

duced in Section 1.3.2. The translation from expressions to nets is described

in Section 1.3, and some notions of equivalence in the Petri Box Calculus,

based on the structure of nets, are given in Section 1.4. The synthesis and

axiomatisation problems are introduced, followed by a survey of some related

work on the derivation of algebraic representations for net based models and

axiomatisations for process algebra based models. Finally, a summary of the

remainder of the thesis is given in Section 1.7.

1.1 The Petri Box Calculus

Formal models for concurrent systems are used for specifying, modelling,

designing, simulating and verifying complex systems that involve multiple

threads of control and communication between concurrent components of the

system. A specification for a concurrent system consists of set of properties,

expressed in a formal manner, that should hold for any implementation of the

8

system. Properties may include the absence of deadlocks, termination (or non-

termination), and the ability to perform certain actions in particular states.

Formal models for concurrent systems can be used to model existing systems,

or to design new systems. Verification tools can be used to check properties,

such as those used in specifications, of a formal model. Simulation can be used

to examine the behaviour of a formal model, and is useful for testing and de-

bugging the design of a concurrent system. Examples of areas in which formal

models of concurrency have been applied include the verification of communi-

cations protocols, the giving of a formal semantics to concurrent programming

languages, the modelling of workflow in businesses, and the simulation of the

interaction between a pilot and his aircraft.

Two important models for concurrency are Petri nets [46] and process

algebras [2, 41]. The Petri net model is graphical in nature, whereas pro-

cess algebras use an algebraic approach. Petri nets have a partial order, or

"true concurrency" behaviour, allowing reasoning about causal relationships

between events. This allows systems to be debugged easily - for example, in a

Petri net model of a system that could deadlock, it is possible to find the chain

of events that lead to the deadlocking behaviour. In comparison, process al-

gebraic models are generally based on less rich interleaving behaviours, where

causality information is not available. During the simulation of Petri nets,

the current state of the system, and the available set of actions that can be

performed are easily visible, due to the graphical form of the Petri net model.

However, it may be more difficult to follow the simulation where the system

is so large that it is not practical to use a global view of the entire net.

Both Petri net and process algebra models for concurrency have well de-

veloped tools for the automatic verification of properties. Petri net tools are

generally based on the generation of structures that contain information about

the reachability of the various states of the system. Process algebra verifica-

tion tools are usually based around an axiomatisation of the algebra, together

with procedures for applying the axioms. Process algebras consist of a set of

9

operators, where each operator corresponds to a particular type of behaviour.

In comparison, Petri nets allow the arbitrary interconnection of components,

which in some respects, gives much greater flexibility.

The major deficiency of the Petri net model is that it does not readily sup-

port the composition of nets. This makes it more difficult to produce modular

designs for systems than in a process algebra based framework. Without com-

positionality, it is not possible to take a top-down decompositional approach

to designing a system, or to design systems at different levels of abstraction,

where a high level, less detailed design can be refined to a lower level more de-

tailed design. Of course, with careful planning, it is possible to model systems

in a modular fashion using Petri nets. In doing so, some of the flexibility of

the expressiveness of nets is inevitably lost.

The Petri Box Calculus [5, 6], one of the results of the Esprit Basic Research

Action, DEMON and its successor, CALIBAN, has been designed to provide

the advantages of both Petri nets and process algebras. The calculus consists of

the box algebra, a process algebraic domain of box expressions, and a semantic

domain of Petri boxes, classes of labelled Petri nets. A compositional semantics

provides a translation from box expressions to Petri boxes. Earlier approaches

to giving a Petri net interpretation to a process algebra, [24, 48], have been

based on algebras with an existing semantics in a model other than Petri nets.

Note that the design of the Petri Box Calculus does not preclude a semantics

being given in purely algebraic terms [35, 37]. For example, [35] gives a partial

order operational semantics for box expressions, which is consistent with the

corresponding partial order semantics of Petri boxes.

One of the aims of the box calculus is to allow the semantics of high level

programming constructs to be simulated, verified and reasoned about at the

level of Petri nets. In this respect, the box algebra lies midway between high

level concurrent programming languages such as occam [31], and B(PN)2, [7].

Semantics for both of these high level languages have been given using the Box

Calculus [7, 30].

10

The class of nets that belong to the domain of Petri boxes is very much

smaller than the general class of labelled Petri nets. The existence of trans-

lations from high level languages such as occam to the Petri Box Calculus

demonstrate that the calculus is sufficiently expressive for real applications.

An analogy can be drawn with standard sequential programming languages,

where Petri nets can be seen as an assembly language, the Petri Box Calcu-

lus an intermediate p-code, and languages such as B(PN)2 and occam as high

level languages. High level languages are compiled into an intermediate p-

code, then into assembly language. There is usually a simple translation from

programs represented by p-code into assembly language. Developing systems

at the lowest level (assembly language/Petri nets) will often give more flexibil-

ity, and more compact and efficient designs. However, the disadvantages are

the difficulty of maintaining, debugging and modifying the system.

1.2 Syntax

Table 1.1 gives the BNF description of the algebra of box expressions. This

algebra forms the syntactic domain of the Petri Box Calculus, which is de-

scribed in detail in [5]. In this section, an informal description of the intended

semantics of each of the operators in Table 1.1 is given. Section 1.3 introduces

a formal semantics for box expressions based on a translation from expres-

sions to labelled Petri nets. [35] gives a detailed and formal description of an

operational semantics for box expressions, based on annotated expressions.

In the following description of the operators in Table 1.1, the notions of

executing an expression, and the successful or unsuccessful termination of

an expression are discussed. In effect, expressions can be considered to be

concurrent programs whose execution proceeds by performing basic actions

which are regarded as atomic. Since there is an element of concurrency, it

is possible that sets of actions are executed simultaneously. The execution

of an expression terminates when no more actions can be performed. For

11

E"= a Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E*E*E] Iteration

E rs a Restriction

stop Stop

E sy a Synchronisation

[a: E] Scoping .

E[J] Relabelling

X Variable

E[X f- E] Refinement

p,X.E Recursion

Table 1.1: Box expression syntax

certain expressions, the execution may terminate unsuccessfully by entering a

deadlocked state.

An infinite set of basic action names, B is assumed. For the purposes of

the investigation into the synthesis and axiornatisation problems, the lower

case letters (i.e. a,b,c, ...) will generally be used. However, it will be usual in

practical applications of the Petri Box Calculus to use more meaningful names.

The ~ symbol is used to denote conjugation, which is a bijection, ~: B --t B

such that for any basic action b, b = b, and b =1= b. For example, the basic

actions band b are conjugates of each other. The mapping ~ can be extended

to sets and multisets' of actions, A, with A = {a I a EA}. It will be seen

below that conjugate actions are required for the synchronisation and scoping

operations.

lmultisets are an extension of sets to allow multiple occurrences of elements. Section 1.3.1

gives a formal definition.

12

Atomic action (E ::= a)

An atomic action, a is a finite multiset of basic actions. For example:

a = {a, b, a, a, c}

When an atomic action expression is executed, every basic action in the mul-

tiset is performed simultaneously, and the execution of the expression success-

fully terminates.

If an atomic action consists of a single basic action, then, as shorthand

notation, the braces will usually be omitted - i.e. a = a is shorthand for

a = {a}. Unless illustrating some point requiring the use of multiactions,

future examples will contain only atomic actions consisting of a single basic

action.

Parallel composition (E ::= Ell E)

When an expression of the form, El II E2 is executed, the sub expressions El

and E2 are executed concurrently. Any concurrent execution must arise as the

result of a parallel composition operator. The execution of El II E2 terminates

when the execution of both El and E2 has terminated. If either El or E2

deadlocks during execution, then El " E2 will eventually deadlock, resulting

in an unsuccessful termination.

Choice composition (E ::= ED E)

When an expression of the form, El 0 E2 is executed, either subexpression

El or subexpression E2 is executed. Once execution of one sub expression

has begun, no part of the other sub expression can be executed. However, the

choice of sub expression is not fixed - for example, if a choice expression El 0 E2

appears as a subexpression of an iteration expression then it is possible for El

to be chosen during the first iteration and E2 to be chosen during the next

iteration. The execution of a choice composition expression terminates when

13

the execution of the chosen sub expression terminates, and the success of the

execution depends on the success of the execution of that sub expression.

Sequential composition (E ::= E; E)

An expression of the form, El; E2 is executed by executing subexpression El

followed by subexpression E2. The execution of E2 cannot begin until the

execution of El has terminated, and will never begin if the execution of El

terminates unsuccessfully. The execution of El; E2 terminates successfully if

and only if the execution of both El and E2 is successful.

Iteration (E ::= [E * E * ED

When an expression of the form [El * E2 * E3] is executed; subexpression El is

executed once, then E2 is executed zero or more times (i. e. it is possible that

E2 is not executed at all); finally, sub expression E3 is executed once.

The form of the iteration expression is partly motivated by the Petri net

semantics given to box expressions. The inclusion of sub expressions El and E3

in [El *E2 *E3] ensure that some of the desirable properties for Petri boxes also

hold for nets derived from iteration expressions. An iteration operator was not

included in the initial presentation of the Petri Box Calculus, [6], where it was

left to the recursion operator to provide the capability of infinite behaviour.

The iteration operator first appeared in [5], where the semantics allowed unsafe

nets to be obtained. The net semantics of iteration were updated in [4] to

guarantee that every net derived from an iteration expression was safe.

Restriction (E ::= E rs a)

Restriction on a basic action name, a, prevents the execution of all atomic

actions within the scope of the restriction operator that contain a basic action

a, or its conjugate, a. For example, in:

(({a,b} II c) rs a) D {a,d}

14

the execution of the atomic action {a, b} is prevented by the restriction oper-

ator. However, the atomic action {a, d} may still execute as it is not in the

scope of the restriction operation. The restriction operator is most often used

in conjunction with the synchronisation operator to provide scoping.

Synchronisation (E ::= E sy a)

Consider an expression E synchronised by a basic action a. Whenever E has

the capability to execute an a and a concurrently, then E sy a also offers the

alternative of synchronising the execution of the a and a actions. When a

pair of conjugate basic actions are executed synchronously, the execution of

the pair of basic actions that synchronise is hidden, but the system ends up

in the same state as if that pair of actions were executed normally. In this

sense, synchronisation can be seen as a generalisation of the choice composition

operator, allowing a choice between normal and hidden execution of synchro-

nised actions. While synchronisation occurs between pairs of basic actions, it

is pairs of atomic actions that are executed synchronously. For example, the

expression:

({a,b} II {a,c,d}) sy a

could either execute the two atomic actions {a, b} and {a, c, d} concurrently,

or execute the multiset of basic actions, {b, c, d} in a single step, where the

basic action b originates from {a, b} and the c and d basic actions come from

the action {a, c, d}. In addition to the synchronisation of pairs of actions,

the synchronisation operator permits multi-way synchronisation where multi-

ple atomic actions are executed synchronously. This is a consequence of the

multiset representation for atomic actions. For example, in the expression:

({a, b, b} II {b, c} II {d, b}) sy b

all three atomic actions are synchronised, permitting the execution of the

expression to complete in a single step by performing the multiset of basic

actions {a, c, d}. The semantics for the synchronisation operator are given

15

in Section 1.3. An alternative, more intuitive, but equivalent semantics for

synchronisation is described in Chapter 4 together with an investigation into

some properties of synchronisation.

Scoping (E ::= [a : ED

The semantics of the scoping operator can be defined syntactically in terms of

the synchronisation and restriction operators:

[a : E] = E sy a rs a

Whereas synchronisation provides the choice between executing synchronised

actions normally or synchronously, the scoping operator forces the synchronous

execution. It is possible to obtain deadlocking behaviour using the scoping

operator. A deadlock occurs when a pair of actions that cannot be executed

concurrently are scoped. For example, the expression [a : b; a; a:] deadlocks

after performing the atomic action b because the a and a: cannot be executed

concurrently.

Although the scoping operator does not increase the expressive power of

the syntax in Table 1.1, the inclusion of scoping is nevertheless important, as

this operator represents the normal use of the synchronisation and restriction

operators. In this respect, the scoping operator can be seen as a shorthand

notation.

Stop (E ::= stop)

The semantics of stop can be defined syntactically 111 terms of either the

scoping or restriction operators:

stop = [a : a] = a rs a

Hence, stop does not make any contribution to the expressive power of the

syntax in Table 1.1. The main use of stop is to enforce an explicit deadlock,

or unsuccessful termination.

16

Relabelling (E ::= E[f])

The relabelling operator provides a means of associating a relabelling function

with a box expression. The relabelling function acts on basic action names

and variables. By changing this function, a class of relabelled expressions

can be obtained. There is some interplay between relabelling and operators

such as synchronisation and restriction. For example, in (a II b) sy alb -+
a] no synchronisation takes place. The relabelling operator is most useful

when used in conjunction with recursion. It is possible to show that for any

expression that involves relabelling, but not recursion, there is an equivalent

expression that contains neither relabelling nor recursion operators. Hence,

relabelling does not increase the expressive power of the calculus, unless used

in conjunction with the recursion operator.

Variable (E ::= X)

Variables are used in conjunction with the refinement or recursion operators.

When every variable in an expression occurs in the scope of an enclosing

refinement or recursion operator acting on that variable, the expression is said

to be closed. The compositional semantics given in Section 1.3 only defines

the behaviour of closed expressions.

Refinement (E ::= E[X +- E])

The purpose of refinement is to provide a basis for the recursion operator. The

idea of refinement is that in an expression such as EdX +- E2], the behaviour

of open occurrences of the variable X in El is obtained by executing E2 in their

place. Refinement is not exactly the same as syntactic substitution because

there is an interplay between refinement and operators such as synchronisation,

restriction and scoping. For example, if refinement was equivalent to syntactic

substitution then in the expression:

((a II X II b) sy a)[X +- a]

17

there would be the possibility of a synchronisation between the a and a ac-

tions. However, the intended semantics of refinement do not permit such a

synchronisation to occur.

Recursion (E ::= /-lX.E)

Recursion is defined inductively in terms of a succession of refinements. For

example, for /-lX.E, the inductive definition:

Eo stop

EHl E[X f- Ei]

gives a sequence of expressions Eo, El, E2, ••. whose behaviour successively ap-

proximates that of /-lX.E. In this respect it is very difficult to explicitly de-

scribe how the execution of expressions involving the recursion operator will

proceed. What is certainly clear is that the inclusion of recursion in the box

expression syntax in Table 1.1 greatly enhances the expressive power of the

calculus. In general, expressions involving the recursion operator result in in-

finite nets. For this reason, recursion is not investigated further in this thesis.

For more details on recursion in the Petri Box Calculus, the reader is referred

to [4] and [12].

1.3 Semantics

In this section, a formal basis for describing the semantics of the syntax in

Table 1.1 is presented. The semantics are given in terms of labelled Petri nets.

Some examples of the translation from expressions to nets are presented, and

the general form of the translation is discussed. However, detailed presenta-

tions of the semantics are given only for a subset of the syntax in Table 1.1.

A complete description of the semantics is contained in [5].

A formal description is given for multisets, which among other things are

used to represent atomic actions. A definition of labelled Petri nets is given

18

in Section 1.3.2, followed by a brief description of the execution behaviour of

such nets. Some operators, used to compose labelled nets are described in

Section 1.3.4. The semantics of the syntax in Table 1.1 are given in terms of

these operators. Finally, in Section 1.3.5, the ideas behind the translation from

expressions to nets are discussed, and the semantics for some of the operators

in Table 1.1 are presented.

1.3.1 Multisets

A particular set S can be described using a characteristic function", I : U ---+

{a, I}. The domain of I, U is known as the universe of S, and is the set of all

elements that could conceivably be present in S. For all u E U, the value of

I(u) indicates whether u is actually present in S, with I(u) = 1 if and only if

u E S:

{
1 if 11, E S

I(u) = ° otherwise

For example, suppose S = {I, 3, 4} is a set of natural numbers (hence the

universe of S is the set of all natural numbers, N), and I :N ---+ {O, I} is the

characteristic function for S, then I(1) = I(3) = I(4) = 1 and I(O) = I(2) =

I(n) = ° for all n ;::::5.

The functional notation for sets is more formal than the standard set no-

tation as it makes the universe of the set explicit. A definition of multisets is

obtained by extending the range of the characteristic function from {a, 1} to

the set of natural numbers, N. Intuitively, this allows each element to appear

multiple times in the set. Hence, a multiset with universe X is a function,

Jj : X ---+ N, where for each x E X, Jj(x) gives the multiplicity of the element

x. Multisets will usually be written in standard set notation - for example a

multiset Jj : {a, b, c, d} ---+ N with Jj(a) = 2, Jj(b) = 1, Jj(c) = 0, and Jj(d) = 3

can be written as {a, a, b, d, d, d}.

2This notation is most often encountered in proofs that the number of subsets of a set S

is 2151.

19

Let Ih and /-L2 be multisets with universe X. The standard set operations

union (U), intersection (n) and difference (-), together with multiset sum (+)

and multiplication (.) operations can be defined for /-Lland /-L2' For all x E X

and n E N:

(/-LlU /-L2)(X) max(/-Ll(x), /-L2(X))

(/-Lln /-L2)(X) min(/-Ll(x), /-L2(X))

(/-Ll- /-L2)(x) { ~l{xl ~ ",,{xl if/-Ll(x) ;::: /-L2(X)

otherwise

(/-Ll+ /-L2)(x) /-Ll(x) + /-L2(X)

(n· /-L)(x) n· (/-L(x))

Let /-L be a multiset with universe X, and X' ~ X be a subset of X. The

multiset /-L I X' denotes /-L restricted to the domain (or universe) X'. This

follows the usual notation for restricting a function to a particular domain

- i. e. where f lA denotes the function f restricted to the domain A. For

example, let X = {a, b, c, d}, /-Ll= {a, a, b, c, d, d, d} and /-L2 = {a, b, b, d, d}

then:

/-LlU /-L2 {a,a,b,b,c,d,d,d}

{a,c,d}

{a, b, d, d}

{b}
{a, a, b}{a,a,a,b,b,b,c,d,d,d,d,d}

2 . /-L2 { a, a, i, b, b, b, d, d, d, d}

It follows directly from the definition of multisets that every set can be treated

as a multiset. It is easy to check that the definition of union, intersection,

difference and restriction for multisets is consistent with the definition for

sets.

20

1.3.2 Labelled nets

A labelled net is a tuple, ~ = (8, T, W, A), where 8 and T are sets of places,

and transitions respectively, collectively known as nodes. The set of arcs of

the net is given by W : (S U T) x (S U T) ---+ N. W(nl' n2) returns a non-zero

value n to indicate the presence of an arc from node nl to node n2 with weight

n. If W(nl' n2) returns 0, then there is no arc from nl to n2·

As a shorthand notation, the set of arcs of the net may be written as a

multiset of pairs of nodes, such that (nI, n~) appears exactly n times if and

only if W(nl' n2) = n. It is assumed that labelled nets are bipartite, with

bipartition (S, T). Therefore there are no arcs between pairs of places, or

pairs of transitions:

A is a labelling function, such that a place is labelled e for an entry place, 0
for an internal place, and x for an exit place. ~ and 2:- are the set of entry

and exit places respectively:

~ {sESIA(s)=e}

2:- {sESIA(S)=X}

Transitions are labelled with atomic actions (i. e. multisets of basic action

names).

(i) (ii)

Figure 1.1: Labelled Petri nets

21

Figure 1.1 shows two nets that may be derived from the expression E = a; b.

Net (i) is the graphical representation of the labelled net:

~ = ({31,32, 33}, {tl' td, {(3l' tl), (tl' 32)' (32, t2), (t2' 33)},

{(3l' e), (32,0), (33, x), (tl' {a}), (t2' {b})})

Transitions and places are represented by rectangles and circles respectively.

In giving a semantics to box expressions, it is both necessary and desirable

to abstract away from place and transition names. This is reasonable since

the choice of names for nodes in the net has no effect on either the structure

or the behaviour of the net. The only purpose of such names is to give a

means of identifying particular nodes. Hence, nets (i) and (ii) in Figure 1.1

are considered to be equivalent. It will be shown in Section 1.4 that such an

abstraction away from node names amounts to defining a class of nets that are

unique up to isomorphism. Therefore, place and transition names will usually

be omitted where they are not required to illustrate a particular point.

1.3.3 Behaviour of labelled nets

Just as box expressions may be regarded as concurrent programs, so can la-

belled Petri nets. In this section, the process by which a labelled net is exe-

cuted is described. The translation from an expression to a labelled net given

in Section 1.3.5 is such that the execution of the net proceeds in a manner

that matches the intended semantics described in Section 1.2.

During the execution of a labelled net, the current state of the system is

recorded by a marking. Every place in the net may be marked by one or more

tokens, and the sets of tokens in places determine the marking of the net. The

initial marking (or state) of a labelled net is obtained by placing a single token

in each entry place, and no tokens on any other place. The final marking of

a net is reached when each exit place contains a single token, and every other

place contains zero tokens. When the final marking is reached, the execution

of the net has completed successfully.

22

The set of pre-places (post-places) of a transition is the set of places that

have an arc to (from) that transition. The presence of tokens in the net

may enable the execution of certain transitions. A transition is enabled if

every pre-place contains sufficient tokens. The minimum number of tokens

that each pre-place must contain is given by weight of the arc between that

place and the transition. An enabled transition may be executed (or fired)

by removing tokens from the pre-places and adding tokens in the post-places

of the transition, where the number of tokens that are removed and added

are determined by the arc weights. If several transitions are simultaneously

enabled then it may be possible to execute them concurrently, or if they share

common pre-places, there may be a choice between which transition is to be

executed. A deadlocked state is reached, and the execution terminates when

the current marking does not enable any transitions. If a deadlocked state is

reached where the marking is not the final marking then the termination is

unsuccessful.

The class of nets that can be derived from expressions over the syntax in

Table 1.1 are such that during any execution of a net, no place will contain

more than one token. An immediate corollary of this observation is that any

transition that is connected by an arc with weight greater than one can never

be enabled.

Figure 1.2 illustrates the execution of a net that has been obtained from the

. expression a; b. The initial marking enables the transition labelled a, which can

fire by executing an a action to reach the state where only the internal place

contains a token. The final marking is reached from this state by performing

a b action. Once the final marking has been reached, there are no enabled

transitions. Hence the execution terminates successfully. This behaviour can

be seen to correspond with the intended semantics of the sequence operator.

In investigating the structural properties of nets in relation to the synthesis

and axiomatisation problems, the behaviour and markings of nets do not need

to be considered. Therefore, future diagrams that contain nets will not indicate

23

e

action b
performed

action a
performed e

x

Initial marking Final marking

Figure 1.2: Behaviour of labelled nets

any marking - only the structure of the net will be shown.

1.3.4 Operations on labelled nets

Four operators on labelled nets, U, e, ® and Efl are used to implement the

translation from box expressions to labelled nets. The first operator, net union

(U) is only defined for disjoint nets. Two labelled nets, L:] = (SI, Tl, WI,)'1)

and L:2 = (S2, T2, W2, A2) are disjoint if (SI UTI) n (S2 UT2) = 0. The ability to

generate disjoint nets relies on the abstraction away from place and transition

names that was introduced in Section 1.3.2.

For disjoint nets, L:l and L:2, the net union, L:I U L:2 is defined by:

Wl(nl, n2) if nI, n2 E SI UTI

W(nI' n2) = W2(nl, n2) if nI, n2 E S2 U T2

o otherwise

The e operator can be used to remove a set of nodes, N, from a net L: =

24

(8,T, W,A):

L; e N = (8 - N, T - N, W I((SUT)-N)X((SUT)-N), A I(SUT)-N)

The place multiplication operator, 0, is used to create a new set of places from

a collection of disjoint sets of existing places. For a net, L; = (8, T, W, A), let

81, ... , 8k be non-empty, disjoint subsets of 8. The set of new places, 810 ...08k

is defined by:

A set of new places, created using the 0 operator can be added to the net

using the EBoperator. Let P = 810 ...0 8k be a set of new places, and

l E {e, 0, x} be the label which is to be assigned to each place in P. The net,

L; EB(P, l), obtained by adding the set of new places to L; is defined by:

L; EB(P, l) = (8 UP, T, W', X)

where W' : (8 uP UT) x (8 UPUT) -+ N, and X are defined as follows:

LnEn2 W(nl' n) if nl E 8 U T, n2 E P

o otherwise

{
A (n) if n E 8U T

X(n) = l
ifn E P

W(nl' n2) if nI, n2 E 8 U T

LnEnl W(n, n2) if nl E P, n2 E 8U T

The EBoperator may also be used to add a set of new transitions to a net. Let

X be a set of new transitions, where each new transition is a multiset of the

set, T, of existing transitions in the net L; = (8, T, W, A), and l be the labelling

function which assigns a label to each new transition in X. The net L;EB(X, l),

obtained by adding the set of new transitions to L;, is defined by:

L; EB(X, l) = (8, TUX, W', X)

25

where W' : (5 U TUX) x (5 U TUX) ---+ N, and X' are defined as follows:

o

>"(n) = {>.(n)
l(n)

L:nEnl W(n, n2) if nl E X, n2 E 5 U T

L:nEn2 W(nl' n) if nl E 5 U T, n2 E X

otherwise

if nE 5UT

ifn E X

The addition of transitions to the net is more flexible than the addition of

places as each transition in the set X added by E Efl (X, l) can be given a

different label - i. e. l is a labelling function. In the case of addition of places,

E Efl (P, l), l is a label that is common to every place pEP.

1.3.5 Translation from expressions to nets

A Petri box is an equivalence class of labelled nets. The equivalence class

is obtained by abstracting away from the place and transition names in the

net, and it will be shown later that this corresponds to isomorphism", For

every box expression, E, there is a corresponding Petri box, denoted box(E).

The compositional semantics of the box calculus describe a translation from

box expressions to Petri boxes. This translation is achieved by associating

a semantic rule with each syntactic operator in Table 1.1. The omission of

place and transition names of labelled nets in diagrams corresponds to a rep-

resentation of a Petri box. For such diagrams the representation can either

be thought of as a class of structurally equivalent (isomorphic) nets, or as a

particular net where the labelling of node names is omitted. Of course, it is

easy to obtain the Petri box corresponding to a particular labelled net, and

VIce versa.

The semantic rules are compositional, which means that in constructing

the Petri box for, for example El 0 E2, the Petri boxes for El and E2 are

3[6] uses a weaker equivalence relation, duplication equivalence.

26

constructed, then combined using the semantic rule for choice composition.

The important point is that the rule for choice composition works no matter

how complex the expressions El and E2 are.

The semantics of the box expression syntax in Table 1.1 are implemented

in terms of the operators on labelled nets: U, EB,e and Q9 described in the

previous section. In this Section, the semantics for atomic actions, paral-

lel composition, choice composition, sequential composition and iteration are

described, together with a semantics for the restriction and synchronisation

operators, which in turn allow the semantics for expressions involving stop

and scoping to be derived. The semantics for the remaining operators may be

found in [6J.

Figure 1.3 shows some example Petri boxes obtained from simple box ex-

pressions, illustrating the use of each of the operators whose semantics are

described below. The parallel composition, choice, sequence and iteration se-

mantic rules have a general form which consists of three components:

1. The union of a collection of nets, ~i for 1 ~ i ~k, for some k, is formed,

using the U operator. The nets ~i correspond to subexpressions of the

expression being translated into a Petri box.

2. Sets of new places are created, using the Q9 operator, applied to entry

and exit interfaces of some of the nets, ~i' used in 1. These sets of places

are added to the result of 1, using the EBoperator. The entry and exit

interfaces of each ~i are used at most once in this step.

3. The original entry and exit interfaces used in 2 are removed from the

result of 2, using the e operator.

The semantic rules for the synchronisation and restriction operators, use a set

of transitions T", which is the set of transitions in T that have an a or a in

their label. For a net, ~ = (8, T, W, A), T" is defined by:

t= = {t E T I A(t) n {a, a} # 0}

27

E=a
Atomic action

E=a II b
Parallel

E = [a * b * cl
Iteration

,,
__L, ,
: a :, ,
--T--,,

E = a rs a
Restriction

E = aDb
Choice

E = a;b
Sequence

E = (a II a) sy a
Synchronisation

Figure 1.3: Box calculus semantics

28

In the following, [L:] denotes the class of nets equivalent to L: when the

abstraction away from place and transition names is made.

Atomic action

An atomic action is implemented by explicitly creating the Petri box

given in Figure 1.3. The transition ofthe net is labelled with the multiset

of basic actions that is the atomic action.

Parallel composition

where, for L:l E box(Ed and L:2 E box(E2) such that L:l and L:2 are

disjoint,

The net corresponding to the parallel composition of two expressions is

constructed by taking the disjoint union of the nets for these expressions.

The subnets are completely independent of each other, and can therefore

execute concurrently.

Choice composition

where, for L:l E box(E1) and L:2 E box(E2) such that L:l and L:2 are

disjoint,

[L:l U L:2 E9 (-L;1 ® -L;2, e)

E9 (L:1• ® L:2·, x)

e (-L;1 U -L;2 U L:1• U L:2·)]

29

When the choice composition of two expressions is taken, the entry and

exit interfaces of the nets corresponding to these expressions are com-

bined in the manner shown in Figure 1.3. In the example for choice

composition in Figure 1.3, a token in the entry place can take one of

two paths - executing either the "a" action, or the "b" action. This

corresponds with the intended semantics of the choice operator.

Sequential composition

where, for ~l E box(Ed and ~2 E box(E2) such that ~l and ~2 are

disjoint,

[~l U ~2 Et> (~l· 0 ~2' 0)

e (~l· U ~2)]

When the sequential composition of two expressions is taken, the nets

corresponding to these expressions are combined by joining the exit in-

terface of the first net with the entry interface of the second net. The

result is that the final marking of the first net is coincident with the

initial marking of the second net - i. e. the second net does not begin

execution until the execution of the first net has completed.

Iteration

where, for ~11' ~12 E box(E1), ~21' ~22 E box(E2), and ~31' ~32 E

box(E3)

such that ~11' ~12' ~21' ~22' ~31 and ~32 are mutually disjoint,

[box(El) * box(E2) * box(E3)] = [~11 U ~12 U ~21 U ~22 U ~31 U ~32

Et> (~11 0 ~12' e)

30

EEl (~31· @ ~32·'X)

e (~11 U ~12 U ~31· U ~32·)

EEl (~11· e ~21 @ ~22· @ ~31,0)

EEl (~12· @ ~22 @ ~21· @ ~32' 0)

e (~11· u ~21 U ~22· U ~31

U ~12· U ~22 U ~21· U ~32)l

When the iteration operator [El * E2 *E3J is used the nets corresponding

to the three expressions are combined as shown in the example in Fig-

ure 1.3. Notice that two copies of each net are used in this construction

- this is to ensure that the resulting net is pure, which means there is

no pair of nodes nl and n2 such that there are arcs both from nl to n2

and from n2 to nl. If only a single copy of the nets are used, then, for

example, the implementation of [a * b * cl would not be pure because

the transition labelled b would have an arc both to and from the same

place. In fact, only two copies of the nets corresponding to E2 and E3

are required to ensure that the construction is pure. A second copy of

the net corresponding to El is included to make the net (and the set

of reachable states) symmetrical, allowing Petri net based verification

algorithms to more easily detect the redundancy in the implementation

of iteration expressions. At the initial marking of an iteration net, there

are two possible paths of execution. The behaviour of the net will be the

same whichever path is taken. In the example net, note that there is a

cycle consisting of the two copies of the net corresponding to the expres-

sion "b". Once an a transition has been executed, b transitions can be

executed any number of times (including zero), before one of the c tran-

sitions is executed and the final marking is reached. This corresponds to

the intended semantics of iteration expressions.

Restriction

box(E rs a) = box(E) rs a

31

where, for L; = (8, T, W, A) E box(E),

box(E) rs a

The restriction of an expression by a basic action name is achieved by

removing every transition that has a label containing that action name

or its conjugate, from the net corresponding to that expression. This

results in certain paths of the execution being blocked, and means that

the final marking of the net may no longer be reachable. The restriction

operator is generally used in conjunction with synchronisation, in such

a way that the final marking remains reachable.

Synchronisation

box(E sy a) = box(E) sy a

where, for L; = (8, T, W, A) E box(E), let 7, be a finite multiset of the

set of transitions, T", such that 7 contains at least two elements. 7 is a

valid synchronisation if and only if the multiset sum of the labels of the

transitions in 7 contains at least 171- 1 a and a basic actions. Hence,

the set of new transitions created by synchronising L; by a basic action,

a is given by:

Tsy'= {7 11712: 2Amin(LA(t)(a)'LA(t)(a)) 2: 171-1}
tET tET

The labelling function, l defines the label of 7 to be the multiset sum of

the labels of the transitions in 7 minus 171-1 copies of the a and a basic

actions:

l(7) = (LA(t)) - ((171-1)· {a,a})
tET

The synchronisation operation on Petri boxes is defined by:

box(E) sy a

32

The semantics for synchronisation presented here are slightly different

from those in [6], where the condition requiring ITI 2: 2 is not imposed.

Hence, the semantics in [6] create a duplicate of every transition in the

set T" ..While these duplicate transitions are not significant for the du-

plication equivalence of [6], they are for the stronger equivalence of iso-

morphism investigated here.

The synchronisation of an expression by a basic action, a, is achieved by

adding new transitions to the net corresponding to the expression being

synchronised. A new transition is added for every pair of synchronising

transitions ". i. e. a pair of transitions, with one transition label contain-

ing the synchronising action, a, and the other containing the conjugate

of the .synchronising action, a. Each new transition inherits the arcs from

the pair of synchronising transitions, and is labelled with the multiset

union of the labels of the synchronising transitions, minus the two basic

actions, a and et that contributed to the synchronisation. For example,

the 0 transition in the net in Figure 1.3 arises from the synchronisation

of the a and a transitions.

A labelled net, ~ is called an implementation of a box expression, E, if

~ E box(E). Note that:

~ E box(E) {:} [~] = box(E)

An implementation of an expression, E can be constructed from disjoint im-

plementations of the subexpressions of E. For example, an implementation,

~, of E = El; E2, can be constructed from disjoint implementations, ~l and

~2 of El and E2, using:

~ ~l U ~2 EB (~l· 0 ~2' 0)

8 (~l· U ~2)

A similar procedure can be used for the other operators in Table 1.1.

33

1.4 Equivalence of expressions and nets

One of the motivations for the design of the Petri Box Calculus was the ability

to define notions of equivalence in a process algebra framework that were tra-

ditionally only found in the domain of Petri nets. In this section, it is shown

how the equivalence of box expressions can be based on an equivalence for

labelled nets. There are many candidates for the equivalence of Petri nets.

An idea of the range of possible equivalences can be obtained from [45]. Two

structural equivalences, isomorphism and duplication (renaming) equivalence,

are formally defined in this section. These notions are used in the remainder

of the thesis as a basis for the investigation into the synthesis problem and the

production of an axiomatisation. Structural, rather than behavioural equiva-

lences are chosen for the investigation because the synthesis and axiomatisation

problems are simpler, and the work should provide a basis for an investigation

into behavioural equivalences. Chapter 6 discusses an approach to the synthe-

sis problem for behavioural equivalences, that is based on structural analysis

similar to those used for isomorphism and duplication equivalence. Structural

equivalences are much stronger than behavioural equivalences, and any rea-

sonable notion of behavioural equivalence will encompass equivalences such as

isomorphism and duplication equivalence. Therefore, it should be expected

that an axiomatisation for a structural equivalence could form the basis of an

axiomatisation of a behavioural equivalence, while the reverse is not true.

For an equivalence relation, =». over nets, a corresponding equivalence =e

can be defined over box expressions as follows:

This definition of equivalence for box expressions requires that the equivalence

relation, =n, encompasses isomorphism - i. e. if the nets El and E2 are isomor-

phic, then El =» E2. This is a reasonable assumption, because isomorphism

simply abstracts away from node names, which have no effect on the seman-

tics of the net. Any reasonable notion of equivalence should be expected to

34

preserve the abstraction.

The notation [E]n is used to represent the class of nets equivalent, according

to the relation =». to an arbitrary member of the Petri box constructed for

E. When =» corresponds to isomorphism, then [E]n and box(E) describe the

same class of labelled nets. For any other reasonable notion of equivalence, =n,
box(E) ~ [E]n' which amounts to saying that =» encompasses isomorphism.

Two equivalence relations based on the structure of labelled nets are con-

sidered. The stronger equivalence is isomorphism, which corresponds to the

abstraction away from place and transition names. Duplication equivalence,

in addition, abstracts away from the duplication of nodes in the net. Writing
. , .

~l =iso ~2 (~l =dup ~2) indicates that the nets ~l and ~2 are isomorphic

(duplication equivalent). Similarly, El =u: E2 (El =dup E2) indicates that El

is equivalent to E2 according to net isomorphism (duplication equivalence).

However, if it is clear what notion of equivalence is being used, the = symbol

will often be used in place of =iso or =dup'

The motivation for investigating the synthesis and axiomatisation problems

for net semantic isomorphism is that for any expression, E, the class of nets

[E]iso is identical to that described by box(E). This correspondence signifi-

cantly simplifies the synthesis problem. For equivalence relations weaker than

isomorphism, members of the equivalence class of boxes will only be equiva-

lent, under that relation, to the implementation of some box expression. They

may not necessarily be implementations of a box expression themselves. The

investigation into duplication equivalence gives an idea of the additional prob-

lems that are encountered when the correspondence between equivalent nets,

and Petri boxes is weakened.

1.4.1 Isomorphism

Isomorphism is possibly the strongest equivalence relation over nets (apart

from identity). Two nets are isomorphic ifthere is a one-to-one correspondence

between the nodes that preserves adjacency and node labelling. Formally, the

35

nets El = (SI, T1, WI, Ad and E2 = (S2, T2, W2, A2) are isomorphic if there

exists a sort-preserving bijection p : (SI U Td -* (S2 U T2) such that:

'tIn1' n2 E SI U T1

'tin E SI UTI

W1(n1,n2) = W2(p(nd,p(n2))

A1(n) = A2(p(n))

[E]iso, which is the same as [E], is used to denote the class of labelled nets

that are isomorphic to E. If El =iso E2, then the sets of nodes n1 ~ SI UTI,

n2 ~ S2UT2 are isomorphic, denoted n1 =iso n2 ifthere exists an isomorphism,

p for El and E2, such that n2 = {p(n) I n E n1}' This can be extended to the

isomorphism of sets of sets of nodes in the obvious way.

Under isomorphism, there is an epimorphism (many-to-one, onto relation)

from box expressions to labelled nets - i. e. there may be several expres-

sions that produce isomorphic nets. For example, the implementations of

((a; b); c) rs b and (a; (d; c)) rs d are isomorphic, as shown in Figure 1.4.

(a; (b; c)) rs b (a; (d; c)) rs d

Figure 1.4: Isomorphic nets

1.4.2 Duplication equivalence

Duplication (or renaming) equivalence is the equivalence relation defined and

used in [6] to correspond to the class of nets that is a Petri box. Duplication

equivalence is weaker than isomorphism:

El and E2 isomorphic =} El and E2 duplication equivalent

36

but:

~1 and ~2 duplication equivalent =fo- ~1 and ~2 isomorphic

Duplication equivalence is based on an equivalence relation over the elements

of a labelled net. In a net ~ = (5, T, W, A), two nodes nI, n2 E 5 U Tare

duplicates of each other, written nl =dup n2, if A(nl) = A(n2) and for all

nE 5U T, both W(nl' n) = W(n2' n) and W(n, nd = W(n, n2). Duplication

equivalence is defined by extending the relation "to duplicate each other" to an

equivalence relation on labelled nets. Formally, the nets ~1 = (51, Tl, WI, AI)

and ~2 = (52, T2, W2, A2) are duplication equivalent if there exists a relation

p ~ (51 UTI) X (52 U T2) such that:

• The relation is surjective (onto), and sort-preserving on places and tran-

sitions - i.e. p(5d = 52, p-l(52) = 51, p(Td = T2, and p-l(T2) = Tl.

• The relation preserves arcs, and arc weights - i. e. if (81, 82) E P and

(tl' t2) E p, then W(81' tl) = W(82' t2) and W(tl' 81) = W(t2' 82).

• The relation preserves labels - i.e. if (nI, n2) E p, then A(nl) = A(n2).

• The relation is injective (one-to-one) on classes of duplicate nodes - i.e.

if (nI, n2) E p, and (mI' m2) E p then nI =dup mI in ~1 if and only if

n2 =dup m2 in ~2·

• The relation is full for classes of duplicate nodes - i. e. if nl =dup ml in

~1 and n2 =dup m2 in ~2 then (nI, n2) E p if and only if (ml' m2) E p.

[~ldup is used to denote the class of labelled nets that are duplication equivalent

to ~.

A canonical representative, up to isomorphism, of a class of duplication

equivalent nets can be obtained by removing all but one of each set of duplicate

nodes. Hence, two nets are duplication equivalent if and only if their canonical

representatives are isomorphic. In Figure 1.5, net (i) shows the implementation

of:

E = (((a II b) 0 (a II b)) II ((a II b) 0 (a II b))) rs b

37

00
(i)

o
(ii)

Figure 1.5: Duplication equivalent nets

and net (ii) shows the canonical representative for net (i). Although there is

a strong relationship between isomorphism and duplication equivalence, Fig-

ure 1.5 illustrates a possible source of difficulty in extending a synthesis algo-

rithm and axiomatisation for isomorphism to one for duplication equivalence.

While net (i) is the implementation of a box expression, there is no box ex-

pression with an implementation isomorphic to net (ii). Even worse, net (ii)

is the natural choice for a canonical representative for net (i). This problem

is discussed further in Chapter 5.

1.5 Synthesis and axiomatisation problems

The synthesis problem is to provide an algorithmic translation from labelled

nets to box expressions - i. e. given an arbitrary labelled net as input, try

to synthesise an expression whose implementation is equivalent (under some

particular equivalence relation) to the input net. For a particular notion of

equivalence, =n, the decision problem associated with the synthesis problem

38

can be stated as:

Box EXPRESSION SYNTHESIS

INSTANCE: Labelled net, ~.

QUESTION: Does there exist a box expression, E,

such that box(E) = [~Jn.

The problem may be simplified slightly by allowing only those inputs for

which there exists a solution. This restriction does not affect the time complex-

ity of the problem. For a particular notion of equivalence, =n, the synthesis

problem can be restated thus:

Box EXPRESSION SYNTHESIS

INSTANCE: Net, ~, for which there exists a synthesisable expression.

SOLUTION: Box expression, E, such that box(E) = [~Jn'

The motivation for investigating the synthesis problem is twofold: Firstly,

the investigation provides a detailed analysis of the semantics of box expres-

sions, allowing an axiomatisation of the box algebra to be obtained, and sec-

ondly, a solution to the synthesis problem allows process algebraic represen-

tations to be derived for a class of Petri nets. While the class of nets for

which an expression can be synthesised is small for structural equivalences, it

will be much larger, perhaps even covering the entire class of Petri nets, for

behavioural equivalences. Bearing this in mind, a synthesis algorithm for be-

havioural equivalences is a much more attractive proposition, and could have

immense practical applications. An initial investigation into isomorphism and

duplication equivalence will hopefully provide insight into, and a solid basis

for the extension to behavioural equivalences. Bearing these motivations in

mind, there are two desirable properties that a synthesis algorithm may have:

• Determinism: Given two equivalent nets as input, the algorithm should

synthesise identical expressions. This means that the synthesis algorithm

implicitly defines a canonical form for the equivalence classes of box ex-

pressions. Designing an algorithm which has the determinism property

39

will not be trivial because there is a many-to-one relation between box

expressions and classes of Petri boxes, even under the strongest equiva-

lence relation, isomorphism. The determinism property is useful from a

theoretical point of view, in that it allows the synthesis algorithm to be

used to show that an axiomatisation of the Petri Box Calculus is com-

plete. While a non-deterministic algorithm can still be of use in proving

completeness, the task is significantly easier using a completely deter-

ministic synthesis algorithm. Section 2.4 in Chapter 2 discusses in detail

the means by which an analysis of a synthesis algorithm can be used to

derive an axiomatisation .

• Efficiency: The time complexity of the synthesis algorithm should be,

at most, polynomial in the size of the input net. An efficient algo-

rithm for synthesis would give more scope for practical applications of

the algorithm. While a solution to the synthesis problem for structural

equivalences such as isomorphism and duplication equivalence has lim-

ited practical use, the investigation provides a basis for the extension

to more reasonable (from a practical point of view) net equivalences.

The extension to behavioural equivalences is discussed in Chapter 6.

The efficiency of the synthesis algorithm has no effect on the possibility

of deriving an axiomatisation, although an efficient synthesis algorithm

may lead to efficient procedures for the automatic generation of proofs,

using the axiomatisation. In this respect, efficiency should be regarded

as secondary to minimising the amount of non-determinism in the algo-

rithm.

It is not imperative that the expression synthesised from a particular input net

is unique. There will often be a tradeoff between the amount of determinism

in the algorithm and the efficiency of the algorithm. An analysis of the points

of non-determinism in the synthesis algorithm, may still provide a means for

defining a canonical form for box expressions.

40

The problem of finding an axiomatisation is not an algorithmic problem.

For a particular notion of equivalence =n over labelled nets, an axiomatisation

characterises the corresponding equivalence over expressions, =e, by means of

a set of axioms (rewriting rules). It is important for an axiomatisation to be

both sound and complete. For an axiom system to be sound, whenever the

system equates two expressions, El and E2, then it is true that ~l =» ~2'

where ~l and ~2 are implementation of El and E2. An axiom system is

complete if, for every pair of expressions El and E2 such that El =e E2, it is

possible to show the equivalence of El and E2 by applying axioms.

As an example, a sound, but not complete axiom system for net semantic

isomorphism is presented, and used to show that the expressions ((a; b); c) rs b

and (a; (d; c)) rs d are equivalent. The axiom system consists of three axioms,

dealing respectively with associativity of sequential composition, propagation

of the restriction operator, and restriction of atomic actions.

El; (E2; E3) (El; E2); E3 AXIOM 1

(El; E2) rs a (El rs a); (E2 rs a) AXIOM 2

{ :top if a E Cl(

Cl(rs a AXIOM 3
otherwise

Implementations of El = ((a; b); c) rs band E2 = (a; (d; c)) rs d are shown in

Figure 1.4, where it can be seen that they are isomorphic, and hence El =iso

E2. A proof that El =u; E2 is possible, by applying the three axioms as

41

follows:

((a; b); c) rs b ((a; b) rs b); (c rs b) by AXIOM 2

((a rs b); (b rs b)); (c rs b) by AXIOM 2

(a; (b rs b)); c by AXIOM 3

(a; stop); c by AXIOM 3

a; (stop; c) by AXIOM 1

a; ((d rs d); c) by AXIOM 3

(a rs d); ((d rs d); (c rs d)) by AXIOM 3

(a rs d); ((d; c) rs d) by AXIOM 2

(a; (d; c)) rs d by AXIOM 2

As well as characterising an existing notion of equivalence from the domain

of Petri nets using an axiom system, it is possible to define new notions of

equivalence by introducing a set of axioms that are used to determine whether

expressions are equivalent. However, this possibility is not considered further.

1.6 Related work

In this section, work relating to the Petri Box Calculus is described together

with some of the work on the synthesis of process algebraic terms from Petri

nets, and the axiomatisation of process algebras.

1.6.1 The Petri Box Calculus

The main theoretical results relating to the Petri Box Calculus are brought

together in a practical form in the PEP (Programming Environment based on

Petri Nets) tool [10]. PEP is a simulation, modelling and verification tool that

can work with B(P N)2 (Basic Petri Net Programming Notation) programs,

high level and elementary Petri Box expressions, and high level and elemen-

tary Petri nets. Figure 1.6 illustrates the relationship between the various

components of PEP.

42

B(PN)2 Program

High level Petri Box
Calculus Expression

Petri Box Calculus
Expression

High level Petri Net Petri Net

Net Unfolding
(for Model Checking)

Figure 1.6: Components of the PEP tool

B(P N)2 [7] is a high level concurrent programming language with support

for various types including stacks and queues, and programming constructs

such as loops and procedures. The semantics of B(P N)2 programs are given

in terms of Petri Box Expressions. PEP allows a B(P N)2 program to be

translated to a high level Box expression [9, 22], or to an elementary Petri Box

Expression [7]. High level and elementary Petri Box expressions are essen-

tially the same, except that actions in high level box expressions have values

associated with them.

The Petri Box Expression may then be translated into a corresponding net

[8, 5]. The high level, or M-net, representation of a program is generally less

complex structurally, and is much more suited to representing data types and

operations on variables than the elementary net representation of a program

[22J. The Petri net is concrete representation of the semantics of a B(P Nr
program, and can be used to simulate the execution of the program. PEP

has the facility to relate the firing of actions in the net directly back to the

43

execution of statements in the B(P N)2 program. The work on operational

semantics for the Box Algebra, [36, 37, 35] provides the basis for a similar

relationship between the execution of Box Expressions and the execution of

statements in the B(P N)2 program.

The model checking algorithm in PEP is based around the work in [20],

where a representation of the unfolding is constructed from the Petri Net. The

validity of logical statements about the net/Box expression/ B(P N)2 program

may be checked using the unfolding. The specification for a concurrent system

may be given in terms of properties that such a system must satisfy. The PEP

tool could be used to model a system at the level of a B(P N)2 program, a

Petri Box Expression, or even a Petri net, and the model checker used to verify

that the model satisfies the specification.

The remainder of this section considers how any work on a synthesis algo-

rithm or axiomatisation for the Petri Box Calculus would fit into the framework

illustrated in Figure 1.6. At the moment, it is only possible to go from a high

level representation of a system (B(P N)2 program or Box Expression) to a

lower level one. A synthesis algorithm provides a translation from a Petri net

to a Petri Box Expression. This would give the flexibility of being able to work

at any level, and may give the scope to design concurrent systems at the net

level, or reuse existing net based designs, and synthesise them to higher level

and simpler representations in the form of Box Expressions, or even B(P N)2

programs.

Recall that both the synthesis algorithm and axiomatisation problems are

predicated on a net equivalence. While the class of nets that are equivalent to

implementations of Box Expressions is relatively small for structural semantics

such as isomorphism and duplication equivalence, a much larger class of nets

will be synthesisable for behavioural net semantics. This is borne out by the

fact that the class of Petri Boxes is expressive enough to encode the semantics

of high level languages such as B(PN)2 and OCCAM [7,30,31]. The impli-

cation is that for a particular behavioural net equivalence, it will be possible

44

to synthesise an expression for any net whose behaviour can be described by

a B(P N)2 or OCCAM program. It is relatively easy to show that if the net

equivalence is weak enough, for example string equivalence [32, 45], then the

entire class of Petri nets is synthesisable to Box expressions.

The benefits of an axiomatisation for the Box Algebra are that it would

then be possible to manipulate a model for a concurrent system at the Box

expression level, with a corresponding effect at the net and B(P N)2 level. For

example, such manipulations may be carried out to optimise a system. The

advantage of using axioms to perform the manipulations is that the behaviour

of the system is guaranteed to be. preserved (for whichever net semantic the

axioms system is based on). The result is that if manipulations are carried out

on a system that has already been model checked, then it will not be necessary

to recheck the system after the manipulations.

1.6.2 Synthesis of terms from nets

The Petri Box Calculus is unusual in that the semantics of the algebra of Box

expressions is defined in terms of a class of Petri nets. Generally, the semantics

of process algebras are originally defined in some other way, although there

has been several pieces of work on giving net semantics to CCS and TCSP

[21, 24, 26, 43, 44, 48]. Since this work can be considered an extension of the

original work on CCS and TCSP [28, 41], it is perhaps unsurprising that there

has been little or no work on the synthesis of process algebraic terms from the

classes of nets described by these semantics. Instead, the majority of the work

on the synthesis of terms from nets has considered the problem for the class

of all place transition nets [1, 14, 16, 17, 18].

In [14], Boudol, Roucairol and De Simone synthesise a term consisting

of a large number of parallel components corresponding to the places and

transitions in the net. The arcs of the net are encoded by the communication

capabilities of the parallel components, which represent the ability to pass a

token from one place to another. The term representation is a very low level

45

representation of the net, and corresponds almost directly to the structure of

the net.

In comparison, Dietz and Schrieber [18] and Christensen [17] base the syn-

thesis on' behavioural equivalences, bisimulation equivalence and branching

process equivalence, and construct terms where the parallel components rep-

resent parallelism in the behaviour, rather than the structure of the net. The

term semantics is close to the the idea of processes [46], and the branching

processes of a net [19]. Unlike the usual infinite lattice branching process rep-

resentation of [19], the term representation constructed by [18] is finite given

a finite place transition net. The work in [18] restricts the class of input nets

to those with binary synchronisation and binary choice. The synthesis process

is based around the following steps:

• An intermediate "synchronisation free" (SF) net representation is used,

where every transition has at most one incoming arc. A modified firing

rule which encodes information about the synchronisations in the original

net is applied to the SF net, so that an arbitrary place transition net

is bisimilar to its synchronisation free version with the modified action

firing rule.

• The term representation is derived from the synchronisation free net,

and the reachable markings (under the modified firing rule) of that net.

• Synchronisation in the term representation is enforced by means of re-

striction.This is shown to be equivalent to the step from the standard

firing rule to the modified firing rule in the SF net. It follows that the

restricted term representation is bisimilar to the original input net.

The work by Baeten and Bergstra [1] and Basten and Voorhoeve [16] is

more similar to that of [14]. The term representation of [16] is slightly dif-

ferent to other work in that actions in the algebraic term do not correspond

to transitions in the net. Instead, actions correspond to the production and

46

consumption of tokens in the net. Basten and Voorhoeve synthesise an ACP

[2] style term representation called PTNA (Place/Transition Net Algebra) for

an arbitrary place transition net. An operational semantics for PTNA is in-

troduced such that the algebraic semantics is consistent with the interleaving

semantics of the net from which the PTNA term is synthesised. This work

easily extends to high level Petri nets, provided the range of values of tokens,

is finite.

The synthesis problem for the Petri Box Calculus is made simpler by the

fact that it is only necessary to consider a limited class of nets as input to the

problem - i. e. the class of nets that may be derived from Box expressions. It

appears that the problem will be simpler for structural equivalences such as

isomorphism and duplication equivalence due to the fact that the reachable

markings of the net do not need to be considered. It seems most likely that the

synthesis process will produce terms where the actions in the algebraic term

correspond to transitions in the input net (rather than the representation used

by [16]), as this is way in which the semantics for Box expressions are currently

defined.

1.6.3 Axiomatisation of Process Algebra

The aim of relating the synthesis and axiomatisation problems for the Petri

Box Calculus is to create a framework in which results for a particular subset

of the calculus, and for a particular net equivalence can easily be reused for

different subsets/net semantics.

Work on axiomatisation of process algebras, such as CCS and CSP, [41, 28,

23, 11] is generally for behavioural semantics such as observation equivalence,

or bisimulation. The most difficult part of any axiomatisation is showing that

the axiom system is complete. The completeness proof for the axiomatisation

of observation congruence in [42] is based around the following steps [23]:

1. It is shown that any expression can be rewritten in a form where the

47

expression is guarded.

2. A standard set of equations relating to guarded expressions is presented,

and it is shown that any guarded expression satisfies these equations.

3. Any standard set of equations can be converted into a saturated one,

while preserving the property of being provably satisfied by an expres-

sion.

4. Two congruent processes that each provably satisfy a saturated stan-

dard guarded set of equations, provably satisfy a common guarded set

of equations.

5. Finally, if two guarded expressions satisfy the same guarded set of equa-

tions, then they are provably equal.

In moving from the domain of observation congruence [41] to branching bisim-

ulation [27], only those steps above that rely purely on axioms for strong

congruence (which is stronger than both observation congruence and branch-

ing congruence) may be reused. The remainder of the proof in [23] had to be

reworked for the new semantics.

What is interesting that Glabbeek proved the completeness theorem for

branching congruence on recursion free process expressions in two different

ways. In [23] a proof specific to that particular problem is presented. In

[27], a proof based on graph transformations [11] is used. While the proof in

[23] is much shorter, the graph transformation method used in [27] is more

generic, and allows completeness proofs to be generated for arbitrary inter-

leaving equivalences with little effort.

The lessons that can be learned for the investigation into the axiomatisation

problem for the Petri Box Calculus are that it is perhaps easier to move from

a stronger equivalence to a weaker one than the other way round. If this

approach is used, then the axioms and proofs for the stronger equivalence can

be reused for the weaker equivalence. The only work that then needs to be

48

done is to capture the essence of the difference between the two notions of

equivalence. Also, while a generic proof technique or framework may involve

more work for a single subset of the calculus or single net semantic, that work

will be worthwhile if the results can be reused for different subsets of the

calculus and different net semantics.

1.7 Summary

Chapter 2 describes possible approaches to solving the synthesis problem, and

gives details of the relationship between synthesis and the problem of finding

an axiomatisation. Some other problems, such as checking equivalence of ex-

pressions and nets, and generating a proof of equivalence are introduced, and

their relationship to the synthesis problem in terms of runtime complexity dis-

cussed. Chapter 2 concludes by investigating various properties of nets, useful

for the analysis required for a solution to the synthesis problem. Chapter 3

presents a solution to the synthesis problem for a basic subset of the Petri Box

Calculus. The algorithm described is shown to be correct, and an axiorna-

tisation is derived. Solutions to some of the related problems introduced in

Chapter 2 are also presented.

Chapter 4 extends the investigation to a subset of the Petri Box Calculus

that contains the synchronisation operator. The synthesis problem is shown

to be NP-hard. However, by using a more expressive syntax to represent the

synthesised expression, a polynomial time solution can be given. As with

Chapter 3, the synthesis algorithm is shown to be correct, an axiomatisation

is derived, and the related problems are discussed.

In Chapter 5, the axiom systems derived for the basic subset of the cal-

culus in Chapter 3, and the basic calculus with synchronisation operator in

Chapter 4 are extended from isomorphism to duplication equivalence. While

extending the axiomatisation for the basic calculus requires relatively little

work, a different approach to that in Chapter 4 is taken to produce an ax-

49

iomatisation for synchronisation.

Chapter 6 concludes the thesis with a summary of the results of the in-

vestigation into the synthesis and axiomatisation problems for the structural

equivalences, isomorphism and duplication equivalence, and describes possi-

ble. directions for future work, including the extension of the synthesis and

axiomatisation problems to behavioural equivalences.

Appendix A provides a list of cross references for the main concepts and

definitions, and Appendix B gives a summary of the different subsets of the

Petri Box Calculus that are considered during the various investigations into

the synthesis and axiomatisation problems.

50

Chapter 2

Properties

2.1 Introduction

This chapter begins by describing the alternative top-down and bottom-up

approaches to solving the synthesis problem. In Section 2.2.3, the motiva-

tion for the selection of one of these approaches for further investigation is

given. In Section 2.4, the relationship between the synthesis and axiomatisa-

tion problems is investigated. A collection of problems related to the synthesis

and axiomatisation problems are presented, and the relationships between the

time complexity of these problems are discussed.

In the second half of the chapter, various definitions and properties of

Petri nets are described. Some definitions provide further insight into the

relationship between box expressions, and the structure of members of the

class of Petri boxes, while others will be used later for the analysis of nets

given as input to the synthesis algorithm. In that sense, the definitions and

properties described in this chapter can be thought of as a collection of tools

for use in synthesising expressions from nets.

51

2.2 Solving the synthesis problem

In this section the alternative approaches of top-down synthesis and bottom-

up synthesis are described, and their advantages and disadvantages discussed.

In order to decide which of the two methods is most worthy of further investi-

gation it is perhaps important to consider the properties that a good solution

to the synthesis problem should have.

Useful criteria for selecting the approach to investigate include the ability of

the method to produce a solution on any input, the efficiency of the method,

and the relationship between the method and the problem of producing an

axiomatisation. The ability to find an axiomatisation relies on analysing the

points of non-determinism in producing a synthesised expression. Where there

is a choice in the synthesis process allowing several syntactically different but

semantically equivalent expressions to be generated, any axiomatisation must

be able to equate the different forms of expressions that can be produced. The

relationship between the synthesis problem and generating an axiomatisation

is investigated further in Section 2.4.

If the synthesis problem is NP hard, then there is little hope of finding

an algorithm that is both efficient and guarantees to find a solution on every

input. It is also less likely that a heuristic approach will provide enough insight

into the problem to allow an axiomatisation to be generated. In this respect,

the importance of an efficient solution should be regarded as secondary to the

other criteria.

In describing the top-down and bottom-up approaches to synthesis, the

simple net in Figure 2.1 is considered as an example input.

2.2.1 Top-down approach

The top-down approach to synthesis requires that the main connective of the

synthesised expression can be found by analysing the structure of the input

net. The input net can then be decomposed into a collection of smaller nets

52

Figure 2.1: Implementation of E = (a II b); c

corresponding to the subexpressions of the synthesised expression. The pro-

cess is applied recursively to each of the decomposed subnets until no further

decomposition can be applied. Each step of the recursion adds further detail

to the expression being synthesised, finally resulting in an expression whose

implementation is equivalent to the input net.

For example, consider the net in Figure 2.1, and the problem of synthesising

an expression whose implementation is isomorphic to that net. Using the top-

down approach, the synthesised expression would initially be set to E, where E

is the unknown expression corresponding to the input net. An analysis of the

structure of the net determines that the main connective of E is the sequence

operator, and that the input net can be decomposed into two components.

Therefore, the synthesised expression can be refined from E to El; E2 where

El and E2 are unknown expressions corresponding to the two decomposed

subnets. A recursive application of the top-down synthesis process to the first

subnet determines that the main connective of El is the parallel composition

operator and that this subnet can be decomposed into two further components.

At this stage, the synthesised expression is (E3 II E4); E2 where E2, E3 and

E4 are unknown expressions corresponding respectively to implementations

of atomic actions with labels c, a and b. Hence, after further analysis, the

53

recursion terminates with the output expression (a II b); c.
The top-down approach takes a global view, and tries to decompose the

problem into a collection of smaller problems. From the point of view of syn-

thesis, the size of the problem corresponds with the size of the input net. For

the top-down approach to be successful, there needs to be a strong relation-

ship between the structure of the net and the structure of the expression from

which the net was derived. While this relationship certainly seems to exist

for operators such as parallel, choice, sequence and iteration, it is not so clear

for operators such as synchronisation and restriction. For example, when the

restriction operator is applied to a net, the structure of the net may alter

radically when transitions are removed.

In the description above, the synthesis process proceeds directly to a solu-

tion - i. e. once a particular connective has been identified for the synthesised

expression, it is not necessary to revise the choice of connective in the light of

new information. Should a situation arise, where the choice of connectives for

the synthesised expression is found to be incorrect, then the synthesis algo-

rithm would need to backtrack to the point where the wrong choice was made,

and a different search path taken. Any algorithm in which backtracking is

necessary is likely to be both less efficient and less amenable to the production

of an axiomatisation than an algorithm which does not involve backtracking.

2.2.2 Bottom-up approach

The bottom-up approach to synthesis begins by synthesising expressions for

small pieces of the input net, then performs an analysis of the interfaces be-

tween the pieces of net corresponding to the already synthesised sub expressions

to determine how those sub expressions should be combined.

For example, for the net in Figure 2.1, three subexpressions, El = a, E2 = b

and E3 = c are synthesised from the transitions, tl, t2 and t3 respectively. An

analysis of the pre and post places of these transitions determines that tl

and t2 share no common places, and there is a directed path from tl and t2

54

to t3 via places 83 and 84 respectively. The analysis allows the conclusion

that tl and t2 were combined using parallel composition, and the resulting

net composed in sequence with an atomic action t3' Therefore, the three

synthesised sub expressions are combined to give (El II E2); E3, resulting in

the final expression (a II b); c.
The bottom-up approach only requires a local analysis of the input net,

and proceeds by analysing the relationships between sets of transitions which

share common places. This approach is certainly more suitable than the top-

down method for providing a partial solution when the input net is not exactly

equivalent to the implementation of a box expression. It also seems that the

bottom-up approach may be better suited to dealing with input nets that

involve the synchronisation, and particularly the restriction operator.

The interfaces between subnets for which expressions have already been

synthesised are easily identified, since they consist of those places that are

common to the subnets. For example, in Figure 2.1, 83 and 84 are the common

places between the subnet containing t, and t2 and the subnet containing t3.

However, there is likely to be many interfaces to analyse at each step of the

synthesis process, and it may be difficult to determine a suitable order to deal

with the interfaces. This problem may lead to the use of heuristics and the

possibility of backtracking in a solution to the synthesis problem, making the

problem of generating an axiomatisation much more difficult.

2.2.3 Choice of method

For both approaches to the synthesis problem, there is some uncertainty that

the method will provide a good solution, partly because it is not yet known

how inherently difficult the synthesis problem is. The main motivation behind

the investigation into the synthesis problem is to provide a framework for gen-

erating an axiomatisation of the Petri Box Calculus. The top-down approach

appears to give a better framework for the production of an axiomatisation,

provided that the main connective of the synthesised expression can be found

55

by analysing the structure of the input net, and the synthesis process can

proceed without resorting to heuristics or backtracking. For this reason, the

top-down approach to synthesis is chosen for further investigation.

The compositional nature of the semantics for the parallel, sequence, choice

and iteration operators suggest that a top-down decomposition should be pos-

sible for input nets that have been constructed using only these operators.

However, it may not be so easy to synthesise expressions from nets that in-

volve the synchronisation and restriction operators. Therefore, an initial in-

vestigation into a subset of the Petri Box Calculus that does not contain these

operators is more likely to produce results than immediately attempting to

deal with sy and rs .

2.3 Example

In this section the synthesis of an example net, using a top-down approach,

is described. The algorithm presented here is limited in that it is only ap-

plicable to a very small subset of the Petri Box Calculus, whose syntax is

given in Table 2.1. The synthesis algorithm of this section is predicated on the

equivalence relation of isomorphism. The purpose of presenting the algorithm

is to introduce a general framework for synthesis, and to illustrate the type

of problems that need to be solved when extending the scope of synthesis to

larger subsets of the box calculus.

a Atomic action

E II E Parallel composition

E; E Sequential composition

Table 2.1: Small subset of the box expression syntax

E"=

56

2.3.1 Algorithm

The synthesis algorithm takes as input a net, ~, which is an implementation of

a box expression from the syntax in Table 2.1. The output of the algorithm is

an expression, E, such that any implementation of E is isomorphic to the input

net, ~. The pseudo-code for an algorithm which synthesises a box expression

from the input net using a recursive top-down approach is shown below.

Box EXPRESSION SYNTHESIS(~)

1 type=ANALYSE(~)

2 if type=atomic then

3 return A(t)

4 else

5 ~l '~2=DECOMPOSE(~, type)

6 El =Box EXPRESSION SYNTHESIS(~l)

7 E2=Box EXPRESSION SYNTHESIS(~2)

8 if type=parallel then

9 return El II E2
10 else

11 return El; E2

12 end if

13 end if

The algorithm is based on the idea of a set of synthesis rules, with one rule

for each operator in the box expression syntax - i. e. atomic actions, parallel

composition, and sequence composition. The function ANALYSE determines

which synthesis rule to apply, by examining structural properties of the input

net. Using the syntax in Table 2.1, only one of the three synthesis rules will

be applicable at each step of the algorithm. In general, when a larger subset

of the Petri Box Calculus is used, there may be a choice of several synthesis

rules to apply at each step. The pseudo-code for ANALYSEis presented below.

57

A formal definition for "E is disjoint" is deferred until Section 2.5.2, and the

correctness of the decision procedure presented here is a result of Propositions 3

and 5 in Chapter 3.

ANALYSE(E = (S, T, W, A))

1 if ITI = 1then

2 return atomic

3 else

4 if E is disjoint then

5 return parallel

6 else

7 return sequence

8 end if

9 end if

2.3.2 Synthesis rules

The synthesis rule for atomic actions forms the base case of the recursion.

When E is isomorphic to the implementation of an atomic action, then E = et,

where et is the label of the single transition in E is a solution. The synthesis

rules for parallel and sequence composition decompose L, into a pair of smaller

nets, El and E2. The output for the synthesis algorithm is obtained by re-

cursively synthesising expressions El and E2 using El and E2 as input nets.

El and E2 are combined as El II E2 (El; E2) when the synthesis rule being

applied is parallel (sequence).

The DECOMPOSE function, which performs the decomposition is not de-

scribed explicitly in this section. A simple decomposition scheme which is

sufficient to deal with the example input net in Figure 2.2 is:

Parallel composition: The net is decomposed into two connected components.

58

Sequential composition: The set of internal places in the input net which cor-

responds to the interface created by the semantics for sequential com-

position is identified. The input net is decomposed into two disjoint

subnets by analysing the arcs from and to the set of internal places, and

reconstructing the original interfaces.

This scheme does not cope with nets obtained from arbitrary expressions from

the syntax in Table 2.1. For example, an implementation of (a II b) " c contains

three connected components. The net is disjoint, so the parallel composition

synthesis rule is applied. However, the decomposition scheme requires that the

net is decomposed into 'two connected components, which is not possible. A

generally applicable decomposition scheme is described in detail in Chapter 3.

2.3.3 Example execution of the algorithm

Figure 2.2: Example input to the synthesis algorithm

The net in Figure 2.2 is constructed from the box expression:

E = ((a" b); c) " (d; e)

Table 2.2 and Figure 2.3 describe the execution of Box EXPRESSION SYN-

THESIS, when given the net in Figure 2.2 as input. Each line in Table 2.2

corresponds to an execution of the body of Box EXPRESSION SYNTHESIS.

59

The depth of recursion of each step of execution is shown in the Depth col-

umn. The depth of recursion corresponds to the distance from the root of

the tree in Figure 2.3. The input net to the particular execution of Box Ex-

PRESSION SYNTHESIS is named in the Net column, together with the name of

the expression to be synthesised in the Exp column. For the purposes of this

example, the expression Ei corresponds to the net ~i' for all values of i. Each

of the nets involved in the execution of the synthesis algorithm are contained

in Figure 2.3. The synthesis rule to be applied is shown in the Rule column

of Table 2.2. If the rule to be applied is sequence or parallel, then the names

of the pair of nets obtained by decomposing the net are given in successive

columns. The final two columns of Table 2.2 show how the expression from the

Exp column is refined by the application of the synthesis rule, and how that

refinement affects the overall synthesised expression. The path of execution in

Figure 2.3 proceeds in a depth first fashion, and from left to right.

Step Depth Net Exp. Rule Subnet 1 Subnet 2 Expression Synthesis

1 0 ~ E parallel ~I ~2 El II E2 El II E2
2 1 ~I El sequence ~3 ~4 E3;E4 (E3; E4) II E2
3 2 ~3 E3 parallel ~5 ~6 E511 E6 ((E5 II E6); E4) II E2
4 3 ~5 E5 atomic -- -- a ((a II E6); E4) II E2
5 3 ~6 E6 atomic -- -- b ((a II b); E4) II E2
6 2 ~4 E4 atomic -- -- c ((a II b); c) II E2
7 1 ~2 E2 sequence ~7 ~s E7;Es ((a II b); c) II (E7; E8)

8 2 ~7 E7 atomic -- -- d ((a II b); c) II (d; Es)
9 2 ~s Es atomic -- -- e ((a II b); c) II (d; e)

Table 2.2: Example execution of the synthesis algorithm

In the following, the execution of Box EXPRESSION SYNTHESIS(~) is de-

scribed, where ~ is the net in Figure 2.2, and at the root of the tree in Fig-

ure 2.3. Each step of the execution given in Table 2.2 is described in more

detail:

Step 1: The call to ANALYSE(~) determines that the input net is disjoint,

and contains more than one transition. Therefore, ANALYSE returns

60

~8

Figure 2.3: Example execution of the synthesis algorithm

61

parallel as the synthesis rule to be applied. ~ is decomposed into two

connected components ~l and ~2' shown in Figure 2.3, and the synthe-

sised expression is refined to be E = El II E2. Recursive calls to Box

EXPRESSION SYNTHESISare made to synthesise expressions for ~l and

~2·

Step 2: Box EXPRESSION SYNTHESIS(~l) is called from Step 1 to recur-

sively synthesise an expression for ~l' and to refine El in E = El II E2.
The analysis of ~l determines that the sequence synthesis rule should be

applied. The pair of internal places in ~l is decomposed, and the nets, ~3

and ~4 are obtained. Hence, El and E are refined to El = E3; E4, and

E = (E3; E4) II E2 respectively. Finally, the recursive calls Box Ex-

PRESSION SYNTHESIS(~3) and Box EXPRESSION SYNTHESIS(~4) are

made.

Step 3: The last step recursively calls Box EXPRESSION SYNTHESIS(~3)

to find the expression for E3. The parallel synthesis rule is applied,

since ~3 is disjoint. ~3 is decomposed into ~5 and ~6, refining E3 to

E3 = E5 II E6· Hence E is refined to E = ((E5; E6); E4) II E2. A further

level of recursion is performed to find the expressions E5 and E6.

Step 4: The net ~5 is analysed, and found to contain only a single transi-

tion. Hence the atomic action synthesis rule is applied, and no further

decomposition of the net takes place. The expression E5 becomes fully

refined (i.e. there are no unknown sub expressions) to E5 = a. Hence,

at the end of this step, the synthesised expression has been refined to

E = ((a; E6); E4) II E2. Step 4 does not make any recursive calls to Box

EXPRESSION SYNTHESIS.

Step 5: Box EXPRESSION SYNTHESIS(~6) is called from Step 3, and pro-

ceeds in a manner similar to Step 4, refining E6 to E6 = b and hence E

to E = ((a; b); E4) II E2.

62

Step 6: The second recursive call, Box EXPRESSION SYNTHESIS(~4)' made

from Step 2, applies the atomic action synthesis rule to refine E4 to

E4 = c. Hence, E becomes E = ((a; b); c) II E2, and the control of

execution returns to Step 1.

Step 7: Step 1 makes a second recursive call, this time to synthesise an ex-

pression for the net ~2. The analysis of ~2 determines that the sequence

synthesis rule should be applied, and the net is decomposed into ~7 and

~s. The expression, E2, is refined to E2 = E7; Es, refining the output

expression, E, to E = ((a; b); c) II (E7; Es). Finally, two recursive calls,

to synthesise expressions for :E7 andE, are made.

Step 8: ~7 contains a single transition. Therefore, the atomic action syn-

thesis rule is applied, and E7 is refined to E7 = d. Hence, E becomes

E = ((a; b); c) II (d; Es). No recursive calls to Box EXPRESSION SYN-

THESIS are made during this step of the execution.

Step 9: The second recursive call made in Step 7 is Box EXPRESSION

SYNTHESIS(~s). Again, the atomic action synthesis rule is found to

be applicable, and Es is refined to Es = e, producing the fully refined

output expression E = ((a; b); c) II (d; e). Once the expression is fully

refined, there are no outstanding recursive calls to be dealt with, and

the execution can terminate.

2.3.4 Discussion

The algorithm for Box EXPRESSION SYNTHESIS, described in Section 2.3.1

directly refines the output expression during the synthesis process. In practice,

it would be more beneficial to construct a parse tree representation of the

expression, especially if the expression is to be manipulated in some way once

it has been synthesised. Figure 2.4 shows the parse tree for the expression

E = ((a; b); c) II (d; e) synthesised from the input net given in Figure 2.2. There

63

a

Figure 2.4: Parse tree of the synthesised expression

is a strong correspondence between the parse tree and the manner in which

the recursive calls to Box EXPRESSION SYNTHESIS are made, as illustrated

in Figure 2.3.

The algorithm described in this section presents a general framework for

the solution of the synthesis problem when the notion of equivalence being

used is isomorphism. In Chapter 5, the extension of the framework to support

synthesis under weaker structural equivalences is described, and Chapter 6

contains a discussion of how the synthesis problem may be approached when

behavioural equivalences are being used. In the remainder of this section, the

approach to solving the synthesis problem, using isomorphism as the equiva-

lence relation, is discussed.

Given a subset of the Petri Box Calculus for which a synthesis algorithm is

to be designed, there are two main areas for investigation, relating to different

aspects of the synthesis rules. Firstly, a decision procedure needs to be devel-

oped to identify which of the synthesis rules can be applied at each step of

the synthesis process. Secondly, for each synthesis rule, a method needs to be

produced which will decompose the input net into a collection of smaller nets,

while simultaneously refining the output expression. Normally, there will be

a synthesis rule for each operator in the subset of the box calculus for which

the synthesis algorithm is being developed.

To produce a decision procedure to determine which synthesis rule is to

64

be applied, the characteristic structural properties of the implementations of

each type of box expression need to be investigated. For each synthesis rule,

which corresponds to a particular type of expression, what is required is a

property that holds for every net obtained from an expression of that type,

and does not hold for any net that cannot be obtained from an expression of

that type. Then, whenever that particular property is found to hold for the

input net, it will be known that the synthesis rule is applicable. There may be

several different, but equally suitable structural properties that can be used.

For example, for the fragment of the box calculus in Table 2.1, either of the

following properties could be used to identify that the atomic action synthesis

rule should be applied:

• The net contains exactly one transition.

• The net contains exactly two places.

Some operators in the Petri Box Calculus are redundant. For example, any

expression involving the scoping operator has an equivalent form which uses

synchronisation and restriction in place of scoping. There is no need to have a

synthesis rule for redundant operators. In other cases, there may be a partial

overlap between operators. For example, the choice expression (a II a) D(/) has

an implementation that is isomorphic to the synchronisation expression (a II
a) sy a. In such cases, several synthesis rules may be found to be applicable,

and it does not matter which one is applied.

For each synthesis rule, the input net must be decomposed into smaller

nets. This involves identifying the interfaces between components of the input

net, and using them to reconstruct the original interfaces. When the synthesis

rule corresponds to an associative operator, there may be several different

interfaces that can be decomposed. The example input given in Figure 2.2

was chosen to avoid this problem arising. For example, the expressions a; (b; c)

and (a; b); c have isomorphic implementations. When the sequence synthesis

rule is applied, two interfaces will be identified, and the choice of the one to

65

decompose will affect the bracketing of the synthesised expression.

The parallel and sequence synthesis rules presented in this section decom-

pose the input net into two smaller nets, ~l and ~2. For the sequence synthesis

rule, it is possible to order the pair of nets obtained from the decomposition of

the input net, by setting ~l (~2) to be the net that contains the entry (exit)

places of the input net. However, for the parallel synthesis rule, there are

two possibilities for the assignment to ~l and ~2. For example, in Step 1 of

the execution given in Table 2.2, the assignment to ~l and ~2 (shown in Fig-

ure 2.3) could have been reversed. This would result in the output expression

produced by Box EXPRESSION SYNTHESISbeing E = (d; e) II ((a; b); c). The

implementation of E is isomorphic to the input net shown in Figure 2.2. The

possibility of this type of alternative decomposition arises when the synthesis

rule corresponds to an operator that is commutative (such as parallel composi-

tion). A scheme for dealing with the problems caused by the associativity and

commutativity properties of operators in the Petri Box Calculus is presented

as part of the investigation carried out in Chapter 3.

2.4 Relationship between synthesis and

axiomatisation problems

In this section, the way in which an analysis of a synthesis algorithm can be

used to produce an axiomatisation is described. As with the previous section,

the equivalence relation used is isomorphism, and it is left until Chapter 5 to

explain how the technique can be extended to other structural equivalences,

such as duplication equivalence. In Chapter 6, there is a discussion on how

the problem of finding an axiomatisation for behavioural equivalences may be .

tackled.

Corresponding to the framework for the synthesis algorithm described in

Section 2.3.1, there is a general framework for a formal verification that the

66

algorithm is correct. It is this framework that can be used to guide the produc-

tion of an axiomatisation, and the verification of the synthesis algorithm also

serves as a proof that the axiom system obtained is complete. The remainder

of this section describes the framework for the verification of the synthesis

algorithm, and the techniques by which sets of axioms can be found.

2.4.1 Verification of the synthesis algorithm

The framework for the synthesis algorithm consists of a set of synthesis rules,

and a corresponding set of properties used to identify which synthesis rule to

apply. In general, each synthesis rule contains a method for the decomposition

of the input net into smaller nets, and a means for representing the decom-

position using a box expression. In verifying that the synthesis algorithm is

correct, the following properties need to be shown:

• For any net that is isomorphic to the implementation of some box ex-

pression, the synthesis algorithm will synthesise an expression from that

net.

• For any execution of the synthesis algorithm the implementation of the

output expression will be isomorphic to the input net.

The proof that the synthesis algorithm is correct relies on showing that the

decision procedure used to select the synthesis rule to apply works, and that

the decomposition scheme for each synthesis rule is sound. In addition, several

support proofs are needed to tie all the results together. The support proofs

will be much the same for synthesis algorithms for different subsets of the Petri

Box Calculus given in Table 1.1.

The decision procedure used to identify the synthesis rule to apply effec-

tively associates a set of preconditions with each synthesis rule. The precon-

ditions for a synthesis rule must hold before the rule can be applied. For

structural equivalences, such as isomorphism, the preconditions take the form

67

of structural properties of the input net. For each synthesis rule, a proof is

required that shows that whenever the preconditions hold, then there exists an

expression whose main connective is the same as that of the refined expression

produced by the synthesis rule, and the implementation of that expression is

isomorphic to the input net.

The second proof associated with each synthesis rule is required to show

that the decomposition performed by the synthesis rule is sound. The synthesis

rule decomposes the input net into a collection of smaller subnets. The proof

must show that each decomposed subnet is isomorphic to the implementation

of a box expression, and that when the subnets are recombined according to

the refinement made to the synthesised expression by the synthesis rule, then

a net isomorphic to the input net is obtained.

Two support proofs complete the verification of correctness for the synthe-

sis algorithm. The first shows that for any net isomorphic to the implemen-

tation of a box expression, at least one of the synthesis rules is applicable to

that net. The second puts all of the results together, using an inductive argu-

ment, to show that on any valid input, the synthesis algorithm will produce

the correct output.

2.4.2 Obtaining an axiom system

There are two (possibly empty) sets of axioms associated with each synthesis

rule. The first set of axioms is related to the structural properties used as

preconditions for the synthesis rule, and are such that for any expression whose

implementation is a net that satisfies the preconditions, the axioms can be used

to rewrite that expression into the form of the refined expression produced by

applying the synthesis rule.

The second set of axioms is associated with the decomposition method of

the synthesis rule, and is affected by the amount of non-determinism present

in the method for decomposition. For each synthesis rule, all possible ways

of decomposing the input net and/or refining the synthesised expression must

68

be analysed. By the soundness proof for net decomposition, the different

outcomes of a non-deterministic decomposition method must be equivalent -

either immediately, or after further applications of synthesis rules. For the

purposes of analysis, and producing an axiomatisation, it is better if the de-

composition method can be designed so all outcomes are equivalent after a

single application of a synthesis rule. The set of axioms must be such that

it is possible to rewrite between all possible outcomes introduced by the non-

determinism in the synthesis rule.

If all of the synthesis rules can be made to produce completely deterministic

results, then the expression obtained from the synthesis process will be in a

canonical form. However, it is not imperative to define a canonical form,

or eliminate every point of non-determinism. The cost is the extra analysis

required to produce an axiomatisation. The benefit of this flexibility is that

it may be easier to design an efficient synthesis algorithm. In practice there

will be a balance between the amount of work that is done in eliminating non-

determinism from the synthesis algorithm, and the amount of work done in

finding the set of axioms associated with the decomposition scheme for each

synthesis rule.

2.4.3 Related problems

In this section, several problems that are related to the synthesis algorithm

are introduced. Each of these problems extend the scope of Box EXPRESSION

SYNTHESIS in some way. The extensions described here include the problem

of synthesising a unique, or canonical, expression from the input net, and the

problem of checking whether two Petri boxes are equivalent. These two prob-

lems are recast in purely algebraic terms - i.e. the algorithm which solves

the problem must work entirely in the domain of box expressions. This is an

important consideration from the point of view of efficiency, because imple-

mentations of certain forms of box expression are exponential in the size of the

expression. Finally, the automatic generation of a proof of equivalence for two

69

box expressions is considered. All of the problems described in this section are

introduced in terms of the net equivalence isomorphism. The majority of the

problems have analogues for other notions of equivalence, such as duplication

equivalence. As well as describing each of the extensions, the complexity the-

oretic relationships between Box EXPRESSION SYNTHESIS and the problems

introduced in this section are investigated.

Domain of Petri boxes

CANONICAL Box EXPRESSION SYNTHESIS imposes the extra condition on

the synthesis process that the expression produced by the algorithm is in

canonical form. This means that given two isomorphic nets, ~1 and ~2'

exactly the same expression is produced by CANONICAL Box EXPRESSION

SYNTHESIS(~d, and CANONICAL Box EXPRESSION SYNTHESIS(~2). This

property is not true for Box EXPRESSION SYNTHESIS, which may contain

elements of non-determinism. The extension from the standard synthesis al-

gorithm to one which produces canonical form expressions essentially involves

the elimination of all points of non-determinism in the synthesis process. The

non-determinism of the decomposition performed by each synthesis rule can

be eliminated independently of the rest of the algorithm. If all of the syn-

thesis rules are completely deterministic, then a canonical expression will be

synthesised. Alternatively, an expression can be synthesised as normal, and

then manipulated into a canonical form. This approach involves the explicit

definition of the form of canonical expressions.

CANONICALBox EXPRESSION SYNTHESIS

INSTANCE: Net, ~, member of the class of Petri boxes.

SOLUTION: Canonical box expression, E, such that box(E) = [~l.

PETRI Box ISOMORPHISM

INSTANCE: Nets, ~1' ~2' members of the class of Petri boxes.

QUESTION: Is ~1 =iso ~2?

70

The problem of PETRI Box ISOMORPHISMis to check whether two nets,

which are implementations of box expressions, are isomorphic to each other.

It is easy to see that given a solution to CANONICAL Box EXPRESSION, an

algorithm for PETRI Box ISOMORPHISMcan be constructed as follows:

PETRI Box ISOMORPHISM(~l' ~2)

1 El =CANONICAL Box EXPRESSION SYNTHESIS (~l)

2 E2=CANONICAL Box EXPRESSION SYNTHESIS (~2)

3 if El = E2 then

4 return yes

5 else

6 return no

7 end if

PETRI Box ISOMORPHISMis a restricted case of the more general graph

isomorphism problem. The graph isomorphism problem is interesting because

it is one of very few well known problems for which the complexity of the

problem has not been settled. No proof showing that the graph isomorphism

problem is NP-complete has been produced, nor has a polynomial time algo-

rithm been developed. There are classes of graphs for which polynomial time

algorithms are known. For example isomorphism of trees, and planar graphs

can be checked in polynomial time. However, the class of Petri boxes does not

seem to be a subset of any of the classes of graphs for which polynomial time

algorithms are known. It has been shown that an efficient solution to CANON-

ICAL Box EXPRESSION SYNTHESIS provides an efficient method for checking

the isomorphism of Petri boxes. Hence, the investigation into the synthesis

problem may provide some insight into the graph isomorphism problem. In

Chapter 4, it is shown that the Petri Box Calculus of Table 1.1 is expres-

sive enough to encode arbitrary instances of the graph isomorphism problem.

The implication of this result is that for sufficiently large subsets of the Petri

71

Box Calculus, the problem of extending the synthesis algorithm to produce

canonical form expressions has the same complexity as the graph isomorphism

problem.

The close relationship between synthesising canonical form expressions;

and the graph isomorphism problem motivates an investigation into graph

isomorphism. The following describes how an efficient solution to the graph

.isomorphism problem allows Box EXPRESSION SYNTHESIS, for any subset

of the Petri Box Calculus, to be extended to CANONICAL Box EXPRESSION

SYNTHESIS. Although the complexity of the graph isomorphism problem is

not known, there are algorithms based on a heuristic approach that perform

well in practice [40J.

GRAPH ISOMORPHISM

INSTANCE: Graphs G = (V, E), G' = (V, E')

QUESTION: Are G and G' "isomorphic", that is, is there a one-to-one

function f : V ---+ V such that {u, v} E E if and only if {f (u), f (v)} E E'?

Equivalent in complexity to GRAPH ISOMORPHISMis the problem of find-

ing a canonical labelling ([40]) for the nodes of the graph. A method for

obtaining such a labelling is not presented in this section. However, it is worth

noting that tools such as nauty [40] provide the facility for canonically rela-

belling a given graph. The following pseudo-code shows how CANONICALBox

EXPRESSION SYNTHESIS can be implemented in terms of Box EXPRESSION

SYNTHESIS, and CANONICAL RELABEL, a routine that returns a canonically

labelled graph isomorphic to the given graph.

CANONICAL Box EXPRESSION SYNTHESIS(~)

1 ~'=CANONICAL RELABEL(~)

2 return Box EXPRESSION SYNTHESIS(~')

Any non-determinism in the Box EXPRESSION SYNTHESIS is due to the

different ways in which isomorphic nets can be represented (i. e. different la-

72

CANONICAL RELABEL

Figure 2.5: Canonical relabelling of a graph

bellings for the node names in the net). The call to CANONICAL RELABEL

ensures that isomorphic graphs (or nets) have identical node name labellings -

Figure 2.5 illustrates the behaviour of CANONICAL RELABEL on a pair of iso-

morphic graphs. Hence, the synthesis algorithm produces a unique expression

for each class of isomorphic nets. The downside of this method for producing

canonical form expressions is that in order to obtain a complete axiomati-

sation, a detailed analysis of the points of non-determinism in the synthesis

algorithm is still required.

Domain of box expressions

A solution to CANONICALBox EXPRESSION SYNTHESISallows the canonical

form for a box expression to be found. This can be achieved by constructing

an implementation of the expression, then synthesising the canonical form

73

expression from the net. Similarly, a solution to PETRI Box ISOMORPHISM

can be used to check whether two expressions are equivalent. The problem

with this approach is that a net needs to be constructed from expressions,

and in some cases the size of the net will be exponential in the size of the

expression. For example, the implementations of the following expressions are

exponential in size:

E (a II ... " a) 0 ... 0 (a " ... " a)

F [a * a * [a * a * [...[a * a * a] ...]]]

An implementation of E contains an exponential number of entry and exit

places in comparison to the number of actions in the expression. When nested

iteration expressions are implemented in terms of nets, the net contains at

least 2n transitions for n levels of nesting.

These observations lead to the question whether the problems of finding

the canonical form of an expression, and checking whether two expressions are

equivalent, can be solved without resorting to the domain of Petri boxes.

CANONICALBox EXPRESSION

INSTANCE: Box expression, E

SOLUTION: Canonical box expression, E', such that box(E) = box(E').

Box EXPRESSION ISOMORPHISM

INSTANCE: Box expressions El, E2.

QUESTION: Is box(El) = box(E2)?

It is likely that the algorithms for CANONICAL Box EXPRESSION and

Box EXPRESSION ISOMORPHISMwill work by manipulating the parse trees

for the input expressions. A solution to these problems can be derived from

the corresponding problems in the domain of Petri boxes by analysing the way

in which the synthesis rules for the algorithm CANONICAL Box EXPRESSION

SYNTHESIS refine the expression that is synthesised. This analysis should al-

low the algorithm to be abstracted to the level of box expressions. In general,

74

it seems that if there is a polynomial time algorithm for CANONICAL Box

EXPRESSION SYNTHESIS, then there will be corresponding polynomial time

algorithms for CANONICAL Box EXPRESSION and Box EXPRESSION Iso-

MORPHISM. Even if an input net to the synthesis algorithm has exponential

size, the synthesised expression, and therefore the number of refinements to

the expression, will be small.

Box EXPRESSION ISOMORPHISMPROOF

INSTANCE: Box expressions El, E2, such that box(El) = box(E2)'

SOLUTION: A proof that the expressions are equivalent.

A natural extension of Box EXPRESSION ISOMORPHISM, showing that

two expressions are equivalent, is Box EXPRESSION ISOMORPHISM PROOF,

which automatically generates a proof that the expressions are equivalent. A

proof generated by Box EXPRESSION ISOMORPHISM PROOF will take the

form of a series of applications of axioms, such as that seen in Section 1.5.

Recall that there are two sets of axioms associated with each synthesis rule.

This means that up to two schemes for applying the axioms will be required

for each synthesis rule used by the synthesis algorithm. As with CANONICAL

Box EXPRESSION and Box EXPRESSION ISOMORPHISM, it should be possi-

ble to abstract away from the domain of Petri boxes, and work purely with

box expressions. The algorithm for Box EXPRESSION ISOMORPHISMPROOF

will follow that of Box EXPRESSION ISOMORPHISM,except that each manip-

ulation that is carried out to the input expressions needs to be supported by

an axiomatic proof that the manipulation is valid.

2.5 Definitions and properties

This section introduces the notation and definitions used by the synthesis

algorithms algorithms presented in the following chapters. The first set of

definitions is concerned purely with the domain of nets. These include the

75

classification of places and transitions in the net, the definition of connect-

edness properties in the net, the notion of clusters of places, and relations

on the connectivity of transitions in the net. The remaining definitions have

applications to both the domain of box expressions, and the domain of Petri

boxes. An ordering over atomic actions (and hence transition labels) is de-

fined. There is an investigation into the mapping between atomics actions in

an expression, and the transitions in a net constructed from that expression.

Finally, an auxiliary operator, 0 is defined which is used to relate the synchro-

nisation of actions in an expression, with the synchronisation of transitions in

the corresponding net. For each of the following definitions, the motivation for

the introduction of the definition, and its applications to the synthesis problem

are discussed.

2.5.1 Classifying places and transitions

The following table defines various classifications for the nodes (i. e. places

and transitions) of a labelled net, E = (S, T, W, A):

Name Definition

Entry places Se = {8 E S I A(8) = e}

Internal places Si = {8 E S I A(8) = 0}
Exit places Sx = {8 E S I A(8) = x}
All nodes Na = SUT

Internal nodes Nj=SjUT

Entry transitions Te = {t E T I :38 E Se : W(8, t) =1= O}
Exit transitions Tx = {t E T 1:38 E Sx : W(t, 8) =1= O}

The set of internal nodes contains only those nodes which do not form part

of an entry or exit interface. The entry (exit) transitions are those transitions

with an arc from an entry place (to an exit place). The notation Se(E') is used

to represent the entry places of the net E'. Similarly for the other classifications

of nodes. When no net is specified, the net E should be assumed.

76

Recall, ~ and L;e are used to represent the set of entry places and exit

places respectively. Hence ~ = 5e and L;e = 5x. This notation is extended to

single nodes, and sets of nodes. en and ne are used to represent the set of pre

and post nodes respectively, of a node, n. Similarly, "N and Ne can be defined

for a set of nodes, N.

en {n' E 5 UTI W (n', n) # O}

ne {n' E 5UT I W(n,n') # O}

eN {n E 5uT I :3n' EN: W(n,n') # O}

Ne {n E 5 UTI :3n' EN: W (n', n) # O}

A place, s is isolated if it has no incoming or outgoing arcs. The set of all

isolated places of a net, L; = (5, T, W, ,x), is given by:

T(L;) = {s E 5 I Vt ET: W(s,t) + W(t,s) = O}

2.5.2 Connectedness properties

In this section, the relations ~ N and ~ are defined. ~ N is an undirected

connectedness relation, defined over the domain N, some subset of Na. ~ is a

directed connectedness relation defined over the domain Na. Figure 2.6 shows

a net which is the parallel composition of two subnets, (i) and (ii). This net

will be used to illustrate examples of these connectedness relations.

Undirected connectedness

For the undirected connectedness relation, ~ N, the direction of the arcs of

the net are ignored. When the domain of the relation is the set of all nodes,

the equivalence classes of ~ Na correspond to the connected components of the

net. The other domain of interest is the set of internal nodes, Ni, The undi-

rected connectedness relation, ~ N, is the least relation satisfying the following

77

(i) (ii)

Figure 2.6: Example connectedness properties

properties:

Vn EN: n~Nn

Vn1, n2 EN: W(n1' n2) i= 0 V W(n2' n1) i= 0 ::::}nl~Nn2

The relation, ~N' is an equivalence relation over the domain N. A net, ~ is

connected if: Vn1,n2 E Na: n1~Nan2' otherwise, ~ is disjoint. ~ is internally

connected if: Vn1, n2 E N, : n1 ~ N.n2 otherwise ~ is internally disjoint.
I

Examples

The net in Figure 2.6 is disjoint because, for example S11-Na S3. Both sub-

net (i) and subnet (ii) are connected. However, only subnet (ii) is internally

connected. Subnet (i) is internally disjoint because t11- N. t2.
I

Connected components

The undirected connectedness relation, ~ Na can be used to define a mapping,

9 : 2SUT -+ 2SUT, which, for any set of nodes, N, gives the set of nodes in the

78

connected component(s) containing at least one node of N.

Q(N) = {n E Na I :In' EN: n~Nan'}

For example, in Figure 2.6: Q({ 82, td) returns the set of nodes in subnet (i),

and Q({84' 81}) returns the set of all nodes.

The subcomponent of the net E = (S, T, W, A), that contains the set of

nodes, N ~ S uT is given by E IN, where:

E IN= (S n N, T n N, W 1«suT)nN)x«suT)nN), A l(suT)nN)

Hence, for the net, E in Figure 2.6: E IQ({s2,t!}) is subnet (i), and E IQ({s4})

is subnet (ii). Usually, N will be chosen to be some equivalence class of the

relation, ~ Na' although the sequence synthesis rule of Chapter 3 uses E IN to

extract a component from a. connected net.

Directed connectedness

The directed connectedness relation, ~, is defined over the domain of the set of

all nodes, Na. The directed connectedness relation, ~, is the smallest relation

satisfying the following properties:

2.5.3 Clusters of places

An equivalence relation, '::::P' is defined on the set of places of a net, so that

for any implementation, E, of a box expression, E, there is a correspondence

between the equivalence classes of '::::P' and the applications of the 0 oper-

ator used in constructing an implementation of E. This correspondence is

formalised by Proposition 6 in Section 3.4.

79

A binary relation, r-, is defined on the places of a net, E = (S, T, W, A). A

pair of places are related if they have a common pre- or post-transition - i.e.:

The relation >- is reflexive and symmetric. By taking the transitive closure of

r-, an equivalence relation, C:::P' is obtained. The equivalence classes of C:::p

partition the places of the net into clusters.

Figure 2.7 shows the net which is an implementation of the box expression:

(((a II a) 0 (a" a));a;(a" a))" ((a" a) DaD (a;a;a))

The relation, C:::P' partitions the places of this net into nine equivalence classes,

PI to Pg, with, for example, P2 = {S5' S6, S7, ss}.

PI

P2 P7

Ps

Figure 2.7: Partitioning the places into clusters

80

A function, C : S -+ 2s is used to obtain the equivalence class (cluster) of

places to which a given place belongs:

Vs E S :C(s) = {s' E Sis ':::::.p s'}

The set of all clusters of internal places of a net, E, is given by:

For example, for the net, E in Figure 2.7,

C(S3) {SI,S2,S3,S4}

Cj(E) {{S5' S6, S7, ss}, {Sg, SlO}' {SI5}, {S16}}

2.5.4 Connectivity of transitions

For a net E = (5,T, W, A), and transitions t, tl, ... , tk E T, define t [><l {tl' ... , td

to mean that the transition t has the same connectivity as, collectively, the

multiset of transitions, {tl' ... , td. Formally, t [><l {tl' ... , td if and only if for

all n E S u T:

W(t, n)
i=l
k

W(n, t) = LW(n, ti)
i=l

For example, in Figure 2.8, t4 [><l {It, t6}, t5 [><l {t2' td and t4 [><l {t5}.

An equivalence relation, "'dpl, can be defined over the set of transitions, T,

as follows:

The relation captures the notion of duplication of transitions, without any

requirement that the transition labels are the same. Figure 2.8 shows the

equivalence classes of transitions defined by "'dpl for an implementation of the

expression:

E= (((aD {b,c}) II (dDdD{b,a})) sy bDa);a

81

For a transition, t E T, let Dpl(t) be the equivalence class of "'dpl to which t

belongs:

Dpl (t) = {tf E Tit '" dpl tf}

For example, in Figure 2.8, Dpl(t3) = {tl' t2, t3} and Dpl(ts) = {ts}.

Figure 2.8: Duplication equivalence classes

By defining a total order over the transitions in the net, it is possible to

define a unique or canonical representative for the equivalence class Dpl(t),

for each t E T, given by min(Dpl(t)). A total ordering over transitions, and

the function, min, are defined in Section 2.5.6.

2.5.5 Synchronising transitions

In this section, a set of transitions is defined that is central to the synthesis

algorithm for synchronisation, presented in Chapter 4. Although the definition

is applicable to any net, it is only useful when the net has been derived from a

box expression over a syntax that includes synchronisation, but not restriction,

recursion or stop (see Table 4.1).

Let L; = (5, T, W, A) be an implementation of a box expression from the

syntax in Table 4.1. The set of transitions in L; that have the same connectivity

as a pair of transitions is given by:

Tsc(L;) = {t E T I :Jtl, t2 ET: t [Xl {tl, t2}}

82

For example, in Figure 2.8, Tsc = {t4' t5}, and in Figure 2.9, Tsc = {t2' t3}.

The set of transitions, Tsc(E) contains every transition in E that has arisen as

a result of a synchronisation operation. An underlying net for E is obtained

by removing the set of transitions Tsc(~), giving the net ~ e Tsc(~). The

remaining transitions, T - Tsc(~) are known as the base transitions. Section 4.5

in Chapter 4 shows several useful properties associated with the definition of

Tsc, including that I;e Tsc(E) is the implementation of a box expression from

the basic syntax and every transition in E arising from a synchronisation

operation is a member of Tsc(~).

Figure 2.9: Synchronising transitions

Figure 2.10 shows implementations of the expressions:

El a II b
E2 ((dDdD{b,a}) II (aD{b,c}));a

El and E2 are isomorphic to the underlying nets of the nets in Figures 2.9,

and 2.8, respectively.

For every transition, t E T, a multiset of base transitions, n(t), can be

associated with t, such that t [Xl n(t). For all t E T, n(t) is defined as follows:

83

~l

Figure 2.10: Base nets

2.5.6 Ordering of transitions

An ordering, <A, over atomic actions can be defined. Let <b be any fixed

ordering over the set of basic actions, B. A unique word, A(a) E B* can be

associated with each atomic action, a by writing the basic actions in a in order

defined by <b. For any atomic actions, al and a2:

where <lex is a lexicographic ordering, using <b·
For a finite net E = (S, T, W, A), let «, be an arbitrary fixed total order

over the transitions in T. In general, where transition names are tl, t2, ..• , it

will be assumed that ti <i tj if and only if i < j. Hence a total order, <l, of

the set of transitions T, based on transition labels can be defined using <A

and <t:

For a set of transitions, T' ~ T, define min(T') to be the smallest transition

with respect to <I:

min(T') = t E T' :Vt' ET' - {t}, t <I t'

84

For example, for transitions tl = {d}, t2 = {b,a}, t3 = {d}, and t4 = {a,e},

t2 <I t4 <I tl <I t3· Therefore, min({t1,t2,t3,t4}) = t2, and min({tl,t3}) = t1·

2.5.7 Actions and transitions

For any implementation of an expression from the basic syntax, shown in

Table 2.3, there is a mapping from atomic actions in the expression to tran-

sitions in the implementation. The mapping is one-to-many - i. e. there may

be several transitions associated with a single action. If the expression does

not contain the iteration operator, then the mapping is one-to-one. In this

section, the mapping between actions and transitions is formalised, and used

to define an equivalence relation that relates transitions arising from the same

atomic action.

E··=

EIIE

EOE

E;E

[E * E * El

Atomic action

Parallel composition

Choice composition

Sequential composition

Iteration

Table 2.3: Basic box expression syntax

The representation of atomic actions is modified so as to consist of a set

of atomic action names, together with a labelling function that associates a

multiset of basic actions with each atomic action name. This representation

is based on that used for transitions. For example, let Xl, X2, ... , X5 be a set of

atomic action names, and fJ a labelling function such that:

fJ(Xl) = fJ(X3) = fJ(X4) = a

fJ(X2) = fJ(X5) = {a, b}

An expression written using atomic action names, together with the labelling

function, fJ represents a unique expression from the standard notation. For

85

example, let:

(2.1)

then E, I-" denotes the following standard notation expression:

E' = (a II {a,b}) D ((a; a) ,,{a,b})

The purpose of such a representation for atomic actions is to distinguish actions

which are the same multiset of basic actions. For example, X2 and X5 in E

allow the two {a, b} actions in E' to be distinguished.

Let E be an expression containing exactly the set of action names X =

{Xl, ... ,xn}, I-" a labelling function for X, and 2: = {S, T, W, A}, an implemen-

tation of E, 1-". Define cP : X -+ 2T to be a function such that for all X EX,

cp(x) is the set of transitions in 2: that have arisen from x. The function cp

is defined inductively on the structure of E, and constructed for a particular

implementation, 2:' of E, 1-". The mapping can be extended from the particular

implementation, 2:' to any implementation, 2:, by establishing an isomorphism

between 2:' and 2:. Hence, the mapping is unique up to automorphism of 2:.

Given E,I-", the function cp is obtained by constructing an implementation 2:'

of E, 1-", and recording the origin of each transition in 2:':

• E = X: The net 2:' = ({81, 82}, {t}, {(SI, t), (t, 82)}, {(8l' e), (82, x),

(t, 1-"(X))}) is an implementation of E. cp is defined by cp(x) = {t}.

• E = El " E2, E = El D E2, E = El; E2: Let 2:~ and 2:~ be disjoint

implementations of El and E2, with mappings CPl, and CP2 respectively.
Let 2:' be the implementation of E constructed from 2:~ and 2:~, and cP

be the mapping between action names in E and sets of transitions in 2:'.

cP is given by:

The union operation for cP is defined below.

• E = [El * E2 * E3J : Let 2:~j for 1 ::; i ::;3, 1 ::; j ::;2 be disjoint

implementations of Ei, with mappings CPij respectively. Let 2:' be the

86

implementation of E constructed from the ~~j' and c/> be the mapping

between action names in E and sets of transitions in ~'. c/> is defined by:

c/>= u
1~i~3

1~j~2

For 1 ~ i ~ 3, c/>il and c/>i2 have the same domain. Hence, the size of

the set, c/>(x) is doubled for each level of iteration that encloses X in the

expression.

An auxiliary function, f is defined, which given an action name, X EX, and

a mapping c/> returns 0 if X is not in the domain of C/>, and c/>(x) otherwise:

{
c/>(x) if X E dom(c/»

f(x,c/» = o otherwise

The union of mapping functions, c/>l Uc/>2 is defined using the auxiliary function,

f. For all x EX:

An example construction of c/> is given for the expression:

implementation, ~ of E, j..l is shown in Figure 2.11. The particular implemen-

tation, ~' of E, j..l, used in constructing C/>, is chosen carefully so that there

exists an isomorphism between ~' and ~ that preserves transition names. By

the inductive definition of c/>:

where c/>i, for 1 ~ i ~ 3 is a mapping from the subexpression E, to the

transitions in an implementation of Ei, with: El = Xl, E2 = [X2 * X3 * X4],

87

Figure 2.11: Equivalence classes of transitions arising from the same action

88

and E3 = X5. The implementations of El and E3 are chosen to contain the

transitions t4 and t5 respectively. Hence ¢h and CP3 are defined by:

CPI (Xl) {t4}

CP3(X5) {t5}

CP2 is defined inductively by CP2 = U.CPij, for::; i ::;3, 1 ::; j ::; 2. Each CPij
encodes the mapping between an atomic action and its implementation. The

implementations are chosen so that the CPij are defined by:

Hence, by the definition of the union of mapping functions, CP2 is given by:

Therefore, cP is defined by:

Given a mapping, cP, between the set of action names, X, in an expression, and

the set oftransitions, T, in an implementation of the expression, an equivalence

relation, "'4>, can be defined by:

Define cp(t) to be the equivalence class of "'4> to which the transition t belongs:

Vt ET: cp(t) = {t' E Tit "'4> t'}

Figure 2.11 indicates the equivalence classes of "'4> for the mapping cP con-

structed above. In Chapter 4, Section 4.3 describes an algorithm for con-

structing the set of equivalence classes of "'4> for any implementation of a box

expression from the basic syntax.

89

2.5.8 The 8 operator

The 8 operator is used to relate the synchronisation of actions in expressions

with the sets of transitions that are created in the corresponding net. This is

achieved using the equivalence classes of f"Vrj>. Define an auxiliary function, 0,

which allows each parameter of 8 to be either a multiset, or a set of multisets:

{
{t} if t E T

O(t) =
t otherwise

Then, 8 is defined by:

The 8 operator produces a set of multisets, rather than a multiset of multisets.

Hence, there is only one copy of, for example, {t4, t5, t7} in:

Using the example construction for cP for the expression: E, (2.1) and the

net in Figure 2.11, the sets of transitions that would be produced by the

synchronisation operation in E sy a can be found using the 8 operator. The

pairs of actions in E which synchronise are (Xl, X4),(X2, X4) and (X4' X5). The

corresponding sets of transitions generated by the three synchronisations are:

{t4} 8 {t7, ts}

{ { t4, t7}' { t4, ts} }

{tl, t2} 8 {t7' ts}

{{ tl, t7}, {tl' ts}, {t2, t7}, {t2, ts}}

{ t7, ts} 8 {ts}

{{t5,t7},{t5,tS}}

Hence, for example, the synchronisation of the actions Xl and X4 generates two

transitions t~ and t~, such that t~ IXl {t4,t7}, t~ IXl {t4,tS}.

90

Chapter 3

Basic synthesis

3.1 Introduction

E"= a Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E * E * E] Iteration

Table 3.1: Basic box expression syntax

Table 3.1 contains a subset of the full box expression syntax given in Table 1.1

and [6]. The syntax in Table 3.1, christened the basic box expression syntax,

was chosen for an initial investigation into the synthesis and axiomatisation

problems because the operators in Table 3.1 preserve a strong correspondence

between the structure of a net, and the structure of the expression from which

that net is derived. This correspondence would not be so strong if operators

such as synchronisation and restriction were included. For the remainder of

this chapter, every box expression should be assumed to be a member of the

language generated by the syntax in Table 3.1, unless otherwise stated.

Sections 3.2 and 3.3 present a solution to the synthesis problem for the

91

class of input nets that can be obtained from an expression over the syntax

in Table 3.1. In Section 3.4, the correctness of the synthesis algorithm is

shown. The detailed analysis carried out in Section 3.4 forms the basis for

the discussion,' and solutions to related problems presented in Section 3.5.

A canonical form for box expressions is defined in Section 3.5. This allows

the synthesis algorithm, described in Sections 3.2 and 3.3 to be modified to

synthesise canonical form expressions, and provides a basis for the derivation

of a complete axiom system for the fragment of the Petri Box Calculus given

in Table 3.1. Section 3.5 concludes with an investigation into the possibility

of the automatic generation of proofs of equivalence for expressions from the

syntax in Table 3.1.

3.2 The synthesis algorithm

The synthesis algorithm takes as input a net, ~, which is an implementation of

some unknown box expression. The output is a box expression, E, such that ~

is an implementation of E. The algorithm is based on a set of synthesis rules,

with one rule for each operator in the box expression syntax of Table 3.1.

Each synthesis rule has a set of preconditions which must hold for the rule to

be applied. These conditions are based on the structural properties of nets

described in Section 2.5 in Chapter 2. When a synthesis rule is applied, the

input net is decomposed into a collection of subnets, and at the same time,

the expression corresponding to the input net is refined. The rules are applied

recursively to each subnet obtained by net decomposition, until the expression

is fully refined.

A tree data structure is used by the synthesis algorithm. A node of the

tree has the form shown in Figure 3.1. Initially, only the net field of the node

contains any data. Once the preconditions of the synthesis rules have been

checked, and the rule to apply has been identified, the type field of the node

is set. The type field is used to indicate which synthesis rule is to be applied.

92

If the rule to be applied is the atomic action rule, then the node is a leaf node

of the tree, and the action field is set to be the atomic action synthesised from

the input net. Otherwise, the node is internal, and the list field is used to point

to a collection of children, with each child node containing a subnet obtained

by the net decomposition of the synthesis rule. Once the synthesis process

has completed, the tree structure can be interpreted to obtain the synthesised

expression. For this interpretation, only the type and action/list fields of the

nodes are required - the net field can be ignored.

Type

Action/List

Figure 3.1: Data structure of a node

The pseudo-code for the synthesis algorithm is given below. Box Ex-

PRESSION SYNTHESIS creates a root node, and initialises the net field with

the input net. SYNTHESISE is a recursive procedure which takes as input the

root node of a (sub)tree, and expands it into a tree structure corresponding

to an expression for the net at the root node. EXPRESSION performs a depth

first traversal of the fully expanded tree, and uses the type and action fields

of the nodes to find the synthesised expression.

Box EXPRESSION SYNTHESIS(L;)

1 N=new node

2 N.net=L;

3 SYNTHESISE(N)

4 return EXPRESSION(N)

SYNTHESISE(N)

93

parallel

sequence choice

b

atomic

C

Figure 3.2: Tree produced by the synthesis algorithm

atomic atomic

a

atomic

d

94

1 N.type=ANALYSE(N.net)

2 case N.type

3 atomic: ATOMIC(N)

4 parallel: PARALLEL(N)

5 choice: CHOICE(N)

6 iteration: ITERATION(N)

7 sequence: SEQUENCE(N)

8 for each node N' in N .list

9 do SYNTHESISE(N')

For example, given the net, E, in Figure 2.6, the call to Box EXPRESSION

SYNTHESIS(E) will construct the tree shown in Figure 3.2. Performing a depth

first traversal of this tree obtains the expression (c; d) II (a 0 b). Note that in

general, the tree will not be binary.

3.2.1 Preconditions

The preconditions of the synthesis rules are based on four structural properties

of nets:

1. Number of transitions: This property is true if there is more than

one transition in the net, and false if there are zero or one transitions.

Prl = ITI > 1

2. Connectedness: This property is true if there is an undirected path

between every pair of nodes in the net, and false if the net consists of at

least two disjoint components.

3. Internal connectedness: This property considers the connectedness

of the net when all entry and exit places are removed. The property is

95

true if the net is connected after deleting the entry and exit places, and

false if there are at least two disjoint internal components.

4. Internal Interface: This property is true if there is no undirected path

from an entry place to an exit place, when some cluster of internal places

is removed.

-

Type Property 1 Property 2 Property 3 Property 4

Atomic action false true true false

Parallel true false false false

Choice true true false false

Iteration true true true false

Sequence true true true true

Table 3.2: Preconditions for the synthesis rules

Table 3.2 shows which properties hold for each type of expression. Fig-

ure 3.3 illustrates how the four properties provide a simple decision procedure,

to identify the synthesis rule to apply. This procedure is implemented by the

ANALYSE function, given below. Using this approach, all four properties of

the net are only tested in the worst case, when the sequence or iteration rule

is to be applied.

ANALYSE(1:)

1 if Pr, holds for 1:

2 then if Pr2 holds for 1:

3 then if Pr3 holds for ~

96

4 then if Pr 4 holds for ~

5 then return sequence

6 else return iteration

7 else return choice

8 else return parallel

9 else return atomic

Property 1

atomic action Property 2

.R
parallel Property 3

R
choice Property 4r

iteration sequence

Figure 3.3: Decision procedure for identifying synthesis rule to apply

3.3 Synthesis rules

This section describes the five synthesis rules that are used by the algorithm.

These correspond to the procedures, ATOMIC, PARALLEL, CHOICE, ITERA-

TION and SEQUENCE, called by the SYNTHESISE procedure. For each rule,

the method for expression refinement and net decomposition is given, followed

by optional checks that can be carried out to ensure that the input net is

the implementation of a box expression. These checks allow the synthesis al-

gorithm to be used to recognise the class of nets that can be derived from

97

expressions over the syntax in Table 3.1. Finally, an example illustrating the

use of the rule is given. The expression refinement involves determining the

number of components that the input net should be decomposed into. The

examples show how a node of the tree data structure, described in Section 3.2,

is expanded by a rule application. Each example has been chosen so that the

preconditions of the particular rule are satisfied.

The tree structure that is constructed by the synthesis algorithm does not

correspond directly to a parse tree of the synthesised expression. For example,

an implementation of E = (a II b) II (c II d) will be synthesised to a tree

containing a root node with four child leaf nodes. Advantage is taken of the

associativity of the parallel, choice and sequence operators, which means that

E can be written unambiguously as a II b II c II d. The EXPRESSION function.

produces a properly bracketed expression from the tree by imposing a right-

associative bracketing order, giving the expression a II (b II (c II d)), for E.

A further operator on labelled nets, l±J, is defined. This operator is used in

the decomposition of the input net to the synthesis algorithm by some of the

synthesis rules in this section. Let ~ = (8, T, W, A) be a labelled net, P be a

set of new places, and I E {e, 0, x} be the label which is to be assigned to the

places in P. Each place, pEP has the form (TI' T2), where TI ~ T is the

set of transitions which have an arc to p, and T2 ~ T is the set of transitions

which have an arc from p. The net, ~ l±J (P, I), obtained by adding the set of

new places to ~ is defined by:

~ l±J (P, I) = (8 UP, T, W', A')

where W' : (8 U PUT) x (8 U PUT) -+ {O,I}, and A' are defined as follows:

W(nl' n2) if nI, n2 E 8U T

1 if nl = (TI' T2) E P, n2 E T2

1 ifnI E TI,n2 = (TI,T2) E P

o otherwise

98

{
).(n) if n E S uT

X(n) =
l ifnEP

In Section 1.3.5, a general form for the semantics of the parallel, choice,

sequence and iteration operators was described. There is a corresponding

general approach that can be used for the net decomposition performed by

the synthesis rules for these operators. Let ~ be a net which is known to

have arisen from a particular semantic rule. The l±J operator can be used in

a general technique for decomposing ~ into its subnets, ~i for 1 :S i :S k for

some k:

1. The sets of transitions belonging to each subnet, ~i are identified in ~.

2. The clusters of places, corresponding to the interfaces between the ~i

components in ~ are identified. Each cluster is decomposed into sets of

new places corresponding to the original entry and exit interfaces of the

subnets. These sets of places have the form used by the l±J operator.

3. The clusters of places identified in 2 are removed, using the e operator,

and the sets of new places are added to the resulting net using the l±J

operator.

4. The net, ~I, obtained in 3 corresponds to the disjoint union of the subnets

~i' For 1 :S i :S k, the subnet ~i can be obtained from ~I, using ~' IQ(Ti)'

where T; is the set of transitions belonging to ~i' identified in step 1.

In the descriptions of the synthesis rules, the following conventions should

be assumed: ~ is the input net to be decomposed, and E is the unrefined

expression corresponding to E, The subnets obtained by decomposing ~ are

~i' with corresponding unrefined expressions Ei, for 1 :S i :S k (for some

k > 1).

99

3.3.1 Atomic action

The synthesis rule for atomic actions is the only base case rule - i.e. the

recursion of the SYNTHESISE procedure ends with an application of the atomic

action rule. No net decomposition is performed, and the refined expression

contains no free variables.

Expression refinement

The expression is refined to be the label of the single transition in the net:

E = '\(t) where T = {t} (3.1)

Optional checks

There should be exactly two places in L:, one an entry place, with an arc to t,

and the other an exit place with an arc from t. These additional checks ensure

that the input net is an implementation of an atomic action.

Example

Figure 3.4 shows an implementation of the expression E = {a}. Applying the

atomic action synthesis rule, (3.1), to this net gives the fully refined expression

E = {a}.

atomic

a

Figure 3.4: Atomic action

100

3.3.2 Parallel composition

Expression refinement

The equivalence classes of the relation ~ Na partition the net 1: into its disjoint

components. Let C be the set of equivalence classes and n be the cardinality

of C. Hence n is the number of disjoint components in 1:. The expression is

refined to:

(3.2)

Net decomposition

Let Cl, ...,Cn be the equivalence classes in C - i.e. C = {Cl,C2, .•. ,Cn}. For

1 < i < n:

(3.3)

Optional checks

No additional checks are required for this synthesis rule.

Example

Figure 3.5 shows an implementation of the expression a II ((b 0 c) II (dj e)).

This net is disjoint, therefore, by Table 3.2, the parallel composition synthesis

rule is applicable. The set of equivalence classes, C, given by the relation ~ Na

is:

Therefore, n = 3, and by (3.2), E is refined to:

The decomposed nets, 1:1,1:2, and 1:3 are shown in Figure 3.5. Using (3.3)

with, for example, C3 = {SI, tl, S2} gives, by (3.3):

101

85

t4

e 83 86

t5

87

parallel

unknownunknown unknown

~l ~2 ~3

Figure 3.5: Parallel composition

102

3.3.3 Choice composition

Expression refinement

Define "'II, a relation over the set of entry transitions, Te, of I:, such that two

transitions are related if there is no entry place with an arc to both of them.

Let "'~ be the transitive closure of "'II' A relation, "'e is defined over the set

of entry transitions:

\:It I ,t2 E Te : tl "'e t2 {:} tl "'~ t2 V t/3 Ni t2

Proposition 11, proved in Section 3.4, shows that "'e is an equivalence relation

whenever ~ is an implementation of a choice expression. Let PTe be the

set of equivalence classes of Te, formed by the relation "'e. Corollary 2, in

Section 3.4, shows that a corresponding set of equivalence classes of the exit

transitions, Tx can be given by:

PTx = {{ t E Tx I :It' E P :o:N/} I P E PTe}

Let n be the number of equivalence classes of PTe - t: e. n

expression, E is refined to:

(3.4)

(3.5)

Net decomposition

The equivalence classes PTe' and PTx are used to decompose the entry and

exit interfaces of ~ as follows:

Xe = {(0, s· n P) I PE PTe' SESe}

Xx = {(·snp,0) I PE PTx'S E Sx} (3.6)

An auxiliary net, ~a, is constructed by removing the entry and exit interfaces

of ~, and adding the interfaces defined by (3.6):

I:a = I: l±J (Xe, e) l±J (Xx, x) e (Se U Sx)

103

(3.7)

~a is an implementation of the parallel composition of the decomposed nets

~l' ... , ~n· It is not necessarily true that there will be n disjoint components

- there will be more if any ~i is the implementation of a parallel composition

expression. The set of equivalence classes PTe = {g, P2, ... , Pn} (or, equally

PTx)' can be used to decompose ~a into ~l' ... , ~n.

(3.8)

Optional checks

If the input net is the implementation of a box expression, then the sets of

equivalence classes, PTe and PTx will be such that IPTe I = IPTXI and IPTel >
1. If the sets of equivalence classes do not satisfy these properties, then the

synthesis algorithm has detected that the input net is not an implementation

of a box expression.

It remains to check that the decomposition of the entry and exit interfaces

of ~ is valid. This is achieved by recombining the decomposed interfaces

and checking that they match the original interfaces in E. The set of new

places, Xe can be partitioned into Xl, ...,Xn, where n = IPTe I according to

the equivalence class of PTe that each place in Xe arises from. The places in Xe

have the form (0, T'), where T' is a set of transitions belonging to ~. In order

to check that the decomposition is valid, it is necessary to combine the sets

of places Xl, ...,Xn, and match the result against Se(E). Since Xe is a set of

places, rather than a multiset, it is sufficient to check that IXII·IX21· ... ·IXnl=
ISe(~)I, and for any set of places (0, Ti) E Xi for 1 ::; i ::;n, there exists a
place s E Se(~) such that s· = TI U ... U Tn- A similar procedure is used

to check that the set of new places, Xx is a valid decomposition of the exit

interface of ~.

104

Example

Figure 3.6 shows an implementation of the expression

(a II (b 0 c)) 0 (d; (e 0 1)) 0 (g II h)

This net is connected, but not internally connected - for example tl1- N·t2.
I

Therefore, the choice composition synthesis rule is applicable.

The sets of entry and exit transitions are Te = {tl, ... , t6}' and Tx =

{tl, ... , ts, t7, ts} respectively. The set of equivalence classes of Te, given by

the relation rv~ is {{ tl, t4, ts}, { t6}' { t2, t3} }. There is no internal path be-

tween any pair of transitions in Te. Therefore, the equivalence classes of the

entry and exit transitions are:

PTe = {{tl, t4, ts}, {t2, t3}' {td}
PTx = {{ tl, t4, ts}, {t2, t3}' {t7, ts}}

Hence, by (3.5), the expression E is refined to:

The new entry and exit interfaces, defined by (3.6) are:

Xe = {SID = (0,{tl}),Sll = (0,{t4,tS}),S12 = (0,{t2}),S13 = (0,{t3}),
S14= (O, {t6})}

XX {SIS = ({td,0),S16 = ({t4,ts},0),S17 = ({t2},0),SlS = ({t3},0),

S19 = ({t7, ts}, 0)}

Where SlO, ... , S19 are introduced as shorthand for the identifiers of the new

places - i. e. the real place identifier for the place labelled SlO in Figure 3.6 is

(0,{td)·
When the entry and exit interfaces of ~ are removed, and the entry and

exit interfaces given by Xe and Xx are added, the net ~a = ~l U ~2 U ~3 is

obtained. The disjoint components of ~a are related according to the three

equivalence classes of PTX' decomposing ~a into ~l' ~2 and ~3. For example,

105

choice

unknown unknown

unknown
I;1

Figure 3.6: Choice composition

106

by (3.8), using the equivalence class {t2' t3}:

L:2 L:a 19({t2!t3})

({ S12, S13, S17, SI8}, {t2' t3}, {(SI2' t2), (SI3, t3), (t2' SI7), (t3, SI8)},

3.3.4 Sequence

Expression refinement

Define S; to be the set of clusters. of internal places such that for each cluster,

C E S·, there is no undirected path between an entry and exit place in the net,
L: e c:

n = IS; I + 1 is the number of subnets that will be formed when the net is

decomposed. Therefore, the expression, E, is refined to:

(3.10)

Net decomposition

Removing any cluster of places C E S; partitions L:: into two components - one

component consists of the collection of nodes connected to some entry place,

and the other contains the nodes connected to some exit place. The function

Ce(c) is defined to give the set of nodes in the component containing the entry

places:

Ce(C) = {n' E S UTI :3s E Se : S~(Na-C)n'} (3.11)

A total order, <8' over the clusters of places in S· can be defined. For,

107

<8 is used to obtain an order Cl, C2, ... , C(n-l) of the clusters of places in S;.

The auxiliary nets ~~, for 1 ~ i ~n, are obtained by removing the clusters of

places in S· from ~:,

~~= ~ I(Ce(c;)-(Ce(Ci-l)UCi-l)) if 1< i < n

~ I(Na-(Ce(C(n-l))UCn-l)) if i = n

(3.12)

if i = 1

Two functions, one for the entry interface (Ie), and one for the exit interface

(Ix) are defined. These functions decompose a cluster of places c' E S;, into

the corresponding entry or exit interface:

Ie(c') = {(0, 8·) I 8 E C'}

Ix(c') = {(·8, 0) I 8 E C'} (3.13)

The decomposed subnets ~l,", ~n are obtained by adding new interfaces to

the nets ~~, .., ~~, defined by (3.12). The new interfaces are generated by

applying the interface functions le and Ix to the clusters Cl, C2, ... , Cn-l E S·:,

~i = ~~l±J (Ie(Ci-l), e) l±J (Ix(ci), x) if 1< i < n

~~ l±J (Ie(Cn-l), e) if i = n

(3.14)

if i = 1

Optional checks

If the input net is the implementation of a box expression, then S· is guar-,
anteed to contain at least one cluster of places. If S· = 0, then the synthesis,
algorithm has detected that the input net is not an implementation of a box

expression.

It remains to check that the decomposition of each cluster in S· is valid.,
This is achieved by recombining the decomposed interfaces and checking that

they match the original clusters in E. For each cluster, C E S;, Ie(c) (Ix(c)) are

sets of pairs of sets of transitions, such that the first (second) set of transitions

108

in the pair is 0. Since Ie(c) and Ix(c) are sets, rather than multisets, it is

sufficient to check that for each cluster c E S;, IIx(c)I·IIe(c)1 = [c] and:

V(Tl,0) E Ix(c), (0, T2) E Ie(c) : 3s E c such that ·s = Tl 1\ s· = T2

If a cluster does not match the recomposition of the decomposed interfaces,

then the net decomposition was not valid. This implies that the input net, ~,

is not the implementation of a box expression.

Example

Figure 3.7 shows the net, ~ which is an implementation of the expression:

a; ((b; c) 0 d); (e II (J; g))

~ is connected, and also internally connected. Removing the place S2 leaves no

path between an entry and exit place. Therefore, the sequential composition

synthesis rule is applicable. The set of internal clusters is given by S'

{{ S2}, {S3}' {S4, S5}, {S7}}. Therefore, by (3.9):

S; = {{S2},{S4,S5}}

The net, ~ will be decomposed into three subnets, because there are two

interface clusters in S;. Therefore, by (3.10), the expression E is refined to:

The two clusters of places in S; are ordered Cl = {S2}, C2 = {S4, S5} because

ICe(cr) I <8 ICe(C2) I:

Ce(Cl) = {SI, td
Ce(C2) = {Sl,tl,S2,t2,t3,S3,t4}

(3.12) applied to ~ in Figure 3.7 yields the three nets in Figure 3.B. For

example, (Ce(C2) - (Ce(Cl) U Cl)) = {S3, t2, t3, t4} - Therefore:

~'2
({ S3}, {t2, t3, t4}, {(t2, S3), (S3, t4)}' {(S3, 0), (t2, {b}),

(t3, {d}), (t4, {c})})

109

unknown

:El

110

unknown

Figure 3.7: Sequential composition

sequence

unknown

cp"
~"

t30

~"
tl t4

I;' I;'1 2 I;'3

Figure 3.8: Partially decomposed sequence net

The interfaces obtained by applying the functions Ie and Ix (given by

(3.13)) to the clusters Cl and C2, added to the nets in Figure 3.8 produce the

subnets I;l, I;2 and I;3 shown in Figure 3.7. For example, the interfaces for

I;~ are produced using:

Ie(Cl) = {SlO = (O, {t2, t3})}

Ix(c2) = {SU = ({t3,t4},0)}

Where SlO and Su are introduced as shorthand for the place identifiers.

3.3.5 Iteration

Expression refinement

The expression E is always refined to:

Net decomposition

During the decomposition of the net, I;, four auxiliary nets (I;a - I;d) are

constructed. The first, I;a, is obtained by decomposing the entry and exit in-

terfaces of I;. The interface clusters given by Si! (in (3.15) below) are partially

decomposed in I;a to give I;b' Proposition 15 shows that for any implementa-

tion, I;, of a box expression which satisfies the preconditions of the iteration

111

synthesis rule, the decomposition of L: is such that L:b consists of two disjoint

components which are isomorphic to each other. L:c is taken to be one of these

subnets. L:c contains all the information required to produce the decomposi-

tion into subnets L:I, L:2 and L:3.

The implementation of an iteration expression, [El * E2 * E3J, involves

two implementations of each of the expressions El, E2 and E3. The two

implementations of El are named L:11 and L:12. The two implementations of

E2 and E3 are named similarly.

Proposition 14 shows that the set of clusters, Si!, defined below will contain

the two clusters of places arising from the interfaces L:u• ® -L:21 ® L:22• ® -L:31

and L:12• ® -L:22 ® L:21• ® -L:32.

Si! = {c E Cj(L:) I (:lte E Te, 'lit E Tx : te;;'Na-(SeUc)t)

!\(:3tx E Tx, 'lit E Te : tx;;'Na-(SxUc)t)} (3.15)

Pe (Px) is defined to be a partition of the entry (exit) transitions of L: into two

sets corresponding to those entry transitions arising from L:11 and L:12 (exit

transitions arising from L:3l and L:32).

Pe {{t E t; I 'lit' E Tx: t;;'Na-(SeUc)t'} ICE Sij}

Px {{ t E Tx I 'lit' E Te : t;;'Na -(SXUc) t'} ICE Si!}

The entry and exit interfaces of L: can be decomposed in a fashion similar to

that used for the choice synthesis rule, (3.6), using Pe and Px as the set of

equivalence classes determining the decomposition:

Xe = {(0, 8· n P) I P E Pe, 8 ESe}

Xx = {(·8 n P,0) I P E Px, 8 E Sx} (3.16)

The first auxiliary net, L:a, is constructed by removing the entry and exit

interfaces of L:, and adding the interfaces defined by (3.16):

L:a = L: l±J (Xe, e) l±J (Xx, x) e (Se U Sx)

112

Attention now turns to the internal interfaces of ~a, which are given by Sij.

Firstly, the set of all places comprising the internal interfaces is obtained:

S:j = {s 1 ::lC E Sij : SEC}. This set of places is decomposed into two new

interfaces Xl and X2, obtained by taking just the incoming and outgoing arcs

of the places in S:j, respectively:

Xl = {(·s, 0) 1 S E S;j}

X2 = {(0, s·) 1 S E S:j} (3.17)

The net ~b is constructed by removing the original internal interface, and

replacing it with the interfaces defined by Xl and X2. As shown in Propo-

sition 15, ~b will consist of two disjoint nets, which are isomorphic to each

other. There are two isomorphic nets in the partial decomposition because of

the redundancy in the semantics for the iteration operator - one of the two

nets is discarded, and the remaining one is named ~c.

The sets of entry and exit transitions of ~c, given by Te(~c) and Tx(~c) re-

spectively, are required later. The net ~c can be regarded as being isomorphic

to a composition of implementations, ~l' ~2' ~3 of El, E2 and E3 in sequence,

but with ~2 reversed - i.e. the entry interfaces of ~2 and ~3, and the exit

interfaces of ~l and ~2 are joined. Therefore, these two interfaces can be easily

identified as they consist of internal places with no incoming or outgoing arcs

respectively:

{S E Si(~c) 1 S· = 0}

{s E Si(~c) I·s = 0} (3.18)

The pre-transitions of Si
1
, and the post-transitions of Si

2
are partitioned into

two sets according to whether there is a directed path from an entry place, or

to an exit place respectively. The sets of transitions in Pi
1
are such that every

transition in the first set belongs to ~l' and those transitions in the second

113

set belong to ~2' Similarly with the partition Pj2:

Pi
l

{{ t E ·Si
l

I :Js E Se(~c) : s~t}, {t E ·Si
l

l,Bs E Se(~c) : s~t}}

Pj2 {{ t E S\ I :Js E SX(~c) : t~s}, {t E S\ l,Bs E SX(~c) : t~.s$}19)

These partitions are used to decompose the interfaces Si
l
(Si) into the exit

interfaces of ~l and ~2 (entry interfaces of ~2 and ~3)' The decomposition

relies on the fact that no Petri box contains any duplicate places, as shown by

Proposition 1 in Section 3.4.

XiI = {(·s n P,0) I P E PjI' s E Si)

Xi2 = {(0, s· n P) I P E Pi2, S E Si2} (3.20)

The old internal interfaces (Si
l

and Si
2
) are removed from ~c, and the new

interfaces given by (3.20) are added:

The three subnets, ~l' ~2 and ~3 can be identified in ~d as the connected

component(s) containing the set of entry transitions, Te(~c), the connected

component(s) containing neither the entry transitions nor the exit transitions,

and the connected component(s) containing the set of exit transitions, Tx(~c),

respectively:

~l ~d Ig(se(~c))

~2 ~d l(Na-g(se(~c)USx(~c)))

~3 (3.21)

Optional checks

If the input net is the implementation of a box expression, then Sij is guaran-

teed to contain exactly two clusters of places. If ISijl i= ~ then the synthesis

algorithm has detected that the input net is not an implementation of a box

expression. The optional checks for the choice and sequence synthesis rules

114

can be reused to check that the net decomposition performed by the iteration

synthesis is valid. If any of the checks fail, then it is known that the input net,

~, is not the implementation of a box expression from the syntax in Table 3.1.

The decomposition of the entry and exit interfaces of ~, given by Xe and

Xx is similar to that used for the net decomposition in the choice synthesis rule.

The optional checks for the choice synthesis rule can be reused here to ensure

that the decompositions given by Xe and Xx are valid. The decomposition

of the pair of clusters in Si! is the same as the decomposition of a cluster of

places described in the sequence synthesis rule. The optional checks for the

sequence synthesis rule can be used to check that the decomposition given by

Xl and X2 (3.17) is valid.

If the input net is the implementation of a box expression, then ~b is

guaranteed to consist of two isomorphic components, of which only one is

required. In order to check that the input net really is the implementation of

a box expression, both components of ~b must be checked. This means that

the synthesis process needs to be applied to each component of ~b, and the

resulting synthesised expressions checked for equivalence", An algorithm for

checking the equivalence of expressions is given in Section 3.5. The following

considers the checks that need to be carried out on ~c, one of the components

of ~b. The checks for the other component of ~b will be identical. The

decomposition given by Xil and Xi
2
(3.20) is the same as the decomposition of

a cluster of places described in the sequence synthesis rule. The optional checks

for the sequence synthesis rule can be reused to check that the decomposition

is valid.

Example

Figure 3.9 shows an implementation of the expression:

[(a D b) * (c; (d II e)) * (J II g)]
lThe expressions should be equivalent, though not necessarily identical

115

unknown

iteration

unknown

Figure 3.9: Iteration

116

unknown

This net contains more than one transition, is internally connected, and there

is no cluster of places which, when removed, leaves no path between an entry

and exit place. Therefore, the iteration synthesis rule is applicable. The set

of internal clusters is given by

as shown in Figure 3.9. (3.15) identifies the two internal clusters of interest

as:

This provides the following partitioning of the entry and exit transitions:

Pe {{t1,t2},{t3,t4}}

Px {{tll,tld,{tI3,tI4}}

The net L:a constructed from L:, by adding the interfaces defined by (3.16), is

shown in Figure 3.10. Note that the identifiers SIS to S23 have been introduced

as shorthand:

Xe {SIS= (0,{t1,t2}),SI9 = (0,{t3,t4})}

XX {S20 = ({tll},0),S21 = ({tI2,0}),S22 = ({tI3},0),S23 = ({tI4},0)}

The set of places in the internal interfaces is S:j = {S2, ... , Sg}. By (3.17),

the decomposition of these places is given by:

Xl = {S24 = ({tl,t2,tlO},0),S25 = ({t1,t2,t9},0),S26 = ({t3,t4,t6},0),

S27 = ({t3, t4, t7}, 0)}

X2 {S2S= (0,{t5,tll}),S29 = (0,{t5,tI2}),S30 = (0,{tS,tI3}),

S31 = (O, {ts, tI4})}

Once these interfaces have been added to the net in Figure 3.10, and one of

the two isomorphic nets discarded, the net L:c is obtained. This net is shown

117

Figure 3.10: Auxiliary net, L:a

Figure 3.11: Auxiliary net, L:c

118

in Figure 3.11. The entry and exit places of Ec are Se(Ec)

Sx(Ec) = {S22, S23} respectively.

The internal interfaces in Ec (those internal places with no incoming or

outgoing arcs) are: Si! = {S24, S25} and Si
2
= {S30, S31}. Therefore, by (3.19),

{SIS} and

the partitioning of the transitions is given by:

Pi! {{tl, t2}' {tg, tIO}}

Pi
2

{{ t13, tI4}' {ts}}

Hence the decomposition of the interfaces described by (3.20) produces the

disjoint union of the nets El, E2 and E3 in Figure 3.9. The interfaces are:

Xil {S32 = ({tl,t2},0),S34 = ({tg},0),S35 = ({tIO},0)}

Xi
2

{S33 = (0,{tS}),S36 = (0,{tI3}),S37 = (0,{t14}))

Where S32,"" S37 are used as shorthand for the place identifiers. The set of

places and transitions for El is given by Q({ SIS}), and Q({S22, S23}) for E3·

Therefore, the three subnets El, E2 and E3 can be identified, using (3.21).

3.4 Verification of the synthesis algorithm

This section verifies the correctness of the synthesis algorithm described in

Sections 3.2 and 3.3.

Section 3.4.2 shows that the four properties of nets used to identify the

synthesis rule to apply are correct. The following section proves that the de-

composition performed by each synthesis rule is sound - i. e. if the decomposed

nets are recombined according to the refined expression, a net isomorphic to

the input net to the synthesis rule is obtained. In addition, it is shown that

each decomposed subnet is the implementation of some expression from the

language defined by Table 3.1. Finally, the correctness result of the algorithm

is given in Section 3.4.4.

In the following proofs, let E = (S, T, W,,x) be any implementation of a

box expression, E, and, without loss of generality, assume for 1 ~ j ~ k (for

119

some k), ~j = (Sj, Tj, Wj, Aj) is the implementation of the subexpression Ej of

E, such that every node in Nj(~j) appears in ~, and the connectivity between

the nodes in N, (~j) is the same in both ~j and ~ - i.e.:

Similarly, for the subnets ~jk' for 1 ~ j < 3, 1 < k < 2 used in the iteration

rule. For a set of places, S' in ~, which corresponds to an application of the

o operator, it is not necessary to decompose S' into sets of places SI, S2 such

that SI 0 S2 = S'. Any decomposition such that SI 0 S2 =u; S', can be used.

3.4.1 Support proofs

Isolated and duplicated places

Proposition 1 For every box expression, E, no implementation of E contains

any isolated or duplicated places.

Proof: By structural induction over the box expression syntax.

Base case: Any implementation of an atomic action, a, by definition,

contains no isolated or duplicated places.

Induction step: The net semantics for each of the expressions E = El II
E2, E = El; E2, E = El 0 E2 and E = [El * E2 * E3J combines suitably

disjoint implementations, ~i of the subexpressions, Ei. By the induction

hypothesis no implementation of one of the subexpressions contains any

isolated or duplicated places. A scheme for obtaining an implementation

of E is described, and it is argued that such a scheme can not produce

a net with either isolated or duplicated places. Furthermore, any net

isomorphic to such an implementation will not contain any isolated or

duplicated places.

120

1. The disjoint union of a collection of k disjoint subnets is taken:

~a = ~l U ... U ~k

By the definition of U, I(~a) = Ul~i~k I(~i)' Therefore, by the

induction hypothesis, I(~a) = 0, and ~a does not contain any iso-

lated places. For 1 ::; i, j ::;k, such that i # i, no place originating

from ~i duplicates a place originating from ~j because every place

in ~i' and no place in ~j is connected to some transition in ~i'

Therefore, ~a contains no duplicate places.

2. A set of places may be removed from the result of (1):

~b = ~a eX

Where X is the union of 2m (possibly zero) sets of places of the

form ~i or ~i·'for some 1 ::; i ::;k. Every place is only connected

to transitions, not to other places. Therefore, ~b does not contain

any isolated or duplicated places.

3. The sets of places removed in (2) are combined using zero or more

applications of the Q9 operator, and the resulting sets of places added

to ~b. For example:

In the case of iteration, the sets of places may be combined using

nested applications of the Q9 operator:

Note that every set of places is unique, no place appears in more

than one set, and for 1 ::; i ::;m, the sets of places Xi and Yi
are from different subnets. By the induction hypothesis, the sets

of places Xi and Yi, for 1 ::; i ::;m, do not contain any isolated or

duplicated places. By the definition of the Q9 operator, each place in

121

Xi ®Yi inherits the arcs of some place from Xi, and some place from

Yi, in such a way that no pair of places in Xi ® Yi duplicate each

other. Hence, the result of a nested application of the ® operator

contains no isolated or duplicated places. Therefore, by definition

of the Ef7 operator, Ec does not contain any isolated places. The

sets of places Xi and Yi are no longer present in Eb, and were either

an entry or exit interface of one of the subnets. Hence each place

in the sets resulting from an application of the ® operator contains

an arc to a transition, such that no place in Eb has a similar arc.

Therefore Ec contains no duplicate places.

Hence, no implementation of a box expression contains any isolated or

duplicated places. 0

Place multiplication operator

Proposition 2 For any application of the ® operator, SI ® S2, used in con-

structing an implementation of a box expression, every place in SI ® S2 is

connected to some transition in "S, U SI·, and to some transition in ·S2U S2·,

and every transition in ·Sl U SI· U ·S2 U S2· is connected to some place in

SI ® S2. Furthermore, for any pair of places, SI,82 in SI ® S2, there is an

undirected path between SI and S2, and SI C:::p S2 - i.e. SI and S2 belong to the

same cluster.

Note: With, for example, SI = El·, and S2 = -E2, then every place in SI ®S2

is connected to some transition in ·Sl = Tx (El)' and to some transition in

S2· = Te(E2), since SI· = 0 (exit places have no outgoing arcs), and ·S2 = 0
(entry places have no incoming arcs). This property can be extended to all

sets of places involved in nested applications of the ® operator.

Proof: By Proposition 1, the sets of places, SI and S2 do not contain any

isolated places. By the definition of the ® operator, for each pair of

122

places 81 E S, and 82 E S2, there is a place in Sl ® S2 which inherits

the arcs of 81 and 82. Hence every place in Si ® S2 is connected to some

transition in "S, U Sl·, and to some transition in ·S2 U S2·, and every

transition in ·Sl U Sl· U ·S2 U S2· is connected to some place in s, ® S2.

For any pair of places, Xl and X2 in S, ® S2, the arcs of Xl and X2 must

have been inherited from pairs of places P1, P2 and P~, P~ respectively,

where P1'P~ E Sl, and P2'P~ E S2. By the definition of the ® operator,

there exists a place X in Sl ® S2 which inherits its arcs from P1 and p~.

Therefore, there is an undirected path between Xl and X2. By definition

of rv in Section 2.5.3, Xl rv X, and X rv X2. The cluster relation c::::.p is the

transitive closure of rv, therefore Xl c::::.p X2. o

3.4.2 Verification of preconditions

Number of transitions (Precondition 1)

Proposition 3 Any implementation of an atomic action expression contains

exactly one transition, and every implementation of any other expression con-

tains more than one transition.

Proof: By structural induction over the box expression syntax.

Base case: The implementation of an atomic action, o, by definition,

contains exactly one transition.

Induction step: By the induction hypothesis, the implementations of

the subexpressions, e; in E = El II E2, E = El; E2, E = El 0 E2 and

E = [El * E2 * E3], contain at least one transition. By the compositional

semantics of box expressions, and the definition of the U operator, the

cardinality of the set of transitions in an implementation of E is given

by the sum of the number of transitions of the implementations of the

subexpressions, E: Therefore, any implementation of E must contain

123

at least two transitions. Note that the 8 and 0 operators operate only

on places, and so do not affect the number of transitions in a net. 0

Connectedness properties (Preconditions 2 and 3)

Proposition 4 For any box expression, E, and any implementation, L:, of

E, every node in N, (L:) is connected with respect to the relation, ~ N., to some
I

transition t E Te(L:), and to some transition t E Tx(L:).

Proof: By structural induction over the box expression syntax.

Base case: By definition, in any implementation of a, N; consists of a

single transition, t and Te = Tx = {t}. Hence, the property holds for

atomic actions.

Induction step: By the induction hypothesis, for any implementation,

L:i of subexpression, Ei, every node in N, (L:i) is connected to some transi-

tion in Te(L:i), and some transition Tx(L:i). Let L: be an implementation

of E, constructed from disjoint implementations of the subexpressions .

• E = El II E2, or, E = El 0 E2: By the compositional semantics of

the parallel and choice operators:

Nj(L:) = Nj(L:d U Nj(L:2)

Te(L:) = Te(L:l) U Te(L:2)

Tx(L:) = Tx(L:l) U TX(L:2)

Hence, every node in N; (L:) is connected to some transition in Te (L:)

and some transition in Tx(L:) .

• E = El; E2: By the compositional semantics of the sequence oper-

ator:

Nj(L:) = Nj(L:l) U Nj(L:2) U X

Te(L:) = Te(L:d

Tx(L:) = TX(L:2)

124

where X = 2:l·0~2. By Proposition 2, every transition in Tx(2:l)U

Te(2:2) is connected to some place in X, and every place in X is

connected to some transition in TX(2:l), and to some transition

in Te(2:2). Therefore, every node in Ni(2:) is connected to some

transition in Te(2:) and some transition in Tx(2:) .

• E = [El * E2 * E3]: By the compositional semantics of the iteration

operator:

where Xl = 2:11• 0~2l0 2:22•0~3l' and X2 = 2:12•0~22 0 2:21.0

~32. By Proposition 2, every transition in ·Xl U Xl· U ·X2 U X2• is

connected to some place in Xl UX2, and every place in Xl (respec-

tively X2) is connected to some transition in TX(2:11) (respectively

Te (2:31)). Therefore, by the induction hypothesis, every node in

N; (2:) is connected to some transition in Te(2:) and some transition

in Tx(2:).

Therefore, by the properties of isomorphism, for any implementation, 2:'

of E, every node in N, (2:') is connected with respect to the relation, ~ N.
I

to some transition in Te(2:'), and some transition in Tx(2:'). 0

Corollary 1 For any implementation, 2:, of a box expression, E, every node

in 2: is connected with respect to the relation, t:Na' to some transition t E

Te(2:), and to some transition t E Tx(2:).

Proof: By Proposition 4, every node in N, (2:) is connected to some transition

t E Te(2:), and to some transition t E Tx(2:). By definition ofTe and Tx,

and Proposition 1 every entry and exit place is connected to some node

in Ni (2:) (more particularly some node in Te (2:) U Tx (2:)). Therefore,

125

every node in E is connected with respect to the relation, t:Na' to some

transition t E Te(E), and to some transition t E Tx(E). 0

Proposition 5 Let E be any implementation of a box expression, E. If the

main connective of E is II, then E is disjoint, otherwise E is connected. If the

main connective of E is " or D, then E is internally disjoint, otherwise E is

internally connected.

Proof: By Proposition 4 every internal node of E is connected to some

transition in Te(E), and to some transition in Tx(E).

• E = a - By definition, any implementation of a is both connected,

and internally connected.

• E = El II E2 - By Proposition 3, there are transitions, t, in El

and t2 in E2. By the compositional semantics of parallel compo-

sition, t, and t2 are not connected to each other. Therefore, E is

disjoint. When the entry and exit places of E are removed, the

transitions corresponding to tl and t2 are still present. Therefore,

E is internally disjoint.

• E = El 0 E2 - By Proposition 2, and the compositional semantics

of choice, there is an undirected path between any pair of entry

places in E, and by Proposition 1, every exit place of E is connected

to some transition in Tx(E). Therefore, by Proposition 4, E is

connected. By the compositional semantics of parallel and choice

operators, any implementation of El 0 E2 with entry and exit places

removed is isomorphic to an implementation of El II E2 with entry

and exit places removed. Hence, E is internally disjoint.

• E = El; E2 - Let E' be an implementation of E, constructed from

disjoint implementations, El, E2 of El and E2. By the composi-

tional semantics of the sequence operator, and Propositions 2 and 4,

every internal node of E' is connected to some place in El •®-E2, and

126

there is an undirected path between any pair of places in ~l· 0 -E2.

Therefore, ~' is internally connected. Hence, by the properties of

isomorphism, ~ is internally connected. By Proposition 1, every en-

try and exit place of ~ is connected to some transition. Therefore

~ is connected .

• E = [El * E2 * E3J - Let ~' be an implementation of E constructed

from disjoint implementations of the sub expressions El, E2 and

E3. By the compositional semantics of the iteration operator, and

Propositions 2 and 4, every internal node of ~' is connected to

some place in x, = ~1l. 0 -E21 0 ~22· 0 -E31, or X2 = ~12· 0

-E22 0 ~21· 0 -E32. By Proposition 2, and Proposition 4, applied

to either ~21' or ~22' every place in Xl is connected to some place

in X2. By Proposition 2 there is an undirected path between any

pair of places in X2. Therefore, ~' is internally connected. Hence

by the properties of isomorphism, ~ is internally connected. By

Proposition 1, every entry and exit place of ~ is connected to some

transition. Therefore ~ is connected.

o

Cluster properties (Precondition 4)

Proposition 6 Let ~ be an implementation of a box expression, E. The set

of clusters of internal places of ~ is given by:

(/)

Cj (~I)U Cj (~2)

if E = et

if E = El II E2
or E = El 0 E2

if E = El; E2

127

Proof: Any implementation of a, contains no internal places, and therefore,

no clusters of internal places. By the definition of U:

Hence, by the compositional semantics of box expressions, there is a

unique cluster of internal places in I: corresponding to each cluster of

internal places in the implementations of the sub expressions of E.

By the compositional semantics of box expressions, for any implemen-

tation I:' of an expression, E', -:Te(I:') = Se(I:') and Tx(I:')· = Sx(I:').

Therefore, the places in the new clusters of internal places, constructed

by the semantics of the sequence and iteration operators, are not related

by ~p to places in any existing cluster of internal places. Hence, Cj (I:)

gives the set of clusters of internal places of I:. 0

Proposition 7 Let I: be an implementation of a box expression, E. If the

main connective of E is sequence, then there exists a cluster of internal places

in I:, which, when removed, leaves no undirected path between an entry place

and an exit place in I:, otherwise I: contains no such cluster of places.

Proof: The property is shown for an particular implementation, I:', con-

structed from disjoint implementations of the sub expressions of E. By

the properties of isomorphism, the proof also holds for an arbitrary im-

plementation of E .

• E = a - By definition, any implementation of a contains no internal

places.

• E = El 'II E2 and E = El 0 E2 - By Proposition 6, any candidate

cluster of internal places, X, in I:' originates from either I:l or I:2.

By the compositional semantics of the parallel and choice operators

Te(I:') = Te(I:d U Te(I:2), and Tx(I:') - Tx(I:l) U Tx(I:2). There-

fore, if X originates from I:l (respectively I:2), there remains a path

from an entry to exitplace through I:2 (respectively I:l).

128

• E = El; E2 - By Proposition 6, and the compositional semantics of

sequence the interface between ~l and ~2 formed by X = ~l· 0 ~2

is a candidate cluster. By the definition of U, the components ~l

and ~2 are disjoint in ~l U ~2' Therefore, by definition of the

e operator, there is no path between an entry place and an exit

place in the net ~a = ~l U ~2 e (~l· U ~2)' By the compositional

semantics of sequence, ~a is isomorphic to ~' with the candidate

cluster X removed .

• E = [El * E2 * E3J By the compositional semantics of iteration,

and Proposition 6, the candidate clusters of internal places must

originate entirely within one of the subnets, or from Xl = ~11· 0

~21 0 ~22· 0 ~31' or X2 = ~12· 0 ~22 0 ~21· 0 ~32' By the

compositional semantics of iteration:

Te(~/)

TX(~/)

Te(~l1) U Te(~12)

TX(~31) U TX(~32)

By Proposition 2, every transition in TX(~l1) (TX(~12)) is connected

to each transition in Te(~31) (Te(~32)) via a place in Xl (X2).

Therefore, if X originates from ~11' ~31 or Xl (respectively ~12' ~32

or X2), there remains a path from an entry to exit place through

~12' X2 and ~32 (respectively ~11' Xl and ~31)' If X originates

from ~21' or ~22' there remain paths from an entry to exit place

through ~12' X2 and ~32' and through ~11' x, and ~31'

o

Preconditions

Proposition 8 For any implementation, ~ of a box expression, E from the

syntax in Table 3.1, exactly one of the synthesis rules will be identified as

applicable.

129

Proof: By Propositions 3, 5, and 7, and Figure 3.3. D

3.4.3 Synthesis rule decomposition is sound

Atomic action

Proposition 9 Let L: be an implementation of a box expression. Whenever

the atomic action synthesis rule is applicable to L:, any implementation of the

refined expression produced by the rule, is isomorphic to L:.

Proof: By Proposition 8, L: contains exactly one transition, t. By Propo-

sition 3, L: is the implementation of an atomic action. By the compo-

sitional semantics of atomic actions, the label of t is the same as the

atomic action expression. Therefore, the synthesis to E = >.(t) is such

that any implementation of Eis isomorphic to L:. D

Parallel composition

Proposition 10 Let L: be an implementation of a box expression. Whenever

the parallel composition synthesis rule is applicable to L:, the recomposition of

the decomposed subnets, according to the refined expression produced by the

rule, is isomorphic to L:. Furthermore each of the decomposed subnets is an

implementation of some box expression over the syntax in Table 3.1.

Proof: By Proposition 8, L: is an implementation of El II ... II Ek, for some

k > 1, where each E, does not have II as the main connective. By the

associativity of the parallel composition operator, shown in Lemma 5.15

in [6], no ambiguity is introduced by omitting the bracketing of subex-

pressions in El II ... II Ek. Therefore, it is valid to decompose L: directly

into k subnets. By the compositional semantics of parallel:

L: = L:l U ... U L:k

By Proposition 5, L: contains exactly k disjoint components (i.e. the

number of connected components determines the value of k). By the def-

130

inition of the undirected connectedness relation, the equivalence classes

of ~ Na correspond to the sets of nodes in each disjoint component of

:E. Hence E is decomposed into k subnets, corresponding to the un-

known expressions El, ...,Ek, and the recomposition of these nets using

the compositional semantics of parallel produces a net isomorphic to ~.

By the associativity and commutativity of the parallel composition op-

erator (Lemma 5.15 in [6]), the ordering of the sub expressions in the

refined expression is unimportant. D

Choice composition

Proposition 11 For any choice expression, E = El D E2 D ... D Ek, where for

1:::;i :::;k, the subexpression E, does not have choice composition as its main

connective, the relation rve is an equivalence relation over the set of entry

transitions, Te(:E), and the 'set of equivalence classes, PTe' partitions Te(:E)

into Te(~d, Te(~2)' ... , Te(~k)'

Proof: By the compositional semantics of choice:

:E =iso :El U ... U :Ek

EB(-:E1 0 0 -:Ek, e) EB (~1· 0 ... 0 ~k·' x)

e(~l U U ~k U ~1·U ... U ~k·) (3.22)

Therefore, by definition of the EB operator, the entry interface of :E is

isomorphic to -:El 0 -:E2 0 ... 0 -:Ek. Hence, by definition of 0, and Te:

Te(~) = U Te(:Ei)
l:Si:Sk

Hence each t E Te(~) belongs to exactly one Te(~i)' for some 1 :::;i :::;k.

For t1 E Te(~i)' t2 E Te(:Ej) such that 1 :::;i,j :::;k and i =1= i, it will be

shown that t1 rfe t2· By definition of rve:

131

Since tl and t2 belong to different subnets, Ei and Ej, they cannot be

internally connected in the net E. Therefore tl;; N. t2. By definition of Q9,
I

tl .f~ t2• Hence two entry transitions obtained from different subexpres-

sions of the choice expression are not related by rve. The second part of

the proof involves showing that for any 1 ~ i ~k, and tl, t2 E Te(Ei),

then tl rve t2• The main connective of E, is not choice. It remains to

check the other possibilities for the main connective:

• E, is an atomic action: Ei contains a single transition. Therefore

tl rve t2 since t, = t2 and both the relations ~ Ni and rvo are reflex-

ive.

• Main connective of E, is sequence or iteration: By Proposition 5

t,~N. t2· Therefore, tl rve t2·
I

• Main connective of E, is parallel: E, can be written as FI II F2 II
... II Fm, where m > 1, and the main connective of each Fj, for 1 ~

j ~ m is not II. Let EFj, for 1 < j < m be disjoint implementations

of r; By the compositional semantics of II:

Te(Ei) = U Te(EFJ
l~j~m

Hence each t E Te(Ed belongs to exactly one Te(EFJ, for some

1 ~ j ~ m. If tl and t2 arise from different subexpressions, Fg and

Fh, then by the compositional semantics of II, and definition of Q9,

tl rvll t2. Therefore tl rv~ t2. If, however, t, and t2 arose from the

same subexpression, Fj, then there exists a transition t« E EFg such

that 9 #- j. By the compositional semantics of II, and definition of

Q9, tl rvll t3 and t2 rvll t3· Therefore tl rv~ t2. In either case, tl rve t2.

rve is an equivalence relation over Te (E). o

132

Corollary 2 For any choice expression, E = El 0 E2 0 ... 0 Ek, where for 1 ::;

i ::;k, the subexpression E; does not have choice composition as its main con-

nective, the set of equivalence classes PTx partitions Tx(E) into Tx(Ed, Tx(E2),

... , Tx(Ek)'

Proof: By Proposition 4, for 1 ::; i ::;k, every transition t E Tx(Ei) is

connected with respect to ~N' to some transition t' E Te(Ei). Further-
I

more, by the compositional semantics of the choice operator, there is

no transition t' E Te(Ej), such i i= j with t~N.t'. Hence PTx' as de-
I

fined by (3.4) is a set of equivalence classes which partitions Tx(E) into

Tx(El), ... , Tx(Ek)' 0

Proposition 12 Let E be an implementation of a box expression. Whenever

the choice composition synthesis rule is applicable to E, the recomposition of

the decomposed subnets, according to the refined expression produced by the

rule, is isomorphic to E. Furthermore each of the decomposed subnets is the

implementation of some box expression over the syntax in Table 3.1.

Proof: By Proposition 8, E is an implementation of El 0 ... 0 Ek for some

k > 1, where each E, does not have 0 as the main connective. By

the associativity and commutativity of the choice composition operator

(Lemma 5.12 in [6]), no ambiguity is introduced by the omission of brack-

ets, or the ordering of the sub expressions in El 0 ... 0 Ek• Therefore, it

is valid to decompose E directly into k subnets. By Proposition 11, and

Corollary 2, PTe and PTx correspond to the partitioning of T« and Tx

into Te(El), ... , Te(Ek) and Tx(El), ... , Tx(Ek) respectively. Hence IPTe I
determines the value of k. Note that by the semantics of choice compo-

sition, and the definition of PTx' IPTXI = IPTe I·

By the compositional semantics of choice, and definition of the EElopera-

tor, the entry and exit interfaces of E are isomorphic to ~l ®~2®"'®~k

and El- ® E2- ® ... ® Ek- respectively. Therefore, by definition of the ®

133

operator, for each place 8 E ~ (8 E ~.), 8 has arcs to (from) some non

empty set of transitions in Te(~i) (TX(~i)) for 1 :S i :S k. Again by the

definition of 0 and EB,the arcs to (from) a particular set of transitions

T' E Te(~i) (T' E TX(~i)) were inherited from a single entry (exit) place

of ~i. By Proposition 1, there are no isolated or duplicated places in the

nets ~i for 1 :S i :S k. Hence x, and Xx, defined in (3.6) are the decom-

position of ~ and ~. into the entry and exit interfaces of the subnets ~i

for 1 :S i :S k. Therefore (3.7) defines a net ~a which is isomorphic to the

disjoint union of ~l' ~2' ... , ~k by replacing the entry and exit interfaces

of ~ with x, and Xx respectively. By Corollary 1, for each 1 :S i :S k,

every node in ~i is connected to some transition t E TX(~i). Therefore

g(TX(~i)) is the set of nodes in ~i. By Corollary 2 FTx is the partition

of TX(~a) into TX(~l)' TX(~2)' ... , TX(~k). Therefore, (3.8) decomposes

~a into the subnets ~l' ~2' ... , ~k' such that their choice composition is

isomorphic to ~, and for 1 :S i :S k, ~i is the implementation of the

sub expression Ei. Note that since the choice operator is associative and

commutative, the ordering of the subexpressions in the refined expression

is unimportant. o

Sequence

Proposition 13 Let ~ be an implementation of a box expression. Whenever

the sequential composition synthesis rule is applicable to ~, the recomposition

of the decomposed subnets, according to the refined expression produced by the

rule, is isomorphic to Y). Furthermore each of the decomposed subnets is an

implementation of some box expression over the syntax in Table 3.1.

Proof: By Proposition 8, ~ is the implementation of El; ... ; Ek for some

k > 1, where each E, does not have sequence as the main connective.

By the associativity of the sequential composition operator (Lemma 5.9

in [6]), no ambiguity is introduced by omitting the bracketing of subex-

press ions in El; ... ; Ek. Therefore, it is valid to decompose ~ directly into

134

k subnets. By the compositional semantics of sequence:

~ =iso ~1 U ... U ~k

ED(~l· ® ~2' 0) ED... ED(~k-l· ® ~k, 0)

e(~l· u ...U ~k-l· U ~2 U ... U ~k) (3.23)

By Proposition 7, ~ contains exactly k - 1 internal clusters, each of

which, when removed leaves no path between an entry and exit place.

Note that the number of internal clusters determines the value of k.

Hence,S;, defined by (3.9) is the set of interface clusters which contains

elements isomorphic to:

~i· e ~i+l for 1 :::;i :::;k - 1

Removing any cluster of places c E S· partitions ~ into two components,,
~a and ~b, corresponding to the connected components containing the

entry and exit places respectively. By (3.23):

ED(~l· e ~2' 0) ED... ED(~i-l· ® ~i' 0)

e(~l· u ... U ~i· U ~2 U ... U ~i)

ED(~i+l· ® ~i+2' 0) ED... ED(~k-l· ® ~k, 0)

e(~i+l· u ... U ~k-l· U ~i+2 U ... U ~k)

where c is isomorphic to ~i·®~i+l' and by definition (3.11), Ce(c) = ~a'

By Proposition 3, each ~i contains at least one transition. Therefore,

<» defines an ordering of the clusters in 5·,with Xi =u; ~i· ® ~i+l' for,
1 :::;i :::;k - 1. Therefore, by (3.12):

~~= ~i e (~i U ~i·) if 1< i < k - 1

if i = k

if i= 1

135

For any net I:N, every place in I:N• has no outgoing arcs, and every place

in -EN has no incoming arcs. Therefore, by definition of ® operator, for

each place s E Xi (for each Xi E S;), the incoming arcs to s must have

arisen from some place in I:/, and the outgoing arcs from s must have

arisen from some place in -Ei+l. Furthermore, the arcs of every place

in I:i• and -Ei+l are represented at least once (possibly many times) in

the places in Xi. By Proposition 1, there are no duplicate places in I:i.

Therefore, the functions Ie and Ix, (3.13) can be used to decompose the

clusters into I:i• and -Ei+l, for 1 ::; i ::;k - 1. Hence the decomposition

in (3.14) constructs implementations of the, as yet unknown, expressions

El, ...,Ek, and the recomposition of these nets using the compositional

semantics for the sequence operator produces a net isomorphic to I:. D

Iteration

Let I:, be any implementation of a box expression, such that I: satisfies the

preconditions of the the iteration rule. By Proposition 8, and the composi-

tional semantics of iteration, there exists nets I:jk for 1 < j < 3, 1 < k < 2

such that:

I: ==iso I:11 U I:12 U I:2l U I:22 U I:3l U I:32

E9(-E11® -E12,e) E9(I:11• ® I:12·,X)

e(-El1 U -E12 U I:3l• U I:32·)

E9(I:11• ® -E21 ® I:22• ® -E3l, 0)

E9(I:12• ® -E22 ® I:2l • ® -E32, 0)

e(I:l1• U I:12• U -E21 U I:2l• U -E22 U I:22• U -E3l U -E32)

Proposition 14 For any implementation, I:, of a box expression, E, such

that I: satisfies the preconditions of the iteration rule. The set of internal

clusters, Si!, defined in {3.15} gives the two clusters:

136

Proof: By Proposition 6, the set of clusters of internal places, Ci(~) is given

by:

The following points are used in the proof:

1. By the compositional semantics of iteration:

Te(~)

Tx(~)

Te(~l1) U Te(~l2)

TX(~3l) U TX(L-32)

2. By Proposition 4, for each subnet, ~' E {~11' ~l2' ~2l' ~22' ~3l' ~32}

3. By definition of the ® and EBoperators, for any pair of transitions

tl E TX(~l1)' and t2 E Te(~2l)' or t2 E Te(~3d then there exists a

place in Sil which has arcs connected to both tl and tz- Similarly,

for any pair of transitions tl E TX(~l2)' and t2 E TX(~2d, or t2 E

Te(~32) then there exists a place in Si2 which has arcs connected

to both tl and t2·

Firstly, it is shown that an internal cluster, c, arising from one of the

subnets of ~ cannot satisfy the conditions for inclusion in Sif .

• c is from ~11 or ~l2 : By 1, 2, and 3:

where N' = Ni(~3l)UNi(~32)UNi(~2dUSilUSi2UTx(~1l)UTx(~l2).

If c is from ~11 or ~l2' then N' c Na - (Sx u c). Hence, by 2, if c

is from ~11 then:

137

and if c is from ~12 then:

Therefore, by 1 and (3.15), c cannot belong to Si].

• c is from ~21 or ~22 : By 1, 2, and 3:

where N' = Ni(~l1) U Ni(~12) U Sil U Si2 U Ni(~31) U Ni(~32)' If c

is in ~21 or ~22' then N' c Na - (Se U c). Hence:

Therefore, by (3.15), c cannot belong to Sif'

• c is from ~31 or ~32 : Symmetric to the case where c is from ~11

or E12.

Secondly, the two clusters, Sil and Si2 are shown to satisfy the condi-

tions for inclusion in Sif' By the compositional semantics of iteration,

removing Sil and Se (Sil and Sx) from E leaves a net in which the nodes

of N, (El1) (Ni (E31)) are disjoint from the other subnets. Hence, by 1, no

transition in Te (Ell) (in Tx (E31)) is connected to a transition in Tx (E)

(in Te(E)). Therefore, by (3.15), Sil belongs to Sif' A similar argument

can be applied to Si2 with sub nets E12 and E32. Hence Sif = {Sip Si2}'

D

Proposition 15 Let E be an implementation of a box expression. When-

ever the iteration synthesis rule is applicable to E, the recomposition of the

decomposed subnets, according to the refined expression produced by the rule,

is isomorphic to E. Furthermore each of the decomposed subnets is isomor-

phic to the natural implementation of some box expression over the syntax in

Table 3.1.

138

Proof: By Proposition 14, Si! = {Sil' Si2}. By the compositional semantics

of iteration, removing Se and Sil (Se and Si2) from ~ leaves a net in

which the nodes of N, (~11) (Ni (~12)) are disjoint from the other subnets.

However, the nodes of Ni(~12) (Ni(~l1)) remain connected to the exit

places by Si2 (Sil). Hence:

A similar argument applied to the removal of Sx (~), and either Sil or

Si2 shows:

By the semantics of iteration, Te(~) = Te(~l1) U Te(~12) and Tx(~) =

TX(~31) U TX(~32). Therefore, by Proposition 1, Xe and Xx, defined in

(3.16) are the decomposition of ~ and ~. into the entry interfaces of

~11 and ~12' and the exit interfaces of ~31 and ~32. Hence:

EB(~l1· Q9 ~21 Q9 ~22· Q9 ~31' 0)

EB(~12·Q9 ~22 Q9 ~21· Q9 ~32' 0)

By Proposition 14, and (3.17), Xl corresponds to the set of places (~11·Q9

~22·) U (~12· Q9 ~21·) andX2 corresponds to (~31 Q9 ·~21)U (~32 Q9 ~22).

Therefore:

~b ==iso ~11 U ~22 U ~32

EB(~l1· Q9 ~22·' 0) EB(~22 Q9 ~32' 0)

e(~l1· U ~22 U ~22· U ~32)

U ~12 U ~21 U ~31

EB(~12·Q9 ~21·' 0) EB(~21 Q9 ~31' 0)

e(~12· U ~21 U ~21· U ~3d

139

Since, for 1 < i < 3, ~il and ~i2 are isomorphic implementations of Ei,

then ~b consists of two isomorphic nets. Hence, ~c which is defined to

be one of the two nets can be given by:

EB(~I· ® ~2·' 0) EB ('"L:2 ® '"L:3, 0)

e(~I· U '"L:2 U ~2· U '"L:3)

By (3.18), SI corresponds to the set of places ~1· ® ~2· and S2 corre-

sponds to '"L:2 ® '"L:3. By the compositional semantics of ~c, Se(~c) =

Se(~l) and SX(~c) = SX(~3)' Therefore:

Pi! {TX(~I)' TX(~2)}

Pi
2

{Te(~3), Te(~2)}

Therefore, by Proposition 1, Xi! and Xi
2
, defined in (3.20) are the de-

composition of SI and S2 into the entry interfaces of ~2 and ~3, and the

exit interfaces of ~1 and ~2' Hence:

By the compositional semantics of ~c, Te(~c) = Te(~I) and Tx(~c) =

TX(~3)' Therefore, by Proposition 4, the definition of Te and Tx, and

the compositional semantics of ~d:

~d 19(5e(~c)) ~1

~d 19(5x(~c)) ~3

~d INa-9(Se(~c)USx(~c)) ~2

The nets ~1' ~2 and ~3 are implementations of the, as yet unknown,

expressions El,E2,and E3, and the recomposition of these nets using the

compositional semantics for iteration produces a net isomorphic to E. 0

140

3.4.4 Correctness of the algorithm

Theorem 1 For any implementation, L:, of a box expression, E, from the

syntax in Table 3.1, given the input net, L:, the synthesis algorithm termi-

nates with an output expression, E', such that any implementation of E' is

isomorphic to L:.

Proof: By induction on the number of transitions in the net.

Base case (number of transitions=l): By Proposition 3, the syn-

thesis rule applied is the atomic action rule. By Proposition 9, the net

is synthesised to an expression, E', such that any implementation of E'

is isomorphic to L:.

Induction step (number of transitions=n): By Proposition 8, one

of the synthesis rules will be applied, producing a refined expression, R.

By Propositions 10, 12, 13 and 15, L: will be decomposed into a finite

collection of subnets, L:l, ...,L:k, for some k > 1, and the sum of the

number of transitions in L:l, ...,L:k is equal to n (the number of transi-

tions in L:). The refined expression R, will contain El, ... , Ek, references

to the, as yet, unknown expressions, of which, the nets L:1, ... , L:k are

implementations. By Propositions 10, 12, 13 and 15, El, ... , Ek can be

represented using the box expression syntax in Table 3.1. Hence, by

Proposition 3, each of the nets L:l, ...,L:k must contain at least one tran-

sition, and therefore less than n transitions. Therefore, by the induction

hypothesis, the synthesis algorithm, given each of the nets L:l, ...,L:k as

input will terminate with output expressions E~, ..., E~, such that for

1 :S i :S k, the implementation of E~ is isomorphic to L:i. The output

expression, E' is obtained by replacing the references El, ... , Ek in R, by

the expressions E~, ..., E~. Hence the synthesis algorithm terminates on

input L:. By the Propositions in Section 3.4.3, any implementation of E'

will be isomorphic to the input net, L:. o

141

3.5 Related problems

In this section, the time complexity of the synthesis algorithm is shown to

be polynomial. This result is used to show that the solutions, presented for

those related problems which use the synthesis algorithm, are efficient. The

points of non-determinism in the algorithm, highlighted by the analysis in Sec-

tion 3.4 are discussed. This leads to a definition of a canonical form for box

expressions from the language generated by the syntax in Table 3.1, and an al-

gorithm for CANONICALBox EXPRESSION SYNTHESIS. Solutions to PETRI

Box ISOMORPHISMand Box EXPRESSION ISOMORPHISMare presented in

Section 3.5.4. A set of axioms is introduced, and shown to be complete. These

axioms are used in the proofs generated by Box EXPRESSION ISOMORPHISM

PROOF. The algorithm for Box EXPRESSION ISOMORPHISMPROOF is pre-

sented in Section 3.5.6. Finally, examples of the use of each of the algorithms

are given in Section 3.5.7.

3.5.1 Time complexity

The analysis of the time complexity in this section is based on the size of the

input net, I: = (S, T, W, .\). For simplicity, it will be assumed that the size of

each transition label is bounded by some constant. Let n = lSI + ITI, and a

be the number of nodes and arcs respectively, in I:. The number of arcs, a, is

bounded by lSI· ITI < n2 because I: is bipartite, and there is at most one arc

between any pair of nodes. Hence, the time complexity of Box EXPRESSION

SYNTHESISwill be given in terms of n.

The time complexity of checking the four structural properties in the

ANALYSE function is given in Table 3.3. In the worst case, all four prop-

erties must be checked. Therefore, ANALYSEhas time complexity O(n3). The

properties Pr2, Pr3 and Pr4 can be checked using variants of the depth-first

search algorithm, which has time complexity O(n + a). Property Pr4 requires

at most lSI applications of depth-first search.

142

Property Time complexity

Property Pr, 0(1)

Property Pr2 0(n2)

Property Pr3 0(n2)

Property Pr 4 0(n3)

Table 3.3: Time complexity of checking properties

The five synthesis rules have the time complexity shown in Table 3.4. The

net decomposition for PARALLELuses an extension of the algorithm for check-

ing property Pr2. In CHOICE, computing the equivalence classes of the relation

"'e, involves looking at every pair of arcs of every pair of entry transitions.

The number of such pairs of arcs is bounded by ITI2. ISI2 < n4. The time

complexity of SEQUENCE is dominated by the time taken to find the set of

clusters of internal places (an extension of the algorithm for checking property

Pr4). A similar procedure is used in ITERATION to identify the set of clusters,

s.;

Synthesis rule Time complexity

ATOMIC 0(1)

PARALLEL 0(n2)

CHOICE 0(n4)

SEQUENCE 0(n3)

ITERATION 0(n3)

Table 3.4: Time complexity of the synthesis rules

Each decomposition has time complexity 0(n4) where n is the number of

nodes in the net at the node being decomposed, and each decomposed net has

fewer nodes than the original net. During the decomposition of 2:, transitions

are either discarded when the iteration rule is applied, or are synthesised to

an atomic action. Therefore, the tree produced by the synthesis algorithm has

143

at most ITlleaf nodes. The parallel, choice, sequence and iteration synthesis

rules decompose the input net into at least two subnets. Hence, the total

number of nodes in the tree", is bounded by 2 . ITI - 1 Therefore, given the

input net, ~, there will be at most 2 ·ITI- 1 applications of the SYNTHESISE

procedure, with the time taken for each application bounded by c- n4, for some

constant, c. Hence, the time complexity of SYNTHESISEis O(n5
).

The time taken to produce an expression from the tree data structure

is O(n). Therefore, the time complexity of Box EXPRESSION SYNTHESIS,

dominated by the call to SYNTHESISE, is O(n5).

3.5.2 Non-determinism

The analysis of the synthesis algorithm in Section 3.4 highlights three areas

of non-determinism: The bracketing order of (sub)expressions whose main

connective is 0, ;, or II, the ordering of the sub expressions of choice and parallel

(sub)expressions, and the choice between the two connected components in the

partially decomposed iteration net, ~b. In this section, each of these points of

non-determinism is discussed in more detail.

The synthesis algorithm produces an expression tree which abstracts away

from a bracketing order for the associative operators, 11,0 and ;. The Ex-

PRESSIONfunction imposes a right-associative bracketing order, to produce a

properly bracketed expression. For example, an implementation of the expres-

sion

E = ((all b) II (c IId)) IIe

could be synthesised to the equivalent expression:

E' = a II (b II (c II (d IIe)))

2Assuming ITI leaf nodes, and a binary decomposition. If an internal node has more

than two children, then there will be fewer than 2· ITI - 1 nodes in total.

144

There are 42 possible bracketing orders", of E, and all of them give an expres-

sion equivalent to E.

In the parallel and choice synthesis rules, an arbitrary ordering of a set

of equivalence classes is chosen. This determines the ordering of the subnets

in the list field of the node being decomposed, and hence the ordering of the

sub expressions in the synthesised expression. For example, an implementation

of the expression E, above could be synthesised to the equivalent expression:

E" = d II (b II (e II (c II a)))

There are 120 (=5!) different orderings of the sub expressions a, b, c, d and e in

E. Each ordering gives an expression equivalent to E.

In the iteration synthesis rule, the partial decomposition, ~b is a net con-

sisting of two connected components. One component is chosen at random,

and the other is discarded. Proposition 15 demonstrates that the two con-

nected components of ~b are isomorphic to each other. Therefore, whichever

component is chosen, there will be no difference in the synthesised expression,

other than, perhaps, the ordering of subexpressions.

The analysis of the non-determinism in the synthesis algorithm allows the

number of expressions equivalent to a given expression to be computed. For

example, the size of the equivalence class, to which the expression E belongs

is given by 42 x 120 = 5040.

3.5.3 Canonical form

A standard form for box expressions is described, and extended to an ordered

standard form by introducing a total ordering over expressions. Imposing

a fixed bracketing order, such as the right-associative scheme used by Ex-

PRESSION, on an ordered standard form expression, gives a canonical form

expression. A modification of the synthesis algorithm, to give a solution to

'Given by the 5th Catalan numb", C(n) ~ n~' (:).

145

CANONICAL Box EXPRESSION SYNTHESIS is described. Finally, an imple-

mentation for CANONICAL Box EXPRESSION is presented, which rearranges

a box expression into its canonical form.

Standard form

The standard form for box expressions abstracts away from a bracketing order

for the associative operators, 11,0 and;. Hence the standard form of, for

example:

E = (a II (b II c)) 0 (((d; e); (/; g)) 0 h)

is given by:

E' = (a II b II c) 0 (d; e; I,g) 0 h

The SYNTHESISE procedure of the synthesis algorithm finds a standard form

expression, which is bracketed by EXPRESSION. Therefore, by Theorem 1, for

any box expression, E, the standard form of E, is an unambiguous represen-

tation of E. Repeatedly applying the term rewriting rules in Table 3.5 allows

any box expression to be rewritten into standard form.

El II (E2 II E3) -+ El II E2 II E3
(El II E2) II E3 -+ El II E2 II E3
El 0 (E2 DE3) -+ El 0 E2 0 E3

(ElDE2)DE3 -+ El 0 E2 0 E3

El; (E2; E3) -+ El; E2; E3

(El; E2); E3 -+ El; E2; E3

Table 3.5: Rules for rewriting an expression into standard form

146

Ordered standard form

A standard form expression has choice and parallel sub expressions of the form:

El II E2 II II e,
El 0 E2 0 0e,

for some k ~ 2. The analysis of the synthesis algorithm shows that for any

ordering of El, ... , Ek, the Petri box corresponding to the expression is the

same. Imposing a particular ordering on El, ..., Ek in such (sub)expressions

results in an ordered standard form expression. An ordering of El, ..., Ek can

be obtained by defining a total order, <e, over expressions, and finding a

permutation E~, ..., E~ of El, ..., Ek such that for 1 ::; i < k, E: ::;e E:+l, where

for expressions E and F:

E ::;e F {::}E -c, F V E = F

Firstly, an ordering, <A over atomic actions is defined. Let <b be any fixed

ordering over the set of basic actions, B. A unique word, A(a) E B* can be

associated with each atomic action, a by writing the basic actions in a in order

defined by <b. For any atomic actions, al and a2:

where <lex is a lexicographic ordering, using <b. For example, suppose <s

is such that a <s a <s b <s b <s C <b ... , then for atomic actions, al =

{b,a,c,a}, a2 = {a,b}, and a3 = {a,c,a}:

A(al) aabc

A(a2) ab

A(a3) aiic

Hence, by the definition of <A: a3 <A al <A a2.

Let <op be any fixed ordering on the types of box expressions - for example:

atomic <op parallel <op choice <op sequence <op iteration

147

-c, is defined inductively, with comparison between atomic actions as the

base case:

Let F and G be non-atomic standard form expressions, with types OPI and

OP2 and sub expressions FI, ... , Fm and GI, ...,Gn respectively. By induction

<e is defined for the sub expressions of F and G. Therefore, without loss of

generality, it can be assumed that if the type of F (G) is choice or parallel, then

FI, ... , Fm (GI, ...,Gn) are such that for 1 :S i < m, F; :Se Fi+1 (for 1 :S i < ti,

Gi :Se Gi+l) - i.e. if the sub expressions do not have this ordering, then they

can be rearranged, using <e into such an order. Expressions F and G can be

compared as follows:

F <e G {;:} OPI <op OP2

V (OPI = OP2 /\ m < n)

V (OPI = OP2 /\ m = ti /\ (:3i:S m : (Vj < i : Fj = Gj) /\

Fi<eGi))

Arbitrarily bracketed expressions, Ea and Eb can be compared, by applying

-c, to the standard forms E~ and E~ of Ea and Eb.

The definition of ordered standard form follows from <e. For a standard

form box expression, E, the ordered standard form, Ord(E), is given by:

Ord(E) = E~ 0 E~ 0 ... 0 E~ if E = El 0 E2 0 ... 0 e:
Ord(EI); Ord(E2); ... ;Ord(Ek) if E = El; E2; .. ;Ek

[Ord(EI) * Ord(E2) * Ord(E3)] if E = [El * E2 * E3]

if E = Cl!

E~ II E~ " ... " E~

where E~, ... , E~ is a permutation of Ord(EI), ... ,Ord(Ek) such that E: :Se

E:+1' for 1 :S i < k.

148

Canonical form

A canonical expression can be obtained from an ordered standard form ex-

pression by imposing a fixed bracketing order on (sub)expressions of the form

El op E2 op ... op Ek-l op Ek, where k > 1, and op E {II, D,;}. A suitable

bracketing order is the right-associative scheme:

El op (E2 op (... op (Ek-l op Ek) ...))

This is the bracketing order that the EXPRESSION function produces.

Canonical box expression synthesis

A small modification to the synthesis algorithm described III Sections 3.2

and 3.3 provides a solution to CANONICAL Box EXPRESSION SYNTHESIS.

The pseudo-code for the modified algorithm is presented below:

CANONICAL Box EXPRESSION SYNTHESIS(~)

1 N=new node

2 N.net=~

3 ORDERED SYNTHESISE(N)

4 return EXPRESSION(N)

ORDERED SYNTHESISE(N)

1 N.type=ANALYSE(N.net)

2 case N.type

3 atomic: ATOMIC(N)

4 parallel: PARALLEL(N)

5 choice: CHOICE(N)

6 iteration: ITERATION(N)

7 sequence: SEQUENCE(N)

8 for each node N' in N.list

149

9 do ORDERED SYNTHESISE(N')

10 if N.type=parallel or choice

11 then sort(N.list)

The additional work performed by CANONICALBox EXPRESSION SYNTHE-

SIS, to find a canonical form expression does not affect the overall time com-

plexity of the algorithm, which remains at O(n5
).

Canonical box expression

The ideas used in CANONICALBox EXPRESSION SYNTHESIScan be applied

to finding the canonical form of a box expression, without constructing an

implementation of the expression. It is not possible to obtain an efficient solu-

tion to CANONICALBox EXPRESSION by constructing an implementation of

the input expression, and using it as input to CANONICALBox EXPRESSION

SYNTHESIS,because the size of the implementation of an expression can be ex-

ponential in the size of the expression itself. For example, any implementation

of:

(a II ... " a) 0 (a " ... " a) 0 ... 0 (a " ... " a)

has an exponential number of places, and any implementation of an expression

with n levels of nested iteration has at least 2n transitions.

The algorithm for CANONICALBox EXPRESSION uses an expression tree

corresponding to the standard form of the input expression. A node of this tree

is similar to that used in the synthesis algorithm, Figure 3.1, except that the

net field is omitted. The standard form is rearranged into ordered standard

form by the method used in ORDERED SYNTHESISE. A properly bracketed,

canonical form expression is obtained from the ordered standard form, using

EXPRESSION.

CANONICAL Box EXPRESSION(E)

1 N =expression tree corresponding to standard form of E

150

2 VISIT(N)

3 return EXPRESSION(N)

VISIT(N)

1 if N.typejeatornic

2 for each node N' in N.list

3 do VISIT(N')

4 if N.type=parallel or choice

5 then sort(N.list)

Let a be the number of atomic a.ctions in a box expression, E. The time

complexity of the VISIT procedure is O(a2 ·loga), because there are at most

a nodes in the expression tree, and for each node, N, the size of N.list is at

most a. To sort a list of size a requires a . log a comparisons, each of which

requires 0(1) time (assuming that the size of the multiset of basic actions in

each atomic action is bounded by some constant).

Uniqueness of canonical form

The analysis of the non-determinism of the synthesis algorithm in Section 3.5.2

led to the definition of a canonical form, and modifications to the synthesis

algorithm so that it produces deterministic results. The resulting CANONICAL

Box EXPRESSION SYNTHESISalgorithm is used to show that there is a unique

canonical form box expression associated with each Petri box.

Proposition 16 Let ~ be an implementation of a box expression, E. The

expressions produced by CANONICAL Box EXPRESSION SYNTHESIS(E) and

CANONICALBox EXPRESSION(E) are in canonical form.

Proof: By the algorithms for CANONICAL Box EXPRESSION SYNTHESIS,

and CANONICAL Box EXPRESSION, and the definition of Ord(E), an

expression tree corresponding to the ordered standard form of E is pro-

duced. The EXPRESSION function, produces an expression, C, with

151

right-associative bracketing order from this tree. By the definition of the

canonical form, C is in canonical form. o

Proposition 17 Let ~x and ~y be implementations of box expressions, such

that ~x =u; ~y. The expressions, Cl and C2 obtained from calls to CANONI-

CAL Box EXPRESSION SYNTHESIS with nets ~x and ~y respectively are such

that Cl = C2·

Proof: By induction on the number of transitions in ~x and ~y, it is shown

that the ordered standard form expressions Ex and Ey, corresponding to

the expression trees synthesised from ~x and ~y respectively, are such

that Ex = Ey. By the definition of =iso, the number of transitions in ~x

is the same as the number of transitions in ~y. The proof relies on the

fact that all of the definitions and properties defined in Section 2.5, do

not rely on transition or place names - i. e. their effect on isomorphic

nets is identical.

Base case: ~x and ~y contain one transition. By Propositions 3 and 8,

the atomic action synthesis rule will be applied to ~x and ~y, to produce

expressions Q'l and Q'2· By the definition of =iso, Q'l = Q'2·

Induction step: ~x and ~y contain n transitions, for some n > 1. By

Proposition 8, and the definitions of Properties 1-4, the same synthesis

rule will be applied to both ~x and ~y:

Parallel: By (3.3), and definitions of ~Na and =iso, ~x and ~y are

decomposed into nets ~l' ... , ~k and ~~, ... , ~~ respectively, such

that there exists a permutation, () : l..k -+ l..k, with ~i =u; ~~(i)'

for 1 < i < k.

Choice: By the definitions of PTe and =iso, ~x and ~y are decomposed

into k subnets, for some k > 1. By (3.6), (3.7) and (3.8), and the

definition of =u», ~x and ~y are decomposed into nets ~l' ... , ~k

152

and E~, ... , E~ respectively, such that there exists a permutation,

(): l..k -+ l..k, with Ei =iso E~(i)' for 1 ~ i ~k.

Sequence: By (3.9), and definition of =u«, the set of clusters of internal

places, S;, has the same cardinality, k, for both Ex and Ey. Hence

Ex and Ey are decomposed into the same number of subnets. By

the definitions of <', and =i«, the ordered set of clusters Xl, ... , Xk

for Ex, and YI, ... , Yk for Ey are such that for 1 ~ i ~k, Xi =iso Yi.

Therefore, by (3.12), (3.13), and (3.14), and definition of =i«, Ex

is decomposed into nets El, ..., Ek, and Ey is decomposed into nets

E~, ..., E~ such that for 1 ~ i ~k, Ei =iso E~.

Iteration: Let Ebx and Eby be the partial decompositions of Ex and Ey

respectively, corresponding to Eb in the description of the iteration

synthesis rule. Similarly for Ecx and Ecy, corresponding to Ec. By

(3.15), (3.16), (3.17), and definitions of Ea, Eb and =iso: Ebx =u«

Eby. Proposition 15 shows that the two components of Ebx and Eby

are isomorphic to each other. Therefore, Ecx =u; Ecy. By (3.18),

(3.19), (3.20), and (3.21), and the definition of =iso, Ex and Ey are

decomposed into nets El, E2, E3, and E~,E~,E~ respectively, such

that for 1 < i ~k, Ei =iso E~.

The same synthesis rule is applied to both Ex and Ey. In the decom-

position performed by the synthesis rule applied to Ex and Ey, no new

transitions are created. Therefore, by Proposition 3, the subnets Ei and

E~, for 1 ~ i ~k produced by the decomposition of the synthesis rule

each contain fewer than n transitions. Hence, by the induction hypoth-

esis, for 1 ~ i ~k, the ordered standard form expressions E, and EL
synthesised from Ei and E~ are such that:

E~(i) if rule applied is parallel or choice

otherwise

153

Suppose the parallel or choice synthesis rule was applied. Let F1, •.. , Fk

and F{, ... , F~ be the reordering of the sets of expressions El, ... , Ek and

E~,...,E~according to <e. This reordering corresponds to lines 10 and 11

of ORDERED SYNTHESISE. By the definition of <e, for 1 ::; i ::;k,

F; = Fif. Therefore, the fully refined expressions Ex and Ey, synthesised

from ~x and ~y are such that Ex = Ey. The EXPRESSION function,

imposes a right-associative bracketing order on Ex and Ey to produce

expressions Cl and C2• Therefore Cl = C2• 0

Proposition 18 Let El and E2 be box expressions, with canonical forms Cl

and C2 respectively. The definition of canonical form is such that box(El) =

box(E2) if and only if Cl = C2·

Proof: Let ~l and ~2 be any implementations of El and E2 respectively.

By Proposition 16, Cl =CANONICAL Box EXPRESSION SYNTHESIS(~l),

and C2=CANONICAL Box EXPRESSION SYNTHESIS(~2).

Suppose box(E1) = box(E2), then by definition of boxf), ~1 ==iso 1:2.

Therefore, by Proposition 17, Cl = C2•

Suppose Cl = C2. By Theorem 1, and definition of boxt}: box(C1)

box(E1), and box(C2) = box(E2). Therefore box(Ed = box(E2). 0

3.5.4 Decision problems

The two decision problems, PETRI Box ISOMORPHISM, and Box EXPRES-

SION ISOMORPHISMcan be solved using CANONICALBox EXPRESSION SYN-

THESIS and CANONICAL Box EXPRESSION respectively. In both cases, two

canonical form expressions are found, and compared. The pseudo-code for the

two problems is presented below:

PETRI Box ISOMORPHISM(~l' ~2)

1 Cl =CANONICAL Box EXPRESSION SYNTHESIS (~d

154

2 C2=CANONICAL Box EXPRESSION SYNTHESIS(~2)

3 if Cl = C2

4 then return yes

5 else return no

Box EXPRESSION ISOMORPHISM(El, E2)

1 Cl =CANONICAL Box EXPRESSION(Ed

2 C2=CANONICAL Box EXPRESSION(E2)

3 if Cl = C2

4 then return yes

5 else return no

When comparing atomic actions, al and a2 in canonical form expressions, Cl

and C2, the words A(ad and A(a2) should be compared. The correctness of

the algorithms follow from Proposition 18.

3.5.5 Axiom system

Table 3.6 contains the set of axioms that were referred to by the proof of

correctness of the synthesis algorithm, in Section 3.4. All of these axioms are

introduced in [6], and their soundness is shown there". In this section, it is

shown that the axioms can be used to rearrange any box expression into its

canonical form, and therefore, the set of axioms in Table 3.6 is complete.

Proposition 19 The associativity axioms in Table 3.6 allow any box expres-

sion, E, to be rearranged to give an equivalent expression E', which has right-

associative bracketing order.

Proof: By structural induction over the box expression syntax. Note that

since the axioms in Table 3.6 are sound, the rearranged expression, E'

is equivalent to the original expression, E.

4Although the soundness proofs are in the context of renaming equivalence, they also

hold for the stronger equivalence of isomorphism.

155

Associativity (El; E2); E3 = El; (E2; E3)

(El 0 E2) 0 E3 = El 0 (E2 0 E3)

(El II E2) II E3 = El II (E2 II E3)

Commutativity El 0 E2 = E2 0 El
El II E2 = E2 II El

Table 3.6: Axioms

Base case: The expression E = Q: has right-associative bracketing order.

Induction step: If E = [El *E2*E3], then by the induction hypothesis,

El, E2, and E3 can be rearranged, using the associativity axioms, to give

right-associatively bracketed expressions E~, E~ and E~. Hence, E can

be rewritten to [E~ * E~ * E~], which has right-associative bracketing

order.

If E = El op E2, where op E {II, O,;}, then by the induction hy-

pothesis, El can be rearranged to give a right-associatively bracketed

expression, E~. If E~ has the form FlOP F2, i. e. has the same main con-

nective as E, then by the associativity axiom, E can be rewritten in the

form FlOP (F2 op E2). By the induction hypothesis, the subexpression,

F2 op E2, can be rearranged to give a right-associatively bracketed ex-

pression, F~,which results in the right-associatively bracketed expression

F, op F~ for E. If the main connective of E~ is not op, then E2 can be

rearranged into E~, with right-associative bracketing order. Therefore,

E can be rewritten to E~ op E~, which has right-associative bracketing

order. o

Proposition 20 The axioms in Table 3.6 allow any box expression, E, to be

rearranged into an equivalent expression, C, such that C is in canonical form.

156

Proof: By structural induction over the box expression syntax. The rear-

ranged expression, C is equivalent to the original expression, E, because

the axioms in Table 3.6 are sound.

Base case: The expression E = a is in canonical form.

Induction step: By Proposition 19, E can be rearranged into an equiv-

alent expression, E', which has right-associative bracketing order. By

the induction hypothesis, the subexpression, E, of E' can be rearranged,

using the axioms in Table 3.6 to give the canonical form expression, E: .
• E' = El op E2, where op E {II, D}: By the induction hypothesis,

E', and therefore, E, can be rewritten to E~ op E~. By the def-

inition of right-associative bracketing order, E~ cannot have main

connective op. Therefore, there are four possible cases:

1. E~ does not have main connective op, and E~ -c, E~: By the

commutativity axiom:

E can be rewritten to E~ op E~, which is in canonical form.

2. E~ does not have main connective op, and E~ 2:e E~: The

expression E~ op E~ is in canonical form.

3. E~ has the form FlOP F2, and Fl -c, E~: i. e. E can be

rewritten to E~ op (FlOP F2). By the associativity and com-

mutativity axioms:

(E~ op Fl) op F2 Associativity

(FlOP ED op F2 Commutativity

Fl op (E~ op F2) Associativity

By the induction hypothesis, E~ op F2 can be rearranged into

canonical form, F, resulting in the canonical form expression,

FlOP F, for E.

157

4. E~ has the form FlOP F2, and r, ~e E~: The expression

E~ op (FlOP F2) is in canonical form .

• E' = El; E2: By the induction hypothesis, and the associativity ax-

iom for sequential composition, E', and therefore, E, can be rewrit-

ten to canonical form .

• E' = [El * E2 * E3J: By the induction hypothesis, E', and therefore,

E, can be rewritten to [E~ * E~ * E~], which is in canonical form.

o

Theorem 2 The axiom system in Table 3.6 is complete.

Proof: By Proposition 20, for any box expressions El and E2, the axioms in

Table 3.6 can be used to rearrange El and E2 into canonical forms Cl

and C2 respectively. By Proposition 18:

Hence, if El is equivalent to E2, there exists a sequence of axiom ap-

plications which rearranges El into E2. Therefore, the axiom system in

Table 3.6 is complete. 0

3.5.6 Generating proofs

In this section, an algorithm for Box EXPRESSION ISOMORPHISMPROOF is

presented which generates a proof that two box expressions are equivalent,

using the axioms in Table 3.6. The algorithm uses CANONICALPROOF which

generates a proof that the input expression is equivalent to its canonical form.

CANONICALPROOF is based on the structure of the proofs of Propositions 19,

and 20.

In the following pseudo-code, it is assumed that the variables Proof and

T' are accessible globally. Proof is a list of parse trees, and is initialised in

line 2 of CANONICAL PROOF to be the parse tree corresponding to the input

158

expression, E. T' is a global pointer which always points to the root of the

parse tree being manipulated by the BRACKET, SORT and ORDER procedures.

The statement Proofe-Proof-j- T' appends a copy of the parse tree, T' to the

list of parse trees, Proof.

CANONICAL PROOF(E)

1 T'= parse tree of E

2 Proof=[T']

3 BRACKET(T')

4 SORT(T')

5 return Proof

BRACKET(T)

1 case T.type

2 atomic: do nothing

3 iteration: BRACKET(T.left)

4 BRACKET(T.middle)

5 BRACKET(T.right)

6 sequence, choice, parallel:

7 BRACKET(T.left)

8 currente T

9 while current.left.type=T.type

10 temp=current.left

11 current.left=temp.left

12 temp.left=temp.right

13 temp.right=current.right

14 current.right=temp

15 Proof Proof+T'

16 current=current.right

17 BRACKET(current.right)

159

SORT(T)

1 case T.type

2 atomic: do nothing

3 iteration: SORT(T.left)

4 SORT(T.middle)

5 Sorert'Lright)

6 sequence,choice,parallel:

7 tempe T

8 while temp.type=Titype

9 do SORT(temp.left)

10 temp=temp.right

11 Sotrr(temp)

12 if T.type=parallel or choice

13 then ORDER(T)

ORDER(T)

1 do ternp=T

2 while temp.right.type=T.type

3 do if temp.right.left -c, temp.left

4 then swap temp.left and temp.right.left

5 Proof-Proof+ T'

6 temp=temp.right

7 if temp.right <e temp.left

8 then swap temp.left and temp.right

9 Proof- Proof+ T'

10 while at least one swap is performed

Figure 3.12 shows the tree manipulations carried out in lines 10-14 of

BRACKET, and lines 4 and 8 of ORDER, together with the corresponding ex-

160

BRACKET ORDER

-

ORDER

A-A
Figure 3.12: Manipulation of the parse tree

pression manipulation. The first and third manipulations correspond directly

to an application of the associativity and commutativity axioms respectively.

The second manipulation involves both the associativity and commutativity

axioms, as follows:

(El op E2) op E3 Associativity

(E2 op El) op E3 Commutativity

E2 op (El op E3) Associativity

The correctness of CANONICALPROOF follows from the correspondence of the

code with the structure of the proofs in Propositions 19, and 20. Note that the

BRACKET procedure contains an optimisation, because a direct translation of

the the proof structure of Proposition 19 results in an inefficient algorithm.

The optimisation rearranges an expression of the form El op E2, where El =

(E~ op (E~ op (... op (Ek-l op Ek) ...)))' for some k > 1 has right-associative

161

bracketing order into:

E~ op (E; op (... op (Ek-l op (Ek op E2))"'))

by repeatedly applying the associativity axiom. A right-associatively brack-

eted expression for, E, can be obtained by rearranging E2 to have right-

associative bracketing order.

Let a be the number of atomic actions in a box expression, E. The time

complexity of the BRACKET procedure is 0(a2), and 0(a2) manipulations

(axiom applications) are performed. The time complexity of SORT is 0(a3)

because there are at most a nodes in the parse tree, and the ORDER procedure

has time complexity 0(a2). ORDER is an implementation of bubble sort,

and for each call, it sorts at most a subexpressions. Therefore, at most a2

comparisons are made, each having time complexity 0(1) (assuming that the

size of the multiset of basic actions in each atomic action is bounded by some

constant). Hence the number of axiom applications performed by SORT is

0(a3).

Let El, E2 be box expressions, such that box(El) = box(E2)' By Proposi-

tion 18, the canonical forms of El and E2 will be the same. Therefore, Box

EXPRESSION ISOMORPHISMPROOF can produce a proof that El = E2 by con-

catenating the proofs generated by CANONICAL PROOF(El) and CANONICAL

PROOF(E2).

Box EXPRESSION ISOMORPHISMPROOF(El, E2)

1 Proofl=CANONICAL PROOF(El)

2 Proof2=CANONICAL PROOF(E2)

3 Output Proof,

4 Output Proof, in reverse order.

The time complexity of Box EXPRESSION ISOMORPHISMPROOF, on input

El and E2 is 0(a3), where a = max{ aI, a2}, and al and a2 are the number of

162

atomic actions in El and E2 respectively. The length of the proof generated

by Box EXPRESSION ISOMORPHISM PROOF is O(a3).

3.5.7 Examples

~1

Figure 3.13: Example nets

Figure 3.13 shows two nets, El and E2, which are implementations of unknown

expressions. The synthesis algorithm can be used to find expressions El and

E2 such that box(El) = [El], and box(E2) = [E2J. The expressions produced

by Box EXPRESSION SYNTHESIS, with inputs El and E2, will not necessarily

be in canonical form. For example:

Box EXPRESSION SYNTHESIS(El)

Box EXPRESSION SYNTHESIS(E2)

a II ((b D (c D d)) II e)
(c D (d D b)) II (a II e)

Using CANONICAL Box EXPRESSION SYNTHESIS, canonical expressions Cl

and C2, corresponding to El and E2, can be found. The same result is obtained

by applying CANONICAL Box EXPRESSION to the synthesised expressions, El

and E2:

Cl a II (e II (b D (c D d)))

C2 a II (e II (b D (c D d)))

Hence the calls to PETRI Box ISOMORPHISM(El, E2) and Box EXPRESSION

ISOMORPHISM(El, E2) both give the output "yes".

163

Box EXPRESSION ISOMORPHISMPROOF performs the rearrangement of

an expression into canonical form, using the application of a set of axioms.

Hence a proof that an expression is equivalent to its canonical form is produced.

Given equivalent expressions, El and E2as input, the algorithm generates

proofs that El = Cl and E2 = C2, where Cl and C2 are the canonical forms

of El and E2 respectively. As El and E2 are equivalent, Cl = C2, and a proof

that El = E2 can be obtained by concatenating the proof of El = Cl with the

proof of E2 = C2 reversed:

El a II ((b 0 (c 0 d)) " e)

a II (e " (b 0 ((;0 d))) Cl C2

a " ((b 0 (c 0 d)) " e)

(a " (b 0 (c 0 d))) II e

((b 0 (c 0 d)) " a) " e

(b 0 (c 0 d)) " (a " e)

((b 0 c) 0 d) " (a " e)

((c 0 b) 0 d) " (a " e)

(c 0 (b 0 d)) " (a " e)

(c 0 (d 0 b)) " (a " e)

E2

In general, the proof will not be the shortest possible. However, it has length

at most polynomial in the size of the input expressions.

164

Chapter 4

Synchronisation synthesis

4.1 Introduction

This chapter considers the extension of the synthesis algorithm of Chapter 3

by including support for the synchronisation operator. The semantics for syn-

chronisation operate globally on the net, which makes the synthesis problem

more difficult than for the operators in the basic syntax.

E"= a Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E*E*Ej Iteration

E sy A Synchronisation

Table 4.1: Language defining class of synthesisable Petri boxes

The synthesis problem is to provide an algorithmic translation from an

implementation, ~, of an unknown box expression, to an expression, E, such

that any implementation of E is isomorphic to E. The aim is to extend the

class of Petri boxes allowed as input to the synthesis algorithm presented in

Chapter 3, to cope with input nets which are implementations of box expres-

165

sions involving the synchronisation operator - i. e. an implementation of any

expression from the syntax in Table 4.1 is allowed as input to the synthe-

sis algorithm presented here. Unless stated otherwise, every box expression

should be assumed to be a member of the language generated by the syntax

in Table 4.1, and every net an implementation of such a box expression.

Box EXPRESSION SYNTHESIS

INSTANCE: Net, E, member of the class of Petri boxes allowed as input.

SOLUTION: Box expression, E from the syntax in Table 4.1,

such that box(E) = [E].

Section 4.2 investigates some of the issues affecting the synthesis of syn-

chronisation, and shows that the synthesis problem is NP-hard. The hardness

result arises because of the difficulty of identifying a grouping for the tran-

sitions to be represented by a particular synchronisation operator in the ex-

pression. Alternative approaches to the synthesis problem in the light of this

result are discussed in Section 4.2. Sections 4.3 and 4.4 present, a solution to

the synthesis problem for the class of input nets that can be obtained from

an expression over the syntax in Table 4.1. The solution reuses the synthesis

algorithm of Chapter 3. In Section 4.5, the correctness of the synthesis algo-

rithm is shown. The analysis carried out in Section 3.4 forms the basis for the

discussion, and solutions to related problems presented in Section 4.6. The

complexity of the problem of finding a canonical form is investigated in Sec-

tion 4.6.3. The investigation in Section 4.6.2 provides a basis for the derivation

of a complete axiom system for a fragment of the Petri Box Calculus containing

the synchronisation operator, presented in Section 4.6.4.

The semantics for the synchronisation and restriction operators, given in

Chapter 1 were given in terms of the synchronisation and restriction by a

single basic action. It is notationally convenient (and possible) to be able

to synchronise and restrict by a set of basic actions. The ability to use this

extended notation follows from the properties:

E sy a sy b E sy b sy a (4.1)

166

E rs a rs b = E rs b rs a (4.2)

Hence, for any set of basic actions A = {al, ... , an}, and expression E =

E' sy A (respectively E = E' rs A), the Petri box, box(E), can be constructed

by applying the semantics below to the equivalent expressions

E' sy al ... sy an (respectively E' rs al ... rs an). The correctness of (4.2) fol-

lows directly from the definition of restriction. The correctness of (4.1) is less

obvious, and is discussed further in Section 4.2.2.

£(E) is defined to be the set of basic actions that appears in the transition

labels of an implementation of E. The definition of E is limited to expres-

sions which do not contain the restriction or scoping operators - i. e. for any

expression, E, from the syntax in Table 4.1:

£(E) =

{LILEa}

£(El) U £(E2)

if E = a

if E = ElOpE2 for op E {II, O,;}

if E = El sy A

Figure 4.1 shows implementations of two simple box expressions, involving

the synchronisation and restriction operators. Note that by the definition of

scoping, the implementation of (a II a) sy a rs a is also an implementation of

the expression [a : a II al.

,,
I-j--I, ~ ,
: a :

E = (a II a) sy a
Synchronisation

E = (a II a) sy a rs a
Restriction

Figure 4.1: Synchronisation and restriction

The semantics for synchronisation used here are slightly different from

167

those of [6], in that originally a candidate synchronisation, T could consist

of a single element. In effect this means that a synchronisation operation

performed on a net would create a duplicate of each transition that takes

part in a synchronisation. Where duplication equivalence .is used as the net

semantic, the duplicates that are produced by a synchronisation operation are

insignificant. However, the duplicates are significant for isomorphism, and it

seems counter-intuitive for the synchronisation operation to produce them. It

would require only minor modifications to the synthesis algorithm presented

in Sections 4.3 and 4.4 to cope with the original semantics of synchronisation

given in [6], should it be necessary to do so.

4.2 Synchronisation

In this section an alternative semantics for the synchronisation operator are

presented, some general properties of synchronisation are discussed, and the

factors affecting the synthesis of expressions from nets containing synchronisa-

tion are investigated. In Section 4.2.4, Box EXPRESSION SYNTHESISis shown

to be NP-hard. Section 4.2.5 discusses various approaches to dealing with the

hardness result and concludes by restating Box EXPRESSION SYNTHESIS in

a form that allows an efficient solution.

4.2.1 Semantics of synchronisation

The semantics for synchronisation presented in Section 1.3 is based on a deci-

sion procedure which determines whether a particular multiset of transitions

constitutes a synchronisation or not. In this section, an iterative version of

the semantics for the synchronisation operation is described. The purpose

of introducing an alternative semantics is to provide greater intuition into the

workings of the synchronisation operator, and to allow the observation that ev-

ery synchronised transition can be viewed as arising from the synchronisation

of a pair of transitions.

168

A multiset of transitions, ')'(t) is associated with each transition t. Initially:

Vt ET: ')'(t) = {t}

The purpose of ')' is to ensure the correct number of synchronised transitions

are created. If the duplication equivalence of [6] is used in place of isomor-

phism, then ')' is not required, because duplicates are not significant. When

synchronising an implementation of a box expression on a basic action, a:

1. Find a pair of transitions, tl and t2 with a E >'(t1) and a E >'(t2), such

that there is no transition, t with ')'(t) = ')'(t1) + ')'(t2)'

2. Synchronise t, and t2 to obtain a new transition t with:

W(t, s)

W(s, t)

W(tl' s) + W(t2' s)

W(s, t1) + W(s, t2)

(for s E S UT)

(for s E S U T)

>.(t) (>.(td + >'(t2)) - {a, a}

')'(t) ')'(t1) + ')'(t2)

3. Repeat the process until no new synchronisations are available.

e 81 e 82 e 83

2 : ~::~..-.."""" -,-. - - - - ::::. -:.~"....::::::~: :_-----:: - - - - -..-..-..::.; :

I~b}~T~~r;4~:I~~E~---~~-t~--r~~:i;~-r~:cIt7
2: ..::~::~::-~:::::::~::: --:::~;::;::~::~~:~~~.._?:

Figure 4.2: Example of the iterative synchronisation scheme

The new transitions created in Step 2 are themselves candidates for syn-

chronisation, provided they have an a or a action in their labels. It is possible

for a transition to synchronise with itself (i.e. tl = t2 in Step 1). If such a

synchronisation occurs, then the synchronisation process will be infinite. In-

finite synchronisations are discussed in Section 4.2.2. Figure 4.2 shows an

169

implementation of the expression:

E = ({a,a} II {a,b} II {a,c}) sy a

The transitions arising from the synchronisation operator are shown with dot-

ted arcs and boxes. The following table illustrates the synchronisation process:

synchronisation new transition x "(

tl, t2 t4 {a, b} {tl,t2}

t2, t3 t5 {a, c} {t2,t3}

tl, t4 t6 {b,b} {tl,tl,t2}

t3, t5 t7 {c,c} {t2, t3, t3}

tl, t5 ts {b,c} {tl, t2, t3}

In the final row of the table, the transitions t3 and t4 could have been syn-

chronised instead of tl and t5, to obtain identical results. Once tl and t5

have been synchronised, the synchronisation of t3 and t4 is prevented because

"((t3) + "((t4) = {tl, t2, t3}' which is the same as "((ts). Using the iterative

semantics for synchronisation the transitions t4 and t5 in Figure 4.2 must be

created before the transitions t6, t7 and ts, while the semantics of Section 1.3

allows every synchronised transition to be created independently.

The following proposition shows that the two alternative semantics for

synchronisation are consistent with each other.

Proposition 21 For every box expression, E from the syntax in Table 4.1,

and basic action, a, let El and E2 be implementations of E sy a constructed,

respectively, using the semantics for synchronisation of Section 1.3 , and using

the iterative semantics for synchronisation presented here - then El =u: E2.

Proof: Follows from Lemma 6.3 in [6]. o

4.2.2 Properties of synchronisation

[6J shows that, in the context of duplication equivalence, the synchronisation

operator is both idempotent and commutative. The idea of the proof for com-

170

mutativityof sy in [6Jholds for the slightly different semantics for synchroni-

sation used here, and in context of isomorphism. For example, any implemen-

tations of El = ({a,e} II (a; c)) sy a sy c and E2 = ({a,e} " (a; c)) sy c sy a

are isomorphic. Figure 4.3 shows a net which is an implementation of both El

and E2. Applying the iterative semantics of Section 4.2.1 illustrates how the

transition ts in Figure 4.3 arises in different ways for El and E2:

expression operation synchronisation new transition A 'Y

El sya tl, t2 t4 {e} {tl' t2}

El sy c tl, t3 t6 {a} {tl,t3}

El . sy C t«. t4 ts 0 {tt,t2,t3}

E2 sy c ts, t3 t6 {a} {tl,t3}

E2 sy a tl, t2 t4 {e} {tl' t2}

E2 sy a t2, t6 ts 0 {tl, t2, t3}

The commutativity of the synchronisation operator means that it is possible

to synchronise on a set of basic actions without ambiguity. Theorem 6.4 (i) in

[6J shows that commutativity holds in the context of duplication equivalence.

The idea of the proof also works when the net semantic used is isomorphism.

Figure 4.3: Commutativity of synchronisation

The synchronisation operator is not idempotent in the context of isomor-

phism. This is because synchronising twice produces a second set of syn-

171

chronised transitions which are significant for isomorphism. For example,

Figure 4.4 shows ~I' and ~2' implementations of (a II a) sy a and (a II
a) sy a sy a respectively. While ~I and ~2 are duplication equivalent, they

are not isomorphic.

~l ~2

Figure 4.4: Idempotence of synchronisation

Multi-way synchronisation

A multi-way synchronisation is obtained when a transition arising from a syn-

chronisation operation is involved in a further synchronisation. An indirect

multi-way synchronisation occurs when the synchronised transition, and fur-

ther synchronisation are obtained from different applications of the sy op-

erator. The multi-way synchronisation is direct when both transitions arise

from the same application of a sy operator. For example, in Figure 4.2, the

transitions t6, t7 and t8 are direct 3-way synchronisations, while in Figure 4.3,

transition ts is an indirect 3-way synchronisation.

When synchronising on a basic action, a, a direct multi-way synchronisa-

tion can only be obtained if there exists a transition, t, in the scope of the sy

operator, with A(t)(a) > 1 or A(t)(a) > 1. For example, t2 in Figure 4.2 has a

label containing two a actions. Hence, the transitions t4 and ts, arising respec-

tively from the synchronisations tI, t2 and t2, t3, both have labels containing

an a action, and can therefore take part in further synchronisations.

To produce an indirect n-way synchronisation, there must be a transition,

t which is in the scope of n sy operations, on different basic actions, bI, ...,bn

172

for some n > 1, such that for 1 ~ i ~n, bi E ,X(t), or ~ E ,X(t). For example, in

Figure 4.3, the transition, tl is the the scope of synchronisations on the basic

actions, a and c, a E 'x(td, and c E ,X(t1).

Two restrictions on the form of atomic actions, which affect the type of

synchronisations that can be obtained are described below:

• If the action is restricted from being a multiset of basic actions to being a

set of basic actions, with the corresponding modifications to the seman-

tics of synchronisation, then it is not possible to obtain a direct multi-way

synchronisation. However, indirect multi-way synchronisations can still

be produced.

• Further restricting actions to be either a single basic action, or 0 pre-

vents the creation of either type of multi-way synchronisation. With this

restriction, every transition arising from a synchronisation operation has

the label, 0.

Intuitively, imposing one of these restrictions could make the synthesis

problem easier. However, it will be showI_lin Section 4.2.4 that the computa-

tional complexity of the problem is not affected by either of the restrictions.

Infinite synchronisation

Under certain circumstances, an application of the sy operator can produce

infinitely many synchronised transitions. Using the iterative semantics for

synchronisation, presented in Section 4.2.1, an infinite synchronisation is de-

tected when a synchronisation is performed which produces a new transition

with the same label as one of the synchronising transitions. For example if t,

and t2 synchronise to give a new transition, t, such that ,X(t) = 'x(td, then

it will be possible to synchronise t and t2, and so on. The simplest example

of an infinite synchronisation occurs when a transition can synchronise with

itself: El = {a, a} sy a. A more complex example is E2 sy {a, b}, where

E2 = ({a, a} II {a, b} " {a, b}). Figure 4.5 shows implementations of both El

173

and E2• Table 4.2, demonstrates that an infinite synchronisation is detected,

when applying the iterative semantics for synchronisation to E2 sy .{a, b}.

Figure 4.5: Infinite synchronisations

operation synchronisation new transition A 'Y 00- sy

sy a tl, t2 t4 {a, b} {tl,t2} no

sy a tl, t3 ts {a, b} {tl,t3} no

sya t2, t4 t6 {b,b} {tl, t2, t2} no

sya t3, t4 t7 {b, b} {tl,t2,t3} no

sy a t3, ts t8 {b,b} {tl,t3,t3} no

sy b t2, t3 tg {a,a} {t2' t3} no

sy b t2, ts tlO {a,a} {t2,tS} no

sy b t2, t7 tll {a, b} {t2,td yes

Table 4.2: Detecting infinite synchronisations

It is impractical to consider infinite nets as input to the synthesis algo-

rithm. Hence, it is not possible to synthesise expressions from the entire class

of implementations of box expressions from the syntax in Table 4.1. This im-

plies that, unlike the synthesis algorithm described in Chapter 3, an analysis

of the synthesis algorithm for synchronisation cannot provide a complete ax-

iomatisation of the subset of the Petri Box Calculus defined by the syntax in

Table 4.1.

174

An important point regarding infinite synchronisations is that from a be-

havioural view, only a finite number of the infinite number of synchronised

transitions are significant, and the remainder can never be enabled. There-

fore, it may be possible to modify the synchronisation operator semantics so

that insignificant transitions, from a behavioural point of view, are not cre-

ated. However, for structural semantics, such as isomorphism, every transition

created by an infinite synchronisation is significant.

4.2.3 Synthesis with synchronisation

In this section, some properties of the synchronisation operator are investi-

gated. This investigation is intended to give some insight into the synthesis

problem, and motivate approaches to a synthesis algorithm for the syntax in

Table 4.1, possibly by extending the algorithm described in Chapter 3. The

following areas are investigated:

• The overlap between expressions from the basic syntax, and those in-

volving the synchronisation operator.

• Equivalence when synchronising on different basic actions - i. e. expres-

sions E such that any implementation of E sy a is isomorphic to an

implementation of E sy b.

• Positioning of the synchronisation operators.

Only synchronisations that create at least one transition in the implementation

of the expression are considered. For example, the synchronisation operation

in (a II b) sy a has no effect, and is therefore not considered.

The underlying expression of an expression involving the synchronisation

operator is obtained by removing all instances of sy . For example, E2 is the

underlying expression of El, where:

El ((a II CL II b) sy aD (c II c II b) sy c) sy b

E2 (a II CL II b) 0 (c II c II b)

175

One approach to dealing with synchronisation is to try and identify in the

input net those transitions which have arisen from synchronisation, and remove

them. This would leave an implementation of the underlying expression, which

can be synthesised using the basic syntax synthesis algorithm.

Overlap with the basic syntax

The simplest example of the overlap between synchronisation and the basic

syntax is given by the expressions (a II a) 00 and (a II a) sy a which have

isomorphic implementations. Let Fl and F2 be:

((aDEl) II (aDE2))D0

((a 0 El) II (a 0 E2)) sy a (4.3)

In general, the expressions F, and F2 are equivalent, provided (£(El)U£(E2))n

{a, a} = 0 - i. e. the sub expressions El and E2 do not contain any a or a basic

actions:

The condition that El and E2 must not contain any a or a actions causes

problems in the identification of transitions that have arisen from synchroni-

sation. For example, Figure 4.6 shows an implementation of the expression

E = ((a 0 a) II a) 00. The transition t4, at first, appears to have arisen from

the synchronisation of t2 and t3' However, any synchronisation operation with

t2 and t3 in scope must also have tl and t2 in scope. The absence of an 0
transition t, such that t [X] {tl' t2} indicates that t4 cannot have arisen from

a synchronisation operator. This example demonstrates that a general proce-

dure for identifying those transitions arising from synchronisation can only be

achieved by examining the net globally.

The class of equivalent expressions determined by F, and F2 in (4.3) can

be extended to multi-actions. For example, Figure 4.7 shows a net which is

isomorphic to implementations of G: and G2:

Gl (({a,c}D{b,c,d}) II ({a,d}Db)) sy a

G2 ((({a,c}D{b,c,d}) II ({a,d}Db)))D{c,d}

176

Figure 4.6: Not a synchronisation

Figure 4.7: Overlap between synchronisation and basic syntax

From the point of view of synthesis, implementations of expressions involv-

ing only these limited forms of synchronisation can be synthesised using the

basic syntax algorithm described in Chapter 3.

Equivalent synchronisations

A transition arising from a synchronisation operation inherits the connectivity

of the synchronising transitions. Hence, if there are transitions present in the

net which have the same connectivity, it may be possible to synchronise on

different basic actions to produce equivalent results. For example, the net in

Figure 4.7 is isomorphic to implementations of HI and H2:

HI (({a,c}O{b,c,d}) II ({a,d}Ob)) sy a

H2 (({a,c}O{b,c,d}) II ({a,d}Ob)) sy b

In order to represent synchronised transitions which can be obtained from

a number of equivalent synchronisations, a synthesis algorithm must choose

exactly one of the equivalent synchronisations. As with the overlap between

177

synchronisation and the basic syntax, identifying equivalent synchronisations

entails examining the input net globally. For example, in Figure 4.8, it ap-

pears that i6 can be obtained by a synchronisation operation on either a or b.

However, the absence of a synchronisation between i4 and i5 means that only

the synchronisation on a is valid.

((aOb) II ((aOb);b)) sy a

Figure 4.8: Finding equivalent synchronisations

Position of the sy operators

A synchronisation operation over a basic action, a, has no effect on an expres-

sion or subexpression which does not contain any a or a basic actions. There-

fore, there is some flexibility in the positioning of synchronisation operators,

which preserve equivalence of the corresponding Petri boxes. For example:

provided that there are no atomic actions containing a or a in E2 (i. e. .c(E2) n
{a, a} = 0). Similarly for the sequence and choice operators. This property

does not apply to the iteration operator because the semantics of [El * E2 * E3]

use two copies of the implementations of El, E2 and E3. Hence, for example,

[(a; a) sy a*b*c] =1= [a;a*b*c] sy a

178

Nets (i) and (ii) in Figure 4.9 are implementations of [(a; a) sy a * b * c] and
[a; a * b * c] sy a respectively. When the synchronisation operator is at the top

level, extra synchronisations take place between the two copies of a; a.

(i) (ii)

Figure 4.9: Synchronisation and iteration

4.2.4 Synthesis with synchronisation is NP hard

In this section, the complexity of synthesising expressions from nets which are

implementations of expressions from the syntax in Table 4.1 is investigated.

When the syntax of Table 4.1 is used to represent the synthesised expression,

the synthesis problem is shown to be NP hard. Some approaches to deal

with this result are discussed in Section 4.2.5. The NP hardness result for

the synthesis problem is demonstrated using a transformation from ONE-IN-

THREE 3SAT [47, 25] to SYNCHRONISATIONASSIGNMENT.

179

ONE-IN-THREE 3SAT

INSTANCE: Set, U of variables, collection C of clauses over U such

that each clause C E C has [c]= 3.

. QUESTION: Is there a truth assignment for U such that each clause in C

has exactly one true literal?

SYNCHRONISATIONASSIGNMENT

INSTANCE: Net, E, the implementation of a basic syntax box expression,

and set, X, of new transitions.

QUESTION: Is the net E EB(X,0) an implementation of a box expression

from the syntax in Table 4.1?

Let U = {Ul' ... , un}, and C = {Cl, ... ,Cm}, where each C, = {Cil' Ci2' Ci3}' be

an arbitrary instance of ONE-IN-THREE 3SAT. A corresponding instance of

SYNCHRONISATIONASSIGNMENT can be constructed from U and C. Let E

be an implementation of E = El; E2; E3, where:

El ((Ui 0 .::;ui) 0 ... 0 (Un D..;u;l)"')

E2 (((CliO ClJ 0 ClJ; ... ; ((Cml 0 Cm2) 0 Cm3) .. ·)

E3 ((Ul 0 ,Ul); ... ; (Un 0 ,Un)",)

There is a correspondence between the atomic actions in E, and the transitions

in E (formalised in Section section-action-transitions). Hence t(u), can be used

to unambiguously refer to the transition in E, corresponding to the action, u,

in E, since no action appears more than once in E. Every pair of transitions

tl, t2 arising from atomic actions in El has the same connectivity, i.e. tl I><l t2'

Similarly, for each choice sub expression of E2 and E3• The set of transitions,

X, is given by Xl U X2, where:

Xl = {{t(Ui), t(Ui)} 11 ::; i ::;n}
X2 = {{t(Ui), t(CiJ 11 ::; i ::;m}

180

Every transition in X, individually, is a valid synchronisation. However, all

the transitions can be represented by the addition of synchronisation oper-

ations to E if and only if there is a satisfying assignment to the instance of

ONE-IN-THREE 3SAT. The set of transitions, X, is designed to enforce choices

between equivalent synchronisations. The form of the sub expressions, El, E2

and E3, ensure that the choices between equivalent synchronisations corre-

spond to choices of assignment to literals in the instance of ONE-IN-THREE

3SAT.

• El provides the conjugates of the set of literals. Every synchronisation

in X contains exactly one transition arising from El. In the implemen-

tation of El, every transition has the same connectivity. Hence, for each

synchronisation x EX, no constraints on the choice of action for the syn-

chronisation operation used to create x are imposed by the transitions

arising from El.

• E2 represents the set of clauses, C, of the instance of ONE-IN-THREE

3SAT. Each clause is represented by a choice construct. There is one

synchronisation between each choice construct, and El, enforcing the

choice of exactly one of the three literals in the clause.

• E3 is used to enforce the choice between each literal and its negation (e.g.

a and --,a). There is one synchronisation between each choice construct

in E3, and El. The form of E means that the choice between a literal

and its negation must be maintained throughout the set of clauses, C,

because any synchronisation operation used to create a transition in the

set Xl (synchronisations of transitions arising from El and E3) must be

in the scope of El, E3, and therefore also E2.

The implementation, L;, of E can be constructed in polynomial time. Each

new transition, x E X has the form {tl' t2}, where tl and t2 are transitions in

L;.

181

As an example, the transformation from ONE-IN-THREE 3SAT to SYN-

CHRONISATIONASSIGNMENT is illustrated using the instance of ONE-IN-

THREE 3SAT given by:

U {a, b, c}

C {{a, b, --,a}, { --,b, c, --,a}, {b, --,a, --,c} }

The corresponding instance of SYNCHRONISATIONASSIGNMENT is shown in

Figure 4.10. The transitions in X are indicated using dotted arcs. The ex-

pression, E is given by:

E (aO.::;aDbD~OcD~)

(a 0 b 0 --,a); (--,b 0 c 0 --,a); (b 0 --,a 0 --,c)

(a 0 --,a); (b 0 --,b); (c 0 --,c)

The net in Figure 4.10 is an implementation of E sy {a, --,b, --,c}. This

corresponds to a satisfying assignment, a = true, b = false, c = false to the

instance of ONE-IN-THREE 3SAT. In this example, there are no other possi-

bilities for the synchronisation set, and hence no other satisfying assignments.

There is some flexibility in the position of the synchronisation operators. How-

ever, the form of E sufficiently constrains the allowed positions for the sy

operators to ensure that any valid synchronisation assignment corresponds to

a satisfying assignment of the instance of ONE-IN-THREE 3SAT. In addition,

no transition arising from E can be obtained as the result of a synchronisation

operation, and no synchronised transition from X can be represented using

the basic syntax.

The NP hardness result for SYNCHRONISATIONASSIGNMENT does not

immediately imply that the synthesis of synchronisation is NP hard, because

it is assumed that the input to the synthesis algorithm is an implementation of

a Petri box. Instances of ONE- IN-THREE 3SAT for which there is no satisfying

assignment are transformed into nets that are not the implementation of any

box expression. Fortunately, a simple argument can be used to show that any

182

Figure 4.10: Transformation from an instance of ONE-IN-THREE 3SAT

183

efficient solution to Box EXPRESSION SYNTHESIScan be extended to provide

a solution to ONE-IN-THREE 3SAT.

Suppose there is an efficient algorithm for Box EXPRESSION SYNTHESIS.

The behaviour of this algorithm is undefined on an input that is not the

implementation of a box expression: An incorrect result may be obtained, or

the algorithm may not terminate at all. For any polynomial time algorithm,

there exists fixed values c, d such that for an input of size n, the algorithm

terminates in at most c· nd steps. Thus, the case of non-termination can be

detected in polynomial time by maintaining a count of the number of steps

made by the algorithm. As soon as the upper bound has been exceeded, it is

known that the input was not an implementation of a box expression.

Given an arbitrary instance of ONE-IN-THREE 3SAT the corresponding in-

stance of SYNCHRONISATIONASSIGNMENTcan be constructed in polynomial

time, and passed as input to Box EXPRESSION SYNTHESIS. The synthesis

algorithm can be modified to recognise a non-termination condition, in which

case it is known that there is no satisfying assignment for the instance of

ONE-IN-THREE 3SAT. If the algorithm terminates with a synthesised expres-

sion, then a candidate satisfying assignment for the instance of ONE-IN-THREE

3SAT has been found. The candidate assignment can be checked in polyno-

mial time. If the assignment does not satisfy the instance of ONE-IN-THREE

3SAT then the input to the synthesis algorithm cannot be an implementation

of a box expression - therefore there is no satisfying assignment. Hence, an

efficient solution to Box EXPRESSION SYNTHESIScan provide an efficient solu-

tion to ONE-IN-THREE 3SAT. Therefore, under the assumption that P i= NP,

there is no efficient algorithm for Box EXPRESSION SYNTHESIS.

Proposition 22 The synthesis problem, Box EXPRESSION SYNTHESIS, as

defined in Section 4.1 is NP-hard.

Proof: Follows from the argument and construction given above. 0

184

4.2.5 Tractable solutions to synthesis with synchronisa-

tion

In this section, some possible approaches to dealing with the NP hardness

result of Section 4.2.4 are discussed. It is possible that any of these approaches

could be used to produce a satisfactory solution to the synthesis problem .

• Restrict the input language: The class of nets allowed as input to

the synthesis algorithm could be restricted to be implementations of

expressions derived from some subset of the syntax in Table 4.1. For

example, if the use of the synchronisation operator is forbidden, the

synthesis problem becomes tractable, as demonstrated in Chapter 3.

A less severe restriction is to restrict the choice operator so that no

atomic actions are allowed to appear in a choice context - i. e. all choice

expressions have the form:

where no Ei, for 1 ~ i ~n, is an atomic action. This certainly prevents

the form of expression constructed by the transformation from ONE-IN-

THREE 3SAT, and more generally, significantly reduces the scope for

equivalent synchronisations. Another restriction that, intuitively, makes

the problem simpler is to restrict atomic actions to be single basic ac-

tions, or sets of basic actions, instead of multisets of basic actions. How-

ever, the NP hardness result is based on expressions that contain only

single basic actions as atomic actions. Of course, there is the possibility

that the synthesis problem will be even more difficult when multisets of

basic actions are permitted .

• Heuristic solution: Heuristics are generally more suited to optimisa-

tion problems where there is a range of acceptable solutions. In such

cases, an algorithm may be efficient, but does not guarantee to give

the best possible solution. Instead, heuristics are used to give a "good"

. 185

solution most of the time. The synthesis problem, however, is not an

optimisation problem, as the result must be an expression whose imple-

mentation is isomorphic to the input net. In cases where there is more

than one possible expression, every solution is regarded as equally good.

Hence, any heuristic algorithm for the synthesis of synchronisation will

take an exponential amount of time for some inputs, and therefore can-

not be regarded as a tractable solution. The aim of the heuristics are to

synthesise an expression quickly, for the majority of input nets .

• Increase expressiveness of output language: For certain problems,

increasing the size of the solution space eliminates the constraints which

make the problem hard. For example, INTEGER PROGRAMMING is NP-

complete [33, 15, 25]. However, if the solution is allowed to be a set of

real numbers rather than a set of integers, the problem becomes LIN-

EAR PROGRAMMING [34] which has a polynomial time solution. For

the synthesis algorithm, increasing the size of the solution space involves

adding new operators to the syntax used to represent the synthesised

expression, or replacing existing operators with more expressive ones. A

new operator could be designed specifically to cope with the NP-hardness

result. Alternatively, an additional operator from the box calculus could

be added to the syntax of Table 4.1. Using an existing operator is more

desirable because there is already justification for its inclusion in the box

calculus. Two such operators are refinement and scoping. The refine-

ment operator allows sub expressions to be moved outside the scope of a

synchronisation operator. For example, using the refinement operator,

the net in Figure 4.6 can be synthesised to:

(((X 0 a) II a) sy a)[X +- a]

In addition, an expression, Er, for the net in Figure 4.10 can be synthe-

sised without having to find a satisfying assignment to the corresponding

186

instance of ONE-IN-THREE 3SAT:

Er (((aD~DbD~DcD.::;c)

(Xl 0 -,a); (X2 0 -,a); (X3 0 -,a)

(a 0 -,a); (b 0 -,b); (c 0 -,c)) sy {-,a, b, -,c})

[Xl ~ aD b][X2 ~ -,b 0 C][X3 ~ b 0 -,c]

With the introduction of new basic actions not used elsewhere, the scop-

ing operator can be used to represent each synchronised transition in-

dependently of every other synchronised transition. For example, using

the scoping operator, and a new basic action, n, the net in Figure 4.6

can be synthesised to:

[n : (a 0 a 0 n) II (a 0 n)]

As with refinement, the scoping operator allows an expression, Es, for the

net in Figure 4.10 to be synthesised without entailing the production of

a satisfying assignment to the corresponding instance of ONE-IN-THREE

3SAT:

Es [{nl,n2,n3,n4,n5,n6}: (aD~DbD~DcD.::;cDfilDfi2D

fi3 0 fi4 0 ns 0 fi:6)

(a 0 b 0 =a 0 nl); (-,b 0 c 0 =a 0 n2); (b 0 -,a 0 -,c 0 n3)

(a 0 -,a 0 n4); (b 0 -,b 0 n5); (c 0 -,c 0 n6)]

The scoping operator is used in place of the synchronisation operator,

rather than in addition to it, as with refinement.

• Use a different notion of equivalence: An alternative structural

equivalence to isomorphism could be used as a basis for equality of Petri

boxes. For example, if duplication equivalence is used, then it is possible

to produce multiple copies of each synchronised transition. Hence, the

187

net in Figure 4.10 can be synthesised to:

Ed ((aD.::;aDbD~DcD~)

(a 0 b 0 --,a); (--,b 0 c 0 --,a); (b 0 --,a 0 --,c)

(a 0 --,a); (b 0 --,b); (c 0 --,c)) sy {a, --,a, b, --,b, c, --'c}

The implementation of Ed is duplication equivalent to the net in Fig-

ure 4.10, although not necessarily isomorphic to it.

E··= a Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E* E* E] Iteration

[A:E] Seoping

Table 4.3: Output box expression syntax

Of the possible approaches described above, the extension of the output

syntax by replacing the synchronisation operator with the scoping operator was

chosen to be investigated further. The syntax used to represent synthesised

expressions is given in Table 4.3. The use of the scoping operator has several

desirable properties:

• The overlap between the basic syntax, and the scoping operator is such

that transitions that can be represented using the scoping operator can

be identified by a local analysis of the net. Identifying transitions arising

from the synchronisation operator required a global analysis of the net,

as shown by the example in Figure 4.6 .

• The scoping operator allows synchronised transitions to be represented

independently of each other. In particular, this resolves the choice be-

tween equivalent synchronisations, and eliminates the constraints that

the NP-hardness result relied upon.

188

• To represent synchronised transitions using the scoping operator, new

basic actions are introduced. These basic actions do not appear in the

labels of the transitions of the input net. Hence, there is a reasonable

degree of flexibility in the positioning of the scoping operators. Placing

the scoping operators so that they enclose as large a sub expression as

possible, means that the possible positions are limited to:

- The top level of the expression.

- Immediately inside an iteration operator.

• It is possible to represent multi-way synchronisations using the scoping

operator. For example, the net in Figure 4.2 can be synthesised to [N :

El, where:

N {n4' n5, n6, n7, ns, ng, nlQ, nu}

E ({a, a} 0 {n;} 0 {n4' a, b} 0 {n6, n7, b, b} 0 {ns} 0 {nu})

II ({a, b} 0 {fi4} 0 {fi6} 0 {ri7} 0 {filii})

II ({a,e} 0 {c,e,nS,ng} 0 {b,e,nlQ,nu} 0 {a,e,n5})

Although the synthesised expression is much larger than the original

expression, it has a regular structure. This is illustrated by Figure 4.11,

which shows the implementation of E (i. e. before the application of the

scoping operator).

The technique of representing synchronised transitions using the scoping

operator cannot be applied to infinite synchronisations. However, infinite nets

are not considered as input to the synthesis algorithm. The synthesis problem

is restated with the modification to represent the synthesised expression using

the scoping operator. It is this definition of the problem that is used for the

remainder of the chapter.

189

Figure 4.11: Synthesis of multi-way synchronisation using the scoping operator

Box EXPRESSION SYNTHESIS

INSTANCE: Net, E, member of the class of Petri boxes allowed as input.

SOLUTION: Box expression, E from the syntax in Table 4.3,

such that box{E) = [E].

4.3 The synthesis algorithm

Box EXPRESSION SYNTHESIS takes as input a net, E, which is the imple-

mentation of some unknown box expression from the syntax in Table 4.1. The

output of the algorithm is a box expression, E, from the syntax in Table 4.3,

such that E is an implementation of E.

In this section, an algorithm for Box EXPRESSION SYNTHESIS, based

on the CANONICALBox EXPRESSION SYNTHESISalgorithm of Chapter 3, is

presented. A new synthesis rule, SCOPING is introduced. This rule is described

in detail in Section 4.4.

190

4.3.1 Outline of the algorithm

Let ~ be an implementation of an expression from the syntax in Table 4.1.

The underlying net, ~a, of ~ is obtained by removing the set of transitions,

Tsc(~):

Theorem 3 in Section 4.5 shows that ~a is the implementation of a basic syntax

box expression. Hence, a canonical form expression, Ea, can be synthesised

from the underlying net, ~a, by the CANONICAL Box EXPRESSION SYN-

THESIS algorithm of Chapter 3. Ea is known as the underlying expression for

~.

The pseudo-code for Box EXPRESSION SYNTHESIS is given below. The

root node, N, is initialised with the underlying net of the input net, ~. The

SYNTHESISEprocedure, described in Section 4.3.4, finds the underlying expres-

sion for ~, and constructs the equivalence classes of the relation "'¢>. PRUNE

discards those parts of the expression tree constructed by SYNTHESISE,whose

purpose was purely for the computation of the equivalence classes of "'¢>. The

pruned expression tree is similar to the one that would be obtained using

CANONICAL Box EXPRESSION SYNTHESIS. The SCOPING rule deals with

the set of transitions, Tsc(~), by augmenting the underlying expression with

applications of the scoping operator. The SCOPING synthesis rule is described

in Section 4.4.

Box EXPRESSION SYNTHESIS(~)

1 N=new node

2 N.net=~ e Tsc

3 SYNTHESISE(N)

4 PRUNE(N)

5 SCOPING(N, ~)

6 return EXPRESSION(N)

191

The remainder of this section is concerned with the modifications to the

CANONICAL Box EXPRESSION SYNTHESIS algorithm to compute the equiva-

lence classes of the relation "'rp. These equivalence classes partition the set of

transitions in the underlying net of E, and are used by the SCOPING synthesis

rule.

4.3.2 Data structure

The synthesis algorithm constructs a tree data structure which represents the

synthesised expression. Each node of the tree has the form shown in Fig-

ure 4.12. The net field contains the net to be synthesised. The synthesis

algorithm analyses the net to determine the synthesis rule to be applied, and

sets the type field accordingly. If the type is atomic action, then the node is

a leaf node, and the action field is set. Otherwise, the node is internal, and

the list field is used to store an ordered list of subnets obtained by the net

decomposition performed by the synthesis rule.

Net

Type

Partition

Action I List

Figure 4.12: Data structure of a Node

The data structure has been modified from Chapter 3 to include the parti-

tion field. This field is an ordered list of sets of the transitions contained in the

net field, and represents the partitioning of the transitions corresponding to

the equivalence relation "'rp. The mapping between actions in the expression

and sets of transitions is implicit in the ordering of the list. The order atomic

192

action nodes are reached using a depth-first traversal of the tree match the

ordering of the sets of transitions in the list.

4.3.3 Modified synthesis rules

Extended versions of the atomic action and iteration synthesis rules are de-

scribed in this section. The extension from the original rules, described in

Chapter 3, are to allow the transitions in the input net to be partitioned

according to the equivalence relation, "'<p.

Atomic action

The atomic action synthesis rule is applied when the input net contains a

single transition, t. The partition field of the node is initialised to contain a

single set {t}. Figure 4.13 shows the effect of the atomic action synthesis rule

on the implementation of an expression E = .a.

atomic
[{td]
a

Figure 4.13: Atomic action synthesis rule

Iteration

Let E be a implementation of a basic syntax box expression which satisfies

the preconditions of the iteration synthesis rule (see Chapter 3). The itera-

193

tion synthesis rule performs a partial decomposition of 2:, resulting in a net

containing two connected components, 2:Cl and 2:c2 which are isomorphic to

each other (shown in Chapter 3). For example, for an implementation of the

expression E = [a*b*e], the partial decomposition shown in Figure 4.14 would

be performed.

decom position

Figure 4.14: Decomposition performed by iteration synthesis rule

Instead of discarding one component, and decomposing the other compo-

nent into three subnets, corresponding to the sub expressions El, E2 and E3

in [El * E2 * E3l, the modified iteration synthesis rule decomposes both 2:c1

and 2:c2' Hence, six subnets, 2:1, ... ,2:6, are produced by the net decomposi-

tion performed by the iteration synthesis rule. Let Ei, for 1 ::; i ::;6: be the

canonical form expression synthesised from 2:i. Since the two components in

the partial decomposition are isomorphic, the expression [El * E2 * E3l will be

identical to [E4 * E5 * E6l. Hence, an isomorphism between the transitions in

2:CJ and 2:c2 can be obtained, allowing the transitions of 2: to be partitioned

according to the relation, "'</>.

For example, for an implementation of the expression, E = [a * b * el,
the decomposition shown in Figure 4.15 will be obtained. The method for

computing the partition field of the root node in Figure 4.15 will be explained

in Section 4.3.4.

Once the entire expression tree and the equivalence classes of the relation

"'</> have been constructed, the PRUNE function discards the second set of

194

iteration

atomicatomic atomic atomic

[{tIll
b ca a

atomic atomic

b c

Figure 4.15: Iteration synthesis rule

195

three child subtrees of each iteration node. Hence, the modifications described

here have no effect on the output of the algorithm. The analysis of the time

complexity in Chapter 3 assumes that no portion of the input net is discarded

during the synthesis process. Therefore, the time complexity of the algorithm

(not taking into account the time complexity of SCOPING), remains at O(n5),

where n is the number of nodes in the input net.

4.3.4 Partitioning the transitions

The pseudo-code below gives the SYNTHESISEprocedure called by Box Ex-

PRESSION SYNTHESIS. This code is the ORDERED SYNTHESISE procedure,

presented in Chapter 3, extended by lines 12 and 13 to compute the partition

field of the node data structure. The remainder of the synthesis algorithm,

including the ANALYSEfunction, and the synthesis rules PARALLEL, CHOICE

and SEQUENCE is exactly as described in Chapter 3, and is not repeated here.

The ATOMIC and ITERATION synthesis rules are as described in Chapter 3,

with the modifications of Section 4.3.3. The sorting of the list field of the

node, performed in line 11, is based on a total order of box expressions, such

as that used in Section 3.5.3 in Chapter 3.

SYNTHESISE(N)

1 N.type=ANALYSE(N.net)

2 case N.type

3 atomic: ATOMIC(N)

4 parallel: PARALLEL(N)

5 choice: CHOICE(N)

6 iteration: ITERATION(N)

7 sequence: SEQUENCE(N)

8 for each node N' in N.list

9 do SYNTHESISE(N')

196

10 if N.type=parallel or choice

11 then sort(N.list)

12 if Nrtypeseatomic

13 then N.partition = PARTITION(N)

The PARTITION function computes the partitioning of the transitions of the

net, N.net, from the partition fields of the child nodes of N. Two operations

on lists, + and U, are used in the computation. + is an append operation,

with, for example:

The empty list is represented by E, and for any list L, L + E = L. The list

union operation, U, is defined for pairs of lists of equal length, and the result

list has the same length as the operand lists. For lists L, = [AI, A2, ... , An],

and L2 = [Bl' B2, ... , Bn], The list union, Ll U L2 is defined by:

Hence, for example:

PARTITION(N)

1 X = []
2 if N.type = iteration

3 then let <PI, ... , <P6 be the partition fields

of the child nodes of N (in order)

4 for i= 1 to 3

5 X = X + (<Pi U <Pi+3)

6 else for each node N' in N.list (in order)

7 X = X + N'.partition

8 return X

197

For example, the PARTITION function applied to the root node in Fig-

ure 4.15 returns the list:

which is constructed from the partition fields of the leaf nodes in Figure 4.15

as follows:

4.3.5 Example

In this section, an example input to the synthesis algorithm is introduced.

The results of Box EXPRESSION SYNTHESIS up to, but not including, the

call to SCOPING are presented. The action of the scoping synthesis rule on

this example is described in Section 4.4.

The net used as input to Box EXPRESSION SYNTHESIS is shown in Fig-

ure 4.16. This net, E, is an implementation of the expression:

(d;[(d;((00({a,a} II {a,b} II {a,e})) sy a); d) sy d*a*[e*b*c] sy cl) sy d

Those transitions arising from synchronisation operations are indicated by

dotted boxes and arcs in Figure 4.16. Since all the synchronisation operations

are finite, E is a suitable input to the synthesis algorithm. An underlying net,

Ea, unique up to isomorphism with E - Tsc(E), is shown in Figure 4.17. Ea is

used to initialise the net field of the node, N.

The call SYNTHESISE(N) constructs the tree data structure given in Fig-

ure 4.18. The net fields of the nodes are omitted in Figure 4.18. The partitions

corresponding to the partition field entries, qh to ¢8 are given in Table 4.4.

The call to PRUNE in Line 4 of Box EXPRESSION SYNTHESIS results in

the expression tree shown in Figure 4.19. The underlying expression, which

can be obtained from the tree data structure, is:

198

··············;·1·'''']

-v , ~ !
---.'

,-t_ -
_~ 0 :'39
-,-,

Figure 4.16: Input to the synthesis algorithm

199

Figure 4.17: Underlying net

200

Figure 4.18: Tree structure constructed by SYNTHESISE

201

¢3 [{td, {t5}, {t4}, {t6}, {tlO}]

¢4 [{t3}, {ts}, {t7}, {tg}, {tu}]

¢5 [{tI4' tI5}, {tIS, tI9}, {t22' t23}]

¢6 [{tI6, t17}, {t20' t2d, {t24' t25}]

¢7 [{t5}, {t4}, {t6}]

¢S [{ts }, {t7 }, { tg}]

Table 4.4: Partitioning of the transitions in the underlying net

Sequence

No </>1

/ I

/
Atomic Iteration

N, [{td] N2 </>2
{d} vi 1-

/
Sequence Atomic Iteration

N3 </>3 NlO [{t'2}] Nu </>5

V I I" {a} /' I I"

Atomic Parallel Atomic Atomic Atomic Atomic

[{ t2}] Ns </>7 Ng [{t,0}] N'2 [{t,4}] N
'
3 [{t,s}] N'4 [{t22}]

{d} v: I I" {d} {cl {b} {?}

Atomic Atomic Atomic

6 [{td] N7 [{t4}] Ns [{t6}]

{a,a} {~,b} {-;:;,c}

N

Figure 4.19: Pruned expression tree

202

4.4 Scoping synthesis rule

The scoping synthesis rule is applied after an expression tree for the underlying

net, ~ - Tsc(~), has been synthesised. The scoping rule inserts scoping opera-

tors, and atomic actions into expression tree in such a way that they generate

exactly the set of transitions, Tsc(~), that were removed from the input net.

Central to the scoping synthesis rule is the relation between the transitions in

the underlying net and the atomic actions in the synthesised expression. This

relation is represented in the expression tree by the partition field of the nodes

in the tree.

A set of new basic actions, {nI, Til, n2, ii2, ...}, is assumed to be available.

These actions do not appear anywhere in the labels of transitions in the input

net. Every atomic action added to the expression tree by the scoping synthesis

rule contains at least one new basic action, and each new basic action used,

is seeped by one of the scoping operators inserted by the synthesis rule. The

positions in the expression tree where the scoping operators are inserted are

at the top level, and immediately inside each iteration operator.

The scoping synthesis rule, SCOPING deals with the set of transitions
Tsc(~), that were removed at the beginning of the synthesis process. Scor-
ING takes the pruned expression tree, N, synthesised from the underlying net,
~ - Tsc(~), and the input net, ~, and modifies N so that it represents an ex-
pression whose implementation is isomorphic to E, SCOPING begins by calling
SCOPE to insert a scoping operator at the top level of the synthesised expres-

sion (i.e. at the root node, N, of the expression tree). At this point, the set of
transitions to be dealt with is given by Tsc(~). Tr is initialised to be the set
of transitions remaining to be dealt with after the top level scoping operator
has been added.

SCOPING(N, ~)

1 Tt = ScoPE(N,Tsc(~))

2 VISIT(N,Tt)

VISIT(N,Tt)

203

1 if N.type=iteration

2 then for i=l to 3

3 do r-, = SCOPE(N.list[i),Tr n N.list[i).partitiOIi)

4 VISIT(N .list [i),Trl)

5 if N.type=choice or parallel or sequence

6 then for each node N' in N.list

7 VISIT(N',Tr n N'.partition)

The recursive procedure, VISIT traverses the expression tree in a depth first

fashion. The parameters of VISIT are N, the node currently being visited, and

Tr, the set of transitions remaining to be dealt with in the current subtree

(i.e. the subtree with root node N). When VISIT reaches a node whose type

is iteration, SCOPE is called three times to modify the iteration expression

from [El * E2 * E3] to [[AI: En * [A2 : E~] * [A3 : E~]]. At each node, the

set of transitions yet to be represented by a scoping operator is partitioned

between the child nodes. For each t E Tr, the nodes representing transitions

from the set n(t) must all be contained in the same subtree, otherwise they

would have been represented by a higher level scoping operator. Hence, Tr

can be partitioned using the partition field, </>, of each child node as follows:

Trn</> = {t E Tr I 'Vt' E n(t),~T' E </>: t' ET'}

A call to SCOPE(N, Tr) determines the subset of Tr that can be created by
a scoping operator inserted into the expression tree at the node N. If the set
of transitions that can be represented is non-empty, INSERT SCOPING is called'
to modify the expression tree. The pseudo code for SCOPE is given below.

ScoPE(N,Tr)

1 U=Tr

2 X = 0
3 while U =f:. 0
4 choose any t E U

5 Tt = if>(tl) 8 if>(t2)8 ...8 if>(tn)

where Tb(t) = {tl, ... , tn} and if>= N.partition

204

6 T' = a minimal set

{t' ET I (A(t') = A(t)) 1\ (:lA E t; :n(t') = A)}

such that \:It', U E T' : Tb(u) = n(t') =} u = t'

7 if IT'I = ITtl
8 then X = X + {t}
9 Tr = Tr - T'

10 U = U -T'

11 if X :f. 0 then INSERT SCOPING(N,X)

12 return Tr

The variable U stores the transitions from Tr that still need to be checked.

In Line 1, U is initialised to be Tr. The multiset X records a representative

transition from Tr for each new basic action to be scoped at this level. The

while loop (Lines 3-10) chooses an arbitrary transition, t, from U. n(t) gives

the unique set of base transitions that, collectively, have the same connectivity

as t. For every base transition, there is a corresponding atomic action in the

expression tree. The partition field of node N gives the mapping between

the atomic actions of the subexpression, E', represented by the subtree with

root N, and the transitions in the underlying net of the input net. Hence,

any scoping operation on E' that synchronises the set of transitions Tb(t) =
{tl, ... , tn} will create the set of transitions Tt, given by:

where c/>(t) is the equivalence class of "-It/> containing t. The scoping operation
represented by t can be inserted into the expression tree at the node N only
if, for every set of base transitions in A E Tt, there is a transition t' in U with

Tb(t') = A and >.(t') = >.(t). Hence, if the set of transitions, T' computed
in Line 6 has the same size as Tt, then t is a suitable representative for a
scoping operation at this point in the expression tree, t can be added to the
set X, and T' can be removed from Tr. The set of transitions T' will always
contain at least one transition, as t satisfies the conditions for inclusion in
T'. Hence, for each iteration of the while loop, U will decrease in size. If
there are some transitions that can be created by a scoping operator at the

205

node N in the expression tree, then INSERT SCOPING is called. Let X be the
multiset of transitions to represent using a scoping operation. Every transition
in X can be represented independently of any other transition. This approach
requires O(IXI2) new basic actions to be introduced. In some cases it is possible

to impose a hierarchy (partial order) on X, based on the size of the set of
base transitions for each x EX. In such cases, only one new basic action is
required for each x EX, giving an upper bound on the number of new actions
introduced equal to IXI.

INSERT SCOPING(N,X)

1 A = 0
2 for each x, in X

3. do L = {(t, {Tti}) ! t E Tb(X) and each ni is a distinct new action}

4 choose any pair (t, I) E L

5 C={n!(t',{n})ELAt';it}

6 A=AuC
7 replace (t,l) in L by (t,C+.\(x))

8 for each node N' (visited in depth-first order, starting at N)

9 if N'.type=atomic

10 then while 3(ta, la) E L such that t' EN.partition(ta)

where N'.partition=[{t'}]

11 ADD(N', la)

12 remove (ta, la) from L

13 ADD SCOPING(N,A)

The set A, initialised in Line 1 of INSERT SCOPING is used to record the

sets of new actions introduced for each x E X. During each iteration of the

main loop (Lines 2-12), the new actions used in that iteration are added to A

in Line 6. Every new action is scoped by the node with type scoping inserted

into the expression tree by Line 13.

Each transition, x in the multiset X is dealt with independently by the

main loop. Lines 3-7 construct a set, L of pairs of transitions and actions

(transition labels). The presence of an element (t, l) in L indicates that a

transition with the same connectivity as t, and with the label l is required.

206

L is initialised in Line 3 to consist of entries (t, {1i;}), where t E n(x),

is a member of the unique multiset of base transitions for the synchronised

transition to be represented, and each ti; is a new basic action that has not

already been used. One of the elements, (t, i) of L is chosen (at random) as

distinguished, and the new basic action contained in l is discarded. The set C,

constructed in Line 5, records the new actions introduced during the current

iteration of the main loop, excluding the one discarded from the distinguished

element of L. The new label assigned to the distinguished element of L in

Line 7 is constructed from C, and the label of x. It is relatively simple to

verify that scoping the set of transitions represented by L by the set of actions

C results in a transition with the same connectivity and label as x.

Lines 8-12 traverse the expression tree in a depth-first manner, starting at

N. When an atomic action node, N', which has a corresponding transition

ta such that (ta, la) E L, then ADD is called to create an atomic action node

to represent (ta, la). Once all of the entries in L have been dealt with, ADD

SCOPING is called to ensure all the new actions are scoped.

ADD(N', i) is used to insert a new atomic action with label l in a choice

context with an existing atomic action, represented by the node N' in the

expression tree. Figure 4.20 shows the two ways in which the expression tree

may be modified by a call to ADD(N', i). If the atomic action represented

by N' is in a choice context (i. e. the parent node of N' has type choice),

then the new atomic action is added to the existing choice context. If the

existing atomic action is not part of a choice context, then a new choice node

is inserted into the expression tree, as illustrated by (ii) in Figure 4.20. The

new atomic action nodes inserted into the expression tree by ADD are given

a partition field containing the empty partition, E, indicating that the action

was not originally part of the input net. Labelling the partition fields in this

way has the property that the relationship between partition fields, given by

PARTITION in Section 4.3.4, is preserved, since for any list X, X + E = X.

Hence, for example, in Figure 4.20 (ii), the partition field of the new choice

207

node is defined to be [{t} 1+ E, which is [{t} 1 - therefore the partition field of

the sequence node remains as P.

ADD(N', l) is never called with N' equal to the root node of the expression

tree - such a case could only arise if the synthesised expression is a single

atomic action, Q, which implies that any synchronised transitions must arise

as a synchronisation between Q and itself. However, it has been shown in

Section 4.2 that synchronising a transition with itself produces an infinite

synchronisation, and only finite nets are considered as input to the synthesis

algorithm.

Choice
p

.. ·1 I···

Atomic

[{t}]

>.(t)

ADD------

Choice
p

···1/ I \ I···

I \
Atomic Atomic

[{t }] ,
>.(t) I

Sequence
p

···1 I···

Atomic

[{ t}]

>.(t)

AD-

Sequence
p

... ...

Choice
D

[{t }]

j ~

~
Atomic Atomic

[{t }] e

>.(t) I

(i) Choice context
(ii) Non-choice context

Figure 4.20: Adding actions to the expression tree

ADD SCOPING(N, A) is used to insert a new scoping operation at the point

N in the expression tree. Figure 4.21 illustrates the modification made by ADD

SCOPING. The new node, with type scoping inherits the parent of N, and the

partition field of N. N is made a child of the new node. The scoping operation

acts on the set of new basic actions introduced during the execution of INSERT

SCOPING.

208

Type
ADD SCOPING

A

Scoping
p

p

Type

p

Figure 4.21: Adding a scoping operator to the expression tree

4.4.1 Example

In this section, the example introduced in Section 4.3.5 is continued. The net

to be synthesised, ~, is defined to be an implementation of the expression:

(d;[(d;((00({a,a} II {a,b} II {a,e})) sy a);d) sy d*a*[e*b*c] sy cl) sy d

The underlying net for ~ is shown in Figure 4.17, and the set of transitions,

Tsc(~), which are not included in Figure 4.17, are tabulated in Table 4.5. Each

n entry in Table 4.5 consists of a multiset of base transitions that, collectively,

have the same connectivity as the corresponding transition from Tsc(~)' For

example, t44 inherits the connectivity of the multiset of transitions {t4' t4, t5}.

Hence, t44 has arcs of weight 2 that duplicate those of t4, and also arcs of

weight 1 duplicating those of t5. Note that every base transition appears in

Figure 4.17.

The scoping synthesis rule is called with SCOPING(No, ~), where No is the

root node of the expression tree shown in Figure 4.19. Line 1 of SCOPING finds

the subset of Tsc that can be represented by a scoping operation at the top

level of the synthesised expression by calling SCOPE(No, Tsc(~)). Table 4.6

209

id t: A id t: A id t: A

t26 {tl,tlO} 0 t27 {tl,tH} 0 t2S {t2,tlO} 0
t29 {t2,tll} 0 t30 {t3,tlO} 0 t31 {t3,tll} 0

t32 {tI4,t22} 0 t33 {tI4, t23} 0 t34 {tI5, t22} 0

t35 {tI5, t23} 0 t36 {tI6,t24} 0 t37 {tl6,t25} 0

t3S {tl7, t24} 0 t39 {tl7, t25} 0 t40 {t2,tlO} 0

t41 {t3, tu} 0 t42 {t4,t5} {a,b} t43 {t5,t6} {a,e}
t44 {t4, t4, t5} {b,b} t45 {t4,t5,t6} {b,e} t46 {t5, t5, t6} {e,e}
t47 {t7,tS} {a,b} t4S {ts, tg} {a,e} t49 {t7,t7,tS} {b,b}
t50 {t7, ts, tg} {b,e} t51 {ts, tg, tg} {e,e}

Table 4.5: Transitions to be represented by seoping

summarises the behaviour of ScoPE(No, Tsc(~)). The partition field of the

root node, No is:

¢>l = [{td, {t2, t3}, {t5, ts}, {t4, t7}, {t6, tg}, {tlO, tll}, {tI2, tI3},

{tI4, t15, tl6, tl7 }, {tIS, t19, t20, t21}' {t22, t23, t24, t25}]

Hence, for example, the transitions, tIS, t19, t20, and t21 all arise from the same

atomic action in the synthesised expression ({b}, represented by the node Nl3

in Figure 4.19).

The call ScoPE(No, Tsc(~)) performs 9 iterations of the while loop (Lines 3-

10). Table 4.6 shows no, the number of the iteration of the while loop, the

values of the variables U and X at the start of each iteration of the loop, t

the transition chosen in Line 4, Tb(t), the set of base transitions for t, the size

of the set Tt, calculated in Line 5, and T' the set of transitions constructed in

Line 6. If IT'I = ITtl, as in iterations 1 and 2, then t is added to X, and the set

T' is removed from the variable Tr. Hence Tr becomes {t2S, ... , t51} after the

first iteration, and {t2S,t31, ... ,t39,t42, ... ,t51} after the second and subsequent

iterations. Once, U becomes 0, at the beginning of iteration 10, the while loop

210

no U X t ACt) TbCt) IT~I T'

1 {t26, ... , t5d 0 t26 0 {tl,tlO} 2 {t26, t27 }

2 {t28, ... , t5d {t26} t28 0 {t2, tlO} 4 {t29,t3o,t4o,t4l}

3 {t28, t3l, ... , t39, t42, ... , t5l} {t26, t28} t28 0 {t2,tlO} 4 {t28, t3d

4 {t32, ... , t39, t42, ... , t5d {t26, t28} t32 0 {!I4, t22} 16 { t32, ... , t39 }

5 {t42, ... ,t5d {t26, t28} t42 {a,b} {t4, t5} 4 {t42, t47}

6 {t43, ... , t46, t48, ... , t5d {t26, t28} t43 {a,c} {t5, t6} 4 {t43, t48}

7 {t44,t45,t46,t49,t5o,t5l} {t26, t28} t44 {b,b} {t4, t4, t5} 6 {t44, t49}

8 {t45,t46,t5o,t5l} {t26, t28} t45 {b,c} {t4, t5, t6} 8 {t45, t50}

9 {t46, t5d {t26, t28} t46 {c,c} {t5, t5, t6} 6 {t46, t5d

10 0 {t26, t28} - - - - -

Table 4.6: Call to SCOPE(No, Tsc(~))

terminates with X = {t26, t28}, and the call INSERT SCOPING(No, {t26, t28}) is

made in Line 11.

x A(X) n(x) L C

t26 0 {tl,tlO} {(tl, {fil}), (tlO' {nl})} {nd

t28 0 {t2,tlO} {(t2' {fi2}), (tlO' {n2})} {n2}

Table 4.7: Construction of L for INSERT SCOPING(No, {t26, t28})

Table 4.7 summarises the construction of L for the transitions t26 and t28.

There is a separate entry for each transition x E X (i. e. each iteration of

the main loop). The column labelled n(x) gives the multiset of base tran-

sitions used to construct the elements of L. The value given for L is that

after Line 7, when the distinguished action has been chosen, and its label

updated. The column labelled C contains the set of new basic actions in-

troduced during each iteration of the main loop. There are many different,

but equally valid possibilities for the value of L - the new basic actions, and

the element chosen as distinguished could both be different. For example,

L = {(tl, {n42}), (tlO' {ii42})} is valid for x = t26.

211

The calls ADD(NI, {fil}) and ADD(Ng, {nI}) are made for the iteration of

the main loop of INSERT SCOPING where x = t26. The correspondence between

nodes in the expression tree and base transitions can be seen in Figure 4.19. For

example, NI and N« correspond to tl and tlO respectively. ADD(N4, {TG}) and

ADD(Ng, {n2}) are called for x = t28. Finally, ADD SCOPING(No, {nI, n2}) is

called in Line 13 to scope the two new actions, ni and n2'

The calls to ADD and ADD SCOPING modify the expression tree from

that shown in Figure 4.19 to the one shown in Figure 4.22, representing the

expression:

The call to SCOPE(No, Tsc(E)) made in Line 1 of SCOPING returns with

the set of remaining transitions {t28, t3I, ... , t39, t42, ... , t5d, which is used to

initialise the variable Tr. VISIT(No, Tr), called in Line 2 of SCOPING traverses

the expression tree in Figure 4.22 in depth-first order (hence the nodes No to

NI4 are visited in order). When an iteration node is reached, three calls to

SCOPE are made. For example, when node N2 is visited, the following calls

are made:

SCOPE(N3, {t28, t42, t43, t44, t45, t4d)

ScoPE(NlO,0)

SCOPE(Nu, {t32' t33, t34, t35})

(4.4)

(4.5)

(4.6)

since, for example, Tr n Ns.partitioti = {t28, t42, t43, t44, t45, t46}. Table 4.8

summarises the behaviour of (4.4), which results in a call to

Table 4.9 describes the construction of the set L for each transition to be

represented by the scoping operator. The calls to ADD made from INSERT

SCOPING are shown in Table 4.10. Line 13 of INSERT SCOPING calls ADD

SCOPING(N3, {n3, ... , nu}), resulting in an expression tree representing the

212

Scoping
(Pt

Figure 4.22: Scoped expression tree

213

no U X t A(t) n(t) ITtl T'
1 {t28, t42, """'t46} 0 t28 0 {t2, tlD} 1 { t~8}

2 {t42, """'t46} { t28} t42 {a, b} {t4, t5} 1 { t42}

3 {t43, """'t46} {t28, t42} t43 {a,e} {t5, t6} 1 { t43}

4 {t44, """'t46} { t28, t42, t43} t44 {b,b} {t4, t4, t5} 1 { t44}

5 {t45, t46} {t28, t42, """'t44} t45 {b,e} {t4,t5,t6} 1 { t45}

6 { t46} {t28, t42, """'t45} t46 {e,e} {t5, ts, t6} 1 { t46}

7 0 { t28, t42, """'t46} - - - - -

expression:

E [{nI, n2} : (d 0 Til); [[{n3' """'nu} : E'] * a * [c * b * ell]
(d 0 1i3 0112);

(({a, a} 0 nu 0 nw 0 {fiB} 0 {b, b, n6, n7} 01150 {a, b, n4})

II ({a, b} 0 fi9 0 fi7 0 fi6 0 fi4)

II ({a, c} 0 {c, c, nlQ, nu} 0 {b, c, ns, ng} 0 {a, c, n5}))

; (£ID n3 0 n2 0 nd

where E'

x A(X) Tb(x) L C

t28 0 {t2, tlD} {(t2, {1i3}), (tlD, {n3})} {n3}

t42 {a,b} {t4, t5} {(t4, {n:t}), (t5, {a, b, n4})} {n4}

t43 {a,e} {t5,t6} {(t5, {1i5}), (t6, {a, e, n5})} {n5}

t44 {b,b} {t4, t4, ts} {(t4, {nti}), (t4, {ri7}), (t5, {b, b, n6, n7 })} {n6, n7}

t45 {b,e} {t4, t5, t6} {(t4, {ng}), (t5, {ns}), (t6, {b, e, n8, n9})} {n8' n9}

t46 {e,e} {t5,t5,td {(t5, {nw}), (t5, {nu}, (t6, {e, e, nlD, nll})} {nlD' nll)}

214

x Calls

t2S ADD(N4, {1i3}) ADD(Ng, {n3})

t42 ADD(N7, {7i4}) ADD(N6, {a, b, n4})

t43 ADD(N6, {7i5}) ADD(Ns, {a, c, n5})

t44 ADD(N7' {fi6}) ADD(N7, {fi7}) ADD(N6, {b, b, n6, n7})

t45 ADD(N7, {fig}) ADD(N6, {ns}) ADD(Ns, {b, c, ns, ng})

t46 ADD(N6, {nw}) ADD(N6, {nu}) ADD(Ns, {c, c, nlO, nu})

The call to ScoPE(NlO,0), (4.5), has no effect on the expression tree be-

cause there are no transitions from Tsc to be represented, and hence no need

for an additional scoping operator.

The call to ScoPE(Nu, {t32' t33, t34, t35}) finds X = {t35P, and hence calls

INSERT SCOPING (Nu, {t35})'

INSERT SCOPING constructs L = {(tI5, {iil2}), (t23, {nI2})}, since Tb(t35) =

{tI5, t23}' The nodes in the expression tree representing the atomic actions cor-

responding to the transitions tl5 and t23 were removed by the call to PRUNE.

However, these transitions are still present in Nu.partition, which has the

value [{tI4' tI5}, {tIS, tI9}, {t22' t23}]' Therefore the nodes in the expression

tree corresponding to {tI5} and {t23} are respectively Nl2 and N14, where

Nl2 corresponds to the transition tl4 and Nl4 corresponds to t22' Hence

the calls ADD(NI2, iil2) and ADD(NI4' n12) are made. Finally, the call ADD

SCOPING(Nu, {nI2}) is made, resulting in a tree representing the expression:

E = [{nl,n2}: (dDfil);[[{n3, ... ,nu}: (dD1i3Di12)

; (({a, a} 0 nu 0 nw 0 {ns} 0 {b, b, n6, n7} D7i5 0 {a, b, n4})

II ({a, b} 0 fig 0 fi7 0 fi6 D7i4)

1X could equally have been chosen to be any of {t32}, {t33} or {t34}

215

II ({ii, c} 0 {c, c, nlO, nu} 0 {b, c, ns, ng} 0 {a, c, n5}»

; (dO n3 0 n2 0 nl)] * a * [{nI2} : [(c 0 fi12) * b * (cD nI2)]lll

In each case, the set of transitions returned by the calls to SCOPE, (4.4),

(4.5), and (4.6) is empty. Hence the recursive calls to VISIT have no further

effect on the expression tree because all of the transitions in Tsc have already

been represented by scoping operations.

During the traversal of the pruned expression tree made by VISIT, some

transitions in Tsc are effectively ignored. The transitions that are ignored are

those that were created by the action of taking two copies of a net in the

semantics for the iteration operator. Hence, for example the transitions in

Table 4.5 that are discarded are:

For each discarded transition t, the set n(t) consists entirely of transitions

for which the corresponding node in the expression tree was removed by the

call to PRUNE. For example, n(t3d = {t3' tu}, and it can be seen from Fig-

ures 4.18 and 4.19 that the nodes corresponding to t3 and tu were pruned.

The construction by SCOPE used to represent the transition t2S also implic-

itly represents the transition hI by virtue of the copy of a subnet made in

constructing an implementation of an iteration expression. By looking at Fig-

ure 4.18 it can be seen that t2 and tlO, which are the base transitions of t2S,

correspond respectively to t3 and tu, the base transitions of t31'

4.5 Verification of the synthesis algorithm

The proof that the synthesis algorithm presented in Sections 4.3 and 4.4 is

split into two parts. The first part of the proof shows that removing the set of

transitions, Tsc, from the input net leaves a net which is the implementation

of a box expression from the basic syntax. This result is fundamental to the

reuse of the basic synthesis algorithm described in Chapter 3. The second part

216

of the proof shows that the manipulations to the synthesised expression, made

by the SCOPING synthesis rule, results in an expression whose implementation

is isomorphic to the original input net. The essence of the proof is in showing

that the additions made to the synthesised expression by SCOPING correspond

to the creation of a new set of transitions that exactly matches Tse, the set of

transitions removed at the start of the synthesis process.

4.5.1 Part 1 - Removing transitions

Firstly, it is shown that every transition arising from a synchronisation op-

eration satisfies the conditions for inclusion in Tse. This means that for any

implementation ~, of a box expression, E, the transitions in Tse(~) can be

classified into two disjoint sets, Tsy(~), the set of transitions arising from syn-

chronisation, and Tat(~)' the set of transitions arising from atomic actions.

This classification, of course, depends on the form of the expression, E, from

which ~ is derived. For example, the implementations ~l of El = (a II a) 00
and ~2 of E2 = (a II a) sy a are such that ~l =u« ~2' However, Tse(~l) con-

sists of a single transition classified as belonging to Tat(~l)' while Tat(~2) = 0,
and the transition in Tse(E2) belongs to Tsy(~2)'

Proposition 23 Let ~ be an implementation of a box expression, E, from

the syntax in Table 4.1. Every transition that is added to ~ by the operation

~ sy a satisfies the conditions for inclusion in Tse(~ sy a).

Proof: Follows directly from the definition of Tse, the iterative semantics for

synchronisation, and proposition 21. o

The following propositions serve to simplify the problem by showing that

for any net ~, which is the implementation of a box expression from Table 4.1,

the net ~ e Tse(~) is isomorphic to ~' e Tat(~)' where ~' = ~ e Tsy(~) is the

implementation of a basic syntax expression. This means that the remainder

of the proof in this section does not need to consider the synchronisation

operator.

217

Some properties are shown for the net operations U, E!7, and e used to give

semantics to box expressions from the syntax in Table 4.1.

Proposition 24 For disjoint nets L:l, L:2, a set of new transitions, T, such

that each t E T is a multiset of transitions from L:l, a set of new places S, and

a subset of the places of L:l, S', the following hold:

(L:l E!7 (T, l)) U L:2

(L:l E!7 (T, l)) E!7 (S, l')

(L:l E!7 (T, l)) e S'

(L:l U L:2) E!7 (T, l)

(L:l E!7 (S, l')) E!7 (T, l)

(L:l e S') E!7 (T, l)

Proof: Each new transition t E T is a multiset of transitions {tl, ... , tk} from

L:l, such that t I><l {tl' ... , td in L:l E!7 (T, l). By the definition of the place

addition operator, each s E S has the form {SI, S2}, where SI and S2 are

existing places. Hence, by their definition, the net operations U, E!7(S, i')

and es preserve the property t I><l {tl' ... , td. Therefore the addition of

transitions commutes with net union, the addition of new places, and

the removal of places. D

Proposition 25 For any net L:, and sets of transitions, Tl and T2 the follow-

ing hold:

L:e0

L: E!7 (0, l)

L: e Tl e T2

L: E!7 (Tl' l) e (Tl)

Proof: Follows directly from the definition of the e and E!7 operators. D

Let E be any expression over the syntax in Table 4.1, and L: be an im-

plementation of E. The next proposition shows that, if all of the transitions

that were added by the synchronisation operator during the construction of

L: are removed from L:, then the remaining net is an implementation of E

218

with all of the instances of the sy operator removed. Given the semantics of

synchronisation, this result is intuitively obvious.

Proposition 26 Let ~ be an implementation of a box expression, E, from

the syntax in Table 4.1, and E' be the expression obtained by removing every

instance of sy from E. Then ~ e Tsy(~) is an implementation of E'.

Proof: By structural induction over the box expression syntax. In the fol-

lowing let ~ be an implementation of E, and ~' be an implementation

of E', the expression obtained by removing all instances of sy from E.

The induction hypothesis is that ~ is isomorphic to ~' EB(Tsy(~), l), for

some labelling function l. It immediately follows that ~eTsy(~) =i». E',

by Proposition 25.

Base case: E = O!. By definition, E' == E, and any implementation of E

(and therefore E'), ~, is such thatTsy(~) = 0. Hence, by Proposition 25,

~ = ~ EB(Tsy(~), l).

Induction step: In the following let ~i and ~~ for 1 ~ i ~3 be disjoint

implementations of Ei, and E: respectively, where E: is obtained from

E by removing all instances of the synchronisation operator .

• E = El sy a: ~1 =u; ~~ EB(Tsy(~d, ld follows from the induc-

tion hypothesis. By the semantics for synchronisation, ~ =u:

~1 EB(Ts, ls), where T, is the set of new transitions created by the

synchronisation operation. Hence, ~ =iso ~~EB(Tsy(~d, h)EB(Ts, ls).

By the definition of Tsy, Tsy(~) = Tsy(~d U Ts. Therefore, by defi-

nition of the EBoperator, ~ =u« ~~ ffi (Tsy(~), l) for l = h U I,.

• E = El II E2, E = El 0 E2, E = El; E2: By the induction

hypothesis, ~i =iso ~~ EB(TsY(~i)' li) for 1 < i ~ 2. By the

semantics of parallel, choice and sequence, and Proposition 24,

~ =u« ~' ffi (Tsy(~l)' ll) ffi (TsY(~2)' l2). By the definition of Tsy,

Tsy(~) = Tsy(~d U TsY(~2). Hence, ~ =iso ~' EB(Tsy(~), l), where

l=llUl2.

219

• E = [El * E2 * E3l: Follows the proof for the parallel, choice and

sequence operators. It is worth noting, however, that there are two

copies of each Ei used in the construction of E. Therefore, in E,

there are two sets of transitions corresponding to Tsy(Ei) for each

1 ::; i ::;3. By definition, Tsy(E) is the union of all the Tsy(Ei) used

in the construction of :E. Hence, there is no problem introduced by

the use of two copies of each subnet in the semantics for iteration.

o

Proposition 26 shows that for any net :E, the implementation of an expres-

sion over the syntax in Table 4.1, then :E' =u; EeTsy(E) is the implementation

of a basic syntax expression. The aim is to show that E e Tsc(E) is also the

implementation of a basic syntax expression. A crucial observation, is that

Tat (E) = Tat (E e Tsy (E)). Hence, all that needs to be shown is that for any

net, E, the implementation of a basic syntax expression, then :E e Tat(:E) is

also the implementation of a basic syntax expression.

The following propositions characterise the form of (sub)expressions that

give rise to transitions that satisfy the conditions for inclusion in Tsc (i. e. those

transitions of Tsc that are classified as belonging to Tat). Firstly, it is shown

that every transition that is connected to every entry and exit place in a net

derived from a basic syntax box expression arises from choice composition

(unless the net is an implementation of an atomic action).

Proposition 27 Let E = (S, T, W, A) be an implementation of a basic syn-

tax expression, E. If:Jt E T such that " = ~ and t· = E· then E is an

implementation of either x or E' 0 x, where A(X) = A(t) and ¢(x) = {t}.

Proof: By structural induction over the box expression syntax.

Base case: By definition, any implementation, E, of an atomic action

consists of a single transition, t with" = ~ and t· = E·.

220

Induction step: In the following let I: be an implementation of E, and

I:i for 1 ::; i ::;3 be disjoint implementations of B;

• E = El II E2: Each connected component of I: contains at least one

entry place and one exit places. Suppose there is a transition t such

that ~ = ~, then I: is connected. However, by the semantics of

parallel composition, I: consists of at least two disjoint components

(corresponding to I:I and I:2). Therefore there is no such transition

t.

• E = El 0 E2: By the definition of ® and the semantics of choice

composition, I: contains a transition t such that ~ = ~ and t· = I:.

if and only if I:I or I:2 contains a transition connected to every entry

and exit place. Hence, by the induction hypothesis, either El or E2

has the form x or E' 0 x, where ¢(x) = {t}. If El (E2) is x, then

by the commutativity of choice composition E can be rewritten as

E2 0 x (E = El 0 x). If El (E2) has the form E' 0 x, then by the

associativity and commutativity of choice composition, E can be

rearranged into E" 0 x where E" = E' 0 E2 (E" = El 0 E'), which

is the required form.

• E = El; E2, E = [El * E2 * E3]: By Proposition 5 of Chapter 3,

I: is internally connected. Suppose there exists transition t such

that ~ = ~ and t· = I:.. If the entry and exit places of I: were

removed, then t would become an isolated transition. Therefore,

to be internally connected, I: must consist of entry and exit places

and a single transition t. By the semantics of sequential composi-

tion and iteration, I: contains more than one transition. Hence, a

contradiction has been obtained, and there is no such transition, t.

o

The next proposition shows that for any net obtained from a basic syntax

expression, and any transition in that net, all the places in the pre-set of that

221

transition have the same label (e, 0, or x). Similarly for the post-set of the

transition.

Proposition 28 Let E = (S, T, W,'\) be an implementation of an expression

from the syntax in Table 2.3. For every t ET:

VSl, S2 E -"

Vsl, S2 E t·

'\(sd = '\(S2)

'\(Sl) = '\(S2)

Proof: By structural induction over the box expression syntax in Table 2.3,

and using the semantics of box expressions. o

It can now be shown that every transition in the implementation of a basic

syntax expression that satisfies the conditions for inclusion in Tsc (i. e. is a

member of Tat) arises from an atomic action in a choice context.

Proposition 29 Let E = (S, T, W,'\) be an implementation of a basic syntax

expression, E. If::lt E T and T' c T such that IT'I ~ 2 and t IXl T' then E

contains a subexpression E' 0 x (or x 0 E'), where '\(x) = '\(t) and t E </>(x).

Proof: By structural induction over the box expression syntax.

Base case: By definition, any implementation, E, of an atomic action

consists of a single transition, t. Hence there is no set of transitions

T' ~ T such that IT'I ~ 2.

Induction step: In the following let E be an implementation of E, and

Ei for 1 :S i :S 3 be disjoint implementations of Ei. Let t be a transition

in one of the subnets, Ei, used to construct E. The set of transitions

which have at least one arc similar to t in Ei are given by C = (-,,)·n·(t·).

Hence the set T' for Ei must be such that T' ~ C .

• E = El IIE2, E = El; E2, E = [El * E2 * E3J: By the compositional

semantics of parallel, sequence, and iteration, the set of transitions

which have at least one arc similar to t in E is preserved from the

222

subset ~i and given by C. Hence, by the induction hypothesis every

transition that inherits the connectivity of a set of transitions arises

from an atomic action in a choice context .

• E = El 0 E2: We consider the case where t E TI. The argument is

symmetric when t E T2• Suppose T' ~ TI• By the compositional

semantics of choice, t [Xl T' in ~ if and only if t [Xl T' in ~l. There-

fore, by the induction hypothesis, t arises from an atomic action in

a choice context in this case.

Now suppose T' contains at least one transition from ~2. By the

semantics of choice composition, the only point of contact between

~l and ~2 is at the entry and exit interface. Hence every transition

t' E T' which comes from ~2 must be connected only to entry and

exit places. Since t [Xl T', and by proposition 28, t is connected only

to entry and exit places.

By the definition of Q9, and the semantics of choice composition,

every place in ~' Q9 ~l has an arc to t'. Hence, by t [Xl T', t must

be connected to every entry place of ~l (i.e. ~ = ~l). A similar

argument shows t· = ~l·. Therefore, by proposition 27, ~l is an

implementation of x or E~0 x, where ¢(x) = {t}. Hence, E has the

form x 0 E2, or (E~ 0 x) 0 E2.

o

Proposition 29 does not prove the existence of a transition t that has the

same connectivity of a set of transitions, T'. Instead, it shows that if t does

exist, then it must arise from an atomic action in a choice context. An example

which demonstrates that such transitions do exist is provided by Figure 4.7

in Section 4.2 where t5 [Xl {tl, t4}. The general form of basic syntax expres-

sions that give rise to transitions that have the same connectivity as a set of

transitions is:

E = (El II E2 II ... II En) 0 X

223

where each E, has the form Xi or E: 0 Xi. For any implementation of E, the set

of transitions T' = {¢(xd, ... , ¢(xn)), is such that ¢(x) I><l T'. Proposition 26

shows that removing the set of transitions classified as belonging to Tsy leaves

the implementation of a basic syntax expression. The following proposition

is an analogue of Proposition 26, applied to those transitions classified as

belonging to Tat.

Proposition 30 Let E be an implementation of a box expression, E, from

the basic syntax. Then E e Tat (E) is an implementation of a basic syntax box

expression.

Proof: By Proposition 29, and the commutativity of the choice operator,

every transition in t E Tat(E) arises as the result of a (sub)expression of

the form ED x, where A(X) = A(t) and t E ¢(x). Let E be an implemen-

tation of E. By the semantics of choice composition, E EB(n(t), A(t)) is

an implementation of E 0 z. Hence, it has been shown that every tran-

sition belonging to Tat can be represented semantically in the same form

as transitions arising from synchronisation. The remainder of the proof

follows that of Proposition 26, and is a consequence of the commutativ-

ity of the EBoperator with the other net operators used to implement

the semantics for basic syntax expressions. Therefore, E e Tat(E) is an

implementation of a basic syntax box expression. o

Propositions 26 and 30 are combined in Theorem 3 to give the result that

removing the set of transitions Tsc(E) from the input net, E, leaves a net that

is a suitable input to the synthesis algorithm of Chapter 3.

Theorem 3 Let E = (S, T, W, A) be the implementation of a box expression,

E from the syntax in Table 4.1. The net E e Tsc(E) is the implementation of

an expression from the syntax in Table 2.3.

Proof: By proposition 26, E e Tsc(E) =iso E' e Tat(E), where E' is the

implementation of a basic syntax box expression, and Tat (E) the set of

224

transitions that satisfy the conditions for inclusion in Tsc(~), and have

arisen from atomic actions in E. Since Tat and Tsy are disjoint sets

of actions, Tat(~) = Tat(~')' and ~ e Tsc(~) =iso ~' e Tat(~'). By

Proposition 30, ~' e Tat(~') is the implementation of a basic syntax

expression. 0

4.5.2 Part 2 - Adding transitions back again (Sound-

ness)

Proposition 31 shows that the expression tree constructed by the start of line 5

of Box EXPRESSION SYNTHESIScorresponds to the net ~ e Tsc. This section

shows that the call to SCOPING in line 5 modifies the expression tree in such

a way that exactly those transitions in Tsc are represented, and the modified

expression tree corresponds to the input net, ~.

Consider the code for Box EXPRESSION SYNTHESIS in Section 4.3.1. A

corollary of Theorem 3, is that the net used to initialise N.net in line 2, can

be synthesised to an expression using the basic syntax synthesis algorithm

described in Chapter 3. Firstly, it is shown that lines 3 and 4 of Box Ex-

PRESSION SYNTHESIS result in an expression tree the same as the one that

would be produced using the synthesis algorithm of Chapter 3 (apart from, of

course, the addition of the Partition field in each node in the tree).

Proposition 31 For any net, ~ obtained from an expression over the syntax

in Table 4.1, the expression tree obtained by the end of line 4 of Box Ex-

PRESSION SYNTHESIS(~) in Section 4.3.1 is the same as the expression tree

obtained from the CANONICAL Box EXPRESSION SYNTHESIS algorithm of

Chapter 3 on input ~ eTsc(~), provided the same total ordering of box expres-

sions is used. Two trees are considered "the same" when they are identical if

the Partition fields of nodes are ignored.

Proof: Follows from the similarity of SYNTHESISE in Section 4.3.1 and OR-

DERED SYNTHESISE in Chapter 3, and the fact that PRUNE removes

225

exactly those additional subtrees generated by the modified iteration

synthesis rule.

The modified iteration synthesis rule generates an ordered set of six

subnets (rather than an ordered set of three sub nets)'. For the purposes

of this proof, these subnets will be named L:1, ... , L:6. The first three

subnets, L:l to L:3 are obtained in exactly the same way as in the original

iteration synthesis rule in Chapter 3. The expression subtrees synthesised

from second set of three subnets, L:4 to L:6 are those that are discarded

by PRUNE. 0

It is the construction of the Partition fields that require the two steps

(SYNTHESISE and PRUNE) to generate an expression tree. The Partition field

of a node N encodes a relationship between atomic actions in the expression

represented by the (sub)tree with root N, and the transitions in the net stored

in the Net field of N. It has already been seen that in constructing the net

corresponding to a particular expression, several transitions may arise from

each atomic action in the expression. The Partition field encodes a mapping

representing one way in which the transitions in the net may arise from the

atomic actions in the synthesised expression.

The following proposition demonstrates that the bottom-up construction of

the Partition fields by SYNTHESISE and PARTITION provides a valid mapping

from atomic actions in the synthesised expression to transitions in the net

being synthesised.

Proposition 32 The partition field of each node in the synthesised expression

tree created by SYNTHESISE represents a valid mapping between atomic actions

and transitions in the net field of that node. A valid mapping is one where there

exists a construction of the net from the expression such that for each atomic

action, Cl! in the expression, the set of transitions corresponding to Cl! (given by

the mapping) arise from o.

Proof: By structural induction over the synthesised expression.

226

Base case: The modified atomic action synthesis rule of Section 4.3.3

sets the partition field of the node to [{t1} 1 where tl is the name of the

transition in the net being synthesised. Clearly, {a} --+ {tI} is a valid

mapping for E = a.

The mapping represented by the partition field is from atomic actions

to sets of transitions. The partition field itself is a sequence of sets of

transitions. The correspondence between an atomic action and a set of

transitions in the partition field can be found by traversing the expression

tree in a depth-first fashion. The set of transitions corresponding to first

atomic action visited is given by the first entry in the sequence, and so on.

Once consequence of this representation for the mapping is that it is no

longer possible to manipulate the expression tree so easily. For example,

to change the order of the children of a node it is necessary to update the

partition field of that node, and of all the ancestors of the node. This

is why a canonical ordering is imposed in line 11 of SYNTHESISE before

the partition fields are constructed for that node, and its ancestors.

Induction step: In the following let CPI, ... , CPn be the partition fields

of the nodes NI, ... , Nn, respectively, where NI, ... , Nn are the children of

the node, N, in order. By the induction hypothesis, CPi is a valid mapping

for Ni, for 1 :S i :S n. Consider the type of connective that is represented

by node N.

• N.type = parallel, N.type = choice, N.type = sequence: Per-

forming a depth-first search starting a N visits the nodes of NI in

depth-first order, followed by those of N2, .•. , Nn. Hence, a valid

mapping is given by concatenating the sequences CPI, ... , CPn in order.

This is the partition field created by line 7 of PARTITION.

• N.type = iteration: For the expression E = [El * E2 * E3], two

copies of each of the nets corresponding to, El, E2, E3 are used the

the construction of an implementation of E. The modified synthesis

227

rule for iteration, described in Section 4.3.3, synthesises expression

trees NI, ..., N6· NI and N4 both represent the subexpression El,

derived from the two copies of the net corresponding to El. Since

canonical form expressions are synthesised, the structure of the sub-

trees with roots NI and N4 will be identical. Hence the order in

which atomic actions are visited in a depth-first search of NI and

N4 will be the same. Therefore, the mapping given by ¢>l U ¢>4,

where U is the list union operation defined in in Section 4.3.4 is a

valid mapping for El in [El * E2 * E3]. A similar argument can be

applied to the pairs of subtrees N2, N5 and N3, N6.

o

The definitions of synchronisation in Chapter 1, and Section 4.2.1 have

been given in terms of the synchronisation of transitions in nets. The following

proposition formalises the relationship between the notion of synchronisation

of sets of actions, and the corresponding synchronisation of transitions, using

the semantics for synchronisation given in Section 1.3.5 in Chapter 1.

Proposition 33 Let E = El sy a be a synchronisation expression, and E =

(8, T, W, A) be an implementation of El, and T be a finite multiset of the set

of transitions, T. The multiset of actions in El, corresponding to T is given

by:

where ¢> is the mapping from actions in El to transitions in E, as defined in

Section 2.11. If T is a valid synchronisation, then every synchronisation in:

where TA = {aI, ...,an}, is also valid. Furthermore, any synchronisation oper-

ation applied to El where T is a valid synchronisation, will necessarily create

all the synchronisations in TT.

228

Proof: The validity of a synchronisation, T, depends only on the labels of

the transitions in T. By the definition of ¢>, for an atomic action, a, every

transition in ¢>(a) has the same label. Therefore, each synchronisation in

TT is valid if and only if T is valid. Suppose T is a valid synchronisation,

then every atomic action in TA must be in the scope of the synchro-

nisation operator. The set of synchronisations, TT consist entirely of

transitions derived from actions in TA. Therefore, every synchronisation

in TT is valid. o

Corollary 3 The set of transitions arising from synchronisation can be parti-

tioned into groups according to the corresponding synchronisation of muliisets

of actions in the expression from which they were derived.

The following proposition is central to the approach used to synthesise

synchronisation. It shows that the scoping operator can be used to represent

transitions arising from the synchronisation operator. In fact, the stronger

result that the set of transitions, Tsc can be represented using the scoping

operator is shown.

Proposition 34 Let E be an expression from the syntax in Table 4.1, and I;

be an implementation of E. There exists an expression, E', from the syntax in

Table 4,3, such that the implementation of E' is isomorphic to I;, and every

transition in Tsc(I;) results from an application of the scoping operator.

Proof: By induction over the structure of E, it is shown that every syntactic

structure giving rise to transitions belonging to Tsc(I;), has an equivalent

form which uses the scoping operator.

Base case: The implementation of a does not contain any transitions

that satisfy the conditions for inclusion in Tsc.

Induction step:

• E = El 0 a: By Proposition 29, the transition, t, arising from a

may satisfy the conditions for inclusion in Tsc. If so, there is a

229

set of atomic actions in El which give rise to the transitions n(t),

By definition of Ti, no transition in the set Tb(t) is a member of

Tsc' Hence, there is an atomic action in El corresponding to each

transition in n(t), Therefore suppose n(t) = {tl, .." tn}, and the

actions aI, .." an in El correspond to i., .." tn' E~ is constructed

from El by introducing n - 1 new basic actions, nI, .." nn-l, which

are not used elsewhere, and replacing each action ai in El, for

1 ~ i ~n - 1 by (ai D {rii}), Finally, the action, an is replaced

by (an D {nI, .." nn-l} + A(t)), The modified form of E is given by

E' = [{nI, .." nn-d : E~l, By the semantics of choice, the imple-

mentation of E~ is isomorphic to the implementation of El with

transitions duplicating aI, ..,an added, By the definition of scop-

ing, the implementation of E' is constructed from an implementa-

tion of E~ by synchronising then restricting on the set of actions,

nI, .." nn-l' By the semantics of synchronisation, only one tran-

sition which does not contain any of nI, .." nn-l is created by the

synchronisation operation, This transition, t', is obtained by syn-

chronising the n new transitions added to El, and has the label

A(t), Therefore, the effect of the scoping operation on E~ is to re-

move the n transitions that were added, and create a single new

transition t' such that t' I><J Tb(t), Hence, the implementation of E'

is isomorphic to ~,

• E = El sy A: By Proposition 23, every transition created by the

synchronisation operation satisfies the conditions for inclusion in

Tsc' For each transition, t created by the synchronisation operation,

there is a corresponding set of base transitions, Tb(t) = {tl, .." tn},

Let aI, .." an be the actions in El corresponding to tl, .. " t-: By

Proposition 33 and Corollary 3, there will be a set of transitions

in Tsc corresponding to each of the synchronisations derivable from

aI, .." an (s.e, ¢>(ad 0¢>(a2) 0 .., 0¢>(an)), This set of transitions

230

can be dealt with simultaneously using the construction described

above. Repeated application of this process can be used to deal with

all of the transitions created by the synchronisation operation.

• E has a form different from the two cases above: By Propositions 26

and 29, E does not give rise to any transitions that satisfy the

conditions for inclusion in Tsc.

o

The construction described in Proposition 34 inserts scoping operators at

the positions in the expression where the original choice or synchronisation

operations were. However, SCOPING and VISIT only consider adding scoping

operators at the root and as children of iteration nodes in the expression tree.

The following proposition justifies this restriction on the position of scoping

operators.

Proposition 35 The only positions that need to be considered for adding the

scoping operators in SCOPING and VISIT are as the root node of the expression

tree, and as children of an iteration node.

Proof: Follows from the soundness of the following axioms:

[NI: [N2 : Ell

[N: Ell II E2
[N: Ed OE2

El; [N: E2l

[N: EIl;E2

[NI U N2 : El provided NI n N2 = 0

[N : El II E2l provided \:In EN: £(E2) n {n, n} = 0

[N : El 0 E2l provided \:In EN: £(E2) n {n, n} = 0

[N : El; E2l provided \:In EN: £(Ed n {n, n} = 0

[N : El; E2l provided \:In EN: £(E2) n {n, n} = 0

Each set of new basic actions used to create a transition via scoping is

unique, and those basic actions are not used elsewhere. Therefore, there

is freedom in positioning of the scoping operator, provided:

• The scoping operator encloses all of the transitions that contain the

basic actions on which scoping is performed.

231

• The scoping operator does not move across an iteration opera-

tion because the mapping between atomic actions and transitions

changes across iteration, and this affects the set of transitions cre-

ated by the scoping operator.

o

It remains to show that the scoping synthesis rule partitions the set of

transitions, Tsc, so that each partition of Tsc can be represented using the

scoping operator.

Theorem 4 The call to SCOPING in line 5 of Box EXPRESSION SYNTHESIS

modifies the synthesised expression tree so that it represents the set of transi-

tions, Tsc that was removed from the input net.

Proof: By induction on the depth of the candidate location for the insertion

of a scoping operator.

Base case: Transitions in Tsc dealt with by a scoping operator inserted

at the root node of the expression tree. By Propositions 32 and 33,

for any candidate transition, t E Tsc, the set of actions in the synthe-

sised expression that should be synchronised to generate t is given by

¢>A = {¢>-l(t') I t' E n(t)}. By Proposition 33 and the definitions of

synchronisation and 8, the set of transitions that would be created if

¢>A = {aI, ... , an} were synchronised is given by T; = ¢>(al) 8 ... 8 ¢>an,

where each transition in T; has the same label as t. If every transition

in T; appears in Tsc, then by adding a scoping operation to create t the

group of transitions T; ~ Tsc will be dealt with. If not every transitions

appears, it follows by Proposition 34 that the set of transitions Tsc nT;

must be dealt with by a scoping operator inserted at a lower level in the

expression tree. Each iteration of the while loop of SCOPE chooses a

candidate transition from those remaining to be dealt with. If the group

of transitions that would be generated appears in Tr, then the candidate

232

transition is added to X, and the group of transitions removed from Tr.

Once all of the groups in Tr have been checked, those that can be dealt

with are represented by modifications to the expression tree, as described

in Proposition 34. The remaining transitions are returned to the calling

procedure to be dealt with at a lower level in the expression tree.

Induction step: By the induction hypothesis, all transitions that can

be dealt with at a higher level have been removed from the set of transi-

tions remaining to be represented, Tr. It follows that when considering

inserting a scoping operator above a node N in the expression tree, those

transitions t E Tr, such that the atomic actions corresponding to each

t' E n(t) appear as descendents of n, can be considered as candidates

to be represented at this location. By Proposition 35 the locations for

inserting scoping operators considered by SCOPING and VISIT are suffi-

cient to deal with every transition in Tsc. The argument given above for

the base case can be used again to show that the groups of transitions

that can be represented at each candidate location are identified, and

the expression tree is modified to represent those groups of transitions.

o

Corollary 4 Given any finite net, E, which is derived from an expression over

'the syntax in Table 4.1, a call to Box EXPRESSION SYNTHESIS(E) synthesises

an expression from the syntax in Table 4.3 whose implementation is isomorphic

to E.

4.6 Related problems

The time complexity of the algorithm for Box EXPRESSION SYNTHESIS pre-

sented in this chapter is shown to be polynomial in Section 4.6.1. Section 4.6.2

analyses the areas of non-determinism in the algorithm and presents some

evidence that modifying the algorithm to efficiently produce canonical form

233

expressions may be difficult. A sound axiom system is introduced in Sec-

tion 4.6.4, and the analysis of non-determinism in Section 4.6.2, together with

the results from Section 4.5 are used to show that the axiom system is com-

plete.

4.6.1 Time complexity

The analysis of the time complexity in this section is based on the size of

the input net I: = (S, T, W, A). Recall that infinite synchronisations are not

considered, and hence I: is finite in size. For simplicity, it is assumed that the

size of each transition label is bounded by some constant. Let n = lSI+ ITI be
the number of nodes in I:. There is at most one arc between any pair of nodes

(although this arc may have a weight), and I: is bipartite, with bipartition

S, T. Therefore the number of arcs in I: is at most lSI· ITI < n2. Hence, it

is sufficient to consider the time complexity of the algorithm in terms of the

number of nodes, n,

The synthesis algorithm of this chapter is largely based on the basic syn-

thesis algorithm of Chapter 3. In extending the analysis of the time complexity

of the basic synthesis synthesis to the algorithm of this chapter, the following

areas are considered:

• The computation of the set of transitions, Tsc, removed from the input

net in Line 2 of Box EXPRESSION SYNTHESIS in Section 4.3.1.

• The synthesis of an underlying expression, and the computation of the

partition information associated with the nodes in the expression tree

representing the underlying expression.

• The complexity of SCOPING (i.e. SCOPE, VISIT and INSERT SCOPING)

which modify the expression tree to represent the set of transitions Tsc

that were removed from the input net.

234

An investigation into the time complexity of each of the above areas is pre-

sented, followed by an overall analysis of the time complexity for the synthesis

algorithm.

Time complexity of computing Tsc

The method for computing Tsc described and analysed in this section is chosen

so that the base transitions n(t) for t E T can also be found, with relatively

little extra work. The base transitions are used later in the SCOPE and INSERT

SCOPING procedures. The most efficient approach is to compute n once at

the start of the algorithm and store the results for later use, rather than re-

compute n each time it is needed.

In the analysis below, it is assumed that there is a total order, <lover

the transitions in the input net, such as that defined in Section 2.5.6, and the

comparison tl <I t2 between transitions tl and t2 takes 0(1) time". The fol-

lowing describes the steps that may be used to compute the set of transitions,

TSCl and the function n·
The transitions are grouped into equivalence classes, according to the rela-

tion "'dpl, defined in Section 2.5.4 in Chapter 2. Testing whether tl "'dpl t2 for

transitions tl and t2 takes O(n) time". To compute the equivalence classes of

"'dpl, comparing every pair of transitions in the input net is sufficient. Hence

the time complexity is 0(n3). Note that it is also possible to find the canonical

representative for each equivalence class, based on the ordering <I. without

any impact on the overall time complexity.

In computing Tsc, only the canonical representative from each equivalence

class of "'dpl need be considered, since if tl E Tsc and tl "'dpl t2, then it

immediately follows that t2 E Tsc. This optimisation does not have any effect

2This is a safe assumption provided there is some fixed upper bound on the size of

transition labels.
3The analysis in this section assumes an adjacency matrix representation for the net. It

is likely that in practice that an adjacency list representation would be much more efficient.

235

on the theoretical time complexity of the algorithm as there will be O(n)

equivalence classes of f'Vdpl.

To check whether a transition, t belongs to Tsc, the brute force approach

of taking every pair of transitions tl, t2 and testing whether t 1><1 {tl' t2} may

be used. Checking if such a pair of transitions exists takes O(n3) time. There-

fore, computing the set of transitions, Tsc has time complexity O(n4
). For

each transition t, found to belong to Tsc, the canonical representatives of the

equivalence classes of f'Vdpl to which tl and t2 belong, may be stored without

any additional impact on the time complexity.

n may be calculated using the recursive definition given in Section 2.5.5,

. and the information computed in the previous steps. As above, Tb only needs

to be found for the canonical representative of each equivalence class of "'dpl.

It is important to place a bound on the size of Tb(t) for each t E Tsc. From

the definition of n, it appears that n may not be computable efficiently, and

that an exponential number of transitions may be introduced to represent a

transition t E Tsc, using the scoping operator. However, it can be shown that

for any t E T In(t)1 < n:

Proposition 36 For any t E T, ITb(t)1 :::; ITI.

Proof: The input net ~ = (S, T, W, A) is derived from some expression, E,

from the Box Expression syntax in Table 4.1. By induction over the

structure of E, it is shown that every syntactic structure gives rise to

transitions t that satisfy the property ITb(t)I :::;ITI.
Base case: E = o. By the semantics of atomic actions, ITI = 1(= {t}),

and by the definition of Ti, and Propositions 26 and 29, In(t)1 = 1.

Hence, In(t) I < ITI·

Induction step: By the induction hypothesis, every transition i, in the

implementation ~i = (Si, Ti, Wi, Ai of E, (for i = 1,2,3) is such that

In(ti)1 :::; ITiI. It is shown that for every transition t in the implementa-

tion, ~ = (S, T, W, A) of E, In(t)1 :::; ITI.

236

• E = El IIE2, E = El; E2, E = [El * E2 * E31: By Propositions 26

and 29, every transition in T keeps the same set of base transitions

as in ~i (i = 1,2 or 3). That is, suppose t E T (in ~) arises from

ti E T; (in ~i)' then n(t) in ~ is the same set as n(td in ~i·

Therefore, it immediately follows that for all t E T, In(t)1 ~ ITI·
• E = El 0 E2: By Proposition 29, it is possible that some t E T,

satisfies the conditions for inclusion in Tsc. By Proposition 29, every

arc connected to t has weight 1 (i.e. Vx E SUT, W(t, x) +W(x, t) ~

1). Therefore, every transition in n(t) must be different, and so

In(t)1 < ITI·
• E = El sy a: Consider a transition t E ~, which arises as a result

of the synchronisation operation. It follows from the iterative se-

mantics of synchronisation presented in Section 4.2.1 that there are

a pair of transitions tl, t2 that synchronise to produce t. Without

loss of generality, suppose that there is an a E A(tl), and a a E A(t2)

which are used to synchronise t, and t2 to obtain t. By the assump-

tion that the input net to the synthesis algorithm is finite, tl =1= t2·

Consider a transition t' E Tb(t), and suppose Tb(t) (t') = 1, then the

problem reduces to showing that ITb(t)-{t'}1 ~ IT-{t'}I. Now sup-

pose that n(t)(t') = x. By the definition of the semantics for syn-

chronisation in Section 1.3, it follows that there are valid synchro-

nisations tSI, ... , tSx-1 such that n(tsi) is the same as n(t), except

that there are i copies of t' rather than x copies. Hence, the problem

reduces to showing that ITb(t) - x . {t'}1 ~ IT - {t', tSI, ... , tsx-dl.

Therefore, In(t)1 < ITI·

o

For the analysis of the time complexity of SCOPING, it is useful to be able

to place a bound on the number of additional actions that will be added to

the synthesised underlying expression to represent the set of transitions, Tsc.

237

Corollary 5 The bound on the number of actions that will be added to the

synthesised underlying expression is 0(n2).

Proof: The number of actions in Tsc is O(n). By Proposition 36, for each

transition t E Tsc, the number of actions in n(t) is O(n). By the code

for SCOPE, it can be seen that INSERT SCOPING is called at most once

to deal with each transition t E Tsc, and from INSERT SCOPING, the

number of new actions that are added to represent t in the synthesised

expression is ITb(t)l. Therefore, the bound on the number of new actions

required to deal with all the transitions is Tsc is 0(n2). 0

Time complexity of synthesising underlying expression

This section considers the time complexity of the calls to SYNTHESISE and

PRUNE in Lines 3 and 4 of Box EXPRESSION SYNTHESIS. As has already

been noted the synthesis algorithm is largely based on that of Chapter 3.

There are three differences in the SYNTHESISE procedure:

• The modified atomic action synthesis rule. It takes 0(1) time to initialise

the partition field of the node. Hence, the time complexity, of the atomic

action rule remains at 0(1), the same as in Table 3.4 in Chapter 3.

• The modified iteration synthesis rule. The synthesis rule described in

Chapter 3 decomposes the iteration net into two isomorphic subnets.

One of these nets is discarded, and the other is decomposed further into

three components. The analysis in Chapter 3 shows that these two steps

take 0(n3) time. The modified iteration rule of this chapter decomposes

both of the isomorphic subnets obtained from the first decomposition.

Hence, the time complexity is 2.0(n3), i.e. it remains at 0(n3).

There is a further consideration associated with the modified iteration

synthesis rule. Clearly the modification results in a much greater amount

of work for the synchronisation synthesis algorithm compared to the basic

238

synthesis algorithm of Chapter 3, since there are an extra three subnets

to synthesise expressions for after an application of the iteration synthe-

sis rule. However, the analysis of time complexity in Chapter 3 does not

take into account the fact that part of the input net is discarded during

an application of the iteration synthesis rule in the basic synthesis algo-

rithm. Hence, the overall time complexity of SYNTHESISE as analysed

in Chapter 3 is not impacted by the modified iteration synthesis rule .

• Computing the partition fields. A call to PARTITION is made after each

application of a synthesis rule other than the atomic action rule. By def-

inition, the size of the partition field in a node is bounded by the number

of transitions in the net corresponding to the expression represented by

the node. When the call to PARTITION is made after the application of

the parallel, choice or sequence synthesis rules, the partition fields are

appended to each other, taking O(n) time (assuming a linked list repre-

sentation for the partition field). After the iteration synthesis rule has

been applied, the call to PARTITION performs three list union operations

(each taking 0 (n) time).

Hence, the inclusion of the call to PARTITION in SYNTHESISE adds an

additional O(n) time to the application of each synthesis rule, apart from

the atomic action rule. Since these synthesis rules have a time complexity

of at least 0(n2), there is no impact on the overall time complexity of

the synthesis algorithm.

The most efficient way to implement PRUNE in line 4 of Box EXPRESSION

SYNTHESIS is to deleted the second set of three subtrees of an iteration node

in the PARTITION procedure. The only purpose of synthesising expressions for

both copies of the subnets of a iteration net is to compute the correct partition

field for the iteration node. Once the partition field of the iteration node has

been computed, the three subtrees can safely be removed from the expression

tree. Marking a subtree as deleted can be done in 0(1) time. Hence, PRUNE

239

does not have any impact on the overall time complexity of the synthesis

algorithm.

Time complexity of SCOPING

The call to SCOPING in line 5 of Box EXPRESSION SYNTHESIS uses VISIT

to perform a depth-first traversal of the underlying expression tree and calls

SCOPE at the root node, and the three nodes immediately below each iteration

node. The time complexity of the depth first traversal is 0(n2) 4, and SCOPE

will be called O(n) times.

The size of the set of transitions passed to SCOPE is at most ITsel (i. e.

O(n)), and decreases as the transitions in Tse are represented by additions to

the expression tree. Therefore, the while loop in lines 3-10 is executed O(n)

times during each call to SCOPE.

It is not clear whether Tb in line 5 of SCOPE can be computed efficiently.

However, notice that Tb is only used in the construction of T' in line 6, so

the assumption is made that Tb is not constructed explicitly, when considering

the time complexity of finding T'. Instead, the multiset of sets of transitions,

cp(td, ... , cp(tn) is constructed, taking 0(n2
) time.

Consider t', a candidate transition for inclusion in T'. By the assumption

on transition label sizes, it takes 0(1) time to compare A(t') and A(t). By the

construction used to find Tse, the value of n(x) is already available for every

transition x E T.

From the definition of cp, it follows that:

Therefore, to check whether ::lA E Tb : n(t') = A, it is sufficient to mark

every transition in the sets cp(t1), .•. , cp(tn) that also appears in n(t'), then

::lA E Tb : n(t') = A if and only if at least one transition in each CP(ti) for

4This is based on Corollary 5, which shows that by the completion of the synthesis

algorithm, the bound on the size of the expression tree will grow to O(n2)

240

1 ~ i ~n is marked. The time complexity of this check is 0(n3). Lines 7-

10 of SCOPE require O(n) time. Hence, the while loop of SCOPE has time

complexity 0(n4).

The size of the set of transitions passed to INSERT SCOPING is O(n). For

each iteration of the loop, the construction of L in lines 3-7 of INSERT SCOPING

takes O(n) time. The depth-first traversal of the expression tree takes 0(n2)

time, although at most O(n) nodes will pass the test in line 9 (assuming new

transitions added by ADD are marked so that they are ignored). The while

loop in lines 10-12 has time complexity 0(n2), with calls to both ADD and

ADD SCOPING requiring 0(1) time. Therefore, the overall time complexity

of both INSERT SCOPING, and therefore SCOPE is 0(n4
). Hence, the time

complexity of SCOPING is 0(n5
).

Time complexity of Box EXPRESSION SYNTHESIS

Table 4.11 summarises the analysis of the time complexity of Box EXPRES-

SION SYNTHESIS carried out above.

Line Time complexity

1 N=new node 0(1)

2 N.net=L: e t.; 0(n4)

3 SYNTHESISE(N) 0(n5)

4 PRUNE(N) not applicable

5 SCOPING(N, L:) 0(n5)

6 return EXPRESSION(N) 0(n2)

Table 4.11: Time complexity of Box EXPRESSION SYNTHESIS

The analysis of Box EXPRESSION SYNTHESIS has shown that the theo-

retical bound on time complexity is not any greater for the synchronisation

synthesis algorithm than for the basic synthesis algorithm in Chapter 3. This

is perhaps a reflection that the bound on time complexity found here and in

241

Chapter 3 is rather loose. The important result of the analysis carried out in

this section is that the time complexity is polynomial, and hence the algorithm

is efficient.

4.6.2 Non-determinism

In this section, the points of non-determinism in the synthesis algorithm for

synchronisation are investigated. The purpose of the investigation is to provide

a basis for the production of a sound and complete axiom system. Consid-

eration is also given to the possibility of extending the algorithm so that a

canonical form expression is synthesised.

Synthesis of underlying expression

There is one important source of non-determinism in lines 1-4 of Box Ex-

PRESSION SYNTHESIS. The set of transitions, Tsc, used in line 2 is uniquely

defined for any input net, E, and the synthesis algorithm for the underlying

net produces a canonical form expression tree. However, in removing Tsc from

the input net, E, some information about the structure of E is lost. The result

of this is some non-determinism introduced into the step which synthesises the

underlying expression tree.

For example, the implementation of E = (a; a) II ((a; a) sy a) is shown

Figure 4.23, with the transition belonging to Tsc indicated by dotted lines.

It can be seen that once the set of transitions, Tsc, has been removed from

the net, the two disjoint subnets are isomorphic to each other. Hence, when

synthesising the underlying expression, the ordering of the subexpressions cor-

responding these subnets does not affect the canonical form of the expression.

The ordering does become important, however, once the SCOPING procedure

is called and further actions are added to the underlying expression. This

source of non-determinism means that the net in Figure 4.23 could equally be

242

synthesised to either of the following expressions:

E [{nt}: ((nl Da); (aDfii)) II (a; a)]
E [{nt}: (a; a) II ((n1Da);(aDfii))]

,

,

_'-,- __
-----., I

______ J 0 :
--r--
,

Figure 4.23: Non-determinism as a result of removing Tsc

Of course, the example in Figure 4.23 is very simple. When each subnet

contains many transitions belonging to Tsc, and there are transitions in Tsc

linking subnets together, then the problem becomes much more complex.

SCOPING procedure

There are several points of non-determinism in SCOPING. Each of these are

considered in turn below. An assessment is given of whether each point of

non-determinism has any effect on the output of the synthesis algorithm, and

if so, how difficult it would be to remove.

The while loop in SCOPE considers transitions t E U in an arbitrary order.

Lines 5 and 6 determine whether t can be represented by a scoping operator

at the current location in the expression tree. The check in lines 5 and 6 is

independent of choice of order in which transitions from U are considered.

However, note that in line 10 of SCOPE, several transitions may be removed

from U for each iteration of the while loop. Hence, the order in which tran-

sitions are considered from U, will affect the resulting set of transitions X.

243

Recall that each t E X is a representative of a set of transitions that all have

the same base transitions. It can be seen from INSERT SCOPING that it is

the base transitions of t E X that are used to determine the location for the

addition of new actions to the expression tree, rather than t itself. Therefore,

the order in which transitions from U are considered does not affect the form

of the resulting synthesised expression.

The definition of the set of base transitions, n(t), for each t E T, is based

on an ordering, <e over the transitions in the input net. To some extent, <t,

defined in Section 2.5.6, is based on transition names. Hence, it is conceivable

that the choice of transition names may influence the form of the synthesised

expression. n is used in two places as a result of a call to SCOPING:

• In line 5 of SCOPE, n(t) is used in the construction of Ti, a multiset of

transitions that determines whether t may be represented by a scoping

operator at the current point in the expression tree. This use of Ti, is not

sensitive to any change in the transition names of the input net because

such a change will affect n(t') and n(u), used in line 6 of SCOPE, in the

same way.

• n is used in the construction of L in line 3 of INSERT SCOPING. L

determines the locations in the expression tree where new actions are

inserted using ADD. Suppose that the choice of transition names in the

input net affects the ordering of tl and t2, and causes a new action to be

inserted at the action corresponding to t2 instead of tl. By the definition

of <i, >.(tl) = >'(t2), and by the definition of Ti; tl [Xl t2. Hence, it

follows that tl and t2 are synthesised to atomic actions the same choice

context. Therefore, provided the transition ordering <; is taken into

account when sorting subexpressions in SORT (line 11 of SYNTHESISE),

the ordering of the atomic actions corresponding to tl and t2 will change

as the ordering oftl and t2 changes. Note that in SORT, <t will only come

into play when comparing syntactically equivalent expressions. Hence,

244

this modification does not have any effect on the underlying expression

that is synthesised.

There is some non-determinism in the construction of T' in line 6 of SCOP-

ING. The definition of T' ensures that every transition t' E T' has a unique

set of base transitions. Hence, the order in which transitions are considered

as candidate members of T' will affect the contents of T'. However, it is only

the size of T' that is important, and not the exact transitions contained in T'.

Therefore, the choices in construction of T' have no effect on the form of the

synthesised expression.

The order in which the transitions x E X are considered in INSERT SCOP-

ING has an impact on the order in which new action names are used in the

synthesised expression, and where several new actions are added at the same

point, on the ordering of the new actions in the expression tree. The num-

ber of outcomes for the synthesised expression can be reduced by imposing

a deterministic order on the transitions in X. One possibility is to associate

a word with each transition x EX, constructed by writing down in order

the transitions in n(x). The ordering could be defined by the location of the

corresponding atomic action in the underlying expression tree (for example,

an ordering based on a depth-first search of the expression tree would be suit-

able). Then, the lexicographic ordering of the words determines an ordering

for the transitions in X. This ordering could also be used to provide a canon-

ical choice for (t, l) in line 4 of INSERT SCOPING. Finally, a fixed order (for

example, nI, n2, n3, ...) for the new action names that are introduced in line 3

of INSERT SCOPING could be imposed.

Unfortunately, the choice of transition names in the input net can still

have an effect on the location of new actions, due to the problem with the

information lost about the structure of the input net when Tsc is removed. For

example, Figure 4.24, shows the implementation of

E = ((a II (a; b)) sy a) II ((a II (a; c)) sy a)

245

where the dotted transitions are those belonging to Tsc. Depending on the

choice of ordering of transition names, the synthesised expression may be either

of the following:

E [{nl,n2}: (n10a) II (n20a) II ((filOa);b) II ((fi20a);c)]
E [{nl,n2}: (nl Oa) II (n2 Oa) II ((fi2 Oa);b) II ((fil Oa);c)]

...-...~ ..-..
~0 ~........

tions in Tsc

Figure 4.24: Non-determinism when adding new actions to represent transi-

Summary

The investigation into the points of non-determinism of the synthesis algorithm

presented in this chapter has shown that in order to generate canonical form

expressions, some account of the structure, that the set of transitions Tsc

provides to the input net, needs to be taken.

The main result is that if a canonical ordering for the transitions in the

input net is available, and it is used, then the synthesis algorithm will provide

a canonical form expression. In Section 4.6.3, this result is used to place some

bounds on the time complexity of an algorithm for the syntax in Table 4.1,

which synthesises canonical fotm expressions.

246

4.6.3 Bound on time complexity of canonical synthesis

algorithm

In this section, the complexity of synthesising canonical form expressions is

related to the complexity of GRAPH ISOMORPHISM, defined in Section 2.4.3.

~ Box isomorphism ~
I (?) 2

en en
'< -e::s

~ ~ &:;.
Cl> Cl>

'" '"C;;' C;;'

El
Equality E2

(?)
en en-e '<::s --- --- ::s:;. d d :;.
Cl> Cl>
'" '"C;;' C;;'

Cl Equality C2
(P)

Net

Expression

Canonical
Expression

Figure 4.25: Relationship between the complexity of problems

Figure 4.25 gives a diagrammatic view of the relationship between the time

complexity of the equivalence problem for nets, expressions, and canonical form

expressions, for net semantic isomorphism .

• Nets: Let ~l' ~2 be implementations of expressions over the syntax

in Table 4.1. The complexity of checking whether ~l =u« ~2 is clearly

bounded by the complexity of GRAPH ISOMORPHISM. Note that it may

be the case that the class of nets to which ~l and ~2 is sufficiently

restricted that the problem is easier than that of the generic GRAPH

ISOMORPHISM problem (such as is the case for the basic Box expression

syntax used in Chapter 3) .

• Expressions: Suppose that ~l and ~2 are synthesised to expressions

El, E2 over the syntax in Table 4.3. It has been shown that the synthesis

can be completed in polynomial time in Section 4.6.1. Therefore, if the

equality of El and E2, for net semantic isomorphism, can be compared

247

in time polynomial in the size of I:l and I:2, then it follows that the

comparison of I:l and I:2 can be completed in polynomial time .

• Canonical Expressions: It is a trivial task to compare the equality

of canonical form expressions Cl and C2• Therefore, using the same

argument as above, if a polynomial time algorithm (based on the size of

the nets I:l and I:2) can be found to rewrite an expression into canonical

form, then the tasks of comparing nets, and comparing expressions must

also have polynomial time complexity.

Hence, the unknown time complexities, indicated by (?) in Figure 4.25 are

all related. Based on the fact that it is not known whether an efficient algo-

rithm for GRAPH ISOMORPHISM exists (i.e. it is not known whether GRAPH

ISOMORPHISM is P or NP), it may be difficult to classify the unknown com-

plexities in Figure 4.25.

In the following section, it is shown that for arbitrary expressions over the

syntax in Table 4.3, the problem of checking the equality of expressions (or the

nets that may be derived from them) for net semantic isomorphism, necessarily

has the same time complexity as the generic GRAPH ISOMORPHISM problem.

Scoping equivalence and GRAPH ISOMORPHISM

In this section, it is shown that any solution to SCOPING EQUIVALENCE pro-

vides a solution to GRAPH ISOMORPHISM. This results places an upper bound

on the time complexity of SCOPING EQUIVALENCE to be the time complexity

of GRAPH ISOMORPHISM (It also places a lower bound on the complexity of

GRAPH ISOMORPHISM

248

SCOPING EQUIVALENCE

INSTANCE: Expressions El, E2 over the syntax in Table 4.3.

QUESTION: Is El =iso E2?

(i. e. Are the implementations of El and E2 isomorphic?)

GRAPH ISOMORPHISM

INSTANCE: Graphs G = (V, E), G' = (V, E')

QUESTION: Are G and G' "isomorphic", that is, is there a one-to-one

function f : V -+ V such that {u, v} E E if and only if {f(u), f(v)} E E'?

Let G = (V, E), G' = (V', E') be an arbitrary instance of GRAPH Iso-
MORPHISM. A corresponding instance of SCOPING EQUIVALENCEcan be con-

structed from G and G'. Here, the construction of an expression El, from G

is described. The construction of E2 from G' follows an identical process.

Suppose V = {VI, V2, ... , vn} is the set of vertices in G. A base expression,

Eb is constructed, which represents the vertices in G, but not the edges. Let

Eb = Xl II X2 II ... II Xn, where Xi is an action name corresponding to vertex Vi,

for 1 ::; i ::;n. The labelling function, u; mapping action names to actions is

such that /-l(Xi) = {a} for 1 f i::; n. Each edge, (Vj,Vk) E E is represented

by a synchronisation between the corresponding pair of actions in Eb. For

example, suppose (VI, V3) E E, then the representation of the edge could be

added to Eb as follows:

where N is the set of new actions, that have been added to represent the syn-

chronisation (i. e. N = {11:I} in this case). Every edge in E may be represented

in the same way - the only constraint is that a different "new" action is used

to represent each edge.

It is clear that the construction of El and E2 from G and G' can be com-

pleted in polynomial time. Also, the form of expressions used to represent

graphs are such that the size of the nets corresponding to these expressions

are polynomial in the size of the expression. Therefore, the problem of check-

249

ing the isomorphism of nets El, E2, which are implementations of expressions

over the syntax in Chapter 4.3 necessarily has the same time complexity as

the generic GRAPH ISOMORPHISM problem. Hence, the time complexity of

SCOPING EQUIVALENCE is the same as the time complexity of GRAPH Iso-

MORPHISM.

,,,,,,

,,,,,,

Figure 4.26: Construction of an expression from a graph

Figure 4.26 shows a graph, G, and the implementation of the expression

El, constructed from G, where:

The base expression, representing the vertices of G is given by:

Eb = a II a II a II a
The resulting expression, El, constructed from Eb by representing the set of

edges in G is:

E = [{nI, n2, n3, n4, n5} : (a 0 nl 0 n2) II (a 0 n3 0 n4) II (a 0 fii 0 ri3 0 n5) II
(a 0 1120 n4 0 ns) 1

250

Conclusion

The investigation into the time complexity and non-determinism of the syn-

chronisation synthesis algorithm has not ruled out the possibility of an efficient

algorithm that synthesises a canonical form expression:

• The proof of the equivalence of complexity of SCOPING EQUIVALENCE

and GRAPH ISOMORPHISMuses a construction that is more expressive

than can be derived from a expression over the syntax in Table 4.1.

The semantics of the synchronisation operator place some quite severe

restrictions on the structure of nets that may be represented, in compar-

ison to the scoping operator. For example, it is possible to represent the

structure of an arbitrary graph, but this is at the expense of every action

representing a vertex of the graph having a unique label. Therefore, it

is conceivable that the class of expressions over the syntax in Table 4.3

that can be derived from an expression over the syntax in Table 4.1 may

be sufficiently constrained that the problems of checking equivalence and

finding the canonical form become easier .

• The time complexity of GRAPH ISOMORPHISMhas not been classified as

either P or NP. It is an open problem whether an efficient algorithm exists

for GRAPH ISOMORPHISM, and if one is found, the implication is that

there is an efficient algorithm to synthesise canonical form expressions

for nets derived from the syntax in Table 4.1.

The results of the investigation into the time complexity and non-determinism

of the synthesis algorithm do not affect the possibility of the production of a

sound and complete axiom system. However, these results do bear a relation

to the time complexity of any proof strategy that would be used to apply the

axioms and show the equivalence of a pair of expressions over the syntax in

Table 4.1.

There are tools, such as nauty that use a heuristic approach to solve GRAPH

ISOMORPHISM. Nauty also allows an arbitrary graph (or net!) to be relabelled

251

in a canonical form. Such a tool could be used to provide an algorithm that

synthesises canonical form expressions, and also drive the application of axioms

in a proof strategy.

4.6.4 Axiom system

In this section, an axiomatisation for the Box expression syntax in Table 4.1

is presented. The axiomatisation, like the synthesis algorithm, relies on the

extra expressiveness provided by the scoping operator. Hence, the normal

and canonical forms of expressions will use the syntax in Table 4.3 - i. e. all

occurrences of the synchronisation operator will be rewritten in a form using

the scoping operator. The axioms are presented in four groups:

• The axioms which provided the axiomatisation for the basic syntax in

Chapter 3 are reused here.

• The axioms introduced in Proposition 35, which allow all scoping opera-

tors to be moved to immediately inside the enclosing iteration operator,

or the top level of the expression, if there is no enclosing iteration oper-

ator.

• An axiom which allows the actions from the basic syntax, which are at

the overlap between the basic syntax and synchronisation to be rewritten

in scoping form, and vice versa.

• An axiom which allows all instances of the synchronisation operator to

be rewritten in scoping form, and vice versa. For simplicity, this axiom

is presented as a symmetric pair of rewriting rules that may be applied

from left to right only.

Each of the axioms is shown to be sound. In Section 4.6.4, the axiom system

is shown to be complete as well. Finally some examples of the application of

the axiom system are presented in Section 4.6.5

252

The axioms relating to the basic syntax are shown below. The soundness

for these axioms was discussed in Section 3.5.5 in Chapter 3, and will not be

repeated here.

(El; E2); E3

(El D E2) D E3

(El II E2) II E3
El DE2

El II E2

El; (E2; E3)

El D (E2 DE3)

El II (E2 II E3)
E2 DEI

E211 El

The axioms which allow the positions of the scoping operators to be moved

into the same positions used by the synthesis algorithm are given below. The

soundness of these axioms follows directly from the semantics of the scoping

operator.

[NI: [N2 : Ell

[N: Ell II E2
[N: Ell DE2

El; [N: E2l

[N: EIl;E2

[NI U N2 : El provideclV, n N2 = 0

[N: El II E2l provided 'tin EN: £(E2) n {n, Ti} = 0

[N: El D E2l provided 'tin EN: £(E2) n {n, Ti} = 0

[N: El; E2l provided 'tin EN: £(EI) n {n, Ti} = 0

[N: El; E2l provided 'tin EN: £(E2) n {n, Ti} = 0

The following axiom allows certain atomic actions in the basic syntax to

be rewritten in a form using the scoping operator. This axiom is more general

than required to cope with the overlap between the basic syntax and synchro-

nisation, but nevertheless does not cover all possible representations that are

valid semantically.

(El II E2 II ... II (Ek-l II Ek)"')) Da = [{nI, ... , nk-l} : (El D iii) II ((E2 Dfi2) II
... II ((Ek-l Dn-;:-l) II (Ek D ({nI, ... , nk-l} + a)))··)l

When applying the axiom from left to right, note that each new basic action,

ni should not already be used elsewhere. The soundness of this axiom follows

from the semantics of scoping, and from Proposition 27.

253

Figure 4.27: Choice axiom and multiple sub expressions

It is necessary for the axiom to consider multiple subexpressions, rather

than a pair, because it needs to match the behaviour of INSERT SCOPING.

For example, for an implementation of E = (((a II b) 0 c) II d) 0 e, shown in

Figure 4.27, i; satisfies the conditions for inclusion in Tsc (as does Tc), and

Tb(te) = {ta, tb, td}. Therefore, the expression can be synthesised to (among

others):

The sub expressions E, for 1 :::;i :::;k in the axiom above can be restricted to be

of the form E: 0 x for some atomic action, x, without affecting the completeness

of the axiomatisation. Since the axiom is sound in the form presented, the only

effect of imposing the restriction is to complicate the axiom.

The definition of the semantics for synchronisation given in Section 1.3.5

is used in the rewriting rules which convert between synchronisation form

and scoping form. The first rule converts the synchronisation operation in an

expression to scoping form:

E sy a ---+ [N' : E']

There is a condition in that E is required not to contain any synchronisation

operations - i. e. the conversion from synchronisation to scoping form must be

done in a bottom up fashion. The set of scoping actions, N', and the modified

expression, E' are derived as follows:

Let Aa denote the set of action names, x, in E such that {a, a} n J.L(X) =1= 0,
and T be a finite multiset of Aa. A function, f is defined, which expands

254

every action arising from a previous rewriting of a synchronisation operator in

the multiset T. Suppose Nsc is the set of basic actions appearing in scoping

operations in E, A is the set of all action names in E, and for a multiset T,

define X = {x E T I J1(x) n Nsc = 0}. The expanded multiset corresponding

to T is given by:

/(T) = T + U (x' E A I (J1(xi) n (J1(x) nNsc)) i= 0)
XE(T-X)

The set of synchronisations and corresponding labels are given by:

l(f(T))

{/(T) IITI 2: 2A min(ExETJ1(x)(a), EXETJ1(X)(a)) 2: ITI- I}

((ExETJ1(X)) - ((ITI-l)· {a,a})) - Nsc

Asy and l are the equivalent action based synchronisations corresponding to

the transition based synchronisation semantics given in Section 1.3. The use

of the function / ensures that each asy EAsy corresponds to the net based

definition of base transitions for a synchronised transition. In fact, / does

not find the exact base actions corresponding to the base transitions, but

instead representatives from the same atomic choice contexts as the real base

transitions.

The set of actions to scope by, N' (initially empty), and the modified

expression, E' are constructed from E by applying the following process for

each synchronisation asy EAsy:

• Construct L = {(x, {71i}) I x Easy and each ni is a distinct new action}.

• Choose any pair (x,l) EL, and define C = {n I (x',{n}) E LAx' i=
x}. Add the set of new basic actions, C to N'. Replace (x, i) in L by

(x, C + l(asy)).

• For each (x, l) E L, replace x in E by (x 0 l).

Notice that this process follows the algorithm for INSERT SCOPING described

in Section 4.4. The process is simpler when working on expressions, compared

255

to nets, because no account needs to be taken of the one to many mapping

between actions in expressions and transitions in nets. The soundness of this

rewriting rule follows from the semantics of synchronisation and scoping, and

the correctness of INSERT SCOPING.

The second rewriting rule implements the reverse process of the first rule.

Rather than a complex procedure to construct the resulting expression, there

is a complex precondition that must hold before the rule can be applied. The

precondition ensures that there is a representative in scoping form for every

synchronisation that would be created by the application of the synchronisa-

tion operator.

[N : El -+ E' sy a

A similar condition to the first rewriting rule is required, in that E must not

contain any applications of the synchronisation operator - i. e. the conversion

from scoping to synchronisation form must be done in a top down fashion.

E' is constructed from E by removing every atomic action a, such that

N n a =1= 0. An intuitive notion of the construction of E' from E is given

by the fact that E' = E rs N. The precondition to the application of this

rewriting rule is that the first rewriting rule may be applied to E' sy a to

produce [N : El.
Formally, and eliminating the need to make the correct choices at the points

of non-determinism, the precondition may be checked by the following process:

• Construct E' from E, as described above, and set N' = N.

• Find the set of synchronisations, and corresponding labels, by applying

the definitions for Asy and 1 to E' sy a.

• For each synchronisation asy EAsy, suppose asy = {Xl, X2, ... , xn} and

find a set of actions x~, x~, ... , x~ in E, such that for 1 ~ i ~n:

- J-l(xD n (N' U N') =1= 0

- x~ is in an atomic choice context with Xi

256

- :31 ~ j ~n such that /-L(xj) n N' i= 0
-- /-L(xj) n N' = Ul~i~n,ih /-L(xD

If there is no set of actions meeting the conditions above, then the rewrit-

ing rule may not be applied. Otherwise, remove /-L(Xj) nN' from N', and

continue with the next element of Asy .

• When all synchronisations in Asy have been checked, the rewriting rule

may be applied if and only if N' = 0.

The soundness of this rewriting rule follows from the soundness of the first

rewriting rule, and the associativity and commutativity of the choice operator.

Completeness

Let I; = (S, T, W, A) be an implementation of an expression, E, over the syntax

in Table 4.1. There are many possible output expressions from the synthesis

algorithm, given input I;, due to the points of non-determinism in the synthesis

algorithm. The idea of the completeness proof presented in this section is to

show that for any member, E', of the class of output expressions, E can be

rewritten as E', using the axioms introduced in the previous section.

Proposition 37 Let E be an expression over the syntax in Table 4.1, and E'

be the output of the synthesis algorithm, when given an implementation of E

as input. It is possible to rewrite E into E', using the axioms of Section 4.6.4.

Proof: The aim of the proof is to show that any expression produced by the

the synthesis algorithm can also be obtained using the axiom system. In

order to do this, two areas need to be addressed. Firstly, the synthe-

sis algorithm proceeds in a different order to the way in which axioms

are intended to be applied. The synthesis algorithm proceeds by the

following two steps:

• Synthesise the underlying expression, and rearrange the order of

subexpressions.

257

• Add new actions and scoping operators into the underlying expres-

sion to produce the final synthesised expression.

In comparison, the strategy for applying the axioms of Section 4.6.4 is

as follows:

• Convert all synchronisation operators, and those actions arising

from the basic syntax, which overlap with the expressiveness of

the synchronisation operator, to scoping form.

• Move all the scoping operators outwards as far as possible (i. e. until

an iteration operator, or the outermost expression is reached.)

• Rearrange the order of the subexpressions.

Secondly, for each point of non-determinism in the synthesis algorithm,

as analysed in Section 4.6.2, it is necessary to show that the possible

outputs associated with the non-determinism can be generated using

the axiomatisation.

Consider an arbitrary expression E over the syntax in Table 4.1, with ~

being an implementation of E. The underlying expression produced by

the synthesis algorithm, given input ~ is effectively E with all synchro-

nisation operators and some atomic actions in choice context removed,

and the order of sub expressions in E rearranged. Bearing this in mind,

the representation of the set of transitions, Tsc is treated first. The ax-

iom which converts a synchronisation operator to scoping form follows

the procedure INSERT SCOPING. All that needs to be shown is that for a

synchronisation, T, corresponding to a transition t E Tsy, the expanded

multiset of actions, f (T) corresponds to n(t).

It is valid to consider T in terms of actions in an expression rather than

the normal transitions in a net because E does not contain any synchro-

nisation operators. When every action x E T is such that J.L(x) nNsc = 0
(i. e. x has not arisen from a previous conversion from synchronisation

258

to scoping form), 7 matches Tb(t) exactly. Note that if 7 were used in

place of 1(7), the axiom would still be sound - however, the form of

expression produced would not match that of the synthesis algorithm.

The expanded multiset of actions is necessary to deal with actions that

take part ina scoping operation. Suppose 7 contains an action X such

that p,(x) n Nsc =I- 0. Without loss of generality it may be assumed

that p,(x) is of the form {nil, ..., nik, ajl, ... , ajm}, where nig E Nsc for

1 ~ 9 ~ k, and ajh ¢ Nsc for 1 ~ h ~ m. Furthermore, there are actions

XiI, ... , Xik in E such that P,(Xig) = {fii;} for 1 ~ 9 ~ k. In other words,

the set of actions Al = XiI, ... , Xik, X is a scoping form representation of

a synchronisation. The expanded synchronisation, 1(7) replaces X by

the set of actions, AI. By the definition of INSERT SCOPING and the

synchronisation to scoping form axiom, it can be seen that the actions

in Al are in atomic choice contexts with the actual actions that were

synchronised. Hence, in terms of choice contexts (in expressions) and

connectivity (in nets), the multiset 1(7) matches n(t).

The axiom for rewriting actions in atomic choice contexts into scoping

form is more flexible than is required for rewriting the set of actions

corresponding to Tat. No expansion, similar to that needed for syn-

chronisation, is required here. However, in the synthesis algorithm an

atomic choice transition may be included in Tat by virtue of another tran-

sition arising from synchronisation - for example in an implementation

of ((all {a, b}) sy a " b) 00. If a transition arising from synchronisation

is used in this way, then it is necessarily the case that the base transitions

are all in the same choice context, and this is covered by the fact the

axiom deals with an arbitrary number of subexpressions in the choice

context (rather than a pair of subexpressions).

INSERT SCOPING adds the scoping operator at the highest possible point

in the expression tree. In comparison, the application of the synchroni-

259

sation to scoping axiom places the scoping operator at the same point as

the synchronisation operator it replaces. By definition, the basic actions

which are scoped only appear within the scope of the scoping opera-

tor. Therefore, by the set of scoping axioms, and Proposition 35, the

axiomatisation can be used to move the scoping operators into the same

positions that would be obtained from the synthesis algorithm.

All the points of non-determinism in INSERT SCOPING, such as the choice

of new action names, and the choice of the distinguished element of

L are present in the corresponding axiom. Therefore, the same class

of expressions resulting from these points of non-determinism can be

obtained from both the axiomatisation and the synthesis algorithm.

The remaining point to deal with is the positions that new actions are

added by calls to ADD. So far, it has been show that the axiomatisa-

tion will not necessarily add the actions in exactly the same location,

but only in the same atomic choice context. However, the associativity

and commutativity axioms for choice allow an arbitrary reordering of

subexpressions in a choice context. A similar argument applies to the

rearrangement of subexpressions to match the order in the underlying

expression produced by the synthesis algorithm. Note that when all the

scoping operators have been moved to match the locations used by the

synthesis algorithm (i. e. immediately with iteration (sub)expressions,

and surrounding the entire expression), then there are no constraints

on the reordering of choice and parallel composition contexts, and on

the bracketing of choice, sequence, and parallel composition contexts.

Therefore, for any output expression E' from the synthesis algorithm on

input 2:, the axiom system can be used to rewrite E as E', where 2: is

an implementation of E. 0

Theorem 5 The axiom system presented in Section 4.6.4 is complete.

260

Proof: Let El and E2 be two expressions over the syntax in Table 4.1,

and ~l and ~2 be implementations of El and E2 respectively. Suppose

~l =iso ~2' then it must be shown that El may be rewritten as E2 using

the axiom system.

Given ~l as input to the synthesis algorithm, anyone of the expressions

in the class Ee may be produced as output, due to the non-determinism

in the synthesis algorithm. By Proposition 37, El may be rewritten,

using the axiomatisation, into any member of Ee. Since ~2 =u: ~l' the

output of the synthesis algorithm on input ~2 will be some member of

Ee. Therefore E2 may be rewritten, using the axiomatisation, into any

member of Ee·

Suppose E is some member of Ee, then by applications of the axioms,

both El and E2 may be rewritten as E. Therefore, El may be rewritten

as E2 by concatenating the proof El = E with the proof that E2 =

E written in reverse order (The synchronisation to scoping axiom may

only be applied in one direction. However, the corresponding scoping to

synchronisation axiom allows rewriting in the reverse direction). 0

4.6.5 Examples

In this section, some properties of the synchronisation operator are demon-

strated using the axiom system of Section 4.6.4. A list of all the axioms is

presented in Table 4.12.

The axiomatisation consists of axioms (BS1-BS5) dealing with ordering and

bracketing of sub expressions from the basic syntax, axioms (SP1-SP5) relating

to the position of scoping operators, axiom CS1 for rewriting actions in atomic

choice contexts in scoping form, and rewriting rules (SS1-SS2) dealing with the

conversion between synchronisation and scoping forms. The axioms marked

by "*,, have preconditions which must be satisfied before the axiom can be

applied - see Section 4.6.4. The procedure to apply the rewriting rules SSl

261

Axiom Name

(~I; ~2); ~3 == ~I; (~2; ~3) BSI

(~I 0 ~2) 0 ~3 == ~I 0 (~2 0 ~3) BS2

(~I II ~2) II ~3 == ~I II (~2 II ~3) BS3

~I 0 ~2 == ~2 0 ~I BS4

~I II ~2 == ~2 II ~I BS5

[NI: [N2 : ~ll == [NI U N2 : ~l SPl*

[N : ~Il II ~2 == [N : ~I II ~2l SP2*

[N : ~I] 0 ~2 == [N : ~I 0 ~2l SP3*

~I; [N : ~2l == [N : ~I; ~2l SP4*

[N : ~Il; ~2 == [N : ~I; ~2l SP5*

(~I II ~2 II ... II (~k-I II ~k)"')) 0 a == CSI

[{nl, ...,nk-d: (~IDfil) II ((~2Dfi2) 11 .. ·11

((~k-I Dn-;;::::-dII (~k 0 ({nI, ... ,nk--d + a))) ..)]

E sy a ---+ [N' : ~'l SSI*

[N : ~l ---+ E' sy a SS2*

Table 4.12: Axiomatisation of Box expression syntax in Table 4.1

and SS2 may also be found in Section 4.6.4.

Equivalent synchronisations

In this section, the equivalence of the following expressions is shown, using the

axioms of Table 4.12:

~I - ((a II b) II (liDb)) sy a

~2 - ((a II b) II (Ii 0 b)) sy b

~3 ((a II b) II (Ii 0 b)) 0 0

The implementation of the (equivalent) expressions is shown in Figure 4.28.

262

Figure 4.28: Implementation of El, E2, and E3

El ((a II b) II (a 0 b)) sy a

[{nd: (a 0 fii Ob) II (a 0 nl 0 b)] (SS1)

- ((a II b) II (aOb)) sy b (SS2)

- E2
- [{nd: (aObOfii) II (aObOnl)] (SS1)

((a II b) II (a 0 b)) 0 0 (CS1)

- E3

Order of synchronisation

In this section, the equivalence of the following expressions is shown, using the

axioms of Table 4.12:

El ((a II {ab}) sy a II b) sy b

E2 - (({ab} II b) sy b II a) sy a

E3 (((a II {ab}) 0 b) II b) sy b

E4 ((({ab} II b) Oa) II a) sy a

The implementation of the (equivalent) expressions is shown in Figure 4.29.

The first proof demonstrates that El = E2•

263

Figure 4.29: Implementation of El, E2, E3 and E4

El - ((a II {ab}) sy a II b) sy b

- ([{nd: (aOrii) II ({ab}O{nlb})] lib) sy b (SS1)

- [{n2,n3,n4}: [{nl}: (aOrii Ofi2) II
({ab} 0714 0 {nIb} 0113)]11 (bO {n4a} 0 {n2n3})] (SS1)

- [{nI,n2,n3,n4: ((aOfiiOfi2) II ({ab}Ofi4D

{nIb} 0113)) II (bO {n4a} 0 {n2n3})] (SP1)

- [{nI,n2,n3,n4: (aOfii 0fi2) II
(({ab} 0 7140 {n Ib} 0 113) II (b 0 {n4 a} 0 {n2 n3}))] (BS3)

- [{nI,n2,n3,n4: (({ab} 0714 0 {nIb} 0113) II
(b 0 {n4 a} 0 {n2 n3})) II (a 0 fii 0 fi2)] (BS5)

- [{nI,n2,n3}: [n4: (({ab} 0714 0 {nIb} 0113) II
(b 0 {n4a} 0 {n2n3})) II (a 0 rii 0 fi2)]] (SP1)

- [n4 : (({ab} 0 714) II (b 0 {n4a})) II a] sy a (SS2)

- ([n4: (({ab}Ofi4) II (bO{n4a}))]II a) sy a (SP2)

- (({ab} II b) sy b II a) sy a (SS2)

- E2

From the above proof, El = ([{nI}: (aOfii) II ({ab} 0 {nIb})] II b) sy b.

Therefore:

El - ([{nd: (a 0 fii) II ({ab} 0 {nIb})]11 b) sy b

- (((a II {ab}) 0 b) II b) sy b (CS1)

Similarly, El = ([n4 : (({ab} 0 714) II (b 0 {n4a}))] II a) sy a from the above

264

proof. Therefore:

El ([n4: (({ab}Dfi4) II (bD{n4a}))lll a) sy a

((({ab} II b) 0 a) II a) sy a

E4

(CS1)

Hence, it has been shown that El = E2 = E3 = E4·

Partially equivalent synchronisations

In this section, the equivalence of the following expressions is shown, using the

axioms of Table 4.12:

El (((aDb) II (aOc));((aOc) II (aDb))) sy a

E2 ((((a 0 b) II (a 0 c)) 00); (((a 0 c) II (a 0 b)) 00)) sy b sy c

Figure 4.30: Implementation of El, and E2

The implementation of El and E2 is shown in Figure 4.30.

265

El - (((a 0 b) II (a 0 c)); ((a 0 c) II (a ~b))) sy a

- [{nI, n2, n3, n4} : ((a 0 fil 0 n2 0 b) II (a 0 nl 0 fi3 0 c));

((aOn307i40c) II (aOfi20n4Ob))] (881)

- [n3: [{nl,n2,n4}: ((aOfilOn20b) II (aOnIOfi30c));
((a 0 n3 07i4 0 c) II (a 0 fi2 0 n4 ~b))]] (8P1)

- [{nI, n2, n4} : ((a 0 fil 0 n2 0 b) II (a 0 nl 0 c));

((a 0 7i40 c) II (a 0 fi2 0 n4 0 b))] sy c (882)

- [n2 : [{nI, n4} : ((a 0 iil: 0 n2 0 b) II (a 0 nl 0 c));

((a07i40c) II (aOfi2 On4 ~b))]] sy c (8P1)

- [{nl,n4}: ((aOfil Db) II (aOnl Dc));
((a 0 7i40 c) II (a 0 n4 0 b))] sy b sy c (882)

- [n4: [nl: ((aOfil Db) II (aOnl Dc));

((a07i40c) II (aOn40b))]] sy bsy c (8P1)

- [n4: [nl: ((aOfilOb) II (aOnIOc))];
((a07i40c) II (aOn40b))] sy bsy c (8P5)

- [nl: ((aOfil Db) II (aOnl Dc))];

[n4: ((a07i40c) II (aOn40b))] sy bsy c (8P4)

- [nl: ((aObOfil) II (aOcOnl)];
[n4: ((aOc07i4) II (aObOn4))] sy b sy c (B82)

(B84)

- (((a 0 b) II (a 0 c) 0 0);

[n4: ((aOc07i4) II (aObOn4))] sy b sy c (C81)

- (((a 0 b) II (a 0 c) 0 0); (((a 0 c) II (a 0 b)) 0 0)) sy b sy c (C81)

- E2

266

Chapter 5

Duplication Equivalence

In this chapter, the synthesis and axiomatisation problems are investigated for

net semantic duplication equivalence. When duplication equivalence is used for

identifying nets, the synthesis problem, for input net, E, which is duplication

equivalent to the implementation of some unknown box expression, is to find

a box expression, E, such that E is duplication equivalent to the implemen-

tation of E. The important difference between isomorphism and duplication

equivalence is that the input net is not necessarily an implementation of a box

expression. For example, for the the basic syntax described by Table 2.3 in

Chapter 2, the net shown in Figure 5.1 (i) is an implementation of E = a,

while there is no expression whose implementation is net (ii) in Figure 5.l.

However, the nets in Figure 5.1 are duplication equivalent, and are both valid

inputs to a synthesis algorithm where the net semantic used is duplication

equivalence.

e

Figure 5.1: Duplication equivalent nets

267

The axiomatisation problem, for duplication equivalence, is to find a sound

and complete set of axioms that characterise the notion of duplication equiv-

alence of expressions. There are two approaches to constructing such an ax-

iomatisation:

• Extend the axiomatisation for isomorphism. This approach relies on the

fact that any pair of isomorphic nets are necessarily duplication equiv-

alent (i.e. duplication equivalence encompasses isomorphism). A set of

axioms that exactly characterises the differences between isomorphism

and duplication equivalence need to be found. Such a set of axioms,

together with the axiomatisation for isomorphism provide an axiomati-

sat ion for duplication equivalence.

• Construct a completely new axiomatisation. This approach is more flex-

ible in that it does not require a subset of the axioms to characterise

the differences between isomorphism and duplication equivalence. How-

ever, no advantage is taken of the work that has already been done in

producing an axiomatisation for isomorphism.

Section 5.1 briefly discusses the synthesis and axiomatisation problems

for the basic syntax, and the basic syntax with the synchronisation opera-

tor added. The following sections provide a more in-depth investigation into

duplication equivalence. Section 5.2 extends the work in Chapter 2 from the

domain of isomorphism to that of duplication equivalence; Section 5.3 gives

an overview of how the investigation into synchronisation of Chapter 4 can

be extended for duplication equivalence; and Section 5.4, motivated by the

result of Proposition 22 constructs a completely new axiomatisation for the

synchronisation operator, for net semantic duplication equivalence.

268

5.1 Extension from isomorphism to duplica-

tion equivalence

5.1.1 Basic syntax

The approach taken in investigating duplication equivalence for the basic syn-

tax is to define a canonical form for input nets to the synthesis algorithm

presented in Chapter 3. Let E be an expression from the basic syntax in

Table 3.1, and ~ be the implementation of E. The input to the synthesis al-

gorithm for net semantic duplication equivalence shall be ~', constructed from

~ by removing all duplicate places and transitions.

This approach allows the results of Chapter 3 to be reused. However, there

is an assumption here that ~' is, in fact, the implementation of some expression

over the basic syntax. The axiomatisation of Chapter 3 will be extended to

allow the rewriting of E to E', where the implementation of E' is ~'.

Section 5.2 demonstrates that this approach is possible and extends the

synthesis algorithm and axiomatisation of Chapter 3 from net semantic iso-

morphism to duplication equivalence.

5.1.2 Synchronisation

In Chapter 4, Proposition 22 demonstrated that the synthesis problem for

nets obtained from expressions over the syntax in Table 4.1 is NP hard. It is

possible to recast this result in terms of the equivalence of expressions, which

rules out any efficient proof strategy for an axiomatisation of the syntax in

Table 4.1.

The analysis in Section 4.2.5 demonstrated that the NP hardness result no

longer held when duplication equivalence was used in place of isomorphism.

Hence there are two general approaches to finding an axiomatisation for du-

plication equivalence .

• Re-investigate the possibility of producing an axiomatisation purely in

269

the domain of the syntax in Table 4.1 - i.e. without moving to the

scoping form representation for synchronisation .

• Extend the axiomatisation of Chapter 4, which rewrites synchronisation

operations into scoping form, to capture the difference between isomor-

phism and duplication equivalence.

Section 5.4 briefly discusses the extension of the axiomatisation of Chap-

ter 4, and presents a detailed investigation into an axiomatisation for duplica-

tion equivalence which stays with the domain of the syntax in Table 4.1, and

does not resort to the use of a scoping representation.

5.2 Basic syntax

In order to use the synthesis algorithm and axiomatisation of Chapter 3 as a

basis for an investigation into duplication equivalence, it is necessary to show

that for any implementation, E, of an expression, E, the duplicate free version

of E is an implementation of some expression from the basic syntax.

Proposition 1 shows that duplicated places never arise in the implemen-

tation of a basic syntax box expression. Therefore, only the duplication of

transitions needs to be considered. Firstly, it is shown that it is not possible

for the implementation of a basic syntax box expression to contain an isolated

transition:

Proposition 38 For any implementation, E = (5,T, W, A), oj an expression

[rom the syntax in Table 3.1, every transition t E T is such that ~ =1= 0 and

r =1= 0.

Proof: Follows directly from the semantics for the syntax in Table 3.1. D

Proposition 39 Let E be an expression over the syntax in Table 3.1, such

that E does not contain atomic actions with the same label in the same choice

context. Let E be an implementation oj E. E does not contain any duplicate

transitions.

270

Proof: By structural induction over the box expression syntax in Table 3.1.

Base case: E = a: By definition, the implementation of a contains a

single transition. Therefore no duplicate transitions are present.

Induction step: By the induction hypothesis, the implementation,

Ei = (Si, Ti, Wi, Ai) of subexpression, Ei, does not contain any duplicate

transitions. Let E be an implementation of E, constructed from disjoint

implementations of the subexpressions. Therefore, the only possibility

for duplicate transitions, t1, t2 is where t, and t2 arise from different

subexpressions, s; Ek of E.

• E = El II E2: Without loss of generality, consider transitions,..
tl E T1 and t2 E T2. By Proposition 38, t1 and t2 are not isolated

transitions t2• Therefore, by the semantics of parallel composition,

t1 cannot be a duplicate of t2 because, t1 and t2 are in different dis-

joint subnets. Hence E does not contain any duplicate transitions.

• E = El; E2: Without loss of generality, consider transitions t, E

T1 and t2 E T2. By Proposition 38, t1 and t2 are not isolated

transitions. By the semantics of sequence, and Proposition 7 and 4,

there exists a cluster of places, which when removed is such that

t1~NiTe(E) and t2~NiTx(E), but for any te E Te(E), tx E Tx(E)

there is no undirected path between te and tx. Therefore, t, and

t2 are not duplicates of each other, and E does not contain any

duplicate transitions.

• E = El 0 E2: Without loss of generality, consider transitions t1 E

T1 and t2 E T2. By the semantics of choice composition an Proposi-

tion 4, t1 and t2 cannot be duplicates if either transition is connected

to any internal place. Suppose there exists 81 E Se(E1) such that

81 ¢ ~l' and there exists 82 E Se(E2) such that 82 E ~2. Then by

the semantics of choice composition, there is an arc from {81' 82}

to t2 to t1. Therefore t1 is not a duplicate of t2 if there is an entry

271

place Se E SI such that Se rt. ~l. A similar argument can be applied

to the entry places of t«. and to the exit places of both transitions.

Now consider transitions tl E Ti, t2 E T2 such that:

~l Se(~l)

tl• Sx(~l)

~2 Se(~2)

t2• SX(~2)

By the semantics of choice composition, then tl is a duplicate of t2,

provided A(td - A(t2). By Proposition 27, the transitions tl and

t2 arise from atomic actions in the same choice context. However,•
E has been restricted not to contain atomic actions with the same

label in the same choice context. Therefore, ~ does not contain any

duplicate transitions .

• [El * E2 * E3]: Recall that two copies of each of the subnets ~l' ~2

and ~3 are used in the construction of E. Denote the two copies

of ~i by ~il and ~i2 for 1 :S i :S 3. The following sources for

the transitions tl and t2 need to be considered (not all possible

combinations need to be considered because of the symmetry of the

semantics for iteration):

Number Source of tl Source of t2

1 ~11 ~12

2 ~11 ~2l

3 ~11 ~22

4 ~11 ~3l

5 ~11 ~32

6 ~2l ~22

7 ~2l ~3l

8 ~2l ~32

9 ~3l ~32

272

A similar argument to that used for sequence composition can be

used to show that tl and t2 cannot be duplicates for cases 2-8. In

case 1, it is not possible for tl and t2 to share post places. Similarly,

in case 9, it is necessarily the case that ~l i= ~2. Therefore, by

Proposition 38, tl and t2 are not duplicates in cases 1 and 9. Hence

~ does not contain any duplicate transitions.

o

Corollary 6 Duplicate transitions may only arise in the basic syntax from

atomic actions which. have the same label, and are in the same choice context.

Proof: Proposition 39 shows that duplicate transitions cannot arise in any

other way. The fact that duplicate transitions may only arise from atomic

actions which have the same label, and are in the same choice context

follows from Proposition 27, and the semantics for choice composition.

o

All of the results of this section follow from Corollary 6. For each of the

areas investigated for isomorphism in Chapter 3, the corresponding result for

duplication equivalence is presented here.

5.2.1 Synthesis Algorithm

The synthesis algorithm of Chapter 3 is modified so that a canonical form

for the input net is constructed before the synthesis process takes place. The

canonical form net is constructed by removing all duplicate places and tran-

sitions from the input net. By Proposition 1 and Corollary 6, it is guaranteed

that if the input net is duplication equivalent to an implementation of a ba-

sic syntax box expression, then the canonical form net is isomorphic to the

implementation of a basic syntax expression. The modified version of Box

EXPRESSION SYNTHESIS is given below.

273

Box EXPRESSION SYNTHESIS(E)

1 N=new node

2 N.net=CANoNICAL NET(E)

3 SYNTHESISE(N)

4 return EXPRESSION(N)

5.2.2 Time complexity of the Synthesis Algorithm

Let E = (8,T, W, A), and N = 8 u T. The time complexity of CANONICAL

NET (i.e. identifying and removing all duplicate places and transitions) is

O(n3), where n = 1Nl is the number of nodes in the input net. A check can be

made whether a pair of nodes, nl and n2, duplicate each other in O(n) time by

comparing W(nl' n) and W(n, nl) with W(n2' n) and W(n, n2) for all n E N.

The time complexity of O(n3) is obtained from the time it takes to check all

n2 possible pairs of nodes.

Therefore, from the results in Section 3..5.1, the time complexity of Box

EXPRESSION SYNTHESISis O(n5) +O(n3) - i.e. the time complexity remains

at O(n5
).

5.2.3 Canonical Box Expression Synthesis

The CANONICALBox EXPRESSION SYNTHESISalgorithm can be modified in

exactly the same way so that it is possible to synthesise canonical expressions in

the domain of duplication equivalence. In a similar way to Box EXPRESSION

SYNTHESIS, the overall time complexity of the algorithm is not affected by

these modifications.

CANONICAL Box EXPRESSION SYNTHESIS(E)

1 N=new node

2 N.net=CANoNICAL NET(E)

274

3 ORDERED SYNTHESISE(N)

4 return EXPRESSION(N)

5.2.4 Canonical Box Expression

In order to deal with duplicate transitions, the CANONICALBox EXPRESSION

algorithm needs to be able to identify and remove identically labelled atomic

actions appearing the the same choice context.

The definition of the ordered standard form of Section 3.5.3 guarantees that

atomic actions giving rise to duplicate transitions will be adjacent in ordered

expressions. Therefore,. it is a simple task to remove such adjacent transitions

in choice contexts in the expression. The modified code for CANONICALBox

EXPRESSION is given below:

CANONICAL Box EXPRESSION(E)

1 N =expression tree corresponding to standard form of E

2 VISIT(N)

3 return EXPRESSION(N)

VISIT(N)

1 if N.typejeatomic

2 for each node N' in N.list

3 do VISIT(N')

4 if N. type=parallel or choice

5 then sort{N .list)

6 if N.type=choice

7 then remove duplicates(N .list)

The time comlexity of removing duplicates is O(a), where a is the number

of atomic actions in the box expression, E. Therefore, the time complexity of

the VISIT procedure remains at O(a2 • loga).

275

5.2.5 Decision Problems

The decision problems PETRI Box DUPLICATION EQUIVALENCE and Box

EXPRESSION DUPLICATION EQUIVALENCE can be solved using the modified

versions of CANONICAL Box EXPRESSION SYNTHESIS and CANONICAL Box

EXPRESSION presented in this section. The pseudo code, which is identical to

the corresponding algorithms for isomorphism is shown below.

PETRI Box DUPLICATION EQUIVALENCE(L:1, L:2)

1 C1=CANONICAL Box EXPRESSION SYNTHESIS (L:1)

2 C2=CANONICAL Box EXPRESSION SYNTHESIS(L:2)

3 if Cl = C2

·4 then return yes

5 else return no

Box EXPRESSION DUPLICATION EQUIVALENCE(E1, E2)

1 Cl =CANONICAL Box EXPRESSION(Ed

2 C2=CANONICAL Box EXPRESSION(E2)

3 if Cl = C2

4 then return yes

5 else return no

When comparing atomic actions, a1 and a2 in canonical form expressions, Cl

and C2, the words A(a1) and A(a2) should be compared.

5.2.6 Axiom system

Only one additional axiom is required above those in Table 3.6, namely a 0 a =

a. This follows from the fact that subexpressions in the same choice context

may be arbitrarily reordered using the axioms relating to associativity and

commutativity of the choice operator. The complete axiom system is shown

in Table 5.1.

276

Associativity (El; E2); E3 = El; (E2; E3)

(El 0 E2) 0 E3 = El 0 (E2 0 E3)

(El II E2) II E3 = El II (E2 II E3)

Commutativity El 0 E2 = E2 0 El
El II E2 = E2 II El

Du plication aDa=a

Table 5.1: Axioms

5.2.7 Generating Proofs

In this section, the CANONICAL PROOF algorithm of Section 3.5.6 is extended

to provide a proof that an expression is equivalent to its canonical form for

net semantic duplication equivalence.

The algorithm for CANONICAL PROOF can be modified by checking for

adjacent atomic actions with the same label in choice contexts. Such atomic

actions are guaranteed to be adjacent due to the fact that the choice context

is rearranged by a call to SORT. The pseudo-code for BRACKET, SORT, and

ORDER is not repeated here as no changes are required to these procedures.

Recall that the variables Proof and T' are accessible globally, where Proof is

a list of parse trees, and T' is a pointer to the root of the parse tree that

is manipulated by the algorithm. The statement Proof Proof+ T' appends a

copy of the parse tree, T' to Proof.

CANONICAL PROOF(E)

1 T'= parse tree of E

2 Proof=[T']

3 BRACKET(T')

4 SORT(T')

5 REMOVE DUPLICATES(T')

277

6 return Proof

REMOVE DUPLICATES(T)

1 case T. type

2 atomic: do nothing

3 iteration: REMOVE DUPLICATEs(T.left)

4 REMOVE DUPLICATEs(T.middle)

5 REMOVE DUPLICATEs(T.right)

6 sequence,parallel:

7 REMOVE DUPLICATEs(T.left)

8 REMOVE DUPLICATEs(T.right)

9 choice:

10

11

12
13

14

15
16

17

18

19
20

21
22
23
24

25
26
27

if 'I'Jeft.type=atomic then

case T.right.type

atomic:

if T.left.action=T.right.action then

T=T.right

Proof=Proof+ T'

REMOVE DUPLICATES(T)

choice:

if T.right.left.type=atomic then

if T.left.action=T.right.left.action then

temp=T.left

T.left=T.right

T .right=T .left. right

T .left.right=temp

Proof Proof+ T'

T .left=T .left.right

Proof Proof+ T'

REMOVE DUPLICATES(T)

278

28
29

30

31

32

parallel ,sequence, iteration:

REMOVE DUPLICATEs(T.right)

else

REMOVE DUPLICATES(T .left)

REMOVE DUPLICATES(T .right)

REMOVE DUPLICATES (line 14)

o/_.
aDa = a

REMOVE DUPLICATES (lines 20-23) REMOVE DUPLICATES (line 25)

o

tx-
o o

E

o

-/\
E

(a 0 (a 0 E)) = «a 0 a) 0 E) «aOa)OE) = (aOE)

Figure 5.2: Manipulation of the parse tree

Figure 5.2 shows the tree manipulations carried out in line 14 and in

lines 20-25 of REMOVE DUPLICATES, together with the corresponding ex-

pression manipulations. The manipulations in lines 14 and 25 correspond to a

application of a 0 a = a, and the manipulation in lines 20-23 corresponds to

an application of the associativity axiom for choice composition.

Let a be the number of atomic actions in a Box expression, E. The time

complexity of the REMOVE DUPLICATES procedure is O(a), and O(a) axiom

applications are performed.

Let El, E2 be Box expressions such that box(E1) = box(E2). A proof that

279

El = E2 can be generated using the proofs provided by CANONICAL PROOF

as follows:

Box EXPRESSION DUPLICATION EQUIVALENCE PROOF(El, E2)

1 Proof =CANONICAL PROOF(Ed

2 Proof2=CANONICAL PROOF(E2)

3 Output Proofl

4 Output Proof, in reverse order.

The time complexity of the algorithm, on input El and E2 is O(a3), where

a = max {aI, a2}, and al and a2 are the number of atomic actions in El and E2

respectively. The length of the proof generated by Box EXPRESSION DUPLI-

CATION EQUIVALENCE PROOF is O(a3). In other words, the time complexity

and bound on proof length is not affected by the extension from isomorphism

to duplication equivalence.

5.2.8 Examples

Figure 5.3 shows nets El, duplication equivalent to an implementation of

El = (a; b); (c Dc); E2, duplication equivalent to an implementation of E2 =

(a D a); ((b D (b D b)); c); and E3 the canonical form net for El and E2 by re-

moving duplicate places and transitions. The synthesis algorithm produces

the following outputs given El and E2 as input:

Box EXPRESSION SYNTHESIS(El)

Box EXPRESSION SYNTHESIS(E2)

(a;b);c

a; (b; c)

Using CANONICAL Box EXPRESSION SYNTHESIS, both input nets re-

sult in the synthesised expression a; (b; c). The same result is obtained from

CANONICAL Box EXPRESSION on inputs El and E2. Hence, PETRI Box

280

L:1

Figure 5.3: Example nets

DUPLICATION EQUIVALENCE(L:1, L:2), and Box EXPRESSION DUPLICATION

EQUIVALENCE(E1, E2) both produce the output "yes".

A call to Box EXPRESSION DUPLICATION EQUIVALENCE PROOF(E1, E2)

generates the following proof that El and E2 are equivalent (via their canonical

forms Cl and C2):

El (a; b); (c 0 c)

a;(b;(cOc))

a; (b; c) = Cl

a; ((b 0 b); c)

a; (((b 0 b) 0 b); c)

a; ((b 0 (b 0 b)) ; c)

(a 0 a); ((b 0 (b 0 b)); c)

As with Box EXPRESSION ISOMORPHISM PROOF, the proof will not generally

281

be the shortest possible. However, the generated proof has a length at most

polynomial in the size of the input expressions.

5.3 Synchronisation (Part I)

This section gives an overview of how the axiomatisation for the syntax in

Table 4.1 may be extended to duplication equivalence. A similar approach to

that taken in Section 5.2 for the basic syntax is used. A rigorous treatment of

the problem is not given - rather an outline of a solution is presented.

5.3.1 Background

The synthesis algorithm of Chapter 4 can be extended in the same way as

described in Section 5.2 by removing all the duplicate places and transitions

from the input net. Propositions 1 and 38 are easily extended to a syntax

which includes the synchronisation operator. Therefore, in order to show that

this approach to the synthesis algorithm is valid, it remains to show that for

any implementation, E, of a box expression, E over the syntax in Table 4.1,

then the net obtained by removing all duplicate transitions from E is the im-

plementation of a Box expression over the syntax in Table 4.3. It has already

been shown that duplicate transitions arising from the basic syntax can be

removed. For duplicates arising from synchronisation, there is n<2problem be-

cause the scoping form represents each transition independently. In fact the

property still holds if it is required that the duplicate free version of E is an im-

plementation of an expression from the syntax in Table 4.1. This is due to the

fact that synchronisation operations cannot overlap each other - i. e. the oper-

ations must either operate on disjoint subexpressions, or one synchronisation

must be entirely within the scope of the second synchronisation.

When the scoping form is used, there may be several atomic actions relating

to a single duplicated transition. For example, in Figure 5.4, net (i) shows the

implementation of ({a, b} II a) sy a sy a. A scoping form representation for

282

net(i) net(ii)

Figure 5.4: Duplication arising from synchronisation

this expression (i.e. in the form that would be produced by the synthesis

algorithm given net (i) as input) is:

The duplicate transitions in net (i) arise from the two pairs of actions fil, {nI, b}
and {n2' b}, fi2 in E. Net (ii) in Figure 5.4 shows the implementation of E

before the scoping operation is applied. It can be seen that the representation

of the duplicated transitions is distributed throughout the expression, and that

each action composing part of the representation of one of the transitions is in

an atomic choice context with an action composing part of the representation

of the duplicate transition.

5.3.2 Axiomatisation

The axiomatisation of Section 4.6.4 is extended with the axiom for duplicates

arising from the basic syntax introduced in Section 5.2, and rewriting rules to

capture the notion of "distributed duplication" described above.

aDa a
[Nl U N2 : E] -+ [Nl : E']

[NI: E]-+ [NI UN2: E']

283

The preconditions and procedure for applying the rewriting rule, [NI UN2 :

E] -+ [NI: E'] are as follows. Let X be the set of action names in E.

• For each basic action n E NI U N2, E must contain an action whose label

is {n}:

'in E NI UN2, 'ix EX: n E p,(x) => p,(x) = {n}

Furthermore, no other action should have a label containing ii:

'in E NI U N2, 'ix EX: n E p,(x) => ('ix' E Xii E p,(x') => x' = x)

• E must have an action whose label contains one copy of every basic action

in NI' Similarly, there must be an action in E whose label contains one

copy of every basic action in N2.

for 1 ~ i ~2, 3x EX: p,(x) nNi = Ni

Furthermore, there can only be one such action for each N, - the following

precondition must hold for 1 ~ i ~2:

I{x EX: p,(x) n Ni =I 0}1 = 1

Let Xl (X2) be the action whose label contains all the basic actions in

NI (N2). It is a precondition of the rewriting rule that the labels of the

transitions obtained by scoping on sets NI and N2 must match:

• Define Xl (X2) to be the set of actions in E corresponding to NI (N2):

Xi = {X E X I p,(x) n (Ni U M) =I 0}

It order for the rewriting rule to be applied, it is necessary that there is

a bijective mapping, f3 :Xl -+ X2 such that for all x E Xl, X 0 f3(x) ap-

pears in E. If all the preconditions have been met, then E' is constructed

from E by replacing x 0 f3(x) by x, for all x E Xl.

284

The procedure for applying the symmetrical rewriting rule, [NI E]-+

[NI U N2 : E'] is as follows: Let X be the set of action names in E.

• For each basic action n E NI, E must contain an action whose label is

{n}:

Vn E NI, Vx EX: n E J.t(x) =} J.t(x) = {n}

Furthermore, no other action should have a label containing n:

Vn E NI, Vx EX: n E J.t(x) =} (Vx' E Xii E J.t(x') =} x' = x)

• E must have an action whose label contains one copy of every basic

action in NI'

Furthermore, there can only be one such action - the following precon-

dition must hold:

I{x EX: J.t(x) n NI =I- 0}1 = 1

Let Xl be the action whose label contains all the basic actions in NI, and

N2 be a set of INII new basic actions that are not already being used. A

new action, X2 is created, such that J.t(X2) = N2 + (J.t(xd - Nd.

• Define X I to be the set of actions in E corresponding to NI:

Let X2 be set of actions comprising X2, and the set of new actions X' =
x~, ..., XIN21 corresponding to each member of N2 such that for each n E

N2, :lx' EX: J.t(x') = {n}. Choose any bijective mapping, (3 : Xl -+ X2

and construct E' from E by replacing each X E Xl in E by (Xl 0 (3(XI))'

5.4 Synchronisation (Part II)

The main result of the investigation in this section is a sound and complete

axiomatisation of duplication equivalence for a fragment of recursion-free PBC

285

containing the synchronisation operator. The important difference to the work

in Chapter 4, and Section 5.3 is that the axiomatisation is given purely in terms

of the synchronisation operator, and the scoping representation is not used.

This approach may give a greater insight into properties of the synchronisation

operator.

In Section 5.4.1 a class of Petri nets is defined which are used throughout

the rest of this Chapter. Section 5.4.2 discusses the relationship between the

operation of synchronisation and duplication equivalence. Section 5.7 transfers

the results on duplication equivalence obtained for boxes to the domain of box

expressions. Section 5.8 contains the proposed axiomatisation of duplication

equivalence. It is followed by the proofs of soundness and completeness of that

axiomatisation, presented respectively in Sections 5.9 and 5.10. Finally, some

of the issues related to the proposed axiomatisation are briefly discussed.

5.4.1 Labelled nets

A transition t is simple if W(s, t) ~ 1 and W(t, s) ~ 1, for every place s. The

net is T-restricted if the pre-set and post-set of every transition are non-empty.

A labelled net is a T-restricted net without isolated places. Figure 5.5 shows

a labelled net ~ that corresponds to the box expression ((aile) Db); d.

The different components of the net ~ will often be decorated with the

index E. The same convention will apply to other notations subsequently

introduced. The notation ni nk txl mI ... m, means that the 'sum' of the

weight functions of nodes nl, , nk is the same as the 'sum' of the weight

functions of nodes ml, ... ,mi. That is, for every node n in ~,

k I

L:W(ni,n) = L:W(mi,n) and
k I

L:W(n, ni) = L:W(n, mi).
i=1 i=1 i=1 i=1

In other words, the nodes nI, ... , nk have the same connectivity as ml, ... ,mi.

Note that for the net of Figure 5.5, tl txlE tOt2. To simplify some of the

definitions, 6 will be used to denote a 'dummy' simple transition which, if

present, would satisfy -6 = -~ and 6- = ~-. For example, t txlE 6u should

286

be interpreted as signifying that W(s, t) = W(s, u) + 1, for all s E .~, and

W(s, t) = W(s, u) otherwise; and that W(t, s) = W(u, s) + 1, for all s E

~., and W (t, s) = W (u, s) otherwise. The nodes nl,"" nk have constant

connectivity with a set of nodes N if, for all n, mEN,

k

L:W(ni' m) and
i=l

Constant connectivity will be denoted by (nl'" nk, N) E const-. For ex-

ample, in Figure 5.5, (tOt2' {so, sd) E const-; Directly from the definition of

1><1:

Proposition 40 If nl I><l ml, ... ,nk I><l mk then nl nk I><l ml ... tru: Con-

versely, if nl ... nk I><l ml ... mk and nl ... nk-l I><l ml mk-l then nk I><l tru;

o

n ~ m is used to indicate that nodes n,m of a net, ~ are duplicates

(i.e. n =dup m). Clearly, ~ is an equivalence relation; its equivalence class

containing node n will be represented by [nb.

~.

Figure 5.5: A labelled net.

287

Net union

Net union is a partial operation defined only for pairs of unionable nets which

means that their transition sets are disjoint and their label functions coincide

on the common places. The union ~I U ~2 of two unionable nets, ~I and ~2'

is defined as a net with the node set being the union of the nodes of ~I and

~2' and the weight and label functions being inherited from ~I and ~2 (if the

value for a weight of the new net cannot be found in the original nets, it is

set to zero). Figure 5.6 shows two unionable nets, ~I and ~2' and their union

~I U ~2'

Figure 5.6: Net union.

Net union will usually be applied when the common places can be parti-

tioned into 0-sets created by the operation of place multiplication. Let ~I

and ~2 be union able nets. A non-empty set of places P ~ SEI n SE2 is a 0-set

if for all s, rEP there is pEP such that s ~El p and r ~E2 p.

Proposition 41 Let P be a 0-set for two unionable nets ~I and ~2' If

tl, ... , tm are transitions in ~I and VI, ... ,Vk, ... ,Vk+l are transitions in ~2

such that m, l 2: 1, k 2: 0 and

Proof: The first part follows directly from the definitions of [XI and net

union. To show (ti ... t-«, P) E cO,nstEI' assume s, rEP. Then, by P being a

288

®-set, there is pEP such that s ~I:l p and r ~I:2 p. Denote, for x E {s, r, p},

k~ k m
K{X) = L WI:2{X,Vi) - LWI:2{X,Vi) and J.L{x) = LWI:l{X,td·

i=k+l i=l i=l

From tl ... tmvl ... Vk IXlI:IUI:2 Vk+1 ... Vk+l it follows that J.L(x) = K(X) for x E

{s,r,p}. Moreover, from s ~I:l p and r ~I:2 p respectively, J.L(s) = J.L(p) and

K{r) = K{p) are obtained. Hence

J.L(s) = J.L(p) = K(p) = K(r) = J.L(r).

This and symmetry of the argument yield (t1 ... t«, P) E constj-,; 0

Duplication equivalence

Let ~ be a labelled net. The duplication quotient of ~ is defined to be a

labelled net

[~b = ({ [sb I sE S} , { [tb I t E T} , W' , X)

where for nodes n and m in ~, A{n) = X([nb) and W{n, m) = W'([nb, [mb).

Figure 5.7 shows a labelled net ~ and its duplication quotient [~b. A notion

central to the approach used is now introduced. Labelled nets ~l and ~2 are

duplication equivalent if their duplication quotients are isomorphic nets. This

is denoted by ~l ~ ~2 or ~l ~h ~2' where h is an isomorphism for [~lb and

[~2b. In the latter case n ~h m may be written if n and m are two nodes of

respectively ~l and ~2 such that h([nb) = [mb. As it was shown in [5], ~ is

an equivalence relation. This can be slightly strengthened as follows: For all

labelled nets ~l' ~2 and ~3,

~2 ~h ~2 and ~2 ~g ~3 implies ~l ~hog ~3' (5.1)

The next result establishes some basic relationships between being a du-

plicate, having the same connectivity, and being duplication equivalent nets.

Proposition 42 Let ~l ~h ~2 be duplication equivalent labelled nets.

289

Figure 5.7: Labelled net and its duplication quotient.

1. If nl ':::::!.hml,.·., nk+l ':::::!.hmk+l (k, l 2:: 1) and nl'" nk [><lEI nk+l'" nk+l

then mI· .. mk [><lE2mk+l ... mk+l·

Proof: (1) Let m be a node in E2. Then there is a node n in El such that

n ':::::!.hm. For every i :::;k + l, by n; ':::::!.hnu, WEI (n, ni) = WE2(m, md. Hence

k k k+l k+l
I:WE2(m,mi) = I:WEI(n,ni) = I: WEI(n,ni) = I: WE2(m,mi).
i=l i=l i=k+l i=k+l

This and symmetry of the argument yield ml ... mk [><lE2mk+l ... mk+l.

(2) There is q such that n ':::::!.hq. It suffices to show that m [><lE2q. Take any

node r in E2. It is only shown that WE2(m,r) = WE2(q,r). There is p in El

such that p ':::::!.hr. WEI(n,p) = WE2(q,r) and WEI (n',p) = WE2(m',r). More-

over, by n [><lEI n' and m [><lE2 m', WEI(n,p) = WEI(n',p) and WE2(m,r) =

WE2(m',r). Hence WE2(m,r) = WE2(m',r) = WEI(n',p) = WEI(n,p) =
WE2(q, r).

(3) Suppose that p is a node in El' Then there is r such that p ':::::!.hr. By

WEI(n,p) = WE2(m,r) and WEI(n',p) = WE2(m',r). Hence WEI(n,p)

WEI (n',p). Similarly, WEI (p, n) = WEI (p, n'). Thus n [><lEI n', o

290

Place-sharing nets

Labelled nets El and E2 are known as place-sharing, if their place sets and place

labellings are exactly the same (no conditions are imposed on the transition

sets of the two nets). In such cases, for all transitions, t in El and u in E2,

t ~EIE2 u if AEI (t) = AE2(U) and for every place s in El (and so in E2),

Intuitively, t ~EIE2 U means that t and u are 'remote' duplicates since they

have the same connectivity if one looks at the places of the two nets. Moreover,

an isomorphism h for the duplication quotients of El and E2 establishing

duplication equivalence of El and E2 will be called place-preserving if s ~h s,

for every place s in the two nets. This is denoted by El ':::h E2 or El ~

E2. The following proposition is a fundamental result concerning duplication

equivalence of place-sharing nets.

Proposition 43 Let El and E2 be place-sharing labelled nets.

1. If El "'h E2 then for all transitions, t in El and u in E2, t ~h u if and

only if t ~EIE2 U ..

Proof: Denote S = SEI = SE2'

(1) Suppose t ~h u. Then AEI (t) = AE2(U). Let s be any place in S. Since

s ~h s, WEI (t, s) = WE2(U, s) and WEI (s, t) = WE2(S, u). Hence t ~EIE2 u.

Suppose t ~EIE2 u. Then AEI (t) = AE2(U). Let t ~h wand s be a place in

S. Therefore WE2(U,S) = WEI(t,S) = WE2(W,S) and WE2(S,U) = WEI(S,t) =

WE2(S,W). Hence u ~E2 wand so t ~h u.

(2) Define a mapping from the nodes of the duplication quotient of El to

the nodes of the duplication quotient of E2 thus:

291

One can see that El S:!h E2• To show that h is a bijection, it suffices to

show that: (i) if s, rES and s ~El r then s ~E2 r; and (ii) if t, u, t', u' are

transitions such that u ~E2El t ~El t' ~EIE2 u' then u ~E2 u'. To show (i),

take any y E TE2. Then, by the assumption made in 43(2), there is Z E TEl

such that z ~EIE2 y. Therefore:

The proof that WE2(S,y) = WE2(r,y) is similar. To show (ii), take any s E S.

Then

The proof that WE2(U, s) = WE2(U', s) is similar.

What remains to be shown is that if s E Sand t :::=EIE2 u then the weight

of the arc between [SJ;1 and [tJ;1 in [Elb is the same as the weight of the

arc between [SJ;2 and [UJ;2 in [E2b. This, however, follows directly from

WEI (s, t) = WE2 (s, u). 0

Note that from the first part of the proposition it follows that there can be

at most one place-preserving isomorphism (between the respective duplication

quotients) establishing duplication equivalence of two place-sharing nets.

5.4.2 Synchronisation

A synchronisation set is a set of communication actions A which contains the

conjugates of all its actions, i.e. A = A. For every communication action a,

a denotes the synchronisation set {a, a}. As in CCS, it is implicitly assumed

that two transitions labelled with conjugate communication actions can be

synchronised to yield a new transition labelled with the internal action. I Two

transitions, t and u, whose labels are conjugates belonging to a synchronisation

set A are called A-synchronisable, (t, u) E synA-

IThe synchronisation mechanism used in this section is basically that of ees, since multi

actions are not used

292

The synchronisation of a labelled net E by a synchronisation set A is a

net E sy A which is defined as E extended by a set of new transitions. Ex-

actly one new transition, t 0 u, is added for every pair of A-synchronisable

transitions of E, t and u. The label of t 0 u is 0 and the weight function is

extended so that to u !><lEsy A tu. It is assumed that to u is the same as

u 0 t. Figure 5.8 shows two consecutive applications of the synchronisation

operator. Note that E sy a and (E sy a) sy a are duplication equivalent, but

not isomorphic. Thus synchronisation is not idempotent with respect to net

isomorphism. However, it is idempotent with respect to duplication equiva-

lence which was one' of the reasons for introducing duplication equivalence in

[5].

E sy a (E sy a) sy a

Figure 5.8: Synchronisation (place labels omitted).

Having the same connectivity is preserved through synchronisation.

Proposition 44 Let E be a labelled net with nodes nl, ... , nk, ml, ... ,ml

and A be a synchronisation set. Then

nl ... nk !><lEml ... m; if and only if nl ... nk !><lEsy A ml ... mi.

Proof: That ({::) implication holds follows directly from the definition

of synchronisation. Denote E' = E sy A. To show the reverse implication,

suppose t = u 0 w E TE' - TE. By nl ... nk !><lEml, ... , mi,

k

2:WE(ni,u)
i=1

I

2:Wdmi,U) and
i=1

k

2:WE(ni,w)
i=1

I

2:WE(mi,w).
i=1

293

Hence,
k
L W~/(ni' t)
i=l

k I
Similarly, one may show that L W~/(t, ni) = L W~/(t, mi).

i=l i==l
o

Duplication equivalence is preserved through synchronisation. What is

more, the isomorphism establishing the equivalence can also be preserved.

Proposition 45 Let El ~h E2 be duplication equivalent labelled nets and A

be a synchronisation set. Then there is an isomorphism 9 such that El sy A ~g

E2 sy A and, for all nodes n and m in respectively El and E2, n ~h m if and

only if n ~g m.

Proof: Denote Ea = El sy A and Eb = E2 sy A. Define

9 { ([n];a, [m];b) I n ~h m} U {([t 0 u];a, [v 0 W];b)

I (t, u) E synA /\ t ~h V /\ U ~h w}.

A straightforward yet rather lengthy argument can show that 9 is a required

isomorphism. o

El and El sy A are place-sharing nets. Hence, directly from proposition

43, a necessary and sufficient condition for the existence of a place-preserving

isomorphism for the duplication quotients of El and El sy A is obtained.

Corollary 7 Let E be a labelled net and A be a synchronisation set. Then

E I'V E sy A if and only if for every transition t in E sy A there is u in E such

that t ~~ sy A U.

294

Proof: The (~) implication follows from proposition 43(1), and the (¢=)

implication from proposition 43(2). o

The next result can be interpreted as saying that being duplication equiv-

alent to a synchronised net makes the synchronisation implicit.

Proposition 46 Let ~1 and ~2 be labelled nets and A be a synchronisation

set such that ~1 ::= ~2 sy A. Then ~1 ~ ~1 sy A.

Proof: Let ~a = ~1 sy A and ~b = ~2 sy A. By corollary 7, it suffices

to show that for every transition u 0 W E TEa - TEl' there is t E TEl such that

t ::=Ea U 0 w. Suppose that ~1 ::=g ~b. There are v and z such that U ::=g v and

W ::=g z. Clearly, v 0 z E TEb. Hence there is t E TEl such that t ::=g v 0 z.

By proposition 42(1) and v 0 z I><IEb vz, t I><IEl uw which in turn means that

o

The next proposition gathers together a number of simple facts involving

synchronisation and duplication equivalence. Note that the second item im-

plies that as far as duplication equivalence is concerned, synchronisation is

idempotent and commutative.

Proposition 47 Let ~ be a labelled net, and A and B be synchronisation

sets.

1. ~::= ~ sy A if and only if ~ '" ~ sy A.

2. ~ sy A sy B ~ ~ sy (A U B).

3. If ~ sy A::= ~ sy B then ~ sy A ~ ~ sy B.

4. If A ~ B and ~ ::= ~ sy B then ~ '" ~ sy A.

5. If ~ ::= ~ sy A and ~ ::= ~ sy B then ~ '" ~ sy (A U B).

Proof: (1) Follows directly from proposition 46 and the definition of "'.

295

(2) Follows directly from proposition 43(2) and the definition of synchro-

nisation.

(3) By ~ sy A ~ ~ sy B and proposition 46, there are 9 and I such that

~ sy A ~g ~ sy A sy B and ~ sy B rv f ~ sy B sy A.

Moreover, by proposition 47(2), there are d and e such that

~ sy A sy B ':::.d ~ sy (A U B) and ~ sy B sy A ~e ~ sy (B U A).

Hence, by property (5.1) and Au B = B U A, h = god 0 e-1 01-1 is an

isomorphism satisfying ~ sy A ~h ~ sy B.

(4) Follows from ~ sy B = ~ sy (B-A) sy A and proposition 46.

(5) From propositions 47(2) and 45, ~ ~ ~ sy A ~ ~ sy B sy A rv

~ sy (A U B). Then proposition 47(1) may be applied. 0

Finally, it is shown that being a ®-set is preserved through synchronisation.

Proposition 48 If P is a ®-set for unionable labelled nets ~1 and ~2' and

A, B are synchronisation sets then P is also a ®-set for ~1 sy A and ~2 sy B.

Proof: Follows directly from the definition of ®-sets and proposition 44.

o

If one looks at the last item of proposition 47 then it is obvious that for

every net ~1 there exists the maximal 2 synchronisation set A such that ~1 ~

~1 sy A. This set will be denoted by maxI;l' Note that

Hence, by proposition 46, if ~1 ~. ~2 then maxI;l = maxI;2'

Net union, duplication equivalence and synchronisation

Crucial to the further development is the way in which combining the net union

and synchronisation operations affect duplication equivalence. Firstly, it is

2Maximal w.r.t. set inclusion.

296

shown that from the point of view of duplication equivalence, synchronisation

propagates through net union.

Proposition 49 Let ~1' ... '~k be pairwise unionable labelled nets and A be

a synchronisation set. Then

Proof: Let ~ = (~1 U ... U ~k) sy A and ~' = ((~1 sy A) U ... U

(~k sy A)) sy A. Since ~ and ~' satisfy the condition in proposition 43(2),

~ rv ~'. 0

A key result on the relationship between net union, synchronisation and

duplication equivalence is now formulated.

Proposition 50 Let ~ = ~1 U ... U~k where ~1' ... '~k are pairwise unionable

nets, and let A and B be synchronisation sets such that for all distinct i, j ::;k,

the following hold.

• ~i sy A ~ ~i sy B .

• For all t E T; and v E Tj, if (t, v) E syn , (or (t, v) E synB) then there is

W E Tr, such that Ar,(W) = 0 and tv [XJr, w, or there are u, W E Tr, such

that (~, w) E synB (resp. (u, w) E synA) and tv [XJr, uw.

Then ~ sy A rv ~ sy B.

Proof: Let ~a = ~ sy A and ~b = ~ sy B. From propositions 47(3) and

43(1) it follows that proposition 43(2) may be applied. Hence ~a rv ~b. 0

Later, a specific instance of the last result will be used for B = Au a.

Corollary 8 Let ~ = ~1 U ... U ~k where ~l' ... '~k are pairwise union able

nets, and let A be a synchronisation set and a et A be a communication action

such that for all distinct i, j ::;k, the following hold.

297

• ~i sy (A U a) ~ ~i sy A .

• For all (t,v) E (Ti x Tj) nsyna there is wE Tr, such that Adw) = 0 and

tv ~r, w, or there are u, w E Tr, such that (u, w) E synA and tv ~r, uw.

Then ~ sy (A U a) :-: ~ sy A. o

Reversing Corollary 8

The aim is to reverse corollary 8 for k = 2. This result is required to charac-

terise maximal synchronisation sets of nets which are obtained through com-

position. In particular, it needs to be shown that if (~1 U ~2) sy (A U a) ~

(~1 U ~2) sy A then ~1 sy (A U a) ~ ~1 sy A. However, such a result does

not, in general, hold. For example, consider the following two nets (note that

the union of the two nets in this example corresponds to the box expression

(alia) 00).

~1

Then, clearly, (~1 U ~2) sy a ~ ~1 U ~2 but ~1 sy a 'f. ~1. Intuitively,

the reason why there is a problem here is that, in ~1 U ~2' the transition

t2 can be interpreted both as coming from E2, and as coming from El (e.g.

by being the 'result' of synchronising transitions to and td. Therefore, some

constraints are placed on the two nets, ~1 and ~2' before trying to reverse

the corollary. To this end, suppose that ~1 and ~2 are two unionable labelled

nets, A is a synchronisation set, a ¢ A is a communication action, and the six

assumptions, AI-A6 below also hold.

298

Al In ~I and ~2' all the transitions labelled with communication actions

are simple, and every 0-labelled transition t satisfies W(s, t) :S 2 and

W(t, s) :S 2, for every place s.

A2 There exist two disjoint non-empty sets of places, E and X, of

Sigma I such that for every transition t in ~I' te n E = et nX = 0.

A3 If t is a transition in ~I labelled with a communication action then

et n E = 0 V et ~ E and te n X = 0 V te ~ X.

A4 The set of common places of ~I and ~2 is either 0 or E or X or E U X.

A5 If E (or ·X) is included in S'El n S'E2 then E (resp. X) is a ®-set for ~I

and ~2.

A transition t in (~I U ~2) sy (A U a) is called an EX -transition, and

denoted t E TEX, if et = E, te = X and (t, E), (t, X) E constC'E1U'E2)sy CAua)·

A6 Ift is an EX-transition in (~I U~2) sy A whose label belongs to Au{0},

then there is U E T'El sy A such that t ~C'E1U'E2)sy A U.

Intuitively, E and/or X form the interface between ~I and ~2' E being

derived from the entry, and X being derived from the exit places of ~I (later,

the sets E and X will be derived through the place multiplication and addition

operators, which will, in particular, guarantee that A5 holds). In the last

example, E = {so, SI} and X = {S2' S3}. Note also that this example fails to

satisfy A6 for t = t2. It is worth mentioning that Al-A5 are conditions which

will be satisfied by all the nets associated with box expressions or being used

in the definitions of the composition operators (see proposition 53). However,

the nature of condition A6 is different, as the last example has demonstrated.

The next result can be seen a reverse of the first part of corollary 8.

Proposition 51 If (~I U~2) sy (AUa) ~ (~I U~2) sy A then ~I sy (AUa) ~

~I sy A.

299

Proof: By corollary 7 and proposition 47(2), it suffices to show that

if t E TEl sy (AUa) - TEl sy A then t ~EI sy (Aua) w for some transition

w in ~1 sy A. From (~1 U ~2) sy (A U a) ~ (~1 U ~2) sy A, corollary

7 and proposition 47(2), it follows that there is 1J, in (~1 U ~2) sy A such

that t ~(EIUE2) sy (Aua) u. If u E TEl sy A then w = u may be used. If

u E TE2 sy A then, from propositions 4i and 48, A2, A4 and A5, it follows that

u E TEX. Hence, by A6, there is w E TEl sy A such that w ~(EIUE2) sy A u.

Thus t ~EI sy (Aua) w. Finally, assume that u = v 0 z where v E TEl and

z E TE2. Then, again from propositions 41 and 48, A2, A4 and A5, it fol-

lows that z E TEX. Hence, by A6 (note that a et A), there is y E TEl such

that z ~(EIUE2) sy A y. Thus w = v 0 y, which belongs to ~1 sy A, satisfies

o

The second part of corollary 8, may now be partially reversed.

Proposition 52 Let (~1 U ~2) sy (A U a) ~ (~1 U ~2) sy A and (t, v) E

(TEl X (TE2 - TEX)) n syna. Moreover, whenever t E TEX, there is no x E

TE2 sy A such that tov ~(EIUE2) sy (Aua) x. Then there are transitions (u, w) E

(TEl X TE2) n synA such that t !><lEI u and V!><lE2 w.

Proof: By corollary 7 and proposition 47(2), there is an x E T(EIUE2) sy A

such that to v ~(EIUE2) sy (Aua) x. If x E TE2 sy A (or x E TEl sy A) then,

from propositions 41 and 48, AI, A2, A4 and A5, it follows that t E TEX (resp.

v E TEX), a contradiction with the assumptions about t (resp. v) that were

made. Hence x = u 0 w where u E TEl and w E TE2. By proposition 43(1),

tv !><lEIUE2 uw. Hence it is required to show that t !><lEI u and v !><lE2 w. By

proposition 40, it suffices to show the latter.

Suppose v !><lE2 w does not hold. Without loss of generality, and by AI,

it may be assumed that WE2(8, v) = 1 and WE2(8, w) = 0, for some 8 E SE2.

If 8 et SEI n SE2 then a contradiction is obtained with tv !><lEIUE2 uw. If

8 E SEI nSE2 then, by tv !><lEIUE2 uw and AI, WEI (8, t) = 0 and WEI (8, u) = 1.

By 8 E ·v and A2, 8 E E. If ·tnE = 0 then, by A2, there is q E SEI - (EUX)

300

such that WE! (q, t) = 1. On the other hand, by A3 and 8 E ·u, WE! (q, u) = 0,

contradicting tv tx:lE!UE2 uw. Hence tz ~ E. As a result, there is r E E such

that WE! (r, t) = 1. By A5, there- is pEE such that r ~E! p and 8 ~E2 p.

Therefore
WE! (p, t) + WE2(p, v) 1+ 1

and WE! (p, u) + WE2(p, w) < 1 + 0

contradicting tv tx:lE! UE2 UW. D

5.5 Composition operators

In this section, the semantics of the choice, parallel, sequence and iteration

operators are given in terms of the composition of place sharing nets. It is

a relatively simple exercise to check that the semantics presented here are

consistent with the earlier semantics given in Chapter 1. The definitions of

the four operators are preceded by three auxiliary notions, viz. place addition,

place multiplication and gluing of nets.

To begin with, a mechanism is formalised by which a place may be replaced

by a set of other places which inherit its connectivity. Let ~ be a labelled net

and 81, ... ,8k be its places. Moreover, let SI, ... , Sk be disjoint non-empty

sets of places not in ~ and h, ... ,lk E {e, (/),x}. Then

is a net such that S' = S - {81' ... ,8k} U (SI U ... U Sk), T' = T and, for all

n mE S' UT', ,

>..'(n)

W(n,m) ifn,m E SUT

W (8i' m) if n E Si, m E S U T

W(n,8j) ifn E SUT, mE Sj

o if n E Si, m E Sj

{
>.. (n) if n E S U T

li if n E Si.

W'(n,m)

301

Let ~I' ... '~k be disjoint labelled nets, and ~ be a gluing set. The latter

is defined by:

where m, rI,' ..,Trn ~ 1 and iI, ... , lm E {e, 0, x} and each si is the set of entry

places or the set of exit places of one of the nets ~I'" . ,~k' It is assumed

that, for every j :::;k, both .~j and ~j. can appear in ~ at most once and

never in the same element of ~. With these assumptions, ~j : ~ for j :::;k, is

defined by:

~j : ~ = ~j ED {(8, [S~® ... ® S;Js, li) I 8 E .~j u ~/ 1\ 8 E sf U ... U S;J

where [st ® ... ® S;Js = {p E st ® ... ® s; 18 E p}. Then the net

where U denotes net union, is a glued net obtained from nets ~I' ... , ~kusing

the gluing set ~.

The composition operators are defined for a class of nets called pre-boxes.

A pre-box is a labelled net ~ such that the following hold:

1. ~. =1= 0 =1= .~.

2. (~·r= .(.~) = 0.

3. All the transitions labelled with communication actions are simple, and

every 0-labelled transition t satisfies W(8, t) :::;2 and W(t,8) :::; 2, for

every place 8.

Let ~I' ~2 and ~3 be disjoint pre-boxes. The four composition operators

are defined thus.

• Sequential ~I;~2 = (~I'~2): {(~I·'·~2,0)}.

~I 0 ~2 = (~I' ~2) : {(·~I' ·~2' e), (~I·' ~2·' x)}.

302

• Choice

• Concurrent ~111~2= ~1 U ~2'

where in the last case ~~ is a disjoint copy of ~i' for i = 1,2,3, and ~ is a

gluing set given by

The sets of places resulting from place multiplication in the definition of

the three composition operators can easily be seen as 0-sets of the composed

nets. Consider, for example, the sequential composition

Then ~1· 0 ·~2 is a 0-set for the nets ~a and ~b. Indeed, s, r E ~1· 0 ·~2 is

taken then s = {SI,S2} and r = {rl,r2}, where SI,rl E ~1· and S2,r2 E ·~2·

Then p = {SI, r2} also belongs to ~1· 0 •~2 and satisfies s ~I;a P and r ~I;b p.

5.6 Boxes

A class of process expressions is now considered. In this section a subset of the

Petri Box Calculus [5] described by the following syntax of box expressions:

E ._ a I E sy A I E; E lED E I EIIE I [E * E * E] (5.2)

In the above, a is an action in Au {0} and A is a synchronisation set.

The five operators correspond to those introduced for labelled nets. There

is a mapping which associates with every box expression, E, a labelled net,

box(E), in the following way:

303

box(a) - ~

box(E sy A) box(E) sy A

box(E; F) box(E); box(F)

box(E 0 F) box(E) 0 box(F)

box(EIIF) box(E)llbox(F)

box([E * F * G]) [box(E) * box(F) * box(G)].

In what follows, a box is a net which can be derived from a box expression

through the boxO mapping. In general, isomorphic boxes will be identified.

The following collection of simple facts about boxes can easily be proven by

induction on the structure of expressions generating them.

Proposition 53 Let E be a box, t be its transition and s be its place.

1. E is a pre-box (and so also a labelled net).

2. If t is labelled with a communication action then

(a) et n eE =1= 0 implies et ~ eE,

(b) r n Ee =1= 0 implies te ~ Ee, and

(c) et ~ eE and te ~ Ee together imply that et = eE if and only if

te = Ee.

3. s has no duplicates other than itself, and if es = 0 (or se = 0) then

s E eE (resp. s E Ee).

4. If t is not a simple transition, or if eEUEe is a proper subset of etute then

t is labelled by 0 and there are transitions u and w in E with conjugate

labels such that t I><l~ uw. o

304

5.6.1 Duplication equivalent boxes

The first goal (crucial from the point of view of dealing with axiomatisation

of duplication equivalence of box expressions) is to structurally characterise

the maximal synchronisation sets of boxes. To this end some auxiliary sets of

transitions, called ex-transitions and choice context transitions are introduced.

An ex-transition of a box I; is a simple transition t such that et = eI; and

te = I;e. This is denoted by t E EXE and use eXE to denote the set of labels

of all ex-transitions of I;.3 Choice context transitions duplicate each other

except that they may have different (communication) labels. The terminology

is motivated by the fact that such transitions always result from applying the

choice composition operator. A set of choice context transitions of a box I; is a

maximal non-empty set U of transitions labelled with communication actions

and all having the same connectivity. In addition, ccallE is defined as

ccallE = {AE(U) I U is a set of choice context transitions}

If the transitions in U are not ex-transitions then U is a set of internal choice

context transitions and ccintE is defined as

ccintE = {AdU) I U is a set of internal choice context transitions}.

Note that eXE is a set of actions, and ccallE and ccintE are sets of sets of

communication actions. For the boxes in Figure 5.9, eXEl = {a}, ccallEl =
{{a,b},{c}, {a}}, ccint--, = {{a,b}, {c}}, eXE2 = {a,b,c,0},ccaIlE2 = {{a, b, c}}
and ccintE2 = 0.

El = ((a 0 b); (c 0 0)) 0 a and E2 = (a 0 b) 0 (c 0 0)

Proposition 54 Let I; be a box and t be its transition.

1. If t !><lEu b for some transition u in I; labelled by a communication action,

then EXE :f 0.
3The notion of an ex-transition as well as other auxiliary notation introduced in this

section are defined for boxes; however, they extend without any change to labelled nets.

305

a

~l ~2

Figure 5.9: Boxes generated by El and E2

2. If·t = .~, t· = ~., (t, .~) E const-, (t, ~.) E const- and t is not an ex-

transition then there are two ex-transitions u and w in ~ with conjugate

labels satisfying t 1><Ir; uw.

Proof: (1) The result will follow if it can be shown that, for every ~

obtained from a synchronisation-free expression, the following hold: (i) it is

impossible that t 1><Ir; UO; and (ii) if v, ware transitions such that vw 1><Ir; uO

then v or w or u is an ex-transition.

Firstly, it can be observed that (i) follows from the fact that all transitions

in ~ derived from a synchronisation-free expression are simple. Thus t 1><Ir; uO

would imply, also due to proposition 53(2a,2b),4 "u = u· = 0, a contradiction.

Part (ii) can be proved by induction on the structure of the synchronisation-

free expression E generating E. In the cases when E = F; G or E = FIIG

or E = [F * G * H], one can conclude that vw 1><Ir; uO is simply impossible to

satisfy. Suppose E = FOG. Two cases are considered:

Case 1: v E box(F) and W E box(G). Also, without loss of generality, let

4Note that if r: is derived from a synchronisation-free expression, then in the formulation

of proposition 53(2) it does not matter whether t is labelled by a communication or internal

action.

306

u E box(F). Consider a slightly modified expression, E' = (F 0 0) 0 G. Then

vw IXlbox(E') uZ'where Z is the only transition of box(0). Hence, by proposition

41, w is an ex-transition in box(G) and so also in E.

Case 2: v, W E box(F). If u E box(F) then vw IXlbox(F) u8 and the induction

hypothesis can be used. If u E box(G) then the same E' as in the first case

can be used to conclude that u is an ex-transition in E.

(2) Since t is not a simple transition, it must have arisen as a synchronisa-

tion of two transitions u and w with conjugate labels and satisfying ·u U·w ~

·E and u· U ui" ~ E·. Moreover, by (t, ·E) E const-, and (t, E·) E const-,

·u = "u: = ·E and u· = ui" = E·. Hence u and ware ex-transitions. 0

The basic idea behind the structural characterisation of maximal synchro-

nisation sets is that one can apply an a-synchronisation, without losing du-

plication equivalence, if for every pair of a-synchronisable transitions t and

u it is possible to find a duplicate of their synchronisation in at least one of

two different ways: as a syntactically generated 0-transition, or as a synchro-

nisation of two transitions with the same connectivity as t and u. To make

the latter point explicit, suppose that (EII!E2) sy A ~ (EIIIE2) sy A sy a.

Then, if t is a transition in El and u is a transition in E2 then it must be

possible to find A-synchronisable transitions, t' in El and u' in E2, with the

same connectivity as respectively t and u. In other words, a necessary condi-

tion for (EIIIE2) sy A ~ (EIIIE2) sy A sy a to hold is that for every pair of

a-synchronisable transitions t and u from respectively El and E2, there is a

pair of A-synchronisable transitions, t' and u', which have the same connec-

tivity as respectively t and u. This can be expressed rather conveniently using

the sets ccall-, and ccall~2 and some auxiliary notation. Let Z and W be two

sets of sets of actions and A be a synchronisation set. Then covA(Z, W) is the

set of all communication actions a such that if Z E Z and W E W satisfy

a E Z 1\ a E W or a E Z 1\ a E W then there is c E A such that c E Z 1\ c E W.

307

Define, for a synchronisation set A and boxes ~1' ~2'

The above necessary condition for (~111~2)sy A ::: (~111~2)sy A sy a simply

amounts to saying that a and a belong to covall~lE2' Note that for the nets

in Figure 5.9, covalltE2 = A-c. Characterising maximal synchronisation

sets is rather straightforward in the case of sequential, parallel and iteration

composi tion.

Proposition 55 Let ~i (i = 1,2,3) be boxes and A be a synchronisation set.

Then

covall~lE2
2

max(EljE2)sy A n n maxEi sy A
i=l

covall~lE2
2

max(EIIIE2)sy A n n maxEi sy A
i=l

covall~lE2E3
3

and max[El*E2*E31sy A ~ n n maxEi sy A·
i=l

Proof: Only the most complicated case is considered, viz. iteration. To

show the (~) inclusion, suppose that a rt A (clearly, if a E A then a E

covall~lE2E3 and a E maxEi sy A, for i= 1,2,3) and

Let ~ = ~1: {(·~1' ·~~,e), (~1·' ·~2'~~·' ·~3,0)} where each ~~ is a copy

of ~i (in the same way as in the definition of the iteration operator). Moreover,

let ~' = (~2' ~3, ~~, ~~, ~;) : .6. be the union of all the remaining nets in the

definition of [~1 * ~2 *~3l. It will be shown that a E maxEi sy A, for i = 1,2,3,

and a E covall~lE2E3 using the results and notation from section 5.4.2.

Let E = ·~1 ® .~~ and X = ~1· ® ·~2 ® ~~. ® ·~3· It can be observed

that A1-A5 hold by the definition of the iteration operator and proposition

53(1,2). To show that A6 also holds, suppose that w is an EX-transition in

(~ U ~') sy A. It is easy to see that then w belongs to ~ sy A because every

transition in ~' is connected to at least one place not in E U X.

308

Since A1-A6 hold, by proposition 51, a E maXE sy A· Moreover, ~ ~ ~a,

where ~a is ~l with the label of each exit place changed to 0. Hence a E

maxEa sy A· Therefore, by proposition 53(3), [~a]:: is [~d:: with the label of

every exit place changed to 0. Hence a E maxEl sy A. In a similar way, one

may show that a E maxE2 sy A and a E maxE3 sy A.

To show that a E covall~lE2E3 suppose that (t, v) E (TE X TE,) n syna. It

suffices to show that there are (u, w) E (TE X TE,) n synA such that t IXlEU

and v IXlE'w (note that the operations of place multiplication and addition

do not affect the relationship of having the same connectivity, and that by

construction of the iteration operator it is not possible for two transitions

coming from different nets forming ~' to have the same connectivity in ~').

To be able to apply proposition 52, it is first observed that v ¢ TEx since

no transition in ~' is an EX-transition. Suppose then that t E TEx and

y, z E TE, are such that tv IXlEUE'yz. Then, without loss of generality, y E TE~

and z E TE,· Consequently, there are SESE' - ·~'l and r ESE' - ~'2·such
2 1 2

that S E ·v and p E v·, a contradiction. If it is assumed that tv IXlEUE'y then

a contradiction follows in a similar way. Hence there is no x E TE, sy A such

that to v ~(EUE') sy (Aua) x. Hence proposition 52 can be applied.

Thus the (~) inclusion holds. The reverse one follows from proposition 50.

o

Note that by setting A = 0 it is immediately shown that, e.g., maxEljE2 is

the set of all a E maxEl sy A n maxE2 sy A such that if a transition labelled a

or a appears in ~l then there is no transition with the conjugate label in ~2.

A similarly pleasant characterisation does not hold for the choice composi-

tion. One of the reasons is that a synchronisation of ex-transitions can some-

times be obtained by a syntactically introduced 0-transition. For example, if

~l = box(alla) and ~2 = box(0) then a E max(EIOE2)sy 0 but a ¢ maxEl sy 0.

Another example is provided by the boxes ~l and ~2 in Figure 5.9 for which

a E max(EIOE2)sy b but a ¢ maxE1 sy b = maxEl· Note that if the previous

discussion were repeated for (~l 0 ~2) sy A ~ (~l 0 ~2) sy A sy a then it

309

would no longer be true that t' and u' had to have the same connectivity as t

and u if, e.g., u is an ex-transition in E2 since in such a case an ex-transition

u' in El could provide a suitable 'match' for t',

The characterisation of the maximal synchronisation sets for the choice

composition is more complicated. For a box El, let U be the set of all sets

of internal choice context transitions U such that if t E U then there is no

transition u in El satisfying u I><l~l ot. Intuitively, this means that if t were

to be synchronised with a conjugate ex-transition coming from the box E2

in the context El 0 E2 then the resulting transition would not have the same

connectivity as any of the transitions present in El. ccnoexn, is defined as

follows ccnoex--, = {A~l (U) I U E U} and, for all boxes El and E2 and a

synchronisation set A,

COVA(ccnoex-, sy A, { eX~2}) n

covA(ccnoex~2 sy A, {ex~J)

The above definitions closely follow that of covall. For the nets in Figure 5.9,

ccnoex~l = {{a, b}, {c}}, covnoex~1~2 = A - c, covmix~1~2 = A - c and

covintt~2 = A.
A syntactic restriction on the type of expressions used to derive boxes is

introduced. Let Expo denote those box expressions E for which there is no

sub expression FOG and a communication action a such that a E eXbox(F)

and a E eXbox(G). Let Boxo denote boxes which can be derived from the box

expressions in Expo.

Proposition 56 Let E be a box in Boxo.

1. There are no transitions t and u in E with conjugate labels and satisfying

2. There is no 0-labelled transition in E such that all the arcs adjacent to

it have weight 2.

310

Proof: (1) By straightforward induction on the structure of the expression

generating boxes in BoxQ.

(2) Follows immediately from the first part. o

A partial characterisation of the maximal synchronisation sets of boxes

involving choice composition is then obtained.

Proposition 57 Let ~ = (~1 0 ~2) sy A be a box in BoxQ and A be a syn-

chronisation set such that

ex~ n (A U {0}) C eX~l sy A n eX~2sy A· (5.3)

Then
2

max~ covnoex~1~2 n covint~1~2 n n max~i sy A·
i=l

Proof: Using notation from section 5.4.2, let E = ·~a = ·~b and X =

Note that ~1 0 ~2 = ~a U ~b·

Suppose that a E max~ and a tJ. A (if a E A then a clearly belongs to the

rhs of the equality from the formulation of this proposition). Using proposition

53(1,2) and the definition of the choice operator, one can see that A1-A5 are

satisfied. Moreover, A6 holds which follows from (5.3) and TEX nT~1 = EX~/,

for ~' E {~, ~1 sy A, ~2 sy A} (note that the latter follows from propositions

53(1) and 56(2)). Hence, by proposition 51, a E max~a sy A. Since ~a ~ ~1'

a E max~l sy A and, by symmetry, a E max~2 sy A.

To show a E covint~a~b = covint~1~2 it needs to be shown that if (t, v) E

((T~a - EX~J x (T~b - EX~b)) n syna then there are (u, w) E (T~a x T~b) n
synA such that t D<l~a U and v D<l~b w. This, however, follows directly from

proposition 52 (note that t,v tJ. TEX).

311

To show a E covnOeX~aEb= covnoex~lE2' by symmetry, it is sufficient to

prove that if t E EXEa = EXE1 is an a-labelled transition, and v E U E

ccnoex-, sy A = ccnoex-, sy A is an a-labelled transition then there are (u, w)

E (TEa X TEb) n syn, such that t IXIEa U and v IXIEb w. This, however, follows

directly from proposition 52 (the proposition can be applied since v f/. TEx,
and ift E TEx and tov ~E sy (Aua) X where x E TEb sy A then vIS IXIEb sy A x,

.contradicting the choice of v).

The (~) inclusion has been shown. To show the reverse one, corollary 8

is used. That it can be applied is shown by the following argument. Suppose

that (t, v) E (TEa X TEb) nsyna, where a belongs to the rhs of the equality from

the formulation of this proposition. Three cases are considered.

Case 1: t f/. EXEa and v f/. EXEb. By a E covint~l E2' there are (u, w) E

(TEa X TEb) n synA such that t IXIEa U and v IXIEb w. Hence tv IXIEaUEbuw.

Case 2: t E EXEa and v f/. EXEb (note the argument is symmetric for

t f/. EXEa and v E EXEb). If it is not the case that there is z E TEb sy A such

that tv ~E z then there is U E ccnoexn, sy A such that t E U and the fact

that a E covnoex~lE2 can be used to reach the desired conclusion, i.e. to find

u and w as in Case 1.

Case 3: t E EXEa and v E EXEb. This produces a contradiction with

proposition 56. 0

Finally, it is observed that the various sets of communication actions intro-

duced and used in this section are preserved through duplication equivalence

and synchronisation.

Proposition 58 Let A, E, C be synchronisation sets and ~a, ~b, ~c, ~d be

boxes such that ~a ~ ~c and ~b ~ ~d·

for set E {ex, ccall, ccint, ccnoex}.

for set E {covall, covmix, covint, covnoex}.

3. set~aEb = set~a sy B,Eb syf«f set E {covall,covmix,covint}. o

312

Note that covnoex~a2:b= covnoex~a sy B,2:b sy c does not, in general, hold.

For example, if I:a = box(a) and I:b = box(a 0 (a; 0)) then covnoext,2:b sy a =
A but a (j. covnoext2:b'

5.7 Box expressions

The notion of duplication equivalence formulated for boxes is now transferred

to the domain of box expressions. Two box expressions, E and F, are duplica-

tion equivalent if box(E) ~ box(F). This is denoted by E ~ F. The maximal

synchronisation set of a box expression E is defined as rnaxj, = maxbox(E)'

Clearly, many properties of duplication equivalence that hold for boxes can be

transferred to box expressions. In particular, it is immediately obtained that

~ is a congruence in the domain of box expressions.

Moreover, directly from propositions 46 and 47:

Proposition 59 Let E and F be box expressions, and A and B be synchro-

nisation sets.

1. E sy A sy B ~ E sy (A U B).

2. If E ~ E sy B and A ~ B then E ~ E sy A.

3. If E ~ E sy A and E ~ E sy B then E ~ E sy (A U B).

4. If E ~ F sy A then E ~ E sy A. o

The main aim of this section is to axiomatise d~plication equivalence of

box expressions. A crucial difficulty to be solved is the development of a

structural characterisation of maximal synchronisation sets, both in order to

obtain a set of sound axioms and to define normal form box expressions needed

for a completeness proof. Such a characterisation is based on that obtained

for boxes; Therefore, the expression' counterparts of ex-transitions and choice

context transitions as well as other notations introduced in the previous section

313

are defined. For a box expression E, let eXE and potexj, be sets of actions

defined by induction on the structure of E, as follows:

{a} potexEllF

potexEDF

potexj, sy A

(eXE n exp) U (eXF n €Xi)

eXE U eXF potexj, U potexj,

potexj,

{

eXE U {0} if potexj, nA 1- 0
eXE sy A =

eXE otherwise

In all the remaining cases, eXE and potexj, are defined as empty. The meaning

of eXE is that of eXbox(E). The auxiliary set potexj, represents potential 0-
labelled ex-transitions which can be generated by applying synchronisation

using the actions in potexg, For example, potex(aDb)II\aDb) = a U b.

Proposition 60 For every box expression E, eXE = eXbox(E) and potexj, =
Abox(E)(To), where To is the set of all transitions t, u in box(E) labelled with

conjugate communication actions such that tu I><lbox(E) 6.

Proof: By induction on the structure of E. o

Choice context transitions are now considered. For a box expression E,

let ccintj, and ccallj, be two sets of sets of communication actions defined by

induction on the structure of E, as follows:

ccint., o ccint[E*F*Gj

ccintEllF

ccintj- sy A

ccallj, U ccallj- U ccall.,

ccaliE U ccall»

ccintj,

ccintEDF

ccintE·F,

ccintj, U ccintj-

ccaliE U ccaliF

{

ccintj, U {eXE nA} if exE nA 1- 0
ccaliE =

ccintj, otherwise.

Moreover, a set of sets of communication actions ccnoexj-, is defined as follows:

ccnoeXFDG ccnoexj- U ccnoex.,

{C E ccnoexj- len eXF nA = 0}and ccnoex» sy A

314

and by setting ccnoexj, = ccintj, in all the remaining cases.

Proposition 61 For every box expression E, ccallj, = ccallbox(E),

ccintj, = ccintbox(E)and ccnoexj, = ccnoexbox(E).

Proof: By induction on the structure of E and using proposition 60. 0

Let E, F and G be box expressions and A be a synchronisation set. Then:

covall~F
AcovnoexEF

·AcovmlxEF
. A

COVlntEF

covA(ccallE' ccall»)

covA(ccnoeXE sy A, {eXF}) n covA(ccnoeXF sy A, {eXE})

covA(ccintE, ccallj-)

covA(ccintE' ccintj-)

and covall~FG = n{covalliy IX, Y E {E, F,Gn. The sets of communication

actions that have just been defined are direct counterparts of similar notions

introduced for boxes.

Proposition 62 Let E, F and G be expressions and A be a synchronisation

set.

1. set~F = set:OX(E)bOX(F)' for set E {covall, covint, covmix, covnoex}.

2. covall~FG = covall~ox(E)box(F)bOx(G)'

Proof: Follows from propositions 60 and 61. o

As a result, the relationship between maxE and the structure of E can

be captured by adapting the results obtained for boxes. Below, for a pair of

expressions E and F, simexEF denotes the set of all synchronisation sets A

such that

eX(EDF) sy A n (A u {0}) C eXE sy An eXF sy A.

315

Proposition 63 Let E, (i = 1,2,3) be box expressions and A be a synchro-

nisation set. Then

covall~lE2

covall~lE2

covall~lE2E3

2

n .n maxEi sy A
l==l
2

n n maxEi sy A
i==l
3

n .n maxEi sy A·
t==l

Proof: Follows from propositions 55, 57 and 62. D

The above characterisation of maximal synchronisation sets of expressions

involving the choice operator is only partial. For that reason, two results on

specific usages of choice composition are now provided.

Proposition 64 Let E = (E11IE2) sy A be a box expression in Expo and a be

a communication action such that a E maxEo0 - maxE. Then eXElneXJh na i= 0

and

Proof: Let ~ = box(0) and ~i = box(Ei), for i = 1,2. Since I·~I= I~·I=
1, it may be assumed that (~111~2) 0 ~ = ~l U ~2 U ~3 where

and sand r are places satisfying {s} = .~ and {r} = ~•. Therefore

Since (~l U~2) sy A and (~l U~2 U~3) sy A differ only by a single 0-labelled

transition t E EXEIUE2UE3'from proposition 43(2) it follows that there must

be a-synchronisable transitions u, W in ~l U ~2 such that 6 I><lElUE2uw. Hence

eXEl n eXE2 n a i= 0.

316

To prove the second part, the results and notation from section 5.4.2, are

used with boxes L:1 and L:2 U L:3, and sets of places E = ·L:1 and X = L:I•.

It is easy to see, using proposition 53, that A1-A5 hold. Moreover, the only

EX-transitions (if any) in (L:1 U (L:2 U L:3)) sy A are those in L:1 sy A. Hence

A6 also holds and, by proposition 51, a E maxEI sy A is obtained and, by

symmetry, a E maxE2 sy A·

It can also be observed that proposition 52 can be applied for (t, v) E

((T~I - EX~I) X T~2U~3) n syna since then t, v (j. TEX' From this, and by

o

Proposition 65 Let a E A be such that a E max(EOaIO ...Oak) sy A where

al,' .. ak are actions and ED a1 0 ... 0 ak is an expression in Expo·

1. If the topmost operator of E is sequence or iteration then a E maXE·

2. If the topmost operator of E is parallel· composition and a (j. maxE then

a E max(E sy Ao)0 and ai = 0, for some i ::;k.

Proof: Let L: = box(E) and L:i = box(ai) for i = 1, ... , k. Since 1·L:il =

lL:i·1 = 1 for every i ::;k, it may be assumed that

where in the above, for i= 1, ... , k,

and Si and Ti are places satisfying {Si} = ·L:i and {r.} = L:i•.

By proposition 47(3), L:a sy A c::= L:a sy (A U a). If a (j. maxE then, by

proposition 43(1,2) and a E max(EOalO ...Oak) sy A, there are t, u E T~ such

that (t, u) E syna and one of the following holds:

(a) There is W E T~~u...u~~ such that to u ~~a sy (Aua) w.

(b) There are v E T~ and W E T~~u...u~~ such that to u ~~a sy (Aua) vow.

317

(c) There are v, w E TE~U...UE~ such that to U ~Ea sy (Aua) vow.

Clearly, (c) is impossible because the weights of all the arcs adjacent to v 0 'W

would be equal to 2, contradicting proposition 56(2). Three cases are consid-

ered.

Case 1: E = F; G. Then (a) leads to a contradiction since tou is connected

to at least one internal place in ~a sy (A U a). That (b) also leads to a

contradiction can be shown in the following way. Since "u: = .~ and 'W. = ~.

it must be the case that, without loss of generality, t is a transition from box(F)

and u is a transition from box(G). Then, again without loss of generality, v

is a transition from box(F). Note now that box(E) is the union of ~f =

box(F) : {(box(Fr, ·box(G),0)} and ~g = box(G) : {(box(Fr, ·box(G),0)}

and observe that there is a non-entry place s in box(E) which is also in ·u.

Hence, s also has to be in "u. But the only places shared by ~ f and L.g are

those in box(Fr®·box(G). This means that box(Frn·v i= 0, a contradiction.

Case 2: E = [F * G * H). Proceed similarly as in Case 1.

Case 3: E = FIIG. Then (b) leads to a contradiction since it is obtained

from proposition 53(2) that, without loss of generality, "t ~ ·box(F), ·u ~

·box(G), t· ~ box(Fr and u· ~ box(Gr. Moreover, .~ ~ "t U·u and ~. ~

t· U u", Hence t E EXbox(F) and u E EXbox(G). But this means that "u = v· = 'O.
If (a) holds then, clearly, ai = 0, where i is such that w is the only transition of

~i' Moreover, a E maXE sy Ao0 can be shown easily using proposition 43(2).

o

This section concludes with a useful result which states that the various

sets and relations introduced in this section are preserved through duplication

equivalence and synchronisation.

Proposition 66 Let A, B, C be synchronisation sets and E, F, G, H be

boxes such that E ~ G and F ~ H.

1. set E = set., for set E {ex, ccall, ccint, ccnoex}.

318

2. setE = setE sy A for set E {ccall, ccint}.

3 A - tA. setEF - se GH for set E {covall, covmix, covint, covnoex}.

4. set~F = set~ sy B,F sy cfor set E {covall, covmix, covint}.

5. simexEF = simexGH.

Proof: Follows from propositions 58, 60, 61 and 62. o

5.8 An axiomatisation of duplication equiva-

lence

The axioms for duplication equivalence of box expressions are structured into

six groups. Below, a stands for an arbitrary action, A and B for synchronisa-

tion sets, and a for a communication action.

Structural Identities. The first group of axioms (STR1-STR5) capture

some basic structural identities. The axioms are sound not only with respect to

duplication equivalence, but also with respect to net isomorphism. What they

express is that the choice, parallel and sequential compositions are associative",

and that the first two are also commutative operators.

Propagation of synchronisation. The first two of the next group of

axioms (PROPI-PROP7) express simple (structural) facts about synchronisa-

tion, namely that applying synchronisation to a single action expression, or

using the empty synchronisation set, has no effect at all. The third axiom al-

lows one to collapse consecutive applications of the synchronisation operator.

The remaining four axioms amount to saying that synchronisation propagates

through the four composition operators.

5Therefore the parentheses in nested applications of sequence, choice and parallel com-

position operators may be omitted.

319

(EjF)jG = e. (FjG) STRl

(EOF) OG = EO (FOG) STR2

EOF = FOE STR3

(EIIF)IIG = EII(FIIG) STR4

EIIF = FilE
STR5

a = a sy A
PROPl

E = E sy 0 PROP2

E sy A sy B = E sy (AU B) PROP3

(EjF) sy A = ((E sy A)j (F sy A)) sy A PROP4

(EOF) sy A = ((E sy A) 0 (F sy A)) sy A PROP5

(EIIF) sy A = ((E sy A)II(F sy A)) sy A PROP6

[E*F *G] sy A = [(E sy A) * (F sy A) * (G sy A)] sy A PROP7

aua = a DUPL

320

Duplication. This group comprises only one axiom (DUPL). It captures

the essence of duplication equivalence whereby a choice between two copies of

the same action is ignored.

ex-actions. The next axiom (EX) is used to deal with ex-actions as it

allows these to be moved within a box expression. This is necessary, in par-

ticular, in order to make an expression with the main choice composition

connective satisfy the first of the premises in the next axiom (LIFT!).

a EA=> VB E ccnoexg sy A : a f/. B

EX
(E sy A) 0 a = (E 0 a) sy A

A . cl' A AE sirnexj, sy a,F sy a an a E covmtEFn covnoexEsy a,F sy a

LIFT!
((E sy a) 0 (F sy a)) sy A = (E 0 F) sy A sy a

a E covall~F

LlFT2
((E sy a); (F sy a)) sy A = (E; F) sy A sy a

a E covall~F

LlFT3
((E sy a)II(F sy a)) sy A = (EIIF) sy A sy a

a E covall~FG

LlFT4
[(E sy a) * (F sy a) * (G sy a)] sy A = [E * F * G] sy A sy a

(((EOa)II(FOa)) sy a) 00 = ((EOa)II(FOa)) sy a INT!

INT2

(((E sy a)II(F sy a)) sy A) 00= (EIIF) sy A sy a

321

Lifting of synchronisation. The following four axioms (LlFTl-LlFT4)

allow one to lift synchronisation sets to a higher level in the syntax tree of a

box expression. The main application of these axioms is in the construction

of maximal synchronisation sets.

Internal actions. The last axioms (INTI-INT2) capture two different ways

in which a syntactically generated internal action can find its duplicate gener-

ated through synchronisation.

From now on only the box expressions which belong to Expo are considered.

Note that by applying any of the axioms to a box expression in Expo one always

produces an expression which also belongs to Expo. It will also be assumed

that the set of communication actions A is finite.

5.9 Soundness of the axiom system

The first property of the axiom system that is established is soundness. Using

the results obtained for nets and, in particular, the structural characterisation

of the maximal synchronisation sets, it is fairly routine to show that the axiom

system is indeed sound. If two box expressions, E and F, can be shown to be

equivalent using these axioms, E = F will be written.

Theorem 6 For every box expression E in Expo, if E = F then E :::F.

Proof: As shown in [5], duplication equivalence is a congruence with re-

spect to all the operators used in this paper. Hence it suffices to show that

each of the axioms is sound. This is true for STRl-STR5 (since these are

sound w.r.t. net isomorphism), PROPl, PROP2 and DUPL (which follows di-

rectly from the definition of 0, sy and :::), PROP3 (using proposition 59(1)),

PROP4-PROP7 (using proposition 49 and the property that synchronisation

distributes over place multiplication and place addition), LlFTl-LlFT4 (using

propositions 66(4, for covint) and 63, as well as axioms PROP4-PROP7) and EX

322

(using propositions 43(2) and 60), INTI and INT2 (using proposition 43(2)).

o

Note that EX, DUPL and STR2 imply the soundness of two useful derived

axioms, EXI and EX2, where in the former ED a can be equal to a.

EX2

((E 0 a) sy A) 0 a (E 0 a) sy A EXI

(E sy A) 0 a = (E 0 a) sy A

5.10 Completeness of the axiom system

The proof of completeness is much more involved and is structured into two

parts. The first one deals with maximal synchronisation sets showing that it

is always possible to make the maximal synchronisation set of a box expres-

sion the outermost synchronisation, i.e., for every box expression E in Expo,

E _ E sy maxE. The proof of this result relies heavily on the structural

characterisation of the maximal synchronisation sets of box expressions. The

second part begins with the development of a normal form for box expressions

and ends up with the completeness proof.

Firstly, an auxiliary notion of context is introduced. A context is a term N

derived from the following syntax:

where A is a synchronisation set and x is a place-holder (variable). It is

assumed that within a given context, all the place holders are distinct. An

323

n-context is a context ~ with exactly n place holders. It can be denoted by

~[XI' ... ,Xn], where Xl, ... ,Xn are the place-holders of ~ listed in the order in

which they occur in ~. For every i ~ n let Ak denote the synchronisation set

such that sy Ak was the synchronisation directly applied to the i-th place-

holder, i.e., Xi. Moreover, for all i,j ~ n let A~ denote the union of all sets A

such that Xi and Xj are in the scope an application of sy A. For example, if

~[X, y, zJ= ((((x sy a)ll(y sy c)) sy d)II(z sy e)) sy f

then A~ = C, A~2 = cUd Of and A~2 = dt.rf. ~[Pl' ,PnJ is used to denote the

term resulting from replacing the place holders Xl, ,Xn by terms PI, ... ,Pn.

Note that if each Pi is a box expression then so is ~[Pl' ... ,PnJ. A context ~

is saturated (reduced:) if, for every sub context

(... (...) sy A ...) sy B

of R, B ~ A (resp. B nA = 0).

A box expression E is in standard form if E = ~[al' ... ' an], for some

n-context ~ and actions aI, ... ,an. Moreover, E is saturated (reduced) if ~ is

saturated (resp. reduced). For a box expression E (or context ~), (E) (resp.

(~)) is used to denote the term resulting from deleting all the occurrences of

the synchronisation operator. Note that (E) is always a box expression. For

example, E = ((a sy a)II(b sy (a U c))) sy a is a saturated box expression in

standard form such that (E) = allb.

It is always possible to transform an expression into one in standard form,

saturated or reduced. In the first of the two results that follow, a suitable F

can be obtained by applying axioms PROP2 and PROP3, and in the second

one by applying axioms PROP4-PROP7.

Proposition 67 For every expression E there is an expression in standard

form F such that (E) = (F) and E = F. o

324

Proposition 68 Let E = ~[El' ... ' En] be a box expression in standard

form. Then there is a saturated (resp. reduced) n-context N' such that

E = N'[El' ... ,En] and (~) = (N') and A~ = A~, for all i,j ~ n. D

For example, if E = ((a sy a)ll(b sy c)) sy a then E = ((a sy a) II

(b sy (aUc))) sy a (exemplifying saturation) and E _ ((a sy 0)II(b sy c)) sy a

(exemplifying reduction).

5.10.1 Constructing maximal synchronisation sets

This section contains two results. The first, an auxiliary one, states that it is

always possible to propagate an ex-action to the outside of a box expression.

Proposition 69 For every box expression E in Expo and every a E eXE,

E:::EDa.

Proof: By DUPL and STR2, it suffices to show that E FDa, for some

expression F. Induction on the structure of (E) is used. By proposition 67,

it may be assumed that E is in standard form. The base case is E = a sy A.

Then eXE = {a} and, by EX1, a sy A = (a sy A) 0 a. The induction step is

split into three cases.

Case 1: E = (F; G) sy A or E = [F * G * H] sy A. Then eXE = 0 and

there is nothing to prove.

Case 2: E = (FIIG) sy A. Then, by the definition of ex, a = 0 and there is

a E A such that a E eXF and a E eXa. By the induction hypothesis, F = FDa

and G = GOa. Thus, by (NT1, PROP3 and EX2,

E ((F 0 a)II(G 0 a)) sy a sy A

(((F 0 a)II(G 0 a)) sy aD 0) sy A

((F 0 a)II(G 0 a)) sy a sy AD 0.

Case 3: E = (F 0 G) sy A. Then, by proposition 68, there is a saturated n-

context ~, n 2:: 2, and box expressions El, ... , En such that E - ~[El' ... ' En],

325

N uses only choice and synchronisation, and, for every i ::;n, the topmost

operator of E, (if E, is not a single action expression) is neither choice nor

synchronisation. It may now be observed that from A~ = A~ for every i ::;n

(as N is saturated) and the definition of ex, it follows that there is k ::; n

such that Cl! E eXEk sy A~. Hence, by the induction hypothesis, Ek sy A~ -

(Ek sy A~) 0 o. Then, by repeatedly applying STR2, STR3 and EXl , one can

show that E = HO o, for some H. D

The next result shows that it is always possible to make the maximal

synchronisation set of an expression the outermost synchronisation.

Proposition 70 For every expression E in Expo, E _ E sy maxE.

Proof: By PROP3 .and the finiteness of A, it suffices to show that for

every expression E and action a E maXE, E = F sy a for some expression

F. The proof is by induction on the structure of (E). By proposition 67, it

may be assumed that E is in standard form (note that applying proposition

67 does not change the expression if the occurrences of the synchronisation

operator are disregarded; hence as far as the inductive proof on the structure

of (E) is concerned, applying the proposition is harmless). The base case is

E = Cl! sy A. Then, using PROPl and PROP3, the following is obtained

Cl! sy A Cl! sy A sy A _ Cl! sy A = Cl! sy A sy a.

In the induction step, if E = (F; G) sy A then, by proposition 63, a E

max» sy An rnax., sy A and a E covall:G. By the induction hypothesis, F =
F sy a and G == G sy a. Hence, by LlFT2,

E - ((F sy a); (G sy a)) sy A = (F; G) sy A sy a.

If E = (FIIG) sy A or E = [E*F*Gj sy A then the prooffollows in a similar

way.

The only complicated case to consider is that of E = (F 0 G) sy A. Then

there is an n-context N', n ;2: 2, and box expressions El, ... ,En such that

326

E = W[E1, •.. , En], W uses only choice and synchronisation, and, for every

i :::;n, the topmost operator of every E, (if E, is not a single action expression)

is different from choice and synchronisation.

For every i:::; n, let F; = EiDalD ... Dam where {al, ... ,am} = {Ej I
Ej E A~ A j f:. i} (if m = 0 then F; = Ei). A three-stage transformation of

E into an expression whose structure will allow us to apply proposition 63 is

performed. It may be assumed, by proposition 68, that E is reduced.

In the first stage, by applying STR2, STR3, DUPL and EX2, E F where

F = W[F1, ... , Fn]. In the second stage, if 0 E eXE then, using proposition

69 and axioms STR2, STR3, DUPL and EX2, F may be transformed into an

equivalent expression H = W[H1, ••. , Hn] where Hi = F; D0, for every i :::;

n. In the third stage, using proposition 68, H may be transformed into an

equivalent expression J = ~[Hl' ... ,Rn] such that (~) = (W), ~ is saturated

and A~ = AW" for all i,j :::;n.

It may now be observed that for every subcontext

of ~, the expression (~dHk' ... , Ht} D ~2[HI+l' ... ,HmD sy A~m does satisfy

the pre-condition in the second part of proposition 63. In particular, this and

the fact that ~ is saturated imply that, for every i:::; n, a E maxHi sy A~.

It is now shown that for every i :::;n, Hi sy A~ = K sy a, for some K.

Firstly it is observed that if a E A~ = A~ then by PROP3 nothing further is

required. Moreover, if it is the case that Hi = E, then the induction hypothesis

may be used. So suppose that a (j. A~ and Hi = (Ei D'ljJ). Note that in such a

case, by construction, neither a nor a occurs in 'ljJ. Four cases are considered:

Case 1: E, = 0:. Then Hi = Hi sy a which follows from PROPl, STR2,

STR3, EX2 and the fact that 'ljJ does not contain a nor a. Hence, by PROP3,

Hi sy A~ = Hi sy A~ sy a.

Case 2: E, = F; G. Then, by proposition 65(1), a E maxEi sy A~ and,

since (Ei) is a proper subexpression of (E), by the induction hypothesis and

327

axioms PROP3 and PROP5,

((Ei sy A~) 0 (V; sy A~)) sy A~

((Ei sy a sy A~) 0 (V; sy A~)) sy A~

((Ei sy a) 0 V;) sy A~.

It then follows that since V; contains neither a nor il, by PROP3 and EX2, the

last expression may be rewritten to (Ei 0 V;) sy A~ sy a.

Case 3: E, = [F * G * H]. Similar to Case 2.

Case 4: E, = FIIG. If a E maxE; sy A~ then proceed in a similar way to

Case 2. Otherwise, by propositions 64 and 65(2):

. A~a E maxj, sy A~ nmaxG sy A~ n covmlxpG

and (without loss of generality and by applying STR2 and STR3, if necessary)

a E exp, ii E eXGand V; = 00 cp. By the induction hypothesis and PROP3,

F sy A~ F sy a sy A~ and G sy A~ = G sy a sy A~. Hence, by PROP6

and INT2,

(FIIG) sy A~ 00 ((F sy A~)II(G sy A~)) sy A~ 00

((F sy a) II(G sy a)) sy A~ 0 0

(FIIG) sy At sy a.

Then proceed as in Case 2 to show that Hi sy A~ ((F IIG) 0 cp) sy A~ sy a.

Hence, it has been shown that for every i ~n, Hi sy A~ = K sy a, for

some K. Thus, by PROP3, Hi sy At - Hi sy At sy a, for every i ~n. The

last part of the proof is carried out assuming that n = 2 (the argument extends

easily to n > 2).

Assume J = ((HI sy AI) 0 (H2 sy A2)) sy B. It has been shown that

Hi sy Ai = Hi sy Ai sy a, for i = 1,2. Moreover, as has already been ob-

served, B E simexj-, sy Al,H2 sy A2. Hence, by proposition 63,

328

Also, by proposition 66(3,5):

B E SlmeXHI sy Al sy a,H2 sy A2 sy a

Ba E covnoexHI sy Al sy a,H2 sy A2 sy a·

Hence L1FTl, may be applied in the following way

J ((Hi sy Ai sy a) 0 (H2 sy A2 sy a)) sy B

((Hi sy Ad 0 (H2 sy A2)) sy B sy a

which completes the proof. o

5.10.2 De-synchronisation

An auxiliary operator on nets is now introduced. This can be thought of as an

'inverse' of the synchronisation operator, or de-synchronisation. For a labelled

net ~ and a synchronisation set A, let ~ unsy A denote the net obtained from ~

by deleting all the 0-labelled transitions t for which there are A-synchronisable

transitions u and w such that t I><l~ uw.

Proposition 71 Let ~i and ~2 be labelled nets, and A and B be synchroni-

sation sets.

3. If A ~ max~1 then ~i ~ (~i unsy A) sy A.

4. If A ~ B then (~i sy A) unsy B = ~i unsy B.

5. If ~i is a pre-box then ~i unsy A is also a pre-box.

6. The unsy A operator distributes over the sequence, parallel and iteration

composition.

329

Proof: (1), (4) and (5) follow directly from the definitions of sy and

unsy.

(2) Suppose that ~1 ~h ~2' Observe that if t ~h u then t E T~l unsy A

if and only if u E T~2 unsyA which follows directly from proposition 42(1).

Moreover, it is easy to see that for all nodes nand n' in ~1 unsy A, n r><J~1n' if

and only if n r><J~1unsy A n'. And, similarly, for all nodes m and m' in ~2 unsy A,

m r><J~2m' if and only if m r><J~2unsy A m'. One can then show that

9 = {([nl~l unsy A, [ml~2unsy A) I n E S~l U T~l unsy A 1\ n ~h m}

is an isomorphism such that ~1 unsyA -:::='g ~2 unsyA.

(3) Since ~1 ~ ~1 sy A, it suffices to show that ~1 sy A ~ (~1 unsy A)

sy A. The latter follows directly from proposition 43(2) and the definitions

of sy and unsy (essentially, ~1 sy A is (~1 unsyA) sy A with possibly du-

plicates of some 0-labelled transitions added).

(6) It suffices to observe that, by proposition 41, if ~2 is any of the nets (~i

or ~D used in the definition of sequence, concurrent or iteration composition

~, and t is a transition in ~2' then there are no transitions, u and w, of which

at least one belongs to the remaining nets forming ~, such that t r><J~UW. D

De-synchronising a box does not necessarily yield a box. For example,

if E = (((aOb);b)ll(aOb)) sy b then box(E)unsya is the net in Figure 5.10

which, as one can easily see, is neither a box nor is duplication equivalent to

any box. But what can be said about a de-synchronised box is that it is a box

with some transitions added in a way which resembles 'local' synchronisation.

Proposition 72 Let ~', ~ = [~'unsyAb, be boxes, and A be a synchronisa-

tion set. Then there is a box ~a generated by a synchronisation-free expression

and a set of 0-labelled transitions T of ~ such that ~a is isomorphic to ~ with

the transitions T deleted. Moreover, for every transition t E T there are

transitionsu, w E T~ - T such that t r><J~uw.

330

Proof: Let L;' = box(E). Observe that if the result is shown for the

modified box obtained by omitting all the transitions which resulted from

synchronisations, then the proposition will also hold for the original box. In

other words, it suffices to show the result assuming that E does not contain

any application of the synchronisation operator. Then, one can show that L; is

isomorphic to box(F), where F is the expression obtained from E by removing,

from each subexpression G = G1 0 ... 0 Gk all the expressions G, = a such

that there is j < i satisfying Gj = Gi and, moreover, if potex., n A =1= f/J then

also all the expressions of the form Gi = f/J (the proof can be carried out by

induction on the structure of E and using proposition 71(6)). 0

An ex-path of a labelled net L; is a sequence of nodes 7r = no ... nk such no

is an entry place, nk is an exit place, and ni-l E "tu, for every i :'S k. L; is ex-

connected, if for every place s in L; there is an ex-path to which s belongs. The

following is an easy corollary of the last result and the fact proved in Chapter 3

that boxes generated by synchronisation-free expressions are ex-connected.

Corollary 9 If L; is a box and A is a synchronisation set then L; unsy A is

ex-connected. 0

De-synchronisation distributes over the sequence, parallel and iteration

composition. However, this does not extend to the choice operator. For ex-

ample, if L;a = box(alla) and L;b = box(bllb) then

((L;a sy a) 0 (L;b sy b)) unsya L;a 0 L;b ~ L;a 0 (L;b sy b)

((L;a sy a) unsya) 0 ((L;b sy b) unsya).

An important case when de-synchronisation distributes over choice is pro-

vided by the next result.

Proposition 73 Let L;l, ... , L;2 and L; = L;l 0 ... 0 L;k be boxes in Boxo and

A be a synchronisation set such that, for every i < k, A .~ maxEi and if

eXEi =1= f/J then L;i = box(a) for some action a. Then

L; unsy A = (L;l unsy A) 0 ... 0 (L;k unsy A).

331

Proof: To show the result it suffices to prove that if t E T'Ei and there are

A-synchronisable transitions u and w in E satisfying t [XJ'EUW, then u,wE T'Ei.

Two cases are considered.

Case 1: eX'Ei= 0. If u, W (j. T'Ei then a contradiction is obtained with

propositions 41 and 54(2) and t (j. EX'Eand Ei E Boxo. If u E T'Ei and W (j. T'Ei

then, by proposition 41, w E EX'E. Hence t [XJ'Eiub and from proposition 54(1)

it follows that EX'Ei i= 0, a contradiction. Thus u, w E T'Ei.

Case 2: eX'Eii= 0. Then Ei = box(0) and, using proposition 41, one can

easily see that both u and w belong to the same Ej. Hence, by A ~ max'Ej

and uw [XJ'Ejb, eX'Eji= 0, a contradiction. 0

e

Figure 5.10: De-synchronised box may not be a box.

The next definition and the proposition that follows deal with the problem

of a unique representation of a net as a composition of other, smaller, nets.

Below, a pre-box E is choice-decomposable (sequence-decomposable) if there

are pre-boxes Ea and Eb such that E ~ Ea 0 Eb (resp. E ~ Ea; Eb). Note

that box(o:) is choice-decomposable, for every action 0:. An iteration / parallel

/ sequence / choice decomposition of a pre-box E is a sequence of pre-boxes

El, ... ,Ek such that, respectively, the following hold:

332

• k ~ 2 and ~ ~ ~111.. ·11~k and, for every i :S k, ~i is connected.

• k ~ 2 and ~ ~ ~1; ... ; ~k and, for every i :S k, ~i is not sequence-

decomposable.

• k ~ 2 and ~ ~ ~1 0 ... 0 ~k and, for every i ::;k, if ~i is choice-

decomposable then ~i ~ box(a) for some action a and ~i i: ~j for all

j =I i.

Proposition 74 Let ~ be a box and A be a synchronisation set .

.
1. ~ unsy A has at most one (up to duplication equivalence and permuta-

tion) parallel decomposition and choice decomposition.

2. ~ unsy A has at most one (up to duplication equivalence) sequence de-

composition and iteration decomposition.

Proof: This proposition is proved using the results obtained in Chapter 3.

A sketch of how this can be done for the case of sequence decomposition is

give below.

To start with, one can show that if ~~, ... , ~~ is a sequence decomposition

of a pre-box ~' then [~~b,... , [~~bis a sequence decomposition of [~'b such

that [~'b = [~~b;···;[~~b·Hence it suffices to show that ~a = [~unsy Ab
has at most one sequence decomposition ~1' ... ' ~k such that ~a = ~1; ... ; ~k.

By proposition 72, it may be assumed that there is a box ~b generated by a

synchronisation-free expression E (for which the results obtained in Chapter 3

can be applied) and transitions t, u, w in ~a such that t lXIr:a UW, (u, w) E synA

and ~b is ~a with t deleted (i.e. it is assumed that ITI = 1 where T is as in

the formulation of proposition 72; the argument is similar for ITI > 1). Then

the following hold:

(i) Every representation of ~a as a sequential composition of pre-boxes in-

duces a corresponding representation of ~b. More precisely, if ~a =

333

~l; ... ; ~k' for some pre-boxes ~i' and t E Tr,l then ~b = ~bl;···; ~bk

where ~bl is ~l with t deleted, and ~bi = ~i' for all i =1= l.

(ii) It was shown in Chapter 3 that there is a unique sequence of boxes

~t,,... ,~1m for ~b such that whenever ~b = ~bl;···; ~bl there are

(unique) integers 0 = mo < ml < ... < m; = m such that, for ev-

ery i ~l, ~bi = ~h+mi_l; ... ; ~/mi (in particular, this means that no F;

is sequence decomposable). This and (i) implies that for ~a there is at

most one sequence of non-sequence-decomposable pre-boxes ~l' ... '~k

such that ~a = ~l; ... ; ~k (basically, if U E Tr,fx and W E Tr,fy (x ~ y)

then ~l' ... , ~k is

D

5.10.3 Normal form box expressions

A box expression E in Expo is in normal form if it is in one of the following

five types. Below, A = rnaxj, and each E, is an expression in normal form

such that A ~ maxEi. Moreover, ~ denotes box(E) unsy A and ~i denotes

box(Ei) unsy A.

• Type-a E = Q for some action Q.

• Type-i

• Type-p E = (Elll ... IIEk) sy A and ~l' ... ' ~k is a parallel decom-

position of ~.

• Type-c E = (El 0 ... 0 Ek) sy A and ~l' ... ' ~k is a choice decom-

position of ~.

• Type-s E = (El; ... ; Ek) sy A and ~1' ... ' ~k is a sequence decom-

position of ~.

334

The next task is to show that duplication equivalent expressions in normal

form are equal (up to permutation of subexpressions in choice and parallel

composition contexts). The first step is to show that any two duplication

equivalent expressions are of the same type. The proof will rely on the notions

of internal connectedness and internal interface, introduced in Chapter 2. Note

that the application of the results based on internal connectedness and internal

interfaces from Chapter 3 is possible due to corollary 9. The relevant proofs

from Chapter 3 can easily be adapted and therefore their detailed exposition

is omitted here, referring instead to the appropriate parts of Chapter 3.

A pre-box E is internally connected if it is connected after removing all

the entry and exit places. It has an internal interface if there is a set of

internal places P such that if P is deleted then E can be divided into two

disjoint subgraphs with the nodes NI and N2 such that: (i) each node in NI

is connected to an entry place and not connected to any exit place; (ii) each

node in N2 is connected to an exit place and not connected to any entry place;

and (iii) if Ei is taken to be E with the nodes Ni deleted (i = 1,2), then P is

a ®-set for El and E2· For example, P = {82' 83} is the only internal interface

of the net in Figure 5.5.

Proposition 75 Let E be an expression in normal form and m be the number

of transitions in E = box(E) unsy maXE.

1. If E is of type-a then m = 1.

2. If E is of type-p then m > 1 and E is not connected.

3. If E is of type-c then m > 1 and E is connected and not internally

connected.

4. If E is of type-i then m > 1 and E is connected and internally connected

and has no internal interface.

5. If E is of type-s then m > 1 and E is connected and internally connected

and has at least one internal interface.

335

Proof: Let the ~'s and k be as in the definition of normal form. Note that,

by proposition 71(5) and corollary 9, each ~i is an ex-connected pre-box.

(1) obviously holds as well as m > 1 in (2)-(5).

(2) Then ~ c::: ~lll 11~k.This and k 2:: 2 means that ~ is not connected.

(3) Then ~ c::: ~l 0 0 ~k. Since k 2:: 2 and each ~i is ex-connected, it

follows that ~ is connected but not internally connected (c.f. Proposition 5 in

Chapter 3).

(4) Then ~ c::: [~l * ~2 * ~31. Since each ~i is ex-connected, it follows

that ~ is connected, internally connected, and has no internal interface (c.f.

Propositions 5 and 7 in Chapter 3).

(5) Then ~ c::: ~l; ... ; ~k. Since k 2:: 2 and each ~i is ex-connected, it

follows that ~ is connected, internally connected, and has an internal interface

(c.f. Propositions 5 and 7 in Chapter 3). 0

Directly from propositions 71(2) and 75, and the fact that connectedness,

internal connectedness and having an internal interface are all net properties

preserved by duplication equivalence, the following result is obtained.

Corollary 10 Duplication equivalent normal form expressions are of the same

type. 0

Moreover, one can show that duplication equivalent normal form expres-

sions are equal.

Proposition 76 If E and F are duplication equivalent expressions in normal

form then E = F up to permutation of the components in subexpressions of

the form Elll ... IIEk and El 0 ... 0 Ek·

Proof: Clearly, rnaxj, = rnaxj- = A and, by corollary 10, both E and F

are of the same type. The proof proceeds by induction on the structure of E.

The base case is E = a and F = d which clearly implies E = F.

336

In the inductive step, suppose that E and F are of type-p and, more-

over, that E = (EIII ... IIEk) sy A and E = (FIll ... IIFm)sy A. By propo-

sition 71(2), box(E) unsy A ~ box(F) unsy A. Hence, by proposition 74(1),

. k = m and, without loss of generality (one can always use STR4 and STR5),

box(Ei) unsy A ~ box(Fi) unsy A and so

box(Ei) unsy A sy A ~ box(Fi) unsy A sy A,

for every i ::;k. Thus, by A ~ maxEi = maxFi and proposition 71(3), E, ~ Fi,

for every i ::;k. Now, since both E, and F; are in normal form, by the induction

hypothesis, E, = F; (up to permutation of subexpressions in choice and parallel

contexts). Hence the proposition holds. The proofs for E of type-c, type-i and

type-s are similar. 0

The next proposition is an auxiliary result used later, in proposition 78, to

transform an expression into a normal form expression.

Proposition 77 Let E be a normal form expression and A C rnaxj, be a

synchronisation set.

1. If E is of type-p and box(E) unsy A is not connected then there is F =
(FIll· . ·IIFk) sy A (k ;:::2) such that E = F and, for every i ::;k,

A ~ maxFi and box(Fi) unsy A is connected.

2. If E is of type-s and box(E) unsy A is choice decomposable then there

is an expression F = (FI; ... ;Fk) sy A (k ;:::2) such that E _ F

and, for every i ::;k, A ~ maxFi and box(Fi) unsy A is not sequence-

decomposable.

3. If E is of type-c, eXE = 0 and box(E) unsy A is choice decomposable

then there is an expression F = (FlO ... 0 Fk) sy A (k ;:::2) such that

E - F and, for every i ::;k, A ~ maxFi and box(Fi) unsy A is not

choice-decomposable.

337

Proof: (1) Suppose E = (EIII ... IIEm) sy B. Define a relation p on

{1, ... , m} in such a way that (i,j) E P if if- j and

(5.4)

From the definition of type-p and A ~ B it follows that El ~ El sy B ~

El sy A and box(EI) unsy A is connected, for every l :::;m. Hence (i,j) E P if

and only if i f- j and box((EiIIEj) sy B) unsy A is a connected pre-box. The

graph of the relation p can be divided into k connected components. Without

loss of generality (one can always use STR4 and STR5) it may be assumed

that 0 = mo < ml < ... < mk = m are such that, for every i :::; k, the

integers 1 + mi-l,m; are the vertices of the i-th connected component of

the graph of p. Denote Gi = F1+mi_lll ... llFmi' for every i :::;k. Clearly, for

every i :::;k, box(Gi) sy B unsy A is connected. Thus, since box(E) unsy A is

not connected, k 2: 2. It may then be observed that from proposition 55,

corollary 8 and A ~ B, it follows that

((GI sy B)II ... 11(Gk sy B)) sy B ~ ((GI sy B)II ... 11(Gk sy B)) sy A.

Denote F, = Gi sy B, for every i :::;k, and F = (FIll ... IIFk) sy A. Therefore

E = (FIll ... IIFk) sy B ~ (FIll ... IIFk) sy A. Hence, by proposition 70 and

PROP3, E - F.

(2,3) Proceed similarly as in the case of type-p expression. The main

difference is that in the case of type-s expression, 0 = mo < ml < ... < mk =

m are assumed to be integers such that, for every i :::;k, there is a path in the

graph of p between 1+ mi-l and m; and, for every 1 :::;j < k, there is no path

between x and y if x:::; m; < y. o

Not every expression in Expo can be rewritten into a normal form box

expression. For example, if E = ((a; 0) 0 a) sy aD (0; a) then maxE = A - a

and the only decomposition of box(E) unsy (A - a) = box(E) into boxes ~i

which could satisfy one of the parts of the definition of normal form expression,

are the three nets shown in Figure 5.11 (note that box(E) unsy (A - a) =

338

~l 0 ~2 0 ~3). While the first two nets do not create any problems, the third

one does, as it is easy to see that there is no box expression E3 such that ~3 is

duplication equivalent to box(E3) unsy A, for any synchronisation set A. Hence

E has no normal form in the sense defined above. Therefore the applicability

of the choice operator needs to be restricted. The definition below is motivated

by the way in which the fourth case in the definition of normal form has been

formulated (and, indirectly, by the characterisation of the situation when the

unsy operator distributes over choice).

~l

Figure 5.11: Decomposition of a de-synchronised box.

A box expression E E Expo is choice-restricted if every subexpression F of

E which has choice as the topmost operator is of the form alD ... 0 ak 0 H
and satisfies eXH sy A = 0, where A is the union of all the synchronisation

sets B such that F lies within the scope of an application of sy B (k = 0 is

allowed, and H may be missing if k > 0).6 Then, let EXPI denote the set of

all box expressions G E Expo 'such that G = E, for some choice-restricted box

expression E. Note that the definition of EXPI is not fully syntactic. However,

one can give simple syntactic conditions which guarantee that a box expression

which is not choice-restricted belongs to EXPI.

6Note that H can be an expression whose main connective is choice.

339

Proposition 78 If E is an expression in EXPI then there is an expression in

normal form F such that E = F.

Proof: It may be assumed that E is choice-restricted, and then proceed by

induction on the number of transitions in the duplication quotient of (E). The

base case is (E) = Cl! or (E) = Cl! 0 ... 0 CI!, for some action CI!. Then E = Cl! or

E _ Cl! 0 ... 0 Cl! which can be shown using PROP!, PROP2, PROP3 and PROP5.

Moreover, in the latter case, using DUPL, STR2 and STR3, Cl! 0 ... 0 Cl! may be

transformed into CI!. In the inductive step a number of cases are considered,

depending on the form of (E).

Case 1: (E) = E'liE". By PROP3, PROP6, and proposition 70, E -

(F sy AIIG sy A) sy A, where A = maXE and F, G E EXPI' By the induction

hypothesis, E - (FoIIGo) sy A, where Fo _ F sy A and Go = G sy A, and

both Fo and Go are in normal form. If both box(Fo) unsy A and box(Go) unsy A

are connected, then the result is shown since, by proposition 71(2,4,6),

box(E) unsy A '" box((FoIIGo) sy A) unsy A

box(FoIIGo) unsyA = (box(Fo) unsyA)II(box(Go) unsyA).

Otherwise, without loss of generality, it may be assumed that box(Fo) unsy A

is not connected and Go unsy A is connected. Then, by proposition 77(1),

Fo = (FIll·· .IIFk) sy A where k ~ 2, A ~ maXFj and box(Fi) unsy A is

connected, for every i ~ k. The induction hypothesis may be applied k-

times to obtain that E _ ((HIli ... IIHk) sy AIIGo) sy A, where each Hi is

a normal form expression for every Fi. Next, by PROP3 and PROP5, E =
(HIli .. ·IIHkIIGo) sy A which completes the discussion of this case since, by

proposition 71(2,4,6),

box(E) unsy A '" box((HIII IIHkIIGo) sy A) unsy A

box(Hdl IIHkIIGo)unsy A

(box(HI) unsy A) II... 11 (box(Hk) unsy A)

II(box(Go) unsy A).

340

Case 2: (E) = [E' * E" * E"']. By PROP3, PROP6, and proposition 70,

E = [F sy A*G sy A*H sy A] sy A, where A = rnaxj, and F,G,H E EXPI'

By the induction hypothesis, E = [Fo * Go * Ho] sy A, where Fo, Go and Ho

are in normal form and Fo _ F sy A, Go - G sy A and Ho _ H sy A.

Case 3: (E) = E'; E". Proceed similarly as in Case 1.

Case 4: (E) = E' 0 E". By the definition of EXPl' PROP3, PROP6, and

proposition 70, E (alD ... 0 ak 0 G sy A) sy A, where G E EXPl' A =

maxE and eXG sy A = 0. Moreover, by DUPL, it may be assumed that ai =1= aj,

for every i =1= j. By the induction hypothesis, E - (alD ... 0 ak 0 Go) sy A,

where Go - G sy A and Go is in normal form. If Go unsy A is not choice-

decomposable, then the result is shown, since, by proposition 73,

box(E) unsy A '" box((alD 0 ak 0 Go) sy A) unsy A

box((alD 0 ak 0 Go)) unsy A

(box(ad unsy A) 0 ... 0 (box(ak) unsy A)

o (box(Go) unsy A) 0 (box(Go) unsy A).

Otherwise, proposition 77(3) may be applied, and then proceed similarly as in

case 1. o

Finally, it is possible to prove the main result of the second part of this

section.

Theorem 7 For all box expression E, F in EXPl' if E ~ F then E _ F. 0

Proof: Follows from propositions 76 and 78. 0

5.11 Conclusion

A sound and complete axiomatisation of duplication equivalence has been

developed for a subset of box expressions. In doing so, it turned out that

a crucial problem to be solved was that of a structural characterisation of

maximal synchronisation sets of box expressions. It has been demonstrated

341

that such a characterisation is rather complicated for box expressions whose

main connective (other than synchronisation) is the choice composition. This

has led to a restriction on the set of box expressions for which the sound-

ness and completeness results directly apply. The duplication equivalence is

a very strong notion of equivalence which resembles the strong equivalence of

CCS [41]. It is therefore natural to envisage that the future research will be

concentrated on developing an axiomatisation of a weaker equivalence on box

expressions, similar to the observational congruence of CCS. From this point

of view the results obtained here are highly relevant since any axiomatisation

of a weaker behavioural equivalence would encompass the axiomatisation of

duplication equivalence. Moreover, the restrictions imposed on the type of box

expressions for which the soundness and completeness results hold seem to be

rather mild when considering a weaker notion of equivalence. Without going

into details, if F1, ... ,Fk are the sub expressions of a box expression E which

cause the latter not to belong to EXPI then it should be possible (under any

reasonable notion of observational equivalence which ignores internal moves)

to replace each Fi by Fi; 0, within E, and the resulting expression, call it E(0),

would now belong to EXPI' It is also conjectured that the same transformation

can be used to extend in a somewhat unusual way the completeness result

obtained here, in the following way. If E and F are arbitrary box expres-

sions such that E ~ F then E(0) == F(0), where it is assumed that for a box

expression E in EXPl, E(0) = E.

The final remark concerns the non-standard way in which some of the ax-

ioms were formulated since they refer to various sets (even sets of sets) of

actions, such as covall. The reader might question whether this leads to a sig-

nificant increase in the algorithmic complexity of the axiomatisation developed

here when compared, e.g., with that presented in [41]. The answer is that it

does not, as it is not difficult to see that all the sets involved are 'small' which

342

is due to an easy observation that it is always the case that

L IAI ~ k and lexEI < k
AEccaliE

where k is the number of action occurrences in a box expression E.

343

Chapter 6

Conclusion

In this chapter, a summary of the main results of the thesis are given, together

with a discussion of possible areas for future investigation, building upon the

work of the previous chapters.

6.1 Summary of Results

In Chapter 3 a detailed investigation into the synthesis and axiomatisation

problems was carried out for a basic subset of the Petri Box Calculus shown

in Table 6.1.

E"= a Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E * E * El Iteration

Table 6.1: Basic box expression syntax

Efficient algorithms for the problems listed in Table 6.2 were presented in

Chapter 3. The time complexities of these algorithms is given in terms of n,

the number of nodes in the input net, and a, the number of atomic actions

344

in the input expression. In addition, it has been shown that for any box

expression, E, the number of expressions, E', such that box{E') = box{E) can

be calculated.

Problem Time complexity

Box EXPRESSION SYNTHESIS O(n5)

CANONICAL Box EXPRESSION SYNTHESIS O(n5)

CANONICAL Box EXPRESSION O(a2 ·loga)

PETRI Box ISOMORPHISM O(n5)

Box EXPRESSION ISOMORPHISM O(a2 • loga)

Box EXPRESSION ISOMORPHISMPROOF O(a3)

Table 6.2: Time complexity for basic syntax algorithms

Based on the framework provided by the synthesis algorithm, the axiom

system in Table 3.6 was shown to be complete. In addition, a proof strategy

for applying the axioms was presented, which allows the automatic generation

of proofs.

In Chapter 4, the synthesis and axiomatisation problems were extended

to the syntax in Table 6.3, which includes the synchronisation operator. The

synthesis problem for this syntax was shown to be NP-hard. However, when

the synthesised expression is allowed to contain the scoping operator in place

of synchronisation, the extra expressiveness means that the synthesis problem

is no longer NP-hard, and has an efficient solution.

The various algorithms investigated in Chapter 3 were revisited in Chap-

ter 4. It was found that the extra work involved in the synthesis of synchro-

nisation does not affect the overall time complexity of the algorithm, which

remains at O(n5
). An efficient algorithm was not found for the problem of

synthesising a canonical form expression, and the related problems of rewrit-

ing an expression into canonical form and generating a proof of equivalence.

Nor were these problems shown to be NP-hard. Instead, some evidence was

345

E"= Cl! Atomic action

EJJE Parallel composition

EOE Choice composition

E;E Sequential composition

[E * E * El Iteration

Esy A Synchronisation

Table 6.3: Box expression syntax with synchronisation

presented that the time complexity of finding a canonical form expression is

related to the complexity of the graph isomorphism problem.

As in Chapter 3, the framework of the synthesis algorithm provided the

basis for the production of an axiomatisation and aided the proof of complete-

ness. The work in Chapter 3 was almost totally reused in the investigation

into synchronisation.

In Chapter 5, consideration was grven to extending the results for the

syntaxes in Table 6.1 and Table 6.3 from the domain of net isomorphism to that

of duplication equivalence. The existing results for isomorphism were reused,

and only a minimal amount of work was required to extend the algorithms

and axiomatisation to the domain of duplication equivalence.

Section 5.4 provides an investigation into the axiomatisation of the syntax

in Table 6.3, where the framework for the synthesis algorithm is not reused.

This work provides a contrasting approach to the axiomatisation problem. The

investigation is motivated by the fact that the NP hardness result of Chap-

ter 4 no longer holds when the net semantic is changed from isomorphism to

duplication equivalence. Also, despite its location, the work in Section 5.4 was

carried out in parallel and completed before the investigation into synchro-

nisation in Chapter 4. The two approaches to finding an axiomatisation for

the syntax in Table 6.3 for duplication equivalence demonstrate some of the

benefits of re-use provided by the framework of the synthesis algorithm.

346

6.2 Extensions and Areas for Further Investi-

gation

The framework provided by the synthesis algorithm allows the investigation

into the synthesis and axiomatisation problems to be tackled in a modular

fashion, based on particular subsets of the Petri Box Calculus, and particular

notions of equivalence. The two main areas for further work involve extending

the subset of the Box Algebra considered in this thesis, and investigating the

problem for further notions of equivalence, particularly behavioural equiva-

lences. In this section, some notes on these problems together with ideas for

other avenues of further work are presented.

6.2.1 Additional Operators

In this section, some observations are made on the problem of extending the

investigation into synthesis and axiomatisation to deal with the operations of

restriction, scoping and recursion.

Restriction

Restriction can be regarded as a global operator, as it can affect any of the

transitions in the net it operates on. It is different from the other operators in

the Petri Box Calculus in that it is destructive in nature. The structure of a net

may be radically changed by the application of the restriction operator. From

this point of view, the top-down approach to the synthesis algorithm, which

relies on the constructive nature of the semantics for box expressions, does not

appear to be particularly suited to dealing with the restriction operator.

The simplest example of a restriction expression is E = a rs a. The ex-

pression E can be rewritten in constructive terms as E = stop. The second

form for E is constructive because the a labelled transition that is removed

in a rs a is never created in stop. This scheme can be extended to any ba-

347

sic syntax expression involving restriction, simply by replacing every atomic

action that is restricted by stop, and removing all of the rs operators. The

following axioms may be used to rewrite an expression involving the restriction

operator, but not the synchronisation operator, into stop form.

E rs A rs B

ex rs A

(El II E2) rs A

(El 0 E2) rs A

(El; E2) rs A

[El * E2 * E3] rs A

E rs (A U B)

{

ex if \la EA: ex n {a, a} = 0
stop otherwise

El rs A II E2 rs A

El rs A 0 E2 rs A

El rs A; E2 rs A

[El rs A * E2 rs A * E3 rs A]

From the point of view of synthesis, there are still several problems, the

greatest of which is the fact that the properties used in Chapter 3 to identify

which synthesis rule to apply are no longer valid. For example, Figure 6.1,

shows the implementation of a sequence expression, E = a; stop; c. The net

in Figure 6.1 is disjoint, so would be identified by the standard synthesis

algorithm as being the implementation of an expression whose main connective

is parallel composition.

Figure 6.1: Disjoint net obtained from a sequence expression

expressions:

Figure 6.2, shows a net which is the implementation of any of the following

El (a; stop; c) II (b; stop; d)

348

E2 (a; stop; d) II (b; stop; c)

The net in Figure 6.2 is also duplication equivalent to an implementation of:

E3 = (a II b); stop; (c II d)

Figure 6.2: Problem of matching subnets

A partial investigation into the restriction operator leads to the following

crucial observation. The implementation of the expression E = stop consists

ofa single isolated entry place, and a single isolated exit place. If the ex-

pressiveness of the Box Calculus is modified slightly so that it is possible to

represent the isolated entry and exit places independently of each other, then

it seems a large part of synthesis algorithm of Chapter 3 can be reused - in

particular, every disjoint input net can be synthesised as an expression whose

main connective is parallel composition.

The natural way to represent isolated places, especially in domain of iso-

morphism (where the numbers of each type of isolated place is significant),

is to introduce an isolated places operator. The new operator has the syntax
A

OB ,and a semantics that creates A isolated entry places, B isolated internal
c

places and C isolated exit places.

Using the isolated places operator, the net in Figure 6.1 could be repre-

sented by the expression

1 0

E = (a; 00) II (00 ;c)
o

349

and the net in Figure 6.2 by

1 1 0 0

E = (a;Oo) II (b;Oo) "(00 ;c)" (00 id)
o 0

Of course the synthesis rules for choice, sequence and iteration would need to

be modified to cope with restriction, although it seems that the modifications

would take the form of extensions rather than replacement by completely new

rules.

It would appear that moving from the domain of isomorphism to that of du-

plication equivalence may simplify the axiomatisation and synthesis problems

due to the fact that the presence of restriction permits duplicated places to be

generated, and the move to duplication equivalence removes the significance

of the number of duplicates of each place.

Scoping

The semantics for the scoping operator are given syntactically in terms of the

synchronisation and restriction operators:

[a : El = E sy a rs a (6.1)

This means that any synthesis algorithm that deals fully with restriction

and synchronisation will automatically work for nets derived from expressions

involving the scoping operator. Any complete axiomatisation that includes

support for synchronisation and restriction can be extended to the scoping

operator by adding the axiom (6.1).

Recursion

Expressions which involve the recursion operator generally produce infinite

nets. For this reason, the framework relating the synthesis and axiomatisation

problems is not suitable for dealing with recursion. An approach such as

using fix-points would be required for axiomatising recursion. However, from

a pragmatic view, the iteration operator provides the capability for infinite

350

behaviour, and in fact the translation from B(PN)2 and OCCAM to Box

expressions does not require the use of the recursion operator. In this respect,

the Box Algebra can be considered expressive enough without the recursion

operator.

6.2.2 Behavioural Equivalences

It seems unlikely that the framework in its present form can be used to solve the

synthesis and axiomatisation problems, once the move is made from structural

equivalences to behavioural equivalences. However, it may be possible to reuse

the results for isomorphism and duplication equivalence in any investigation

into behavioural equivalences.

Algebraic
Representation

Structural
Representation

Net Synthesis

Unfolding

Behavioural
Representation

Figure 6.3: Synthesis for Behavioural Equivalences

Figure 6.3 illustrates a framework in which the synthesis and axiomatisa-

tion problems may be investigated for behavioural equivalences. As before,

the axiomatisation would be derived as a result of a detailed analysis of the

synthesis algorithm. There will .be three different domains involved in any

investigation:

• Algebraic representation: The domain of Box expressions.

• Structural representation: The domain of Petri Boxes.

351

• Behavioural representation: Some structural representation of the

behaviour of a net, such as a net unfolding.

The work in this thesis concentrates on the algebraic and structural repre-

sentations only, where a structural representation may be constructed from

an algebraic one using the semantics of Box expressions, and the algebraic

representation derived from a structural one using the synthesis algorithm.

A representation of the behaviour of a net may be constructed from the

net itself, for example by unfolding the net. Through transitivity: this gives a

representation for the behaviour of a Box expression. It may also be possible,

using an operational semantics for the Box Algebra, to directly create the

representation of the behaviour of an expression.

There are two possible approaches to a synthesis algorithm for a behavioural

equivalence. The first is to synthesise a net from the representation of the be-

haviour of the system. The important point here, is that the synthesised net

must be structurally equivalent to the implementation of a Box expression.

Such an approach would require an investigation into the types of structures

that arise in the behavioural representation as a result of particular constructs

in the Box Calculus. The second method would be to synthesise a Box expres-

sion directly from the behavioural representation.

It is preferable that the behavioural representation is flexible enough to

represent the behaviour of an arbitrary net. In this way the possibility of syn-

thesising expressions for nets that are not implementations of Box expressions

becomes feasible.

In the work for structural net equivalences, it was found that it was pos-

sible to reuse results when moving from one equivalence to another. It is

expected that a similar re-use could be taken advantage of in the domain of

behavioural equivalences. In [45], a two dimensional relationship between var-

ious net equivalences is illustrated, for example dividing equivalences into step

semantics, interleaving semantics and partial order semantics. It is hoped that,

for example, an investigation into partial order semantics would be applicable

352

to the various flavours of partial order semantics.

6.2.3 Net Based Operations

The framework proposed for the synthesis algorithm uses a set of structural

properties of nets used to identify which of several synthesis rules to apply.

These structural properties are, in part, based on properties of the net based

operators, U, EB,e and 0, and their form of usage in describing the semantics

of box expressions.

For example, usage of the U operator, which directly corresponds to parallel

composition, can be identified by checking whether the net is connected or

not. Similarly, the definition of clusters of places matches the usage of the

construction EB(51 052) (where 51 and 52 are sets of places) in the semantics

of box expressions. It is therefore, in some ways, not surprising that it was

possible to reuse much of the work of Chapter 3 when extending the synthesis

algorithm and axiomatisation to the syntax in Table 6.3.

One observation is that it shouldn't be too difficult to extend the synthesis

algorithm and axiomatisations of Chapters 3 and 4 to cope with new operators

defined in terms of the U, EB,e and 0 net based operators.

Given a particular notion of equivalence, it may be possible to axiomatise

the properties of the net based operators. These axioms could be considered

as meta-axioms, and be used to derive properties of the operators in the Box

Calculus which are defined in terms of the net operators.

6.2.4 Alternative semantics

One of the problems with the current semantics for the Box Algebra is that

the size of the implementation of a Box expression may be exponential in the

size of the expression itself. A benefit of having a complete axiomatisation is

that it provides a basis for checking designs of alternative semantics for the

Box Algebra.

353

Given a new semantics, it would be necessary to show that all the properties

encoded by the axiomatisation still hold, and that no additional properties

hold (i. e. expressions that are not equivalent for the standard semantics do

not become equivalent with the new semantics).

The main motivation for constructing a new semantics is to make the se-

mantics more efficient in terms of the size of the representation. However, care

is needed because it is unlikely that any new semantics will be consistent with

the standard semantics over the whole range of possible equivalence relations.

It is a different matter, of course, if a particular application requires only one

notion of equivalence to be considered.

6.2.5 Time Complexity and Graph Isomorphism

An interesting point for further investigation from a complexity theoretic view-

point is whether, for a particular notion of equivalence, the problem of checking.
the equivalence of a pair of box expressions has the same complexity (in terms

of space and time) as checking the equivalence of an arbitrary pair of nets, (or,

for structural equivalences, an arbitrary pair of graphs).

The investigation for isomorphism shows that, for example, checking equiv-

alence of basic syntax box expressions is less complex than checking equivalence

of an arbitrary pair of nets. However, when the synchronisation operator is

added to the basic syntax, the problems of checking equivalence of a pair of

expressions, and an arbitrary pair of graphs seems to become equally complex.

When scoping is added to the syntax, the problem of checking equiva.lence of

a pair of expressions provably becomes as difficult as the graph isomorphism

problem.

The graph isomorphism problem is one of a small number of problem for

which it is not known whether a tractable solution exists. Applying some of

the ideas from the investigation into the synthesis problem for synchronisation

and scoping may provide enough insight into the graph isomorphism problem

to allow the question of its complexity to be resolved.

354

6.3 Conclusion

The work in this thesis has demonstrated a general approach to the the synthe-

sis and axiomatisation problems for various subsets of the Petri Box Calculus

for the structural equivalences isomorphism and duplication equivalence.

To an extent the investigation took a pragmatic approach which resulted

in efficient algorithms for synthesis and in some cases the generation of proofs.

In this respect, the algorithms presented may be suitable for inclusion in a

modelling and verification tool such as PEP.

It is also believed that the work here could provide a solid basis for an

investigation into the axiomatisation and synthesis problems for behavioural

equivalences, such as a partial order semantics.

355

Appendix A

Definitions

This appendix provides cross references for the main definitions and concepts

that have been introduced. The list of definitions are categorised into the

following areas:

• Multisets

• Actions and basic actions

• Box expressions

• Classes of expressions

• Nets and net operators

• Equivalence of nets/expressions

• Ordering of nodes and expressions

• Sets of nodes

• Connectedness of nodes

• Equivalence of nodes

• Classes of nodes

356

• Action/transition mapping

• Synchronisation transitions

• Synchronisation sets

• Construction of maximal sy-sets

A.1 Multisets

multiset Multisets: Section 1.3.1, Page 19.

u Multiset union: Section 1.3.1, Page 20.

n Multiset intersection: Section 1.3.1, Page 20.

Multiset difference: Section 1.3.1, Page 20.

+ Multiset sum: Section 1.3.1, Page 20.

Multiset multiplication: Section 1.3.1, Page 20.

Multiset restriction: Section 1.3.1, Page 20.

A.2 Actions and Basic Actions

Conjugation of basic actions: Section 1.2, Page 12.

A(a) Unique word generated from an atomic action, a: Sec-

tion 2.5.6, Page 84.

<A Ordering of atomic actions: Section 2.5.6, Page 84.

<b Ordering of basic actions: Section 2.5.6, Page 84.

Labelling function which associates atomic actions with

action names: Section 2.5.7, Page 85.

Aa The set of action names whose label contains the basic

action a or a: Section 4.6.4, Page 254.

357

eXr: The set of labels of all ex-transitions of E: Section 5.6.1,

Page 305.

£(E) The set of basic actions appearing in the expression, E:

Section 4.1, Page 167.

A.3 Box Expressions

E rs a

E sy a

Atomic action: Section 1.2, Page 13 - informal descrip-

tion of intended behaviour, Section 1.3.5, Page 29 - for-

mal semantics.

Parallel composition: Section 1.2, Page 13 - informal de-

scription of intended behaviour, Section 1.3.5, Page 29 -

formal semantics.

Choice composition: Section 1.2, Page 13 - informal de-

scription of intended behaviour, Section 1.3.5, Page 29 -

formal semantics.

Sequential composition: Section 1.2, Page 14 - informal

description of intended behaviour, Section 1.3.5, Page 30

- formal semantics.

Iteration: Section 1.2, Page 14 - informal description of

intended behaviour, Section 1.3.5, Page 30 - formal se-

mantics.

Restriction: Section 1.2, Page 14 - informal description

of intended behaviour, Section 1.3.5, Page 31 - formal

semantics.

Synchronisation: Section 1.2, Page 15 - informal descrip-

tion of intended behaviour, Section 1.3.5, Page 32 - for-

358

[a: El

stop

E[F]

/lX.E

mal semantics.

Scoping: Section1.2, Page 16.

Stop box: Section 1.2, Page 16.

Relabelling operator: Section 1.2, Page 17.

Refinement: Section 1.2, Page 17 - informal description of

intended semantics, Section 4.2.5, Page 186 - refinement

is considered as a means of overcoming the NP hardness

result for synchronisation synthesis.

Recursion: Section 1.2, Page 18.

Isolated places operator: Section 6.2.1, Page 349.

A.4 Classes of Expressions

Expo Syntactic restriction of the box expression syntax defined

by (5.2) in Section 5.6: Section 5.6.1, Page 310.

Boxo Restricted class of boxes corresponding to Expo: Sec-

tion 5.6.1, Page 310.

EXPI Choice-restricted expression from Expo: Section 5.10.3,

Page 339.

A.5 Nets and Net operators

box(E) Mapping from expressions to Petri Boxes: Section 1.3.5,

Page 26.

Net ~ = (8, T, W, ,X): Section 1.3.2, Page 20.

359

implementation A net, unique up to isomorphism, derived from a Box

expression: Section 1.3.5.

u Net union: Section 1.3.4, Page 24.

u Net union operation for union able nets: Section 5.4.1,

Page 288.

e Operator to remove a set of nodes from a net: Sec-

tion 1.3.4, Page 24.

Operator to add a set of nodes to a net (Note: this oper-

ator has different definitions depending whether the set

of nodes consists of places or transitions): Section 1.3.4,

Page 25.

Place replacement operator (alternative style of adding a

set of places to a net): Section 5.5, Page 301.

Gluing set used in construction of boxes: Section 5.5,

Page 302.

o Place multiplication: Section 1.3.4, Page 25.

l±J Net based operator to add a set of places to a net: Sec-

tion 3.3, Page 98.

unsy De-synchronisation operator: Section 5.10.2, Page 329. .

A.6 Equivalence of Nets/Expressions

[~l Equivalence class of nets: Section 1.3.5, Page 29.

Class of isomorphic expressions: Section 1.4, Page 35.

360

Class of duplication equivalent expressions: Section 1.4,

Page 35.

[Eln Class of expressions equivalent with respect to the rela-

tion, n: Section 1.4, Page 35.

Isomorphic: Section 1.4, Page 35.

Duplication equivalent: Section 1.4, Page 35.

Class of isomorphic nets: Section 1.4.1, Page 36.

Class of duplication equivalent nets: Section 1.4.2,

Page 37.

Duplication quotient of net ~: Section 5.4.1, Page 289.

Place-preserving duplication equivalence of nets: Sec-

tion 5.4.1, Page 291.

A.7 Ordering of Nodes and Expressions

<t

<I

min(T)

<e

Ord(E)

Arbitrary fixed ordering of transitions: Section 2.5.6,

Page 84.

Ordering of transitions in a net: Section 2.5.6, Page 84.

The smallest transition in the set T, with respect to the

ordering, <I: Section 2.5.6, Page 84.

Ordering over basic syntax expressions: Section 3.5.3,

Page 147.

Ordered standard form for basic syntax expressions: Sec-

tion 3.5.3, Page 148.

A.8 Sets of Nodes

Entry places of a net: Section 1.3.2, Page 21.

361

~e Exit places of a net: Section 1.3.2, Page 21.

en Pre-places of a node (place or transition): Section 2.5.1,

Page 77.

ne Post-places of a node (place or transition): Section 2.5.1,

Page 77.

"N Pre-places of a set of nodes (places or transitions): Sec-

tion 2.5.1, Page 77.

Ne Post-places of a set of nodes (places or transitions): Sec-

tion 2.5.1, Page 77.

Se Entry places of a net: Section 2.5.1, Page 76.

Si Internal places of a net: Section 2.5.1, Page 76.

Sx Exit places of a net: Section 2.5.1, Page 76.

Na The set of all nodes of a net: Section 2.5.1, Page 76.

N; The set of all internal nodes of a net: Section 2.5.1,

Page 76.

Te The set of transitions directly connected to an entry place:

Section 2.5.1, Page 76.

Tx The set of transitions directly connected to an exit place:

Section 2.5.1, Page 76.

:r(~) The set of isolated places in a net: Section 2.5.1, Page 77.

EX-transition Transition which has constant connectivity with every

entry and exit place: Section 5.4.2, Page 299.

362

TEX The set of EX -transitions: Section 5.4.2, Page 299.

EX~ The set of ex-transitions of~: Section 5.6.1, Page 305.

A.9 Connectedness of Nodes

::::,N Undirected connectedness relation: Section 2.5.2, Page 77.

9(N) The set of connected components containing the set of

nodes, N: Section 2.5.2, Page 78.

-+
f'V

t rxJ T

const-

ex-path

ex-connected

Directed connectedness relation: Section 2.5.2, Page 79.

Connectivity relation: Section 2.5.4 , Page 81 - transition

t has the same connectivity as the set of transitions, T,

Section 5.4.1, Page 286 - extension of the definition to

allow the connectivity of two sets of transitions to be

compared.

A dummy transition which, if it were present, would

connect to every entry and exit place of the net: Sec-

tion 5.4.1, Page 286.

Constant connectivity: Section 5.4.1, Page 287.

Connected sequence of nodes starting with an entry place

and finishing with an exit place: Section 5.10.2, Page 331.

A netis ex-connected if every place in the net belongs to

an ex-path: Section 5.10.2, Page 331.

A.IO Equivalence of Nodes

f'Vdpl Duplication equivalence of transitions (based on connec-

tivity only, not labels): Section 2.5.4, Page 81.

Dpl(t) The set of transitions which duplicate t (Note: these tran-

sitions do not necessarily have the same label as t): Sec-

tion 2.5.4, Page 82.

363

A.II

Duplication equivalence relation: Section 5.4.1, Page 287.

Duplication equivalence relation for nodes in place shar-

ing nets El and E2: Section 5.4.1, Page 291.

[nJe:: Equivalence class of duplication equivalent nodes which

contains n: Section 5.4.1, Page 287.

Classes of Nodes

,.....,
-p Equivalence relation which partitions places into clusters:

Section 2.5.3, Page 79.

C(s) The cluster of places to which s belongs: Section 2.5.3,

Page 80.

Cj (E) The set of clusters of internal places of the net, E: Sec-

tion 2.5.3, Page 81.

"'e Equivalence classes of entry places arising from choice

decomposition: Section 3.3.3, Page 103.

PTe Partitioning of entry places arising from choice decom-

position: Section 3.3.3, Page 103.

PTx Partitioning of exit places arising from choice decompo-

sition: Section 3.3.3, Page 103.

S· Clusters of places forming interfaces between subnets in,
sequence decomposition: Section 3.3.4, Page 107.

<8 Ordering of the clusters of places in S·: Section 3.3.4,,
Page 107.

Si! Clusters of places which form the interfaces between sub-

nets in iteration decomposition: Section 3.3.5, Page 112.

364

A.12

A.13

®-sets Cluster of places created by the operation of place mul-

tiplication: Section 5.4.1, Page 288.

Action/Transition Mapping

cP Mapping from an action name in an expression to the set

of transitions derived from that action in the implemen-

tation of the expression: Section 2.5.7, Page 86.

""<jJ Equivalence class of transitions arising from the same

action: Section 2.5.7, Page 89.

o Relates the synchronisation of actions in an expression

with the synchronisation of transitions in the correspond-

ing net: Section 2.5.8, Page 90.

Synchronisation Transitions

Set of transitions with an a or a in their label: Sec-

tion 1.3.5, Page 27.

Set of transitions created by a synchronisation operation

on a net: Section 1.3.5, Page 32, Section 4.5.1, Page 217.

The set of transitions that can be represented by the

scoping operator in the synthesised expression:

Section 2.5.5, Page 82.

Tat The subset of Tsc that may be represented by atomic

actions in the synthesised expression: Section 4.5.1,

Page 217.

Tb(t) The base transitions of a transition, t: Section 2.5.5,

Page 83.

365

A.14

A.15

synA The set of all pairs of A-synchronisable transitions: Sec-

tion 5.4.2, Page 292.

Synchronisation of transitions tl and t2: Section 5.4.2,

Page 293.

Synchronisation sets

max~ Maximal synchronisation set: Section 5.4.2, Page 296.

Set of synchronisation sets: Section 5.7, Page 315.

A context: Section 5.10, Page 323.

(E) The expression resulting from the deletion of all synchro-

nisation operations in E: Section 5.10, Page 324.

(~) The context resulting from the deletion of all synchroni-

sation operations in ~: Section 5.10, Page 324.

At The synchronisation set directly applied to the i-th place

holder of the context ~: Section 5.10, Page 324.

A~ The union of synchronisation sets, A, such that the i-th

and j-th place holders of the context, ~ are in the scope

of an application of sy A: Section 5.10, Page 324.

Construction of maximal sy-sets

ccall~ The set of labels of all choice context transitions: Sec-

tion 5.6.1, Page 305.

ccint~ The set of labels of internal choice context transitions:

Section 5.6.1, Page 305.

366

ccnoex~

Auxiliary notation used in the definition of maximal syn-

chronisation sets: Section 5.6.1, Page 308.

The set of labels of internal choice context transitions

satisfying some additional conditions: Section 5.6.1,

Page 310.

Auxiliary notation used in the definition of maximal syn-

chronisation sets for choice composition: Section 5.6.1,

Page 310.

Auxiliary notation used in the definition of maximal syn-

chronisation sets for choice composition: Section 5.6.1,

Page 310.

Auxiliary notation used in the definition of maximal syn-

chronisation sets for choice composition: Section 5.6.1,

Page 310.

367

Appendix B

Subsets of the Petri Box

Calculus

During the course of the investigations into the synthesis and axiomatisation

problems for isomorphism and duplication equivalence, various subsets of the

Petri Box Calculus have been used. In this appendix, a short description of

the subset of the calculus, and a discussion of any restrictions is given for the

following areas which were investigated in the previous chapters of this thesis:

• Basic syntax, isomorphism, Chapter 3.

• Synchronisation synthesis, isomorphism, Section 4.3.

• Synchronisation axiomatisation, isomorphism, Section 4.6.4.

• Basic syntax, duplication equivalence, Section 5.2.

• Synchronisation, duplication equivalence (1st approach),

Section 5.3.

368

• Synchronisation, duplication equivalence (2nd approach),

Section 5.4.

B.l Basic syntax (isomorphism)

Chapter 3 presents an investigation into the synthesis and axiomatisation prob-

lems for isomorphism, restricted to the domain of the basic box expression

syntax given in Table B.l.

E"= a Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E * E * El Iteration

Table B.l: Basic box expression syntax

Note: No restriction is placed on the form of atomic actions (i. e. multi-

actions are allowed).

The input to the synthesis algorithm of Chapter 3 can be the implementa-

tion of any expression over the syntax in Table B.l. Similarly, the output of

the synthesis algorithm is guaranteed to be a member of the box expression

syntax of Table B.l.

The axiom system of Section 3.5.5 is closed with respect to the basic box

expression syntax of Table B.l - that is, applying any axiom from Table 3.6 to

an expression from the syntax in Table B.l will always result in a basic syntax

box expression.

B.2 Synchronisation Synthesis (isomorphism)

The synthesis algorithm of Section 4.3 considers as input a net which is the

implementation of an expression from a restricted class of the syntax shown

in Table B.2.

Note: The semantics for the synchronisation operator used when con-

structing an implementation of an expression are slightly different from the

369

E··= Q Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E * E * E] Iteration

E sy A Synchronisation

Table B.2: Synchronisation synthesis box expression syntax

original semantics presented in [5]. The modified semantics ensure that dupli-

cates of atomic actions which take part in a synchronisation are not created

(these are significant for isomorphism, but not for the duplication equivalence

used in [5]). See Section 1.3.5 for details.

B.2.1 Restriction of expression syntax

No restriction is placed on the form of atomic actions, and, in particular,

multiactions are permitted. The class of input nets to the synthesis algorithm

is restricted to finite nets. Hence, attention is restricted to those expressions

over the syntax in Table B.2 whose implementation is finite. For example, this

means that the expression {a, a} sy a is not considered. Section 4.2.2 describes

a procedure for detecting when an expression has an infinite implementation.

The reasoning behind restricting the class of expressions considered in this

way is twofold:

• One of the aims of the investigation into the synthesis algorithm is the

production of an efficient synthesis process. From an algorithmic view-

point, it is impractical to consider infinite input nets .

• When an infinite synchronisation occurs, only a finite number of the

infinite number of synchronised transitions can ever be enabled during

execution of the net. While these transitions are significant for structural

370

semantics such as isomorphism, once behavioural semantics are consid-

ered, transitions that cannot be enabled are not significant, and can be

ignored.

B.2.2 Form of synthesised expressions

The synthesis algorithm of Chapter 4 differs from the basic syntax synthesis

algorithm in that the box expression syntax used for the synthesised expression

is different from the syntax used to define the class of input nets. Table B.3

shows that for synthesised expressions, the scoping operator is used in place

of synchronisation.

E··= Atomic action

E II E Parallel composition

ED E Choice composition

E; E Sequential composition

[E * E * EJ Iteration

[A : EJ Scoping

Table B.3: Output box expression syntax

Clearly, the syntax of Table B.3 is more expressive than that of Table B.2

because the scoping operator has the expressive power of both the synchro-

nisation and the restriction operators. However, the form of synthesised ex-

pressions produced by the synthesis algorithm of Chapter 4 is restricted as

follows:

• Scoping operators may only appear immediately inside an iteration op-

erator, or acting on the entire expression .

• No basic action is scoped more than once. That is, for any pair of scoping

operations in the expression, scoping by sets of basic actions, NI and N2,

then NI n N2 = 0.

371

• For each basic action, ti, that is scoped, there will be exactly one action

labelled ii, and no other action contains ii in its label. Furthermore,

there will be exactly one action whose label contains the basic action, ti.

B.3 Synchronisation Axiomatisation

(isomorphism)

The aim of the axiom system presented in Section 4.6.4 is to provide the ability

to rewrite a suitable expression, E, from the syntax in Table B.2 into the form

of the synthesised expression that would be produced if the implementation of

E were given as input to the synthesis algorithm of Chapter 4. As such, it is

necessary for subset of the box calculus used by the axiom system to include

both the synchronisation and scoping operators. This box expression syntax

is given in Table B.4.

E"= a Atomic action

EIIE Parallel composition

EOE Choice composition

E;E Sequential composition

[E * E * El Iteration

Esy A Synchronisation

[A: El Scoping

Table B.4: Axiom system expression syntax

The restrictions of Section B.2.1 also apply to the expression syntax for

the axiom system of Section 4.6.4. In addition, two of the three restrictions

on the form of synthesised expressions apply to the axiom system expression

syntax - namely:

• No basic action is scoped more than once. That is, for any pair of scoping

operations in the expression, scoping by sets of basic actions, NI and N2,

372

• For each basic action, n, that is scoped, there will be exactly one action

labelled ii, and no other action contains n in its label. Furthermore,

there will be exactly one action whose label contains the basic action, n.

Note that no restriction is placed on the position of the scoping operators,

and there are axioms which allow those movements of scoping operators which

preserve soundness.

B.4 Basic syntax (duplication equivalence)

Section 5.2 presents an investigation into the synthesis and axiomatisation

problems for duplication equivalence, restricted to the domain of the basic

box expression syntax given in Table B.I.

All the notes in Section B.1 equally apply to the synthesis algorithm and

axiom system of Section 5.2.

B.5 Synchronisation (duplication equivalence)

- Approach I

Section 5.3 gives a discussion on the synthesis and axiomatisation problems

for duplication equivalence restricted to the domain of those box expressions

from the syntax in Table B.2 whose implementation is a finite net.

The box expression syntaxes of Tables B.2, B.3, and B.3 are used respec-

tively for defining the class of nets suitable as input to the synthesis algorithm,

for the synthesised expression, and for the axiom system. Those restrictions to

the various syntaxes described in Section B.2.1 also apply to the investigation

in Section 5.3.

373

B.6 Synchronisation (duplication equivalence)

- Approach II

The second approach to the investigation into an axiomatisation for duplica-

tion equivalence for the syntax in Table B.2 is different in that the scoping

operator is not used. The axiom system is entirely within the domain of the

box expression syntax of Table B.2.

The biggest restriction placed of the form of expressions (nets) is that

atomic actions (transition labels) may consist of only a single basic action, or

the empty action. Note that this restriction means that it is not possible to

generate an infinite synchronisation, and so all nets derived from the restricted

syntax are guaranteed to be finite.

A syntactic restriction on choice (sub)expressions is introduced, so that in

El 0 E2, the implementations, ~l' ~2 of El and E2 cannot contain transitions,

tl, t2, labelled a and a such that:

~l ~l

~2 ~2

This class of restricted expressions is named Expo, and the corresponding class

of boxes, Boxo. The restriction is introduced to simplify the characterisation

of maximal synchronisation sets for choice composition.

The applicability of the choice operator is restricted further to allow the

de-synchronisation operator, unsy to distribute over choice. This restriction

is described fully by the definition of the class of expressions,. EXPI in Sec-

tion 5.10.3, Page 339.

374

Bibliography

[1] J.C.M.Baeten, J.A.Bergstra Non Interleaving Process Algebra In Proceed-

ings CONCUR'93, Springer-Verlag Lecture Notes in Computer Science

Volume 715, 308-323 (1993).

[2] J.C.M.Baeten, W.P.Weijland: Process Algebra. Cambridge Tracts in

Theoretical Computer Science, Volume 18 (1990).

[3] E.Best: Partial Order Verification with PEP Proceedings of Partial Order

Methods in Verification (1996).

[4] E.Best, RDevillers, J.Esparza: General Refinement and Recursion Op-

erators for the Petri Box Calculus. Springer-Verlag Lecture Notes in

Computer Science Volume 665, 130-140 (1993).

[5] E.Best, RDevillers, J.Hall: The Petri Box Calculus: a New Causal Al-

gebra with Multi-label Communication. Advances in Petri Nets 1992,

Springer- Verlag Lecture Notes in Computer Science Volume 609, 21-69

(1992).

[6] E.Best, J.Hall: The Box Calculus: a New Causal Algebra with Multi-

label Communication. Technical Report No. 373, Computing Laboratory,

University of Newcastle upon Tyne (1992).

[7] E.Best, RP.Hopkins: B(PNj2 - a Basic Petri Net Programming Notation.

Proceedings of PARLE-93, Springer-Verlag Lecture Notes in Computer

Science Volume 694, 379-390 (1993).

375

[8J E.Best, H.Fleischhack, W.Fr<}czak, R.P.Hopkins, H.Klaudel, E.Pelz: A

Class of Composable High Level Petri Nets. Application and Theory of

Petri Nets 1995, Springer-Verlag Lecture Notes in Computer Science Vol-

ume 935, 102-120 (1995).

[9J E.Best, H.Fleischhack, W.Fr<}czak, R.P.Hopkins, H.Klaudel, E.Pelz: An

M-net Semantics of B(P N)2 Proceedings of STRICT'95, Berlin, J.Desel

(ed), Springer-Verlag, Workshops in Computing, 85-100 (1995).

[10J E.Best, B.Grahlmann: PEP - more than a Petri Net Tool. Tools and

Algorithms for the Construction and Analysis of Systems, 2nd Interna-

tional Workshop, TACAS'96, Springer-Verlag Lecture Notes in Computer

Science Volume 1055, 387-401 (1996).

[l1J J.A.Bergstra, J.W.Klop: Algebra of communicating processes with ab-

straction Theoretical Computer Science 37, 77-121 (1985).

[12J E.Best, M.Koutny: Solving Recursive Net Equations. Proceedings of

ICALP-95, Springer-Verlag Lecture Notes in Computer Science Volume

944, 605-623 (1995).

[13J E.Best, H.G.Linde-G6ers: Compositional Process Semantics of Petri

Boxes Proceedings of Mathematical Foundations of Programming Se-

mantics, Springer-Verlag Lecture Notes in Computer Science Volume 802,

250-270 (1993).

[14J G.Boudol, G.Roucairol, R.De Simone: Petri Nets and Algebraic Calculi

of Processes Advances in Petri Nets 1985, Springer-Verlag Lecture Notes

in Computer Science Volume 222, 41-58 (1985).

[15J I.Borosch, L.B.Treybig: Bounds on positive integral solutions of linear

Diophantine equations Proceedings of American Math. Society Volume

55, 299-304 (1976).

376

[16] T.Basten, M.Voorhoeve An Algebraic Semantics for Hierarchical P/T

Nets Application and Theory of Petri Nets 1995 , Springer-Verlag Lecture

Notes in Computer Science Volume 935, 45-65 (1995).

[17] S.Christensen: Decidability and Decomposition in Process Algebras Re-

port ECS-LFCS-93-278, University of Edinburgh, Department of Com-

puter Science (1993).

[18] C.Dietz, G.Schreiber: A Term Representation of P/T Systems Appli-

cation and Theory of Petri Nets 1994 , Springer-Verlag Lecture Notes in

Computer Science Volume 815, 239-257 (1994).

[19] J.Engelfriet: Branching Processes of Petri Nets Acta Informatica 28

(1991).

[20] J.Esparza: Model Checking Using Net Unfoldings Proceedings of TAP-

SOFT'93, Springer-Verlag Lecture Notes in Computer Science Volume

668, 613-628 (1993).

[21] P.Degano, RDe Nicola, U.Montanari: A Distributed Operational Seman-

tics for CCS Based on Condition/Event Systems. Acta Informatica 26

(1-2), 59-91 (1988).

[22] H.Fleischhack, B.Grahlmann: A Petri Net Semantics for B(P N)2 with

Procedures which Allows Verification Hildesheimer Informatikbericht

21/96 (1996)

[23] RJ.Van Glabbeek: A Complete Axiomatixation for Branching Bisimula-

tion Congruence of Finite-State Behaviours

[24] U.Goltz: On Representing CCS Programs by Finite Petri Nets. Ar-

beitspapiere der GMD 290 (1988).

[25] M.RGarey, D.S.Johnson Computers and Intractability, A Guide to the

Theory of NP-Completeness. W.H.Freeman and Company (1979).

377

[26] R.J.Van Glabbeek, F.W.Vaandrager: Petri Net Models for Algebraic

Theories of Concurrency PARLE'87 Volume II, Springer-Verlag Lecture

Notes in Computer Science Volume 259, 224-242 (1987). Information

Processing '89, 613-618 (1989).

[27] R.Van Glabbeek, W.Weijland: Branching Time and Abstraction in

Bisimulation Semantics. Technical Report TUM-I9052, Institut fiir In-

formatik, Technische Universitat Miinchen (1990).

[28] C.A.R.Hoare: Communicating Sequential Processes Prentice Hall (1985).

[29] J.G.Hall: An Algebra of High-level Petri Nets PhD Thesis, University of

Newcastle upon Tyne (1996).

[30] J.Hall, R.P.Hopkins, O.Botti: A Basic-Net Algebra for Program Se-

mantics and its Application to OCCAM Advances in Petri Nets 1992,

Springer- Verlag Lecture Notes in Computer Science Volume 609, 179-214

(1992).

[31] INMOS: OCCAM 2 Reference Manual Prentice Hall (1988).

[32] M.Jantzen: Language Theory of Petri Nets in BRR'87 397-412 (1987).

[33] R.M.Karp: Reducibility among combinatorial problems Complexity of

Computer Communications, Plenum Press, 85-103 (1972).

[34] L.G.Khachian: A polynomial algorithm in linear programming (English

translation) Soviet Math. Dokl. Volume 20, 191-194 (1979).

[35] M.Koutny: Partial Order Semantics of Box Expressions. Proceedings

of Application and Theory of Petri Nets 1992, Springer-Verlag Lecture

Notes in Computer Science Volume 815, 318-337 (1994).

[36] M.Koutny, J.Esparza, E.Best: Operational Semantics for the Petri Box

Calculus Proceedings of CONCUR'94 Springer-Verlag Lecture Notes in

Computer Science Volume 836, 210-225 (1994).

378

[37] M.Koutny, E.Best: Operational and Denotational Semantics for the Box

Algebra. Technical Report, Computing Laboratory, University of New-

castle upon Tyne (1995).

[38] H.Klaudel, E.Pelz: Handling Abstract Data Types in the Petri Box Cal-

culus CS&P'94 (1994)

[39] J.Lilius, E.Pelz: An M-net Semantics for B(PN)2 with Procedures. 11th

International Symposium on Computer and Information Science, Antalya

(1996).

[40] B.D.McKay: Practical Graph Isomorphism Congress Numerantium 30,

45-87 (1981).

[41] R.Milner: Communication and Concurrency. Prentice Hall (1989).

[42] R.Milner: A complete axiomatisation for observational congruence of

finite-state behaviours. Information and Computation Volume 81, 227-

247 (1989).

[43] U.Montanari, D.Yankelevich: Combining CCS and Petri Nets via Struc-

tural Axioms Fundamenta Informaticae 20 (1-3), 193-229 (1994).

[44] E.Olderog: Petri Nets and Algebraic Calculi of Processes Advances in

Petri Nets 1987, Springer Verlag Lecture Notes in Computer Science Vol-

ume 266, 196-223 (1987).

[45] L.Pomello, G.Rozenberg, C.Simone: A Survey of Equivalence Notions for

Net Based Systems. Advances in Petri Nets 1992, Springer-Verlag Lecture

Notes in Computer Science Volume 609, 410-467 (1992).

[46] W.Reisig: Petri Nets, An Introduction. EATCS Monographs on Theo-

retical Computer Science, Volume 4, Springer-Verlag (1985).

[47] T.J.Schaefer: The complexity of satisfiability problems. Proceedings 10th

Annual ACM Symposium on Theory of Computing, 216-226 (1978).

379

[48] D.Taubner: Finite Representation of CCS and TCSP Programs by Au-

tomata and Petri Nets. Springer-Verlag Lecture Notes in Computer Sci-

ence, Volume 369 (1989).

380

