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Abstract 

This thesis makes a contribution towards the certification of reconfigurable 
real-time mission critical software systems. In highly reconfigurable 
software systems it is possible for a situation to arise where the system 
expends most or all of its resoun;:es on reconfiguring, and thus cannot 
provide sufficient resources to conduct intended computing functions. This 
anomaly has been termed "configuration thrashing" by the author due to its 
loose analogy to memory thrashing. If configuration thrashing is not 
eliminated, or at least minimised, then it is possible for circumstance to 
occur where reconfigurable systems cannot be certified due to potential 
failure to meet deadlines caused by configuration thrashing. The 
elimination of reconfiguration thrashing is a step towards certifiable 
dynamic reconfigurable systems capable of enforcing deadlines. The 
elimination of reconfiguration thrashing is necessary, though not sufficient, 
for this goal. 

In order to restrict configuration thrashing it is necessary to understand the 
possibilities available within reconfigurable software. A VDM-SL model is 
presented to explore the options available for reconfigurable architectures, 
and has allowed many operators to be formally specified providing a much 
greater understanding of the tasks involved in reconfiguration. 

The thesis demonstrates how model checkers can be used to check software 
processes for configuration thrashing using predefined CSP models, thus 
allowing system programmers to engineer configuration thrashing out of 
systems. However, model checkers are susceptible to state space explosion, 
particularly if models are large and / or complex, which may make the use 
of the model checkers impractical or even impossible for some systems. 
The thesis therefore also explores potential run-time solutions to 
configuration thrashing. These solutions allow developers to include 
additional logic / processes within their systems in order to eliminate 
configuration thrashing (without the use of model checkers). Several 
options are explored in-depth, from providing mechanisms for developers to 
choose when reconfiguration can / cannot occur, to a rule based solution. 
The exploration of the rule based solution explores issues such as rule 
expression, rule predictability, as well as potential core rules. 

The two approaches taken within this thesis to eliminate, or at least restrict 
sufficiently, configuration thrashing form a basis which would allow for the 
certification of reconfigurable real-time mission critical software systems. 
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A reconfigurable system is one designed at the outset for changes in its 
structure, this may be hardware and / or software components, in order to 
adjust to environment changes. Reconfigurable systems have a high level of 
flexibility; allowing changes to occur much more quickly than in traditional 
non-reconfigurable systems. 

Two types of reconfiguration can exist within reconfigurable systems: 
reconfigurable hardware and reconfigurable software. Reconfiguration can 
take place online or offline, though online reconfiguration offers the most 
potential benefit. 

The avionics industry is investing heavily in Integrated Modular Systems 
(lMS), which is a movement towards a reconfigurable fault tolerant 
architecture in the avionics domain. This investment clearly shows the 
perceived value that the industry places on the benefits expected from 
reconfigurable systems. 

In highly reconfigurable systems it is possible for a situation to arise where 
a system expends most or all of its resources on reconfiguring, and thus 
cannot provide sufficient resources to conduct intended computing 
functions. This anomaly has been termed "configuration thrashing" by the 
author due to its loose analogy to memory thrashing. This thesis addresses 
the problem of configuration thrashing and proposes strategies to eliminate, 
or at least restrict sufficiently. 

The rest of this chapter is structured as follows. First Section 1.1 briefly 
introduces reconfigurable systems. Subsections 1.1.1 and 1.1.2 describe 
reconfigurable hardware and reconfigurable software respectively, followed 
by a brief comparison of reconfigurable hardware and software in 
subsection 1.1.3. Section 1.2 then introduces Integrated Modular Systems. 
Within section 1.3 configuration thrashing is discussed. Section 1.4 
discusses the contribution this thesis makes and Section 1.5 presents the 
thesis structure. 
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1.1 Introduction to Reconfigurable Systems 

Reconfigurable systems offer the ability to adapt hardware and / or software 
to meet changing requirements. Reconfiguration can take place online or 
offline. As discussed below, online reconfiguration offers the most 
potential benefit, but is also the most technically challenging. 

1.1.1 Reconfigurable Hardware 

Reconfigurable hardware devices, including Field-Programmable Gate 
Arrays (FPGAs), contain computational elements (often referred to as logic 
blocks) connected using (re)configurable routing resources. Custom digital 
circuits can be mapped to reconfigurable hardware devices by computing 
the logic functions in the logic blocks, and using the (re)configurable 
routing to connect the blocks together to form the desired circuit. 

FPGAs and other reconfigurable computing devices have been shown to 
accelerate a variety of computing applications. For example, an 
implementation of the Serpent Block Cipher in the Xilinx Virtez XCVIOOO 
shows a throughput increase by a factor of 18 compared to a Pentium Pro 
PC running at 200MHz [1]. 

In order to achieve performance benefits, yet support a wide range of 
applications, reconfigurable hardware devices are usually formed using a 
combination of reconfigurable logic blocks and a general-purpose 
microprocessor. The microprocessor performs the operations which cannot 
be done efficiently within the reconfigurable logic, such as data-dependent 
control and memory accesses. 

Systems that are configured only at power-up (offline) are able to accelerate 
only as much of the program as will fit the programmable structures. 
Additional areas of a program might be accelerated by altering and reusing 
the reconfigurable hardware during program execution. This process is 
often known as Run-Time Reconfiguration (RTR) or online reconfiguration. 

RTR has the benefit of allowing for the acceleration of a greater proportion 
of an application; however, it also introduces an overhead penalty incurred 
by (re )configuration which limits the amount of acceleration possible. 
Detailed information on reconfigurable hardware is contained in [2]. 
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1.1.2 Reconfigurable Software 

Reconfigurable software offers the ability to modify software systems either 
by reorganising or changing existing processes, adding new processes, or 
removing old processes. 

Software systems that are configured only at start-up (offline) do not gain 
the benefits that online reconfiguration can offer. Offline reconfiguration 
allows for a system to be initialised in a number of different configurations, 
thus allowing the system to be optimised for the intended and foreseen life 
cycle. To reconfigure an offline reconfigurable system must shut down 
entirely and be reinitialised in the new configuration. Online reconfigurable 
systems can change configuration during operation; offering many potential 
benefits including: online software upgrades, adaptability, self-management, 
and increased fault-tolerance. Online reconfigurable systems are also 
referred to as dynamic reconfigurable systems. 

Operating systems and programming languages have provided programmers 
with the ability to perform software changes at runtime for many years. 
However, such mechanisms have been said not to " ... guarantee that a 
change will have the desired effect or maintain application integrity ... " [3]. 

Dynamic reconfigurable software and specifically dynamic components 
have been identified as being " ... challenging in terms of correctness, 
robustness, and efficiency ... " [4]. To gain a better understanding of 
reconfigurable software many formal specification languages have been 
developed, though most of these are focussed on architecture specification 
or other specialist issues, rather than the reconfiguration actions themselves. 
A brief summary of fourteen specification approaches can be found in [5]. 
Chapter 4 of this thesis presents related work in which many formal 
specification languages are introduced. 

1.1.3 Hardware and Software Similarities 

Many similarities exist between the reconfigurability options available in 
hardware. Both hardware and software can be reconfigured offline or 
online and similar benefits can be gained by allowing online 
reconfiguration. Performance benefits and also increased adaptability are 
offered by online reconfiguration in both hardware and software. Both have 
difficulties when attempting to ensure the correctness of online 
reconfigurations. However, one difference is that hardware reconfiguration 
is likely to have an effect upon software and could potentially trigger 
subsequent reconfiguration within the software, but it is unlikely that 
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software reconfiguration will have an impact upon hardware or trigger any 
further hardware reconfiguration (unless specifically programmed to do so). 

It is possible that hardware devices such as FPGAs could suffer from 
configuration thrashing, in the same way that software can. This can also 
mean that if software and hardware are made reconfigurable the issue of 
configuration thrashing could potentially be magnified. 

1.2 Introduction to Integrated Modular Systems (IMS) 
for Avionics 

Conventional aerospace systems are federated, with each major component 
hosted on separate hardware. This can be very costly, as each component is 
independently developed and validated. Validation is essential within 
aerospace systems, as they are complex real-time systems and the cost of a 
failure is likely be loss of life. Due to the potential for fatalities within the 
aerospace domain, all aerospace systems are regulated. In federated 
systems the software is generally tightly coupled to the hardware and is 
sensitive to small changes in either software or hardware. 

The avionics industry is currently attempting to move to IMS, to allow for a 
fully dynamic network which can be used to meet mission targets 
successfully even in the event of system failures. IMS also aims to pool and 
share computing hardware, in order to reduce the overall cost of building 
systems. Cost is further reduced as less power, space and cooling is 
required. With IMS a number of software components can run on a shared 
processor and communicate via an operating system. Figure I shows the 
ARINC 653 [6] view of how this should be done. 

Application Application Application 
Partition 1 Partition 2 Partition N 

t f ~ 
+ + + 

Operating System 

t ~ 

+ x 
Hardware J 

Figure I: ARINC 653 IMS Module 
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As stated in [7] " ... in order to benefit from the technology a safety case 
must be generated which can be maintained incrementally with system 
changes ... ". At present, if a small change is made in software or hardware, 
then recertification of entire components is required, and if the system is not 
federated into components, then the entire system would have to be 
recertified. 

The fact that the avionics industry is investing so heavily in IMS is a clear 
indication that there is strong motivation for a loosely coupled, 
reconfigurable fault tolerant architecture in the avionics domain. In order to 
produce a dynamic reconfigurable system, suitable for that domain, there 
are many challenges that must be overcome. These challenges include: 

1) Deadlines - real-time systems impose timing constraints. In hard real­
time systems these deadlines must be enforced or catastrophic events may 
occur. In dynamic systems verification that such deadlines will be met is 
difficult as the system could be in anyone of a very large range of possible 
configurations. There could be hundreds or even thousands of possible 
configurations in a given IMS system. There may also be a need for 
deadlines to be enforced during reconfiguration. 

2) Validation / Certification - the validation and certification of real-time 
systems is a costly procedure. Complex reconfigurable systems will be 
difficult to certify and most likely even more expensive. However, modular 
safety cases could make certification of 1M A systems easier and less costly. 

1.3 Configuration Thrashing 

As described, configuration thrashing is an anomaly which can occur in 
reconfigurable systems whereby a system expends most or all of its 
resources reconfiguring, and thus cannot provide enough resources to 
execute intended computing functions. To date no literature has been found 
that recognises or addresses configuration thrashing. 

In order to give a concrete definition for configuration thrashing, the notion 
of a "configuration overlap" is introduced. A configuration overlap occurs 
when two subsequent reconfiguration requests are acted upon without a 
"sufficient interval" between them. The sufficient interval between 
reconfiguration actions should be sufficient to allow reconfiguration / 
initialisation to complete, as well as a minimum level of processing to occur 
(in the new configuration), and thus is an application dependent parameter. 

Some (unusual) applications may have no required minimum level of 
processing; however, in most cases there will be a requirement for an 
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interval in which the system should conduct intended computing functions 
in order to justify the resource overhead of the reconfiguration. It is 
expected that in most cases the minimum processing period will at very 
least include an input and an output action, unless the internal state and 
process stack are to be maintained during reconfiguration. If the internal 
state and process stack are not maintained during reconfiguration, then the 
process will have made no progress if a read and write activity is not 
conducted. 

Configuration thrashing occurs when one or more configuration overlaps 
occur. The number of configuration overlaps that can be tolerated in a 
given time period or in sequence is application dependent and possibly even 
mode dependent, as it is dependent on system deadlines. In some 
applications up to N consecutive overlaps could be tolerated, but no more. 
In others, the limit may be set at a maximum of M overlaps during any 
given time window of duration T. 

If configuration thrashing is not eliminated, or at least minimised, then it is 
possible that no useful work might be achieved, deadlines may be missed, 
and certification may be impossible. The elimination or restriction of 
configuration thrashing provides a step towards certifiable dynamic 
reconfigurable systems. The importance of certifiable reconfigurable 
systems is not to be underestimated, as many real-time systems would 
benefit from reconfigurable functionality which must be certified for use, 
such as aerospace applications, or systems for power plants. 

1.4 Thesis Contribution 

This thesis makes a contribution towards the certification of reconfigurable 
real-time mission critical software systems, by investigating the 
configuration thrashing anomaly and providing methods of eliminating or 
restricting it sufficiently. This thesis considers certification as a crucial 
factor, as all aspects of the thesis are considered from an aerospace 
perspective; certification as well as safety are essential within this domain. 
However, the author has recognised that this research has applications in 
other domains and thus has tried to make all models and demonstrators as 
generic as possible. More specifically the contribution made in this thesis 
consists of: 

1. the specification of a VDM-SL model providing the means to 
explore the characteristics of reconfigurable systems. This formal 
model has also allowed many relevant operators to be specified, thus 
providing a set of unambiguous reconfiguration operators. 
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2. a formal definition has been proposed for configuration thrashing 
and a formal modelling technique has been presented (using CSP 
and FDR) which is capable of detecting, and thus enabling the 
elimination of, configuration thrashing within software processes. 

3. a range of run-time techniques for restricting reconfiguration and 
thus configuration thrashing has been explored. Since model 
checkers can suffer from state space explosion, a demonstrator has 
also been developed to further highlight that the run-time solutions 
can indeed restrict configuration thrashing sufficiently. 

1.5 Thesis Structure 

The remainder of this thesis is structured as follows: First, chapter 2 
introduces a three-level model specified in VDM-SL which provides a basis 
for exploring the options available within reconfigurable systems. The 
types of options explored using the VDM-SL model include hardware 
reconfiguration, software reconfiguration, location awareness, and the 
effects of linkage upon reconfiguration as well as reconfiguration options. 
The operators outlined in the VDM-SL model form an extensible 
reconfiguration language. Chapter 3 outlines a definition of configuration 
thrashing which is then formally specified. Model checkers are introduced 
and CSP models are presented which enable model checkers to check 
processes for configuration thrashing. Discussions relating to the 
difficulties in applying the CSP configuration thrashing models to specific 
applications, such as terrain following aircraft which suffer from 
probabilistic requirements, are also presented. 

Chapter 4 considers the different kinds of formalisms that could be used to 
model reconfigurable systems and thereby provide support for the 
identification of configuration thrashing. This chapter also presents related 
work on control techniques which could be used to constrain systems in 
order to ensure that configuration thrashing cannot occur. Chapter 5 
explores potential run-time solutions to configuration thrashing. These 
solutions allow developers to include additional logic I processes into their 
systems in order to eliminate configuration thrashing (without the use of 
model checkers). A rule based solution is explored in depth and issues such 
as rule expression, rule predictability, and potential core rules are discussed. 
A demonstrator is also presented which shows that rules can indeed restrict 
reconfiguration sufficiently to eliminate configuration thrashing. 

Chapter 6 reviews the effectiveness of both the models outlined for 
configuration thrashing and also the rule based software solution through 
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the use of a small case study. This chapter shows how useful both 
approaches can be to developers. 

Chapter 7 presents proposals for future work, some of which are extensions 
to work presented within the thesis, and some of which fall outside the 
scope of the thesis. Chapter 8 presents the conclusions from the research 
performed. 

Appendix A contains the full VDM-SL model described in chapter 2 of the 
thesis. The model is a three-level model and was developed to provide a 
basis for exploration of reconfigurable systems. Appendix B contains the 
full timed and un-timed CSP configuration thrashing models introduced in 
chapter 3 of this thesis. Appendix C presents possible processor, memory, 
as, and storage requirements for processes, and appendix D presents the 
source code for the reconfigurable systems demonstrator. Appendix E 
contains both the full CSP configuration thrashing models and java source 
code used for the case study presented in chapter 6. 
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Chapter 2 

Reconfigurable Systems 

Reconfigurable systems offer the ability to adapt hardware and software to 
meet the changing requirements of a system. Reconfiguration can be static 
(when a system is off-line) or dynamic (at run-time), thus allowing the 
system to respond to changing requirements as it and its environment 
change. 

Much research in reconfigurable systems is very focused and thus does not 
assess the options available, also initial research into reconfigurable systems 
has shown that many ambiguous terms are being used to describe the 
behaviour of reconfigurable systems, for example, many papers use terms 
such as "move" or "migrate" to describe the movement of a process 
between platforms. However, many questions are left unanswered by such 
terms, including: are process states migrated; are the communication links 
maintained; and are there any pre-conditions to the migration or move? 

The rest of this chapter is structured as follows. First section 2.1 explores 
the options available for reconfigurable architectures. Section 2.2 
introduces a suitable language in which to express the behaviour of 
reconfigurable systems. Section 2.2.1 introduces the VDM-SL model which 
has been used to formally define a candidate set of operators which make up 
the extensible reconfiguration language. Section 2.2.2 describes the 
individual operators in detail. Section 2.2.3 presents an ongoing debate as 
to whether formal models, including VDM-SL models, should be 
executable. Section 2.2.4 presents some conclusions relating to the 
operators defined. 

2.1 Options for Reconfigurable Architectures 

The exploration of possibilities available within reconfigurable architectures 
has shown that the following broad levels of reconfiguration are possible: 

a) Software (process) reconfiguration - includes: process migration, 
process addition / deletion, thread spawning, dynamic linking and 
loading, state and stack synchronisation, as well as dynamic 
compilation and subsequent execution. 

b) Hardware reconfiguration - includes: adding and removing 
hardware, reprogramming hardware (such as FPGAs), as well as 
changing hardware communication links. 
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c) Mobility (hardware relocation) - includes: the movement of 
hardware between physical locations. 

As can be seen from the very broad levels of reconfiguration shown above, 
there are a large number of options available within reconfigurable systems. 
All of the options can be broken down further, for instance the removal of a 
process could simply remove the process from the processor its currently 
executing upon, or it could remove the process from the system entirely 
(including the executable file stored on non-volatile hardware). It could 
also remove it instantly or after a given time period. This gives a vast 
number of options within reconfigurable systems. All of the above 
reconfigurations could take place online or offline. Online reconfiguration 
offers specific benefits such as fault rectification, but presents a number of 
technical challenges (especially within real-time systems). 

Most systems that support online reconfiguration will incorporate integrated 
systems such as "plug and play" and / or fault tolerant services. With these 
types of integrated systems, a reconfiguration in anyone of the levels 
(outlined above) could trigger further reconfiguration. For example if 
hardware is removed and the software running on it is important, then the 
fault tolerant services will most likely trigger reconfiguration, to initialise 
the missing processes on different hardware. It is likely that such fault 
tolerant services would be turned off whilst upgrades take place, as they 
could potentially cause unwanted reconfigurations during upgrades. 

As the options for reconfiguration are so vast the remainder of this chapter 
will explore software reconfiguration only, though the effects this has upon 
the underlying hardware will not be ignored. 

2.2 Reconfigurable Operators 

Research into reconfigurable systems has shown that a suitable language in 
which to express the behaviour of reconfigurable systems is lacking. Many 
ambiguous terms are used when describing reconfigurable systems, for 
example, the term "process migration" is often used without considering any 
of the following: is the process's state migrated; are the communication 
links maintained; and are there any pre-conditions to the migration? 

A three-level model has been specified in VDM-SL to provide a basis for 
exploring the possibilities available within reconfigurable systems. The 
VDM-SL model has been built to allow an IMA type architecture to be 
manipulated using a set of well defined reconfigurable operators. However, 
the model is as generic as possible and can express almost any 
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reconfigurable architecture. The operators outlined form an extensible 
reconfiguration language. 

2.2.1 The VDM-SL Model 

The VDM-SL model consists of three levels: the process level, the hardware 
level, and the physical location level. All three levels are necessary to 
model a reconfigurable system accurately, as they are all required to analyse 
factors which affect resources. Most calculi capable of describing 
reconfigurable systems (such as the Pi-Calculus [8] and the Ambient 
Calculus [9]) fail to distinguish hardware location from physical location. It 
is important to separate hardware location from physical location not just 
because the resources required to achieve a task may alter with physical 
location, but also because mobile processes must be stopped and restarted 
when "in transit" between hardware locations, but will function 
continuously when in transit between physical locations. 

The VDM-SL model has been built to allow an IMA architecture to be 
manipulated using a set of well-defined reconfigurable operators; however 
the model is as generic as possible and can express almost any 
reconfigurable architecture. To make the model generic, hardware links are 
individually modelled, even though IMA assumes a totally interconnected 
network. However, faults could occur in an IMA system which could cause 
the network to no longer be totally interconnected, and to model a scenario 
such as this, the individually modelled hardware links are necessary. The 
model also includes shared data areas, which would not be required in an 
IMA model, but may be required if a Real Time Network (RTN) [10] or 
similar approach to building reconfigurable systems were to be investigated. 

The model is in essence a system state which is manipulated using a set of 
operators. The system state is shown in figure 1, along with the definitions 
for Hardware, Software and SW _to_HW _Map. Figure 1 does not include 
invariants, as they are not required here. 



18 

state System of 
HardWare 
SoftWare 
Loc 

Hardware 
Software 
Locations 

SW HW Map 
HW::::LoC_Map 

SW to HW Map 
HW::::tO::::LoC_Map 

Hardware ;; MAUs 
Cards 
Mappings 
Linkage 

Software .. Services 
Processes 
SDs 
Linkage 
SD_Linkage 

map MAU_ID to MAU 
map Card ID to Card 
map Card-ID to MAU ID 
map HW_LInk_ID to Hw_Link 

map Service ID to set of Global Process ID 
map Global Process ID to Process -
map Shared-Data ID-to Shared Data 
map Link 10 to SW Link -
map Link::::ID to Shared_Data_Link 

SW to HW Map .. Proc_to_Procrs 
Card_ID -

map Global_Process_ID to set of 

map Global_process_ID to set of 

Proc_to_NPMem 

SD to NPMem map Shared Data ID to set of Card ID 

Figure I : VDM-SL System State 

The invariants placed over the model were kept as weak as possible to 
ensure that the maximum amount of possibilities for reconfiguration could 
be explored. It is envisaged that there could be many varying levels of 
"architectural constraints" placed over reconfigurable systems, which could 
restrain the possibilities for reconfiguration in many different ways. 
Developers may require differing levels of restriction in different projects. 

Even with very weak architectural constraints (represented as system 
invariants), it was often difficult to ensure that operators did not violate the 
system invariants during reconfiguration. This is likely to become even 
more challenging if the number of invariants are increased, thus further 
restricting the reconfiguration. An example of this can be seen in the 
ChangeLoadedProcID operator within the model. This operator changes 
the Global_Process jD of a process which is currently executing. In order 
for this to be done, it must change the Global_Process jD in 
Software. Processes, as well as in the SW_to_HW_Map (amongst others). 
However, the system invariant states that any GlobaCProcessjD used in 
the SW_to_HW_Map, must exist in Software.Processes and this invariant 
will be broken if the Software. Processes is changed first, or if the 
HW_to_SW_Map is changed first. Within the model, this is overcome by 
wrapping the two actions in an atomic action to ensure that they both occur 
simultaneously (as a transaction). 

All operators specified within the model are well-behaved, i.e. do not break 
any system invariants. However it is envisaged that further operators which 
are not well behaved may be required to model failures. For instance a 
failure could occur which effectively removes a card without un-initialising 
or de-allocating any of the processes allocated to it. In cases were system 
invariants are broken it is required that services will be available to 
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reconfigure the system to a valid state (a state where the invariants are no 
longer violated). Operators of this type have not been specified within the 
VDM-SL model, as they would only be useful if a fault tolerant service 
were to be specified to reconfigure the system to a valid state. It was not the 
aim of this research to investigate possibilities for fault tolerant services. 

To simplify the VDM-SL model, processes have been modelled as single­
threaded activities. The simplification was required as multithreaded 
applications could be spread over mUltiple processors. In cases where 
processes are allocated to sets of processors dynamically it is incredibly 
difficult to identify which threads need to communicate, and thus which 
hardware links would be required to support such communication. 
Furthermore in some applications processes spawn new threads dynamically 
making the analysis even more challenging. To analyse thread allocation in 
multithreaded applications, some form of graph theoretic approach would be 
required. The analysis of multithreaded application behaviour within 
reconfigurable systems is beyond the scope of this research; in fact it could 
form a PhD in its own right. 

2.2.2 Software Reconfiguration Operators 

Process reconfiguration can be split into two main types of operators: 
"move" and "copy". Other types of operator, such as process addition and 
process deletion, are not discussed in-depth in this chapter, as they are 
utilised within the move and copy type operators. 

The following basic copy operators are outlined in the model: 

• CopyProc 
• CopyProcWState 
• CloneProc 
• CopyProcWSWLinks 
• CopyProc WStateAndSWLinks 
• CloneProc WSWLinks 

The basic copy operators initialise a copy of a process (activity) on a 
selected set of hardware. A selected set of hardware must include a 
minimum of a processor, some persistent memory and some non-persistent 
memory. Within this thesis, this set of hardware will be referred to as a 
"computing platform". The initialisation is done from the executable of the 
original process. The operators which have 'State' in their name 
synchronise the state of the new process with the original process. The state 
represents the internal variables of a process. The operators which begin 
with 'Clone' synchronise the state and the stack of new process with the 
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original process. The stack represents the instruction stack (including the 
current position within the instruction stack). 

Within this thesis, the set of processes with which a process communicates 
will be referred to as the "communicants" of the process. The operators 
with the 'SWLinks' suffix create software links to allow communication 
with the communicants of the original process. However, there is no 
guarantee that the hardware infrastructure will be able to route such 
communications. 

An interesting point to note is that within the VDM-SL model it seemed 
necessary to allocate all processes a global unique identifier. If processes 
were not allocated global unique identifiers, then some form of location­
dependent reference would be required in order to facilitate communicate 
between processes. Location-dependent references seem inadequate, since 
if a process were to be moved the reference for that process would change; 
thus all of the communicants of the (moved) process would have to be 
notified of the change. In systems where the hardware is half-duplex it may 
not be possible to notify processes of a change. 

Within the VDM-SL model move operators were specified as low level 
primitives. In some systems move operators are implemented as copy 
operations followed by delete operations. The following basic move 
operators were outlined in the model: 

• MoveProcDelFirst 
• MoveProcDelAfter 
• MoveProc WState 
• MoveProc WStateAndSync 

All of the basic move operators shown above, apart from the 
MoveProcDelFirst operator, initialise a copy of the chosen process 
(activity) on a computing platform and then remove the original process; 
this encompasses de-initialisation, de-allocation and then finally deletion 
(including from non-volatile hardware). The MoveProcDelFirst operator 
de-initialises the original process, and then reallocates the executable to a 
computing platform and initialises it, without removing the executable from 
non-volatile hardware. In an implementation of the MoveProcDelFirst 
operator, the executable would most likely be moved between non-volatile 
hardware. The operators which have 'State' in their name also synchronise 
the state of the new process with the original process, and the operators with 
'Sync' in there name synchronise the stack in the new process with the 
original process. 
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As Global_ProcessJD's are unique within the system, it is necessary to 
allocate temporary identifiers to newly created processes when conducting 
most move operations. This is necessary as the original process is removed 
after the new process is created; as such the very last action that takes place 
in these move operations is to change the identifier of the moved process to 
the correct (original) identifier. 

All of the operators described above have a pre-condition which states that 
the operation can only be attempted if there is a route between the present 
location of the original process and the new location specified for the moved 
or copied process. This is required as an operation of this type cannot take 
place if data cannot be sent between the chosen hardware nodes. 

It is possible that if the network hardware is not totally interconnected, then 
once a copy or move has taken place, the newly created process can no 
longer communicate with the communicants of the original process (due to 
insufficient hardware linkage). A solution to this is to use proxies. 

Proxies can be placed on hardware nodes to pass messages between 
processes. Three different types of proxies have been defined within the 
VDM-SL model, though more could be added. Figure 2 shows the three 
types of proxies which have been defined in the VDM-SL model. 

Process - Activity I Proxy I Duplex_Proxy I Condensing_Proxy; 

Proxy:: Source : Global Process ID 
Target : Global=Process=ID 
Activity : Activity 

Ouplex_Proxy :: Source : Global_Process_IO 
Targetl : Global Process 10 
Target2 : Global=Process:IO 
Activity : Activity 

Condensing_Proxy:: Sourcel : Global Process IO 
Source2 : Global-Process-IO 
Target : Global-Process-IO 
Activity : ActivIty -

Figure 2: Proxies Within VDM-SL Model 

The three types of proxies defined have separate purposes. The standard 
proxy is a simple message relay proxy; it takes a message from its source 
process and passes it to its target process. The duplex proxy has one source 
and two targets; it receives messages and forwards them to two target 
processes. The duplex proxy could be particularly useful if a process or 
service (a set of processes) wishes to be duplicated for fault tolerance 
purposes. The condensing proxy has two sources and only one target; it 
receives messages from two separate processes and relays those messages to 
a single process. The condensing proxy could be implemented to conduct 
'voting', thus only send one copy of a message even though it receives two, 
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or it could simply relay all messages. It is possible for proxies to be 
connected to other proxies, forming "chains" of proxies. 

The following move and copy operators with automatic proxy generation 
are outlined in the model: 

• MoveProcDelFirstLP 

• MoveProcDelAfterLP 

• MoveProc WStateLP 

• MoveProc WStateAndSyncLP 

• CopyProcLP 

• CopyProc WStateLP 

• CloneProcLP 

• CopyProc WSWLinksLP 

• CopyProc WStateAndSWLinksLP 

• CloneProc WSWLinksLP 

All of the above copy and move operators with automatic proxy generation 
behave as their parent operator (the operator with the name the same, but 
without 'LP' suffix), but also leave appropriate proxies to enable 
communication with the original communicants. 

It is possible for operators to be specified which add constraints to the 
model (which will most likely trigger actions indirectly, though not 
immediately). An example of this would be an operator to keep two 
processes co-located. If an operator such as this were used, then a move 
operator (of any type) if called on either of the co-located processes would 
cause both processes to move. These types of operator have not been fully 
explored within the VDM-SL model, but some operators of this type may be 
useful within dynamic reconfigurable systems. It is envisaged that, in an 
implementation, services would have to be created to support such 
operators. These operators have not been fully explored in the VDM-SL 
model as VDM-SL does not support concurrency and as such a service to 
support such operators cannot be executed in parallel with reconfiguration 
operators to detect infringements on the constraints they introduce. 

Assuming a faulty process would have the right to migrate itself and / or 
other processes within a system, then a faulty process could force process 
migration to occur continuously and thus cause "configuration thrashing". 
If configuration thrashing is not eliminated or at least minimised, then a 
reconfigurable system could expend most or all of its resources 
reconfiguring, and thus not provide sufficient resources to conduct intended 
computing functions. 
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There is also a requirement to prove that services provided for 
reconfiguration, such as fault tolerant services, cannot have errors of 
commission. 

2.2.3 Executable vs. Non-executable Specifications 

The VDM-SL model is an executable model. There is some dispute as to 
whether formal models should be executable. Hayes and Jones [11] present 
many arguments against this idea, which include the following: 

• Executability limits the expressive power of a specification language 
and restricts the forms of specifications that can be used. 
Specifications should be phrased in terms of required properties of 
the system. They should not contain the algorithmic details 
necessary to make them directly executable. 

• Though executable specifications permit early validation with 
respect to the requirements by executing individual test cases, 
proving general properties about a specification is much more 
powerful. 

• Executable specifications can unnecessarily constrain the choice of 
possible implementations. Implementers can be tempted to follow 
the algorithmic structure of the specification although that may not 
be desirable. Executable specifications can produce particular 
results in cases where a more implicit specification may allow a 
number of different results. 

• A specification language should be expressive enough to specify 
non-computable problems such as the halting problem. If it is not, 
one cannot use the single specification notation to cover both 
theoretical aspects of computing and practical ones. 

Fuchs [12] argues for executable specifications by showing that non­
executable specifications can be made executable on almost the same level 
of abstraction, without the introduction of new algorithms. Fuchs 
demonstrates that declarative specification languages allow a combination 
of expressiveness and executability. 

Fuchs makes the following argument for not excluding executable 
specifications: " ... all means applicable should be available to validate the 
specifications with respect to explicit and implicit requirements. Executable 
specifications can be crucial for this because they allow - in addition to 
formal reasoning about the specification - immediate validation by 
execution, and they provide users and developers with the touch-and-feel 
experience necessary to validate non-functional behaviour, e.g. user 
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interfaces. Excluding executability from specification languages means 
therefore depriving oneself of a powerful method of validation." 

The VDM-SL model created has been made executable for the following 
reasons: 

• Non-executable specification techniques can allow the specification 
of systems which are impossible to implement. Hayes and Jones 
note this as a positive point and an argument against executable 
specifications, however in the author's opinion it is a negative point 
when not working with theoretical aspects of computing. Within the 
VDM-SL model it was important to know that the operators 
specified could be implemented. Atomic actions have been used 
within the model to ensure system invariants are not violated during 
reconfiguration; however these atomic actions could be 
implemented. 

• When making a specification executable, many significant 
implementation issues are drawn out. Making the model executable 
enabled the investigation of reconfiguration implementation issues 
without the need to implement a reconfigurable system. 

• It is possible that ambiguous terms are being used to describe the 
behaviour of reconfigurable systems because system developers are 
not sure what is involved when reconfiguration takes place. For this 
reason, it is important for the reconfiguration operators to be detailed 
and understandable for system developers. An executable model is 
likely to be familiar for system developers and thus easier to 
understand. 

• The model created provides a possible implementation method for 
the reconfigurable operators. However, there was no need for 
concern that implementers could be tempted to follow the 
algorithmic structure of the specification, as it only outlines a 
possible implementation, not an optimum one. 

• As Fuchs as well as Hayes and Jones point out, an executable 
specification permitted early validation with respect to the 
requirements by executing individual test cases. 

Some of the criticisms of executable models made by Hayes and Jones were 
found to be valid when creating the VDM-SL model, particularly the 
criticism that executable specifications lead to design decisions being made 
in the specification, which is too early in the development process. 

It was sometimes difficult to make the specification executable without 
going into irrelevant (with respect to reconfiguration) algorithmic details. 
An example of this is the method used to generate unique identifiers. In an 
implementation a standard method would be used (a possible algorithm is 
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outlined in [13]), but to specify a particular standard algorithm in the VDM­
SL model gave no benefit in the exploration of possibilities within 
reconfigurable systems. In circumstances such as this, a basic but not ideal 
specification was used and comments were placed in the model to highlight 
this. 

2.2.4 Operator Conclusions 

The VDM-SL model has shown that the number of options available within 
reconfigurable systems is much greater than anticipated. It has assisted in 
the exploration of possibilities for process reconfiguration, and has allowed 
many operators to be outlined formally. The operators form part of an 
unambiguous reconfiguration language for system developers to use in 
reconfigurable systems development. 

The model has also given interesting insights into reconfigurable 
architectures. It has shown that it seems necessary to allocate all processes 
a global unique identifier, and to avoid reliance on (inadequate) location­
dependent references. The model has also shown that even with minimal 
system invariants, some operations require atomic actions to ensure system 
invariants are not violating during reconfiguration. 

Proxies are not commonly associated with reconfigurable systems, however 
the model has shown that they may have a valuable role to play in dynamic 
reconfigurable systems, when a totally interconnected network is not 
available. Proxies will not function adequately as (single threaded) 
activities, but instead should be multithreaded processes, as threads will 
most likely have to be spawned for each arriving message. This may mean 
that the resource requirements will be dependent upon the number of 
received messages and thus not predictable (without knowledge of the 
message rates). 

This research has shown that the implementation of the operators specified 
in the VDM-SL model would be difficult, though not impossible. Certain 
operators may require OS support, for instance operators which synchronise 
processes instruction stacks may require OS support to write to such private 
memory areas. It should also be possible to verify the individual 
implementations of such operators. 

Reconfiguration control is necessary for reconfigurable systems, particularly 
online reconfigurable systems, as processes must be constrained in order to 
ensure configuration thrashing cannot occur. Reconfiguration control is 
discussed further in chapter 5. 
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2.3 Summary 

This chapter explores the options available for reconfigurable architectures 
and has identified three broad levels of reconfiguration: Software (process) 
reconfiguration, Hardware reconfiguration, and Mobility (hardware 
relocation). Each of these broad levels of reconfiguration present many 
options, and the exploration of the options available has highlighted that 
there are more options available within reconfigurable systems than 
anticipated. 

Research into reconfigurable systems has shown that a suitable language in 
which to express the behaviour of reconfigurable systems is lacking. Many 
ambiguous terms are used when describing reconfigurable systems. A 
three-level model has been specified in VDM-SL to provide a basis for 
exploring the possibilities available within reconfigurable systems. The 
operators outlined in this model form an extensible reconfiguration language 
which is formally specified and as such unambiguous. 

Many interesting insights have come from the exploration conducted into 
the options available for reconfigurable systems, including proxies, which 
are not commonly associated with reconfigurable systems, may have a 
valuable role to play in dynamic reconfigurable systems, when a totally 
interconnected network is not available. The exploration has also shown 
that certain operators may require OS support. 
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Chapter 3 

Defining Configuration Thrashing 

In highly reconfigurable systems it is possible for a situation to arise where 
a system cannot provide sufficient resources to conduct intended computing 
functions due to reconfiguration actions utilising required resources. This 
anomaly has been termed "configuration thrashing" by the author due to its 
loose analogy to memory thrashing. 

This chapter outlines a definition of configuration thrashing which is then 
formally specified. Model checkers are introduced and CSP models capable 
of checking processes for configuration thrashing are presented. 
Discussions regarding configuration thrashing for specific applications are 
also presented. 

This chapter is structured as follows. First section 3.1 introduces 
configuration thrashing and establishes a non-formal definition. Section 3.2 
defines configuration thrashing in terms of sequences of events (traces) for 
processes. Section 3.3 introduces CSP and presents two models capable of 
checking if a process can "thrash"; a CSP model which is un-timed is 
introduced in Section 3.3.1 and a CSP model which is timed is introduced in 
section 3.3.2. Section 3.3.3 discusses the limitations of the CSP models 
presented. Section 3.4 discusses the difficulties found in applying the 
configuration thrashing models and presents an interesting discussion on 
probabilistic deadlines. 

3.1 Configuration Thrashing Introduction 

Configuration thrashing is in essence a lack of progress of intended 
computing functions (i.e. VO processing) due to reconfiguration utilising 
required resources, thus causing deadlines to be missed. All 
(reconfigurable) systems require a certain level of responsiveness or 
progress to be made, thus implying the existence of deadlines. A 
requirement for progress implies that configuration thrashing can occur in 
all reconfigurable applications, even applications such as Microsoft Word or 
Microsoft Excel (provided they were reconfigurable). 

It may be argued that deadlines in reconfigurable systems are missed due to 
non-reconfiguration functionality being inefficient, rather than 
reconfiguration actions utilising resources needed by non-reconfiguration 
functionality. However this argument does not hold, as in extreme cases 
reconfiguration could take place continuously, thus making it impossible for 
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non-reconfiguration functionality to make progress no matter how efficient 
it is. It is possible in some cases that improvements in non-reconfigurable 
processing could allow processes to meet there deadlines without 
reconfiguration alterations, however it will not be possible in all cases. 

Given that configuration thrashing only occurs in systems with deadlines, 
configuration thrashing could be defined as occurring when a system misses 
a deadline due to a configuration change. However, a definition such as this 
is not adequate as there is often no way of showing that had a system not 
reconfigured it would have achieved its deadline. Proving a system would 
have met deadlines if certain re-configuration events had not occurred is 
difficult due to factors such as: possible hardware failures or external events 
(environmental stimuli) requiring mode changes. 

In order to provide a practical definition of configuration thrashing, the 
notion of a configuration overlap is introduced. A configuration overlap 
occurs when two subsequent reconfiguration requests are acted upon 
without a "sufficient interval" between them. The sufficient interval 
between reconfiguration actions should allow reconfiguration I initialisation 
to complete, as well as a minimum level of processing to occur in the new 
configuration. 

The minimum level of processing required in a given configuration is 
application dependent, though in most cases it is expected that it will 
include at least a read and write action otherwise progress would not have 
been made. This is discussed further in section 3.4. Depending upon the 
reconfiguration operator chosen, the minimum level of processing required 
may vary. Chapter 2 introduced a candidate set of reconfiguration 
operators. If a process were to be moved using the MoveProcDelFirst 
operator, then the minimum level of processing would always be the same, 
as the reconfigured process would always start in its initial state. However, 
if a process were to be moved using the MoveProcWStateAndSync operator, 
then the reconfigured process would initialise as it was before the 
reconfiguration, and thus the minimum level of processing required may 
vary. 

Four possible reconfiguration scenarios are presented in Figure I; a 
configuration overlap occurs in scenarios A, Band C, but not D (provided 
reconfiguration requests are acted upon immediately following receipt). 

In scenario A the process does not fully initialise before a new 
reconfiguration request is made. Note that a request for a process to 
reconfigure before initialisation has completed can only be acted upon if the 
process is reconfigured by a third party. In most cases initialisation is an 
atomic action meaning that OS support may be required to interrupt 
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initialisation, otherwise the reconfiguration must be delayed until the 
initialisation has completed. In scenario B the process does not start 
processing before a new reconfiguration request is made. A third party is 
likely to be required to act upon a request whilst the process is in the ready 
queue. In scenario C, the minimum processing time has not elapsed before 
a new reconfiguration request is made. In thi s scenario the request could be 
acted upon by the process or a third party. In scenario D a configuration 
overlap has not occurred, as the reconfiguration / initialisation and minimum 
processing time have both occurred in the interval between reconfiguration 
request Nand N+ I. 

(A) 
N N + 1 
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N N + 1 

I ~~ 

(0) 
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Figure I: Overlap Scenarios 
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Given the notion of a configuration overlap, configuration thrashing can be 
defined as occurring when one or more configuration overlaps occur. The 
number of configuration overlaps that can be tolerated in a given time 
period or in a given sequence is application dependent and possibly even 
mode dependent. The worst case scenario is an infinite series of 
consecutive configuration overlaps, which will always be classified as 
configuration thrashing as progress cannot be made. 

If configuration thrashing is not eliminated then it is possible for a situation 
to arise where a reconfigurable system cannot provide sufficient resources 
to conduct non-reconfigurable computing functions due to reconfiguration 
actions utilising required resources. The elimination of configuration 
thrashing is a step towards certifiable dynamic reconfigurable systems 
capable of meeting deadlines. 
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3.2 Trace Models of Configuration Thrashing 

Configuration thrashing can be defined in terms of sequences of events 
(traces) for processes. A trace of the behaviour of a process is a finite 
sequence of symbols recording the events a process has engaged in up to 
some point in time. A trace is denoted as a sequence of events separated by 
commas and enclosed in angular brackets. For example the trace <x, y> 
consists of two events; x followed by y. 

Before a process begins it is not known which of the possible traces will 
occur; the choice is dependent upon environmental factors beyond the 
control of the process. The complete set of all possible traces of a process P 
can be known in advance, this is defined as traces(P). Some examples of 
traces for processes are shown below: 

traces (STOP) = {<>} 

traces (coin->STOP) = {<>, <coin>} 

A configuration overlap occurs in a trace which has two reconfigure events 
occurring without the completion of a minimum level of processing between 
them. Given the following events: reconfigure, begin_min_work, and 
end_min_work, configuration overlaps occur in the following traces: 

<reconfigure, reconfigure> 

<reconfigure, begin_min_work, reconfigure> 

A configuration overlap does not occur if the minimum level of processing 
is completed between reconfigure events, for example a configuration 
overlap does not occur in the following trace: 

<reconfigure, begin_min_work, end_min_work, reconfigure> 

If in an example, configuration thrashing is defined as two consecutive 
configuration overlaps for a process, the following traces would be 
examples of configuration thrashing: 

<reconfigure, begin_min_work, reconfigure, begin_min_work, 
reconfigure> 

<reconfigure, reconfigure, reconfigure> 

<reconfigure, begin_min_work, reconfigure, reconfigure> 
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However, based on the same definition the following trace would not be 
considered configuration thrashing: 

<reconfigure, begin_min_work, reconfigure, begin_min_work, 
end_min_work, reconfigure, reconfigure> 

As the configuration thrashing definition varies from application to 
application, the above trace could be classified as configuration thrashing 
given a slightly different configuration thrashing definition. For instance if 
configuration thrashing was defined as a single configuration overlap the 
above trace would considered as configuration thrashing. 

For configuration thrashing to be possible within a process there must exist 
at least one trace matching the configuration thrashing definition. 

3.3 Communicating Sequential Processes (CSP) 

CSP [14, 15] is a state-based behavioural notation developed for formally 
specifying sequential processes composed to run concurrently. CSP is used 
to specify concurrent processes, comprised of events on which process 
synchronisation can take place. CSP was one of the first process algebras 
(developed at the University of Oxford during the 1980s), and is one of the 
most widely used, along with Milner's Calculus of Communicating Systems 
(CCS)[16]. 

CSP represents a process as the set of sequences of its possible actions. 
Tool support is provided for CSP through FDR2. FDR2 directly supports 
three refinement models: 

• The traces model: a process is represented by the set of finite 
sequences of actions it can perform. 

• The stable failures model: a process is represented by its traces as 
above and also by its failures. A failure is a pair (s,X), where s is a 
finite trace of the process (i.e., a trace from traces(P) and X is a set 
of events it can refuse after s. The set of P'S failures is given by 
/ailures(P). 

• The failures/divergences model: a process is represented by its 
failures as above, together with its divergences. A divergence is a 
finite trace during or after which the process can perform an infinite 
sequence of consecutive internal actions. 

In general the traces model is used to check safety properties, the stable 
failures model is used to check deadlock freedom and the 
failures/divergences model is used to check live lock freedom. 
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3.3.1 Un-timed CSP Configuration Thrashing Model 

This section introduces a CSP model capable of checking if a process can 
"thrash" that has been defined. The CSP model outlined includes several 
assumptions which have been made to simplify the model: 

• The model is intended to check individual processes for 
configuration thrashing - this assumption has been made as it is 
logical to start with individual processes. However as discussed 
in section 3.3.3 this does lead to a limitation in the model. 

• Processes within the model are single threaded - this assumption 
has been made to simplify the models produced (multithreaded 
models will be much larger and more cumbersome). However, 
multithreaded processes could be modelled and checked with 
some extensions to the model. An example of how threads can 
be modelled in CSP is shown in [17]. 

• Reconfiguration actions are not required to be detailed (i.e. a 
single action / operator can be used to model all reconfiguration 
types) - this assumption was made as there is no need to detail 
the reconfiguration actions in order to detect configuration 
thrashing, which is the aim of the model. It also minimises the 
alphabet of the system and reduces modelling complexities for 
developers. 

The CSP model includes the following action types (alphabet): reconfigure 
which is used abstractly to represent any type of reconfiguration action / 
operator (chapter 2 introduced a candidate set of reconfiguration operators); 
startup which represents process initialisation; doa which represents an 
arbitrary internal processing action; overlap which signifies an overlap has 
occurred; start_min_wk which represent the beginning of the minimum 
processing period; end_min_wk which represents the end of the minimum 
processing period; and lastly thrash which represents a configuration 
thrashing occurrence. 

The model consists of a monitor, a thrashing definition and an example 
process. Definition 3.3.1 shows the MONITOR which is used to specify 
how a reconfigurable process may behave, as well as identifying 
configuration overlap occurrences. As can be seen from the MONITOR 
definition, a reconfigurable process can first startup (initialise) or be 
reconfigured before initialisation. The startup event could be split into two 
events, one for the start and one for the end of the event, thus allowing 
reconfiguration to take place during initialisation. The startup event has not 
been split in this model as in most cases initialisation will be atomic, thus 
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requiring OS support to allow its interruption. A reconfiguration before or 
during initialisation would be a configuration overlap, as no useful work 
would have been completed in the new configuration. When a 
reconfigurable process has initialised, it can either do its minimum level of 
work and possibly additional processing, then reconfigure, or it can 
reconfigure before it has completed its minimum level of work. A 
reconfiguration before the minimum work has completed would be a 
configuration overlap. Note that within this model, the reconfigure action is 
used to signify both the reconfiguration request and action. Reconfiguration 
requests and actions are not modelled separately as they would occur 
consecutively. A time delay could exist between a request being made by 
one process and being received by another, however in CSP this is modelled 
as event synchronisation and thus there is no benefit in drawing a distinction 
between the reconfiguration request and action. 

Definition 3.3.1 

MONITOR = startup -> 

MONITOR 

-> MONITOR 

(start_min_wk -> reconfigure -> overlap -> 

[] reconfigure -> overlap -> MONITOR) 
[] reconfigure -> overlap -> MONITOR 

Configuration thrashing is defined within the CSP model using the THRASH 
process as shown in definition 3.3.2. This process allows configuration 
thrashing to be defined as a number of consecutive overlaps. The THRASH 
process works by taking variables for the maximum number of consecutive 
overlaps (max) and the number of overlaps remaining before configuration 
thrashing occurs (x). The variable x is normally initialised to max 
(signifying no overlaps have occurred). When a configuration overlap is 
detected x is decremented, and if the minimum level of work is completed 
then x is reset to max. When x reaches 0 configuration thrashing is detected, 
a thrash event is triggered, and the process stops. 

The THRASH process does not contain a hard-coded variable for the number 
of configuration overlaps required, as this varies from application to 
application, and as such allows greater flexibility within the model. 

Definition 3.3.2 

THRASH (max, x) if (x==O) then 
thrash -> STOP 

else 
overlap -> THRASH(max, x-l) 
[] end_min_wk -> THRASH(max,max) 
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Definition 3.3.3 shows an example process. This particular process is 
inherently capable of "thrashing" as it could engage an infinite sequence of 
reconfigure events. More complex processes can be checked using this 
model, as well as entire systems. Note that it is possible for a process 
capable of "thrashing" to exist as part of a system that is not capable of 
"thrashing" due to event synchronisation between concurrent processes 
eliminating certain traces from occurring. 

Definition 3.3.3 

PROCESS = startup -> 
(start_min_wk -> reconfigure -> PROCESS 

[] start_min_wk -> end_min_wk -> doa -> 
reconfigure -> PROCESS) 
[] reconfigure -> PROCESS 

In order to check processes against a configuration thrashing definition, 
additional processes are required. Definition 3.3.4 defines SYSTEM which 
ensures that the process being tested follows the structure of a 
reconfigurable process by the sharing its actions with the MONITOR 
(definition 3.3.1). This also allows configuration overlaps to be detected. 
SYSTEM hides non-essential actions, such as startup, reconfigure and doa. 
The hiding of non-essential actions allows trace refinement to be verified. 

Definition 3.3.4 

SYSTEM = (MONITOR I [{startup,move,start_min_wk,end_min_wk}] I 

(PROCESS\{doa}))\{startup,start_min_wk,reconfigure} 

It was first thought that configuration thrashing could be detected using 
proposition 3.3.1. Note that the THRASH process used in this proposition 
does not include a thrash event, as shown in Definition 3.3.5. Many 
processes were checked for configuration thrashing using proposition 3.3.1, 
including the example process shown in definition 3.3.3, and all produced 
expected results. This gave increased confidence in the model and the 
definition of configuration thrashing. However, this proposition was found 
to be incorrect, as if the process being trace-refined could not "thrash" in all 
of the ways in which the THRASH process can, then THRASH does not 
trace-refine the process and thus proposition 3.3.1 gives a negative result, 
even if the process can "thrash". This highlights the point that model 
checkers cannot check if a property (or refinement) is specified correctly, or 
if a model is correct, thus it is possible for false positives or negatives to 
occur if a model or property is specified incorrectly. 
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THRASH (max, x) 

Proposition 3.3.1 
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if (x==O) then 
STOP 

else 
overlap -> THRASH(max, x-I) 
[] end_min_wk -> THRASH(max,max) 

assert SYSTEM [T THRASH(3,3) 

An example of how an incorrect refinement assertion could give a false 
negative result can be seen when testing the example process shown in 
definition 3.3.6 using the refinement assertion presented in proposition 
3.3.1. Definition 3.3.6 shows an example process which must "thrash", as it 
can only engage in events leading to overlaps. However, proposition 3.3.1 
would give a (false) negative result for this process, as THRASH (definition 
3.3.5) contains traces which SYSTEM (definition 3.3.4) does not. Some 
examples of traces that traces(THRASH) would have that traces(SYSTEM) 
would not are shown below: 

<overlap, end_min_wk, overlap, overlap, overlap> 

<overlap, end_min_wk, overlap, end_min_wk, overlap, overlap, 
overlap> 

Definition 3.3.6 

PROCESS = startup -> start_min_wk -> reconfigure -> PROCESS 
I] reconfigure -> PROCESS 

To produce the correct refinement assertion, the thrashing definition was 
extended to include a thrash action, as well as the TEST process. Process 
TEST (definition 3.3.7) defines configuration thrashing for the given 
scenario. In this particular definition configuration thrashing is defined as 
three consecutive overlaps. The TEST process also hides non-essential 
actions. 

Definition 3.3.7 

TEST = (SYSTEM I [{overlap, end_min_wk}] I THRASH(3,3» 
\{overlap,end_min_wk} 

The correct refinement assertion (proposition 3.3.2) checks if STOP trace 
refines TEST (definition 3.3.7). As all events have been hidden apart from 
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thrash (the event that signifies a configuration thrashing occurrence), this 
assertion is true if configuration thrashing cannot occur and false if 
configuration thrashing is possible. 

Proposition 3.3.2 

assert STOP [T= TEST 

Trace refinement is used in proposItion 3.3.2, though stable failure 
refinement would give the same results. When conducting stable failure 
refinement, a process is represented by its traces and by its failures. A 
failure is a pair (s,X), where s is a finite trace and X is a set of events it can 
refuse after s. All of the actions within TEST are hidden (internal) apart 
from the thrash action, thus if the process can "thrash" then in at least one 
of its traces it must have to accept a thrash action. However, STOP can 
refuse this action which would make the assertion false. As all of the 
actions are hidden apart from thrash, a process which cannot thrash would 
make the assertion true as it never refuses an action. 

Failures/divergences refinement is not suitable, as a process which cannot 
"thrash" will produce an infinite sequence of consecutive internal actions 
(diverge), thus making the assertion false. A CSP divergence is a finite 
trace during or after which the process can perform an infinite sequence of 
consecutive internal actions. Failures/divergences refinement is not suitable 
due to the decision to hide all actions apart from the trash action within the 
model. An example process which could cause a divergence is shown in 
definition 3.3.8. 

Definition 3.3.8 

PROCESSNT = startup -> 
(start_min_wk -> reconfigure -> startup -> 

start min wk -> 

reconfigure -> 

end_min_wk -> doa -> reconfigure -> PROCESSNT 
[] start_min_wk -> end_min_wk -> doa -> 

PROCESSNT) 
[) reconfigure -> startup -> start min wk -> 

end min wk -> 
reconfigure -> PROCESSNT 

3.3.2 Timed CSP Configuration Thrashing Model 

Defining configuration thrashing using THRASH (definition 3.3.2) is 
adequate if configuration thrashing is to be defined in terms of consecutive 
configuration overlaps. However, it may be required that configuration 
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thrashing be defined as x overlaps in a given time period. CSP in its 
traditional form has no notion of time, though there are two distinct 
approaches to expressing time in CSP. The more elegant is to re-interpret 
the esp language to record the exact time at which each event occurs. A 
trace thus consists of a series of time/event pairs, rather than just events. 
This theory of Timed CSP [18] adopts a dense, continuous model of time. 

The alternative approach is a discrete model of time, which makes the drum­
beat of time an explicit event. The interval between successive "beats" may 
be any finite duration. The drum-beat event representing the passage of 
time is conventionally named tock in esp, as tick is a keyword in many 
tools including FDR2. 

The discrete approach to modelling time was adopted to extend the un-timed 
CSP model (described in section 3.3.1), as although the continuous 
approach (as used in Timed CSP) is more elegant and corresponds to the 
standard way in which we think about time, the discrete approach offers the 
tool support needed for experimentation. 

To extend the model described in section 3.3.1 to include time, the alphabet 
was extended to include the tock event. A TOCKS process (definition 3.3.9) 
was also added. This process is run in parallel with the other processes. 

Definition 3.3.9 

TOCKS = tock -> TOCKS 

The only process not effected by the introduction of time to the model is the 
MONITOR process (definition 3.3.1), which remains unchanged. The 
MONITOR is unaffected, as there are no restrictions on how long actions 
should take in reconfigurable processes. 

Configuration thrashing is defined in the timed CSP model using the 
THRASHTIMED process (definition 3.3.10 and 3.3.11). This allows 
configuration thrashing to be defined as a number of configuration overlaps 
in a given time period (a given number of tock events). If configuration 
thrashing is detected using this process, a thrash event is triggered. 

To allow THRASHTIMED to detect configuration thrashing, an event 
history must be maintained. A novel approach to maintaining an event 
history is used within the model. This approach maintains a sequence of 
events only as long as is required to detect configuration thrashing. The 
number of events required in order to detect configuration thrashing varies, 
as all of the events which occur in the specified time period (maxt tock 
events) are required. Any number of overlap events could occur between 
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tack events. Figure 2 shows a basic situation where new events are added to 
the event history. 

JoJr 

Figure 2: Event History Growth 

The THRASHTIMED process maintains the correct sequence by using a 
slidewindow process to remove stale events from the event history. If a new 
tack event occurs whilst the event history contains maxt tack events (the 
specified time interval), the slidewindow process not only removes stale tack 
events, but also stale overlap events. Figure 3 shows a situation where a 
tock event (n is added to the event history, when the event history already 
contains the maximum number of tack events (two) and thus stale events are 
removed. 

rJoJoJrJoJ 

rlolT 
Figure 3: Event History Stale Removal 

An example of the values maintained in the event history if maxt is set to 
three and one overlap event occurs after every two tack events is shown 
below: 

<T> 
<T,T> 
<T,T,O> 
<T,T,O,T> 
<T,O,T,T> 
<T,O,T,T,O> 
<T,T,O,T> 

The unique approach taken to maintaining the event history allows fresh 
history events to be maintained, whilst discarding stale events. This method 
essentially forms an extensible sliding window by which to check if 
configuration thrashing has occurred. 
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Definition 3.3.10 

THRASHTIMED«>, maxt, maxo) = overlap -> 
THRASHTIMED«>A<O>,maxt,maxo) 

[) tock -> THRASHTIMED«>A<T>,maxt,maxo) 

Definition 3.3.11 

THRASHTIMED(x, maxt, maxo) = if (numo(x) 
thrash -> STOP 

maxo) then 

else 
overlap -> THRASHTIMED(xA<O>,maxt,maxo) 
[) tock -> if (numt(x) == maxt) then 

THRASHTIMED(slidewindow(x)A<T>,maxt,maxo) 
else 

THRASHTIMED(xA<T>,maxt,maxo) 

Definition 3.3.12 shows an example process. This process is capable of 
thrashing, provided the definition of thrashing is x overlaps or less in x+ J 
time intervals. As with the un-timed model more complex processes can be 
checked in the model as well as entire systems. 

Definition 3.3.12 

PROCESS 

PROCESS 

startup -> tock -> 
(start_min_wk -> tock -> reconfigure -> tock -> 

[) start_min_wk -> tock -> end min wk -> tock 
-> doa -> tock -> reconfigure -> tock -> 
PROCESS) 

[) reconfigure -> tock -> PROCESS 

The SYSTEM process (definition 3.3.13) has the same purpose as SYSTEM 
in the un-timed model; however it has been extended to ensure that the 
TOCKS process is synchronised upon. 

Definition 3.3.13 

SYSTEM = (MONITOR I [{startup,move,start_min_wk,end_min_wk}] I 
(PROCESS\{doa}» 
\{end_min_wk,startup,start_min_wk,move} 
I [{tock}] I TOCKS 

The TEST process (definition 3.3.14) has the same purpose as TEST in the 
un-timed model. The THRASHTlMED process has replaced the THRASH 
process and lock events have both been shared and hidden. Definition 
3.3.14 defines configuration thrashing as two overlaps in three time units. 
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Definition 3.3.14 

TEST = (SYSTEMI [{overlap, 
tock}) ITHRASHTIMED«>,2,3))\{tock,overlap} 

Proposition 3.3.2 is used in the timed model, as well as the un-timed model. 
Trace refinement is still used, though as with the un-timed model, stable 
failure refinement could also be used. As discussed in section 3.3.1 
failure/divergence refinement is not suitable for this model. 

3.3.3 Limitations of CSP Configuration Thrashing Models 

The CSP models presented within this chapter have been shown capable of 
detecting configuration thrashing and as such assist developers to engineer 
configuration thrashing out of their systems, but the models do have some 
limitations. 

For example both CSP models only allow configuration thrashing to be 
detected in single processes and as such do not consider the reconfiguration 
of groups of processes. The author recognises that, particularly in 
distributed systems, complex interactions will exist between processes and 
as such developers are likely to consider reconfiguration as a step from one 
system layout (or blueprint) to another, which is likely to include many 
processes reconfiguring simultaneously or in a well defined sequence. The 
models produced can check if each individual process can "thrash" and as 
such be used to check entire systems (one process at a time), but this does 
not consider the fact that interactions between the groups of processes may 
make the processes that in theory can "thrash" not capable of configuration 
thrashing as the interacting processes may not be capable of producing the 
necessary stimuli to trigger the configuration thrashing. 

Another limitation of the CSP models is that the reconfigure action / 
operator used in the models abstractly represents any type of reconfiguration 
within the model. As detailed above an assumption was made that no detail 
was required upon the reconfiguration action as this is not required in order 
to detect configuration thrashing. However, whilst modelling example 
systems it was found that as no information was available within the model 
as to the state of the processes during a reconfiguration action thus no 
reasoning could be made in relation to the reconfiguration action and any 
invariants that existed within the system. Although the model was not 
designed to review invariants it would be useful. 

The final limitation to be highlighted for the models is one that exists 
because of the method in which model checkers such as FDR, the one used 
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within this thesis, function. Model checkers are susceptible to state space 
explosion [19]. This is particularly true of large complex models, which 
may make the use of the model checkers impractical or even impossible for 
some systems. As this is the case the models are limited in the size and 
complexity of processes which they can check. 

Appendix B contains both the un-timed and timed CSP models capable of 
checking if a process can "thrash". 

3.4 Difficulties Applying the Configuration Thrashing 
Model 

The minimum level of processing required between two consecutive 
reconfiguration events is application dependent, as is the number of overlaps 
which must occur in a given time period or in a given sequence in order to 
be classified as "thrashing". Both of these may even be mode dependent. 

It is expected that in most cases the minimum level of processing required 
between two consecutive reconfiguration events will include at least a read 
and a write action; otherwise progress would not have been made: if no read 
action is made the process will have no data to conduct processing upon, 
and if no write action is made it cannot store or provide other processes with 
the output of the processing. 

The minimum level of processing required between reconfigurations is 
governed by deadlines. In general it is expected that processing deadlines 
will be more important that reconfiguration actions, thus reconfiguration 
should not interfere with deadlines. Deadlines can be divided into three 
types [20]: 

• Hard: deadlines must not be missed. If not met considered fatal 
failure and may have disastrous consequences. 

• Soft: deadlines can be missed. Missing soft deadlines is considered 
tolerable; there are no serious consequences. After the deadline has 
passed, delivery is still useful and thus required. The usefulness of 
delivery decreases over time. 

• Firm: deadlines can be missed. No serious consequences. Late 
delivery is not required. If a firm deadline is missed the task is 
aborted. 

In some real-time systems components may have probabilistic requirements. 
An example of a probabilistic requirement could be: component A must 
produce an output every 450ms at least 20% of the time or catastrophic 
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events may occur. With probabilistic requirements, the importance of a task 
finishing before its deadline will be dependent upon previous events. Using 
the example outlined above, it is possible for a situation to arise where the 
first 100 outputs are made within 450ms and thus the next output is not 
required to be within the 450ms deadline (it has either a soft or firm 
deadline depending upon the system requirements for delivery of late 
messages), as a late output will allow the system to maintain a greater than 
20% ratio for on-time outputs, thus satisfying the requirement. However, if 
only 20 of the first 100 outputs had been produced within the 450ms 
deadline, then the next output would have a hard deadline, as a late output 
would reduce the percentage of outputs produced within 450ms to below 
20% and thus the requirement would not be satisfied. 

Probabilistic requirements can cause problems for system developers when 
trying to analyse system deadlines. In some cases developers make all 
deadlines over probabilistic requirements hard, in order to alleviate 
complications. This leads to over-engineering, but satisfies the 
requirements. However, in some cases over engineered requirements could 
conflict with normal (non over engineered) requirements unnecessarily. 

Within most real-time systems probabilistic requirements are a symptom of 
their need to "synchronise" with the environment. The reason environment 
"synchronisation" is required is to avoid a situation where certain events can 
no longer be guaranteed to occur or no longer be guaranteed not to occur 
due to a lack of up to date environment information. For instance, a terrain 
following aircraft requires up to date terrain information, to ensure that it 
can avoid obstacles safely. If the aircraft becomes significantly out of step 
with its environment then it may not be possible to guarantee collision 
avoidance. Figure 4 shows an aircraft scanning its terrain (the environment) 
for potential obstacles. In this example it is imperative that the aircraft not 
miss two consecutive scans, otherwise it may not be able to guarantee 
collision avoidance. The diagram shows that at point 3 it would no longer 
be able to avoid the obstacle in its path. However a successful scan at either 
of the previous points would have enabled the aircraft to safely manoeuvre 
around the obstacle. A deadline for radar scanning in this example would 
be history dependent, as it is only a hard deadline if the previous deadline 
was missed. 
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Figure 4: Terrain Scanning Diagram 

As configuration thrashing is a lack of progress of intended computing 
functions (i.e. I/O processing) due to reconfiguration utilising required 
resources, thus causing deadlines to be missed, it is necessary for system 
developers to identify their deadlines in order to express and ensure that 
configuration thrashing cannot occur. However, deadlines are difficult for 
system designers and developers to draw from specifications. Often 
deadlines for systems are gathered from testing results. This can mean that 
deadlines are not 100% accurate and can also mean that systems are over­
engineered to meet deadlines which could be relaxed. 

Due to configuration thrashing being dependent upon system deadlines, it is 
impossible to give general answers to what the application dependent parts 
of the configuration thrashing definition should be. As discussed above it is 
expected that the minimum level of processing required between two 
consecutive reconfiguration events will include at least a read and a write 
action; otherwise progress would not have been made. Depending upon the 
reconfiguration action triggered, the minimum level required may vary, for 
instance if a process were to be moved using MoveProcDelFirst then the 
minimum level of processing will always be the same. However, if a 
process were to be moved using MoveProcWStateAndSync, then the 
reconfigured process would initialise as it was before the reconfiguration, 
thus the minimum level of processing required may vary. The process may 
not need a read and write action when the reconfiguration action used 
transfers the process stack, as the process will be initialised with the 
progress it had already made prior to the reconfiguration. 

If a process is cyclic it is likely that the minimum level of processing would 
be a single cycle (though it could be broke down into smaller sections). 
Many applications are cyclic and thus a good starting point for system 
developers would be to make a cycle the minimum level of processing and 
then divide it into smaller sections if required. 

As general advice cannot be provided for application dependent parts of the 
configuration thrashing definition, the simplistic terrain following radar 
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example shown in figure 4 is described in further detail, as well as methods 
to decide upon application dependent parts of the configuration thrashing 
definition. 

Terrain following radar is an aerospace technology that allows a low flying 
aircraft to automatically maintain a constant distance above the ground, 
while flying at high speeds. The system works by periodically transmitting 
a radar signal downward and slightly forward (shown in figure 4). A 
computer computes the aircraft's height from the ground based on the 
signal's round-trip time and alters the aircraft's altitude in such a way as to 
keep a constant height above the ground just ahead, thus safely avoiding 
obstacles. 

Terrain following radar is a necessity for high-speed low flying aircraft, 
since a human pilot cannot react quickly enough to changing terrain heights, 
and has a much larger probability of crashing into an unexpected 
mountainside than an automated system in the same circumstances. 

As described a terrain following system periodically transmits a radar signal 
and conducts computations upon returned results. Thus the terrain 
following system (or subsystem) behaves in a cyclic fashion, meaning the 
minimum level of processing can be set to one cycle for the system. It is 
possible that this could be set to multiple or partial cycles, however without 
more exact information regarding the system, an exact decision on the 
minimum level of processing cannot be made. 

As can be seen from the level of overlap on radar signals shown in figure 4, 
the number of consecutive overlaps which are required in order to ensure 
collision avoidance is two, thus the number of consecutive overlaps which 
must occur in a given sequence in order to be classified as configuration 
thrashing is two. As can be seen from this example, two consecutive 
overlaps does not necessarily mean that the aircraft will collide with 
something, though it is necessary to avoid two overlaps in order to 
guarantee that the aircraft will not collide with any obstacles (which may 
exist). 

It should be noted that even an automated system utilising terrain following 
radar has a limited response time. Therefore, each system has a list of 
limitation in terms of the combination of maximal speed and minimal 
altitude allowed. The exact limitation figures change with radar type, with 
aircraft type and weight, and with the current meteorological conditions. 
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3.6 Summary 

This chapter has introduced configuration thrashing, and highlighted how 
severe configuration thrashing can be. The worst case scenario described in 
this chapter shows that an infinite series of consecutive configuration 
overlaps can stop progress in any application. Configuration thrashing has 
also been explored using traces. 

Two unique CSP models have been specified which enable developers to 
model their systems / processes and detect configuration thrashing potential. 
This allows developers to engineer configuration thrashing out of their 
systems. The first CSP model has no notion of time and allows developers 
to detect configuration thrashing when defined as a sequence of overlaps 
and the second model has a notion of time and allows configuration 
thrashing to be detected when defined as a number of overlaps in a given 
period of time. Limitations in relation to the CSP models have also been 
highlighted and discussed. 

Interesting difficulties have been found when applying the CSP models to 
scenarios. In particular probabilistic requirements have been explored, 
where a deadline becomes a deadline only a percentage of the time, leading 
to configuration thrashing becoming dependent upon previous deadline 
achievement. This is quite a fascinating problem and although it has been 
solved for a particular scenario, it is difficult to provide general advice and 
as such this issue will cause developers problems when allowing 
reconfiguration within applications. 
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Within Chapter 3 a definition of configuration thrashing is formally 
specified. Model checkers are introduced and esp models capable of 
checking processes for configuration thrashing are presented. Many 
formalisms could have been utilised to define configuration thrashing and 
check processes for configuration thrashing; CSP was chosen because of its 
tool support. Section 4.1 presents a brief overview of many "reconfigurable 
formalisms" which are capable of modelling configuration thrashing and in 
many cases, are capable of detecting configuration thrashing within a model 
and thus could have been used, instead of esp, within the work presented in 
chapter 3. 

As already stated to date no literature has been found that recognises or 
addresses configuration thrashing directly. However, this chapter explores 
some related work to investigate if configuration thrashing can occur within 
them and to put configuration thrashing into context next to similar 
problems found and / or addressed in related areas of work. 

This chapter also presents relevant work on control techniques (section 4.3) 
which could potentially be used to constrain systems in order to ensure that 
configuration thrashing cannot occur. Chapter 5 builds on these control 
techniques and further explores potential run-time solutions to configuration 
thrashing; allowing developers to include additional logic / processes in 
their systems in order to eliminate configuration thrashing. 

The rest of this chapter is structured as follows. Section 4.1 reviews various 
formalisms capable of modelling reconfigurable systems. First, early 
algebras are introduced in the form of CCS and CSP. Then more recent 
process algebras focussed upon mobility are described in the form of the pi­
calculus and the ambient calculus. Lastly Mobile Unity is discussed, which 
is a formal notation designed for describing concurrent, distributed, and 
mobile computing systems. 

Section 4.2 explores related work in the areas of fault-tolerance, reflection, 
self modifying code and re-configurability in general to put configuration 
thrashing in context with similar problems found in these related research 
topics. 

Section 4.3 examines control techniques which could or in rare cases have 
been used to control reconfiguration. First Law Governed Interaction is 
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described, which provides a method of enforcing explicit coordination 
policies in a decentralised manner. Then the Open Control Platform is 
introduced, which is a software infrastructure for complex systems that 
coordinates distributed interactions and supports dynamic reconfiguration. 
Within this approach change application policies are used to allow changes 
to be made without violating reliability, safety, or consistency. Lastly, a 
reconfiguration management system is summarised. This system requires 
that all affected nodes and their neighbours be in a quiescent state before 
any reconfiguration occurs. While a node is in a quiescent state, it is 
prohibited from initiating communication. This ensures that nodes directly 
affected by a change will not receive communication during the course of a 
change. 

4.1 Reconfigurab/e Formalisms 

Reconfigurable systems offer the ability to adapt hardware and / or software 
to meet changing requirements. Many formalisms exist which are capable 
of modelling reconfigurable systems. Some example formalisms are 
introduced within this section. First two early process algebras are 
introduced; these are known as CCS and CSP. Other process algebras exist, 
but CCS and CSP were chosen as they are the most widely used. Both have 
proved themselves to be invaluable tools in the formal specification and 
verification of concurrent communicating systems. They are also both 
capable of modelling configuration thrashing and can both be used to check 
that process definitions cannot suffer from configuration thrashing. 
However, these process algebras are limited in that they cannot represent 
process creation, process deletion, or changes in process connectivity. 

More recent process algebras focussed upon mobility are then introduced in 
the form of the pi-calculus and the ambient calculus. The pi-calculus is 
essentially an extension of CCS which adds the ability to pass channel 
names as parameters along communication channels. This allows receiving 
processes to communicate via channels they previously had no knowledge 
of. Within the ambient calculus mobility is modelled using the concept of 
ambients. An ambient is informally defined as a bounded place where 
computation can occur. Both the pi-calculus and the ambient calculus could 
be used to model configuration thrashing. 

Mobile Unity is a formal notation designed for describing concurrent, 
distributed, and mobile computing systems. Mobile Unity has semantics in 
Category Theory and thus is different to the process algebras, but is equally 
capable of allowing a configuration thrashing definition to be made. 
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4.1.1 CCS 

The Calculus of Communicating Systems (CCS) [16] is a process calculus 
developed by Robin Milner in the early 1980s. This formal language 
includes primitives for describing parallel composition, choice operators and 
scope restriction. The expressions of the language are interpreted as 
labelled transition systems. 

CCS includes a notion of bisimulation which Robin Milner refers to as "a 
kind of invariant holding between a pair of dynamic systems" [16]. 
Bisimulation provides a technique to prove two systems equivalent in terms 
of behaviour with respect to the actions that can be performed. 

Tool support is available for CCS in the form of the Concurrency 
WorkBench (CWB). By using this tool, the specification of a concurrent 
system can be analysed. The CWB is capable of displaying a simulation of a 
concurrent system specified in CCS, searching for deadlock states, testing 
for equality between two specifications, and determining if a system 
satisfies specified logical properties (e.g., safety or liveness). 

CCS has no primitives I operators for mobility of processes, and has no. 
method of altering process connectivity. CCS has no notion of time, though 
time can be added to a CCS model in a number of ways; one example of 
how time can be added to CCS is contained in [21]. 

4.1.2 CSP 

CSP was developed by Tony Hoare at the University of Oxford during the 
1980s, and is one of the most widely used process algebras. CSP [14, 15] is 
a state based behavioural notation developed for formally specifying 
sequential processes composed to run concurrently. Within CSP processes 
are comprised of events on which process synchronisation can take place. 

Tool support is provided for CSP through FDR2. FDR2 allows for 
refinement checking, determinism checking, as well as looking for 
deadlocks and divergences. As discussed in section 3.3, FDR2 supports 
three refinement models: the traces model, the stable failures model, and the 
failures I divergences model. 

CSP is similar to CCS in that it is very low level and has no primitives I 
operators for mobility of processes or any dynamic creation of connections. 
CSP has no notion of time, though time could be added to a CSP model to 
allow for real-time issues to be explored. A theory of Timed CSP [18] adds 
time to CSP by re-interpreting the CSP language to record the exact time at 
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which each event occurs. A trace thus consists of a series of time / event 
pairs, rather than just events. 

Although CSP and CCS do not have native support for reconfiguration, they 
are included in this related work section, as operators for reconfiguration 
can be added. Reconfiguration operators can be represented in CSP through 
events. Reconfiguration events can't create new processes or delete 
processes, but they can clearly show that reconfiguration has occurred or is 
in the process of occurring. A simple example of how to represent 
reconfiguration within CSP would be to simply have an action named 
something like reconfigure. 

4.1.3 Pi-Calculus 

The pi-calculus [8, 22] was developed by Robin Milner as an algebra to 
enable communicating and mobile systems to be reasoned about (in a 
rigorous manner). The pi-calculus is built upon CCS; it adds the ability to 
pass channel names as parameters along channels. This allows receiving 
processes to communicate via channels they previously had no knowledge 
of. 

In the pi-calculus, the definition of bisimulation equivalence may be based 
on either the reduction semantics or on the labelled transition semantics. 
There are (at least) three different ways of defining labelled bisimulation 
equivalence in the pi-calculus: early, late and open bisimilarity. This stems 
from the fact that the pi-calculus is a value-passing process calculus. 

The pi-calculus provides a framework for the representation, simulation, 
analysis and verification of mobile communication systems. Processes in 
the pi-calculus interact with one another by sending and receiving messages 
in a synchronous manner. Note that the calculus is non-deterministic; when 
several options are available the interaction that occurs is chosen on a 
completely random basis. 

The pi-calculus does not explicitly model locations. However, physical 
locations can be represented using processes; the location of a process being 
modelled as a link between a process and a special "location" process. For 
locations to be modelled in such a way, it would be expected that each 
process would link to exactly one "location" process. A change in location 
would consist of breaking a link to a "location" process and creating a link 
to another. 

As stated above, the pi-calculus allows a process to pass a channel (a 
communication path) to another process, and then that process can then 
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communicate via that channel to a (possibly) previously unknown process. 
An example of this is shown in Figure 1. Figure lea) shows three processes 
in which A can not directly communicate with C. However, if B passes the 
channel BC to A, then A can communicate with C via BC as shown in 
figure l(b). It is not made clear (in the pi-calculus) if this is a similar 
situation to IP addresses or phone numbers (i.e. total interconnection is 
required at the hardware level) and so they communicate directly, or if the 
communication goes via B without the knowledge ofB. 

(8) (b) 

Figure I: Pi-Calculus Example 

There is some tool support for the pi-calculus. The Mobility WorkBench 
(MWB) is an automated tool for manipulating and analyzing mobile 
concurrent systems (those with evolving connectivity structures) described 
in the pi-calculus. The pi-calculus has no notion of timing, thus real-time 
issues have not been addressed within the pi-calculus. 

4.1.4 Ambient Calculus 

The ambient calculus [9, 23] is a process calculus developed by Luca 
Cardelli and Andrew Gordon to describe and analyse concurrent systems 
involving mobility. Within the ambient calculus mobility is modelled using 
the concept of ambients. An ambient is informally defined as a bounded 
place where computation can occur. Various informal interpretations have 
been given for the formal concept of an "ambient", for example ambients 
could include: a web page (bounded by a file), a Unix file system (bounded 
within a physical volume), or even a laptop (bounded by its case and data 
ports). Within the ambient calculus locations are represented using 
ambients, though ambients do not always represent locations. 

Ambients can be nested within other ambients forming hierarchies. The 
ambient calculus adds the concept of capabilities to ambients to make it 
possible to model limited access to ambients. In particular, the ambient 
calculus supports in, out and open capabilities. The in capability instructs 
the ambient to enter a sibling ambient. The out capability instructs the 
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ambient to leave its named parent ambient. The open capability dissolves 
the boundary of an ambient. 

Within the ambient calculus it is not enough for one ambient to simply 
know in which ambient another process resides in order to facilitate 
communication. The ambient must also know the 'route' - the hierarchical 
nesting of ambients. 

The ambient calculus has a rich variety of operators, though no tool support 
has been found thus far. The ambient calculus has no notion of timing, thus 
real-time issues have not been addressed within it. 

4.1.5 Mobile Unity 

Mobile Unity [24-26] is a formal notation designed for describing 
concurrent, distributed, and mobile computing systems. Mobile Unity 
separates computation and coordination. Connectors in Mobile Unity are 
expressed in a program design language which has semantics in Category 
Theory [27]. 

The concept of a connector in Mobile Unity is used to express complex 
relationships between system components, thus facilitating the separation of 
coordination from computation. M. Wermelinger et al. [24] argue that the 
separation of coordination from computation "is especially important in 
mobile computing due to the transient nature of the interconnections that 
may exist between system components". The seperation of coordiation and 
computation that occurs in Mobile Unity provides a means for components 
to continue to function independently of the communication context in 
which they find themselves. However, the author would argue that this 
seperation is not especially important as most components behave 
differently with different stimuli, and different stimuli are likely to occur 
with different communication contexts, thus they are not completely 
decoupled. 

Locations within Mobile Unity are modelled implicitly. Each component of 
a design is assigned a position. Mobile Unity allows a distinction to be 
made between programs which control their own motion and programs 
which are moved by the environment. This is done by declaring the 
location attribute as local or external, respectively. The method of 
expression of locations in Mobile Unity allows fine grained mobility to be 
expressed. 

No tool support has been found for Mobile Unity. Mobile Unity has no 
notion of timing, thus real-time issues have not been addressed. 
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4.2 Reconfigurable Systems and Configuration 
Thrashing 

Many types of system can reconfigure and most can suffer from problems 
similar in some way to configuration thrashing. This section explores 
related work in the areas of fault-tolerance, reflection, self modifying code 
and re-conjigurability both in general and in an effort to put configuration 
thrashing in context. 

Each piece of related work is described and similar issues to configuration 
thrashing identified or addressed are explored. Any potential solutions to 
similar issues outlined are reviewed in terms of safety, formalisms used, and 
real-time applicability. In some cases pieces of related work can suffer from 
configuration thrashing and this has not been explored or recognised within 
the original research. In such cases this is documented. 

4.2.1 Fault Tolerance 

An important non-functional requirement that is often demanded of a 
system is fault-tolerance. Fault-tolerance demands that the system functions 
correctly, even in the presence of failures, regardless of the type. The 
concept of fault-tolerant computing has existed since at least the 1960's 
[28]. 

An early approach to providing software fault tolerance can be found in the 
recovery block scheme [29, 30]. Within this scheme logical blocks of code 
are separated and a framework is put around them. This framework first of 
all establishes a recovery point, then executes the code and then conducts an 
acceptance test to see if the output is acceptable (i.e. not faulty). In the 
event that the block of code fails a backward recovery takes place, i.e. the 
system moves back to the recovery point. Alternative blocks of code are 
then tried if available which must provide the same functionality as the first 
block (or primary block). Any number of standby spares can be provided 
for each block of code. This represents the basis of the recovery block 
scheme and is normally represented using the syntax shown in figure 1. 
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Bn.ur. <acceptance test> 
By <primary module> 

81 •• by <alternative module 1> 
81 •• by <alternative module 2> 

81 •• by <alternative module n> 
81.. .rror 

Figure 1: Recovery Block Scheme 

If all of the modules fail then this is regarded as a failure of the recovery 
block and an exception will be signalled. Recovery blocks can be nested 
and thus one recovery block can form part of a module of an enclosing 
recovery block. Where recovery blocks are nested, if an exception is raised 
from a failure of an inner recovery block, recovery will take place and an 
alternative module of the outer recovery block will be executed. 

Every time a fault occurs within recovery blocks a reconfiguration (of sorts) 
occurs; the system state is reset and some alternative code is then tried. This 
reconfiguration affects the progress made within the application as a 
backward recovery is undertaken and could lead to deadlines being missed. 
Since configuration thrashing is in raw terms a lack of progress of intended 
computing functions due to reconfiguration utilising required resources, thus 
causing deadlines to be missed, then a recovery block system can suffer 
from configuration thrashing. 

As with most fault-tolerant research the priority for the research is 
recovering from a fault and there is no consideration made as to the meeting 
of deadlines. This is understandable; if the error is great then progress may 
be hindered unless a reconfiguration occurs and as such there may be no 
other option. However, in many cases the fault may be able to be tolerated 
for a period before reconfiguration which could lead to deadlines being met. 
Recovery block research has not considered real-time aspects and thus 
reconfiguration thrashing has not been addressed within the research. 

The research on recovery blocks has been expanded upon and a concept of 
the Coordinated Atomic Action [31] (or CA Action) has been developed. 
This enhancement focuses upon providing a unified scheme for coordinating 
complex concurrent activities and supporting error recovery between 
multiple interacting objects in a distributed object-oriented system. This 
research can suffer a similar issue to configuration thrashing in much the 
same way that recovery blocks can. I.e. when faults the system still has to 
roll back, but instead of reviewing only single processes this research also 
reviews how multiple interacting processes can roll back in synch if an error 
occurs. 
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Another traditional software fault tolerant technique is N-version 
programming [32]. N-version programming works by providing N-versions 
of a program (N being greater than I) which have been independently 
developed to a common specification and comparing their results by some 
form of replication check. A majority vote is then undertaken and erroneous 
(presumed faulty) results can be eliminated and the (presumed correct) 
results generated by the majority vote can be passed on. Within N-version 
programming the system remains static even when a fault occurs and 
although overheads are increased in terms of processing time by means of 
introducing N-versions and a voting algorithm deadlines should not be 
missed through the use of N-version programming. Systems using this 
method cannot suffer from configuration thrashing (at least not because of 
the fault tolerant method used). 

More recent fault tolerant research has focussed upon the use of off the shelf 
applications in distributed environments. S Porcarelli et al [33] present a 
proposed architecture to deal with dynamic resource management for real­
time dependability-critical distributed systems capable of coping with fault 
tolerance and scalability issues. This research builds upon the Light-weight 
Infrastructure for Reconfiguring Applications (Lira) and provides a decision 
making process to allow management as to how best to conduct I allocate a 
reconfiguration request. This research presents some very novel and 
interesting issues, but at present does not adequately address real-time 
issues. The proposed architecture does allow reconfiguration and thus 
processes within the architecture can suffer a lack of progress of intended 
computing functions due to reconfiguration utilising required resources 
causing deadlines to be missed. In theory the decision makers in this 
architecture could attempt to address configuration thrashing, but no 
reference to stopping certain reconfiguration requests or information 
relating to how deadlines would be enforced are discussed within papers 
found to date on this research. The concerns introduced relating to real-time 
issues were principally focussed upon the timeliness of the decision making 
process. No formal modelling has been undertaken within this research. 

1. Fraga et al [34] present a component model for building distributed 
applications with fault-tolerant requirements and incorporates QoS 
requirements. Within this research a component model is build on top of 
CORBA and fault detection agents are used to detect faults. Once a fault is 
detected a change can be made. Using the QoS requirements given by 
components, the Adaptive Fault Tolerant (AFT) manager can change the 
configuration of the system when it detects QoS requirements are not being 
met. This research introduces a novel approach to attempting to ensure 
components can meet deadlines through QoS requirements. However, 
reconfiguring a system to avoid missing a deadline could make deadline 
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harder to achieve and this approach only seems to reconfigure once 
deadlines have already been missed, thus in a safety critical system this may 
be too late. This approach can suffer from configuration thrashing as no 
restrictions are made on reconfiguration in any way and this has not been 
considered as part of the original research. 

4.2.2 Reflection 

Reflection is the process by which a process I system can observe and 
modify its own behaviour. To facilitate the ability to observe itself a 
reflective system incorporates structures representing aspects of itself. The 
programming paradigm driven by reflection is call reflective programming. 
Uses of reflection include: maintaining performance statistics, debugging, 
decision making, self-optimisation, self-modification, and self-activation. 
Reflection is used in many modem programming I scripting languages such 
as: C#, Java, Perl, PHP, Curl and Python. 

Applying reflection technology to middleware design has become an 
extensive research topic. Reflection offers more flexibility and adaptability 
to middleware systems. In [35] G. Coulson et al use a reflective component 
model as basis for constructing configurable and reconfigurable CORBA 
ORBs. Within this research it was recognised that the reflective component 
model inherently supported flexibility and reconfigurability, but on its own 
was too powerful and could easily lead to chaos. Component framework 
based structuring was introduced to impose domain specific constraints and 
semantics on the reconfiguration process. The research presented by G. 
Coulson et al addresses the following fundamental issues for effective 
reconfiguration management: i) to constrain the scope and effect of 
reconfiguration, ii) to separate concerns between reconfiguration operations 
and core middleware functionality, and iii) to maintain integrity in the face 
of dynamic change. It is possible within this research for the 
reconfiguration to cause a lack of progress of intended computing functions 
due to reconfiguration utilising required resources and thus can suffer from 
configuration thrashing. G. Coulson et al have not addressed this issue as 
their principle focus is upon the construction of a flexible reconfigurable 
middleware and as such this was most likely deemed as beyond the scope of 
the research, though the authors did recognise that constraints were needed 
for reconfiguration but not ones to reduce or eradicate configuration 
thrashing. 

Research is presented in [36] that builds middleware (named RECOM) at 
the meta-level; they treat the binding between the specific client and the 
server as a self-representation of middleware. The self-representation 
completely reflects all aspects of the implementation of middleware. This 
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makes RECOM highly flexible. No research found to date reviews issues 
concerning timing or resource management in RECOM and as such 
configuration thrashing is possible. 

DynamicTAO [37] has been developed as part of a research project 
conducted at the University of Illinios. DynamicTAO is a CORBA 
compliant reflective ORB that supports runtime reconfiguration. This type 
of implementation is a more typical one than that used for RECOM but does 
address issues such as security and safety for dynamic reconfiguration. 
DynamicT AO delegates resource management to components that can be 
dynamically loaded. It employs the Dynamic Soft Real-Time Scheduler 
(DSRT) [38], which runs as a user-level process in operating systems like 
Linux or Windows. The DSRT uses the system's low level real-time API to 
provide QoS guarantees to applications with real-time requirements and 
allows applications to specify QoS parameters in terms of CPU, memory 
and communication. It can therefore control the resource allocation to the 
quality desired by the application. However, the DRST provides no 
mechanism for reviewing the effects of reconfiguration and in fact the QoS 
requirements are monitored in a feedback loop fashion so if the QoS 
requirements are not being met, it may reconfigure the system itself to allow 
these to be met. DynamicT AO can suffer from configuration thrashing and 
no research found to date recognises this as an issue. 

Similar research to that conducted on DynamicTAO is presented in [39] and 
presents a QoS framework implementation for OpenORB [40]. The 
OpenORB research describes a framework for supporting resource adaption 
by providing first-class representation of activities and generic interfaces for 
inspecting and controlling the resources allocated to activities. The 
OpenORB QoS framework research aims to represent the tasks and 
resources thus ensuring that if a given task requires x resource(s) to ensure a 
certain level of QoS then it is provided. However, this does not take into 
account that as well as a lack of resource QoS requirements could be broken 
by a high level of reconfiguration. Thus, as with the DynamicT AO 
research, the system can suffer from configuration thrashing. 

Some general research concerning the benefits of using reflection is outlined 
in [41]. This research builds a framework to support dynamic adaption and 
aims to compare this to other reconfigurable techniques. This research 
clearly highlights the benefits of using reflection in that dynamic adaption 
can be achieved independently of the application's domain and also that the 
extension to add adaption functionality does not necessarily require 
changing the static class structure of the application. However, this research 
also highlights the disadvantage of a performance decrease. This and other 
general research on reflective programming does not look at its application 
to real-time systems and as such do not look at issues related to 
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configuration thrashing. The framework outlined in [41] can suffer from 
configuration thrashing, but this research paper does not address this. 

4.2.3 Self.Modifying Code 

Self-Modifying Code (SMC) is broadly referred to as any code that loads, 
generates or alters its own instructions at runtime. SMC can be used to 
improve performance in applications [42, 43] through runtime code 
generation. Dynamic code optimization can provide improved performance 
[44] or minimize code size for systems with a limited memory [45]. SMC 
can also enable dynamic code obfuscation [46] to support code protection. 

SMC has been described as "a better strategy for realizing long-lived 
autonomous software systems than static code, regardless of how well it was 
validated and tested" [47]. This is mainly based on the idea that a self­
modifying system can adapt to new situations better than static systems. A 
common technique applied to adapt programs is genetic programming [48, 
49] in which programs are modeled as genetic material. 

Research into run time code generation, such as the work presented in [42], 
make use of invariants and values that cannot be exploited at compile time, 
yielding what should be superior code. However, the cost of generating 
code at runtime can often be prohibitive. In general this type of research 
takes in code of one type, often a scripting language, and further optimises 
it; as such the system does not reconfigure and thus cannot suffer from 
reconfiguration thrashing in a traditional sense. However, within run time 
code generation it is possible for the reconfiguration in the code, that takes 
place during the code generation, to in itself cause a lack of progress of 
intended computing functions thus creating a very similar problem to 
configuration thrashing. Most of the research found to date attempt to 
tackle this problem by reducing the time taken to generate the code or by 
arguing the tradeoffs in terms of the time gained by using the optimised 
code. L Hornof et al [43] focus upon safety aspects of run-time code 
generation by proving the generated code meets the requirements of the 
original code, but does not address the issues surrounding the use of run­
time code generation in real-time systems. 

Dynamic code optimization is very similar to run time code generation, 
though what is referred to as optimization, as appose to generation, 
generally attempts to improve the performance of an instruction stream as it 
executes on a processor rather than generating new software from a given 
source. V. Bala et at [44] present a system named Dynamo; using this they 
show that in many cases even statically optimised native binaries can be 
accelerated. Dynamo is intended to provide a client-side performance 



58 

delivery mechanism that allows computer system vendors to provide some 
degree of machine-specific performance without the independent software 
vendor's involvement. This type of native-to-native runtime optimisation is 
conducted in a novel manner and its complete transparency offers many 
benefits. However, there are cases in which the optimisation can add to the 
execution time. As with run time code generation, dynamic code 
optimisation systems do not reconfigure and hence cannot suffer from 
configuration thrashing in a traditional sense. However, it is possible for the 
optimisation (reconfiguration) that takes place during the code optimisation, 
to itself cause a lack of progress of intended computing functions causing a 
similar problem to configuration thrashing. To date none of the research 
found focuses upon this issue, but instead argue that the rare cases in which 
execution times are decreased are minimised and are therefore acceptable to 
increase performance significantly in other processes / systems. 

Using self modifying code for obfuscation is an unusual application of self 
modifying code, but a very effective one. Most reverse engineering 
techniques start by disassembling and then uses program analysis to recover 
high level semantic information. However the approach presented in [46] 
complicates this by changing the program code repeatedly during code 
execution thus thwarting disassembly. Templates are used to allow code to 
be altered back to the true executable code just in time to be executed. This 
technique can only be used on static code as mutating already changing 
source code would become impossible to track and ensure that the templates 
could allow the code to be correctly altered back ready for execution. It is 
possible for the continual changes in the source code to cause a lack of 
progress of intended computing functions due to code modifications 
utilising required resources and as such can suffer from configuration 
thrashing. However, this has not been addressed within any research found 
to date and in fact the slowing of code execution times is expected within 
this research as this is required to prevent reverse engineering. 

An interesting technique applied to adapt programs using self modifying 
code is genetic programming [48, 49] in which programs are modeled as 
genetic material. The underlying theme for this type of research is that 
nature has developed a mechanism both for continuous operations and 
evolution and maybe this same method can solve the complexity that exists 
in the design, implementation, standardization and deployment of modem 
computing applications. Within the research presented in [48, 49] fraglets 
are introduced representing fragments of distributed computation. Fraglets 
have a strong formal methods tie and offer a lot of flexibility. Genetic 
programming allows for a highly dynamic system, though no research found 
to date ensures a safe system or ensures timing constraints. Genetically 
inspired modifications could lead to a lack of progress of intended 
computing functions due to code modifications utilising required resources 
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ergo this type of system can suffer from configuration thrashing, but no 
research found to date recognises or addresses such an issue. 

Very little research found addresses any verification of correctness of self­
modifying code. SMC is extremely difficult to reason about. Most existing 
formal verification techniques assume that code memory is fixed and 
immutable. H. Cia et el [50] have developed a technique for modular 
verification of general von-Neumann machine code with runtime code 
manipulation. This research is one of only a handful of pieces of research 
on verification of SMC. However, this research does not consider timing 
and as such cannot be used to verify if a piece of SMC can or cannot suffer 
from configuration thrashing, though it may be possible to extend the formal 
verification technique presented. 

4.2.4 General Re-configurability 

Reconfiguration is desirable as a run-time mechanism in most modem 
computing systems as it allows hardware and software upgrades in response 
to technological advancements, environmental changes, or alterations in 
requirements during system operation. 

A lot of research into general reconfiguration mechanisms focuses upon the 
correctness of the system in relation to invariants placed on the system. 
These invariants are often checked after reconfiguration has occurred or in 
some cases throughout the reconfiguration process. S. S. Kulkarni et al [51] 
present one such piece of research in which they address the "lack of 
systematic methods to ensure the correctness of dynamic adaption" through 
the use of transitional-invariant lattice, which is based upon the concept of 
proof lattice, to verify correctness. This novel approach provides a formal 
method of using proof tools to show that invariants have been met 
throughout a reconfiguration and even coping with changing requirements 
(thus invariants) during a reconfiguration. It addresses safety through 
proving system invariants hold throughout reconfiguration, however this 
research does not address any timing issues and as such does not address 
any issues similar to or relating to configuration thrashing. 

J. Zhang et al [52] present another approach to ensuring system's are correct 
(or "safe") during software change in their research. The method used to 
ensure that adaptations are safe with respect to system consistency takes into 
consideration dependency analysis for target components, specifically 
determining viable sequences of adaptive actions and those states in which 
an adaptive solution can be applied safely. This research is focussed upon 
the application of this method to changing external conditions in a wireless 
multicast video application. Invariants are used to specify dependency 
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relationships among components enabling the ability to determine which 
components are affected during a given change. A central management 
approach is taken in an attempt to provide optimisations where multiple 
change options are available and a rollback mechanism is provided in case 
an error or failure occurs. This research uses what would appear to be a 
very sound formal proof technique to ensure that changes are safe, however 
does have a few issues in that all invariants are specified by developers and 
as such if these are specified incorrectly then the method is useless. As with 
the research by S. S. Kulkarni et aI, this research does not address any 
timing issues and does not address any issues similar to or relating to 
configuration thrashing even though the application considered should 
include timing concerns. 

Research presented by S.K. Shrivastava et al [53] introduces architectural 
support for dynamic reconfiguration of large scale distributed systems. The 
approach presented in this research is based upon techniques from the area 
of workflow management. Workflows are pieces of rule based management 
software that co-ordinate and monitor execution of tasks. A task model has 
been developed that is expressive enough to temporal dependencies between 
tasks. To ensure that dynamic reconfiguration can occur safely several 
restrictions are placed on the system as to when reconfiguration can occur. 
These rules ensure that a task cannot be changed unless it is in a wait state 
and input / output alternatives cannot be added, removed or modified unless 
the tasks are in given states. Formal methods have not really been fully 
applied to this research though a rigorous approach has been taken. This 
research considers timing dependencies only and does not extensively 
explore deadline analysis. A system built using this architecture could 
suffer from configuration thrashing as the reconfiguration could still cause a 
lack of progress of intended computing functions. 

Architecture Description Languages (ADLs) is a similar type of research to 
workflows. J. Magee et al [54] present research on dynamic software using 
an ADL called Darwin in which they explore dynamic features and illustrate 
some of the possibilities and problems in supporting constrained and 
unconstrained structural evolution. This research outlines an operational 
semantics in the pi-calculus. As it is focussed upon expressing and 
representing architectural designs, including components and their 
interactions, no timing issues have been explored and as such even though 
systems designed in this way can clearly suffer from configuration 
thrashing, it is not addressed. As no ordering or time information is 
available in ADLs then reconfiguration specifications are simply made of 
designs of the system and no consideration is made as to when a 
reconfiguration can occur or what state the system is in when 
reconfiguration occurs and also no consideration can really be made as to 
whether it is safe to reconfigure. Research into workflows seems more 
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suited to this type of analysis given the ordering of tasks that is available, 
but further research would need to be conducted in this area. 

Quality of Service (QoS) is a more recent research topic. Quality of service 
generally refers to the ability to provide different priority to different 
applications, users, or data flows, or to guarantee a certain level of 
performance. A. Tesanovic et al [55, 56] present a novel approach to 
providing QoS in real-time systems by employing feedback-based 
scheduling methods. The feedback-based system uses a controller to 
calculate a deadline miss ratio and as such alters the system to ensure the 
ratio is kept within bounds. The research is used for performance-critical 
real-time systems and not hard real-time systems as by its very definition 
the miss ratio calculations shows that deadlines are missed and no bounds 
are placed on the system to control the length of time this can occur for 
which could be unsafe. This research does recognise that systems should be 
timely and that missing deadlines is undesirable, and as such does review a 
similar problem to configuration thrashing. However, this research views a 
short term deadline miss as no issue provided that the ratio is improved in 
the long term which is not acceptable for true real-time systems and thus 
does not solve configuration thrashing. Also as the system reconfigures 
when the ratio is detected to be outside of acceptable bounds, then this in 
theory could make configuration thrashing worse as no consequence for 
ongoing deadlines or the lack of progress of intended computing functions 
that will be caused by the reconfiguration. Such an approach could very 
easily reconfigure a component back and forth as neither configuration is 
quite meeting its QoS miss ratio which will only worsen the problem, 
although it is possible that in such a scenario nothing can truly be done to 
stop deadlines from being missed. 

4.3 Reconfiguration Control 

Reconfiguration control is necessary for reconfigurable systems, particularly 
online reconfigurable systems, as processes must be constrained in order to 
ensure configuration thrashing cannot occur. As stated in [57] "[w]ithout 
change management, risks introduced by runtime modifications may 
outweigh those associated with shutting down and restarting a system". The 
control techniques presented within this section could or in rare cases have 
been used to control reconfiguration. 
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4.3.1 Law Governed Interaction 

It is argued in [58] that" ... the great promise of architectural models has not 
been fulfilled so far, due to a gap between the model and the system it 
purports to describe ... this gap is best bridged if the model is not just 
stated, but is enforced". Law Ooverned Interaction (LOI) [58-63] has been 
designed as a coordination and control mechanism for heterogeneous 
distributed systems which can be used to enforce architectural principles. 

LOI provides a method of enforcing explicit coordination policies in a 
decentralised manor. The law of the system is expressed as an explicit 
collection of rules relating to the structure of the system, the process of its 
evolution, as well as the evolution of the law itself. As this implies, the law 
of the system is not and should not be immutable, as this would be overly 
restrictive and not allow for evolving systems. 

A whole range of principles can be enforced using LOI, including access 
control mechanisms, distributed coordination mechanisms, dynamic 
reconfiguration mechanisms, and various security mechanisms. A particular 
example of an architectural principle being enforced is highlighted in [63], 
where LOI is applied to the publish-subscribe paradigm to alleviate the 
"dark side" it has through the coordination of communication between 
agents. The dark side of the publish-subscribe paradigm comes from its 
decoupled communication which may complicate the system using it, 
making it less predictable, more brittle, and less safe. 

LOI can be used to control reconfiguration by adding reconfiguration 
primitives into the law of the system. In [62] reconfiguration primitives are 
added into the law of the system, and a token ring example is presented to 
show the addition and removal of agents from the system. Changing the 
programming of a given agent without shutting down the system is achieved 
in [62] by having a controller for each agent absorb the requests arriving to 
it while the update of its programming is in progress (buffering is used). 

LOI appears unsuitable (in its present form) for real-time systems, as it 
provides no method of ensuring that the system deadlines are met. It is 
stated in [58] that "[f]or an architectural principal to be defined into the law 
of an e-system it must be enforceable and the enforcement must be 
reasonably efficient". However, "reasonably efficient" is not good enough 
for real-time systems, and since any number of LOI rules can be placed in 
the law of the system, and they could be of any complexity, it is very 
difficult to carry out worst case analysis on the time taken to parse, interpret 
and apply LOI rule sets. 
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4.3.2 The Open Control Platform 

The Open Control Platform (OCP) [64] is a software infrastructure for 
complex systems that coordinates distributed interactions and supports 
dynamic reconfiguration. Its primary goals are to: ".,. accommodate 
changing application requirements, incorporate new technology, 
interoperate in heterogeneous environments, and maintain viability in 
changing environments". 

The OCP was specifically designed for complex dynamic systems such as 
aircraft, power systems, and telecommunication networks. The OCP is an 
entire platform that supports dynamic reconfiguration, thus its not just a 
reconfiguration control technique. 

It is recognised in [64] that configuration management (control) is required 
"to ensure that the configurations are valid and consistent with the overall 
system requirements". The OCP takes an architecture oriented approach to 
reconfiguration management, building on work by Oreizy et al [57]. 

In this approach strategies referred to as change application policies are used 
to enable changes to be made without violating reliability, safety, or 
consistency. Policies within this approach are maintained separately from 
application specific behaviour, facilitating the ability to change policies 
independently of functional behaviour, A policy could state something 
along the lines of: to replace a specific component, the new component must 
be online for a given period of time before the old component is removed. 
This policy would allow the new component to synchronise with the old 
component. 

The Oreizy et al approach distinguishes between two types of change, the 
first being changes in systems requirements, and the second being changes 
to system implementation that do not alter requirements. The first type, 
changes in system requirements, are not handled within the approach, as 
"[i]t is unrealistic to assume that any preconceived measures for maintaining 
system integrity would support this type of unpredictable and unrestricted 
change", The author agrees with this in principle; however, certain 
requirement changes could be foreseen and thus could be handled. It is not 
inconceivable for developers to anticipate certain requirement changes. 

The OCP developers are extending the approach presented in [57] to real­
time, mission critical applications, such as unmanned aerial vehicles. No 
technical information has been found to date that explicitly documents how 
the approach is extended to cope with real-time issues, though numerous 
articles do state that it is occurring. 
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4.3.3 Dynamic Change Management 

Kramer and Magee [65] present a structural based approach to runtime 
change. The reconfiguration management system within this approach 
interfaces between the functional view of application programming and the 
structural view of the system configuration. Changes are specified in terms 
of system structure only. The system is modified by a series of transactions. 
These change transactions are derived by management from the change 
specification. 

The reconfiguration management system requires that all affected nodes and 
their neighbours be in a quiescent state before the change is made, as well as 
during the change execution. This ensures that nodes directly affected by a 
change will not receive requests during the course of a change. This 
eliminates the need for buffering during reconfiguration. However, it is 
possible for a node to be connected to every other node in a system and thus 
when that first node requires reconfiguration the entire system must enter a 
quiescent state. This presents issues for real-time systems. 

The management system is responsible for making decisions regarding 
application change. This is done based on a limited model of the 
application. This approach does not presently address real-time issues. 
However, it is likely that this approach would not be suitable for real-time 
applications because, as stated above, when changes are initiated portions of 
the system have to move to a quiescent state, thus potentially large portions 
of the system, if not the entire system, will make no progress while 
reconfiguration takes place. 

4.4 Summary 

This chapter has presented a brief overview of related work in the form of 
reconfigurable formalisms which are capable of modelling reconfigurable 
systems, as well as capable of detecting configuration thrashing within a 
model. Any of these formalisms could have been used within work 
presented in chapter 3; CSP was chosen because of its tool support. As this 
chapter has simply presented a brief overview it has not gone into detail as 
to how each individual formalism could have been used to detect 
configuration thrashing. 

No related work has been found to date that specifically looks specifically at 
the issue of configuration thrashing, but this chapter has presented related 
work in the areas of fault-tolerance, reflection, self modifying code and 
general re-conjigurability in an effort to put configuration thrashing in 
context next to similar problems found in these areas of work. Many pieces 
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of similar work can suffer from configuration thrashing, but very few 
actually recognise that this is indeed an issue. The few that do recognise 
timing issues as a problem have reviewed this in terms of QoS and utilise 
feedback based algorithms which are not adequate for hard real-time 
systems. Also very few pieces of related work have a solid formal 
underpinning and the few that do, such as that presented by S. S. Kulkarni et 
al [51], focus upon safety through proving system invariants hold 
throughout reconfiguration, however this and other similar research does not 
address timing issues and as such does not and cannot address any issues 
similar to or relating to configuration thrashing. 

This chapter also presents related work on control techniques which could 
be used to ensure configuration thrashing cannot occur. Chapter 5 further 
builds on these control techniques and explores potential run-time solutions 
to configuration thrashing. Several options are explored within Chapter 5, 
including providing mechanisms for developers to choose when 
reconfiguration can / cannot occur, and a rule based solution. 
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Chapter 5 

Exploration of Potential Run-time Configuration 
Thrashing Solutions 

Chapter 3 presents a fonnal definition of configuration thrashing along with 
timed and un-timed CSP models capable of checking processes for 
configuration thrashing (using FDR). These models can be used to ensure 
that configuration thrashing is engineered out of systems. 

Some engineers may view producing models of their systems, in order to 
engineer configuration thrashing out of them, as excessively time 
consuming and also may lack the skills to produce such models accurately. 
Proving that thrashing cannot occur in an inaccurate model will not provide 
any guarantees for the system. Model checkers (such as FDR) are also 
susceptible to state space explosion [19]. This is particularly true of large 
complex models, which may make the use of the model checkers 
impractical or even impossible for some systems. 

This chapter explores potential run-time solutions to configuration 
thrashing. These solutions allow developers to include additional logic / 
processes in their systems in order to eliminate configuration thrashing. 
Several options are explored in-depth, from providing mechanisms for 
developers to choose when reconfiguration can / cannot occur to a rule 
based solution. The exploration of the rule based solution investigates 
issues such as rule expression, rule predictability, as well as potential core 
rules. 

The rest of this chapter is structured as follows. First Section 5.1 describes 
the options available for reconfiguration control. Section 5.2 then explores 
the options available when using rule sets to control reconfiguration. 
Within section 5.2.6 rule expression and rule predictability are discussed. 
Section 5.2.7 then describes the core rules which could be used within most, 
if not all, reconfigurable systems to eliminate configuration thrashing. 
Section 5.2.8 introduces a demonstrator which has been developed to 
highlight that the solution outlined using rule sets can sufficiently restrict 
reconfiguration and thus eliminate configuration thrashing. Section 5.3 
explores the possibilities available to provide developers with mechanisms 
to control reconfiguration, and section 5.3.1 reviews potential guidance for 
developers using mechanisms to control reconfiguration. 
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5.1 Reconfiguration Control 

There are several options available to ensure configuration thrashing cannot 
occur at run-time without the use of modelling techniques. The options 
available for reconfiguration control range from allowing developers to 
decide when reconfiguration is appropriate, through to providing a 
reconfiguration control process (a reconfiguration controller) to decide 
when reconfiguration can and cannot occur. 

One method of allowing developers to choose when reconfiguration can / 
cannot occur could be facilitated by providing engineers with the ability to 
declare windows of opportunity within source code for processes to 
reconfigure. This could be further developed to allow developers to specify 
the reconfiguration operator(s) which can be used during the period the 
window of opportunity is open. For example, a developer could open a 
window of opportunity that enables process replication, but not process 
migration. Chapter 2 introduced a candidate set of reconfiguration 
operators. Giving developers control over reconfiguration on a process by 
process basis is a novel approach, provided that guidance can be provided to 
them on how to do it. Without guidance, developers may not know when 
reconfiguration should take place or, more importantly, when it is "safe" for 
reconfiguration to take place. Developers may be tempted to develop more 
static systems than necessary, thus not gaining the full benefits that 
reconfiguration can provide. Also, allowing developers to control 
reconfiguration introduces the likelihood of human error. 

To reduce the likelihood of developers developing more static systems than 
necessary, and thus not gaining the full benefits that reconfiguration can 
provide, whilst still allowing developers to choose when reconfiguration can 
and cannot occur, it is possible to assume that reconfiguration can occur at 
all times apart from when the developer declares that reconfiguration should 
not occur. This would allow for the protection of certain actions, such as 
the closure of files, which cannot be just abandoned at any point in order for 
reconfiguration to take place. This approach does not give the programmer 
complete control over the reconfiguration scheme - it merely places 
constraints on the solutions a systems architect might adopt later. It should 
be easy for developers to define "critical sections" using this approach and 
thus protect certain actions, but it is difficult for developers to decide when 
reconfiguration should be denied to eliminate configuration thrashing. To 
eliminate the unknowns it is possible that developers may declare much 
bigger sections than required to not allow reconfiguration and thus produce 
more static systems than required. 

A more dynamic approach to reconfiguration control is to allow a 
reconfiguration controller to decide when reconfiguration can and cannot 
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occur. This type of approach allows system developers to focus on core 
development without concern for reconfiguration issues. 

Traditionally logic within control processes is predefined in source code; 
however, benefits such as quicker upgrades and run-time alterations could 
be provided if the logic in a reconfiguration controller were to be specified 
in a set of rules. Rule sets would most likely have a standard core set of 
rules which could then be extended for specific applications / systems. It is 
possible in some cases that additional rules would be required for specific 
new components upon their addition to a system; these new rules could be 
added at run-time provided they do not contradict existing rules. Dynamic 
rule sets introduces many potential problems which are discussed further in 
section 5.2.5. 

A method of runtime rule enforcement is then required and could be 
achieved through either centralised or decentralised means. Computational 
resources would be required for rule checking and enforcement which 
would not be required if developers took control of reconfiguration. 
However, if computational resources are kept to a minimum it is believed 
this approach would provide benefits over and above the computational 
resources required. The benefits provided by this approach are wide 
ranging and include controlling configuration thrashing by not allowing 
reconfiguration to occur when the next reconfiguration action would 
constitute configuration thrashing. Malfunctioning reconfigurable processes 
can also be controlled by specifying rules which the processes are designed 
to follow. For example, if a process is only designed to run on a certain 
processor type then a rule could be added to the system to ensure the 
process never ends up on a different processor type. This approach also 
provides the benefit of relieving developers of the task of deciding when it 
is "safe" for reconfiguration to occur. 

Certain similarities can be drawn between the options available for 
reconfiguration control and the options available for scheduling. Within 
scheduling some researchers believe that processes should be coded to give 
up control of resources when appropriate and thus are never forced to 
release control of resources. This is similar to the method outlined for 
reconfiguration control, where developers can be given the power to choose 
when reconfiguration can or cannot occur. In both scheduling and 
reconfiguration control this method can introduce uncertainty for the 
programmer which detracts / distracts from the core development tasks. 
Within scheduling the other option is to use an algorithm or protocol to 
control which processes get what share of processing resources. Scheduling 
algorithms are discussed in-depth in [20]. This approach is very similar to 
the use of a reconfiguration controller to control reconfiguration. In both 
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scheduling and reconfiguration control this method utilises increased levels 
of processing resource. 

Hybrid approaches of the two main reconfiguration control options outlined 
above are possible, but in general do not offer any further benefits. A 
hybrid approach would include logic which takes up computational resource 
and also require developers to state where reconfiguration should or should 
not occur, which still leads to uncertainty and potential for human errors. 

5.2 Reconfiguration Control using Rule Sets 

Reconfiguration control using rule sets introduces many options; the two 
primary options are how to apply rule checking and rule scope. Rule 
checking concerns where rule validation takes place and rule scope concerns 
where individual rules are valid. Both rule checking and rule scope can be 
centralised (global) or decentralised (local). Figure 1 illustrates the effects 
these two options can have upon a system when applied in either local or 
global scope. 

Local Rule Global Rule 
Checking Checking 
1-) 1-) 

Local Local 

Local Scope subsystem subsystem 

I~ rules, local rules, central 

enforcement enforcement 
mechanism 

System wide 
Systemwide 

rules, 
Global Scope rules, local 

enforced by a 
1-) enforcement 

central 
mechanisms 

mechanism 

Figure I: Possibilities for Reconfiguration Control Using Rule Sets 

5.2.1 Locally Scoped (Decentrallsed) Rule Sets 

If reconfiguration rules are scoped to subsystems (have a local scope), it is 
possible that diverse rule sets could exist within a system. Locally scoped 
rules allow for subsystems to be developed independently using independent 
rule sets without the need for a high level of discussion I integration with 
other subsystem engineers I developers. 



70 

With many diverse rule sets in existence throughout a system it is entirely 
possible for processes to become restricted to certain subsystems as diverse 
rule sets could effectively create subsystem boundaries that processes 
cannot cross. Research investigating transactions over boundaries given 
independently-formulated confidential rules is presented in [61]. This 
research introduces a coalition policy by which all independent subsystem 
(or enterprise) rules must comply, thus ensuring a certain minimum level of 
interaction. A similar approach could be taken to subsystem rules for 
reconfiguration control, whereby a minimum level of reconfiguration is 
ensured across all subsections, by enforcing all independently formulated 
rules to abide by a coalition policy. It should be noted that in an approach 
such as this, if the coalition policy were to require a change then all 
subsections must update their independently formulated rule sets to meet the 
requirements of the new coalition policy. 

5.2.2 Globally Scoped (Centralised) Rule Sets 

If rules are globally scoped, then no fixed subsystem boundaries exist and 
thus no governing coalition policy is required. Globally scoped rules 
simplify reconfiguration rule checking as only a single set of rules exist. 

Globally scoped rules do not allow for rule sets to be developed in small 
subsystems and thus will require input from many developers across the 
entire system / application to establish the rule set required. However, it is 
expected that a standard core set of reconfiguration rules will exist to 
control general configuration thrashing which may be tweaked and 
appropriately augmented for specific applications. This is further discussed 
in section 5.4. 

A change in requirements requiring alterations to be made to a global rule 
would be simple to implement, though difficult to analyse. The effects on 
the system will be wide spread and as such may become difficult to certify 
without significant further testing. 

5.2.3 Local (Decentralised) Rule Checking 

In a system where reconfiguration rule checking is decentralised, local 
processing must be conducted to authorise a reconfiguration action. Local 
rule enforcement would require increased local processing resources, but 
would not incur the delay introduced when centralised (global) rule 
checking is used due to network latency, or high load upon the central body. 
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It is possible, depending upon the rule scope, that decentralised rule 
checking would require a level of system knowledge to be maintained in 
order to make decisions upon reconfiguration requests. The work involved 
in keeping multiple controllers system states in sync could be prohibitively 
expensive in terms of processing when taking into account the number of 
system state changes and the quantity of controllers requiring 
synchronisation. 

An alternative to keeping decentralised rule checking controllers in sync is 
to allow controllers to query individual processes to establish the system 
knowledge required in order to make decisions. The time taken to query 
processes could make this approach impractical, though it would depend 
upon the real-time requirements of the system. The query action would 
most likely have to occur as part of a transaction; as if a controller has to 
make many queries to many processes in order to make a decision then it is 
possible for a process already queried to have changed state before a 
decision has been made. Restrictions would have to be placed upon the size 
of a given transaction to ensure that the system does not come to a halt when 
a reconfiguration request is made. This is similar to the approach taken by 
Kramer and Magee [65] where all affected nodes and their neighbours are 
required to be in a quiescent state before changes can be made. While a 
node is in a quiescent state, it is required not to initiate communication. 
This ensures that nodes directly affected by a change will not receive 
requests during the course of a change. 

Another alternative to keeping decentralised rule checking controllers in 
sync is to allow controllers to maintain the state for a given subsystem and 
query other controllers to get other subsystems data as required. This 
method would still require queries to be part of a transaction to stop queried 
data changing before a decision is made, though less queries should be 
required than would be required if individual processes were to be queried 
and restrictions could be put in place to ensure that entire systems are not 
brought to a halt when reconfiguration requests are issued. 

Within a decentralised rule checking environment each controller is a single 
point of failure; as a single controller exists within each subsystem. In the 
event of a controller failure it is likely that the controllers' subsystem would 
have to remain static from that point forward. If a controller were to 
become "faulty", and not fail, the knock on effects would then filter through 
the system, both in terms of greater load if requests for system state are 
required and also in terms of reconfiguring processes which invalidate rules 
within other subsystems. 

To stop "faulty" controllers adversely affecting the system a fault tolerant 
technique must be used. It has been said that U[t]he starting point for all 
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fault tolerant strategies is the detection of an erroneous state ... [t]hus the 
success of any fault tolerant system will be critically dependant upon the 
effectiveness of the techniques for error detection" in [32]. Replication 
error checks could be used to ensure faulty controllers cannot adversely 
affect the system, thus each controller's decisions should be checked by at 
least one other controller to ensure that the same decision would be made by 
the other controller. This will increase the load on all controllers. Other 
approaches to removing the single point of failure could include having a 
dual redundant or triplex voting reconfiguration controller mechanism 
within each subsystem, or even having redundant subsystems. The decision 
as to the technique used to remove the single point of failure will depend on 
resources available and the level of criticality of the subsystem and 
application as a whole. 

The approaches outlined for the removal of the single point of failure will 
not eradicate design failures or imperfect software. If design failures are 
expected in a system, then replication should be done using diverse software 
implementations. Diverse software designs have been shown to suffer from 
co-dependence, which basically means that common faults can appear in 
diverse implementations often due to specifications. Further information on 
studies which have been conducted on co-dependence of diverse 
implementations can be found in [66]. 

5.2.4 Global (Centralised) Rule Checking 

If reconfiguration rule checking is conducted centrally, then reconfiguration 
can take place only if a central body authorises it. Centralised rule checking 
would require the centralised controller to have reasonable knowledge of the 
system state in order for it to make informed decisions. It seems impractical 
for a centralised controller to query multiple processes at run-time to 
establish the system knowledge required to make decisions since the high 
volume of requests occurring would introduce a significant delay. 

The system state held within the central controller would most likely be 
maintained in a simple internal structure. The level of knowledge a 
centralised controller must possess in order to make decisions is dependent 
upon the rule definitions. For example, if rules allow developers to state 
that two processes should not be collocated, then the centralised controller 
must know where processes are located in order to decide if a move can take 
place and still preserve the rule. 

Since global rule checking requires controllers to have knowledge of the 
system structure, it will be important to ensure that the controllers can never 
end up with an invalid system state model. If a controller ends up with an 
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invalid system state then decisions may be made which break the rules of 
the system. It should be relatively simple to ensure a valid system state is 
maintained provided the controller starts with a correct initial system state, 
and assuming the controller only executes the permitted reconfiguration 
operators / primitives. If the controller is the only body which can allow a 
configuration change then it can ensure it updates its state upon each 
reconfiguration occurrence. However, a centralised controller would also 
need to know about failures, since a remote process could fail to reconfigure 
even though it has been given permission to do so. If a centralised 
controller updates its state on the assumption that the reconfiguration has 
actually occurred once it has issued permission then the state could become 
invalid. 

In a centralised approach, the requests for reconfiguration arise locally and 
must be authorised centrally. The events that trigger reconfiguration will 
often be failures - and their occurrence is naturally locally-detected, which 
has to then be propagated to the central controller. Problems could arise 
from a subsystem not notifying the controller of a failure and although this 
will not affect configuration thrashing it may well cause deadlines to be 
missed and thus system designers must ensure that failures are detected. 

A centralised controller can be used to enforce locally scoped rules or 
globally scoped rules. To apply locally scoped rules using a central 
controller, the controller must know all of the subsystem rule sets which 
exist within the system and also which segments of the system each rule set 
applies to. 

A centralised approach to reconfiguration rule checking inherently 
introduces a single point of failure in the controller. As discussed in section 
5.2.3, a "faulty" controller could allow system states which are not valid, 
and if the central controller were to fail altogether then it is likely that the 
system would have to remain static from that point forward. To eradicate 
this single point of failure it is recommended that replication error checking 
be used; multiple controllers must exist to check that the decisions made by 
the controller are correct and to take over should the primary fail. This 
method will eradicate the single point of failure and also protect the system 
from faulty controllers, though as discussed in section 5.2.3 this solution 
will not eradicate design failures or imperfect software. 

5.2.5 Further Rule Set Discussion 

Rule sets could be dynamic (able to evolve over time), providing 
advantages, such as simplified upgrades. Newly installed components could 
add additional rules to the system, thus ensuring the properties they require 
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are enforced when reconfiguration occurs. Evolving rule sets would be 
difficult to certify, as it is entirely possible that a corrupt component could 
add a rule which could stop the system from functioning correctly, or a 
component could add a rule which contradicts an already existing rule. For 
instance if the following rules existed in a system, A must loc(B) and A must 
loc(C), and then a third rule was added as follows B must ,/oc (C), then the 
system would have a contradictory (inconsistent) rule set. 

Consistency is a well-formedness condition for constraint sets. An 
inconsistent set of constraints does not admit any valid system state. It is 
important that a set of system rules can be checked for inconsistencies even 
when not evolving; if the rule expressions are complex, it is possible for two 
rules to seem to support each other, but in fact contradict each other, though 
this should be detected during testing. A restricted notation in which to 
express rules could help to lower rule complexity, thus reducing the chances 
of accidental rule conflict creation. Many inconsistencies should appear 
during testing, they would manifest themselves as deadlocks in many cases. 

Dynamic rule sets could themselves become susceptible to configuration 
thrashing, thus the use of dynamic rule sets will not be developed further 
within this thesis, even though they could potentially provide many novel 
benefits. If a temporally predictable run-time consistency checking 
algorithm can be developed for rule sets then further research in this area 
would almost certainly be worth progressing. 

Reconfiguration could be co-operative or forced. A co-operative approach 
would request processes to reconfigure. In a forced approach the system 
would interrupt the appropriate process regardless of its current task / state. 
With the forced approach, the process being reconfigured could be 
milliseconds from finishing a major cycle and thus essentially waste the 
progress it has made up to the point of reconfiguration, as it has not had 
time to output its results or store them in persistent memory. However, if 
the process is dealt with in a co-operative manner, then it is possible for the 
process to not respond to the required reconfiguration request and thus 
prevent the necessary reconfiguration from taking place. If it could be 
guaranteed that a process would reconfigure within a certain deadline from a 
reconfiguration request being made, then a co-operative approach would be 
preferable; however, this is impossible to guarantee as a process could 
freeze or have a backlog of buffered inputs to process before processing the 
reconfiguration request. 

A hybrid approach could be taken whereby a co-operative request is made 
and if no action is taken by the process before a given deadline, then a 
forced approach is taken. This approach would allow for a higher level of 
process progress whilst also ensuring reconfiguration eventually occurs, 
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though the worst case execution time for this is much greater than simply 
using a forced approach. Though this approach is interesting, it has not 
been explored further within the thesis as the worst case execution time is 
increased over and above the forced approach and it also has no method of 
ensuring that a major cycle wouldn't have just taken a few more 
milliseconds to complete before reconfiguration was forced. 

5.2.6 Rule Expression I Predictability 

For a rule based reconfiguration control system to be suitable for real-time 
mission-critical systems, it is necessary for the decision making algorithm to 
be predictable, both in tenus of the outcome and the time taken to produce 
the outcome. In order to create a temporally predictable decision making 
algorithm it is necessary for the rules themselves to have a limited notation, 
and to ensure that the complexity of the rules is restricted. 

Existing rule based control research, such as Law Governed Interaction 
(LGI) [58-63], does not address the issue of temporal predictability. In [58] 
it is stated that "enforcement must be reasonably efficient", however 
"reasonably efficient" is not enough to ensure deadlines are met. Also since 
any number ofLGI rules can be placed within the law of the system, and the 
rules can be of varying complexity (LOI rules are expressed in an 
unrestricted programming language), it is almost impossible to carry out 
worst case timing analysis. 

Restrictions in notation could simply outline a set of operators by which 
rules can be specified. These operators could include the candidate set of 
reconfiguration operators specified in chapter 2. These operators would 
require further extensions to include operators such as collocated(procJ, 
proc2) , which would be a logical operator to check if two processes are 
located on the same processor(s). 

Further research is required to examine the best method of restricting rule 
set complexity. Research into rule set complexity could also develop 
accurate worst case execution time calculations. To calculate worst case 
execution time many difficult issues would require further examination, 
such as can rules be applied iteratively?, how long do given operators take 
to execute?, and does the order of the rules matter? - does it change the 
outcome or the time taken to get to the outcome? 
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5.2.7 Core Malfunction and Reconfiguration Thrashing 
Restriction Rules 

Within most (if not all) reconfigurable real-time applications a standard core 
set of rules may exist to stop malfunctioning processes from adversely 
affecting the system, as well as generally controlling configuration 
thrashing. There are many different rules that could be imposed on a system 
regardless of whether rule-checking is conducted centrally or locally. Some 
examples are: a process cannot reconfigure more than once in a given time 
period, or processes may only reconfigure if they do not communicate with 
another process (or processes). 

To develop rules for configuration thrashing control it is important to 
consider the definition of configuration thrashing. In Chapter 3 
configuration thrashing is defined as " ... occurring when one or more 
configuration overlaps occur. The number of configuration overlaps that 
can be tolerated in a given time period or in a given sequence is application 
dependent and possibly even mode dependent ... ". A configuration overlap 
occurs when two subsequent reconfiguration requests are acted upon 
without a "sufficient interval" between them. 

Given this definition for configuration thrashing it is logical for one of the 
core rules to state that no more than x configuration overlaps may occur in a 
given time period, where x is the number of overlaps that can be tolerated in 
the given application. For this to be enforced a configuration overlap would 
need to be defined for the specific application - i.e. the sufficient interval 
would require a definition. This rule could exist in all systems but would 
require variables to be specified. The operator for this could be specified as 
follows: 

ConjOver(x, y, z) 

Where x is the maximum number of configuration overlaps which may 
occur, y is the interval in which the x configuration overlaps may occur, and 
z is the "sufficient interval" between reconfigurations to not be classified as 
a configuration overlap. In many applications this operator may require an 
extension in order to allow an additional variable to specify the process, thus 
allowing multiple processes to have different configuration thrashing 
definitions. Pseudo code showing how the ConfOver operator could be 
applied is shown below: 
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If time since last successful reconfiguration request> z then 
Reconfiguration is not a configuration overlap and is permitted and 

recorded 
Else 

Ilreconfiguration is an overlap 
If x overlaps have occurred in y interval then 

Reconfiguration denied 
Else 

Reconfiguration overlap recorded 
Reconfiguration permitted 

Preconditions for the ConjDver operator may be necessary, as all of the 
variables (x, y, and z) must be greater than O. Also it is expected that 
(x+ 1 )*z should be less than or equal to y, as if this is not the case then the 
ConjDver operator cannot guarantee that configuration thrashing will not 
occur. The guarantee cannot be made as in theory the system could make 
no progress for just under x*z units of time in the worst case and the 
sufficient interval (z) would be required again to make the required level of 
progress. However, (x+ I )*z <= y should not be made a precondition, as it is 
possible in some systems for it to be guaranteed that if a reconfiguration is 
to be made, then it will occur very soon after the last reconfiguration or not 
at all. In a system such as this it is possible for (x+ 1 )*z not to be less than or 
equal to y and still ensure configuration thrashing will not occur. 

As the pseudo code for the ConfOver operator shows, this rule would 
require the controller to keep a history of configuration changes / overlaps 
in order to apply the rule, which could prove resource intensive. Within the 
CSP models presented in Chapter 3 a history was maintained by which to 
check for configuration overlaps and thus configuration thrashing. In the 
approach taken within those models, events were removed from the history 
when they became stale (Le. were no longer of use when analysing for 
configuration thrashing). A similar approach could be taken within the 
controller to condense the resource usage records; however, this would still 
take up computational resources and as such a method must be available to 
analyse resource requirements. This method may also affect temporal 
predictability. 

Creating generic rule(s) to stop configuration thrashing for all systems 
without variables being added would effectively require all systems to be 
static. In some systems it may be that reconfiguration can occur once an 
hour, yet in others it may be acceptable to reconfigure every ten seconds. 

Another approach using rule sets to control reconfiguration thrashing would 
be to alter the rule set at runtime. Configuration thrashing could then be 
avoided by for example, adding rules to state that the reconfigured process 
must remain static for a period of time after a successful reconfiguration or a 
number of consecutive successful reconfigurations. However, this could 
alter the time taken to analyse the rules in existence. Also the rule should be 
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removed once it has exceeded the time that the process must remain static 
(become stale) which would incur a processing overhead. As discussed in 
section 5.2.5, dynamic rule sets could themselves become susceptible to 
configuration thrashing, thus this approach is not adequate. 

It can be argued that to stop a process from reconfiguring after one or more 
successful reconfigurations is wrong, as if a process moves to avoid a 
failure, and then encounters another failure, why is that it's fault and why 
shouldn't it be allowed to move again? This is a valid argument and all 
approaches to restricting configuration thrashing can be said to fall foul of 
this argument. However, if many successive failures have occurred / are 
occurring then either the software itself has an issue which cannot be 
rectified through reconfiguration or the underlying hardware has major 
issues, thus restricting reconfiguration will most likely not worsen the 
situation, but will solve the problem of configuration thrashing. 

To stop malfunctioning processes from adversely affecting the system a set 
of operators should be developed to constrain the system. An example of 
this would be an operator to keep two processes collocated. If an operator 
such as this were used, then a subsequent move operator, of any type, would 
cause both processes to move or deny the reconfiguration request to ensure 
they both remain collocated. The choice as to whether the processes are 
moved or the request is denied is dependent upon the logic residing in the 
reconfiguration controller. 

Other examples of possible constraint operators could include: 

• Static(proc) - ensures the specified process cannot move. 
• NumHops(procJ, proc2, x) - ensures that communication between 

two processes is kept to within x hops. An operator such as this 
would keep communication latency low. 

• LocateOnlyOn(proc.[loc /,Ioc2, ... ]) - ensures that the specified 
process only ever executes in the locations specified. This maybe an 
important operator if some processors don't have instruction sets that 
a process requires. 

Operators to stop certain types of reconfiguration may also be beneficial, as 
some processes may be designed to be mobile, but not duplicated, or other 
processes may be designed to be synchronised with, but not be mobile. 

The core set of rules for all systems to stop malfunctioning processes from 
adversely affecting the system, as well as generally controlling 
configuration thrashing would include at least one rule utilising the 
ConjDver operator and any restraints designed into processes should be 
specified in rules utilising the constraint operators, i.e. each process that 
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should remain static should have a rule in place to ensure that it remains 
static and processes that should be collocated should have rules in place to 
ensure they remain collocated. 

5.2.8 Rule Set Reconfiguration Control Demonstrator 

A demonstrator has been developed to show that the solution outlined using 
rule sets can restrict reconfiguration sufficiently to eliminate configuration 
thrashing. The demonstrator also allows experimentation to be conducted. 
Experimentation can be conducted not only for rule sets, but also for 
scenarios where developers control reconfiguration themselves; the 
controller can be disabled and reconfiguration operators can be accessed 
directly. Section 5.3 discusses the use of the demonstrator and the 
experimentation conducted with controllers disabled. 

The demonstrator has been built using Java RMI. Java RMI provides a 
means of invoking methods on remote Java objects. Methods can be 
invoked from separate Java virtual machines, possibly on different hosts. 
Although Java is not suitable for real-time applications, the demonstrator 
uses Java as the demonstrator itself was not intended to look into the 
problem to the level at which a real-time language would be required. The 
demonstrator was only intended to highlight that the proposed solution can 
eliminate configuration thrashing and to allow experimentation to be 
conducted. 

Java is not suitable for use in real-time applications as it does not respond 
reliably and predictably to real-world events. One of the reasons for this is 
that Java contains a garbage collection system which takes care of freeing 
dynamically allocated memory that is no longer referenced. Programmers 
in a garbage-collected environment have less control over the scheduling of 
CPU time devoted to freeing objects that are no longer needed. If a real­
time event occurred during or just before garbage collection, then timing 
would be unpredictable. Java have outlined a Real-Time Specification for 
Java (RTSJ) [67] which enables developers of real-time applications to take 
full advantage of the Java language while maintaining the predictability of 
current real-time development platforms. 

Within the demonstrator both rule scope and rule validation occur centrally. 
The decision as to whether rule scope and rule checking / validation should 
occur in a centralised or decentralised manner is an application specific 
decision and thus an arbitrary decision was made for the demonstrator. 
Section 5.2 discusses these options in further detail. 
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To allow reconfigurable processes to be controlled by a central controller all 
reconfigurable processes must extend a ReconfigProcess interface which 
defines several functions that each process must implement including 
delProcessO, gelDalaO and selDalaO. Using these functions the central 
controller can reconfigure processes, query and set processes internal states, 
as well as delete processes. No operators are developed within the 
demonstrator to allow for the synchronisation of process stacks, though this 
could have been facilitated by pausing the executing thread and passing it to 
a new process to continue. As discussed is Chapter 2 the stack represents 
the instruction stack (including the current position within the instruction 
stack). 

The demonstrator contains implementations of the following small set of 
candidate operators: 

• MoveProcDelFirSI 
• MoveProcDelAfter 
• MoveProc WStale 

The demonstrator is coded to execute on a single machine, though tests have 
been conducted between multiple machines and there is no functional 
difference, though there is slight performance degradation. All services are 
bound to the rmiregislry, which allows users to locate services needed. The 
rmiregistry provides a means oflocation transparency. 

Each reconfigurable process must provide a method of generating instances 
of themselves. Within Java this is achieved using factories which 
essentially generate instances of processes upon demand. A ProcessFactoy 
interface has been defined and each reconfigurable process must provide an 
implementation which extends this interface. Process factories must be 
bound to the rmiregistry to allow processes to be generated on remote hosts. 

Factories for creating reconfigurable processes could exist in a single 
location or could be duplicated in many locations. There are advantages and 
disadvantages to duplicating factories to many locations. One advantage of 
duplicating factories is that multiple factories could spread the load on the 
system for process creation. Another advantage is that if a processor were 
to be damaged with a process factory upon it, then the other process 
factories could continue to allow process creation with no need to recreate 
the failed factory. If factories are not duplicated and a processor were to be 
damaged that contained a process factory then no more process generation 
can occur for that process type until a new instance of that factory can be 
brought online (if one can be brought online). A disadvantage of factory 
duplication is that a higher level of processing resource is required to 
support multiple factories 
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An example process has been developed within the demonstrator which is 
susceptible to configuration thrashing. The example process named 
ReconjigProcesslmpljava attempts to complete a basic cycle which is 
defined in MainThreadjava and is shown in definition 5.2.S.1. The cycle 
can be interrupted through reconfiguration. 

Definition S.2.8.1 

public void rune) 
{ 

int i = 0; 
for (i=O; i<10; i++) 
{ 

try 
( 

Thread.sleep(5000); 
} catch (Exception e) 
{ } 

System.out.println(i); 

System.out.println("cycle complete"); 

Given definition 5.2.8.1 ConfOver rules were be placed on the system to 
restrict reconfiguration. The example process was assigned many different 
deadlines to complete and from these many different ConjOver rules were 
produced. In each case it was found that with some basic calculations a set 
of values could be produced for ConjDver. In each case it was found that if 
(x+ 1 )*z was ensured to be less than or equal to y, then configuration 
thrashing was stopped. Though further experimentation showed that in 
cases where it was guaranteed that if a reconfiguration was to be made, then 
it would occur very soon after the last reconfiguration or not at all then 
ConfOver rules could be used which did not ensure that (x+ 1 )*z was equal 
or less than y and still stop configuration thrashing. This further 
demonstrates that although (x+ 1 )*z should be less than or equal to y in order 
to guarantee the elimination of configuration thrashing, it should only be 
used as a guideline and not a precondition. 

Experimentation was also conducted to see if all of the variants of the 
candidate set of operators were required. The demonstrator includes 
implementations of many of the variants of the MoveProc operator 
(MoveProcWStateAndSync is excluded) and it was found that the 
MoveProcDelFirst and the MoveProcDelAfter were in the main the same, 
though there are scenarios in which the two would both be required. It was 
also found that a process could be queried for its internal state, then be 
reconfigured, and then have its internal state reinstated, thus not requiring 
the MoveProcWState operator, but this is a lot more confusing for 
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developers and also introduces the chance of stale states being inserted into 
reconfigured processes. 

The demonstrator clearly highlighted through the use of the example 
process how severe the effect configuration thrashing can have upon real­
time applications. With no rules placed in the system and reconfiguration 
operators triggered over and over again, the example process could make no 
progress at all; in fact in sever cases it didn't even manage to make a single 
output in more than 10 minutes. The demonstrator showed that 
configuration thrashing can be eliminated using a central controller even 
when reconfiguration operators are triggered over and over again, thus even 
faulty processes can be constrained. However, further research and 
development is required to deal with issues such as how to cope with high 
load and how to ensure that when large numbers of rules exist, the algorithm 
used within the controller is temporally predictable. The demonstrator in its 
present state has only been tested with a small number of rules. Appendix D 
contains the complete source code for the demonstrator. 

5.3 Mechanisms Allowing Developer to Control 
Reconfiguration 

Many types of mechanism could be provided to developers in many forms, 
for example mechanisms could be provided in the form of a class for 
inclusion in source code, or could be provided as a service (possibly a 
middleware service). The form in which the mechanisms are provided 
should make little difference to functionality, but could make a difference to 
the time taken to execute a mechanism. The form in which a mechanism is 
provided wiII affect the degree of separation between the mechanisms and 
the reconfigurable processes. If the reconfiguration mechanisms are 
compiled into the source code, then the process is tightly coupled to the 
mechanisms, but if for a reconfiguration mechanism to be provided as a 
service then they would be more loosely coupled. 

Mechanisms could be provided to developers allowing them to declare 
windows of opportunity within source code for processes to reconfigure. 
This could be further developed to allow the specification of reconfiguration 
operator(s} which may be used during the period the window of opportunity 
is open. For example a developer could open a window of opportunity that 
enables process replication, but not process migration. Chapter 2 introduced 
a candidate set of reconfiguration operators. 

As described, the demonstrator discussed in section 5.2.8 was developed in 
such a way that the controller could be disabled and reconfiguration 
operators could be accessed directly, thus allowing experimentation to be 
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conducted in a scenario where developers control reconfiguration. The 
experimentation conducted clearly highlighted that if processes are to be 
able to initialise reconfiguration for other processes, then some form of 
additional acceptance is required. If the reconfiguring process cannot accept 
or decline the reconfiguration action, then it will be very difficult for 
developers to ensure that their processes do not become susceptible to 
configuration thrashing, as processes could trigger configuration thrashing 
in one another. The method described above could be a solution to this; 
whereby processes declare windows of opportunity for others to reconfigure 
them and if no window is presently available then reconfiguration cannot 
occur. 

Experimentation with the demonstrator also highlighted the benefit of 
making the reconfiguration operators available via a service (or third party 
process), as during the experimentation the reconfiguration operators 
required a small amount of tweaking and this meant that the service alone 
had to be recompiled and not the individual processes being reconfigured or 
triggering reconfiguration. If the operators were compiled into the 
processes, then much more recompilation would have been required. 
Advantages in terms or runtime upgrades can also be achieved as during the 
recompilation only the reconfiguration service was are offline and other 
processing can be continued. 

Giving developers control over reconfiguration on a process by process 
basis is a novel approach, provided that guidance can be provided. Without 
guidance developers may not know when reconfiguration should take place 
or more importantly is "safe" to take place. Developers may be tempted to 
develop more static systems than necessary, thus not gaining the full 
benefits that reconfiguration can provide. Also allowing developers to 
control reconfiguration introduces the likelihood of human error. 

5.3.1 DIfficulties Providing Guidance for Developers 

Providing general guidance to developers on the matter of when 
reconfiguration can safely occur without allowing configuration thrashing to 
happen is a difficult task as different types of systems will require different 
logic to be applied. However, a starting point can be provided by ensuring 
that system developers fully understand the definition of configuration 
thrashing. Armed with the definition developers should be better equipped 
to avoid configuration thrashing. However, this is not sufficient as it can be 
very difficult to decide whilst designing / developing software whether a 
configuration overlap could have occurred before a particular point in the 
software, or if a "sufficient interval" will have definitely occurred at a given 
point in the software. 
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As different logic is required for different process types, this section 
explores the method used to define the ConjOver rules for the example 
process (as described above). From the method used to define these rules, 
we attempt to use the same logic to develop a method of restricting the 
processes in source code. 

In the example process defined in the demonstrator, it was relatively simple 
to define the variables which must be plugged into the ConjOver rule in 
order to allow a controller to stop configuration thrashing. This was done 
by reviewing the cycle length and calculating variables using the (x+ 1 )*z 
must be less than or equal to y equation. However, it is not simple to use the 
same logic in source code, unless a history of reconfiguration actions taken 
is made and windows of opportunity are opened based upon the assessment 
of the actions taken. 

To allow each process to track its previous reconfigurations could mean that 
an element of the processes state would be transferred even if the process 
migration operator used to conduct the reconfiguration did not require / 
request for the state to be transferred, as the history of the reconfiguration 
actions will most likely be held in its internal state. Transferring 
reconfiguration history between processes upon reconfiguration could create 
issues with temporal predictability and also contradict some of the 
operator's definitions. An alternative method to tracking reconfiguration 
history is to have a process / service available to track reconfigurations and 
maintain histories for processes to use when making decisions, however this 
method has a few downfalls: firstly the service / process could fail causing 
all reconfigurable processes to have to take a default action, which will most 
likely be to remain static, and secondly this approach could add significant 
network lag depending upon the number of queries made and level of 
history to be maintained. 

To decide when reconfiguration can occur within the source code for the 
example process in the demonstrator without the maintenance of some form 
of history of reconfiguration events, it would only be safe to allow 
reconfiguration to occur every other loop through the code. Note that 
though the example process in the demonstrator only completes one cycle, it 
is designed to represent a cyclic process whereby it simply restarts the cycle 
once complete. This will mean that the process must maintain a 
reconfigured state between cycles and thus even though a full history of 
reconfiguration events is not required, some information relating to recent 
reconfiguration is required. This approach is quite restrictive and given a 
process with a definition of configuration thrashing whereby reconfiguration 
can occur 12 times before it must be restricted would require the process to 
essentially over restrict reconfiguration or start to maintain a number of 
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reconfigurations that have occurred which is essentially starting to maintain 
a history of reconfiguration events. 

The example process reviewed is relatively simple and yet provides 
difficulties when attempting to provide guidance, thus more complex 
processes whereby branching occurs and synchronisation can occur upon 
shared variables would make the provision of advise almost impossible and 
developers are almost certain to over restrict reconfiguration in order to 
relieve the level of complexity they are faced with. 

5.4 Summary 

This chapter has explored potential run-time solutions to configuration 
thrashing. These solutions allow developers to include additional logic I 
processes in their systems in order to eliminate configuration thrashing. 
Several options were explored from providing mechanisms for developers to 
choose when reconfiguration can I cannot occur to a rule based solution. 

The explorations described and discussed within this chapter have shown 
that run-time solutions to configuration thrashing using a rule based 
approach can work, but at present many problems and imponderables exist 
for performance analysis. The problems and imponderables for the rule 
based approach include: 

• Rule Set Consistency Checking - An inconsistent set of constraints 
does not admit any valid system state, thus it is important that a set 
of system rules can be checked for inconsistencies. A timely method 
of checking rule set consistency is therefore required. 

• Worst Case Execution Time Analysis - It is important in a real-time 
application that the worst case execution time can be analysed to 
ensure that deadlines are met. To calculate worst case execution 
time for the rule checking algorithm many difficult issues would 
require further examination, such as can rules be applied iteratively?, 
how long do given operators take to execute?, and does the order of 
the rules matter? - does it change the outcome or the time taken to 
get to the outcome? 

Allowing developers to control reconfiguration within source code gives 
developers a high level of control, however without guidance developers 
may not know when reconfiguration should occur and thus are likely to over 
restricted reconfiguration. Also allowing developers to control 
reconfiguration introduces the likelihood of human error. Providing 
guidance to developers has proven difficult, as different types of systems 
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require different logic to be applied. Guidance can be provided for specific 
examples, but to categorise all process possibilities and provide guidance 
could be a thesis in its own right as there are potentially infinite numbers of 
system possibilities in which guidance may be required. This thesis has 
therefore only provided advice for the example process in the demonstrator. 
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To review the effectiveness of both the models outlined for configuration 
thrashing, and also the software solution outlined, a small case study has 
been developed. This case study is focussed upon battlefield surveillance 
using multi sensor data fusion [68, 69]. The ability to rapidly detect and 
identify potential targets both fixed and mobile from multiple sensor inputs 
is a critical function in modern warfare. Sensor fusion has been used in 
major military weapons systems, such as the U.S. Navy's Cooperative 
Engagement Capability (CEC), a Raytheon built system that enables ships 
and aircraft to combine radar data for improved defences against attack from 
aircraft and cruise missiles. 

A fully functional sensor network can perform many military-related 
intelligence missions in synchronization and harmony with human agents in 
the battlefield. A typical sensor network may consist of many different 
types of sensors such as satellites, radars, ground sensors (magnetic, 
acoustic, and seismic), and infra red imaging. An aim for research into 
sensor fusion is to produce cheap reliable sensors that are disposable. 

The key to any battlefield surveillance system is the rapid generation of 
target information. Targets need to be assessed as quickly as possible in 
order to guide troops accurately and ensure that missiles are aimed only at 
enemy targets. If data is not processed quickly enough then troops could be 
put in dangerous situations and I or missiles could be launched against 
friendly or non-hostile targets. Based on this it is possible for a 
reconfigurable multi-sensor data fusion system to suffer from configuration 
thrashing and as such forms the basis for this case study. 

Within this case study multiple sources of sensor data are required to get 
data to the processing unit within a periodic timeframe and the processing 
unit itself is required to process the data within a finite time frame otherwise 
the data used for decision making will be outdated and dangerous scenarios 
can no longer be guaranteed to be avoided. The case study comprises of 
three software components which are: a radar sensor, a ground sensor, and 
the main sensor fusion and battlefield decision making component. 

The rest of this chapter is structured as follows. First section 6.1 outlines 
the component functionality for use within the case study. Section 6.2 
explores the formal approach taken to the case study. Section 6.3 introduces 
and examines the software approach taken to the case study. Lastly, section 
6.4 presents a case study discussion. 
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6.1 Component Design 

In order to model or develop the software components for this case study, it 
is important to understand the functionality of those components. Here we 
outline each components functionality and describe which parts have been 
abstracted away for the purposes of this case study. This case study does 
not require perfect models or implementations as we are only attempting to 
capture the main elements and also no appropriate hardware is available for 
the sensor data to come from, thus this will have to be simulated. 

Within the case study it is assumed that data communications will always be 
reliable and instant or so close to it that it is negligible. Though "lossy" 
channels [70] could be added to the CSP to model a certain level of data loss 
and similar techniques could be used in the software solution. 

The usage of fixed processing times has been used within this case study as 
it would be assumed that these would be the worst case execution times and 
as such can be used to ensure that the system cannot thrash. However, 
variant times between fixed bounds could easily be added to the models 
outlined in this chapter and also the software developed. 

6.1.1 Radar Sensor 

A radar system has a transmitter that emits either microwaves or radio 
waves that are reflected by the target and detected by a receiver, typically in 
the same location as the transmitter. Although the signal returned is usually 
very weak, it can be amplified enabling the radar to detect objects at ranges 
where other emissions, such as sound or visible light, would be too weak to 
detect. 

Thus the radar sensor must emit a signal, receive a signal back, process the 
data received, and then it can send the results to the main decision making 
component for sensor fusion and decision making algorithms to be run. 
Depending on the type of signal emitted and the strength of the data 
received back it may take a while for the data received back to be processed. 

It is possible for radar sensor software to reconfigure for many reasons, the 
most obvious being fault tolerance. Other reasons could include changing 
the signal processing engine or to adapt how the sensor hardware is being 
utilised. Moving the component to different hardware could also be for 
resource reasons. 
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For the purpose of this case study the sensor data will be simulated and the 
processing time will be assumed to be static all times. No implementation 
will be provided for the signal processing as this is irrelevant for this case 
study. Within the case study it is assumed that an output must be provided 
to the data fusion and decision making process every 5 minutes. The time 
taken to receive data after the emition of either microwaves or radio waves 
is assumed to always be 1 minute and the time taken to process the data is 
assumed to be a static 1.5 minutes. 

6.1.2 Ground Sensor 

Ground sensors consist of a variety of sensor technologies that are packaged 
for deployment and perform the mission of remote target detection, location 
and I or recognition. Ideally, the ground sensors should be small, low cost 
and robust, and are expected to last in the field for extended periods of time. 

Ground sensors can be designed to locally process target information, such 
as detection, bearing estimation, tracking, classification and I or 
identification. They can also be used for reporting battle damage 
assessment (BOA) in standoff strike scenarios. Ground sensors may consist 
of a battery-powered, single or multiple co-located sensors, with signal 
processing capability to analyse target characteristics, and transmit target 
recognition information to a remote monitoring location. 

For this case study we will focus upon an acoustic ground sensor which is 
similar to the radar sensor in terms of its processing, apart from does not 
need to emit a signal before receiving a signal. Basically an acoustic ground 
sensor continually polls for sound signals, once received it processes the 
data, and then sends the results to the main decision making component for 
sensor fusion and decision making processing. We also assume that the 
particular sensor also sends a periodic signal to the main decision making 
component if no sound is detected. 

Ground sensor software will reconfigure very infrequently as in many cases 
only a single processor will be included in the small device which generally 
will have no way of utilising other processing hardware. However for the 
purpose of this case study it is assumed that the sensor is a little more 
sophisticated and has multiple processors mainly for fault tolerance 
purposes. 

As with the radar sensor, sensor data will be simulated and the signal/input 
processing time will be fixed. No implementation will be provided for the 
signal processing as this is not needed for this case study. This sensor will 
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only reconfigure once data has been sent to the fusion and decision making 
component and only if it suspects there is an issue. 

Within the case study it is assumed that an output must be provided to the 
data fusion and decision making process every 5 minutes. The time taken to 
process data is static at 1 minute. 

6.1.1 Sensor Fusion & Battlefield Decision Making 
Component 

The sensor fusion and battlefield decision making component is of critical 
importance as this component must make decisions based on information 
provided as to where troops are sent and also where weapons will be 
targeting. Thus it is of great importance that the data this component makes 
its decisions with are up to date and accurate. It is likely that in a true 
system the sensor fusion and decision making functionality would be 
separated into different components allowing for separation of concerns and 
increased flexability, however for the purposes of this case study they will 
be considered as one. 

It is possible for this component to reconfigure for fault tolerance, improved 
performance, and also ensuring data continuity. This type of component 
could also be subject to online upgrades and could possibly reconfigure to 
cope with changing requirements and logic for battlefield processing. 

For the purpose of this case study this component will receive data from the 
two sensors and make periodic outputs as to the strategy that should be 
undertaken. The processing time for the data fusion and decision making 
algorithm will be assumed to be the same at all times. No implementation 
will be provided for the data fusion or the decision making algorithm as this 
is not required for this case study. 

Within the case study it is assumed that an output must be provided every 
10 minutes. The time taken to fuse data and process data are both static at 
0.5 minutes and I minute respectively. 

6.2 Formal Approach 

In Chapter 3 two unique CSP models have been specified which enable 
developers to model their systems / processes and detect configuration 
thrashing potential. One of the models contains an element of time and the 
other does not. These models assist developers to engineer configuration 
thrashing out of their systems. 
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This section introduces the CSP models representing the three software 
components for this case study and discusses the issues that had to be 
overcome both in terms of developing the models, and also in terms of using 
the models to engineer configuration thrashing out of the system. The timed 
CSP model for configuration thrashing introduced in section 3.3.2 was used 
for this case study. 

In chapter 3 the models introduced only contained a restricted set of actions. 
All actions that related to internal process actions were modelled using the 
event doa. In order to model the two sensors the set of actions usable was 
extended to include the following: send_to Jusion, send_signal, 
recieve_signal, startyrocess_data, and endyrocess_data. These new 
event types allow for the model not to contain a high level of information 
regarding development detail but still capture the main events so that 
reconfiguration points and timing can be reviewed. As with the model 
presented in chapter 3 the new actions are hidden at a later stage as they are 
not needed to check for configuration thrashing. 

The radar sensor has been modelled in two parts. First the main RADAR 
definition is used to start the process and allow it to reconfigure or become 
RADARWORKLOOP. RADAR and RADARWORKLOOP are shown in 
definition 6.2.1 and definition 6.2.2 respectively. The reason the logic of 
this process has been broken in two is to simplify the use of the startup 
action after a reconfiguration has taken place. 

Definition 6.2.1 

RADAR • startup -> 

(RADARWORKLOOP 
I] move -> RADAR) 
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Definition 6.2.2 

RADARWORKLOOP • start min wk -> send_signal -> tock -> tock -> 
recieve signal -> - -

-start-process_data -> tock -> tock -> end-process_data -> 
send to fusion -> end min wk 

- -- > RADARWORKLOOP -
I) start min wk -> send signal -> move -> RADAR 
I) start-min-wk -> send-signal -> tock -> move -> RADAR 
I) start=min=wk -> send=signal -> tock -> tock -> move -> 

RADAR 
I) start_min_wk -> send_signal -> tock -> tock -> 

recieve signal -> move -> RADAR 
[) start min wk -> send signal -> tock -> tock -> 

recieve_signal :> start-process~data -> move -> RADAR 
I) start_min_wk -> send_signal -> tock -> tock -> 

recieve_signal -> start-process_data -> tock -> move -> RADAR 
I) start_min_wk -> send_signal -> tock -> tock -> 

recieve_signal -> start-process_data -> tock -> tock -> move -> 
RADAR 

I) start min wk -> send signal -> tock -> tock -> 
recieve_signal :> start-proces~data -> tock -> tock -> tock -> 
end-process_data -> move -> RADAR 

I) start_min_wk -> send_signal -> tock -> tock -> 
recieve_signal -> start-process data -> tock -> tock -> tock -> 
end-process_data -> send_to_fusIon -> end_min_wk -> move -> RADAR 

The radar sensor can take external stimuli to reconfigure and as such it has 
been assumed that it can reconfigure at any point. The model reflects this. 
It should be noted that the radar sensor does not allow reconfiguration to 
take place between the start_min_wk and send_signal actions as these are 
seen as being the same thing. The start_min _ wk event is only contained 
within the model to ensure that the configuration thrashing definition knows 
that work has begun. The same holds for the send_toJusion and 
end min wk actions. 

Within the model a tock action has been used to model the passage of 30 
seconds of time. As can be seen from the model, if no reconfiguration 
occurs then it will send an output to the data fusion and decision making 
component every 2.5 minutes. This means it can in theory easily meet its 
deadlines. 

As the radar sensor can reconfigure at any time via external stimuli then the 
models have shown that if developed to be completely reconfigurable it can 
suffer from configuration thrashing. The definition of configuration 
thrashing used within this model is 2 overlaps in 10 time intervals (5 
minutes). This was used as the time taken to complete a successful cycle is 
2.5 minutes and thus if we have 2 overlaps inside the 5 minute deadline then 
there is a possibility that the deadline has not been met. If we have a system 
that can only reconfigure at the start of its processing then it may be that a 
larger number of overlaps would be acceptable, however in this case 
reconfiguration can take place at any point. 

A restricted version of the radar process has then been modelled using the 
information gathered from the modelling of the non-restricted radar. Two 
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extra definitions have been added to the restricted radar to ensure that after a 
reconfiguration occurs, another does not until the minimum work is 
completed. These two definitions are named RADARNORECONF and 
RADARWORKLOOPNORECONF and are shown in definitions 6.2.3 and 
6.2.4. 

Definition 6.2.3 

RADARNORECONF = startup -> 
RADARWORKLOOPNORECONF 

Definition 6.2.4 

RADARWORKLOOPNORECONF - start min wk -> send signal -> tock -> tock -> 
recieve signal -> star-t process data --> tock -> tock -> 
end_process_data -> send_to_fusion -> end_min_wk -> RADARWORKLOOPREST 

The main radar process and the RADARWORKLOOP have both been 
modified to ensure that when a reconfiguration occurs that they go to the 
RADARNORECONF. The modified radar definitions are shown in 
definitions 6.2.5 and 6.2.6. 

Definition 6.2.5 

RADARREST = startup -> 
(RADARWORKLOOPREST 
[) move -> RADARNORECONF) 
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Definition 6.2.6 

RADARWORKLOOPREST : start min wk -) send signal -> tock -> tock -> 
recieve signal -) -start process data -> tock -> tock -> 
end process data -> send to fusion -> end min wk -> RADARWORKLOOPREST 

- [] start_min_wk --> s-end_signal -> -move- -> RADARNORECONF 
[] start_min_wk -> send_signal -) tock -> move -> 

RADARNORECONF 
[] start_min_wk -> send_signal -> tock -> tock -> move -> 

RADARNORECONF 
[] start min wk -> send signal -) tock -> tock -> 

recieve_signal --)mo~e -) RADARN-ORECONF 
[] start min wk -> send signal -) tock -> tock -) 

recieve_signal ->-start_process_data -> move -> RADARNORECONF 
[] start min wk -> send signal -> tock -> tock -> 

recieve signal --) st-art process data -> tock -) move -> RADARNORECONF 
-[] start_min_wk -=-> send~signal -) tock -> tock -> 

recieve signal -) start process data -> tock -> tock -> move -) 
RADARNORECONF --

[] start min wk -> send signal -) tock -> tock -> 
recieve signal -=> start process data -> tock -> tock -> tock -> 
end_process_data -) move--> RADARNORECONF 

[] start min wk -> send signal -) tock -> tock -> 
recieve signal ~) start process- data -> tock -> tock -> tock -> 
end_process_data -> send_to_fusion -> end_min_wk -) move -> RADARREST 

The ground sensor is much less reconfigurable than the radar sensor. In fact 
it has been assumed within the model that reconfiguration will only occur 
after an output has been made to the data fusion and decision making 
process. Also this type of sensor is unable to receive external stimuli to 
reconfigure; it is an internal decision if issues are detected. 

As with the radar sensor, the ground sensor has been modelled in two parts 
to simplify the use of the startup action after a reconfiguration has taken 
place. First the main GROUND definition is used to start the process and 
then it becomes GROUNDWORKLOOP. GROUND and 
GROUNDWORKLOOP are shown in definition 6.2.7 and definition 6.2.8 
respectively. 

Definition 6.2.7 

GROUND. startup -> 
GROUNDWORKLOOP 
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Definition 6.2.8 

GROUNDWORKLOOP - start_min_wk -> recieve_signal -> start-process_data -> 
tack -> tack -> end-process_data -> send_to_fusion -> end_min_wk -> 
RADARWORKLOOP 

[] start_min_wk -> tack -> recieve_signal -> 

start-process_data -> tack -> tack -> end-process_data -> 
send to fusion -> end min wk -> RADARWORKLOOP 

- -[] start min wk -;- tack - > tack - > recieve signal - > 
start-process_dilta :> tack -> tack -> end-process~data -> 
send to fusion -> end min wk -> RADARWORKLOOP 

- -[] start min wk -;- tack - > tack - > tack - > recieve signal - > 
start-process_data :> tack -> tack -> end-process_data ->-
send to fusion -> end min wk -> RADARWORKLOOP 

- -[] start min wk -;- tack -> tack -> tack -> tack -> 
recieve signal :> start-process data -> tack -> tack -> 
end-process_data -> send_to_fusIon -> end_min_wk -> RADARWORKLOOP 

[] start min wk -> tack -> tack -> tack -> tack -> tack -> 
recieve_signal :> st-art-process data -> tack -> tack -> 
end-process_data -> send_to_fusIon -> end_min_wk -> RADARWORKLOOP 

[] start min wk -> tack -> tack -> tack -> tack -> tack -> 
tack -> send to -fusi-on -> end min wk -> RADARWORKLOOP 

[] st-art~min_wk -> recieve~signal -> start-process_data -> 
tack -> tack -> end-process_data -> send_to_fusion -> end_min_wk -> 
move - > GROUND 

[] start min wk -> tack -> recieve signal -> 
start-process_dilta :> tack -> tack -> end~rocess_data -> 
send to fusion -> end min wk -> move -> GROUND 

- -[] start min wk -;- tack - > tack - > recieve signal - > 
start-process_data :> tack -> tack -> end-process~data -> 
send to fusion -> end min wk -> move -> GROUND 

- -[] start min Wk -;- tack - > tack - > tack - > recieve signal - > 
start-process_data :> tock -> tack -> end-process_data ->-
send to fusion -> end min wk -> move -> GROUND 

- -[] start min Wk -;- tack - > tack - > tack - > tack - > 
recieve signal :> start-process data -> tack -> tack -> 
end-process_data -> send_to_fusIon -> end_min_wk -> move -> GROUND 

[] start min wk -> tack -> tack -> tack -> tack -> tack -> 
recieve_signal :> st-art-process_data -> tack -> tack -> 
end-process_data -> send_to_fusion -> end_min_wk -> move -> GROUND 

[] start min wk -> tack -> tack -> tack -> tack -> tack -> 
tack -> send_to~fusion -> end_min_wk -> move -> GROUND 

As the ground sensor only reconfigures after the minimum level of 
processing has completed, it is by definition incapable of configuration 
thrashing as configuration thrashing is defined as x overlaps in a given time 
period and an overlap occurs when two subsequent reconfiguration requests 
are acted upon without a "sufficient interval" between them (i.e. where the 
end_min_wk has not occurred). The ground sensor can only reconfigure 
after the minimum level of processing has completed. 

The radar sensor and the ground sensor are very different in tenns of 
configuration thrashing properties even though they have a similar cyclic 
behaviour and effectively provide similar data to the data fusion and 
decision making component. The difference in reconfiguring as a result of 
external stimuli creates the significant differences between these sensor 
types. 

In order to define the fusion and decision making process the action set was 
extended further. The following actions were added: output_decision, 
startJuse_data, and endJuse_data. These actions are only needed to show 
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the process functionality and are hidden at a later stage as they are not 
needed to check from configuration thrashing. 

The fusion and decision making component has been modelled in three 
separate pieces to simplify the model in terms of number of separate options 
available. The three components are FUSION, FUSIONWORKLOOP, 
RECONFIGFUSIONWORKLOOP and are shown in definitions 6.2.9, 
6.2.10, and 6.2.11. 

Definition 6.2.9 

FUSION = startup -> 
FUSIONWORKLOOP 

Definition 6.2.10 

FUSIONWORKLOOP = start _min_wk -> RECONFIGFUSIONWORKLOOP 
[] start min wk -> tock -> RECONFIGFUSIONWORKLOOP 
[] start-min-wk -> tock -> move -> FUSION 
[] start=min=wk -> tock -> tock -> RECONFIGFUSIONWORKLOOP 
[] start min wk -> tock -> tock -> move -> FUSION 
[] start=min=wk -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOP 
[] start min wk -> tock -> tock -> tock -> move -> FUSION 
[] start=min=wk -> tock -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOP 
[] start min wk -> tock -> tock -> tock -> tock -> move -> 

FUSION 
[] start min wk -> tock -> tock -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOP 
[] start_min_wk -> tock -> tock -> tock -> tock -> tock -> 

move -> FUSION 
[] start_min_wk -> tock -> tock -> tock -> tock -> tock -> 

tock -> RECONFIGFUSIONWORKLOOP 
[] start min wk -> tock -> tock -> tock -> tock -> tock -> 

tock -> move -> FUSI-ON 
[] start min wk -> tock -> tock -> tock -> tock -> tock -> 

tock -> output_dlecis-ion -> end_min_wk -> FUSIONWORKLOOP 
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Definition 6.2.11 

RECONFIGFUSIONWORKLOOP = recieve signal -> start process data -> tock -> 
tock -> end process data --> start fuse data -> t()ck -> end fuse data 
-> output decision => end min wk => FUSIONWORKLOOP --

FUSION 

[]- move -> FUSION - -
[] recieve_signal -> move -> FUSION 
[] recieve signal -> start process data -> move -> FUSION 
[] recieve=signal -> start=process=data -> tock -> move -> 

[] recieve_signal -> start_process_data -> tock -> tock -> 
move -> FUSION 

[] recieve signal -> start process data -> tock -> tock -> 
end process data ~> move -> FUSION- -

- I] r-ecieve_signal -> start_process_data -> tock -> tock -> 
end process data -> start fuse data -> move -> FUSION 

- [] recieve_signal --> start_process_data -> tock -> tock -> 
end process data -> start fuse data -> tock -> move -> FUSION 

- I] r-ecieve signal --> start process data -> tock -> tock -> 
end_pro cess_data ~> start_fuse_data -> tock -> end_fuse_data -> 
move -> FUSION 

[] recieve signal -> start process data -> tock -> tock -> 
end process data ~> start fuse data -> toc-k -> end fuse data -> 
output_decision -> end_min_wk ~> move -> FUSION - -

As can be seen from the models, after a potential wait, the process should 
receive a signal and then process the data received before fusing the data it 
has and data it has received. Once the component has fused the data it can 
make a decision based upon it and output this. At any point during this 
reconfiguration could occur from external or internal stimuli. Also if no 
data is received for 6 periods of time (3 mintes) it will output a decision 
based upon stale data and restart the same process. It was decided that it 
should keep refreshing the data after 3 minute intervals, as it could take an 
additional 1.5 minutes to process the data incoming if received later and it 
seemed logical to keep the cyclic time of the process to 5 minutes or less to 
be in keeping with the sensors, as well as allowing for some reconfiguration 
an still ensuring an output. 

Just like the radar sensor, the data fusion and decision making component 
can reconfigure at any time triggered by external stimuli and as such the 
models have shown that it can suffer from configuration thrashing. The 
definition of configuration thrashing used within this model is 2 overlaps in 
20 time intervals (10 minutes). This was used as the time taken to complete 
a successful cycle in the worst case is 4.5 minutes and thus if we have 2 
overlaps inside the 5 minute deadline then there is a possibility that the 
deadline has not been met. 

A restricted version of the data fusion and decision making process has been 
modelled. The restricted process has been modelled much like the restricted 
radar process and ensures that after a reconfiguration occurs, another does 
not until the minimum work is completed. Definitions have not been 
included in this chapter as this is very similar to the definitions for the 
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restricted radar process. However, the restricted process is contained in 
appendix E along with the complete case study model. 

Section 3.4 discusses various difficulties in applying the configuration 
thrashing model. This case study has reinforced many of these issues. For 
example it was difficult even within such a small case study to decide upon 
the minimum level of processing needed before reconfiguration can occur. 
A single cycle of the process was decided upon, but this would have been 
made even more difficult if the processes involved were more complex. 
Also even with the minimum level of processing decided upon and 
deadlines being provided it became difficult to decide upon the values to 
place in the model for the number of overlaps in a given time period. In this 
case study it was made slightly easier because reconfiguration could occur 
at anytime, but even with this turning the deadlines into a number of 
overlaps that could occur in a time period was a little tricky. 

The limitations introduced in section 3.3.3 also became apparent within this 
case study as the deadlines for the sensors really come from the deadlines in 
place over the data fusion and decision making component. The data 
needed to be sent from the sensors within 5 minutes to allow the data fusion 
and decision making component enough time to process the data, fuse the 
data and make a decision within its 10 minute deadline. However, the CSP 
models only allow single processes to be analysed and as such this type of 
dependency cannot be analysed. 

Even though various difficulties and limitations became apparent within this 
case study, it also highlighted the usefulness of the models, as the processes 
were checked for configuration thrashing capabilities and where these 
capabilities were shown, they enabled for more restricted models to be 
developed that cannot thrash using the information gathered from the 
modelling process. Thus the models enabled configuration thrashing to be 
developed out of the processes. 

6.3 Software Approach 

Using the demonstrator introduced in section 5.2.8 this section introduces 
how the three processes described have been developed and shows how the 
configuration thrashing can be restricted. Discussions relating to the issues 
that had to be overcome both in terms of developing the implementations, 
and also in terms of using the restriction techniques are presented. 

The demonstrator ProcessF actory and Controller processes were in the 
main unchanged for this case study. Each of the sensor processes and the 
data fusion and decision making process was implemented by extending the 
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current ReconfigProcess interface and a primary thread has been defined for 
each process. To simplify the implementation the ReconfigProcess 
interface was extended slightly allowing for public functions for the data 
fusion and decision making process to receive data through public functions 
without the use of the RMI stub narrow functionality. Also it was assumed 
that there would be only one data fusion and decision making component 
and that it would be bound as FusionDM which make the implementation a 
little simpler whilst still enabled the full level of reconfiguration 
functionality required. 

As with the CSP models introduced in section 6.2 sensor data is simulated. 
All of the simulation is done via the use of a random number generator 
which if generated is an even number then it is treated as an input been 
received. If an input is received then the loop polling for input is broken 
and processing begins. The processing and fusion algorithms are not 
implemented, but instead a delay is used to simulate the worst case 
execution time of the algorithm. It should be noted that timings within the 
case study are ran at a tenth of the timings introduced in section 6.1 to 
enable rapid testing. 

Within the case study component design it was assumed that data 
communications will always be reliable and instant or so close to it that it is 
negligible. However, the demonstrator uses true RMI communication and 
as such although was executed upon a single machine and thus should be 
reliable could have communication faults and these have to be coped with. 
Also communication is not instant but as the demonstrator is executed on a 
single machine it will be negligible. 

The main functionality for all of the reconfigurable components is provided 
by the threads started as the service is initialised. The service simply allows 
for remote method invocation to occur and thus for statuses to be set or 
inputs / outputs made to or from remote objects. 

The CSP models for the case study, shown in section 6.2, show that the 
radar sensor, the data fusion and decision making process can suffer from 
configuration thrashing when not restricted and the ground sensor cannot as 
it cannot reconfigure until the minimum level of work is completed. Testing 
of the processes developed using the demonstrator has shown this to be true. 
This type of testing using the demonstrator proved to be very interesting and 
showed exactly how the data fusion and decision making component rely 
upon the two sensors for input. 

Three test classes have been created to test the data fusion and decision 
making component's reconfiguration and highlight its ability to suffer from 
configuration thrashing as well as show how rules can be used to restrict its 
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reconfiguration thus eliminating configuration thrashing. The first class, 
named Start java, gets a reference to the controller object and creates the 
data fusion and decision making process, the radar sensor and the ground 
sensor. As none of the processes defined directly reconfigure them selves or 
each other with the exception of the ground sensor, and as such the system 
does not suffer from configuration thrashing unless external stimuli is 
provided. The ground sensor only reconfigures after a successful output is 
made which is deemed to be the end of its minimum work and as such 
cannot suffer from configuration thrashing. 

The second class, named Reconfigurejava, provides external stimuli to 
reconfigure the data fusion and decision making process 30 times with a 
short time delay of just over 3 seconds between each reconfiguration. This 
causes the data fusion and decision making process to thrash thus further 
confirming what was shown in the CSP modelling. Outputs from the three 
processes using the Start and Reconfigure classes can be found in Appendix 
E subsection 3.1. 

The third class, named StartContjava, is very similar to the Start class. The 
main difference is that when the reference for controller object is returned, 
rules are enabled and a new rule is added to the controller. The rest of the 
class runs just as the Start class. When testing the Reconfiguration class 
upon the constrained process, configuration thrashing is eliminated. 
Outputs from the three processes using the StartCont and Reconfigure 
classes can be found in Appendix E subsection 3.2. 

The data fusion and decision making process is the only process fully tested 
for configuration thrashing and had rules defined for them. This was 
sufficient for this case study as the radar sensor will suffer from 
configuration thrashing in much the same way that the data fusion and 
decision making process does and the rule defined for this will be much the 
same, but with a different minimum work and time frame defined. Though 
the minimum work and time frame variables will be calculated in much the 
same way as the processes are very similar in construction. 

The rule used in the StartCont class is a ConjDver rule. As described in 
chapter 5, the ConjDver operator takes three variables: x, y and z. In this 
operator x is the maximum number of configuration overlaps which may 
occur, y is the interval in which the x configuration overlaps may occur, and 
z is the "sufficient interval" between reconfigurations to not be classified as 
a configuration overlap. In this example x is set to 2, y is set to 100 and z is 
set to 50 in order to eliminate configuration thrashing. It should be noted 
that the all timings are set to be a tenth of the real timings, to allow for rapid 
testing. 
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As with the difficulties in applying the configuration thrashing model it was 
difficult even within such a small case study to decide upon the minimum 
level of processing time needed before reconfiguration can occur. Also 
even with the minimum level of processing decided upon and deadlines 
being provided it became difficult to decide upon the values to place in the 
ConjDver operator. Similar values have been used to that in the CSP 
models. The rule that y <= (x+ 1 )*z did assist in the decision and checking 
that it was correct. A big benefit of the using the controller is that testing 
can easily be conducted on the live system as it runs to check if deadlines 
are met with various values in place. 

Often deadlines are discovered during system testing and as such CSP 
modelling would have to be amended to put the new deadlines in place. A 
distinct advantage of using the controller is that new rules can simply be 
added to the system or existing rules can be amended to suit the new rules. 
It would be hoped that as rules can be changed with relative ease, then the 
system rules put in place would not be over restrictive and altered as and 
when needed. Also as a system evolves, then each component can have its 
own unique set of rules that go into place to enforce its rules. 

The software solution has highlighted that similar issues to the ones 
experienced with the CSP models are apparent, but also shown that 
configuration thrashing can very successfully be eliminated using a 
controller. The biggest benefit of the controller process is that the developer 
does not have to alter his or her process when requirements change, as rules 
can simply be altered or added instead. 

6.4 Case Study Discussion 

The two approaches to solving configuration thrashing used within this case 
study have both shown themselves to be successful and assist developers in 
either engineering configuration thrashing out of their systems or restricting 
it to the extent that it is no longer an issue. 

The CSP approach provides benefits in that the model is validated to 
definitely not suffer from configuration thrashing under all circumstances. 
Whereas the software approach can be tested extensively and still there may 
be a chance that if the rules have not been thought through fully, then the 
system could thrash. However, modelling has to be done over and above 
the software development to use the CSP configuration thrashing models to 
check processes for configuration thrashing which developers may see as 
over restrictive. 
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This case study has shown that the software approach is far more flexible 
than the formal CSP approach as rules can be gradually changed to suit new 
and emerging requirements. When requirements were tweaked during the 
process of creating the CSP models used within this case study a sizable 
amount of rework was required, whereas the software approach would 
simply need an amendment to a rule or a new rule. 

The software approach allows for an evaluation of many processes 
simultaneously and enables the reviewing of interactions. The CSP 
approach has a limitation in that it can only review single processes 
presently though this has been detailed as a future improvement. 

As stated within this thesis modelling can suffer from state space explosion 
and as such complex models may not be able to be evaluated for 
configuration thrashing using the formal approach detailed in this thesis. As 
well as this one of the common issues with modelling is that if models do 
not reflect the system perfectly then all that the assertions prove is that the 
model cannot thrash and does not show anything regarding the actual 
implementation. 

Neither of the approaches really assisted in choosing how to define the 
minimum level of work that must be completed before a reconfiguration 
occurs, or how many overlaps can occur in a given time period. 
Experimentation can be conducted with both approaches, but since the CSP 
models as they stand only assess configuration thrashing and not the ability 
to meet deadlines, the software approach lends itself to this a little more. 

6.5 Summary 

This chapter has introduced a case study which has been used to show the 
usefulness of both the CSP modelling approach to eliminating configuration 
thrashing and also the software controller based approach to restricting 
systems reconfiguration actions based upon rule based logic. The case 
study has clearly highlighted some weaknesses and difficulties in using both 
of these methods, but also highlighted that both approaches can be used to 
eliminate configuration thrashing successfully and each have many unique 
benefits. 

Both of the approaches have been compared and contrasted. The CSP 
approach has a huge benefit in that if the system is modelled accurately then 
the system can be proven to not be capable of configuration thrashing, 
whereas the software approach cannot provide these guarantees. However 
the software approach is far more flexible and otTers developers an approach 
which fits the development methods that are already employed. 
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This thesis has presented a definition of configuration thrashing and 
explored various methods of eliminating it from reconfigurable systems. A 
formal approach has been presented using model checking techniques (CSP 
and FDR), which allows configuration thrashing to be engineered out of 
processes. Run-time techniques have also been explored, allowing 
developers to include additional logic I processes in their systems in order to 
prevent configuration thrashing. This chapter presents areas of future work, 
some of which are extensions to work presented in this thesis, and others 
that are related work not within the scope of the thesis. All future work 
proposals presented in this chapter would contribute towards certifiable 
dynamic reconfigurable systems capable of meeting deadlines. 

The rest of this chapter is structured as follows. First, section 7.1 describes 
future work in the form of blueprint to blueprint reconfigurations and the 
analysis of configuration thrashing upon groups of processes. Some 
discussions relating to options for blueprint representations and potential 
solutions to allowing blueprint to blueprint reconfiguration to occur are 
introduced. Section 7.2 considers future work on resource modelling and 
methods of proving equivalence of given resources; if achieved this work 
would allow software to be reconfigured at run-time in the presence of 
diverse hardware without the need for additional certification. Section 7.3 
describes work relating to contract restrictions for middleware systems. 
This approach could potentially allow message oriented middleware to be 
used in real-time reconfigurable systems. Section 7.4 discusses the work 
that would be needed to allow dynamic rule sets to be used in 
reconfiguration control systems, thus allowing potential benefits such as 
run-time upgrades. 

7.1 Blueprint to Blueprint Analysis 

The definition for configuration thrashing presented within this thesis 
focuses upon a single process and as such the CSP models presented within 
this thesis are also focussed upon a detecting configuration thrashing in 
single processes. 

As discussed in section 3.3.3, complex interactions will most likely exist 
between processes therefore developers are likely to consider 
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reconfiguration as a step from one system layout (or blueprint) to another. 
This is especially likely if the reconfiguration is intended to change mode. 

All of the models and definitions within this thesis allow configuration 
thrashing to be detected, removed or restrained on a process by process 
basis. Although, none of the models or definitions consider the fact that 
interactions between groups of processes may mean the processes that in 
theory can "thrash" (and would be flagged as needing alterations in the 
current CSP models) cannot when the group of interacting processes cannot 
produce the stimuli required to trigger the configuration thrashing. Thus 
further research is required to take into account the complex interactions 
that exist between processes. In order to analyse the interactions it is 
important that we also investigate how a system can step from one blueprint 
to another blueprint as this is the process in which configuration thrashing 
will occur. In order to do this we also must define what a blueprint is. 

Research in IMA / IMS has attempted to map system layouts using 
blueprints [71, 72]. However, blueprints are not precisely defined in any 
papers found to date. A distinction has been made between Design Time 
Blueprints (DTBPs) and Run Time Blueprints (RTBPs). Although, the 
distinction between RTBPs and DTBPs is entirely based upon usage, i.e. 
whether or not they are used in a live system. 

In [1] RTBPs are defined as "[t]he mapping of which part of which 
application goes onto which hardware module in the IMA system" which is 
a reasonable definition, albeit vague. While discussing blueprints in [72] 
the author states "[t]he generation of the blueprints depends on accurate 
information about the applications, (eg memory, processing, timing 
requirements) and about the hardware in the system, (eg memory and 
processing availability)", which indicates that precise knowledge of the 
system hardware must be available in order to design blueprints, but this 
does undermine certain aims of IMA such as plug and play hardware. 

Bradley et al [71] state that "[b] lueprints provide the generic operating 
system with configuration information so that the MADS can be adapted for 
a particular avionics system", which is no more descriptive than the 
definition found in [72]. However, Bradley et al go on to state that 
blueprints include: 

• The application run-time requirements 
• Allocation and scheduling tables and rules (generated by the off line 

allocation and scheduling tools) 
• Hardware resources descriptions 
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In the authors opinion three possible methods of representing blueprints are 
available. Each of these is briefly described below: 

1. Static Hardware Mappings - this would involve mapping 
individual processes to individually selected physical hardware. 

2. Resource Mappings - this would involve mapping processes to 
resource requirements (i.e. processor and memory requirements). 
The system would map the processes onto hardware when the 
blueprint is activated. This may require certain elements of the 
future work presented in section 6.2 to allow resource equivalence to 
be reasoned about. 

3. Hybrid - this would physically map critical processes onto 
individually selected physical hardware, but use resource mappings 
for the rest of the system. It is assumed that in this type of blueprint 
the critical processes in the blueprint would not vary significantly 
between blueprints. 

In the authors opinion resource mappings provides the most promising 
option as it provides the most flexibility and allows increased dynarnisism 
within systems. If used could be constructed as a combination of resource 
requirements and communication patterns. Communication patterns would 
specify the interactions that should occur between processes. Both the 
communication and resource elements are required since much of the 
resources required for processes are dependent on the communication 
resources they require. 

There are likely to be many possible valid hardware mappings for each 
blueprint. Figure 1 shows the relation between modes, blueprints and 
hardware mappings: 

Mode 

~~ 
{BPI, ... , BP.} 

7~ 
{{ Mappingll, ... , Mappinglm}, ... , {Mapping.I, ... , Mapping ... }} 

Figure 1: Mode, Blueprint (BP), and Mapping relationship 

To allow reconfiguration between blueprints there must be a method of 
taking a blueprint in a given format and storing it in the system. Then when 
the blueprint is required to become active, some part of the system must 
calculate a valid process to hardware mapping and reconfigure the system to 
the valid configuration. It should be noted that a process should be in place 



106 

to ensure that system invariants are not broken during this reconfiguration. 
This could in itself form a PhD as formally proving that dynamic large scale 
system changes can never break invariants will be very challenging, 
particularly if we are to introduce fault handling during the same process. 

The number of transitions involved in a reconfiguration will require 
investigation as it is likely that there will be many sets of transitions which 
could take a system from its initial configuration to the valid reconfigured 
configuration. Establishing the best set of transitions to use is an issue to be 
considered for further research and a minimalist approach to this seems 
sensible as the less transitions and process movement involved, the easier 
the enforcement of hard real-time deadlines will be. 

Once questions over how blueprint to blueprint reconfiguration will occur 
have been answered, then it will be possible to extend this research to 
consider configuration thrashing in groups of processes that reconfigure 
using blueprints. This should allow more flexibility to developers when 
considering configuration thrashing. 

7.2 Resource Modelling / Equivalence 

In many systems diverse hardware exists, but in most of these systems the 
software is only tested and certified for the hardware it was intended to 
execute upon. If hardware is altered, re-certification is required and is often 
a lengthy and costly process. Re-certification must be conducted to ensure 
that the applications can meet necessary deadlines upon the new hardware. 
In fully dynamic reconfigurable systems both hardware and software could 
reconfigure; thus software could end up attempting to run on hardware that 
it was not originally intended to execute upon. 

In order to support reconfigurable systems which adapt themselves in the 
presence of diverse hardware, it is necessary to dynamically assess if a 
process can execute and meet deadlines on hardware it was not originally 
intended to execute upon. One way to achieve this assessment is to model 
hardware resources and process requirements, thus allowing checks to be 
conducted before reconfiguration takes place. This should also allow 
equivalences between hardware to be analysed. This may seem to be a 
relatively straightforward task; however, hardware resource modelling and 
process resource requirement modelling are not trivial. Hardware-resources 
have many attributes and each attribute is equally important. Processor 
attributes may include the following: 
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• Cpu speed (e.g. l200MHz) 
• Cache size 

o L 1 cache size 
o L2 cache size 
o L3 cache size 

• Pipelining 
• Operating voltage 
• Bus frequency (MHz) 
• Number of channels 
• Core frequency (MHz) 
• Bus/Core ratio 
• Instruction sets (e.g. 3D NOW) 
• Co-processor 
• Register size (e.g. 32bit, 64bit - particularly makes a difference to 

the amount of physical memory which can be accessed) 
• Cycle time 

Appendix C contains a more comprehensive list of possible processor, 
memory, OS, and storage attributes. The attributes outlined in appendix C 
are only a candidate set of attributes and many others could be defined. 

Each individual attribute could have a large impact upon executing 
processes. For instance pipelining attempts to improve the performance of 
processors in large sequential programs; however, in some cases the 
pipe lining decreases performance. Thus pipe lining in general improves 
performance, but when conducting worst case analysis for program 
execution, it makes it worse. Also attributes cannot be assessed 
independently. For example it does not necessarily hold that a process 
which can meet its deadlines on a l200Mhz processor can meet its deadlines 
on a 2000Mhz processor, as it could have a different instruction set or use 
an inefficient instruction. A partial match is unlikely to be sufficient. 

Further work is required to find a suitable method of expressing resources 
and also resource requirements. The expression of resources and 
requirements must be impossible to misinterpret and also simple to analyse. 
Also an algorithm for equating resources and requirements is required. This 
algorithm is likely to need a minimum number of attributes and 
requirements in order to provide a match, though further work is required to 
state what the minimum set would be. 

If process requirements are expressed accurately and a timely algorithm can 
be developed to match hardware attributes to software requirements, then it 
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is possible that software could be reconfigured at runtime in real-time 
applications where diverse hardware exists with no need for recertification. 

7.3 Contract Restriction for Reconfigurable 
Middleware Systems 

Middleware supports communication between distributed objects, 
abstracting away the networking issues from the application designers / 
developers. An important aspect of middleware systems is location 
transparency, allowing clients to remain unaware of the location of a 
component or service. Location transparency naturally lends itself to 
reconfigurable systems, since when a service moves the client does not need 
to be aware of the move. Message Oriented Middleware (MOM) lends 
itself particularly well to reconfigurable systems as it not only allows for 
location transparency, but also allows asynchronous communication and 
provides support for multi-casting. MOM can distribute the same message 
to multiple clients in a way which is transparent to the clients. 

Publish-subscribe systems are an advanced type of Message Oriented 
Middleware. In a publish-subscribe system a message sender does not 
specify the address of any receiver. Instead, the sender publishes an event 
with a subject (filter), while the receivers who are subscribing to the subject 
will receive an asynchronous notification event. This provides a mechanism 
which could allow reconfigurable components to register for message 
receipt upon reconfiguring instead of informing the message publisher of 
the reconfiguration. Publish-subscribe systems also allow for complete 
decoupling of source and target. In fact in [73] it is argued that publish­
subscribe systems allow for decoupling of source and target along three 
dimensions; space, time and flow. These are described below: 

• Space decoupling: the publisher does not know who the subscribers 
are (if any) and the subscribers do not know who the publisher is. 
This means that the publisher has no reference to the subscribers. 

• Time decoupUng: the interacting parties do not have to be actively 
participating in the interaction at the same time, and so the publisher 
may publish an event when a subscriber is offiine; the subscriber 
will be notified of the event once it comes online again (though the 
publisher mayor may not be online at the same time). 

• Flow decoupUng: the flow of the messages from publisher to 
subscriber is not synchronised upon by the publisher or subscriber. 
There is no blocking or polling by either party. 



109 

This level of decoupling allows for a highly reconfigurable system. Within 
a publish-subscribe system if a process wishes to receive messages, it can 
subscribe and a route will become available, provided that hardware 
connectivity is available, allowing messages to be received by the new 
subscriber; the route does not have to be pre-defined. 

Though the 'publish-subscribe' paradigm has many benefits, the publish­
subscribe paradigm (in its present form) is not suitable for real-time systems 
as it is not temporally predictable, and the resource requirements are not 
predictable. In [63] T. Murata & N.H. Minsky have stated that the publish­
subscribe paradigm " ... has a dark side, which may complicate the system 
using it, making it less predictable, more brittle, and less safe", and they 
have gone on to suggest that restrictions can be placed on the publishers and 
subscribers to alleviate the 'dark side' . 

The benefits provided by publish-subscribe system have not gone 
unrecognised, as publish-subscribe systems have been used in real-time 
systems, in particular systems for the US Homeland Defence [74]. 
However, even in this work the issues relating to temporal predictability 
have not been addressed. It is believed that contracts could be used to 
restrict communication and ensure temporal predictability thus allowing it 
be used in real-time reconfigurable systems. 

Further work should be conducted to investigate the possibilities for 
restricting the publish-subscribe paradigm using contracts. It is proposed 
that the use of intermediaries ("brokers") between a publish-subscribe 
system and the publishers/subscribes could be used to enforce contracts. 
However, it must be noted that brokers need to be simple and predictable to 
allow accurate timing information to be gathered. Timing information is 
required for brokers, in order to ensure deadlines will be met. An 
investigation should be conducted to establish which properties of a contract 
can be enforced locally (within a single broker), which require interaction 
with other brokers, and which require interaction with the publish-subscribe 
system itself (this may include properties which require modifications to the 
publish-subscribe system to allow for enforcement). 

If middleware systems such as the publish-subscribe paradigm can be 
restricted, then as indicated above, they could present a flexible architecture 
that would enable the development of highly reconfigurable real-time 
systems. 
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7.4 Dynamic Rule Sets for Reconfiguration Control 

Chapter 5 explored potential run-time solutions to configuration thrashing, a 
rule based solution was explored in-depth and various issues were 
discussed. Chapter 5 also introduced the notion of dynamic rule sets, 
whereby rule sets can be altered at runtime. Dynamic rule sets could be 
used to control configuration thrashing by imposing rules upon a process 
reconfiguration to ensure that the reconfigured processes remain static until 
a new process reconfiguration request would not constitute configuration 
thrashing. This is a novel solution to restricting configuration thrashing and 
could potentially take less computational resources than the other run-time 
approaches discussed within the thesis. 

The use of dynamic rule sets would affect the temporal predictability of the 
controller's decision making, as the number of rules that exist within the 
system will vary; rules added to stop reconfiguration occurring and thus stop 
configuration thrashing should be removed once they become stale. 
Removal of rules would incur a processing overhead, which could alter the 
worst case execution time for the decision making algorithm. It is possible 
for the stale rules to remain within the system, as once the time period is 
exceeded the rules will have no effect. However, the effect on the worst 
case execution time of leaving all stale rules in place would most likely be 
worse than the overhead required removing the stale rules. 

Additional benefits such as quicker upgrades and run-time alterations could 
be provided if dynamic rule sets were to be used. It is possible in some 
cases that additional rules would be required for specific new components 
upon there inclusion in a system - these new rules could be added at run­
time provided they do not contradict existing rules. 

Further work is required to further explore dynamic rule sets. A temporally 
predictable run-time consistency checking algorithm will require further 
research. Also a method of ensuring that new rules added at run-time do not 
contradict existing rules is required. This thesis did not further explore 
dynamic rule sets, as they could themselves become susceptible to a form of 
configuration thrashing. If a temporally predictable run-time consistency 
checking algorithm can be developed for rule sets then further research in 
this area would certainly be worth progressing. 
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7.5 Summary 

This chapter introduces four avenues for future work. The future work 
presented is either extensions to work presented, or related work that is not 
within the scope of the thesis. 

The first piece of potential future work introduced the difficulties in 
resource modelling and methods of proving equivalence of between 
resources. This work could allow software to be reconfigured at run-time in 
the presence of diverse hardware with no need for additional certification. 
The second piece of potential future work describes work relating to 
contract restrictions for middleware systems. This could potentially allow 
message oriented middleware to be used in real-time reconfigurable 
systems. The third piece of potential future work would allow dynamic rule 
sets to be used in reconfiguration control systems, which could provide 
benefits such as run-time upgrades. 
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This thesis has introduced reconfigurable systems, and identified an 
anomaly that can occur within reconfigurable systems whereby a system 
consumes most, if not all, of its resources reconfiguring and thus cannot 
execute intended computing functions. This has been named "configuration 
thrashing" due to its similarities to memory thrashing. The main objectives 
for this work were: first, to introduce reconfigurable systems and explore 
the possibilities within reconfigurable systems to enable an unambiguous 
extensible reconfiguration language to be developed; second, to characterise 
and define configuration thrashing and investigate the effects it has upon 
real-time reconfigurable systems; and third, to develop methods by which 
the effects of configuration thrashing on reconfigurable real-time 
applications can be eliminated or at least reduced sufficiently to stop 
reconfiguration from interfering with intended computing functions. 

Model checking is utilised within this thesis to provide a means of ensuring 
that configuration thrashing is engineered out of systems. Potential run-time 
solutions to configuration thrashing are also explored. Run-time solutions 
are explored because model checkers are not adequate for large complex 
systems, as these will suffer from state space explosion. The work 
presented in this thesis provides a step towards certifiable dynamic 
reconfigurable systems capable of enforcing deadlines. The elimination of 
configuration thrashing is necessary, though not sufficient, for this goal. 

The remainder of this chapter is organised as follows. First, Section 8.1 
briefly summarises the exploration of possibilities within reconfigurable 
systems using a VDM-SL model. Section 8.2 discusses the definition of 
configuration thrashing. Section 8.2.1 discusses the elimination of 
configuration thrashing using model checkers, and Section 8.2.2 looks at 
run-time techniques for configuration thrashing elimination. Section 8.2.3 
reviews the effectiveness of the two approaches introduced to eliminate 
configuration thrashing by drawing upon the case study introduced in 
chapter 6. Section 8.3 gives the final conclusions. 

8.1 Reconfigurab/e Systems 

Reconfigurable systems offer the ability to adapt hardware and / or software 
to meet changing requirements. Reconfigurable devices, particularly Field­
Programmable Gate Arrays (FPGAs) have been the subject of increased 
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popularity, due to having been shown to accelerate a number of computing 
applications. 

Reconfigurable software provides the ability to alter software systems either 
in terms of software linkage, or adding / removing processes. Online 
reconfigurable software systems offer many potential benefits over systems 
only capable of omine reconfiguration including: online software upgrades, 
adaptability, self-management, and increased fault-tolerance. 

Research into reconfigurable systems has shown that a suitable language in 
which to express the behaviour of reconfigurable systems is lacking. Many 
terms used in reconfigurable systems research are not well defined and thus 
can be confusing or even ambiguous. Chapter 2 introduced a three-level 
model which has been specified formally in VDM-SL to provide a basis for 
exploring the possibilities available within reconfigurable systems. The 
VDM-SL model has been built to allow architectures to be manipulated 
using a set of well defined reconfiguration operators. The operators 
outlined form an unambiguous extensible reconfiguration language. The 
VDM-SL model is very detailed and all operators specify implementation 
detail, thus eliminating ambiguity. 

The VDM-SL model has yielded many interesting insights. It has shown 
that the number of options available within reconfigurable systems is greater 
than anticipated. The model has also shown that although proxies are not 
commonly associated with reconfigurable systems, they may have a 
valuable role to play in dynamic reconfigurable systems, when a totally 
interconnected network is not available. Proxies also offer the benefit of 
buffering messages whilst reconfiguration occurs. 

As well as providing insights into the options available for reconfigurable 
systems, and how individual reconfiguration operators can be implemented, 
the model has also provided interesting insights into reconfigurable 
architectures. For example, it has shown that it seems necessary to allocate 
all processes a global unique identifier to avoid reliance on (inadequate) 
location-dependent references, as well as showing that even with minimal 
system invariants, some operations require atomic actions to ensure system 
invariants are not violated during reconfiguration. 

The research into reconfiguration operators has shown that the 
implementation of the operators specified in the VDM-SL model would in 
the main be difficult, though not impossible. Certain operators may require 
OS support, for example operators which synchronise processes' instruction 
stacks may require OS support to write to such private memory areas. 
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8.2 Configuration Thrashing 

Configuration thrashing is an anomaly which can arise in real-time 
reconfigurable systems. It is, in essence, a lack of progress of intended 
computing functions due to reconfiguration activity consuming essential 
resources, thus causing deadlines to be missed. 

It may be argued that deadlines are missed and progress is not made in 
reconfigurable systems due to non-reconfiguration functionality being 
inefficient, rather than reconfiguration actions utilising required resources. 
The author does recognise that in some cases improvements in non­
reconfigurable actions could allow processes to meet deadlines without 
reconfiguration alterations, though it is not possible in all cases. In extreme 
cases reconfiguration could take place continuously, thus making it 
impossible for non-reconfiguration functionality to make progress no matter 
how efficient it is. 

Configuration thrashing is defined within Chapter 3 of this thesis as 
" ... occurring when one or more configuration overlaps occur. The number 
of configuration overlaps that can be tolerated in a given time period or in a 
given sequence is application dependent and possibly even mode 
dependent ... ". A configuration overlap occurs when two subsequent 
reconfiguration requests are executed without a "sufficient interval" 
between them. The sufficient interval required in a given configuration is 
application dependent. The worst case scenario is a never ending series of 
consecutive configuration overlaps, which logically will always be 
classified as configuration thrashing as progress cannot be made. 

If configuration thrashing is not eliminated then it is possible for a situation 
to arise where a reconfigurable system cannot provide sufficient resources 
to conduct its primary computing functions due to reconfiguration actions 
utilising required resources. 

Though no literature found to date specifically explores configuration 
thrashing. Related work in the areas of fault-tolerance, reflection, self 
modifying code and re-configurability in general have been explored in an 
attempt to put configuration thrashing in context with similar problems 
found in these related research topics. This exploration found that many 
pieces of similar work can suffer from configuration thrashing, but very few 
actually recognise that this is indeed an issue. The few that do recognise 
timing issues as a problem have reviewed this in terms of quality of service 
and utilise feedback based algorithms which are not adequate for hard real­
time systems. Also very few pieces of related work have a solid formal 
underpinning and the few that do focus upon safety through proving system 
invariants hold throughout reconfiguration, however this and other similar 
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research does not address timing issues and as such does not and cannot 
address any issues similar to or relating to configuration thrashing. 

8.2.1 Eliminating Configuration Thrashing Using Model 
Checkers 

Un-timed and timed CSP models capable of detecting the possibility of 
configuration thrashing are presented in Chapter 3. The un-timed CSP 
model allows configuration thrashing to be defined in terms of a sequence 
of consecutive configuration overlaps. However, this may not be adequate, 
as it may be required that configuration thrashing be defined as x overlaps in 
a given time period. The timed CSP model allows this more general 
definition of configuration thrashing to be used. 

CSP in its traditional form has no notion of time, though there are two 
distinct approaches to expressing time in CSP. The more elegant is to re­
interpret the CSP language to log the time for each event which occurs. The 
alternative approach is a discrete model of time, which makes the drum-beat 
of time an explicit event. The interval between successive "beats" may be 
any finite duration. The discrete model of time was adopted by the author 
within the timed CSP model as although the continuous approach is more 
elegant, the discrete approach offered the level of tool support required for 
experimentation. 

The specification of the timed CSP model has shown that data freshness is 
important, because in order to detect configuration thrashing an event 
history must be maintained and events in this history will become stale. 
This was not required within the non-timed model as without time data 
cannot become stale. 

Both the timed and un-timed CSP models can be used to ensure that 
configuration thrashing is engineered out of systems. However, it was 
found that in some cases it may be impractical or even impossible to use 
model checkers, as model checkers (such as FDR) are susceptible to state 
space explosion [19]. This is particularly true of large complex system 
models, though smaller less complex system models should not suffer 
unduly and many techniques can be used to limit the effects of state space 
explosion during modelling. 

Experimentation with the CSP models has led to interesting findings 
relating to difficulties in applying the CSP models. For example, 
probabilistic requirements are often imposed on systems, which are 
challenging for system developers, as a deadline will only be valid for a 
proportion of the system's operational activity. As configuration thrashing 
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is effectively reconfiguration causing deadlines to be missed, configuration 
thrashing itself can also become probabilistic. In many cases developers 
make deadlines over probabilistic requirements hard, in order to alleviate 
complications, however this leads to over-engineering, and in some cases 
these over engineered requirements can conflict unnecessarily with normal 
(non over-engineered) requirements. Further discussions regarding 
difficulties in applying the configuration thrashing models are presented in 
Chapter 3. 

8.2.2 Run-time Techniques for Configuration Thrashing 
Elimination 

Potential run-time solutions to the problem of configuration thrashing are 
explored in Chapter 5. These solutions allow developers to include 
additional logic / processes in their systems in order to eliminate 
configuration thrashing. Several options are explored in-depth, from 
providing mechanisms that enable developers to choose when 
reconfiguration can / cannot occur, to a more automated rule based solution. 

Many methods of allowing developers to choose when reconfiguration can / 
cannot occur have been explored. Providing engineers with reconfiguration 
mechanisms in the form of a service is one example. Methods such as this 
would allow developers direct control over when and how reconfiguration 
could occur on a process by process basis. This provides a novel approach, 
but as discussed in chapter 5, without guidance developers may not know 
when reconfiguration should take place or, more importantly, when it would 
be "safe" for it to take place. Developers may be tempted to develop 
systems that are more static than necessary. 

Also investigated within this thesis is a rule based solution, in which a 
reconfiguration controller sub-system decides when reconfiguration can and 
cannot occur, based upon logic defined as a set of rules. Traditionally logic 
within control processes is hard coded; however, benefits such as quicker 
upgrades and run-time alterations could be provided if the logic in a 
reconfiguration controller is specified as a set of alterable rules. This type 
of approach allows system developers to focus on core development without 
concern for reconfiguration issues. The rule based approach has highlighted 
many interesting issues, such as rule expression, rule predictability, as well 
as potential core rules for systems; all of these issues are further discussed 
within Chapter 5. 

A rule based demonstrator has been developed. The demonstrator provides 
a basis for reviewing the effects of configuration thrashing on a real-time 
system. Experimentation has been conducted using the demonstrator, not 
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only for rule sets but also for scenarios where developers control 
reconfiguration, as it was constructed to allow reconfiguration operators to 
be accessed directly. 

The demonstrator has clearly shown that the candidate operators specified 
within the VDM-SL model can be implemented (though not all of the 
operators were actually implemented). The demonstrator has also enabled 
experimentation to be conducted using restriction rules. An example 
process has been developed and many rules were tested against this process; 
the outcome was that reconfiguration could be restricted sufficiently within 
the demonstrator to eliminate configuration thrashing. Details relating to 
the experimentation conducted are considered further in Chapter 5. 

8.2.3 Configuration Thrashing Elimination Effectiveness 

To review the effectiveness of both the models outlined for configuration 
thrashing, and also the run-time solution outlined, a small case study has 
been developed. This case study is focussed upon battlefield surveillance 
using multi sensor data fusion. The ability to rapidly detect and identify 
potential targets both fixed and mobile from multiple sensor inputs is a 
critical function in modem warfare. 

Within a battlefield surveillance system targets need to be assessed as 
quickly as possible in order to guide troops accurately and ensure that 
weapons are do not target non hostile targets. Within the case study two 
different types of sensor are outlined, as well as the main data fusion and 
decision making process. 

Both the formal CSP approach and the run-time rule based approach 
enabled configuration thrashing to be eliminated. The CSP approach 
enabled for a restricted model to be constructed that could not reconfigure 
and the run-time rule based software approach enabled for reconfiguration 
to be restricted sufficiently to avoid configuration thrashing. Both 
approaches have their own limitations, but both are very effective. 

This case study has shown that the run-time rule based software approach is 
far more flexible than the formal CSP approach as rules can be gradually 
changed to suit new and emerging requirements. When requirements were 
tweaked during the process of creating the CSP models a sizable amount of 
rework was required, whereas the software approach simply required a 
small rule amendment. 

The CSP approach has a limitation discussed in chapter 3 which is that it 
can only allow configuration thrashing to be detected in single processes 
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and as such does not consider the reconfiguration of groups of processes. In 
distributed systems complex interactions will exist between processes and as 
such developers are likely to consider reconfiguration as many processes 
reconfiguring simultaneously or in a well defined sequence. The models 
produced can check if each individual process can "thrash" and as such be 
used to check entire systems (one process at a time), but this does not 
consider the fact that interactions between the groups of processes may 
make the processes that in theory can "thrash" not capable of configuration 
thrashing as the interacting processes may not provide the necessary stimuli. 
This has been highlighted as an area of future work. Though this was not 
reinforced within the case study, it was in many ways easier to work with 
the run-time rule based approach as you could see and interpret the 
interactions between the processes more easily. 

Neither of the approaches really assisted in choosing how to define the 
minimum level of work that must be completed before a reconfiguration 
occurs, or how many overlaps can occur in a given time period before 
configuration thrashing occurs. However, experimentation can be 
conducted within both approaches, but since the CSP models as they stand 
only assess configuration thrashing and not the ability to meet deadlines, the 
run-time rule based software approach lends itself to this better. 

Although many limitations and difficulties were highlighted within the case 
study, it also showed that both approaches could be used to eliminate 
configuration thrashing and did so very effectively within the case study. 

8.3 Concluding Remarks 

The contribution of the work in this thesis is firstly, the development of a 
VDM-SL model allowing the behaviours of reconfigurable systems to be 
expressed, as well as outlining a set of operators which form an 
unambiguous extensible reconfiguration language that can be used in system 
development. Secondly, an anomaly termed configuration thrashing has 
been explored in detail and a formal definition has been presented. 

Related work in the areas of fault-tolerance, reflection, self modifying code 
and re-configurability in general have been explored in an attempt to put 
configuration thrashing in context with similar problems found in these 
related research topics. Very few pieces of related work recognise that this 
is indeed an issue, but most can suffer from it. The few that do recognise 
similar issues review them in terms of quality of service and are not 
adequate for hard real-time systems. Very little of the related work 
reviewed had a solid formal underpinning and the few that did focus upon 
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safety invariants rather than addressing timing issues and as such cannot 
address any issues similar to or relating to configuration thrashing. 

Building on the configuration thrashing definition, a further contribution is 
made in this thesis by exploring methods which can be used to eliminate 
configuration thrashing in reconfigurable systems. A formal approach to the 
elimination of configuration thrashing has been presented using model 
checking techniques (CSP and FDR), and a range of run-time techniques 
have been explored. 

A contribution has also been made in the form of a demonstrator which has 
allowed a level of experimentation to be conducted to further demonstrate 
that the range of run-time techniques can indeed restrict configuration 
thrashing sufficiently. The demonstrator has also shown that in all 
attempted cases the candidate set of operators defined within the VDM-SL 
model can be implemented. 

The case study presented within this thesis also further highlights the 
usefulness of both the CSP models and also the run-time rule based software 
approach to restricting reconfiguration to eliminate configuration thrashing. 
Both of the approaches were shown to allow configuration thrashing to be 
eliminated in the battlefield surveillance case study presented. The case 
study did further confirm many of the limitations and difficulties discussed 
within the thesis when applying the models or attempting to decide upon 
appropriate rules for the run-time rule based solution. Many of these 
limitations provide the basis for future work presented in chapter 7 of this 
thesis. However, none of these limitation stop configuration thrashing from 
being eliminated, but in some cases could lead to the system being 
unnecessarily over restrictive. 

The work presented in this thesis provides a step towards certifiable 
dynamic reconfigurable systems capable of enforcing deadlines by 
investigating and providing methods of eliminating configuration thrashing. 
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Appendix A 

Three Layer VOM Model 

This appendix contains the full VDM-SL model described in chapter 2 of 
this thesis. The model is a three-level model and was developed to provide 
a basis for exploring the possibilities available within reconfigurable 
systems. The VDM-SL was particularly aimed to allow IMA type 
architectures to be expressed, though the model is generic and can express 
almost any reconfigurable architecture. The operators presented in this 
model form an extensible reconfiguration language. The model is presented 
below: 

--Model of Aircraft System v4.0--
---Defining possible operators---

--***KEY FOR OPERATION I FUNCTION NAMING CONVENTION***--

--Processor -> Procr 
--Process -> Proc 
--Activity -> Act 
--Persistent Memory -> PMem 
--Non-Persistent Memory -> NPMem 
--Shared Data -> SO 
--Hardware -> HW 
--Software -> SW 
--With -> 1'1 
--With Out -> 1'10 
--Synchronise -> Sync 
--Delete -> Del 
--Leave Proxies -> LP 
--Location -> Loc 

--This naming convention is used to shorten function and operation names 

--**STATE**--

state System of 
HardWare 
SoftWare 

Hardware 
Software 

Loc Locations 
SW_HW_Map SW_to_HW_Map 
HW Loc Map HW to Loc Map 

inv BYS ;. (forall pid-in-set-dom 
sys.SW HW Map.Proc to Procrs & 
pid in-set dom sys~SoftWare.Processes) and 

(forall cidset in set rng 
sys.SW HW Map.Proc to Procrs & 
(cidset inter dom sys~HardWare.Cards) • cidset) and 

(forall pid in set dom 
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sYS.SW_HW_Map.Proc_to_PMem & 
pid in set dom sys.SoftWare.Processes) and 

(forall cidset in set rng 
sys.SW_HW_Map.Proc_to_PMem & 
(cidset inter dom sys.HardWare.Cards) - cidset) and 

(forall pid in set dom 
sys.SW HW Map.Proc to NPMem & 
pid in-set dom sys~SoftWare.Processes) and 

(forall cidset in set rng 
sys.SW HW Map.Proc to NPMem & 
(cidset inter dom sys~HardWare.cards) = cidset) and 

(forall sdid in set dom 
sys.SW HW Map.SO to NPMem & 
sdid in set dom sys~SoftWare.SDs) and 

(forall cidset in set rng 
sys.SW_HW_Map.SD_to_NPMem & 
(cidset inter dom sys.HardWare.Cards) = cidset) and 

(forall gpid in set dom 
sys.SoftWare.Processes & 
if is Activity(sys.SoftWare.Processes(gpid)) then 

(sYs.Sottware.procesSes(gpid) . Loaded - true -> 
(CheckHWConnected( 

sys.SW HW Map.Proc to Procrs(gpid), 
sys.SW-HW-Map.Proc-to-PMem(gpid), 
syS.SW-HW-Map.proc-to-NPMem(gp1d)) = true) and 

card (syS.SW_HW_Map.Froc_to_Procrs(gp1d)) = 1) 
else 
(sys.SoftWare.Processes(gpid) .Activity.Loaded - true => 

(CheckHWConnected( 
sys.SW HW Map.Proc to Procrs(gpid), 
syS.SW-HW-Map.Proc-to-PMem(gpid), 
syS.SW-HW-Map.Proc-to-NPMem(gp1d)) - true) and 

card (sys.SW HW Map.Froc to Procrs(gpid)) - 1)) 
init sys == sys = mk System( - - - -

mk Hardware({I-», (I-», (I-», 11-»), 
mk-Software(II-», {I->}, {I->}, II->}, II->}), 
mk=Locations{{ I->}), 

end 

mk SW to HW Map{{I->}, {I->}, {I->}, {I->}), 
{I~>}- - -

--**TYPES**--

types 

Hardware .. MAUs map MAU_IO to MAU 
Cards map Card_IO to Card 
Mappings map Card ID to MAU 10 
Linkage map HW_LInk_IO to HW_Link 

inv hw -= (forall cid in set dom hw.Mappings & 
cid in set dom hw.Cards) and 

> 

(forall mid in set rng hw.Mappings & 
mid in set dom hw.MAUs} and 

(forall link in set rng hw.Linkage & 
cases link: 

mk HW Uni Link(a,b) -> 
a 1n set dom hw.Cards and b in set dom hw.Cards, 

mk HW Unknown Link(a,b) -> 
a in set dom hw.Cards and b in set dom hw.Cards, 

mk_HW_Bi_Link{mk_HW_Uni Link(a,b), mk_HW_Uni_Link{aa,bb}) -

a in set dom hw.Cards and b in set dom hw.Cards and 
aa in set dom hw.Cards and bb in set dom hw.Cards 
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end) ; 
--Linkage here is only Card linkage (MAU linkage is subsumed in this) . 
--It could be argued that Linkage is not required when looking at IMA, 
--as it assumes a 8US, however failures may require linkage to be evaluated. 

Software .. Services map Service 10 to set of Global_Process_ID 
Processes map Global_Process_ID to Process 
SOs map Shared Data 10 to Shared Data 
Linkage map Link_ID to SW_Link 
SO_Linkage map Link_ID to Shared_Data_Link 

inv sw (forall pidset in set rng sw.Services & 

and 

(card(pidset) > 0 and 
((pidset inter dom sw,Processes) = pidset))) and 

(forall sdlink in set rng sw.SD_Linkage & 
(sdlink.a in set dom sW.Processes and 
sdlink.b in set dom sw.Processes and 
sdlink.Shared Data in set dom sw.SDs)) and 

(forall link in set rng sw.Linkage & 
cases link: 

mk_Uni_Link(a,b) -> 
a in set dom sW.Processes and b in set dom sw.Processes, 

mk Unknown Link(a,b) -> 
a in set-dom sW.Processes and b in set dom sw.Processes, 

mk Bi Link(mk Uni Link(a,b), mk Uni Link(aa,bb)) -> 
a in set dom sw~Processes and-b in set dom sw.Processes 

aa in set dom sW.Processes and bb in set dom sW.Processes 
end); 

--Linkage here is simply Process linkage. Here the direction of the 
--linkage is modelled (Uni, 8i, and Unknown). Shared Data (SO) Linkage is 
--linkage between processes using Shared Data (unidirectional only). 

Locations :: Physical locations: map Loc 10 to Location; 
--Locations are modelled very simply within this model. 

--Hardware--

--Note: there appears to be the following main levels of dynamic behaviour 
--for reconfigurable hardware: 
--1) Addind & Removing Cards 
--2) Adding & Removing MAUs 
--3) Changing Hardware Links 
--This model deals with all of the above. 

MAU 10 = token; 

MAU .. Max Num Cards: nat 
Slot_Order : seq of Interface Type 

inv mau == len mau.Slot_Order - mau.Max=Num_Cards; 

Card 10 = token; 

Card = Processor I Persistent_Mem I Non_Persistent_Mem; 

Processor :: Manufacturer 
Model_Code 
Interface 
Speed 
Pipelining 
Cache 
Instruction Set 
Instruction=Ext 
Co Processor 
Register_Size 

token 
token 
Interface Type 
real -
bool 
bool 
Proc_Inst 
Proc Inst Ext 
bool- -
Register 



Max_Op_Temp 
Min_Op_Temp 
Max_Op_Alt 
Max_Humidity 

Persistent Mem .. Manufacturer 
Model Code 
Interface 
AV Seek Time 
Max Seek Time 
Min-Seek-Time 
Cache 
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Temperature 
Temperature 
Altitude 
Humidity; 

token 

AV Transfer Rate 
Max_Transfer_Rate 
Min Transfer Rate 

token 
Interface_Type 
MilliSeconds 
MilliSeconds 
MilliSeconds 
bool 
MBPerSecond 
MBPerSecond 
MBPerSecond 
Mb 
Temperature 
Temperature 
Altitude 
Humidity; 

Capacity -
Max Op Temp 
Min-op-Temp 
Max:::OP:::Alt 
Max_Humidity 

Non Persistent Mem .. Manufacturer 
Model Code 
Interface 
AV_Transfer_Rate 
Max Transfer Rate 
Min:::Transfer=Rate 
Capacity 
Bus_Clock_Rate 
Max Op Temp 
Min-Op-Temp 
Max=OP:::Alt 
Max_Humidity 

token 
token 
Interface Type 
MBPerSecond 
MBPerSecond 
MBPerSecond 
Mb 
MHz 
Temperature 
Temperature 
Altitude 
Humidity; 

HW Bi Link 

HW Link_IO = token; 

HW Uni Link :: a : Card 10 
- - b : Card-IO 

inv uni == uni.a <> uni~b; 

HW Bi Link :: a : HW Uni Link 
b : Hw=uni:::Link 

inv bi == bi.a.a - bi.b.b and bi.a.b - bi.b.a; 

HW_Unknown_Link :: a : Card 10 
b : Card-IO 

inv uni -- uni.a <> uni.b; 
--Unknown links are completely unknown in this model. This means that they 
--could be uni-directional, bi-directional, or faulty. 

Proc_Inst - <CISC> I <RISC>; 

Proc Inst Ext - <MMX> I <x30Now>; 
--assuming for simplicity that a processor can only have one special set of 
--instructions. 

Register = <x32Bit> I <x64Bit>; 

Interface Type - <A> I <B> I <C>; 
--can be expanded 

Humidity = real; 

Temperature - real; 

Altitude - real; 
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MilliSeconds = real; 

MBPerSecond = real; 

MHz = real; 

Mb = real; 

--Software--

--Note: there appears to be 5 main levels of dynamic behaviour for 
--reconfigurable software, these are: 
--1) Dynamic Linking & Loading + Binary Loading 
--2) State and Stack Synchronisation 
--3) Interpretation / Execution of intermediately represented code (eg. 
Java) , 

this requires a process to execute / interpret the representation 
--4) Compilation of code and subsequent execution (can be done either 
statically 

or dynamically) 
--5) Changing Software Links 
--At present this model copes with 1 through 3 (though 3 is only dealt with 
by 
--using abstraction to assume that a process can be an intermediate 
--representation with its executing / interpreting process). This section 
would 
--require further extension to cope with 4. Also this would need futher 
--investigation with respect to resource issues. The model copes with 5. 

Service ID = token; 

Service :: Developer 
Name 

token 
token; 

Process - Activity I Proxy I Duplex_Proxy I CondenSing_Proxy; 

Proxy:: Source Global Process 10 
Target Global Process-1D 
Activity Activity 

inv proxy -- (proxy.Activity.Loaded - false -> 
proxy.Activity.P1D - mk token("null")) and 

(proxy.Activity.Loaded --true -> 
proxy.Activity.P1D <> mk_token("null")); 

inv proxy -= 

.. Source Global Process 1D 
Targetl Global-Process-1D 
Target2 Global=Process=ID 
Activity Activity 

(proxy.Activity.Loaded - false -> 
proxy.Activity.PID - mk token("null")) and 

(proxy.Activity.Loaded --true -> 
proxy.Activity.PID <> mk_token("null")); 

Condensing_Proxy:: Sourcel Global Process 10 
Source2 Global-Process-1D 
Target Global=Process=1D 
Activity : Activity 

inv proxy -= (proxy.Activity.Loaded - false -> 
proxy.Activity.P1D - mk_token("null")) and 

(proxy.Activity.Loaded - true -> 
proxy .Activity. PID <> mk_token ("null") ) ; 
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Activity .. Developer token 
Name token 
Source token 
State token 
Initialisation State token 
Instruction Stack token -PID token 
Loaded boo I 

inv act (act.Loaded = false => 
act.State - mk token("null") and 
act.Instructio~ Stack - mk token("null") and 
act.PID = mk_token("null")) and 

(act. Initialisation State <> mk token("null")) and 
(act.Loaded = true ;> -
act.State <> mk token("null") and 
act. Instruction-Stack <> mk token("null") and 
act.PID <> mk_t;ken("null")); 

--State represents the variables in the process. Source represents the 
source 
--binary or intermediate representation of the source code that is executed 
/ 
--interpreted. An intermediate representation would need a process to 
interpret 
--and execute it (as Java), but this has been abstracted away in this model. 
--The Instruction_Stack represents the current execution state. The 
--initialisation state is the state in which the system moves to upon 
Loading. 
--The PID is the Process ID that the OS / Processor assigns the process. 
--The invariant states that it all Processes should have a null State, PID, 
and 
--Instruction Stack if they are not loaded as it makes no sence for 
something to 
--have state that does not have memory to store its state. It also states 
--that the oposite is true. 
--Activities are single threaded. Abstractly a set of Activities could 
represent 
--a multi-threaded process. 

SW Link Uni Link Unknown_Link; 

Link ID s token; 

Uni Link :: a : Global Process ID 
- b : Global-Process_ID 

inv uni uni.a <> uni.b; 

Bi_Link .. a : Uni_Link 
b : Uni_Link 

inv bi -= bi.a.a = bi.b.b and bi.a.b - bi.b.a; 

Unknown Link :: a : Global Process ID 
- b : Global=Process-ID 

inv uni =- uni.a <> uni.b; 
--Unknown links are completely unknown in this model. They may not even be 
--functioning. 

Shared_Data .. Protocol 
State 

Protocol 
token; 

Protocol - <Channel> ( <Signal> ( <Pool> ( <Constant> ( <Flash Data> 
<Overwriting Buffer> ( <Rendezvous> ( <Bounded Buffer> ( <Prod> ( 
<Stimulus> (-<Overwriting Stirn Buffer> ( <Directional Handshake> ( 
<Dataless_Channel> ( <Bounded_Stirn_Buffer>; -

Shared_Data_Link .. a 
b 
Shared_Data 

Global Process ID 
Global-Process-ID 
Shared=Data_ID 
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inv uni uni.a <> uni.b; 
--Uni directional from a to b 

--Locations--

--Note: Locations are not reconfigurable "as such". Locations are generally 
--static. The following are however possible: 
--1) Locations could be added 
--2) Locations coule be removed 
--3) Locations could change names 
--This model can express the above reconfigurations. 

Location :: Name 
Coord_x 
Coord_y 

token 
real 
real; 

Loc 10 = token; 

--The focus of the this model was software reconfiguration, and as such the 
--model for Locations has been left very basic. Locations were modeled to 
--highlight the difference between reconfiguration and mobility. A more 
--detailed model of locations could have a tree structure in which a 
location 
--could be seen as a place in the tree structure, thus Newcastle could be a 
--location within England which is also a location etc ... However such a 
model 
--would have gave no advantage to the purpose of this model. If a more 
complex 
--view of locations were to be explored, it would be interesting to capture 
--there properties in relation to effects upon the system, for instance the 
--temperature which could have an effect on operational requirements for 
--systems hardware. 

--Level Mappings--

--Note: This section of this model represents the mappings between Hardware, 
--Software and Location. Therefore the following reconfigurable behaviour 
--is possible: 
--1) Processes can move between Hardware (Cards) 
--2) Hardware (and thus the Software on it) can move between Locations (this 
is 

more mobility that reconfiguration) 
--3) Shared Data can move between Hardware (Cards) 
--This model deals with all of the above types of behaviour 

inv swhwmap -= 

Proc_to_Procrs map Global Process 10 to set of Card 10 
Proc_to_PMem map Global-Process-ID to set of Card=ID 
Proc_to_NPMem map Global-Process-ID to set of Card 10 
SD_to_NPMem map Shared=oata_IO-to set of card_IO-

(forall pid in set dom swhwmap.Proc to Procrs & 
swhwmap.Proc to Procrs(pid) <> (I) and 

(forall pid in-set dom swhwmap.Proc to PMem & 
swhwmap.Proc to PMem(pid) <> {I) and-

(forall pid in-set dom swhwmap.Proc to NPMem & 
swhwmap.Proc to NPMem(pid) <> {I)-and 

(forall sdid in set dom swhwmap.SO to NPMem & 
swhwmap. SO_to_NPMem (sdid) <> {I); -
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--Within the Level Mappings, MAUs are mapped to locations. Locations could 
have 
--been mapped to individual cards. It seemed sensible to do MAUs, as cards 
must 
--be mapped to MAUs. 

--**FUNCTIONS**--

functions 

settoseq : set of Global Process_IO -> seq of Global_Process_IO 
settoseq(s) --

cases s: 
() -> (], 
{x} -> [xl, 
sl union s2 -> (settoseq{sl})A{settoseq(s2» 

end; 

settoseqcid : set of Card_IO -> seq of Card 10 
settoseqcid(s) 

cases s: 
() -> [I, 
(x) ->[x]' 
sl union s2 -> (settoseq{sl»A(settoseq{s2» 

end; 

NumberOfOccur: Interface Type * seq of Interface Type -> nat 
NumberOfOccur(x,p) -= card (il i in set inds p '-p{i) =x); 

number of occurences of x in p. 
-- required to check for correct slots. 

CheckProcEquality: Process * Process -> bool 
CheckProcEquality(p1, p2) 

if is_Activity(p1) then 
pl.Source s p2.Source 

else 
pl.Activity.Source - p2.Activity.Source; 

CheckProcLoaded: Process -> bool 
CheckProcLoaded(p) --

if is_Activity{p) then 
p.Loaded - true 

else 
p.Activity.Loaded - true; 

--**OPERATIONS**--

operations 

--Test Operations--

TestMakeModel () _a> () 



TestMakeModel() == 
(AddMAU(mauidl, ml); 
AddMAU(mauid2, m2); 
AddCard(cardidl, cl, mauidl); 
AddCard(cardid2, c2, mauidl); 
AddCard(cardid3, c3, mauid2); 
AddCard(cardid4, c4, mauidl); 
AddCard(cardid5, c5, mauidl); 
AddCard(cardid6, c6, mauidl); 
AddCard(cardid7, c7, mauidl); 
AddCard(cardidB, cB, mauidl); 
AddCard(cardid9, c9, mauidl); 
AddCard(cardidlO, clO, mauidl); 
AddCard(cardidll, cll, mauidl); 
AddProc(procidl, pl); 
AddProc(procid2, p2); 
AddProc(procid4, p4); 
AddProc(procid5, p5); 
AddSD(sdidl, sdl); 
AddSD(sdid2, sd2); 
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AddSDLink(linkidl3, sdidl, procid2, procidl); 
AddSDLink(linkid20, sdid2, procidl, procid2); 

AssignSDNPMem(cardidB, sdidl); 
AssignSDNPMem(cardidll, sdid2); 
AssignProcProcr(cardidl, procidl); 
AssignProcPMem(cardid4, procidl); 
AssignProcNPMem(cardid6, procidl); 
AssignProcProcr(cardid3, procid4); 
AssignProcPMem(cardid4, procid4); 
AssignProcNPMem(cardid6, procid4); 
AssignProcProcr(cardid2, procid2); 
AssignProcPMem(cardid5, procid2); 
AssignProcNPMem(cardid7, procid2); 
AssignProcProcr(cardid9, procid5); 
AssignProcPMem(cardid5, procid5); 
AssignProcNPMem(cardid7, procid5); 
AddHWBiLink(cardidl, cardidB, linkidl); 
AddHWBiLink(cardidl, cardid4, linkid2); 
AddHWBiLink(cardidl, cardid3, linkid3); 
AddHWBiLink(cardidl, cardid6, linkid4); 
AddHWBiLink(cardid3, cardid4, linkidB); 
AddHWBiLink(cardid3, cardid6, linkid9); 
AddHWBiLink(cardid2, cardid5, linkidlO); 
AddHWBiLink(cardid2, cardid7, linkid5); 
AddHWBiLink(cardid3, cardid9, linkid6); 
AddHWBiLink(cardidB, cardid2, linkid7); 
AddHWUniLink(cardidl, cardid3, linkidll); 
AddHWUniLink(cardid3, cardid2, linkid12); 
AddHWBiLink(cardid9, cardid2, linkidl4); 
AddHWBiLink(cardid9, cardid5, linkid15); 
AddHWBiLink(cardid9, cardid7, linkid16); 
AddSWUniLink(procidl, procid2, linkid17); 
AddSWUniLink(procid2, procidl, linkidlB); 
AddSWBiLink(procidl, procid2, linkidl9); 

AddHWBiLink(cardid8, cardidll, linkid2l); 
AddHWBiLink(cardidB, cardidlO, linkid22); 
AddHWBiLink(cardidlO, cardidll, linkid23); 

AddHWBiLink(cardidlO, cardid2, linkid24); 
AddHWBiLink(cardidlO, cardid5, linkid25); 

LoadProc(procidl); 
LoadProc(procid2); 
LoadProc(procid4); 
LoadProc(procid5); 

AddLoc(locationl, locidl); 
AddLoc(location2, locid2); 
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AddLoc(location3, locid3); 
RemoveLoc(locid2); 

ChangeLocName(locid3, mk_token("Gosforth"»; 
AssignMAULoc(mauidl, locidl); 
AssignMAULoc(mauid2, locidl); 

) ; 

--Checking Operations--

CheckProcHWConnected : Global Process 10 ==> bool 
CheckProcHWConnected(gpid) ==- -

CheckHWConnected(SW HW Map.Proc to Procrs(gpid), 
SW_HW_Map.Proc_to=PMem(gpid),- -
SW_HW_Map.Proc_to_NPMem(gpid»; 

CheckHWConnected:set of Card 10 • set of Card_IO • set of Card 10 ==> bool 
CheckHWConnected(proc, pmem,-npmem) == 

return( (CheckAllCardsBiConnected(proc, proc» and 
(CheckAllCardsBiConnected(proc, pmem» and 
(CheckAllCardsBiConnected(proc, npmem»); 

--This operation is used to check that hardware connections for a given 
process 
--are valid. I.e. that the processors are interconnected and that the 
--processors have links to the persistent and non-persistent memory. The 
state 
--of the system uses this in its invariant. 

CheckAllCardsBiConnected: set of Card 10 * set of Card_IO -=> bool 
CheckAllCardsBiConnected(csetl, cset2) 

return(forall cl in set csetl & 
forall c2 in set cset2 & 

cl <> c2 => 
exists link in set rng HardWare.Linkage & 

cases link: 
mk HW Uni Link(a,b) -> a - cl and b = c2 and 

exists linkl in set rng HardWare.Linkage & 
is HW Uni Link(linkl) and linkl.a • c2 and linkl.b = cl, 

mk HW Bi Link(a,-) -> ((a.a = cl and a.b = c2) or 
(a.a ·-c2 and a.b = cl», 

others -> false 
end) ; 

--Others are false as Unknown links may be faulty. 

CheckAllCardsUniConnected: set of Card 10 * set of Card_IO ==> bool 
CheckAllCardsUniConnected(csetl, cset2) 

return(forall cl in set csetl & 
forall c2 in set cset2 & 

cl <> c2 => 
exists link in set rng HardWare.Linkage & 

cases link: 
mk_HW_Uni_Link(a,b) -> a - cl and b = c2, 
mk HW Bi Link(a,-) -> ((a.a - cl and a.b - c2) or 

(a.a ·-c2 and a.b • cl», 
others -> false 

end) ; 
--Others are false as Unknown links may be faulty. 

FindAllProxies: () _a> set of Global_Process_IO 
FindAllProxies() --
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return({prox I prox in set dom SoftWare. Processes & 
is Proxy (SoftWare. Processes (prox) ) and 
CheckProcLoaded(SoftWare. Processes (prox) ) I); 

FindProxiesFromProc: Global_Process_1D ==> set of Global Process 10 
FindProxiesFromProc(gpid) == 

return«prox I prox in set FindAllProxies() & 
if is_Proxy(SoftWare.Processes(gpid)) then 

SoftWare. Processes (prox) .Source = gpid and 
SoftWare.Processes(gpid).Target - prox 

else if is Duplex Proxy(SoftWare.Processes(gpid)) then 
SoftWare~Processes(prox) .Source = gpid and 
(SoftWare. Processes (gpid) .Targetl = prox or 
SoftWare. Processes (gpid) .Target2 - prox) 

else if is Condensing Proxy(SoftWare.Processes(gpid)) then 
SoftWare~Processes(prox) .Source = gpid and 
SoftWare. Processes (gpid) .Target - prox 

else 
true 

} ) ; 

FindValidProxies : set of Global Process 10 • Global Process 10 • 
Global Process 10 • seq of Global Process 10 _a> set-of Global Process ID 
FindValidProxies(beenset, current; target; todo) _z --

return({prox I prox in set FindProxiesFromProc(current) & 
prox not in set beenset and 
prox not in set elems todo and 
CheckAllCardsUniConnected{ 

}) ; 

SW HW Map.Proc to Procrs(current) , 
SW=HW=Map.proc=to=Procrs(prox) ) 

FindAllDuplexProxies: {) _a> set of Global_Process_1D 
FindAllDuplexProxies{) --

return({prox I prox in set dom SoftWare. Processes & 
is Duplex Proxy(SoftWare.Processes(prox)) and 
CheckPrOCLoaded(SoftWare.Processes(prox)) I); 

FindDuplexProxiesFromProc: Global Process 10 =-> set of Global_Process_1D 
FindDuplexProxiesFromProc(gpid) == -

return({prox I prox in set FindAllDuplexProxies() & 
if is_Proxy(SoftWare.Processes(gpid)) then 

SoftWare. Processes (proxl .Source - gpid and 
SoftWare. Processes (gpid) .Target - prox 

else if is Duplex Proxy(SoftWare.Processes(gpid)) then 
SoftWare~processes(prox) . Source - gpid and 
(SoftWare. Processes (gpid) .Targetl ~ prox or 
SoftWare. Processes (gpid) .Target2 - prox) 

else if is Condensing Proxy (SoftWare. Processes (gpid) ) then 
SoftWare~processes(prox) .Source - gpid and 
SoftWare. Processes (gpid) .Target - prox 

else 
true 

I); 

FindValidDuplexProxies : set of Global Process 10 • Global Process 10 • 
Global Process 10 • seq of Global Process 10 -=> set of Global Process 10 
FindvalidDuplexProxies(beenset, current, target, todo) == - -

return({prox I prox in set FindDuplexProxiesFromProc(current) & 
prox not in set beenset and 
prox not in set elems todo and 
CheckAllCardsUniConnected( 

SW HW Map.Proc to Procrs(current) , 
SW=HW=Map.proc=to=procrs(prox)) 
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}) ; 

FindAllCondensingProxies: () ==> set of Global Process IO 
FindAllCondensingProxies() == 

return({prox I prox in set dom SoftWare. Processes & 
is Condensing Proxy(SoftWare.Processes(prox)) and 
CheckPrOCLoaded(SoftWare.Processes(prox))}); 

FindCondensingProxiesFromProc: Global_Process_IO ==> set of 
Global Process IO 
FindCondensingProxiesFromProc(gpid) =z 

return({prox I prox in set FindAllCondensingProxies() & 
if is_Proxy(SoftWare.Processes(gpid)) then 

(SoftWare. Processes (prox) .Sourcel = gpid or 
SoftWare. Processes (prox) .Source2 = gpid) and 
SoftWare. Processes (gpid) .Target = prox 

else if is_Ouplex_Proxy(SoftWare.Processes(gpid)) then 
(SoftWare. Processes (prox) .Sourcel = gpid or 
SoftWare. Processes (prox) .Source2 = gpid) and 
(SoftWare. Processes (gpid) .Targetl = prox or 
SoftWare. Processes (gpid) .Target2 = prox} 

else if is_Condensing_Proxy(SoftWare.Processes(gpid)) then 
(SoftWare. Processes (prox) .Sourcel z gpid or 
SoftWare. Processes (prox) .Source2 = gpid) and 
SoftWare. Processes (gpid) .Target - prox 

else 
true 

}) ; 

FindValidCondensingProxies : set of Global Process IO * Global Process 10 * 
Global Process IO * seq of Global Process 10 z=> set of Global-Process-10 
FindValidCondensingProxieS(beenset, current, target, todo) == - -

return({prox I prox in set FindCondensingProxiesFromProc(current) & 
prox not in set beenset and 
prox not in set elems todo and 
CheckAI1CardsUniConnected( 

}) ; 

SW_HW_Map.Proc_to_Procrs(current), 
SW_HW_Map. Proc_to_Procrs (prox) ) 

FindValidActivities : set of Global Process 10 * Global Process 10 * 
Global Process 10 * seq of Global Process 10 _z> set of-Global Process 10 
FindValidActivlties(beenset, current, target, todo) =- - -

if (is Proxy(SoftWare.Processes(current)) or 
is_Condensing_proxy(SoftWare.processes(current))) and 
SoftWare. Processes (current) .Target - target and 
CheckAllCardsUniConnected( 

SW_HW_Map.Proc_to_Procrs(current), 
SW HW Map.Proc to Procrs(target)) then 

return (target) - -
else if is Ouplex Proxy{SoftWare.Processes(current)) and 

(SoftWare. Processes (current) .Targetl - target or 
SoftWare. Processes (current) .Target2 - target) and 

CheckAllCardsUniConnected( 
SW_HW_Map.Proc_to_Procrs{current), 
SW HW Map.Proc to Procrs(target)) then 

return (target) - -
else 

return{}; 

FindSOsFromProc: Global_Process_IO z=> set of Link_IO 
FindSOsFromProc(gpid) --

return{{lid I lid in set dom SoftWare.SO Linkage & 
SoftWare. SO_Linkage {lid) .a - gpid)); -
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FindValidSDs : set of Global Process 1D * Global Process 1D * 
Global Process ID * seq of Global Process ID ==>-set of Global Process 1D 
FindValidSDs(beenset, current, target, todo) == --

return({SoftWare.SD Linkage(lid).b I lid in set FindSDsFromProc(current) & 
SoftWare.SD Linkage(lid).b not in set beenset and 
SoftWare.SD-Linkage{lid).b not in set elems todo and 
SoftWare.SD-Linkage(lid).b - target and 
CheckAllCardsUniConnected( 

SW_HW_Map. Proc_to_Procrs (SoftWare.SD_Linkage (lid) .a), 
SW_HW_Map.SD_to_NPMem(SoftWare.SD_Linkage(lid) .Shared_Data)) and 

CheckAllCardsUniConnected( 
SW_HW_Map.SD_to_NPMem(SoftWare.SD_Linkage(lid) . Shared_Data) , 
SW_HW_Map.Proc_to_Procrs(SoftWare.SD_Linkage(lid) .b)) 

)) ; 

CheckIsRoute: Global_Process_ID * Global_Process_1D ==> bool 
CheckIsRoute(gpidA, gpidB) -= 

return (CheckAllCardsUniConnected( 
SW HW Map.Proc to Procrs(gpidA), 
SW=HW=Map.Proc=to=Procrs(gpidB)) or 

CheckProxyRoute (gpidB, (I, [gpidA])) 
pre gpidA <> gpidB; 

CheckProxyRoute : Global Process 1D * set of Global_Process_1D * seq of 
Global Process 1D mm> bool -
CheckProxyRoute(target, beenset, togoseq) 

if togoseq = [] then return false 
else 

if (exists x in set ( 
FindValidProxies(beenset, hd togoseq, target, tl togoseq) union 
FindValidSDs(beenset, hd togoseq, target, tl togoseq) union 
FindValidActivities(beenset, hd togoseq, target, tl togoseq) union 
FindValidDuplexProxies(beenset, hd togoseq, target, tl togoseq) union 
FindValidCondensingProxies(beenset, hd togoseq, target, tl togoseq)) & 
x = target) then return true 

else 
return CheckProxyRoute(target, (hd togoseql union beenset, 

tl togoseq A settoseq( 
FindValidProxies(beenset, hd togoseq, target, tl togoseq) union 
FindValidSDs(beenset, hd togoseq, target, tl togoseq) union 
FindValidActivities(beenset, hd togoseq, target, tl togoseq) union 
FindValidDuplexProxies(beenset, hd togoseq, target, tl togoseq) 

union 
FindValidCondensingProxies(beenset, hd togoseq, target, tl 

togoseq) ) ) ; 

CheckProcsHaveConnection: Global Process 1D * Global_Process_1D _a> bool 
CheckProcsHaveConnection(A, B) .= 

return( 

) ; 

exists link in set rng SoftWare. Linkage & 
cases link: 

mk_Uni_Link(a,b) -> a • A and b • Band 
exists linkl in set rng SoftWare.Linkage & 

is Uni Link(linkl) and linkl.a - Band linkl.b - A, 
mk_Bi_Link(a,-) -> ((a.a - A and a.b - B) or 

(a.a - Band a.b • A)), 
others -> false 

end and 
Check1sRoute(A,B) and 
CheckIsRoute(B,A) 

--Others are false as Unknown links may be faulty. 
--this operation checks that a state copy and synch can be physically done. 
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--It checks that there exists hardware connections between the Processors 
for 
--the Processes. 

CheckSWConnections: Global_Process_ID ==> bool 
CheckSWConnections(gpid) =-

return( 
forall link in set rng SoftWare. Linkage & 

cases link: 
mk Uni Link(a,b) -> a - gpid or b = gpid -> 

ChecklsRoute(a,b), 
mk Bi Link(a,-) -> a.a - gpid or a.b = gpid ~> 

CheckIsRoute(a.a,a.b) and CheckIsRoute(a.b,a.a) 
end) ; 

CheckProcrsConnect: Global_Process_ID • seq of Card_ID --> bool 
CheckProcrsConnect(gpid, cids) --

return (forall pl in set SW HW Map.Proc to Procrs(gpid) & 
forall p2 in set (inds cids)-' - -

pI, 

(pl <> cids(p2) and is Processor(HardWare.Cards(cids(p2»» => 
exists link in set rng HardWare.Linkage , 

cases link: 
mk_HW_Uni_Link(a,b) -> a - pl and b - cids(p2) and 

exists linkl in set rng HardWare.Linkage & 
is_HW_Uni_Link(linkl) and linkl.a - cids(p2) and linkl.b = 

mk HW Bi Link(a,-) -> «a.a = pI and a.b = cids(p2» or 
(a.a ·-cids(p2) and a.b - pI», 

others -> false 
end); 

--this operation checks that a move or copy can be physically done. It 
checks 
--that there exists hardware connections between the existing processors and 
the 
--new processors which the process will be assigned to. 

CheckRightCardTypes : seq of Card 10 ==> bool 
CheckRightCardTypes(cids) -- -

return«forall p in set(inds cids) & 
cids(p) in set dom HardWare.Cards) and 

(card{cids(p) Ip in set(inds cids) & 
is Processor(HardWare.Cards(cids{p»» > 0) and 

(card(cids(p) Ip in set(inds cids) & 
is_Persistent_Mem(HardWare.Cards(cids(p»» > 0) and 

(card{cids(p) Ip in set(inds cids) & 
is Non Persistent Mem(HardWare.Cards(cids(p»» > 0»; 

--this-operation checks that given a sequence of cards, it has the required 
--cards to execute a process (i.e. a processor, persistent memory and 
--non-persistent memory. 

CheckCopySDState : Shared Data 10 • Shared Data 10 --> bool 
CheckCopySOState(A, B) --- - --

return(forall ml in set SW HW Map.SD to NPMem(A) & 
forall m2 in set SW HW Map.SO to NPMem(B) , 

(ml <> m2) -> - - --
exists linka in set rng HardWare.Linkage , 

cases linka: 
mk HW Uni Link(a,b) -> (a - ml and 

Is ProceSSOr(Hardware.cards(b») and 
exists linkla in set rng HardWare.Linkage & 

(is HW Uni Link(linkla) and linkla.a - linka.b 
and linkla.b - linka.a) and 
exists linkb in set rng HardWare.Linkage & 

cases linkb: 
mk_HW_Uni_Link(aa,bb) -> aa - m2 and bb - band 
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exists linkib in set rng HardWare.Linkage & 
(is HW Uni Link(linkib) and linkib.a = linkb.b 

and-linklb.b = linkb.a), 
mk HW Bi Link(aa,-) -> ((aa.a = m2 and aa.b = b) or 

(aa~a : band aa.b = m2)), 
others -> false 

end, 
mk HW Bi Link(a,-) -> ((a.a - ml and 

is_processor(HardWare.Cards(a.b))) or 
(is Processor(HardWare.Cards(a.a)) and a.b = ml)) and 

exists linkb in set rng HardWare.Linkage & 
cases linkb: 

mk HW Uni Link(aa,bb) -> aa = m2 and ( 
bb ; a.a or bb = a.b) and 

exists linklb in set rng HardWare.Linkage & 
is HW Uni Link(linklb) and linklb.a = linkb.b 

and-linklb.b - linkb.a, 
mk HW Bi Link(aa,-) -> 

(aa~a ; m2 or aa.b - m2) and 
((aa.b - a.a and 

is_Processor(HardWare.Cards(aa.b))) or 
(aa.a - a.a and 

is Processor(HardWare.Cards(aa.a))) or 
(aa.b - a.b and 

is Processor(HardWare.Cards(aa.b))) or 
(aa.a = a.b and 

is_Processor(HardWare.Cards(aa.a)))), 
others -> false 

end, 
others -> false 

end); 
--This ensures that there are connections between the Non-Persistent Memory 
used for 
--each SO, via a processor. 

--Model Construction Operations--

AddMAU : MAU_IO * MAU --> () 
AddMAU (mauid, maul --

HardWare.MAUs :- HardWare.MAUs munion (mauid 1-> maul 
pre mauid not in set dom HardWare.MAUs; 

RemoveMAU : MAU 10 --> () 
RemoveMAU (mauid) --

HardWare.MAUs :- (mauid) <-: HardWare.MAUs 
pre mauid not in set rng HardWare.Mappings and 

mauid in set dom HardWare.MAUs; 
--The above pre condition only checks for no cards in the MAU and thus no 
--executing software, but may want to allow cards to be in while removed, 
--but only check for no running software. If an MAU is removed with cards 
--in this model says nothing. 

AddCard : Card 10 • Card· MAU 10 --> () 
AddCard (cidi,-cardi, midi) --­

HardWare :-
mk Hardware(HardWare.MAUs, 

HardWare.Cards munion (cidl 1-> cardl), 
HardWare.Mappings munion (cidi 1-> midi), 
HardWare.Linkage) 

pre cidl not in set dom HardWare.Cards and 
midl in set dom HardWare.MAUs and 
(NumberOfOccur(cardl.1nterface, HardWare.MAUs(midl) .Slot Order) > 
(card (iii in set dom HardWare.Cards & HardWare.Mappings(i) = midl 
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and HardWare.Cards(i) . Interface = cardl.Interface))); 
--midI in set dom HardWare.MAUs only in pre condition to stop run time 
errors, 
--as invarient over hardware will do the same job 

RemoveCard : Card IO ==> () 
RemoveCard (cid) == 

HardWare .= 
mk_Hardware(HardWare.MAUs, 

{cid} <-: HardWare.Cards, 
{cid} <-: HardWare.Mappings, 
HardWare. Linkage) 

pre cid in set dom HardWare.Cards and 
cid not in set dunion rng SW HW Map.Proc to Procrs and 
cid not in set dunion rng SW=HW=Map.proc=to=PMem and 
cid not in set dunion rng SW HW Map.Proc to NPMem and 
forall link in set rng HardWare:Linkage & -

cases link: 
mk HW Uni Link(a,b) -> cid <> a and cid <> b, 
mk-HW-Unknown Link(a,b) -> cid <> a and cid <> b, 
mk-HW-Bi Link(mk HW Uni Link(a,b), mk HW Uni Link(aa,bb)) -> 

cid-<>-a and cid <> b-and cid <> aa-and cid <> bb 
end; 

--pre condition checks for no software running on card before removing. It 
--also checks that the card has no linkage before removing it. 
--If a card is removed while having software on it this model says nothing 
--about the outcome. Also if a card is removed while it has linkage, the 
--model says nothing about it. 

AddHWUniLink : Card IO • Card IO • HW Link IO _a> {) 
AddHWUniLink(cidl, cid2, lid)-=- - -

HardWare.Linkage :- HardWare.Linkage munion 
{lid 1-> mk HW Uni Link(cidl, cid2)} 

pre lid not in set dom HardWare.Linkage; 

AddHWUnknownLink : Card IO • Card IO • HW Link IO --> () 
AddHWUnknownLink(cidl, cid2, lid)---

HardWare.Linkage :- HardWare.Linkage munion 
(lid 1-> mk HW Unknown Link(cidl, cid2)} 

pre lid not in set dom HardWare.Linkage; 

AddHWBiLink : Card IO * Card IO * HW Link IO _a> () 
AddHWBiLink(cidl, cid2, lid)--- - -

HardWare.Linkage :- HardWare.Linkage munion 
(lid 1-> mk HW B1 Link(mk HW Un1 Link(cidl, cid2), 
mk HW Uni Link(cid2, Cidl))}- -

pre lid-not-in set dom HardWare.Linkage; 

RemoveHWLink : HW Link IO _a> () 
RemOveHWLink(lid)--- -

HardWare.Linkage :- {lid) <-: HardWare.Linkage 
pre lid in set dom HardWare.Linkage; 

AddProc : Global Process IO * Process _a> {) 
AddProc(gpid, prOc) -- -

SoftWare. Processes :- SoftWare. Processes munion {gpid 1-> proc} 
pre gpid not in set dom SoftWare. Processes; 

RemoveProc : Global Process IO _a> () 
RemoveProc(gpid} --- -

SoftWare. Processes :- {gpid) <-: SoftWare. Processes 
pre gpid in set dom SoftWare. Processes and 
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forall procsets in set rng SoftWare. Services & 
gpid not in set procsets and 

forall SOlink in set rng SoftWare. SO_Linkage & 
SOlink.a <> gpid and SOlink.b <> gpid and 

forall link in set rng SoftWare. Linkage & 
cases link: 

mk Uni Link(a,b) -> gpid <> a and gpid <> b, 
mk-Unk~own Link(a,b) -> gpid <> a and gpid <> b, 
mk-Bi Link(mk Uni Link(a,b), mk Uni Link(aa,bb)) -> 

gpid <> a a~d gpid <> band gpid <> aa and gpid <> bb 
end; 

--pre condition checks that the process has no linkage before removing it. 
--If a process is removed while it has linkage, the model says nothing about 
it. 
--pre condition also checks that the process is not the member of a service. 

AddService : Service_IO * set of Global Process_IO --> I) 
AddService(serv id, serv) --

SoftWare.services :- SoftWare. Services munion Iserv_id 1-> serv} 
pre serv id not in set dom SoftWare. Services; 

AddProcToService : Service 10 * Global Process 10 ==> I) 
AddProcToService(serv id, gpid) == -

SoftWare.Services :; SoftWare. Services ++ 
(serv_id 1-> SoftWare.Serviceslserv_id) union Igpid}} 

pre serv_id in set dom SoftWare.Services and 
gpid not in set SoftWare.Serviceslserv_id); 

RemoveProcFromService : Service 10 * Global Process 10 ==> II 
RemoveProcFromService(serv id, gpid) -- - -

if cardISoftWare.serviceslserv_idll - 1 
then 

SoftWare. Services •• Iserv_id} <-: SoftWare. Services 
else 

SoftWare. Services •• SoftWare. Services ++ 
Iserv id 1-> SoftWare.Serviceslserv id) \ Igpidll 

pre serv id in set dom SoftWare. Services and 
gpid-in set SoftWare.Serviceslserv id); 

--no remove service operator as when the-last process is removed, the 
service 
--is no more. 

AddSO : Shared Data 10 * Shared Data _a> I) 
AddSOlid, idal-·= - -

SoftWare.SOs :- SoftWare.SOs munion lid 1-> idal 
pre id not in set dom SoftWare.SOs; 

RemoveSO : Shared_Oata_IO _a> II 
RemoveSO(id) --

SoftWare.SOs :- lidl <-: SoftWare.SOs 
pre id in set dom SoftWare.SOs and 

forall SOlink in set rng SoftWare.SO Linkage & 
SOlink.Shared Data <> id; -

--pre condition checks that the Shared Data has no linkage before removing 
it. 
--If a Shared Data is removed while it has linkage, the model says nothing 
--about it. 

AddSOLink: Link ID * Shared Data 10 * Global_Process_IO * 
Global Process IO-->I) - -
AddSOLinkllid,-sdid, gpidl, gpid2) --

SoftWare.SO_Linkage :-
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SoftWare. SO_Linkage munion (lid 1-> mk_Shared_Oata_Link(gpidl, gpid2, 
sdid) } 

pre lid not in set dom SoftWare. SO_Linkage and 
lid not in set dom SoftWare.Linkage; 

--This does not check for underlying network support for the link, as it is 
--assumed that software links can be added that are not supported by the 
--hardware. 

RemoveSOLink : Link IO ==> () 
RemoveSOLink(lid) =; 

SoftWare. SO_Linkage := (lid) <-: SoftWare. SO_Linkage 
pre lid in set dom SoftWare.SO Linkage; 

AddSWUniLink : Global Process IO * Global_Process_IO * Link IO ==> () 
AddSWUniLink(gpidl, gpid2, lid) --

SoftWare.Linkage :-
SoftWare. Linkage munion (lid 1-> mk Uni Link(gpidl, gpid2)} 

pre lid not in set dom SoftWare.SO Linkage and 
lid not in set dom SoftWare. Linkage; 

--This does not check for underlying network support for the link, as it is 
--assumed that software links can be added that are not supported by the 
--hardware. 

AddSWUnknownLink : Global Process IO * Global_Process_IO * Link_IO ==> () 
AddSWUnknownLink(gpidl, gpid2, lid) --

SoftWare.Linkage :-
SoftWare.Linkage munion (lid 1-> mk Unknown Link(gpidl, gpid2)) 

pre lid not in set dom SoftWare.SO Linkage and 
lid not in set dom SoftWare.Linkage; 

--This does not check for underlying network support for the link, as it is 
--assumed that software links can be added that are not supported by the 
--hardware. 

AddSWBiLink : Global Process ID * Global Process_IO * Link IO ==> () 
AddSWBiLink(gpidl, gpid2, lid) --

SoftWare.Linkage :-
SoftWare. Linkage munion (lid 1-> mk_Bi_Link(mk_Uni_Link(gpidl, gpid2), 

mk Uni Link(gpid2, gpidl))} 
pre lid not in set dom SoftWare.SO Linkage and 

lid not in set dom SoftWare. Linkage; 
--This does not check for underlying network support for the link, as it is 
--assumed that software links can be added that are not supported by the 
--hardware. 

RemoveSWLink : Link IO _a> () 
RemoveSWLink(lid) -; 

SoftWare. Linkage :- (lid) <-: SoftWare. Linkage 
pre lid in set dom SoftWare. Linkage; 

RePointSWLinks : Global Process ID • Global Process IO _a> () 
RePointSWLinks (oldid, newid) -= --

for all x in set dom SoftWare.Linkage do 
(if (is Uni Link(SoftWare.Linkage(x)) or 

is Unknown Link(SoftWare.Linkage(x))) 
- and SoftWare.Linkage(x).a - oldid then 

SoftWare. Linkage :- SoftWare. Linkage ++ 
(x 1-> mk Uni Link(newid, SoftWare. Linkage (x) .b)} 

else if (is_Uni=Link(SoftWare.Linkage(x}) or 
is Unknown Link(SoftWare.Linkage(x}}) 

- and SoftWare. Linkage (x) .b - oldid then 
SoftWare. Linkage :- SoftWare.Linkage ++ 

(x 1-> mk_Uni_Link(SoftWare.Linkage(x) .a, newid)} 
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else if is_Bi_Link(SoftWare.Linkage(x)) and SoftWare. Linkage (x) .a.a 
oldid then 

SoftWare. Linkage := SoftWare.Linkage ++ 
(x 1-> mk Bi Link(mk Uni Link(newid, SoftWare.Linkage(x) .a.b), 

mk Uni Link(SoftWare. Linkage (x) .b.a, newid))1 
else if is_Bi_Link(SoftWare.Linkage(x)) and SoftWare.Linkage(x) .a.b 

oldid then 
SoftWare. Linkage := SoftWare. Linkage ++ 

) ; 

(x 1-> mk Bi Link(mk Uni Link(SoftWare.Linkage(x) .a.a, newid), 
mk_Uni_Link(newid,-SoftWare.Linkage(x) .b.b)) I 

RePointSOLinks : Global Process 10 * Global Process 10 sa> () 
RePointSOLinks (oldid, newid) -; --

for all x in set dom SoftWare.SO Linkage do 
(if SoftWare.SO Linkage(x).a - oldid then 

SoftWare.SO Linkage :- SoftWare.SO Linkage ++ 
(x 1-> mk-Shared Oata Link(newid; SoftWare.SO Linkage(x).b, 

SoftWare.so Linkage(x) . Shared Oata) I -
else if SoftWare.SO Linkage(x).b - oldid then 

SoftWare.SO Linkage :- SoftWare.SO Linkage ++ 
(x 1-> mk-Shared Oata Link(SoftWare.so Linkage (x) .a, newid, 

SoftWare.SO_Linkage(x) .Shared_Oata) 1-
) ; 

AssignProcProcr : Card_IO * Global_Process_IO _a> () 
AssignProcProcr(CIO, GPIO) --

if GPIO in set dom SW HW Map.Proc to Procrs 
then - - - -

SW_HW_Map.Proc_to_Procrs :­
SW_HW_Map.Proc_to_Procrs ++ 

(GPIO 1-> SW_HW_Map.Proc_to_Procrs(GPIO) union {CIO)I 
else 

SW_HW_Map.Proc_to_Procrs :­
SW_HW_Map.Proc_to_Procrs munion {GPIO 1-> (CIOII 

pre CIO in set dom HardWare.Cards and 
is_Processor (HardWare.Cards(CIO)I; 

--CIO in set dom HardWare.Cards only in pre condition to stop run time 
errors, 
--as invariant over hardware will do the same job 

AssignProcPMem : Card 10 * Global Process 10 _a> () 
AssignProcPMem(CIO, GPIO) -- - -

if GPIO in set dom SW_HW_Map.Proc_to_PMem 
then 

SW_HW_Map.Proc_to_PMem :­
SW_HW_Map.Proc_to_PMem ++ 

(GPIO 1-> SW_HW_Map.Proc_to_PMem(GPIO) union {CIOII 
else 

SW HW Map.Proc to PMem :-
SW HW Map.Proc to PMem munion {GPIO 1-> (CIOII 

pre CID in set dom-HardWare.Cards and 
is Persistent Mem(HardWare.Cards(CIO)); 

--CIO in-set dom HardWare.Cards only in pre condition to stop run time 
errors, 
--as invariant over hardware will do the same job 

AssignProcNPMem : Card_IO * Global_Process_IO _a> () 
AssignProcNPMem(CIO, GPIO) --

if GPIO in set dom SW_HW_Map.Proc_to_NPMem 
then 

SW_HW_Map.Proc_to_NPMem :­
SW HW Map.Proc to NPMem ++ 

(GPIO 1-> SW=HW=Map.proc_to_NPMem(GPIO) union (CIOII 
else 

SW_HW_Map.Proc_to_NPMem :-
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SW HW Map.Proc to NPMem munion {GPlD 1-> {ClDII 
CIO in set dom-Ha~dWare.Cards and 
is Non Persistent Mem{HardWare.Cards{ClD)); 
in-set-dom HardWa~e.Cards only in pre condition 

errors, 
--as invariant over hardware will do the same job 

UnAssignProcCard : Global_Process_lD ==> () 
UnAssignProcCard(GPlD) 

SW HW Map := 
mk_SW_to_HW_Map( 

{GPlD} <-: SW_HW_Map.Proc_to_Procrs, 
{GPID} <-: SW_HW_Map.Proc_to_PMem, 
{GPlD} <-: SW_HW_Map.Proc_to_NPMem, 
SW HW Map.SO to NPMem) 

pre GPID in set dom-SoftWare.Processes and 
SoftWare. Processes (GPlD) . Loaded - false and 
(GPID in set dom SW HW Map.Proc to Procrs or 
GPlD in set dom SW_HW_Map.Proc_to_PMem or 
GPlD in set dom SW_HW_Map.Proc_to_NPMem); 

to stop run time 

--pre condition stops the un-assignment of a processes cards while the 
processes 
--are loaded upon them. 

AssignSDNPMem : Card_lO * Shared_Oata_lO ==> () 
AssignSDNPMem(CIO, SOlD) --

if SOlD in set dom SW HW Map.SD to NPMem 
then - - --

SW_HW_Map.SO_to_NPMem := 
SW_HW_Map.SO_to_NPMem ++ 

{SOlD 1-> SW_HW_Map.SO_to_NPMem(SOIO) union {CIO}I 
else 

SW_HW_Map.SO_to_NPMem :-
SW HW Map.SO to NPMem munion {SOlD 1-> {CIOII 

pre CIO in set dam HardWare.Cards and 
is Non Persistent Mem(HardWare.Cards(CIO)); 

--CIO in-set-dom HardWa~e.Cards only in pre condition to stop run time 
errors, 
--as invariant over hardware will do the same job 

UnAssignSOCard : Shared_Oata_IO _a> () 
UnAssignSDCard(SOIO) -­

SW_HW_Map.SO_to_NPMem :-
{SOlOI <-: SW HW Map.SD to NPMem 

pre SDlO in set-dom SW_HW=Map.SO_to_NPMem; 

AssignProcCards : Global Process 1D * seq of Card_lO _a> () 
AssignProcCards(gpid, cids) -- -

for i - 1 to card(inds cids) do 
if is_Processor(HardWare.Cards(cids(i))) 
then 

AssignProcProcr(cids(i) , gpid) 
else 

if is Persistent Mem(HardWare.Cards(cids(i))) 
then - -

AssignProcPMem(cids(i), gpid) 
else 

AssignProcNPMem(cids(i), gpid) 
pre gpid in set dom SoftWare. Processes; 

--this allows a sequence of cards to be assigned to a process 

ChangeProxyTarget: Global_Process_lO * Global_Process_10 _a> () 
ChangeProxyTarget(source, newtarget) --

SoftWare. Processes (source) .Target :- newtarget; 
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changeCondensingProxyTarget: Global_Process_ID • Global_Process_ID ==> () 
ChangeCondensingProxyTarget(source, newtarget) ~= 

SoftWare. Processes (source) .Target := newtarget; 

ChangeDuplexProxyTarget: Global_Process_ID * Global_Process_IO * 
Global Process 10 ==> () 
changeDuplexproxyTarget(source, oldid, newid) == 

if SoftWare. Processes (source) .Targetl = oldid then 
SoftWare. Processes (source) .Targetl := newid 

else 
SoftWare. Processes (source) .Target2 := newid 

pre oldid = SoftWare. Processes (source) .Target! or oldid = 
SoftWare. Processes (source) .Target2; 

ChangeProxySource: Global Process ID * Global Process 10 ==> () 
ChangeProxySource(proxyid; newsource) z= - -

SoftWare. Processes (proxyid) .Source :- newsource; 

ChangeOuplexProxySource: Global Process 10 * Global Process 10 ==> () 
changeOuplexProxySource(proxyid; newsource) == - -

SoftWare. Processes (proxyid) .Source :- newsource; 

ChangeCondensingProxySource: Global_Process_10 * Global_Process_IO • 
Global Process 10 --> () 
changeCondensingProxySource(proxyid, oldid, newid) --

if SoftWare.Processes(proxyid).Source! = oldid then 
SoftWare. Processes (proxyid) .Source! .= newid 

else 
SoftWare. Processes (proxyid) .Source2 := newid 

pre oldid - SoftWare. Processes (proxyid) .Sourcel or oldid = 
SoftWare. Processes (proxyid) .Source2; 

AddSameSWLinksAsProc : Global Process 10 • Global_Process_10 ==> () 
AddSameSWLinksAsProc (oldid, newid) .= 

for all x in set dom SoftWare. Linkage do 
(if (is Uni Link(SoftWare.Linkage(x» or 

is Unknown Link(SoftWare.Linkage(x») 
- and SoftWare. Linkage (x) .a - oldid then 

SoftWare.Linkage :- SoftWare. Linkage munion 
(mk token([oldid, newid, card(dom SoftWare.Linkage)]) 

1=> mk_Uni_Link(newid, SoftWare. Linkage (x) .b) I 
else if (is_Uni_Link(SoftWare.Linkage{x» or 

is_Unknown_Link(SoftWare.Linkage(x» ) 
and SoftWare. Linkage (x) .b - oldid then 
SoftWare.Linkage :- SoftWare. Linkage munion 
(mk_token([oldid, newid, card(dom SoftWare.Linkage)]) 

1-> mk_Uni_Link (SoftWare. Linkage (x) .a, newid) I 
else if is Bi Link(SoftWare.Linkage(x» and 

SoftWare~Linkage(x) .a.a - oldid then 
SoftWare. Linkage :. SoftWare. Linkage munion 
(mk token([oldid, newid, card(dom SoftWare.Linkage)]) 

1=> mk Bi Link(mk Uni Link(newid, SoftWare. Linkage (x) .a.b), 
mk Un i-Link (SoftWare.Linkage (x) .b.a, newid») 

else if is=Bi_Link(SoftWare.Linkage(x» and SoftWare. Linkage (x) .a.b -
oldid then 

); 

SoftWare. Linkage :- SoftWare. Linkage munion 
(mk token([oldid, newid, card(dom SoftWare.Linkage)]) 

1=> mk Bi Link(mk Uni Link(SoftWare.Linkage(x) .a.a, newid), 
mk_Uni=Link(newid; SoftWare. Linkage (x) .b.b») 

--the generated linkids are not perfect, but will serf ice for this model 
--(a better method should be used in an implementation). 
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--Have not done SD Links here. 

UnloadedProc : Global Process_ID ==> Process 
UnloadedProc(gpid) == 

if is_Activity(SoftWare.Processes(gpid)) 
then 
return( 

mk_ActivityISoftWare.Processes(gpid) . Developer, 
SoftWare. Processes (gpid) .Name, 
SoftWare. Processes (gpid) .Source, 
mk token("null"), 
SoftWare. Processes (gpid) .Initialisation State, 
mk_token("null"), -
mk token ("null") , 
false) ) 

else if is_Proxy(SoftWare.Processes(gpid)) then 
return( 

mk_Proxy(SoftWare.Processes(gpid) .Source, 
SoftWare. Processes (gpid) .Target, 
mk_Activity(SoftWare. Processes (gpid) .Activity.Developer, 
SoftWare. Processes (gpid) .Activity.Name, 
SoftWare. Processes (gpid) .Activity.Source, 
mk_ token ("null") , 
SoftWare. Processes (gpid) .Activity.Initialisation State, 
mk token("null"), -
mk=token("null") , 
false)) ) 

else 
return( 

mk_Duplex_Proxy(SoftWare. Processes (gpid) .Source, 
SoftWare. Processes (gpid) .Targetl, 
SoftWare. Processes (gpid) .Target2, 
mk Activity (SoftWare. Processes (gpid) .Activity.Developer, 
SoftWare. Processes (gpid) .Activity.Name, 
SoftWare. Processes (gpid) .Activity.Source, 
mk token("null"), 
SoftWare. Processes (gpid) .Activity.Initialisation State, 
mk_token("null"), -
mk_token("null") , 
false) ) ) 

pre CheckProcLoaded(SoftWare.Processes(gpid)) and 
gpid in set dom SoftWare. Processes; 

ChangeProxySourcel : Global Process 1D • Global_Process_1D • 
Global_Process_IO --> () - -
ChangeProxySourcel (proxid, oldtarget, newtarget) 

(if is_Proxy(SoftWare.Processes(proxid)) then 
ChangeProxySource(proxid, newtarget); 

if is_Duplex_Proxy(SoftWare.Processes(proxid)) then 
ChangeDuplexProxySource(proxid, newtarget); 

if is Condensing Proxy(Software.Processes(proxid)) then 
changeCondensingProxySource(proxid, oldtarget, newtargett; 

); 

ChangeProxyTargetl : Global_Process_ID • Global_Process_IO • 
Global Process ID --> () 
changeproxyTargetl (proxid, oldtarget, newtarget) 

(if is_Proxy(SoftWare.Processes(proxid)) then 
ChangeProxyTarget(proxid, newtarget); 

if is Duplex Proxy(SoftWare.Processes(proxid)) then 
changeOuplexProxyTarget(proxid, oldtarget, newtarget); 

if is_Condensing_Proxy(SoftWare.Processes(proxid)) then 
ChangeCondensingProxyTarget(proxid, newtarget); 

) ; 
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AddProxy : Global_Process_1D • Global_Process_1D • Global_Process_1D • set 
of Card ID ==> () 
AddProxy (source, target, newpid, cids) --

(AddProc(newpid, mk Proxy(source, target, 
mk ActiITity(mk token ("DeITeloperl"), mk token("CORBA ORB"), 
mk-token("20. Goto 10"), mk token("null") , mk token("stl"), 
mk-token("null") , mk token ("null") , false)));-

AssignProcCards(newpid~ settoseq(cids)); 
LoadProc(newpid); 

) ; 

AddDuplexProxy : Global Process 10 • Global Process 10 • Global Process 10 * 
Global Process 10 • set-of Card-1D --> () - - --
AddDuplexproxy-(source, targetpldl, targetpid2, newpid, cids) -= 

(AddProc(newpid, mk Duplex Proxy(source, targetpidl, targetpid2, 
mk ActiITity(mk token("OeITelOperl"), mk token ("CORBA ORB"), 
mk -token ("20. Goto 10"), mk token ("null"), mk token ("stl") , 
mk=token("null"), mk_token("null"), false)));-

AssignProcCards(newpid, settoseq(cids)); 
LoadProc(newpid) ; 

) ; 

AddCondensingProxy : Global Process 10 • Global Process 10 * 
Global Process 10 • Global Process ID • set of Card 10 =-> () 
AddCondensingProxy (sourcel, source2, target, newpid, cids) --

(AddProc(newpid, mk Duplex Proxy(sourcel, source2, target, 
mk Activity (mk token ("Developerl"), mk token ("CORBA ORB"), 
mk -token ("20. Goto 10"), mk token ("null"), mk token ("stl"), 
mk-token("null") , mk token(~null"), false)));-

AssignProcCards(newpid~ settoseq(cids)); 
LoadProc(newpid); 

) ; 

AddLoc : Location • Loc 10 _a> () 
AddLoc(loc, locid) -- -

Loc.Physical_locations :- Loc.Physical_locations munion {locid 1-> loc} 
pre locid not in set dom Loc.Physical_locations; 

RemoITeLoc : Loc 10 _a> () 
RemOITeLOC(locid) --

Loc.Physical_locations :- {locid} <-: Loc.Physical_locations 
pre locid not in set rng HW Loc Map and 

locid in set dom Loc.PhYsical_locations; 

ChangeLocName : Loc 10 • token _a> () 
ChangeLocName(locid~ newname) --

Loc. Physical_locations (locid) .Name :- newname 
pre locid in set dom Loc.Physical_locations; 

AssignMAULoc : MAU 10 • Loc 10 _a> () 
AssignMAULoc(mau, loc) -- -

HW Loc Map :- HW Loc Map munion {mau 1-> locI 
pre loe in set dom Loc.Physical locations and 

mau in set dom HardWare.MAUs and 
mau not in set dom HW_Loc_Map; 

UnAssignMAULoc : MAU 10 _a> () 
UnAssignMAULoc(mau) =-

HW Loc Map :- {maul <-: HW Loc Map 
pre mau in set dom HardWare.MAUs and 

mau in set dom HW_Loc_Map; 
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--Manipulate Model Operations--
--------Interesting Ops--------

LoadProc : Global Process 10 ==> () 
LoadProc(gpid) ==-

if is_Activity(SoftWare.Processes(gpid)) 
then 
SoftWare. Processes (gpid) := 

mk Activity(SoftWare.Processes(gpid) . Developer, 
SoftWare. Processes (gpid) .Name, 
SoftWare. Processes (gpid) .Source, 
SoftWare. Processes (gpid) . Initialisation State, 
SoftWare. Processes (gpid) . Initialisation=State, 
mk_token("initial") , 
mk_token("new PIO"), 
true) 

else 
SoftWare. Processes (gpid) .Activity := 

mk_Activity(SoftWare. Processes (gpid) ,Activity. Developer, 
SoftWare.Processes(gpid).Activity.Name, 
SoftWare. Processes (gpid) .Activity.Source, 
SoftWare. Processes (gpid) .Activity.Initialisation State, 
SoftWare. Processes (gpid) .Activity.Initialisation=State, 
mk_token("initial") , 
mk_token ("new PID"), 
true) 

pre gpid in set dom SW HW Map.Proc to Procrs and 
gpid in set dom SW=HW=Map.Proc=to=PMem and 
gpid in set dom SW_HW_Map.Proc_to_NPMem and 
CheckProcLoaded(SoftWare.Processes(gpid)) = false and 
gpid in set dom SoftWare. Processes; 

--the pre condition checks that a process must have at least a processor, 
some 
--persistent memory, and some non-persistent memory. 
--This makes the State of the process starting as a process will aquire 
state 
--when loaded 

UnLoadProc : Global Process 10 =z> () 
UnLoadProc(gpid) ---

if is_Activity(SoftWare.Processes(gpid)) 
then 
SoftWare. Processes (gpid) :-

mk Activity (SoftWare. Processes (gpid) . Developer, 
SoftWare. Processes (gpid) .Name, 
SoftWare.Processes(gpid).Source, 
mk_ token ("null") , 
SoftWare. Processes (gpid) . Initialisation State, 
mk token("null") , -
mk=token("null") , 
false) 

else 
SoftWare. Processes (gpid) .Activity .= 

mk Activity (SoftWare. Processes (gpid) .Activity.Developer, 
softWare.Processes(gpid).Activity.Name, 
SoftWare. Processes (gpid) .Activity.Source, 
mk_ token ("null") , 
SoftWare.Processes(gpid).Activity.Initialisation_State, 
mk_token ("null"), 
mk token("null"), 
false) 

pre CheckProcLoaded(SoftWare.Processes(gpid)) and 
gpid in set dom SoftWare. Processes; 

--This makes the State of the process null as a process that is not running 
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--should not have state 

ChangeProcState : Global_Process_IO * token ==> () 
ChangeProcState(gpid, s) == 

SoftWare. Processes (gpid) .State := s 
pre CheckProcLoaded(SoftWare.Processes(gpid)) and 

gpid in set dom SoftWare. Processes; 
--as processes do not really execute in VOM, this operation is provided to 
--change the internal state of a process. 

ChangeProcStack : Global_Process_IO * token ==> () 
ChangeProcStack(p, i) c= 

SoftWare.Processes(p) . Instruction_Stack := i 
pre CheckProcLoaded(SoftWare.Processes(p)) and 

p in set dom SoftWare. Processes; 
--as processes do not really execute in VOM, this operation is provided to 
--change the internal instruction stack position. 

CopyProcState : Global Process 10 * Global Process 10 ==> () 
CopyProcState(A, B) --- - --

SoftWare. Processes (A) .State := SoftWare.Processes(B).State 
pre A in set dom SoftWare. Processes and 

B in set dom SoftWare. Processes and 
CheckProcEquality(SoftWare.Processes(A), SoftWare.Processes(B)) and 
CheckIsRoute(A,B); 

CopySOState : Shared_Oata_IO * Shared_Oata_IO -=> () 
CopySOState(A, B) =-

SoftWare.SOs(A) .State := SoftWare.SOs(B) .State 
pre A in set dom SoftWare.SOs and 

B in set dom SoftWare.SOs and 
SoftWare.SOs(A) . Protocol - SoftWare.SOs(B) . Protocol and 
CheckCopySOState(A,B); 

--This is abstract, as the processor must copy the state and this would 
probably 
--require a process on the processor being started and then being deleted 
when 
--done. 

SynchProc : Global Process 10 * Global Process 10 _a> () 
SynchProc(A, B) c.- - --

SoftWare. Processes (A) . Instruction Stack :­
SoftWare.Processes(B) . Instruction Stack 

pre A in set dom SoftWare. Processes-and 
B in set dom SoftWare. Processes and 
CheckProcEquality(SoftWare.Processes(A), SoftWare.Processes(B)) and 
CheckIsRoute(A,B); 

--this does not force either process to be running 

ChangeLoadedProcIO : Global Process 10 * Global Process 10 -=> () 
ChangeLoadedProcIO(oldid, newid) •• - --

(atomic (SoftWare. Processes '- SoftWare. Processes munion {newid 1-> 
SoftWare. Processes (oldid)I; 

SW HW Map :-
mk SW to HW Map( 

SW HW Map~proc to Procrs munion 
(newid 1-> SW HW Map.Proc to Procrs(oldid) I, 

SW HW Map.Proc to PMem munion -
{newid 1-> SW HW Map.Proc to PMem(oldid)I, 

SW HW Map.Proc to NPMem munlon-
(newid 1-> SW HW Map.Proc to NPMem(oldidl I, 

SW HW Map.SO to-NPMem)); -­
RePointSWLlnks(oldid~ newidl; 
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RePointSOLinks(oldid, newid); 
atomic(SW_HW_Map :-

mk sw to HW Map( 
{oldidl <=: SW_HW Map.Proc to Procrs, 
(oldid) <-: SW_HW_Map.Proc_to_PMem, 
(oldid) <-: SW_HW_Map.Proc_to_NPMem, 
SW HW Map.SO to NPMem); 

SoftWare. Processes :; (oldid) <-: SoftWare. Processes) 
) 

pre oldid in set dom SoftWare. Processes and 
CheckProcLoaded (SoftWare. Processes (oldid) ) and 
newid not in set dom SoftWare. Processes; 

--Processes may need to change there 10 especially when moving, thus this 
--operation is provided. 

MoveProcOelFirst : Global Process 10 • seq of Card 10 _a> () 
MoveProcOelFirst(gpid, cids) -

(UnLoadProc(gpid); 
UnAssignProcCard(gpid); 
AssignProcCards(gpid, cids); 
LoadProc(gpid); 

) 

pre gpid in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(gpid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there is an implicit assumption here that a process can not really be 
moved 
--unless its loaded. As its not really doing anything until loaded. Checks 
--that the move can be facilitated by the hardware links provided. 

MoveProcOelAfter : Global Process 10 • seq of Card 10 _a> () 
MoveProcOelAfter(gpid, Cids) -- - -

(AddProc(mk token("temp id"), UnloadedProc(gpid)); 
AssignProcCardS(mk token("temp id"), cids); 
LoadProc(mk token("temp id"));-
UnLOadProc(gpid); -

) 

UnAssignProcCard(gpid); 
RePointSWLinks (gpid, mk token ("temp id")); 
RepointSOLinks(gpid, mk-token("temp-id")); 
RemoveProc(gpid); - -
ChangeLoadedProc10(mk_token("temp_id"), gpid); 

pre gpid in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.processes(gpid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there is an implicit assumption here that a process can not really be 
moved 
--unless its loaded. As its not really doing anything until loaded. Checks 
--that the move can be facilitated by the hardware links provided. 

MoveProcWState : Global Process 10 * seq of Card 10 _a> () 
MoveProcWState(gpid, cids) -- -

( 

) 

AddProc(mk token("temp id"), UnloadedProc(gpid)); 
AssignProcCards(mk token("temp id"), cids); 
LoadProc(mk token("temp id"));­
CopyprocState(mk_token("temp_id"), gpid); 
UnLoadProc(gpid); 
UnAssignProcCard(gpid); 
RePointSWLinks (gpid, mk token ("temp id")); 
RePointSOLinks(gpid, mk=token("temp=id"»); 
RemoveProc(gpid); 
ChangeLoadedProc1D(mk_token("temp_id"), gpid); 
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pre gpid in set dom SoftWare. Processes and 
mk_token("temp_id") not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(gpid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there must be a point where the ID changes as both process cannot be 
running 
--with the same ID at the same time. Checks that the move can be 
facilitated 
--by the hardware links provided. 

MoveProcWStateAndSync : Global Process ID * seq of Card ID ==> () 
MoveProcWStateAndSync(gpid, cids) == - -

(AddProc(mk token("temp id"), UnloadedProc(gpid)); 
Assignproc2ards(mk tok~n("temp id"), cids); 
LoadProc(mk token(;temp id"));-
copyProcState(mk token(;temp id"), gpid); 

) 

SynchProc (mk tok~n ("temp id"), gpid); 
UnLoadProc(gpid); -
UnAssignProcCard(gpid); 
RePointSWLinks (gpid, mk token ("temp id")); 
RePointSDLinks(gpid, mk=token("temp=id")); 
RemoveProc(gpid); 
ChangeLoadedProcID(mk_token("temp_id"), gpid); 

pre gpid in set dom SoftWare. Processes and 
mk token("temp id") not in set dom SoftWare. Processes and 
Ch~ckProcLoaded(SoftWare.Processes(gpid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there must be a point where the ID changes as both process cannot be 
running 
--with the same ID at the same time. Checks that the move can be 
facilitated 
--by the hardware links provided. 

MoveProcDelFirstLP : Global Process ID * seq of Card ID * set of 
Global Process ID * set of Global Process ID _a> () -
MOveProcDelFirstLP(gpid, cids, sources, targets) --

def oldcids - SW HW Map.Proc to Procrs(gpid) union 
SW HW Map.proc-to-NPMem(gpid)-union SW HW Map.Proc to PMem(gpid) in 

(UnLoadProc(gpid); - - - - -
UnAssignProcCard(gpid); 
AssignProcCards(gpid, cids); 
LoadProc (gpid) ; 
for all s in set sources do 
( 

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare.Processes), 
s, card(dom SoftWare.Linkage)]), oldcids); 

ChangeProxySourcel (s, gpid, mk_token([gpid, card(rng 
SoftWare.Processes)-l, 

s, card(dom SoftWare.Linkage)])); 
); 
for all t in set targets do 
( 

AddProxy(t, gpid, mk token([gpid, card(rng SoftWare.Processes), t, 
card(dom SoftWare:Linkage)]), oldcids); 

ChangeProxyTargetl (t, gpid, mk_token([gpid, card(rng 
SoftWare.Processes)-l, 

); 

) 

t, card(dom SoftWare.Linkage)])) 

pre gpid in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(gpid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there is an implicit assumption here that a process cannot really be moved 
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--unless its loaded. As its not really doing anything until loaded. Checks 
--that the move can be facilitated by the hardware links provided. 

MoveProcOelAfterLP : Global Process 10 * seq of Card 10 * set of 
Global Process 10 • set of Global Process 10 ==> () -
MoveprocOelAfterLP(gpid, cids, sources, targets) -= 
def oldcids = SW_HW_Map.Proc_to_Procrs(gpid) union 
SW HW Map.Proc to NPMem(gpid) 

- union SW HW Map.Proc to PMem(gpid) in 
(AddProc(mk token(ntemp idn), UnloadedProc(gpid)); 
AssignProcCards(mk token(ntemp idn), cids); 
LoadProc (mk token ("temp idn));-
UnLoadProc(gpid); -
UnAssignProcCard(gpid); 
RePointSWLinks(gpid, mk token(ntemp idn)); 
RePointSOLinks(gpid, mk-token(ntemp-idn)); 
RemoveProc(gpid); - -
ChangeLoadedProc10 (mk token ("temp idn), gpid); 
for all s in set sources do -
( 

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare. Processes) , 
s, card(dom SoftWa-re.Linkage))), oldcids); 

ChangeProxySourcel (s, gpid, mk token([gpid, card(rng 
SoftWare.Processes)-l, -

s, card(dom SoftWare.Linkage)))); 
) ; 
for all t in set targets do 
( 

AddProxy(t, gpid, mk token([gpid, card(rng SoftWare.Processes), t, 
card(dom SoftWare~Linkage)]), oldcids); 

ChangeProxyTargetl (t, gpid, mk token([gpid, card(rng 
SoftWare.Processes)-l, -

) ; 
) 

t, card(dom SoftWare.Linkage)))); 

pre gpid in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(gpid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there is an implicit assumption here that a process cannot really be moved 
--unless its loaded. As its not really doing anything until loaded. Checks 
--that the move can be facilitated by the hardware links provided. 

MoveProcWStateLP : Global Process 10 * seq of Card 10 * set of 
Global Process 10 * set of Global-Process 10 ==> () 
MoveProcWStateLP(gpid, cids, sources, targets) --
def oldcids - SW HW Map.Proc to Procrs(gpid) union 
SW_HW_Map.proc_to_NPMem(gpid) -

union SW_HW_Map.Proc_to_PMem(gpid) in 

AddProc(mk token("temp id"), UnloadedProc(gpid)); 
AssignProcCards(mk token("temp id"), cids); 
LoadProc(mk tOken("temp id"));-
CopyprocState (mk token ("temp idn), gpid); 
UnLoadProc(gpid); -
UnAssignProcCard(gpid); 
RePointSWLinks (gpid, mk token ("temp id")); 
RePointSOLinks(gpid, mk-token("temp-id")); 
RemoveProc(gpid); - -
ChangeLoadedProc10(mk token("temp id"), gpid); 
for all s in set sources do -
( 

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare. Processes) , s, 
card(dom SoftWare~Linkage))), oldcids); 

ChangeProxySourcel (s, gpid, mk_token([gpid, card(rng 
SoftWare.Processes)-l, 

s, card(dom SoftWare.Linkage)])); 



156 

); 
for all t in set targets do 
( 

AddProxy(t, gpid, mk_token([gpid, card(rng SoftWare. Processes) , t, 
card(dom SoftWare.Linkage)]), oldcids); 

ChangeProxyTargetl (t, gpid, mk_token([gpid, card(rng 
SoftWare.Processes)-l, 

); 
) 

t, card(dom SoftWare.Linkage)]» 

pre gpid in set dom SoftWare. Processes and 
mk token("temp id") not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(gpid» and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there must be a point where the ID changes as both process cannot be 
running 
--with the same ID at the same time. Checks that the move can be 
facilitated 
--by the hardware links provided. 

MoveProcWStateAndSyncLP : Global Process ID * seq of Card ID * set of 
Global Process ID * set of Global Process ID a=> () -
MoveprocWStateAndSyncLP(gpid, cids, sources, targets) 
def oldcids = SW HW Map.Proc to Procrs(gpid) union 
SW HW Map.Proc to NPMem(gpid) -

- - union s-W H-W Map.Proc to PMem(gpid) in 
(AddProc (mk token( "temp iei") ,- UnloadedProc (gpid»; 
AssignprocCards(mk token("temp id"), cids); 
LoadProc(mk token("temp id"»;-
copyProcState(mk token("temp id"), gpid); 
SynchProc (mk token ("temp id"), gpid); 
UnLoadProc(gpid); -
UnAssignProcCard(gpid) ; 
RePointSWLinks(gpid, mk token(tttemp id tt »; 
RePointSDLinks(gpid, mk=token(tttemp=id tt »; 
RemoveProc(gpid); 
ChangeLoadedProcID(mk token(tttemp id tt ) , gpid); 
for all s in set sources do -
( 

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare.Processes), s, 
card(dom SoftWare~Linkage) ]), oldcids); 

ChangeProxySourcel (s, gpid, mk_token([gpid, card(rng 
SoftWare.Processes)-l, 

s, card(dom SoftWare.Linkage)]»; 
) ; 
for all t in set targets do 
( 

AddProxy(t, gpid, mk token([gpid, card(rng SoftWare.Processes), t, 
card(dom SoftWare~Linkage)]), oldcids); 

ChangeProxyTargetl (t, gpid, mk_token([gpid, card(rng 
SoftWare.Processes)-l, 

) ; 
) 

t, card(dom SoftWare.Linkage)]» 

pre gpid in set dom SoftWare. Processes and 
mk token(tttemp id tt ) not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.processes(gpid» and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(gpid, cids); 

--there must be a point where the ID changes as both process cannot be 
running 
--with the same ID at the same time. Checks that the move can be 
facilitated 
--by the hardware links provided. 

CopyProc 
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CopyProc(existid, cids, newid) =­
(AddProc(newid, UnloadedProc(existid)); 
AssignProcCards(newid, cids); 
LoadProc(newid); 

) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there is an implicit assumption here that a process cannot really be 
copied 
--unless its loaded. As its not really doing anything until loaded. Checks 
--that the copy can be facilitated by the hardware links provided. 

CopyProcWState : Global_Process_10 * seq of Card_10 * Global_Process 10 =-> 
() 
CopyProcWState(existid, cids, newid) 

(AddProc(newid, UnloadedProc(existid)); 
AssignProcCards(newid, cids); 
LoadProc(newid); 
CopyProcState(newid, existid); 

) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the copy can be 
facilitated 
--by the hardware links provided. 

CloneProc: Global Process 10 * seq of Card 10 * Global_Process_10-->() 
CloneProc(existid; cids, newid) -- -

(AddProc(newid, UnloadedProc(existid)); 
AssignProcCards(newid, cids); 
LoadProc(newid); 

) 

CopyProcState(newid, existid); 
SynchProc(newid, existid); 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the clone can be 
facilitated 
--by the hardware links provided. 

CopyProcWSWLinks : Global Process 10 • seq of Card_10 • Global_Process_10 
--> () --
CopyProcWSWLinks(existid, cids, newid) 

(AddProc(newid, UnloadedProc(existid)); 
AssignProcCards(newid, cids); 
LoadProc(newid); 
AddSameSWLinksAsProc(existid, newid); 

) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 
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--there is an implicit assumption here that a process cannot really be 
copied 
--unless its loaded. As its not really doing anything until loaded. Checks 
--that the copy can be facilitated by the hardware links provided. 

CopyProcWStateAndSWLinks : Global_Process_IO * seq of Card 10 * 
Global Process 10 •• > () 
CopyprocWStateAndSWLinks(existid, cids, newid) 

(AddProc(newid, UnloadedProc(existid»; 
AssignProcCards(newid, cids); 
LoadProc(newid); 

) 

CopyProcState(newid, existid); 
AddSameSWLinksAsProc(existid, newid); 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid» and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the copy can be 
facilitated 
--by the hardware links provided. 

CloneProcWSWLinks: Global Process 10 • seq of Card 10 • 
Global Process IO-->() - -
CloneProcWSWLinks(existid, cids, newid) --

(AddProc(newid, UnloadedProc(existid»; 
AssignProcCards(newid, cids); 
LoadProc(newid); 

) 

CopyProcState(newid, existid); 
SynchProc(newid, existid); 
AddSameSWLinksAsProc(existid, newid); 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid» and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the clone can be 
facilitated 
--by the hardware links provided. 

CopyProcLP : Global Process 10 • seq of Card 10 • Global Process 10 • set of 
Global Process 10 ·-set of Global Process 10---> () - -
CopyProcLP(existid, cids, newid, sources,-targets) --
def oldcids - SW HW Map.Proc to Procrs(existid) union 

SW HW Map-.prec to NPMem(existid) union 
SW HW Map:Pro-c to PMem(existid) in 

(AddProc (newid,-UnloadedProc (existid) ); 
AssignProcCards(newid, cids); 
LoadProc(newid); 
for all s in set sources do 
( 

AddCondensingProxy(existid, newid, s, mk token([existid, 
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage»)), 

oldcids); 
ChangeProxySourcel (s, existid, mk token([existid, 

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)]»; 
); 

for all t in set targets do 
( 

AddOuplexProxy(t, existid, newid, mk_token([existid, 
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cardlrng SoftWare. Processes) , t, cardldom SoftWare.Linkage)]), 
oldcids); 

ChangeProxyTargetl It, existid, mk_token([existid, 

) ; 
) 

cardlrng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)])) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processeslexistid)) and 
CheckRightCardTypeslcids) and 
CheckProcrsConnectlexistid, cids); 

--there is an implicit assumption here that a process cannot really be 
copied 
--unless its loaded. As its not really doing anything until loaded. Checks 
--that the copy can be facilitated by the hardware links provided. 

CopyProcWStateLP : Global_Process_10 • seq of Card_10 • Global_Process_10 * 
set of Global Process 10 • set of Global Process 10 ==> () 
CopyProcWStateLPlexistid, cids, newid, sources, targets) 
def oldcids - SW HW Map.Proc to Procrs(existid) union 

SW HW Map-. Proc to NPMem (existid) union 
SW HW Map.-Pro-c to PMem(existid) in 

(AddProc(newid,-UnloadedProc(existid)); 
AssignProcCardslnewid, cids); 
LoadProc(newid); 
CopyProcState(newid, existid); 
for all s in set sources do 
( 

AddCondensingProxylexistid, newid, s, mk token([existid, 
cardlrng SoftWare. Processes) , s, card(dom SoftWare.Linkage)]), 

oldcids); 
ChangeProxySourcel (s, existid, mk token([existid, 

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)])); 
) ; 

for all t in set targets do 
( 

AddOuplexProxy(t, existid, newid, mk token([existid, 
card(rng SoftWare. Processes) , t, c-ard(dom SoftWare.Linkage))), 

oldcids); 

); 
) 

ChangeProxyTargetl (t, existid, mk token([existid, 
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)])) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the copy can be 
facilitated 
--by the hardware links provided. 

CloneProcLP: Global Process 10 * seq of Card 10 * Global Process 10 * set of 
Global Process 10 ·-set of Global Process IO--->() - -
CloneProcLP(existid, cids, newid,-sources~ targets) --
def oldcids - SW HW Map.Proc to Procrs(existid) union 

SW HW Map' Proc to NPM-em (existid) union 
SW HW Map.-Pro-c to PMem(existid) in 

(AddProc(newld,-UnloadedProc(existid)); 
AssignProcCardslnewid, cids); 
LoadProc(newid); 
CopyProcState(newid, existid); 
SynchProc(newid, existid); 
for all s in set sources do 
I 
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AddCondensingProxy(existid, newid, s, mk token([existid, 
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]), 

oldcids); 
ChangeProxySourcel (s, existid, mk token([existid, 

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)])); 
) ; 

for all t in set targets do 
( 

AddOuplexProxy(t, existid, newid, mk_token([existid, 
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]), 

oldcids) ; 

) ; 
) 

ChangeProxyTargetl (t, existid, mk token([existid, 
card(rng SoftWare.Processes)-l, -t, card(dom SoftWare.Linkage)])) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the clone can be 
facili tated 
--by the hardware links provided. 

CopyProcWSWLinksLP : Global_Process_1D * seq of Card_10 * Global_Process_10 
* set of Global Process 10 • set of Global Process 10 --> () 
CopyprocWSWLinksLP(existid, cids, newid, sources, targets) 
def oldcids - SW HW Map.Proc to Procrs(existid) union 

SW HW Map-. Proc to NPMem (existid) union 
SW HW Map.-Proc to PMem(ex-istid) in 

(AddProc(newld,-UnloadedProc(existid)); 
AssignProcCards(newid, cids); 
LoadProc(newid); 
AddSameSWLinksAsProc(existid, newid); 
for all s in set sources do 
( 

AddCondensingProxy(existid, newid, s, mk token([existid, 
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]), 

oldcids); 
ChangeProxySourcel (s, existid, mk token([existid, 

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)])); 
) ; 

for all t in set targets do 
( 

AddOuplexProxy(t, existid, newid, mk token([existid, 
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]), 

oldcids); 

); 

) 

ChangeProxyTargetl (t, existid, mk token([existid, 
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)])) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there is an implicit assumption here that a process cannot really be 
copied 
--unless its loaded. As its not really doing anything until loaded. Checks 
--that the copy can be facilitated by the hardware links provided. 

CopyprocWStateAndSWLinksLP : Global Process 10 * seq of Card 10 * 
Global_Process_10 • set of Global_Process_ID • set of Global=Process_IO -_> 
() 

CopyProcWStateAndSWLinksLP(existid, cids, newid, sources, targets) =-
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def oldcids = SW HW Map.Proc to Procrs(existid) union 
SW HW Map-. Proc to NPM-em (existid) union 

SW HW Map.-Pro-c to PMem-(ex-istid) in 
(AddProc(newid,-UnloadedProc(existid)); 

AssignProcCards(newid, cids); 
LoadProc(newid) ; 
CopyProcState(newid, existid); 
AddSameSWLinksAsProc(existid, newid); 
for all s in set sources do 
( 

AddCondensingProxy(existid, newid, s, mk token([existid, 
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]), 

oldcids); 
ChangeProxySourcel (s, existid, mk_token([existid, 

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)])); 
) ; 
for all t in set targets do 
( 

AddOuplexProxy(t, existid, newid, mk token([existid, 
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]), 

oldcids); 

) ; 
) 

ChangeProxyTargetl (t, existid, mk_token([existid, 
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)])) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processeslexistid)) and 
CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the copy can be 
facili tated 
--by the hardware links provided. 

CloneProcWSWLinksLP: Global_Process_10 • seq of Card_10 • Global_Process_10 
• set of Global Process 10 • set of Global Process 10 -->() 
CloneProcWSWLinksLPlexistid, cids, newid, sources,-targets) 
def oldcids - SW HW Map.Proc to Procrs(existid) union 

SW HW Map-. Pr-oc to NPMem (existid) union 
SW HW Map.-Proc to PMem(ex-istid) in 

(AddProc(newid,-UnloadedProc(existid)); 
AssignProcCards(newid, cids); 
LoadProc(newid); 
CopyProcState(newid, existid); 
SynchProc(newid, existid); 
AddSameSWLinksAsProc(existid, newid); 
for all s in set sources do 
( 

AddCondensingProxy(existid, newid, s, mk token([existid, 
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]), 

oldcids) ; 
ChangeProxySourcel (s, existid, mk token([existid, 

card(rng SoftWare.Processes)-l, 5, card(dom SoftWare.Linkage)])); 
); 
for all t in set targets do 
( 

AddOuplexProxy(t, existid, newid, mk token([existid, 
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]), 

oldcids); 

); 

) 

ChangeProxyTargetl (t, existid, mk_token([existid, 
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)])) 

pre existid in set dom SoftWare. Processes and 
newid not in set dom SoftWare. Processes and 
CheckProcLoaded(SoftWare.Processes(existid)) and 
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CheckRightCardTypes(cids) and 
CheckProcrsConnect(existid, cids); 

--there must be a point where the 10 changes as both process cannot be 
running 
--with the same 10 at the same time. Checks that the clone can be 
facHi tated 
--by the hardware links provided. 

CheckMAUSameLoc: MAU 10 * MAU 10 -=> bool 
CheckMAUSameLoc(maul~ mau2) -; 

return(HW Loc Map(maul) - HW Loc Map(mau2» 
pre maul in set dom HW Loc Map and 

mau2 in set dom HW=Loc=Map; 
--if maus not allocated to a location, it is not known what the location of 
the 
--hardware is and thus this function cannot decide if they are in the same 
--location. More useful location functions could be added to check if two 
--processes are in the same location etc .•• 

--**VALUES"--

values 

m1:MAU - mk_MAU(ll, [<A>,<A>,<C>,<B>,<B>,<B>,<B>,<B>,<B>,<C>,<B»); 

mauidl:MAU_10 - mk_token("MAU101"); 

m2:MAU - mk_MAU(5, [<A>,<A>,<C>,<B>,<B»); 

mauid2:MAU_10 - mk_token("MAUI02"); 

c1:Card - mk Processor(mk token("Man1"),mk token("Modl"),<A>, 1200, false, 
false, <CISC>~ <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0); 

c2:Card - mk Processor(mk token("Manl"),mk token("Modl"),<A>, 1200, false, 
false, <CISC>~ <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0); 

c3:Card - mk Processor(mk token("Manl"),mk token("Modl"),<B>, 1200, false, 
false, <ClSC>~ <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0); 

c4:Card - mk_Perslstent_Mem(mk_token("Man2"),mk_token("Mod2"),<B>, 24, 50, 
12, 

false, 24, 50, 12, 20000, 100, -10, 5040.6, 50.0); 

c5:Card - mk_Persistent_Mem(mk_token("Man2") ,mk_token("Mod2") ,<B >, 24, 50, 
12, 

false, 24, 50, 12, 20000, 100, -10, 5040.6, 50.0); 

50, 
12, 256, 333, 100, -10, 4096.6, 50.0); 

50, 
12, 256, 333, 100, -10, 4096.6, 50.0); 

c8:Card - mk_Non_Persistent_Mem(mk_token("Man3"),mk_token("Mod3"),<B>, 24, 
50, 

12, 512, 400, 100, -10, 4096.6, 50.0); 

c9:Card - mk_Processor(mk_token("Manl"),mk_token("Mod2"),<C>, 1200, false, 
false, <ClSC>, <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0); 
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c10:Card = mk_Processor(mk_token("Man1"),mk_token("Mod2"),<C>, 1200, false, 
false, <CISC>, <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0); 

cll:Card - mk_Non_Persistent_Mem(mk_token("Man3") , mk_token("Mod3") ,<B>, 24, 
50, 

12, 512, 400, 100, -10, 4096.6, 50.0); 

cardid1:Card_IO - mk token("CardI01"); 

cardid2:Card 10 - mk_token("CardID2"); 

cardid3:Card 10 - mk_token("CardID3"); 

cardid4:Card 10 - mk_token("CardID4"); 

cardid5 :Card_IO - mk_token ("CardID5") ; 

cardid6:Card 10 - mk_token("CardID6"); 

cardid7:Card 10 - mk_token("CardID7"); 

cardid8:Card_IO - mk_token("CardI08"); 

cardid9:Card ID - mk_token ("CardID9"); 

cardid10:Card_IO - mk_token("CardID10"); 

cardidll:Card 10 - mk_token("CardID1l"); 

procidl:Global_Process_ID - mk_token("ProcID1"); 

procid2:G1obal_Process_ID - mk_token("ProcID2"); 

procid3: Global_Process_ID - mk_token ("ProcID3") ; 

procid4:Globa1_Process_ID - mk_token("ProcID4"); 

procid6:Global_Process_ID - mk_token("ProcI06"); 

procid7:Global_Process_IO - mk_token("ProcI07"); 

procid8:Globa1_Process_ID - mk_token("ProcI08"); 

p1:Process - mk Activity(mk token("Developerl"), mk token("CORBA ORB"), 
mk token("20:- Goto 10"), mk token("nuU"), mk token("st1"), 
mk=token("null"), mk_token("null"), false); -

p2:Process - mk Activity(mk token("Developer1"), mk token("CORBA ORB"), 
mk token("20:- Goto 10"), mk token("null"), mk token("stl"), 
mk=token("null"), mk_token("null"), false); -

p3:Process - mk_Activity(mk_token("Oeveloper3"), mk_token("FIFA"), 
mk token("20. Printf"), mk token("null"), mk token("st2"), 
mk=token("null"), mk_token("null"), false); -

p4:Process - mk_Proxy(procidl, procid5, pI); 

p5:Process - mk_Proxy(procid4, procid2, pI); 

sdidl - mk_token("SOl~); 

sdid2 - mk_token("S02"); 

sdl: Shared_Data - mk Shared_Data «Pool>, mk_token ("Stateb") ) ; 

sd2:Shared_Oata - mk_Shared_Data«Pool>, mk_token("Statec")); 



164 

linkidl : Lin k _ I D - mk _token ("Link_ID") ; 

linkid2:Link_ID - mk_token("LinkID2"); 

linkid3:Link_ID = mk_token("LinkID3"); 

linkid4:Link ID - mk_token("LinkID4"); 

linkidS:Link ID - mk_token("LinkIDS"); 

linkid6:Link ID - mk_token("LinkID6"); 

linkid7:Link ID - mk_token("LinkID7"); 

linkidS:Link ID - mk_token("LinkIDS"); 

linkid9:Link_ID - mk_token("LinkID9"); 

linkidlO:Link 10 - mk_token("LinkIOlO"); 

linkidll:Link 10 - mk_token("LinkIOll"); 

linkid12:Link 10 - mk_token("LinkID12"); 

linkid13:Link 10 - mk_token("LinkI013"); 

linkid14:Link_IO - mk_token("LinkI014"); 

linkidlS:Link 10 - mk_token("LinkIOlS"); 

linkid16:Link 10 - mk_token("LinkI016"); 

linkid17:Link_IO - mk_token("LinkI017"); 

linkid18:Link_IO - mk_token("LinkIOlS"); 

linkid19:Link 10 - mk_token("LinkI019"); 

linkid20: Link 10 - mk_token ("LinkI020") ; 

linkid21: Link_IO - mk_token ("LinkID21") ; 

linkid22:Link_IO - mk_token("LinkI022"); 

linkid23:Link_IO - mk_token("LinkI023"); 

linkid24:Link_IO - mk_token("LinkI024"); 

linkid2S:Link_IO - mk_token("LinkI02S"); 

linkid26:Link_IO - mk_token("LinkI026"); 

servidl:Service_IO - mk_token("service1"); 

servid2:Service_IO - mk_token("service2"); 

servid3:Service_IO - mk_token("service3"); 

locidl:Loc_IO - mk_token("location 1"); 

locid2:Loc_IO - mk_token("location 2"); 

locid3:Loc_IO - mk_token("location 3"); 

locationl:Location - mk_Location(mk_token("Newcastle"), 12.2, 6.5); 

location2:Location - mk_Location(mk_token("Manchester"), 24.2, 46.5); 

location3:Location - mk_Location(mk_token("Colchester"), 33.2, 16.99); 
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Appendix B 

CSP Thrashing Definitions 

This appendix contains the full timed and un-timed CSP configuration 
thrashing models introduced in chapter 3 of this thesis. The two models are 
presented in the two subsections below. 

1. Un-timed CSP Configuration Thrashing Model 

channel move, startup, doa, overlap, start_min_wk, end_min_wk, thrashbang 

MONITOR - startup -> 
(start min wk -> move -> overlap -> MONITOR 

[I start min wk -> end min wk -> move -> MONITOR 
[I move => overlap -> MONITOR) 

[Imove -> overlap -> MONITOR 

PROCESS = startup -> 
(start min wk -> move -> PROCESS 

[I start min wk -> end_min_wk -> doa -> move -> PROCESS) 
[Imove -> PROCE-SS -

PROCESSNT - startup -> 
(start min wk -> move -> startup -> start_min_wk -> 

end min wk -> doa -> move--> PROCESSNT 

PROCESSNT 

SYSTEM = 

[I start min wk -> end min wk -> doa -> move -> PROCESSNT) 
[Imove -> startup -> start=min=wk -> end min wk -> move -> 

(MONITOR I [(startup,move,start_min_wk,end_min_wkll I (PROCESS\{doal»)\(startup, 

SYSTEMNT -
(MONITOR I [(startup,move, start min wk,end min wkll I (PROCESSNT\{doa» )\{startu 
p,start_min_wk,movel - - --

TEST - (SYSTEM I [{overlap, end_min_wkll ITHRASH{3,3»)\{overlap, end_min_wkl 

TESTl - (SYSTEMNTI [{overlap, end_min_wkll ITHRASH(3,3»)\{overlap, end_min_wkl 

THRASH (max, x) - if (x--O) then 
thrashbang -> STOP 

else 
overlap -> THRASH(max, x-ll 
[lend_min_wk->THRASH(max,max) 

assert STOP [T- TEST 
assert STOP [T- TESTl 

2. Timed CSP Configuration Thrashing Model 

T - 3 
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o z 1 

channel move, startup, doa, overlap, start_min_wk, end_min_wk, tock, 
thrashbang 

TOCKS - tock -> TOCKS 

MONITOR = startup -> 
(start min wk -> move -> overlap -> MONITOR 

[] start min wk -> end min wk -> move -> MONITOR 
[] move => o~erlap -> MONITOR) 

[]move -> overlap -> MONITOR 

PROCESS = startup -> tock -> 
(start min wk -> tock -> move -> tock -> PROCESS 

[] start_min_wk -> tock -> end_min_wk -> tock -> doa -> tock 
-> move -> tock -> PROCESS) 

[]move -> tock -> PROCESS 

PROCESSNT - startup -> tock -> 
(start min wk -> tock -> move -> tock -> startup -> tock -> 

start min_wk -> tock => end_min wk -> tock -> doa -> tock -> move -> tock -> 
PROCESSNT 

[] start min wk -> tock -> end_min_wk -> tock -> doa -> tock 
-> move -> tock -> PROCESSNT) 

[]move -> tock -> startup -> tock -> start_min_wk -> tock -> 
end_min_wk -> tock -> move -> tock -> PROCESSNT 

SYSTEM -
(MONITOR I [(startup,move, start min wk,end min wk)] I (PROCESS\(doa))\(end min 
wk,startup,start_min_wk,move}I[(tock)] ITOcKS- - -

SYSTEMNT -
(MONITORI [(startup,move,start min wk,end min wk)] I (PROCESSNT\(doa}) )\(end mi 
n_wk, startup,start_min_wk,mo~e)IT(tock)lITOCKS -

THRASHTIMED«>, maxt, maxo) - overlap -> THRASHTIMED«>~<O>,maxt,maxo) 
[] tock -> THRASHTIMED«>~<T>,maxt,maxo) 

THRASHTIMED(x, maxt, maxo) - if (numo(x) -- maxo) then 
thrashbang -> STOP 

else 

numt(x) - length«y 

numo(x) - length«y 

overlap -> THRASHTIMED(x~<O>,maxt,maxo) 
[] tock -> if (numt(x) -- maxt) then 

THRASHTIMED(slidewindow(x)~<T>,maxt,maxo) 

else 
THRASHTIMED(x~<T>,maxt,maxo) 

y <- x, y--O» 

slidewindow(x) - if (head(x) -- T) then 
tail (x) 

else 
slidewindow(tail(x» 

TEST - (SYSTEMI [(overlap, tock)] ITHRASHTIMED«>,2,3))\{tock,overlap) 

TESTl - (SYSTEMNTI [(overlap, tock)] ITHRASHTIMED«>,2,3))\{tock,overlap} 

assert STOP [T- TEST 
assert STOP [T- TESTl 
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Appendix C 

Possible Process Requirements 

This appendix presents possible processor, memory, OS, and storage 
requirements for processes. All of the requirements outlined are attributes a 
process could require in order to function. The attributes outlined in this 
appendix are only a candidate set of attributes. 

1. Possible Processor Requirements 

• Make (e.g. intel, AMD) 
• Model (e.g. P4, Athlon) 
• Cpu speed (e.g. l200MHz) 
• Cache size 

o L I cache size 
o L2 cache size 
o L3 cache size 

• Pipe lining 
• Operating voltage 
• Bus frequency (MHz) 
• Number of channels 
• Core frequency (MHz) 
• BUS/Core ratio 
• Instruction sets (e.g. 3D NOW etc .... ) 
• Max operational temperature 
• Min operational temperature 
• Dimensions (size) 
• Number of transistors (Complexity - new AMD 64 processors have 

l05.9million - more chance of failure?) 
• Co-processor 
• Register size (e.g. 32bit, 64bit - particularly makes a difference to 

amount of physical memory can be accessed, i.e. number addresses 
held) 

• Socket type (e.g. Socket 7) 
• Cycle time 
• Mics (the size of the line widths in microns of the microchip process 

that the microchip is built on.) 
• Integrated Floating Point Unit (FPU) 
• Max operational altitude 
• Allotment of time needed on processor 
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• Max humidity 

2. Possible Memory Requirements 

• Make (e.g. Kingston, IBM) 
• Type (e.g. DDR, SDRAM) 
• Speed / Bus clock rate (e.g. 200MHz,400MHz) 
• Size (e.g. 128mb, 256mb) 
• Socket type (e.g. DIMM 184pin) 
• Number of chips 
• Operating voltage 
• Dimensions (size) 
• Max operational temperature 
• Min operational temperature 
• Max operational altitude 

3. Possible Operating System (OS) Requirements 

• Developer (e.g. Microsoft) 
• O.S. Name (e.g. Linux, Windows, etc .... ) 
• Single threaded / multi-threading 
• Scheduling algorithms (may need to specify one ifnot coded in 

process) 
• Processor support (support for co-processor, instruction sets etc ... ) 
• Memory support (support for the memory used) 

o Memory management (management of the pool of memory) 
• Fault tolerance support (code to support FT activities) 
• Non interference support (guarantees from the OS that other 

processes will not interfere - this is generally kernel verification 
guarantees) 

• Hardware transparency support 
• Network support 
• Number of lines of code (complexity of OS) 

4. Possible Storage Requirements 

• Max humidity 
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• Max operational temperature 

• Min operational temperature 

• Max operational altitude 

• Weight of storage equipment 

• Storage capacity 

• Cache size 

• Seek time 
0 Average 
0 Worst case 
0 Best case 

• Data transfer rate 
0 Average 
0 Worst case 
0 Best case 

• Dimensions of storage equipment 
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Appendix D 

Demonstrator Java Source Code 

This appendix presents the source code for the reconfigurable systems 
demonstrator. The demonstrator outlined has been built using Java RMI. 
Java RMI provides a means of invoking methods on remote Java objects. 
Each class and java file is presented in a separate subsection. 

t. CTEST.java 

IITEST JAVA FILE 
IIRole: Locates a controller and creates a Reconfigurable Process 
II and increments its value 

import 
jcode.process.ReconfigProcess; 
import jcode.controller.Controller; 
import java.rmi."; 
import java.rmi.server."; 
import java.net."; 

public class CTEST 
( 

public static void main(String[] args) 
{ 

try 
{ 

if (args.length !- 1) 
( 

System.out.println("Wrong Arguments - Try Again"); 
return; 

System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[O))); 
System.out.println("controller reference obtained"); 
ReconfigProcess p - cont.createProcess("procl"); 
System.out.println(p.getData()); 
p.compute(); 
System.out.println(p.getData()); 

I 
catch (Exception el 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

2. CTEST1.java 

IITEST JAVA FILE 
IIRole: Locates Reconfigurable Process Procl and increments it value 

import jcode.process.ReconfigProcess; 
import jcode.controller.Controller; 
import java.rmi."; 
import java.rmi.server."; 
import java.net."; 
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public static void main(String[} args) 
[ 

try 
( 

System.out.println("Starting Test"); 
ReconfigProcess p - (ReconfigProcess) 

Naming.lookup("rmi:lllocalhost:1099/procl"); 
System.out.println("ReconfigProcess reference obtained"); 
System.out.println(p.getData() ); 
p. compute (); 
System.out.println(p.getData() ); 

catch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

3. CTEST2.java 

IITEST JAVA FILE 
IIRole: Locates Reconfigurable Process Procl and Moves it 
II using MoveProcDelFirst to localhost 

import jcode.process.ReconfigProcess; 
import jcode.controller.Controller; 
import java.rmi.'; 
import java.rmi.server.'; 
import java.net.'; 

public class CTEST2 
{ 

public static void main(String[} args) 
{ 

try 
{ 

if (args.length !- 1) 
( 

System.out.println("Wrong Arguments - Try Again"); 
return; 

) 

System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[OJ»; 
System.out.println("controller reference obtained"); 
cont.MoveProcDelFirst("procl","localhost"); 

catch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace()/ 

4. CTEST3.java 

/lTEST JAVA FILE 
IIRole: Locates Reconfigurable Process Procl and Moves it 
II using MoveProcDelAfter to localhost 



import jcode.process.ReconfigProcess; 
import jcode.controller.Controller; 
import java.rmi.·; 
import java.rmi.server.·; 
import java.net.·; 

public class CTEST) 
( 
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public static void main(String[] args) 
{ 

try 
( 

if (args.length !- 1) 
( 

System.out.println("Wrong Arguments - Try Again"); 
return; 

System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[O])); 
System.out.println("controller reference obtained"); 
cont.MoveProcDelAfter("procl","localhost"); 

catch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

s. CTEST4.Java 

IITEST JAVA FILE 
IIRole: Locates Reconfigurable Process Procl and Moves it 
II using MoveProcWState to localhost 

import jcode.process.ReconfigProcess; 
import jcode.controller.Controller; 
import java.rmi.·; 
import java.rmi.server.·; 
import java.net.·; 

public class CTEST4 
( 

public static void main(String[] args) 
( 

try 
( 

if (args.length !- 1) 
( 

System.out.println("Wrong Arguments - Try Again"); 
return; 

System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming. lookup("rmi:lllocalhost: l099/Controller".concat (args[O])); 
System.out.println("controller reference obtained"); 
cont.MoveProcWState("proc1","localhost"); 

I 
catch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(li 
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IITEST JAVA FILE 
IIRole: Locates Controller and Adds Rules for procl 
II also enables rule checking 

import jcode.process.ReconfigProcess; 
import jcode.controller.Controller; 
import java.rmi.·; 
import java.rmi.server.·; 
import java.net.·; 

6. CTESTS.java 

public class CTESTS 
( 

public static void main(String() args) 
( 

try 
I 

if (args.length !- 1) 
I 

System.out.println("Wrong Arguments - Try Again"); 
return; 

I 
System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[O])); 
System.out.println("controller reference obtained"); 
cont.EnableRules(); 
Object[] x - new Object[S]; 
xlO) - "ConfOver"; 
xll] - "procl"; 
x12] - new Integer(2); 
x(3) - new Integer(170); 
x[4) - new Integer(Sl); 
cont.AddRule(x); 

catch (Exception e) 
I 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

7. ControllerImpl.Java 

package jcode.controller; 
import java.rmi.·; 
import java.rmi.server.*; 
import java.rmi.registry.*; 

import java.rmi.server.UnicastRemoteObject; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import java.util.LinkedList; 
import java.util.Date; 
import jcode.process.*; 
import jcode.factory.·; 

class Controllerlmpl extends UnicastRemoteObject implements Controller 
I 

int rules - 0; 
LinkedList RuleStore - new LinkedList(); 

IIHistory stored as Longs in the LinkedList 
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IIThis does not allow for control of multiple 
Ilprocesses - though alterations to the code 
lito provide a LinkedList for each process 
Ilwould allow this. This code was not needed 
Ilfor the demonstrator. 
LinkedList History - new LinkedList(); 

IIConstructor 
public Controllerlmpl() throws RemoteException 
I 

super(); 

IIMain - program creates its own RMI registry 
public static void main(String[] args) 
I 

try 
I 

System.out.println("Controller started"); 
String a - new String("Controller"); 
String cn - a.concat(args[O]); 
LocateRegistry.getRegistry() .bind(cn. new Controllerlmpl(»; 
System.out.println("Controller bound to localhost as ".concat(cn»; 
catch (Exception e) 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

public void EnableRules() throws RemoteException 
I 

this.rules-l; 

public void DisableRules() throws RemoteException 
I 

this.rules-O; 

private int ReconfigYN(String RMlname) 
I 

if (this.rules -- 0) 
I 

Ilrules not applicable thus reconfiQuration fine 
System.out.println("Rules Not Applicable - Reconfiquration 

Permitted"); 
return 1; 

else 
I 

Iineed to check rules 
if (RuleStore.size() -- 0) 
I 

I 

System.out.println("No Rules Exist"); 
return 1; 

for (int i - O;i<RuleStore.size(); i++) 
I 

Objectl] Rule - (Object[])RuleStore.qet(i); 
Ilrules with knock on effects like collocated should be added twice 
lito simplify checks 
if «(Strinq)Rule[l]) .compareTo(RMlname) -- 0) 
I 

System.out.println("FOUND A RULE THAT APPLIES"); 
Iionly one type of rule presently available 
if «IString)RuleIO]) .compareTo("ConfOver") -- 0) 
( 

int x - ((Inteqer)Rule[2) .intValue{)/ 
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int y - «Integer)Rule[3]) .intValue(); 
int z - « Integer) Rule [4] ) . intValue () ; 

Date date· new Date(); 
long currentTime - date.getTime(); 
long lastReconfig • 0; 

if (History.size() •• 0) 
( 

System.out.println("History Empty - Not an overlap"); 
History.add(new Long(currentTime)); 
return 1; 

else 
( 

I 

lastReconfig. «Long)History.getLast()) .10ngValue(); 
if «currentTime - lastReconfig) > «long)z)*lOOO) 
( 

System.out.println("Not an overlap"); 
History.add(new Long(currentTime)); 
return 1; 

else 
( 

int count - 0; 
long stlnterval - currentTime - (y*lOOO); 
for (int a-O; a<History.size(); a++) 
( 

if «(Long)History.get(a)) • longValue() > stlnterval) 
( 

System.out.println("ADD ONE"); 
count++; 

if (count < x) 
( 

System.out.println("Overlap Occured"); 
History.add(new Long(currentTime)); 
return 1; 

IINeed overlaps in y interval 
System.out.println("Reconfiguration Denied"); 
return 0; 

return 1; 

public void AddRule(Object() newrule) throws RemoteException 
( 

Ilfor live system checks for rule well formedness would be required 
this.RuleStore.add(newrule); 

public void RemoveRule(Object[] remrule) throws RemoteException 
( 

if (this.RuleStore.contains(remrule)) 
( 

this.RuleStore.remove(remrule); 

else 
( 

System.out.println("Rule Does not Exist"); 
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public ReconfiqProcess createProcess(Strinq ProcName) throws 
RemoteException 

( 
try 
( 

System,out,println("Trying to Create Process"); 
ProcessFactory fact· (ProcessFactory) 

Naming,lookup("rmi:lllocalhost:1099/ProcessFactory"); 
ReconfiqProcess a • fact,createProcess(ProcName); 
System,out,prlntln("New Process Created"); 
this,bindProcess(a, "localhost", ProcName); 
return a; 

Icatch(Exception e) 
( 

System,out,println("Exception caught: " + e); 
e.printStackTrace(); 
throw new RemoteException("Process Cannot Be Created"); 

//Function to enable del after functions - multiple binds not possible in 
RHIRegistry 

private ReconfigProcess createProcNoBind(String ProcName) throws 
RemoteException 

( 
try 
( 

System.out.println("Trying to Create Process"); 
ProcessFactory fact· (ProcessFactory) 

Naming.lookup("rmi://localhost:1099/ProcessFactory"); 
ReconfigProcess a • fact.createProcess(ProcName); 
System.out.println("New Process Created"); 
//this,bindProcess(a, "localhost"); 
return a; 

)catch(Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 
throw new RemoteException("Process Cannot Be Created"); 

public void bindProceSS(ReconfigProcess a, String loc, String ProcName) 
throws RemoteException 

I 
try 
I 

String en • ProcName; 
LocateRegistry.getReglstry(loc) .bind(cn, a); 
System.out.prlntln("ReconfigProcess bound to",concat(loc.concat(" as 

".concat(cn)))); 
Icatch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTraCe(); 

public void MoveProcDelFirst(String RHlname, String newloc) throws 
RemoteException 

( 
/ICheck Reconfiguration can occur 
if (this.Reconfig¥N(RHlname) •• 1) 
I 

try 
( 

ReconfigProcess p • (ReconflgProcess) 
Naming.lookupl"rmi://localhost:1099/".concat(RHlname)); 
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System.out.println{"ReconfigProcess reference obtained"); 
p.deIProcess{); 
System.out.println{"Process Deleted"); 
ReconflqProcess pI - this.createProcess(RMlname); 
System.out.println{"New Process Created"); 

lcatch (Exception e) 
( 

else 
I 

System.out.println("Exception caught: " + e); 
e.prlntStackTrace{); 

System.out.println{"Reconfiguration Denied"); 

public void HoveProcDelAfter{String RMlname, String newloc) throws 
RemoteException 

I 
if (this.ReconflgYN{RMlname) -- 1) 
I 

try 
( 

ReconfigProcess pI - this.createProcNoBind(RMlname); 
System.out.println{"New Process Created"); 
ReconfigProcess p - (ReconfigProcess) 

Naming.lookup("rmi:lllocalhost:1099/".concat(RMlname)); 
System.out.println{"ReconfigProcess reference obtained"); 
p.delProcess(); 
System.out.println{"Process Deleted"); 
Ilbind must take place last as RMIRegistry does not allow 
Ilmuitiple binds to same name. 
this.bindProcess(pl, "localhost", RMlname); 

Icatch (Exception e) 
I 

else 
I 

System.out.println("Exception caught: " + e); 
e.printStackTrace()/ 

System.out.println("Reconfiguration Denied"); 

public void HoveProcWStatelString RHlname, String newloc) throws 
RemoteException 

I 
if (this.ReconfigYN(RMlname) .- 1) 
I 

try 
I 

ReconfigProcess p1 - this.createProcNoBind(RMlname); 
System.out.println("New Process Created"); 
ReconfigProcess p • (ReconfigProcess) 

Naming.lookup("rmi:lllocalhost:I099/".concat(RHlname)); 
System.out.println("ReconfigProcess reference obtained"); 
p1.setData(p.getData())/ 
System.out.println("Process State Transfered"); 
p.delProcess(); 
System.out.println("Process Deleted"); 
Ilbind must take place last as RHIRegistry does not allow 
Ilmuitiple binds to same name. 
this.bindProcess(pl, "localhost", RMlname); 

Icatch (Exception e) 
I 

System.out.println("Exception caught: " + el; 
e.printStackTrace(11 
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System.out.prlntln("Reconfiguration Denied"); 

8. Controller,java 

package jcode.controller; 
import jcode.process.'; 
import java.rml.·; 

public interface Controller extends Remote 
( 

public ReconflgProcess createProcesslString ProcName) throws 
RemeteException; 

public vold bindProcess(ReconfigProcess a, String newloc, String ProcName) 
throws RemoteException; 

public void MoveProcDelFirst(String RMlname, String newloc) throws 
RemoteException; 

public void MoveProcDelAfter(String RMlname, String newloc) throws 
RemeteException; 

public void MoveProcWState(String RMlname, String newloc) throws 
RemeteException; 

public void EnableRules() throws RemoteException; 
public void DisableRules() throws RemoteException; 
public void AddRule(Object[) newrule) throws RemoteException; 
public void RemoveRule(Objectl) remrule) throws RemoteException; 

9. ProcessFactorylmpl.java 

package jcode.factory; 
Ilimport java.rmi.'; 
Ilimport java.rmi.server.'; 
Ilimport java.rmi.registry.'; 

import java.rml.server.UnicastRemoteObject; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import jcode.process.'; 

Ilpublic class AgentFactorylmpl extends UnicastRemoteObject implements 
AgentFactory 
class ProcessFactorylmpl extends UnicastRemoteObject implements 
Process Factory 
( 

int data • 01 

IIConstructor 
public ProcessFactorylmpll) throws RemoteException 
( 

super(); 

IIMain - program creates its own RMI registry 
public static void main(String() argyl 
( 

try 
( 

System.out.println("Process factory started"); 
IILocateRegistry.createRegistry(1099)/ 
IISystem.out.println("Registry started"); 
Ilregistry must be started 
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LocateRegistry.getRegistry() .bind("ProcessFactory",new 
ProcessFactorylmpl() ); 

System.out.println("Process factory bound"); 
catch (Exception e) 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

public ReconfigProcess createProcess(String ProcName) throws 
RemoteException 

( 

ReconfigProcesslmpl a = new ReconfigProcesslmpl(ProcName); 
/la.setData(this.data) ; 
return (ReconfigProcess) java. rmi.server.RemoteObject.toStub (a ) 

public void setProcess(ReconfigProcess a) throws RemoteException 
( 

this.data += a.getData(); 

10. ProcessFactory.java 

package jcode.factory; 
import jcode.process.*: 
import java.rmi.*: 

public interface ProcessFactory extends Remote 
( 

public ReconfigProcess createProcess(String ProcName) throws 
RemoteException; 

public void setProcess(ReconfigProcess a) throws RemoteException; 

11. ReconfigProcesslmpl.java 

package jcode.process: 
import java.rmi.*: 
import java.rmi.server.*: 
import java.rmi.registry.*: 

import java.rmi.server.UnicastRemoteObject: 
import java.rmi.registry.LocateRegistry: 
import java.rmi.RemoteException: 
import jcode.process.*: 
import jcode.factory.*; 

public class ReconfigProcesslmpl extends UnicastRemoteObject implements 
ReconfigProcess 
( 

String bindname; 
int data; 
MainThread mt = new MainThread(): 

IIConstructor 
public ReconfigProcesslmpl(String bindname) throws RemoteException 
( 

super(): 
this.bindname = bindname; 
System.out.println("ReconfigProcess Initialising"): 
mt. start () : 

IINo Main As Process is not meant to run from command line 
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public void delProcess() throws RemoteException 
{ 

IINo need to call a deconstructor as Java RMI uses a Distributed Garbage 
Collection 

Iisystem and thus will remove stale processes once no reference exists 
for them. 

try ( 
String cn = this.bindname; 
System.out.println("ReconfigProcess Uninitialising"); 
LocateRegistry.getRegistry() .unbind(cn); 
mt.stop() ; 
System.out.println("ReconfigProcess no longer bound to localhost as 

".concat(cn)); 
)catch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

public void computet) throws RemoteException 
( 

data += 10; 

public int getData() throws RemoteException 
( 

return data; 

public void setData(int data) throws RemoteException 
{ 

this.data = data; 

12. ReconfigProcess.java 

package jcode.process; 
import java.rmi.*; 
import jcode.process.*; 
import jcode.factory.*; 

public interface ReconfigProcess extends Remote 
( 

public void delProcess() throws RemoteException; 
public void computet) throws RemoteException; 
public int getData() throws RemoteException; 
public void setData(int data) throws RemoteException; 

13. MainThread.java 

package jcode.process; 

public class MainThread extends Thread 
( 

public void runt) 
{ 

int i = 0; 
for (i=O; i<10; i++) 
{ 

try 
( 

Thread.sleep(5000) ; 
)catch (Exception e) 
II 
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System.out.println(i) ; 

System.out.println("cycle complete"); 
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Appendix E 

Case Study 

This appendix contains the full CSP configuration thrashing models used for 
the case study, as well as the java source code used for the software 
approach to the case study. The models and java classes are presented in 
subsections below. 

As well as the models and java classes this appendix contains the output 
from an unconstrained java system and a contained java system. 

1. Un-timed CSP Case Study Model 

T = 3 

0=1 

channel move, startup, output_decision, send_to_fusion, start_fuse_data, 
end_fuse_data, send_signal, recieve_signal, start-process_data, 
end_process_data, overlap, start_min_wk, end_min_wk, tock, thrashbang 

TOCKS - tack -> TOCKS 

MONITOR = startup -> 
(start min wk -> move -> overlap -> MONITOR 

[) start min wk -> end min wk -> move -> MONITOR 
[) move ~> overlap -> MONITOR) 

[)move -> overlap -> MONITOR 

RADAR = startup -> 
(RADARWORKLOOP 
[) move -> RADAR) 

RADARWORKLOOP - start min wk -> send signal -> tock -> tock -> 
recieve_signal -> start-process_data--> tock -> tock -> end_process_data -> 
send to fusion -> end min wk -> RADARWORKLOOP 

- - [) start min wk -> send signal -> move -> RADAR 
[] start-min-wk -> send-signal -> tock -> move -> RADAR 
[] start=min=wk -> send=signal -> tock -> tock -> move -> 

RADAR 
[] start min wk -> send_signal -> tock -> tock -> 

recieve_signal -> move ~> RADAR 
[] start min wk -> send signal -> tock -> tock -> 

recieve_signal -> start=process_data -> move -> RADAR 
[] start min wk -> send signal -> tock -> tock -> 

recieve_signal -> start=process_data -> tock -> move -> RADAR 
[] start min wk -> send signal -> tock -> tock -> 

recieve_signal -> start-process data -> tack -> tock -> move -> RADAR 
[] start-min wk ~> send signal -> tock -> tock -> 

recieve signal -> start-process data -> tack -> tock -> tock -> 
end process data -> move -> RADAR 

- - [] start min wk -> send signal -> tack -> tock -> 
recieve signal -> start-process data -> tack -> tock -> tack -> 
end_process_data -> send_to_fusion -> end_min_wk -> move -> RADAR 

RADARREST - startup -> 
(RADARWORKLOOPREST 
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[1 move -> RADARNORECONF) 
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RADARWORKLOOPREST = start min wk -> send signal -> tock -> tock -> 
recieve_signal -> start process data -> tock -> tock -> end_process_data 

end min wk ->-RADARWORKLOOPREST send_to fusion -> - start min wk [I -> send_signal 
start=min=wk 

-> move -> RADARNORECONF 
[I -> send_signal -> tock -> move -> 

RADARNORECONF 
[I start_min_wk -> send_signal -> tock -> tock -> 

RADARNORECONF 
[I start min wk -> send signal -> tock -> tock -> 

recieve_signal -> move => RADARNORECONF 

move 

[I start min wk -> send signal -> tock -> tock -> 
recieve_signal -> start-process data -> move -> RADARNORECONF 

[I start-min wk => send Signal -> tock -> tock -> 
recieve_signal -> start-process data -> tock -> move -> RADARNORECONF 

[J start-min wk => send signal -> tock -> tock -> 
recieve_signal -> start=process_data -> tock -> tock -> move -> 
RADARNORECONF 

[] start min wk -> send signal -> tock -> tock -> 
recieve signal -> start-process data -> tock -> tock -> tock -> 
end process data -> move -> RADARNORECONF 

- - [] start min wk -> send signal -> tock -> tock -> 
recieve_signal -> start~rocess_data -> tock -> tack -> tack -> 
end_process_data -> send_to_fusion -> end_min_wk -> move -> RADARREST 

RADARNORECONF = startup -> 
RADARWORKLOOPNORECONF 

-> 

-> 

RADARWORKLOOPNORECONF = start_min_wk -> send signal -> tock -> tock -> 
recieve signal -> start process data -> tOCk--> tock -> end process data -> 
send_to=fusion -> end_min_wk ->-RADARWORKLOOPREST - -

GROUND = startup -> 
GROUNDWORKLOOP 

GROUNDWORKLOOP = start min wk -> recieve signal -> start process data -> 
tack -> tock -> end_precess_data -> send=to_fusion -> end_min_wk--> 
RADARWORKLOOP 

[J start min wk -> tock -> recieve signal -> 
start_process_data -> teck => tock -> end_process=data -> send_to_fusion -> 
end_min_wk -> RADARWORKLOOP 

[] start min wk -> tock -> tock -> recieve signal -> 
start process data -> tack => tock -> end process data ->-send to fusion -> 
end_min_wk ->-RADARWORKLOOP - - - -

[] start min wk -> tock -> tock -> tock -> recieve Signal -> 
start_process_data -> teck => tock -> end_process_data -> send_to=fusion -> 
end min wk -> RADARWORKLOOP 

- - [J start min wk -> tack -> tock -> tack -> tock -> 
recieve signal -> start=process_data -> tock -> tock -> end-process_data -> 
send_to=fusion -> end min wk -> RADARWORKLOOP 

[] start min wk -> tock -> tock -> tock -> tock -> tock -> 
recieve signal -> start~rocess_data -> tock -> tock -> end_process_data -> 
send_to=fusion -> end min wk -> RADARWORKLOOP 

[I start mIn wk -> tock -> tock -> tock -> tock -> tock -> 
tack -> send to fusion => end min wk -> RADARWORKLOOP 

- TI start_min_wk ->-recieve_signal -> start_process_data -> 
tock -> tock -> end_process_data -> send_ta_fusion -> end_min_wk -> move -> 
GROUND 

tI start min wk -> tock -> recieve signal -> 
start process data -> teck => tock -> end process-data -> send to fusion -> 
end mIn wk ->-move -> GROUND - - - -

- - CI start_min_wk -> tock -> tock -> recieve_signal -> 
start process data -> tock -> tock -> end process data -> send to fusion -> 
end mIn wk ->-move -> GROUND - - - -

- - [I start min wk -> tock -> tock -> tock -> recieve signal -> 
start_process_data -> teck => tock -> end_process_data -> send_to=fusion -> 
end_min_wk -> move -> GROUND 
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[] start min wk -> tock -> tock -> tock -> tock -> 
recieve signal -> start process data -> tock -> tock -> end process data -> 
send_to=fusion -> end min wk ->-move -> GROUND --

[] start_min_wk -> tock -> tock -> tock -> tock -> tock -> 
recieve signal -> start process data -> tock -> tock -> end process data -> 
send_to_fusion -> end min wk ->-move -> GROUND --

[] start min wk -> tock -> tock -> tock -> tock -> tock -> 
tock -> send_to_fusion => end_min_wk -> move -> GROUND 

FUSION - startup -> 
FUSIONWORKLOOP 
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FUSIONWORKLOOP = start min_wk -> RECONFIGFUSIONWORKLOOP 
[J start_min_wk -> tock -> RECONFIGFUSIONWORKLOOP 
[J start min wk -> tock -> move -> FUSION 
[J start-min-wk -> tock -> tock -> RECONFIGFUSIONWORKLOOP 
[J start=min=wk -> tock -> tock -> move -> FUSION 
[J start min wk -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOP 
[J start min wk -> tock -> tock -> tock -> move -> FUSION 
[J start=min=wk -> tock -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOP 
[J start min wk -> tock -> tock -> tock -> tock -> move -> 

FUSION 
[] start min wk -> tock -> tock -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOP 
[J start_min_wk -> tock -> tock -> tock -> tock -> tock -> 

move -> FUSION 
[J start min wk -> tock -> tock -> tock -> tock -> tock -> 

tock -> RECONFIGFUSIONWORKLOOP 
[J start_min_wk -> tock -> tock -> tock -> tock -> tock -> 

tock -> move -> FUSION 
[J start min wk -> tock -> tock -> tock -> tock -> tock -> 

tock -> output_decision--> end_min_wk -> FUSIONWORKLOOP 

RECONFIGFUSIONWORKLOOP - recieve signal -> start process data -> tock -> 
tock -> end process data -> start fuse data -> tock -> end fuse data -> 
output_decision -> end_min_wk -> FUSIONWORKLOOP --

FUSION 

move -> FUSION 

[J move -> FUSION 
[J recieve signal -> move -> FUSION 
[] recieve-signal -> start process data -> move -> FUSION 
[J recieve=signal -> start=process=data -> tock -> move -> 

[J recieve_signal -> start_process_data -> tock -> tock -> 

[J recieve_signal -> start_process_data -> tock -> tock -> 
end process data -> move -> FUSION 

- - [J recieve signal -> start_process_data -> tock -> tock -> 
end process data -> start-fuse data -> move -> FUSION 

- - [J recieve-signal -> start process data -> tock -> tock -> 
end-process_data -> start=fuse_data -> tock -> move -> FUSION 

[] recieve signal -> start process data -> tock -> tock -> 
end_process_data -> start=fuse_data -> tock -> end_fuse_data -> move -> 
FUSION 

[] recieve signal -> start_process_data -> tock -> tock -> 
end process data -> start-fuse data -> tock -> end fuse data -> 
output_decision -> end_min_wk => move -> FUSION 

FUSIONREST z startup -> 
FUSIONWORKLOOPREST 

FUSIONWORKLOOPREST - start min wk -> RECONFIGFUSIONWORKLOOPREST 
[J start min wk--> tock -> RECONFIGFUSIONWORKLOOPREST 
[] start-min-wk -> tock -> move -> FUSIONNORECONF 
[] start-min-wk -> tock -> tock -> RECONFIGFUSIONWORKLOOPREST 
[] start-min-wk -> tock -> tock -> move -> FUSIONNORECONF 
[] start=min=wk -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOPREST 
[] start_min_wk -> tock -> tock -> tock -> move -> 

FUSIONNORECONF 
[] start min wk -> tock -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOPREST -
[] start_min_wk -> tock -> tock -> tock -> tock -> move -> 

FUSIONNORECONF 
[] start min wk -> tock -> tock -> tock -> tock -> tock -> 

RECONFIGFUSIONWORKLOOPREST 
[] start min wk -> tock -> tock -> tock -> tock -> tock -> 

move -> FUSIONNORECONF - -
[] start min wk -> tock -> tock -> tock -> tock -> tock -> 

tock -> RECONFIGFUSIONWORKLOoPREST 
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[] start_min_wk -> tock -> tock -> tock -> tock -> tock -> 
tock -> move -> FUSIONNORECONF 

[] start_min_wk -> tock -> tock -> tock -> tock -> tock -> 
tock -> output_ decision -> end min wk -> FUSIONWORKLOOPREST 
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RECONFIGFUSIONWORKLOOPREST - recieve signal -> start process data -> tock -> 
tock -> end process data -> start fuse data -> tock :> end f~se data -> 
output_decision -> end_min_wk -> FUSIONWORKLOOPREST --

[] move -> FUSIONNORECONF 
[] recieve signal -> move -> FUSIONNORECONF 
[J recieve=signal -> start_process_data -> move -> 

FUSIONNORECONF 
[J recieve_signal -> start_process_data -> tock -> move -> 

FUSIONNORECONF 
[J recieve_signal -> start_process_data -> tock -> tock -> 

move -> FUSIONNORECONF 
[J recieve signal -> start process data -> tock -> tock -> 

end process data -> move => FUSIONNORECONF -
- - [J recieve signal -> start process data -> tock -> tock -> 

end_process_data -> start=fuse_data -> move -> FUSIONNORECONF 
[] recieve_signal -> start process data -> tock -> tock -> 

end_process_data -> start_fuse_data -> tock -> move -> FUSIONNORECONF 
[J recieve signal -> start process data -> tock -> tock -> 

end_process_data -> start=fuse_data -> tock -> end_fuse_data -> move -> 
FUSIONNORECONF 

[J recieve signal -> start_process_data -> tock -> tock -> 
end_process_data -> start=fuse_data -> tock -> end_fuse_data -> 
output_decision -> end_min_wk -> move -> FUSIONNORECONF 

FUSIONNORECONF - startup ->recieve signal -> start process data -> tock -> 
tock -> end process data -> start fuse data -> tock -> end-fuse data -> 
output_decision -> end_min_wk -> FUSIONWORKLOOPREST --

SYSTEMRADAR -
(MONITOR I [(startup,move,start_min_wk,end_min_wk}J I (RADAR\(send_to_fusion, 
send_signal, recieve_signal, start_process_data, 
end_process_data}))\(end_min_wk,startup,start_min_wk,move) I [(tock}J I TOCKS 

SYSTEMRADARREST -
(MONITORI [(startup,move,start_min_wk,end_min_wkIJ I (RADARREST\(send_to_fusion 
, send_signal, recieve_signal, start_process_data, 
end_process_datal))\(end_min_wk,startup,start_min_wk,movel I [(tocklJ I TOCKS 

SYSTEMGROUND -
(MONITOR I [(startup,move,start_min_wk,end_min_wk}J I (GROUND\(send_to_fusion, 
send_signal, recieve_signal, start_process_data, 
end_process_data}})\(end_min_wk, startup,start_min_wk,moveJ I [(tockJJ ITOCKS 

SYSTEMFUSION -
(MONITOR I [(startup,move,start_min_wk,end_min_wk)] I (FUSION\(output_decision, 
start fuse data, end fuse data, send signal, recieve signal, 
start=process_data, end-process_datal))\(end_min_wk,­
startup,start_min_wk,move) I [(tock}) I TOCKS 

SYSTEMFUSIONREST -
(MONITORI [(startup,move,start_min_wk,end_min_wk)] I (FUSIONREST\(output_decisi 
on, start fuse data, end fuse data, send signal, recieve signal, 
start process data, end process data}}}\(end min wk, -
start~p,start=min_wk,move}1 [(tock)] I TOCKS - -

THRASHTIMED«>, maxt, maxo) - overlap -> THRASHTIMED«>~<O>,maxt,maxo) 
[] tock -> THRASHTIMED«>~<T>,maxt,maxo) 

THRASHTIMED(x, maxt, maxo) - if (numo(x) -- maxo) then 
thrashbang -> STOP 

else 
overlap -> THRASHTIMED(x~<O>,maxt,maxo} 
[] tock -> if (numt(x) -- maxt} then 

THRASHTIMED(slidewindow(x)~<T>,maxt,maxo) 

else 
THRASHTIMED(x~<T>,maxt,maxo) 
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numt(x) = length«y Y <- x, y--T>J 

numo(x) - length«y Y <- x, y--O» 

slidewindow(x) = if (head(x) z_ T) then 
tail (x) 

else 
slidewindow(tail(x)) 
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TESTRADAR K (SYSTEMRADARI [(overlap, 
tock)] ITHRASHTIMED«>,lO,2}}\(tock,overlap] 

TESTRADARREST - (SYSTEMRADARRESTI [{overlap, 
tock}] ITHRASHTIMED«>,10,2) )\(tock,overlap) 

TESTGROUND • (SYSTEMGROUNDI [(overlap, 
tock]] ITHRASHTIMED«>,lO,2))\(tock,overlap) 

TESTFUSION a (SYSTEMFUSIONI [(overlap, 
tock)] ITHRASHTIMED«>,20,2) )\(tock,overlap) 

TESTFUSIONREST - (SYSTEMFUSIONRESTI [(overlap, 
tock)] ITHRASHTIMED«>,20,2))\(tock,overlap} 

assert STOP [T- TESTRADAR 
assert STOP [T- TESTRADARREST 
assert STOP [T- TESTGROUND 
assert STOP [T- TESTFUSION 
assert STOP [T- TESTFUSIONREST 

2. Java RAtI Case Study Code 

2.1 Start.java 

IITEST JAVA FILE 
IIRole: Locates Controller and Adds Rules for proci 
II also enables rule checking 

import jcode.process.*; 
import jcode.controller.Controller; 
import java.rmi.*; 
import java.rmi.server.*; 
import java.net.*; 

public class Start 
( 

public static void main(String[] args) 
( 

try 
( 

if (args.length !- 1) 
( 

System.out.println("Wrong Arguments - Try Again"); 
return; 

) 

System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming.lookup("rmi://localhost:l099/Controller".concat(args[O))); 
System.out.println("controller reference obtained"); 
ReconfigProcess fdml ~ cont. createProcess ("FusionDM", "FusionDM"); 
try 
( 

Thread.sleep(20DD); 
}catch (Exception e) 
{ } 

ReconfigProcess pI - cont.createProcess("GroundSensor", "gl"}; 
ReconfigProcess rl - cont.createProcess("RadarSensor", "rl"}; 
l/cont.EnableRules(); 
//Object[] x - new Object[5]; 
IIx[D) - "ConfOver"; 
l/x[l] - "procl"; 
//x[2) - new Integer(2); 



Ilx(3) - new Integer(170); 
Ilx(4) - new Integer(51); 
Ilcont.AddRule(x); 

catch (Exception e) 
( 
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System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

1.1 Reconfigure.java 

IITEST JAVA FILE 
IIRole: Locates Controller and Adds Rules for proc1 
II also enables rule checking 

import jcode.process.>; 
import jcode.controller.Controller; 
import java.rmi.>; 
import java.rmi.server.>; 
import java.net.>; 

public class Reconfigure 
( 

public static void main(String[) args) 
( 

try 
{ 

if (args.length !- 1) 
( 

System. out. println ("Wrong Arguments - Try Again"); 
return; 

System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming.lookup{"rmi:lllocalhost:1099/Controller".concat(args[O]»; 
System.out.println("controller reference obtained"); 
int i - 0; 
while(true) 
( 

i - 1+1; 
System.out.print1n{i); 
cont.MoveProcDelAfter("FusionDM", flFusionDM fI

, "localhost fl ); 
try 
( 

Thread.sleep(3050); 
Icatch (Exception e) 
II 
if (i > 30) 
( 

break; 

IIReconfigProcess pl - cont.createProcess{flGroundSensor", "gl"); 
IIReconfigProcess rl - cont.createProcesslflRadarSensor", "r1"); 
Ilcont.EnableRules{); 
IIObject[] x - new Object[5]; 
Ilx[O] - "ConfOver"; 
Ilxl1] - "proc1f1; 
Ilx[2] - new Integer(2); 
IIx(3) - new Integer(l70); 
Ilxl4] - new Integer(51); 
Ilcont.AddRule(x); 



catch (Exception e) 
( 
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System.out.println("Exception caught: " + e); 
e.printStackTrace() ; 

2.3 StartCont.java 

I/TEST JAVA FILE 
IIRole: Locates Controller and Adds Rules for proc! 
II also enables rule checking 

import jcode.process.·; 
import jcode.controller.Controller; 
import java.rmi.·; 
import java.rmi.server.·; 
import java.net.·; 

public class StartCont 
( 

public static void main(String[] args) 
{ 

try 
{ 

if (args.length !- 1) 
{ 

System. out.println ("Wrong Arguments - Try Again") ; 
return; 

System.out.println("Starting Test"); 
Controller cont - (Controller) 

Naming.lookup("rmi:lllocalhost:lD99/Controller".concat(args[D])); 
System.out.println("controller reference obtained"); 

cont.EnableRules(); 
Object[] x - new Object[S]; 
x[O] - "ConfOver"; 
x[l] - "FusionDM"; 
x[2] - new Integer(2); 
x[3] - new Integer(lDD); 
x[4] - new Integer(SO); 
cont.AddRule(x); 

ReconfigProcess fdml - cont.createProcess{"FusionDM", "FusionDM"); 
try 
( 

Thread.sleep(2000); 
Icatch (Exception e) 
() 
ReconfigProcess pI - cont.createProcess("GroundSensor", "gl"); 
ReconfigProcess rl - cont.createProcess("RadarSensor", "rl"); 
Ilcont.EnableRules(); 
IIObject[] x - new Object[S]; 
Ilx[D] - "ConfOver"; 
Ilx[l] - "procl"; 
Ilx[2] - new Integer(2); 
Ilx[3] - new Integer(170); 
Ilx[4] - new Integer(S!); 
Ilcont.AddRule{x); 

catch (Exception e) 
{ 



194 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

2.4 Controller.java 

package jcode.controller; 
import jcode.process."; 
import java.rmi."; 

public interface Controller extends Remote 
( 

public ReconfigProcess createProcess(String Type, String ProcName) throws 
RemoteException; 

public void bindProcess(ReconfigProcess a, String newloc, String ProcName) 
throws RemoteException; 

public void MoveProcDelFirst(String Type, String RMlname, String newloc) 
throws RemoteException; 

public void MoveProcDelAfter(String Type, String RMlname, String newloc) 
throws RemoteException; 

public void MoveProcWState(String Type, String RMlname, String newloc) 
throws RemoteException; 

public void EnableRules() throws RemoteException; 
public void DisableRules() throws RemoteException; 
public void AddRule(Object[] newrule) throws RemoteException; 
public void RemoveRule(Object[) remrule) throws RemoteException; 

2.5 Controllerlmpl.jav8 

package jcode.controller; 
import java.rmi.·; 
import java.rmi.server.*; 
import java.rmi.registry.*; 

import java.rmi.server.UnicastRemoteObject; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import java.util.LinkedList; 
import java.util.Date; 
import jcode.process.*; 
import jcode.factory.*; 

class Controllerlmpl extends UnicastRemoteObject implements Controller 
( 

int rules - 0; 
LinkedList RuleStore - new LinkedList(); 

IIHistory stored as Longs in the LinkedList 
IIThis does not allow for control of multiple 
Ilprocesses - though alterations to the code 
lito provide a LinkedList for each process 
Ilwould allow this. This code was not needed 
Ilfor the demonstrator. 
LinkedList History - new LinkedList(); 

IIConstructor 
public Controllerlmpl() throws RemoteException 
( 

super(); 

IIMain - program creates its own RMI registry 
public static void main(String[] args) 
{ 



try 
( 
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System.out.println("Controller started"); 
String a - new String("Controller"); 
String cn - a.concat(args[O]); 

System.out.println("Controller will bound to localhost as 
". concat (cn» ; 

LocateRegistry.getRegistry() .bind(cn, new ControllerImpl(»; 
System.out.println("Controller bound to localhost as ".concat{cn»; 
catch (Exception e) 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

public void EnableRules() throws RemoteException 
( 

this.rules-1; 

public void DisableRules() throws RemoteException 
( 

this.rules-O; 

private int ReconfigYN{String RMIname) 
{ 

if (this. rules -- 0) 
( 

Ilrules not applicable thus reconfiguration fine 
System.out.println("Rules Not Applicable - Reconfiguration Fine"); 
return 1; 

else 
[ 

Iineed to check rules 
if (RuleStore.size() -- 0) 
( 

System.out.println("No Rules Exist"); 
return 1; 

for (int i - O;i<RuleStore.size(); i++) 
{ 

Object[] Rule - (Object[])RuleStore.get(i); 
Ilrules with knock on effects like collocated should be added twice 
lito simplify checks 
if (((String)Rule[1]).compareTo{RMIname) =- 0) 
( 

System.out.println{"FOUND A RULE THAT APPLIES"); 
Iionly one type of rule presently available 
if (( (String)Rule[O]) . compareTo ("ConfOver") -- 0) 
( 

int x - ((Integer)Rule[2]) .intValue() 
int y - ((Integer)Rule[3]) .intValue() 
int z - ((Integer)Rule[4]) • intValue() 

Date date - new Date(); 
long currentTime - date.getTime(); 
long lastReconfig - 0; 

if (History.size() -- 0) 
{ 

System. out. println ("History Empty - Not an overlap"); 
History.add(new Long(currentTime»; 
return 1; 

else 
{ 



} 
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lastReconfig - «Long)History.getLast()) . longValue() ; 
if «(currentTime - lastReconfig) > «long)z)*1000) 
( 

System.out.println("Not an overlap"); 
History.add(new Long(currentTime)); 
return 1; 

else 
( 

int count - 0; 
long stlnterval = currentTime - (y*1000); 
for (int a-O; a<History.size(); a++) 
( 

if «(Long)History.get(a)) . longValue() > stlnterval) 
( 

System.out.println("ADD ONE"); 
count++; 

if (count < x) 
( 

System.out.println("Overlap Occured"); 
History.add(new Long(currentTime)); 
return 1; 

IINeed overlaps in y interval 
System.out.println("Reconfiguration Denied"); 
return 0; 

return 1; 

public void AddRule(Objectl] newrule) throws RemoteException 
( 

Ilfor live system checks for rule well formedness would be required 
this.RuleStore.add(newrule); 

public void RemoveRule(Objectl] remrule) throws RemoteException 
( 

if (this.RuleStore.contains(remrule)) 
( 

this.RuleStore. remove (remrule) ; 

else 
( 

System.out.println("Rule Does not Exist"); 

public ReconfigProcess createProcess(String Type, String ProcName) throws 
RemoteException 

I 
try 
( 

System.out.println("Trying to create Process"); 
Process Factory fact - (ProcessFactory) 

Naming.lookup("rmi:lllocalhost:1099/ProcessFactory"); 
ReconfigProcess a - (ReconfigProcess) fact.createProcess(Type, 

ProcName); 
System.out.println("New Process Created"); 
this.bindProcess(a, "localhost", ProcName); 
return a; 

)catch(Exception e) 
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System.out.println("Exception caught: " + e); 
e.printStackTrace(); 
throw new RemoteException("Process Cannot Be Created"); 

I!Function to enable del after functions - multiple binds not possible in 
RMIRegistry 

private ReconfigProcess createProcNoBind(String Type, String ProcName) 
throws RemoteException 

( 

try 
( 

System.out.println("Trying to Create Process"); 
Process Factory fact - (ProcessFactory) 

Naming.lookup("rmi:!/localhost:1099/ProcessFactory"); 
ReconfigProcess a - (ReconfigProcess)fact.createProcess(Type, 

ProcName) ; 
System.out.println("New Process Created"); 
Ilthis.bindProcess(a, "localhost"); 
return a; 

)catch(Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 
throw new RemoteException("Process Cannot Be Created"); 

public void bindProcess(ReconfigProcess a, String loc, String ProcName) 
throws RemoteException 

( 

try 
( 

String cn - ProcName; 
LocateRegistry.getRegistry(loc) .bind{cn, a); 
System.out.println{"ReconfigProcess bound to".concat{loc.concat(" as 

".concat(cn»»; 
)catch (Exception e) 
( 

System.out.println{"Exception caught: " + e); 
e.printStackTrace(); 

public void MoveProcDelFirst(String Type, String RMlname, String newloc) 
throws RemoteException 

( 
I!Check Reconfiguration can occur 
if (this.ReconfigYN{RMlname) -- 1) 
{ 

try 
( 

ReconfigProcess p - (ReconfigProcess) 
Naming.lookup{"rmi://localhost:1099/".concat{RMlname»; 

System.out.println{"ReconfigProcess reference obtained"); 
p.delProcess{) ; 
System.out.println("Process Deleted"); 
ReconfigProcess p1 - this.createProcess{Type, RMlname); 
System.out.println{"New Process Created"); 

Icatch (Exception e) 
( 

else 
{ 

System.out.println("Exception caught: " + e); 
e.printStackTrace{); 
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System.out.println("Reconfiguration Denied"); 

public void MoveProcDelAfter(String Type, String RMlname, String newloc) 
throws RemoteException 

( 

if (this.ReconfigYN(RMlname) -- 1) 
{ 

try 
( 

ReconfigProcess pl - this.createProcNoBind(Type, RMlname); 
System.out.println("New Process Created"); 
RecontigProcess p - (RecontigProcess) 

Naming.lookup("rmi:lllocalhost:1099/".concat(RMlname»; 
System.out.println("ReconfigProcess reference obtained"); 
p.delProcess() ; 
System.out.println("Process Deleted"); 
Ilbind must take place last as RMIRegistry does not allow multiple 

binds to same name. 
this.bindProcess(pl, "localhost", RMlname); 

)catch (Exception e) 
( 

else 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

System.out.println("Reconfiguration Denied"); 

public void MoveProcWState(String Type, String RMlname, String newloc) 
throws RemoteException 

( 

if (this.ReconfigYN(RMlname) =- 1) 
{ 

try 
( 

ReconfigProcess pl - this.createProcNoBind(Type, RMlname); 
System.out.println("New Process Created"); 
ReconfigProcess p - (ReconfigProcess) 

Naming.lookup("rmi:lllocalhost:1099/".concat(RMlname»; 
System.out.println("ReconfigProcess reference obtained"); 
pl.setData(p.getData(»); 
System.out.println("Process State Transfered"); 
p.delProcess() ; 
System.out.println("Process Deleted"); 
Ilbind must take place last as RMIRegistry does not allow multiple 

binds to same name. 
this.bindProcess(pl, "localhost", RMlname); 

Icatch (Exception e) 
( 

else 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

System.out.println("Reconfiguration Denied"); 

2.6 ProcessFadory.java 



199 

package jcode.factory; 
import jcode.process.*; 
import java.rmi.*; 

public interface Process Factory extends Remote 
( 

public ReconfigProcess createProcess(String Type, String ProcName) 
throws RemoteException; 

public void setProCeSS(ReConfigProcess a) throws RemoteException; 

2.7 ProcessFactoryimpl.java 

package jcode.factory; 
Ilimport java.rmi.*; 
Ilimport java.rmi.server.*; 
Ilimport java.rmi.registry.*; 

import java.rmi.server.UnicastRemoteObject; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import jcode.process.*; 

Ilpublic class AgentFactorylmpl extends UnicastRemoteObject implements 
AgentFactory 
class ProcessFactorylmpl extends UnicastRemoteObject implements 
Process Factory 
( 

int data - 0; 

IIConstructor 
public ProcessFactorylmpl() throws RemoteException 
( 

super(); 

IIMain - program creates its own RMI registry 
public static void main(String[] argv) 
( 

try 
( 

System.out.println("Process factory started"); 
IILocateRegistry.createRegistry(l099); 
I/System.out.println("Registry started"); 
Ilregistry must be started 
LocateRegistry.getRegistry().bind("ProcessFactory",new 

ProcessFactorylmpl()); 
System.out.println("Process factory bound"); 
catch (Exception e) 

System.out.println ("Exception caught: " + e); 
e.printStackTrace(); 

public ReconfigProcess createProcess(String Type, String ProcName) throws 
RemoteException 

( 
ReconfigProcess a; 
System.out.println ("Type: "+Type); 
if (Type.equals("GroundSensor")) 
( 

a - (ReconfigProcess)new GroundSensorlmpl(ProcName); 
} 

else if (Type.equals("RadarSensor"») 
( 

a - (ReconfigProcess)new RadarSensorlmpl(ProcName); 



else 
( 
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a - (ReconfigProcess)new FusionDMImpl(ProcName); 

return (ReconfigProcess)java.rmi.server.RemoteObject.toStub(a) 

public void setProcess(ReconfigProcess a) throws RemoteException 
( 

this.data +- a.getData(); 

2.8 ReconfigProcess.java 

package jcode.process; 
import java.rmi.*; 
import jcode.process.*; 
import jcode.factory.*; 

public interface ReconfigProcess extends Remote 
( 

public void delProcess() throws RemoteException; 
public void computet) throws RemoteException; 
public int getOata() throws RemoteException; 
public void setData(int data) throws RemoteException; 
public void setGROUNDData(int data) throws RemoteException; 
public void setRADARata(int data) throws RemoteException; 
public int getGROUNOOata() throws RemoteException; 
public int getRAOARData() throws RemoteException; 

2.9 FusionDMImpl.java 

package jcode.process; 
import java.rmi.*; 
import java.rmi.server.*; 
import java.rmi.registry.*; 

import java.rmi.server.UnicastRemoteObject; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import jcode.process.*; 
import jcode.factory.*; 

public class FusionOMImpl extends UnicastRemoteObject implements 
ReconfigProcess 
( 

String bindname; 
int data; 
int ROdata - -1; 
int GRdata - -1; 
MainFusionOMThread mt - new MainFusionOMThread(); 

IIConstructor 
public FusionOMImpl(String bindname) throws RemoteException 
( 

super(); 
this. bindname - "FusionDM"; 
System.out.println("Fusion OM Initialising"); 
mt.setData(this.bindname); 
mt. start () ; 

IINo Main As Process is not meant to run from command line 
public void delProcess() throws RemoteException 
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//No need to call a deconstructor as Java RMI uses a Distributed Garbage 
Collection 

//system and thus will remove stale processes once no reference exists 
for them. 

try ( 
String cn - this.bindname; 
System.out.println("Radar Sensor Uninitialising"); 
LocateRegistry.getRegistry() .unbind(cn); 
mt.stop(); 
System.out.println("Radar Sensor no longer bound to localhost as 

".concat(cn»; 
)catch (Exception e) 
( 

System.out.println{"Exception caught: " + e); 
e.printStackTrace{); 

public void compute{) throws RemoteException 
( 

data +- 10; 

public int getData{) throws RemoteException 
( 

return data; 

public void setData(int data) throws RemoteException 
( 

this.data - data; 

public void setGROUNDData(int data) throws RemoteException 
( 

this.GRdata - data; 

public void setRADARata(int data) throws RemoteException 
( 

this.RDdata = data; 

public int getGROUNDData() throws RemoteException 
( 

int GRdatal - this.GRdata; 
//reset GRdata 
this.GRdata - -1; 
return GRdata1; 

public int getRADARData() throws RemoteException 
( 

int RDdatal - this.RDdata; 
//reset RDdata 
this.RDdata - -1; 
return RDdata; 

2.10 MainFusionDMThread.java 

package jcode.process; 
import java.util.Random; 
import javax.rmi.*; 
import java.rmi.*; 
import java.rmi.server.*; 
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import java.net.-; 
import java.util.Calendar; 
import java.text.SimpleDateFormat; 

public class MainFusionDMThread extends Thread 
( 

public String link; 

public void setData(String parproc) 
( 

this. link - parproc; 

public void runt) 
( 

IIAssumed only a single DM Named FusionDM for other processes 
simplicity 

Random generator - new Random(); 
Calendar cal - Calendar.getlnstance(); 
SimpleDateFormat sdf • new SimpleDateFormat("yyyy-MM-dd HH:mrn:ss"); 
System.out.println("FusionDM -- Start 

Time:"+sdf.format(cal.getTime())); 

try 
( 

Thread.sleep(lOOO); 
}catch (Exception e) 
( ) 

while(true} 
( 

try( 
ReconfigProcess mfc -

(ReconfigProcess}Naming.lookup("rmi:lllocalhost:1099/FusionDM"); 
System.out.println("FusionDM -- own reference 

obtained"}; 

Input"); 

got new data"); 

start process data"); 

end process data"); 

start fuse data"); 

end fuse data"); 

int output - 0; 
int i - 0; 
forti - 0; i<6; i++) 
( 

System.out.println("FusionDM -- Poll for 

try 
( 

int grdata - mfc.getGROUNDData(); 
int rddata - mfc.getRADARData(); 
if (rddata !- -1 I I grdata !~ -1) 
( 

System.out.println("FusionDM 

System.out.println("FusionDM 

try 
( 

Thread.sleep(6000); 
\catch (Exception e) 
() 
System.out.println("FusionDM 

System.out.println("FusionDM 

try 
( 

Thread.sleep(3000); 
}catch (Exception e) 
() 

System.out.println("FusionDM 
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output Desision based on NON stale data"); 

Calendar.getlnstance(); 

SimpleDateFormat ("yyyy-MM-dd HH :mm: 55") ; 

Output Time:"+sdfl.format(call.getTime())); 

no new data"); 

coded time 

else 
( 

System.out.println("FusionDM 

Calendar call ~ 

SimpleDateFormat sdfl - new 

System.out.println("FusionDM 

output - 1; 
i-lO; 
break; 

System.out.println("FusionDM 

//wait for new data - hard 

try 
( 

Thread.sleep(3000); 
}catch (Exception e) 
II 

Icatch (Exception e) 
I 

+ e); 

on stale data" I; 

dd HH:mm:ss"); 

I 

System.out.println("Exception caught: " 

e.printStackTrace(l; 
break; 

if (output -- 0) 
( 
System.out.println("FusionDM -- output Desision based 

Calendar cal2 - Calendar.getlnstance(); 
SimpleDateFormat sdf2 - new SimpleDateFormat("yyyy-MM-

System.out.println("FusionDM -- Output 
Time:"+sdf2.format(cal2.getTime())); 

2.11 

I 
Icatch (Exception e) 
I 

System.out.println("Exception caught: .. + el; 
e.printStackTrace(l; 
break; 

GroundSensorlmpl.java 

package jcode.process; 
import java.rmi.-; 
import java.rmi.server.*; 
import java.rmi.registry.-; 

import java.rmi.server.UnicastRemoteObject; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import jcode.process.*; 
import jcode.factory.*; 

public class GroundSensorlmpl extends UnicastRemoteObject implements 
ReconfigProcess 



Strlng bindname; 
int data; 
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HainGroundThread mt - new MainGroundThread(); 

IIConstructor 
public GroundSensorImpl(String bindname) throws RemoteException 
( 

super(); 
this.bindname - bindname; 
System.out.println("Ground Sensor Initialising"); 
mt.setData(bindname); 
mt.start (); 

IINo Main As Process is not meant to run from command line 
public void delProcess() throws RemoteException 
( 

IINo need to call a deconstructor as Java RMI uses a Distributed Garbage 
Collection 

//system and thus will remove stale processes once no reference exists 
for them. 

try ( 
String cn - this.bindname; 
System.out.println("Ground Sensor Uninitialising\r\n"); 
LocateRegistry.getRegistry() .unbind(cn); 
mt.stop() ; 
System.out.println("Ground Sensor no longer bound to localhost as 

".concat{cn)); 
)catch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

public void computet) throws RemoteException 
( 

data +- 10; 

public int getData() throws RemoteException 
( 

return data; 

public void setData(int data) throws RemoteException 
( 

data - data; 

public void setGROUNDData(int data) throws RemoteException 
( 

data - data; 

public void setRADARata(int data) throws RemoteException 
I 

data - data; 

public int getGROUNDData() throws RemoteException 
I 

return data; 

public int getRADARData() throws RemoteException 
{ 

return data; 
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2.12 MainGroundSensorThread.Java 

package jcode.process; 
import java.util.Random; 
import java.rmi."; 
import java.rmi.server."; 
import java.net."; 
import jcode.controller.Controller; 

public class MainGroundThread extends Thread 
( 

public String link; 

public void setData(String parproc) 
( 

this.link - parproc; 

public void runt) 
( 

Random generator - new Random(); 

while(true) 
I 

int sound - 0; 
int i-O; 

forti - 0; i<5; i++) 
( 

System. out. println ("GROUND Poll for Sound"); 
Ilwait for sound - hard coded time 
try 
I 

Thread.sleep(3000); 
Icatch (Exception e) 
I) 

IIGenerate random number 
int Data - generator.nextlnt(); 

IIIf even sound detected 
if(Data , 2 -- 0) 
( 

if (sound -- 1) 

I 

sound - 1; 
break; 

System.out.println("GROUND -- Ground Sensor Got Sound 
- Process Data Start"); 

Data End"); 

Ilwait for processing - hard coded time 
try 
( 

Thread.sleep(6000); 
Icatch (Exception e) 
II 

System.out.println("GROUND -- Ground Sensor Process 

System.out.println("GROUND -- SEND DATA TO FUSION"); 
tryl 
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ReconfigProcess mfc -
(ReconflqProcess)Naming.lookup("rmi:lllocalhost:1099/FusionOM"); 

System.out.println("GROUND -- Fusion OM 
reference obtained"); 

FUSION") ; 

else 
t 

SAYING NO SOUND"); 

mfc.setGROUNDData(l); 
System.out.println("GROUND -- SENT DATA TO 

)catch (Exception e) 
t) 

sound - 0; 

System.out.println("GROUND -- SEND DATA TO FUSION 

try! 
Reconfigprocess mfc -

(ReconfigProcess)Naming.lookup("rmi:lllocalhost:1099/FusionOM"); 
System.out.println("GROUND -- Fusion OM 

reference obtained"); 

FUSION"); 

mfc.setGROUNDData!O); 
System.out.println("GROUND -- SENT DATA TO 

)catch (Exception e) 
t} 

int Datal - generator.nextInt(); 
Ilit fault 
iftDatal , 2 -- 0) 
t 

System.out.println("GROUND -- DETECTED FAULT -
RECONFIGURING"); 

try! 
Controller cont - (Controller) 

Naming.lookup("rmi:lllocalhost:1099/Controllercontrollern); 
System.out.println("GROUND -- controller 

reference obtained"); 

this.link,"localhost"); 
} 

cont.MoveProcDelAfter("GroundSensor", 

catch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

2.13 RadarSensorlmpl.java 

package jcode.process; 
import java.rmi.·; 
import java.rmi.server.·; 
import java.rmi.registry.*; 

import java.rmi.server.UnicastRemoteObject; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import jcode.process.*; 
import jcode.factory.*; 
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publIC class RadarSensorImpl extends UnicastRemoteObject implements 
RecontlgProcess 
( 

Strlng bindname; 
lnt data; 
HainRadarThread mt - new MainRadarThread(); 

//Constructor 
public RadarSensorImpl(Strinq bindname) throws RemoteException 
I 

super I); 
this.bindname - bindname; 
System.out.println("Radar Sensor Initialising"); 
mt. start (); 

IINo Main As Process is not meant to run from command line 
public void delProcessl) throws RemoteException 
( 

IINo need to call a deconstructor as Java RMI uses a Distributed Garbage 
Collect ion 

Iisystem and thus will remove stale processes once no reference exists 
for them. 

try I 
String cn - this.bindname; 
System.out.println("Radar Sensor Uninitialising"); 
LocateRegistry.getRegistryl).unbind(cn); 
mt.stopll ; 
System.out.printlnl"Radar Sensor no longer bound to localhost as 

".concat(cn)); 
lcatch (Exception e) 
( 

System.out.println("Exception caught: " + e); 
e.printStackTrace(); 

public void compute() throws RemoteException 
( 

data +- 10; 

public int getData() throws RemoteException 
( 

return data; 

public void setData(int data) throws RemoteException 
( 

this.data - data; 

public void setGROUNDData(int data) throws RemoteException 
( 

data - data; 

public void setRADARata(int data) throws RemoteException 
I 

data - data; 

public int getGROUNDData() throws RemoteException 
( 

return data; 

public int getRADARData() throws RemoteException 
( 



return data; 

2.14 MalnRadarThread.Java 

package jcode.process; 
~mport java.rmi.'; 
import java.rmi.server.'; 
import java.rmi.registry.'; 
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publ~c class MainRadarThread extends Thread 
I 

public void runt) 
I 

while(true) 
I 

System.out.println("RADAR -- Radar Sent"); 
//wait for response - hard coded time 
try 
I 

Thread.sleep(6000); 
Icatch (Exception e) 
II 

System.out.println("RADAR 
System.out.println("RADAR 

Radar Data Recieved"); 
Radar Process Data Start"); 

//wait for processing - hard coded time 
try 
( 

Thread. sleep (9000); 
lcatch (Exception e) 
( ) 

System.out.println("RADAR Radar Process Data End"); 

System.out.println("RADAR SEND DATA TO FUSION"); 
System.out.println("GROUND -- SEND DATA TO FUSION"); 
try( 

ReconfigProcess mfc -
IReconf igProcess) Naming . lookup ("rmi: I Ilocalhost: l099/FusionDM") ; 

System.out.println("GROUND -- Fusion OM reference 
obtained"); 

mfc.setRADARata(l); 
System.out.println("GROUND -- SENT DATA TO FUSION"); 

lcatch (Exception e) 
() 

3. Java RItAI Case Study Code Outputs 

3.1 Unconstrained Output 

Process factory started 
Process factory bound 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:00 
FusionOM -- own reference obtained 
FusionOM -- Poll for Input 
FusionDM -- no new data 
Type: GroundSensor 



Ground S.nsor Inltia11sinQ 
G'OUND -- Poll for Sound 
Typ4; ~.d.rS.n.or 

'adar SenIor Inltlalislng 
RADA' -- 'adar Sent 
rUllonOM -- Poll for Input 
FUll0nOM -- no n.w d.ta 
Type: rUalonOM 
rUIlon PM Inltlalislng 
rUll0nOM -- Start Tl .. :2009-01-19 01:31:04 
'adar Sensor Unlnltlalising 
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~adar Sensor no longer bound to localhost as rusionDM 
G~OUND -- Poll for Sound 
rUllonOM own reference obtained 
rullonOM -- Poll for Input 
rUSlonOM -- no new data 
Type: ruUonOM 
rUSlon OM Initialising 
rUIlonOM -- Start Ti~e:2009-01-19 01:31:07 
~adar Sensor Unlnitialising 
'adar Sensor no longer bound to localhost as FusionOM 
GROUND -- Poll for Sound 
RADA' -- Radar oata Recleved 
RADA' -- Radar Process Data Start 
ruslonOM own reference obtained 
rusl0nOM -- Poll for Input 
rullonOM -- no new data 
Type: FusionOM 
rusion OM Initialising 
rulionOM -- Start Time:2009-01-19 01:31:11 
'adar SenIor Uninitialiling 
Radar Sensor no longer bound to localhost as FusionDH 
GROUND -- Poll for Sound 
rulionOM own reference obtained 
ruslonOM -- Poll for Input 
rusionOM -- no new data 
Type: rusionOM 
ruslon OM Initialising 
ruslonOM -- Start Time:2009-01-19 01:31:14 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionOM 
GROUND -- Poll for Sound 
rusionOM own reference obtained 
FusionOM -- Poll for Input 
rusionOM -- no new data 
Type: ruaionOM 
rusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:17 
Radar SenIor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
GROUND SEND DATA TO FUSION SAYING NO SOUND 
GROUND rusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- rusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
rusionOM own reference obtained 
rusionOM Poll for Input 
rusionOM got new data 
rusionOM start process data 
Type: rusionOM 
rusion OM Initialising 
rusionOM -- Start Time:2009-01-19 01:31:20 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDH 
GROUND -- Ground Sensor Got Sound - Process Data Start 
rusionOM own reference obtained 
rusionOM -- Poll for Input 
ruaionDM -- no new dats 
Type: ruaionOM 
rusion OM Initialising 
rusionOM -- Start Time:2009-01-19 01:31:23 
Radar Sensor Uninitia1ising 
Radar Sensor no longer bound to localhost as FusionDH 
RAD~ -- Radar Data Recieved 
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RADAR -- Radar Process Data Start 
Fu.ionOM own reference obtained 
FusionOM -- Poll for Input 
Fu.ionOM -- no new data 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:26 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionOM own reference obtained 
FusionOM Poll for Input 
FusionOM got new data 
rusionOM start process data 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:29 
GROUND -- Poll for Sound 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionOM 
FusionOH own reference obtained 
FusionOM -- Poll for Input 
FUsionDH -- no new data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- rusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:32 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionOM own reference obtained 
rusionOM -- Poll for Input 
FusionOM -- no new data 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:35 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionOM 
FusionOM own reference obtained 
FusionOM -- Poll for Input 
FusionOM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
Type: rusionOM 
Fusion OM Initialising 
rusionOM -- Start Time:2009-01-19 01:31:38 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
rusionOM -- Poll tor Input 
rusionOM -- no new data 
GROUND -- Poll for Sound 
Type: rusionOM 
rusion OM Initialising 
rusionOM -- Start Time:2009-01-19 01:31:41 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionOM 
rusionDM -- own reference obtained 



FusionOM -- Poll for Input 
FusionOM -- no new data 
GROUND -- Poll tor Sound 
Type: FusionOM 

211 

fUSion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:44 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionOM 
FusionOH own reference obtained 
FusionOM -- Poll for Input 
fusionOM -- no new data 
GROUND -- Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO ruSION 
GROUND SEND DATA TO FUSION 
GROUND -- fusion OM reference obtained 
GROUND -- SENT DATA TO ruSION 
RADAR -- Radar Sent 
Type: FusionOM 
Fusion OM Initialising 
FUsionOM -- Start Time:2009-01-19 Ol:31:~7 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost AS FusionDM 
FusionOM own reference obtained 
FusionOM -- Poll for Input 
FusionOM -- no new data 
GROUND -- Poll for Sound 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:50 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
fusionOM own reterence obtained 
FusionOM -- Poll for Input 
FusionOH -- no new data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
Type: fusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:53 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
fusionOM own reference obtained 
FusionOM -- Poll for Input 
fusionOM -- no new data 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:31:57 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionOM own reference obtained 
fusionOM -- Poll for Input 
FusionOM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO ruSION 
GROUND fusion DM reference obtained 
GROUND SENT DATA TO ruSION 
GROUND Poll for Sound 
Type: FusionOM 
fusion OM Initialising 
fusionOM -- Start Time:2009-01-19 01:32:00 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
fusionOM own reference obtained 
fusionOM -- Poll for Input 
fusionOM -- no new data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO ruSION 
GROUND SEND DATA TO ruSION 
GROUND -- fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-l9 01:32:03 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionOM 
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FusionDM own reference obtained 
FusionDM Poll for Input 
FusionOM no new data 
Type: FusionDM 
Fusion OM Initialising 
FusionDM -- Start Time:2009-0l-l9 01:32:06 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
FusionDM -- Poll for Input 
FusionDH -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion DM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
Type: FusionDM 
Fusion DM Initialising 
FusionDM -- Start Time:2009-01-19 01:32:09 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
Type: FusionDM 
Fusion OM Initialising 
FusionDM -- Start Time:2009-01-19 01:32:12 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
FusionDM -- Poll for Input 
FusionDM -- no new data 
Type: FusionDM 
Fusion OM Initialising 
FusionDM -- Start Time:2009-01-19 01:32:15 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND 
GROUND 

Fusion OM reference obtained 
SENT DATA TO FUSION 

GROUND Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
Type: FusionDM 
Fusion OM Initialising 
FusionDM -- Start Time:2009-0l-l9 01:32:18 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
Type: FusionDM 
Fusion DM Initialising 
FusionDM -- Start Time:2009-01-19 01:32:21 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
FusionDM -- Poll for Input 
FusionDM -- no new data 
RADAR -- Radar Data Recieved 
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RADAR -- Radar Process Data Start 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:32:24 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionOM own reference obtained 
FusionOM -- Poll for Input 
FusionOM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND 
GROUND 
GROUND 
GROUND 

Fusion OM reference obtained 
SENT DATA TO FUSION 
DETECTED FAULT - RECONFIGURING 
controller reference obtained 

Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:32:27 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionOM own reference obtained 
FusionOM -- Poll for Input 
FusionOM -- no new data 
GROUND -- Poll tor Sound 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-0l-19 01:32:30 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionOM own reterence obtained 
FusionOM -- Poll tor Input 
FusionOM -- no new data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Poll for Sound 
Type: FusionOM 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:32:33 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionOM own reterence obtained 
FusionOM -- Poll tor Input 
FusionOM -- no new data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
Type: FusionOM 
Fusion OM Initialising 
FusionDM -- Start Time:2009-01-19 01:32:36 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reterence obtained 
FusionDM -- Poll for Input 
FusionDM -- no new data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM -- Poll tor Input 
FusionDM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion DM reterence obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll tor Sound 
FusionOM -- Poll tor Input 
FusionDM -- got new data 
FusionDM -- start process data 
GROUND -- Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 



GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Poll for Sound 
FuslonOM -- end process data 
FUS10nOM -- start fuse data 
GROUND -- Poll for Sound 
FuslonOM end fuse data 
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FuslonOM output Desision based on NON stale data 
FusionOM OUtput Time:2009-01-19 01:32:52 
FUS10nOM own reference obtained 
FusionOM Poll for Input 
FusionOM no new data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionOM Poll for Input 
ruslonOM no new data 
ru.ionOM Poll for Input 
rusionOM no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND 
GROUND 
GROUND 
rusionOM 
rusionOM 
FusionOM 
RADAR -­
RADAR -­
GROUND 

Fusion OM reference obtained 
SENT DATA TO FUSION 
Poll for Sound 

-- Poll for Input 
-- got new data 
-- start process data 
Radar Process Data End 
SEND DATA TO FUSION 

SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Ground Sensor Got Sound - Process Data Start 
rusionOM -- end process data 
rusionOM -- start fuse data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND rusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
ru.ionOM end fuse data 
rusionOM output Desision based on NON stale data 
FusionOM OUtput Time:2009-01-19 01:33:10 
rusionOM own reference obtained 
FusionOM Poll for Input 
rusionOM got new data 
rusionOM start process data 
GROUND -- Poll for Sound 
GROUND -- Ground Sensor Got Sound - Process Data Start 
rusionOM -- end process data 
rusionOM -- start fuse data 
RADAR -- Radar Process oata End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
rusionOM end fuse data 
rusionOM output Desision based on NON stale data 
rusionOM OUtput Time:2009-01-19 01:33:19 
FusionOM own reference obtained 
rusionOM Poll for Input 
rusionOH no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as 91 
rusionOH -- Poll for Input 



FusionDM -- got new data 
FusionDM -- start process data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
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GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND 
GROUND 
GROUND 

Fusion OM reference obtained 
SENT DATA TO FUSION 
Poll for Sound 

FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:33:31 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Poll for Sound 
GROUND -- Poll for Sound 
FusionDM -- end process data 
FusionDM -- start fuse data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:33:40 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM no new data 
FusionDM Poll for Input 
FusionDM no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionDM Poll for Input 
FusionDM -- got new data 
FusionDM -- start process data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Poll for Sound 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:33:55 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as g1 
FusionDM -- Poll for Input 



FusionDM -- got new data 
FusionDM -- start process data 
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GROUND -- Ground Sensor Got Sound - Process Data Start 
RAD~R -- Radar Process Data End 
RAD~R -- SEND DAT~ TO FUSION 
GROUND SEND DAT~ TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT D~T~ TO FUSION 
RAD~R -- Radar Sent 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DAT~ TO FUSION 
GROUND Fusion DM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:34:07 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
RAD~R -- Radar Data Recieved 
RAD~R -- Radar Process Data Start 
GROUND -- Poll for Sound 
GROUND -- Poll for Sound 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-0l-19 01:34:16 
FusionOM own reference obtained 
FusionDM Poll for Input 
FusionDM no new data 
RAD~R -- Radar Process Data End 
RADAR -- SEND D~TA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion DM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionDM Poll for Input 
FusionDM -- got new data 
FusionDM -- start process data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionDM end fuse data 
FusionDM output Desiaion based on NON stale data 
FusionDM Output Time:2009-01-l9 01:34:31 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND -- SEND DATA TO FUSION 



GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 

217 

GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-0l-l9 01:34:40 
FusionOM own reference obtained 
FusionOM Poll for Input 
FusionDM got new data 
FusionDM start process data 
GROUND -- Poll for Sound 
GROUND -- Poll for Sound 
FusionDM -- end process data 
FusionOM -- start fuse data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Poll for Sound 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-0l-l9 01:34:49 
FusionOM own reference obtained 
FusionDM Poll for Input 
FusionDM no new data 
GROUND -- Poll for Sound 
FusionDM 
FusionDM 
RADAR -­
RADAR -­
GROUND 
GROUND 
GROUND 
GROUND 

-- Poll for Input 
-- no new data 
Radar Data Recieved 
Radar Process Data Start 

SEND DATA TO FUSION SAYING NO SOUND 
Fusion OM reference obtained 
SENT DATA TO FUSION 
DETECTED FAULT - RECONFIGURING 

GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionOM Poll for Input 
FusionOM -- got new data 
FusionDM -- start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionDM end fuse data 
FusionDM -- output Desision based on NON stale data 
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FusionDM Output Time:2009-0l-l9 01:35:04 
FusionDH own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:35:13 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
GROUND -- Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Poll for Sound 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:35:22 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM no new data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND 
GROUND 
GROUND 
GROUND 

Fusion OM reference obtained 
SENT DATA TO FUSION 
DETECTED FAULT - RECONFIGURING 
controller reference obtained 

Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionDM Poll for Input 
FusionDM -- got new data 
FusionDM -- start process data 
GROUND -- Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Poll for Sound 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-0l-l9 01:35:37 
FusionDM own reference obtained 
FusionDM Poll tor Input 
FusionDM no new data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM Poll tor Input 
FusionDM -- no new data 



GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionOH Poll tor Input 
FusionOM -- got new data 
FusionOH -- start process data 
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GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
FusionOM -- end process data 
FusionOH -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND 
GROUND 
GROUND 
GROUND 

Fusion OM reference obtained 
SENT DATA TO FUSION 
DETECTED FAULT - RECONFIGURING 
controller reference obtained 

Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll tor Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionOM end tuse data 
FusionOM output Desision based on NON stale data 
FusionOM Output Time:2009-01-19 01:35:52 
FusionOM own reference obtained 
FusionOM Poll for Input 
FusionOM got new data 
FusionOM start process data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND -- Poll for Sound 
GROUND -- Poll tor Sound 
FusionOM -- end process data 
FusionOM -- start fuse data 
GROUND -- Poll tor Sound 
FusionDM end fuse data 
FusionOM output Desision based on NON stale data 
FusionOM Output Time:2009-01-19 01:36:01 
FusionOM own reference obtained 
FusionOM Poll for Input 
FusionOM no new data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionOH Poll for Input 
FusionOM no new data 
FusionOH Poll for Input 
FusionOM no new data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionOM Poll for Input 
FuaionDM -- got new data 
FusionOM -- start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionOM -- end process data 



FusionDM 
RlIDAR -­
RlIDAR -­
GROUND 

-- start fuse data 
Radar Process Data End 
SEND DATA TO FUSION 

SEND DATA TO FUSION 
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GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RlIDAR -- Radar Sent 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
rusionOM end fuse data 
rusionOM output Desision based on NON stale data 
rusionOM Output Time:2009-01-19 01:36:19 
FusionOM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionOM start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 

3.2 Constrained Output 

Process factory started 
Process factory bound 
Type: FusionDH 
Fusion OM Initialising 
rusionOM Start Time:2009-0l-19 01:50:32 
rusionDM own reference obtained 
FusionOM Poll for Input 
FusionOM no new data 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Type: RadarSensor 
Radar Sensor Initialising 
RlIDAR -- Radar Sent 
FusionOM -- Poll for Input 
FusionOM -- no new data 
Type: FusionDH 
Fusion OM Initialising 
FusionOM -- Start Time:2009-01-19 01:50:37 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionOM own reference obtained 
FusionDM -- Poll for Input 
rusionDM -- no new data 
Type: rusionOM 
Fusion OM Initialising 
FusionDH -- Start Time:2009-01-19 01:50:40 
Radar Sensor Uninitia1ising 
Radar Sensor no longer bound to localhost as FusionDM 
RlIDAR -- Radar Data Recieved 
RlIDAR -- Radar Process Data Start 
FusionOM own reference obtained 
FusionDM -- Poll for Input 
FusionOM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
rusionOM Poll for Input 
FusionDH -- got new data 
FusionDM -- start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RlIDAR -- Radar Process Data End 
RlIDAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RlIDAR -- Radar Sent 
FusionOM -- end process data 
FusionOM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND -- SEND DATA TO FUSION 



GROUND 
GROUND 
GROUND 
FusionDM 

Fusion OM reference obtained 
SENT DATA TO FUSION 
Poll for Sound 

end fuse data 
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FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:50:53 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:51:02 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
GROUND -- Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:51:11 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionDM Poll for Input 
FusionDM -- got new data 
FusionDM -- start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 



222 

Ground Sensor no longer bound to localhost as g1 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-l9 01:51:23 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND Poll for Sound 
Type: FusionDM 
Fusion OM Initialising 
FusionDM -- Start Time:2009-0l-19 01:51:32 
Radar Sensor Uninitialising 
Radar Sensor no longer bound to localhost as FusionDM 
FusionDM own reference obtained 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND -- Poll for Sound 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM -- Poll for Input 
FusionDM -- no new data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
FusionDM -- Poll for Input 
FusionDM -- no new data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as g1 
FusionDM Poll for Input 
FusionDM -- got new data 
FusionDM -- start process data 
GROUND -- Ground Sensor Got Sound - Process Data Start 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
FusionDM -- end process data 
FusionDM -- start fuse data 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
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FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:51:54 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM got new data 
FusionDM start process data 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND -- Poll for Sound 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM end process data 
FusionDM start fuse data 
FusionDM end fuse data 
FusionDM output Desision based on NON stale data 
FusionDM Output Time:2009-01-19 01:52:03 
FusionDM own reference obtained 
FusionDM Poll for Input 
FusionDM no new data 
RADAR -- Radar Process Data End 
RADAR -- SEND DATA TO FUSION 
GROUND SEND DATA TO FUSION 
GROUND -- Fusion OM reference obtained 
GROUND -- SENT DATA TO FUSION 
RADAR -- Radar Sent 
GROUND Ground Sensor Process Data End 
GROUND SEND DATA TO FUSION 
GROUND Fusion OM reference obtained 
GROUND SENT DATA TO FUSION 
GROUND DETECTED FAULT - RECONFIGURING 
GROUND controller reference obtained 
Type: GroundSensor 
Ground Sensor Initialising 
GROUND -- Poll for Sound 
Ground Sensor Uninitialising 

Ground Sensor no longer bound to localhost as gl 
FusionDM Poll for Input 
FusionDM -- got new data 
FusionDM -- start process data 
GROUND -- Poll for Sound 
RADAR -- Radar Data Recieved 
RADAR -- Radar Process Data Start 
GROUND -- Ground Sensor Got Sound - Process Data Start 
FusionDM end process data 
FusionDM -- start fuse data 
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