
University of Newcastle upon Tyne
School of Computer Science

Towards Certifiable Reconfigurable
Real-time Mission Critical

Software Systems

by
Richard Wilkinson

PhD Thesis

January 12, 2009

2

Abstract

This thesis makes a contribution towards the certification of reconfigurable
real-time mission critical software systems. In highly reconfigurable
software systems it is possible for a situation to arise where the system
expends most or all of its resoun;:es on reconfiguring, and thus cannot
provide sufficient resources to conduct intended computing functions. This
anomaly has been termed "configuration thrashing" by the author due to its
loose analogy to memory thrashing. If configuration thrashing is not
eliminated, or at least minimised, then it is possible for circumstance to
occur where reconfigurable systems cannot be certified due to potential
failure to meet deadlines caused by configuration thrashing. The
elimination of reconfiguration thrashing is a step towards certifiable
dynamic reconfigurable systems capable of enforcing deadlines. The
elimination of reconfiguration thrashing is necessary, though not sufficient,
for this goal.

In order to restrict configuration thrashing it is necessary to understand the
possibilities available within reconfigurable software. A VDM-SL model is
presented to explore the options available for reconfigurable architectures,
and has allowed many operators to be formally specified providing a much
greater understanding of the tasks involved in reconfiguration.

The thesis demonstrates how model checkers can be used to check software
processes for configuration thrashing using predefined CSP models, thus
allowing system programmers to engineer configuration thrashing out of
systems. However, model checkers are susceptible to state space explosion,
particularly if models are large and / or complex, which may make the use
of the model checkers impractical or even impossible for some systems.
The thesis therefore also explores potential run-time solutions to
configuration thrashing. These solutions allow developers to include
additional logic / processes within their systems in order to eliminate
configuration thrashing (without the use of model checkers). Several
options are explored in-depth, from providing mechanisms for developers to
choose when reconfiguration can / cannot occur, to a rule based solution.
The exploration of the rule based solution explores issues such as rule
expression, rule predictability, as well as potential core rules.

The two approaches taken within this thesis to eliminate, or at least restrict
sufficiently, configuration thrashing form a basis which would allow for the
certification of reconfigurable real-time mission critical software systems.

3

Acknowledgements

This thesis would never have been completed without the invaluable help of
many individuals during the course of this study.

I would like to express my gratitude to my Supervisors at the University of
Newcastle: Professor Tom Anderson for his encouragement and focus
during the final stages of the writeup, and Dr Jim Armstrong for the
encouragement and assistance given during the early work and for
commenting upon aspects of the work even when no longer at the
University of Newcastle.

Thanks are also due to Dr Steven Paynter of MBDA UK Limited whom
during several meetings provided help and insight, particularly on technical
matters relating to the FDR model checker. Thanks must also go to BAE
SYSTEMS for the funding provided.

I am deeply grateful to my family, in particular my partner Helen, for their
support, encourangement, and most of all patience during this period of
study.

4

Contents

1. Introduction .. 7
1.1 Introduction to Reconfigurable Systems ... 8

1.1.1 Reconfigurable Hardware .. 8
1.1.2 Reconfigurable Software .. 9
1.1.3 Hardware and Software Similarities .. 9

1.2 Introduction to Integrated Modular Systems (IMS) for Avionics. 10
1.3 Configuration Thrashing ... 11
1.4 Thesis Contribution ... 12
1.5 Thesis Structure ... 13

2. Reconfigurable Systems ... 15
2.1 Options for Reconfigurable Architectures 15
2.2 Reconfigurable Operators .. 16

2.2.1 The VDM-SL Model .. 17
2.2.2 Software Reconfiguration Operators 19
2.2.3 Executable vs. Non-executable Specifications 23
2.2.4 Operator Conclusions ... 25

2.3 Summary ... 26

3. Defining Configuration Thrashing ... 27
3.1 Configuration Thrashing Introduction ... 27
3.2 Trace Models of Configuration Thrashing 30
3.3 Communicating Sequential Processes (CSP) 31

3.3.1 Un-timed CSP Configuration Thrashing Model 32
3.3.2 Timed CSP Configuration Thrashing Model 36
3.3.3 Limitations ofCSP Configuration Thrashing Models40

3.4 Difficulties Applying the Configuration Thrashing Model..41
3.6 Summary ... 45

4. Related Work .. 46
4.1 Reconfigurable Formalisms ... 47

4.1.1 CCS .. 48
4.1.2 CSP ... 48
4.1.3 Pi-Calculus ... 49
4.1.4 Ambient Calculus ... 50
4.1.5 Mobile Unity .. 51

4.2 Reconfigurable Systems and Configuration Thrashing 52
4.2.1 Fault Tolerance .. 52
4.2.2 Reflection ... 55
4.2.3 Self-Modifying Code ... 57
4.2.4 General Re-configurability ... 59

4.3 Reconfiguration Control .. 61

5

4.3.1 Law Governed Interaction .. 62
4.3.2 The Open Control Platform .. 63
4.3.3 Dynamic Change Management .. 64

4.4 Summary ... 64

5. Exploration of Potential Run-time Configuration Thrashing
Solutions .. 66

5.1 Reconfiguration Control .. 67
5.2 Reconfiguration Control using Rule Sets 69

5.2.1 Locally Scoped (Decentralised) Rule Sets 69
5.2.2 Globally Scoped (Centralised) Rule Sets 70
5.2.3 Local (Decentralised) Rule Checking 70
5.2.4 Global (Centralised) Rule Checking 72
5.2.5 Further Rule Set Discussion ... 73
5.2.6 Rule Expression / Predictability ... 75
5.2.7 Core Malfunction and Reconfiguration Thrashing Restriction
Rules 76
5.2.8 Rule Set Reconfiguration Control Demonstrator 79

5.3 Mechanisms Allowing Developer to Control Reconfiguration 82
5.3.1 Difficulties Providing Guidance for Developers 83

5.4 Summary ... 85

6. Case Study .. 87
6.1 Component Design .. 88

6.1.1 Radar Sensor .. 88
6.1.2 Ground Sensor .. 89
6.1.1 Sensor Fusion & Battlefield Decision Making Component... 90

6.2 Formal Approach ... 90
6.3 Software Approach .. 98
6.4 Case Study Discussion .. 101
6.5 Summary ... 102

7. Future Work ... 103
7.1 Blueprint to Blueprint Analysis ... 103
7.2 Resource Modelling / Equivalence .. 106
7.3 Contract Restriction for Reconfigurable Middleware Systems ... 108
7.4 Dynamic Rule Sets for Reconfiguration Control 110
7.5 Summary ... 111

8. Conclusions ... 112
8.1 Reconfigurable Systems .. 112
8.2 Configuration Thrashing ... 114

8.2.1 Eliminating Configuration Thrashing Using Model Checkers
115

6

8.2.2 Run-time Techniques for Configuration Thrashing Elimination
116

8.2.3 Configuration Thrashing Elimination Effectiveness 117
8.3 Concluding Remarks ... 118

A. Three Layer VDM Model ... 128

B. CSP Thrashing Definitions ... 166
l. Un-timed CSP Configuration Thrashing ModeL 166
2. Timed CSP Configuration Thrashing Model 166

C. Possible Process Req uirements .. 168
1. Possible Processor Requirements ... 168
2. Possible Memory Requirements .. 169
3. Possible Operating System (OS) Requirements 169
4. Possible Storage Requirements .. 169

D. Demonstrator Java Source Code ... 171

E. Case Study .. 183
l. Un-timed CSP Case Study ModeL ... 183
2. Java RMI Case Study Code .. 191
3. Java RMI Case Study Code Outputs ... 208

Chapter 1

Introduction

7

A reconfigurable system is one designed at the outset for changes in its
structure, this may be hardware and / or software components, in order to
adjust to environment changes. Reconfigurable systems have a high level of
flexibility; allowing changes to occur much more quickly than in traditional
non-reconfigurable systems.

Two types of reconfiguration can exist within reconfigurable systems:
reconfigurable hardware and reconfigurable software. Reconfiguration can
take place online or offline, though online reconfiguration offers the most
potential benefit.

The avionics industry is investing heavily in Integrated Modular Systems
(lMS), which is a movement towards a reconfigurable fault tolerant
architecture in the avionics domain. This investment clearly shows the
perceived value that the industry places on the benefits expected from
reconfigurable systems.

In highly reconfigurable systems it is possible for a situation to arise where
a system expends most or all of its resources on reconfiguring, and thus
cannot provide sufficient resources to conduct intended computing
functions. This anomaly has been termed "configuration thrashing" by the
author due to its loose analogy to memory thrashing. This thesis addresses
the problem of configuration thrashing and proposes strategies to eliminate,
or at least restrict sufficiently.

The rest of this chapter is structured as follows. First Section 1.1 briefly
introduces reconfigurable systems. Subsections 1.1.1 and 1.1.2 describe
reconfigurable hardware and reconfigurable software respectively, followed
by a brief comparison of reconfigurable hardware and software in
subsection 1.1.3. Section 1.2 then introduces Integrated Modular Systems.
Within section 1.3 configuration thrashing is discussed. Section 1.4
discusses the contribution this thesis makes and Section 1.5 presents the
thesis structure.

8

1.1 Introduction to Reconfigurable Systems

Reconfigurable systems offer the ability to adapt hardware and / or software
to meet changing requirements. Reconfiguration can take place online or
offline. As discussed below, online reconfiguration offers the most
potential benefit, but is also the most technically challenging.

1.1.1 Reconfigurable Hardware

Reconfigurable hardware devices, including Field-Programmable Gate
Arrays (FPGAs), contain computational elements (often referred to as logic
blocks) connected using (re)configurable routing resources. Custom digital
circuits can be mapped to reconfigurable hardware devices by computing
the logic functions in the logic blocks, and using the (re)configurable
routing to connect the blocks together to form the desired circuit.

FPGAs and other reconfigurable computing devices have been shown to
accelerate a variety of computing applications. For example, an
implementation of the Serpent Block Cipher in the Xilinx Virtez XCVIOOO
shows a throughput increase by a factor of 18 compared to a Pentium Pro
PC running at 200MHz [1].

In order to achieve performance benefits, yet support a wide range of
applications, reconfigurable hardware devices are usually formed using a
combination of reconfigurable logic blocks and a general-purpose
microprocessor. The microprocessor performs the operations which cannot
be done efficiently within the reconfigurable logic, such as data-dependent
control and memory accesses.

Systems that are configured only at power-up (offline) are able to accelerate
only as much of the program as will fit the programmable structures.
Additional areas of a program might be accelerated by altering and reusing
the reconfigurable hardware during program execution. This process is
often known as Run-Time Reconfiguration (RTR) or online reconfiguration.

RTR has the benefit of allowing for the acceleration of a greater proportion
of an application; however, it also introduces an overhead penalty incurred
by (re)configuration which limits the amount of acceleration possible.
Detailed information on reconfigurable hardware is contained in [2].

9

1.1.2 Reconfigurable Software

Reconfigurable software offers the ability to modify software systems either
by reorganising or changing existing processes, adding new processes, or
removing old processes.

Software systems that are configured only at start-up (offline) do not gain
the benefits that online reconfiguration can offer. Offline reconfiguration
allows for a system to be initialised in a number of different configurations,
thus allowing the system to be optimised for the intended and foreseen life
cycle. To reconfigure an offline reconfigurable system must shut down
entirely and be reinitialised in the new configuration. Online reconfigurable
systems can change configuration during operation; offering many potential
benefits including: online software upgrades, adaptability, self-management,
and increased fault-tolerance. Online reconfigurable systems are also
referred to as dynamic reconfigurable systems.

Operating systems and programming languages have provided programmers
with the ability to perform software changes at runtime for many years.
However, such mechanisms have been said not to " ... guarantee that a
change will have the desired effect or maintain application integrity ... " [3].

Dynamic reconfigurable software and specifically dynamic components
have been identified as being " ... challenging in terms of correctness,
robustness, and efficiency ... " [4]. To gain a better understanding of
reconfigurable software many formal specification languages have been
developed, though most of these are focussed on architecture specification
or other specialist issues, rather than the reconfiguration actions themselves.
A brief summary of fourteen specification approaches can be found in [5].
Chapter 4 of this thesis presents related work in which many formal
specification languages are introduced.

1.1.3 Hardware and Software Similarities

Many similarities exist between the reconfigurability options available in
hardware. Both hardware and software can be reconfigured offline or
online and similar benefits can be gained by allowing online
reconfiguration. Performance benefits and also increased adaptability are
offered by online reconfiguration in both hardware and software. Both have
difficulties when attempting to ensure the correctness of online
reconfigurations. However, one difference is that hardware reconfiguration
is likely to have an effect upon software and could potentially trigger
subsequent reconfiguration within the software, but it is unlikely that

10

software reconfiguration will have an impact upon hardware or trigger any
further hardware reconfiguration (unless specifically programmed to do so).

It is possible that hardware devices such as FPGAs could suffer from
configuration thrashing, in the same way that software can. This can also
mean that if software and hardware are made reconfigurable the issue of
configuration thrashing could potentially be magnified.

1.2 Introduction to Integrated Modular Systems (IMS)
for Avionics

Conventional aerospace systems are federated, with each major component
hosted on separate hardware. This can be very costly, as each component is
independently developed and validated. Validation is essential within
aerospace systems, as they are complex real-time systems and the cost of a
failure is likely be loss of life. Due to the potential for fatalities within the
aerospace domain, all aerospace systems are regulated. In federated
systems the software is generally tightly coupled to the hardware and is
sensitive to small changes in either software or hardware.

The avionics industry is currently attempting to move to IMS, to allow for a
fully dynamic network which can be used to meet mission targets
successfully even in the event of system failures. IMS also aims to pool and
share computing hardware, in order to reduce the overall cost of building
systems. Cost is further reduced as less power, space and cooling is
required. With IMS a number of software components can run on a shared
processor and communicate via an operating system. Figure I shows the
ARINC 653 [6] view of how this should be done.

Application Application Application
Partition 1 Partition 2 Partition N

t f ~
+ + +

Operating System

t ~

+ x
Hardware J

Figure I: ARINC 653 IMS Module

11

As stated in [7] " ... in order to benefit from the technology a safety case
must be generated which can be maintained incrementally with system
changes ... ". At present, if a small change is made in software or hardware,
then recertification of entire components is required, and if the system is not
federated into components, then the entire system would have to be
recertified.

The fact that the avionics industry is investing so heavily in IMS is a clear
indication that there is strong motivation for a loosely coupled,
reconfigurable fault tolerant architecture in the avionics domain. In order to
produce a dynamic reconfigurable system, suitable for that domain, there
are many challenges that must be overcome. These challenges include:

1) Deadlines - real-time systems impose timing constraints. In hard real­
time systems these deadlines must be enforced or catastrophic events may
occur. In dynamic systems verification that such deadlines will be met is
difficult as the system could be in anyone of a very large range of possible
configurations. There could be hundreds or even thousands of possible
configurations in a given IMS system. There may also be a need for
deadlines to be enforced during reconfiguration.

2) Validation / Certification - the validation and certification of real-time
systems is a costly procedure. Complex reconfigurable systems will be
difficult to certify and most likely even more expensive. However, modular
safety cases could make certification of 1M A systems easier and less costly.

1.3 Configuration Thrashing

As described, configuration thrashing is an anomaly which can occur in
reconfigurable systems whereby a system expends most or all of its
resources reconfiguring, and thus cannot provide enough resources to
execute intended computing functions. To date no literature has been found
that recognises or addresses configuration thrashing.

In order to give a concrete definition for configuration thrashing, the notion
of a "configuration overlap" is introduced. A configuration overlap occurs
when two subsequent reconfiguration requests are acted upon without a
"sufficient interval" between them. The sufficient interval between
reconfiguration actions should be sufficient to allow reconfiguration /
initialisation to complete, as well as a minimum level of processing to occur
(in the new configuration), and thus is an application dependent parameter.

Some (unusual) applications may have no required minimum level of
processing; however, in most cases there will be a requirement for an

12

interval in which the system should conduct intended computing functions
in order to justify the resource overhead of the reconfiguration. It is
expected that in most cases the minimum processing period will at very
least include an input and an output action, unless the internal state and
process stack are to be maintained during reconfiguration. If the internal
state and process stack are not maintained during reconfiguration, then the
process will have made no progress if a read and write activity is not
conducted.

Configuration thrashing occurs when one or more configuration overlaps
occur. The number of configuration overlaps that can be tolerated in a
given time period or in sequence is application dependent and possibly even
mode dependent, as it is dependent on system deadlines. In some
applications up to N consecutive overlaps could be tolerated, but no more.
In others, the limit may be set at a maximum of M overlaps during any
given time window of duration T.

If configuration thrashing is not eliminated, or at least minimised, then it is
possible that no useful work might be achieved, deadlines may be missed,
and certification may be impossible. The elimination or restriction of
configuration thrashing provides a step towards certifiable dynamic
reconfigurable systems. The importance of certifiable reconfigurable
systems is not to be underestimated, as many real-time systems would
benefit from reconfigurable functionality which must be certified for use,
such as aerospace applications, or systems for power plants.

1.4 Thesis Contribution

This thesis makes a contribution towards the certification of reconfigurable
real-time mission critical software systems, by investigating the
configuration thrashing anomaly and providing methods of eliminating or
restricting it sufficiently. This thesis considers certification as a crucial
factor, as all aspects of the thesis are considered from an aerospace
perspective; certification as well as safety are essential within this domain.
However, the author has recognised that this research has applications in
other domains and thus has tried to make all models and demonstrators as
generic as possible. More specifically the contribution made in this thesis
consists of:

1. the specification of a VDM-SL model providing the means to
explore the characteristics of reconfigurable systems. This formal
model has also allowed many relevant operators to be specified, thus
providing a set of unambiguous reconfiguration operators.

13

2. a formal definition has been proposed for configuration thrashing
and a formal modelling technique has been presented (using CSP
and FDR) which is capable of detecting, and thus enabling the
elimination of, configuration thrashing within software processes.

3. a range of run-time techniques for restricting reconfiguration and
thus configuration thrashing has been explored. Since model
checkers can suffer from state space explosion, a demonstrator has
also been developed to further highlight that the run-time solutions
can indeed restrict configuration thrashing sufficiently.

1.5 Thesis Structure

The remainder of this thesis is structured as follows: First, chapter 2
introduces a three-level model specified in VDM-SL which provides a basis
for exploring the options available within reconfigurable systems. The
types of options explored using the VDM-SL model include hardware
reconfiguration, software reconfiguration, location awareness, and the
effects of linkage upon reconfiguration as well as reconfiguration options.
The operators outlined in the VDM-SL model form an extensible
reconfiguration language. Chapter 3 outlines a definition of configuration
thrashing which is then formally specified. Model checkers are introduced
and CSP models are presented which enable model checkers to check
processes for configuration thrashing. Discussions relating to the
difficulties in applying the CSP configuration thrashing models to specific
applications, such as terrain following aircraft which suffer from
probabilistic requirements, are also presented.

Chapter 4 considers the different kinds of formalisms that could be used to
model reconfigurable systems and thereby provide support for the
identification of configuration thrashing. This chapter also presents related
work on control techniques which could be used to constrain systems in
order to ensure that configuration thrashing cannot occur. Chapter 5
explores potential run-time solutions to configuration thrashing. These
solutions allow developers to include additional logic I processes into their
systems in order to eliminate configuration thrashing (without the use of
model checkers). A rule based solution is explored in depth and issues such
as rule expression, rule predictability, and potential core rules are discussed.
A demonstrator is also presented which shows that rules can indeed restrict
reconfiguration sufficiently to eliminate configuration thrashing.

Chapter 6 reviews the effectiveness of both the models outlined for
configuration thrashing and also the rule based software solution through

14

the use of a small case study. This chapter shows how useful both
approaches can be to developers.

Chapter 7 presents proposals for future work, some of which are extensions
to work presented within the thesis, and some of which fall outside the
scope of the thesis. Chapter 8 presents the conclusions from the research
performed.

Appendix A contains the full VDM-SL model described in chapter 2 of the
thesis. The model is a three-level model and was developed to provide a
basis for exploration of reconfigurable systems. Appendix B contains the
full timed and un-timed CSP configuration thrashing models introduced in
chapter 3 of this thesis. Appendix C presents possible processor, memory,
as, and storage requirements for processes, and appendix D presents the
source code for the reconfigurable systems demonstrator. Appendix E
contains both the full CSP configuration thrashing models and java source
code used for the case study presented in chapter 6.

15

Chapter 2

Reconfigurable Systems

Reconfigurable systems offer the ability to adapt hardware and software to
meet the changing requirements of a system. Reconfiguration can be static
(when a system is off-line) or dynamic (at run-time), thus allowing the
system to respond to changing requirements as it and its environment
change.

Much research in reconfigurable systems is very focused and thus does not
assess the options available, also initial research into reconfigurable systems
has shown that many ambiguous terms are being used to describe the
behaviour of reconfigurable systems, for example, many papers use terms
such as "move" or "migrate" to describe the movement of a process
between platforms. However, many questions are left unanswered by such
terms, including: are process states migrated; are the communication links
maintained; and are there any pre-conditions to the migration or move?

The rest of this chapter is structured as follows. First section 2.1 explores
the options available for reconfigurable architectures. Section 2.2
introduces a suitable language in which to express the behaviour of
reconfigurable systems. Section 2.2.1 introduces the VDM-SL model which
has been used to formally define a candidate set of operators which make up
the extensible reconfiguration language. Section 2.2.2 describes the
individual operators in detail. Section 2.2.3 presents an ongoing debate as
to whether formal models, including VDM-SL models, should be
executable. Section 2.2.4 presents some conclusions relating to the
operators defined.

2.1 Options for Reconfigurable Architectures

The exploration of possibilities available within reconfigurable architectures
has shown that the following broad levels of reconfiguration are possible:

a) Software (process) reconfiguration - includes: process migration,
process addition / deletion, thread spawning, dynamic linking and
loading, state and stack synchronisation, as well as dynamic
compilation and subsequent execution.

b) Hardware reconfiguration - includes: adding and removing
hardware, reprogramming hardware (such as FPGAs), as well as
changing hardware communication links.

16

c) Mobility (hardware relocation) - includes: the movement of
hardware between physical locations.

As can be seen from the very broad levels of reconfiguration shown above,
there are a large number of options available within reconfigurable systems.
All of the options can be broken down further, for instance the removal of a
process could simply remove the process from the processor its currently
executing upon, or it could remove the process from the system entirely
(including the executable file stored on non-volatile hardware). It could
also remove it instantly or after a given time period. This gives a vast
number of options within reconfigurable systems. All of the above
reconfigurations could take place online or offline. Online reconfiguration
offers specific benefits such as fault rectification, but presents a number of
technical challenges (especially within real-time systems).

Most systems that support online reconfiguration will incorporate integrated
systems such as "plug and play" and / or fault tolerant services. With these
types of integrated systems, a reconfiguration in anyone of the levels
(outlined above) could trigger further reconfiguration. For example if
hardware is removed and the software running on it is important, then the
fault tolerant services will most likely trigger reconfiguration, to initialise
the missing processes on different hardware. It is likely that such fault
tolerant services would be turned off whilst upgrades take place, as they
could potentially cause unwanted reconfigurations during upgrades.

As the options for reconfiguration are so vast the remainder of this chapter
will explore software reconfiguration only, though the effects this has upon
the underlying hardware will not be ignored.

2.2 Reconfigurable Operators

Research into reconfigurable systems has shown that a suitable language in
which to express the behaviour of reconfigurable systems is lacking. Many
ambiguous terms are used when describing reconfigurable systems, for
example, the term "process migration" is often used without considering any
of the following: is the process's state migrated; are the communication
links maintained; and are there any pre-conditions to the migration?

A three-level model has been specified in VDM-SL to provide a basis for
exploring the possibilities available within reconfigurable systems. The
VDM-SL model has been built to allow an IMA type architecture to be
manipulated using a set of well defined reconfigurable operators. However,
the model is as generic as possible and can express almost any

17

reconfigurable architecture. The operators outlined form an extensible
reconfiguration language.

2.2.1 The VDM-SL Model

The VDM-SL model consists of three levels: the process level, the hardware
level, and the physical location level. All three levels are necessary to
model a reconfigurable system accurately, as they are all required to analyse
factors which affect resources. Most calculi capable of describing
reconfigurable systems (such as the Pi-Calculus [8] and the Ambient
Calculus [9]) fail to distinguish hardware location from physical location. It
is important to separate hardware location from physical location not just
because the resources required to achieve a task may alter with physical
location, but also because mobile processes must be stopped and restarted
when "in transit" between hardware locations, but will function
continuously when in transit between physical locations.

The VDM-SL model has been built to allow an IMA architecture to be
manipulated using a set of well-defined reconfigurable operators; however
the model is as generic as possible and can express almost any
reconfigurable architecture. To make the model generic, hardware links are
individually modelled, even though IMA assumes a totally interconnected
network. However, faults could occur in an IMA system which could cause
the network to no longer be totally interconnected, and to model a scenario
such as this, the individually modelled hardware links are necessary. The
model also includes shared data areas, which would not be required in an
IMA model, but may be required if a Real Time Network (RTN) [10] or
similar approach to building reconfigurable systems were to be investigated.

The model is in essence a system state which is manipulated using a set of
operators. The system state is shown in figure 1, along with the definitions
for Hardware, Software and SW _to_HW _Map. Figure 1 does not include
invariants, as they are not required here.

18

state System of
HardWare
SoftWare
Loc

Hardware
Software
Locations

SW HW Map
HW::::LoC_Map

SW to HW Map
HW::::tO::::LoC_Map

Hardware ;; MAUs
Cards
Mappings
Linkage

Software .. Services
Processes
SDs
Linkage
SD_Linkage

map MAU_ID to MAU
map Card ID to Card
map Card-ID to MAU ID
map HW_LInk_ID to Hw_Link

map Service ID to set of Global Process ID
map Global Process ID to Process -
map Shared-Data ID-to Shared Data
map Link 10 to SW Link -
map Link::::ID to Shared_Data_Link

SW to HW Map .. Proc_to_Procrs
Card_ID -

map Global_Process_ID to set of

map Global_process_ID to set of

Proc_to_NPMem

SD to NPMem map Shared Data ID to set of Card ID

Figure I : VDM-SL System State

The invariants placed over the model were kept as weak as possible to
ensure that the maximum amount of possibilities for reconfiguration could
be explored. It is envisaged that there could be many varying levels of
"architectural constraints" placed over reconfigurable systems, which could
restrain the possibilities for reconfiguration in many different ways.
Developers may require differing levels of restriction in different projects.

Even with very weak architectural constraints (represented as system
invariants), it was often difficult to ensure that operators did not violate the
system invariants during reconfiguration. This is likely to become even
more challenging if the number of invariants are increased, thus further
restricting the reconfiguration. An example of this can be seen in the
ChangeLoadedProcID operator within the model. This operator changes
the Global_Process jD of a process which is currently executing. In order
for this to be done, it must change the Global_Process jD in
Software. Processes, as well as in the SW_to_HW_Map (amongst others).
However, the system invariant states that any GlobaCProcessjD used in
the SW_to_HW_Map, must exist in Software.Processes and this invariant
will be broken if the Software. Processes is changed first, or if the
HW_to_SW_Map is changed first. Within the model, this is overcome by
wrapping the two actions in an atomic action to ensure that they both occur
simultaneously (as a transaction).

All operators specified within the model are well-behaved, i.e. do not break
any system invariants. However it is envisaged that further operators which
are not well behaved may be required to model failures. For instance a
failure could occur which effectively removes a card without un-initialising
or de-allocating any of the processes allocated to it. In cases were system
invariants are broken it is required that services will be available to

19

reconfigure the system to a valid state (a state where the invariants are no
longer violated). Operators of this type have not been specified within the
VDM-SL model, as they would only be useful if a fault tolerant service
were to be specified to reconfigure the system to a valid state. It was not the
aim of this research to investigate possibilities for fault tolerant services.

To simplify the VDM-SL model, processes have been modelled as single­
threaded activities. The simplification was required as multithreaded
applications could be spread over mUltiple processors. In cases where
processes are allocated to sets of processors dynamically it is incredibly
difficult to identify which threads need to communicate, and thus which
hardware links would be required to support such communication.
Furthermore in some applications processes spawn new threads dynamically
making the analysis even more challenging. To analyse thread allocation in
multithreaded applications, some form of graph theoretic approach would be
required. The analysis of multithreaded application behaviour within
reconfigurable systems is beyond the scope of this research; in fact it could
form a PhD in its own right.

2.2.2 Software Reconfiguration Operators

Process reconfiguration can be split into two main types of operators:
"move" and "copy". Other types of operator, such as process addition and
process deletion, are not discussed in-depth in this chapter, as they are
utilised within the move and copy type operators.

The following basic copy operators are outlined in the model:

• CopyProc
• CopyProcWState
• CloneProc
• CopyProcWSWLinks
• CopyProc WStateAndSWLinks
• CloneProc WSWLinks

The basic copy operators initialise a copy of a process (activity) on a
selected set of hardware. A selected set of hardware must include a
minimum of a processor, some persistent memory and some non-persistent
memory. Within this thesis, this set of hardware will be referred to as a
"computing platform". The initialisation is done from the executable of the
original process. The operators which have 'State' in their name
synchronise the state of the new process with the original process. The state
represents the internal variables of a process. The operators which begin
with 'Clone' synchronise the state and the stack of new process with the

20

original process. The stack represents the instruction stack (including the
current position within the instruction stack).

Within this thesis, the set of processes with which a process communicates
will be referred to as the "communicants" of the process. The operators
with the 'SWLinks' suffix create software links to allow communication
with the communicants of the original process. However, there is no
guarantee that the hardware infrastructure will be able to route such
communications.

An interesting point to note is that within the VDM-SL model it seemed
necessary to allocate all processes a global unique identifier. If processes
were not allocated global unique identifiers, then some form of location­
dependent reference would be required in order to facilitate communicate
between processes. Location-dependent references seem inadequate, since
if a process were to be moved the reference for that process would change;
thus all of the communicants of the (moved) process would have to be
notified of the change. In systems where the hardware is half-duplex it may
not be possible to notify processes of a change.

Within the VDM-SL model move operators were specified as low level
primitives. In some systems move operators are implemented as copy
operations followed by delete operations. The following basic move
operators were outlined in the model:

• MoveProcDelFirst
• MoveProcDelAfter
• MoveProc WState
• MoveProc WStateAndSync

All of the basic move operators shown above, apart from the
MoveProcDelFirst operator, initialise a copy of the chosen process
(activity) on a computing platform and then remove the original process;
this encompasses de-initialisation, de-allocation and then finally deletion
(including from non-volatile hardware). The MoveProcDelFirst operator
de-initialises the original process, and then reallocates the executable to a
computing platform and initialises it, without removing the executable from
non-volatile hardware. In an implementation of the MoveProcDelFirst
operator, the executable would most likely be moved between non-volatile
hardware. The operators which have 'State' in their name also synchronise
the state of the new process with the original process, and the operators with
'Sync' in there name synchronise the stack in the new process with the
original process.

21

As Global_ProcessJD's are unique within the system, it is necessary to
allocate temporary identifiers to newly created processes when conducting
most move operations. This is necessary as the original process is removed
after the new process is created; as such the very last action that takes place
in these move operations is to change the identifier of the moved process to
the correct (original) identifier.

All of the operators described above have a pre-condition which states that
the operation can only be attempted if there is a route between the present
location of the original process and the new location specified for the moved
or copied process. This is required as an operation of this type cannot take
place if data cannot be sent between the chosen hardware nodes.

It is possible that if the network hardware is not totally interconnected, then
once a copy or move has taken place, the newly created process can no
longer communicate with the communicants of the original process (due to
insufficient hardware linkage). A solution to this is to use proxies.

Proxies can be placed on hardware nodes to pass messages between
processes. Three different types of proxies have been defined within the
VDM-SL model, though more could be added. Figure 2 shows the three
types of proxies which have been defined in the VDM-SL model.

Process - Activity I Proxy I Duplex_Proxy I Condensing_Proxy;

Proxy:: Source : Global Process ID
Target : Global=Process=ID
Activity : Activity

Ouplex_Proxy :: Source : Global_Process_IO
Targetl : Global Process 10
Target2 : Global=Process:IO
Activity : Activity

Condensing_Proxy:: Sourcel : Global Process IO
Source2 : Global-Process-IO
Target : Global-Process-IO
Activity : ActivIty -

Figure 2: Proxies Within VDM-SL Model

The three types of proxies defined have separate purposes. The standard
proxy is a simple message relay proxy; it takes a message from its source
process and passes it to its target process. The duplex proxy has one source
and two targets; it receives messages and forwards them to two target
processes. The duplex proxy could be particularly useful if a process or
service (a set of processes) wishes to be duplicated for fault tolerance
purposes. The condensing proxy has two sources and only one target; it
receives messages from two separate processes and relays those messages to
a single process. The condensing proxy could be implemented to conduct
'voting', thus only send one copy of a message even though it receives two,

22

or it could simply relay all messages. It is possible for proxies to be
connected to other proxies, forming "chains" of proxies.

The following move and copy operators with automatic proxy generation
are outlined in the model:

• MoveProcDelFirstLP

• MoveProcDelAfterLP

• MoveProc WStateLP

• MoveProc WStateAndSyncLP

• CopyProcLP

• CopyProc WStateLP

• CloneProcLP

• CopyProc WSWLinksLP

• CopyProc WStateAndSWLinksLP

• CloneProc WSWLinksLP

All of the above copy and move operators with automatic proxy generation
behave as their parent operator (the operator with the name the same, but
without 'LP' suffix), but also leave appropriate proxies to enable
communication with the original communicants.

It is possible for operators to be specified which add constraints to the
model (which will most likely trigger actions indirectly, though not
immediately). An example of this would be an operator to keep two
processes co-located. If an operator such as this were used, then a move
operator (of any type) if called on either of the co-located processes would
cause both processes to move. These types of operator have not been fully
explored within the VDM-SL model, but some operators of this type may be
useful within dynamic reconfigurable systems. It is envisaged that, in an
implementation, services would have to be created to support such
operators. These operators have not been fully explored in the VDM-SL
model as VDM-SL does not support concurrency and as such a service to
support such operators cannot be executed in parallel with reconfiguration
operators to detect infringements on the constraints they introduce.

Assuming a faulty process would have the right to migrate itself and / or
other processes within a system, then a faulty process could force process
migration to occur continuously and thus cause "configuration thrashing".
If configuration thrashing is not eliminated or at least minimised, then a
reconfigurable system could expend most or all of its resources
reconfiguring, and thus not provide sufficient resources to conduct intended
computing functions.

23

There is also a requirement to prove that services provided for
reconfiguration, such as fault tolerant services, cannot have errors of
commission.

2.2.3 Executable vs. Non-executable Specifications

The VDM-SL model is an executable model. There is some dispute as to
whether formal models should be executable. Hayes and Jones [11] present
many arguments against this idea, which include the following:

• Executability limits the expressive power of a specification language
and restricts the forms of specifications that can be used.
Specifications should be phrased in terms of required properties of
the system. They should not contain the algorithmic details
necessary to make them directly executable.

• Though executable specifications permit early validation with
respect to the requirements by executing individual test cases,
proving general properties about a specification is much more
powerful.

• Executable specifications can unnecessarily constrain the choice of
possible implementations. Implementers can be tempted to follow
the algorithmic structure of the specification although that may not
be desirable. Executable specifications can produce particular
results in cases where a more implicit specification may allow a
number of different results.

• A specification language should be expressive enough to specify
non-computable problems such as the halting problem. If it is not,
one cannot use the single specification notation to cover both
theoretical aspects of computing and practical ones.

Fuchs [12] argues for executable specifications by showing that non­
executable specifications can be made executable on almost the same level
of abstraction, without the introduction of new algorithms. Fuchs
demonstrates that declarative specification languages allow a combination
of expressiveness and executability.

Fuchs makes the following argument for not excluding executable
specifications: " ... all means applicable should be available to validate the
specifications with respect to explicit and implicit requirements. Executable
specifications can be crucial for this because they allow - in addition to
formal reasoning about the specification - immediate validation by
execution, and they provide users and developers with the touch-and-feel
experience necessary to validate non-functional behaviour, e.g. user

24

interfaces. Excluding executability from specification languages means
therefore depriving oneself of a powerful method of validation."

The VDM-SL model created has been made executable for the following
reasons:

• Non-executable specification techniques can allow the specification
of systems which are impossible to implement. Hayes and Jones
note this as a positive point and an argument against executable
specifications, however in the author's opinion it is a negative point
when not working with theoretical aspects of computing. Within the
VDM-SL model it was important to know that the operators
specified could be implemented. Atomic actions have been used
within the model to ensure system invariants are not violated during
reconfiguration; however these atomic actions could be
implemented.

• When making a specification executable, many significant
implementation issues are drawn out. Making the model executable
enabled the investigation of reconfiguration implementation issues
without the need to implement a reconfigurable system.

• It is possible that ambiguous terms are being used to describe the
behaviour of reconfigurable systems because system developers are
not sure what is involved when reconfiguration takes place. For this
reason, it is important for the reconfiguration operators to be detailed
and understandable for system developers. An executable model is
likely to be familiar for system developers and thus easier to
understand.

• The model created provides a possible implementation method for
the reconfigurable operators. However, there was no need for
concern that implementers could be tempted to follow the
algorithmic structure of the specification, as it only outlines a
possible implementation, not an optimum one.

• As Fuchs as well as Hayes and Jones point out, an executable
specification permitted early validation with respect to the
requirements by executing individual test cases.

Some of the criticisms of executable models made by Hayes and Jones were
found to be valid when creating the VDM-SL model, particularly the
criticism that executable specifications lead to design decisions being made
in the specification, which is too early in the development process.

It was sometimes difficult to make the specification executable without
going into irrelevant (with respect to reconfiguration) algorithmic details.
An example of this is the method used to generate unique identifiers. In an
implementation a standard method would be used (a possible algorithm is

25

outlined in [13]), but to specify a particular standard algorithm in the VDM­
SL model gave no benefit in the exploration of possibilities within
reconfigurable systems. In circumstances such as this, a basic but not ideal
specification was used and comments were placed in the model to highlight
this.

2.2.4 Operator Conclusions

The VDM-SL model has shown that the number of options available within
reconfigurable systems is much greater than anticipated. It has assisted in
the exploration of possibilities for process reconfiguration, and has allowed
many operators to be outlined formally. The operators form part of an
unambiguous reconfiguration language for system developers to use in
reconfigurable systems development.

The model has also given interesting insights into reconfigurable
architectures. It has shown that it seems necessary to allocate all processes
a global unique identifier, and to avoid reliance on (inadequate) location­
dependent references. The model has also shown that even with minimal
system invariants, some operations require atomic actions to ensure system
invariants are not violating during reconfiguration.

Proxies are not commonly associated with reconfigurable systems, however
the model has shown that they may have a valuable role to play in dynamic
reconfigurable systems, when a totally interconnected network is not
available. Proxies will not function adequately as (single threaded)
activities, but instead should be multithreaded processes, as threads will
most likely have to be spawned for each arriving message. This may mean
that the resource requirements will be dependent upon the number of
received messages and thus not predictable (without knowledge of the
message rates).

This research has shown that the implementation of the operators specified
in the VDM-SL model would be difficult, though not impossible. Certain
operators may require OS support, for instance operators which synchronise
processes instruction stacks may require OS support to write to such private
memory areas. It should also be possible to verify the individual
implementations of such operators.

Reconfiguration control is necessary for reconfigurable systems, particularly
online reconfigurable systems, as processes must be constrained in order to
ensure configuration thrashing cannot occur. Reconfiguration control is
discussed further in chapter 5.

26

2.3 Summary

This chapter explores the options available for reconfigurable architectures
and has identified three broad levels of reconfiguration: Software (process)
reconfiguration, Hardware reconfiguration, and Mobility (hardware
relocation). Each of these broad levels of reconfiguration present many
options, and the exploration of the options available has highlighted that
there are more options available within reconfigurable systems than
anticipated.

Research into reconfigurable systems has shown that a suitable language in
which to express the behaviour of reconfigurable systems is lacking. Many
ambiguous terms are used when describing reconfigurable systems. A
three-level model has been specified in VDM-SL to provide a basis for
exploring the possibilities available within reconfigurable systems. The
operators outlined in this model form an extensible reconfiguration language
which is formally specified and as such unambiguous.

Many interesting insights have come from the exploration conducted into
the options available for reconfigurable systems, including proxies, which
are not commonly associated with reconfigurable systems, may have a
valuable role to play in dynamic reconfigurable systems, when a totally
interconnected network is not available. The exploration has also shown
that certain operators may require OS support.

27

Chapter 3

Defining Configuration Thrashing

In highly reconfigurable systems it is possible for a situation to arise where
a system cannot provide sufficient resources to conduct intended computing
functions due to reconfiguration actions utilising required resources. This
anomaly has been termed "configuration thrashing" by the author due to its
loose analogy to memory thrashing.

This chapter outlines a definition of configuration thrashing which is then
formally specified. Model checkers are introduced and CSP models capable
of checking processes for configuration thrashing are presented.
Discussions regarding configuration thrashing for specific applications are
also presented.

This chapter is structured as follows. First section 3.1 introduces
configuration thrashing and establishes a non-formal definition. Section 3.2
defines configuration thrashing in terms of sequences of events (traces) for
processes. Section 3.3 introduces CSP and presents two models capable of
checking if a process can "thrash"; a CSP model which is un-timed is
introduced in Section 3.3.1 and a CSP model which is timed is introduced in
section 3.3.2. Section 3.3.3 discusses the limitations of the CSP models
presented. Section 3.4 discusses the difficulties found in applying the
configuration thrashing models and presents an interesting discussion on
probabilistic deadlines.

3.1 Configuration Thrashing Introduction

Configuration thrashing is in essence a lack of progress of intended
computing functions (i.e. VO processing) due to reconfiguration utilising
required resources, thus causing deadlines to be missed. All
(reconfigurable) systems require a certain level of responsiveness or
progress to be made, thus implying the existence of deadlines. A
requirement for progress implies that configuration thrashing can occur in
all reconfigurable applications, even applications such as Microsoft Word or
Microsoft Excel (provided they were reconfigurable).

It may be argued that deadlines in reconfigurable systems are missed due to
non-reconfiguration functionality being inefficient, rather than
reconfiguration actions utilising resources needed by non-reconfiguration
functionality. However this argument does not hold, as in extreme cases
reconfiguration could take place continuously, thus making it impossible for

28

non-reconfiguration functionality to make progress no matter how efficient
it is. It is possible in some cases that improvements in non-reconfigurable
processing could allow processes to meet there deadlines without
reconfiguration alterations, however it will not be possible in all cases.

Given that configuration thrashing only occurs in systems with deadlines,
configuration thrashing could be defined as occurring when a system misses
a deadline due to a configuration change. However, a definition such as this
is not adequate as there is often no way of showing that had a system not
reconfigured it would have achieved its deadline. Proving a system would
have met deadlines if certain re-configuration events had not occurred is
difficult due to factors such as: possible hardware failures or external events
(environmental stimuli) requiring mode changes.

In order to provide a practical definition of configuration thrashing, the
notion of a configuration overlap is introduced. A configuration overlap
occurs when two subsequent reconfiguration requests are acted upon
without a "sufficient interval" between them. The sufficient interval
between reconfiguration actions should allow reconfiguration I initialisation
to complete, as well as a minimum level of processing to occur in the new
configuration.

The minimum level of processing required in a given configuration is
application dependent, though in most cases it is expected that it will
include at least a read and write action otherwise progress would not have
been made. This is discussed further in section 3.4. Depending upon the
reconfiguration operator chosen, the minimum level of processing required
may vary. Chapter 2 introduced a candidate set of reconfiguration
operators. If a process were to be moved using the MoveProcDelFirst
operator, then the minimum level of processing would always be the same,
as the reconfigured process would always start in its initial state. However,
if a process were to be moved using the MoveProcWStateAndSync operator,
then the reconfigured process would initialise as it was before the
reconfiguration, and thus the minimum level of processing required may
vary.

Four possible reconfiguration scenarios are presented in Figure I; a
configuration overlap occurs in scenarios A, Band C, but not D (provided
reconfiguration requests are acted upon immediately following receipt).

In scenario A the process does not fully initialise before a new
reconfiguration request is made. Note that a request for a process to
reconfigure before initialisation has completed can only be acted upon if the
process is reconfigured by a third party. In most cases initialisation is an
atomic action meaning that OS support may be required to interrupt

29

initialisation, otherwise the reconfiguration must be delayed until the
initialisation has completed. In scenario B the process does not start
processing before a new reconfiguration request is made. A third party is
likely to be required to act upon a request whilst the process is in the ready
queue. In scenario C, the minimum processing time has not elapsed before
a new reconfiguration request is made. In thi s scenario the request could be
acted upon by the process or a third party. In scenario D a configuration
overlap has not occurred, as the reconfiguration / initialisation and minimum
processing time have both occurred in the interval between reconfiguration
request Nand N+ I.

(A)
N N + 1

I W~
(6)

N N + 1

I ~~

(0)

r--l Reconflguratlon
~ f Initlatlsatlon

I.

Ready

Minimum
Processing

Processing

'"

Figure I: Overlap Scenarios

I'i

Given the notion of a configuration overlap, configuration thrashing can be
defined as occurring when one or more configuration overlaps occur. The
number of configuration overlaps that can be tolerated in a given time
period or in a given sequence is application dependent and possibly even
mode dependent. The worst case scenario is an infinite series of
consecutive configuration overlaps, which will always be classified as
configuration thrashing as progress cannot be made.

If configuration thrashing is not eliminated then it is possible for a situation
to arise where a reconfigurable system cannot provide sufficient resources
to conduct non-reconfigurable computing functions due to reconfiguration
actions utilising required resources. The elimination of configuration
thrashing is a step towards certifiable dynamic reconfigurable systems
capable of meeting deadlines.

30

3.2 Trace Models of Configuration Thrashing

Configuration thrashing can be defined in terms of sequences of events
(traces) for processes. A trace of the behaviour of a process is a finite
sequence of symbols recording the events a process has engaged in up to
some point in time. A trace is denoted as a sequence of events separated by
commas and enclosed in angular brackets. For example the trace <x, y>
consists of two events; x followed by y.

Before a process begins it is not known which of the possible traces will
occur; the choice is dependent upon environmental factors beyond the
control of the process. The complete set of all possible traces of a process P
can be known in advance, this is defined as traces(P). Some examples of
traces for processes are shown below:

traces (STOP) = {<>}

traces (coin->STOP) = {<>, <coin>}

A configuration overlap occurs in a trace which has two reconfigure events
occurring without the completion of a minimum level of processing between
them. Given the following events: reconfigure, begin_min_work, and
end_min_work, configuration overlaps occur in the following traces:

<reconfigure, reconfigure>

<reconfigure, begin_min_work, reconfigure>

A configuration overlap does not occur if the minimum level of processing
is completed between reconfigure events, for example a configuration
overlap does not occur in the following trace:

<reconfigure, begin_min_work, end_min_work, reconfigure>

If in an example, configuration thrashing is defined as two consecutive
configuration overlaps for a process, the following traces would be
examples of configuration thrashing:

<reconfigure, begin_min_work, reconfigure, begin_min_work,
reconfigure>

<reconfigure, reconfigure, reconfigure>

<reconfigure, begin_min_work, reconfigure, reconfigure>

31

However, based on the same definition the following trace would not be
considered configuration thrashing:

<reconfigure, begin_min_work, reconfigure, begin_min_work,
end_min_work, reconfigure, reconfigure>

As the configuration thrashing definition varies from application to
application, the above trace could be classified as configuration thrashing
given a slightly different configuration thrashing definition. For instance if
configuration thrashing was defined as a single configuration overlap the
above trace would considered as configuration thrashing.

For configuration thrashing to be possible within a process there must exist
at least one trace matching the configuration thrashing definition.

3.3 Communicating Sequential Processes (CSP)

CSP [14, 15] is a state-based behavioural notation developed for formally
specifying sequential processes composed to run concurrently. CSP is used
to specify concurrent processes, comprised of events on which process
synchronisation can take place. CSP was one of the first process algebras
(developed at the University of Oxford during the 1980s), and is one of the
most widely used, along with Milner's Calculus of Communicating Systems
(CCS)[16].

CSP represents a process as the set of sequences of its possible actions.
Tool support is provided for CSP through FDR2. FDR2 directly supports
three refinement models:

• The traces model: a process is represented by the set of finite
sequences of actions it can perform.

• The stable failures model: a process is represented by its traces as
above and also by its failures. A failure is a pair (s,X), where s is a
finite trace of the process (i.e., a trace from traces(P) and X is a set
of events it can refuse after s. The set of P'S failures is given by
/ailures(P).

• The failures/divergences model: a process is represented by its
failures as above, together with its divergences. A divergence is a
finite trace during or after which the process can perform an infinite
sequence of consecutive internal actions.

In general the traces model is used to check safety properties, the stable
failures model is used to check deadlock freedom and the
failures/divergences model is used to check live lock freedom.

32

3.3.1 Un-timed CSP Configuration Thrashing Model

This section introduces a CSP model capable of checking if a process can
"thrash" that has been defined. The CSP model outlined includes several
assumptions which have been made to simplify the model:

• The model is intended to check individual processes for
configuration thrashing - this assumption has been made as it is
logical to start with individual processes. However as discussed
in section 3.3.3 this does lead to a limitation in the model.

• Processes within the model are single threaded - this assumption
has been made to simplify the models produced (multithreaded
models will be much larger and more cumbersome). However,
multithreaded processes could be modelled and checked with
some extensions to the model. An example of how threads can
be modelled in CSP is shown in [17].

• Reconfiguration actions are not required to be detailed (i.e. a
single action / operator can be used to model all reconfiguration
types) - this assumption was made as there is no need to detail
the reconfiguration actions in order to detect configuration
thrashing, which is the aim of the model. It also minimises the
alphabet of the system and reduces modelling complexities for
developers.

The CSP model includes the following action types (alphabet): reconfigure
which is used abstractly to represent any type of reconfiguration action /
operator (chapter 2 introduced a candidate set of reconfiguration operators);
startup which represents process initialisation; doa which represents an
arbitrary internal processing action; overlap which signifies an overlap has
occurred; start_min_wk which represent the beginning of the minimum
processing period; end_min_wk which represents the end of the minimum
processing period; and lastly thrash which represents a configuration
thrashing occurrence.

The model consists of a monitor, a thrashing definition and an example
process. Definition 3.3.1 shows the MONITOR which is used to specify
how a reconfigurable process may behave, as well as identifying
configuration overlap occurrences. As can be seen from the MONITOR
definition, a reconfigurable process can first startup (initialise) or be
reconfigured before initialisation. The startup event could be split into two
events, one for the start and one for the end of the event, thus allowing
reconfiguration to take place during initialisation. The startup event has not
been split in this model as in most cases initialisation will be atomic, thus

33

requiring OS support to allow its interruption. A reconfiguration before or
during initialisation would be a configuration overlap, as no useful work
would have been completed in the new configuration. When a
reconfigurable process has initialised, it can either do its minimum level of
work and possibly additional processing, then reconfigure, or it can
reconfigure before it has completed its minimum level of work. A
reconfiguration before the minimum work has completed would be a
configuration overlap. Note that within this model, the reconfigure action is
used to signify both the reconfiguration request and action. Reconfiguration
requests and actions are not modelled separately as they would occur
consecutively. A time delay could exist between a request being made by
one process and being received by another, however in CSP this is modelled
as event synchronisation and thus there is no benefit in drawing a distinction
between the reconfiguration request and action.

Definition 3.3.1

MONITOR = startup ->

MONITOR

-> MONITOR

(start_min_wk -> reconfigure -> overlap ->

[] reconfigure -> overlap -> MONITOR)
[] reconfigure -> overlap -> MONITOR

Configuration thrashing is defined within the CSP model using the THRASH
process as shown in definition 3.3.2. This process allows configuration
thrashing to be defined as a number of consecutive overlaps. The THRASH
process works by taking variables for the maximum number of consecutive
overlaps (max) and the number of overlaps remaining before configuration
thrashing occurs (x). The variable x is normally initialised to max
(signifying no overlaps have occurred). When a configuration overlap is
detected x is decremented, and if the minimum level of work is completed
then x is reset to max. When x reaches 0 configuration thrashing is detected,
a thrash event is triggered, and the process stops.

The THRASH process does not contain a hard-coded variable for the number
of configuration overlaps required, as this varies from application to
application, and as such allows greater flexibility within the model.

Definition 3.3.2

THRASH (max, x) if (x==O) then
thrash -> STOP

else
overlap -> THRASH(max, x-l)
[] end_min_wk -> THRASH(max,max)

34

Definition 3.3.3 shows an example process. This particular process is
inherently capable of "thrashing" as it could engage an infinite sequence of
reconfigure events. More complex processes can be checked using this
model, as well as entire systems. Note that it is possible for a process
capable of "thrashing" to exist as part of a system that is not capable of
"thrashing" due to event synchronisation between concurrent processes
eliminating certain traces from occurring.

Definition 3.3.3

PROCESS = startup ->
(start_min_wk -> reconfigure -> PROCESS

[] start_min_wk -> end_min_wk -> doa ->
reconfigure -> PROCESS)
[] reconfigure -> PROCESS

In order to check processes against a configuration thrashing definition,
additional processes are required. Definition 3.3.4 defines SYSTEM which
ensures that the process being tested follows the structure of a
reconfigurable process by the sharing its actions with the MONITOR
(definition 3.3.1). This also allows configuration overlaps to be detected.
SYSTEM hides non-essential actions, such as startup, reconfigure and doa.
The hiding of non-essential actions allows trace refinement to be verified.

Definition 3.3.4

SYSTEM = (MONITOR I [{startup,move,start_min_wk,end_min_wk}] I

(PROCESS\{doa}))\{startup,start_min_wk,reconfigure}

It was first thought that configuration thrashing could be detected using
proposition 3.3.1. Note that the THRASH process used in this proposition
does not include a thrash event, as shown in Definition 3.3.5. Many
processes were checked for configuration thrashing using proposition 3.3.1,
including the example process shown in definition 3.3.3, and all produced
expected results. This gave increased confidence in the model and the
definition of configuration thrashing. However, this proposition was found
to be incorrect, as if the process being trace-refined could not "thrash" in all
of the ways in which the THRASH process can, then THRASH does not
trace-refine the process and thus proposition 3.3.1 gives a negative result,
even if the process can "thrash". This highlights the point that model
checkers cannot check if a property (or refinement) is specified correctly, or
if a model is correct, thus it is possible for false positives or negatives to
occur if a model or property is specified incorrectly.

Definition 3.3.5

THRASH (max, x)

Proposition 3.3.1

35

if (x==O) then
STOP

else
overlap -> THRASH(max, x-I)
[] end_min_wk -> THRASH(max,max)

assert SYSTEM [T THRASH(3,3)

An example of how an incorrect refinement assertion could give a false
negative result can be seen when testing the example process shown in
definition 3.3.6 using the refinement assertion presented in proposition
3.3.1. Definition 3.3.6 shows an example process which must "thrash", as it
can only engage in events leading to overlaps. However, proposition 3.3.1
would give a (false) negative result for this process, as THRASH (definition
3.3.5) contains traces which SYSTEM (definition 3.3.4) does not. Some
examples of traces that traces(THRASH) would have that traces(SYSTEM)
would not are shown below:

<overlap, end_min_wk, overlap, overlap, overlap>

<overlap, end_min_wk, overlap, end_min_wk, overlap, overlap,
overlap>

Definition 3.3.6

PROCESS = startup -> start_min_wk -> reconfigure -> PROCESS
I] reconfigure -> PROCESS

To produce the correct refinement assertion, the thrashing definition was
extended to include a thrash action, as well as the TEST process. Process
TEST (definition 3.3.7) defines configuration thrashing for the given
scenario. In this particular definition configuration thrashing is defined as
three consecutive overlaps. The TEST process also hides non-essential
actions.

Definition 3.3.7

TEST = (SYSTEM I [{overlap, end_min_wk}] I THRASH(3,3»
\{overlap,end_min_wk}

The correct refinement assertion (proposition 3.3.2) checks if STOP trace
refines TEST (definition 3.3.7). As all events have been hidden apart from

36

thrash (the event that signifies a configuration thrashing occurrence), this
assertion is true if configuration thrashing cannot occur and false if
configuration thrashing is possible.

Proposition 3.3.2

assert STOP [T= TEST

Trace refinement is used in proposItion 3.3.2, though stable failure
refinement would give the same results. When conducting stable failure
refinement, a process is represented by its traces and by its failures. A
failure is a pair (s,X), where s is a finite trace and X is a set of events it can
refuse after s. All of the actions within TEST are hidden (internal) apart
from the thrash action, thus if the process can "thrash" then in at least one
of its traces it must have to accept a thrash action. However, STOP can
refuse this action which would make the assertion false. As all of the
actions are hidden apart from thrash, a process which cannot thrash would
make the assertion true as it never refuses an action.

Failures/divergences refinement is not suitable, as a process which cannot
"thrash" will produce an infinite sequence of consecutive internal actions
(diverge), thus making the assertion false. A CSP divergence is a finite
trace during or after which the process can perform an infinite sequence of
consecutive internal actions. Failures/divergences refinement is not suitable
due to the decision to hide all actions apart from the trash action within the
model. An example process which could cause a divergence is shown in
definition 3.3.8.

Definition 3.3.8

PROCESSNT = startup ->
(start_min_wk -> reconfigure -> startup ->

start min wk ->

reconfigure ->

end_min_wk -> doa -> reconfigure -> PROCESSNT
[] start_min_wk -> end_min_wk -> doa ->

PROCESSNT)
[) reconfigure -> startup -> start min wk ->

end min wk ->
reconfigure -> PROCESSNT

3.3.2 Timed CSP Configuration Thrashing Model

Defining configuration thrashing using THRASH (definition 3.3.2) is
adequate if configuration thrashing is to be defined in terms of consecutive
configuration overlaps. However, it may be required that configuration

37

thrashing be defined as x overlaps in a given time period. CSP in its
traditional form has no notion of time, though there are two distinct
approaches to expressing time in CSP. The more elegant is to re-interpret
the esp language to record the exact time at which each event occurs. A
trace thus consists of a series of time/event pairs, rather than just events.
This theory of Timed CSP [18] adopts a dense, continuous model of time.

The alternative approach is a discrete model of time, which makes the drum­
beat of time an explicit event. The interval between successive "beats" may
be any finite duration. The drum-beat event representing the passage of
time is conventionally named tock in esp, as tick is a keyword in many
tools including FDR2.

The discrete approach to modelling time was adopted to extend the un-timed
CSP model (described in section 3.3.1), as although the continuous
approach (as used in Timed CSP) is more elegant and corresponds to the
standard way in which we think about time, the discrete approach offers the
tool support needed for experimentation.

To extend the model described in section 3.3.1 to include time, the alphabet
was extended to include the tock event. A TOCKS process (definition 3.3.9)
was also added. This process is run in parallel with the other processes.

Definition 3.3.9

TOCKS = tock -> TOCKS

The only process not effected by the introduction of time to the model is the
MONITOR process (definition 3.3.1), which remains unchanged. The
MONITOR is unaffected, as there are no restrictions on how long actions
should take in reconfigurable processes.

Configuration thrashing is defined in the timed CSP model using the
THRASHTIMED process (definition 3.3.10 and 3.3.11). This allows
configuration thrashing to be defined as a number of configuration overlaps
in a given time period (a given number of tock events). If configuration
thrashing is detected using this process, a thrash event is triggered.

To allow THRASHTIMED to detect configuration thrashing, an event
history must be maintained. A novel approach to maintaining an event
history is used within the model. This approach maintains a sequence of
events only as long as is required to detect configuration thrashing. The
number of events required in order to detect configuration thrashing varies,
as all of the events which occur in the specified time period (maxt tock
events) are required. Any number of overlap events could occur between

38

tack events. Figure 2 shows a basic situation where new events are added to
the event history.

JoJr

Figure 2: Event History Growth

The THRASHTIMED process maintains the correct sequence by using a
slidewindow process to remove stale events from the event history. If a new
tack event occurs whilst the event history contains maxt tack events (the
specified time interval), the slidewindow process not only removes stale tack
events, but also stale overlap events. Figure 3 shows a situation where a
tock event (n is added to the event history, when the event history already
contains the maximum number of tack events (two) and thus stale events are
removed.

rJoJoJrJoJ

rlolT
Figure 3: Event History Stale Removal

An example of the values maintained in the event history if maxt is set to
three and one overlap event occurs after every two tack events is shown
below:

<T>
<T,T>
<T,T,O>
<T,T,O,T>
<T,O,T,T>
<T,O,T,T,O>
<T,T,O,T>

The unique approach taken to maintaining the event history allows fresh
history events to be maintained, whilst discarding stale events. This method
essentially forms an extensible sliding window by which to check if
configuration thrashing has occurred.

39

Definition 3.3.10

THRASHTIMED«>, maxt, maxo) = overlap ->
THRASHTIMED«>A<O>,maxt,maxo)

[) tock -> THRASHTIMED«>A<T>,maxt,maxo)

Definition 3.3.11

THRASHTIMED(x, maxt, maxo) = if (numo(x)
thrash -> STOP

maxo) then

else
overlap -> THRASHTIMED(xA<O>,maxt,maxo)
[) tock -> if (numt(x) == maxt) then

THRASHTIMED(slidewindow(x)A<T>,maxt,maxo)
else

THRASHTIMED(xA<T>,maxt,maxo)

Definition 3.3.12 shows an example process. This process is capable of
thrashing, provided the definition of thrashing is x overlaps or less in x+ J
time intervals. As with the un-timed model more complex processes can be
checked in the model as well as entire systems.

Definition 3.3.12

PROCESS

PROCESS

startup -> tock ->
(start_min_wk -> tock -> reconfigure -> tock ->

[) start_min_wk -> tock -> end min wk -> tock
-> doa -> tock -> reconfigure -> tock ->
PROCESS)

[) reconfigure -> tock -> PROCESS

The SYSTEM process (definition 3.3.13) has the same purpose as SYSTEM
in the un-timed model; however it has been extended to ensure that the
TOCKS process is synchronised upon.

Definition 3.3.13

SYSTEM = (MONITOR I [{startup,move,start_min_wk,end_min_wk}] I
(PROCESS\{doa}»
\{end_min_wk,startup,start_min_wk,move}
I [{tock}] I TOCKS

The TEST process (definition 3.3.14) has the same purpose as TEST in the
un-timed model. The THRASHTlMED process has replaced the THRASH
process and lock events have both been shared and hidden. Definition
3.3.14 defines configuration thrashing as two overlaps in three time units.

40

Definition 3.3.14

TEST = (SYSTEMI [{overlap,
tock}) ITHRASHTIMED«>,2,3))\{tock,overlap}

Proposition 3.3.2 is used in the timed model, as well as the un-timed model.
Trace refinement is still used, though as with the un-timed model, stable
failure refinement could also be used. As discussed in section 3.3.1
failure/divergence refinement is not suitable for this model.

3.3.3 Limitations of CSP Configuration Thrashing Models

The CSP models presented within this chapter have been shown capable of
detecting configuration thrashing and as such assist developers to engineer
configuration thrashing out of their systems, but the models do have some
limitations.

For example both CSP models only allow configuration thrashing to be
detected in single processes and as such do not consider the reconfiguration
of groups of processes. The author recognises that, particularly in
distributed systems, complex interactions will exist between processes and
as such developers are likely to consider reconfiguration as a step from one
system layout (or blueprint) to another, which is likely to include many
processes reconfiguring simultaneously or in a well defined sequence. The
models produced can check if each individual process can "thrash" and as
such be used to check entire systems (one process at a time), but this does
not consider the fact that interactions between the groups of processes may
make the processes that in theory can "thrash" not capable of configuration
thrashing as the interacting processes may not be capable of producing the
necessary stimuli to trigger the configuration thrashing.

Another limitation of the CSP models is that the reconfigure action /
operator used in the models abstractly represents any type of reconfiguration
within the model. As detailed above an assumption was made that no detail
was required upon the reconfiguration action as this is not required in order
to detect configuration thrashing. However, whilst modelling example
systems it was found that as no information was available within the model
as to the state of the processes during a reconfiguration action thus no
reasoning could be made in relation to the reconfiguration action and any
invariants that existed within the system. Although the model was not
designed to review invariants it would be useful.

The final limitation to be highlighted for the models is one that exists
because of the method in which model checkers such as FDR, the one used

41

within this thesis, function. Model checkers are susceptible to state space
explosion [19]. This is particularly true of large complex models, which
may make the use of the model checkers impractical or even impossible for
some systems. As this is the case the models are limited in the size and
complexity of processes which they can check.

Appendix B contains both the un-timed and timed CSP models capable of
checking if a process can "thrash".

3.4 Difficulties Applying the Configuration Thrashing
Model

The minimum level of processing required between two consecutive
reconfiguration events is application dependent, as is the number of overlaps
which must occur in a given time period or in a given sequence in order to
be classified as "thrashing". Both of these may even be mode dependent.

It is expected that in most cases the minimum level of processing required
between two consecutive reconfiguration events will include at least a read
and a write action; otherwise progress would not have been made: if no read
action is made the process will have no data to conduct processing upon,
and if no write action is made it cannot store or provide other processes with
the output of the processing.

The minimum level of processing required between reconfigurations is
governed by deadlines. In general it is expected that processing deadlines
will be more important that reconfiguration actions, thus reconfiguration
should not interfere with deadlines. Deadlines can be divided into three
types [20]:

• Hard: deadlines must not be missed. If not met considered fatal
failure and may have disastrous consequences.

• Soft: deadlines can be missed. Missing soft deadlines is considered
tolerable; there are no serious consequences. After the deadline has
passed, delivery is still useful and thus required. The usefulness of
delivery decreases over time.

• Firm: deadlines can be missed. No serious consequences. Late
delivery is not required. If a firm deadline is missed the task is
aborted.

In some real-time systems components may have probabilistic requirements.
An example of a probabilistic requirement could be: component A must
produce an output every 450ms at least 20% of the time or catastrophic

42

events may occur. With probabilistic requirements, the importance of a task
finishing before its deadline will be dependent upon previous events. Using
the example outlined above, it is possible for a situation to arise where the
first 100 outputs are made within 450ms and thus the next output is not
required to be within the 450ms deadline (it has either a soft or firm
deadline depending upon the system requirements for delivery of late
messages), as a late output will allow the system to maintain a greater than
20% ratio for on-time outputs, thus satisfying the requirement. However, if
only 20 of the first 100 outputs had been produced within the 450ms
deadline, then the next output would have a hard deadline, as a late output
would reduce the percentage of outputs produced within 450ms to below
20% and thus the requirement would not be satisfied.

Probabilistic requirements can cause problems for system developers when
trying to analyse system deadlines. In some cases developers make all
deadlines over probabilistic requirements hard, in order to alleviate
complications. This leads to over-engineering, but satisfies the
requirements. However, in some cases over engineered requirements could
conflict with normal (non over engineered) requirements unnecessarily.

Within most real-time systems probabilistic requirements are a symptom of
their need to "synchronise" with the environment. The reason environment
"synchronisation" is required is to avoid a situation where certain events can
no longer be guaranteed to occur or no longer be guaranteed not to occur
due to a lack of up to date environment information. For instance, a terrain
following aircraft requires up to date terrain information, to ensure that it
can avoid obstacles safely. If the aircraft becomes significantly out of step
with its environment then it may not be possible to guarantee collision
avoidance. Figure 4 shows an aircraft scanning its terrain (the environment)
for potential obstacles. In this example it is imperative that the aircraft not
miss two consecutive scans, otherwise it may not be able to guarantee
collision avoidance. The diagram shows that at point 3 it would no longer
be able to avoid the obstacle in its path. However a successful scan at either
of the previous points would have enabled the aircraft to safely manoeuvre
around the obstacle. A deadline for radar scanning in this example would
be history dependent, as it is only a hard deadline if the previous deadline
was missed.

43

Figure 4: Terrain Scanning Diagram

As configuration thrashing is a lack of progress of intended computing
functions (i.e. I/O processing) due to reconfiguration utilising required
resources, thus causing deadlines to be missed, it is necessary for system
developers to identify their deadlines in order to express and ensure that
configuration thrashing cannot occur. However, deadlines are difficult for
system designers and developers to draw from specifications. Often
deadlines for systems are gathered from testing results. This can mean that
deadlines are not 100% accurate and can also mean that systems are over­
engineered to meet deadlines which could be relaxed.

Due to configuration thrashing being dependent upon system deadlines, it is
impossible to give general answers to what the application dependent parts
of the configuration thrashing definition should be. As discussed above it is
expected that the minimum level of processing required between two
consecutive reconfiguration events will include at least a read and a write
action; otherwise progress would not have been made. Depending upon the
reconfiguration action triggered, the minimum level required may vary, for
instance if a process were to be moved using MoveProcDelFirst then the
minimum level of processing will always be the same. However, if a
process were to be moved using MoveProcWStateAndSync, then the
reconfigured process would initialise as it was before the reconfiguration,
thus the minimum level of processing required may vary. The process may
not need a read and write action when the reconfiguration action used
transfers the process stack, as the process will be initialised with the
progress it had already made prior to the reconfiguration.

If a process is cyclic it is likely that the minimum level of processing would
be a single cycle (though it could be broke down into smaller sections).
Many applications are cyclic and thus a good starting point for system
developers would be to make a cycle the minimum level of processing and
then divide it into smaller sections if required.

As general advice cannot be provided for application dependent parts of the
configuration thrashing definition, the simplistic terrain following radar

44

example shown in figure 4 is described in further detail, as well as methods
to decide upon application dependent parts of the configuration thrashing
definition.

Terrain following radar is an aerospace technology that allows a low flying
aircraft to automatically maintain a constant distance above the ground,
while flying at high speeds. The system works by periodically transmitting
a radar signal downward and slightly forward (shown in figure 4). A
computer computes the aircraft's height from the ground based on the
signal's round-trip time and alters the aircraft's altitude in such a way as to
keep a constant height above the ground just ahead, thus safely avoiding
obstacles.

Terrain following radar is a necessity for high-speed low flying aircraft,
since a human pilot cannot react quickly enough to changing terrain heights,
and has a much larger probability of crashing into an unexpected
mountainside than an automated system in the same circumstances.

As described a terrain following system periodically transmits a radar signal
and conducts computations upon returned results. Thus the terrain
following system (or subsystem) behaves in a cyclic fashion, meaning the
minimum level of processing can be set to one cycle for the system. It is
possible that this could be set to multiple or partial cycles, however without
more exact information regarding the system, an exact decision on the
minimum level of processing cannot be made.

As can be seen from the level of overlap on radar signals shown in figure 4,
the number of consecutive overlaps which are required in order to ensure
collision avoidance is two, thus the number of consecutive overlaps which
must occur in a given sequence in order to be classified as configuration
thrashing is two. As can be seen from this example, two consecutive
overlaps does not necessarily mean that the aircraft will collide with
something, though it is necessary to avoid two overlaps in order to
guarantee that the aircraft will not collide with any obstacles (which may
exist).

It should be noted that even an automated system utilising terrain following
radar has a limited response time. Therefore, each system has a list of
limitation in terms of the combination of maximal speed and minimal
altitude allowed. The exact limitation figures change with radar type, with
aircraft type and weight, and with the current meteorological conditions.

45

3.6 Summary

This chapter has introduced configuration thrashing, and highlighted how
severe configuration thrashing can be. The worst case scenario described in
this chapter shows that an infinite series of consecutive configuration
overlaps can stop progress in any application. Configuration thrashing has
also been explored using traces.

Two unique CSP models have been specified which enable developers to
model their systems / processes and detect configuration thrashing potential.
This allows developers to engineer configuration thrashing out of their
systems. The first CSP model has no notion of time and allows developers
to detect configuration thrashing when defined as a sequence of overlaps
and the second model has a notion of time and allows configuration
thrashing to be detected when defined as a number of overlaps in a given
period of time. Limitations in relation to the CSP models have also been
highlighted and discussed.

Interesting difficulties have been found when applying the CSP models to
scenarios. In particular probabilistic requirements have been explored,
where a deadline becomes a deadline only a percentage of the time, leading
to configuration thrashing becoming dependent upon previous deadline
achievement. This is quite a fascinating problem and although it has been
solved for a particular scenario, it is difficult to provide general advice and
as such this issue will cause developers problems when allowing
reconfiguration within applications.

Chapter 4

Related Work

46

Within Chapter 3 a definition of configuration thrashing is formally
specified. Model checkers are introduced and esp models capable of
checking processes for configuration thrashing are presented. Many
formalisms could have been utilised to define configuration thrashing and
check processes for configuration thrashing; CSP was chosen because of its
tool support. Section 4.1 presents a brief overview of many "reconfigurable
formalisms" which are capable of modelling configuration thrashing and in
many cases, are capable of detecting configuration thrashing within a model
and thus could have been used, instead of esp, within the work presented in
chapter 3.

As already stated to date no literature has been found that recognises or
addresses configuration thrashing directly. However, this chapter explores
some related work to investigate if configuration thrashing can occur within
them and to put configuration thrashing into context next to similar
problems found and / or addressed in related areas of work.

This chapter also presents relevant work on control techniques (section 4.3)
which could potentially be used to constrain systems in order to ensure that
configuration thrashing cannot occur. Chapter 5 builds on these control
techniques and further explores potential run-time solutions to configuration
thrashing; allowing developers to include additional logic / processes in
their systems in order to eliminate configuration thrashing.

The rest of this chapter is structured as follows. Section 4.1 reviews various
formalisms capable of modelling reconfigurable systems. First, early
algebras are introduced in the form of CCS and CSP. Then more recent
process algebras focussed upon mobility are described in the form of the pi­
calculus and the ambient calculus. Lastly Mobile Unity is discussed, which
is a formal notation designed for describing concurrent, distributed, and
mobile computing systems.

Section 4.2 explores related work in the areas of fault-tolerance, reflection,
self modifying code and re-configurability in general to put configuration
thrashing in context with similar problems found in these related research
topics.

Section 4.3 examines control techniques which could or in rare cases have
been used to control reconfiguration. First Law Governed Interaction is

47

described, which provides a method of enforcing explicit coordination
policies in a decentralised manner. Then the Open Control Platform is
introduced, which is a software infrastructure for complex systems that
coordinates distributed interactions and supports dynamic reconfiguration.
Within this approach change application policies are used to allow changes
to be made without violating reliability, safety, or consistency. Lastly, a
reconfiguration management system is summarised. This system requires
that all affected nodes and their neighbours be in a quiescent state before
any reconfiguration occurs. While a node is in a quiescent state, it is
prohibited from initiating communication. This ensures that nodes directly
affected by a change will not receive communication during the course of a
change.

4.1 Reconfigurab/e Formalisms

Reconfigurable systems offer the ability to adapt hardware and / or software
to meet changing requirements. Many formalisms exist which are capable
of modelling reconfigurable systems. Some example formalisms are
introduced within this section. First two early process algebras are
introduced; these are known as CCS and CSP. Other process algebras exist,
but CCS and CSP were chosen as they are the most widely used. Both have
proved themselves to be invaluable tools in the formal specification and
verification of concurrent communicating systems. They are also both
capable of modelling configuration thrashing and can both be used to check
that process definitions cannot suffer from configuration thrashing.
However, these process algebras are limited in that they cannot represent
process creation, process deletion, or changes in process connectivity.

More recent process algebras focussed upon mobility are then introduced in
the form of the pi-calculus and the ambient calculus. The pi-calculus is
essentially an extension of CCS which adds the ability to pass channel
names as parameters along communication channels. This allows receiving
processes to communicate via channels they previously had no knowledge
of. Within the ambient calculus mobility is modelled using the concept of
ambients. An ambient is informally defined as a bounded place where
computation can occur. Both the pi-calculus and the ambient calculus could
be used to model configuration thrashing.

Mobile Unity is a formal notation designed for describing concurrent,
distributed, and mobile computing systems. Mobile Unity has semantics in
Category Theory and thus is different to the process algebras, but is equally
capable of allowing a configuration thrashing definition to be made.

48

4.1.1 CCS

The Calculus of Communicating Systems (CCS) [16] is a process calculus
developed by Robin Milner in the early 1980s. This formal language
includes primitives for describing parallel composition, choice operators and
scope restriction. The expressions of the language are interpreted as
labelled transition systems.

CCS includes a notion of bisimulation which Robin Milner refers to as "a
kind of invariant holding between a pair of dynamic systems" [16].
Bisimulation provides a technique to prove two systems equivalent in terms
of behaviour with respect to the actions that can be performed.

Tool support is available for CCS in the form of the Concurrency
WorkBench (CWB). By using this tool, the specification of a concurrent
system can be analysed. The CWB is capable of displaying a simulation of a
concurrent system specified in CCS, searching for deadlock states, testing
for equality between two specifications, and determining if a system
satisfies specified logical properties (e.g., safety or liveness).

CCS has no primitives I operators for mobility of processes, and has no.
method of altering process connectivity. CCS has no notion of time, though
time can be added to a CCS model in a number of ways; one example of
how time can be added to CCS is contained in [21].

4.1.2 CSP

CSP was developed by Tony Hoare at the University of Oxford during the
1980s, and is one of the most widely used process algebras. CSP [14, 15] is
a state based behavioural notation developed for formally specifying
sequential processes composed to run concurrently. Within CSP processes
are comprised of events on which process synchronisation can take place.

Tool support is provided for CSP through FDR2. FDR2 allows for
refinement checking, determinism checking, as well as looking for
deadlocks and divergences. As discussed in section 3.3, FDR2 supports
three refinement models: the traces model, the stable failures model, and the
failures I divergences model.

CSP is similar to CCS in that it is very low level and has no primitives I
operators for mobility of processes or any dynamic creation of connections.
CSP has no notion of time, though time could be added to a CSP model to
allow for real-time issues to be explored. A theory of Timed CSP [18] adds
time to CSP by re-interpreting the CSP language to record the exact time at

49

which each event occurs. A trace thus consists of a series of time / event
pairs, rather than just events.

Although CSP and CCS do not have native support for reconfiguration, they
are included in this related work section, as operators for reconfiguration
can be added. Reconfiguration operators can be represented in CSP through
events. Reconfiguration events can't create new processes or delete
processes, but they can clearly show that reconfiguration has occurred or is
in the process of occurring. A simple example of how to represent
reconfiguration within CSP would be to simply have an action named
something like reconfigure.

4.1.3 Pi-Calculus

The pi-calculus [8, 22] was developed by Robin Milner as an algebra to
enable communicating and mobile systems to be reasoned about (in a
rigorous manner). The pi-calculus is built upon CCS; it adds the ability to
pass channel names as parameters along channels. This allows receiving
processes to communicate via channels they previously had no knowledge
of.

In the pi-calculus, the definition of bisimulation equivalence may be based
on either the reduction semantics or on the labelled transition semantics.
There are (at least) three different ways of defining labelled bisimulation
equivalence in the pi-calculus: early, late and open bisimilarity. This stems
from the fact that the pi-calculus is a value-passing process calculus.

The pi-calculus provides a framework for the representation, simulation,
analysis and verification of mobile communication systems. Processes in
the pi-calculus interact with one another by sending and receiving messages
in a synchronous manner. Note that the calculus is non-deterministic; when
several options are available the interaction that occurs is chosen on a
completely random basis.

The pi-calculus does not explicitly model locations. However, physical
locations can be represented using processes; the location of a process being
modelled as a link between a process and a special "location" process. For
locations to be modelled in such a way, it would be expected that each
process would link to exactly one "location" process. A change in location
would consist of breaking a link to a "location" process and creating a link
to another.

As stated above, the pi-calculus allows a process to pass a channel (a
communication path) to another process, and then that process can then

50

communicate via that channel to a (possibly) previously unknown process.
An example of this is shown in Figure 1. Figure lea) shows three processes
in which A can not directly communicate with C. However, if B passes the
channel BC to A, then A can communicate with C via BC as shown in
figure l(b). It is not made clear (in the pi-calculus) if this is a similar
situation to IP addresses or phone numbers (i.e. total interconnection is
required at the hardware level) and so they communicate directly, or if the
communication goes via B without the knowledge ofB.

(8) (b)

Figure I: Pi-Calculus Example

There is some tool support for the pi-calculus. The Mobility WorkBench
(MWB) is an automated tool for manipulating and analyzing mobile
concurrent systems (those with evolving connectivity structures) described
in the pi-calculus. The pi-calculus has no notion of timing, thus real-time
issues have not been addressed within the pi-calculus.

4.1.4 Ambient Calculus

The ambient calculus [9, 23] is a process calculus developed by Luca
Cardelli and Andrew Gordon to describe and analyse concurrent systems
involving mobility. Within the ambient calculus mobility is modelled using
the concept of ambients. An ambient is informally defined as a bounded
place where computation can occur. Various informal interpretations have
been given for the formal concept of an "ambient", for example ambients
could include: a web page (bounded by a file), a Unix file system (bounded
within a physical volume), or even a laptop (bounded by its case and data
ports). Within the ambient calculus locations are represented using
ambients, though ambients do not always represent locations.

Ambients can be nested within other ambients forming hierarchies. The
ambient calculus adds the concept of capabilities to ambients to make it
possible to model limited access to ambients. In particular, the ambient
calculus supports in, out and open capabilities. The in capability instructs
the ambient to enter a sibling ambient. The out capability instructs the

51

ambient to leave its named parent ambient. The open capability dissolves
the boundary of an ambient.

Within the ambient calculus it is not enough for one ambient to simply
know in which ambient another process resides in order to facilitate
communication. The ambient must also know the 'route' - the hierarchical
nesting of ambients.

The ambient calculus has a rich variety of operators, though no tool support
has been found thus far. The ambient calculus has no notion of timing, thus
real-time issues have not been addressed within it.

4.1.5 Mobile Unity

Mobile Unity [24-26] is a formal notation designed for describing
concurrent, distributed, and mobile computing systems. Mobile Unity
separates computation and coordination. Connectors in Mobile Unity are
expressed in a program design language which has semantics in Category
Theory [27].

The concept of a connector in Mobile Unity is used to express complex
relationships between system components, thus facilitating the separation of
coordination from computation. M. Wermelinger et al. [24] argue that the
separation of coordination from computation "is especially important in
mobile computing due to the transient nature of the interconnections that
may exist between system components". The seperation of coordiation and
computation that occurs in Mobile Unity provides a means for components
to continue to function independently of the communication context in
which they find themselves. However, the author would argue that this
seperation is not especially important as most components behave
differently with different stimuli, and different stimuli are likely to occur
with different communication contexts, thus they are not completely
decoupled.

Locations within Mobile Unity are modelled implicitly. Each component of
a design is assigned a position. Mobile Unity allows a distinction to be
made between programs which control their own motion and programs
which are moved by the environment. This is done by declaring the
location attribute as local or external, respectively. The method of
expression of locations in Mobile Unity allows fine grained mobility to be
expressed.

No tool support has been found for Mobile Unity. Mobile Unity has no
notion of timing, thus real-time issues have not been addressed.

52

4.2 Reconfigurable Systems and Configuration
Thrashing

Many types of system can reconfigure and most can suffer from problems
similar in some way to configuration thrashing. This section explores
related work in the areas of fault-tolerance, reflection, self modifying code
and re-conjigurability both in general and in an effort to put configuration
thrashing in context.

Each piece of related work is described and similar issues to configuration
thrashing identified or addressed are explored. Any potential solutions to
similar issues outlined are reviewed in terms of safety, formalisms used, and
real-time applicability. In some cases pieces of related work can suffer from
configuration thrashing and this has not been explored or recognised within
the original research. In such cases this is documented.

4.2.1 Fault Tolerance

An important non-functional requirement that is often demanded of a
system is fault-tolerance. Fault-tolerance demands that the system functions
correctly, even in the presence of failures, regardless of the type. The
concept of fault-tolerant computing has existed since at least the 1960's
[28].

An early approach to providing software fault tolerance can be found in the
recovery block scheme [29, 30]. Within this scheme logical blocks of code
are separated and a framework is put around them. This framework first of
all establishes a recovery point, then executes the code and then conducts an
acceptance test to see if the output is acceptable (i.e. not faulty). In the
event that the block of code fails a backward recovery takes place, i.e. the
system moves back to the recovery point. Alternative blocks of code are
then tried if available which must provide the same functionality as the first
block (or primary block). Any number of standby spares can be provided
for each block of code. This represents the basis of the recovery block
scheme and is normally represented using the syntax shown in figure 1.

53

Bn.ur. <acceptance test>
By <primary module>

81 •• by <alternative module 1>
81 •• by <alternative module 2>

81 •• by <alternative module n>
81.. .rror

Figure 1: Recovery Block Scheme

If all of the modules fail then this is regarded as a failure of the recovery
block and an exception will be signalled. Recovery blocks can be nested
and thus one recovery block can form part of a module of an enclosing
recovery block. Where recovery blocks are nested, if an exception is raised
from a failure of an inner recovery block, recovery will take place and an
alternative module of the outer recovery block will be executed.

Every time a fault occurs within recovery blocks a reconfiguration (of sorts)
occurs; the system state is reset and some alternative code is then tried. This
reconfiguration affects the progress made within the application as a
backward recovery is undertaken and could lead to deadlines being missed.
Since configuration thrashing is in raw terms a lack of progress of intended
computing functions due to reconfiguration utilising required resources, thus
causing deadlines to be missed, then a recovery block system can suffer
from configuration thrashing.

As with most fault-tolerant research the priority for the research is
recovering from a fault and there is no consideration made as to the meeting
of deadlines. This is understandable; if the error is great then progress may
be hindered unless a reconfiguration occurs and as such there may be no
other option. However, in many cases the fault may be able to be tolerated
for a period before reconfiguration which could lead to deadlines being met.
Recovery block research has not considered real-time aspects and thus
reconfiguration thrashing has not been addressed within the research.

The research on recovery blocks has been expanded upon and a concept of
the Coordinated Atomic Action [31] (or CA Action) has been developed.
This enhancement focuses upon providing a unified scheme for coordinating
complex concurrent activities and supporting error recovery between
multiple interacting objects in a distributed object-oriented system. This
research can suffer a similar issue to configuration thrashing in much the
same way that recovery blocks can. I.e. when faults the system still has to
roll back, but instead of reviewing only single processes this research also
reviews how multiple interacting processes can roll back in synch if an error
occurs.

54

Another traditional software fault tolerant technique is N-version
programming [32]. N-version programming works by providing N-versions
of a program (N being greater than I) which have been independently
developed to a common specification and comparing their results by some
form of replication check. A majority vote is then undertaken and erroneous
(presumed faulty) results can be eliminated and the (presumed correct)
results generated by the majority vote can be passed on. Within N-version
programming the system remains static even when a fault occurs and
although overheads are increased in terms of processing time by means of
introducing N-versions and a voting algorithm deadlines should not be
missed through the use of N-version programming. Systems using this
method cannot suffer from configuration thrashing (at least not because of
the fault tolerant method used).

More recent fault tolerant research has focussed upon the use of off the shelf
applications in distributed environments. S Porcarelli et al [33] present a
proposed architecture to deal with dynamic resource management for real­
time dependability-critical distributed systems capable of coping with fault
tolerance and scalability issues. This research builds upon the Light-weight
Infrastructure for Reconfiguring Applications (Lira) and provides a decision
making process to allow management as to how best to conduct I allocate a
reconfiguration request. This research presents some very novel and
interesting issues, but at present does not adequately address real-time
issues. The proposed architecture does allow reconfiguration and thus
processes within the architecture can suffer a lack of progress of intended
computing functions due to reconfiguration utilising required resources
causing deadlines to be missed. In theory the decision makers in this
architecture could attempt to address configuration thrashing, but no
reference to stopping certain reconfiguration requests or information
relating to how deadlines would be enforced are discussed within papers
found to date on this research. The concerns introduced relating to real-time
issues were principally focussed upon the timeliness of the decision making
process. No formal modelling has been undertaken within this research.

1. Fraga et al [34] present a component model for building distributed
applications with fault-tolerant requirements and incorporates QoS
requirements. Within this research a component model is build on top of
CORBA and fault detection agents are used to detect faults. Once a fault is
detected a change can be made. Using the QoS requirements given by
components, the Adaptive Fault Tolerant (AFT) manager can change the
configuration of the system when it detects QoS requirements are not being
met. This research introduces a novel approach to attempting to ensure
components can meet deadlines through QoS requirements. However,
reconfiguring a system to avoid missing a deadline could make deadline

55

harder to achieve and this approach only seems to reconfigure once
deadlines have already been missed, thus in a safety critical system this may
be too late. This approach can suffer from configuration thrashing as no
restrictions are made on reconfiguration in any way and this has not been
considered as part of the original research.

4.2.2 Reflection

Reflection is the process by which a process I system can observe and
modify its own behaviour. To facilitate the ability to observe itself a
reflective system incorporates structures representing aspects of itself. The
programming paradigm driven by reflection is call reflective programming.
Uses of reflection include: maintaining performance statistics, debugging,
decision making, self-optimisation, self-modification, and self-activation.
Reflection is used in many modem programming I scripting languages such
as: C#, Java, Perl, PHP, Curl and Python.

Applying reflection technology to middleware design has become an
extensive research topic. Reflection offers more flexibility and adaptability
to middleware systems. In [35] G. Coulson et al use a reflective component
model as basis for constructing configurable and reconfigurable CORBA
ORBs. Within this research it was recognised that the reflective component
model inherently supported flexibility and reconfigurability, but on its own
was too powerful and could easily lead to chaos. Component framework
based structuring was introduced to impose domain specific constraints and
semantics on the reconfiguration process. The research presented by G.
Coulson et al addresses the following fundamental issues for effective
reconfiguration management: i) to constrain the scope and effect of
reconfiguration, ii) to separate concerns between reconfiguration operations
and core middleware functionality, and iii) to maintain integrity in the face
of dynamic change. It is possible within this research for the
reconfiguration to cause a lack of progress of intended computing functions
due to reconfiguration utilising required resources and thus can suffer from
configuration thrashing. G. Coulson et al have not addressed this issue as
their principle focus is upon the construction of a flexible reconfigurable
middleware and as such this was most likely deemed as beyond the scope of
the research, though the authors did recognise that constraints were needed
for reconfiguration but not ones to reduce or eradicate configuration
thrashing.

Research is presented in [36] that builds middleware (named RECOM) at
the meta-level; they treat the binding between the specific client and the
server as a self-representation of middleware. The self-representation
completely reflects all aspects of the implementation of middleware. This

56

makes RECOM highly flexible. No research found to date reviews issues
concerning timing or resource management in RECOM and as such
configuration thrashing is possible.

DynamicTAO [37] has been developed as part of a research project
conducted at the University of Illinios. DynamicTAO is a CORBA
compliant reflective ORB that supports runtime reconfiguration. This type
of implementation is a more typical one than that used for RECOM but does
address issues such as security and safety for dynamic reconfiguration.
DynamicT AO delegates resource management to components that can be
dynamically loaded. It employs the Dynamic Soft Real-Time Scheduler
(DSRT) [38], which runs as a user-level process in operating systems like
Linux or Windows. The DSRT uses the system's low level real-time API to
provide QoS guarantees to applications with real-time requirements and
allows applications to specify QoS parameters in terms of CPU, memory
and communication. It can therefore control the resource allocation to the
quality desired by the application. However, the DRST provides no
mechanism for reviewing the effects of reconfiguration and in fact the QoS
requirements are monitored in a feedback loop fashion so if the QoS
requirements are not being met, it may reconfigure the system itself to allow
these to be met. DynamicT AO can suffer from configuration thrashing and
no research found to date recognises this as an issue.

Similar research to that conducted on DynamicTAO is presented in [39] and
presents a QoS framework implementation for OpenORB [40]. The
OpenORB research describes a framework for supporting resource adaption
by providing first-class representation of activities and generic interfaces for
inspecting and controlling the resources allocated to activities. The
OpenORB QoS framework research aims to represent the tasks and
resources thus ensuring that if a given task requires x resource(s) to ensure a
certain level of QoS then it is provided. However, this does not take into
account that as well as a lack of resource QoS requirements could be broken
by a high level of reconfiguration. Thus, as with the DynamicT AO
research, the system can suffer from configuration thrashing.

Some general research concerning the benefits of using reflection is outlined
in [41]. This research builds a framework to support dynamic adaption and
aims to compare this to other reconfigurable techniques. This research
clearly highlights the benefits of using reflection in that dynamic adaption
can be achieved independently of the application's domain and also that the
extension to add adaption functionality does not necessarily require
changing the static class structure of the application. However, this research
also highlights the disadvantage of a performance decrease. This and other
general research on reflective programming does not look at its application
to real-time systems and as such do not look at issues related to

57

configuration thrashing. The framework outlined in [41] can suffer from
configuration thrashing, but this research paper does not address this.

4.2.3 Self.Modifying Code

Self-Modifying Code (SMC) is broadly referred to as any code that loads,
generates or alters its own instructions at runtime. SMC can be used to
improve performance in applications [42, 43] through runtime code
generation. Dynamic code optimization can provide improved performance
[44] or minimize code size for systems with a limited memory [45]. SMC
can also enable dynamic code obfuscation [46] to support code protection.

SMC has been described as "a better strategy for realizing long-lived
autonomous software systems than static code, regardless of how well it was
validated and tested" [47]. This is mainly based on the idea that a self­
modifying system can adapt to new situations better than static systems. A
common technique applied to adapt programs is genetic programming [48,
49] in which programs are modeled as genetic material.

Research into run time code generation, such as the work presented in [42],
make use of invariants and values that cannot be exploited at compile time,
yielding what should be superior code. However, the cost of generating
code at runtime can often be prohibitive. In general this type of research
takes in code of one type, often a scripting language, and further optimises
it; as such the system does not reconfigure and thus cannot suffer from
reconfiguration thrashing in a traditional sense. However, within run time
code generation it is possible for the reconfiguration in the code, that takes
place during the code generation, to in itself cause a lack of progress of
intended computing functions thus creating a very similar problem to
configuration thrashing. Most of the research found to date attempt to
tackle this problem by reducing the time taken to generate the code or by
arguing the tradeoffs in terms of the time gained by using the optimised
code. L Hornof et al [43] focus upon safety aspects of run-time code
generation by proving the generated code meets the requirements of the
original code, but does not address the issues surrounding the use of run­
time code generation in real-time systems.

Dynamic code optimization is very similar to run time code generation,
though what is referred to as optimization, as appose to generation,
generally attempts to improve the performance of an instruction stream as it
executes on a processor rather than generating new software from a given
source. V. Bala et at [44] present a system named Dynamo; using this they
show that in many cases even statically optimised native binaries can be
accelerated. Dynamo is intended to provide a client-side performance

58

delivery mechanism that allows computer system vendors to provide some
degree of machine-specific performance without the independent software
vendor's involvement. This type of native-to-native runtime optimisation is
conducted in a novel manner and its complete transparency offers many
benefits. However, there are cases in which the optimisation can add to the
execution time. As with run time code generation, dynamic code
optimisation systems do not reconfigure and hence cannot suffer from
configuration thrashing in a traditional sense. However, it is possible for the
optimisation (reconfiguration) that takes place during the code optimisation,
to itself cause a lack of progress of intended computing functions causing a
similar problem to configuration thrashing. To date none of the research
found focuses upon this issue, but instead argue that the rare cases in which
execution times are decreased are minimised and are therefore acceptable to
increase performance significantly in other processes / systems.

Using self modifying code for obfuscation is an unusual application of self
modifying code, but a very effective one. Most reverse engineering
techniques start by disassembling and then uses program analysis to recover
high level semantic information. However the approach presented in [46]
complicates this by changing the program code repeatedly during code
execution thus thwarting disassembly. Templates are used to allow code to
be altered back to the true executable code just in time to be executed. This
technique can only be used on static code as mutating already changing
source code would become impossible to track and ensure that the templates
could allow the code to be correctly altered back ready for execution. It is
possible for the continual changes in the source code to cause a lack of
progress of intended computing functions due to code modifications
utilising required resources and as such can suffer from configuration
thrashing. However, this has not been addressed within any research found
to date and in fact the slowing of code execution times is expected within
this research as this is required to prevent reverse engineering.

An interesting technique applied to adapt programs using self modifying
code is genetic programming [48, 49] in which programs are modeled as
genetic material. The underlying theme for this type of research is that
nature has developed a mechanism both for continuous operations and
evolution and maybe this same method can solve the complexity that exists
in the design, implementation, standardization and deployment of modem
computing applications. Within the research presented in [48, 49] fraglets
are introduced representing fragments of distributed computation. Fraglets
have a strong formal methods tie and offer a lot of flexibility. Genetic
programming allows for a highly dynamic system, though no research found
to date ensures a safe system or ensures timing constraints. Genetically
inspired modifications could lead to a lack of progress of intended
computing functions due to code modifications utilising required resources

59

ergo this type of system can suffer from configuration thrashing, but no
research found to date recognises or addresses such an issue.

Very little research found addresses any verification of correctness of self­
modifying code. SMC is extremely difficult to reason about. Most existing
formal verification techniques assume that code memory is fixed and
immutable. H. Cia et el [50] have developed a technique for modular
verification of general von-Neumann machine code with runtime code
manipulation. This research is one of only a handful of pieces of research
on verification of SMC. However, this research does not consider timing
and as such cannot be used to verify if a piece of SMC can or cannot suffer
from configuration thrashing, though it may be possible to extend the formal
verification technique presented.

4.2.4 General Re-configurability

Reconfiguration is desirable as a run-time mechanism in most modem
computing systems as it allows hardware and software upgrades in response
to technological advancements, environmental changes, or alterations in
requirements during system operation.

A lot of research into general reconfiguration mechanisms focuses upon the
correctness of the system in relation to invariants placed on the system.
These invariants are often checked after reconfiguration has occurred or in
some cases throughout the reconfiguration process. S. S. Kulkarni et al [51]
present one such piece of research in which they address the "lack of
systematic methods to ensure the correctness of dynamic adaption" through
the use of transitional-invariant lattice, which is based upon the concept of
proof lattice, to verify correctness. This novel approach provides a formal
method of using proof tools to show that invariants have been met
throughout a reconfiguration and even coping with changing requirements
(thus invariants) during a reconfiguration. It addresses safety through
proving system invariants hold throughout reconfiguration, however this
research does not address any timing issues and as such does not address
any issues similar to or relating to configuration thrashing.

J. Zhang et al [52] present another approach to ensuring system's are correct
(or "safe") during software change in their research. The method used to
ensure that adaptations are safe with respect to system consistency takes into
consideration dependency analysis for target components, specifically
determining viable sequences of adaptive actions and those states in which
an adaptive solution can be applied safely. This research is focussed upon
the application of this method to changing external conditions in a wireless
multicast video application. Invariants are used to specify dependency

60

relationships among components enabling the ability to determine which
components are affected during a given change. A central management
approach is taken in an attempt to provide optimisations where multiple
change options are available and a rollback mechanism is provided in case
an error or failure occurs. This research uses what would appear to be a
very sound formal proof technique to ensure that changes are safe, however
does have a few issues in that all invariants are specified by developers and
as such if these are specified incorrectly then the method is useless. As with
the research by S. S. Kulkarni et aI, this research does not address any
timing issues and does not address any issues similar to or relating to
configuration thrashing even though the application considered should
include timing concerns.

Research presented by S.K. Shrivastava et al [53] introduces architectural
support for dynamic reconfiguration of large scale distributed systems. The
approach presented in this research is based upon techniques from the area
of workflow management. Workflows are pieces of rule based management
software that co-ordinate and monitor execution of tasks. A task model has
been developed that is expressive enough to temporal dependencies between
tasks. To ensure that dynamic reconfiguration can occur safely several
restrictions are placed on the system as to when reconfiguration can occur.
These rules ensure that a task cannot be changed unless it is in a wait state
and input / output alternatives cannot be added, removed or modified unless
the tasks are in given states. Formal methods have not really been fully
applied to this research though a rigorous approach has been taken. This
research considers timing dependencies only and does not extensively
explore deadline analysis. A system built using this architecture could
suffer from configuration thrashing as the reconfiguration could still cause a
lack of progress of intended computing functions.

Architecture Description Languages (ADLs) is a similar type of research to
workflows. J. Magee et al [54] present research on dynamic software using
an ADL called Darwin in which they explore dynamic features and illustrate
some of the possibilities and problems in supporting constrained and
unconstrained structural evolution. This research outlines an operational
semantics in the pi-calculus. As it is focussed upon expressing and
representing architectural designs, including components and their
interactions, no timing issues have been explored and as such even though
systems designed in this way can clearly suffer from configuration
thrashing, it is not addressed. As no ordering or time information is
available in ADLs then reconfiguration specifications are simply made of
designs of the system and no consideration is made as to when a
reconfiguration can occur or what state the system is in when
reconfiguration occurs and also no consideration can really be made as to
whether it is safe to reconfigure. Research into workflows seems more

61

suited to this type of analysis given the ordering of tasks that is available,
but further research would need to be conducted in this area.

Quality of Service (QoS) is a more recent research topic. Quality of service
generally refers to the ability to provide different priority to different
applications, users, or data flows, or to guarantee a certain level of
performance. A. Tesanovic et al [55, 56] present a novel approach to
providing QoS in real-time systems by employing feedback-based
scheduling methods. The feedback-based system uses a controller to
calculate a deadline miss ratio and as such alters the system to ensure the
ratio is kept within bounds. The research is used for performance-critical
real-time systems and not hard real-time systems as by its very definition
the miss ratio calculations shows that deadlines are missed and no bounds
are placed on the system to control the length of time this can occur for
which could be unsafe. This research does recognise that systems should be
timely and that missing deadlines is undesirable, and as such does review a
similar problem to configuration thrashing. However, this research views a
short term deadline miss as no issue provided that the ratio is improved in
the long term which is not acceptable for true real-time systems and thus
does not solve configuration thrashing. Also as the system reconfigures
when the ratio is detected to be outside of acceptable bounds, then this in
theory could make configuration thrashing worse as no consequence for
ongoing deadlines or the lack of progress of intended computing functions
that will be caused by the reconfiguration. Such an approach could very
easily reconfigure a component back and forth as neither configuration is
quite meeting its QoS miss ratio which will only worsen the problem,
although it is possible that in such a scenario nothing can truly be done to
stop deadlines from being missed.

4.3 Reconfiguration Control

Reconfiguration control is necessary for reconfigurable systems, particularly
online reconfigurable systems, as processes must be constrained in order to
ensure configuration thrashing cannot occur. As stated in [57] "[w]ithout
change management, risks introduced by runtime modifications may
outweigh those associated with shutting down and restarting a system". The
control techniques presented within this section could or in rare cases have
been used to control reconfiguration.

62

4.3.1 Law Governed Interaction

It is argued in [58] that" ... the great promise of architectural models has not
been fulfilled so far, due to a gap between the model and the system it
purports to describe ... this gap is best bridged if the model is not just
stated, but is enforced". Law Ooverned Interaction (LOI) [58-63] has been
designed as a coordination and control mechanism for heterogeneous
distributed systems which can be used to enforce architectural principles.

LOI provides a method of enforcing explicit coordination policies in a
decentralised manor. The law of the system is expressed as an explicit
collection of rules relating to the structure of the system, the process of its
evolution, as well as the evolution of the law itself. As this implies, the law
of the system is not and should not be immutable, as this would be overly
restrictive and not allow for evolving systems.

A whole range of principles can be enforced using LOI, including access
control mechanisms, distributed coordination mechanisms, dynamic
reconfiguration mechanisms, and various security mechanisms. A particular
example of an architectural principle being enforced is highlighted in [63],
where LOI is applied to the publish-subscribe paradigm to alleviate the
"dark side" it has through the coordination of communication between
agents. The dark side of the publish-subscribe paradigm comes from its
decoupled communication which may complicate the system using it,
making it less predictable, more brittle, and less safe.

LOI can be used to control reconfiguration by adding reconfiguration
primitives into the law of the system. In [62] reconfiguration primitives are
added into the law of the system, and a token ring example is presented to
show the addition and removal of agents from the system. Changing the
programming of a given agent without shutting down the system is achieved
in [62] by having a controller for each agent absorb the requests arriving to
it while the update of its programming is in progress (buffering is used).

LOI appears unsuitable (in its present form) for real-time systems, as it
provides no method of ensuring that the system deadlines are met. It is
stated in [58] that "[f]or an architectural principal to be defined into the law
of an e-system it must be enforceable and the enforcement must be
reasonably efficient". However, "reasonably efficient" is not good enough
for real-time systems, and since any number of LOI rules can be placed in
the law of the system, and they could be of any complexity, it is very
difficult to carry out worst case analysis on the time taken to parse, interpret
and apply LOI rule sets.

63

4.3.2 The Open Control Platform

The Open Control Platform (OCP) [64] is a software infrastructure for
complex systems that coordinates distributed interactions and supports
dynamic reconfiguration. Its primary goals are to: ".,. accommodate
changing application requirements, incorporate new technology,
interoperate in heterogeneous environments, and maintain viability in
changing environments".

The OCP was specifically designed for complex dynamic systems such as
aircraft, power systems, and telecommunication networks. The OCP is an
entire platform that supports dynamic reconfiguration, thus its not just a
reconfiguration control technique.

It is recognised in [64] that configuration management (control) is required
"to ensure that the configurations are valid and consistent with the overall
system requirements". The OCP takes an architecture oriented approach to
reconfiguration management, building on work by Oreizy et al [57].

In this approach strategies referred to as change application policies are used
to enable changes to be made without violating reliability, safety, or
consistency. Policies within this approach are maintained separately from
application specific behaviour, facilitating the ability to change policies
independently of functional behaviour, A policy could state something
along the lines of: to replace a specific component, the new component must
be online for a given period of time before the old component is removed.
This policy would allow the new component to synchronise with the old
component.

The Oreizy et al approach distinguishes between two types of change, the
first being changes in systems requirements, and the second being changes
to system implementation that do not alter requirements. The first type,
changes in system requirements, are not handled within the approach, as
"[i]t is unrealistic to assume that any preconceived measures for maintaining
system integrity would support this type of unpredictable and unrestricted
change", The author agrees with this in principle; however, certain
requirement changes could be foreseen and thus could be handled. It is not
inconceivable for developers to anticipate certain requirement changes.

The OCP developers are extending the approach presented in [57] to real­
time, mission critical applications, such as unmanned aerial vehicles. No
technical information has been found to date that explicitly documents how
the approach is extended to cope with real-time issues, though numerous
articles do state that it is occurring.

64

4.3.3 Dynamic Change Management

Kramer and Magee [65] present a structural based approach to runtime
change. The reconfiguration management system within this approach
interfaces between the functional view of application programming and the
structural view of the system configuration. Changes are specified in terms
of system structure only. The system is modified by a series of transactions.
These change transactions are derived by management from the change
specification.

The reconfiguration management system requires that all affected nodes and
their neighbours be in a quiescent state before the change is made, as well as
during the change execution. This ensures that nodes directly affected by a
change will not receive requests during the course of a change. This
eliminates the need for buffering during reconfiguration. However, it is
possible for a node to be connected to every other node in a system and thus
when that first node requires reconfiguration the entire system must enter a
quiescent state. This presents issues for real-time systems.

The management system is responsible for making decisions regarding
application change. This is done based on a limited model of the
application. This approach does not presently address real-time issues.
However, it is likely that this approach would not be suitable for real-time
applications because, as stated above, when changes are initiated portions of
the system have to move to a quiescent state, thus potentially large portions
of the system, if not the entire system, will make no progress while
reconfiguration takes place.

4.4 Summary

This chapter has presented a brief overview of related work in the form of
reconfigurable formalisms which are capable of modelling reconfigurable
systems, as well as capable of detecting configuration thrashing within a
model. Any of these formalisms could have been used within work
presented in chapter 3; CSP was chosen because of its tool support. As this
chapter has simply presented a brief overview it has not gone into detail as
to how each individual formalism could have been used to detect
configuration thrashing.

No related work has been found to date that specifically looks specifically at
the issue of configuration thrashing, but this chapter has presented related
work in the areas of fault-tolerance, reflection, self modifying code and
general re-conjigurability in an effort to put configuration thrashing in
context next to similar problems found in these areas of work. Many pieces

65

of similar work can suffer from configuration thrashing, but very few
actually recognise that this is indeed an issue. The few that do recognise
timing issues as a problem have reviewed this in terms of QoS and utilise
feedback based algorithms which are not adequate for hard real-time
systems. Also very few pieces of related work have a solid formal
underpinning and the few that do, such as that presented by S. S. Kulkarni et
al [51], focus upon safety through proving system invariants hold
throughout reconfiguration, however this and other similar research does not
address timing issues and as such does not and cannot address any issues
similar to or relating to configuration thrashing.

This chapter also presents related work on control techniques which could
be used to ensure configuration thrashing cannot occur. Chapter 5 further
builds on these control techniques and explores potential run-time solutions
to configuration thrashing. Several options are explored within Chapter 5,
including providing mechanisms for developers to choose when
reconfiguration can / cannot occur, and a rule based solution.

66

Chapter 5

Exploration of Potential Run-time Configuration
Thrashing Solutions

Chapter 3 presents a fonnal definition of configuration thrashing along with
timed and un-timed CSP models capable of checking processes for
configuration thrashing (using FDR). These models can be used to ensure
that configuration thrashing is engineered out of systems.

Some engineers may view producing models of their systems, in order to
engineer configuration thrashing out of them, as excessively time
consuming and also may lack the skills to produce such models accurately.
Proving that thrashing cannot occur in an inaccurate model will not provide
any guarantees for the system. Model checkers (such as FDR) are also
susceptible to state space explosion [19]. This is particularly true of large
complex models, which may make the use of the model checkers
impractical or even impossible for some systems.

This chapter explores potential run-time solutions to configuration
thrashing. These solutions allow developers to include additional logic /
processes in their systems in order to eliminate configuration thrashing.
Several options are explored in-depth, from providing mechanisms for
developers to choose when reconfiguration can / cannot occur to a rule
based solution. The exploration of the rule based solution investigates
issues such as rule expression, rule predictability, as well as potential core
rules.

The rest of this chapter is structured as follows. First Section 5.1 describes
the options available for reconfiguration control. Section 5.2 then explores
the options available when using rule sets to control reconfiguration.
Within section 5.2.6 rule expression and rule predictability are discussed.
Section 5.2.7 then describes the core rules which could be used within most,
if not all, reconfigurable systems to eliminate configuration thrashing.
Section 5.2.8 introduces a demonstrator which has been developed to
highlight that the solution outlined using rule sets can sufficiently restrict
reconfiguration and thus eliminate configuration thrashing. Section 5.3
explores the possibilities available to provide developers with mechanisms
to control reconfiguration, and section 5.3.1 reviews potential guidance for
developers using mechanisms to control reconfiguration.

67

5.1 Reconfiguration Control

There are several options available to ensure configuration thrashing cannot
occur at run-time without the use of modelling techniques. The options
available for reconfiguration control range from allowing developers to
decide when reconfiguration is appropriate, through to providing a
reconfiguration control process (a reconfiguration controller) to decide
when reconfiguration can and cannot occur.

One method of allowing developers to choose when reconfiguration can /
cannot occur could be facilitated by providing engineers with the ability to
declare windows of opportunity within source code for processes to
reconfigure. This could be further developed to allow developers to specify
the reconfiguration operator(s) which can be used during the period the
window of opportunity is open. For example, a developer could open a
window of opportunity that enables process replication, but not process
migration. Chapter 2 introduced a candidate set of reconfiguration
operators. Giving developers control over reconfiguration on a process by
process basis is a novel approach, provided that guidance can be provided to
them on how to do it. Without guidance, developers may not know when
reconfiguration should take place or, more importantly, when it is "safe" for
reconfiguration to take place. Developers may be tempted to develop more
static systems than necessary, thus not gaining the full benefits that
reconfiguration can provide. Also, allowing developers to control
reconfiguration introduces the likelihood of human error.

To reduce the likelihood of developers developing more static systems than
necessary, and thus not gaining the full benefits that reconfiguration can
provide, whilst still allowing developers to choose when reconfiguration can
and cannot occur, it is possible to assume that reconfiguration can occur at
all times apart from when the developer declares that reconfiguration should
not occur. This would allow for the protection of certain actions, such as
the closure of files, which cannot be just abandoned at any point in order for
reconfiguration to take place. This approach does not give the programmer
complete control over the reconfiguration scheme - it merely places
constraints on the solutions a systems architect might adopt later. It should
be easy for developers to define "critical sections" using this approach and
thus protect certain actions, but it is difficult for developers to decide when
reconfiguration should be denied to eliminate configuration thrashing. To
eliminate the unknowns it is possible that developers may declare much
bigger sections than required to not allow reconfiguration and thus produce
more static systems than required.

A more dynamic approach to reconfiguration control is to allow a
reconfiguration controller to decide when reconfiguration can and cannot

68

occur. This type of approach allows system developers to focus on core
development without concern for reconfiguration issues.

Traditionally logic within control processes is predefined in source code;
however, benefits such as quicker upgrades and run-time alterations could
be provided if the logic in a reconfiguration controller were to be specified
in a set of rules. Rule sets would most likely have a standard core set of
rules which could then be extended for specific applications / systems. It is
possible in some cases that additional rules would be required for specific
new components upon their addition to a system; these new rules could be
added at run-time provided they do not contradict existing rules. Dynamic
rule sets introduces many potential problems which are discussed further in
section 5.2.5.

A method of runtime rule enforcement is then required and could be
achieved through either centralised or decentralised means. Computational
resources would be required for rule checking and enforcement which
would not be required if developers took control of reconfiguration.
However, if computational resources are kept to a minimum it is believed
this approach would provide benefits over and above the computational
resources required. The benefits provided by this approach are wide
ranging and include controlling configuration thrashing by not allowing
reconfiguration to occur when the next reconfiguration action would
constitute configuration thrashing. Malfunctioning reconfigurable processes
can also be controlled by specifying rules which the processes are designed
to follow. For example, if a process is only designed to run on a certain
processor type then a rule could be added to the system to ensure the
process never ends up on a different processor type. This approach also
provides the benefit of relieving developers of the task of deciding when it
is "safe" for reconfiguration to occur.

Certain similarities can be drawn between the options available for
reconfiguration control and the options available for scheduling. Within
scheduling some researchers believe that processes should be coded to give
up control of resources when appropriate and thus are never forced to
release control of resources. This is similar to the method outlined for
reconfiguration control, where developers can be given the power to choose
when reconfiguration can or cannot occur. In both scheduling and
reconfiguration control this method can introduce uncertainty for the
programmer which detracts / distracts from the core development tasks.
Within scheduling the other option is to use an algorithm or protocol to
control which processes get what share of processing resources. Scheduling
algorithms are discussed in-depth in [20]. This approach is very similar to
the use of a reconfiguration controller to control reconfiguration. In both

69

scheduling and reconfiguration control this method utilises increased levels
of processing resource.

Hybrid approaches of the two main reconfiguration control options outlined
above are possible, but in general do not offer any further benefits. A
hybrid approach would include logic which takes up computational resource
and also require developers to state where reconfiguration should or should
not occur, which still leads to uncertainty and potential for human errors.

5.2 Reconfiguration Control using Rule Sets

Reconfiguration control using rule sets introduces many options; the two
primary options are how to apply rule checking and rule scope. Rule
checking concerns where rule validation takes place and rule scope concerns
where individual rules are valid. Both rule checking and rule scope can be
centralised (global) or decentralised (local). Figure 1 illustrates the effects
these two options can have upon a system when applied in either local or
global scope.

Local Rule Global Rule
Checking Checking
1-) 1-)

Local Local

Local Scope subsystem subsystem

I~ rules, local rules, central

enforcement enforcement
mechanism

System wide
Systemwide

rules,
Global Scope rules, local

enforced by a
1-) enforcement

central
mechanisms

mechanism

Figure I: Possibilities for Reconfiguration Control Using Rule Sets

5.2.1 Locally Scoped (Decentrallsed) Rule Sets

If reconfiguration rules are scoped to subsystems (have a local scope), it is
possible that diverse rule sets could exist within a system. Locally scoped
rules allow for subsystems to be developed independently using independent
rule sets without the need for a high level of discussion I integration with
other subsystem engineers I developers.

70

With many diverse rule sets in existence throughout a system it is entirely
possible for processes to become restricted to certain subsystems as diverse
rule sets could effectively create subsystem boundaries that processes
cannot cross. Research investigating transactions over boundaries given
independently-formulated confidential rules is presented in [61]. This
research introduces a coalition policy by which all independent subsystem
(or enterprise) rules must comply, thus ensuring a certain minimum level of
interaction. A similar approach could be taken to subsystem rules for
reconfiguration control, whereby a minimum level of reconfiguration is
ensured across all subsections, by enforcing all independently formulated
rules to abide by a coalition policy. It should be noted that in an approach
such as this, if the coalition policy were to require a change then all
subsections must update their independently formulated rule sets to meet the
requirements of the new coalition policy.

5.2.2 Globally Scoped (Centralised) Rule Sets

If rules are globally scoped, then no fixed subsystem boundaries exist and
thus no governing coalition policy is required. Globally scoped rules
simplify reconfiguration rule checking as only a single set of rules exist.

Globally scoped rules do not allow for rule sets to be developed in small
subsystems and thus will require input from many developers across the
entire system / application to establish the rule set required. However, it is
expected that a standard core set of reconfiguration rules will exist to
control general configuration thrashing which may be tweaked and
appropriately augmented for specific applications. This is further discussed
in section 5.4.

A change in requirements requiring alterations to be made to a global rule
would be simple to implement, though difficult to analyse. The effects on
the system will be wide spread and as such may become difficult to certify
without significant further testing.

5.2.3 Local (Decentralised) Rule Checking

In a system where reconfiguration rule checking is decentralised, local
processing must be conducted to authorise a reconfiguration action. Local
rule enforcement would require increased local processing resources, but
would not incur the delay introduced when centralised (global) rule
checking is used due to network latency, or high load upon the central body.

71

It is possible, depending upon the rule scope, that decentralised rule
checking would require a level of system knowledge to be maintained in
order to make decisions upon reconfiguration requests. The work involved
in keeping multiple controllers system states in sync could be prohibitively
expensive in terms of processing when taking into account the number of
system state changes and the quantity of controllers requiring
synchronisation.

An alternative to keeping decentralised rule checking controllers in sync is
to allow controllers to query individual processes to establish the system
knowledge required in order to make decisions. The time taken to query
processes could make this approach impractical, though it would depend
upon the real-time requirements of the system. The query action would
most likely have to occur as part of a transaction; as if a controller has to
make many queries to many processes in order to make a decision then it is
possible for a process already queried to have changed state before a
decision has been made. Restrictions would have to be placed upon the size
of a given transaction to ensure that the system does not come to a halt when
a reconfiguration request is made. This is similar to the approach taken by
Kramer and Magee [65] where all affected nodes and their neighbours are
required to be in a quiescent state before changes can be made. While a
node is in a quiescent state, it is required not to initiate communication.
This ensures that nodes directly affected by a change will not receive
requests during the course of a change.

Another alternative to keeping decentralised rule checking controllers in
sync is to allow controllers to maintain the state for a given subsystem and
query other controllers to get other subsystems data as required. This
method would still require queries to be part of a transaction to stop queried
data changing before a decision is made, though less queries should be
required than would be required if individual processes were to be queried
and restrictions could be put in place to ensure that entire systems are not
brought to a halt when reconfiguration requests are issued.

Within a decentralised rule checking environment each controller is a single
point of failure; as a single controller exists within each subsystem. In the
event of a controller failure it is likely that the controllers' subsystem would
have to remain static from that point forward. If a controller were to
become "faulty", and not fail, the knock on effects would then filter through
the system, both in terms of greater load if requests for system state are
required and also in terms of reconfiguring processes which invalidate rules
within other subsystems.

To stop "faulty" controllers adversely affecting the system a fault tolerant
technique must be used. It has been said that U[t]he starting point for all

72

fault tolerant strategies is the detection of an erroneous state ... [t]hus the
success of any fault tolerant system will be critically dependant upon the
effectiveness of the techniques for error detection" in [32]. Replication
error checks could be used to ensure faulty controllers cannot adversely
affect the system, thus each controller's decisions should be checked by at
least one other controller to ensure that the same decision would be made by
the other controller. This will increase the load on all controllers. Other
approaches to removing the single point of failure could include having a
dual redundant or triplex voting reconfiguration controller mechanism
within each subsystem, or even having redundant subsystems. The decision
as to the technique used to remove the single point of failure will depend on
resources available and the level of criticality of the subsystem and
application as a whole.

The approaches outlined for the removal of the single point of failure will
not eradicate design failures or imperfect software. If design failures are
expected in a system, then replication should be done using diverse software
implementations. Diverse software designs have been shown to suffer from
co-dependence, which basically means that common faults can appear in
diverse implementations often due to specifications. Further information on
studies which have been conducted on co-dependence of diverse
implementations can be found in [66].

5.2.4 Global (Centralised) Rule Checking

If reconfiguration rule checking is conducted centrally, then reconfiguration
can take place only if a central body authorises it. Centralised rule checking
would require the centralised controller to have reasonable knowledge of the
system state in order for it to make informed decisions. It seems impractical
for a centralised controller to query multiple processes at run-time to
establish the system knowledge required to make decisions since the high
volume of requests occurring would introduce a significant delay.

The system state held within the central controller would most likely be
maintained in a simple internal structure. The level of knowledge a
centralised controller must possess in order to make decisions is dependent
upon the rule definitions. For example, if rules allow developers to state
that two processes should not be collocated, then the centralised controller
must know where processes are located in order to decide if a move can take
place and still preserve the rule.

Since global rule checking requires controllers to have knowledge of the
system structure, it will be important to ensure that the controllers can never
end up with an invalid system state model. If a controller ends up with an

73

invalid system state then decisions may be made which break the rules of
the system. It should be relatively simple to ensure a valid system state is
maintained provided the controller starts with a correct initial system state,
and assuming the controller only executes the permitted reconfiguration
operators / primitives. If the controller is the only body which can allow a
configuration change then it can ensure it updates its state upon each
reconfiguration occurrence. However, a centralised controller would also
need to know about failures, since a remote process could fail to reconfigure
even though it has been given permission to do so. If a centralised
controller updates its state on the assumption that the reconfiguration has
actually occurred once it has issued permission then the state could become
invalid.

In a centralised approach, the requests for reconfiguration arise locally and
must be authorised centrally. The events that trigger reconfiguration will
often be failures - and their occurrence is naturally locally-detected, which
has to then be propagated to the central controller. Problems could arise
from a subsystem not notifying the controller of a failure and although this
will not affect configuration thrashing it may well cause deadlines to be
missed and thus system designers must ensure that failures are detected.

A centralised controller can be used to enforce locally scoped rules or
globally scoped rules. To apply locally scoped rules using a central
controller, the controller must know all of the subsystem rule sets which
exist within the system and also which segments of the system each rule set
applies to.

A centralised approach to reconfiguration rule checking inherently
introduces a single point of failure in the controller. As discussed in section
5.2.3, a "faulty" controller could allow system states which are not valid,
and if the central controller were to fail altogether then it is likely that the
system would have to remain static from that point forward. To eradicate
this single point of failure it is recommended that replication error checking
be used; multiple controllers must exist to check that the decisions made by
the controller are correct and to take over should the primary fail. This
method will eradicate the single point of failure and also protect the system
from faulty controllers, though as discussed in section 5.2.3 this solution
will not eradicate design failures or imperfect software.

5.2.5 Further Rule Set Discussion

Rule sets could be dynamic (able to evolve over time), providing
advantages, such as simplified upgrades. Newly installed components could
add additional rules to the system, thus ensuring the properties they require

74

are enforced when reconfiguration occurs. Evolving rule sets would be
difficult to certify, as it is entirely possible that a corrupt component could
add a rule which could stop the system from functioning correctly, or a
component could add a rule which contradicts an already existing rule. For
instance if the following rules existed in a system, A must loc(B) and A must
loc(C), and then a third rule was added as follows B must ,/oc (C), then the
system would have a contradictory (inconsistent) rule set.

Consistency is a well-formedness condition for constraint sets. An
inconsistent set of constraints does not admit any valid system state. It is
important that a set of system rules can be checked for inconsistencies even
when not evolving; if the rule expressions are complex, it is possible for two
rules to seem to support each other, but in fact contradict each other, though
this should be detected during testing. A restricted notation in which to
express rules could help to lower rule complexity, thus reducing the chances
of accidental rule conflict creation. Many inconsistencies should appear
during testing, they would manifest themselves as deadlocks in many cases.

Dynamic rule sets could themselves become susceptible to configuration
thrashing, thus the use of dynamic rule sets will not be developed further
within this thesis, even though they could potentially provide many novel
benefits. If a temporally predictable run-time consistency checking
algorithm can be developed for rule sets then further research in this area
would almost certainly be worth progressing.

Reconfiguration could be co-operative or forced. A co-operative approach
would request processes to reconfigure. In a forced approach the system
would interrupt the appropriate process regardless of its current task / state.
With the forced approach, the process being reconfigured could be
milliseconds from finishing a major cycle and thus essentially waste the
progress it has made up to the point of reconfiguration, as it has not had
time to output its results or store them in persistent memory. However, if
the process is dealt with in a co-operative manner, then it is possible for the
process to not respond to the required reconfiguration request and thus
prevent the necessary reconfiguration from taking place. If it could be
guaranteed that a process would reconfigure within a certain deadline from a
reconfiguration request being made, then a co-operative approach would be
preferable; however, this is impossible to guarantee as a process could
freeze or have a backlog of buffered inputs to process before processing the
reconfiguration request.

A hybrid approach could be taken whereby a co-operative request is made
and if no action is taken by the process before a given deadline, then a
forced approach is taken. This approach would allow for a higher level of
process progress whilst also ensuring reconfiguration eventually occurs,

75

though the worst case execution time for this is much greater than simply
using a forced approach. Though this approach is interesting, it has not
been explored further within the thesis as the worst case execution time is
increased over and above the forced approach and it also has no method of
ensuring that a major cycle wouldn't have just taken a few more
milliseconds to complete before reconfiguration was forced.

5.2.6 Rule Expression I Predictability

For a rule based reconfiguration control system to be suitable for real-time
mission-critical systems, it is necessary for the decision making algorithm to
be predictable, both in tenus of the outcome and the time taken to produce
the outcome. In order to create a temporally predictable decision making
algorithm it is necessary for the rules themselves to have a limited notation,
and to ensure that the complexity of the rules is restricted.

Existing rule based control research, such as Law Governed Interaction
(LGI) [58-63], does not address the issue of temporal predictability. In [58]
it is stated that "enforcement must be reasonably efficient", however
"reasonably efficient" is not enough to ensure deadlines are met. Also since
any number ofLGI rules can be placed within the law of the system, and the
rules can be of varying complexity (LOI rules are expressed in an
unrestricted programming language), it is almost impossible to carry out
worst case timing analysis.

Restrictions in notation could simply outline a set of operators by which
rules can be specified. These operators could include the candidate set of
reconfiguration operators specified in chapter 2. These operators would
require further extensions to include operators such as collocated(procJ,
proc2) , which would be a logical operator to check if two processes are
located on the same processor(s).

Further research is required to examine the best method of restricting rule
set complexity. Research into rule set complexity could also develop
accurate worst case execution time calculations. To calculate worst case
execution time many difficult issues would require further examination,
such as can rules be applied iteratively?, how long do given operators take
to execute?, and does the order of the rules matter? - does it change the
outcome or the time taken to get to the outcome?

76

5.2.7 Core Malfunction and Reconfiguration Thrashing
Restriction Rules

Within most (if not all) reconfigurable real-time applications a standard core
set of rules may exist to stop malfunctioning processes from adversely
affecting the system, as well as generally controlling configuration
thrashing. There are many different rules that could be imposed on a system
regardless of whether rule-checking is conducted centrally or locally. Some
examples are: a process cannot reconfigure more than once in a given time
period, or processes may only reconfigure if they do not communicate with
another process (or processes).

To develop rules for configuration thrashing control it is important to
consider the definition of configuration thrashing. In Chapter 3
configuration thrashing is defined as " ... occurring when one or more
configuration overlaps occur. The number of configuration overlaps that
can be tolerated in a given time period or in a given sequence is application
dependent and possibly even mode dependent ... ". A configuration overlap
occurs when two subsequent reconfiguration requests are acted upon
without a "sufficient interval" between them.

Given this definition for configuration thrashing it is logical for one of the
core rules to state that no more than x configuration overlaps may occur in a
given time period, where x is the number of overlaps that can be tolerated in
the given application. For this to be enforced a configuration overlap would
need to be defined for the specific application - i.e. the sufficient interval
would require a definition. This rule could exist in all systems but would
require variables to be specified. The operator for this could be specified as
follows:

ConjOver(x, y, z)

Where x is the maximum number of configuration overlaps which may
occur, y is the interval in which the x configuration overlaps may occur, and
z is the "sufficient interval" between reconfigurations to not be classified as
a configuration overlap. In many applications this operator may require an
extension in order to allow an additional variable to specify the process, thus
allowing multiple processes to have different configuration thrashing
definitions. Pseudo code showing how the ConfOver operator could be
applied is shown below:

77

If time since last successful reconfiguration request> z then
Reconfiguration is not a configuration overlap and is permitted and

recorded
Else

Ilreconfiguration is an overlap
If x overlaps have occurred in y interval then

Reconfiguration denied
Else

Reconfiguration overlap recorded
Reconfiguration permitted

Preconditions for the ConjDver operator may be necessary, as all of the
variables (x, y, and z) must be greater than O. Also it is expected that
(x+ 1)*z should be less than or equal to y, as if this is not the case then the
ConjDver operator cannot guarantee that configuration thrashing will not
occur. The guarantee cannot be made as in theory the system could make
no progress for just under x*z units of time in the worst case and the
sufficient interval (z) would be required again to make the required level of
progress. However, (x+ I)*z <= y should not be made a precondition, as it is
possible in some systems for it to be guaranteed that if a reconfiguration is
to be made, then it will occur very soon after the last reconfiguration or not
at all. In a system such as this it is possible for (x+ 1)*z not to be less than or
equal to y and still ensure configuration thrashing will not occur.

As the pseudo code for the ConfOver operator shows, this rule would
require the controller to keep a history of configuration changes / overlaps
in order to apply the rule, which could prove resource intensive. Within the
CSP models presented in Chapter 3 a history was maintained by which to
check for configuration overlaps and thus configuration thrashing. In the
approach taken within those models, events were removed from the history
when they became stale (Le. were no longer of use when analysing for
configuration thrashing). A similar approach could be taken within the
controller to condense the resource usage records; however, this would still
take up computational resources and as such a method must be available to
analyse resource requirements. This method may also affect temporal
predictability.

Creating generic rule(s) to stop configuration thrashing for all systems
without variables being added would effectively require all systems to be
static. In some systems it may be that reconfiguration can occur once an
hour, yet in others it may be acceptable to reconfigure every ten seconds.

Another approach using rule sets to control reconfiguration thrashing would
be to alter the rule set at runtime. Configuration thrashing could then be
avoided by for example, adding rules to state that the reconfigured process
must remain static for a period of time after a successful reconfiguration or a
number of consecutive successful reconfigurations. However, this could
alter the time taken to analyse the rules in existence. Also the rule should be

78

removed once it has exceeded the time that the process must remain static
(become stale) which would incur a processing overhead. As discussed in
section 5.2.5, dynamic rule sets could themselves become susceptible to
configuration thrashing, thus this approach is not adequate.

It can be argued that to stop a process from reconfiguring after one or more
successful reconfigurations is wrong, as if a process moves to avoid a
failure, and then encounters another failure, why is that it's fault and why
shouldn't it be allowed to move again? This is a valid argument and all
approaches to restricting configuration thrashing can be said to fall foul of
this argument. However, if many successive failures have occurred / are
occurring then either the software itself has an issue which cannot be
rectified through reconfiguration or the underlying hardware has major
issues, thus restricting reconfiguration will most likely not worsen the
situation, but will solve the problem of configuration thrashing.

To stop malfunctioning processes from adversely affecting the system a set
of operators should be developed to constrain the system. An example of
this would be an operator to keep two processes collocated. If an operator
such as this were used, then a subsequent move operator, of any type, would
cause both processes to move or deny the reconfiguration request to ensure
they both remain collocated. The choice as to whether the processes are
moved or the request is denied is dependent upon the logic residing in the
reconfiguration controller.

Other examples of possible constraint operators could include:

• Static(proc) - ensures the specified process cannot move.
• NumHops(procJ, proc2, x) - ensures that communication between

two processes is kept to within x hops. An operator such as this
would keep communication latency low.

• LocateOnlyOn(proc.[loc /,Ioc2, ...]) - ensures that the specified
process only ever executes in the locations specified. This maybe an
important operator if some processors don't have instruction sets that
a process requires.

Operators to stop certain types of reconfiguration may also be beneficial, as
some processes may be designed to be mobile, but not duplicated, or other
processes may be designed to be synchronised with, but not be mobile.

The core set of rules for all systems to stop malfunctioning processes from
adversely affecting the system, as well as generally controlling
configuration thrashing would include at least one rule utilising the
ConjDver operator and any restraints designed into processes should be
specified in rules utilising the constraint operators, i.e. each process that

79

should remain static should have a rule in place to ensure that it remains
static and processes that should be collocated should have rules in place to
ensure they remain collocated.

5.2.8 Rule Set Reconfiguration Control Demonstrator

A demonstrator has been developed to show that the solution outlined using
rule sets can restrict reconfiguration sufficiently to eliminate configuration
thrashing. The demonstrator also allows experimentation to be conducted.
Experimentation can be conducted not only for rule sets, but also for
scenarios where developers control reconfiguration themselves; the
controller can be disabled and reconfiguration operators can be accessed
directly. Section 5.3 discusses the use of the demonstrator and the
experimentation conducted with controllers disabled.

The demonstrator has been built using Java RMI. Java RMI provides a
means of invoking methods on remote Java objects. Methods can be
invoked from separate Java virtual machines, possibly on different hosts.
Although Java is not suitable for real-time applications, the demonstrator
uses Java as the demonstrator itself was not intended to look into the
problem to the level at which a real-time language would be required. The
demonstrator was only intended to highlight that the proposed solution can
eliminate configuration thrashing and to allow experimentation to be
conducted.

Java is not suitable for use in real-time applications as it does not respond
reliably and predictably to real-world events. One of the reasons for this is
that Java contains a garbage collection system which takes care of freeing
dynamically allocated memory that is no longer referenced. Programmers
in a garbage-collected environment have less control over the scheduling of
CPU time devoted to freeing objects that are no longer needed. If a real­
time event occurred during or just before garbage collection, then timing
would be unpredictable. Java have outlined a Real-Time Specification for
Java (RTSJ) [67] which enables developers of real-time applications to take
full advantage of the Java language while maintaining the predictability of
current real-time development platforms.

Within the demonstrator both rule scope and rule validation occur centrally.
The decision as to whether rule scope and rule checking / validation should
occur in a centralised or decentralised manner is an application specific
decision and thus an arbitrary decision was made for the demonstrator.
Section 5.2 discusses these options in further detail.

80

To allow reconfigurable processes to be controlled by a central controller all
reconfigurable processes must extend a ReconfigProcess interface which
defines several functions that each process must implement including
delProcessO, gelDalaO and selDalaO. Using these functions the central
controller can reconfigure processes, query and set processes internal states,
as well as delete processes. No operators are developed within the
demonstrator to allow for the synchronisation of process stacks, though this
could have been facilitated by pausing the executing thread and passing it to
a new process to continue. As discussed is Chapter 2 the stack represents
the instruction stack (including the current position within the instruction
stack).

The demonstrator contains implementations of the following small set of
candidate operators:

• MoveProcDelFirSI
• MoveProcDelAfter
• MoveProc WStale

The demonstrator is coded to execute on a single machine, though tests have
been conducted between multiple machines and there is no functional
difference, though there is slight performance degradation. All services are
bound to the rmiregislry, which allows users to locate services needed. The
rmiregistry provides a means oflocation transparency.

Each reconfigurable process must provide a method of generating instances
of themselves. Within Java this is achieved using factories which
essentially generate instances of processes upon demand. A ProcessFactoy
interface has been defined and each reconfigurable process must provide an
implementation which extends this interface. Process factories must be
bound to the rmiregistry to allow processes to be generated on remote hosts.

Factories for creating reconfigurable processes could exist in a single
location or could be duplicated in many locations. There are advantages and
disadvantages to duplicating factories to many locations. One advantage of
duplicating factories is that multiple factories could spread the load on the
system for process creation. Another advantage is that if a processor were
to be damaged with a process factory upon it, then the other process
factories could continue to allow process creation with no need to recreate
the failed factory. If factories are not duplicated and a processor were to be
damaged that contained a process factory then no more process generation
can occur for that process type until a new instance of that factory can be
brought online (if one can be brought online). A disadvantage of factory
duplication is that a higher level of processing resource is required to
support multiple factories

SI

An example process has been developed within the demonstrator which is
susceptible to configuration thrashing. The example process named
ReconjigProcesslmpljava attempts to complete a basic cycle which is
defined in MainThreadjava and is shown in definition 5.2.S.1. The cycle
can be interrupted through reconfiguration.

Definition S.2.8.1

public void rune)
{

int i = 0;
for (i=O; i<10; i++)
{

try
(

Thread.sleep(5000);
} catch (Exception e)
{ }

System.out.println(i);

System.out.println("cycle complete");

Given definition 5.2.8.1 ConfOver rules were be placed on the system to
restrict reconfiguration. The example process was assigned many different
deadlines to complete and from these many different ConjOver rules were
produced. In each case it was found that with some basic calculations a set
of values could be produced for ConjDver. In each case it was found that if
(x+ 1)*z was ensured to be less than or equal to y, then configuration
thrashing was stopped. Though further experimentation showed that in
cases where it was guaranteed that if a reconfiguration was to be made, then
it would occur very soon after the last reconfiguration or not at all then
ConfOver rules could be used which did not ensure that (x+ 1)*z was equal
or less than y and still stop configuration thrashing. This further
demonstrates that although (x+ 1)*z should be less than or equal to y in order
to guarantee the elimination of configuration thrashing, it should only be
used as a guideline and not a precondition.

Experimentation was also conducted to see if all of the variants of the
candidate set of operators were required. The demonstrator includes
implementations of many of the variants of the MoveProc operator
(MoveProcWStateAndSync is excluded) and it was found that the
MoveProcDelFirst and the MoveProcDelAfter were in the main the same,
though there are scenarios in which the two would both be required. It was
also found that a process could be queried for its internal state, then be
reconfigured, and then have its internal state reinstated, thus not requiring
the MoveProcWState operator, but this is a lot more confusing for

82

developers and also introduces the chance of stale states being inserted into
reconfigured processes.

The demonstrator clearly highlighted through the use of the example
process how severe the effect configuration thrashing can have upon real­
time applications. With no rules placed in the system and reconfiguration
operators triggered over and over again, the example process could make no
progress at all; in fact in sever cases it didn't even manage to make a single
output in more than 10 minutes. The demonstrator showed that
configuration thrashing can be eliminated using a central controller even
when reconfiguration operators are triggered over and over again, thus even
faulty processes can be constrained. However, further research and
development is required to deal with issues such as how to cope with high
load and how to ensure that when large numbers of rules exist, the algorithm
used within the controller is temporally predictable. The demonstrator in its
present state has only been tested with a small number of rules. Appendix D
contains the complete source code for the demonstrator.

5.3 Mechanisms Allowing Developer to Control
Reconfiguration

Many types of mechanism could be provided to developers in many forms,
for example mechanisms could be provided in the form of a class for
inclusion in source code, or could be provided as a service (possibly a
middleware service). The form in which the mechanisms are provided
should make little difference to functionality, but could make a difference to
the time taken to execute a mechanism. The form in which a mechanism is
provided wiII affect the degree of separation between the mechanisms and
the reconfigurable processes. If the reconfiguration mechanisms are
compiled into the source code, then the process is tightly coupled to the
mechanisms, but if for a reconfiguration mechanism to be provided as a
service then they would be more loosely coupled.

Mechanisms could be provided to developers allowing them to declare
windows of opportunity within source code for processes to reconfigure.
This could be further developed to allow the specification of reconfiguration
operator(s} which may be used during the period the window of opportunity
is open. For example a developer could open a window of opportunity that
enables process replication, but not process migration. Chapter 2 introduced
a candidate set of reconfiguration operators.

As described, the demonstrator discussed in section 5.2.8 was developed in
such a way that the controller could be disabled and reconfiguration
operators could be accessed directly, thus allowing experimentation to be

83

conducted in a scenario where developers control reconfiguration. The
experimentation conducted clearly highlighted that if processes are to be
able to initialise reconfiguration for other processes, then some form of
additional acceptance is required. If the reconfiguring process cannot accept
or decline the reconfiguration action, then it will be very difficult for
developers to ensure that their processes do not become susceptible to
configuration thrashing, as processes could trigger configuration thrashing
in one another. The method described above could be a solution to this;
whereby processes declare windows of opportunity for others to reconfigure
them and if no window is presently available then reconfiguration cannot
occur.

Experimentation with the demonstrator also highlighted the benefit of
making the reconfiguration operators available via a service (or third party
process), as during the experimentation the reconfiguration operators
required a small amount of tweaking and this meant that the service alone
had to be recompiled and not the individual processes being reconfigured or
triggering reconfiguration. If the operators were compiled into the
processes, then much more recompilation would have been required.
Advantages in terms or runtime upgrades can also be achieved as during the
recompilation only the reconfiguration service was are offline and other
processing can be continued.

Giving developers control over reconfiguration on a process by process
basis is a novel approach, provided that guidance can be provided. Without
guidance developers may not know when reconfiguration should take place
or more importantly is "safe" to take place. Developers may be tempted to
develop more static systems than necessary, thus not gaining the full
benefits that reconfiguration can provide. Also allowing developers to
control reconfiguration introduces the likelihood of human error.

5.3.1 DIfficulties Providing Guidance for Developers

Providing general guidance to developers on the matter of when
reconfiguration can safely occur without allowing configuration thrashing to
happen is a difficult task as different types of systems will require different
logic to be applied. However, a starting point can be provided by ensuring
that system developers fully understand the definition of configuration
thrashing. Armed with the definition developers should be better equipped
to avoid configuration thrashing. However, this is not sufficient as it can be
very difficult to decide whilst designing / developing software whether a
configuration overlap could have occurred before a particular point in the
software, or if a "sufficient interval" will have definitely occurred at a given
point in the software.

84

As different logic is required for different process types, this section
explores the method used to define the ConjOver rules for the example
process (as described above). From the method used to define these rules,
we attempt to use the same logic to develop a method of restricting the
processes in source code.

In the example process defined in the demonstrator, it was relatively simple
to define the variables which must be plugged into the ConjOver rule in
order to allow a controller to stop configuration thrashing. This was done
by reviewing the cycle length and calculating variables using the (x+ 1)*z
must be less than or equal to y equation. However, it is not simple to use the
same logic in source code, unless a history of reconfiguration actions taken
is made and windows of opportunity are opened based upon the assessment
of the actions taken.

To allow each process to track its previous reconfigurations could mean that
an element of the processes state would be transferred even if the process
migration operator used to conduct the reconfiguration did not require /
request for the state to be transferred, as the history of the reconfiguration
actions will most likely be held in its internal state. Transferring
reconfiguration history between processes upon reconfiguration could create
issues with temporal predictability and also contradict some of the
operator's definitions. An alternative method to tracking reconfiguration
history is to have a process / service available to track reconfigurations and
maintain histories for processes to use when making decisions, however this
method has a few downfalls: firstly the service / process could fail causing
all reconfigurable processes to have to take a default action, which will most
likely be to remain static, and secondly this approach could add significant
network lag depending upon the number of queries made and level of
history to be maintained.

To decide when reconfiguration can occur within the source code for the
example process in the demonstrator without the maintenance of some form
of history of reconfiguration events, it would only be safe to allow
reconfiguration to occur every other loop through the code. Note that
though the example process in the demonstrator only completes one cycle, it
is designed to represent a cyclic process whereby it simply restarts the cycle
once complete. This will mean that the process must maintain a
reconfigured state between cycles and thus even though a full history of
reconfiguration events is not required, some information relating to recent
reconfiguration is required. This approach is quite restrictive and given a
process with a definition of configuration thrashing whereby reconfiguration
can occur 12 times before it must be restricted would require the process to
essentially over restrict reconfiguration or start to maintain a number of

85

reconfigurations that have occurred which is essentially starting to maintain
a history of reconfiguration events.

The example process reviewed is relatively simple and yet provides
difficulties when attempting to provide guidance, thus more complex
processes whereby branching occurs and synchronisation can occur upon
shared variables would make the provision of advise almost impossible and
developers are almost certain to over restrict reconfiguration in order to
relieve the level of complexity they are faced with.

5.4 Summary

This chapter has explored potential run-time solutions to configuration
thrashing. These solutions allow developers to include additional logic I
processes in their systems in order to eliminate configuration thrashing.
Several options were explored from providing mechanisms for developers to
choose when reconfiguration can I cannot occur to a rule based solution.

The explorations described and discussed within this chapter have shown
that run-time solutions to configuration thrashing using a rule based
approach can work, but at present many problems and imponderables exist
for performance analysis. The problems and imponderables for the rule
based approach include:

• Rule Set Consistency Checking - An inconsistent set of constraints
does not admit any valid system state, thus it is important that a set
of system rules can be checked for inconsistencies. A timely method
of checking rule set consistency is therefore required.

• Worst Case Execution Time Analysis - It is important in a real-time
application that the worst case execution time can be analysed to
ensure that deadlines are met. To calculate worst case execution
time for the rule checking algorithm many difficult issues would
require further examination, such as can rules be applied iteratively?,
how long do given operators take to execute?, and does the order of
the rules matter? - does it change the outcome or the time taken to
get to the outcome?

Allowing developers to control reconfiguration within source code gives
developers a high level of control, however without guidance developers
may not know when reconfiguration should occur and thus are likely to over
restricted reconfiguration. Also allowing developers to control
reconfiguration introduces the likelihood of human error. Providing
guidance to developers has proven difficult, as different types of systems

86

require different logic to be applied. Guidance can be provided for specific
examples, but to categorise all process possibilities and provide guidance
could be a thesis in its own right as there are potentially infinite numbers of
system possibilities in which guidance may be required. This thesis has
therefore only provided advice for the example process in the demonstrator.

Chapter 6

Case Study

87

To review the effectiveness of both the models outlined for configuration
thrashing, and also the software solution outlined, a small case study has
been developed. This case study is focussed upon battlefield surveillance
using multi sensor data fusion [68, 69]. The ability to rapidly detect and
identify potential targets both fixed and mobile from multiple sensor inputs
is a critical function in modern warfare. Sensor fusion has been used in
major military weapons systems, such as the U.S. Navy's Cooperative
Engagement Capability (CEC), a Raytheon built system that enables ships
and aircraft to combine radar data for improved defences against attack from
aircraft and cruise missiles.

A fully functional sensor network can perform many military-related
intelligence missions in synchronization and harmony with human agents in
the battlefield. A typical sensor network may consist of many different
types of sensors such as satellites, radars, ground sensors (magnetic,
acoustic, and seismic), and infra red imaging. An aim for research into
sensor fusion is to produce cheap reliable sensors that are disposable.

The key to any battlefield surveillance system is the rapid generation of
target information. Targets need to be assessed as quickly as possible in
order to guide troops accurately and ensure that missiles are aimed only at
enemy targets. If data is not processed quickly enough then troops could be
put in dangerous situations and I or missiles could be launched against
friendly or non-hostile targets. Based on this it is possible for a
reconfigurable multi-sensor data fusion system to suffer from configuration
thrashing and as such forms the basis for this case study.

Within this case study multiple sources of sensor data are required to get
data to the processing unit within a periodic timeframe and the processing
unit itself is required to process the data within a finite time frame otherwise
the data used for decision making will be outdated and dangerous scenarios
can no longer be guaranteed to be avoided. The case study comprises of
three software components which are: a radar sensor, a ground sensor, and
the main sensor fusion and battlefield decision making component.

The rest of this chapter is structured as follows. First section 6.1 outlines
the component functionality for use within the case study. Section 6.2
explores the formal approach taken to the case study. Section 6.3 introduces
and examines the software approach taken to the case study. Lastly, section
6.4 presents a case study discussion.

88

6.1 Component Design

In order to model or develop the software components for this case study, it
is important to understand the functionality of those components. Here we
outline each components functionality and describe which parts have been
abstracted away for the purposes of this case study. This case study does
not require perfect models or implementations as we are only attempting to
capture the main elements and also no appropriate hardware is available for
the sensor data to come from, thus this will have to be simulated.

Within the case study it is assumed that data communications will always be
reliable and instant or so close to it that it is negligible. Though "lossy"
channels [70] could be added to the CSP to model a certain level of data loss
and similar techniques could be used in the software solution.

The usage of fixed processing times has been used within this case study as
it would be assumed that these would be the worst case execution times and
as such can be used to ensure that the system cannot thrash. However,
variant times between fixed bounds could easily be added to the models
outlined in this chapter and also the software developed.

6.1.1 Radar Sensor

A radar system has a transmitter that emits either microwaves or radio
waves that are reflected by the target and detected by a receiver, typically in
the same location as the transmitter. Although the signal returned is usually
very weak, it can be amplified enabling the radar to detect objects at ranges
where other emissions, such as sound or visible light, would be too weak to
detect.

Thus the radar sensor must emit a signal, receive a signal back, process the
data received, and then it can send the results to the main decision making
component for sensor fusion and decision making algorithms to be run.
Depending on the type of signal emitted and the strength of the data
received back it may take a while for the data received back to be processed.

It is possible for radar sensor software to reconfigure for many reasons, the
most obvious being fault tolerance. Other reasons could include changing
the signal processing engine or to adapt how the sensor hardware is being
utilised. Moving the component to different hardware could also be for
resource reasons.

89

For the purpose of this case study the sensor data will be simulated and the
processing time will be assumed to be static all times. No implementation
will be provided for the signal processing as this is irrelevant for this case
study. Within the case study it is assumed that an output must be provided
to the data fusion and decision making process every 5 minutes. The time
taken to receive data after the emition of either microwaves or radio waves
is assumed to always be 1 minute and the time taken to process the data is
assumed to be a static 1.5 minutes.

6.1.2 Ground Sensor

Ground sensors consist of a variety of sensor technologies that are packaged
for deployment and perform the mission of remote target detection, location
and I or recognition. Ideally, the ground sensors should be small, low cost
and robust, and are expected to last in the field for extended periods of time.

Ground sensors can be designed to locally process target information, such
as detection, bearing estimation, tracking, classification and I or
identification. They can also be used for reporting battle damage
assessment (BOA) in standoff strike scenarios. Ground sensors may consist
of a battery-powered, single or multiple co-located sensors, with signal
processing capability to analyse target characteristics, and transmit target
recognition information to a remote monitoring location.

For this case study we will focus upon an acoustic ground sensor which is
similar to the radar sensor in terms of its processing, apart from does not
need to emit a signal before receiving a signal. Basically an acoustic ground
sensor continually polls for sound signals, once received it processes the
data, and then sends the results to the main decision making component for
sensor fusion and decision making processing. We also assume that the
particular sensor also sends a periodic signal to the main decision making
component if no sound is detected.

Ground sensor software will reconfigure very infrequently as in many cases
only a single processor will be included in the small device which generally
will have no way of utilising other processing hardware. However for the
purpose of this case study it is assumed that the sensor is a little more
sophisticated and has multiple processors mainly for fault tolerance
purposes.

As with the radar sensor, sensor data will be simulated and the signal/input
processing time will be fixed. No implementation will be provided for the
signal processing as this is not needed for this case study. This sensor will

90

only reconfigure once data has been sent to the fusion and decision making
component and only if it suspects there is an issue.

Within the case study it is assumed that an output must be provided to the
data fusion and decision making process every 5 minutes. The time taken to
process data is static at 1 minute.

6.1.1 Sensor Fusion & Battlefield Decision Making
Component

The sensor fusion and battlefield decision making component is of critical
importance as this component must make decisions based on information
provided as to where troops are sent and also where weapons will be
targeting. Thus it is of great importance that the data this component makes
its decisions with are up to date and accurate. It is likely that in a true
system the sensor fusion and decision making functionality would be
separated into different components allowing for separation of concerns and
increased flexability, however for the purposes of this case study they will
be considered as one.

It is possible for this component to reconfigure for fault tolerance, improved
performance, and also ensuring data continuity. This type of component
could also be subject to online upgrades and could possibly reconfigure to
cope with changing requirements and logic for battlefield processing.

For the purpose of this case study this component will receive data from the
two sensors and make periodic outputs as to the strategy that should be
undertaken. The processing time for the data fusion and decision making
algorithm will be assumed to be the same at all times. No implementation
will be provided for the data fusion or the decision making algorithm as this
is not required for this case study.

Within the case study it is assumed that an output must be provided every
10 minutes. The time taken to fuse data and process data are both static at
0.5 minutes and I minute respectively.

6.2 Formal Approach

In Chapter 3 two unique CSP models have been specified which enable
developers to model their systems / processes and detect configuration
thrashing potential. One of the models contains an element of time and the
other does not. These models assist developers to engineer configuration
thrashing out of their systems.

91

This section introduces the CSP models representing the three software
components for this case study and discusses the issues that had to be
overcome both in terms of developing the models, and also in terms of using
the models to engineer configuration thrashing out of the system. The timed
CSP model for configuration thrashing introduced in section 3.3.2 was used
for this case study.

In chapter 3 the models introduced only contained a restricted set of actions.
All actions that related to internal process actions were modelled using the
event doa. In order to model the two sensors the set of actions usable was
extended to include the following: send_to Jusion, send_signal,
recieve_signal, startyrocess_data, and endyrocess_data. These new
event types allow for the model not to contain a high level of information
regarding development detail but still capture the main events so that
reconfiguration points and timing can be reviewed. As with the model
presented in chapter 3 the new actions are hidden at a later stage as they are
not needed to check for configuration thrashing.

The radar sensor has been modelled in two parts. First the main RADAR
definition is used to start the process and allow it to reconfigure or become
RADARWORKLOOP. RADAR and RADARWORKLOOP are shown in
definition 6.2.1 and definition 6.2.2 respectively. The reason the logic of
this process has been broken in two is to simplify the use of the startup
action after a reconfiguration has taken place.

Definition 6.2.1

RADAR • startup ->

(RADARWORKLOOP
I] move -> RADAR)

92

Definition 6.2.2

RADARWORKLOOP • start min wk -> send_signal -> tock -> tock ->
recieve signal -> - -

-start-process_data -> tock -> tock -> end-process_data ->
send to fusion -> end min wk

- -- > RADARWORKLOOP -
I) start min wk -> send signal -> move -> RADAR
I) start-min-wk -> send-signal -> tock -> move -> RADAR
I) start=min=wk -> send=signal -> tock -> tock -> move ->

RADAR
I) start_min_wk -> send_signal -> tock -> tock ->

recieve signal -> move -> RADAR
[) start min wk -> send signal -> tock -> tock ->

recieve_signal :> start-process~data -> move -> RADAR
I) start_min_wk -> send_signal -> tock -> tock ->

recieve_signal -> start-process_data -> tock -> move -> RADAR
I) start_min_wk -> send_signal -> tock -> tock ->

recieve_signal -> start-process_data -> tock -> tock -> move ->
RADAR

I) start min wk -> send signal -> tock -> tock ->
recieve_signal :> start-proces~data -> tock -> tock -> tock ->
end-process_data -> move -> RADAR

I) start_min_wk -> send_signal -> tock -> tock ->
recieve_signal -> start-process data -> tock -> tock -> tock ->
end-process_data -> send_to_fusIon -> end_min_wk -> move -> RADAR

The radar sensor can take external stimuli to reconfigure and as such it has
been assumed that it can reconfigure at any point. The model reflects this.
It should be noted that the radar sensor does not allow reconfiguration to
take place between the start_min_wk and send_signal actions as these are
seen as being the same thing. The start_min _ wk event is only contained
within the model to ensure that the configuration thrashing definition knows
that work has begun. The same holds for the send_toJusion and
end min wk actions.

Within the model a tock action has been used to model the passage of 30
seconds of time. As can be seen from the model, if no reconfiguration
occurs then it will send an output to the data fusion and decision making
component every 2.5 minutes. This means it can in theory easily meet its
deadlines.

As the radar sensor can reconfigure at any time via external stimuli then the
models have shown that if developed to be completely reconfigurable it can
suffer from configuration thrashing. The definition of configuration
thrashing used within this model is 2 overlaps in 10 time intervals (5
minutes). This was used as the time taken to complete a successful cycle is
2.5 minutes and thus if we have 2 overlaps inside the 5 minute deadline then
there is a possibility that the deadline has not been met. If we have a system
that can only reconfigure at the start of its processing then it may be that a
larger number of overlaps would be acceptable, however in this case
reconfiguration can take place at any point.

A restricted version of the radar process has then been modelled using the
information gathered from the modelling of the non-restricted radar. Two

93

extra definitions have been added to the restricted radar to ensure that after a
reconfiguration occurs, another does not until the minimum work is
completed. These two definitions are named RADARNORECONF and
RADARWORKLOOPNORECONF and are shown in definitions 6.2.3 and
6.2.4.

Definition 6.2.3

RADARNORECONF = startup ->
RADARWORKLOOPNORECONF

Definition 6.2.4

RADARWORKLOOPNORECONF - start min wk -> send signal -> tock -> tock ->
recieve signal -> star-t process data --> tock -> tock ->
end_process_data -> send_to_fusion -> end_min_wk -> RADARWORKLOOPREST

The main radar process and the RADARWORKLOOP have both been
modified to ensure that when a reconfiguration occurs that they go to the
RADARNORECONF. The modified radar definitions are shown in
definitions 6.2.5 and 6.2.6.

Definition 6.2.5

RADARREST = startup ->
(RADARWORKLOOPREST
[) move -> RADARNORECONF)

94

Definition 6.2.6

RADARWORKLOOPREST : start min wk -) send signal -> tock -> tock ->
recieve signal -) -start process data -> tock -> tock ->
end process data -> send to fusion -> end min wk -> RADARWORKLOOPREST

- [] start_min_wk --> s-end_signal -> -move- -> RADARNORECONF
[] start_min_wk -> send_signal -) tock -> move ->

RADARNORECONF
[] start_min_wk -> send_signal -> tock -> tock -> move ->

RADARNORECONF
[] start min wk -> send signal -) tock -> tock ->

recieve_signal --)mo~e -) RADARN-ORECONF
[] start min wk -> send signal -) tock -> tock -)

recieve_signal ->-start_process_data -> move -> RADARNORECONF
[] start min wk -> send signal -> tock -> tock ->

recieve signal --) st-art process data -> tock -) move -> RADARNORECONF
-[] start_min_wk -=-> send~signal -) tock -> tock ->

recieve signal -) start process data -> tock -> tock -> move -)
RADARNORECONF --

[] start min wk -> send signal -) tock -> tock ->
recieve signal -=> start process data -> tock -> tock -> tock ->
end_process_data -) move--> RADARNORECONF

[] start min wk -> send signal -) tock -> tock ->
recieve signal ~) start process- data -> tock -> tock -> tock ->
end_process_data -> send_to_fusion -> end_min_wk -) move -> RADARREST

The ground sensor is much less reconfigurable than the radar sensor. In fact
it has been assumed within the model that reconfiguration will only occur
after an output has been made to the data fusion and decision making
process. Also this type of sensor is unable to receive external stimuli to
reconfigure; it is an internal decision if issues are detected.

As with the radar sensor, the ground sensor has been modelled in two parts
to simplify the use of the startup action after a reconfiguration has taken
place. First the main GROUND definition is used to start the process and
then it becomes GROUNDWORKLOOP. GROUND and
GROUNDWORKLOOP are shown in definition 6.2.7 and definition 6.2.8
respectively.

Definition 6.2.7

GROUND. startup ->
GROUNDWORKLOOP

95

Definition 6.2.8

GROUNDWORKLOOP - start_min_wk -> recieve_signal -> start-process_data ->
tack -> tack -> end-process_data -> send_to_fusion -> end_min_wk ->
RADARWORKLOOP

[] start_min_wk -> tack -> recieve_signal ->

start-process_data -> tack -> tack -> end-process_data ->
send to fusion -> end min wk -> RADARWORKLOOP

- -[] start min wk -;- tack - > tack - > recieve signal - >
start-process_dilta :> tack -> tack -> end-process~data ->
send to fusion -> end min wk -> RADARWORKLOOP

- -[] start min wk -;- tack - > tack - > tack - > recieve signal - >
start-process_data :> tack -> tack -> end-process_data ->-
send to fusion -> end min wk -> RADARWORKLOOP

- -[] start min wk -;- tack -> tack -> tack -> tack ->
recieve signal :> start-process data -> tack -> tack ->
end-process_data -> send_to_fusIon -> end_min_wk -> RADARWORKLOOP

[] start min wk -> tack -> tack -> tack -> tack -> tack ->
recieve_signal :> st-art-process data -> tack -> tack ->
end-process_data -> send_to_fusIon -> end_min_wk -> RADARWORKLOOP

[] start min wk -> tack -> tack -> tack -> tack -> tack ->
tack -> send to -fusi-on -> end min wk -> RADARWORKLOOP

[] st-art~min_wk -> recieve~signal -> start-process_data ->
tack -> tack -> end-process_data -> send_to_fusion -> end_min_wk ->
move - > GROUND

[] start min wk -> tack -> recieve signal ->
start-process_dilta :> tack -> tack -> end~rocess_data ->
send to fusion -> end min wk -> move -> GROUND

- -[] start min wk -;- tack - > tack - > recieve signal - >
start-process_data :> tack -> tack -> end-process~data ->
send to fusion -> end min wk -> move -> GROUND

- -[] start min Wk -;- tack - > tack - > tack - > recieve signal - >
start-process_data :> tock -> tack -> end-process_data ->-
send to fusion -> end min wk -> move -> GROUND

- -[] start min Wk -;- tack - > tack - > tack - > tack - >
recieve signal :> start-process data -> tack -> tack ->
end-process_data -> send_to_fusIon -> end_min_wk -> move -> GROUND

[] start min wk -> tack -> tack -> tack -> tack -> tack ->
recieve_signal :> st-art-process_data -> tack -> tack ->
end-process_data -> send_to_fusion -> end_min_wk -> move -> GROUND

[] start min wk -> tack -> tack -> tack -> tack -> tack ->
tack -> send_to~fusion -> end_min_wk -> move -> GROUND

As the ground sensor only reconfigures after the minimum level of
processing has completed, it is by definition incapable of configuration
thrashing as configuration thrashing is defined as x overlaps in a given time
period and an overlap occurs when two subsequent reconfiguration requests
are acted upon without a "sufficient interval" between them (i.e. where the
end_min_wk has not occurred). The ground sensor can only reconfigure
after the minimum level of processing has completed.

The radar sensor and the ground sensor are very different in tenns of
configuration thrashing properties even though they have a similar cyclic
behaviour and effectively provide similar data to the data fusion and
decision making component. The difference in reconfiguring as a result of
external stimuli creates the significant differences between these sensor
types.

In order to define the fusion and decision making process the action set was
extended further. The following actions were added: output_decision,
startJuse_data, and endJuse_data. These actions are only needed to show

96

the process functionality and are hidden at a later stage as they are not
needed to check from configuration thrashing.

The fusion and decision making component has been modelled in three
separate pieces to simplify the model in terms of number of separate options
available. The three components are FUSION, FUSIONWORKLOOP,
RECONFIGFUSIONWORKLOOP and are shown in definitions 6.2.9,
6.2.10, and 6.2.11.

Definition 6.2.9

FUSION = startup ->
FUSIONWORKLOOP

Definition 6.2.10

FUSIONWORKLOOP = start _min_wk -> RECONFIGFUSIONWORKLOOP
[] start min wk -> tock -> RECONFIGFUSIONWORKLOOP
[] start-min-wk -> tock -> move -> FUSION
[] start=min=wk -> tock -> tock -> RECONFIGFUSIONWORKLOOP
[] start min wk -> tock -> tock -> move -> FUSION
[] start=min=wk -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOP
[] start min wk -> tock -> tock -> tock -> move -> FUSION
[] start=min=wk -> tock -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOP
[] start min wk -> tock -> tock -> tock -> tock -> move ->

FUSION
[] start min wk -> tock -> tock -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOP
[] start_min_wk -> tock -> tock -> tock -> tock -> tock ->

move -> FUSION
[] start_min_wk -> tock -> tock -> tock -> tock -> tock ->

tock -> RECONFIGFUSIONWORKLOOP
[] start min wk -> tock -> tock -> tock -> tock -> tock ->

tock -> move -> FUSI-ON
[] start min wk -> tock -> tock -> tock -> tock -> tock ->

tock -> output_dlecis-ion -> end_min_wk -> FUSIONWORKLOOP

97

Definition 6.2.11

RECONFIGFUSIONWORKLOOP = recieve signal -> start process data -> tock ->
tock -> end process data --> start fuse data -> t()ck -> end fuse data
-> output decision => end min wk => FUSIONWORKLOOP --

FUSION

[]- move -> FUSION - -
[] recieve_signal -> move -> FUSION
[] recieve signal -> start process data -> move -> FUSION
[] recieve=signal -> start=process=data -> tock -> move ->

[] recieve_signal -> start_process_data -> tock -> tock ->
move -> FUSION

[] recieve signal -> start process data -> tock -> tock ->
end process data ~> move -> FUSION- -

- I] r-ecieve_signal -> start_process_data -> tock -> tock ->
end process data -> start fuse data -> move -> FUSION

- [] recieve_signal --> start_process_data -> tock -> tock ->
end process data -> start fuse data -> tock -> move -> FUSION

- I] r-ecieve signal --> start process data -> tock -> tock ->
end_pro cess_data ~> start_fuse_data -> tock -> end_fuse_data ->
move -> FUSION

[] recieve signal -> start process data -> tock -> tock ->
end process data ~> start fuse data -> toc-k -> end fuse data ->
output_decision -> end_min_wk ~> move -> FUSION - -

As can be seen from the models, after a potential wait, the process should
receive a signal and then process the data received before fusing the data it
has and data it has received. Once the component has fused the data it can
make a decision based upon it and output this. At any point during this
reconfiguration could occur from external or internal stimuli. Also if no
data is received for 6 periods of time (3 mintes) it will output a decision
based upon stale data and restart the same process. It was decided that it
should keep refreshing the data after 3 minute intervals, as it could take an
additional 1.5 minutes to process the data incoming if received later and it
seemed logical to keep the cyclic time of the process to 5 minutes or less to
be in keeping with the sensors, as well as allowing for some reconfiguration
an still ensuring an output.

Just like the radar sensor, the data fusion and decision making component
can reconfigure at any time triggered by external stimuli and as such the
models have shown that it can suffer from configuration thrashing. The
definition of configuration thrashing used within this model is 2 overlaps in
20 time intervals (10 minutes). This was used as the time taken to complete
a successful cycle in the worst case is 4.5 minutes and thus if we have 2
overlaps inside the 5 minute deadline then there is a possibility that the
deadline has not been met.

A restricted version of the data fusion and decision making process has been
modelled. The restricted process has been modelled much like the restricted
radar process and ensures that after a reconfiguration occurs, another does
not until the minimum work is completed. Definitions have not been
included in this chapter as this is very similar to the definitions for the

98

restricted radar process. However, the restricted process is contained in
appendix E along with the complete case study model.

Section 3.4 discusses various difficulties in applying the configuration
thrashing model. This case study has reinforced many of these issues. For
example it was difficult even within such a small case study to decide upon
the minimum level of processing needed before reconfiguration can occur.
A single cycle of the process was decided upon, but this would have been
made even more difficult if the processes involved were more complex.
Also even with the minimum level of processing decided upon and
deadlines being provided it became difficult to decide upon the values to
place in the model for the number of overlaps in a given time period. In this
case study it was made slightly easier because reconfiguration could occur
at anytime, but even with this turning the deadlines into a number of
overlaps that could occur in a time period was a little tricky.

The limitations introduced in section 3.3.3 also became apparent within this
case study as the deadlines for the sensors really come from the deadlines in
place over the data fusion and decision making component. The data
needed to be sent from the sensors within 5 minutes to allow the data fusion
and decision making component enough time to process the data, fuse the
data and make a decision within its 10 minute deadline. However, the CSP
models only allow single processes to be analysed and as such this type of
dependency cannot be analysed.

Even though various difficulties and limitations became apparent within this
case study, it also highlighted the usefulness of the models, as the processes
were checked for configuration thrashing capabilities and where these
capabilities were shown, they enabled for more restricted models to be
developed that cannot thrash using the information gathered from the
modelling process. Thus the models enabled configuration thrashing to be
developed out of the processes.

6.3 Software Approach

Using the demonstrator introduced in section 5.2.8 this section introduces
how the three processes described have been developed and shows how the
configuration thrashing can be restricted. Discussions relating to the issues
that had to be overcome both in terms of developing the implementations,
and also in terms of using the restriction techniques are presented.

The demonstrator ProcessF actory and Controller processes were in the
main unchanged for this case study. Each of the sensor processes and the
data fusion and decision making process was implemented by extending the

99

current ReconfigProcess interface and a primary thread has been defined for
each process. To simplify the implementation the ReconfigProcess
interface was extended slightly allowing for public functions for the data
fusion and decision making process to receive data through public functions
without the use of the RMI stub narrow functionality. Also it was assumed
that there would be only one data fusion and decision making component
and that it would be bound as FusionDM which make the implementation a
little simpler whilst still enabled the full level of reconfiguration
functionality required.

As with the CSP models introduced in section 6.2 sensor data is simulated.
All of the simulation is done via the use of a random number generator
which if generated is an even number then it is treated as an input been
received. If an input is received then the loop polling for input is broken
and processing begins. The processing and fusion algorithms are not
implemented, but instead a delay is used to simulate the worst case
execution time of the algorithm. It should be noted that timings within the
case study are ran at a tenth of the timings introduced in section 6.1 to
enable rapid testing.

Within the case study component design it was assumed that data
communications will always be reliable and instant or so close to it that it is
negligible. However, the demonstrator uses true RMI communication and
as such although was executed upon a single machine and thus should be
reliable could have communication faults and these have to be coped with.
Also communication is not instant but as the demonstrator is executed on a
single machine it will be negligible.

The main functionality for all of the reconfigurable components is provided
by the threads started as the service is initialised. The service simply allows
for remote method invocation to occur and thus for statuses to be set or
inputs / outputs made to or from remote objects.

The CSP models for the case study, shown in section 6.2, show that the
radar sensor, the data fusion and decision making process can suffer from
configuration thrashing when not restricted and the ground sensor cannot as
it cannot reconfigure until the minimum level of work is completed. Testing
of the processes developed using the demonstrator has shown this to be true.
This type of testing using the demonstrator proved to be very interesting and
showed exactly how the data fusion and decision making component rely
upon the two sensors for input.

Three test classes have been created to test the data fusion and decision
making component's reconfiguration and highlight its ability to suffer from
configuration thrashing as well as show how rules can be used to restrict its

100

reconfiguration thus eliminating configuration thrashing. The first class,
named Start java, gets a reference to the controller object and creates the
data fusion and decision making process, the radar sensor and the ground
sensor. As none of the processes defined directly reconfigure them selves or
each other with the exception of the ground sensor, and as such the system
does not suffer from configuration thrashing unless external stimuli is
provided. The ground sensor only reconfigures after a successful output is
made which is deemed to be the end of its minimum work and as such
cannot suffer from configuration thrashing.

The second class, named Reconfigurejava, provides external stimuli to
reconfigure the data fusion and decision making process 30 times with a
short time delay of just over 3 seconds between each reconfiguration. This
causes the data fusion and decision making process to thrash thus further
confirming what was shown in the CSP modelling. Outputs from the three
processes using the Start and Reconfigure classes can be found in Appendix
E subsection 3.1.

The third class, named StartContjava, is very similar to the Start class. The
main difference is that when the reference for controller object is returned,
rules are enabled and a new rule is added to the controller. The rest of the
class runs just as the Start class. When testing the Reconfiguration class
upon the constrained process, configuration thrashing is eliminated.
Outputs from the three processes using the StartCont and Reconfigure
classes can be found in Appendix E subsection 3.2.

The data fusion and decision making process is the only process fully tested
for configuration thrashing and had rules defined for them. This was
sufficient for this case study as the radar sensor will suffer from
configuration thrashing in much the same way that the data fusion and
decision making process does and the rule defined for this will be much the
same, but with a different minimum work and time frame defined. Though
the minimum work and time frame variables will be calculated in much the
same way as the processes are very similar in construction.

The rule used in the StartCont class is a ConjDver rule. As described in
chapter 5, the ConjDver operator takes three variables: x, y and z. In this
operator x is the maximum number of configuration overlaps which may
occur, y is the interval in which the x configuration overlaps may occur, and
z is the "sufficient interval" between reconfigurations to not be classified as
a configuration overlap. In this example x is set to 2, y is set to 100 and z is
set to 50 in order to eliminate configuration thrashing. It should be noted
that the all timings are set to be a tenth of the real timings, to allow for rapid
testing.

101

As with the difficulties in applying the configuration thrashing model it was
difficult even within such a small case study to decide upon the minimum
level of processing time needed before reconfiguration can occur. Also
even with the minimum level of processing decided upon and deadlines
being provided it became difficult to decide upon the values to place in the
ConjDver operator. Similar values have been used to that in the CSP
models. The rule that y <= (x+ 1)*z did assist in the decision and checking
that it was correct. A big benefit of the using the controller is that testing
can easily be conducted on the live system as it runs to check if deadlines
are met with various values in place.

Often deadlines are discovered during system testing and as such CSP
modelling would have to be amended to put the new deadlines in place. A
distinct advantage of using the controller is that new rules can simply be
added to the system or existing rules can be amended to suit the new rules.
It would be hoped that as rules can be changed with relative ease, then the
system rules put in place would not be over restrictive and altered as and
when needed. Also as a system evolves, then each component can have its
own unique set of rules that go into place to enforce its rules.

The software solution has highlighted that similar issues to the ones
experienced with the CSP models are apparent, but also shown that
configuration thrashing can very successfully be eliminated using a
controller. The biggest benefit of the controller process is that the developer
does not have to alter his or her process when requirements change, as rules
can simply be altered or added instead.

6.4 Case Study Discussion

The two approaches to solving configuration thrashing used within this case
study have both shown themselves to be successful and assist developers in
either engineering configuration thrashing out of their systems or restricting
it to the extent that it is no longer an issue.

The CSP approach provides benefits in that the model is validated to
definitely not suffer from configuration thrashing under all circumstances.
Whereas the software approach can be tested extensively and still there may
be a chance that if the rules have not been thought through fully, then the
system could thrash. However, modelling has to be done over and above
the software development to use the CSP configuration thrashing models to
check processes for configuration thrashing which developers may see as
over restrictive.

102

This case study has shown that the software approach is far more flexible
than the formal CSP approach as rules can be gradually changed to suit new
and emerging requirements. When requirements were tweaked during the
process of creating the CSP models used within this case study a sizable
amount of rework was required, whereas the software approach would
simply need an amendment to a rule or a new rule.

The software approach allows for an evaluation of many processes
simultaneously and enables the reviewing of interactions. The CSP
approach has a limitation in that it can only review single processes
presently though this has been detailed as a future improvement.

As stated within this thesis modelling can suffer from state space explosion
and as such complex models may not be able to be evaluated for
configuration thrashing using the formal approach detailed in this thesis. As
well as this one of the common issues with modelling is that if models do
not reflect the system perfectly then all that the assertions prove is that the
model cannot thrash and does not show anything regarding the actual
implementation.

Neither of the approaches really assisted in choosing how to define the
minimum level of work that must be completed before a reconfiguration
occurs, or how many overlaps can occur in a given time period.
Experimentation can be conducted with both approaches, but since the CSP
models as they stand only assess configuration thrashing and not the ability
to meet deadlines, the software approach lends itself to this a little more.

6.5 Summary

This chapter has introduced a case study which has been used to show the
usefulness of both the CSP modelling approach to eliminating configuration
thrashing and also the software controller based approach to restricting
systems reconfiguration actions based upon rule based logic. The case
study has clearly highlighted some weaknesses and difficulties in using both
of these methods, but also highlighted that both approaches can be used to
eliminate configuration thrashing successfully and each have many unique
benefits.

Both of the approaches have been compared and contrasted. The CSP
approach has a huge benefit in that if the system is modelled accurately then
the system can be proven to not be capable of configuration thrashing,
whereas the software approach cannot provide these guarantees. However
the software approach is far more flexible and otTers developers an approach
which fits the development methods that are already employed.

Chapter 7

Future Work

103

This thesis has presented a definition of configuration thrashing and
explored various methods of eliminating it from reconfigurable systems. A
formal approach has been presented using model checking techniques (CSP
and FDR), which allows configuration thrashing to be engineered out of
processes. Run-time techniques have also been explored, allowing
developers to include additional logic I processes in their systems in order to
prevent configuration thrashing. This chapter presents areas of future work,
some of which are extensions to work presented in this thesis, and others
that are related work not within the scope of the thesis. All future work
proposals presented in this chapter would contribute towards certifiable
dynamic reconfigurable systems capable of meeting deadlines.

The rest of this chapter is structured as follows. First, section 7.1 describes
future work in the form of blueprint to blueprint reconfigurations and the
analysis of configuration thrashing upon groups of processes. Some
discussions relating to options for blueprint representations and potential
solutions to allowing blueprint to blueprint reconfiguration to occur are
introduced. Section 7.2 considers future work on resource modelling and
methods of proving equivalence of given resources; if achieved this work
would allow software to be reconfigured at run-time in the presence of
diverse hardware without the need for additional certification. Section 7.3
describes work relating to contract restrictions for middleware systems.
This approach could potentially allow message oriented middleware to be
used in real-time reconfigurable systems. Section 7.4 discusses the work
that would be needed to allow dynamic rule sets to be used in
reconfiguration control systems, thus allowing potential benefits such as
run-time upgrades.

7.1 Blueprint to Blueprint Analysis

The definition for configuration thrashing presented within this thesis
focuses upon a single process and as such the CSP models presented within
this thesis are also focussed upon a detecting configuration thrashing in
single processes.

As discussed in section 3.3.3, complex interactions will most likely exist
between processes therefore developers are likely to consider

104

reconfiguration as a step from one system layout (or blueprint) to another.
This is especially likely if the reconfiguration is intended to change mode.

All of the models and definitions within this thesis allow configuration
thrashing to be detected, removed or restrained on a process by process
basis. Although, none of the models or definitions consider the fact that
interactions between groups of processes may mean the processes that in
theory can "thrash" (and would be flagged as needing alterations in the
current CSP models) cannot when the group of interacting processes cannot
produce the stimuli required to trigger the configuration thrashing. Thus
further research is required to take into account the complex interactions
that exist between processes. In order to analyse the interactions it is
important that we also investigate how a system can step from one blueprint
to another blueprint as this is the process in which configuration thrashing
will occur. In order to do this we also must define what a blueprint is.

Research in IMA / IMS has attempted to map system layouts using
blueprints [71, 72]. However, blueprints are not precisely defined in any
papers found to date. A distinction has been made between Design Time
Blueprints (DTBPs) and Run Time Blueprints (RTBPs). Although, the
distinction between RTBPs and DTBPs is entirely based upon usage, i.e.
whether or not they are used in a live system.

In [1] RTBPs are defined as "[t]he mapping of which part of which
application goes onto which hardware module in the IMA system" which is
a reasonable definition, albeit vague. While discussing blueprints in [72]
the author states "[t]he generation of the blueprints depends on accurate
information about the applications, (eg memory, processing, timing
requirements) and about the hardware in the system, (eg memory and
processing availability)", which indicates that precise knowledge of the
system hardware must be available in order to design blueprints, but this
does undermine certain aims of IMA such as plug and play hardware.

Bradley et al [71] state that "[b] lueprints provide the generic operating
system with configuration information so that the MADS can be adapted for
a particular avionics system", which is no more descriptive than the
definition found in [72]. However, Bradley et al go on to state that
blueprints include:

• The application run-time requirements
• Allocation and scheduling tables and rules (generated by the off line

allocation and scheduling tools)
• Hardware resources descriptions

105

In the authors opinion three possible methods of representing blueprints are
available. Each of these is briefly described below:

1. Static Hardware Mappings - this would involve mapping
individual processes to individually selected physical hardware.

2. Resource Mappings - this would involve mapping processes to
resource requirements (i.e. processor and memory requirements).
The system would map the processes onto hardware when the
blueprint is activated. This may require certain elements of the
future work presented in section 6.2 to allow resource equivalence to
be reasoned about.

3. Hybrid - this would physically map critical processes onto
individually selected physical hardware, but use resource mappings
for the rest of the system. It is assumed that in this type of blueprint
the critical processes in the blueprint would not vary significantly
between blueprints.

In the authors opinion resource mappings provides the most promising
option as it provides the most flexibility and allows increased dynarnisism
within systems. If used could be constructed as a combination of resource
requirements and communication patterns. Communication patterns would
specify the interactions that should occur between processes. Both the
communication and resource elements are required since much of the
resources required for processes are dependent on the communication
resources they require.

There are likely to be many possible valid hardware mappings for each
blueprint. Figure 1 shows the relation between modes, blueprints and
hardware mappings:

Mode

~~
{BPI, ... , BP.}

7~
{{ Mappingll, ... , Mappinglm}, ... , {Mapping.I, ... , Mapping ... }}

Figure 1: Mode, Blueprint (BP), and Mapping relationship

To allow reconfiguration between blueprints there must be a method of
taking a blueprint in a given format and storing it in the system. Then when
the blueprint is required to become active, some part of the system must
calculate a valid process to hardware mapping and reconfigure the system to
the valid configuration. It should be noted that a process should be in place

106

to ensure that system invariants are not broken during this reconfiguration.
This could in itself form a PhD as formally proving that dynamic large scale
system changes can never break invariants will be very challenging,
particularly if we are to introduce fault handling during the same process.

The number of transitions involved in a reconfiguration will require
investigation as it is likely that there will be many sets of transitions which
could take a system from its initial configuration to the valid reconfigured
configuration. Establishing the best set of transitions to use is an issue to be
considered for further research and a minimalist approach to this seems
sensible as the less transitions and process movement involved, the easier
the enforcement of hard real-time deadlines will be.

Once questions over how blueprint to blueprint reconfiguration will occur
have been answered, then it will be possible to extend this research to
consider configuration thrashing in groups of processes that reconfigure
using blueprints. This should allow more flexibility to developers when
considering configuration thrashing.

7.2 Resource Modelling / Equivalence

In many systems diverse hardware exists, but in most of these systems the
software is only tested and certified for the hardware it was intended to
execute upon. If hardware is altered, re-certification is required and is often
a lengthy and costly process. Re-certification must be conducted to ensure
that the applications can meet necessary deadlines upon the new hardware.
In fully dynamic reconfigurable systems both hardware and software could
reconfigure; thus software could end up attempting to run on hardware that
it was not originally intended to execute upon.

In order to support reconfigurable systems which adapt themselves in the
presence of diverse hardware, it is necessary to dynamically assess if a
process can execute and meet deadlines on hardware it was not originally
intended to execute upon. One way to achieve this assessment is to model
hardware resources and process requirements, thus allowing checks to be
conducted before reconfiguration takes place. This should also allow
equivalences between hardware to be analysed. This may seem to be a
relatively straightforward task; however, hardware resource modelling and
process resource requirement modelling are not trivial. Hardware-resources
have many attributes and each attribute is equally important. Processor
attributes may include the following:

107

• Cpu speed (e.g. l200MHz)
• Cache size

o L 1 cache size
o L2 cache size
o L3 cache size

• Pipelining
• Operating voltage
• Bus frequency (MHz)
• Number of channels
• Core frequency (MHz)
• Bus/Core ratio
• Instruction sets (e.g. 3D NOW)
• Co-processor
• Register size (e.g. 32bit, 64bit - particularly makes a difference to

the amount of physical memory which can be accessed)
• Cycle time

Appendix C contains a more comprehensive list of possible processor,
memory, OS, and storage attributes. The attributes outlined in appendix C
are only a candidate set of attributes and many others could be defined.

Each individual attribute could have a large impact upon executing
processes. For instance pipelining attempts to improve the performance of
processors in large sequential programs; however, in some cases the
pipe lining decreases performance. Thus pipe lining in general improves
performance, but when conducting worst case analysis for program
execution, it makes it worse. Also attributes cannot be assessed
independently. For example it does not necessarily hold that a process
which can meet its deadlines on a l200Mhz processor can meet its deadlines
on a 2000Mhz processor, as it could have a different instruction set or use
an inefficient instruction. A partial match is unlikely to be sufficient.

Further work is required to find a suitable method of expressing resources
and also resource requirements. The expression of resources and
requirements must be impossible to misinterpret and also simple to analyse.
Also an algorithm for equating resources and requirements is required. This
algorithm is likely to need a minimum number of attributes and
requirements in order to provide a match, though further work is required to
state what the minimum set would be.

If process requirements are expressed accurately and a timely algorithm can
be developed to match hardware attributes to software requirements, then it

108

is possible that software could be reconfigured at runtime in real-time
applications where diverse hardware exists with no need for recertification.

7.3 Contract Restriction for Reconfigurable
Middleware Systems

Middleware supports communication between distributed objects,
abstracting away the networking issues from the application designers /
developers. An important aspect of middleware systems is location
transparency, allowing clients to remain unaware of the location of a
component or service. Location transparency naturally lends itself to
reconfigurable systems, since when a service moves the client does not need
to be aware of the move. Message Oriented Middleware (MOM) lends
itself particularly well to reconfigurable systems as it not only allows for
location transparency, but also allows asynchronous communication and
provides support for multi-casting. MOM can distribute the same message
to multiple clients in a way which is transparent to the clients.

Publish-subscribe systems are an advanced type of Message Oriented
Middleware. In a publish-subscribe system a message sender does not
specify the address of any receiver. Instead, the sender publishes an event
with a subject (filter), while the receivers who are subscribing to the subject
will receive an asynchronous notification event. This provides a mechanism
which could allow reconfigurable components to register for message
receipt upon reconfiguring instead of informing the message publisher of
the reconfiguration. Publish-subscribe systems also allow for complete
decoupling of source and target. In fact in [73] it is argued that publish­
subscribe systems allow for decoupling of source and target along three
dimensions; space, time and flow. These are described below:

• Space decoupling: the publisher does not know who the subscribers
are (if any) and the subscribers do not know who the publisher is.
This means that the publisher has no reference to the subscribers.

• Time decoupUng: the interacting parties do not have to be actively
participating in the interaction at the same time, and so the publisher
may publish an event when a subscriber is offiine; the subscriber
will be notified of the event once it comes online again (though the
publisher mayor may not be online at the same time).

• Flow decoupUng: the flow of the messages from publisher to
subscriber is not synchronised upon by the publisher or subscriber.
There is no blocking or polling by either party.

109

This level of decoupling allows for a highly reconfigurable system. Within
a publish-subscribe system if a process wishes to receive messages, it can
subscribe and a route will become available, provided that hardware
connectivity is available, allowing messages to be received by the new
subscriber; the route does not have to be pre-defined.

Though the 'publish-subscribe' paradigm has many benefits, the publish­
subscribe paradigm (in its present form) is not suitable for real-time systems
as it is not temporally predictable, and the resource requirements are not
predictable. In [63] T. Murata & N.H. Minsky have stated that the publish­
subscribe paradigm " ... has a dark side, which may complicate the system
using it, making it less predictable, more brittle, and less safe", and they
have gone on to suggest that restrictions can be placed on the publishers and
subscribers to alleviate the 'dark side' .

The benefits provided by publish-subscribe system have not gone
unrecognised, as publish-subscribe systems have been used in real-time
systems, in particular systems for the US Homeland Defence [74].
However, even in this work the issues relating to temporal predictability
have not been addressed. It is believed that contracts could be used to
restrict communication and ensure temporal predictability thus allowing it
be used in real-time reconfigurable systems.

Further work should be conducted to investigate the possibilities for
restricting the publish-subscribe paradigm using contracts. It is proposed
that the use of intermediaries ("brokers") between a publish-subscribe
system and the publishers/subscribes could be used to enforce contracts.
However, it must be noted that brokers need to be simple and predictable to
allow accurate timing information to be gathered. Timing information is
required for brokers, in order to ensure deadlines will be met. An
investigation should be conducted to establish which properties of a contract
can be enforced locally (within a single broker), which require interaction
with other brokers, and which require interaction with the publish-subscribe
system itself (this may include properties which require modifications to the
publish-subscribe system to allow for enforcement).

If middleware systems such as the publish-subscribe paradigm can be
restricted, then as indicated above, they could present a flexible architecture
that would enable the development of highly reconfigurable real-time
systems.

110

7.4 Dynamic Rule Sets for Reconfiguration Control

Chapter 5 explored potential run-time solutions to configuration thrashing, a
rule based solution was explored in-depth and various issues were
discussed. Chapter 5 also introduced the notion of dynamic rule sets,
whereby rule sets can be altered at runtime. Dynamic rule sets could be
used to control configuration thrashing by imposing rules upon a process
reconfiguration to ensure that the reconfigured processes remain static until
a new process reconfiguration request would not constitute configuration
thrashing. This is a novel solution to restricting configuration thrashing and
could potentially take less computational resources than the other run-time
approaches discussed within the thesis.

The use of dynamic rule sets would affect the temporal predictability of the
controller's decision making, as the number of rules that exist within the
system will vary; rules added to stop reconfiguration occurring and thus stop
configuration thrashing should be removed once they become stale.
Removal of rules would incur a processing overhead, which could alter the
worst case execution time for the decision making algorithm. It is possible
for the stale rules to remain within the system, as once the time period is
exceeded the rules will have no effect. However, the effect on the worst
case execution time of leaving all stale rules in place would most likely be
worse than the overhead required removing the stale rules.

Additional benefits such as quicker upgrades and run-time alterations could
be provided if dynamic rule sets were to be used. It is possible in some
cases that additional rules would be required for specific new components
upon there inclusion in a system - these new rules could be added at run­
time provided they do not contradict existing rules.

Further work is required to further explore dynamic rule sets. A temporally
predictable run-time consistency checking algorithm will require further
research. Also a method of ensuring that new rules added at run-time do not
contradict existing rules is required. This thesis did not further explore
dynamic rule sets, as they could themselves become susceptible to a form of
configuration thrashing. If a temporally predictable run-time consistency
checking algorithm can be developed for rule sets then further research in
this area would certainly be worth progressing.

III

7.5 Summary

This chapter introduces four avenues for future work. The future work
presented is either extensions to work presented, or related work that is not
within the scope of the thesis.

The first piece of potential future work introduced the difficulties in
resource modelling and methods of proving equivalence of between
resources. This work could allow software to be reconfigured at run-time in
the presence of diverse hardware with no need for additional certification.
The second piece of potential future work describes work relating to
contract restrictions for middleware systems. This could potentially allow
message oriented middleware to be used in real-time reconfigurable
systems. The third piece of potential future work would allow dynamic rule
sets to be used in reconfiguration control systems, which could provide
benefits such as run-time upgrades.

Chapter 8

Conclusions

112

This thesis has introduced reconfigurable systems, and identified an
anomaly that can occur within reconfigurable systems whereby a system
consumes most, if not all, of its resources reconfiguring and thus cannot
execute intended computing functions. This has been named "configuration
thrashing" due to its similarities to memory thrashing. The main objectives
for this work were: first, to introduce reconfigurable systems and explore
the possibilities within reconfigurable systems to enable an unambiguous
extensible reconfiguration language to be developed; second, to characterise
and define configuration thrashing and investigate the effects it has upon
real-time reconfigurable systems; and third, to develop methods by which
the effects of configuration thrashing on reconfigurable real-time
applications can be eliminated or at least reduced sufficiently to stop
reconfiguration from interfering with intended computing functions.

Model checking is utilised within this thesis to provide a means of ensuring
that configuration thrashing is engineered out of systems. Potential run-time
solutions to configuration thrashing are also explored. Run-time solutions
are explored because model checkers are not adequate for large complex
systems, as these will suffer from state space explosion. The work
presented in this thesis provides a step towards certifiable dynamic
reconfigurable systems capable of enforcing deadlines. The elimination of
configuration thrashing is necessary, though not sufficient, for this goal.

The remainder of this chapter is organised as follows. First, Section 8.1
briefly summarises the exploration of possibilities within reconfigurable
systems using a VDM-SL model. Section 8.2 discusses the definition of
configuration thrashing. Section 8.2.1 discusses the elimination of
configuration thrashing using model checkers, and Section 8.2.2 looks at
run-time techniques for configuration thrashing elimination. Section 8.2.3
reviews the effectiveness of the two approaches introduced to eliminate
configuration thrashing by drawing upon the case study introduced in
chapter 6. Section 8.3 gives the final conclusions.

8.1 Reconfigurab/e Systems

Reconfigurable systems offer the ability to adapt hardware and / or software
to meet changing requirements. Reconfigurable devices, particularly Field­
Programmable Gate Arrays (FPGAs) have been the subject of increased

113

popularity, due to having been shown to accelerate a number of computing
applications.

Reconfigurable software provides the ability to alter software systems either
in terms of software linkage, or adding / removing processes. Online
reconfigurable software systems offer many potential benefits over systems
only capable of omine reconfiguration including: online software upgrades,
adaptability, self-management, and increased fault-tolerance.

Research into reconfigurable systems has shown that a suitable language in
which to express the behaviour of reconfigurable systems is lacking. Many
terms used in reconfigurable systems research are not well defined and thus
can be confusing or even ambiguous. Chapter 2 introduced a three-level
model which has been specified formally in VDM-SL to provide a basis for
exploring the possibilities available within reconfigurable systems. The
VDM-SL model has been built to allow architectures to be manipulated
using a set of well defined reconfiguration operators. The operators
outlined form an unambiguous extensible reconfiguration language. The
VDM-SL model is very detailed and all operators specify implementation
detail, thus eliminating ambiguity.

The VDM-SL model has yielded many interesting insights. It has shown
that the number of options available within reconfigurable systems is greater
than anticipated. The model has also shown that although proxies are not
commonly associated with reconfigurable systems, they may have a
valuable role to play in dynamic reconfigurable systems, when a totally
interconnected network is not available. Proxies also offer the benefit of
buffering messages whilst reconfiguration occurs.

As well as providing insights into the options available for reconfigurable
systems, and how individual reconfiguration operators can be implemented,
the model has also provided interesting insights into reconfigurable
architectures. For example, it has shown that it seems necessary to allocate
all processes a global unique identifier to avoid reliance on (inadequate)
location-dependent references, as well as showing that even with minimal
system invariants, some operations require atomic actions to ensure system
invariants are not violated during reconfiguration.

The research into reconfiguration operators has shown that the
implementation of the operators specified in the VDM-SL model would in
the main be difficult, though not impossible. Certain operators may require
OS support, for example operators which synchronise processes' instruction
stacks may require OS support to write to such private memory areas.

114

8.2 Configuration Thrashing

Configuration thrashing is an anomaly which can arise in real-time
reconfigurable systems. It is, in essence, a lack of progress of intended
computing functions due to reconfiguration activity consuming essential
resources, thus causing deadlines to be missed.

It may be argued that deadlines are missed and progress is not made in
reconfigurable systems due to non-reconfiguration functionality being
inefficient, rather than reconfiguration actions utilising required resources.
The author does recognise that in some cases improvements in non­
reconfigurable actions could allow processes to meet deadlines without
reconfiguration alterations, though it is not possible in all cases. In extreme
cases reconfiguration could take place continuously, thus making it
impossible for non-reconfiguration functionality to make progress no matter
how efficient it is.

Configuration thrashing is defined within Chapter 3 of this thesis as
" ... occurring when one or more configuration overlaps occur. The number
of configuration overlaps that can be tolerated in a given time period or in a
given sequence is application dependent and possibly even mode
dependent ... ". A configuration overlap occurs when two subsequent
reconfiguration requests are executed without a "sufficient interval"
between them. The sufficient interval required in a given configuration is
application dependent. The worst case scenario is a never ending series of
consecutive configuration overlaps, which logically will always be
classified as configuration thrashing as progress cannot be made.

If configuration thrashing is not eliminated then it is possible for a situation
to arise where a reconfigurable system cannot provide sufficient resources
to conduct its primary computing functions due to reconfiguration actions
utilising required resources.

Though no literature found to date specifically explores configuration
thrashing. Related work in the areas of fault-tolerance, reflection, self
modifying code and re-configurability in general have been explored in an
attempt to put configuration thrashing in context with similar problems
found in these related research topics. This exploration found that many
pieces of similar work can suffer from configuration thrashing, but very few
actually recognise that this is indeed an issue. The few that do recognise
timing issues as a problem have reviewed this in terms of quality of service
and utilise feedback based algorithms which are not adequate for hard real­
time systems. Also very few pieces of related work have a solid formal
underpinning and the few that do focus upon safety through proving system
invariants hold throughout reconfiguration, however this and other similar

115

research does not address timing issues and as such does not and cannot
address any issues similar to or relating to configuration thrashing.

8.2.1 Eliminating Configuration Thrashing Using Model
Checkers

Un-timed and timed CSP models capable of detecting the possibility of
configuration thrashing are presented in Chapter 3. The un-timed CSP
model allows configuration thrashing to be defined in terms of a sequence
of consecutive configuration overlaps. However, this may not be adequate,
as it may be required that configuration thrashing be defined as x overlaps in
a given time period. The timed CSP model allows this more general
definition of configuration thrashing to be used.

CSP in its traditional form has no notion of time, though there are two
distinct approaches to expressing time in CSP. The more elegant is to re­
interpret the CSP language to log the time for each event which occurs. The
alternative approach is a discrete model of time, which makes the drum-beat
of time an explicit event. The interval between successive "beats" may be
any finite duration. The discrete model of time was adopted by the author
within the timed CSP model as although the continuous approach is more
elegant, the discrete approach offered the level of tool support required for
experimentation.

The specification of the timed CSP model has shown that data freshness is
important, because in order to detect configuration thrashing an event
history must be maintained and events in this history will become stale.
This was not required within the non-timed model as without time data
cannot become stale.

Both the timed and un-timed CSP models can be used to ensure that
configuration thrashing is engineered out of systems. However, it was
found that in some cases it may be impractical or even impossible to use
model checkers, as model checkers (such as FDR) are susceptible to state
space explosion [19]. This is particularly true of large complex system
models, though smaller less complex system models should not suffer
unduly and many techniques can be used to limit the effects of state space
explosion during modelling.

Experimentation with the CSP models has led to interesting findings
relating to difficulties in applying the CSP models. For example,
probabilistic requirements are often imposed on systems, which are
challenging for system developers, as a deadline will only be valid for a
proportion of the system's operational activity. As configuration thrashing

116

is effectively reconfiguration causing deadlines to be missed, configuration
thrashing itself can also become probabilistic. In many cases developers
make deadlines over probabilistic requirements hard, in order to alleviate
complications, however this leads to over-engineering, and in some cases
these over engineered requirements can conflict unnecessarily with normal
(non over-engineered) requirements. Further discussions regarding
difficulties in applying the configuration thrashing models are presented in
Chapter 3.

8.2.2 Run-time Techniques for Configuration Thrashing
Elimination

Potential run-time solutions to the problem of configuration thrashing are
explored in Chapter 5. These solutions allow developers to include
additional logic / processes in their systems in order to eliminate
configuration thrashing. Several options are explored in-depth, from
providing mechanisms that enable developers to choose when
reconfiguration can / cannot occur, to a more automated rule based solution.

Many methods of allowing developers to choose when reconfiguration can /
cannot occur have been explored. Providing engineers with reconfiguration
mechanisms in the form of a service is one example. Methods such as this
would allow developers direct control over when and how reconfiguration
could occur on a process by process basis. This provides a novel approach,
but as discussed in chapter 5, without guidance developers may not know
when reconfiguration should take place or, more importantly, when it would
be "safe" for it to take place. Developers may be tempted to develop
systems that are more static than necessary.

Also investigated within this thesis is a rule based solution, in which a
reconfiguration controller sub-system decides when reconfiguration can and
cannot occur, based upon logic defined as a set of rules. Traditionally logic
within control processes is hard coded; however, benefits such as quicker
upgrades and run-time alterations could be provided if the logic in a
reconfiguration controller is specified as a set of alterable rules. This type
of approach allows system developers to focus on core development without
concern for reconfiguration issues. The rule based approach has highlighted
many interesting issues, such as rule expression, rule predictability, as well
as potential core rules for systems; all of these issues are further discussed
within Chapter 5.

A rule based demonstrator has been developed. The demonstrator provides
a basis for reviewing the effects of configuration thrashing on a real-time
system. Experimentation has been conducted using the demonstrator, not

117

only for rule sets but also for scenarios where developers control
reconfiguration, as it was constructed to allow reconfiguration operators to
be accessed directly.

The demonstrator has clearly shown that the candidate operators specified
within the VDM-SL model can be implemented (though not all of the
operators were actually implemented). The demonstrator has also enabled
experimentation to be conducted using restriction rules. An example
process has been developed and many rules were tested against this process;
the outcome was that reconfiguration could be restricted sufficiently within
the demonstrator to eliminate configuration thrashing. Details relating to
the experimentation conducted are considered further in Chapter 5.

8.2.3 Configuration Thrashing Elimination Effectiveness

To review the effectiveness of both the models outlined for configuration
thrashing, and also the run-time solution outlined, a small case study has
been developed. This case study is focussed upon battlefield surveillance
using multi sensor data fusion. The ability to rapidly detect and identify
potential targets both fixed and mobile from multiple sensor inputs is a
critical function in modem warfare.

Within a battlefield surveillance system targets need to be assessed as
quickly as possible in order to guide troops accurately and ensure that
weapons are do not target non hostile targets. Within the case study two
different types of sensor are outlined, as well as the main data fusion and
decision making process.

Both the formal CSP approach and the run-time rule based approach
enabled configuration thrashing to be eliminated. The CSP approach
enabled for a restricted model to be constructed that could not reconfigure
and the run-time rule based software approach enabled for reconfiguration
to be restricted sufficiently to avoid configuration thrashing. Both
approaches have their own limitations, but both are very effective.

This case study has shown that the run-time rule based software approach is
far more flexible than the formal CSP approach as rules can be gradually
changed to suit new and emerging requirements. When requirements were
tweaked during the process of creating the CSP models a sizable amount of
rework was required, whereas the software approach simply required a
small rule amendment.

The CSP approach has a limitation discussed in chapter 3 which is that it
can only allow configuration thrashing to be detected in single processes

118

and as such does not consider the reconfiguration of groups of processes. In
distributed systems complex interactions will exist between processes and as
such developers are likely to consider reconfiguration as many processes
reconfiguring simultaneously or in a well defined sequence. The models
produced can check if each individual process can "thrash" and as such be
used to check entire systems (one process at a time), but this does not
consider the fact that interactions between the groups of processes may
make the processes that in theory can "thrash" not capable of configuration
thrashing as the interacting processes may not provide the necessary stimuli.
This has been highlighted as an area of future work. Though this was not
reinforced within the case study, it was in many ways easier to work with
the run-time rule based approach as you could see and interpret the
interactions between the processes more easily.

Neither of the approaches really assisted in choosing how to define the
minimum level of work that must be completed before a reconfiguration
occurs, or how many overlaps can occur in a given time period before
configuration thrashing occurs. However, experimentation can be
conducted within both approaches, but since the CSP models as they stand
only assess configuration thrashing and not the ability to meet deadlines, the
run-time rule based software approach lends itself to this better.

Although many limitations and difficulties were highlighted within the case
study, it also showed that both approaches could be used to eliminate
configuration thrashing and did so very effectively within the case study.

8.3 Concluding Remarks

The contribution of the work in this thesis is firstly, the development of a
VDM-SL model allowing the behaviours of reconfigurable systems to be
expressed, as well as outlining a set of operators which form an
unambiguous extensible reconfiguration language that can be used in system
development. Secondly, an anomaly termed configuration thrashing has
been explored in detail and a formal definition has been presented.

Related work in the areas of fault-tolerance, reflection, self modifying code
and re-configurability in general have been explored in an attempt to put
configuration thrashing in context with similar problems found in these
related research topics. Very few pieces of related work recognise that this
is indeed an issue, but most can suffer from it. The few that do recognise
similar issues review them in terms of quality of service and are not
adequate for hard real-time systems. Very little of the related work
reviewed had a solid formal underpinning and the few that did focus upon

119

safety invariants rather than addressing timing issues and as such cannot
address any issues similar to or relating to configuration thrashing.

Building on the configuration thrashing definition, a further contribution is
made in this thesis by exploring methods which can be used to eliminate
configuration thrashing in reconfigurable systems. A formal approach to the
elimination of configuration thrashing has been presented using model
checking techniques (CSP and FDR), and a range of run-time techniques
have been explored.

A contribution has also been made in the form of a demonstrator which has
allowed a level of experimentation to be conducted to further demonstrate
that the range of run-time techniques can indeed restrict configuration
thrashing sufficiently. The demonstrator has also shown that in all
attempted cases the candidate set of operators defined within the VDM-SL
model can be implemented.

The case study presented within this thesis also further highlights the
usefulness of both the CSP models and also the run-time rule based software
approach to restricting reconfiguration to eliminate configuration thrashing.
Both of the approaches were shown to allow configuration thrashing to be
eliminated in the battlefield surveillance case study presented. The case
study did further confirm many of the limitations and difficulties discussed
within the thesis when applying the models or attempting to decide upon
appropriate rules for the run-time rule based solution. Many of these
limitations provide the basis for future work presented in chapter 7 of this
thesis. However, none of these limitation stop configuration thrashing from
being eliminated, but in some cases could lead to the system being
unnecessarily over restrictive.

The work presented in this thesis provides a step towards certifiable
dynamic reconfigurable systems capable of enforcing deadlines by
investigating and providing methods of eliminating configuration thrashing.

120

Bibliography

1. AJ. Elbirtm, C. Paar, An Implementation and Performance
Evaluation of the Serpent Block Cipher, in ACMlSIGDA Eighth
International Symposium on Field Programmable Gate Arrays.
2000. p. 33-40.

2. K. Compton, SHauck, Reconjigurable Computing: A Survey of
Systems and Software. ACM Computing Surveys, 2002. 34(June
2002): p. 171-210.

3. Oreizy, P., Issues in Modelling and Analyzing Dynamic Software
Architectures, in Proceedings of the International Workshop of the
Role of Software Architecture in Testing and Analysis. June 30 - July
3 1998: Marsala, Sicily, Italy.

4. C Szyperski, Component Technology: What, Where and How?, in
Proceedings of the 25th International Conference on Software
Engineering (ICSE 2003).2003. p. 684-693.

5. J.s.Bradbury, lR.Cordy, lDingel, M.Wermelinger. A Survey of
Self-Management in Dynamic Software Architecture Specifications.
in Proceedings of the International Workshop on Self-Managed
Systems (WOSS'04). OctoberlNovember 2004.

6. Avionics Application Software Standard Interface. January 1997,
ARINC Specification 653.

7. M Nicholson, P Conmy, I Bate, J McDermid, Generating and
Maintaining a Safety Argument for Integrated Modular Systems, in
5th Australian Workshop on Safety Critical Systems and Software.
2000: Australia. p. 31-41.

8. R Milner, Communicating and Mobile Systems: The Pi Calculus.
31 st May 1999: Cambridge University Press.

9. L Cardelli, A D Gordon, Mobile Ambients. Theoretical Computer
Science, Special Issue on Coordination, June 2000. 240/1: p. 177-
213.

10. H Simpson, Protocol for Process Interaction, in lEE Proceedings
for Computers and Digital Techniques. 2001. p. 157-182.

121

11. I Haynes, C B Jones, Specifications are not (Necessarily)
Executable. Software Engineering Journal, November 1989. 4(6): p.
330-338.

12. N E Fuchs, Specifications are (Preferably) Executable. Software
Engineering Journal, September 1992.7(5): p. 323-334.

13. DCE 1.1: Remote Proceedure Call. August 1997 [cited; Available
from: http :!,\VW\v. open group. org/pub I icati onsl cataloguel c 706. htm.

14. CAR Hoare, Communicating Sequential Processes. Prentice Hall
International Series on Computer Science. 1985: Prentice Hall.

15. A W Roscoe, The Theory and Practice of Concurrency. 1998:
Prentice Hall.

16. R Milner, Communication and Concurrency. Prentice Hall
International Series on Computer Science. 1989: Prentice Hall.

17. Welch, P.H. A CSP model for Java threads. 1999 [cited 2008
10/1112008]; Available from:
http://www.cs.kcnt.ac.uk/projccts/ofa/java-threads/203.html.

18. S Schneider, Concurrency and Real-Time Systems - The CSP
Approach. 2000: Wiley.

19. W Reisig, G Rozenberg, The State Space Explosion Problem.
Lecture Notes in Computer Science, 1998. 1491: Lectures on Petri
Nets I: Basic Models: p. 429-528.

20. A Bums, A Wellings, Real-Time Systems and Programming
Languages. 3 ed. 2000: Addison Wesley.

21. H Hansson, B Jonsson. A Calculus for Communicating Systems with
Time and Probabilities in Proceedings of the 11th Real-Time
Systems Symposium. December 1990. Lake Buenna Vista, Florida,
USA.

22. R Milner, The Polyadic Pi-Calculus: A Tutorial in Logic and
Algebra of Specification. 1993: Springer-Verlag.

23. L Cardelli, A D Gordon, Mobile Ambients, foundations of Software
Science and Computational Structures. Lecture Notes in Computer
Science, 1998. 1378: p. 140-155.

122

24. M Wermedlinger, J L Fiadeiro, Connectors for Mobile Processes.
IEEE Transactions on Software Engineering, May 1998.24(5).

25. GRoman, P J McCann, J Y Plun, Mobile UNITY: Reasoning and
Specification in Mobile Computing. ACM Transactions on Software
Engineering and Methodology, July 1997. 6(3): p. 250-282.

26. A Lopes, J L Fiadeiro, M Wermedlinger, Architectural Primitives
for Distribution and Mobility. Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering,
November 2002: p. 41-50.

27. B C Pierce, Basic Catagory Theory for Computer Scientists. 1991:
MIT Press.

28. Pierce, W.H., Failure-Tolerant Computer Design. 1965: New York:
Academic.

29. J J Homing, H.C.L., P M Melliar-Smith, B Randell A program
structure for error detection and recovery, in Lecture Notes In
Computer Science; Vol. 16, Operating Systems, Proceedings of an
International Symposium. 1974, Springer-Verlag: London, UK. p.
171 - 187.

30. Randell, B., System Structure for Software Fault Tolerance. IEEE
Transactions on Software Engineering, 1975. 1: p. 220--232.

31. B Randell, A.R., R J Stroud, J Xu, A F Zorzo, Coordinated Atomic
Actions: from Concept to Implementation. Submission to IEEE TC
Special Issue I 1, 1997.

32. P A Lee, T Anderson, Fault Tolerance: Principles and Proactive.
2nd Edition ed. 1990: Springer-Verlag Wien New York.

33. S Porcarelli, M.C., F Di Gi, A Bondavalli, P Inverardi An Approach
to Manage Reconfiguration in Fault Tolerant Distributed Systems. in
Proceedings of the ICSE 2003 Workshop on Software Architectures
for Dependable Systems 2003. Portland, Oregon, USA.

34. J Fraga, F.S., F Favarim An adaptivefault-tolerant component model
in Proceedings of the Ninth IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS '03).
2003. Capri Island: IEEE.

123

35. G. Coulson, G.S.B., M. Clarke, N. Parlavantzas, The design of a
configurable and reconfigurable middleware platform. Distributed
Computing, 2002.15.

36. Y. Sizhong, LJ. RECOM: A Reflective Architecture of Middleware.
in Proceedings of the 3rd International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns. 2001.
Kyoto, Japan.

37. F. Kon, R.c., M. Roman. Design and Implementation of Runtime
Reflection in Communcation Meddleware: the DynamicTAO Case.
in In proceedings of ICDCS'99 Workshop on Middleware. 1999.

38. K. Nahrstedt, H.C., S. Narayan, QoS-aware Resource Management
for Distributed Multimedia Applications. Journal of High-Speed
Networking, Special Issue on Multimedia Networking, 1998. 7: p.
227-255.

39. N. Parlavantzas, G.C., G. Blair. A Resource Adaption Framework
for Reflective Middleware. in Proceedings 2nd International
Workshop on Reflective and Adaptive Middleware. 2003. Rio de
Janeiro, Brazil.

40. OpenORB - A Marriage of three technologies. 2008 [cited 2008
22/12/2008]; The OpenORB project proposes a philosophy for the
development of reflective middleware platforms.]. Available from:
http://www.comp.lancs.ac .1I k/ computing/research/mpg/reflection/mc
lliJ2hn.

41. J. Dowling, T.S., V. Cahill, P. Haraszi, B. Redmond. Using
Reflection to Support Dynamic Adaption of System Software: A Case
Study Driven Evaluation. in Proceedings of Software Engineering
and Reflection 2000. 2000.

42. P Lee, M.L. Optimizing ML with Run-Time Code Generation. in
Proceedings of the 1996 A CM Conference on Programming
Language Design and Implementation. May 1996. Philadelphia,
Pennsylvania, USA.

43. L Homof, T.J. Certifying Compilation and Run-time Code
Generation. in ACM Workshop on Partial Evaluation and
Semantics-Based Program Manipulation. 1999.

124

44. V Bala, E.D., S Banerjia. Dynamo: A Transparent Dynamic
Optimization System. in Proceedings of the 2000 ACM Conference
on Programming Language Design and Implementation. June 2000.
Vancouver, British Columbia, Canada.

45. S Debray, W.E. Profile-Guided Code Compression. in Proceedings
of the ACM 2002 Conference on Programming language design and
implementation June 2002. Berlin, Germany.

46. M Madou, B., Anckaert, P Moseley, S Dabray, B De Sutter, K De
Bosschere. Software Protection through Dynamic Code Mutation. in
Proceedings of the 6th International Workshop on Information
Security Applications. August 2005. Jeju Island, Korea: Springer.

47. C Tschudin, L.Y. Harnessing Self-Modifying Code for Resilient
Software. in Proceedings of the 2nd IEEE Workshop on Radical
Agent Concepts (WRAC). September 2005. NASA Goddard Space
Flight Center Visitor's Center.

48. Tschudin, C.F. Fraglets - a Metabolistic Execution Model for
Communication Protocols. in Proceedings of the 2nd Annual
Symposium on Autonomous Intelligent Networks and Systems
(AINS). July 2003. Menlo Park, USA.

49. L Yamamoto, D.S., T Meyer. Self-Replicating and Self-Modifying
Programs in Fraglets. in Proceedings of the 2nd International
Conference on Bio-Inspired Models of Network, Information, and
Computing Systems December 2007. Budapest, Hungry.

50. H Cai, Z.S., A Vaynberg. Certified Self-Modifying Code. in
Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation. June 2007.
San Diago, California, USA.

51. S S Kulkarni, K.B., Correctness of Component-based Adaptation, in
International Symposium on Component-based Software
Engineering. 2004, Springer: Edinburgh, Scotland.

52. J Zhang, B.H.C.C., Z Yang, P K Mckinley Enabling safe dynamic
component-based software adaptation, in Architecting Dependable
Systems III, Springer Lecture Notes for Computer Science 2005,
Springer. p. 194-211.

125

53. S Shrivastava, S.W. Architectural Support for Dynamic
Reconfiguration of Large Scale Distributed Applications. in
Proceedings of the International Conference on Configurable
Distributed Systems 1998. Washington, DC, USA IEEE.

54. J Magee, J.K., M Sloman, Constructing distributed systems in Conic.
IEEE Transactions on Software Engineering, 1989. 15(6): p. 663 -
675.

55. A Tesanovic, M.A., D Nilsson, H Norin, J Hansson, Ensuring Real­
Time Performance Guarantees in Dynamically Reconfigurable
Embedded Systems. Embedded and Ubiquitous Computing, 2005: p.
131-141.

56. M Amirijoo, R.T., T Andersson Finite horizon QoS prediction of
reconfigurable firm real-time systems. in Proceedings of the J 2th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA'06). 2006. Las Vegas,
Nevada, USA IEEE.

57. P Oreizy, N Medvidovic, R N Taylor, Architecture-Based Runtime
Software Evolution, in Proceedings of International Conference on
Software Engineering (ICSE). 1998. p. 117-186.

58. N H Minsky. Why Should Architectural Principles be Enforced? in
Proceedings of Computer Security, Dependability and Assurance:
From Needs to Solutions. 1998. York, UK: IEEE.

59. N H Minsky, V Ungureanu, Law-Governed Interaction: A
Coordination and Control Mechanism for Heterogeneous
Distributed Systems. ACM Transactions on Software Engineering
and Methodology, 2000. 9: p. 273-305.

60. M Ionescu, N H Minsky, T D Nguyen. Enforcement of Communal
Policies for P2P Systems. in Proceedings of the 6th International
Conference on Coordination Models and Languages. February 2004.
Piza Italy.

61. X Ao, N H Minsky. Flexible Regulation of Distributed Coalitions. in
Proceedings of the 8th European Symposium on Research in
Computer Security (ESORICS) '. October 2003. Norway.

126

62. N H Minsky, V Ungureanu, W Wang. BUilding Reconfiguration
Primatives into the Law of the System. in Proceedings of the 3rd
International Conference on Configurable Distributed Systems. May
1996. Los Alamitos, California.

63. T Murata, N H Minsky. On Shouting 'Fire!' - Reglulating Decoupled
Communication in Distributed Systems. in Proceedings of the
International Middleware Conference. 2003. Rio De Janeiro Brazil:
Springer Berlin 1 Heidelberg.

64. L Wills, S Kannan, S Sander, M GuIer, B Heck, J V R Prasad, D
Schrage, G Vachtsevanous, An Open Platform for Reconjiguration
Control, in IEEE Control Systems Magazine. June 200 I. p. 49-64.

65. J Kramer, J Magee, The Evolving Philosophers Problem: Dynamic
Change Management. IEEE Transactions on Software Engineering,
November 1990. 16(11): p. 1293-1306.

66. M R Lyu, ed. Software Fault Tolerance (Trends in Software). 1995,
Wiley Press.

67. Real-Time Specification for Java 1.0.2. June 2002 [cited; Available
from: http://\\'\\'\v.rtsj.org/spccjavadoc/bookindex.html.

68. D. L. Hall, J.L., An Introduction to Multisensor Data Fusion.
Proceedings of the IEEE, 1997.85: p. 6-23.

69. E. Waltz, lL., Multisensor Data Fusion. 1990: Artech House. 488.

70. N. Bertrand, P.S., Model Checking Lossy Channels Systems Is
Probably Decidable Foundations of Software Science and
Computation Structures, 2003. 2620/2003: p. 120-135.

71. J D Bradley, M.A.F., P R Miller, P Moxon, A S Wake. Integrated
Modular Avionics - An lMA Design Teams View. in lEE Seminar:
Certification of Ground / Air System. 1998.

72. D Fitzjohn, N.T. Implementing Advanced Avionics [cited 2003
December 2003]; Available from:
http://www . iee.org/OnComms/pn/aerospace/libralY .cfm.

73. P TH Eugster, P Felber, R Guerraoui, A-M Kerrnarrec, The Many
Faces of Publish Subscribe. 2001: Technical Report DSC
ID:2000 1 04, EPFL

127

74. T Bass. The Federation of Critical Infrastructure Information via
Publish-Subscribe Enabled Multisensor Data Fusion. in
International Conference on Information Fusion. July 2002: IEEE.

128

Appendix A

Three Layer VOM Model

This appendix contains the full VDM-SL model described in chapter 2 of
this thesis. The model is a three-level model and was developed to provide
a basis for exploring the possibilities available within reconfigurable
systems. The VDM-SL was particularly aimed to allow IMA type
architectures to be expressed, though the model is generic and can express
almost any reconfigurable architecture. The operators presented in this
model form an extensible reconfiguration language. The model is presented
below:

--Model of Aircraft System v4.0--
---Defining possible operators---

--***KEY FOR OPERATION I FUNCTION NAMING CONVENTION***--

--Processor -> Procr
--Process -> Proc
--Activity -> Act
--Persistent Memory -> PMem
--Non-Persistent Memory -> NPMem
--Shared Data -> SO
--Hardware -> HW
--Software -> SW
--With -> 1'1
--With Out -> 1'10
--Synchronise -> Sync
--Delete -> Del
--Leave Proxies -> LP
--Location -> Loc

--This naming convention is used to shorten function and operation names

--**STATE**--

state System of
HardWare
SoftWare

Hardware
Software

Loc Locations
SW_HW_Map SW_to_HW_Map
HW Loc Map HW to Loc Map

inv BYS ;. (forall pid-in-set-dom
sys.SW HW Map.Proc to Procrs &
pid in-set dom sys~SoftWare.Processes) and

(forall cidset in set rng
sys.SW HW Map.Proc to Procrs &
(cidset inter dom sys~HardWare.Cards) • cidset) and

(forall pid in set dom

129

sYS.SW_HW_Map.Proc_to_PMem &
pid in set dom sys.SoftWare.Processes) and

(forall cidset in set rng
sys.SW_HW_Map.Proc_to_PMem &
(cidset inter dom sys.HardWare.Cards) - cidset) and

(forall pid in set dom
sys.SW HW Map.Proc to NPMem &
pid in-set dom sys~SoftWare.Processes) and

(forall cidset in set rng
sys.SW HW Map.Proc to NPMem &
(cidset inter dom sys~HardWare.cards) = cidset) and

(forall sdid in set dom
sys.SW HW Map.SO to NPMem &
sdid in set dom sys~SoftWare.SDs) and

(forall cidset in set rng
sys.SW_HW_Map.SD_to_NPMem &
(cidset inter dom sys.HardWare.Cards) = cidset) and

(forall gpid in set dom
sys.SoftWare.Processes &
if is Activity(sys.SoftWare.Processes(gpid)) then

(sYs.Sottware.procesSes(gpid) . Loaded - true ->
(CheckHWConnected(

sys.SW HW Map.Proc to Procrs(gpid),
sys.SW-HW-Map.Proc-to-PMem(gpid),
syS.SW-HW-Map.proc-to-NPMem(gp1d)) = true) and

card (syS.SW_HW_Map.Froc_to_Procrs(gp1d)) = 1)
else
(sys.SoftWare.Processes(gpid) .Activity.Loaded - true =>

(CheckHWConnected(
sys.SW HW Map.Proc to Procrs(gpid),
syS.SW-HW-Map.Proc-to-PMem(gpid),
syS.SW-HW-Map.Proc-to-NPMem(gp1d)) - true) and

card (sys.SW HW Map.Froc to Procrs(gpid)) - 1))
init sys == sys = mk System(- - - -

mk Hardware({I-», (I-», (I-», 11-»),
mk-Software(II-», {I->}, {I->}, II->}, II->}),
mk=Locations{{ I->}),

end

mk SW to HW Map{{I->}, {I->}, {I->}, {I->}),
{I~>}- - -

--**TYPES**--

types

Hardware .. MAUs map MAU_IO to MAU
Cards map Card_IO to Card
Mappings map Card ID to MAU 10
Linkage map HW_LInk_IO to HW_Link

inv hw -= (forall cid in set dom hw.Mappings &
cid in set dom hw.Cards) and

>

(forall mid in set rng hw.Mappings &
mid in set dom hw.MAUs} and

(forall link in set rng hw.Linkage &
cases link:

mk HW Uni Link(a,b) ->
a 1n set dom hw.Cards and b in set dom hw.Cards,

mk HW Unknown Link(a,b) ->
a in set dom hw.Cards and b in set dom hw.Cards,

mk_HW_Bi_Link{mk_HW_Uni Link(a,b), mk_HW_Uni_Link{aa,bb}) -

a in set dom hw.Cards and b in set dom hw.Cards and
aa in set dom hw.Cards and bb in set dom hw.Cards

130

end) ;
--Linkage here is only Card linkage (MAU linkage is subsumed in this) .
--It could be argued that Linkage is not required when looking at IMA,
--as it assumes a 8US, however failures may require linkage to be evaluated.

Software .. Services map Service 10 to set of Global_Process_ID
Processes map Global_Process_ID to Process
SOs map Shared Data 10 to Shared Data
Linkage map Link_ID to SW_Link
SO_Linkage map Link_ID to Shared_Data_Link

inv sw (forall pidset in set rng sw.Services &

and

(card(pidset) > 0 and
((pidset inter dom sw,Processes) = pidset))) and

(forall sdlink in set rng sw.SD_Linkage &
(sdlink.a in set dom sW.Processes and
sdlink.b in set dom sw.Processes and
sdlink.Shared Data in set dom sw.SDs)) and

(forall link in set rng sw.Linkage &
cases link:

mk_Uni_Link(a,b) ->
a in set dom sW.Processes and b in set dom sw.Processes,

mk Unknown Link(a,b) ->
a in set-dom sW.Processes and b in set dom sw.Processes,

mk Bi Link(mk Uni Link(a,b), mk Uni Link(aa,bb)) ->
a in set dom sw~Processes and-b in set dom sw.Processes

aa in set dom sW.Processes and bb in set dom sW.Processes
end);

--Linkage here is simply Process linkage. Here the direction of the
--linkage is modelled (Uni, 8i, and Unknown). Shared Data (SO) Linkage is
--linkage between processes using Shared Data (unidirectional only).

Locations :: Physical locations: map Loc 10 to Location;
--Locations are modelled very simply within this model.

--Hardware--

--Note: there appears to be the following main levels of dynamic behaviour
--for reconfigurable hardware:
--1) Addind & Removing Cards
--2) Adding & Removing MAUs
--3) Changing Hardware Links
--This model deals with all of the above.

MAU 10 = token;

MAU .. Max Num Cards: nat
Slot_Order : seq of Interface Type

inv mau == len mau.Slot_Order - mau.Max=Num_Cards;

Card 10 = token;

Card = Processor I Persistent_Mem I Non_Persistent_Mem;

Processor :: Manufacturer
Model_Code
Interface
Speed
Pipelining
Cache
Instruction Set
Instruction=Ext
Co Processor
Register_Size

token
token
Interface Type
real -
bool
bool
Proc_Inst
Proc Inst Ext
bool- -
Register

Max_Op_Temp
Min_Op_Temp
Max_Op_Alt
Max_Humidity

Persistent Mem .. Manufacturer
Model Code
Interface
AV Seek Time
Max Seek Time
Min-Seek-Time
Cache

131

Temperature
Temperature
Altitude
Humidity;

token

AV Transfer Rate
Max_Transfer_Rate
Min Transfer Rate

token
Interface_Type
MilliSeconds
MilliSeconds
MilliSeconds
bool
MBPerSecond
MBPerSecond
MBPerSecond
Mb
Temperature
Temperature
Altitude
Humidity;

Capacity -
Max Op Temp
Min-op-Temp
Max:::OP:::Alt
Max_Humidity

Non Persistent Mem .. Manufacturer
Model Code
Interface
AV_Transfer_Rate
Max Transfer Rate
Min:::Transfer=Rate
Capacity
Bus_Clock_Rate
Max Op Temp
Min-Op-Temp
Max=OP:::Alt
Max_Humidity

token
token
Interface Type
MBPerSecond
MBPerSecond
MBPerSecond
Mb
MHz
Temperature
Temperature
Altitude
Humidity;

HW Bi Link

HW Link_IO = token;

HW Uni Link :: a : Card 10
- - b : Card-IO

inv uni == uni.a <> uni~b;

HW Bi Link :: a : HW Uni Link
b : Hw=uni:::Link

inv bi == bi.a.a - bi.b.b and bi.a.b - bi.b.a;

HW_Unknown_Link :: a : Card 10
b : Card-IO

inv uni -- uni.a <> uni.b;
--Unknown links are completely unknown in this model. This means that they
--could be uni-directional, bi-directional, or faulty.

Proc_Inst - <CISC> I <RISC>;

Proc Inst Ext - <MMX> I <x30Now>;
--assuming for simplicity that a processor can only have one special set of
--instructions.

Register = <x32Bit> I <x64Bit>;

Interface Type - <A> I I <C>;
--can be expanded

Humidity = real;

Temperature - real;

Altitude - real;

132

MilliSeconds = real;

MBPerSecond = real;

MHz = real;

Mb = real;

--Software--

--Note: there appears to be 5 main levels of dynamic behaviour for
--reconfigurable software, these are:
--1) Dynamic Linking & Loading + Binary Loading
--2) State and Stack Synchronisation
--3) Interpretation / Execution of intermediately represented code (eg.
Java) ,

this requires a process to execute / interpret the representation
--4) Compilation of code and subsequent execution (can be done either
statically

or dynamically)
--5) Changing Software Links
--At present this model copes with 1 through 3 (though 3 is only dealt with
by
--using abstraction to assume that a process can be an intermediate
--representation with its executing / interpreting process). This section
would
--require further extension to cope with 4. Also this would need futher
--investigation with respect to resource issues. The model copes with 5.

Service ID = token;

Service :: Developer
Name

token
token;

Process - Activity I Proxy I Duplex_Proxy I CondenSing_Proxy;

Proxy:: Source Global Process 10
Target Global Process-1D
Activity Activity

inv proxy -- (proxy.Activity.Loaded - false ->
proxy.Activity.P1D - mk token("null")) and

(proxy.Activity.Loaded --true ->
proxy.Activity.P1D <> mk_token("null"));

inv proxy -=

.. Source Global Process 1D
Targetl Global-Process-1D
Target2 Global=Process=ID
Activity Activity

(proxy.Activity.Loaded - false ->
proxy.Activity.PID - mk token("null")) and

(proxy.Activity.Loaded --true ->
proxy.Activity.PID <> mk_token("null"));

Condensing_Proxy:: Sourcel Global Process 10
Source2 Global-Process-1D
Target Global=Process=1D
Activity : Activity

inv proxy -= (proxy.Activity.Loaded - false ->
proxy.Activity.P1D - mk_token("null")) and

(proxy.Activity.Loaded - true ->
proxy .Activity. PID <> mk_token ("null")) ;

133

Activity .. Developer token
Name token
Source token
State token
Initialisation State token
Instruction Stack token -PID token
Loaded boo I

inv act (act.Loaded = false =>
act.State - mk token("null") and
act.Instructio~ Stack - mk token("null") and
act.PID = mk_token("null")) and

(act. Initialisation State <> mk token("null")) and
(act.Loaded = true ;> -
act.State <> mk token("null") and
act. Instruction-Stack <> mk token("null") and
act.PID <> mk_t;ken("null"));

--State represents the variables in the process. Source represents the
source
--binary or intermediate representation of the source code that is executed
/
--interpreted. An intermediate representation would need a process to
interpret
--and execute it (as Java), but this has been abstracted away in this model.
--The Instruction_Stack represents the current execution state. The
--initialisation state is the state in which the system moves to upon
Loading.
--The PID is the Process ID that the OS / Processor assigns the process.
--The invariant states that it all Processes should have a null State, PID,
and
--Instruction Stack if they are not loaded as it makes no sence for
something to
--have state that does not have memory to store its state. It also states
--that the oposite is true.
--Activities are single threaded. Abstractly a set of Activities could
represent
--a multi-threaded process.

SW Link Uni Link Unknown_Link;

Link ID s token;

Uni Link :: a : Global Process ID
- b : Global-Process_ID

inv uni uni.a <> uni.b;

Bi_Link .. a : Uni_Link
b : Uni_Link

inv bi -= bi.a.a = bi.b.b and bi.a.b - bi.b.a;

Unknown Link :: a : Global Process ID
- b : Global=Process-ID

inv uni =- uni.a <> uni.b;
--Unknown links are completely unknown in this model. They may not even be
--functioning.

Shared_Data .. Protocol
State

Protocol
token;

Protocol - <Channel> (<Signal> (<Pool> (<Constant> (<Flash Data>
<Overwriting Buffer> (<Rendezvous> (<Bounded Buffer> (<Prod> (
<Stimulus> (-<Overwriting Stirn Buffer> (<Directional Handshake> (
<Dataless_Channel> (<Bounded_Stirn_Buffer>; -

Shared_Data_Link .. a
b
Shared_Data

Global Process ID
Global-Process-ID
Shared=Data_ID

134

inv uni uni.a <> uni.b;
--Uni directional from a to b

--Locations--

--Note: Locations are not reconfigurable "as such". Locations are generally
--static. The following are however possible:
--1) Locations could be added
--2) Locations coule be removed
--3) Locations could change names
--This model can express the above reconfigurations.

Location :: Name
Coord_x
Coord_y

token
real
real;

Loc 10 = token;

--The focus of the this model was software reconfiguration, and as such the
--model for Locations has been left very basic. Locations were modeled to
--highlight the difference between reconfiguration and mobility. A more
--detailed model of locations could have a tree structure in which a
location
--could be seen as a place in the tree structure, thus Newcastle could be a
--location within England which is also a location etc ... However such a
model
--would have gave no advantage to the purpose of this model. If a more
complex
--view of locations were to be explored, it would be interesting to capture
--there properties in relation to effects upon the system, for instance the
--temperature which could have an effect on operational requirements for
--systems hardware.

--Level Mappings--

--Note: This section of this model represents the mappings between Hardware,
--Software and Location. Therefore the following reconfigurable behaviour
--is possible:
--1) Processes can move between Hardware (Cards)
--2) Hardware (and thus the Software on it) can move between Locations (this
is

more mobility that reconfiguration)
--3) Shared Data can move between Hardware (Cards)
--This model deals with all of the above types of behaviour

inv swhwmap -=

Proc_to_Procrs map Global Process 10 to set of Card 10
Proc_to_PMem map Global-Process-ID to set of Card=ID
Proc_to_NPMem map Global-Process-ID to set of Card 10
SD_to_NPMem map Shared=oata_IO-to set of card_IO-

(forall pid in set dom swhwmap.Proc to Procrs &
swhwmap.Proc to Procrs(pid) <> (I) and

(forall pid in-set dom swhwmap.Proc to PMem &
swhwmap.Proc to PMem(pid) <> {I) and-

(forall pid in-set dom swhwmap.Proc to NPMem &
swhwmap.Proc to NPMem(pid) <> {I)-and

(forall sdid in set dom swhwmap.SO to NPMem &
swhwmap. SO_to_NPMem (sdid) <> {I); -

135

--Within the Level Mappings, MAUs are mapped to locations. Locations could
have
--been mapped to individual cards. It seemed sensible to do MAUs, as cards
must
--be mapped to MAUs.

--**FUNCTIONS**--

functions

settoseq : set of Global Process_IO -> seq of Global_Process_IO
settoseq(s) --

cases s:
() -> (],
{x} -> [xl,
sl union s2 -> (settoseq{sl})A{settoseq(s2»

end;

settoseqcid : set of Card_IO -> seq of Card 10
settoseqcid(s)

cases s:
() -> [I,
(x) ->[x]'
sl union s2 -> (settoseq{sl»A(settoseq{s2»

end;

NumberOfOccur: Interface Type * seq of Interface Type -> nat
NumberOfOccur(x,p) -= card (il i in set inds p '-p{i) =x);

number of occurences of x in p.
-- required to check for correct slots.

CheckProcEquality: Process * Process -> bool
CheckProcEquality(p1, p2)

if is_Activity(p1) then
pl.Source s p2.Source

else
pl.Activity.Source - p2.Activity.Source;

CheckProcLoaded: Process -> bool
CheckProcLoaded(p) --

if is_Activity{p) then
p.Loaded - true

else
p.Activity.Loaded - true;

--**OPERATIONS**--

operations

--Test Operations--

TestMakeModel () _a> ()

TestMakeModel() ==
(AddMAU(mauidl, ml);
AddMAU(mauid2, m2);
AddCard(cardidl, cl, mauidl);
AddCard(cardid2, c2, mauidl);
AddCard(cardid3, c3, mauid2);
AddCard(cardid4, c4, mauidl);
AddCard(cardid5, c5, mauidl);
AddCard(cardid6, c6, mauidl);
AddCard(cardid7, c7, mauidl);
AddCard(cardidB, cB, mauidl);
AddCard(cardid9, c9, mauidl);
AddCard(cardidlO, clO, mauidl);
AddCard(cardidll, cll, mauidl);
AddProc(procidl, pl);
AddProc(procid2, p2);
AddProc(procid4, p4);
AddProc(procid5, p5);
AddSD(sdidl, sdl);
AddSD(sdid2, sd2);

136

AddSDLink(linkidl3, sdidl, procid2, procidl);
AddSDLink(linkid20, sdid2, procidl, procid2);

AssignSDNPMem(cardidB, sdidl);
AssignSDNPMem(cardidll, sdid2);
AssignProcProcr(cardidl, procidl);
AssignProcPMem(cardid4, procidl);
AssignProcNPMem(cardid6, procidl);
AssignProcProcr(cardid3, procid4);
AssignProcPMem(cardid4, procid4);
AssignProcNPMem(cardid6, procid4);
AssignProcProcr(cardid2, procid2);
AssignProcPMem(cardid5, procid2);
AssignProcNPMem(cardid7, procid2);
AssignProcProcr(cardid9, procid5);
AssignProcPMem(cardid5, procid5);
AssignProcNPMem(cardid7, procid5);
AddHWBiLink(cardidl, cardidB, linkidl);
AddHWBiLink(cardidl, cardid4, linkid2);
AddHWBiLink(cardidl, cardid3, linkid3);
AddHWBiLink(cardidl, cardid6, linkid4);
AddHWBiLink(cardid3, cardid4, linkidB);
AddHWBiLink(cardid3, cardid6, linkid9);
AddHWBiLink(cardid2, cardid5, linkidlO);
AddHWBiLink(cardid2, cardid7, linkid5);
AddHWBiLink(cardid3, cardid9, linkid6);
AddHWBiLink(cardidB, cardid2, linkid7);
AddHWUniLink(cardidl, cardid3, linkidll);
AddHWUniLink(cardid3, cardid2, linkid12);
AddHWBiLink(cardid9, cardid2, linkidl4);
AddHWBiLink(cardid9, cardid5, linkid15);
AddHWBiLink(cardid9, cardid7, linkid16);
AddSWUniLink(procidl, procid2, linkid17);
AddSWUniLink(procid2, procidl, linkidlB);
AddSWBiLink(procidl, procid2, linkidl9);

AddHWBiLink(cardid8, cardidll, linkid2l);
AddHWBiLink(cardidB, cardidlO, linkid22);
AddHWBiLink(cardidlO, cardidll, linkid23);

AddHWBiLink(cardidlO, cardid2, linkid24);
AddHWBiLink(cardidlO, cardid5, linkid25);

LoadProc(procidl);
LoadProc(procid2);
LoadProc(procid4);
LoadProc(procid5);

AddLoc(locationl, locidl);
AddLoc(location2, locid2);

137

AddLoc(location3, locid3);
RemoveLoc(locid2);

ChangeLocName(locid3, mk_token("Gosforth"»;
AssignMAULoc(mauidl, locidl);
AssignMAULoc(mauid2, locidl);

) ;

--Checking Operations--

CheckProcHWConnected : Global Process 10 ==> bool
CheckProcHWConnected(gpid) ==- -

CheckHWConnected(SW HW Map.Proc to Procrs(gpid),
SW_HW_Map.Proc_to=PMem(gpid),- -
SW_HW_Map.Proc_to_NPMem(gpid»;

CheckHWConnected:set of Card 10 • set of Card_IO • set of Card 10 ==> bool
CheckHWConnected(proc, pmem,-npmem) ==

return((CheckAllCardsBiConnected(proc, proc» and
(CheckAllCardsBiConnected(proc, pmem» and
(CheckAllCardsBiConnected(proc, npmem»);

--This operation is used to check that hardware connections for a given
process
--are valid. I.e. that the processors are interconnected and that the
--processors have links to the persistent and non-persistent memory. The
state
--of the system uses this in its invariant.

CheckAllCardsBiConnected: set of Card 10 * set of Card_IO -=> bool
CheckAllCardsBiConnected(csetl, cset2)

return(forall cl in set csetl &
forall c2 in set cset2 &

cl <> c2 =>
exists link in set rng HardWare.Linkage &

cases link:
mk HW Uni Link(a,b) -> a - cl and b = c2 and

exists linkl in set rng HardWare.Linkage &
is HW Uni Link(linkl) and linkl.a • c2 and linkl.b = cl,

mk HW Bi Link(a,-) -> ((a.a = cl and a.b = c2) or
(a.a ·-c2 and a.b = cl»,

others -> false
end) ;

--Others are false as Unknown links may be faulty.

CheckAllCardsUniConnected: set of Card 10 * set of Card_IO ==> bool
CheckAllCardsUniConnected(csetl, cset2)

return(forall cl in set csetl &
forall c2 in set cset2 &

cl <> c2 =>
exists link in set rng HardWare.Linkage &

cases link:
mk_HW_Uni_Link(a,b) -> a - cl and b = c2,
mk HW Bi Link(a,-) -> ((a.a - cl and a.b - c2) or

(a.a ·-c2 and a.b • cl»,
others -> false

end) ;
--Others are false as Unknown links may be faulty.

FindAllProxies: () _a> set of Global_Process_IO
FindAllProxies() --

138

return({prox I prox in set dom SoftWare. Processes &
is Proxy (SoftWare. Processes (prox)) and
CheckProcLoaded(SoftWare. Processes (prox)) I);

FindProxiesFromProc: Global_Process_1D ==> set of Global Process 10
FindProxiesFromProc(gpid) ==

return«prox I prox in set FindAllProxies() &
if is_Proxy(SoftWare.Processes(gpid)) then

SoftWare. Processes (prox) .Source = gpid and
SoftWare.Processes(gpid).Target - prox

else if is Duplex Proxy(SoftWare.Processes(gpid)) then
SoftWare~Processes(prox) .Source = gpid and
(SoftWare. Processes (gpid) .Targetl = prox or
SoftWare. Processes (gpid) .Target2 - prox)

else if is Condensing Proxy(SoftWare.Processes(gpid)) then
SoftWare~Processes(prox) .Source = gpid and
SoftWare. Processes (gpid) .Target - prox

else
true

}) ;

FindValidProxies : set of Global Process 10 • Global Process 10 •
Global Process 10 • seq of Global Process 10 _a> set-of Global Process ID
FindValidProxies(beenset, current; target; todo) _z --

return({prox I prox in set FindProxiesFromProc(current) &
prox not in set beenset and
prox not in set elems todo and
CheckAllCardsUniConnected{

}) ;

SW HW Map.Proc to Procrs(current) ,
SW=HW=Map.proc=to=Procrs(prox))

FindAllDuplexProxies: {) _a> set of Global_Process_1D
FindAllDuplexProxies{) --

return({prox I prox in set dom SoftWare. Processes &
is Duplex Proxy(SoftWare.Processes(prox)) and
CheckPrOCLoaded(SoftWare.Processes(prox)) I);

FindDuplexProxiesFromProc: Global Process 10 =-> set of Global_Process_1D
FindDuplexProxiesFromProc(gpid) == -

return({prox I prox in set FindAllDuplexProxies() &
if is_Proxy(SoftWare.Processes(gpid)) then

SoftWare. Processes (proxl .Source - gpid and
SoftWare. Processes (gpid) .Target - prox

else if is Duplex Proxy(SoftWare.Processes(gpid)) then
SoftWare~processes(prox) . Source - gpid and
(SoftWare. Processes (gpid) .Targetl ~ prox or
SoftWare. Processes (gpid) .Target2 - prox)

else if is Condensing Proxy (SoftWare. Processes (gpid)) then
SoftWare~processes(prox) .Source - gpid and
SoftWare. Processes (gpid) .Target - prox

else
true

I);

FindValidDuplexProxies : set of Global Process 10 • Global Process 10 •
Global Process 10 • seq of Global Process 10 -=> set of Global Process 10
FindvalidDuplexProxies(beenset, current, target, todo) == - -

return({prox I prox in set FindDuplexProxiesFromProc(current) &
prox not in set beenset and
prox not in set elems todo and
CheckAllCardsUniConnected(

SW HW Map.Proc to Procrs(current) ,
SW=HW=Map.proc=to=procrs(prox))

139

}) ;

FindAllCondensingProxies: () ==> set of Global Process IO
FindAllCondensingProxies() ==

return({prox I prox in set dom SoftWare. Processes &
is Condensing Proxy(SoftWare.Processes(prox)) and
CheckPrOCLoaded(SoftWare.Processes(prox))});

FindCondensingProxiesFromProc: Global_Process_IO ==> set of
Global Process IO
FindCondensingProxiesFromProc(gpid) =z

return({prox I prox in set FindAllCondensingProxies() &
if is_Proxy(SoftWare.Processes(gpid)) then

(SoftWare. Processes (prox) .Sourcel = gpid or
SoftWare. Processes (prox) .Source2 = gpid) and
SoftWare. Processes (gpid) .Target = prox

else if is_Ouplex_Proxy(SoftWare.Processes(gpid)) then
(SoftWare. Processes (prox) .Sourcel = gpid or
SoftWare. Processes (prox) .Source2 = gpid) and
(SoftWare. Processes (gpid) .Targetl = prox or
SoftWare. Processes (gpid) .Target2 = prox}

else if is_Condensing_Proxy(SoftWare.Processes(gpid)) then
(SoftWare. Processes (prox) .Sourcel z gpid or
SoftWare. Processes (prox) .Source2 = gpid) and
SoftWare. Processes (gpid) .Target - prox

else
true

}) ;

FindValidCondensingProxies : set of Global Process IO * Global Process 10 *
Global Process IO * seq of Global Process 10 z=> set of Global-Process-10
FindValidCondensingProxieS(beenset, current, target, todo) == - -

return({prox I prox in set FindCondensingProxiesFromProc(current) &
prox not in set beenset and
prox not in set elems todo and
CheckAI1CardsUniConnected(

}) ;

SW_HW_Map.Proc_to_Procrs(current),
SW_HW_Map. Proc_to_Procrs (prox))

FindValidActivities : set of Global Process 10 * Global Process 10 *
Global Process 10 * seq of Global Process 10 _z> set of-Global Process 10
FindValidActivlties(beenset, current, target, todo) =- - -

if (is Proxy(SoftWare.Processes(current)) or
is_Condensing_proxy(SoftWare.processes(current))) and
SoftWare. Processes (current) .Target - target and
CheckAllCardsUniConnected(

SW_HW_Map.Proc_to_Procrs(current),
SW HW Map.Proc to Procrs(target)) then

return (target) - -
else if is Ouplex Proxy{SoftWare.Processes(current)) and

(SoftWare. Processes (current) .Targetl - target or
SoftWare. Processes (current) .Target2 - target) and

CheckAllCardsUniConnected(
SW_HW_Map.Proc_to_Procrs{current),
SW HW Map.Proc to Procrs(target)) then

return (target) - -
else

return{};

FindSOsFromProc: Global_Process_IO z=> set of Link_IO
FindSOsFromProc(gpid) --

return{{lid I lid in set dom SoftWare.SO Linkage &
SoftWare. SO_Linkage {lid) .a - gpid)); -

140

FindValidSDs : set of Global Process 1D * Global Process 1D *
Global Process ID * seq of Global Process ID ==>-set of Global Process 1D
FindValidSDs(beenset, current, target, todo) == --

return({SoftWare.SD Linkage(lid).b I lid in set FindSDsFromProc(current) &
SoftWare.SD Linkage(lid).b not in set beenset and
SoftWare.SD-Linkage{lid).b not in set elems todo and
SoftWare.SD-Linkage(lid).b - target and
CheckAllCardsUniConnected(

SW_HW_Map. Proc_to_Procrs (SoftWare.SD_Linkage (lid) .a),
SW_HW_Map.SD_to_NPMem(SoftWare.SD_Linkage(lid) .Shared_Data)) and

CheckAllCardsUniConnected(
SW_HW_Map.SD_to_NPMem(SoftWare.SD_Linkage(lid) . Shared_Data) ,
SW_HW_Map.Proc_to_Procrs(SoftWare.SD_Linkage(lid) .b))

)) ;

CheckIsRoute: Global_Process_ID * Global_Process_1D ==> bool
CheckIsRoute(gpidA, gpidB) -=

return (CheckAllCardsUniConnected(
SW HW Map.Proc to Procrs(gpidA),
SW=HW=Map.Proc=to=Procrs(gpidB)) or

CheckProxyRoute (gpidB, (I, [gpidA]))
pre gpidA <> gpidB;

CheckProxyRoute : Global Process 1D * set of Global_Process_1D * seq of
Global Process 1D mm> bool -
CheckProxyRoute(target, beenset, togoseq)

if togoseq = [] then return false
else

if (exists x in set (
FindValidProxies(beenset, hd togoseq, target, tl togoseq) union
FindValidSDs(beenset, hd togoseq, target, tl togoseq) union
FindValidActivities(beenset, hd togoseq, target, tl togoseq) union
FindValidDuplexProxies(beenset, hd togoseq, target, tl togoseq) union
FindValidCondensingProxies(beenset, hd togoseq, target, tl togoseq)) &
x = target) then return true

else
return CheckProxyRoute(target, (hd togoseql union beenset,

tl togoseq A settoseq(
FindValidProxies(beenset, hd togoseq, target, tl togoseq) union
FindValidSDs(beenset, hd togoseq, target, tl togoseq) union
FindValidActivities(beenset, hd togoseq, target, tl togoseq) union
FindValidDuplexProxies(beenset, hd togoseq, target, tl togoseq)

union
FindValidCondensingProxies(beenset, hd togoseq, target, tl

togoseq))) ;

CheckProcsHaveConnection: Global Process 1D * Global_Process_1D _a> bool
CheckProcsHaveConnection(A, B) .=

return(

) ;

exists link in set rng SoftWare. Linkage &
cases link:

mk_Uni_Link(a,b) -> a • A and b • Band
exists linkl in set rng SoftWare.Linkage &

is Uni Link(linkl) and linkl.a - Band linkl.b - A,
mk_Bi_Link(a,-) -> ((a.a - A and a.b - B) or

(a.a - Band a.b • A)),
others -> false

end and
Check1sRoute(A,B) and
CheckIsRoute(B,A)

--Others are false as Unknown links may be faulty.
--this operation checks that a state copy and synch can be physically done.

141

--It checks that there exists hardware connections between the Processors
for
--the Processes.

CheckSWConnections: Global_Process_ID ==> bool
CheckSWConnections(gpid) =-

return(
forall link in set rng SoftWare. Linkage &

cases link:
mk Uni Link(a,b) -> a - gpid or b = gpid ->

ChecklsRoute(a,b),
mk Bi Link(a,-) -> a.a - gpid or a.b = gpid ~>

CheckIsRoute(a.a,a.b) and CheckIsRoute(a.b,a.a)
end) ;

CheckProcrsConnect: Global_Process_ID • seq of Card_ID --> bool
CheckProcrsConnect(gpid, cids) --

return (forall pl in set SW HW Map.Proc to Procrs(gpid) &
forall p2 in set (inds cids)-' - -

pI,

(pl <> cids(p2) and is Processor(HardWare.Cards(cids(p2»» =>
exists link in set rng HardWare.Linkage ,

cases link:
mk_HW_Uni_Link(a,b) -> a - pl and b - cids(p2) and

exists linkl in set rng HardWare.Linkage &
is_HW_Uni_Link(linkl) and linkl.a - cids(p2) and linkl.b =

mk HW Bi Link(a,-) -> «a.a = pI and a.b = cids(p2» or
(a.a ·-cids(p2) and a.b - pI»,

others -> false
end);

--this operation checks that a move or copy can be physically done. It
checks
--that there exists hardware connections between the existing processors and
the
--new processors which the process will be assigned to.

CheckRightCardTypes : seq of Card 10 ==> bool
CheckRightCardTypes(cids) -- -

return«forall p in set(inds cids) &
cids(p) in set dom HardWare.Cards) and

(card{cids(p) Ip in set(inds cids) &
is Processor(HardWare.Cards(cids{p»» > 0) and

(card(cids(p) Ip in set(inds cids) &
is_Persistent_Mem(HardWare.Cards(cids(p»» > 0) and

(card{cids(p) Ip in set(inds cids) &
is Non Persistent Mem(HardWare.Cards(cids(p»» > 0»;

--this-operation checks that given a sequence of cards, it has the required
--cards to execute a process (i.e. a processor, persistent memory and
--non-persistent memory.

CheckCopySDState : Shared Data 10 • Shared Data 10 --> bool
CheckCopySOState(A, B) --- - --

return(forall ml in set SW HW Map.SD to NPMem(A) &
forall m2 in set SW HW Map.SO to NPMem(B) ,

(ml <> m2) -> - - --
exists linka in set rng HardWare.Linkage ,

cases linka:
mk HW Uni Link(a,b) -> (a - ml and

Is ProceSSOr(Hardware.cards(b») and
exists linkla in set rng HardWare.Linkage &

(is HW Uni Link(linkla) and linkla.a - linka.b
and linkla.b - linka.a) and
exists linkb in set rng HardWare.Linkage &

cases linkb:
mk_HW_Uni_Link(aa,bb) -> aa - m2 and bb - band

142

exists linkib in set rng HardWare.Linkage &
(is HW Uni Link(linkib) and linkib.a = linkb.b

and-linklb.b = linkb.a),
mk HW Bi Link(aa,-) -> ((aa.a = m2 and aa.b = b) or

(aa~a : band aa.b = m2)),
others -> false

end,
mk HW Bi Link(a,-) -> ((a.a - ml and

is_processor(HardWare.Cards(a.b))) or
(is Processor(HardWare.Cards(a.a)) and a.b = ml)) and

exists linkb in set rng HardWare.Linkage &
cases linkb:

mk HW Uni Link(aa,bb) -> aa = m2 and (
bb ; a.a or bb = a.b) and

exists linklb in set rng HardWare.Linkage &
is HW Uni Link(linklb) and linklb.a = linkb.b

and-linklb.b - linkb.a,
mk HW Bi Link(aa,-) ->

(aa~a ; m2 or aa.b - m2) and
((aa.b - a.a and

is_Processor(HardWare.Cards(aa.b))) or
(aa.a - a.a and

is Processor(HardWare.Cards(aa.a))) or
(aa.b - a.b and

is Processor(HardWare.Cards(aa.b))) or
(aa.a = a.b and

is_Processor(HardWare.Cards(aa.a)))),
others -> false

end,
others -> false

end);
--This ensures that there are connections between the Non-Persistent Memory
used for
--each SO, via a processor.

--Model Construction Operations--

AddMAU : MAU_IO * MAU --> ()
AddMAU (mauid, maul --

HardWare.MAUs :- HardWare.MAUs munion (mauid 1-> maul
pre mauid not in set dom HardWare.MAUs;

RemoveMAU : MAU 10 --> ()
RemoveMAU (mauid) --

HardWare.MAUs :- (mauid) <-: HardWare.MAUs
pre mauid not in set rng HardWare.Mappings and

mauid in set dom HardWare.MAUs;
--The above pre condition only checks for no cards in the MAU and thus no
--executing software, but may want to allow cards to be in while removed,
--but only check for no running software. If an MAU is removed with cards
--in this model says nothing.

AddCard : Card 10 • Card· MAU 10 --> ()
AddCard (cidi,-cardi, midi) --­

HardWare :-
mk Hardware(HardWare.MAUs,

HardWare.Cards munion (cidl 1-> cardl),
HardWare.Mappings munion (cidi 1-> midi),
HardWare.Linkage)

pre cidl not in set dom HardWare.Cards and
midl in set dom HardWare.MAUs and
(NumberOfOccur(cardl.1nterface, HardWare.MAUs(midl) .Slot Order) >
(card (iii in set dom HardWare.Cards & HardWare.Mappings(i) = midl

143

and HardWare.Cards(i) . Interface = cardl.Interface)));
--midI in set dom HardWare.MAUs only in pre condition to stop run time
errors,
--as invarient over hardware will do the same job

RemoveCard : Card IO ==> ()
RemoveCard (cid) ==

HardWare .=
mk_Hardware(HardWare.MAUs,

{cid} <-: HardWare.Cards,
{cid} <-: HardWare.Mappings,
HardWare. Linkage)

pre cid in set dom HardWare.Cards and
cid not in set dunion rng SW HW Map.Proc to Procrs and
cid not in set dunion rng SW=HW=Map.proc=to=PMem and
cid not in set dunion rng SW HW Map.Proc to NPMem and
forall link in set rng HardWare:Linkage & -

cases link:
mk HW Uni Link(a,b) -> cid <> a and cid <> b,
mk-HW-Unknown Link(a,b) -> cid <> a and cid <> b,
mk-HW-Bi Link(mk HW Uni Link(a,b), mk HW Uni Link(aa,bb)) ->

cid-<>-a and cid <> b-and cid <> aa-and cid <> bb
end;

--pre condition checks for no software running on card before removing. It
--also checks that the card has no linkage before removing it.
--If a card is removed while having software on it this model says nothing
--about the outcome. Also if a card is removed while it has linkage, the
--model says nothing about it.

AddHWUniLink : Card IO • Card IO • HW Link IO _a> {)
AddHWUniLink(cidl, cid2, lid)-=- - -

HardWare.Linkage :- HardWare.Linkage munion
{lid 1-> mk HW Uni Link(cidl, cid2)}

pre lid not in set dom HardWare.Linkage;

AddHWUnknownLink : Card IO • Card IO • HW Link IO --> ()
AddHWUnknownLink(cidl, cid2, lid)---

HardWare.Linkage :- HardWare.Linkage munion
(lid 1-> mk HW Unknown Link(cidl, cid2)}

pre lid not in set dom HardWare.Linkage;

AddHWBiLink : Card IO * Card IO * HW Link IO _a> ()
AddHWBiLink(cidl, cid2, lid)--- - -

HardWare.Linkage :- HardWare.Linkage munion
(lid 1-> mk HW B1 Link(mk HW Un1 Link(cidl, cid2),
mk HW Uni Link(cid2, Cidl))}- -

pre lid-not-in set dom HardWare.Linkage;

RemoveHWLink : HW Link IO _a> ()
RemOveHWLink(lid)--- -

HardWare.Linkage :- {lid) <-: HardWare.Linkage
pre lid in set dom HardWare.Linkage;

AddProc : Global Process IO * Process _a> {)
AddProc(gpid, prOc) -- -

SoftWare. Processes :- SoftWare. Processes munion {gpid 1-> proc}
pre gpid not in set dom SoftWare. Processes;

RemoveProc : Global Process IO _a> ()
RemoveProc(gpid} --- -

SoftWare. Processes :- {gpid) <-: SoftWare. Processes
pre gpid in set dom SoftWare. Processes and

144

forall procsets in set rng SoftWare. Services &
gpid not in set procsets and

forall SOlink in set rng SoftWare. SO_Linkage &
SOlink.a <> gpid and SOlink.b <> gpid and

forall link in set rng SoftWare. Linkage &
cases link:

mk Uni Link(a,b) -> gpid <> a and gpid <> b,
mk-Unk~own Link(a,b) -> gpid <> a and gpid <> b,
mk-Bi Link(mk Uni Link(a,b), mk Uni Link(aa,bb)) ->

gpid <> a a~d gpid <> band gpid <> aa and gpid <> bb
end;

--pre condition checks that the process has no linkage before removing it.
--If a process is removed while it has linkage, the model says nothing about
it.
--pre condition also checks that the process is not the member of a service.

AddService : Service_IO * set of Global Process_IO --> I)
AddService(serv id, serv) --

SoftWare.services :- SoftWare. Services munion Iserv_id 1-> serv}
pre serv id not in set dom SoftWare. Services;

AddProcToService : Service 10 * Global Process 10 ==> I)
AddProcToService(serv id, gpid) == -

SoftWare.Services :; SoftWare. Services ++
(serv_id 1-> SoftWare.Serviceslserv_id) union Igpid}}

pre serv_id in set dom SoftWare.Services and
gpid not in set SoftWare.Serviceslserv_id);

RemoveProcFromService : Service 10 * Global Process 10 ==> II
RemoveProcFromService(serv id, gpid) -- - -

if cardISoftWare.serviceslserv_idll - 1
then

SoftWare. Services •• Iserv_id} <-: SoftWare. Services
else

SoftWare. Services •• SoftWare. Services ++
Iserv id 1-> SoftWare.Serviceslserv id) \ Igpidll

pre serv id in set dom SoftWare. Services and
gpid-in set SoftWare.Serviceslserv id);

--no remove service operator as when the-last process is removed, the
service
--is no more.

AddSO : Shared Data 10 * Shared Data _a> I)
AddSOlid, idal-·= - -

SoftWare.SOs :- SoftWare.SOs munion lid 1-> idal
pre id not in set dom SoftWare.SOs;

RemoveSO : Shared_Oata_IO _a> II
RemoveSO(id) --

SoftWare.SOs :- lidl <-: SoftWare.SOs
pre id in set dom SoftWare.SOs and

forall SOlink in set rng SoftWare.SO Linkage &
SOlink.Shared Data <> id; -

--pre condition checks that the Shared Data has no linkage before removing
it.
--If a Shared Data is removed while it has linkage, the model says nothing
--about it.

AddSOLink: Link ID * Shared Data 10 * Global_Process_IO *
Global Process IO-->I) - -
AddSOLinkllid,-sdid, gpidl, gpid2) --

SoftWare.SO_Linkage :-

145

SoftWare. SO_Linkage munion (lid 1-> mk_Shared_Oata_Link(gpidl, gpid2,
sdid) }

pre lid not in set dom SoftWare. SO_Linkage and
lid not in set dom SoftWare.Linkage;

--This does not check for underlying network support for the link, as it is
--assumed that software links can be added that are not supported by the
--hardware.

RemoveSOLink : Link IO ==> ()
RemoveSOLink(lid) =;

SoftWare. SO_Linkage := (lid) <-: SoftWare. SO_Linkage
pre lid in set dom SoftWare.SO Linkage;

AddSWUniLink : Global Process IO * Global_Process_IO * Link IO ==> ()
AddSWUniLink(gpidl, gpid2, lid) --

SoftWare.Linkage :-
SoftWare. Linkage munion (lid 1-> mk Uni Link(gpidl, gpid2)}

pre lid not in set dom SoftWare.SO Linkage and
lid not in set dom SoftWare. Linkage;

--This does not check for underlying network support for the link, as it is
--assumed that software links can be added that are not supported by the
--hardware.

AddSWUnknownLink : Global Process IO * Global_Process_IO * Link_IO ==> ()
AddSWUnknownLink(gpidl, gpid2, lid) --

SoftWare.Linkage :-
SoftWare.Linkage munion (lid 1-> mk Unknown Link(gpidl, gpid2))

pre lid not in set dom SoftWare.SO Linkage and
lid not in set dom SoftWare.Linkage;

--This does not check for underlying network support for the link, as it is
--assumed that software links can be added that are not supported by the
--hardware.

AddSWBiLink : Global Process ID * Global Process_IO * Link IO ==> ()
AddSWBiLink(gpidl, gpid2, lid) --

SoftWare.Linkage :-
SoftWare. Linkage munion (lid 1-> mk_Bi_Link(mk_Uni_Link(gpidl, gpid2),

mk Uni Link(gpid2, gpidl))}
pre lid not in set dom SoftWare.SO Linkage and

lid not in set dom SoftWare. Linkage;
--This does not check for underlying network support for the link, as it is
--assumed that software links can be added that are not supported by the
--hardware.

RemoveSWLink : Link IO _a> ()
RemoveSWLink(lid) -;

SoftWare. Linkage :- (lid) <-: SoftWare. Linkage
pre lid in set dom SoftWare. Linkage;

RePointSWLinks : Global Process ID • Global Process IO _a> ()
RePointSWLinks (oldid, newid) -= --

for all x in set dom SoftWare.Linkage do
(if (is Uni Link(SoftWare.Linkage(x)) or

is Unknown Link(SoftWare.Linkage(x)))
- and SoftWare.Linkage(x).a - oldid then

SoftWare. Linkage :- SoftWare. Linkage ++
(x 1-> mk Uni Link(newid, SoftWare. Linkage (x) .b)}

else if (is_Uni=Link(SoftWare.Linkage(x}) or
is Unknown Link(SoftWare.Linkage(x}})

- and SoftWare. Linkage (x) .b - oldid then
SoftWare. Linkage :- SoftWare.Linkage ++

(x 1-> mk_Uni_Link(SoftWare.Linkage(x) .a, newid)}

146

else if is_Bi_Link(SoftWare.Linkage(x)) and SoftWare. Linkage (x) .a.a
oldid then

SoftWare. Linkage := SoftWare.Linkage ++
(x 1-> mk Bi Link(mk Uni Link(newid, SoftWare.Linkage(x) .a.b),

mk Uni Link(SoftWare. Linkage (x) .b.a, newid))1
else if is_Bi_Link(SoftWare.Linkage(x)) and SoftWare.Linkage(x) .a.b

oldid then
SoftWare. Linkage := SoftWare. Linkage ++

) ;

(x 1-> mk Bi Link(mk Uni Link(SoftWare.Linkage(x) .a.a, newid),
mk_Uni_Link(newid,-SoftWare.Linkage(x) .b.b)) I

RePointSOLinks : Global Process 10 * Global Process 10 sa> ()
RePointSOLinks (oldid, newid) -; --

for all x in set dom SoftWare.SO Linkage do
(if SoftWare.SO Linkage(x).a - oldid then

SoftWare.SO Linkage :- SoftWare.SO Linkage ++
(x 1-> mk-Shared Oata Link(newid; SoftWare.SO Linkage(x).b,

SoftWare.so Linkage(x) . Shared Oata) I -
else if SoftWare.SO Linkage(x).b - oldid then

SoftWare.SO Linkage :- SoftWare.SO Linkage ++
(x 1-> mk-Shared Oata Link(SoftWare.so Linkage (x) .a, newid,

SoftWare.SO_Linkage(x) .Shared_Oata) 1-
) ;

AssignProcProcr : Card_IO * Global_Process_IO _a> ()
AssignProcProcr(CIO, GPIO) --

if GPIO in set dom SW HW Map.Proc to Procrs
then - - - -

SW_HW_Map.Proc_to_Procrs :­
SW_HW_Map.Proc_to_Procrs ++

(GPIO 1-> SW_HW_Map.Proc_to_Procrs(GPIO) union {CIO)I
else

SW_HW_Map.Proc_to_Procrs :­
SW_HW_Map.Proc_to_Procrs munion {GPIO 1-> (CIOII

pre CIO in set dom HardWare.Cards and
is_Processor (HardWare.Cards(CIO)I;

--CIO in set dom HardWare.Cards only in pre condition to stop run time
errors,
--as invariant over hardware will do the same job

AssignProcPMem : Card 10 * Global Process 10 _a> ()
AssignProcPMem(CIO, GPIO) -- - -

if GPIO in set dom SW_HW_Map.Proc_to_PMem
then

SW_HW_Map.Proc_to_PMem :­
SW_HW_Map.Proc_to_PMem ++

(GPIO 1-> SW_HW_Map.Proc_to_PMem(GPIO) union {CIOII
else

SW HW Map.Proc to PMem :-
SW HW Map.Proc to PMem munion {GPIO 1-> (CIOII

pre CID in set dom-HardWare.Cards and
is Persistent Mem(HardWare.Cards(CIO));

--CIO in-set dom HardWare.Cards only in pre condition to stop run time
errors,
--as invariant over hardware will do the same job

AssignProcNPMem : Card_IO * Global_Process_IO _a> ()
AssignProcNPMem(CIO, GPIO) --

if GPIO in set dom SW_HW_Map.Proc_to_NPMem
then

SW_HW_Map.Proc_to_NPMem :­
SW HW Map.Proc to NPMem ++

(GPIO 1-> SW=HW=Map.proc_to_NPMem(GPIO) union (CIOII
else

SW_HW_Map.Proc_to_NPMem :-

pre

--ClD

147

SW HW Map.Proc to NPMem munion {GPlD 1-> {ClDII
CIO in set dom-Ha~dWare.Cards and
is Non Persistent Mem{HardWare.Cards{ClD));
in-set-dom HardWa~e.Cards only in pre condition

errors,
--as invariant over hardware will do the same job

UnAssignProcCard : Global_Process_lD ==> ()
UnAssignProcCard(GPlD)

SW HW Map :=
mk_SW_to_HW_Map(

{GPlD} <-: SW_HW_Map.Proc_to_Procrs,
{GPID} <-: SW_HW_Map.Proc_to_PMem,
{GPlD} <-: SW_HW_Map.Proc_to_NPMem,
SW HW Map.SO to NPMem)

pre GPID in set dom-SoftWare.Processes and
SoftWare. Processes (GPlD) . Loaded - false and
(GPID in set dom SW HW Map.Proc to Procrs or
GPlD in set dom SW_HW_Map.Proc_to_PMem or
GPlD in set dom SW_HW_Map.Proc_to_NPMem);

to stop run time

--pre condition stops the un-assignment of a processes cards while the
processes
--are loaded upon them.

AssignSDNPMem : Card_lO * Shared_Oata_lO ==> ()
AssignSDNPMem(CIO, SOlD) --

if SOlD in set dom SW HW Map.SD to NPMem
then - - --

SW_HW_Map.SO_to_NPMem :=
SW_HW_Map.SO_to_NPMem ++

{SOlD 1-> SW_HW_Map.SO_to_NPMem(SOIO) union {CIO}I
else

SW_HW_Map.SO_to_NPMem :-
SW HW Map.SO to NPMem munion {SOlD 1-> {CIOII

pre CIO in set dam HardWare.Cards and
is Non Persistent Mem(HardWare.Cards(CIO));

--CIO in-set-dom HardWa~e.Cards only in pre condition to stop run time
errors,
--as invariant over hardware will do the same job

UnAssignSOCard : Shared_Oata_IO _a> ()
UnAssignSDCard(SOIO) -­

SW_HW_Map.SO_to_NPMem :-
{SOlOI <-: SW HW Map.SD to NPMem

pre SDlO in set-dom SW_HW=Map.SO_to_NPMem;

AssignProcCards : Global Process 1D * seq of Card_lO _a> ()
AssignProcCards(gpid, cids) -- -

for i - 1 to card(inds cids) do
if is_Processor(HardWare.Cards(cids(i)))
then

AssignProcProcr(cids(i) , gpid)
else

if is Persistent Mem(HardWare.Cards(cids(i)))
then - -

AssignProcPMem(cids(i), gpid)
else

AssignProcNPMem(cids(i), gpid)
pre gpid in set dom SoftWare. Processes;

--this allows a sequence of cards to be assigned to a process

ChangeProxyTarget: Global_Process_lO * Global_Process_10 _a> ()
ChangeProxyTarget(source, newtarget) --

SoftWare. Processes (source) .Target :- newtarget;

148

changeCondensingProxyTarget: Global_Process_ID • Global_Process_ID ==> ()
ChangeCondensingProxyTarget(source, newtarget) ~=

SoftWare. Processes (source) .Target := newtarget;

ChangeDuplexProxyTarget: Global_Process_ID * Global_Process_IO *
Global Process 10 ==> ()
changeDuplexproxyTarget(source, oldid, newid) ==

if SoftWare. Processes (source) .Targetl = oldid then
SoftWare. Processes (source) .Targetl := newid

else
SoftWare. Processes (source) .Target2 := newid

pre oldid = SoftWare. Processes (source) .Target! or oldid =
SoftWare. Processes (source) .Target2;

ChangeProxySource: Global Process ID * Global Process 10 ==> ()
ChangeProxySource(proxyid; newsource) z= - -

SoftWare. Processes (proxyid) .Source :- newsource;

ChangeOuplexProxySource: Global Process 10 * Global Process 10 ==> ()
changeOuplexProxySource(proxyid; newsource) == - -

SoftWare. Processes (proxyid) .Source :- newsource;

ChangeCondensingProxySource: Global_Process_10 * Global_Process_IO •
Global Process 10 --> ()
changeCondensingProxySource(proxyid, oldid, newid) --

if SoftWare.Processes(proxyid).Source! = oldid then
SoftWare. Processes (proxyid) .Source! .= newid

else
SoftWare. Processes (proxyid) .Source2 := newid

pre oldid - SoftWare. Processes (proxyid) .Sourcel or oldid =
SoftWare. Processes (proxyid) .Source2;

AddSameSWLinksAsProc : Global Process 10 • Global_Process_10 ==> ()
AddSameSWLinksAsProc (oldid, newid) .=

for all x in set dom SoftWare. Linkage do
(if (is Uni Link(SoftWare.Linkage(x» or

is Unknown Link(SoftWare.Linkage(x»)
- and SoftWare. Linkage (x) .a - oldid then

SoftWare.Linkage :- SoftWare. Linkage munion
(mk token([oldid, newid, card(dom SoftWare.Linkage)])

1=> mk_Uni_Link(newid, SoftWare. Linkage (x) .b) I
else if (is_Uni_Link(SoftWare.Linkage{x» or

is_Unknown_Link(SoftWare.Linkage(x»)
and SoftWare. Linkage (x) .b - oldid then
SoftWare.Linkage :- SoftWare. Linkage munion
(mk_token([oldid, newid, card(dom SoftWare.Linkage)])

1-> mk_Uni_Link (SoftWare. Linkage (x) .a, newid) I
else if is Bi Link(SoftWare.Linkage(x» and

SoftWare~Linkage(x) .a.a - oldid then
SoftWare. Linkage :. SoftWare. Linkage munion
(mk token([oldid, newid, card(dom SoftWare.Linkage)])

1=> mk Bi Link(mk Uni Link(newid, SoftWare. Linkage (x) .a.b),
mk Un i-Link (SoftWare.Linkage (x) .b.a, newid»)

else if is=Bi_Link(SoftWare.Linkage(x» and SoftWare. Linkage (x) .a.b -
oldid then

);

SoftWare. Linkage :- SoftWare. Linkage munion
(mk token([oldid, newid, card(dom SoftWare.Linkage)])

1=> mk Bi Link(mk Uni Link(SoftWare.Linkage(x) .a.a, newid),
mk_Uni=Link(newid; SoftWare. Linkage (x) .b.b»)

--the generated linkids are not perfect, but will serf ice for this model
--(a better method should be used in an implementation).

149

--Have not done SD Links here.

UnloadedProc : Global Process_ID ==> Process
UnloadedProc(gpid) ==

if is_Activity(SoftWare.Processes(gpid))
then
return(

mk_ActivityISoftWare.Processes(gpid) . Developer,
SoftWare. Processes (gpid) .Name,
SoftWare. Processes (gpid) .Source,
mk token("null"),
SoftWare. Processes (gpid) .Initialisation State,
mk_token("null"), -
mk token ("null") ,
false))

else if is_Proxy(SoftWare.Processes(gpid)) then
return(

mk_Proxy(SoftWare.Processes(gpid) .Source,
SoftWare. Processes (gpid) .Target,
mk_Activity(SoftWare. Processes (gpid) .Activity.Developer,
SoftWare. Processes (gpid) .Activity.Name,
SoftWare. Processes (gpid) .Activity.Source,
mk_ token ("null") ,
SoftWare. Processes (gpid) .Activity.Initialisation State,
mk token("null"), -
mk=token("null") ,
false)))

else
return(

mk_Duplex_Proxy(SoftWare. Processes (gpid) .Source,
SoftWare. Processes (gpid) .Targetl,
SoftWare. Processes (gpid) .Target2,
mk Activity (SoftWare. Processes (gpid) .Activity.Developer,
SoftWare. Processes (gpid) .Activity.Name,
SoftWare. Processes (gpid) .Activity.Source,
mk token("null"),
SoftWare. Processes (gpid) .Activity.Initialisation State,
mk_token("null"), -
mk_token("null") ,
false)))

pre CheckProcLoaded(SoftWare.Processes(gpid)) and
gpid in set dom SoftWare. Processes;

ChangeProxySourcel : Global Process 1D • Global_Process_1D •
Global_Process_IO --> () - -
ChangeProxySourcel (proxid, oldtarget, newtarget)

(if is_Proxy(SoftWare.Processes(proxid)) then
ChangeProxySource(proxid, newtarget);

if is_Duplex_Proxy(SoftWare.Processes(proxid)) then
ChangeDuplexProxySource(proxid, newtarget);

if is Condensing Proxy(Software.Processes(proxid)) then
changeCondensingProxySource(proxid, oldtarget, newtargett;

);

ChangeProxyTargetl : Global_Process_ID • Global_Process_IO •
Global Process ID --> ()
changeproxyTargetl (proxid, oldtarget, newtarget)

(if is_Proxy(SoftWare.Processes(proxid)) then
ChangeProxyTarget(proxid, newtarget);

if is Duplex Proxy(SoftWare.Processes(proxid)) then
changeOuplexProxyTarget(proxid, oldtarget, newtarget);

if is_Condensing_Proxy(SoftWare.Processes(proxid)) then
ChangeCondensingProxyTarget(proxid, newtarget);

) ;

150

AddProxy : Global_Process_1D • Global_Process_1D • Global_Process_1D • set
of Card ID ==> ()
AddProxy (source, target, newpid, cids) --

(AddProc(newpid, mk Proxy(source, target,
mk ActiITity(mk token ("DeITeloperl"), mk token("CORBA ORB"),
mk-token("20. Goto 10"), mk token("null") , mk token("stl"),
mk-token("null") , mk token ("null") , false)));-

AssignProcCards(newpid~ settoseq(cids));
LoadProc(newpid);

) ;

AddDuplexProxy : Global Process 10 • Global Process 10 • Global Process 10 *
Global Process 10 • set-of Card-1D --> () - - --
AddDuplexproxy-(source, targetpldl, targetpid2, newpid, cids) -=

(AddProc(newpid, mk Duplex Proxy(source, targetpidl, targetpid2,
mk ActiITity(mk token("OeITelOperl"), mk token ("CORBA ORB"),
mk -token ("20. Goto 10"), mk token ("null"), mk token ("stl") ,
mk=token("null"), mk_token("null"), false)));-

AssignProcCards(newpid, settoseq(cids));
LoadProc(newpid) ;

) ;

AddCondensingProxy : Global Process 10 • Global Process 10 *
Global Process 10 • Global Process ID • set of Card 10 =-> ()
AddCondensingProxy (sourcel, source2, target, newpid, cids) --

(AddProc(newpid, mk Duplex Proxy(sourcel, source2, target,
mk Activity (mk token ("Developerl"), mk token ("CORBA ORB"),
mk -token ("20. Goto 10"), mk token ("null"), mk token ("stl"),
mk-token("null") , mk token(~null"), false)));-

AssignProcCards(newpid~ settoseq(cids));
LoadProc(newpid);

) ;

AddLoc : Location • Loc 10 _a> ()
AddLoc(loc, locid) -- -

Loc.Physical_locations :- Loc.Physical_locations munion {locid 1-> loc}
pre locid not in set dom Loc.Physical_locations;

RemoITeLoc : Loc 10 _a> ()
RemOITeLOC(locid) --

Loc.Physical_locations :- {locid} <-: Loc.Physical_locations
pre locid not in set rng HW Loc Map and

locid in set dom Loc.PhYsical_locations;

ChangeLocName : Loc 10 • token _a> ()
ChangeLocName(locid~ newname) --

Loc. Physical_locations (locid) .Name :- newname
pre locid in set dom Loc.Physical_locations;

AssignMAULoc : MAU 10 • Loc 10 _a> ()
AssignMAULoc(mau, loc) -- -

HW Loc Map :- HW Loc Map munion {mau 1-> locI
pre loe in set dom Loc.Physical locations and

mau in set dom HardWare.MAUs and
mau not in set dom HW_Loc_Map;

UnAssignMAULoc : MAU 10 _a> ()
UnAssignMAULoc(mau) =-

HW Loc Map :- {maul <-: HW Loc Map
pre mau in set dom HardWare.MAUs and

mau in set dom HW_Loc_Map;

151

--Manipulate Model Operations--
--------Interesting Ops--------

LoadProc : Global Process 10 ==> ()
LoadProc(gpid) ==-

if is_Activity(SoftWare.Processes(gpid))
then
SoftWare. Processes (gpid) :=

mk Activity(SoftWare.Processes(gpid) . Developer,
SoftWare. Processes (gpid) .Name,
SoftWare. Processes (gpid) .Source,
SoftWare. Processes (gpid) . Initialisation State,
SoftWare. Processes (gpid) . Initialisation=State,
mk_token("initial") ,
mk_token("new PIO"),
true)

else
SoftWare. Processes (gpid) .Activity :=

mk_Activity(SoftWare. Processes (gpid) ,Activity. Developer,
SoftWare.Processes(gpid).Activity.Name,
SoftWare. Processes (gpid) .Activity.Source,
SoftWare. Processes (gpid) .Activity.Initialisation State,
SoftWare. Processes (gpid) .Activity.Initialisation=State,
mk_token("initial") ,
mk_token ("new PID"),
true)

pre gpid in set dom SW HW Map.Proc to Procrs and
gpid in set dom SW=HW=Map.Proc=to=PMem and
gpid in set dom SW_HW_Map.Proc_to_NPMem and
CheckProcLoaded(SoftWare.Processes(gpid)) = false and
gpid in set dom SoftWare. Processes;

--the pre condition checks that a process must have at least a processor,
some
--persistent memory, and some non-persistent memory.
--This makes the State of the process starting as a process will aquire
state
--when loaded

UnLoadProc : Global Process 10 =z> ()
UnLoadProc(gpid) ---

if is_Activity(SoftWare.Processes(gpid))
then
SoftWare. Processes (gpid) :-

mk Activity (SoftWare. Processes (gpid) . Developer,
SoftWare. Processes (gpid) .Name,
SoftWare.Processes(gpid).Source,
mk_ token ("null") ,
SoftWare. Processes (gpid) . Initialisation State,
mk token("null") , -
mk=token("null") ,
false)

else
SoftWare. Processes (gpid) .Activity .=

mk Activity (SoftWare. Processes (gpid) .Activity.Developer,
softWare.Processes(gpid).Activity.Name,
SoftWare. Processes (gpid) .Activity.Source,
mk_ token ("null") ,
SoftWare.Processes(gpid).Activity.Initialisation_State,
mk_token ("null"),
mk token("null"),
false)

pre CheckProcLoaded(SoftWare.Processes(gpid)) and
gpid in set dom SoftWare. Processes;

--This makes the State of the process null as a process that is not running

152

--should not have state

ChangeProcState : Global_Process_IO * token ==> ()
ChangeProcState(gpid, s) ==

SoftWare. Processes (gpid) .State := s
pre CheckProcLoaded(SoftWare.Processes(gpid)) and

gpid in set dom SoftWare. Processes;
--as processes do not really execute in VOM, this operation is provided to
--change the internal state of a process.

ChangeProcStack : Global_Process_IO * token ==> ()
ChangeProcStack(p, i) c=

SoftWare.Processes(p) . Instruction_Stack := i
pre CheckProcLoaded(SoftWare.Processes(p)) and

p in set dom SoftWare. Processes;
--as processes do not really execute in VOM, this operation is provided to
--change the internal instruction stack position.

CopyProcState : Global Process 10 * Global Process 10 ==> ()
CopyProcState(A, B) --- - --

SoftWare. Processes (A) .State := SoftWare.Processes(B).State
pre A in set dom SoftWare. Processes and

B in set dom SoftWare. Processes and
CheckProcEquality(SoftWare.Processes(A), SoftWare.Processes(B)) and
CheckIsRoute(A,B);

CopySOState : Shared_Oata_IO * Shared_Oata_IO -=> ()
CopySOState(A, B) =-

SoftWare.SOs(A) .State := SoftWare.SOs(B) .State
pre A in set dom SoftWare.SOs and

B in set dom SoftWare.SOs and
SoftWare.SOs(A) . Protocol - SoftWare.SOs(B) . Protocol and
CheckCopySOState(A,B);

--This is abstract, as the processor must copy the state and this would
probably
--require a process on the processor being started and then being deleted
when
--done.

SynchProc : Global Process 10 * Global Process 10 _a> ()
SynchProc(A, B) c.- - --

SoftWare. Processes (A) . Instruction Stack :­
SoftWare.Processes(B) . Instruction Stack

pre A in set dom SoftWare. Processes-and
B in set dom SoftWare. Processes and
CheckProcEquality(SoftWare.Processes(A), SoftWare.Processes(B)) and
CheckIsRoute(A,B);

--this does not force either process to be running

ChangeLoadedProcIO : Global Process 10 * Global Process 10 -=> ()
ChangeLoadedProcIO(oldid, newid) •• - --

(atomic (SoftWare. Processes '- SoftWare. Processes munion {newid 1->
SoftWare. Processes (oldid)I;

SW HW Map :-
mk SW to HW Map(

SW HW Map~proc to Procrs munion
(newid 1-> SW HW Map.Proc to Procrs(oldid) I,

SW HW Map.Proc to PMem munion -
{newid 1-> SW HW Map.Proc to PMem(oldid)I,

SW HW Map.Proc to NPMem munlon-
(newid 1-> SW HW Map.Proc to NPMem(oldidl I,

SW HW Map.SO to-NPMem)); -­
RePointSWLlnks(oldid~ newidl;

153

RePointSOLinks(oldid, newid);
atomic(SW_HW_Map :-

mk sw to HW Map(
{oldidl <=: SW_HW Map.Proc to Procrs,
(oldid) <-: SW_HW_Map.Proc_to_PMem,
(oldid) <-: SW_HW_Map.Proc_to_NPMem,
SW HW Map.SO to NPMem);

SoftWare. Processes :; (oldid) <-: SoftWare. Processes)
)

pre oldid in set dom SoftWare. Processes and
CheckProcLoaded (SoftWare. Processes (oldid)) and
newid not in set dom SoftWare. Processes;

--Processes may need to change there 10 especially when moving, thus this
--operation is provided.

MoveProcOelFirst : Global Process 10 • seq of Card 10 _a> ()
MoveProcOelFirst(gpid, cids) -

(UnLoadProc(gpid);
UnAssignProcCard(gpid);
AssignProcCards(gpid, cids);
LoadProc(gpid);

)

pre gpid in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(gpid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there is an implicit assumption here that a process can not really be
moved
--unless its loaded. As its not really doing anything until loaded. Checks
--that the move can be facilitated by the hardware links provided.

MoveProcOelAfter : Global Process 10 • seq of Card 10 _a> ()
MoveProcOelAfter(gpid, Cids) -- - -

(AddProc(mk token("temp id"), UnloadedProc(gpid));
AssignProcCardS(mk token("temp id"), cids);
LoadProc(mk token("temp id"));-
UnLOadProc(gpid); -

)

UnAssignProcCard(gpid);
RePointSWLinks (gpid, mk token ("temp id"));
RepointSOLinks(gpid, mk-token("temp-id"));
RemoveProc(gpid); - -
ChangeLoadedProc10(mk_token("temp_id"), gpid);

pre gpid in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.processes(gpid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there is an implicit assumption here that a process can not really be
moved
--unless its loaded. As its not really doing anything until loaded. Checks
--that the move can be facilitated by the hardware links provided.

MoveProcWState : Global Process 10 * seq of Card 10 _a> ()
MoveProcWState(gpid, cids) -- -

(

)

AddProc(mk token("temp id"), UnloadedProc(gpid));
AssignProcCards(mk token("temp id"), cids);
LoadProc(mk token("temp id"));­
CopyprocState(mk_token("temp_id"), gpid);
UnLoadProc(gpid);
UnAssignProcCard(gpid);
RePointSWLinks (gpid, mk token ("temp id"));
RePointSOLinks(gpid, mk=token("temp=id"»);
RemoveProc(gpid);
ChangeLoadedProc1D(mk_token("temp_id"), gpid);

154

pre gpid in set dom SoftWare. Processes and
mk_token("temp_id") not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(gpid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there must be a point where the ID changes as both process cannot be
running
--with the same ID at the same time. Checks that the move can be
facilitated
--by the hardware links provided.

MoveProcWStateAndSync : Global Process ID * seq of Card ID ==> ()
MoveProcWStateAndSync(gpid, cids) == - -

(AddProc(mk token("temp id"), UnloadedProc(gpid));
Assignproc2ards(mk tok~n("temp id"), cids);
LoadProc(mk token(;temp id"));-
copyProcState(mk token(;temp id"), gpid);

)

SynchProc (mk tok~n ("temp id"), gpid);
UnLoadProc(gpid); -
UnAssignProcCard(gpid);
RePointSWLinks (gpid, mk token ("temp id"));
RePointSDLinks(gpid, mk=token("temp=id"));
RemoveProc(gpid);
ChangeLoadedProcID(mk_token("temp_id"), gpid);

pre gpid in set dom SoftWare. Processes and
mk token("temp id") not in set dom SoftWare. Processes and
Ch~ckProcLoaded(SoftWare.Processes(gpid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there must be a point where the ID changes as both process cannot be
running
--with the same ID at the same time. Checks that the move can be
facilitated
--by the hardware links provided.

MoveProcDelFirstLP : Global Process ID * seq of Card ID * set of
Global Process ID * set of Global Process ID _a> () -
MOveProcDelFirstLP(gpid, cids, sources, targets) --

def oldcids - SW HW Map.Proc to Procrs(gpid) union
SW HW Map.proc-to-NPMem(gpid)-union SW HW Map.Proc to PMem(gpid) in

(UnLoadProc(gpid); - - - - -
UnAssignProcCard(gpid);
AssignProcCards(gpid, cids);
LoadProc (gpid) ;
for all s in set sources do
(

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare.Processes),
s, card(dom SoftWare.Linkage)]), oldcids);

ChangeProxySourcel (s, gpid, mk_token([gpid, card(rng
SoftWare.Processes)-l,

s, card(dom SoftWare.Linkage)]));
);
for all t in set targets do
(

AddProxy(t, gpid, mk token([gpid, card(rng SoftWare.Processes), t,
card(dom SoftWare:Linkage)]), oldcids);

ChangeProxyTargetl (t, gpid, mk_token([gpid, card(rng
SoftWare.Processes)-l,

);

)

t, card(dom SoftWare.Linkage)]))

pre gpid in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(gpid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there is an implicit assumption here that a process cannot really be moved

155

--unless its loaded. As its not really doing anything until loaded. Checks
--that the move can be facilitated by the hardware links provided.

MoveProcOelAfterLP : Global Process 10 * seq of Card 10 * set of
Global Process 10 • set of Global Process 10 ==> () -
MoveprocOelAfterLP(gpid, cids, sources, targets) -=
def oldcids = SW_HW_Map.Proc_to_Procrs(gpid) union
SW HW Map.Proc to NPMem(gpid)

- union SW HW Map.Proc to PMem(gpid) in
(AddProc(mk token(ntemp idn), UnloadedProc(gpid));
AssignProcCards(mk token(ntemp idn), cids);
LoadProc (mk token ("temp idn));-
UnLoadProc(gpid); -
UnAssignProcCard(gpid);
RePointSWLinks(gpid, mk token(ntemp idn));
RePointSOLinks(gpid, mk-token(ntemp-idn));
RemoveProc(gpid); - -
ChangeLoadedProc10 (mk token ("temp idn), gpid);
for all s in set sources do -
(

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare. Processes) ,
s, card(dom SoftWa-re.Linkage))), oldcids);

ChangeProxySourcel (s, gpid, mk token([gpid, card(rng
SoftWare.Processes)-l, -

s, card(dom SoftWare.Linkage))));
) ;
for all t in set targets do
(

AddProxy(t, gpid, mk token([gpid, card(rng SoftWare.Processes), t,
card(dom SoftWare~Linkage)]), oldcids);

ChangeProxyTargetl (t, gpid, mk token([gpid, card(rng
SoftWare.Processes)-l, -

) ;
)

t, card(dom SoftWare.Linkage))));

pre gpid in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(gpid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there is an implicit assumption here that a process cannot really be moved
--unless its loaded. As its not really doing anything until loaded. Checks
--that the move can be facilitated by the hardware links provided.

MoveProcWStateLP : Global Process 10 * seq of Card 10 * set of
Global Process 10 * set of Global-Process 10 ==> ()
MoveProcWStateLP(gpid, cids, sources, targets) --
def oldcids - SW HW Map.Proc to Procrs(gpid) union
SW_HW_Map.proc_to_NPMem(gpid) -

union SW_HW_Map.Proc_to_PMem(gpid) in

AddProc(mk token("temp id"), UnloadedProc(gpid));
AssignProcCards(mk token("temp id"), cids);
LoadProc(mk tOken("temp id"));-
CopyprocState (mk token ("temp idn), gpid);
UnLoadProc(gpid); -
UnAssignProcCard(gpid);
RePointSWLinks (gpid, mk token ("temp id"));
RePointSOLinks(gpid, mk-token("temp-id"));
RemoveProc(gpid); - -
ChangeLoadedProc10(mk token("temp id"), gpid);
for all s in set sources do -
(

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare. Processes) , s,
card(dom SoftWare~Linkage))), oldcids);

ChangeProxySourcel (s, gpid, mk_token([gpid, card(rng
SoftWare.Processes)-l,

s, card(dom SoftWare.Linkage)]));

156

);
for all t in set targets do
(

AddProxy(t, gpid, mk_token([gpid, card(rng SoftWare. Processes) , t,
card(dom SoftWare.Linkage)]), oldcids);

ChangeProxyTargetl (t, gpid, mk_token([gpid, card(rng
SoftWare.Processes)-l,

);
)

t, card(dom SoftWare.Linkage)]»

pre gpid in set dom SoftWare. Processes and
mk token("temp id") not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(gpid» and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there must be a point where the ID changes as both process cannot be
running
--with the same ID at the same time. Checks that the move can be
facilitated
--by the hardware links provided.

MoveProcWStateAndSyncLP : Global Process ID * seq of Card ID * set of
Global Process ID * set of Global Process ID a=> () -
MoveprocWStateAndSyncLP(gpid, cids, sources, targets)
def oldcids = SW HW Map.Proc to Procrs(gpid) union
SW HW Map.Proc to NPMem(gpid) -

- - union s-W H-W Map.Proc to PMem(gpid) in
(AddProc (mk token("temp iei") ,- UnloadedProc (gpid»;
AssignprocCards(mk token("temp id"), cids);
LoadProc(mk token("temp id"»;-
copyProcState(mk token("temp id"), gpid);
SynchProc (mk token ("temp id"), gpid);
UnLoadProc(gpid); -
UnAssignProcCard(gpid) ;
RePointSWLinks(gpid, mk token(tttemp id tt »;
RePointSDLinks(gpid, mk=token(tttemp=id tt »;
RemoveProc(gpid);
ChangeLoadedProcID(mk token(tttemp id tt) , gpid);
for all s in set sources do -
(

AddProxy(gpid, s, mk token([gpid, card(rng SoftWare.Processes), s,
card(dom SoftWare~Linkage)]), oldcids);

ChangeProxySourcel (s, gpid, mk_token([gpid, card(rng
SoftWare.Processes)-l,

s, card(dom SoftWare.Linkage)]»;
) ;
for all t in set targets do
(

AddProxy(t, gpid, mk token([gpid, card(rng SoftWare.Processes), t,
card(dom SoftWare~Linkage)]), oldcids);

ChangeProxyTargetl (t, gpid, mk_token([gpid, card(rng
SoftWare.Processes)-l,

) ;
)

t, card(dom SoftWare.Linkage)]»

pre gpid in set dom SoftWare. Processes and
mk token(tttemp id tt) not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.processes(gpid» and
CheckRightCardTypes(cids) and
CheckProcrsConnect(gpid, cids);

--there must be a point where the ID changes as both process cannot be
running
--with the same ID at the same time. Checks that the move can be
facilitated
--by the hardware links provided.

CopyProc

157

CopyProc(existid, cids, newid) =­
(AddProc(newid, UnloadedProc(existid));
AssignProcCards(newid, cids);
LoadProc(newid);

)

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there is an implicit assumption here that a process cannot really be
copied
--unless its loaded. As its not really doing anything until loaded. Checks
--that the copy can be facilitated by the hardware links provided.

CopyProcWState : Global_Process_10 * seq of Card_10 * Global_Process 10 =->
()
CopyProcWState(existid, cids, newid)

(AddProc(newid, UnloadedProc(existid));
AssignProcCards(newid, cids);
LoadProc(newid);
CopyProcState(newid, existid);

)

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the copy can be
facilitated
--by the hardware links provided.

CloneProc: Global Process 10 * seq of Card 10 * Global_Process_10-->()
CloneProc(existid; cids, newid) -- -

(AddProc(newid, UnloadedProc(existid));
AssignProcCards(newid, cids);
LoadProc(newid);

)

CopyProcState(newid, existid);
SynchProc(newid, existid);

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the clone can be
facilitated
--by the hardware links provided.

CopyProcWSWLinks : Global Process 10 • seq of Card_10 • Global_Process_10
--> () --
CopyProcWSWLinks(existid, cids, newid)

(AddProc(newid, UnloadedProc(existid));
AssignProcCards(newid, cids);
LoadProc(newid);
AddSameSWLinksAsProc(existid, newid);

)

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

158

--there is an implicit assumption here that a process cannot really be
copied
--unless its loaded. As its not really doing anything until loaded. Checks
--that the copy can be facilitated by the hardware links provided.

CopyProcWStateAndSWLinks : Global_Process_IO * seq of Card 10 *
Global Process 10 •• > ()
CopyprocWStateAndSWLinks(existid, cids, newid)

(AddProc(newid, UnloadedProc(existid»;
AssignProcCards(newid, cids);
LoadProc(newid);

)

CopyProcState(newid, existid);
AddSameSWLinksAsProc(existid, newid);

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid» and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the copy can be
facilitated
--by the hardware links provided.

CloneProcWSWLinks: Global Process 10 • seq of Card 10 •
Global Process IO-->() - -
CloneProcWSWLinks(existid, cids, newid) --

(AddProc(newid, UnloadedProc(existid»;
AssignProcCards(newid, cids);
LoadProc(newid);

)

CopyProcState(newid, existid);
SynchProc(newid, existid);
AddSameSWLinksAsProc(existid, newid);

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid» and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the clone can be
facilitated
--by the hardware links provided.

CopyProcLP : Global Process 10 • seq of Card 10 • Global Process 10 • set of
Global Process 10 ·-set of Global Process 10---> () - -
CopyProcLP(existid, cids, newid, sources,-targets) --
def oldcids - SW HW Map.Proc to Procrs(existid) union

SW HW Map-.prec to NPMem(existid) union
SW HW Map:Pro-c to PMem(existid) in

(AddProc (newid,-UnloadedProc (existid));
AssignProcCards(newid, cids);
LoadProc(newid);
for all s in set sources do
(

AddCondensingProxy(existid, newid, s, mk token([existid,
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage»)),

oldcids);
ChangeProxySourcel (s, existid, mk token([existid,

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)]»;
);

for all t in set targets do
(

AddOuplexProxy(t, existid, newid, mk_token([existid,

159

cardlrng SoftWare. Processes) , t, cardldom SoftWare.Linkage)]),
oldcids);

ChangeProxyTargetl It, existid, mk_token([existid,

) ;
)

cardlrng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)]))

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processeslexistid)) and
CheckRightCardTypeslcids) and
CheckProcrsConnectlexistid, cids);

--there is an implicit assumption here that a process cannot really be
copied
--unless its loaded. As its not really doing anything until loaded. Checks
--that the copy can be facilitated by the hardware links provided.

CopyProcWStateLP : Global_Process_10 • seq of Card_10 • Global_Process_10 *
set of Global Process 10 • set of Global Process 10 ==> ()
CopyProcWStateLPlexistid, cids, newid, sources, targets)
def oldcids - SW HW Map.Proc to Procrs(existid) union

SW HW Map-. Proc to NPMem (existid) union
SW HW Map.-Pro-c to PMem(existid) in

(AddProc(newid,-UnloadedProc(existid));
AssignProcCardslnewid, cids);
LoadProc(newid);
CopyProcState(newid, existid);
for all s in set sources do
(

AddCondensingProxylexistid, newid, s, mk token([existid,
cardlrng SoftWare. Processes) , s, card(dom SoftWare.Linkage)]),

oldcids);
ChangeProxySourcel (s, existid, mk token([existid,

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)]));
) ;

for all t in set targets do
(

AddOuplexProxy(t, existid, newid, mk token([existid,
card(rng SoftWare. Processes) , t, c-ard(dom SoftWare.Linkage))),

oldcids);

);
)

ChangeProxyTargetl (t, existid, mk token([existid,
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)]))

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the copy can be
facilitated
--by the hardware links provided.

CloneProcLP: Global Process 10 * seq of Card 10 * Global Process 10 * set of
Global Process 10 ·-set of Global Process IO--->() - -
CloneProcLP(existid, cids, newid,-sources~ targets) --
def oldcids - SW HW Map.Proc to Procrs(existid) union

SW HW Map' Proc to NPM-em (existid) union
SW HW Map.-Pro-c to PMem(existid) in

(AddProc(newld,-UnloadedProc(existid));
AssignProcCardslnewid, cids);
LoadProc(newid);
CopyProcState(newid, existid);
SynchProc(newid, existid);
for all s in set sources do
I

160

AddCondensingProxy(existid, newid, s, mk token([existid,
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]),

oldcids);
ChangeProxySourcel (s, existid, mk token([existid,

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)]));
) ;

for all t in set targets do
(

AddOuplexProxy(t, existid, newid, mk_token([existid,
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]),

oldcids) ;

) ;
)

ChangeProxyTargetl (t, existid, mk token([existid,
card(rng SoftWare.Processes)-l, -t, card(dom SoftWare.Linkage)]))

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the clone can be
facili tated
--by the hardware links provided.

CopyProcWSWLinksLP : Global_Process_1D * seq of Card_10 * Global_Process_10
* set of Global Process 10 • set of Global Process 10 --> ()
CopyprocWSWLinksLP(existid, cids, newid, sources, targets)
def oldcids - SW HW Map.Proc to Procrs(existid) union

SW HW Map-. Proc to NPMem (existid) union
SW HW Map.-Proc to PMem(ex-istid) in

(AddProc(newld,-UnloadedProc(existid));
AssignProcCards(newid, cids);
LoadProc(newid);
AddSameSWLinksAsProc(existid, newid);
for all s in set sources do
(

AddCondensingProxy(existid, newid, s, mk token([existid,
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]),

oldcids);
ChangeProxySourcel (s, existid, mk token([existid,

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)]));
) ;

for all t in set targets do
(

AddOuplexProxy(t, existid, newid, mk token([existid,
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]),

oldcids);

);

)

ChangeProxyTargetl (t, existid, mk token([existid,
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)]))

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there is an implicit assumption here that a process cannot really be
copied
--unless its loaded. As its not really doing anything until loaded. Checks
--that the copy can be facilitated by the hardware links provided.

CopyprocWStateAndSWLinksLP : Global Process 10 * seq of Card 10 *
Global_Process_10 • set of Global_Process_ID • set of Global=Process_IO -_>
()

CopyProcWStateAndSWLinksLP(existid, cids, newid, sources, targets) =-

161

def oldcids = SW HW Map.Proc to Procrs(existid) union
SW HW Map-. Proc to NPM-em (existid) union

SW HW Map.-Pro-c to PMem-(ex-istid) in
(AddProc(newid,-UnloadedProc(existid));

AssignProcCards(newid, cids);
LoadProc(newid) ;
CopyProcState(newid, existid);
AddSameSWLinksAsProc(existid, newid);
for all s in set sources do
(

AddCondensingProxy(existid, newid, s, mk token([existid,
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]),

oldcids);
ChangeProxySourcel (s, existid, mk_token([existid,

card(rng SoftWare.Processes)-l, s, card(dom SoftWare.Linkage)]));
) ;
for all t in set targets do
(

AddOuplexProxy(t, existid, newid, mk token([existid,
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]),

oldcids);

) ;
)

ChangeProxyTargetl (t, existid, mk_token([existid,
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)]))

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processeslexistid)) and
CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the copy can be
facili tated
--by the hardware links provided.

CloneProcWSWLinksLP: Global_Process_10 • seq of Card_10 • Global_Process_10
• set of Global Process 10 • set of Global Process 10 -->()
CloneProcWSWLinksLPlexistid, cids, newid, sources,-targets)
def oldcids - SW HW Map.Proc to Procrs(existid) union

SW HW Map-. Pr-oc to NPMem (existid) union
SW HW Map.-Proc to PMem(ex-istid) in

(AddProc(newid,-UnloadedProc(existid));
AssignProcCards(newid, cids);
LoadProc(newid);
CopyProcState(newid, existid);
SynchProc(newid, existid);
AddSameSWLinksAsProc(existid, newid);
for all s in set sources do
(

AddCondensingProxy(existid, newid, s, mk token([existid,
card(rng SoftWare.Processes), s, card(dom SoftWare.Linkage)]),

oldcids) ;
ChangeProxySourcel (s, existid, mk token([existid,

card(rng SoftWare.Processes)-l, 5, card(dom SoftWare.Linkage)]));
);
for all t in set targets do
(

AddOuplexProxy(t, existid, newid, mk token([existid,
card(rng SoftWare.Processes), t, card(dom SoftWare.Linkage)]),

oldcids);

);

)

ChangeProxyTargetl (t, existid, mk_token([existid,
card(rng SoftWare.Processes)-l, t, card(dom SoftWare.Linkage)]))

pre existid in set dom SoftWare. Processes and
newid not in set dom SoftWare. Processes and
CheckProcLoaded(SoftWare.Processes(existid)) and

162

CheckRightCardTypes(cids) and
CheckProcrsConnect(existid, cids);

--there must be a point where the 10 changes as both process cannot be
running
--with the same 10 at the same time. Checks that the clone can be
facHi tated
--by the hardware links provided.

CheckMAUSameLoc: MAU 10 * MAU 10 -=> bool
CheckMAUSameLoc(maul~ mau2) -;

return(HW Loc Map(maul) - HW Loc Map(mau2»
pre maul in set dom HW Loc Map and

mau2 in set dom HW=Loc=Map;
--if maus not allocated to a location, it is not known what the location of
the
--hardware is and thus this function cannot decide if they are in the same
--location. More useful location functions could be added to check if two
--processes are in the same location etc .••

--**VALUES"--

values

m1:MAU - mk_MAU(ll, [<A>,<A>,<C>,,,,,,,<C>,<B»);

mauidl:MAU_10 - mk_token("MAU101");

m2:MAU - mk_MAU(5, [<A>,<A>,<C>,,<B»);

mauid2:MAU_10 - mk_token("MAUI02");

c1:Card - mk Processor(mk token("Man1"),mk token("Modl"),<A>, 1200, false,
false, <CISC>~ <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0);

c2:Card - mk Processor(mk token("Manl"),mk token("Modl"),<A>, 1200, false,
false, <CISC>~ <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0);

c3:Card - mk Processor(mk token("Manl"),mk token("Modl"),, 1200, false,
false, <ClSC>~ <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0);

c4:Card - mk_Perslstent_Mem(mk_token("Man2"),mk_token("Mod2"),, 24, 50,
12,

false, 24, 50, 12, 20000, 100, -10, 5040.6, 50.0);

c5:Card - mk_Persistent_Mem(mk_token("Man2") ,mk_token("Mod2") ,, 24, 50,
12,

false, 24, 50, 12, 20000, 100, -10, 5040.6, 50.0);

50,
12, 256, 333, 100, -10, 4096.6, 50.0);

50,
12, 256, 333, 100, -10, 4096.6, 50.0);

c8:Card - mk_Non_Persistent_Mem(mk_token("Man3"),mk_token("Mod3"),, 24,
50,

12, 512, 400, 100, -10, 4096.6, 50.0);

c9:Card - mk_Processor(mk_token("Manl"),mk_token("Mod2"),<C>, 1200, false,
false, <ClSC>, <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0);

163

c10:Card = mk_Processor(mk_token("Man1"),mk_token("Mod2"),<C>, 1200, false,
false, <CISC>, <MMX>, true, <x32Bit>, 10.0, 5.0, 10000.2, 50.0);

cll:Card - mk_Non_Persistent_Mem(mk_token("Man3") , mk_token("Mod3") ,, 24,
50,

12, 512, 400, 100, -10, 4096.6, 50.0);

cardid1:Card_IO - mk token("CardI01");

cardid2:Card 10 - mk_token("CardID2");

cardid3:Card 10 - mk_token("CardID3");

cardid4:Card 10 - mk_token("CardID4");

cardid5 :Card_IO - mk_token ("CardID5") ;

cardid6:Card 10 - mk_token("CardID6");

cardid7:Card 10 - mk_token("CardID7");

cardid8:Card_IO - mk_token("CardI08");

cardid9:Card ID - mk_token ("CardID9");

cardid10:Card_IO - mk_token("CardID10");

cardidll:Card 10 - mk_token("CardID1l");

procidl:Global_Process_ID - mk_token("ProcID1");

procid2:G1obal_Process_ID - mk_token("ProcID2");

procid3: Global_Process_ID - mk_token ("ProcID3") ;

procid4:Globa1_Process_ID - mk_token("ProcID4");

procid6:Global_Process_ID - mk_token("ProcI06");

procid7:Global_Process_IO - mk_token("ProcI07");

procid8:Globa1_Process_ID - mk_token("ProcI08");

p1:Process - mk Activity(mk token("Developerl"), mk token("CORBA ORB"),
mk token("20:- Goto 10"), mk token("nuU"), mk token("st1"),
mk=token("null"), mk_token("null"), false); -

p2:Process - mk Activity(mk token("Developer1"), mk token("CORBA ORB"),
mk token("20:- Goto 10"), mk token("null"), mk token("stl"),
mk=token("null"), mk_token("null"), false); -

p3:Process - mk_Activity(mk_token("Oeveloper3"), mk_token("FIFA"),
mk token("20. Printf"), mk token("null"), mk token("st2"),
mk=token("null"), mk_token("null"), false); -

p4:Process - mk_Proxy(procidl, procid5, pI);

p5:Process - mk_Proxy(procid4, procid2, pI);

sdidl - mk_token("SOl~);

sdid2 - mk_token("S02");

sdl: Shared_Data - mk Shared_Data «Pool>, mk_token ("Stateb")) ;

sd2:Shared_Oata - mk_Shared_Data«Pool>, mk_token("Statec"));

164

linkidl : Lin k _ I D - mk _token ("Link_ID") ;

linkid2:Link_ID - mk_token("LinkID2");

linkid3:Link_ID = mk_token("LinkID3");

linkid4:Link ID - mk_token("LinkID4");

linkidS:Link ID - mk_token("LinkIDS");

linkid6:Link ID - mk_token("LinkID6");

linkid7:Link ID - mk_token("LinkID7");

linkidS:Link ID - mk_token("LinkIDS");

linkid9:Link_ID - mk_token("LinkID9");

linkidlO:Link 10 - mk_token("LinkIOlO");

linkidll:Link 10 - mk_token("LinkIOll");

linkid12:Link 10 - mk_token("LinkID12");

linkid13:Link 10 - mk_token("LinkI013");

linkid14:Link_IO - mk_token("LinkI014");

linkidlS:Link 10 - mk_token("LinkIOlS");

linkid16:Link 10 - mk_token("LinkI016");

linkid17:Link_IO - mk_token("LinkI017");

linkid18:Link_IO - mk_token("LinkIOlS");

linkid19:Link 10 - mk_token("LinkI019");

linkid20: Link 10 - mk_token ("LinkI020") ;

linkid21: Link_IO - mk_token ("LinkID21") ;

linkid22:Link_IO - mk_token("LinkI022");

linkid23:Link_IO - mk_token("LinkI023");

linkid24:Link_IO - mk_token("LinkI024");

linkid2S:Link_IO - mk_token("LinkI02S");

linkid26:Link_IO - mk_token("LinkI026");

servidl:Service_IO - mk_token("service1");

servid2:Service_IO - mk_token("service2");

servid3:Service_IO - mk_token("service3");

locidl:Loc_IO - mk_token("location 1");

locid2:Loc_IO - mk_token("location 2");

locid3:Loc_IO - mk_token("location 3");

locationl:Location - mk_Location(mk_token("Newcastle"), 12.2, 6.5);

location2:Location - mk_Location(mk_token("Manchester"), 24.2, 46.5);

location3:Location - mk_Location(mk_token("Colchester"), 33.2, 16.99);

165

BLANK PAGE
IN

ORIGINAL

166

Appendix B

CSP Thrashing Definitions

This appendix contains the full timed and un-timed CSP configuration
thrashing models introduced in chapter 3 of this thesis. The two models are
presented in the two subsections below.

1. Un-timed CSP Configuration Thrashing Model

channel move, startup, doa, overlap, start_min_wk, end_min_wk, thrashbang

MONITOR - startup ->
(start min wk -> move -> overlap -> MONITOR

[I start min wk -> end min wk -> move -> MONITOR
[I move => overlap -> MONITOR)

[Imove -> overlap -> MONITOR

PROCESS = startup ->
(start min wk -> move -> PROCESS

[I start min wk -> end_min_wk -> doa -> move -> PROCESS)
[Imove -> PROCE-SS -

PROCESSNT - startup ->
(start min wk -> move -> startup -> start_min_wk ->

end min wk -> doa -> move--> PROCESSNT

PROCESSNT

SYSTEM =

[I start min wk -> end min wk -> doa -> move -> PROCESSNT)
[Imove -> startup -> start=min=wk -> end min wk -> move ->

(MONITOR I [(startup,move,start_min_wk,end_min_wkll I (PROCESS\{doal»)\(startup,

SYSTEMNT -
(MONITOR I [(startup,move, start min wk,end min wkll I (PROCESSNT\{doa»)\{startu
p,start_min_wk,movel - - --

TEST - (SYSTEM I [{overlap, end_min_wkll ITHRASH{3,3»)\{overlap, end_min_wkl

TESTl - (SYSTEMNTI [{overlap, end_min_wkll ITHRASH(3,3»)\{overlap, end_min_wkl

THRASH (max, x) - if (x--O) then
thrashbang -> STOP

else
overlap -> THRASH(max, x-ll
[lend_min_wk->THRASH(max,max)

assert STOP [T- TEST
assert STOP [T- TESTl

2. Timed CSP Configuration Thrashing Model

T - 3

167

o z 1

channel move, startup, doa, overlap, start_min_wk, end_min_wk, tock,
thrashbang

TOCKS - tock -> TOCKS

MONITOR = startup ->
(start min wk -> move -> overlap -> MONITOR

[] start min wk -> end min wk -> move -> MONITOR
[] move => o~erlap -> MONITOR)

[]move -> overlap -> MONITOR

PROCESS = startup -> tock ->
(start min wk -> tock -> move -> tock -> PROCESS

[] start_min_wk -> tock -> end_min_wk -> tock -> doa -> tock
-> move -> tock -> PROCESS)

[]move -> tock -> PROCESS

PROCESSNT - startup -> tock ->
(start min wk -> tock -> move -> tock -> startup -> tock ->

start min_wk -> tock => end_min wk -> tock -> doa -> tock -> move -> tock ->
PROCESSNT

[] start min wk -> tock -> end_min_wk -> tock -> doa -> tock
-> move -> tock -> PROCESSNT)

[]move -> tock -> startup -> tock -> start_min_wk -> tock ->
end_min_wk -> tock -> move -> tock -> PROCESSNT

SYSTEM -
(MONITOR I [(startup,move, start min wk,end min wk)] I (PROCESS\(doa))\(end min
wk,startup,start_min_wk,move}I[(tock)] ITOcKS- - -

SYSTEMNT -
(MONITORI [(startup,move,start min wk,end min wk)] I (PROCESSNT\(doa}))\(end mi
n_wk, startup,start_min_wk,mo~e)IT(tock)lITOCKS -

THRASHTIMED«>, maxt, maxo) - overlap -> THRASHTIMED«>~<O>,maxt,maxo)
[] tock -> THRASHTIMED«>~<T>,maxt,maxo)

THRASHTIMED(x, maxt, maxo) - if (numo(x) -- maxo) then
thrashbang -> STOP

else

numt(x) - length«y

numo(x) - length«y

overlap -> THRASHTIMED(x~<O>,maxt,maxo)
[] tock -> if (numt(x) -- maxt) then

THRASHTIMED(slidewindow(x)~<T>,maxt,maxo)

else
THRASHTIMED(x~<T>,maxt,maxo)

y <- x, y--O»

slidewindow(x) - if (head(x) -- T) then
tail (x)

else
slidewindow(tail(x»

TEST - (SYSTEMI [(overlap, tock)] ITHRASHTIMED«>,2,3))\{tock,overlap)

TESTl - (SYSTEMNTI [(overlap, tock)] ITHRASHTIMED«>,2,3))\{tock,overlap}

assert STOP [T- TEST
assert STOP [T- TESTl

168

Appendix C

Possible Process Requirements

This appendix presents possible processor, memory, OS, and storage
requirements for processes. All of the requirements outlined are attributes a
process could require in order to function. The attributes outlined in this
appendix are only a candidate set of attributes.

1. Possible Processor Requirements

• Make (e.g. intel, AMD)
• Model (e.g. P4, Athlon)
• Cpu speed (e.g. l200MHz)
• Cache size

o L I cache size
o L2 cache size
o L3 cache size

• Pipe lining
• Operating voltage
• Bus frequency (MHz)
• Number of channels
• Core frequency (MHz)
• BUS/Core ratio
• Instruction sets (e.g. 3D NOW etc)
• Max operational temperature
• Min operational temperature
• Dimensions (size)
• Number of transistors (Complexity - new AMD 64 processors have

l05.9million - more chance of failure?)
• Co-processor
• Register size (e.g. 32bit, 64bit - particularly makes a difference to

amount of physical memory can be accessed, i.e. number addresses
held)

• Socket type (e.g. Socket 7)
• Cycle time
• Mics (the size of the line widths in microns of the microchip process

that the microchip is built on.)
• Integrated Floating Point Unit (FPU)
• Max operational altitude
• Allotment of time needed on processor

169

• Max humidity

2. Possible Memory Requirements

• Make (e.g. Kingston, IBM)
• Type (e.g. DDR, SDRAM)
• Speed / Bus clock rate (e.g. 200MHz,400MHz)
• Size (e.g. 128mb, 256mb)
• Socket type (e.g. DIMM 184pin)
• Number of chips
• Operating voltage
• Dimensions (size)
• Max operational temperature
• Min operational temperature
• Max operational altitude

3. Possible Operating System (OS) Requirements

• Developer (e.g. Microsoft)
• O.S. Name (e.g. Linux, Windows, etc)
• Single threaded / multi-threading
• Scheduling algorithms (may need to specify one ifnot coded in

process)
• Processor support (support for co-processor, instruction sets etc ...)
• Memory support (support for the memory used)

o Memory management (management of the pool of memory)
• Fault tolerance support (code to support FT activities)
• Non interference support (guarantees from the OS that other

processes will not interfere - this is generally kernel verification
guarantees)

• Hardware transparency support
• Network support
• Number of lines of code (complexity of OS)

4. Possible Storage Requirements

• Max humidity

170

• Max operational temperature

• Min operational temperature

• Max operational altitude

• Weight of storage equipment

• Storage capacity

• Cache size

• Seek time
0 Average
0 Worst case
0 Best case

• Data transfer rate
0 Average
0 Worst case
0 Best case

• Dimensions of storage equipment

171

Appendix D

Demonstrator Java Source Code

This appendix presents the source code for the reconfigurable systems
demonstrator. The demonstrator outlined has been built using Java RMI.
Java RMI provides a means of invoking methods on remote Java objects.
Each class and java file is presented in a separate subsection.

t. CTEST.java

IITEST JAVA FILE
IIRole: Locates a controller and creates a Reconfigurable Process
II and increments its value

import
jcode.process.ReconfigProcess;
import jcode.controller.Controller;
import java.rmi.";
import java.rmi.server.";
import java.net.";

public class CTEST
(

public static void main(String[] args)
{

try
{

if (args.length !- 1)
(

System.out.println("Wrong Arguments - Try Again");
return;

System.out.println("Starting Test");
Controller cont - (Controller)

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[O)));
System.out.println("controller reference obtained");
ReconfigProcess p - cont.createProcess("procl");
System.out.println(p.getData());
p.compute();
System.out.println(p.getData());

I
catch (Exception el
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

2. CTEST1.java

IITEST JAVA FILE
IIRole: Locates Reconfigurable Process Procl and increments it value

import jcode.process.ReconfigProcess;
import jcode.controller.Controller;
import java.rmi.";
import java.rmi.server.";
import java.net.";

public class CTESTl
[

172

public static void main(String[} args)
[

try
(

System.out.println("Starting Test");
ReconfigProcess p - (ReconfigProcess)

Naming.lookup("rmi:lllocalhost:1099/procl");
System.out.println("ReconfigProcess reference obtained");
System.out.println(p.getData());
p. compute ();
System.out.println(p.getData());

catch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

3. CTEST2.java

IITEST JAVA FILE
IIRole: Locates Reconfigurable Process Procl and Moves it
II using MoveProcDelFirst to localhost

import jcode.process.ReconfigProcess;
import jcode.controller.Controller;
import java.rmi.';
import java.rmi.server.';
import java.net.';

public class CTEST2
{

public static void main(String[} args)
{

try
{

if (args.length !- 1)
(

System.out.println("Wrong Arguments - Try Again");
return;

)

System.out.println("Starting Test");
Controller cont - (Controller)

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[OJ»;
System.out.println("controller reference obtained");
cont.MoveProcDelFirst("procl","localhost");

catch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace()/

4. CTEST3.java

/lTEST JAVA FILE
IIRole: Locates Reconfigurable Process Procl and Moves it
II using MoveProcDelAfter to localhost

import jcode.process.ReconfigProcess;
import jcode.controller.Controller;
import java.rmi.·;
import java.rmi.server.·;
import java.net.·;

public class CTEST)
(

173

public static void main(String[] args)
{

try
(

if (args.length !- 1)
(

System.out.println("Wrong Arguments - Try Again");
return;

System.out.println("Starting Test");
Controller cont - (Controller)

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[O]));
System.out.println("controller reference obtained");
cont.MoveProcDelAfter("procl","localhost");

catch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

s. CTEST4.Java

IITEST JAVA FILE
IIRole: Locates Reconfigurable Process Procl and Moves it
II using MoveProcWState to localhost

import jcode.process.ReconfigProcess;
import jcode.controller.Controller;
import java.rmi.·;
import java.rmi.server.·;
import java.net.·;

public class CTEST4
(

public static void main(String[] args)
(

try
(

if (args.length !- 1)
(

System.out.println("Wrong Arguments - Try Again");
return;

System.out.println("Starting Test");
Controller cont - (Controller)

Naming. lookup("rmi:lllocalhost: l099/Controller".concat (args[O]));
System.out.println("controller reference obtained");
cont.MoveProcWState("proc1","localhost");

I
catch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace(li

174

IITEST JAVA FILE
IIRole: Locates Controller and Adds Rules for procl
II also enables rule checking

import jcode.process.ReconfigProcess;
import jcode.controller.Controller;
import java.rmi.·;
import java.rmi.server.·;
import java.net.·;

6. CTESTS.java

public class CTESTS
(

public static void main(String() args)
(

try
I

if (args.length !- 1)
I

System.out.println("Wrong Arguments - Try Again");
return;

I
System.out.println("Starting Test");
Controller cont - (Controller)

Naming.lookup("rmi:lllocalhost:1099/Controller".concat(args[O]));
System.out.println("controller reference obtained");
cont.EnableRules();
Object[] x - new Object[S];
xlO) - "ConfOver";
xll] - "procl";
x12] - new Integer(2);
x(3) - new Integer(170);
x[4) - new Integer(Sl);
cont.AddRule(x);

catch (Exception e)
I

System.out.println("Exception caught: " + e);
e.printStackTrace();

7. ControllerImpl.Java

package jcode.controller;
import java.rmi.·;
import java.rmi.server.*;
import java.rmi.registry.*;

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import java.util.LinkedList;
import java.util.Date;
import jcode.process.*;
import jcode.factory.·;

class Controllerlmpl extends UnicastRemoteObject implements Controller
I

int rules - 0;
LinkedList RuleStore - new LinkedList();

IIHistory stored as Longs in the LinkedList

175

IIThis does not allow for control of multiple
Ilprocesses - though alterations to the code
lito provide a LinkedList for each process
Ilwould allow this. This code was not needed
Ilfor the demonstrator.
LinkedList History - new LinkedList();

IIConstructor
public Controllerlmpl() throws RemoteException
I

super();

IIMain - program creates its own RMI registry
public static void main(String[] args)
I

try
I

System.out.println("Controller started");
String a - new String("Controller");
String cn - a.concat(args[O]);
LocateRegistry.getRegistry() .bind(cn. new Controllerlmpl(»;
System.out.println("Controller bound to localhost as ".concat(cn»;
catch (Exception e)

System.out.println("Exception caught: " + e);
e.printStackTrace();

public void EnableRules() throws RemoteException
I

this.rules-l;

public void DisableRules() throws RemoteException
I

this.rules-O;

private int ReconfigYN(String RMlname)
I

if (this.rules -- 0)
I

Ilrules not applicable thus reconfiQuration fine
System.out.println("Rules Not Applicable - Reconfiquration

Permitted");
return 1;

else
I

Iineed to check rules
if (RuleStore.size() -- 0)
I

I

System.out.println("No Rules Exist");
return 1;

for (int i - O;i<RuleStore.size(); i++)
I

Objectl] Rule - (Object[])RuleStore.qet(i);
Ilrules with knock on effects like collocated should be added twice
lito simplify checks
if «(Strinq)Rule[l]) .compareTo(RMlname) -- 0)
I

System.out.println("FOUND A RULE THAT APPLIES");
Iionly one type of rule presently available
if «IString)RuleIO]) .compareTo("ConfOver") -- 0)
(

int x - ((Inteqer)Rule[2) .intValue{)/

176

int y - «Integer)Rule[3]) .intValue();
int z - « Integer) Rule [4]) . intValue () ;

Date date· new Date();
long currentTime - date.getTime();
long lastReconfig • 0;

if (History.size() •• 0)
(

System.out.println("History Empty - Not an overlap");
History.add(new Long(currentTime));
return 1;

else
(

I

lastReconfig. «Long)History.getLast()) .10ngValue();
if «currentTime - lastReconfig) > «long)z)*lOOO)
(

System.out.println("Not an overlap");
History.add(new Long(currentTime));
return 1;

else
(

int count - 0;
long stlnterval - currentTime - (y*lOOO);
for (int a-O; a<History.size(); a++)
(

if «(Long)History.get(a)) • longValue() > stlnterval)
(

System.out.println("ADD ONE");
count++;

if (count < x)
(

System.out.println("Overlap Occured");
History.add(new Long(currentTime));
return 1;

IINeed overlaps in y interval
System.out.println("Reconfiguration Denied");
return 0;

return 1;

public void AddRule(Object() newrule) throws RemoteException
(

Ilfor live system checks for rule well formedness would be required
this.RuleStore.add(newrule);

public void RemoveRule(Object[] remrule) throws RemoteException
(

if (this.RuleStore.contains(remrule))
(

this.RuleStore.remove(remrule);

else
(

System.out.println("Rule Does not Exist");

177

public ReconfiqProcess createProcess(Strinq ProcName) throws
RemoteException

(
try
(

System,out,println("Trying to Create Process");
ProcessFactory fact· (ProcessFactory)

Naming,lookup("rmi:lllocalhost:1099/ProcessFactory");
ReconfiqProcess a • fact,createProcess(ProcName);
System,out,prlntln("New Process Created");
this,bindProcess(a, "localhost", ProcName);
return a;

Icatch(Exception e)
(

System,out,println("Exception caught: " + e);
e.printStackTrace();
throw new RemoteException("Process Cannot Be Created");

//Function to enable del after functions - multiple binds not possible in
RHIRegistry

private ReconfigProcess createProcNoBind(String ProcName) throws
RemoteException

(
try
(

System.out.println("Trying to Create Process");
ProcessFactory fact· (ProcessFactory)

Naming.lookup("rmi://localhost:1099/ProcessFactory");
ReconfigProcess a • fact.createProcess(ProcName);
System.out.println("New Process Created");
//this,bindProcess(a, "localhost");
return a;

)catch(Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();
throw new RemoteException("Process Cannot Be Created");

public void bindProceSS(ReconfigProcess a, String loc, String ProcName)
throws RemoteException

I
try
I

String en • ProcName;
LocateRegistry.getReglstry(loc) .bind(cn, a);
System.out.prlntln("ReconfigProcess bound to",concat(loc.concat(" as

".concat(cn))));
Icatch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTraCe();

public void MoveProcDelFirst(String RHlname, String newloc) throws
RemoteException

(
/ICheck Reconfiguration can occur
if (this.Reconfig¥N(RHlname) •• 1)
I

try
(

ReconfigProcess p • (ReconflgProcess)
Naming.lookupl"rmi://localhost:1099/".concat(RHlname));

178

System.out.println{"ReconfigProcess reference obtained");
p.deIProcess{);
System.out.println{"Process Deleted");
ReconflqProcess pI - this.createProcess(RMlname);
System.out.println{"New Process Created");

lcatch (Exception e)
(

else
I

System.out.println("Exception caught: " + e);
e.prlntStackTrace{);

System.out.println{"Reconfiguration Denied");

public void HoveProcDelAfter{String RMlname, String newloc) throws
RemoteException

I
if (this.ReconflgYN{RMlname) -- 1)
I

try
(

ReconfigProcess pI - this.createProcNoBind(RMlname);
System.out.println{"New Process Created");
ReconfigProcess p - (ReconfigProcess)

Naming.lookup("rmi:lllocalhost:1099/".concat(RMlname));
System.out.println{"ReconfigProcess reference obtained");
p.delProcess();
System.out.println{"Process Deleted");
Ilbind must take place last as RMIRegistry does not allow
Ilmuitiple binds to same name.
this.bindProcess(pl, "localhost", RMlname);

Icatch (Exception e)
I

else
I

System.out.println("Exception caught: " + e);
e.printStackTrace()/

System.out.println("Reconfiguration Denied");

public void HoveProcWStatelString RHlname, String newloc) throws
RemoteException

I
if (this.ReconfigYN(RMlname) .- 1)
I

try
I

ReconfigProcess p1 - this.createProcNoBind(RMlname);
System.out.println("New Process Created");
ReconfigProcess p • (ReconfigProcess)

Naming.lookup("rmi:lllocalhost:I099/".concat(RHlname));
System.out.println("ReconfigProcess reference obtained");
p1.setData(p.getData())/
System.out.println("Process State Transfered");
p.delProcess();
System.out.println("Process Deleted");
Ilbind must take place last as RHIRegistry does not allow
Ilmuitiple binds to same name.
this.bindProcess(pl, "localhost", RMlname);

Icatch (Exception e)
I

System.out.println("Exception caught: " + el;
e.printStackTrace(11

else
I

179

System.out.prlntln("Reconfiguration Denied");

8. Controller,java

package jcode.controller;
import jcode.process.';
import java.rml.·;

public interface Controller extends Remote
(

public ReconflgProcess createProcesslString ProcName) throws
RemeteException;

public vold bindProcess(ReconfigProcess a, String newloc, String ProcName)
throws RemoteException;

public void MoveProcDelFirst(String RMlname, String newloc) throws
RemoteException;

public void MoveProcDelAfter(String RMlname, String newloc) throws
RemeteException;

public void MoveProcWState(String RMlname, String newloc) throws
RemeteException;

public void EnableRules() throws RemoteException;
public void DisableRules() throws RemoteException;
public void AddRule(Object[) newrule) throws RemoteException;
public void RemoveRule(Objectl) remrule) throws RemoteException;

9. ProcessFactorylmpl.java

package jcode.factory;
Ilimport java.rmi.';
Ilimport java.rmi.server.';
Ilimport java.rmi.registry.';

import java.rml.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import jcode.process.';

Ilpublic class AgentFactorylmpl extends UnicastRemoteObject implements
AgentFactory
class ProcessFactorylmpl extends UnicastRemoteObject implements
Process Factory
(

int data • 01

IIConstructor
public ProcessFactorylmpll) throws RemoteException
(

super();

IIMain - program creates its own RMI registry
public static void main(String() argyl
(

try
(

System.out.println("Process factory started");
IILocateRegistry.createRegistry(1099)/
IISystem.out.println("Registry started");
Ilregistry must be started

180

LocateRegistry.getRegistry() .bind("ProcessFactory",new
ProcessFactorylmpl());

System.out.println("Process factory bound");
catch (Exception e)

System.out.println("Exception caught: " + e);
e.printStackTrace();

public ReconfigProcess createProcess(String ProcName) throws
RemoteException

(

ReconfigProcesslmpl a = new ReconfigProcesslmpl(ProcName);
/la.setData(this.data) ;
return (ReconfigProcess) java. rmi.server.RemoteObject.toStub (a)

public void setProcess(ReconfigProcess a) throws RemoteException
(

this.data += a.getData();

10. ProcessFactory.java

package jcode.factory;
import jcode.process.*:
import java.rmi.*:

public interface ProcessFactory extends Remote
(

public ReconfigProcess createProcess(String ProcName) throws
RemoteException;

public void setProcess(ReconfigProcess a) throws RemoteException;

11. ReconfigProcesslmpl.java

package jcode.process:
import java.rmi.*:
import java.rmi.server.*:
import java.rmi.registry.*:

import java.rmi.server.UnicastRemoteObject:
import java.rmi.registry.LocateRegistry:
import java.rmi.RemoteException:
import jcode.process.*:
import jcode.factory.*;

public class ReconfigProcesslmpl extends UnicastRemoteObject implements
ReconfigProcess
(

String bindname;
int data;
MainThread mt = new MainThread():

IIConstructor
public ReconfigProcesslmpl(String bindname) throws RemoteException
(

super():
this.bindname = bindname;
System.out.println("ReconfigProcess Initialising"):
mt. start () :

IINo Main As Process is not meant to run from command line

181

public void delProcess() throws RemoteException
{

IINo need to call a deconstructor as Java RMI uses a Distributed Garbage
Collection

Iisystem and thus will remove stale processes once no reference exists
for them.

try (
String cn = this.bindname;
System.out.println("ReconfigProcess Uninitialising");
LocateRegistry.getRegistry() .unbind(cn);
mt.stop() ;
System.out.println("ReconfigProcess no longer bound to localhost as

".concat(cn));
)catch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

public void computet) throws RemoteException
(

data += 10;

public int getData() throws RemoteException
(

return data;

public void setData(int data) throws RemoteException
{

this.data = data;

12. ReconfigProcess.java

package jcode.process;
import java.rmi.*;
import jcode.process.*;
import jcode.factory.*;

public interface ReconfigProcess extends Remote
(

public void delProcess() throws RemoteException;
public void computet) throws RemoteException;
public int getData() throws RemoteException;
public void setData(int data) throws RemoteException;

13. MainThread.java

package jcode.process;

public class MainThread extends Thread
(

public void runt)
{

int i = 0;
for (i=O; i<10; i++)
{

try
(

Thread.sleep(5000) ;
)catch (Exception e)
II

182

System.out.println(i) ;

System.out.println("cycle complete");

183

Appendix E

Case Study

This appendix contains the full CSP configuration thrashing models used for
the case study, as well as the java source code used for the software
approach to the case study. The models and java classes are presented in
subsections below.

As well as the models and java classes this appendix contains the output
from an unconstrained java system and a contained java system.

1. Un-timed CSP Case Study Model

T = 3

0=1

channel move, startup, output_decision, send_to_fusion, start_fuse_data,
end_fuse_data, send_signal, recieve_signal, start-process_data,
end_process_data, overlap, start_min_wk, end_min_wk, tock, thrashbang

TOCKS - tack -> TOCKS

MONITOR = startup ->
(start min wk -> move -> overlap -> MONITOR

[) start min wk -> end min wk -> move -> MONITOR
[) move ~> overlap -> MONITOR)

[)move -> overlap -> MONITOR

RADAR = startup ->
(RADARWORKLOOP
[) move -> RADAR)

RADARWORKLOOP - start min wk -> send signal -> tock -> tock ->
recieve_signal -> start-process_data--> tock -> tock -> end_process_data ->
send to fusion -> end min wk -> RADARWORKLOOP

- - [) start min wk -> send signal -> move -> RADAR
[] start-min-wk -> send-signal -> tock -> move -> RADAR
[] start=min=wk -> send=signal -> tock -> tock -> move ->

RADAR
[] start min wk -> send_signal -> tock -> tock ->

recieve_signal -> move ~> RADAR
[] start min wk -> send signal -> tock -> tock ->

recieve_signal -> start=process_data -> move -> RADAR
[] start min wk -> send signal -> tock -> tock ->

recieve_signal -> start=process_data -> tock -> move -> RADAR
[] start min wk -> send signal -> tock -> tock ->

recieve_signal -> start-process data -> tack -> tock -> move -> RADAR
[] start-min wk ~> send signal -> tock -> tock ->

recieve signal -> start-process data -> tack -> tock -> tock ->
end process data -> move -> RADAR

- - [] start min wk -> send signal -> tack -> tock ->
recieve signal -> start-process data -> tack -> tock -> tack ->
end_process_data -> send_to_fusion -> end_min_wk -> move -> RADAR

RADARREST - startup ->
(RADARWORKLOOPREST

184

[1 move -> RADARNORECONF)

185

RADARWORKLOOPREST = start min wk -> send signal -> tock -> tock ->
recieve_signal -> start process data -> tock -> tock -> end_process_data

end min wk ->-RADARWORKLOOPREST send_to fusion -> - start min wk [I -> send_signal
start=min=wk

-> move -> RADARNORECONF
[I -> send_signal -> tock -> move ->

RADARNORECONF
[I start_min_wk -> send_signal -> tock -> tock ->

RADARNORECONF
[I start min wk -> send signal -> tock -> tock ->

recieve_signal -> move => RADARNORECONF

move

[I start min wk -> send signal -> tock -> tock ->
recieve_signal -> start-process data -> move -> RADARNORECONF

[I start-min wk => send Signal -> tock -> tock ->
recieve_signal -> start-process data -> tock -> move -> RADARNORECONF

[J start-min wk => send signal -> tock -> tock ->
recieve_signal -> start=process_data -> tock -> tock -> move ->
RADARNORECONF

[] start min wk -> send signal -> tock -> tock ->
recieve signal -> start-process data -> tock -> tock -> tock ->
end process data -> move -> RADARNORECONF

- - [] start min wk -> send signal -> tock -> tock ->
recieve_signal -> start~rocess_data -> tock -> tack -> tack ->
end_process_data -> send_to_fusion -> end_min_wk -> move -> RADARREST

RADARNORECONF = startup ->
RADARWORKLOOPNORECONF

->

->

RADARWORKLOOPNORECONF = start_min_wk -> send signal -> tock -> tock ->
recieve signal -> start process data -> tOCk--> tock -> end process data ->
send_to=fusion -> end_min_wk ->-RADARWORKLOOPREST - -

GROUND = startup ->
GROUNDWORKLOOP

GROUNDWORKLOOP = start min wk -> recieve signal -> start process data ->
tack -> tock -> end_precess_data -> send=to_fusion -> end_min_wk-->
RADARWORKLOOP

[J start min wk -> tock -> recieve signal ->
start_process_data -> teck => tock -> end_process=data -> send_to_fusion ->
end_min_wk -> RADARWORKLOOP

[] start min wk -> tock -> tock -> recieve signal ->
start process data -> tack => tock -> end process data ->-send to fusion ->
end_min_wk ->-RADARWORKLOOP - - - -

[] start min wk -> tock -> tock -> tock -> recieve Signal ->
start_process_data -> teck => tock -> end_process_data -> send_to=fusion ->
end min wk -> RADARWORKLOOP

- - [J start min wk -> tack -> tock -> tack -> tock ->
recieve signal -> start=process_data -> tock -> tock -> end-process_data ->
send_to=fusion -> end min wk -> RADARWORKLOOP

[] start min wk -> tock -> tock -> tock -> tock -> tock ->
recieve signal -> start~rocess_data -> tock -> tock -> end_process_data ->
send_to=fusion -> end min wk -> RADARWORKLOOP

[I start mIn wk -> tock -> tock -> tock -> tock -> tock ->
tack -> send to fusion => end min wk -> RADARWORKLOOP

- TI start_min_wk ->-recieve_signal -> start_process_data ->
tock -> tock -> end_process_data -> send_ta_fusion -> end_min_wk -> move ->
GROUND

tI start min wk -> tock -> recieve signal ->
start process data -> teck => tock -> end process-data -> send to fusion ->
end mIn wk ->-move -> GROUND - - - -

- - CI start_min_wk -> tock -> tock -> recieve_signal ->
start process data -> tock -> tock -> end process data -> send to fusion ->
end mIn wk ->-move -> GROUND - - - -

- - [I start min wk -> tock -> tock -> tock -> recieve signal ->
start_process_data -> teck => tock -> end_process_data -> send_to=fusion ->
end_min_wk -> move -> GROUND

186

[] start min wk -> tock -> tock -> tock -> tock ->
recieve signal -> start process data -> tock -> tock -> end process data ->
send_to=fusion -> end min wk ->-move -> GROUND --

[] start_min_wk -> tock -> tock -> tock -> tock -> tock ->
recieve signal -> start process data -> tock -> tock -> end process data ->
send_to_fusion -> end min wk ->-move -> GROUND --

[] start min wk -> tock -> tock -> tock -> tock -> tock ->
tock -> send_to_fusion => end_min_wk -> move -> GROUND

FUSION - startup ->
FUSIONWORKLOOP

187

FUSIONWORKLOOP = start min_wk -> RECONFIGFUSIONWORKLOOP
[J start_min_wk -> tock -> RECONFIGFUSIONWORKLOOP
[J start min wk -> tock -> move -> FUSION
[J start-min-wk -> tock -> tock -> RECONFIGFUSIONWORKLOOP
[J start=min=wk -> tock -> tock -> move -> FUSION
[J start min wk -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOP
[J start min wk -> tock -> tock -> tock -> move -> FUSION
[J start=min=wk -> tock -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOP
[J start min wk -> tock -> tock -> tock -> tock -> move ->

FUSION
[] start min wk -> tock -> tock -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOP
[J start_min_wk -> tock -> tock -> tock -> tock -> tock ->

move -> FUSION
[J start min wk -> tock -> tock -> tock -> tock -> tock ->

tock -> RECONFIGFUSIONWORKLOOP
[J start_min_wk -> tock -> tock -> tock -> tock -> tock ->

tock -> move -> FUSION
[J start min wk -> tock -> tock -> tock -> tock -> tock ->

tock -> output_decision--> end_min_wk -> FUSIONWORKLOOP

RECONFIGFUSIONWORKLOOP - recieve signal -> start process data -> tock ->
tock -> end process data -> start fuse data -> tock -> end fuse data ->
output_decision -> end_min_wk -> FUSIONWORKLOOP --

FUSION

move -> FUSION

[J move -> FUSION
[J recieve signal -> move -> FUSION
[] recieve-signal -> start process data -> move -> FUSION
[J recieve=signal -> start=process=data -> tock -> move ->

[J recieve_signal -> start_process_data -> tock -> tock ->

[J recieve_signal -> start_process_data -> tock -> tock ->
end process data -> move -> FUSION

- - [J recieve signal -> start_process_data -> tock -> tock ->
end process data -> start-fuse data -> move -> FUSION

- - [J recieve-signal -> start process data -> tock -> tock ->
end-process_data -> start=fuse_data -> tock -> move -> FUSION

[] recieve signal -> start process data -> tock -> tock ->
end_process_data -> start=fuse_data -> tock -> end_fuse_data -> move ->
FUSION

[] recieve signal -> start_process_data -> tock -> tock ->
end process data -> start-fuse data -> tock -> end fuse data ->
output_decision -> end_min_wk => move -> FUSION

FUSIONREST z startup ->
FUSIONWORKLOOPREST

FUSIONWORKLOOPREST - start min wk -> RECONFIGFUSIONWORKLOOPREST
[J start min wk--> tock -> RECONFIGFUSIONWORKLOOPREST
[] start-min-wk -> tock -> move -> FUSIONNORECONF
[] start-min-wk -> tock -> tock -> RECONFIGFUSIONWORKLOOPREST
[] start-min-wk -> tock -> tock -> move -> FUSIONNORECONF
[] start=min=wk -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOPREST
[] start_min_wk -> tock -> tock -> tock -> move ->

FUSIONNORECONF
[] start min wk -> tock -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOPREST -
[] start_min_wk -> tock -> tock -> tock -> tock -> move ->

FUSIONNORECONF
[] start min wk -> tock -> tock -> tock -> tock -> tock ->

RECONFIGFUSIONWORKLOOPREST
[] start min wk -> tock -> tock -> tock -> tock -> tock ->

move -> FUSIONNORECONF - -
[] start min wk -> tock -> tock -> tock -> tock -> tock ->

tock -> RECONFIGFUSIONWORKLOoPREST

188

[] start_min_wk -> tock -> tock -> tock -> tock -> tock ->
tock -> move -> FUSIONNORECONF

[] start_min_wk -> tock -> tock -> tock -> tock -> tock ->
tock -> output_ decision -> end min wk -> FUSIONWORKLOOPREST

189

RECONFIGFUSIONWORKLOOPREST - recieve signal -> start process data -> tock ->
tock -> end process data -> start fuse data -> tock :> end f~se data ->
output_decision -> end_min_wk -> FUSIONWORKLOOPREST --

[] move -> FUSIONNORECONF
[] recieve signal -> move -> FUSIONNORECONF
[J recieve=signal -> start_process_data -> move ->

FUSIONNORECONF
[J recieve_signal -> start_process_data -> tock -> move ->

FUSIONNORECONF
[J recieve_signal -> start_process_data -> tock -> tock ->

move -> FUSIONNORECONF
[J recieve signal -> start process data -> tock -> tock ->

end process data -> move => FUSIONNORECONF -
- - [J recieve signal -> start process data -> tock -> tock ->

end_process_data -> start=fuse_data -> move -> FUSIONNORECONF
[] recieve_signal -> start process data -> tock -> tock ->

end_process_data -> start_fuse_data -> tock -> move -> FUSIONNORECONF
[J recieve signal -> start process data -> tock -> tock ->

end_process_data -> start=fuse_data -> tock -> end_fuse_data -> move ->
FUSIONNORECONF

[J recieve signal -> start_process_data -> tock -> tock ->
end_process_data -> start=fuse_data -> tock -> end_fuse_data ->
output_decision -> end_min_wk -> move -> FUSIONNORECONF

FUSIONNORECONF - startup ->recieve signal -> start process data -> tock ->
tock -> end process data -> start fuse data -> tock -> end-fuse data ->
output_decision -> end_min_wk -> FUSIONWORKLOOPREST --

SYSTEMRADAR -
(MONITOR I [(startup,move,start_min_wk,end_min_wk}J I (RADAR\(send_to_fusion,
send_signal, recieve_signal, start_process_data,
end_process_data}))\(end_min_wk,startup,start_min_wk,move) I [(tock}J I TOCKS

SYSTEMRADARREST -
(MONITORI [(startup,move,start_min_wk,end_min_wkIJ I (RADARREST\(send_to_fusion
, send_signal, recieve_signal, start_process_data,
end_process_datal))\(end_min_wk,startup,start_min_wk,movel I [(tocklJ I TOCKS

SYSTEMGROUND -
(MONITOR I [(startup,move,start_min_wk,end_min_wk}J I (GROUND\(send_to_fusion,
send_signal, recieve_signal, start_process_data,
end_process_data}})\(end_min_wk, startup,start_min_wk,moveJ I [(tockJJ ITOCKS

SYSTEMFUSION -
(MONITOR I [(startup,move,start_min_wk,end_min_wk)] I (FUSION\(output_decision,
start fuse data, end fuse data, send signal, recieve signal,
start=process_data, end-process_datal))\(end_min_wk,­
startup,start_min_wk,move) I [(tock}) I TOCKS

SYSTEMFUSIONREST -
(MONITORI [(startup,move,start_min_wk,end_min_wk)] I (FUSIONREST\(output_decisi
on, start fuse data, end fuse data, send signal, recieve signal,
start process data, end process data}}}\(end min wk, -
start~p,start=min_wk,move}1 [(tock)] I TOCKS - -

THRASHTIMED«>, maxt, maxo) - overlap -> THRASHTIMED«>~<O>,maxt,maxo)
[] tock -> THRASHTIMED«>~<T>,maxt,maxo)

THRASHTIMED(x, maxt, maxo) - if (numo(x) -- maxo) then
thrashbang -> STOP

else
overlap -> THRASHTIMED(x~<O>,maxt,maxo}
[] tock -> if (numt(x) -- maxt} then

THRASHTIMED(slidewindow(x)~<T>,maxt,maxo)

else
THRASHTIMED(x~<T>,maxt,maxo)

190

numt(x) = length«y Y <- x, y--T>J

numo(x) - length«y Y <- x, y--O»

slidewindow(x) = if (head(x) z_ T) then
tail (x)

else
slidewindow(tail(x))

191

TESTRADAR K (SYSTEMRADARI [(overlap,
tock)] ITHRASHTIMED«>,lO,2}}\(tock,overlap]

TESTRADARREST - (SYSTEMRADARRESTI [{overlap,
tock}] ITHRASHTIMED«>,10,2))\(tock,overlap)

TESTGROUND • (SYSTEMGROUNDI [(overlap,
tock]] ITHRASHTIMED«>,lO,2))\(tock,overlap)

TESTFUSION a (SYSTEMFUSIONI [(overlap,
tock)] ITHRASHTIMED«>,20,2))\(tock,overlap)

TESTFUSIONREST - (SYSTEMFUSIONRESTI [(overlap,
tock)] ITHRASHTIMED«>,20,2))\(tock,overlap}

assert STOP [T- TESTRADAR
assert STOP [T- TESTRADARREST
assert STOP [T- TESTGROUND
assert STOP [T- TESTFUSION
assert STOP [T- TESTFUSIONREST

2. Java RAtI Case Study Code

2.1 Start.java

IITEST JAVA FILE
IIRole: Locates Controller and Adds Rules for proci
II also enables rule checking

import jcode.process.*;
import jcode.controller.Controller;
import java.rmi.*;
import java.rmi.server.*;
import java.net.*;

public class Start
(

public static void main(String[] args)
(

try
(

if (args.length !- 1)
(

System.out.println("Wrong Arguments - Try Again");
return;

)

System.out.println("Starting Test");
Controller cont - (Controller)

Naming.lookup("rmi://localhost:l099/Controller".concat(args[O)));
System.out.println("controller reference obtained");
ReconfigProcess fdml ~ cont. createProcess ("FusionDM", "FusionDM");
try
(

Thread.sleep(20DD);
}catch (Exception e)
{ }

ReconfigProcess pI - cont.createProcess("GroundSensor", "gl"};
ReconfigProcess rl - cont.createProcess("RadarSensor", "rl"};
l/cont.EnableRules();
//Object[] x - new Object[5];
IIx[D) - "ConfOver";
l/x[l] - "procl";
//x[2) - new Integer(2);

Ilx(3) - new Integer(170);
Ilx(4) - new Integer(51);
Ilcont.AddRule(x);

catch (Exception e)
(

192

System.out.println("Exception caught: " + e);
e.printStackTrace();

1.1 Reconfigure.java

IITEST JAVA FILE
IIRole: Locates Controller and Adds Rules for proc1
II also enables rule checking

import jcode.process.>;
import jcode.controller.Controller;
import java.rmi.>;
import java.rmi.server.>;
import java.net.>;

public class Reconfigure
(

public static void main(String[) args)
(

try
{

if (args.length !- 1)
(

System. out. println ("Wrong Arguments - Try Again");
return;

System.out.println("Starting Test");
Controller cont - (Controller)

Naming.lookup{"rmi:lllocalhost:1099/Controller".concat(args[O]»;
System.out.println("controller reference obtained");
int i - 0;
while(true)
(

i - 1+1;
System.out.print1n{i);
cont.MoveProcDelAfter("FusionDM", flFusionDM fI

, "localhost fl);
try
(

Thread.sleep(3050);
Icatch (Exception e)
II
if (i > 30)
(

break;

IIReconfigProcess pl - cont.createProcess{flGroundSensor", "gl");
IIReconfigProcess rl - cont.createProcesslflRadarSensor", "r1");
Ilcont.EnableRules{);
IIObject[] x - new Object[5];
Ilx[O] - "ConfOver";
Ilxl1] - "proc1f1;
Ilx[2] - new Integer(2);
IIx(3) - new Integer(l70);
Ilxl4] - new Integer(51);
Ilcont.AddRule(x);

catch (Exception e)
(

193

System.out.println("Exception caught: " + e);
e.printStackTrace() ;

2.3 StartCont.java

I/TEST JAVA FILE
IIRole: Locates Controller and Adds Rules for proc!
II also enables rule checking

import jcode.process.·;
import jcode.controller.Controller;
import java.rmi.·;
import java.rmi.server.·;
import java.net.·;

public class StartCont
(

public static void main(String[] args)
{

try
{

if (args.length !- 1)
{

System. out.println ("Wrong Arguments - Try Again") ;
return;

System.out.println("Starting Test");
Controller cont - (Controller)

Naming.lookup("rmi:lllocalhost:lD99/Controller".concat(args[D]));
System.out.println("controller reference obtained");

cont.EnableRules();
Object[] x - new Object[S];
x[O] - "ConfOver";
x[l] - "FusionDM";
x[2] - new Integer(2);
x[3] - new Integer(lDD);
x[4] - new Integer(SO);
cont.AddRule(x);

ReconfigProcess fdml - cont.createProcess{"FusionDM", "FusionDM");
try
(

Thread.sleep(2000);
Icatch (Exception e)
()
ReconfigProcess pI - cont.createProcess("GroundSensor", "gl");
ReconfigProcess rl - cont.createProcess("RadarSensor", "rl");
Ilcont.EnableRules();
IIObject[] x - new Object[S];
Ilx[D] - "ConfOver";
Ilx[l] - "procl";
Ilx[2] - new Integer(2);
Ilx[3] - new Integer(170);
Ilx[4] - new Integer(S!);
Ilcont.AddRule{x);

catch (Exception e)
{

194

System.out.println("Exception caught: " + e);
e.printStackTrace();

2.4 Controller.java

package jcode.controller;
import jcode.process.";
import java.rmi.";

public interface Controller extends Remote
(

public ReconfigProcess createProcess(String Type, String ProcName) throws
RemoteException;

public void bindProcess(ReconfigProcess a, String newloc, String ProcName)
throws RemoteException;

public void MoveProcDelFirst(String Type, String RMlname, String newloc)
throws RemoteException;

public void MoveProcDelAfter(String Type, String RMlname, String newloc)
throws RemoteException;

public void MoveProcWState(String Type, String RMlname, String newloc)
throws RemoteException;

public void EnableRules() throws RemoteException;
public void DisableRules() throws RemoteException;
public void AddRule(Object[] newrule) throws RemoteException;
public void RemoveRule(Object[) remrule) throws RemoteException;

2.5 Controllerlmpl.jav8

package jcode.controller;
import java.rmi.·;
import java.rmi.server.*;
import java.rmi.registry.*;

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import java.util.LinkedList;
import java.util.Date;
import jcode.process.*;
import jcode.factory.*;

class Controllerlmpl extends UnicastRemoteObject implements Controller
(

int rules - 0;
LinkedList RuleStore - new LinkedList();

IIHistory stored as Longs in the LinkedList
IIThis does not allow for control of multiple
Ilprocesses - though alterations to the code
lito provide a LinkedList for each process
Ilwould allow this. This code was not needed
Ilfor the demonstrator.
LinkedList History - new LinkedList();

IIConstructor
public Controllerlmpl() throws RemoteException
(

super();

IIMain - program creates its own RMI registry
public static void main(String[] args)
{

try
(

195

System.out.println("Controller started");
String a - new String("Controller");
String cn - a.concat(args[O]);

System.out.println("Controller will bound to localhost as
". concat (cn» ;

LocateRegistry.getRegistry() .bind(cn, new ControllerImpl(»;
System.out.println("Controller bound to localhost as ".concat{cn»;
catch (Exception e)

System.out.println("Exception caught: " + e);
e.printStackTrace();

public void EnableRules() throws RemoteException
(

this.rules-1;

public void DisableRules() throws RemoteException
(

this.rules-O;

private int ReconfigYN{String RMIname)
{

if (this. rules -- 0)
(

Ilrules not applicable thus reconfiguration fine
System.out.println("Rules Not Applicable - Reconfiguration Fine");
return 1;

else
[

Iineed to check rules
if (RuleStore.size() -- 0)
(

System.out.println("No Rules Exist");
return 1;

for (int i - O;i<RuleStore.size(); i++)
{

Object[] Rule - (Object[])RuleStore.get(i);
Ilrules with knock on effects like collocated should be added twice
lito simplify checks
if (((String)Rule[1]).compareTo{RMIname) =- 0)
(

System.out.println{"FOUND A RULE THAT APPLIES");
Iionly one type of rule presently available
if (((String)Rule[O]) . compareTo ("ConfOver") -- 0)
(

int x - ((Integer)Rule[2]) .intValue()
int y - ((Integer)Rule[3]) .intValue()
int z - ((Integer)Rule[4]) • intValue()

Date date - new Date();
long currentTime - date.getTime();
long lastReconfig - 0;

if (History.size() -- 0)
{

System. out. println ("History Empty - Not an overlap");
History.add(new Long(currentTime»;
return 1;

else
{

}

196

lastReconfig - «Long)History.getLast()) . longValue() ;
if «(currentTime - lastReconfig) > «long)z)*1000)
(

System.out.println("Not an overlap");
History.add(new Long(currentTime));
return 1;

else
(

int count - 0;
long stlnterval = currentTime - (y*1000);
for (int a-O; a<History.size(); a++)
(

if «(Long)History.get(a)) . longValue() > stlnterval)
(

System.out.println("ADD ONE");
count++;

if (count < x)
(

System.out.println("Overlap Occured");
History.add(new Long(currentTime));
return 1;

IINeed overlaps in y interval
System.out.println("Reconfiguration Denied");
return 0;

return 1;

public void AddRule(Objectl] newrule) throws RemoteException
(

Ilfor live system checks for rule well formedness would be required
this.RuleStore.add(newrule);

public void RemoveRule(Objectl] remrule) throws RemoteException
(

if (this.RuleStore.contains(remrule))
(

this.RuleStore. remove (remrule) ;

else
(

System.out.println("Rule Does not Exist");

public ReconfigProcess createProcess(String Type, String ProcName) throws
RemoteException

I
try
(

System.out.println("Trying to create Process");
Process Factory fact - (ProcessFactory)

Naming.lookup("rmi:lllocalhost:1099/ProcessFactory");
ReconfigProcess a - (ReconfigProcess) fact.createProcess(Type,

ProcName);
System.out.println("New Process Created");
this.bindProcess(a, "localhost", ProcName);
return a;

)catch(Exception e)

197

System.out.println("Exception caught: " + e);
e.printStackTrace();
throw new RemoteException("Process Cannot Be Created");

I!Function to enable del after functions - multiple binds not possible in
RMIRegistry

private ReconfigProcess createProcNoBind(String Type, String ProcName)
throws RemoteException

(

try
(

System.out.println("Trying to Create Process");
Process Factory fact - (ProcessFactory)

Naming.lookup("rmi:!/localhost:1099/ProcessFactory");
ReconfigProcess a - (ReconfigProcess)fact.createProcess(Type,

ProcName) ;
System.out.println("New Process Created");
Ilthis.bindProcess(a, "localhost");
return a;

)catch(Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();
throw new RemoteException("Process Cannot Be Created");

public void bindProcess(ReconfigProcess a, String loc, String ProcName)
throws RemoteException

(

try
(

String cn - ProcName;
LocateRegistry.getRegistry(loc) .bind{cn, a);
System.out.println{"ReconfigProcess bound to".concat{loc.concat(" as

".concat(cn»»;
)catch (Exception e)
(

System.out.println{"Exception caught: " + e);
e.printStackTrace();

public void MoveProcDelFirst(String Type, String RMlname, String newloc)
throws RemoteException

(
I!Check Reconfiguration can occur
if (this.ReconfigYN{RMlname) -- 1)
{

try
(

ReconfigProcess p - (ReconfigProcess)
Naming.lookup{"rmi://localhost:1099/".concat{RMlname»;

System.out.println{"ReconfigProcess reference obtained");
p.delProcess{) ;
System.out.println("Process Deleted");
ReconfigProcess p1 - this.createProcess{Type, RMlname);
System.out.println{"New Process Created");

Icatch (Exception e)
(

else
{

System.out.println("Exception caught: " + e);
e.printStackTrace{);

198

System.out.println("Reconfiguration Denied");

public void MoveProcDelAfter(String Type, String RMlname, String newloc)
throws RemoteException

(

if (this.ReconfigYN(RMlname) -- 1)
{

try
(

ReconfigProcess pl - this.createProcNoBind(Type, RMlname);
System.out.println("New Process Created");
RecontigProcess p - (RecontigProcess)

Naming.lookup("rmi:lllocalhost:1099/".concat(RMlname»;
System.out.println("ReconfigProcess reference obtained");
p.delProcess() ;
System.out.println("Process Deleted");
Ilbind must take place last as RMIRegistry does not allow multiple

binds to same name.
this.bindProcess(pl, "localhost", RMlname);

)catch (Exception e)
(

else
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

System.out.println("Reconfiguration Denied");

public void MoveProcWState(String Type, String RMlname, String newloc)
throws RemoteException

(

if (this.ReconfigYN(RMlname) =- 1)
{

try
(

ReconfigProcess pl - this.createProcNoBind(Type, RMlname);
System.out.println("New Process Created");
ReconfigProcess p - (ReconfigProcess)

Naming.lookup("rmi:lllocalhost:1099/".concat(RMlname»;
System.out.println("ReconfigProcess reference obtained");
pl.setData(p.getData(»);
System.out.println("Process State Transfered");
p.delProcess() ;
System.out.println("Process Deleted");
Ilbind must take place last as RMIRegistry does not allow multiple

binds to same name.
this.bindProcess(pl, "localhost", RMlname);

Icatch (Exception e)
(

else
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

System.out.println("Reconfiguration Denied");

2.6 ProcessFadory.java

199

package jcode.factory;
import jcode.process.*;
import java.rmi.*;

public interface Process Factory extends Remote
(

public ReconfigProcess createProcess(String Type, String ProcName)
throws RemoteException;

public void setProCeSS(ReConfigProcess a) throws RemoteException;

2.7 ProcessFactoryimpl.java

package jcode.factory;
Ilimport java.rmi.*;
Ilimport java.rmi.server.*;
Ilimport java.rmi.registry.*;

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import jcode.process.*;

Ilpublic class AgentFactorylmpl extends UnicastRemoteObject implements
AgentFactory
class ProcessFactorylmpl extends UnicastRemoteObject implements
Process Factory
(

int data - 0;

IIConstructor
public ProcessFactorylmpl() throws RemoteException
(

super();

IIMain - program creates its own RMI registry
public static void main(String[] argv)
(

try
(

System.out.println("Process factory started");
IILocateRegistry.createRegistry(l099);
I/System.out.println("Registry started");
Ilregistry must be started
LocateRegistry.getRegistry().bind("ProcessFactory",new

ProcessFactorylmpl());
System.out.println("Process factory bound");
catch (Exception e)

System.out.println ("Exception caught: " + e);
e.printStackTrace();

public ReconfigProcess createProcess(String Type, String ProcName) throws
RemoteException

(
ReconfigProcess a;
System.out.println ("Type: "+Type);
if (Type.equals("GroundSensor"))
(

a - (ReconfigProcess)new GroundSensorlmpl(ProcName);
}

else if (Type.equals("RadarSensor"»)
(

a - (ReconfigProcess)new RadarSensorlmpl(ProcName);

else
(

200

a - (ReconfigProcess)new FusionDMImpl(ProcName);

return (ReconfigProcess)java.rmi.server.RemoteObject.toStub(a)

public void setProcess(ReconfigProcess a) throws RemoteException
(

this.data +- a.getData();

2.8 ReconfigProcess.java

package jcode.process;
import java.rmi.*;
import jcode.process.*;
import jcode.factory.*;

public interface ReconfigProcess extends Remote
(

public void delProcess() throws RemoteException;
public void computet) throws RemoteException;
public int getOata() throws RemoteException;
public void setData(int data) throws RemoteException;
public void setGROUNDData(int data) throws RemoteException;
public void setRADARata(int data) throws RemoteException;
public int getGROUNOOata() throws RemoteException;
public int getRAOARData() throws RemoteException;

2.9 FusionDMImpl.java

package jcode.process;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import jcode.process.*;
import jcode.factory.*;

public class FusionOMImpl extends UnicastRemoteObject implements
ReconfigProcess
(

String bindname;
int data;
int ROdata - -1;
int GRdata - -1;
MainFusionOMThread mt - new MainFusionOMThread();

IIConstructor
public FusionOMImpl(String bindname) throws RemoteException
(

super();
this. bindname - "FusionDM";
System.out.println("Fusion OM Initialising");
mt.setData(this.bindname);
mt. start () ;

IINo Main As Process is not meant to run from command line
public void delProcess() throws RemoteException

201

//No need to call a deconstructor as Java RMI uses a Distributed Garbage
Collection

//system and thus will remove stale processes once no reference exists
for them.

try (
String cn - this.bindname;
System.out.println("Radar Sensor Uninitialising");
LocateRegistry.getRegistry() .unbind(cn);
mt.stop();
System.out.println("Radar Sensor no longer bound to localhost as

".concat(cn»;
)catch (Exception e)
(

System.out.println{"Exception caught: " + e);
e.printStackTrace{);

public void compute{) throws RemoteException
(

data +- 10;

public int getData{) throws RemoteException
(

return data;

public void setData(int data) throws RemoteException
(

this.data - data;

public void setGROUNDData(int data) throws RemoteException
(

this.GRdata - data;

public void setRADARata(int data) throws RemoteException
(

this.RDdata = data;

public int getGROUNDData() throws RemoteException
(

int GRdatal - this.GRdata;
//reset GRdata
this.GRdata - -1;
return GRdata1;

public int getRADARData() throws RemoteException
(

int RDdatal - this.RDdata;
//reset RDdata
this.RDdata - -1;
return RDdata;

2.10 MainFusionDMThread.java

package jcode.process;
import java.util.Random;
import javax.rmi.*;
import java.rmi.*;
import java.rmi.server.*;

202

import java.net.-;
import java.util.Calendar;
import java.text.SimpleDateFormat;

public class MainFusionDMThread extends Thread
(

public String link;

public void setData(String parproc)
(

this. link - parproc;

public void runt)
(

IIAssumed only a single DM Named FusionDM for other processes
simplicity

Random generator - new Random();
Calendar cal - Calendar.getlnstance();
SimpleDateFormat sdf • new SimpleDateFormat("yyyy-MM-dd HH:mrn:ss");
System.out.println("FusionDM -- Start

Time:"+sdf.format(cal.getTime()));

try
(

Thread.sleep(lOOO);
}catch (Exception e)
()

while(true}
(

try(
ReconfigProcess mfc -

(ReconfigProcess}Naming.lookup("rmi:lllocalhost:1099/FusionDM");
System.out.println("FusionDM -- own reference

obtained"};

Input");

got new data");

start process data");

end process data");

start fuse data");

end fuse data");

int output - 0;
int i - 0;
forti - 0; i<6; i++)
(

System.out.println("FusionDM -- Poll for

try
(

int grdata - mfc.getGROUNDData();
int rddata - mfc.getRADARData();
if (rddata !- -1 I I grdata !~ -1)
(

System.out.println("FusionDM

System.out.println("FusionDM

try
(

Thread.sleep(6000);
\catch (Exception e)
()
System.out.println("FusionDM

System.out.println("FusionDM

try
(

Thread.sleep(3000);
}catch (Exception e)
()

System.out.println("FusionDM

203

output Desision based on NON stale data");

Calendar.getlnstance();

SimpleDateFormat ("yyyy-MM-dd HH :mm: 55") ;

Output Time:"+sdfl.format(call.getTime()));

no new data");

coded time

else
(

System.out.println("FusionDM

Calendar call ~

SimpleDateFormat sdfl - new

System.out.println("FusionDM

output - 1;
i-lO;
break;

System.out.println("FusionDM

//wait for new data - hard

try
(

Thread.sleep(3000);
}catch (Exception e)
II

Icatch (Exception e)
I

+ e);

on stale data" I;

dd HH:mm:ss");

I

System.out.println("Exception caught: "

e.printStackTrace(l;
break;

if (output -- 0)
(
System.out.println("FusionDM -- output Desision based

Calendar cal2 - Calendar.getlnstance();
SimpleDateFormat sdf2 - new SimpleDateFormat("yyyy-MM-

System.out.println("FusionDM -- Output
Time:"+sdf2.format(cal2.getTime()));

2.11

I
Icatch (Exception e)
I

System.out.println("Exception caught: .. + el;
e.printStackTrace(l;
break;

GroundSensorlmpl.java

package jcode.process;
import java.rmi.-;
import java.rmi.server.*;
import java.rmi.registry.-;

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import jcode.process.*;
import jcode.factory.*;

public class GroundSensorlmpl extends UnicastRemoteObject implements
ReconfigProcess

Strlng bindname;
int data;

204

HainGroundThread mt - new MainGroundThread();

IIConstructor
public GroundSensorImpl(String bindname) throws RemoteException
(

super();
this.bindname - bindname;
System.out.println("Ground Sensor Initialising");
mt.setData(bindname);
mt.start ();

IINo Main As Process is not meant to run from command line
public void delProcess() throws RemoteException
(

IINo need to call a deconstructor as Java RMI uses a Distributed Garbage
Collection

//system and thus will remove stale processes once no reference exists
for them.

try (
String cn - this.bindname;
System.out.println("Ground Sensor Uninitialising\r\n");
LocateRegistry.getRegistry() .unbind(cn);
mt.stop() ;
System.out.println("Ground Sensor no longer bound to localhost as

".concat{cn));
)catch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

public void computet) throws RemoteException
(

data +- 10;

public int getData() throws RemoteException
(

return data;

public void setData(int data) throws RemoteException
(

data - data;

public void setGROUNDData(int data) throws RemoteException
(

data - data;

public void setRADARata(int data) throws RemoteException
I

data - data;

public int getGROUNDData() throws RemoteException
I

return data;

public int getRADARData() throws RemoteException
{

return data;

205

2.12 MainGroundSensorThread.Java

package jcode.process;
import java.util.Random;
import java.rmi.";
import java.rmi.server.";
import java.net.";
import jcode.controller.Controller;

public class MainGroundThread extends Thread
(

public String link;

public void setData(String parproc)
(

this.link - parproc;

public void runt)
(

Random generator - new Random();

while(true)
I

int sound - 0;
int i-O;

forti - 0; i<5; i++)
(

System. out. println ("GROUND Poll for Sound");
Ilwait for sound - hard coded time
try
I

Thread.sleep(3000);
Icatch (Exception e)
I)

IIGenerate random number
int Data - generator.nextlnt();

IIIf even sound detected
if(Data , 2 -- 0)
(

if (sound -- 1)

I

sound - 1;
break;

System.out.println("GROUND -- Ground Sensor Got Sound
- Process Data Start");

Data End");

Ilwait for processing - hard coded time
try
(

Thread.sleep(6000);
Icatch (Exception e)
II

System.out.println("GROUND -- Ground Sensor Process

System.out.println("GROUND -- SEND DATA TO FUSION");
tryl

206

ReconfigProcess mfc -
(ReconflqProcess)Naming.lookup("rmi:lllocalhost:1099/FusionOM");

System.out.println("GROUND -- Fusion OM
reference obtained");

FUSION") ;

else
t

SAYING NO SOUND");

mfc.setGROUNDData(l);
System.out.println("GROUND -- SENT DATA TO

)catch (Exception e)
t)

sound - 0;

System.out.println("GROUND -- SEND DATA TO FUSION

try!
Reconfigprocess mfc -

(ReconfigProcess)Naming.lookup("rmi:lllocalhost:1099/FusionOM");
System.out.println("GROUND -- Fusion OM

reference obtained");

FUSION");

mfc.setGROUNDData!O);
System.out.println("GROUND -- SENT DATA TO

)catch (Exception e)
t}

int Datal - generator.nextInt();
Ilit fault
iftDatal , 2 -- 0)
t

System.out.println("GROUND -- DETECTED FAULT -
RECONFIGURING");

try!
Controller cont - (Controller)

Naming.lookup("rmi:lllocalhost:1099/Controllercontrollern);
System.out.println("GROUND -- controller

reference obtained");

this.link,"localhost");
}

cont.MoveProcDelAfter("GroundSensor",

catch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

2.13 RadarSensorlmpl.java

package jcode.process;
import java.rmi.·;
import java.rmi.server.·;
import java.rmi.registry.*;

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import jcode.process.*;
import jcode.factory.*;

207

publIC class RadarSensorImpl extends UnicastRemoteObject implements
RecontlgProcess
(

Strlng bindname;
lnt data;
HainRadarThread mt - new MainRadarThread();

//Constructor
public RadarSensorImpl(Strinq bindname) throws RemoteException
I

super I);
this.bindname - bindname;
System.out.println("Radar Sensor Initialising");
mt. start ();

IINo Main As Process is not meant to run from command line
public void delProcessl) throws RemoteException
(

IINo need to call a deconstructor as Java RMI uses a Distributed Garbage
Collect ion

Iisystem and thus will remove stale processes once no reference exists
for them.

try I
String cn - this.bindname;
System.out.println("Radar Sensor Uninitialising");
LocateRegistry.getRegistryl).unbind(cn);
mt.stopll ;
System.out.printlnl"Radar Sensor no longer bound to localhost as

".concat(cn));
lcatch (Exception e)
(

System.out.println("Exception caught: " + e);
e.printStackTrace();

public void compute() throws RemoteException
(

data +- 10;

public int getData() throws RemoteException
(

return data;

public void setData(int data) throws RemoteException
(

this.data - data;

public void setGROUNDData(int data) throws RemoteException
(

data - data;

public void setRADARata(int data) throws RemoteException
I

data - data;

public int getGROUNDData() throws RemoteException
(

return data;

public int getRADARData() throws RemoteException
(

return data;

2.14 MalnRadarThread.Java

package jcode.process;
~mport java.rmi.';
import java.rmi.server.';
import java.rmi.registry.';

208

publ~c class MainRadarThread extends Thread
I

public void runt)
I

while(true)
I

System.out.println("RADAR -- Radar Sent");
//wait for response - hard coded time
try
I

Thread.sleep(6000);
Icatch (Exception e)
II

System.out.println("RADAR
System.out.println("RADAR

Radar Data Recieved");
Radar Process Data Start");

//wait for processing - hard coded time
try
(

Thread. sleep (9000);
lcatch (Exception e)
()

System.out.println("RADAR Radar Process Data End");

System.out.println("RADAR SEND DATA TO FUSION");
System.out.println("GROUND -- SEND DATA TO FUSION");
try(

ReconfigProcess mfc -
IReconf igProcess) Naming . lookup ("rmi: I Ilocalhost: l099/FusionDM") ;

System.out.println("GROUND -- Fusion OM reference
obtained");

mfc.setRADARata(l);
System.out.println("GROUND -- SENT DATA TO FUSION");

lcatch (Exception e)
()

3. Java RItAI Case Study Code Outputs

3.1 Unconstrained Output

Process factory started
Process factory bound
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:00
FusionOM -- own reference obtained
FusionOM -- Poll for Input
FusionDM -- no new data
Type: GroundSensor

Ground S.nsor Inltia11sinQ
G'OUND -- Poll for Sound
Typ4; ~.d.rS.n.or

'adar SenIor Inltlalislng
RADA' -- 'adar Sent
rUllonOM -- Poll for Input
FUll0nOM -- no n.w d.ta
Type: rUalonOM
rUIlon PM Inltlalislng
rUll0nOM -- Start Tl .. :2009-01-19 01:31:04
'adar Sensor Unlnltlalising

209

~adar Sensor no longer bound to localhost as rusionDM
G~OUND -- Poll for Sound
rUllonOM own reference obtained
rullonOM -- Poll for Input
rUSlonOM -- no new data
Type: ruUonOM
rUSlon OM Initialising
rUIlonOM -- Start Ti~e:2009-01-19 01:31:07
~adar Sensor Unlnitialising
'adar Sensor no longer bound to localhost as FusionOM
GROUND -- Poll for Sound
RADA' -- Radar oata Recleved
RADA' -- Radar Process Data Start
ruslonOM own reference obtained
rusl0nOM -- Poll for Input
rullonOM -- no new data
Type: FusionOM
rusion OM Initialising
rulionOM -- Start Time:2009-01-19 01:31:11
'adar SenIor Uninitialiling
Radar Sensor no longer bound to localhost as FusionDH
GROUND -- Poll for Sound
rulionOM own reference obtained
ruslonOM -- Poll for Input
rusionOM -- no new data
Type: rusionOM
ruslon OM Initialising
ruslonOM -- Start Time:2009-01-19 01:31:14
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionOM
GROUND -- Poll for Sound
rusionOM own reference obtained
FusionOM -- Poll for Input
rusionOM -- no new data
Type: ruaionOM
rusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:17
Radar SenIor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
GROUND SEND DATA TO FUSION SAYING NO SOUND
GROUND rusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- rusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
rusionOM own reference obtained
rusionOM Poll for Input
rusionOM got new data
rusionOM start process data
Type: rusionOM
rusion OM Initialising
rusionOM -- Start Time:2009-01-19 01:31:20
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDH
GROUND -- Ground Sensor Got Sound - Process Data Start
rusionOM own reference obtained
rusionOM -- Poll for Input
ruaionDM -- no new dats
Type: ruaionOM
rusion OM Initialising
rusionOM -- Start Time:2009-01-19 01:31:23
Radar Sensor Uninitia1ising
Radar Sensor no longer bound to localhost as FusionDH
RAD~ -- Radar Data Recieved

210

RADAR -- Radar Process Data Start
Fu.ionOM own reference obtained
FusionOM -- Poll for Input
Fu.ionOM -- no new data
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:26
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionOM own reference obtained
FusionOM Poll for Input
FusionOM got new data
rusionOM start process data
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:29
GROUND -- Poll for Sound
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionOM
FusionOH own reference obtained
FusionOM -- Poll for Input
FUsionDH -- no new data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- rusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:32
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionOM own reference obtained
rusionOM -- Poll for Input
FusionOM -- no new data
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:35
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionOM
FusionOM own reference obtained
FusionOM -- Poll for Input
FusionOM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
Type: rusionOM
Fusion OM Initialising
rusionOM -- Start Time:2009-01-19 01:31:38
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
rusionOM -- Poll tor Input
rusionOM -- no new data
GROUND -- Poll for Sound
Type: rusionOM
rusion OM Initialising
rusionOM -- Start Time:2009-01-19 01:31:41
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionOM
rusionDM -- own reference obtained

FusionOM -- Poll for Input
FusionOM -- no new data
GROUND -- Poll tor Sound
Type: FusionOM

211

fUSion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:44
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionOM
FusionOH own reference obtained
FusionOM -- Poll for Input
fusionOM -- no new data
GROUND -- Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO ruSION
GROUND SEND DATA TO FUSION
GROUND -- fusion OM reference obtained
GROUND -- SENT DATA TO ruSION
RADAR -- Radar Sent
Type: FusionOM
Fusion OM Initialising
FUsionOM -- Start Time:2009-01-19 Ol:31:~7
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost AS FusionDM
FusionOM own reference obtained
FusionOM -- Poll for Input
FusionOM -- no new data
GROUND -- Poll for Sound
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:50
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
fusionOM own reterence obtained
FusionOM -- Poll for Input
FusionOH -- no new data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
Type: fusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:53
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
fusionOM own reference obtained
FusionOM -- Poll for Input
fusionOM -- no new data
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:31:57
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionOM own reference obtained
fusionOM -- Poll for Input
FusionOM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO ruSION
GROUND fusion DM reference obtained
GROUND SENT DATA TO ruSION
GROUND Poll for Sound
Type: FusionOM
fusion OM Initialising
fusionOM -- Start Time:2009-01-19 01:32:00
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
fusionOM own reference obtained
fusionOM -- Poll for Input
fusionOM -- no new data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO ruSION
GROUND SEND DATA TO ruSION
GROUND -- fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-l9 01:32:03
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionOM

212

FusionDM own reference obtained
FusionDM Poll for Input
FusionOM no new data
Type: FusionDM
Fusion OM Initialising
FusionDM -- Start Time:2009-0l-l9 01:32:06
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
FusionDM -- Poll for Input
FusionDH -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion DM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
Type: FusionDM
Fusion DM Initialising
FusionDM -- Start Time:2009-01-19 01:32:09
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND -- Ground Sensor Got Sound - Process Data Start
Type: FusionDM
Fusion OM Initialising
FusionDM -- Start Time:2009-01-19 01:32:12
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
FusionDM -- Poll for Input
FusionDM -- no new data
Type: FusionDM
Fusion OM Initialising
FusionDM -- Start Time:2009-01-19 01:32:15
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND
GROUND

Fusion OM reference obtained
SENT DATA TO FUSION

GROUND Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
Type: FusionDM
Fusion OM Initialising
FusionDM -- Start Time:2009-0l-l9 01:32:18
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND -- Ground Sensor Got Sound - Process Data Start
Type: FusionDM
Fusion DM Initialising
FusionDM -- Start Time:2009-01-19 01:32:21
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
FusionDM -- Poll for Input
FusionDM -- no new data
RADAR -- Radar Data Recieved

213

RADAR -- Radar Process Data Start
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:32:24
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionOM own reference obtained
FusionOM -- Poll for Input
FusionOM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND
GROUND
GROUND
GROUND

Fusion OM reference obtained
SENT DATA TO FUSION
DETECTED FAULT - RECONFIGURING
controller reference obtained

Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:32:27
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionOM own reference obtained
FusionOM -- Poll for Input
FusionOM -- no new data
GROUND -- Poll tor Sound
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-0l-19 01:32:30
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionOM own reterence obtained
FusionOM -- Poll tor Input
FusionOM -- no new data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Poll for Sound
Type: FusionOM
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:32:33
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionOM own reterence obtained
FusionOM -- Poll tor Input
FusionOM -- no new data
GROUND -- Ground Sensor Got Sound - Process Data Start
Type: FusionOM
Fusion OM Initialising
FusionDM -- Start Time:2009-01-19 01:32:36
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reterence obtained
FusionDM -- Poll for Input
FusionDM -- no new data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM -- Poll tor Input
FusionDM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion DM reterence obtained
GROUND SENT DATA TO FUSION
GROUND Poll tor Sound
FusionOM -- Poll tor Input
FusionDM -- got new data
FusionDM -- start process data
GROUND -- Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained

GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Poll for Sound
FuslonOM -- end process data
FUS10nOM -- start fuse data
GROUND -- Poll for Sound
FuslonOM end fuse data

214

FuslonOM output Desision based on NON stale data
FusionOM OUtput Time:2009-01-19 01:32:52
FUS10nOM own reference obtained
FusionOM Poll for Input
FusionOM no new data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionOM Poll for Input
ruslonOM no new data
ru.ionOM Poll for Input
rusionOM no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND
GROUND
GROUND
rusionOM
rusionOM
FusionOM
RADAR -­
RADAR -­
GROUND

Fusion OM reference obtained
SENT DATA TO FUSION
Poll for Sound

-- Poll for Input
-- got new data
-- start process data
Radar Process Data End
SEND DATA TO FUSION

SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Ground Sensor Got Sound - Process Data Start
rusionOM -- end process data
rusionOM -- start fuse data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND rusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
ru.ionOM end fuse data
rusionOM output Desision based on NON stale data
FusionOM OUtput Time:2009-01-19 01:33:10
rusionOM own reference obtained
FusionOM Poll for Input
rusionOM got new data
rusionOM start process data
GROUND -- Poll for Sound
GROUND -- Ground Sensor Got Sound - Process Data Start
rusionOM -- end process data
rusionOM -- start fuse data
RADAR -- Radar Process oata End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
rusionOM end fuse data
rusionOM output Desision based on NON stale data
rusionOM OUtput Time:2009-01-19 01:33:19
FusionOM own reference obtained
rusionOM Poll for Input
rusionOH no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as 91
rusionOH -- Poll for Input

FusionDM -- got new data
FusionDM -- start process data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start

215

GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND
GROUND
GROUND

Fusion OM reference obtained
SENT DATA TO FUSION
Poll for Sound

FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:33:31
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Poll for Sound
GROUND -- Poll for Sound
FusionDM -- end process data
FusionDM -- start fuse data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:33:40
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM no new data
FusionDM Poll for Input
FusionDM no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionDM Poll for Input
FusionDM -- got new data
FusionDM -- start process data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Poll for Sound
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:33:55
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as g1
FusionDM -- Poll for Input

FusionDM -- got new data
FusionDM -- start process data

216

GROUND -- Ground Sensor Got Sound - Process Data Start
RAD~R -- Radar Process Data End
RAD~R -- SEND DAT~ TO FUSION
GROUND SEND DAT~ TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT D~T~ TO FUSION
RAD~R -- Radar Sent
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DAT~ TO FUSION
GROUND Fusion DM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:34:07
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
RAD~R -- Radar Data Recieved
RAD~R -- Radar Process Data Start
GROUND -- Poll for Sound
GROUND -- Poll for Sound
FusionDM -- end process data
FusionDM -- start fuse data
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-0l-19 01:34:16
FusionOM own reference obtained
FusionDM Poll for Input
FusionDM no new data
RAD~R -- Radar Process Data End
RADAR -- SEND D~TA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion DM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionDM Poll for Input
FusionDM -- got new data
FusionDM -- start process data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionDM end fuse data
FusionDM output Desiaion based on NON stale data
FusionDM Output Time:2009-01-l9 01:34:31
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND -- SEND DATA TO FUSION

GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent

217

GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-0l-l9 01:34:40
FusionOM own reference obtained
FusionOM Poll for Input
FusionDM got new data
FusionDM start process data
GROUND -- Poll for Sound
GROUND -- Poll for Sound
FusionDM -- end process data
FusionOM -- start fuse data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Poll for Sound
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-0l-l9 01:34:49
FusionOM own reference obtained
FusionDM Poll for Input
FusionDM no new data
GROUND -- Poll for Sound
FusionDM
FusionDM
RADAR -­
RADAR -­
GROUND
GROUND
GROUND
GROUND

-- Poll for Input
-- no new data
Radar Data Recieved
Radar Process Data Start

SEND DATA TO FUSION SAYING NO SOUND
Fusion OM reference obtained
SENT DATA TO FUSION
DETECTED FAULT - RECONFIGURING

GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionOM Poll for Input
FusionOM -- got new data
FusionDM -- start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionDM end fuse data
FusionDM -- output Desision based on NON stale data

218

FusionDM Output Time:2009-0l-l9 01:35:04
FusionDH own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:35:13
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
GROUND -- Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Poll for Sound
FusionDM -- end process data
FusionDM -- start fuse data
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:35:22
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM no new data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND
GROUND
GROUND
GROUND

Fusion OM reference obtained
SENT DATA TO FUSION
DETECTED FAULT - RECONFIGURING
controller reference obtained

Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionDM Poll for Input
FusionDM -- got new data
FusionDM -- start process data
GROUND -- Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Poll for Sound
FusionDM -- end process data
FusionDM -- start fuse data
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-0l-l9 01:35:37
FusionDM own reference obtained
FusionDM Poll tor Input
FusionDM no new data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM Poll tor Input
FusionDM -- no new data

GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionOH Poll tor Input
FusionOM -- got new data
FusionOH -- start process data

219

GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
FusionOM -- end process data
FusionOH -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND
GROUND
GROUND
GROUND

Fusion OM reference obtained
SENT DATA TO FUSION
DETECTED FAULT - RECONFIGURING
controller reference obtained

Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll tor Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionOM end tuse data
FusionOM output Desision based on NON stale data
FusionOM Output Time:2009-01-19 01:35:52
FusionOM own reference obtained
FusionOM Poll for Input
FusionOM got new data
FusionOM start process data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND -- Poll for Sound
GROUND -- Poll tor Sound
FusionOM -- end process data
FusionOM -- start fuse data
GROUND -- Poll tor Sound
FusionDM end fuse data
FusionOM output Desision based on NON stale data
FusionOM Output Time:2009-01-19 01:36:01
FusionOM own reference obtained
FusionOM Poll for Input
FusionOM no new data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionOH Poll for Input
FusionOM no new data
FusionOH Poll for Input
FusionOM no new data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionOM Poll for Input
FuaionDM -- got new data
FusionOM -- start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionOM -- end process data

FusionDM
RlIDAR -­
RlIDAR -­
GROUND

-- start fuse data
Radar Process Data End
SEND DATA TO FUSION

SEND DATA TO FUSION

220

GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RlIDAR -- Radar Sent
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
rusionOM end fuse data
rusionOM output Desision based on NON stale data
rusionOM Output Time:2009-01-19 01:36:19
FusionOM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionOM start process data
GROUND -- Ground Sensor Got Sound - Process Data Start

3.2 Constrained Output

Process factory started
Process factory bound
Type: FusionDH
Fusion OM Initialising
rusionOM Start Time:2009-0l-19 01:50:32
rusionDM own reference obtained
FusionOM Poll for Input
FusionOM no new data
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Type: RadarSensor
Radar Sensor Initialising
RlIDAR -- Radar Sent
FusionOM -- Poll for Input
FusionOM -- no new data
Type: FusionDH
Fusion OM Initialising
FusionOM -- Start Time:2009-01-19 01:50:37
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionOM own reference obtained
FusionDM -- Poll for Input
rusionDM -- no new data
Type: rusionOM
Fusion OM Initialising
FusionDH -- Start Time:2009-01-19 01:50:40
Radar Sensor Uninitia1ising
Radar Sensor no longer bound to localhost as FusionDM
RlIDAR -- Radar Data Recieved
RlIDAR -- Radar Process Data Start
FusionOM own reference obtained
FusionDM -- Poll for Input
FusionOM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
rusionOM Poll for Input
FusionDH -- got new data
FusionDM -- start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
RlIDAR -- Radar Process Data End
RlIDAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RlIDAR -- Radar Sent
FusionOM -- end process data
FusionOM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND -- SEND DATA TO FUSION

GROUND
GROUND
GROUND
FusionDM

Fusion OM reference obtained
SENT DATA TO FUSION
Poll for Sound

end fuse data

221

FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:50:53
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:51:02
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
GROUND -- Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:51:11
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionDM Poll for Input
FusionDM -- got new data
FusionDM -- start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

222

Ground Sensor no longer bound to localhost as g1
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-l9 01:51:23
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND Poll for Sound
Type: FusionDM
Fusion OM Initialising
FusionDM -- Start Time:2009-0l-19 01:51:32
Radar Sensor Uninitialising
Radar Sensor no longer bound to localhost as FusionDM
FusionDM own reference obtained
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND -- Poll for Sound
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM -- Poll for Input
FusionDM -- no new data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
FusionDM -- Poll for Input
FusionDM -- no new data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as g1
FusionDM Poll for Input
FusionDM -- got new data
FusionDM -- start process data
GROUND -- Ground Sensor Got Sound - Process Data Start
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
FusionDM -- end process data
FusionDM -- start fuse data
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl

223

FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:51:54
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM got new data
FusionDM start process data
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND -- Poll for Sound
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM end process data
FusionDM start fuse data
FusionDM end fuse data
FusionDM output Desision based on NON stale data
FusionDM Output Time:2009-01-19 01:52:03
FusionDM own reference obtained
FusionDM Poll for Input
FusionDM no new data
RADAR -- Radar Process Data End
RADAR -- SEND DATA TO FUSION
GROUND SEND DATA TO FUSION
GROUND -- Fusion OM reference obtained
GROUND -- SENT DATA TO FUSION
RADAR -- Radar Sent
GROUND Ground Sensor Process Data End
GROUND SEND DATA TO FUSION
GROUND Fusion OM reference obtained
GROUND SENT DATA TO FUSION
GROUND DETECTED FAULT - RECONFIGURING
GROUND controller reference obtained
Type: GroundSensor
Ground Sensor Initialising
GROUND -- Poll for Sound
Ground Sensor Uninitialising

Ground Sensor no longer bound to localhost as gl
FusionDM Poll for Input
FusionDM -- got new data
FusionDM -- start process data
GROUND -- Poll for Sound
RADAR -- Radar Data Recieved
RADAR -- Radar Process Data Start
GROUND -- Ground Sensor Got Sound - Process Data Start
FusionDM end process data
FusionDM -- start fuse data

	501168_001
	501168_002
	501168_003
	501168_004
	501168_005
	501168_006
	501168_007
	501168_008
	501168_009
	501168_010
	501168_011
	501168_012
	501168_013
	501168_014
	501168_015
	501168_016
	501168_017
	501168_018
	501168_019
	501168_020
	501168_021
	501168_022
	501168_023
	501168_024
	501168_025
	501168_026
	501168_027
	501168_028
	501168_029
	501168_030
	501168_031
	501168_032
	501168_033
	501168_034
	501168_035
	501168_036
	501168_037
	501168_038
	501168_039
	501168_040
	501168_041
	501168_042
	501168_043
	501168_044
	501168_045
	501168_046
	501168_047
	501168_048
	501168_049
	501168_050
	501168_051
	501168_052
	501168_053
	501168_054
	501168_055
	501168_056
	501168_057
	501168_058
	501168_059
	501168_060
	501168_061
	501168_062
	501168_063
	501168_064
	501168_065
	501168_066
	501168_067
	501168_068
	501168_069
	501168_070
	501168_071
	501168_072
	501168_073
	501168_074
	501168_075
	501168_076
	501168_077
	501168_078
	501168_079
	501168_080
	501168_081
	501168_082
	501168_083
	501168_084
	501168_085
	501168_086
	501168_087
	501168_088
	501168_089
	501168_090
	501168_091
	501168_092
	501168_093
	501168_094
	501168_095
	501168_096
	501168_097
	501168_098
	501168_099
	501168_100
	501168_101
	501168_102
	501168_103
	501168_104
	501168_105
	501168_106
	501168_107
	501168_108
	501168_109
	501168_110
	501168_111
	501168_112
	501168_113
	501168_114
	501168_115
	501168_116
	501168_117
	501168_118
	501168_119
	501168_120
	501168_121
	501168_122
	501168_123
	501168_124
	501168_125
	501168_126
	501168_127
	501168_128
	501168_129
	501168_130
	501168_131
	501168_132
	501168_133
	501168_134
	501168_135
	501168_136
	501168_137
	501168_138
	501168_139
	501168_140
	501168_141
	501168_142
	501168_143
	501168_144
	501168_145
	501168_146
	501168_147
	501168_148
	501168_149
	501168_150
	501168_151
	501168_152
	501168_153
	501168_154
	501168_155
	501168_156
	501168_157
	501168_158
	501168_159
	501168_160
	501168_161
	501168_162
	501168_163
	501168_164
	501168_165
	501168_166
	501168_167
	501168_168
	501168_169
	501168_170
	501168_171
	501168_172
	501168_173
	501168_174
	501168_175
	501168_176
	501168_177
	501168_178
	501168_179
	501168_180
	501168_181
	501168_182
	501168_183
	501168_184
	501168_185
	501168_186
	501168_187
	501168_188
	501168_189
	501168_190
	501168_191
	501168_192
	501168_193
	501168_194
	501168_195
	501168_196
	501168_197
	501168_198
	501168_199
	501168_200
	501168_201
	501168_202
	501168_203
	501168_204
	501168_205
	501168_206
	501168_207
	501168_208
	501168_209
	501168_210
	501168_211
	501168_212
	501168_213
	501168_214
	501168_215
	501168_216
	501168_217
	501168_218
	501168_219
	501168_220
	501168_221
	501168_222
	501168_223

