
UNIVERSITY OF NEWCASTLE UPON TYNE

DEPARTMENT OF COMPUTING SCIENCE

PRMP: A Scaleable Polling-based

Reliable Multicast Protocol

by

Antonio Marinho Pilla Barcellos

NEWCASTLE UNIVERSITY LIBRARY

098 50584 3

Ph.D. Thesis

Newcastle upon Tyne,

September 1998

Abstract

Traditional reliable unicast protocols (e.g., TCP), known as sender-initiated schemes, do not scale well

for one-to-many reliable multicast due mainly to implosion losses caused by excessive rate of feedback

packets arriving from receivers. So, recent multicast protocols have been devised following the receiver

initiated approach: scalability (in terms of control traffic, protocol state and end-systems processing

requirements) is achieved by making the sender independent from receivers; the sender does not know

the membership of the destination group. However, this comes with a cost: the lack of knowledge about

and control of receivers at the sender has negative implications with respect to throughput, network

cost (bandwidth required), and degree of reliability offered to applications.

This thesis follows an alternative approach: instead of adopting the receiver-initiated scheme, it

greatly enhances the scalability of the sender-initiated scheme, by means of polling-based feedback and

hierarchy. The resulting protocol is named PRMP: polling-based Reliable Multicast protocol. Its unique

implosion avoidance mechanism polls receivers at carefully planned timing instants achieving a low

and uniformly distributed rate of feedback packets. The sender retains controls of receivers: the main

PRMP mechanisms are based on a one-to-many sliding window mechanism, which efficiently and elegantly

extends the abstraction from reliable unicasting to reliable multicasting. The error control mechanism of

PRMP incorporates the use of NACKs and selective, cumulative acknowledgment of packets; additionally,

it can wait and judiciously decide between multicast and selective unicast retransmissions. The flow

control mechanism prevents unnecessary losses caused by the overrunning of receivers, despite variations

in round-trip times and application speeds.

The scalability provided by the polling mechanism is further extended by an hierarchic organization

to exploit distributed processing and local recovery: receivers are organized according to a tree-structure.

However, unlike other tree-based protocols, PRMP is "fully-hierarchic": each parent node forwards data

via multicast to its children, and retains/explores the control of and knowledge about its children while

autonomously applying error, flow, congestion and session controls in the communication with them.

Two congestion control mechanisms, one window-based and another rate-based, have been incorporated

to PRMP.

As shown through simulation experiments, the resulting protocol q,chieves high though put with cost

effective reliable multicasting. They also show the scalability and effectiveness of PRMP mechanisms.

PRMP can achieve reliable multicast with the same kind of reliability guarantees provided by TCP but

without incurring prohibitive costs in terms of network cost or recovery latency found in other protocols.

I would like to dedicate this thesis to my wife,

Claudia,

and to my parents,

Tuca f1 Marilisa.

4

Acknowledgments

I would like to express my sincere gratitude to several people who have contributed in various ways

to the completion of this thesis. First and foremost, I thank my supervisor, Dr. Paul Ezhilchelvan, who

has significantly contributed to my research, in particular through the discussions during the frequent

meetings we held between January 1997 and June 1998. His expertise in distributed systems and group

communication protocols was fundamental for my learning, as well as the development of my research

work and thesis.

I am also very much indebted with Dr. Larry Hughes, who acted as my co-supervisor between

January and June 1996, while spending a sabbatical in Newcastle. He introduced me to the "implosion

problem" and suggested the extension of the polling-based implosion avoidance scheme to hierarchic.

I shall never forget the support and love shown by my wife, Claudia, who has been with me (and

without me) since this life project began (1984). Nothing will bring back nor replace the many hours

that we were apart because I was busy studying or working. This PhD would not have been possible

if I did not have her understanding, help and support. Thanks also to my parents, who have always

understood and supported me in my quest.

I am indebted with Martin Beet; the text of the thesis has significantly improved after his careful

review. I am also grateful to Cong-yue Liu and Avelino Zorzo, who read parts of the thesis. The

research work and the writing of the thesis depended on having strong logistic support. In particular, I

thank Jim Wight, who was always promptly able to help. I also thank Tim Smith, whose help included

preparing a Linux machine in record time (this was essential for the simulation work). Thanks also

are due to other staff members, in particular Dr. Mark Little, for the support regarding his C++SIM

package, Prof. Santosh Shrivastava, Shirley Craig, Ron Kerr, Savas Parastatidis (and the leys cluster)

and Andrewena Swainston.

Throughout my time in Newcastle, I have met many friends and colleagues who have made my time

here in Newcastle very joyful. Although omitting important names, I shall mention Sergio/Patricia Cav

alcante, Eduardo Figueiredo, and in particular, Avelino/Mari Zorzo and Martin/Ulrike Beet. Thanks

to the footy group, including Barry Hodgson, Nick Cook, Sascha Romanovsky and Dave Hartland.

Many thanks to my employer in Brazil, UNISINOS- univers!dade do vale do Rio dos sinos (and

Prof. Arete Porciuncula deAvila), which has invested on me and allowed me to be on leave from the

Informatics Department for the last four years.

Last but not least, my sincere thanks to the Brazilian Research Agency CAPES (and to the Brazilians

who pay its bill), which provided financial support (grant number 547/94-8) in the period 1994-1998.

This amounts to approximately £70,000 (U$120,000) among university fees and living expenses.

Contents

1 Introduction

1.1 Motivation: Scaleable Reliable Multicasting

1.2 Problem Definition (goals)

1.3 Outline of the Thesis . . .

2 Background

2.1 Application Issues

2.1.1 Communication model

2.1.2 Reliability v. timely Guarantees

2.1.3 Sender-reliable v. Receiver-reliable

2.2 Protocol Design Issues .

2.2.1 Packet loss in multicast

2.2.2 Error control (ARQ v. FEC)

2.2.3 Sender-initiated v. Receiver-initiated

2.2.4 Implosion avoidance

2.2.5 Organization

2.3 Related Work

2.3.1 The Full Feedback Protocol

2.3.2 Scalable Reliable Multicast (SRM)

2.3.3 Reliable Multicast Transport Protocol (RMTP) .

2.3.4 Tree-based Multicast Transport Protocol (TMTP)

2.3.5 Log-Based Receiver-reliable Multicast (LBRM)

5

11

11

13

14

17

18

18

19

21

22

22

25

27

29

31

34

34

35

37

43

46

6

2.3.6 Multicast File Transport Protocol (MFTP)

2.4 Conclusions......................

CONTENTS

48

50

3 Flat PRMP: Polling Feedback Protocol 53

53

57

57

60

61

62

65

67

74

76

78

80

80

83

87

90

3.1 Overview

3.2 Sliding Windows Mechanism

3.2.1

3.2.2

3.2.3

The receiving window

The sending window

Obtaining feedback.

3.2.4 Updating the sending window.

3.3 Flow Control . . .

3.4 Polling Mechanism

3.5 Handling Absent Poll Responses

3.6 Data Loss Recovery

3.6.1 Detecting data loss.

3.6.2

3.6.3

3.6.4

3.6.5

3.6.6

Packets susceptible to recovery

Receiver set functions

Recovery of data transmissions

Recovery of data retransmissions

Recovery algorithm

4 Prototyping & Simulation of Flat PRMP

4.1 Protocol Architecture

4.1.1 Queues

4.1.2 Tables.

4.1.3 Threads

93

93

94

96

99

4.1.3.1 The interface with the sending application 100

4.1.3.2 The transmission of packets to receivers. . 101

4.1.3.3 The processing of asynchronous events such as timeouts . 102

4.1.3.4 The handling of polling responses 102

CONTENTS 7

4.1.3.5 The reception of packets from the sender and transmission of

feedback

4.1.4 Overall structure

4.2 Simulation

4.2.1 Simplified network model

4.2.2 Metrics

4.2.3 The Full Feedback Protocol

4.2.4 Protocol runs

4.2.5 LOCAL configuration

4.2.6 WIDE configuration .

4.2.7 Impact of input variables

4.2.7.1 Window Length

4.2.7.2 Response Rate

4.3 Concluding Remarks

5 Hierarchic PRMP

5.1 The Tree Structure

5.2 Forwarding Packets.

5.3 Error Control

5.4 Flow Control

5.4.1 The "Nagging Parent" Syndrome

5.5 Congestion Control

5.5.1 Detecting congestion

5.5.2 Window-based congestion control.

5.5.3 Rate-based congestion control.

5.6 Session Control

6 Prototyping & Simulation of Hierarchic PRMP

6.1 Protocol Architecture ..

6.2 Enhanced Network Model

103

103

105

105

107

109

110

111

115

120

121

124

128

131

132

135

137

141

145

148

149

151

152

154

157

157

159

8 CONTENTS

6.3 Comparison between PRMP and FF .. 164

6.4 Evaluation of Anti-Nagging Mechanism 167

6.5 The IMAGINARY Tree Topology. 168

6.6 Congestion Control Evaluation 172

6.7 Flat v. Hierarchic. 178

7 Concluding Remarks 181

7.1 Synopsis ... 181

7.2 Contribution 185

7.3 Future Work 186

List of Figures

1.1 Example of multicast tree where tree is complete with degree 3 and height 3. 12

2.1 Simple network loss abstraction.

2.2 Two losses with different "degrees" of spatial correlation.

2.3 Organization of reliable multicast protocols.

2.4 RMTP tree-based structure.

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Periodic transmission of packets by the source in RMTP.

Example of transmission cycle at sender in RMTP.

Example of transmission cycle in TMTP.

Schematic illustration of transmission process ..

Scheme with sending and receiving windows.

Schematic view of a receiving window rWi.

Schematic view of rw and consumption of packets.

Example of basic dialog between sender and receiver.

Example of POLL/RESP pair exchange.

Snapshot of sliding windows.

The division of time in epochs by the poll-planning mechanism.

The four steps involved in poll planning.

3.10 Repoll planning Algori thm.

3.11 Example of case the sender selects which Os are actually NACKs.

3.12 Example of 8W attributes computed from a given 8W ..

3.13 Diagram with packet life cycle.

9

23

24

32

38

40

41

45

54

55

57

59

62

64

65

69

71

76

79

82

83

10 LIST OF FIGURES

3.14 Example of false loss detection and recovery cancellation.

3.15 Example of obsolete NACK and redundant retransmission.

3.16 Recovery mechanism identifies the obsolete NACK and prevents the redundant

retransmission.

3.17 Recovery algorithm upon arrival of RESP packet.

3.18 Recovery algorithm upon retransmission timeout.

4.1 Structures used at sender and receivers. .

4.2 Overall structure of the protocol machine.

4.3 Network model employed in simulation experiments.

4.4 Throughput (T, in Kbps) in the LOCAL configuration ..

4.5 Network cost (N) in the LOCAL configuration

4.6 Number of implosion losses (1) in LOCAL configuration.

4.7 Implosion losses (1) in the WIDE configuration..

4.8 Throughput (T, in Kbps) in the WIDE configuration.

4.9 Relative network cost (N) in the WIDE configuration.

4.10 List of protocol runs for window length experiments.

4.11 Impact of window length on the throughput (T) of PF and FF.-IT runs for group

85

88

90

91

92

100

105

106

112

114

115

117

118

119

122

sizes 10, 30, and 60. 123

4.12 Impact of window length in the network cost (N) of PF and FF.-IT runs for group

sizes 10, 30, and 60. 124

4.13 Impact of window length in the implosion losses (1) of PF for group sizes 10, 30,

and 60 (FF-IT runs have suppressed implosion). 125

4.14 Effect of the RR value in the throughput T in the LOCAL configuration. 127

4.15 Effect of the RR value in the number of implosion loss,es in the LOCAL configuration. 128

4.16 Effect of the RR value in the relative network cost N in the WIDE configuration. 129

5.1 Example of the tree-based structure in PRMP.

5.2 Schematic view of internal node Ri.

5.3 Example of forwarding of packets.

133

135

136

LIST OF FIGURES 11

5.4 Example of scenario where the loss detection inferences used in the flat PRMP

do not work. 138

5.5 Example of use of TXs('q to identify which packets have been referenced by receivers. 140

5.6 Example of communication involving three levels: R, R s , and Rs,i'

5.7 Example of sliding windows in internal node. ..

5.8 Example of case where 8W and 1'W are completely "disjoint".

5.9 Example where the left edge of 1'W advances and reaches the right edge.

5.10 Example of scenario where the nagging syndrome may appear.

5.11 Delaying caused by anti-nagging mechanism.

6.1

6.2

6.3

6.4

6 r: .0

6.6

6.7

6.8

Architecture of an internal receiver node.

Structures used at sender and receivers.

Schematic view of a simulated host.

Network multicast tree employed in the PRMP v. FF experiment.

Network scenario in which the nagging parent syndrome occurs ..

IMAGINARY multicast tree configuration.

IMAGINARY multicast configuration with allocated PRMP source and receivers.

IMAGINARY multicast configuration with allocated PRMP source and receivers.

6.9 Variation of Rs.sw.cwnd in time with induced congestion (packet losses are

marked at the top in Figure (b))

6.10 Variation of I PG in time with induced congestion; (packet losses are marked at

the top in Figure (b)).

6.11 Scenario with some lossy links at lower levels of the tree

141

143

144

144

147

149

158

160

161

165

168

170

171

173

175

176

179

12 LIST OF FIGURES

List of Tables

2.1 Main attributes of related reliable multicast protocols 51

3.1 List of packet types. 56

3.2 Summary of window attributes. 66

4.1 General properties assumed for kinds of channels. 106

4.2 Protocol runs. 111

5.1 List of node types and their roles.. 134

6.1 List of network parameters employed in the PRMP v. FF experiment. 164

6.2 Numerical results from experiment comparing PRMP to FF. 166

6.3 Effectiveness of the mechanism to avoid the nagging parent syndrome. 168

6.4 List of default network parameters employed in the IMAGINARY configuration. 172

6.5 Protocol inputs used in the experiments with the IMAGINARY configuration.. 172

6.6 Numeric results obtained for transmissions using different congestion control

mechanisms

6.7 Comparison between hierarchic and flat allocation of receivers.

13

177

178

14 LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation: Scaleable Reliable Multicasting

Multicast allows the efficient transmission of packets to potentially large sets of receivers.

Packets are carried (routed) to receivers through a multicast (routing) tree which is set up by

the network. As shown in Figure 1.1, this tree has the sender (also known as the "source") as

the root node and receivers as leaf nodes (as well as network routers as internal nodes). Packets

are replicated at each non-leaf node so that a copy of the packet follows each downstream route.

Hence, each packet transmitted by the source crosses an edge of the tree only once on its way to

receivers. The essential advantage of multicast over the simpler alternative of multiple unicast

transmissions is the potential gain in network cost (or bandwidth). To illustrate the point,

consider a complete d-ary tree of height h (as in Figure 1.1). To deliver a packet to all dh

receivers using multiple unicasts, the network cost, that is, the number of edges that need to

be traversed, is dh x h. In contrast, using multicast, as each edge is only traversed once, the

network cost is equal to the number of edges: L~=l d i
. Figure 1.1, for example, shows a ternary

tree with 27 receivers, for which unicast costs 81 (33 x 3), while multicast costs 39 (31 + 32 + 33),

a percentage gain of 51 %.

This gain of multicasting can be realized in the Internet by the IP multicast architecture

([Deering91]). The popularization of the IP multicast created the potential for the development

of new multicast applications. Examples are software distribution, dissemination of web-pages

15

16

source

receivers

CHAPTER 1. INTRODUCTION

--d=3

Figure 1.1: Example of multicast tree where tree is complete with degree 3 and height 3.

by WWw-servers, off-line video distribution, live audio/video stream broadcast (e.g., in the

Mbone), and multimedia remote conferencing. These applications have different demands

regarding reliable multicasting, and require individualized solutions or protocols to tackle them

(often referred to as "one size does not fit all").

The subject of reliable multicast is not new. Several reliable multicast protocols, like Isis

([Birman91]) and Newtop ([Maced094]), to name a few, have been proposed and developed in

the past decade. These protocols have focused on high-level services such as "causal" and "total

ordering" properties typically required by many-to-many distributed applications, as well as

"atomicity" for those requiring fault tolerance. Because of these high-level services they provide,

the protocols have high network cost (frequent message passing), substantial processing cost

and protocol state. Hence, they do not scale well for larger number of receivers. Furthermore,

part of these protocols have been developed having an underlying broadcast network in mind,

and so the design choices do not directly extend to wide-area networks (e.g., topological issues,

long latency delays, congestion control). Other protocols of this category require an underlying

transport-level reliable multicast protocol capable of providing efficient and loss less one-to

many delivery (such as the one described in this thesis).

To overcome these limitations, the research emphasis has more recently shifted to the scal

ability of multicast protocols, addressing at network and transport levels the effect of group

size on throughput, network cost, and amount of protocol state. One fundamental scalabil-

1.2. PROBLEM DEFINITION (GOALS) 17

ity problem related to multicast is that of "AcK-implosion\l, ([Crowcroft88]): the sender may

be overwhelmed by acknowledgments (or "feedback packets") sent by receivers in response

to a multicast transmission. As shown through simulations, implosion losses may occur for

groups as small as 10 receivers. Further, as these protocols are applied to internets, they need

to explore the topology and provide congestion control. Several reliable multicast protocols

have been developed to attempt to realize large-scale multicasting in the Internet. Represen

tative examples include LBRM ([Holbrook95]), SRM ([Floyd95]), RMTP ([PauI97]), and TMTP

([Yavatkar95]). RMTP is the only one of these protocols which has some congestion control

mechanism, and it is also the closest in purpose to the protocol presented in this thesis.

In order to achieve scalability, most reliable multicast protocols have shifted the responsi

bility for ensuring reliable delivery from the sender to the receivers. In such scheme, receivers

do not return positive acknowledgments ("ACK") when they successfully receive packets, but

only negative acknowledgments ("NACK"), when a retransmission is necessary to recover a

loss. Further, the sender does not need to maintain group membership information, so that

the amount of state kept by the sender is independent of group size, allowing the protocol to

cope with dynamically changing groups. The sender, however, is not able to guarantee that all

receivers successfully received all packets due to the lack of positive acknowledgments: when

no feedback is received the sender cannot distinguish between a persistent fault and successfull

delivery. There are different ways of achieving reliable delivery under these "loosely-coupled"

circumstances, including the llse of probability and forward error correction.

1.2 Problem Definition (goals)

The research described in this thesis aims at developing a scaleable reliable multicast protocol

and gain insight in related error control, flow control, congestion control, and session control

schemes. The protocol to be described has the following attributes and requirements:

• there is a single "sending application" which disseminates data to a group of "receiving

applications" ;

1 also known as "feedback implosion" .

18 CHAPTER 1. INTRODUCTION

• receiving applications cannot tolerate the loss of any data;

• the sending application has a list of receiving application addresses, and starts a commu-

nication by opening a session with them;

• the sending application wishes to know when any receiving applications departure (spon

taneous or not) from the destination set;

• the protocol scales despite the number of receiving applications and their location in the

internetwork (clustered or sparse), and harness the hierarchy in the existing topology;

• generic protocol, requiring only usual 1-1 and I-N transmission;

• protocol takes a byte stream from the sending application and replicates it to each re-

ceiving application.

1.3 Outline of the Thesis

Chapter 2 presents essential background information on reliable multicast protocols. It ad

dresses issues that are pertinent to reliable multicasting applications, such as degree of relia

bility, protocol design issues, and then analyses representative examples of reliable multicast

protocols found in recent literature.

The description of the PRMP reliable multicast protocol is divided in two parts: flat and

hierarchic. Chapter 3, the core of this thesis, presents the flat PRMP protocol. The chapter

describes a novel sliding window mechanism for reliable multicast; error control and flow control

mechanisms are developed according to this one-to-many sliding window. To prevent the

scalability problems usually associated with multicast window mechanisms, PRMP provides an
>

implosion avoidance scheme where receivers return feedback only when allowed (by a sender)

to do so; the sender elicits feedback from receivers by means of polling requests. PRMP aims to

deliver the potential cost-effective of reliable multicasting, and for that purpose PRMP includes

a loss detection and recovery mechanism which saves network bandwidth when retransmissions

are required.

1.3. OUTLINE OF THE THESIS 19

A multi-threaded protocol architecture was designed for fiat PRMP, and a prototype imple

mented. To evaluate the protocol and the architecture, simulation experiments were conducted

with the prototype. Chapter 4 describes the protocol architecture, the conditions and assump

tions in which experiments were run, and the simulation results obtained. It is shown that

PRMP's polling mechanisms is very efficient in preventing implosion losses; its error control

mechanism keeps control over the set of receivers and thus can treat receivers individually.

The result is cost-effective mechanisms, leading to low network cost and hight throughput.

The scalability of the fiat protocol is somewhat limited because of the window mechanism;

it cannot support very large group sizes, and in large networks with long delays, it may suffer

in terms of performance and network cost. A new, more scalable version of PRMP was designed

to harness the inherent hierarchy of large current networks; Chapter 5 describes this extension,

from the fiat PRMP to the hierarchic version of PRMP, including issues of wide-area networks

such as congestion control.

Chapter 6 provides the protocol architecture of hierarchic PRMP, as well as cnhanced net

work simulations of the protocol. It compares PRMP to a sender-initiated, TCP-like reliable

multicast protocol, using a network configuration with hosts, routers, and links; it also COIll

pares the fiat and the hierarchic versions of PRMP, and finally evaluates the effectiveness of

the mechanisms which were added to fiat PRMP while extending the protocol to the hierarchic

version.

Chapter 7 provides a summary of the work presented in this thesis, highlighting its contri

butions. It also includes some final remarks, and the thesis cnds with ideas for future work.

20 CHAPTER 1. INTRODUCTIOI

Chapter 2

Background

The contents of this chapt.er are organized int.o t.hree main sections. Firstly, it identifies the

main apphcation issues regarding reliable multicasting:

• communication model;

• reliability & timeliness issues;

• sender v. receiver reliability;

Secondly, it addresses the main protocol design aspects related to reliable mUlticasting:

• packet losses in multicast communication;

• error control: ARQ v. FEC;

• sender-initiated v. receiver-initiated schemes;

• implosion avoidance;

• group organization.

Finally, the chapter addresses related work by presenting an informal analysis of the most

representative reliable multicast protocols fonnd in the literature:

• SRM - Scaleable Reliable Multicast ([Floyd95]);

21

22 CHAPTER 2. BACKGROUND

• RMTP - Reliable Multicast Transport Protocol ([PauI97], [Lin96], [Buskens97]);

• TMTP - Tree-based Multicast Transport Protocol ([Yavatkar95], [Yavatkar95b]);

• LBRM - Log-based Reliable Multicast Protocol ([Holbrook95]);

• MFTP - Multicast File Transfer Protocol ([Miller97]).

2.1 Application Issues

2.1.1 Communication model

Models for applications of multicast communication can be categorized based on two charac

teristics:

• one-to-many v. many-to-many;

• unidirectional v. bidirectional.

The division between one-to-many and many-to-many models depends on which participants

of the multicast transmit application-level data. As the name implies, the one-to-many model

is characterized by one sender which transmits data to many receivers, whereas in the many

to-many model multiple nodes can send and receive data.

Applications which require one-to-many and many-to-many have different characteristics.

For example, one-to-many is typical of "information dissemination" , such as software distribu

tion, active distribution of web-pages (with push technology as in [Nonnemacher97]) or media

broadcast, while many-to-many is typically used in applications like distributed replica man

agement and multi-party conferencing.

One-to-many and many-to-many applications also differ in their organization (as shown

later in Section 2.2.5). In one-to-many applications there exists'a central role which is played by

the sending application; in many-to-many applications, often data and control are distributed

among the set of participants (such as wb, [Floyd95]).

The second aspect relevant to the application model is the direction of the communication.

In many-to-many communication, it is possible that the "many" that send are the same "many"

2.1. APPLICATION ISSUES 23

that receive. In one-to-many, the sending application may expect receiving applications to

return responses to a given request which is multicast; one example is a replicated service (e.g.,

a client requesting dependable services from a server which is replicated in several different

sites). In both these cases, the communication between these nodes is said to be bidirectional.

All combinations are possible; this thesis addresses data dissemination, which appears to

be the most common application of one-to-many, unidirectional multicast.

2.1.2 Reliability v. timely Guarantees

The degree of reliability required in a multicast communication may vary from application to

application. There is an associated cost with achieving reliability, and not all applications are

willing to pay for it. At the lowest end of the scale, there is no guarantee of delivery. This

model of communication is often called "best effort", and corresponds to what the IP network

layer provides [Stevens94J. Packets are "dropped" by the network in a silent manner, that is,

neither sending nor receiving applications are informed about the packet loss. An application

relying on a best-effort service either does not need reliability or implements the reliability

itself, so that error control and recovery mechanisms at lower levels (say, transport-level) are

not required or perhaps even desirable. Where to place mechanisms to achieve reliability is a

fundamental design issue (see the "end-to-end argument" of [Saltzer84]).

A reliable multicast protocol can be added on top of the above best-effort service in order

to provide lossless and ordered delivery of data to receiving applications. In such cases, the

application at the sending end produces a stream of data which is to be reproduced at each

receiving end. The protocol attempts to hide problems (see Section 2.2.2 on error control) with

the transmission of such streams. In order to hide any data loss by the network, protocol mech

anisms incur overhead which may appear as increased end-to-end delays (loss of throughput)

and as additional bandwidth/network cost.

The above scheme guarantees that bytes that are taken by the sending end of the protocol

are delivered to the receiving ends (i.e., to receiving applications). However, it cannot guarantee

that the data will be consumed ("read") by the receiving application (the host or application

may crash before this happens), neither can it guarantee that once consumed the receiving

24 CHAPTER 2. BACKGROUND

application will have time to process the bytes. Only an application-level message exchange

can provide this guarantee to the sending application, and this is called "end-to-end application

reliability". One example of such a communication is when a client sends a request to a server,

which sends back a response that works both as an acknowledgment to the receipt of a request

as well as the carrier for the results expected from that request. (Note that this is bidirectional

communication.) The key aspect is that the receiving application only acknowledges the data

after it has been safely processed.

In general, any application wishes the data it transmits to be reliably delivered. Some,

however, cannot afford to spend time waiting for losses to be recovered; the timely delivery of

data is more important. Examples include the broadcast of audio and video over the Mbone.

These applications have "soft real-time" requirements: they can sacrifice some of the reliability

in favor of speedy delivery of data. As a "live" transmission, the usefulness of data at the

receiving applications is time-bounded. For example, if a receiving application employs a

"playout buffer" to display a live video stream (with a constant small delay with respect to

the actual event), it needs to have the packet available at the moment its information is to be

displayed. After that, the packet is of no use.

In conclusion, multicast applications may require different degrees of reliability; in gen

eral, the more reliable the service is, the higher is the overhead incurred to achieve it. Some

applications require timely delivery, and thus cannot accept the overhead associated with re

liability. With that in mind, applications of reliable multicast have been broadly divided

([Lin96],[BagnaIl97]) into two categories: timely-delivery and fully-reliable multicast. Fully

reliable multicast applications are those where receivers cannot tolerate any losses (e.g., file

transfer). Applications with timely-delivery are those where some degree of loss can be toler

ated, but with small end-to-end latency for the data which is successfully delivered. Applica

tions of fully-reliable multicast with timely-delivery (i.e., soft or hard real-time guarantees) are

possible, though difficult to realize in the current networks.

This thesis focuses on fully-reliable (non-real-time) dissemination of data.

2.1. APPLICATION ISSUES 25

2.1.3 Sender-reliable v. Receiver-reliable

Another relevant aspect associated with the reliability regards which end of the application

requires reliability: sending or receiving. In many reliable multicast applications, the sending

application is unaware of the membership of the destination set: it cannot determine which,

or how many, receiving applications are successfully receiving the data from the transmission.

Making an analogy, this is the case of a TV or radio broadcast; the sending application is not

interested in knowing how well the transmission succeeds. As in a TV broadcast, the sending

application does not care if a segment of the receiving applications becomes "unreachable",

and thus fails to receive part of the data. It is up to the receiving applications to accept such

(unrecoverable) losses, and possibly "complain" using some other means. Applications like

broadcast of IRTF meetings through the Mbone fit this model well.

In other uses of multicast, however, the sending application knows which are the receiving

applications (it has a list) and wishes to keep control over the group membership, limiting

access to the group and being informed of any departures. At any point in the communication

(including at the end), the sending application might wish to be informed which receiving

applications have received all data transmitted so far. In addition, the sending application may

wish to know in which point of the data stream those which have not received all data stopped

receiving. This model is important whenever the transmission has economic value, i.e., when it

is important to bill receiving applications for the data received (possibly proportionally); this

kind of agreement might be called ''pay-per-data events" in the future.

Holbrook [Holbrook95, p.330,p.337] has classified the above two types of applications ac-

cording to the reliability requirements: "receiver-reliable communication" and "sender-reliable

communication". In receiver-reliable schemes, each receiving application defines its Own reli

ability requirements. So, it is the receiving-side of an application which requires reliability.

The model is typically used in applications which can tolerate some loss (like the broadcasting

application), as the sending end of the protocol underneath may not be able to satisfy a request

from a receiving end; the receiving application is informed by the receiving end of the protocol

about the unrecoverable loss.

The sender-reliable communication, in contrast, corresponds to the traditional model where

26 CHAPTER 2. BACKGROUND

the sending application determines the degree of reliability of the transmission, and has reliable

feedback about an on-going transmission. Sender-reliable schemes are used when the sending

application is interested in the termination status of the communication, or when the sending

application wishes to consult or be informed about membership changes.

One of the main differentiating aspects between sender and receiver-reliable schemes is

whether the sending application is aware or unaware of the group membership. In the sender

reliable model, the sending application knows the group membership, and requests the reliable

multicast protocol to deliver data providing as destination a list of receiving applications. In

contrast, in the receiver-reliable model, the sending application provides the group identifier,

not knowing the identity of receivers behind the group.

The division between sender- and receiver-reliable is orthogonal to the degree of reliability

required by the application (see Section 2.1.2); the degree ofreliability is related to the amount

of effort put into recovering a loss, while sender- and receiver-reliable classification is related

to what happens once a loss could not be recovered (unrecoverable data loss).

This thesis aims at a one-to-many, fully-reliable, sender-reliable multicast protocol.

2.2 Protocol Design Issues

2.2.1 Packet loss in multicast

A critical issue for reliable multicast protocols is the manner in which packet losses occur in the

network. First consider a simple multicast network model where each of the (say, N) receivers

maintains an independent, individual channel (cd with the sender. Each channel Ci has a given

non-nil loss rate (cd: the probability that a packet sent by one end reaches corrupted or does

not reach at all the other end of the channel is Ci. When a packet is multicast by the sender,

a copy of the packet is sent to each of the channels; any feedback packets that result from

receivers go through the same channel from which the original data packet arrived. Figure 2.1

illustrates this arrangement for N = 6.

Note that if a single copy of the packet is lost in one of the channels, recovery-related

action will be required; for most protocols 1
, it means that the sender will have to detect the

Ithis may not be true for forward-error control protocols (see Section 2.2.2).

2.2. PROTOCOL DESIGN ISSUES 27

sender

receivers

Figure 2.1: Simple network loss abstraction.

loss (e.g., through feedback from receivers) and it will have to retransmit the lost packet. The

probability that at least one copy of the packet is lost increases with N. So, if N tends to 00,

the probability a given multicast transmission will require recovery tends to 1. In other words,

there will be a group size sufficiently large to cause all multicast packets to require recovery by

one or more receivers.

The above observation does not address the issue of how many receivers will require recovery

of a given data packet. In this simple network model, channels are independent, and so are

losses. The number of receivers experiencing a given loss will depend on the loss rates set for

individual channels; for example, if two receivers are at the end of very lossy channels then the

chance that both receivers miss a given packet is, compared to other receivers, higher.

When multicasting in actual networks, instead of independent channels, packets are prop

agated from sender to receivers through a multicast routing tree. In the Internet, anecdotal

evidence suggests that most losses are caused by congestion, that is, by buffer overflow at

(packet-switching) routers, not by packet corruption. Even when there is a low probability

of loss in each of the nodes of the tree, or in the physical links that connect such nodes ,
the cumulative loss probability seen by the source at the root of the tree may be quite high

([Bhagwat94]).

Note that a packet which is lost at a given node of the tree will not arrive at any receiver

that is downstream of the point of loss. In the worst case, a packet is dropped at the root

itself (before being transmitted) and is therefore missed by all receivers. Hence, the higher the

multicast tree is, the more overlap exists between paths, and so higher is the probability that a

given loss will be correlated among receivers. This loss correlation is spatial: if a given receiver

28 CHAPTER 2. BACKGROUND

experienced a loss, it is likely that nearby nodes (siblings and downstream nodes in the tree)

will experience the same loss. Two examples of losses in a multicast transmission are shown

in Figure 2.2; routers are represented as squares, and receivers as circles; the receivers affected

by a loss are marked with an external dashed line. The loss on the left is higher than in the

tree on the right, and affects 3 receivers; the one on the right affects a single receiver.

3
lossy

receivers

1
lossy

receiver

Figure 2.2: Two losses with different "degrees" of spatial correlation.

There is a second kind of loss correlation, which is directly related to network congestion:

temporal loss correlation. When a router receives more packets than it can forward, it eventually

starts dropping packets due to buffer overflow. When this situation arises, it tends to cause

several losses: a congested router is likely to drop several packets until the congestion control

in the protocols with flows passing through the router react and slow down. Therefore, if a

given packet is missed by a receiver, the chance that one or more of the next few packets will

also be missed is greater than the original loss probability.

The experimental study performed in the Mbone and presented in [Yajnick96] confirms the

statements above. It reports that: (a) 47% of multicast transmissions required recovery; (b)

most receivers experienced very low loss rates throughout the transmission; and (c) there were

loss bursts: a large number of consecutive packets were lost by a receiver. However, the study

also found that spatial correlation was generally small apart from losses near the root. This

is only due to the topology (the Mbone) employed in the experiment, as the authors found

that links connecting leaf nodes to the tree ("tail circuits") had higher loss rates than those in

2.2. PROTOCOL DESIGN ISSUES 29

the Mbone backbone. According to [Holbrook95]' LAN bandwidth and resources are likely to

stay cheap and plentiful, while tail circuits linking LANS (local-area networks) to WANs (wide

area networks) are likely to become more congested in the future. So, more losses are to be

experienced either between the root and the backbone (all receivers miss packet) or between

the backbone and a receiver (only one or two receivers miss packet). Therefore, generally, a

designer of a reliable multicast protocol may expect to find strong temporal loss correlation

and possibly also strong spatial loss correlation.

2.2.2 Error control (ARQ v. FEe)

Depending on line and network characteristics, transmitted data may be reordered, distorted,

or deleted, and occasionally, duplicated. Transmission errors may be divided in two categories:

• data corruption: distortion or insertion of message contents, and

• data sequencing problems: deletion, duplication, and reordering of messages.

If data can be corrupted, then it is necessary to detect these errors by adding some kind

of redundancy to messages, whose consistency is checked at receiver side. Assuming that a

corrupted packet will be detected and discarded by the underlying layer, there are two basic

methods of error control:

• forward error control (or forward error correction, FEC): the sender generates redun

dant codes from the data transmitted, and sends these codes through additional packets

(typically at the end). The receiver detects the losses and may be able to reconstruct

missing data using the coded data in conjunction with part of the original data which

was successfully received.

• feedback error control: the sender detects losses through feedback sent by receivers

(NACKS), or the absence of it (timeout for ACKS), and reacts by retransmitting miss

ing data.

Most reliable multicast protocols follow the feedback error control approach; in this thesis, only

the feedback-based techniques are considered. It is assumed that the detection of corrupted

30 CHAPTER 2. BACKGROUND

packets (e.g., through cyclic redundancy checks, or CRC) may be easily executed at any layer

equal to or below the error control layer in question, transforming distortion errors into deletion

errors by simply discarding corrupted packets. As only feedback error control techniques are

considered, deletion (loss), duplication and reordering of packets have to be detected and then

recovered by means of retransmissions. This technique is known as automatic repeat request,

or ARQ. There are three classes of ARQ protocols:

• Stop-and-wait: the sender waits on a timer for an ACK from the receiver for every message

transmitted. Not only the ACK confirms the receipt of the message by the receiver, but

also entitles the sender to transmit another message (thus, error control and flow control

become mixed). If the timer expires, the sender assumes the packet or the ACK was lost,

and retransmits the packet and resets the timer. To calculate the timeout, the sender

uses the average round-trip time (RTT) between sender and receiver. A I-bit sequence

number in the packet and ACK is used to uniquely identify packets. ([Holzmann91, p.83j,

[Peterson96, p.I11])

• Go-back-N: the sender can transmit several packets in a sequence, keeping outstanding

packets in a sliding window. The receiver too is modified so that it can store (in a

window) packets received out-of-order. A receiver returns an ACK which acknowledges

the receipt of the highest-numbered packet received in order and implicitly all previous

ones. When the sender detects a loss, it "backtracks" to the lost packet, and retransmits

this packet and all subsequent ones that had been transmitted (potentially an entire

window) ([Peterson96, p.155]).

• Selective retransmission: the receiver acknowledges exactly those packets which it has

received, and the sender selectively retransmits only those packets whose ACK has not

arrived, or which have been negatively acknowledged by the receiver.

It is possible to develop hybrid reliable multicast schemes by mixing ARQ and FEC techniques.

Examples are the schemes in [Nonnemacher97bj and Protocol D2 in [Nonnemacher97c, p.974j.

These FEC schemes increase the scalability of reliable multicast protocols by reducing the

overall number of feedback packets in a transmission. More precisely, by allowing receivers

2.2. PROTOCOL DESIGN ISSUES 31

to reconstruct data from packets which have not been lost, less NACK packets are required.

By reducing the volume of NACK packets, it becomes less likely that "NAcK-implosion" will

occur. This phenomenon occurs when the same loss is experienced by many receivers (e.g.,

when a packet is dropped near the root of a multicast propagation tree): a large number of

receivers send NACK packets to the sender, causing NAcK-implosion. However, FEC schemes

have their own limitations. One is the processing burden involved in coding and decoding

data. Another relates to loss correlation: if losses occur in long bursts (as discussed in Section

2.2.1), the receiver may be unable to reconstruct the lost data. A third limitation is that

the feedback packets in ARQ protocols may serve other functions beyond error control, like

flow and congestion control. With regards to flow control, the feedback may help the packet

buffer management (through a sliding window), and prevent any receiver being overrun by

the sender. Feedback packets (or their unexpected absence) may also be required in order to

identify potential congested routers and act conversely by reducing the load injected into the

network. Nevertheless, solutions are being investigated, such as the use of a layered scheme for

congestion control in FEc-based protocols [Vicisan098].

2.2.3 Sender-initiated v. Receiver-initiated

[Pingali94] has classified protocols according to the way they achieve reliable delivery. The

classification divides protocols in either "sender-initiated" or "receiver-initiated", and it closely

resembles the one between sender and receiver-reliable presented in Section 2.1.3. The difference

between the two classifications is that the latter refers to what kind of reliability guarantees

are offered to the application, whereas the former refers to how such reliability requirements

are implemented. Both classifications are applicable to one-to-one, one-to-many and many-to

many.

Traditional reliable protocols such as TCP correspond to the sender-initiated approach.

The responsibility of ensuring reliable delivery lies with the sender, which maintains state in

formation regarding all receivers that it is multicasting data to. This state includes the group

membership (who are the receivers) and which of them have acknowledged which data. Accord

ing to [Pingali94], in sender-initiated protocols each packet received is positively acknowledged

32 CHAPTER 2. BACKGROUND

with an ACK packet, transmitted from a receiver to the sender, and losses are detected (only)

at the sender through the absence of ACKS (triggering a timeout).

In contrast, receiver-initiated schemes shift most of the responsibility for reliable data de-

livery to the receivers. The sender transmits packets to a group address whose membership

is unknown and may dynamically change. The amount of status the sender maintains is thus

independent of group size. Each receiver is responsible for detecting losses and informing the

sender via NACKs when it requires a retransmission of a packet. To allow receivers to detect

losses, the sender includes a sequence number in the packets (re)transmitted; receivers look for

sequence gaps in the packets received. Though sometimes it may indicate packet reordering, a

gap is a good indicative of a packet loss. When a gap occurs, the receiver sends a retransmis

sion request (NACK) to the sender. NACKS can be transmitted either via unicast or multicast,

depending on the protocol. The sender (or other receiver in case of NACK multicast) responds

by taking a packet from the buffers and retransmitting it.

Because there is no positive confirmation of receipt in receiver-initiated schemes, the sender

cannot guarantee which packets have been received and which will require retransmission.

When packets have a given fixed useful lifetime (e.g., multimedia broadcast), sender and re-

ceivers can automatically discard packets based on real-time; buffer management in this case

is simple and timer-based. Otherwise, the sender is unable to tell when a stored packet can be

safely released from the buffers.

In order to provide full reliability in receiver-initiated schemes, the sender must be prepared

to retransmit any of the packets which have been already sent, for the entire transmission and

for an arbitrarily long time after the last packet has been sent. To be able to retransmit any

packet at any time, the sender needs an "infinite buffer ", which can be accomplished through an

external caching mechanism (such as in RMTP [Pau197]) or by "logging" all packets transmitted
>

to a disk (such as LBRM [Holbrook95]). Use of disk or external cache for infinite buffering has

negative impact in terms of performance, protocol complexity/generality, and scalability.

An alternative to the infinite buffer approach is the use of probability: after transmitting a

set of packets (e.g., a window), the sender waits for an arbitrarily long time in order to allow

(with high probability) all receivers to negatively acknowledge any of the packets transmitted.

2.2. PROTOCOL DESIGN ISSUES 33

The sender then retransmits any of the reportedly missed packets. The time for which the

sender remains idle must be equal to or larger than the highest current RTT estimate between

sender and all receivers. The sender has to be very conservative in choosing this waiting time,

since it is unable to estimate what is the maximum RTT among its receivers, as it does not

know how many or which are its receivers.

Another consequence of not knowing the receiver group membership is that the sender can

not be sure of how much data receivers are receiving. Consequently, receiver-initiated schemes

are limited to receiver-reliability (see Section 2.1.3) only. The sender-initiated approach can

provide higher degrees of reliability (than receiver-initiated) without having to resort to infinite

buffers. It has also the potential to achieve higher throughput, since the sender has to wait

for feedback only from a known set of receivers (in the receiver-initiated the sender must be

conservative in regards to group size and RTTS between itself and receivers). On the other

hand, the sender-initiated approach scales poorly, due to the following factors:

• amount of state kept by the sender: dependent on the group size;

• volume of ACK packets returned to the sender, causing feedback implosion.

To overcome these limitations, a hybrid scheme can be designed by adding to the sender

initiated approach characteristics of the receiver-initiated one. There are two major modifi

cations required: the first one is to include negative acknowledgments, allowing receivers to

detect losses and report such losses to the sender. This may reduce latency significantly, since

potentially the sender is able to detect a loss and retransmit a packet much sooner than by

timeout alone. The second change regards scalability: to avoid the feedback implosion, the vol

ume of feedback packets returned by receivers (now both ACKS and NACKS) must be reduced,

and preferably their arrival should be spread in time. The resulting hybrid schemes differ in

how frequently feedback packets are returned by receivers, and how much status each feedback

packet contains. The"next section describes several of such hybrid feedback schemes, which are

designed to reduce the amount of feedback packets and reduce the risk of implosion losses.

34 CHAPTER 2. BACKGROUND

2.2.4 Implosion avoidance

Different strategies have been used in order to overcome the implosion problem. They can be

roughly divided into four categories (which can be used together):

• tree-based

• period-based

• delay-based

• polling-based

In the tree-based schemes, receivers are organized according to a tree structure. The amount of

feedback sent to the source is reduced because receivers send feedback to their parent node only.

The actual rate offeedback packets arriving at a parent node depends on three factors: (a) the

degree of the node in the tree, i.e., how many receivers are sending feedback to the parent; (b)

the rate in which data arrives at these (child) receivers; and (c) the kind of protocol used in the

interaction between sender and receivers (e.g., sender- or receiver-initiated, etc.). Examples

of schemes which fit this tree-based implosion avoidance include [Pau197]' [Yavatkar95J, and

[Hofmann96J.

In the period-based scheme receivers send fewer feedback packets, but each feeback has

more content (and is thus larger). The scheme appears in two forms: block acknowledgment or

periodic acknowledgment. In the former case, the sender divides the transmission in blocks, and

at the end of each block receivers send a "block ACK" containing several positive and negative

ACKS referring to all packets in the block (as in [Bhagwat94, Section 2.1J and [Miller97]). In

the latter case, each receiver periodically sends (with fixed time period) a feedback packet

containing a bit vector identifying which packets require retransmission. In both [Pau197J and

[Yavatkar95J, a receiver generates a feedback packet to its parent every "Tack".

The use of probabilistic timers is the main characteristic of the delay-based schemes. Feed

back packets are multicast to the group, and so are the resulting retransmissions. When a

receiver is given a NACK (for a data packet it possesses), it may multicast a retransmission.

When a given loss is experienced by more than one receiver, it is possible that multiple receivers

2.2. PROTOCOL DESIGN ISSUES 35

multicast NACK packets. Delays are part of a feedback suppressing mechanism which reduces

the number of redundant NACKS and retransmissions, preventing implosion (and congestion).

Examples are [Floyd95] and [Grossglauser96].

The last category is the polling-based implosion avoidance. It can be probabilistic or deter-

ministic. One example of the former case is [Turletti94]: to avoid congestion and overrunning

of receivers, the sender requests (through polling) feedback packets from a random subset of

receivers, and uses such feedback in order to adjust its sending rate; asking all receivers to

return such feedback would cause implosion. In the second case, as in [Hughes94], the sender

achieves reliable delivery and flow control with a sender-initiated ARQ scheme; the sender uses

polling to select a subset of receivers to send an ACK packet, so that the volume of ACK packets

is sender-controlled and does not cause implosion.

2.2.5 Organization

Most current reliable multicast protocols use one IP multicast group to propagate packets from

the sender to receivers2. Packets flow through a multicast routing tree which is built by the

network according to packet routing (e.g., the Distance-Vector Multicast Routing Protocol,

DVMRP) mechanics and a membership protocol (e.g., Internet Group Management Protocol,

IGMP).

Most protocols deliver packets to receivers using the above scheme, they however differ in

how feedback is propagated from receivers to the sender; there are three general organizations

(see Figure 2.3):

• flat or centralized model;

• hierarchic or tree-based;

• symmetrically distributed.

This organization permeates the protocol design, affecting error control, implosion control, flow

control, and congestion control.

2although there are approaches involving multiple groups, most notably destination-set splitting ([Ammar92],
[Cheung95]) and layering ([McCanne96]).

36

Flat or

Centralized

CHAPTER 2. BACKGRO UND

Symmetrically

Distributed

Figure 2.3: Organization of reliable multicast protocols.

Hierarchic

or Tree-based

In the simplest organization, the fiat or centralized model, each receiver direc tly interacts

with the sender. That is, receivers transmit feedback to the sender , which examines the feed-

back and carries out recovery by retransmission. One potential benefit of such a model is that

the sender has information about all receivers and is able to make "global" decisions regarding

the entire group. For example, when retransmissions are required, the sender is able to judi-

ciously decide between multiple unicast or multicast retransmissions according to the number

of receivers that experienced a given loss. With the loss scenarios of Section 2.2.1 in mind,

using global multicast or multiple unicasts to recover losses may have a strong impact on net-

work cost associated wi th the protocol. On the other hand, this flat model presents scalability

problems. As the sender handles feedback packets from all receivers, the volume of feedback

packets may exceed the capacity of the host and its surrounding network , leading to implosion

losses. Further , in wide-area networks, where the RTT between sender and receiver may be

substantial, a feedback packet and the resulting retransmission has to propagate all the way

from receivers to the sender and then back; this is likely to increase end-to-end latency.

T he other two models depend on the interaction among receivers. In the hierarchic or

2.2. PROTOCOL DESIGN ISSUES 37

tree-based model, receivers are organized according to a tree, with the sender at the root. Every

receiver is a child node which sends feedback to its parent node. This increases the scalability of

the protocol: since the sender only receives feedback packets from its child nodes, the problem

of implosion is somewhat alleviated. In the tree-based model, there are two ways of organizing

the recovering of packets:

• collated feedback with centralized retransmission: all acknowledgments are collated through

the tree like in concast communication ([Rajagopalan93]), and the sender does all retrans

missions according to the collated ACKS;

• hierarchical recovery: each parent node in the tree keeps packets received in buffers and

performs retransmissions requested by its children; if a parent does not have a requested

packet, it asks its own parent.

Though there are difficulties associated with both schemes (which will not be addressed here),

hierarchical recovery seems to be more common (e.g., RMTP [Pau197]' TMTP [Yavatkar95],

and LGC [Hofmann96]). With collated feedback with centralized retransmission, packets have

to be NACKed all the way to the source, and then retransmitted, an operation which may

involve substantial delays depending on the network distance between the two. The gain in

comparison to the above flat scheme is that feedback is collated through the tree, reducing

the risk of implosion, and reducing the network cost (feedback packets go only to the parent).

Hierarchic recovery allows localized recovery to take place: a given loss may be recovered by a

nearby node (often called "representative" or "group leader"), with low latency and without

affecting the rest of the group.

In the symmetrically distributed model, any receiver which has received the packet (or the

sender) is capable of retransmitting it. All retransmission requests are multicast to the entire

group, so that all receivers learn about it. One or more receivers which received the packet will

retransmit, again via global multicast. This symmetrical model has high network cost: suppose

one of the N receivers experiences a loss, and multicasts a NACK packet; as a result, the N - 1

nodes that received· the packet retransmit via multicast. This corresponds to (N - 1) x N

packets being exchanged, a very high number for a single loss.

38 CHAPTER 2. BACKGROUND

To overcome the network cost problem, a "feedback and recovery suppression mechanism"

can be used. As in SRM [Floyd95], random timer values are used to delay receivers to attempt

to reduce the amount of redundant NACKS and retransmission packets. To calculate a good

random suppression timer for a given loss, each receiver needs to estimate the distance between

itself and the sender of the packet. If all participants can send, each of the receivers need to

keep RTT estimates between itself and all others. To estimate RTT between itself and all other

receivers, each receiver needs to exchange periodic messages with all other receivers. The

symmetric model better suits many-to-many applications, where the overhead may be reduced

because group members (frequently) exchange (data) messages.

2.3 Related Work

This section analyzes the protocols which are most relevant to the thesis research, using the

taxonomy presented in Sections 2.1 and 2.2. All protocols discussed employ feedback-based

error control, and apart from SRM, all aim at fully-reliable one-to-many dissemination.

2.3.1 The Full Feedback Protocol

In order to realize reliable multicast in the Internet, there are several reasons for extending the

TCP protocol to allow for reliable multicasting (e.g., SCE, [Talpade95]). Firstly, although TCP

is in many aspects obsolete, it is well-understood and mature network technology. Secondly,

it seems appropriate to develop a multicast extension of TCP which is capable of coexisting

fairly with TCP flows in the Internet. Thirdly, a TCP-like application program interface (API)

for multicast may take advantage of a huge software base (libraries, applications, etc.) and

knowledge base (trained people) in the development of network applications. However, as

indicated by [Talpade95] and demonstrated by [Pingali94], the Tcp-multicast approach does

not scale well because it is subject to implosion.

[Pingali94] describes a generic sender-initiated reliable multicast protocol which is similar

to TCP, and compares it with two receiver-initiated schemes. Below an implementation of such

a protocol is given, and termed "Full Feedback Protocol" (or simply "FF").

FF is a fully-reliable one-to-many protocol. The source interacts with all receivers (flat

2.3. RELATED WORK 39

organization) and the communication is driven by a sliding window mechanism. The data to

be transmitted is separated in (data) units of same size; each unit fits into a single network

layer packet, and is uniquely identified by a sequence number. The sender multicasts packets

to a group of receivers and expects to receive a positive acknowledgment from each of them for

every packet sent. Through the sliding window, the sender keeps track of which receivers have

acknowledged which packets.

To limit indefinite waiting for ACKS, the sender employs a retransmission timeout ("RTO");

when the RTO expires, if one or more receivers have not acknowledged the packet, the packet is

retransmitted via multicast ("global retransmission"). The timeout calculation by the sender is

based on the original TCP scheme and uses a smoothed estimate of the round-trip time, which

is calculated as:

RTTestimate f--- RTTestimate x a + (1 - a) x RTT measurement

where RTTestimate is the variable containing the RTT estimate, RTT measurement is the new fresh

measurement, and a the smoother (e.g., set to 0.8). Since the sender may be at a different

distance from each receiver, the sender keeps one RTT estimate for each receiver. The highest of

all RTT estimates (i.e., the worst case) among receivers is used for the proper RTO determination,

as below:

RTO f--- max{RTTestimate} x f3

where f3 is an "error factor" (e.g., set to 2). Unlike TCP, the FF protocol measures the RTT

by including a timestamp in the packet sent, i.e., the current value of the clock; when the

receiver transmits the ACK packet, it returns a copy of the timestamp received. When the

sender receives the ACK, it simply subtracts the current time from the timestamp to determine

the new RTT measurement.

Selective retransmission is used (instead of Go-Back-N): only packets which are detected

to be lost (upon RTO expiration) are retransmitted, and a new RTO for the packet is defined.

It is possible to optimize this protocol in some ways. One main improvement is to change

the loss detection scheme to include negative acknowledgments (e.g., send a "NACK seq" when

packet seq+ 1 is received for the first time without having received seq). This adds complexity

to receiver and sender, but might prevent in some cases the latter waiting for a timeout before

40 CHAPTER 2. BACKGROUND

retransmitting.

2.3.2 Scalable Reliable Multicast (SRM)

The Scalable Reliable Multicast Protocol (SRM [Floyd95]) is aimed at many-to-many multicast

applications. Designed with the Application Level Framing (ALF) philosophy in mind, SRM is

implemented as part of the application (as opposed to an underlying layer). The application

itself provides the unique identification for packets (e.g., sequence number). As pointed out in

Section 2.2.5, SRM has a symmetric organization, and this fact influences the design of its main

mechanisms, as explained below.

Firstly, SRM employs a "decentralized error recovery". A node that detects a packet loss

(via a gap in the packet sequence) multicasts a NACK for that packet, and any node that has

the data packet can multicast to recover that loss. The data packets which are re-multicast

can speed up recovery in nodes that experience the same loss but have not yet detected it. To

avoid simultaneous multicasting of NACKS or retransmissions for a given loss, a node waits on

a timer to ascertain the need to multicast a NAcKjretransmission. In [Floyd95] the effective

way to choose these timers is discussed for some basic network topologies.

Since any node that successfully received the packet may provide a retransmission, recovery

in SRM has the potential to be the fastest possible among reliable multicast protocols. On the

other hand, the recovery mechanism of SRM introduces delays: a receiver waits on a timer

before it reports a loss to other receivers and also before multicasting the packet lost by some

other receiver. The recovery time is increased by the delays applied before multicasting a NACK

(a REQUEST packet) or a retransmission (a REPAIR packet). To minimize recovery time, SRM

proposes an adaptive mechanism to adjust the timer values dynamically; the price is an increase

in the computational complexity of protocol and the state information held by a receiver.

The error control mechanism of SRM does not require a node to maintain the group mem

bership. However, to work effectively, the suppression mechanism depends on each node main

taining RTT estimates between itself and other nodes. So, in practice, every SRM node needs to

know explicitly all other sending nodes. The fact that each node has to periodically estimate

the RTT between itself and other nodes (through a packet-pair) may pose a scalability problem.

2.3. RELATED WORK 41

The very low recovery times SRM can potentially achieve come with a price: potentially

high network cost. Even if the suppressing mechanisms achieves perfect random delays, and

there is no loss of feedback packets, the best it can achieve in terms of packet exchange is 2

multicast operations (1 NACK and 1 retransmission) per recovery. Recall the multicast loss

patterns discussed in Section 2.2.1: the larger the group, the higher the probability a given

packet will require retransmission. So, as in [Yajnick96], 47% of data packets multicast require

recovery (say, by 1 receiver), the best the SRM mechanism can achieve is dominated by the fact

that in nearly half of the transmissions ...

• ... all nodes (including the sender) will be sent a feedback packet, and will start timers as

part of the probably-to-be-suppressed recovery mechanism;

• . .. the data packet will be re-multicast, so that in almost half the transmissions all receivers

but those which experienced the loss (a small number on average [Yajnick96]) will receive

unwanted retransmissions.

These shortcomings are being addressed in SRM by adding hierarchy to its symmetric structure.

By dividing the receiver group in local domains or regions, the mechanism can work effectively

in small scale within each domain; each domain, on its turn, can use a "proxy server" to

communicate with other domains ([Sharma98]).

2.3.3 Reliable Multicast Transport Protocol (RMTP)

The Reliable Multicast Transport Protocol, RMTP ([Lin96],[PauI97]), is a one-to-many, tree

based protocol which provides fully-reliable file transmission. It is an evolution from the study

on hierarchic multicast protocols presented in [PauI94]. RMTP is receiver-reliable (as defined in

Section 2.1.3): the protocol is designed with the IP multicast model in mind, so that the sender

does not need to know the membership of the receiver group. For this and other reasons, RMTP

appears to scale very well. The protocol has been shown to work in actual networks through ex

periments using an intercontinental network configuration (with around 10 receivers). RMTP+,

a variation of the protocol which is capable of transmitting continuous streams, has been im

plemented and deployed by AT&T for dissemination of call-billing related information. RMTP

42 CHAPTER 2. BACKGROUND

has been recently re-implemented by GlobalCast Communications for commercial utilization.

RMTP is organized as a two-level logical tree: receivers are grouped into "local regions" or

domains. As illustrated in Figure 2.4, each local region has a special receiver, the "Designated

"... - - "
I Multicast Network I

I

.._._ DATA

------~.~ FEEDBACK

I
/

/

.'

Figure 2.4: RMTP tree-based structure.

Receiver" (DR). The source, at the root of the multicast tree, employs IP multicast to send

data packets to all receivers (including DRS) in the tree. To reduce the volume of feedback

arriving at any node, a receiver or DR sends feedback only to its parent. Additionally, a child

node only returns feedback packets to its parent periodically. The logical tree is built so to

explore the physical network topology; the physical agglomeration of receivers in subnetworks

is "mapped" into domains of the logical tree. The logical tree is built in a distributed way:

receivers choose their parent DR autonomously, and the parent node, source or DR, does not

know the child nodes it parents. This decision affects the design of RMTP error and flow control

mechanisms.

Though RMTP is tree-based, a DR does not collate status as in concast communication

([Rajagopalan93]). Instead, error control is applied independently in each level of the tree: the

2.3. RELATED WORK 43

feedback sent to the source by DRS regards only the reception of packets at DRS themselves,

not at the source's grand-children. In other words, the source only "sees" the set of DRS,

while each DR only "sees" its children. Error and flow control are based on a sliding window

representing a set of fixed-size data packets. A window is comprised of a bit vector (v) and

a sequence number which represents the left edge of the window (lbe, for lower bound edge).

Each parent keeps a send window (sw) of size Ws; however, the only parent to multicast new

data is the source. Each child keeps a receive window (RW) of size Wr that represents the

reception of packets. A gap in RW indicates that a packet has not been received; a gap in sw

indicates that one or more receivers have requested a retransmission of the packet (see below).

RW slides forward according to the reception of packets (independently of consumption of data

by the application), whereas sw slides forward according to the minimum left edge recorded

(min {lbe}) in feedback packets received from the children.

RMTP is timer-based. On the receiver side, each child periodically sends feedback packets

to its parent at every Tack. A feedback packet contains a copy of RW; gaps in the sequence

represent retransmission requests (NACKS) to be served by the parent. Selective retransmission

is used so that only NAcKed packets are retransmitted. A parent decides between multicast

and multiple unicast retransmission according to the number of receivers requesting the re

transmission of a given packet, in order to save network bandwidth. The timer Tack is set

independently by each child according to the estimated RTT between itself and its parent, plus

1/3 of the value chosen as period for retransmissions (denoted as T retx , see below).

The processing of such feedback packets at a parent is event-based, triggered when feed

back packets arrive. The source both transmits and retransmits data periodically, while DRs

retransmit periodically (only the source transmits original data). Transmission and retrans

mission operations happen at every Tsend and T retx time, respectively, and independently of

each other. That is, Tsend and T retx "overlap" in time. The scheme is illustrated in Figure

2.5, using the source, a Tsend which is equal to the T retx , and a T retx which is offset in ¥.
Apart from being idle, the sending role of a parent may be in one of three activities: sending

new data (at Tsend times), retransmitting (at T retx times) or waiting/processing feedback. The

workings of the protocol can be summarized as follows:

44 CHAPTER 2. BACKGROUND

"0 .. "0 .. "0
c: c: c:
CD ! CD f! CD

'" '" '" l- I- l- I-

t< 1< ~t< 1< ~t<
p p

Tsend= Tretx - multicast new data

Tretx starts after Tsendl2 ~ retransmit

Figure 2.5: Periodic transmission of packets by the source in RMTP.

1. At every Tsend, the source transmits a burst of data packets, up to a window size of

packets. After the burst, the source does not transmit new packets until the next Tsend

time arrives.

2. Meanwhile, the source receives feedback packets which are periodically sent by the DRS

(as DRs receive from their receivers), and accumulates all NACKS in a retransmission

queue which contains one entry per packet sequence requested, each entry with a list of

receivers' network addresses.

3. When T retx time arrives, the retransmission queue is consumed: each entry in the queue

triggers recovery for the packet referred by the entry. The source opts between multiple

unicasts or a multicast retransmission according to the number of receivers which have

NAcKed the packet. If the queue is empty, no packet is retransmitted; with or without

retransmissions, new data packets can only be transmitted at the next T send .

4. When the new Tsend comes, a parent advances lbe of sw to the smallest lbe reported since

the last T send . The amount of new packets that can be now multicast depends on the

feedback received since the previous Tsend: it is equal to the number of packets that the

lbe just advanced, i.e., at worst, 0 (no new transmissions), and at best, a full window.

This transmission cycle is illustrated with an example (see Figure 2.6), with settings: Tsend =

T retx = 600ms, and Ws = 15 packets. Suppose Tsend happens at time 2,000, when the source

has an available window of Ws packets (15). The source multicasts 15 packets, sequences #101-

#115, in a row (CD). A feedback packet (lbe = 103, v = 011...1) arrives at the source (®),

NAcKing #103, at time 2,250, and an entry is added to the retransmission queue. T retx comes

2.3. RELATED WORK 45

at 2,300, and #103 is retransmitted (®). Nothing else happens until a new Tsend comes at

2,600, when the source advances lbe to #103, the minimum left edge verified since time 2,000;

the source uses up the current available window, and transmits two new packets (@), #116

and #117. At 2,700, a new feedback arrives (lbe = 115,v = 00 ... 0), acknowledging all packets

up to #114 (@). At the next Tretx , at 2,900, the retransmission queue is found empty, and

no packet is retransmitted (@). The source remains idle until the next Tsend, at 3,200, when

it advances lbe to #115, and transmits #118-#131 (0).

2000 2300
Tsend Tretx

t t
CD ® ~

multicast feedback retransmit

2600
Tsend

t
~ @
multicast feedback

2900
Tretx

t
I@
idle

3200
Tsend

multicast

Figure 2.6: Example of transmission cycle at sender in RMTP.

The error control mechanism of RMTP is based on the fact that the sender transmits up to

a window of data packets and then waits for a period of time which should be long enough to

allow all potential receivers out there to report losses. Each parent node waits for a time equal

to Tsend for feedback to come from all receivers/DRs before sliding the window forward. The

following example will demonstrate why this can be a major limiting factor:

• if the time needed to transmit a packet equals Ttx , then it takes Ttx x Ws time to send a

window;

• if the RTT to the farthest child node is some RTT max, seq is the last packet of a window

and its transmission occurs at time Ttx x W s , then packet seq will reach the farthest child

at time Ttx x Ws + RT~max;

• the first instance of Tack after the arrival of the packet seq allows the receiver to send a

feedback packet; assume that this happens with some delay d after time Ttx x Ws+ RT~max;

• after being sent, the feedback requires another half-RTT and only reaches the sender at

time Ttx x Ws + RTT max + d (the time to transmit the feedback has been left out of this

analysis);

46 CHAPTER 2. BACKGROUND

• at time Ttx x Ws + RTT max + d, when the feedback arrives, the next Tretx should not

have been triggered, or else the packets which are NACKed by this feedback will be only

retransmitted in the next Tretx .

• further, when the feedback arrives, the next Tsend must not have been triggered; if it has,

(i.e., Ttx x Ws + RTTmax + d > 2 x Tsend), then the window was advanced without the

knowledge of this feedback packet, which may have brought NACKs to packets which were

left behind in the window.

In other words, if Tsend is not sufficiently large, or RTTS grow unexpectedly larger, or if a

feedback is lost, it is possible that the sender does not see a "NACK seq" and at Tsend advances

lbe beyond seq. If this happens, the sender will transmit the next burst of packets as if there

was no such loss. The receiver which is missing seq has to discard part of these packets (all

packets in the worst case), since there is a gap and data cannot be delivered unordered to the

application. When the sender receives the next feedback from the same receiver, it learns about

the loss of seq, seq < lbe. So, in RMTP it is possible that the sender receives a retransmission

request for packets that have been left behind in the window, and thus have been discarded.

RMTP overcomes this problem by requiring the sender and all designated receivers to cache

all data, irrespective of the size of the stream being transmitted (this is the "infinite buffers"

abstraction). When a packet to the left of the window is requested (seq < lbe), the copy of

seq is fetched using a two-level caching mechanism (main memory and disk). Hence, in RMTP

storing all data on disk in all nodes is required to guarantee full reliability (see Section 2.1.2).

This is the price paid by RMTP for being scalable [Buskens97] (recall that in RMTP the sender

or any parent does not know the receiver group membership).

One limitation of RMTP is that its timer-based approach depends on timers which are not

adaptive. To work efficiently, the protocol depends on the careful selection of values for its .
timers. For example, Tsend must be sufficiently large (as indicated above), otherwise a parent

will have to frequently resort to its cache mechanism in order to serve "late" retransmission

requests. Part of the cache mechanism is on disk, whose access delays are orders of magnitude

larger than a main memory access, affecting performance. The values of Tsend and Tretx must

be provided (by the user) before the session starts. The user may not know what the best

2.3. RELATED WORK 47

values are, and even if the input values are correct at the start of the communication, they

may become "bad" if network conditions change later (as RTTS may fluctuate).

RMTP requires an external entity, a session manager, to prepare a connection, and give

all participants proper connection values. It assumes that this session manager is responsible

for detecting receivers voluntarily or involuntarily leaving the multicast group and "taking

necessary actions". This limitation, as well as the infinite buffer requirement, derive from the

design decision of not having a parent know the id of its children. The source does not know who

its children are and has to adopt a conservative behavior: wait an arbitrarily long time before

declaring packets successfully received, and transmitting new packets. This has substantial

implications on throughput and network cost. It might be straightforward to change RMTP to

add the knowledge of the membership to a parent, but as RMTP is designed, it cannot take

advantage of such knowledge.

2.3.4 Tree-based Multicast Transport Protocol (TMTP)

The Tree-based Multicast Transport Protocol (TMTP, [Yavatkar95]' [Yavatkar95bJ) has several

similarities with RMTP. They are both tree-based, employing a control tree for scaleable error

and flow control. However, unlike RMTP, the control tree of TMTP is made up by protocol

agents, which are called "Domain Managers" (DM). Each DM controls a domain and may have

an arbitrary number of receivers as its children. Another difference to RMTP is that TMTP

employs a multi-level tree, which is built dynamically according to group members which leave

and join the group during a multicast session. To build the tree, it uses an expanding ring

search which is implemented with successive multicasts, increasing each time the value of the

TTL (time-to-live) field of IP packets. Both RMTP and TMTP employ local recovery: feedback

packets are sent to the parent, which locally retransmits packets. One important difference to

RMTP is that in TMTP all retransmissions are multicast (though with restricted TTL scope).

The error and flow control of TMTP is applied independently in each level of the tree,

as in RMTP. However, TMTP parent nodes know the membership, that is, keep track of the

group of children under their control. Like a sender-initiated scheme, each parent node expects

positive acknowledgments from its children, and uses timeouts to limit waiting for such positive

48 CHAPTER 2. BACKGROUND

ACKS. Positive ACKS are sent periodically by each child according to a common Tack (unlike

RMTP, where each child uses its own Tack). Tack is set by the source at the beginning of

the communication as the RTT between itself and the farthest receiver in the tree; it remains

fixed during the transmission. The error control adds "negative acknowledgments with NACK

suppression" to the periodic positive ACKS: when a receiver detects a 10ss3, it starts a random

delay timer and, at the end of this timer, multicasts a NACK seq with sufficient scope to reach

its parent and siblings. If the receiver receives a NACK packet requesting the retransmission of

seq before the timer expires, the receiver suppresses its own NACK. Upon receipt of NACK seq,

the parent multicasts seq (provided that the parent itself is in possession of the packet).

The source transmits a window of data within a period of time equal to Tretrans, using a fixed

(maximum) transmission rate, TXrate. The value of Tretrans is set to be a multiple of Tack,

Tretrans = Tack X n

, with n an integer and n 2: 2. The window size, W s, and hence buffer requirements, are

derived according to the size of Tretrans, and the value of TXrate, as

W s = Tretrans x TXrate

packets. The source "splits" the sliding window in n segments of ~s packets. It attempts

to slide the window forward one entire segment at every Tack; if it succeeds, it slides the

window in ~ s packets. To succeed, all ~ s packets of the first segment must have been "fully

acknowledged" (Le., acknowledged by all receivers). If they are not, then the left edge of the

window stays in the first segment, and retransmissions are executed until all packets of the

segment have become fully acknowledged.

The scheme is illustrated in Figure 2.7, which portrays the transmission (at the source

side) from the beginning of the communication. The source starts transmitting data packets

with rate TXrate for 3 Tacks (Tretrans duration). When the 3rd Tack finishes, the source checks

which packets regarding the 1st segment (transmitted in the 1st' Tack) have not been ACKed by

all receivers. In the example, some packets have not been fully ACKed and are retransmitted

during the 4th Tack; later in the same Tack, part of the retransmitted packets are NACKed by

one or more receivers, and re-retransmitted. Then all packets of the 1st segment which have

3assuming that in TMTP receivers detect losses through gaps in the packet sequence.

2.3. RELATED WORK 49

been retransmitted within the Tack become ACKed, and the window is advanced ~s packets.

During the 5th Tack, the fourth segment is transmitted; at the end of this, the source finds out

that some packets of the 2nd. segment require retransmission, and does so during the 6th Tack.

1 st 2nd 3rd 4th 5th 6th 7th
:<J----[>:<J----[>:<J----[>:~ :<J----[>:<J----[>
: Tack : Tack : Tack : Tack : Tack : Tack : Tack

:<3I-----'-----'-----iI:>:

Tretrans
D 0

:<31------;.---...;...---1:>:

;Tretrans

:<3
Jretrans

:<3I-----i-----i-----iI:>:

: Tretrans

Tretrans = 3 x Tack

_ multicast

new packets

c:::::J retransmit
packets

time

Figure 2.7: Example of transmission cycle in TMTP.

The parent or other source deals only with the first segment of the current window in order

to prevent unnecessary retransmissions (arising from expired timeouts or NACKS), as well as to

delay the flow control backpressure applied towards the source.

TMTP provides reliable delivery to current set of children attached to a OM. A parent will

expect positive acknowledgments, insist on the retransmission of lost packets, and hold the

sliding window until all packets have been fully acknowledged. In this sense, TMTP is fully

reliable with sender-reliability. However, it is not fully-reliable because the TMTP model allows

a receiver which joins late to receive only part of the data transmitted; in contrast, in RMTP, the

original transmission is delayed until such a receiver gets all the data transmitted via unicast.

TMTP is not sender-reliable either, considering that each parent node knows the membership of

its immediate children only (OMS and receivers). So, if a child of a OM (spontaneously) leaves

the group, or a new child joins in, the source knows only if the new member is an immediate

child. It is not clear (in [Yavatkar95]) what happens if a child becomes unreachable and fails

to send positive acknowledgments through several timeouts (i.e., Tacks); if nothing is done to

50 CHAPTER 2. BACKGROUND

remove the child from the group, the protocol will not terminate.

The problem in determining proper values for the timers appears to be another thing in

common with RMTP. The values for timers in TMTP are defined at the beginning of the

transmission and cannot adapt to changes in network conditions. In TMTP, the value of Tack

is set to be the maximum RTT between the source and any receiver; measured by the source

at the beginning of the communication, at a moment that the path between the parent and

children does not have yet the multicast flow (i.e., possibly an underestimation of maximum

RTT). The determination of Tack is important to the transmission cycle, as Tretrans derives

from this Tack, and buffer size from Tretrans.

2.3.5 Log-Based Receiver-reliable Multicast (LBRM)

LBRM [Holbrook95] is a reliable-multicast protocol aimed at large-scale military distributed

interactive simulations (known as DIS applications). This application is real-time and of a

particular nature: the sender usually transmits packets (state updates) with low rate, but they

need to be delivered to receivers with low latency. The sender does not need confirmation of

delivery, and recovery latency counts on the receiver-side only.

There are two mechanisms for loss detection at receivers: (a) gap in packet sequence and

(b) lack of packet arriving within a given time threshold (the sender "guarantees" a given

transmission rate and transmits an empty packet if there is no status update to send). Losses

can be immediately detected at receivers through sequence gaps when the sender keeps trans

mitting and just one packet in the sequence is lost. Now suppose the sender is idle, sends a

packet and becomes idle again; if this packet does not reach a receiver, the receiver will not see

the gap until the next packet is transmitted. The "variable heartbeat loss detection scheme"

prevents these cases by limiting the interval between two packet arrivals at a receiver; when

the timer expires, the receiver infers that a packet has been lost and negatively acknowledges

the next packet expected in the sequence. To avoid flooding the network with empty packets,

the time interval used by receivers (and by the sender when transmitting) fluctuates within a

range: starting at a minimum, it doubles for each empty packet received until the maximum

is reached, and is reset to the minimum whenever a non-empty packet arrives.

2.3. RELATED WORK 51

Reliability is achieved through a two-level hierarchy of logging servers, which store (all)

data packets sent/received and retransmit packets which are NACKed by receivers. Like other

tree-based schemes, there is a primary server (with the source) and a set of secondary servers,

which act like "representatives". Receivers in a local region request retransmissions from their

local server; if the secondary server has not received the packet, it requests the packet from

the primary server. The source only "sees" the primary server, discarding a packet as soon as

it has been ACKed by the server (which happens as soon as the packet has been logged). To

name a secondary server among a set of receivers, a scoped expanding ring scheme is used (as

in TMTP).

Like RMTP [Lin96], secondary servers opt between multiple unicast and multicast retrans

mission depending on the feedback from receivers. As in TMTP ([Yavatkar95]), retransmissions

within local domains are multicast with restricted TTL scope. According to the authors, in

their configuration NAcK-implosion in secondary servers can be ignored because they expect a

small number of receivers to be logically attached to it. For the primary server, the selection

between multiple unicasts and global multicast retransmission is made on a statistical basis:

the source selects a small random subset of secondary servers which are expected to send a

positive acknowledgment for every packet received; depending on the number of ACKS received,

the primary server uses multicast or not. The set of secondary servers expected to positively

ACK is periodically re-selected, in the following manner. The source wishes to select a given

number of servers; from the estimated number of secondary servers (see below how this is

estimated) it computes a probability Pack, and multicasts a packet with Pack. Each secondary

server responds with probability Pack; the source waits a "long time" and counts the number

of servers that responded. The primary server waits on a timeout for this set of secondary

servers to send ACKs for every packet received, and when the timer for a given packet expires

the server decides the kind of retransmission based on the number of ACKs (or their absence).

If ACKS from all the secondary servers included in the small randomly selected group have

been received, the primary assumes there were no global losses and will treat further requests

(originating at other secondary servers) via unicast.

To estimate the number of secondary servers, the primary has to go through a round of

52 CHAPTER 2. BACKGROUND

probabilistic pollings to avoid causing implosion. The sender starts multicasting with very low

probability Pack, and waits for responses. Each server responds with probability Pack. It then

repeats the cycle with increased Pack until a sufficiently large number of responses have been

received. The total number of servers can be estimated as servers = resgonses.
ack

LBRM is aimed at receiver-reliable applications which broadcast information to a large-scale

group. In DIS, a sender transmits sporadically, but when it does, the data is time-sensitive.

SO, LBRM loss detection mechanism allows quick detection of losses by receivers even under

sporadic traffic flows, but this comes at a price: it adds overhead to the network (a heartbeat

packet must be sent when there is no data to transmit). Reliability with scalability is achieved

with the infinite buffers abstraction, by employing a hierarchy of logging servers which store

all the data packets transmitted. Hence, there is neither packet buffer management nor flow

control mechanisms in LBRM (no congestion control either). Overhead in terms of latency and

network cost is incurred by the protocol because the primary server does not know the identity

of the secondary logging servers. For example, the source has to periodically select a subset

of secondary servers to send positive acknowledgments, as well as to estimate the number of

secondary servers through multiple polling rounds.

2.3.6 Multicast File Transport Protocol (MFTP)

The Multicast File Transport Protocol, or MFTP ([Miller97]), is designed for reliable dis semi-

nation of files. The unique aspect of MFTP is the way it organizes a transmission: the file to

be transfered is sent through multiple "passes", as explained below.

Before transmitting, the file is logically divided in "blocks", and blocks in "data transfer

units" (DTUS). A feedback packet (a "response") which is sent by a receiver contains a bit vector

which refers to all DTUs within a given block. In the first pass, the entire file is sent block after
,

block. At the end of each block, the sender multicasts a "Status Request" message identifying

the current pass and block. This request allows receivers to return a response requesting the

retransmission of packets within the identified block; a receiver only sends a response for the

block if there were losses. The sender does not wait for responses, immediately proceeding to

the next block.

2.3. RELATED WORK 53

The first pass ends with the transmission of the last block. If one or more responses

requesting retransmissions have been received during the first pass, the sender starts a second

pass in which it re-multicasts all packets which have been NACKed by one or more receivers.

For each block, the sender checks if there were losses reported; if so, it retransmits all NACKed

packets within the block, and then multicasts a Status Request to allow receivers to negatively

acknowledge the retransmissions (in case retransmissions themselves are lost). When the last

block has been processed, the sender checks if any retransmission request has been received;

if so, it starts a third pass, and this continues until no response is received. When there is a

pass where no response (Le., retransmission request) has been received, the sender multicasts

a Status Request regarding all blocks, and waits on a (user-defined) timer. A receiver which

misses some data packets but successfully receives such a Status Request message transmits

to the sender as many responses as there are blocks with missing packets. When the timer

expires, the sender starts a new pass to retransmit missing data. Otherwise, if the timer

expires without responses, the sender sends a termination message to all receivers (such a

message varies according to the group model being employed, see [Miller97] for details).

The sender transmits data at a user-defined, fixed rate. The block size is determined by the

protocol (which can be overridden) so that the amount of DTUs which can be NACKed through

a single response packet is maximized (recall that a response refers to a single block of DTUS).

MFTP does not employ flow control: the sender employs a fixed transmission rate throughout

the transfer; if one or more receivers are being overrun by the sender, they will report losses,

which will lead to retransmissions, and to waste of network bandwidth and increase in end-to

end latency. There is no congestion control either. If one or more of the routers through which

the flow is passing has been or becomes congested, a large amount of packets may be dropped.

Even if receivers report losses to the sender, it keeps transmitting at the same pace.

As stated in [Miller97], MFTP relies on the fact that a file is being transmitted, not a stream.

The error control mechanism of MFTP requires that all 110 devices involved, that is, the device

from which the file is read, as well as the devices to which the received file is written, allow

random access. The multiple pass transmission is equivalent to the "infinite buffer" abstraction

used by RMTP and some other reliable multicast protocols. Note that random access may not

54 CHAPTER 2. BACKGROUND

be available in many computer systems, for example when tapes are used.

Finally, MFTP cannot guarantee full reliability: the sender transmits a Status Request and

waits for responses during a given time; if the request or the response is lost, the sender will

wrongly assume that all is well. There is no retransmission of request or response. If compared

with RMTP, in the latter receivers send feedback periodically, so that a long wait delay at

the sender may allow multiple feedback packets to be sent, increasing the probability that

one or more feedbacks reach the sender. To achieve full reliability, MFTP requires the "closed

group model" to be used, in which all receivers send positive acknowledgments together at the

beginning and at the end of the transmission (limiting its scalability as the feedback packets

implode the sender).

2.4 Conclusions

Scalability problems arise when the sender maintains protocol state which is proportional to

the number of receivers in the destination set. To keep the protocol state updated, the sender

has to exchange messages with all receivers; if all is "large", the sender may be swamped by

feedback packets (ACKS, NACKS, responses, and the like) returned by all receivers. If the sender

is able to sustain multicasting to up to "x" receivers, packet losses will occur proportionally to

the excess "all-x" receivers (implosion losses).

Table 2.1 summarizes the characteristics of the protocols presented. To increase their scal

ability, protocols need to prevent implosion losses; most protocols in the literature attempt

to avoid implosion by making the sender independent of receivers. They are designed so that

the sender does not require to know the group membership, and exploit the receiver-oriented

nature of IP multicast, leaving all membership operations to be (transparently) carried out the

by the underlying network layer. The resulting protocols (receiver-initiated) are radically dif

ferent from the traditional, sender-initiated protocols; particularly, reliable delivery is achieved

by making the sender "passive" and allowing receivers to "command" the loss detection and

recovery process. Examples of these receiver-initiated protocols include LBRM ([Holbrook95]),

SRM ([Floyd95]), and RMTP ([Lin96]).

However, the lack of knowledge about receivers in receiver-initiated schemes has negative

2.4. CONCLUSIONS 55

I:
r:;..
~

~
0

>. -= ~ ~ - ~ ~
[f.I

[f.I
Q) !oo 0 - N Q) Q)

U
.... - !oo - ..0 ..0 I: ..0

0 Q)
~ ~ ~ 8 :::l ~ 'tl b.O C' 0 0 - - Q)

!oo Q) Q) !oo Q)

Il. ~ ~ ~ 0 ~ ~

SRM N-N unordered receiver symmetric only for periodic session

RTT estim. messages

RMTP I-N fully-reliable receiver 2-level no info buffer (caching),
tree net. support

TMTP I-N partial data, receiver multi-level no TTL-scoped

fully-reliable tree ring search

LBRM I-N soft real-time receiver 2-level no infinite buffer
tree (disk log)

MFTP I-N fully-reliable sender flat both info buffer (multiple

possible step transmission)

Table 2.1: Main attributes of related reliable multicast protocols

implications with respect to error control (cannot guarantee fully reliable delivery), flow con

trol (cannot prevent overrunning slow receivers), implosion avoidance (cannot prevent NACK-

implosion), etc. As there is no confirmation from receivers, protocols may need to rely on

probabilities and heuristics (such as maximum delay after transmitting the last data packet).

They depend on expert user-input (to work properly), lack generality, and have to employ con-

servative values (e.g., assume large RTTS, large number of receivers, etc). Therefore, receiver-

initiated protocols avoid the problem of having the excess of "all-x" receivers which would

overwhelm the sender, but the price is paid in terms of reliability, throughput, and network

cost.

The next chapter describes a protocol which follows an alternative approach to circumvent

the scalability problem posed by implosion: the sender controls the amount of feedback gen-

erated by receivers, undergoing multicast communication as if there were "x" receivers only.

The sender retains the membership and avoids implosion, thus achieving scalability, through

a polling feedback mechanism. This protocol, flat PRMP, is aimed at the efficient fully-reliable

dissemination of data from one sender to a static set of receivers.

56 CHAPTER 2. BACKGROUND

Chapter 3

Flat PRMP: Polling Feedback

Protocol

This chapter presents the flat version of the PRMP protocol. It starts with an overview of

the protocol, in Section 3.1, followed by the description of the sliding window mechanism in

Section 3.2. Both error control and flow control are implemented through the sliding window

mechanism. Implosion avoidance is addressed with the poll planning mechanism in Section 3.4.

Flow control is detailed in Section 3.3, while error control is divided in two parts, in Sections

3.5 for loss of control packets, and 3.6 for loss of data packets.

3.1 Overview

The PRMP protocol solves the problem of a sender having to reliably transmit an arbitrary

amount of bytes to a destination set containing GS receivers (the destination set is denoted as

{ * }). Data is provided by the sending application as a byte stream through write () opera

tions. PRMP aims to deliver a copy of the byte stream "as provided" to each one of the receiving

applications. Each receiving application requests data to the protocol through read () oper

ations and, when such data becomes available, "consumes" it. To allow transmission of the

byte stream using a sequence of limited-size packets, the data is separated into fixed-size data

57

58 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

units. Each data unit is uniquely identified by a sequence number seql, 2 . The transmission

scheme is depicted in Figure 3.1. The protocol does not require in advance the knowledge of

the total amount of bytes to be transmitted; however , for illustration purposes, in this thesis

it is assumed that there are DP units of data (thus seq will range from 1 to DP) .

consumption
PRMP

read's

production

:~.::..-.~.d~a-t,:a-;" -'_-..5.-"~_w_rit_e'-i:s'1 ~ ~ @]34

Application

read's
... data ...

Application

Figure 3.1: Schematic illustration of transmission process.

Failures during transmission result in packets being lost or corrupted and discarded by the

network. PRMP employs feedback error control (see Section 2.2.2) : the sender detects losses

through feed back packets (or lack of them) sent by receivers. After a loss is detected by the

sender , it is recovered by retransmission. For that purpose the sender keeps a copy of each

transmitted data packet in its buffer until an acknowledgment for that packet is obtained from

all GS receivers (i.e., packet becomes fully acknowledged) .

T he core of the PRMP is a novel one-to-many, polling-feedback sliding-window mechanism.

Each receiver maintains one "receiving window" (rw) of length L data units (or "packets",

for simplicity). A receiver records packet reception status in its rw. The sender keeps an

"aggregate sending window" (sw) , which is comprised of GS sending windows (SWi), one per

receiver . This aggregated window permeates PRMP design, and is present in mechanisms for

error control, flow control , and congestion control.

All sending windows have the same length as the receiving windows , i.e., L packets. The

l it is assumed that seq is large enough to avoid problems that arise when sequence numbers are wrapped
around and reused .

2in the text , seq is used interchangeably to denote the "sequence number seq" and "the packet whose sequence
number is seq" .

3.1. OVERVIEW 59

value of L is negotiated at connection time3 , and remains fixed during the transmission. The

sender transmits data packets to receivers; receivers transmit feedback packets to the sender.

Feedback is used to update the sending window, which "slides forward" with the progress of

the transmission. The scheme is illustrated in Figure 3.2, for GS = 4. The sw encompasses

the 4 SWi'S; data packets are multicast; when received, they lead to the update of rWi. Re

ceivers transmit feedback to the sender, and the sender updates the SWi (and thus also sw)

corresponding to the receiver which sent the feedback.

Sender Receivers r-.. ·-.. ·- .. ·- .. ;~; .. ·- .. ·_···-m-li 1<1-------::;;001 rw 1

I ~==============~

sW2 I ! I<}----,,""----~ rw 2

L-----~---~i ~=================V

SW3 lil<l-~~-~~ rW3
L-----~---~i ~=================V

! I sW4 I ! I<!-----~ rw 4
! SW I c===============~
i ... _ ... _ ... _ ... _ ... _ ... _ ... _ ... _ ... _ ... _!

multicast data packets and
multicast or unicast control packets

<J--- unicast feedback packets

Figure 3.2: Scheme with sending and receiving windows.

To avoid implosion, it is not feasible to allow each receiver to return a feedback packet to

(positively) acknowledge every received data packet, as in typical sender-initiated window-based

protocols. In PRMP, a polling mechanism is used to reduce the amount of feedback to desired

levels: a receiver indicates the receipt or non-receipt of packets only upon being explicitly

requested to do so. The sender plans the polling of receivers, and when the plan is "due" it

transmits a "polling request" to elicit feedback from one or more receivers. A polling request

nominates a subset of receivers to send feedback and may be transmitted in a control packet or

piggybacked onto a data packet. Upon being nominated, a receiver unicasts a response packet

which positively acknowledges the packets it has received so far and negatively acknowledges

the packets which appear to be missing. As feedback packets are sent only periodically, each

3connection set-up and tear-down phases precede and succeed the data transfer phase, respectively.

60 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

one will contain more status, i.e., several acknowledgments (like the block ACK discussed in

Section 2.2.4). A poll response sent by a given receiver Ri will contain (as status) a copy of its

Table 3.1 summarizes the four packet types that can be exchanged between sender and

receivers.

Type Originates at ... Contains ...

DATA sender only data
POLL sender a polling request to one or more receivers

DATAPOLL sender both data and a polling request
RESP receiver feedback status from receiver

Table 3.1: List of packet types.

Of the packets transmitted by the sender, those which contain data (i.e., types DATA and

DATAPOLL) carry a sequence number "seq" which uniquely identifies the data unit in the packet.

Packets which carry a polling request (i.e., types POLL and DATAPOLL) contain a copy of the

highest sequence number "sent" so far, denoted as "hs"; hs is employed by the error control

mechanism in order to allow receivers to detect packet losses (as explained in the next sections).

A DATAPOLL packet will contain both seq and hs values. There is no sequencing number which

uniquely identifies a packet transmission.

As pointed out in Section 2.2.1, a single packet loss may be experienced by many receivers

(specially if the loss occurred near the root of the multicast tree used to propagate the packet).

The retransmission of this packet via multicast would be beneficial since a single multicast

operation may target all receivers missing the packet. However, it is possible that in most

origina14 multicast transmissions the number of receivers which will need recovery is small; in

this case, global, multicast retransmission is prohibitive and should be avoided, so as to prevent

flooding the entire network with undesired retransmissions. Selective unicast retransmissions,

in this case, can isolate the loss from the rest of the network. Colt-effective recovery is achieved

by PRMP by collecting retransmission requests in order to judiciously decide between multiple

unicasts and multicast retransmission depending on the percentage of receivers experiencing

the same loss. The mechanism which accomplishes this is described in Section 3.6.

4 "original transmission" is used in the text to stress the difference between transmissions and retransmissions.

3.2. SLIDING WINDOWS MECHANISM 61

3.2 Sliding Windows Mechanism

This section introduces PRMP's one-to-many sliding window mechanism for reliable multicas

ting. The window mechanism cannot be fully described, however, until related issues of error

and flow control have been addressed in Sections 3.3 and 3.6, which complete the definition of

the window mechanism.

3.2.1 The receiving window

The set of as receivers is represented as {R1,R2,R3, ... ,Rcs} or {*}. Each receiver Ri

maintains a receiving window rWi, whose length is L packets. A rWi is characterized by the

following attributes:

v a bit llector;

le a left fdge;

ned the sequence number of the next fxpected !lata packet;

hr the flighest sequence number recorded from the sender (contains the highest seq or

hs value in data or polling packets received so far).

The right fdge (re) is an additional, abstract attribute which is derived from the length and

the left edge (re +- le + L - 1). The window scheme is illustrated in Figure 3.3. The attributes

of rw are explained below.

L
EO

o o 1 0 0 o 0

v f
Ie ned hr re

Figure 3.3: Schematic view of a receiving window rWi.

The window rWi represents the occupation of buffers by packets in~; thus, it also represents

the reception of packets by Ri and the delivery of the data that the packets contain to the

receiving application. The bitvector v is a vector of size L whose index ranges from 1 to D P:

62 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

v[seq], 1 ~ seq ~ DP. The left and right edges of rWi advance in synchrony (as re +- le+L-l)

to indicate the set of L packets to which there exists a buffer space available in Ri, as follows.

All packets seq which "precede" the left edge (i.e., seq < le) have been received by Ri, delivered

to (i.e., consumed by) the receiving application, and removed from Ri'S buffers. All packets

of sequence seq which "succeed" the right edge (i.e., seq> re) do not have buffers allocated

and therefore cannot be received by Ri. The remaining packets (that is, any seq such that

le ~ seq ~ re) have a buffer allocated and are directly represented in the window (by v); for

each of these packets, v[seq] = 1 if the packet seq is stored in Ri'S buffers and 0 otherwise.

The next in-sequence packet expected by Ri is indicated by ned. As ned always indicates a

packet yet to be received, it never points to an occupied buffer; therefore, always rw[ned) = O. If

the ned indicates a packet which cannot be received, i.e., beyond the right edge (ned = re+ 1),

then all buffers in Ri are being occupied. In this case, the receiving window is said to be "full

of Is" (Vseq, le ~ seq ~ re : v[seq] = 1).

The attribute hr keeps the highest sequence number recorded so far; sequence numbers

considered are DATA(PoLL).seq and (DATA)POLL.hs. When a DATA packet arrives, the receiver

updates hr if DATA.seq is greater than the current hr: if DATA.seq > hr then hr +-DATA.seq.

When a packet of type POLL or DATAPOLL arrives, the receivers record a new hr using hs

instead: if (DATA)POLL. hs > hr then hr +-(DATA)POLL.hs; note that DATAPOLL packets

contain both seq and hs, and hs ~ seq5.

The next packet to be taken from the buffers and consumed by the receiving application is

the one with sequence number leo If the left edge points to an available packet (v[le] = 1), the

application is busy doing something else (such as processing packet 1 e - 1) and has not yet been

able to consume leo All in-sequence packets which have been received but not yet consumed

(i.e., any seq such that le ~ seq < ned) are said to be "consumable". If, however, v[le] = 0,

then seq has not been received and thus con not be consumed. :{"urther, all succeeding packets

with sequence seq that were received (i.e., seq> le 1\ v[seq] = 1) cannot be consumed either;

this is because packets are consumed in sequence by the application (if seql and seq2 are any

two packets, then seq2 cannot be consumed before seq1 if seq1 < seq2). The packets which

50ATAPOLL.hs >OATAPoLL.seq when a packet seq, with seq < hs is retransmitted.

3.2. SLIDING WINDOWS MECHANISM 63

have been received but cannot be consumed are said to "unconsumable". A consumable packet

of sequence seq will be eventually consumed by the application, and as a result, rWi will slide

forward one position (that is, le = seq; le +- le + 1; then le = seq + 1).

If the left edge indicates a sequence number yet to be recorded (i.e., le = hr + 1), all buffers

at Ri are empty and there is no packet to be consumed. In this case, the receiver is idle.

Otherwise, if the left edge corresponds to a sequence number which has been recorded (i.e.,

le ~ hr), there may be up to hr + 1 - le buffers which are occupied. Note that it is possible

that all buffers are empty even if le ~ hr; this is so because v[hr] = 0 is possible, if for example,

a receiver misses a packet DATA seq and then receives a POLL packet with POLL.hs = seq. This

case is discussed later in Section 3.6.1 (case depicted by Figure 3.11).

Figure 3.4 uses the same window in Figure 3.3 to illustrate the relation between the rw

attributes and the buffer occupation as well as consumption of packets.

L
E >

consumed consumable UNconsumable available
1 0 0 0 0 o I o I

t t v t t
Ie ned hr re

Figure 3.4: Schematic view of rw and consumption of packets.

Besides the fact that L = 11, the following observations can be made based on the window

in Figure 3.4:

• there are 2 "consumable" packets (le, le+ 1) and 3 "unconsumable" ones (ned+ 1, ned+3,

hr);

• there are 4 missing packets (besides ned, they are ned + 2, ned + 4, ned + 5);

• there are 6 empty buffers, but only 2 are free and available to be used by new data packets

(re - 1, re).

64 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

3.2.2 The sending window

The sender maintains a set of GS sending windows {SWl' SW2, ... ,swas} containing status

about the receivers. The sending window SWi contains the (latest) status about Ri. Each SWi

has the following attributes in common with rWi:

v a bit yector;

le the left §.dge;

hr the highest sequence number recorded by the receiver.

The "next expected data" (ned) appears in the sending window as the "next expected acknowl

edgment" (nea). Each of these fields in SWi represent the knowledge of the sender about the

corresponding fields in rWi; a poll response from a given Ri brings in RESP.rw a copy of rWi,

which is used to update SWi attributes (note that RESP.rw works as a "cumulative acknowledg

ment", and positively or negatively acknowledges all packets up to the point of transmission of

the polling request which generated the RESP). For example, SWi.le is the highest le received

in a RESP.rw.le from Ri. Therefore, SWi indicates which packets the sender knows that Ri has

received and/or consumed. All entries of the bitvector SWi.V are initially set to 0, and changed

to 1 whenever the sender obtains from Ri confirmation of receipt of the corresponding data.

As mentioned earlier, the set of SWi'S is abstracted as the aggregate window, sw. sw inherits

all the attributes of SWi apart from v, and adds hs, the (already-mentioned) highest sequence

number multicast so far. In other words, sw.hs records which was the last sequence number

used in an "original" transmission.

As an abstraction, apart from hs, all sw attributes do not have associated state6 . Instead,

the attributes of sw are computed from the set of SWi'S upon demand. There are different

ways of "aggregating" a given attribute "a" of SWi'S into the counterpart "sw.a", such as us-

function employed varies with the semantics of the attribute.

6 the actual implementation employs state for these variables, working as a caching mechanism which prevents
unnecessary computations.

3.2. SLIDING WINDOWS MECHANISM 65

3.2.3 Obtaining feedback

In order to update the sending window, the sender requires feedback from receivers; the sender

obtains this feedback by transmitting polling requests. When the sender transmits a polling

request within a POLL or DATAPOLL packet, it includes the following information:

hs a copy of the value of sw.hs at the time of transmission;

polled a receiver set indicating receivers which should send back a response;7

ts a timestamp, the value of the sender's system clock at transmission time.8

When Ri receives a polling request (DATA) POLL, it checks whether its own id i is part of

(DATA)POLL.polled. If so, Ri responds by transmitting a RESP packet to the sender containing:

rw the copy of its receiving window, rWi;

ts a copy of the ts value which was received within the (DATA)POLL packet, that is,

POLL.ts.

When the sender receives a RESP packet from Ri, it updates the RTT estimate between itself

and Ri using the "fresh" RTT measurement brought by the poll response. An example of basic

dialog between the sender and receivers is illustrated in Figure 3.5.

• At time 100, before transmitting the next data unit, the sender increments the value of

sw.hs (that becomes 31), and transmits the packet of type DATA with DATA.seq = 31.

• At 102 sw.hs is incremented to 32, and the sender transmits the next data unit, a DATA

packet with DATA. seq = 32.

• At time 104, for some reason, data units cannot be sent, and a polling request is

transmitted (Section 3.4 explains the transmission of polling requests). The packet of

type POLL contains POLL.hs = 32, to indicate that sw.hs was 32 at transmission time,

POLL.polied = {R2}, requesting R2 to respond to the sender, and POLL.ts = 104, which

is included in the response: RESP.ts = 104.

7 polled is a bit vector of size GS, but can be alternatively implemented as a list of receivers' id's.
8this ts cannot be a simple counter because it is also used for RTT estimation.

66 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

• Some time later, when the POLL arrives at the R2, the receiver sends back a RESP packet

with a copy of the current rw and the ts received with the POLL .

• The RESP arrives at the sender at time 120, and the new RTT measurement is calculated:

120 - 104 = 16 (the round-trip time as measured with the POLL/RESP pair was 16).

Time Sender

100 sw.hs=31

102 sw.hs=32

104 sw.hs=32

RTT

120 RESP rw, ts=104

Receiver2

DATA seq=31

DATA seq=32

POLL hs=32
ts=104
polled={R2}

Figure 3.5: Example of basic dialog between sender and receiver.

It is possible to send more than one polling request without advancing sw.hs; this occurs when

no new data packets are transmitted between successive polling requests. The timestamp

RESP. ts enables the sender to uniquely identify pairs of POLLS and RESPS9, and the order in

which they occur.

3.2.4 Updating the sending window

The feedback provided by receivers allows the sending window to be updated. The receipt of a

poll response from a receiver given Ri not necessarily leads to the update of SWi. Upon receipt

of a RESP packet, the sending window for Ri will not be updated if:

• reordering: either polling requests or responses are reordered by the network, so that a

response can bring outdated state in comparison to the one currently stored in sw, or

• unchanged: the status at Ri did not change between the transmission of two responses.

9the protocol cannot transmit two or more requests at the same time.

3.2. SLIDING WINDOWS MECHANISM 67

Some reordered responses may be detected and discarded by the sender without further process

ing by comparing the current left edge with the one in the response: if SWi.le >RESP.rw.le then

discard. More commonly, though, a RESP packet from Ri brings a rw such that REsP.rw.le ~

swde, and in such cases SWi will be updated in the following manner:

l. update SWi.le with the le received with the response: SWi.le t-REsP.rw.le.

2. update SWi.hr if it is smaller than the hr received with the response: if REsP.rw.hr >

SWi.hr then SWi.hr t-RESP.rw.hr.

3. for all packets of sequence seq directly represented by rw III RESP (that is, 'r:/ seq I

RESP.rw.le ::; seq ::;REsP.rw.hr), update SWi.V:

(a) if SWi.v[seq] = 1 (seq is ACKed), then the new status in the response is ignored (note

that a packet cannot be NAcKed after being ACKed);

(b) else, if SWi.v[seq] = 0 (seq is non-AcKed), and the new status in RESP is REsP.rw.v[seq]

= 1 (AcKed), then change state to ACKed in SWi (Swi.v[seq] t- 1).

So, basically, 'r:/seq, REsP.rw.le ::; seq ::;REsP.rw.hr : SWi.v[seq] t- SWi.v[seq] V REsP.rw.v[seq].

From the resulting SWi, the sender can infer that Ri has received and consumed all data

packets with seq such that seq < SWi.le, received all packets with seq such that le ::; seq ::;

re/\swi.v[seq] = 1, and not yet received any of the packets with seq such that sWi.nea ::; seq::;

sWi.re /\ SWi.v[seq] = O. Not all of these "non-received" packets are regarded as NACKS by the

sender, as explained below.

When processing RESP packets, the sender must observe the order in which packets were

sent. The sender infers that all packets with sequence seq such that RESP.rw.hr < seq::; sw.hs

were transmitted after (the transmission of) the polling request that generated the response,

and so were not "included" in the RESP. Figure 3.6 illustrates this case through an example:

when RESP arrives at t4, it regards all packets up to packet seq = 32 (REsP.rw.hr = 32);

packets seq = 33 and seq = 34 have been transmitted by the sender at t2 and t3, but the

receiver has not had an opportunity to acknowledge them (the RESP packet that arrives at

68 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

Sender Receiver

sw.hs=31

sw.hs=3

RESP rw.hr=32

Time

DATA seq=31

DATA seq=32

POLL hs=32

DATA seq=33

DATA seq=34

Figure 3.6: Example of POLL/RESP pair exchange.

t4 causally precedes the DATA packets transmitted at t2 and t3). The sender relies on these

inferences to avoid misinterpreting certain elements of RESP. v as packet losses.

Figure 3.7 presents an example of the window mechanism in action through a snapshot of

sending and receiving windows at a given time. L is assumed to be 10. In R 1, the left edge of

rWl is equal to the seq of the next expected data (rwl.le = rWl.ned = 100), which prevents

packets seq = 101 and seq = 102 from being made available for consumption. rWl.hr = 104

means that Rl does not know whether the packets from seq = 105 onwards are yet to be

transmitted by the sender or have already been transmitted. Let RESPI and RESP2 be the

latest responses that the sender has received from Rl and R2, respectively. Comparing SWI

with rWl indicates that since Rl has sent RESPI it has received packets seq = 99, seq = 102,

and seq = 104, and its rWl has slid (to the right) by two packets due to the consumption of

packets seq = 98 and seq = 99. Similarly, SW2 and rW2 indicate that after sending RESP2,

R2 has received packets seq = 101, seq = 102, and seq = 105, but the window has not slid

(sw2.le = rW2.le). The consumption at R2 seems rather slow because the packets of sequence

seq such that 97:::; seq:::; 102 (see rW2) are "consumable" but remain "unconsumed". Finally,

sw.hs, which cannot be smaller than max (rwl.hr,rw2.hr), is taken to be 105 in the figure.

3.3. FLOW CONTROL 69

1---:

Ie. lied hr re

rw) 101111101110101010101
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

Ie Ilea hr hs re

sw) I 0 lO I I 0 I 0 10 I 0 I 0 I 0 1
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

--1
Ie lied hr re

rw2 111111101111101:
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

Ie Ilea hr hs re

sW2
I I I I 0 I 0 I 0 II I 0 1 o 1 .~

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

Figure 3.7: Snapshot of sliding windows.

3.3 Flow Control

PRMP employs window-based flow control, i.e., it uses the window to determine how many

new packets can be safely multicast without causing buffer overflow at the receivers. Since the

sender transmits packets to the entire destination set, the receiver judged to have the smallest

number of free buffer spaces will be the limiting factor in the number of new transmissions.

In other words, the pace in which new data packets are transmitted depends on the slowest

receiver.

The aggregate window sw is used to determine how many new packets can be safely mul-

ticast, in the following manner. The left edge of sw is aggregated as the minimum left window

currently recorded in all sending windows, that is,

Recall that the right edge derives from the left edge and length; so, the right edge of sw is

computed as

sW.re +- min {swi.le I Ri E {*}} + L - 1

which can be expressed in a simpler form as

70 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

sW.re +- sw.le + L - 1

Before transmitting, the sender computes an "available window" (aw), which represents the

number of new data packets that can be sent. It does so by computing the delta between

the highest sequence number multicast so far (sw.hs) and the highest packet which even the

slowest receiver is deemed able to store. Recall that the highest in-sequence packet a given Ri

is able to receive is packet rWi.re; thus, the sender can be certain that a given Ri can receive

up to packet seq = sWi.re. To the sender, the smallest sWi.re in sw indicates Ri as the receiver

which appears to be the slowest. Therefore, the available window is computed as

sW.aw +- sW.re - sw.hs

The attribute sW.aw completes the set of sending and receiving window attributes; they

are summarized in Table 3.2.

I Symbol I Name SW SWi I rw I
v bit vector -j -j
Ie (sequence number of window's) left edge -j -j -j

ned (sequence number of) next expected data (unit) -j
nea (sequence number of) next expected ACK -j -j
hr highest (sequence number) recorded -j -j -j
hs highest (sequence number) sent -j
aw available window -j

Table 3.2: Summary of window attributes.

The flow control strategy adopted by PRMP is conservative because of two reasons:

(a) the sender only transmits new data packets to a receiver when it can guarantee that

there will be no buffer overflow at such receiver;

(b) the sender waits for the slowest receiver among all GS receivers.

More optimistic strategies in determining sW.aw are possible,' all of them based on the fact

that one or more packets might be consumed since a receiver Ri transmitted its last response.

Let "d" represent the time interval since the most recent response transmission by R i . The

time d is at least half RTT between the receiver and the sender, as receivers send feedback only

periodically. Without losses, the longer the d, the more pessimistic the SWi.re estimate of rWi.re

3.4. POLLING MECHANISM 71

becomes. Additionally, when the sender calculates sw.aw, it does not take into consideration

the half RTT that will take for the data to reach Ri.

Currently, PRMP avoids making assumptions about either the speed in which data is con-

sumed at receivers or the set of RTTS; by preventing unnecessary retransmissions, PRMP em-

phasizes saving network bandwidth, which is the main motivation behind the use of multicast

in the first place.

In addition to the window-based scheme, the protocol allows the user to set a maximum

transmission rate by establishing an inter-packet gap (I PG). This I PG is defined as the

minimum interval to be observed between the transmission of any two packets by the sender.

Note that this does not require packets to be transmitted at times which are multiples of I PG;

instead, it requires that any two transmissions must be at least 1 I PG apart.

The I PG is important to prevent the sender from transmitting a burst of data packets when

the available window is large10 (e.g., at the beginning of the transmission, when L packets can

be transmitted). Another reason is that the polling mechanism of PRMP is timer-based, and

the planning of polls (as described in the next section) depends on polling requests being sent

at regular intervals after data has been transmitted.

3.4 Polling Mechanism

A sender-initiated unicast reliable protocol, such as TCP ([Stevens94]), typically triggers one

ACK packet per DATA packet transmitted (or per 2 DATA packets transmitted, if the receiv-

ing end of TCP employs a "every-other-AcK" policy). A reliable multicast protocol, such as

[Towsley87] and [Pingali94]' leads to roughly one ACK per DATA packet per receiver. Expressing

these in polling terms, the sender can be regarded as including a polling request to all receivers

in every DATA packet it sends. Even though this allows the protocol to be simple at both

ends, the protocol cannot scale due to ACK-implosion. To avoid implosion, PRMP is designed

to request only a selected set of receivers at any given time so that the responses generated

thereby do not arrive at a rate larger than some chosen value. This may result in a receiver not

lOin general, protocols may employ a congestion control mechanism to prevent this problem; the discussion of
PRMP'S congestion control mechanism is delayed until Chapter 5.

72 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

being polled during the transmission of up to L data packets; so, a response from a receiver

will "reference" (that is, positively or negatively acknowledge) not just a single packet, but all

packets received/missed between successive polling requests (up to L data units).

Polling requests cause response packets to be transmitted to the sender. If the rate of

responses exceeds a given threshold, there will be losses due to implosion. Such losses result

from a shortage of resources at the host and network caused by the volume and synchrony of

response packets. The maximum "allowable" arrival rate of incoming responses is defined as

the implosion threshold rate, or IT R for short. Though it may not be possible to determine

IT R precisely, it is assumed that IT R can be estimated with reasonable accuracy.

To avoid losses by implosion, the protocol controls the arrival rates and timings of response

packets returned by receivers. The mechanism aims at implementing a given response rate

(RR), the rate in which RESP packets arrive at the sender. RR is an input value of the

protocol, likely to be taken from a default value associated with the capacity of the sending

host hardware (some RR:S ITR).

In general, the lower the RR, the smaller the likelyhood of implosion losses. Also, a smaller

RR means that only fewer responses can be received in a given interval; this can lead to

longer delays in obtaining feedback from all receivers. Recall that sW.aw increases when sw

slides forward, which is determined by sw.le advance; because sw.le +- min {swi.le I Ri E {*}},

feedback from all receivers is required before sw can slide. Thus, using a smaller RR the sender

may be blocked longer from making new transmissions, resulting in smaller throughput. A small

RR used by the sender transmitting to a large group is likely to become the bottleneck, or

limiting factor in throughput.

In order to keep the actual arrival rate of responses equal to RR in face of a potentially

heterogeneous set of RTTS, the mechanism controls the arrival times of responses by planning

ahead the time when every given receiver should be requested to respond. This mechanism is

explained in more detail below.

Time is divided into epochs, intervals of fixed-length € (measured in ms). As illustrated

in Figure 3.8, epochs are denoted as En, with n = 0,1,2 .. , and Eo corresponds to the first €

ms of the transmission. A response quota, denoted as RQ and calculated as RQ +- l RR x € J ,

3.4. POLLING MECHANISM 73

indicates how many responses can be allocated to each epoch. The sender estimates the arrival

time of responses using the estimate of RTT between itself and each Ri, and schedules the

transmission of polling requests such that at most RQ responses are expected during any

epoch. For this purpose, a vector called Anticipated Responses Count (ARC for short) is

maintained to keep track of the number of responses which have been allocated to each epoch.

ARC is indexed by epoch number; ARC[n] is initialized to 0 and incremented by 1 for every

additional response which is expected to arrive during En.

The sender keeps an RTT estimate RTTi for each receiver; the estimates are calculated like

TCP, using a smoother a (e.g., a = 0.7) for new RTT measurements.

ARC 0 0 0 0 0 0 •••

Relative 0 10 20 30 40 50 60 •••
time

Eo E
J E2 E3 E4 E5 •••

I I~
£ £ £ £ £ £

£=10

Figure 3.8: The division of time in epochs by the poll-planning mechanism.

The planning of a poll consists in determining what is the earliest time a polling request

can be sent to Ri in order to evoke the desired response. If a polling request is immediately

transmitted, the response is expected to arrive in RTTi time, say epoch En. The planning

is, however, restricted by the number of responses which are already being expected at En: it

cannot exceed the quota RQ. If En cannot take another response, the arrival of RESP from Ri

is delayed by some "del" time to a later epoch Em (m > n), within which the response can

safely arrive. The sending time of the polling request is delayed by the same amount of time

del, to keep the difference between sending time and response arrival time equal to RTTi. The

time to send a polling request to Ri is planned using the following steps:

(step!) use the RTTi to estimate the arrival time of a new response, and the corresponding

epoch (En);

74 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

(step2) from En, check the ARC vector to find the first epoch "Em" capable of taking

another response (ARC[mJ < RQ);

(step3) increment the corresponding entry in the ARC vector: ARC[m] +- ARC[m] + 1;

(step4) determine the earliest sending time of the polling request (denoted as "esti") to

Ri to be esti +- max {clock, m x c - RTTi + begin}, where clock represents the

value of the system clock and begin represents the value of the system clock at the

beginning of the communication.

An example of the steps involved in the poll planning procedure is given in Figure 3.9. It is

assumed: (a) quota per epoch RQ = 3 responses; (b) epoch length c = 10 ms; (c) round trip

time to receiver Ri RTTi = 35 ms; (d) time at the start begin = 1002, and so current epoch

is 100. In (step!), the sender adds the current time and RTTi to find 1002 + 35 =? 1037, and

determines the earliest epoch to be E103 (l1037/lOJ =? 103. In (step2), the sender verifies

that epoch E103 has already 3 responses (ARC[103] = 3), and finds the next epoch, E 104 , with

only 2 responses (ARC[104] = 2). In (step3), the entry of the vector for epoch E104 is updated

(ARC[104] +- 3). Finally, in (step4), the sender determines esti to be 1005, by subtracting

the RTTi = 35 from the time of E 104 , 1040.

The mechanism maintains at most one planned polling ahead for each receiver, and this

information is stored in a Polling Table; this table may contain up to one polling request

planned for each receiver. A given receiver Ri is "added" to the i-th entry of the Polling Table

when the sender plans a time to send a polling request to Ri. A poll is planned in anyone

of three situations, as long as Ri does not already have a planned poll assigned in the Polling

Table:

(before data)

(full buffer)

before a data packet is transmitted to ~ (~uch a packet will be sent later

as a DATA(POLL));

after feedback is received from Ri, which indicates that all packet buffers in

Ri are occupied by unconsumed packets ("window full of Is", i.e., SWi.v[seq] =

1 for any seq such that sWi.le :s; seq :s; sWi.re); or

3.4. POLLING MECHANISM 75

1<]
RTT;

t>1
estimate epoch of

I I earliest arrival=1 03
I I

sender
IE

E 101 E 102
E I

E 104 E 105

1 :'" .IIX)

IOJ

1 1 I> ." I time

now=
1002 POLL ···RESP

receiver
1 E IIX)3i

(a) step 1 - find the earliest arriving epoch

.. -......
,"-'(

~ " "

ARC I 1 1 0 I(3 II 2 0
RQ=3 _,'

,-

Scan ARC until
suitable epoch
104 found

sender

1

E IIX) E 101 E 102

I
E /03

1

E/o4

I
E /()5

I> time

(b) step 2 - find suitable epoch

Increment of ARC[1 04] entry

ARC I 1 1 0 3 3 0
RQ=3

E IIX) E E /02 EI03 E/o4 E
sender 101 /05

I> I time

(c) step 3 - update the allocation vector

Rn;
1<]~ ____ -'-___,t>1
I I

sender ~ ~ ". E '"' E '"' E '" i
;";~f

EI04 E
105 1

I >
time

Determine earliest sending time as 1005

(d) step 4 - determine earliest sending time

Figure 3.9: The four steps involved in poll planning.

76

(timeout)

CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

when there is a retransmission timeout because a response from ~ failed

to arrive within the expected time (more details in Section 3.5).

Receivers need eventually to acknowledge all data units they are sent; to acknowledge, they

first need to be polled by the sender. The case (before data) above applies to transmissions

and retransmissions of data. In the original transmission, the multicast of a given packet

seq creates the demand to, sooner or later, send polling requests which will allow every Ri

to acknowledge packet seq (and all packets with smaller sequence number). Thus, the polling

mechanism ensures that all receivers will have a planned polling, planning new polls if required.

In case of retransmitting seq, packets may be sent either via selective unicast or via multicast;

if seq is sent via unicast to Ri, as Ri alone needs to acknowledge seq; as only Ri needs to be

polled, only Ri is "added" to the Polling Table. If, however, seq is retransmitted via multicast,

it may reach all receivers but only a subset may have to acknowledge seq (those which have

requested the retransmission, as explained later in Section 3.6). In such cases, the polling

mechanism will "add" to the Polling Table only those receivers which need to acknowledge the

retransmission.

In case of (full buffer), the sender needs to continue to poll Ri because it cannot multicast

any new data due to the lack of available buffers at ~ (Vseq I sWi.le ::; seq::; sWi.re 1\ v[seq] =

1). The sender plans a new polling request to ~ every time a response from Ri is received

reporting full buffers. Consequently, RR permitting, the sender will poll Ri once every RT~

until a response is received from Ri such that RESP.rw.le > sWi.le (buffers became available).

The last case, (timeout), is related to the loss of polling requests and responses and its

discussion is delayed until the next section.

After a plan to poll a receiver has been made, it stays in the Polling Table until its sending

time (esti) arrives, that is, the polling plan is due and a request is to be sent to R i. The

transmission of polling requests is carried out according to the timing information in the Polling

Table. There are two types of situations which lead to the examination of the Polling Table

for scheduled poll timings: before a data unit is transmitted, and when no data unit can be

transmitted.

In the first case, the Polling Table is examined upon transmission of a DATA packet: after

3.4. POLLING MECHANISM 77

all receivers have been added to the Polling Table, but before the packet is transmitted. The

set of receivers with due scheduled pollings (that is, with earliest sending time esti :::; clock) is

"moved" from the Polling Table into a receiver set "polled"; if polled i= U, it is piggybacked

onto the outgoing data packet (DATA becomes a DATAPOLL). The existing planning for each

Ri E polled is erased from the Polling Table by changing esti to an invalid time, esti f- -l.

The second case refers to the situations where no data can be sent (either because the

sending application is slow to produce data and there is not any to be sent, or because available

data cannot be sent due to sw.aw = 0). In both cases, if there is any plan recorded in the Polling

Table, the mechanism will carry out the transmission of a polling request on a POLL packet.

The mechanism determines the next polling time (denoted as N PT), to be the minimum esti

currently recorded in the Polling Table. To prevent several POLL packets being sent close

together (each POLL targeting a single receiver), the N PT is rounded up to the next I PG

time:

N PT f- max {min {esti I Ri E {*} /\ esti i= -I} , lastTx + I PG}

where lastTx is the time of the most recent packet transmission. This ensures that the

granularity in which polling requests are sent remains 1 I PG (no two POLL packets will

be sent less than one IPG apart even when data cannot be sent). At the next NPT,

a polling set is generated containing the set of receivers to be sent a polling request i.e.,

polled = {Ri E {*} I esti i= -1/\ esti :::; clock}; if sw.aw remains 0 (no data can be sent), a

POLL packet is transmitted, otherwise a DATAPOLL is sent.

Observe that in both cases in which the Polling Table is examined the mechanism allows up

to one I PG to elapse between the scheduled and actual transmission times of a polling request.

Note also that there is no guarantee that every given response will be received in the expected

epoch. This is because the mechanism embodies three sources of unpredictability:

(dl) it allows a polling request planned for esti to be up to 1 I PC after esti;

(d2) the processing loads at the host CPU may cause the time between successive trans

missions of polling requests to exceed I PG; this may further increase the difference

between esti and actual transmission times;

78

(d3)

CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

the RTT delays used are only estimates, and they need not be valid for the prevailing

network conditions, particularly if conditions fluctuate widely.

Responses may thus arrive before or after the predicted time, and thus potentially outside the

expected epochs. The amount of losses caused by such "rogue" responses are influenced by

(dl), (d2) and (d3), as well as by the values adopted as E. Using a higher value for E (and

thus higher RQ) results in fewer but larger epochs, decreasing the probability of a response

arriving outside the expected epoch. However, with greater RQ, the arrival rate tends to be

less uniform; this may cause some responses to be lost if all expected responses in a given epoch

arrive en masse at the same point in that epoch.

3.5 Handling Absent Poll Responses

Polling requests and responses can be lost during transmission. So, to avoid waiting forever

to receive a response from a given polled ~, the sender waits on a retransmission timeout

(RTO i). The sender calculates the RTOi based on the estimated RTT delay between itself and

Ri, i.e., RTTi . Since every RESP packet brings a fresh RTT measurement, the protocol can keep

reasonably accurate RTT estimates without having to transmit additional packets.

PRMP's calculation of RTOi is based on [Jacobson88J: this scheme keeps track of the RTT

mean and deviation, and unlike the RTT estimate used for planning, it reflects the variation

in the set of measured RTT values. The RTOi is determined using a formula which "weighs"

both RTT mean and RTT variance; the more "stable" the network is, the more similar mea

sures will be, and the smaller/less important the variance becomes in RTOi. In contrast, if

measurements vary wildly, the value of the RTT mean will decrease but the RTT deviation will

grow significantly.

After transmitting a polling request to ~, if no response is received from Ri within RTOi

time, the sender assumes the expected response to be absent. The absence of a poll response

from Ri can be due to one of the following:

(cl) the polling request transmitted by the sender did not reach Ri;

(c2) the response transmitted by Ri did not reach the sender;

3.5. HANDLING ABSENT POLL RESPONSES 79

(c3) RTTi was underestimated, thus the RTOi is too small, and the response is still in

transit;

(c4) Ri has become permanently disconnected or failed.

It is impossible for the sender to know what exactly is the underlying cause for an absent

response. The protocol deals with a suspected loss by "repolling" Ri and waiting (on timeout)

for a response; this repolling is repeated for a frnite number of times, with increasing RTOi'S (to

cater for case (c3)). The status of receivers regarding the absence of responses is maintained

in a separate table, the "Missing Polls Table". If the underlying cause is (cl), (c2), or (c3),

then it is hoped that the sender will receive a response for at least one of the polls it has sent.

The absence of a poll response does not indicate the loss of DATA packets which were

supposed to be ACKedjNAcKed by that poll response. If a given Ri fails to respond within

RTOi, then Ri should be rep oIled as soon as possible. This is because the limiting factor in

throughput is likely to be the absence of feedback from a receiver, increasing the likelyhood of

a closed sw (sw.aw = 0). So, the polling mechanism plans a polling time for Ri with higher

priority (and Ri is said to be in "repoll"). This high priority scheduling is done as follows.

First, RTTi is used to estimate the epoch Em in which the response would be received if

the polling request to Ri were sent now (Le., esti +- clock). If this response can be allocated to

the intended epoch Em, assign the response to Em using the standard procedure. However, if

Em cannot safely receive another response, examine the Polling Table looking for a non-repoll

plan whose response has been allocated to Em. If such plan exists (has not been sent yet), the

right to receive a response at Em is "stolen" from its holder R j by Rill. A new poll is planned

to Rj using the normal procedure described in Section 3.4. The repoll scheduling algorithm

is shown in Figure 3.10; esti, epochi' and repolli are the fields associated with each Ri in the

Polling Table, used respectively to represent the earliest sending time, the epoch in which the

response was allocated to, and if this plan is a rep 011.

The sender assumes that if no response is received for a given number of consecutive pOlls12,

Ilif more than one receiver Rj exists with such plan, there are two possibilities: to chose the one with smallest
RTTj, or to chose the one with largest estj.

12 t his number is a user configurable, protocol variable, and represents how many times the protocol should
retry in obtaining a reponse from a receiver (e.g., 10).

80 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

m f- (clock + RTTi) mode /* initial epoch */
repolli f- false
while not repolli {

}

if ARC[m] < RQ { /* found available quota * /
ARC[m] f- ARC[m] + 1
repolli f- true

} else { /* try to steal from another receiver * /
if 3Rj I i ::f j 1\ epochj = m 1\ repollj = false {

repolli f- true
reschedule Rj as for normal plannings

} else
mf-m+l

esti f- max(m x e - RTTi + begin, clock)
epochi f- m

Figure 3.10: Repoll planning Algorithm.

then the underlying cause is (c4) and the non-responsive receiver is removed from the desti

nation set {*}. Removing a persistently non-responsive receiver node from the destination set

relieves the sender from having to wait for feedback from that node. The removal of a receiver

Rj from {*} occurs after a timeout, which causes sw to be re-examined: if SWj .le = sw.le,

then sw.le is recomputed and may slide forward; if so, sw.aw becomes greater than 0. With

sw.aw > 0, the sender is allowed to transmit new packets. Further, as to be discussed in the

next section, the removal of a receiver from {*} may trigger packet retransmissions. Once a

receiver is removed from {*}, any packet received from it is ignored.

3.6 Data Loss Recovery

The sender detects the loss of the packets it transmitted through the poll responses sent by

receivers. The scheme employed by the sender to recover from these losses involves retransmit-

ting the packets either via global multicast or selective unicasts. The way the scheme operates

can influence the system throughput, network load, and the number of packets processed by a

receiver. This section explains the rationale behind the design choices made for PRMP.

First, consider three simple, loss recovery schemes. The first one operates on the principle

of immediately recovering from any detected loss: the loss of seq reported (through a NACK)

by Ri is directly followed by a unicast retransmission of seq to~. Although very simple,

3.6. DATA LOSS RECOVERY 81

this scheme may be wasteful when a packet seq is lost by multiple receivers, since the same

packet will be unicast multiple times. As discussed in Section 2.2.1, losses near the root of the

multicast tree may lead to a given loss being shared by a large number of receivers. In such

cases, it may be advantageous to retransmit via multicast.

The second scheme pessimistically assumes that if a packet is NACKed by one receiver then

it will be NACKed by many other receivers as well. Based on this assumption, the packet seq is

retransmitted via multicast soon after the first NACK for seq is received. When the number of

receivers that share the same loss is likely to be large, this scheme speeds up recovery for those

receivers whose NACKS have not yet reached the sender. On the other hand, resending a packet

to a receiver that already has the packet incurs unnecessary network load and processing cost

for that receiver. In the extreme case, a single lossy receiver can cause the rest of the group to

be flooded with redundant retransmissions triggered by NACKS from Ri. Such a problem was

coined by [Holbrook95] as the "crying baby" problem.

The third scheme uses a "wait-and-see" approach to minimize wasting of network bandwidth

during recovery. It waits for a given time collecting NACKS; at the end of this waiting, if the

number of collected NACKS exceeds a certain threshold value, the lost packet is multicast;

otherwise the packet is unicast only to the appropriate receivers. Different criteria can be used

to limit the waiting (e.g., a fixed interval, like the protocol described in Section 2.3.3) during

which NACKS are collected. In general, the longer the collection time, the more appropriate the

decision made for recovery will be, and hence the fewer unnecessary packets will be transmitted.

PRMP employs both the first and the third schemes, in the following manner. The third

scheme is put in operation as soon as the sender receives the first NACK for a given packet seq.

The sender waits collecting NACKS; if the percentage of receivers (out of GS) that has NAcKed

seq reaches or exceeds the multicast threshold ratio (MT R), the collection period ends and the

packet is retransmitted via multicast. If the number of NACKS does not reach the threshold,

the collection will terminate after each receiver either has reported its status (AcKed/NAcKed)

regarding seq or is in rep oIl for having failed to respond to a polling request with hs 2: seq

(recovery is not delayed waiting for non-responsive receivers); this will be then followed by

unicasting seq to each receiver that has NACKed seq. After a multicast or a series of unicasts

82 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

is carried out, the workings of the third scheme terminate; the first scheme (i.e., immediate

unicast retransmission) then becomes operative and will be in force until seq becomes fully

ACKed. The first scheme is more appropriate after the third scheme because the number of

receivers which still require retransmissions of seq is likely to be small. Also, the resulting

mechanism is simpler.

The waiting of the error control mechanism of PRMP is driven by a set of functions that, each

compute a given kind of receiver set from the status currently stored in the sending window.

These functions are the basis of the error control mechanisms, and will be described in Section

3.6.3.

3.6.1 Detecting data loss

Section 3.5 showed that the loss of polling requests and responses is detected by the sender via

timeouts. Also, that the error control scheme of PRMP is optimistic, and does not interpret the

absence of a response as the negative acknowledgment of all data packets that the response

would (positively or negatively) acknowledge.

The loss of data packets is detected by receivers and reported to the sender through poll

responses. The network may drop, duplicate or reorder packets; to allow receivers to detect

such abnormalities in the set of packets they receive, the sender identifies each data unit

with a unique sequence number. A receiver detects reordered, duplicate or absent packets

by comparing DATA(PoLL).seq with the corresponding packet status in its receiving window.

Recall that, when polled, a receiver Ri transmits a copy of rWi in a RESP packet; as discussed

below, this allows the sender to detect losses experienced by receivers.

A receiver Ri keeps in its rWi.hr the highest sequence recorded so far; rWi.hr indicates to Ri

that the sender has multicast all packets with seq::; rWi.hr. There may be one or more packets

(with seq> rWi.hr) which have been multicast by the sender but that are still in propagation.

Any bits which (may) occur in rWi.v to represent any of these packets (seq> rWi.hr) are set

to 0, as ~ has not received the data of such packets. Further, rWi.hr indicates that ~ has not

received a polling request with sequence number (DATA)POLL.hs > rWi.hr. Therefore, when

the sender receives REsP.rw, the data packets being negatively acknowledged are those whose

3.6. DATA LOSS RECOVERY 83

seq is such that seq ~ rw.hr /\ rw.v[seq] = O.

Figure 3.11 shows an example of the above loss detection process; it shows a communication

in which the window length is 5 (L = 5). Suppose that the sender starts in the Figure with

sw.aw = 3 and sw.hs = 30; it increments sw.hs and multicasts DATA seq = 31, repeating

this for packets DATA seq = 32 and DATA seq = 33. sw.aw reaches 0 and some time later

the sender transmits a POLL to Ri; such a POLL carries POLL.hs = 33. Packets DATA seq =

32 and DATA seq = 33 happen to be lost. When the POLL reaches the receiver, rWi.hr is

updated to 33 (recall that rWi.hr records the highest sequence), exposing a "sequence gap"

at seq = 32 and seq = 33 even though packet seq = 34 has not reached Ri. After updating

rWi (rwi.hr f-- 33), Ri verifies that its id is included in POLL.polled and as a result transmits

a RESP packet. Meanwhile, feedback arrives at the sender from some other receiver (this is

not shown in Figure 3.11), resulting into the slide of sw by two packets, that is, increasing

sw.aw to 2; with sw.aw = 2 the sender transmits two new packets: DATA seq = 34 and

DATA seq = 35. As a result, sw.hs becomes 35. When the poll response later arrives at

the sender, RESP.rw contains RESP.rw.le = 31, RESP.rw.ned = 32, RESP.rw.hr = 33, and

RESP.rw.v = 10000. RESP.rw informs the sender about the loss of packets seq = 32 (as

REsP.rw.v[32] = 0 /\ RESP.rw.ned ~ 32 ~REsP.rw.hr) and seq = 33 (as REsP.rw.v[33] = 0 /\

RESP.rw.ned ~ 33 ~REsP.rw.hr). Finally, RESP.rw.hr = 33 and sw.hs = 35 together indicate

that though packets seq = 34 and seq = 35 have been multicast, RESP.rw does not refer to

them.

3.6.2 Packets susceptible to recovery

Before retransmitting, the loss recovery mechanism of PRMP waits so that it can judiciously

decide between multicast and selective unicasts, depending on the number of receivers that

have NACKed the packet. After a packet seq has been NACKed for the first time, ACKS and

NACKS regarding seq coming from any receiver Ri E {*} may lead to the awaited retransmission

of seq (e.g., because it may end the collection period). The range of packets seq that may be

affected by recovery at any given time is (as explained below):

sw.nea ~ seq ~ sw.hr

84 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

Sender Receiver

sw.hs=31

sw.hs=32

sw.hs=33

sw.hs=33

sw.hs=34

sw.hs=35

rw.hr=33,
sw.hs=35

Time
rw.le=31
rw.ned=32
rw.v=10000
rw.hr=33

DATA seq=31

POLL hs=33

DATA seq=34

DATA seq=35

Figure 3.11: Example of case the sender selects which Os are actually NACKs.

Recall that sWi.nea represents the first packet which Ri has not acknowledged. The aggregated

sw.nea represents the first packet which has not been fully acknowledged. Thus, sw.nea is

aggregated as the minimum of all next expected acknowledgments:

sw.nea +- min {swi.nea I Ri E {*}}

The attribute SWi.hr represents the highest seq a receiver Ri has referenced according

to RESP.rw.hr values. The sw.hr represents the highest sequence to have been referenced

(ACKed/NACKed) by any of the receivers in their responses; thus

Per definition, sw.hr must be equal or less than sw.hs, as only transmitted packets can get

acknow ledged.

Therefore, only the packets with sequence seq such that sw.nea ~ seq ~ sw.hr may be in

recovery, as all packets with sequence seq such that seq < sw.nea have been fully ACKed and

all packets with sequence seq such that seq> sw.hr have been neither ACKed nor NACKed by

any of the receivers.

3.6.3 Receiver set functions

As with other aggregated attributes, PRMP employs a function which aggregates the ACKS and

NACKs with respect to a packet seq such that sw.nea ~ seq ~ sw.hr and generates as a result

3.6. DATA LOSS RECOVERY 85

a receiver set. The state of a packet seq regarding Ri is determined through one of three

predicates which examine the corresponding SWi, true if:

Acked(Ri, seq):

Nacked(Ri' seq):

Refed(~, seq):

packet seq has been ACKed by receiver Ri (i.e., seq < sWi.le V SWi.v[seq] =

1);

packet seq has been NAcKed by receiver ~ (i.e, seq ~ sWi.hrAswi.v[seq] =

0);

packet seq has been referenced by receiver Ri (i.e., seq ~ sWj.hr).

The above predicates are used to compute an aggregated state from SW, returning a receiver

set when evaluated:

Acked(seq):

Nacked(seq):

Refed (seq):

receivers which have ACKed seq, i.e.,

{Ri E {*} I Acked(Rj, seq)};

receivers which have NAcKed seq, i.e.,

{Rj E {*} I N acked(Rj, seq)};

receivers which have referenced seq, i.e.,

{Ri E {*} I Refed(Rj, seq)} (equivalent to Acked(seq) U Nacked(seq)).

Figure 3.12 shows one example of sw for GS = 4; all the attributes of sw (namely Ie, nea,

hr, re, hs, and aw) are shown. Taking packet seq = 104 as an example, Acked(Rl,104)

and Acked(R3,104) are true, whereas Acked(R2,104) and Acked(R4,104) are false; thus,

Acked(104) is determined to be {Rl,R3}' Likewise, Nacked(104) is computed by apply

ing Nacked(Ri, 104) to the four SWj's: Nacked(Rl' 104) and Nacked(R3, 104) are false as

sWi.v[104] = 1; Nacked(R2' 104) is also false because R2 has not referenced the packet

yet (as SW2.hr < 104); only Nacked(R4' 104) is true, as SW2.hr = 104 A sW2.v[104] = O.

Thus Nacked(104) = {R4}. Finally, Refed(104) is computed as above, using Refed(Rj, 104):

Refed(104) = {R1,R3,R4}, since all receivers apart from R2 have sWj.hr ~ 104.

There is an additional receiver set function, which has not been illustrated: Repolled(seq).

This function determines the set of receivers according to the contents of the Missing Polls

Table (see Section 3.5) using the following predicate, which is true if:

86 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

.....

le.nea hr re

sWI
101 0 0 0 0 1 0 1

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

Ie nea hr re

SW2 I 0 I 0 0 I I 0 i 0 I 0 I 0 I
96 97 98 99 100 101 102 103 104: 105 106 107 108 109 110

Ie ned : hr re

SW3
10 I I I 0 I

96 97 98 99 100 101 102 103 104: 105 106 107 108 109 110

Ie nea hr : re

SW4 I I I I I I 10 I 0 0 01 0 I 0 I
% 97 98 99 100 101 102 103 104: 105 106 107 108 109 110

Ie nea , hr re

sw.le sW.nea sw.hr sW.re sW.aw=l

sw.hs

Figure 3.12: Example of sw attributes computed from a given sw.

3.6. DATA LOSS RECOVERY 87

Repolled(Ri' seq): the sender has failed to receive responses from Ri for all requests sent to

Ri with (DATA)poLL.hs 2: seq and Ri E (DATA)POLL.polled.

That is, if Repolled(Ri' seq) evaluates as true, it indicates to the sender that Ri'S state in

regards to packet seq is outdated. The predicate Repolled(seq, Ri) is used by an aggregating

function which returns a receiver set:

Repolled (seq): receivers which have not referenced seq because they are in repoll, i.e.,

3.6.4 Recovery of data transmissions

This section and the next complete the description of the error control mechanism of PRMP. A

diagram (see Figure 3.13) is used to depict the set of states a given packet seq goes through;

though the emphasis is on the loss detection and recovery, the complete "lifetime" of the packet

is shown.

untransmittable

• sw slides and the right edge of sw reaches seq

transmittable

• packet is multicast (one or more IPGs have elapsed)

transmitted

packet becomes
ACKed

packet is NACKed by any receiver

in Collection

~
conditions for retransmission
are satisfied, packet retransmitted

by all receivers
~mitted

packet becomes ACKed
fullyAcked by all receivers

• all receivers report that seq has left their window

fullyConsumed

Figure 3.13: Diagram with packet life cycle.

At the beginning of the communication, the sending window has the following settings:

sw.le = sw.nea = 1, and sw.re = L; as no packet has been sent yet, sw.hs = 0 and sw.aw = L.

As the available window is equal to L, the first L packets of the sequence, i.e., Vseq 11 ~ seq ~

88 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

L, can be transmitted. At any point in the communication, a packet seq can only be transmitted

if seq ~ sw.re (or otherwise the receivers may not have buffer space to accommodate the

packet). So, all packets apart from the first L start in state untransmittable; packet seq

remains in state unstransmittable while seq> sw.re.

The window sw slides forward and eventually sw.re reaches seq (Le., seq ~ sw.re), when it

becomes possible to transmit packet seq; the packet becomes transmittable. However, because

packets are sent in order and at a rate which is limited by the lPG, seq can only be transmitted

when all packets with sequence smaller than seq have already been sent.

The packet seq is eventually transmitted, and its state changes accordingly to transmitted.

At this point, sw.hs is equal to seq. After the transmission of seq, all receivers need to be sent

a polling request so that each can return a response containing a reference (ACK or NACK) to

packet seq. The polling requests or responses that happen to be in transit when seq is transmit-

ted will not refer to packet seq. That is, one or more responses may arrive containing RESP.rw

such that RESP.rw.hr < seq ~REsP.rw.re; these will have REsP.rw.v[seq] = 0, but are not neg

ative acknowledgments (as explained in Section 3.6.1). As the sender transmits polling requests

to receivers, RESP packets such that RESP.rw.hr ;::: seq begin to arrive; seq will be referenced at

least once per receiver before it becomes fully acknowledged. A reference is either a 0 or a 1 in

REsP.rw.v[seq], and the sender interprets it as a NACK or a ACK, respectively. When the first

response which negatively acknowledges seq (that is, seq ~REsP.rw.hrAREsP.rw.v[seq] = 0)

arrives, the procedure associated with the loss recovery of seq starts; as shown in the diagram of

Figure 3.13, the packet state changes from transmitted to in Collection. The packet remains for

some time as in Collection so that any additional receivers (if any) which have also experienced

the loss of seq have a chance to negatively acknowledge seq too.

With the arrival of new responses, sw is updated and Acked{seq) and Nacked{seq) may

result in larger sets. The mechanism waits before retransmitting so it can decide between .
multicast or multiple unicasts; also, it is possible that the collection ends with the cancellation

of the recovery process for packet seq. For the collection to end, one of these three conditions

has to be satisfied:

(cancel retx) Nacked{seq) {} A state inCollection: packet seq was "wrongfully"

3.6. DATA LOSS RECOVERY 89

NACKed (see explanation below) by one or more receivers, which later rec-

tified the situation by ACKing seq, before it could be retransmitted;

(mcast retx) JNacked(seq)J ~ lMTR x GSJ: the number of receivers that have NACKed

seq is sufficient to justify a multicast retransmission of seq;

(ucast retx) Refed(seq) U Repolled (seq) = {*}: all receivers in the destination set have

either referenced seq or have failed (within time) to return a response which

would have referenced seq.

In (cancel retx), after a RESP containing "ACK seq" is received and sw updated, Nacked(seq)

becomes empty. So, with Nacked(seq) = {} there is no receiver to retransmit to, the recovery

process is cancelled, and the packet status of seq changes back from in Collection to transmitted

(note that the corresponding arrow in the diagram is bidirectional). This situation arises when

the network reorders packets seq and seq + 1, and one or more receivers wrongly assume

that the packet seq has been lost because of the sequence gap at seq (see example in Figure

3.14). If a receiver is polled after seq + 1 is received but before the arrival of seq (Le., while

Nacked(seq)={)
seq "transmitted"

Nacked(seq)={Rl}
seq "in Collection "

Nacked(seq)={}

t
Nacked(seq)={}

seq "transmitted"

Sender

(ACK seq,
ACK seq+l)

Receiver

DATAPOLL seq+l

DATA seq

POLL hs=seq+l

Figure 3.14: Example of false loss detection and recovery cancellation.

90 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

rWi.v[seq] = 01\ rWi.hr = seq + 1), the receiver will send a copy of rWi containing the gap (at

seq) in the RESP packet transmitted to the sender. After transmitting such a response packet,

the packet seq arrives at Ri. Suppose that packet seq stays as in Collection for some time; a time

sufficient to allow the receiver to be polled again and, this time, positively acknowledge seq.

After this response arrives at the sender, and SWi.v[seq] t- 1, Nacked(seq) may become empty.

If so, the recovery mayor may not be cancelled: if the packet has not been retransmitted

yet (state is in Collection) , the recovery is cancelled; otherwise, (Le., the packet has been

retransmitted) there is no advantage in canceling the recovery and any NACKS which follow the

retransmission will be treated with immediate retransmission.

When either (mcast retx) or (ucast retx) conditions are satisfied, recovery goes on and

the packet seq is retransmitted to at least all receivers resulting from Nacked(seq) evaluation.

Accordingly, the packet status changes from in Collection to retransmitted. Depending on the

number of NACKS recorded for seq, the latter may be retransmitted via selective unicast to

each Ri ENacked(seq), or retransmitted via multicast to all receivers in {*}. The length of

time a packet spends in state in Collection varies, and can even be nil. This may happen

if the MT R is equivalent to a single receiver, in which case the first "NACK seq" to arrive

is enough to satisfy (mcast retx); it can also occur if the last reference to seq to arrive is

the first "NACK seq". More precisely, the latter case will happen if Nacked(seq) = {} and

Repolled(seq)URejed(seq) = {*} - Ri before a "NACK seq" arrives in a RESP packet from Ri,

making Repolled(seq)URejed(seq) = {*}, and at the same time allowing Nacked(seq) to return

{Ri} instead of {}.

Suppose that the collection phase has ended and one or more retransmissions of packet seq

have been done; the sender receives a NACK seq from Ri. As retransmitted packets themselves

can be lost, the sender needs to re-send the packet. Having already used the third scheme of

"wait-and-see" to decide which way to retransmit, the recovery ;mechanism switches to the first

mechanism of "immediate retransmission" and without collection serves NACKS regarding the

loss of the retransmitted packet; any re-retransmission is executed via unicast.

Now consider the case where soon after the retransmission of seq to Ri, the sender receives

a NACK seq from Ri: if the polling request which originated this response was sent bejore

3.6. DAT1\, LOSS RECOVERY 91

the retransmission, then the NACK seq should be ignored, as it is obsolete with respect to the

retransmission. After the retransmission of seq to the set of receivers indicated by N acked (seq),

each of these receivers needs to be polled so that it can positively or negatively acknowledge

this retransmission. With the aid of an example, Section 3.6.5 discusses how the mechanism

distinguishes the former NACKS (obsolete) from the latter (valid) ones.

After all receivers have acknowledged seq, on computation Acked(seq) results in {*}, and

the packet state changes to fullyAcked. The packet seq may be released from the buffers,

as a retransmission of seq will not be necessary. When the sender learns that all receiving

applications have consumed the data corresponding to seq (Vi: sWi.le > seq), seq reaches its

last state, fully Consumed, and the sender can advance the sw.

3.6.5 Recovery of data retransmissions

This section explains through an example the problem of obsolete NACKS and how the PRMP

mechanism prevents them. Consider the scenario in Figure 3.15; the sender transmits three

packets: DATA seq = 31, DATAPOLL seq = 32 hs = 32, and a packet POLL.hs = 32. Packet

DATA.seq = 31 is lost, but both the DATAPOLL seq = 32 and POLL.hs = 32 arrive at

the receiver and trigger responses from Ri. The first response contains RESP.rw such that:

REsP.rw.v[31] = Ot\REsP.rw.hr ~ 31; that is, the response contains a "NACK 31". Suppose

that after this response either (mcast retx) or (ucast retx) are satisfied, and DATA.seq = 31

is retransmitted. Soon after the retransmission of DATA.seq = 31, the second response arrives,

which still negatively acknowledges packet seq = 31. As shown in Figure 3.15, a simplistic

approach wrongly infers that the retransmission of packet DATA.seq = 31 has been lost, and

re-retransmits DATA. seq = 31.

When the sender receives a NACK seq from receiver R i , what makes this NACK valid or

obsolete is whether the NACK refers or not to the most recent retransmission of seq to Ri. The

sender establishes the causal relation between (the response which contains) the NACK and

the most recent retransmission of seq to Ri; to be valid, the NACK must causally succeed the

retransmission. The causal relation is worked out using timestamps; recall that when the sender

transmits a given polling request, it includes its transmission time: (DATA)POLL.ts is used to

92 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

Sender Receiver

RESP rw.hr=32
rw.v(31)=0

RESP rw.hr=32
rw. v(31) =0

X DATA seq=31

Time

DATAPOLL seq=32 hs=32

POLL hs=32

DATA seq=31

DATA seq=31

Figure 3.15: Example of obsolete NACK and redundant retransmission.

allow RTT estimation (see Section 3.4). When a response is received from Ri containing a NACK

to a retransmitted packet (of sequence seq), the sender compares the timestamp RESP.ts with

the time of the latest retransmission of seq to Ri= if the time ts in RESP is equal to or larger

than the time of the latest retransmission of seq, then the NACK is valid.

The times of retransmissions are recorded in a special table, the "Retransmission Times

Table". The table has GS + 1 entries: one entry per receiver, to record times of selective

retransmissions, and one entry to record times of global multicast retransmissions. Each entry

contains up to L tuples of the form (seqi, tSi), where seqi indicates a sequence of a packet

retransmitted to Ri and tSi the time it was sent. In case of multicast retransmission, the tuple

is denoted as (seqm, tSm).

The tuples recorded in the Retransmission Table indicate past multicast and unicast re-

transmissions of seq to receivers. There are three possibilities regarding the retransmissions of

seq: (a) seq has not been retransmitted yet; (b) seq has been retransmitted via multicast; (c)

seq has been retransmitted using selective unicast. According to the workings of the recovery

mechanism as defined in Section 3.6.4, (b) can only occur before (c). However, because at the

time of a retransmission is executed one or more receivers may need to be sent a polling request,

the destination set for the retransmission may grow and a selective unicast retransmission to

3.6. DATA LOSS RECOVERY 93

some receivers may be transformed into a multicast retransmission; hence, (b) and (c) can oc-

cur multiple times and in any order. To determine the time of the most recent retransmission

of packet seq to receiver Ri, the mechanism looks up if multicast and "selective unicast to Ri"

tuples exist:

seq was retransmitted via selective unicast to Ri at time tSi;

seq was retransmitted via multicast at time tsm;

seq has been retransmitted via multicast at time tSm and

via unicast to Ri at time tSi;

neither (seqi' tSi) nor (seqm, tsm) seq has not been retransmitted to Ri (however, if st(seq) =

retransmitted then seq was retransmitted via selective un i-

casts to a set of receivers which did not include Ri).

Upon arrival of a RESP packet from a given receiver Ri, if the response negatively acknowledges a

packet which has been already retransmitted (i.e., st(seq) = retransmitted), the the procedure

followed by the recovery mechanism is determined according to the tuples in the Retransmission

Times Table and the state in sw, as follows:

• if only (seqi, tSi) exists and if RESP.ts 2: tSi (valid NACK), seq will be retransmitted to

• if only (seqm, tsm) exists

- if RESP.ts 2: tSm (valid NACK) , seq will be retransmitted to Ri;

- if RESP.ts < tSm (obsolete NACK), no retransmission is required; however, make sure

that there exists a polling request to Ri succeeding tSm by adding Ri to the Polling

Table;

• if both (seQi, tSi) and (seqm, tsm) exist and RESP.ts 2: max{tsi' tsm} (valid NACK), seq

will be retransmitted to Ri;

• if neither (seQi, tSi) nor (seqm, tsm), the packet seq will be retransmitted to Ri.

94 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

The example of Figure 3.15 has been modified to show how the second retransmission of

seq = 31 is avoided (see Figure 3.16). In CD , DATA packet seq = 31 is transmitted and lost; in

® , packet DATAPOLL seq = 32 arrives at the receiver, allowing the latter to assume the loss

of seq = 31; since the packet contains a polling request, the receiver sends a response NAcKing

seq = 31. In ® , a new polling request arrives (in a POLL packet) at the receiver and triggers

a new response (the status in rWi regarding seq = 31 has not changed, so that seq = 31 is still

being NAcKed). In @ , the poll response arrives at the sender; seq has not been retransmitted

yet; assume that the threshold corresponds to 1 receiver, and a retransmission takes place.

In ® , the second response arrives; seq = 31 has been retransmitted, and the status in the

Retransmission Times Table indicates that the most recent retransmission of seq = 31 to Ri

has been at time 160 ((31i' 160i)), therefore after the transmission of the polling request which

generated this NACK, that is, RESP.ts = 120.

Time

100

110

Sender

ts=100

ts=110

120 ts=120

130

140

150 RESP
ts=110

160 @

170 ®
RESP

ts=120

DATA seq=31

Time

Receiver

DATAPOLL seq=32 ®
hs=32 ts=110

POLL ®
hs=32 ts=120

DATA seq=31

Figure 3.16: Recovery mechanism identifies the obsolete NACK and prevents the redundant
retransmission.

3.6.6 Recovery algorithm

Figure 3.17 presents in pseudo-code the error control algorithm used for loss detection and

recovery of data packets; such code is executed upon the arrival of a poll responses from a

given receiver~. A packet seq may be in one of three states in this algorithm: transmitted,

3.6. DATA LOSS RECOVERY 95

in Collection, or retransmitted, as indicated by st(seq).

Recall that, when evaluated, Repolled(seq) returns the set of receivers which have failed to

respond to all polling requests (DATA)POLL, such that (DATA)POLL.hs ~ seq. Therefore, when

a retransmission timeout expires, Repolled(seq) may return a larger receiver set, which may

be sufficient to satisfy condition (ucast retx). Figure 3.18 shows the algorithm required to

handle a retransmission timeout of a polling request.

96 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

if (rw.le > sWi.1e) sWi.1e t- rw.le /* update left edge */
for Vseq such that sWi.nea::; seq::; rw.hr {

if (Swi.v[seq] = 1) continue; /* already acked, ignore * /
if (SWi.hr::; seq::; rw.hr) { /* first ref to seq */

if (seq < rw.ned V rw.v[seq] = 1) { /* this reference is ack * /
SWi.v[seq] t- 1 /* update the window */
if (st(seq) = inCollection 1\

}

Refed(seq) U Repolled(seq) = {*}) {
plan poll for each Ri E Nacked(seq)
retransmit seq to Nacked(seq)
record retransmission time(s)
st(seq) t- retransmitted

} else { /* first reference from receiver, and is a nack * /
if (st(seq) = transmitted) st(seq) t- inCollection
if (st(seq) = inCollection) {

}

if (INacked(seq)1 ~ MTR x as V

}

Refed(seq) U Repolled(seq) = {*}) {
plan poll for each Ri E Nacked(seq)
retransmit seq to Nacked(seq)
record retransmission time
st(seq) t- retransmitted

} else if (st(seq) = retransmitted) {

}

/* packet has been retx'ed, but not aiming at this receiver* /
plan poll for Ri
if (-,3 (seqm, tSm) V tm <RESP. ts) {

retransmit seq to Ri
record retransmission time

}

} else { /* there was a previous reference (nack) * /
if (rw.v[seq] = 0 I\. rW.nea ::; seq::; rw.hr) U*rw has another nack* /

if (st(seq) = retransmittedl\./* already retransmitted * /
RESP . ts ~ max {tsm , ts;}) { /* valid nack * /
plan poll for Ri
retransmi t seq to Ri
record retransmission time

}
} else { /* this reference is ack * /

SWi.v[seq] t- 1

}

if (st(seq) = inCollection I\. INacked(seq) I = 0)
st(seq) t- transmitted /* cancel recovery * /

} /* there was previous reference * /
} /* for all packets which have been referenced by response * /
if (rw.hr > SWi.hr) SWi .hr t- rw.hr /* update the highest recorded * /
while (SWi.v[swi.nea] = 1) sWi.nea t- sWi.nea + 1 /* advance nea */

Figure 3.17: Recovery algorithm upon arrival of RESP packet.

3.6. DATA LOSS RECOVERY

1* after RTO, Repolled(seq) may result into a larger set * /
/* pall.hs is the highest sequence sent with the expired poll * /
for Vseq such that sw.nea:::; seq:::; poll.hs {

}

if (st(seq) = inCollection /\ Refed(seq) U Repolled(seq) = {*}) {
1* retransmit using selective unicast * /

}

st(seq) f- retransmitted
retransmit seq to Ri E Nacked(seq)
plan poll for Ri E Nacked(seq)
record retransmission time(s)

Figure 3.18: Recovery algorithm upon retransmission timeout.

97

98 CHAPTER 3. FLAT PRMP: POLLING FEEDBACK PROTOCOL

Chapter 4

Prototyping & Simulation of Flat

PRMP

This chapter is divided in three main parts. First, Section 4.1 describes the protocol architec

ture designed to realize fiat PRMP. A prototype of the protocol was implemented using this

architecture; it was used to carry out simulation experiments under various settings, allowing

the analysis of fiat PRMP'S behavior. Section 4.2 describes such experiments, and discusses in

depth the results obtained. The third and final part, in Section 4.3, reviews the simulation re

sults, discusses the main findings and comments on their implications regarding the scalability

of PRMP.

4.1 Protocol Architecture

As shown in Chapter 3, most of the complexity of the protocol lies at the sender. The ar

chitecture which implements the protocol at the sender is "multi-threaded": each thread runs

synchronously (never preempted by another PRMP thread) and, continuously following the same

basic set of steps, executes a simple task of the protocol. The set of threads mainly interacts ac

cording to the "producer-consumer" model: items are "produced" and stored in priority queues

by threads, and "consumed" from such queues by other threads. Threads also cooperate by

reading and writing state stored in shared tables. The architecture is object-oriented: tables,

99

100 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP

queues and threads are implemented as objects. So, the architecture is basically designed using

three kinds of components:

Queues store items which are to be processed by a given thread;

Tables keep protocol state in general, including windows and other recovery information;

Threads active entities, scheduled non-preemptively.

4.1.1 Queues

The sender employs two priority queues:

ToQ Timeout Queue;

TxQ Transmission Queue;

The ToQ is a priority queue containing asynchronous events. It is sorted according to the event

time associated with each entry, so that the head of ToQ represents "the next asynchronous

event", and the system timer can be set with the event time of this element. There are two

kinds of events: retransmission timeouts (RTOS) and "poll gaps".

Recall from Section 3.5 that after transmitting a polling request to a receiver R i , the

sender expects to receive a response within RTOi time. The absence of RESP within the

expected time constitutes a retransmission timeout. Note that as responses provide cumulative

acknowledgment of packets, any RESP succeeding the poll, that is, RESP.ts ~(DATA)POLL.ts,

is sufficient to prevent the timeout.

Most entries of ToQ are retransmission timeout events. To reduce the number of RTO events,

a single event is created for each (DATA)POLL sent, with the maximum retransmission timeout

among polled receivers. That is, the expire time of a retransmission timeout event is determined

according to the maximum RTOi in the set of receivers being polled: clock+max {RTOi I ~ E

(DATA) POLL. polled}.

After transmitting a polling request, the sender creates and enqueues an entry "to" in ToQ;

the entry contains: to.ev_time, the event time (the sorting key), which is set to the expiration

4.1. PROTOCOL ARCHITECTURE 101

time of the RTO; to.ts, the timestamp on (DATA)POLL.ts; to.hs, the value of sw.hs at trans

mission time (a receiver is supposed to acknowledge all packets up to to.hs); to.to...resp, the

set of receivers from which a response is being expected, initially set to (DATA)POLL.polled;

and to. type=RTO, indicating an event of type retransmission timeout.

Whenever a response packet arrives from R i , all retransmission timeouts of requests (re

garding Ri) which (causally) precede the response are cancelled. This is achieved by removing

Ri from all to. to...resp in entries to such that to. ts ~ RESP.ts. If to. to...resp= {}, the to

is removed.

The second kind of entry in ToQ is the poll gap. Recall that when no data can be transmitted,

but there is one or more receivers that need to be sent a polling request (Le., 3Ri E {*} I

esti i- -1), such request is transmitted through a POLL packet. A POLL is to be sent at

min {esti I esti i- -I} or no more than one I PC after this time; the poll gap is the period

between now and the time the next POLL is to be sent. A poll gap entry in ToQ represents the

asynchronous event that is the end of the poll gap. This entry has two fields: the entry type

to. type, set to POLL_GAP, and its event time, to.ev_time. When the event time arrives, it

indicates that the Polling Table should be examined for due polls. If data cannot be sent, an

entry POLL-GAP will be created at the Transmission Queue, TxQ (see below), else the poll gap

is ignored.

The TxQ contains entries that are related to the transmission of packets. Recall that packets

may contain a data unit, a polling request, or both, and that the packet type is determined

accordingly. Each entry "tx" in TxQ consists of: tx. seq, a sequence number (which is the key);

tx. type, indicating the entry type; and tx. dest, the destination set for the packet. The entry

type can be any of three: DATA_ORG, DATA...ENTRY, or POLL-GAP, which respectively represent the

original multicast transmission of ~ data packet to all receivers, a retransmission to a subset

of receivers, and the end of a polling gap. DATA_ORG entries have tx.dest= {*}, while in

tx. type=DATA...RETX entries tx. dest will indicate the set of receivers which are to be re-sent

tx. seq. Entries of TxQ are kept sorted in ascending order according to tx . seq. As entries are

consumed from the head of the queue, retransmissions have priority over normal transmissions:

if there exists an entry tx with tx. type=DATA...RETX and tx. seq = seq (for the retransmission

102 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP

of packet seq), as well as an entry tx' with tx' . type=DATA_ORG and tx' . seq= seq+ 1 (original

multicast of seq + 1), tx will be processed before tx', and seq will be retransmitted before

seq + 1 is transmitted.

The third type of entry in TxQ is the POLL-GAP. Recall that the Timeout Queue may hold

a "poll gap event" to mark the end of a poll gap. When such a poll gap arrives, one or more

planned polling requests may be due. To force the examination of the Polling Table, a TxQ entry

of type POLL-GAP, with tx. seq= 0 (highest priority) is enqueued in TxQ; when consumed, this

entry will lead to the examination of the Polling Table, and transmission of a polling request

with due polls.

tx. seq uniquely identifies an entry, and hence there cannot be more than one entry with the

same tx. seq at a given time. In case of data units, multiple retransmission entries can be joined

together, by merging their tx. dest sets. Recall from Section 3.6.4 that when a retransmission

is NACKed the mechanism immediately deals with it: a unicast retransmission entry is enqueued

in TxQ. As it may take some time before this entry is consumed from TxQ, several requests to

retransmit seq may be joined while awaiting transmission, enlarging tx. dest. When tx is

finally processed, tx. dest may be further enlarged with the receivers to be sent a polling

request now (if any). Thus, it is possible that seq is retransmitted via multicast, even though

there have been previous retransmissions of seq.

4.1.2 Tables

The receiver only maintains a single structure, the receiving window. The sender has the

following tables:

PPT Planned Polling Table

MPT Missing Poll Table

RT Response Table

RST Recovery Status Table

RTxT Retransmission Times Table

4.1. PROTOCOL ARCHITECTURE 103

There are two tables that hold polling information, the PPT and the MPT. The PPT is the

realization of the Polling Table described in Section 3.4; it has as entries, each containing three

fields: PPT [i] . est, the earliest sending time; PPT [i] . epoch, the epoch in which the response

is expected to arrive; and PPT [i] . repoll, a flag to indicate whether the entry represents a

poll or a repoll. The value of PPT [i] . est is -1 if there is no poll planned in the entry. The

PPT object provides three main methods: before transmitting a data packet, "add a plan for a

given subset of receivers to PPT"; after adding receivers, "generate a polling set with the due

planned polls"; and when data cannot be sent, "return the time of the next planned poll to be

due".

RT is the implementation of the sending window abstraction; as such, it contains the as
sending windows and provides operations on individual windows. Each sending window is

implemented through a bit vector. RT has methods for evaluation of Acked(seq), Nacked(seq),

etc. receiver sets, based on the as SWi's. It also provides the aggregation of attributes defined

for sw. An aggregated attribute is determined upon demand by finding the min {} or max {}

value for a given attribute in all SWi'S. This operation is optimized by RT with the aid of a

caching mechanism, which is best described through an example. Consider sw.le: its value is

determined as the minimum sWi.1e. If the value of sw.le is computed repeated times without

any change of state in SW, it will successively return the same value; in such cases, it is sufficient

to compute sw.le only the first time, storing the result, and then using the stored value the

remaining times. When there is a change of state in sw that may affect the value of sw.le, the

latter is marked "dirty". The mechanism will then recompute sw.le the next time its value is

required. For aggregated attributes that represent the minimum of a packet sequence (namely,

sw.le, sw.re, and sw.nea), the caching mechanism may achieve substantial gain, due to the

comparatively low frequency in which they need updating: as the values of sWi.1e, SWi.re, and

sWi.nea of any Ri are packet sequences which can only increase, aggregated attributes need

only to be recomputed when the currently smallest value is increased. Thus, on average, sw.le

will have to be recomputed only in lout of the as responses. For the other attributes, such

as sw.hr, the maximum SWi.hr, the gain is reduced: recomputing is required whenever any

SWi.hr, SWi.hr i- sw.hr, is increased.

104 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP

To implement the caching, instead of keeping sw.le's value, the mechanism keeps i, the

id of the receiver with the smallest swde; it makes i = 0 if the SWi.le is "dirty" (SWi.le is

not necessarily the smallest swde anymore and hence sw.le needs to be recomputed). The

variable i is set to 0 if, after the receipt of a response from ~, SWi.le is increased. (In case

there are several receivers with the smallest value, i will point to the first one.) Whenever sw.le

is required (Le., "read"), i's value is checked: if i = 0, before returning SWi.le, recompute i.

(In the experiments described in the next section, it was observed that the mechanism avoided

between 87 and 90% of all min {} and max {} computations.)

RST is implemented to efficiently provide the variable st(seq) described in the diagram of

Section 3.6.4. Despite the fact that there are L entries in the table (one per packet in the

window), only the packets with sequence seq such that sw.nea ~ seq ~ sw.hr need to be

represented. These are the packets which may be in recovery (they have been transmitted and

referenced by at least one receiver). Each entry has a single value, the current status of the

packet, namely: transmitted, in Collection, or retransmitted. The table is used by the sender to

quickly determine the state of packet seq while doing error control; for example, to separate

a valid from an obsolete "NACK seq" , the sender only looks up the tuples recorded in RTxT if

RST [seq] =retransmitted.

The RTxT is the realization of the Retransmission Times Table mentioned in Section 3.6.

Recall that while recovering the loss of packet seq of Ri, seq may be retransmitted via multicast

depending on the number of receivers resulting from Nacked(seq) evaluation (of RT); if not,

the packet is retransmitted to Ri via unicast. In order to prevent redundant retransmissions,

RTxT is used to record the times of retransmissions. RTxT has GS + 1 entries, one per R i , plus

a "multicast entry". Each entry contains a list of tuples, each tuple representing the latest

retransmission of a packet seq to Ri, or {*} in the case of the multicast entry. Each tuple has

the sequence number and timestamp of the retransmission; the ~uple list is kept in ascending

order according to seq.

Besides these five tables, there is the ARC vector, which is used for the allocation of responses

to epochs. Each entry of the vector holds a value in the range O .. RQ. The size of the vector

depends on how many bits are required to represent the value RQ and on how many epochs

4.1. PROTOCOL ARCHITECTURE 105

ahead the polling mechanism plans response arrivals. The latter depends on the maximum

RTT among all receivers, RTTmax , and the epoch length, c. Since at most one poll is planned

ahead for each receiver, the maximum number of entries in ARC is GS + l RT~max J, as follows.

First, suppose that all receivers have the same RTT, equal to RTTmax: VRi E {*} I RTTi =

RTTmax; second, the response quota per epoch must be the smallest possible: RQ = 1. Let

clock=begin=O, m = l RT~ max J. Suppose the Polling Table is empty when a polling request is

to be planned to all receivers; the mechanism allocates the response of Rl to Em, and makes

ARC[m]+- 1; allocates the response from R2 to Em +1, and makes ARC[m + I]+- 1, and so on,

until the response of RGS is allocated to epoch Em+GS-l, and ARC[m + GS - I]+- 1.

At time 0, the sender transmits the poll to Rl to elicit the response which was allocated to

epoch Em (Le., expected to arrive in RTTmax time). The next poll planned for Ri, if happening

before c, will be assigned to Em+Gs, and ARC[m+GS]+- 1. The next polling, to R 2 , will be sent

only at time c. A new polling to R2 planned before 2 x c will occupy the entry ARC[m+GS+ 1];

as clock has advanced to c, entry ARC[O] is not required anymore, so that only GS + l RT~mgx J

entries are kept.

Since most often RTT max cannot be accurately predicted, the ARC vector dynamically in

creases in size with RTTmax; in such cases, the number of entries in ARC is incremented according

to a step function.

Figure 4.1 illustrates the data structures used at the sender and receivers.

4.1.3 Threads

Each of the main tasks of the protocol at the sender is performed by an individual thread:

• the interface with the sending application;

• the transmission of packets to receivers;

• the handling of feedback packets;

• the processing of asynchronous events.

The receiver is very simple and contains a single task:

106 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP

clock, clock+ £, clock+ 2£, ...

ARC 111111111111 count 111111

J

2

3

GS

GS+J

PPT

-:;;
'"

Sender

Receiver

-<:: ~ <.l
C ~ ~ "-

MPT RT

"\:j

'" ;: '" '" ~
~
c
<.l

'" -Sl

RST pktState

fe, fe+J, ... fe+L-J

rw

RTxT

min fe, max fe+L-J

Figure 4.1: Structures used at sender and receivers.

• the reception of packets from the sender and transmission of feedback.

4.1.3.1 The interface with the sending application

The Generator Module's (GM) simple role is to receive downcalls from the sending application

and process them. The production of data by the sending application is carried out through

wri te 0 operations, and the GM is responsible for preparing such data for transmission. The

steps followed by GM (until the sending application uses a closeO to end the transmission) are

summarized below:

(i) wait until data is made available by sending application;

(ii) wait until the flow control mechanism allows the transmission of a new data packet

(sw.aw > 0);

(iii) increment sw.hs;

(iv) assemble a TxQ entry with tx. seq = sw.hs, tx .dest = {*}, and tx. type=DATA_DRG;

(v) enqueue the new entry in TxQ;

(vi) schedule the thread responsible for consuming TxQ entries, TxM (see below).

4.1. PROTOCOL ARCHITECTURE 107

4.1.3.2 The transmission of packets to receivers

All entries produced in TxQ are consumed by the Transmitter Module (TxM). An entry produced

by GM will result into the multicast transmission of a DATA(POLL) packet. While TxQ is non

empty, TxM executes the following sequence of actions:

(i) make sure at least one I PG has elapsed since the last transmission, blocking until

the time of the next transmission;

(ii) consume the head packet from TxQ;

(iii) if tx. seq> 0, plan the polling for each receiver which is to receive this packet (given

by tx. dest) and does not have a planned polling in PPT;

(iv) generate a polling set polled with due polls according to PPT and piggyback polled

into the packet if polled =1= {}; if polled = {} and seq = 0, tx is discarded;

(v) merge (union) (DATA)POLL.polled to tx.dest;

(vi) assign the appropriate type to the packet according to polled and seq;

(vii) check the number of receivers in tx. dest, and transmit the packet either through

multicast or selective unicasts (without delay) by comparing tx. dest size with

MT R x G S; if doing multiple unicast transmissions of the same packet (data re

transmission or POLL packets), these are done without any delay, regardless of the

cardinality of tx. dest;

(viii) if tx. type=DATA.RETX add or update tuple(s) of RTxT to record retransmission

time(s);

(ix) if the packet is (DATA)POLL, determine the RTOpolled for the polling request ac

cording to the set of receivers in polled;

(x) build and enqueue in ToQ a to entry with: to. ev _time+- RTOpolled , to. type+-RTO,

to. to..resp+- polled, to. hs+- sw.hs, and to. ts+- clock.

When TxM exits the loop, it checks if there is a planned poll in PPT; if so, TxM builds and

enqueues an entry in ToQ with type POLLGAP.

108 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP

4.1.3.3 The processing of asynchronous events such as timeouts

The sender needs to limit the waiting for responses from receivers by setting a timer; the Event

Manager (EM) is the thread responsible for managing the asynchronous events according to the

contents of ToQ. While the ToQ is not empty, the steps executed by EM are:

(i) if the event time of the element at head of ToQ has not expired (Le., to. ev _time>

clock), set the system alarm to to.ev_time, and then block;

(a) when woken up, re-read the element at the head of the ToQ, if any;

(ii) else, remove the expired event from ToQ, and process the expired event according

to its type:

(a) to. type=POLLGAP: build and enqueue a POLLGAP entry in TxQ, and schedule

TxM to process it;

(b) to. type=RTO:

(bI) update MPT with to. hs for all Ri Eto. to..resp;

(b2) plan a repoll in PPT for each Ri Eto. to..resp;

(b3) if any repoll plan has been now included in PPT, schedule TxM to deal

with it;

(b4) for every seq in sw.nea ::; seq ::;to.hs, if RST[seq] = in Collection,

verify if condition (ucast retx) has been satisfied (see algorithm in

Figure 3.18). If so, enqueue entry of type DATA...RETX in TxQ, and

schedule TxM to consume it.

Note that when or if an alarm expires, EM keeps removing and processing all to entries as long

as to.ev_time::; clock. If ever ToQ becomes empty, the EM does not set the system timer and

then blocks waiting for a new entry to be enqueued in ToQ.

4.1.3.4 The handling of polling responses

Receivers will return responses to polling requests sent by TxM. The Response Handler Module

(RHM) is the thread that handles all the feedback sent by receivers and coordinates the loss

4.1. PROTOCOL ARCHITECTURE 109

detection and recovery process. The cycle executed by RHM is:

(i) wait blocked until an incoming RESP packet is available;

(ii) receive the arrived RESP packet (from a given Rd;

(iii) scan the ToQ and remove Ri from all to entries which causally precede the response,

removing any entries left with to. to...resp= {} (and schedule EM if the head of ToQ

is removed);

(iv) update MPT if required (if Ri was recorded in MPT as in repoll);

(v) execute error control and recovery actions by updating SWi window in RT (using

the procedure described in Figure 3.17); for all packets with seq such that sWi.1e ~

seq ~ rw.hr, check error control, if necessary, updating RST; identify whether

a retransmission is required; if so, prepare and enqueue a tx entry in TxQ with

tx.type=DATA...RETX, tx.seq=seq, and tx.dest = Nacked(seq), and schedule TxM

to consume tx.

4.1.3.5 The reception of packets from the sender and transmission of feedback

At each receiver, there is a single thread, the Receiver Module (RM), which executes the following

loop at Ri:

(i) block and wait for data or control packets coming from the sender;

(ii) take an arriving packet;

(iii) if required, update rWi (as described in Section 3.2.1);

(iv) if a (DATA)POLL packet, check if this receiver is being requested to send a response

to the poll; if so, transmit a RESP packet to the sender.

4.1.4 Overall structure

The overall structure is illustrated in Figure 4.2. The GM thread interacts with the sending

application to obtain data for transmission; such data is assembled in a data unit, and stored

110 CHAPTER 4. PROTOTYPINC & SIMULATION OF FLAT PRMP

in a packet buffer. After producing an entry in TxQ, GM schedules TxM to run so that the latter

can consume the new entry in TxQ. When TxM runs, it waits until the next transmission time

(because of I PC); then it consumes the entry in TxQ, adds a plan for receivers that are not

yet present in PPT, generates a polling set with all due polls, multicasts a data packet to the

receivers, and finally enqueues an RTO entry in ToQ if the data packet sent contained a polling

request. When (if) the TxQ becomes empty, and there are receivers to be polled, TxM creates

a poll gap and determines the time it will end, and then enqueues a POLLGAP event into ToQ.

EM is scheduled by TxM if such event was added as head of the ToQ.

Receivers (RMs) which get the packet transmitted by TxM update their receiving window.

If the packet contains a polling request (Le., (DATA)POLL packet), the subset of RMs which are

nominated by the polling request transmit a RESP packet to the sender. RMs deliver "consum

able" data to their local receiving application as requested, and update the receiving window

whenever data is consumed.

The RESP packets transmitted by RMs arrive at the sender; an arriving RESP is received by

RHM, and the RTO events in ToQ are immediately updated. If, while removing a receiver from an

entry to of type RTO in ToQ, the to. to...resp becomes empty, the entry is removed from ToQ; if

the removed entry was at the head of ToQ, then EM is scheduled to reprogram the system timer.

RHM updates the sending window corresponding to the RM which originated the RESP. This

updating may affect aggregated attributes of the global sending window; if so, it may result in

the end of collection period of certain packets and thus lead to their retransmission. If RHM is

to retransmit one or more packets, it will enqueue one or more entries (one per different data

unit) into TxQ, and then schedule TxM so that it can consume them. After RHM has updated

the sending window, it may schedule GM to get new data from the sending application if the

window has opened (sw.aw increased from 0).

If one or more RESP packets do not arrive (in time), an RTO entry in ToQ will expire. EM will

run to process such an event, and will re-evaluate any packets in the range affected by timeout

and that are in collection; as a result, it is possible that some packets are to be retransmitted.

If so, the EM will enqueue in TxQ one or more entries and schedule TxM to consume them, so

that one or more packets will be retransmitted.

4.2. SIMULATION

open window (increase available window from 0)
GA1~--~--------------------------------'

enqueue packets
to transmit

TxQ

enqueue unicast or multicast retransmission

enqueue POLL_GAP or
unicast retransmission

EA1
enqueue event

RTOIPOLL_GAP

ToQ
process event

TxA1
"",~ "' , " ' , , , ,

DATAIDATAPOLL
POLL packets

, ,
" , ,

" , ...
~~~~ 

~ 

RA1] 

cancel event 

, ~ 

' ~ 
~ 
~-<., 

~ 

~ 
~ , 

.-------------~RHA1 
~ ~ 7'I"if' 

" " " " " 

" 

_ ............ " 
~ ~ " -,. " 

" " " 

RESP 

" 

.... ~ ............ packets 
'~ " " RA12 ... RA1 GS 

Figure 4.2: Overall structure of the protocol machine. 

4.2 Simulation 

111 

This section describes the experiments carried out to evaluate the prototype implementation of 

flat PRMP. To perform a comparative analysis, the Full Feedback protocol described in Section 

2.3.1 was implemented and tested under the same conditions as PRMP. This protocol was used 

by [Pingali94] to show the poor scalability of sender-initiated protocols in comparison with 

receiver-initiated ones. For this reason, the Full Feedback is also used in this thesis to assess 

PRMP's scalability. 

4.2.1 Simplified network model 

The network was modelled as a set of channels directly connecting sender and receivers, as 

shown in Figure 4.3. Three basic kinds of channels were defined: short, medium, and long 

(haul). Each kind of channel is characterized by a set of three attributes: 

lat propagation latency (mean); 

jit jittering (propagation latency standard deviation); and 

err percentage error rate (of packets which are lost, apart from implosion). 



112 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

sender 

receivers 

Figure 4.3: Network model employed in simulation experiments. 

Each channel is completely independent of other channels. The values which were associated 

with each type are listed in table 4.1. Using a combination of these channels, two simple 

network configurations were defined: 

LOCAL 

WIDE 

all G S channels are of type short; and 

one third of GS channels is each of kind, short, medium, and long (GS 2: 3 in this 

configuration) . 

Channel Type lat jit err 

short 1.5 ms 0.08 1% 
medium 5 ms 0.5 1% 

long 75 ms 15 10% 

Table 4.1: General properties assumed for kinds of channels. 

It is not claimed that the defined channel types or network configurations are "typical"; 

it is very difficult, if at all possible, to specify a "general" configuration which is largely rep

resentative of existing networks. In particular, the loss rates used for short channels in the 

experiments were set higher than usually observed; the idea was to increase the packet loss 

rates so that the impact of loss detection and recovery mechanisms in PRMP could be better 

evaluated. 

The implosion losses were simulated in the following manner: packets which arrive at the 

sender's host join a limited-size queue (denoted as "INCOMING"). If the queue has already 

reached its full capacity, then the incoming packet is dropped and counted as an implosion 

loss. Packets are consumed from the head of the INCOMING queue by the sender at a rate 



4.2. SIMULATION 113 

equal to pi R (recall that IT R is the implosion threshold rate and represents the capacity of 

the sending host in processing feedback). In the set of experiments reported in this section, 

INCOMING size was 16 packets, and IT R = 1,500 packets/so IT R is expected to vary depending 

on hardware and network used; the value of IT R was taken from [Holbrook95], which indicates 

that an IBM-R6000 is capable of processing 1,587 ACKS per second. 

4.2.2 Metrics 

Three metrics were used in the evaluation process: 

T throughput; 

N network cost; and 

I the number of implosion losses. 

If there are DP data units of unitSize (in bytes) to be reliably transmitted, and 6.t is the period 

of time (in seconds) between the transmission of the first DP data packets and the moment 

all packets become fully acknowledged (both events occurring at the sender), the throughput 

is calculated in Kbps as 

T = DP x unitSize x 8 x 10-3 

6.t 

The maximum theoretical (thus best) value for T is close to the maximum transmission rate 

specified; the throughput is restricted by the propagation delays between sender and receivers 

as well as packet losses and (window-based) flow control. Because sender-reliability is required, 

the transmission only ends when the sender obtains confirmation that all packets have been 

successfully received at all receivers. Thus, with err = 0, infinite window and infinite IT R, the 

maximum throughput achievable is (note that IPC and RTTmax are measured in ms): 

T. 
_ DP x unitSize x 8 

opt -
DP x IPG + RTTmax 

In other words, 6.t will be the sum of D P I PCs required to transmit all packets, and the 

waiting for the feedback from the farthest receiver to arrive after the DP-th packet has been 



114 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

transmitted. 

N is calculated as the total number of packets exchanged per receiver per data unit. N 

derives from the number of packets exchanged between sender and receivers, but is relative to 

the amount of data to be transmitted and the group size: 

N = totPkts 
DPxGS 

where totPkts represents the total number of packets exchanged (multicast transmissions 

correspond to GS packets, and lost packets count as well). The ideal value for N is 

DP+l 
N opt = DP 

which corresponds to DP multicast transmissions plus one feedback packet per receiver to 

acknowledge the DP packets. Clearly Nopt should converge to 1 with increase in DP. 

I is simply the total number of implosion losses recorded. The best value for I corresponds 

to the absence of packet losses inflicted by implosion, that is 

Iopt = 0 

Both T and N will be affected by I: a non-nil value for I represents (packet) losses that 

need to be recovered, consuming both time (thus decreasing T) and bandwidth (thus increasing 

N). 

Unless otherwise noted, in all simulation runs it is assumed: 

(a) ready supply of data by the sending application; 

(b) "hungry" receiving applications, with instantaneous consumption of consumable 

data; 

(c) the set of latencies (tat) is modelled using values randomly generated according to 

the Normal distribution [Mitrani82]; 



4.2. SIMULATION 115 

(d) packet losses due to causes other than implosion are modelled by a statistical draw 

using err; therefore, losses are assumed to be independent; 

(e) the probability of loss err refers to packets, and is therefore applied equally to data 

and control packets (despite their different size); 

(f) data unit size unit Size = 1,000 bytes and DP = 1,000 packets; 

(g) a top transmission rate of 1,000 packets/s (i.e., IPG = Ims); 

And, in particular, for PRMP runs: 

(h) response rate equal to the maximum capacity (Le., RR = IT R); 

(i) epoch length E: = lOms; 

(j) MTR = 20%. A lower MTR value would increase N, and also T; a small MTR 

was chosen with network cost in mind. 

4.2.3 The Full Feedback Protocol 

Recall from Section 2.3.1 that in the Full Feedback protocol: 

• there is a sliding window scheme with selective retransmission (Le., no go-back-N); 

• receivers return an ACK packet for every data packet received; 

• loss detection is timeout-based (with RTO = max { RTOd, RTOi +- f3 X RTTi, and 

f3 = 2); 

• recovery is done immediately and via global retransmissions. 

The protocol implementation used in the evaluation adds an I PG to limit the maximum 

transmission rate. This I PG is required because the time taken to transmit a packet was not 

included in the simulation model (under the assumption that a transmission would take less 

than 1 I PG); therefore, without an I PG separation between transmissions, the sender would 

be able to transmit L packets in 0 time. It is assumed that the time to send a packet is less 

than I PG. The protocol is summarized below. 



116 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

Receivers are simple; they each return an ACK packet to every data packet received. The 

sender continuously executes the following steps, depending on the availability of feedback, 

expiration of retransmission timeout events, and the time allowed for the next transmission: 

• request (to the underlying network) to receive a feedback packet from any of the receivers; 

- if there is one available now, receive it; 

- else, leave the request pending (the sender runs when feedback can be received); 

• check for retransmission timeouts and, if the earliest of the timeouts (lowest in value) 

has expired, retransmit the corresponding packet if the last transmission was more than 

1 IPG ago; 

• ifthe available window is greater than zero, and the time ofthe most recent (re)transmission 

was more than 1 I PG ago, multicast a new packet. 

4.2.4 Protocol runs 

The protocol runs using the Full Feedback protocol shown above are denoted as "FF". The 

runs using the flat version of PRMP are denoted as "PF". 

Because of the well-known impact of the window length (to "keep the pipe full") on through

put, both PF and FF were additionally tested considering a window of the same length of the 

transmission, that is, L = DP. Note that this corresponds to infinite buffers and is the stan

dard assumption for several reliable multicast protocols (e.g., RMTP [Lin96], MFTP [Miller97]' 

and LBRM [Holbrook95]). For simulations with the window length L set to DP, the polling 

feedback and full feedback protocols are respectively denoted as "PF-IW" and "FF-IW" ("IW" 

stands for infinite window, or infinite buffers). 

Furthermore, to assess the impact of implosion losses on the Full Feedback protocol, the 

FF-IW protocol was run with the sender's host having an infinite implosion threshold rate 

(IT R = 00); this "golden scenario" with infinite buffer and suppressed implosion losses is 

called "FF-IW-IT". Table 4.2 summarizes the protocol runs. 



4.2. SIMULATION 117 

Run Name Window Length (L) Implosion Threshold (ITR) 

PF 64 1,500 

PF-IW 1,000 1,500 

FF 64 1,500 

FF-IW 1,000 1,500 
FF-IW-IT 1,000 00 

Table 4.2: Protocol runs. 

4.2.5 LOCAL configuration 

Recall that in the LOCAL configuration the sender is at the same, short distance from all GS 

receivers, and is connected to them through a short channel. 

Figure 4.4 shows the scalability of the five protocols in terms of T, for group sizes between 

1 and 60 receivers. First note that the graphs for FF and FF-IW are identical; this means 

that the window did not have any impact on throughput of the full feedback protocols. This 

is because, given the low RTTS of short channels and the transmission rate, the chosen L is 

sufficient to allow continuous transmission (that is, L x I PG > RTTmax). When there is a 

loss, the sender needs to detect it before it blocks the progress of the window: L must be 

sufficiently large to allow the continuous transmission of packets up to the RTO expiration. As 

the RTO is determined as twice the maximum RTT (/3 = 2), continuous transmission occurs if 

L x I PG > 2 x RTT. This is certainly the case in the LOCAL configuration. 

It is clear from the graph that the throughput of FF and FF-IW degrades quickly as GS 

increases. The reasons are: 

• "cumulative loss": the probability of a given multicast packet not reaching at least one 

receiver (or feedback packets that it may generate not reaching the sender) increases with 

GS (as described in Section 2.2.1); and 

• implosion: without an implosion avoidance scheme, implosion losses per packet trans-

mit ted increase with GS. 

Both cumulative loss and implosion tend to increase the time it takes to get a packet fully 

acknowledged. The graph for FF-IW-IT (which has suppressed implosion losses) indicates that 

the poor scaleability of FF /FF-IW is mainly attributed to implosion losses: the decrease in T 



118 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

for FF-IW-IT can only be due to cumulative loss, while the difference between FF-IW-IT and 

FF-IW is only due to implosion. 

SCALABILITY REGARDING THROUGHPUT, LOCAL CONFIGURATION 
BOOO.---r----.----r----.----r----.----.----.----.----.----,----, 

7000 

6000 

Ul 5000 Co ..c 
~ 
S 
Co 

4000 .c 
01 
:J 
e 
.c 
I-, 3000 
I-

2000 

1000 

0 

. . . 

-----[ -l;;m",a~~i~;' -------,;~;t~:-~~ 
...........................................•..... -'-. : •••••• "l'.~-.; , , , , , , , , , 

: .. ,.. ... -- .. ~- .... ---.~ .............................. . 

. '-', '" ---~---------;----------------J?f~YJ._ 
, ..... :.~: . .,..,-.'"" -:"-'-

FF-IW-IT 

"'; ················'\Vi~~~~bi~~ki~gHiH 
implosion i 
los,ses . 

...................... 
. . . . . . 

\ ; ::: 
\ : 
'\ ~: i 

-- -'<"I---I _____ L ___ '---'£.),"~ __ : __ ___ ' _______ '________::_ 
5 10 15 20 25 30 35 40 45 50 55 

GS - Group Size 

Figure 4.4: Throughput (T, in Kbps) in the LOCAL configuration. 

60 

The beneficial effect of the polling feedback mechanism in containing implosion losses can be 

seen by comparing PF-IW with FF-IW-IT; the T achieved in PF-IW is higher than that of FF-IW-IT 

and the difference becomes more or less uniform for GS > 15. This gain in T can be attributed 

to the error control of PF protocols, which allows polled receivers to negatively acknowledge 

packets. In contrast, the FF protocol relies on the absence of ACKs for loss detection; the 

sender can detect a packet loss only at the expire of the RTOI. Though it makes PRMP more 

complex, the use of NACKs can help achieve faster error detection and recovery and thus better 

throughput. 

The implosion avoidance mechanism employed by PRMP restricts the flow of feedback from 

receivers, with two implications. First, with reduced feedback, a receiver will be polled less 

frequently. As receivers can only send NACKs when polled, on average, the period between the 

lin this simulation, both PRMP and Full Feedback protocols calculate RTO as twice the largest estimated 
RTTi, for all Ri from which responses are expected. 



4.2. SIMULATION 119 

detection of the loss at the receiver and the sending of the NACK may take longer. So, despite 

the fact that NACKS are collected at the sender, this may affect the overall T. Second, the 

(limited) amount of feedback that is available to the sender may be insufficient to keep sw 

open. If sw closes, the sender is temporarily prevented from transmitting new data packets, 

affecting throughput. 

The T of PF in Figure 4.4 is the same as that of PF-IW up to a point (GS = 30); thereafter 

it starts decreasing because of 

• window blocking: to transmit new data packets, the sw needs to slide, which only happens 

when the sender has learned that receivers have slid their window. Several factors may 

delay the sw advance: frequent packet losses (high err and implosion), long RTTS (high 

lat), and limited feedback (low RR). 

The effect of window blocking is marked in Figure 4.4 by the (relatively small) difference 

between the PF and PF-IW graphs, which starts at GS = 30. The primary cause for this 

window blocking with large GS values is the cumulative loss at the sender. Secondly, the 

increased chance of loss of polling requests and responses, which may delay the sender until 

the expire of an RTO. 

The throughput gain achieved by PF and PF-IW is not at the expense of increased network 

cost, as illustrated in Figure 4.5. It shows the scalability of the protocols regarding the network 

cost N (shown in log scale on the y axis) for group sizes between 1 and 60 (on the x axis). 

Here again the graphs for FF and FF-IW are identical, indicating that the window length had no 

impact for the Full Feedback protocols. The harmful effect of implosion on N can be measured 

from the gap between FF-IW and FF-IW-IT. 

The effect of cumulative loss increases the network cost of a transmission: the more retrans

missions required, the stronger the negative effect on N. The actual increase depends on how 

a protocol deals with losses. In the Full Feedback case, the increase is substantial because all 

retransmissions are via multicast. This is shown by the graph of FF-IW-IT in Figure 4.5: with 1 

receiver, the cost is approximately 2, while N ~ 3.5 for GS = 60. In contrast, cumulative loss 

has little impact on PRMP because the mechanism waits and collects retransmission requests 

in RESP packets before deciding which retransmission scheme, multicast or selective unicasts, 



120 

iii 
0 
0 
~ 
0 

~ 
CD 
Z , 
z 

CHAPTER 4. PROTO TYPING & SIMULATION OF FLAT PRMP 

SCALABILITY REGARDING NETWORK COST, LOCAL CONFIGURATION 
1000.---.---.----.----~--_r----r_--_.--_.----,_--_.----._--~ 

100 

10 

5 10 15 20 25 30 35 
GS - Group Size 

40 45 50 

Figure 4.5: Network cost (N) in the LOCAL configuration. 

55 60 

can provide recovery with better cost. Also because PRMP'S scheme is optimistic, as it does 

not interpret the absence of response as an implicit NACK for those packets that would have 

been referenced in the missing response. Finally, the polling scheme reduces the amount of 

feedback from receivers, and thus decreases the total number of packets (totPkts). The result

ing N of PF /PF-IW is very close to Nopt for GS ~ 10, and hence shows that PRMP can deliver 

cost-effective multicast. 

The above findings are corroborated by Figure 4.6, which shows the scalability of the 

protocols in terms of number of implosion losses. The graph of FF-IW-IT is omitted because in 

the latter implosion losses are suppressed with IT R = 00. The number of implosion losses of 

FF /FF-IW protocols grows exponentially with GS because: (a) th~ number of implosion losses 

per (re)transmission grows with GS; and (b) the number of retransmissions required to get a 

packet fully acknowledged grows with GS. 

Figure 4.6 shows that the window did not affect the implosion avoidance scheme of PRMP, 

which achieved near-optimal results (I s 10 for any GS value). The few implosion losses 



4.2. SIMULATION 121 

which did occur were restricted to the beginning of the communication, in a period when the 

mechanism did not have RTT estimates available and thus could not plan the arrival of responses 

properly. These implosion losses occurred because there was an "overlapping" between planning 

using a large initial, default RTT, and the updated, smaller RTT after a response has been 

received. For as < 8, the group size was not big enough to cause implosion losses despite the 

overlapping; for as ~ 30, because it takes longer to poll the set of receivers, the overlapping 

did not occur. 

rJ) 100000 Q) 
rJ) 
rJ) 
0 

...J 
c: 
0 10000 'iii 
0 
Ci 
.§ 

1000 

100 

5 

SCALABILITY IN TERMS OF IMPLOSION LOSSES, LOCAL CONFIGURATION 

10 15 20 25 30 35 
GS - Group Size 

40 45 50 55 

Figure 4.6: Number of implosion losses (1) in LOCAL configuration. 

4.2.6 WIDE configuration 

60 

This section reports simulation results for experiments conducted with the WIDE configura-

tion. This configuration differs from LOCAL in several aspects, in particular because 1/3 of the 

channels (of type long) have higher values for: 

• err: effect of cumulative loss is stronger; 

• lat: overall the window becomes more important; 



122 CHAPTER 4. PROTOTYPINa & SIMULATION OF FLAT PRMP 

• jit: RTT estimation becomes harder. 

And finally, as the set of "distances" between sender and receivers is heterogeneous (as there 

are 1/3 of each kind of channel), feedback packets from a given data transmission (or poll 

request) are naturally spread in time, reducing the likelyhood of implosion losses. 

The I values in the WIDE configuration are shown in Figure 4.7. Like in the LOCAL configu

ration, PF and PF-IW had few implosion losses. Note, however, that more losses were caused by 

PF than in its corresponding run in the LOCAL configuration: up to 61 RESP losses were recorded 

in PF runs. This increase in response losses is linked with the total number of RESP packets 

that are required throughout the transmission: a proportion of RESP packets do not arrive 

within the expected epoch and this may lead to losses; so, I is directly proportional to the total 

number of RESP packets that are exchanged during the communication. The communication 

with PF takes longer and the window blocks because of the high lat and err values; when the 

window blocks, instead of sitting idle, the sender will poll the receivers, increasing the number 

of RESP packets. Therefore, PF generates more RESP packets and, given a sufficiently large as, 
it will have caused more implosions at the end of the transmission. For example, for as = 12 

and as = 36, the average number of RESP packets required by PF/PF-IW was 5,409/3,040, and 

8,698/3,558, respectively. 

As shown in Figure 4.7, the window length significantly affected the results for the Full 

Feedback protocols: the sliding window restricts the effective data transmission rate, which in 

turns reduces the feedback rate, which in turn leads to fewer implosion losses. This is illustrated 

in Figure 4.7 by the gap between the graphs of FF and FF-IW, and is non-existent in Figure 

4.6. Note that the gap between FF and FF-IW increases with as (the y axis is in log scale); 

this is because the larger the group, the larger the impact of the smaller window holding new 

transmissions will be. 

Figure 4.8 shows the throughput values for the five protocols in the WIDE configuration. Due 

to the infinite window, FF-IW performs better than FF for small as values. This advantage, 

however, becomes a disadvantage as as increases. Because of the resulting increased implosion 

losses, the performance of FF-IW rapidly becomes poor. The protocol FF provides consistently 

poor performance due to implosion losses and finite window. The impact of implosion losses 



4.2. SIMULATION 

100000000 

10000000 

1000000 

tJJ 100000 Q) 
tJJ 
tJJ 

.3 
c: 
0 10000 ·iii 
0 
Q. 
.§ 

1000 

100 

10 

SCALABILITY IN TERMS OF IMPLOSION LOSSES, WIDE CONFIGURATION 

6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 
GS - Group Size 

Figure 4.7: Implosion losses (I) in the WIDE configuration. 

on T is shown by the gap between FF-IW and FF-IW-IT in Figure 4.8 

123 

As in the LOCAL configuration, for all group sizes, the performance of PF-IW is slightly 

better than the "golden scenario" portrayed by the FF-IW-IT grap~, because of the error control 

mechanism of PRMP. PF performs substantially better than FF (and better than FF-IW-IT for 

GS ~ 6) because it prevents implosion losses, and because NACKs speed up loss detection. 

However, L = 64 is not sufficient to allow PF to keep continuous transmission. There are two 

reasons for this: (a) the transmission rate is high in comparison with the latencies of long 

channels (IPG = I;;, that is, within 1 RTT 150 data packets could be transmitted); and (b) 

the 10% of loss employed with long channels. 

Figure 4.9 shows the scalability of protocols with respect to the relative network cost N 

(with N in the y axis in log scale), for the WIDE configuration. As indicated by the gap between 

FF and FF-IW in Figure 4.7, the chosen window length L = 64 is small enough to limit implosion 

losses for FF and hence FF exhibits a lower cost than FF-IW. Observe that the difference in N 

for FF-IW and FF increases with GS, just like the differences in I increased in Figure 4.7. 



124 

, 
I-

CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

SCALABILITY REGARDING THROUGHPUT, WIDE CONFIGURATION 

: : i . . 
. . 

: : ! 
. . 
: : 

. . . j : 

4000 '\\ 
. . . . . . . : .......... ~ .......... ~ ....... : ..................... ~ :PF-; -:. 

• PF~IW ~.--- ; 
: • FF ~ .... ; 
• FF"IW L ........• 
FF-IW-IT .i._._ • 

\: . 

".: : 
" ~ .............. ~ ............ --! -. 

3OOO>~'~.~.) ........ ;~.~", .. , .AF~IW 
~ . "'''' ... ' 

..... ~..... ..-----.-----................. !o. 

2000 

1000 
"..: 
\ 

'. 

FF 
0 

3 6 

: ............. _---- ... ---_ .............. 
... ---- --.. -............ +----~-----......... : 

-.-.-.- -.- - - "t......... ... ...... ~ ... -........ ,.- ...... 
. ..;... -._.-.-.- - - -.- - -

.... TFF~.lw~nr 
window blocking 

implos,on 

........ ; ~-:---- '-:_""'== ........ PE.;..... . .. . ... ~ ..... ~ 

9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 
GS - Group Size 

Figure 4.8: Throughput (T, in Kbps) in the WIDE configuration. 

As mentioned above, in the WIDE configuration the err values are on average higher, and 

hence the effect of cumulative loss is stronger. Recall that the lost packets are counted in 

totPkts, and so increased number of losses will lead to increased N. Therefore, all graphs in 

the WIDE configuration (Figure 4.9) will present higher N than their corresponding graph in 

the LOCAL configuration (Figure 4.5). Thus the graphs for PF and PF-IW cannot be as close to 

1 as in Figure 4.5, although PF and PF-IW graphs do converge to N opt (i.e., 1). Likewise, the 

N of FF-IW-IT increases slightly faster in the WIDE than in LOCAL. Because of cumulative loss 

alone, with GS = 60, the sender of FF-IW-IT will exchange on average 4.5 packets with each 

receiver for everyone of the DP data units to be transmitted. In contrast, the sender of PF-IW 

will need on average only 1.2 packets, only 26% of FF-IW-IT'S network cost. 
o 

There is a noticeable difference in the network cost between PF-IW and PF for all values 

of GS. This is due to the number of polling requests that have to be sent using POLL control 

packets, i.e., the "POLL overhead": if the sending window closes too often, new data packets 

cannot be transmitted; since all receivers have to be polled at least once after the last data 



4.2. SIMULATION 125 

packet of the window has been multicast, more polling requests will be sent through POLL 

packets (instead of DATAPOLL). 

In PF-IW, the POLL overhead is not present because the sending window never closes, and 

hence poll requests are guaranteed to be piggybacked with DATA packets (except after all DP 

units have been sent). In PF, however, explicit POLL packets have to be transmitted when 

DATA cannot be sent due to a closed sending window. In the LOCAL configuration (Figure 4.5), 

the window was sufficiently large in comparison with I PC and short [at's to allow continuous 

transmission, and hence the effect of using POLLS was negligible. 

SCALABILITY REGARDING NETWORK COST, WIDE CONFIGURATION 

100 

iii 
0 
() 

-t!: 
0 
~ 
CD 
Z , 
z 

10 

1 L--L __ L--L __ L--L __ L--L __ L--L __ L--L __ L--L __ L--L __ ~~ __ L-~ 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 60 
GS - Group Size 

poll overhead 

Figure 4.9: Relative network cost (N) in the WIDE configuration. 

Finally, the impact of implosion in the network cost of FF protocols in the WIDE configuration 

is apparent in the gap between FF-IW-IT and FF-IW in the Figure 4.9; clearly, the predominant 

factor in the N cost of the Full Feedback protocols is I, i.e., the very large number of implosion 

losses which follows the increase in CS. 



126 CHAPTER 4. PROTOTYPINC & SIMULATION OF FLAT PRMP 

4.2.7 Impact of input variables 

The simulation experiments reported in Sections 4.2.5 and 4.2.6 are based on assumptions 

(a) to (j) as listed in Section 4.2.2. These values can be regarded as "proper" input values, 

and some may represent the best choice for the tested configurations. This section addresses 

the impact of varying the input variables of PRMP. As shown in Figures 4.7, 4.8, and 4.9, 

the infinite window always had a positive impact (on I, T, and N, respectively). Or, put in a 

different way, the window blocking adversely affects the performance of PRMP. Thus, of special 

interest is the impact of the input variables in the window blocking, and this is discussed below. 

lat The higher the propagation latencies, the longer it takes to get packets received 

and acknowledged, so that higher lat values increase the probability of the window 

blocking. (note: with larger lat, the "latency x bandwidth product" of the network 

increases, so that a larger L may be effective in increasing T). 

L Clearly, the higher the L the lower is the probability that the window will block. 

Limiting factors to increasing L are the amount of memory available at the sender 

and receivers. 

err Packets which are lost require a retransmission; this involves the sender detecting 

the loss and then repeating the process of transmission (while retransmitting oc

cupies 1 I PC, it is necessary afterwards to poll a subset of receivers and wait for 

responses). The window cannot advance if a packet has not been fully acknowl

edged. For PRMP, higher error rates mean that the probability that either a polling 

request or a response is lost increases; the error control of PRMP is optimistic, sav

ing unnecessary retransmissions, but also making PRMP more sensitive to the loss 

of polling requests or responses. Thus, higher err values will increase the chance of 

window blocking. 

I PC The I PC determines the maximum transmission rate; a low I PC allows the trans

mission of a window of data packets in a short time. So, a larger I PG decreases 

the probability that the window will block, as by the time the last data packet is 

transmitted, all receivers had enough time to acknowledge the first packet of the 



4.2. SIMULATION 127 

window. However, for PRMP, IPG also determines the frequency in which receivers 

are polled; a large I PG will lead to an increase in the average number of receivers 

polled with each (DATA)POLL, that is, increasing the granularity of polling. There

fore, the increase in I PG may help maintaining the window open, but will on the 

other hand negatively affect the implosion avoidance mechanism (increased delay 

(dl), as explained in Section 3.4). 

EL Epoch length does not directly affect window blocking. 

RR The lower the RR, the higher is the probability the window will block because all 

receivers need to be consulted before the window can slide (recall that sw.le +

min {swi.1e I Ri E {*}}), and thus this takes longer with a lower RR. 

GS The larger the group size, the longer it will take to obtain the feedback from all 

receivers, and hence the higher the probability the window will block. 

To evaluate numerically the impact of the window length and the response rate on PRMP, 

experiments were performed varying: 

• the window length (L), and 

• the response rate (RR). 

4.2.7.1 Window Length 

This section describes experiments in which the PF and FF-IT (for Full Feedback with IT R = (0) 

protocols were evaluated using different values of L. Three group sizes were tested, all in the 

WIDE configuration. PF runs are denoted as PF-I0, PF-30, and PF-60, for 10, 30, and 60 

receivers, respectively. FF-IT runs are denoted likewise: FF-IT-I0, FF-IT-30, FF-IT-60. Table 

4.10 lists the runs. The values for T, N, and I were measured for L varying between 1 and 

DP (which corresponds to an infinite window). 

Figures 4.11.(a), (b), and (c) show the impact of the window length L on the T of PF and 

FF-IT protocol runs. The "knee" of each graph is marked with a circle and represents the best 

choice for L ("the smallest L such that the highest T is achieved"). It is clear from the graphs 



128 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

I run name I protocol I GS I IT R I 
PF-lO PRMP 10 1,500 

PF-30 PRMP 30 1,500 

PF-60 PRMP 60 1,500 

FF-IT-lO Full Feedback 10 00 

FF-IT-30 Full Feedback 30 00 

FF-IT-60 Full Feedback 60 00 

Figure 4.10: List of protocol runs for window length experiments. 

that PRMP requires a substantially smaller window length than the "golden scenario" runs of 

FF-IT for all three group sizes tested. In other words, PRMP outperforms the golden scenario 

runs in all group sizes for any window length; the advantage in T of PRMP over the FF-IT runs 

is marked in the figures as "6Tcs". In all group sizes, the PF run reached its peak T at around 

the same window length, 260 packets, while the FF-IT runs reached their best T much later 

(that is, required larger L values). Note that the advantage of PRMP reached its maximum in 

this same L range, between 280 and 310: max 6TlO ~ 1,750 at L = 280, max 6T30 ~ 1,250 

at L = 280, max 6T60 ~ 1,000 at L = 310. These values show clearly that, for a given L, 

the advantage of PF over FF-IT reduces with the increase in group size. This is because the T 

of PF run uses a limited feedback rate (RR) to recover from increasing losses, whereas in the 

FF-IT runs implosion was suppressed (ITR = (0) and large amounts offeedback were promptly 

available. 

The effect of L seen in T does not appear on the same scale for the network cost or 

implosion losses. Figure 4.12 shows the impact of Lon N; for the FF-IT runs, it made virtually 

no difference. In the PF runs, however, the cost dropped when increasing the L to 100, because 

the window blocked less often and thus the overhead stemming from POLL packets was lower. 

The N value for all PF runs was smaller than the corresponding FF-IT run, and was best with 

GS = 60. 

Figure 4.13 shows the impact of varying the window length pn the number of implosion 

losses recorded in PF runs; note that FF-IT runs have IT R = 00 and hence have I = O. The 

figure shows a high number of implosion losses for the PF-60 run when small L values (L ::; 10) 

are used. The reason for such an unusually high I for PF is the increased number of responses 

that are required during the communication, as discussed when addressing the implosion losses 



4.2. SIMULATION 

IMPACT OF WINDOW LENGTH ON THROUGHPUT, WIDE CONFIGURATION, GS.l0 
4000,-~~~~~~~~~--~--~r-~'---~--~r---, 

3500 

3000 

PF·10 -
FF-IT-10 ----. 

I 2500 
FF-IT-l0 

i 
~ 
... 

I 
5 

l e 
f= 
,:. 

2000 

1500 

oL-__ ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ 
o 100 200 300 400 500 600 700 800 900 1000 

LENGTH (packets) 

(a) group with 10 receivers 

IMPACT OF WINDOW LENGTH ON THROUGHPUT, WIDe CONFIGURATION, GS-30 
4000r---'---~----r---'---~----r---,----,----r---, 

PF-SO -
FF-IT -so .... 

3500 

3000 

2500 

2000 

1500 

1000 

500 

'00 200 300 400 500 600 700 800 900 1000 
LENGTH (packels) 

(b) group with 30 receivers 

IMPACT Of WINDOW LENGTH ON THROUGHPUT, WIDE CONFIGURATION, GS-60 
4ooor---,_--_r----r_--.----r--~r---,----r--~r___, 

3500 

3000 

PF-60 -
FF-IT·60 ----

I 2500 

l 2000 

e 
f= 
... 1500 

o 
o 1 00 200 300 400 500 600 700 800 900 1000 

LENGTH (packeta) 

(c) group with 60 receivers 

129 

Figure 4.11: Impact of window length on the throughput (T) of PF and FFJT runs for group 
sizes 10, 30, and 60. 



130 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

IMPACT OF WINDOW LENGTH ON NETWORK COST, WIDE CONFIGURATION 
5.5 ,---,---,----,,---,---.------,---,---,-----.,.--, 

..,./.,.,.,.,.-. -. '--' -' c. -- ---.-.- ,. -----.---,,,.-.---- --. ---. -.-- -:-.---.-. -.;. -'-' ---. - ',-' -.-. -PF:'iO' -~ -. 
•• PF-30 -----

5 ... .............. .............. ....•.... . ................ , ....................•............... , ........ -PF-60··· .. ···· 

4.5 
",.---"-·;-----·--·----·---·----r---------------·-·--·--------~*~-i~;-

: ~ i 
4 ....... " ................. : .................... L 

: : 

. . 
3.5 ; .. , ..... ..,.: ... 

.. ~.F 
.,,,,'.:;:!:.,,:;' .............. ,:,,,,-,,-,,,-~, :.:,.:: ::.::.::.::.;:::.:::::',::; ..•..••• ~ :.:::::.;;;:.:;::::.:':;:.::::": ::.;;;:.::;~:.:;:;: •..••• ' 

3 

··t ..•. ~ ... ----------------.--- -- ------------- -----... _------------- ------------------ --------

1 ~_~ __ ~ __ ~_~ __ ~_~ __ -L __ ~_~ __ ~ 

o 100 200 300 400 500 600 700 800 900 1000 
LENGTH (packets) 

FF-IT-60 

FF-IT-30 

FF-IT-l0 

PF-l0 

PF-30 

PF-60 

Figure 4.12: Impact of window length in the network cost (N) of PF and FF -IT runs for group 
sizes 10, 30, and 60. 

in the WIDE configuration (see Figure 4.7). With a sufficiently large group and a small window, 

the high latencies and error rates will make the sending window block more often; if the window 

blocks and opens regularly, more polling requests are sent than in a continuous transmission; 

with more RESP packets elicited from receivers, the total number of implosion losses at the 

end of the communication will be higher. In the extreme, for L = 1, after every data packet 

transmission, all GS receivers will have to be polled through one or more POLL packets before 

the next data packet can be transmitted. For PF-30, there are also implosion losses, but fewer. 

Losses are not recorded with PF-30 for L < 3 because the actual response rate is limited by 

the window blocking (as with FF). 

4.2.7.2 Response Rate 

To prevent implosion, PRMP plans the polling of receivers so that the amount of feedback 

arriving at the sender does not exceed RR RESP packets per second. RR is an important input 

value of the protocol: intuitively, RR should match or be slightly lower than the bottleneck 

capacity, represented by IT R. In practice, implosion losses can occur in the network at any 



4.2. SIMULATION 131 

IMPACT OF WINDOW LENGTH ON IMPLOSION LOSSES, WIDE CONFIGURATION 

1000 

'" Q) 

'" '" 0 
~ 

c: 
0 100 "iii 
0 
C. 
.E 

LENGTH (packets) 

Figure 4.13: Impact of window length in the implosion losses (I) of PF for group sizes 10, 30, 
and 60 (FF-IT runs have suppressed implosion). 



132 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

point between the sender and receivers, and are not restricted to the sending host. In the 

experiments performed, however, implosion losses were limited to the INCOMING queue at the 

sender. The number of implosion losses will thus be determined by the difference between RR 

and IT R, as well as how uniformly RESP packets arrive (the smaller the INCOMING queue, the 

more sensitive the sending host will be with respect to peaks in the actual feedback arrival 

rate). Smaller RRs will reduce the risk of implosion. 

On the other hand, the protocol mechanism depends on having a certain amount of feedback, 

so that the state in sw is kept "fresh" with respect to receivers. Very low RRs may cause the 

sending window to block more often (in particular with higher loss rates), due to the wait for 

needed feedback to arrive. 

The simulation results shown up to now refer to experiments performed using RR set to 

IT R. The impact of the RR value for PRMP was evaluated by testing 3 representative group 

sizes (10, 30, and 60) in the LOCAL configuration, measuring the values ?f T, N, and I. 

Increasing RR has two major effects: 

(fresh state) 

(feed excess) 

poll requests to any given receiver are sent more frequently; hence a packet 

is likely to be referenced sooner (less time to detect losses and less time to 

get full acknowledgment); 

However, if RR exceeds ITR, response packets are lost due to implosion, 

delaying loss recovery and packet acknowledgement. 

Note that (fresh state) and (feed excess) compete in promoting and suppressing the gain in 

loss detection time allowed by negative acknowledgments. 

Figure 4.14 shows the impact of RR on T. First, note that the runs with infinite window, 

PF-IW-10, PF-IW-30, and PF-IW-60, were only mildly affected by RR's value: any RR ~ 500 

e~R) was sufficient to achieve the maximum T. This is becaus.e, with infinite window, the 

sender can always transmit a packet every I PG, either a new transmission or a retransmission. 

After the last packet is transmitted, the RR becomes important, as it is necessary to poll at 

least once each receiver. This arguments applies to PF-10 as well: with L = 64, low RTTmax , 

and low cumulative loss, the group size was so small that even a small RR was sufficient to allow 



4.2. SIMULATION 133 

continuous transmission. It is also clear that in these cases, when RR > IT R and implosion 

losses occurred, they did not affect the T. The reason is that with L = DP, the sender never 

blocks despite losses, and hence can continuously transmit until the DP-th packet is sent. 

The runs PF-30 and PF-60 follow a completely different pattern: their throughput increases 

rapidly as RR approaches 1,000, due to (fresh state); for 1,000 < RR :S 1,500, the rate of in

crease is reduced probably because (feed excess) comes into effect even before RR approaches 

IT R. Note that RR can be exceeded in certain epochs, due to potential time delays (see Sec

tion 3.4) and the jitter. For values of RR larger than ITR, (feed excess) is more dominant 

and T falls. 

IMPACT OF RESPONSE RATE ON THROUGHPUT, LOCAL CONFIGURATION 
8000 

7000 

PF-IW-10 

(j) 
c. 

00 

~ 
:; 
c. 
.c: en 
::I e .c: 
f-, 
f-

6000 .... ....;- - ... ~ .. ~ .. -,.-.. :~:~:.;'~~.~~~~,.~;:, ... -: - - ~ ",' -.- - -'- - -- - -.... --- _.--- - _.- - -, ......... -_ .... ~ . . . . . . -.,::' 

5000 

4000 

3000 

.
> ..... , ... ' ,",',",-'i// -- -- --! ->",'<,,_"------- ____ -PF-IW.~O_._--

'------ ... ,---........... -.... ,;. ........ _-......... --
~ ... -------------..,~ 

... . 
",
i.!.... . ....... >' ....: •• \ 

\~~~ .... 
I····· ""// • .....-----:.-" •• -. ..• 

i; I "¥. ___ 'o. 

2000 li// ....... ~ ..... 1.... . ................... . 
! " 

PF-60 

: :' . PF-10-
. , . PF-30: ----. 
I " :' 1000 ,. . ......... PF-60-----
" ,: 

,
t.:' PF-IW-10 ..... . 

PF-IW-30 --
':' PF .. IW-60 -.---

o ~----~------~----~------~----~------~------~----~ 
500 1000 1500 2000 2500 3000 3500 4000 

RR (pktslsec) 

Figure 4.14: Effect of the RR value in the throughput T in the LOCAL configuration. 

As expected, losses start occurring once RR > ITR, as illustrated in Figure 4.15. This 

can be observed for all group sizes, with or without infinite window. The number of implosion 

losses is notably higher for PF-60 because the increased cumulative loss experienced by the 

sender leads to window blocking (this is confirmed by Figure 4.4, where the graph of PF shows 

loss of T for GS > 30). Window blocking leads to more POLLs and responses being exchanged; 



134 CHAPTER 4. PROTO TYPING & SIMULATION OF FLAT PRMP 

with a proportion of all responses being lost due to implosion, I increases. The network cost 

IMPACT OF RESPONSE RATE ON IMPLOSION LOSSES, LOCAL CONFIGURATION 
8~ r------r------.-----~------,_----~------_r------r_----_, 

til 
Q) 
til 
til 
0 
-1 
c: 
0 
'iii 
0 
Ci 
E 

7000 ................................................. . 

sooo ··············PF-16- .................................. . ........ . ........ ";"f ~.'. . : 

5000 

4000 

3000 

2000 

1000 

0 

PF-3d ----. 
PF-sd ----

PF-IW-10 -
···PF-IW-30·-·-·-··· 

PF-IW-sd ----

............ ·········1··· 

500 1000 

• • 

· . · . 
.............................. : ......................................... "::'" 

.. : 

1500 2000 2500 3000 3500 
RR (pkts/sec) 

4000 

Figure 4.15: Effect of the RR value in the number of implosion losses in the LOCAL configuration. 

reflects the implosion losses shown in Figure 4.15. The graphs for all runs increase with RR, 

as the receivers will be returning more packets during the communication. 

The graphs of PF-IW runs for the three different group sizes in Figure 4.14 indicate that 

even RR = I~R is sufficient to achieve the best T; that is, the runs with infinite window are 

not significantly affected by lower RRs. In contrast, if L = 64, the best T is achieved with the 

RR set to an exact estimation of IT R. Figures 4.15 and 4.16 show that the smaller the RR, 

the fewer the implosion losses, and also smaller the network cost. Therefore, if IT R cannot be 

estimated accurately, an underestimation is preferable to overestimation, in particular for the 

cases with infinite window. 

4.3 Concluding Remarks 

The past two chapters have described flat PRMP, a sender-, fully-reliable multicast protocol. 

The core of PRMP protocol is its novel, one-to-many sliding window mechanism. This window 



4.3. CONCLUDING REMARKS 

IMPACT OF RESPONSE RATE ON NETWORK COST. LOCAL CONFIGURATION 
1.6 r------,------,------,------,-------,------r------,------, 

1,5....·· .... , ....................................... , ... .. 

1.3 ., .... .... ...................... , .. .. 

1,2 

1,1 

500 1000 1500 2000 2500 
RR (pkts/sec) 

PF-10 -
PF-30 ----. 
PF-60 "'" 

PF-IW-10· .... 
PF'IW'30 -:'r 
PF- ", :/-.-

//':":::-\< 

; 
i 

I 

,.i 
,,)/ 

.............. ;,.;,/ ... ; .... 

...... -........ 

3000 3500 4000 

135 

Figure 4.16: Effect of the RR value in the relative network cost N in the WIDE configuration. 

scheme devised for PRMP has been shown, through simulation results presented in this chapter, 

to achieve efficient error and flow control. Traditional sliding window mechanisms, such as 

the one employed by TCP, do not scale for reliable multicast due to ACK-implosion. PRMP 

embodies a polling-based implosion avoidance mechanism, in which the polling of receivers is 

timely planned. Although the processing requirement per feedback packet is increased at the 

sender, the amount of feedback packets can be immensely reduced, avoiding implosion. The 

low network cost stemming from reduction of feedback, as well as careful use of unicast and 

multicast while retransmitting, provides cost-effective reliable multicast. 

From the set of simulation results, two main conclusions can be drawn about the protocols: 

• the throughput T and network cost N of the Full Feedback protocol were dominated by 

I. The Full Feedback protocol runs with IT R = 00 performed well; because of implosion 

losses, FF-IW and FF scale very poorly (prohibitive N and low T for all group sizes over 

half a dozen receivers); 

• both T and N of flat PRMP were affected by the window length L employed. This is 



136 CHAPTER 4. PROTOTYPING & SIMULATION OF FLAT PRMP 

no surprise, as (sliding window) reliable unicast protocols are very much affected by the 

bandwidth and latencies of the network between the sender and the receiver. In fact, 

overall PRMP was not affected by the L value because of its implosion avoidance scheme, 

but because of the high latencies and error rates used in the WIDE configuration. In this 

configuration, the T and N of PF for all group sizes between 3 and 60 receivers were 

better than the T and N of FF for 3 receivers only (see Figures 4.8 and 4.9). 

However, the scalability of PRMP is limited. The implosion avoidance mechanism reduces the 

flow of feedback to the sender so that no feedback packets are wasted resulting from implosion 

losses. Because PRMP neither assumes an infinite window (i.e., L will be smaller than DP) 

nor infinite feedback capacity (i.e., ITR will be finite), there will be a given GS which is large 

enough to make RR become the bottleneck in the communication. The window will start to 

block frequently, leading to a decrease in T and an increase in N (because of POLL packets). 

The approach followed to increase the scalability of PRMP is to use hierarchy: to extend 

the flat PRMP protocol to a tree-based version. The set of receivers is organized according 

to a tree, with the sending application at the root, and receiving applications at the leaf or 

internal nodes. Each set of parent and child nodes runs basically the same protocol which 

has been described in Chapter 3. The next chapter addresses the changes which are required 

to flat PRMP to extend it to hierarchic PRMP, including issues related to wide-area network 

multicasting like localized loss recovery and congestion control. 



Chapter 5 

Hierarchic PRMP 

Chapter 3 described the flat version of PRMP; Chapter 4 showed through simulation results 

that this flat version can scale well up to group sizes of (at least) 60 receivers. The scalability 

of the flat PRMP protocol is, however, limited. In large networks, where RTT delays can be 

large, data and control packets have to travel to and from distant receivers; it becomes more 

expensive to poll receivers using POLL packets. 

Additionally, flat PRMP cannot explore spatial correlation of losses, typical of multicasting 

in WANS. As discussed in Section 2.2.1, when a packet is lost in a non-leaf node of the tree, 

all nodes which are downstream (of the loss) will experience the same packet loss, and request 

its retransmission. In case there is a lossy node or link near the "bottom" of the tree (close to 

a leaf), it is likely that certain losses will be typical of a given region or domain. A multicast 

protocol may employ remote "representatives" which are able to detect the loss of a nearby 

receiver and quickly recover from it with a retransmission. This is often referred to as "local 

recovery", and it provides two potential benefits: firstly, the latencies between the representa

tive and the lossy receivers are overall smaller, speeding up recovery; secondly, the loss recovery 

process (via retransmissions) is isolated from the rest of the network. 

In the flat PRMP, the sender communicates directly with all receivers, with no such repre

sentative agents in between. This chapter extends this protocol for a tree structure in which 

the sender ("source") is a parent of only a subset of receivers ("children") 1, and each of the 

Ithe words "sender" and "parent" are used interchangeably, as well as "receiver" and "child". 

137 



138 CHAPTER 5. HIERARCHIC PRMP 

source's children is the parent of another subset of receivers and so on. This tree-based exten

sion involved developing enhanced flow control schemes and congestion control mechanisms, 

and it has enabled PRMP to scale for a large number of receivers. 

This chapter discusses the extension of the flat PRMP to hierarchic, and is organized as 

follows. The tree structure and notation are presented in Section 5.1; Section 5.2 describes 

the process of forwarding packets through this tree structure. The remainder of the chapter 

is organized in four sections, each addressing one main mechanism of hierarchic PRMP: error 

control (5.3), flow control (5.4), congestion control (5.5), and session control (5.6). 

Tree-based schemes generally scale well for reliable multicast ([Levine97]) because the re

sponsibility for reliable delivery is placed not solely on the source but also on every parent node 

in the tree. This decentralization of responsibility results in three major advantages that help 

promote scalability: 

• status: the amount of protocol status which the source needs to keep about receivers is 

reduced; 

• implosion avoidance: the amount of feedback packets flowing to the source is reduced 

with the number of receivers the source interacts with; 

• localized error control: allows a receiver to recover losses from a nearby (parent) node 

rather than from the distant sender, thus speeding up recovery and reducing the network 

cost. 

5.1 The Tree Structure 

In PRMP'S case, the tree structure is used not only for error recovery but also for data propa

gation: each node receives data packets from its parent and transmits (forwards) data packets 

to its children. In other words, the source multicasts data packets only to its children, and not 

to the complete tree. The motivation for this tree-based propagation of data is twofold: 

• polling mechanism: when a parent node multicasts data packets to its children, it can 

piggyback the polling requests to selected children and thereby avoid the overhead of 

sending explicit POLL packets; 



5.1. THE TREE STRUCTURE 139 

• localized flow and congestion control: when a parent node is in charge of forwarding 

packets to its children, it can swiftly adjust the transmission rate if a child appears to 

be experiencing losses. That is, since a parent does both forwarding of data packets and 

reception of feedback, it is in a position to detect and deal with problems regarding its 

receivers (such as congestion) more quickly and effectively. 

Figure 5.1 illustrates an example of the tree-based structure in PRMP. The nodes taking part in 

a given session are denoted either as "source" or "receiver"; the source is at the root of the tree, 

and receivers are either internal or leaf nodes. Receivers interact with each other according to 

the logical hierarchic organization, which has been previously established (and remains static 

during the session). Not all receiver nodes contain a receiving application, and this is the case 

for receiver R3 (shaded) in Figure 5.1. 

SOURCE: sending application 

Ro:ot~r-~~~~~------------___ 

Internal 

Leaf 

SINK: receiving 
application 

Leaf 

SINK: receiving 
application 

Leaf 

Internal 

Leaf 

Figure 5.1: Example of the tree-based structure in PRMP. 

As shown in the example of Figure 5.1, hierarchical naming is used to uniquely identify 

nodes in the PRMP tree. The source has "nc" children and is denoted as S, and its set of 

children are {RI' R2, ... , Rnc}. Whenever the context requires, the node's name is prefixed to 

a variable (so that "S.ne" can be used to represent the nc of S). RI has RI.nc children, which 

are {RI,I, RI,2, ... , RR1.nc}, etc. The set of Rj's children is denoted as {Ri,*}. 

The source, at the root, does not have a parent, but has one or more children; leaf child 

nodes have a parent, but do not have children of their own; internal nodes have both a parent 

and one or more children. 



140 CHAPTER 5. HIERARCHIC PRMP 

Parent nodes are expected to send packets to their children, while child nodes are expected 

to receive packets and, when polled, send a response to their parent. The functionality of nodes 

can be divided accordingly: 

• sending role: to transmit packets to receivers (child nodes), poll receivers for responses, 

and retransmit data packets when required; 

• receiving role: to receive packets from the sender (parent node), return acknowledgments 

when polled, and deliver data to a local receiving application, if one is present. 

So, nodes in the tree can have a sending role, a receiving role, or both. The association between 

roles and nodes is shown in Table 5.1. 

Node I sending role receiving role 

source v' 
internal receiver v' v' 

leaf receiver v' 

Table 5.1: List of node types and their roles. 

In internal nodes, sending and receiving roles coexist, and share a buffer of L packets. As 

in the flat scheme, sliding windows are used to represent the allocation of data units to buffers. 

Therefore, a receiving role employs a receiving window, rw, to keep track of which packets 

have been received and/or consumed; the sending role maintains a sending window, sw, which 

represents the status obtained in responses returned by receivers. The one-to-many sliding 

window scheme described in Chapter 3 is employed for the communication between a parent 

and its children, much like the sender and receivers do in the flat scheme. In fact, the protocol 

is virtually unchanged for the root and leaf receivers. 

However, for internal receivers, changes are required: the L buffers available are shared 

between the sending and receiving roles. When a packet seq arrive!, at a given internal receiver 

Ri, it is stored in the buffers and remains there until it is of no use for both receiving and 

sending roles of Ri. Therefore, the receiving window of Ri (Ri.rw) is tied2 to the sending 

window of ~ (~.sw). A schematic view of all three types of nodes is illustrated in Figure 5.2. 

2the explanation of how they are tied is delayed until Section 5.4. 



5.2. FORWARDING PACKETS 141 

root S packet buffers 

gl sw 

receiving application 

'" rw 
'::w 
>~ 

internal ;1E1 packet buffers 

SW 

receiving application 

rw 

leaf packet buffers 

Figure 5.2: Schematic view of internal node ~. 

5.2 Forwarding Packets 

In the root node, the sending application uses write () calls (like described in Chapter 3) to 

produce data for transmission. The source transforms the byte stream into data units and 

transmits them as data packets. Before these data packets can reach the child nodes, they are 

subject to duplication, loss, and reordering. Duplication is easy to tackle: a receiver detects 

that packet seq has been received (rw.v[seq] = 1) and discards the redundant copy; loss and 

reordering, however, allow packet seq + 1 to arrive at ~ before seq. Upon reception of packet 

seq + 1, it is Ri's role to forward seq + 1 to its children, {Ri,*}. Hence, unlike the production 

of data by the sending application at the source, the production of data at an internal node is 

unordered. 

From the protocol design point of view, there are two options for forwarding of packets by 

internal nodes: 

• force sequential forwarding: only transmit a given packet after all packets with smaller 

sequence have been transmitted (i.e., a packet seq cannot be transmitted if seq> sw.hs+ 

1); or 



142 CHAPTER 5. HIERARCHIC PRMP 

• unordered forwarding: do not restrict the forwarding of packets because of ordering. 

To prevent introducing delays in the transmission of packets, PRMP adopts unordered forward

ing. A time diagram illustrating this forwarding process is shown Figure 5.3, and commented 

below. 

C 
010 
c+=> 
.- <11 
'00 
Co: 
Ole. 
Cl)e. 

<11 

source 

seq 
reordering 

NETWORK 

Time 

internal 
receiver 

seq+l 

seq 

seq+2 

NETWORK 

leaf 
receiver 

_~ __ .;;..._"",~ seq 

seq+l 

seq+2 

Figure 5.3: Example of forwarding of packets. 

In the example, there are three nodes: the source, an internal receiver, and a leaf receiver. 

The production of data by the sending application results in data units being packed and 

transmitted through data packets with sequences seq, seq + 1, etc. Packets seq and seq + 1 are 

reordered by the network, and seq + 1 arrives before seq. Assume that the internal receiver 

can immediately forward the packet seq + 1 to its children (in the example, the leaf receiver). 

Packets arrive at the leaf receiver in the order they were transmitted by the internal receiver 

(that is, out of order). The packets are stored and delivered in the correct order to the receiving 

application. 

The forwarding of packets applies only to data units: any control information in packets, 

such as a polling request in a (DATA)POLL packet, regards only t-re communication between a 

sender (parent) and its receivers (children). It is the receiving role of a node that deals with 

polling requests, responding in the traditional manner with a RESP packet. When a new data 

packet is received, its data unit is stored in the corresponding packet buffer and rw updated 

like in the flat scheme (see Section 3.2.1). 



5.3. ERROR CONTROL 143 

The sending role of an internal receiver Rs checks whether the new data packet can be 

forwarded to its children, that is, {Rs ,*}. This check involves verifying whether all children are 

known to have buffers available to receive data packet seq. Recall that the in the flat scheme, 

it is sufficient to check the value of the available window, sw.aw, to determine the number of 

"new" data packets that the sender can transmit (sw.aw +- sw.re - sw.hs). In the hierarchic 

scheme, sw.aw is not sufficient; because it is possible that an internal node transmits packet 

seq + 1 before seq, and then sw.hs +- seq + 1, not necessarily all packets with sequence seq 

such that seq < sw.hs have been transmitted. 

So, instead, Rs checks whether the packet is "transmittable"; recall from Section 3.3 that 

a packet seq is transmittable if seq :S sw.re (otherwise receivers may not have a buffer to store 

seq). If seq cannot be transmitted now, Rs will check agann whenever sw.re slides forward 

(see Section 5.4). If after a response has been processed, sw.re slid forward from reI to re2, 

all packets with seq such that reI < seq :S re2 that have been received by Rs (rw.v[seq] = 1) 

will be then forwarded. 

5.3 Error Control 

As described in the previous section, in the hierarchic scheme it is possible that an internal 

node Rs sends packets out of order: if seq + 1 arrives at Rs before seq, and if flow control at 

Rs allows its forwarding, seq + 1 is transmitted before seq. This is a major difference to the 

flat protocol, and its implications are discussed below. 

Recall from Chapter 3 that in the flat scheme, the sender indicates to receivers which is the 

highest sequence number transmitted so far by including the value of sw.hs in polling requests 

(as (DATA)POLL.hs). In the hierarchic scheme, sw.hs still represents the highest sequence seq 

sent, but not necessarily all packets up to sw.hs have been sent. Therefore, rw.hr and sWi.hr 

cannot be reliably used to detect gaps in the packet sequence, and therefore, losses (i.e., using 

the scheme in Section 3.6.1). 

Therefore, the method of using RESP.rw.hr to identify NACKS needs to be adapted, since 

packets with seq :SREsP.rw.hr may not have been forwarded at the time the polling request was 

sent. Figure 5.4 shows a scenario where the above case is exemplified. Data packets DATA seq 



144 CHAPTER 5. HIERARCHIC PRMP 

and DATA seq+ 1 are transmitted and reordered by the network before reaching Rs. The packet 

DATA seq+ 1 arrives at R s, and is forwarded to Rs,i immediately. Soon afterwards, Rs transmits 

a POLL packet with POLL.hs = seq + 1. Rs,i receives DATA seq + 1 and the POLL; it responds to 

the POLL by sending a RESP packet with REsP.rw.v[seq] = 0 and RESP.rw.hr = seq+ 1. In the 

mean time, the delayed DATA seq arrives at R s, and is forwarded to Rs,i. Later, the response 

from Rs,i arrives at Rs: as RESP.rw.hr = seq + 1 and REsP.rw.v[seq] = 0, Rs could wrongly 

infer that REsP.rw.v[seq] = 0 is a NACK. But seq has been received and transmitted by Rs 

after the POLL, and therefore is not a loss. 

DATA seq 

DATA seq+l 

Time 

receiver 
internal 

R 
5 

DATA seq+l 

DATA seq 

RESP 
rw.v[seqj=O 
rw.hr=seq+l 

receiver 
leaf 

R. 
5,1 

DATA seq+l 

POLL hs=seq+l 

DATA seq 

Figure 5.4: Example of scenario where the loss detection inferences used in the flat PRMP do 
not work. 

To solve this problem, the sender works out the causal order between multicast transmis-

sions and polling responses, by comparing the timestamp RESP.ts in responses with the time a 

packet has been originally multicast. The sender records the time a data packet is first multi

cast, denoted as Txseq , for all packets seq such that sW.nea ~ seq ~ sw.hs. (All packets before 

sW.nea have already been fully acknowledged, whereas all packets seq> sw.hs have not been 

transmitted.) The values of Txseq , which are recorded in the "Transmission (Times) Table", 

are initially set to 00. A sender updates TXseq when it transmits the packet seq3. 

Recall that RESP.ts is a copy of POLL.ts, the timestamp of Rs included in the POLL which 

3TXseq remains 00 while seq is enqueued for transmission in the Transmission Queue, TxQ. 



5.3. ERROR CONTROL 145 

prompted RESP to be sent. So, similarly to the scheme employed to detect obsolete NACKs (Sec

tion 3.6.5), the sender compares the timestamp in the response (RESP.tS) with the forwarding 

time recorded for seq, TXseq: it considers REsP.rw.v[seq] = 0 as a NACK only if RESP.ts ~ TXseq 

(polling request was transmitted after or with the transmission of seq). 

The above rule must also be used in the evaluation of receiver sets (and their corresponding 

predicates). As the most recently arrived RESP packet may not be available anymore when the 

predicate is evaluated, the response's timestamp must be recorded. Hence, a new attribute is 

added to SWi: 

hts the highest timestamp recorded III responses from Ri (updated as SWi.hts +-

max{ SWi.hts, RESP .ts}). 

The predicates Refed(seq, Rd and Nacked(seq, Rd defined in Section 3 are amended so that 

they are true if, 

Refed(Ri, seq): 

Nacked(Ri' seq): 

packet seq has been referenced by receiver Ri if the sender has received 

from Ri a RESP packet which causally succeeds the multicast transmission 

of seq (i.e., sWi·hts ~ TXseq)j 

packet seq has been negatively acknowledged by receiver Ri if, having 

referenced seq (i.e., Refed(Ri, seq)=true), the corresponding bit in v is 0 

(i.e., SWi.v[seq] = 0). 

Figure 5.5 shows one case where seq+ 1 has been referenced but not seq. Packet DATA.seq = 32 

is transmitted at time 10j a POLL is sent at time 20, thus with POLL.ts = 20, and at time 30, 

packet DATA.seq = 31 is transmitted. When the response arrives, at time 55, its timestamp 

RESP.ts = 20 is smaller than TX31 = 30, which indicates that seq = 31 was transmitted after 

the poll, and is thus unreferenced (Refed(Ri, seq) = false). However, POLL.ts = 20 is greater 

than TX32, so that RESP.rw refers to the transmission of seq = 32, which occurred at time 10. 

The functions which generate receiver sets based on sw remain unchanged, as they apply 

the already changed corresponding predicate. The attribute sw.hr is still used in error control 

to limit the range of packets which may be in recovery, as it still represents the highest packet 



146 CHAPTER 5. HIERARCHIC PRMP 

Time 

10 DATA seq=32 
R. 

f 

20 POLL hs=32 

30 DATA seq=31 

55 RESP hr=32 
ts=20 

Tx = 
31 

30> 20 Unrefed. 

Tx 32= 10< 20 Refed. 

Figure 5.5: Example of use of TXseq to identify which packets have been referenced by receivers. 

which has been referenced by receivers. This may be alternatively determined as the maximum 

TXseq (but not 00) that has been referenced (i.e., is equal or smaller to sWi.hts) by all receivers: 

max {Txseq I TXseq i- 00 1\ TXseq ~ min {swi.hts I ~ E {Rs,*}}} 

The sw.hr approach was chosen because it is dearly the more efficient of the two. 

A more comprehensive example of error control is illustrated in Figure 5.6, which shows 

the communication between the source, an internal node and its child. 

The parent of R s, R, transmits four packets: DATA.seq = 31, DATA.seq = 32, DATA.seq = 

33, which is lost by the network, and DATAPoLL.seq = 34, which requests a response from Rs 

to acknowledge all four packets. Packet DATA.seq = 31 arrives at Rs and soon is forwarded as 

DATAPoLL.seq = 31 hs = 31. DATA.seq = 32 also arrives at Rs and is forwarded, at time 80, 

as DATA.seq = 32. 

DATAPOLL.seq = 34 arrives at R s, and is forwarded to Rs,i at time 90 as DATAPoLL.seq = 34; 

note that packet seq = 33 is currently missing at Rs and thus has not been forwarded yet 

(TX33 = 00). Just before time 110, a retransmission of seq = 33, from R arrives at R s, and 

is forwarded to Rs,i as DATA.seq = 33; Rs sets its TX33 with 110. Soon after forwarding 

seq = 33, Rs receives a response from Rs,i with REsP.rw.v[33] = 0 and RESP.rw.ts = 90; Rs 

compares the timestamp in the response, RESP.ts = 90, with TX33 = 110, and finds out that 

this response does not reference seq = 33 (response at 90 precedes transmission at 110). The 



5.4. FLOW CONTROL 147 

response does reference, however, packets seq = 31, seq = 32, and seq = 34, which have all 

been transmitted before or with the polling request at time 90. As Rs updated SWi.hts when 

RESP arrived (swi.hts +- 90), if it later evaluates Nacked(33), the set will not contain Rs,i and 

Refed(seq, Rd will be false. 

DATA seq=31 

DATA seq=32 

DATA seq=33 

DATAPOLL seq=34 
hs=34 ts=80 

RESP rw.v[33]=O 
ts=80 

Time 

R 

internal 
receiver 

R 
5 

.... ;:. 

RESP 
rw.v[33]=O 
ts=90 

Tx[33]=110 

leaf 
receiver 

R. 
5,1 

DATAPOLL seq=31 hs=31 

DATA seq=32 

DATAPOLL seq=34 ts=90 

DATA seq=33 

Figure 5.6: Example of communication involving three levels: R, Rs , and Rs,i. 

The remaining aspects of the error control mechanism are preserved in the hierarchic ver

sion (as described in Chapter 3). This includes the packet states, waiting mechanisms for 

decision between multicast and selective unicast retransmission, and distinction between valid 

and obsolete NACKs. 

5.4 Flow Control 

Recall from Section 3.3 that the sender only transmits packets which it knows can be safely 

stored at receivers. Receivers report the highest sequence number they can store through 

RESP.rW.re. The sender uses sW.re, the aggregated right edge attribute (the minimum sWi.re) 

to determine the available window: sW.aw +- sW.re - sw.hs. The sW.aw indicates how many 

new packets after sw.hs (Le., seq> sw.hs) can be transmitted. Packets may be transmitted 

out of order, and the sender uses sW.re to determine if a given packet seq is transmittable (Le., 



148 CHAPTER 5. HIERARCHIC PRMP 

if seq:::; sw.re). 

At leaf receivers, the rw works exactly as in the flat scheme: rw.re is increased when 

packets are consumed by the receiving application, that is, when rw.le is increased (recall that 

rw.re = rw.le + L - 1). In internal nodes, however, the L packet buffers are shared between 

the sending and receiving roles. Each role demands the use of received packets, and restricts 

their removal from the buffers. As in a leaf node, the receiving role can release a packet seq 

only when seq is consumed by the local receiving application (i.e., seq < rw.le). As in the 

root node, the sending role has to keep packets with sequence seq until they have become fully 

acknowledged (i.e., seq < sw.neaV Acked(seq) = {*}). Hence, in an internal node Rs , a packet 

may be released from the buffers only when: 

(a) packet has been consumed (i.e., seq < rw.le), and 

(b) packet has been fully acknowledged (i.e., seq < sw.neaVAcked(seq) = {Rs,*}). 

So, because the sending role may need to keep packets which the receiving role would have 

released, the number of packets that rw is able to keep may be smaller. This happens when the 

rw slides ahead of sw, and there exists one or more non-fully acknowledged packets that 

have to be kept by the sending role but that would have been otherwise released by the 

receiving role. The sending role needs these packets because it may have to retransmit them. 

They are, therefore, "subtracted" from the amount of available buffers which Rs reports to R 

with RESP.rw.re. Let nfacked be the number of packets seq in sw which precede the rw and 

that have not been fully acknowledged: all packets seq such that sw.nea :::; seq < rw.le and 

Acked(seq) i= {*}. If sw.nea ~ rw.le, nfacked=O. The receiving role calculates the right edge 

of its receiving window using: 

rw.re ~ rw.le + L - 1 - nfacked ' 

Figure 5.7 shows an example of the above case, where the rw has advanced 4 packets 

beyond sw, but the rw.re has to be reduced by 1 because of nfacked=1. In the example, 

sw.nea = 97 < rw.le = 100, so the sender counts the nfacked packets and finds only seq = 97: 



5.4. FLOW CONTROL 149 

Acked(97) i- {*}, Acked(98) = {*}, Acked(99) = {*}. The packets seq = 98 and seq = 99 (and 

equally seq = 96) have been discarded as they have been fully acknowledged. Since nfacked=l 

and L = 10, sW.re = 109 - 1; hence, for Rs's receiving role, it can receive packets up to 

seq = 108. 

100 101 102 103 104 105 106 107 108 ,')') 

o I I I 0 0 0 I 0 10 ().4-f_u---,-_o--<! 
96 97 98 99 100 101 102 103 104 105 ii'" !'V" :u~ I";' 

L nfacked=l (seq=97) 

Figure 5.7: Example of sliding windows in internal node. 

Recall that in the flat scheme the sender derives sWi.re directly from SWi.le using SWi.re = 

SWi.le + L - 1. Because the assumption re +- le + L - 1 does not hold in the hierarchic case, 

receivers have to include rW.re in RESP.rw when transmitting a response (alternatively, the 

value of nfacked may be sent, allowing the sender to compute itself the smaller, adjusted sWi.re). 

The sender keeps status for the sWi.re attribute, instead of deriving it from SWi.le, and updates 

it with sWi.re +- max { sWi.re,REsP.rw.re}. In the flat scheme, the sender calculates sW.re as 

sW.re +- min {SWi.le I Ri E {*}} + L - 1; as sWi.re values are not necessarily SWi.le + L - 1, 

sW.re needs to be computed as 

Figure 5.8 represents an extreme case where the sending role has all packets fully acknowl-

edged, but cannot slide because one of its receivers Rs,i is slow to consume. nfacked=O because 

sW.nea ~ rw.le; so, the receiver reports RESP.rw.re = 106 + 10 - 1 => 115 when polled. All 

packets in the [sw.le .. sw.re] interval have been released, as they have satisfied both conditions 

(a) and (b) above. Rs has already received 5 new packets in the range [rw.le .. rw.hr]; when sw 

eventually slides, these packets will immediately be available for forwarding. 



150 CHAPTER 5. HIERARCHIC PRMP 

"'" ... 
~ " ~ 

~ 
oJ::: 

~ ~ ~ 

rw 11 I I 0 I 11 I 0 0 0 0 
106 107 108 109 110 III 112 113 114 115 

~ 
,; nfacked=O 

'"' 
sw I 1 I 

96 97 98 

Figure 5.8: Example of case where sw and rw are completely "disjoint". 

Continuing with the example of Figure 5.8, Figure 5.9 illustrates a case where rw "shrinks": 

rw.le can slide forward as packets are delivered to the receiving application; rw.re, in contrast, 

cannot advance, since for every packet which is consumed (rw.le f- rw.le + 1), nfacked will 

increase accordingly (note that all packets seq such that sW.re < seq < rw.le have not been 

forwarded yet, and thus will count as non-fully acknowledged). As rW.re is computed adding 

rw.le and subtracting nfacked, the end result will be the same. If the situation persists with 

the sending role, eventually the left edge of rw will reach its right edge, as illustrated in Figure 

5.9. 

~ 
,; .., 

sw I 1 I 
96 97 98 99 

ALL PACKETS BETWEEN 106 AND 115 HAVE BEEN 

DELIVERED TO THE RECEIVING 

APPLICATION, BUT CANNOT BE RELEASED 

FROM THE BUFFERS BECAUSE THEY 

WILL HAVE TO BE LATER FORWARDED 

(AND THEY ALL COUNT AS 'NOT FULLY ACKED') 

i 
........... ]"' ... 

( ) ! 0 ( ) ! ( I 
...... 1 ......... _.L ........... 

100 101 102 103 104 105 1<)'" ";! 1\>, ii·" : ,.; 
.1 

rw 

] 
..................... ,. ........ 

i 
i ) ( ) {) I ...... ... ........ __ ........... 

.., ":1 
iJ II I 

.. ............. ..L ............ 1 
I : c. : i' ;"" I 10 

nfacked=JO 

Figure 5.9: Example where the left edge of rw advances and reaches the right edge. 

This flow control scheme ensures that if a given receiver falls back (is slow), there will be 

"backpressure" towards the source. If a given Rs,i, as shown above, continually reports the 

same RESP.rw.re, its parent, Rs will also eventually block because its rW.re will not be able 



5.4. FLOW CONTROL 151 

to advance. If the problem persits for long enough, the root will eventually be blocked by the 

right edge of its sending window, and the sending application will not be able to produce more 

data. The pace in which the sending application is able to produce data for multicasting is 

restricted by the pace of the receiving applications in the destination set. 

5.4.1 The "Nagging Parent" Syndrome 

In TCP, when a receiver is unable to take more packets because its buffers are full (data has not 

been consumed by the application), the window advertised to the sender drops to O. The sender 

will keep polling the receiver for every RTT until some data is consumed and the advertised 

window grows. When data consumption rate is very small compared to l/RTT, many packets 

may be unnecessarily exchanged between sender and receiver. Like TCP, in PRMP the sender 

keeps polling at every RTT any child whose buffers are reported to be full. 

A child reports a full buffer through a "window full of 1s"; recall from Section 3.2.1 that 

this situation is characterized in the SWi of the parent Rs as SWi.nea = sWi.re + 1. In other 

words, all the transmittable packets in Rs.sw have been transmitted and acknowledged by Rs,i 

but Rs,i has no space to receive new data. Since Rs cannot multicast additional data, it polls 

the slow Rs,i once every RTT until Rs,i.rw slides. That is, the parent Rs "nags" the slow child 

Rs,i until the desired response is received. When the RTT is short, a packet pair once per RTT 

for each blocked child can represent a significant overhead. 

In the flat scheme, this nagging syndrome occurs when the receiving application in one or 

more receivers is slow to consume the received data. In the hierarchical scheme, it can also be 

caused by grand-children that are slow to consume and/or to fully acknowledge the packets 

sent by the parent. Referring to Figure 5.1, the source S might "nag" the child R3 (the shaded 

node in the figure) if the communication with R3'S child, R3,1, was slow. 

When the receiving application of R3,1 is slow, R3 is blocked from sending new packets and 

has to report a window full of 1s to R3. The child nodes R3,* (only R3,1 in this case) can be 

slow to fully acknowledge the packets transmitted by R3 for three reasons: 

(a) one or more nodes in the set {R3,*} may be experiencing frequent losses due to a 

congested router or a malfunctioning link; 



152 

(b) 

CHAPTER 5. HIERARCHIC PRMP 

the rate at which R3 can receive responses without implosion losses (i.e., RR) is low 

and/ or the number of child nodes {R3,*} is relatively large. In these circumstances, 

R3 may take a long time for R3 to receive feedback from all its children and hence 

R 3 .sw may progress slowly; 

(c) the latency between R3 and the receivers {R3,*} is very large compared to the 

latency between Sand R3. This disparity in latency at two successive levels of 

the tree causes R3 to receive the required acknowledgments from receivers {R3,*} 

more slowly (even in the absence of network problems) than it can acknowledge its 

parent S, leading to the nagging of R3 by S. 

Figure 5.10 shows a time diagram depicting a scenario in which the nagging parent syndrome 

occurs. R, the parent of R s , transmits packets seq = 31 to seq = 34, and with seq = 34 a DAT

APOLL. Rs receives the packets and immediately forwards them to Rs,i. The network discards 

packets seq = 32 and seq = 34 before they can reach Rs,i. As the packet DATAPoLL.seq = 34 

is lost, Rs waits until the retransmission timeout expires. When it finally expires, Rs sends a 

POLL to Rs,i; Rs,i responds and seq = 32 and seq = 34 are to be retransmitted (not shown in 

the figure). In the mean time, R keeps nagging R s, until Rs can slide its rw. 

PRMP prevents the nagging syndrome with a simple mechanism which delays the polling of 

children that keep reporting full buffers. Normally, upon receipt of a response indicating full 

buffers at the child, the parent would plan a poll to the child using RTIi and the ARC vector 

so that a polling request is sent as soon as possible. If the ARC indicates that response quota 

is available in the aimed epoch, the polling request to Ri will be sent with the next packet 

transmission. 

With the delaying mechanism active, however, the parent reduces the frequency of polling 

through a "polling restriction delay", denoted as prdi (part of Polling Table entries), as follows. 

Initially, all prdi r O. Upon receipt of a response from Ri with/ull buffer, the parent plans 

the next polling request to Ri using the current value of prdi to delay the response: the POLL 

is not to be sent before the time clock + prdi. Recall from Figure 3.9 that the first step in 

planning a poll is to use RTIi to determine the earliest time a response could be received 

from Ri, regardless of the ARC contents. To delay a response, the parent simply adds prdi 



5.4. FLOW CONTROL 

sender 
parent 

R 

internal 
receiver 

:D 

m 
~ 
(J) 
;: 
1ii 
(J) 

5 z 
r 

leaf 
receiver 

R. 
5.1 

Figure 5.10: Example of scenario where the nagging syndrome may appear. 

153 



154 CHAPTER 5. HIERARCHIC PRMP 

to RTTi in determining this earliest time; given the way esti is calculated, the transmission of 

the polling request is likely to be delayed too (depending on epoch length c and I PG values). 

After "using" the current prdi' the sender increases the prdi delay in the following manner: 

if this is the first POLL to be sent after full buffers were reported (thus prdi = 0), the 

parent initializes prdi with a default, initial value prdini: prdi +- prdini; 

otherwise, increase prdi exponentially up to a maximum limit, prdmax : prdi +- min{prdi X 

k, prdmax }, for some k > 1. 

Hence, if Ri keeps reporting full buffers whenever polled, prdi will be backed-off exponentially 

successive times, so that R polls ~ with decreasing frequency. When the first response from 

Ri arrives such that SWi slides forward, the delay is reset: prdi +- O. 

This backing-off has, intuitively, negative impact on throughput. Ideally, as soon as a child 

"unblocks", a polling request will enable the child to report the slid window to the parent, 

but in practice, the child will have to wait some time until it gets a chance to send a response 

(see the time t in Figure 5.11). If a child is polled less frequently, this time will on average 

increase. Consequently, it will take more time until the sending window at the parent slides, 

probably slowing down the communication. The decision of using the mechanism or not, or 

how aggressively (the exponential factor k), is a trade-off between throughput and network 

cost. 

5.5 Congestion Control 

To deal with congestion in communications involving large internetworks, PRMP embodies two 

distinct congestion control schemes: 

• window-based (wb) , and 

• rate-based (rb). 

The window-based scheme is a variation of the [Jacobson88] congestion control scheme for 

TCP (in fact, this discussion applies particularly to the Internet context). The rate-based 



5.5. CONGESTION CONTROL 

~ 
w 
o 

UNBLOCKING OF rw 

t 

POLLING 

Figure 5.11: Delaying caused by anti-nagging mechanism. 

155 

scheme follows the same principles as the window-based, but varying the transmission rate 

in a different manner. Like error and flow control, each parent node "independently" applies 

congestion control in the communication with its receivers. 

5.5.1 Detecting congestion 

Based on the assumption that most losses in the Internet are caused by queue overflow in 

congested routers, and not by packet corruption, both wb and rb detect congestion through 

packet losses reported by receivers. A negative acknowledgment is seen as "hint" of congestion 

somewhere between the parent and its children. A parent "evaluates" the network according 

to feedback from receivers. It does so by aggregating "packet status" in sw, in the following 

manner: for any seq such that sw.nea S seq S sw.hs, packet seq is: 

unreferenced if Acked(seq) =1= {* }I\Nacked(seq) = {}; 

nacked if Nacked(seq) =1= {}; or 

acked if Acked(seq) = {*}. 

Recall that packets seq with seq S sw.hs which have not been transmitted are distinguished by 

an infinite transmission time (Txseq = 00); while a packet has not been transmitted, its state 



156 CHAPTER 5. HIERARCHIC PRMP 

IS "unreferenced", since Acked(seq) = nand Nacked(seq) = n. After seq is transmitted, 

it stays unreferenced as long as it has neither negatively acknowledged by any receiver nor 

become fully acknowledged. 

In the former case, as soon as any receiver Ri negatively acknowledges packet seq, Nacked(seq) 

becomes {Hi}, and so, seq becomes nacked. In unicast communication this corresponds to seq 

being negatively acknowledged, an indicative that the sender must slow down. Additional 

NACKs referring to packet seq increase the cardinality of Nacked(seq); the packet state does 

not change, remaining nacked. This is so because if n receivers negatively acknowledge a given 

packet, the load must not be reduced n times. Hence, seq "remains" nacked and the congestion 

control mechanism, either wb or rb, need not apply any measure to reduce the load. 

In the latter case, no receiver reports the loss of seq, and packet seq remains unreferenced; 

positive acknowledgments arrive at the sender, so that the cardinality of Acked(seq) increases. 

When all receivers (i.e., {Ri,*}), have ACKed seq to R s , Acked(seq) = {Ri,*}, and hence seq 

state changes to acked. This corresponds in unicast terms to the receipt of an "ACK seq", and 

is taken as an indication that the load may be slightly increased. 

Following the optimistic approach employed in the design of PRMP'S loss recovery mecha-

nism, the congestion detection mechanism does not act on retransmission timeouts (which are 

likely to be caused by the loss of polling requests and responses). As explained in Section 3.6.4, 

the loss of a RESP packet does not represent the loss of the data packets it was supposed to 

acknowledge. It would be too conservative to multiplicatively decrease the transmission rate of 

the sender n times due to the loss of a single response packet (assuming that n packets would 

be acknowledged by it), especially considering these packets may have successfully arrived at 

the receiver. 

Alternatively, PRMP can be configured to be more conservative and interpret a retransmis-

sion timeout as a single packet loss. The congestion control mechanism which is active, wb or . 
rb, is signaled and reacts accordingly to slow down. This option has been tested with good 

results. 

In conclusion, the detection mechanism evaluates the network load and provides feedback 

to wb or rb, which are prompted to control, increasing or decreasing, the current load. The 



5.5. CONGESTION CONTROL 157 

mechanisms, described in the next two sections, differ in the way they attempt to achieve the 

"right" load. 

5.5.2 Window-based congestion control 

In the window-based scheme, the transmission of packets is restricted by an additional ag

gregated attribute in sw, a "congestion window", denoted as cwnd (sw.cwnd). The value of 

sw.cwnd will vary between 1 and L packets. sw.cwnd is normally subject to: 

• multiplicative decrease (halve sw.cwnd) when the detection mechanism indicates conges

tion (with an aggregated NACK, as explained in the previous section) . 

• additive increase (increase by 1 packet) when the detection mechanism indicates that a 

full congestion window (sw.cwnd packets) has been successfully transmitted (aggregated 

ACK for sw.cwnd packets). This is to probe for bandwidth which may become available. 

Recall from Section 5.4 that flow control dictates that sW.re, the highest "transmittable" seq, 

is computed as sW.re t- min {swi.re I Ri E {*}}. The wb scheme alters the way the right 

edge of the sending window (sw.re) is calculated, reducing the range of transmittable packets. 

Because PRMP employs selective retransmission, only the packets in sw that are not fully 

acknowledged are counted as outstanding data. Let "Jacked" represent the number of Jully 

acknowledged packets in the interval (sw.nea ... sw.hsJ. When the wb congestion control is 

active, the definition of sW.re provided in Section 5.4 is modified so that: 

sW.re t- min {swi.re, sW.nea + r sw.cwndl + Jacked - 1 I Ri E {*}} 

So, the lower values of sW.re, the more restricted the sender will be regarding the transmission 

and retransmission of packets. 

At the beginning of the communication, the sender does not know in which condition the 

network is. TCP (like PRMP) employs window-based flow control, but unlike PRMP, it does 

not enforce a maximum transmission rate; so, when the transmission starts, a burst with L 

packets may be sent. This burst may overflow queues in routers, if their available capacity is 

insufficient to sustain it. 



158 CHAPTER 5. HIERARCHIC PRMP 

To solve the above problem, Jacobson's congestion control scheme employs slow start: the 

congestion window is initialized with 1 packet only, so that at first the sender will only be 

able to send a single packet. When the ACK for this packet is received, the sender increments 

the congestion window by 1, doubling the available window, so that two new packets are 

transmitted; the cycle is repeated: when each ACK arrives, the sender increments the congestion 

window by 1; after the two ACKs have arrived, the value of the congestion window will be 4. 

This exponential behavior of slow start continues for every RTT until either a loss is reported 

or L is reached. 

PRMP employs slow start at the beginning of the communication. The value of sw.cwnd 

is initialized to 1 and is increased by 1 at every aggregated ACK as long as it remains in slow 

start phase. When the congestion detection mechanism indicates that the "right load" has 

been reached (that is, the aggregated state of a packet in sw has become nacked), the value of 

sw.cwnd is halved and the slow start phase terminates. 

PRMP employs "fast recovery" (see [Stevens94]): slow start is applied only at the beginning 

of a session, and not after every loss. 

5.5.3 Rate-based congestion control 

The limitation of the above approach is that when the congestion control mechanism acts and 

closes the sending window, it does not impede the transmission of POLL packets. Recall from 

Section 3.4 that when a SWi becomes "full of Is", the condition (full buffer) is satisfied, a 

poll is planned for receiver Ri (if there is not one, already). With wb, upon losses, sw shrinks 

with the decrease of sW.re (and possibly sw.aw, too), which may cause the above condition to 

be satisfied for multiple receivers at once. As a result, receivers will be added to the Polling 

Table, and POLL packets sent to elicit responses from receivers with full buffer at every RTT 

(or so) until the window unblocks. Although the anti-nagging sch~me may reduce the repeated 

polling, a given number of POLL packets will be sent and they add to the load of a congested 

network. 

Additionally, as observed in the simulation experiments in Section 4.2, the blocking of the 

window (the tool of wb) is associated with an increase in network cost because more POLL 



5.5. CONGESTION CONTROL 159 

packets have to be sent. 

To control the rate in which DATA/DATAPOLL/POLL packets are transmitted, it is necessary 

to dynamically alter the lPG. Recall that the lPG (Section 3.3) determines the minimum time 

that should elapse between any successive packet transmissions4. PRMP varies the transmission 

rate (the inverse of I PG) to apply congestion control. 

The value of the I PG is varied in the same manner as in the wb scheme: multiplicative 

decrease of transmission rate (multiply the value of I PG) when congestion is detected, and 

additive increase of transmission rate (subtract from I PG) when no loss is observed. 

Assuming that a window of L packets is transmitted and acknowledged, the mechanism 

additively increases the load/rate by 1 packet for the next RTT transmission cycle. Similar 

to increasing sw.cwnd by 1, the I PG is recomputed as "if L + 1 packets were to be sent in 

the next RTT", so that more packets are sent within the same time interval. The end result is 

that the same number of packets is sent within a proportionally smaller period, increasing the 

transmission rate. 

To emulate this behavior with a gradual increase after each of the L packets in the window 

becomes acked (as defined in Section 5.5.1), the sender computes the new transmission rate, 

nr, as 
1 

nr t-- cr + RTTmax xL 

where cr is the current rate, and RTTmax is the current maximum RTT between the sender 

and its receivers, i.e., RTTmax t-- max {RTTi I Ri E {*}}. This change provides the expected 

additive increase in load. 

The lPG varies within the interval [lPGmin,IPGmax]i lPGmin and lPGmax are values 

preset at start of the communication. When rb is being used, the user-configurable I PG works 

only as the initial value. For multiplicative decrease, at sign of congestion (a packet III sw 

becomes nacked), lPG is backed-off (doubled) using lPG t-- min(IPG x 2,RTTmax). 

4as noted in Section 4.1, with the exception of multiple unicast transmissions of the same packet, which are 
done without delay. 



160 CHAPTER 5. HIERARCHIC PRMP 

5.6 Session Control 

The attempt to provide full-reliability can lead to blocking at the source, when a particular re

ceiver persistently fails to respond to the polls sent to it. Without responses from a problematic 

receiver, the sw's of all parents up to the source do not slide forward, preventing transmission 

of new data. 

To guarantee progress, a parent removes the problematic receiver from its destination set 

{*} if the receiver fails to respond to a given number of consecutive polls sent (i.e., after several 

RTOi periods). It eventually informs its own parent of this removal and the information 

thus gets passed on upwards along the tree towards the source. The sending application can 

be informed by the source about the receiving applications that are not guaranteed to have 

received the full data contents. 

In order to terminate a session, PRMP provides a close () downcall to the application level. 

The sending application is expected to use successive write 0 calls to send all data it wants 

to, and then request the termination of the session with close O. The source assembles and 

transmits the last data unit with any bytes left, i.e., that have not been transmitted yet (the 

last unit may be smaller than the previous ones). All packets transmitted from a parent to its 

children will thereafter carry the sequence number of the last data unit of the session (this is 

the DP value previously referred to). The sending application will remain blocked while the 

source coordinates the tear down of the session. 

Receiving applications, on their turn, realize that the last data unit has been consumed 

(and its size) through ordinary readO calls (since receiving applications continuously consume 

data through read () ). After that, a receiving application is expected to perform any required 

actions (typically closing a destination file) and then invoke close O. 

After the sending application has used close (), the source keeps it blocked until reliability 

requirements are met. Flat PRMP offers two levels of reliability: 

(r) all receivers are known to have received all packets; or 

(c) all receiving applications are known to have used close O. 

(c) provides stronger guarantees than (r) to the sending application since a receiving application 



5.6. SESSION CONTROL 161 

or node may crash between the reception of the last packet and processing of the corresponding 

data unit. In the hierarchic PRMP, each of the two reliability levels has two additional sub-levels, 

applicable to each parent: 

(f) all children are known to have received all data (f-r) or have used closeO (f-c); 

(h) all nodes in the subtree are known to have received all data (h-r) or have used 

closeO (h-c). 

The paragraphs below discuss the implementation of the session termination scheme. An 

additional flag in responses, "REsp.closed", is employed to indicate to the parent (when polled) 

that the child is in the process of closing the session (it will keep the session control block for 

a given amount of time). A parent maintains a receiver set "Closed", initially empty, which 

indicates which of its children have closed. Whenever a RESP packet is received from Ri such 

that RESP .closed = true, Ri is added to the set (i.e., Closed+- ClosedURd. When the parent 

node is the source, and its Closed set is complete (i.e., S.Closed = {*}), the sending application 

can be unblocked from close O. 

In (f-r) case, the receiver will start reporting REsp.close = true to its parent as soon as the 

last data unit, as well as all the previous ones, have been received (that is, rw.ned = DP + 1). 

In (f-c) case, each receiver containing a receiving application waits until its local receiving 

application uses close 0 before reporting RESP .close = true (if the receiver does not have a 

receiving application it behaves like (f-r)). 

In the cases of (h-r) and (h-c), the source depends on termination state being collated 

through the tree. A leaf receiver will perform like in (f-r) and (f-c), but an internal receiver 

Rs can only indicate RESP .closed = true when all of its own children have reported that they 

have closed (that is, when Rs.Closed = {*}). Additionally, in (f-c) case, if there exists a local 

receiving application, the receiver needs to wait for the close 0 downcall as well. Note that 

due to the nature data packets are propagated, if a child receiver reports RESP .closed = true 

(after receiving all data), it means that its parent must have also received all data. 

Implementing all these reliability levels requires that a receiver does not remove the session 



162 CHAPTER 5. HIERARCHIC PRMP 

"control block" until the sender is known to have received at least one of its polling responses 

such that RESP .closed = true. After sending the first response with RESP .closed = true, the 

receiver starts a session termination timer. Every time the receiver is polled thereafter, it will 

send the same response and restart the timer. When this timer expires, the receiver erases the 

control block regarding the session. 



Chapter 6 

Prototyping & Simulation of 

Hierarchic PRMP 

The multi-threaded, object-oriented architecture described in Chapter 4 defined a protocol node 

that sends and another that receives packets. In this chapter, that architecture is extended (in 

Section 6.1) to include nodes that both send and receive packets. This extended architecture 

is employed in the simulation experiments performed in the remainder of the chapter. In 

Section 6.2, the enhanced network simulation model is described; the hierarchic PRMP and FF 

are compared in Section 6.3; in Section 6.4 the anti-nagging mechanism is evaluated; Section 

6.5 defines an "IMAGINARY" network configuration in which the experiments are based. The 

experiments performed with the window- and rate-based congestion control mechanisms of 

PRMP are discussed in Section 6.6. The last set of experiments performed, which is described 

in Section 6.7, provides a comparison between the flat and hierarchic versions of PRMP, for the 

IMAGINARY network configuration. 

6.1 Protocol Architecture 

The hierarchic PRMP presents little difference in terms of architecture in comparison to flat 

PRMP. In the latter, there were two types of nodes: sender and receivers. Receivers are 

fairly simple, implemented by a single thread, RM (Receiver Module). The sender embodied all 

163 



164 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

the mechanisms for error control, flow control, and implosion avoidance, and thus was more 

complex. Its architecture was multi-threaded with four threads which cooperated through two 

queues and five tables. 

Recall that in the flat scheme architecture, the GM (Generator Module) interacts (at the 

sender) with the sending application to obtain data and enqueue it as data units in TxQ. In the 

hierarchic case, the above sender is the source, at the root of the PRMP tree; internal nodes do 

not have a sending application, and instead receive data packets from their parent through the 

RM thread. Therefore, in internal nodes, GM is replaced by RM (see Figure 6.1). Like GM, RM is 

restricted by flow control, and can only enqueue a new data unit seq for transmission if seq is 

"transmittable" (Le., seq ~ sw.re). 

A 
DATAIDATAPOLL : : RESP 

POLL packets I I packets 
I I 

enqueue packets 
to transmit 

TxQ 

I I 

Vi 
open window (increase available window from 0) 

RM<r--~------------------------------~ 

enqueue unicast or multicast retransmission 

enqueue POLL_GAP or 
unicast retransmission 

ToQ 
EM 

enqueue event 
RTOIPOLL_GAP process event 

TxM ~-----------;_RHM 
~~ ~~~ 

, .... "" .... cancel event .... ..- ; ........ ,. ... , .... ..... ........ " , ... ,.... '" , ... , ... , ...... 

DATAIDATAPOLL 
POLL packets 

, ... , ... 
, .... ;:-<.. .... - ",'" 

" .... t< .... ' ..... ...,.. ",/ 

~- ........ , ... ~ ................ ......... ~ ","/ 

RM J RM 2 ... RM OS 

Figure 6.1: Architecture of an internal receiver node. 

RESP 
packets 

Recall that with window-based congestion control active, rW.re can decrease, that is, the rw 

can shrink. Packets awaiting transmission in TxQ may become "unstransmittable": all entries 

tx such that tx. seq> sW.re should not be transmitted or otherwise the congestion control 

mechanism cannot be effective in curbing congestion. Thus, before consuming the first entry of 



6.2. ENHANCED NETWORK MODEL 165 

TxQ, the TxM (Thansmitter Module) verifies whether seq can be transmitted. If the first entry 

cannot be sent, then no other entry can. In this situation the TxM behaves as if the TxQ were 

empty: if there are planned pollings in the PPT, enqueue a poll gap event into the Timeout 

Queue, ToQ. 

Two situations may cause TxM to unblock: (a) when the poll gap expires, the EM will enqueue 

a poll gap entry in TxQ and schedule TxM so that TxM can process it and send a POLL packet 

with due planned polls; (b) if RESP packets arrive, and RHM (Response Handler Module) can 

as a result increase sw.re, RHM schedules TxM so that it may be able to transmit new packets. 

In terms of data structures, a new table is required at internal nodes1 to record the time 

packets are forwarded (it is used by the internal node to determine the relative order between 

the forwarding of a packet and a poll response). Recall that TXseq represents the forwarding 

time of seq, equal to 00 if seq has not been transmitted yet. The Thansmission Table, TxT, 

records the transmission time of up to L packets in the interval [sw.nea .. sw.hs]. The time 

in TxT [seq] is not updated when a tx. seq is enqueued in TxQ, but only when tx. seq is 

consumed and when the packet is actually transmitted. Otherwise, a response generated by 

a polling request which was transmitted after seq was enqueued would wrongly refer to (and 

negatively acknowledge) seq. The complete set of data structures for an internal receiver node 

is shown in Figure 6.2. 

6.2 Enhanced Network Model 

A prototype of hierarchic PRMP was implemented according to the protocol architecture de

scribed in Section 6.1, and allowed the analysis of hierarchic PRMP through simulation experi

ments. This section describes the network model employed in this new set of experiments. In 

Chapter 4, fiat PRMP was evaluated and compared with the Full Feedback protocol using a 

simplified network model: each receiver maintained an independent channel with the sender, 

with three attributes: mean and deviation of propagation latency, and loss probability per 

packet. All kinds of packet losses except implosion were generated using a random draw. The 

RTTS were modelled using the Normal distribution. 

lin practice, at all sending nodes. 



166 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

clock, clock+ £, clock+ 2£, ... 

ARC " III " III " count 

J 

2 

3 

GS 

GS+J 

PPT 

.... ""5 
'" c 
'" ~ 

Sending role 

::g 
~ .... 

Receiving role 

MPT 

""I:l 

'" :: '" '" ~ 
:: c 
<.> 

'" ...Sl 

RST 

TxT 

IIIIII 
RT 

SW/ 

SW 
2 

sw 
GS·/ 

SW
GS 

pktState 

transm. time 

Ie, le+J, ... le+L-J 

rw 

RTxT 

min Ie, max le+L-J 

Figure 6.2: Structures used at sender and receivers. 

The simplified model employed in Chapter 4 has the following limitations: 

• the model is restricted to flat topologies; 

• losses are independent and randomly generated, while loss correlation is required to better 

evaluate the error control scheme; 

• RTTS are randomly generated, instead of fluctuate with the network load. 

Therefore, a new network simulator2 was designed to evaluate: (a) the hierarchic PRMP with 

different topologies and receiver allocations; (b) the poll planning and implosion avoidance 

scheme, in face of more realistic RTTS; (c) the error control mechanism, with correlated losses; 

and (d) the congestion control schemes proposed with topologies and routers. The tool pro-

vides packet traces, loss traces, queue occupation reports, and a handle for transport-level, 

protocol-dependent information tracing. Finally, it allows experiments to be performed with 

2at the time this simulation work begun, the author considered using the network simulator "ns" [ns], but 
ns was too complex and lacked documentation. 



6.2. ENHANCED NETWORK MODEL 167 

congestion, by dynamically fluctuating the capacity of a router, making it temporarily behave 

as a bottleneck in the network. 

The network is defined as a set of interconnected network nodes, each containing limited

size buffers (i.e., queues) and bounded processing rates (i.e., maximum rate at which elements 

are consumed from each queue). For any queue, a packet is only added to (the tail of) the 

queue if its maximum queue size will not be exceeded, otherwise the packet is dropped. Each 

queue is limited both by the amount of bytes it stores and the number of packets it contains. 

Each packet has a destination address, which may be a unicast or multicast address. Each node 

is uniquely identified by a "fictitious" network address (which is derived from the multicast 

tree hierarchy). 

Packets that arrive at a node are first stored in a buffer, and then "routed" to one or more 

queues according to the packet headers (possibly to the upper layer of the local host). The 

buffer where packets arrive at and stay before being routed is the "INCOMING" queue (see Figure 

6.3). Packets are consumed from the head of INCOMING in a FIFO basis with a maximum rate 

of -r 1 . INCOMING limits the rate at which the network layer of a router or host can process 
Tout 

incoming packets, including those generated by the upper layer. 

packetstransmilled FROM 
transport agents 

INCOMING 
queue 

M 

"'" 0:::: 
::J 

packets to deliver TO 
transport agents 

OUTGOING 
queues 

DELIVERY 
queue 

packets TO the network 
(upstream and downstream links) 

Figure 6.3: Schematic view of a simulated host. 



168 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

If the node is a host and the packet is addressed to it (the uni/multicast address of the 

packet "matches" the id of the host), then the packet is routed (enqueued) into the "DELIVERY" 

queue. As its name suggests, the DELIVERY queue contains packets to be delivered to the local 

receiver. Recall that a receiver may have a sending role, a receiving role, or both. The receiving 

role of a node will continuously consume the first packet of type DATA, DATAPOLL, or POLL 

it finds in the DELIVERY queue, at a maximum rate of "".l-. The sending role of a node will 
-'pack 

continuously consume the first packet RESP it finds in DELIVERY, at a maximum rate of ~ . 
.J.resp 

These two rates are independent and correspond to the maximum speed at which the transport 

layer "agents" (in PRMP case, RM and RHM) will handle packets. 

A multicast packet being consumed from INCOMING may be replicated into one or more of the 

"OUTGOING" queues; each OUTGOING queue is associated with a link (there is one OUTGOING queue 

for each link connecting the node). A packet is forwarded into one or more of the OUTGOING 

queues according to its destination address. Packets are consumed from each OUTGOING queue 

on a FIFO basis (no RED gateways [Floyd93] or fair-queueing) according to the bandwidth and 

latency associated with the corresponding link. 

The simulated network can now be defined as "a set of network nodes, either hosts or 

routers, which are interconnected by communication links forming an arbitrary tree with the 

source at the root". The main difference between a host and a router is that the former may 

have a sender or receiver part of the PRMP tree, while the latter only routes packets. Both 

hosts and routers share the same conceptual routing abstraction. In hosts which contain a 

receiver, there may be a receiving application to consume the data (in the simulation results 

presented this was always the case); otherwise, the receiver would only route packets according 

to the hierarchic organization of the PRMP tree. Each communication link is point-to-point and 

bidirectional, and has a fixed propagation time (in ms), bandwidth (in bits/s) and corruption 

rate (in percentage of bytes). 

Each network node is uniquely denoted using hierarchical addressing; the first letter of the 

name identifies the kind of node, 'h' for hosts and 'r' for routers. The root node, which has 

to be a host, is denoted as 'hO'. Its children are denoted as: 'hi' or 'ri'; 'h2' or 'r2', etc.; the 

children of, say, 'ri', are: 'hi,i' or 'ri,i'; 'hi,2' or 'ri,2', and so on. 



6.2. ENHANCED NETWORK MODEL 169 

Congestion and implosion can both be attributed to losses caused by buffer overflow (though 

implosion is also related to contention in shared-media networks). In the simulation experi

ments undertaken, packets could only be lost because of corruption or buffer overflow. In the 

former case, one of the bytes of a packet gets corrupted during its transmission through a link; 

at the receiving end of the link, the corruption is detected and the packet silently discarded. 

In the latter case, a packet needs to join a queue which has already filled. This queue 

size restriction is applied in two ways: it limits the size of the queue in bytes (buffer size), 

as well as in number of packets (entries in the queue). If a new packet would exceed either 

limit, the packet is dropped. Each queue has associated a pair bytes/packets which describes 

its maximum capacity: Qi for INCOMING, Qd for DELIVERY, and Qo for OUTGOING. The buffer 

overflow losses were classified in three types according to the type of packet and the node in 

which it occurred: 

implosion feedback packets which are dropped at any node apart from the leaf nodes; 

congestion non-feedback packets dropped at nodes without sender or receivers (routers or 

hosts acting as routers); 

overrun data packets which are lost at the root (before being transmitted) or at the re

ceiver's host (before being delivered), or feedback packets which are lost before 

being transmitted. 

There is an additional input parameter associated with each host, Tcons. In hosts occupied by a 

receiver and a receiving application, data packets which become "consumable" at the receiver 

are passed in sequence to the receiving application. Assuming that the receiving application 

will always wish to consume data, the rate at which data units can be consumed by the receiving 

application is dictated by -T.1 
. This is particularly important to study scenarios in which flow 

cons 

control is to playa major part in the experiment. 

The same output metrics defined for the simulation in Chapter 4, namely throughput T, 

network cost N, and implosion losses I, are used in the experiments reported in this chapter. 

T is the throughput (measured in Kbps) from the point of view of the sending application; 

it is determined as the amount of data provided by the sending application per time taken 



170 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

to complete the reliable transmission (from the first packet to termination by the source). In 

the simulations with hierarchic PRMP, there are two variations of T, Tl and T2 , depending on 

when the source terminates (according to reliability degrees defined in Section 5.6): Tl refers to 

(f-r) and T2, to (h-c). I is the number of packet losses caused by implosion. N is the relative 

network cost, calculated as the total number of packets exchanged per receiver per data unit. In 

this chapter, N is determined differently, to allow the heterogeneous set of distances (in hops) 

to weigh accordingly: the total number of packets (totPkts) now incorporates the number of 

hops traversed by each packet between sender and receivers. The resulting N will be equal to 

or greater than the N of Chapter 4, since a packet will have to traverse at least 1 link between 

a sender and a receiver in the tree. 

6.3 Comparison between PRMP and FF 

This section compares the hierarchic PRMP with the FF protocol (as in Chapter 4) using a tree 

topology in which all nodes are hosts. A group of 50 receivers (GS = 50) was chosen, and 

the 51 hosts were arbitrarily organized according to Figure 6.4. The figure shows, for each 

link, the propagation latency and the error percentage assigned to the link (the chance a byte 

gets corrupted when traversing the link). Table 6.1 shows the network parameters for that 

topology3. 

meaning I variable value 

INCOMING max sizes Qi 16,384 bytes/64 packets 
OUTGOING max sizes Qo 8,192 bytes/64 packets 
DELIVERY max sizes Qd 8,192 bytes/64 packets 

Time to route packet Trout 3 ms (333 pis) 
Time to handle response packet Tresp 4 ms (250 pis) 
Time to handle data/poll packet Tpack 5 ms (200 pis) 

Time to consume data packet Tcons Oms (00 pis) 

Table 6.1: List of network parameters employed in the PRMP v. FF experiment. 

The 50 FF receivers were allocated to the tree in no particular order; as FF does not impose 

any logical order among receivers, the allocation of receivers to hosts is irrelevant. In contrast, 

3in the experiments involving the Full Feedback protocol, Tcons was set to 0, because flow control was not 
included in the protocol implementation. 



6.3. COMPARISON BETWEEN PRMP AND FF 171 

<0( , 
~ 

~ 
'. ". • 
". 
i 
"-". , 
~ 

'" • 
'" , 
;: 
'. "-, 
" "-, 
"-
"-, 
'" , 
'i 

'i 

,. 
!-
'i 
~ 
'i , ,. 
,. 
~ 

~ 

~ 
'. 
~ 

" ~ 
"-
~ 

~ 
'. 
~ 
". 
i 

~ 
'. 
~ 

" ~ 
"-
~ 

~ , 

· 
· 
~ 
~ 
~ 

1 · 

Figure 6.4: Network multicast tree employed in the PRMP v. FF experiment. 



172 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

for PRMP, the logical tree exactly matches the physical tree. This represents the best case 

scenario for PRMP. 

Both protocols transmitted 1MB of data using 500-byte data units (unitSize = 500, DP = 

2,000), at a maximum rate of 100 packets/s (fPC = 10ms), and using a window of 32 KB 

(length L = 64). Additionally, PRMP employed epoch length EL = 20ms, RR = 50 responses/s, 

and MT R = 20%. Both PRMP and FF protocols were equally tested using an "infinite window" 

of 2,000 packets (L = 2,000); the corresponding runs are denoted as PRMP-IW and FF-IW, 

respectively. 

Table 6.2 shows the results obtained, with the values verified for I, TI , T2 , and N. The 

number of losses, total and per type of loss, are also shown. Recall that congestion losses 

are those non-feedback packets discarded by nodes without a sender or a receiver; as in this 

experiment all nodes have a sender and a receiver, per definition there cannot be congestion 

losses (hence the column for congestion is omitted from the table). On the other hand, internal 

hosts are acting as network routers too; therefore, the buffer losses at these elements could 

be also regarded as congestion losses; congestion losses will appear masked as implosion or 

overrunning losses. 

Losses Buffer Loss 
Total Corrupt Buffer I Overr. Tl/T2 N 

PRMP 53 53 0 0 0 399/385 1.09 
PRMP-IW 47 47 0 0 0 399/385 1.09 

FF 1,492,049 983 1,491,066 1,466,210 24,856 3 56.29 
FF-IW 7,585,236 4,230 7,581,006 7,359,229 221,777 2 209.192 

Table 6.2: Numerical results from experiment comparing PRMP to FF. 

The numbers in the table show emphatically the difference between PRMP and FF: while the 

Full Feedback runs led to a very large number of implosion losses, which caused a "collapse" 

of the network, PRMP prevented all buffer losses in the two run~. The polling-based feedback 

scheme was effective in avoiding implosion in such a hierarchic configuration. Note that RR 

was set to 50 packets/s, which is 1/4 of the physical capacity of each host, 200 (RR = I~R). 

Note also that the reduction in the number of implosion losses caused by window blocking 

in Full Feedback runs, as shown in Chapter 4, is repeated here: because FF has limited window 



6.4. EVALUATION OF ANTI-NAGGING MECHANISM 173 

size, its actual transmission rate is lower than the one achieved by FF-IW, and so the feedback 

rate generated by receivers is smaller, causing fewer implosion losses. 

In this scenario, for D P = 2, 000 units, unitSize = 500 bytes, and I PG = lOms, the best 

possible T2 is given by: 

To = 2, 000 x 500 x 8 * 395 Kb s 
20pt 2, 000 x 10 + 212 p 

The 212 value corresponds to the the best (thus smallest) RTTmax possible between the 

source at 'hO' and any receiver at the bottom, such as 'h1, 1,1'. The best RTTmax occurs 

when a packet-pair round trip finds all queues empty, and therefore are never delayed awaiting 

forwarding. So, in this case, RTTmax is the sum of link latencies: (1 + 100 + 5) x 2 ::} 212. 

In this network configuration without routers, with a perfect match between the physical 

and the logical multicast trees, the T2 achieved by PRMP and PRMP-IW are very close to optimal 

(385 and 386 Kbps, respectively). Likewise, the N values for the PRMP runs are very close to 

the optimum N, 1, and were helped by the matched topology. 

6.4 Evaluation of Anti-Nagging Mechanism 

A specific network scenario was employed to evaluate the efficacy of the anti-nagging mecha

nism: as shown in Figure 6.5, there are only four network nodes in the tree, of which three 

are hosts. Host 'hO' contains the source, S; host 'h1, l' contains the single child of S, R I ; host 

'h1,2' contains RI's single child, RI,I. The receiver RI,1 behaves as the bottleneck in the data 

flow because its receiving application is very slow to consume the data received. 

Recall that Tcons is the time it takes for the receiving application to consume a fixed-size unit 

of data from its local receiver. In this experiment Tcons is set to Warns, so that the consumption 

becomes much slower than the rate in which packets are made available for consumption (up 
. 

to 100 packet/s, since IPG = lams). The leaf receiver RI,1 reports full buffers to R I , which 

cannot slide its sw forward. Buffers at RI fill, and RI reports to S that it cannot receive any 

additional data packet. The parent S then keeps nagging RI because of RI,I. Hence, overall 

RI,1 will require extra POLLS from its parent RI because of flow control. 



174 CHAPTER 6. PROTO TYPING & SIMULATION OF HIERARCHIC PRMP 

5 
hO 

1ms, 0% 

1ms, 0% l\ 
Rl Rl,l 
hl,l hl,2 

75ms,0% 

Figure 6.5: Network scenario in which the nagging parent syndrome occurs. 

PRMP was run with and without the anti-nagging mechanism active. Table 6.3 presents the 

outputs, which are the total number of POLL packets exchanged, the network cost, N, and the 

throughput, T2 . 

Note that Tcons = lOOms is the restricting factor in the maximum achievable throughput. 

Since a receiving application cannot consume more than 10 packets/s, the maximum T2 will 

not exceed 10 packets/s, that is, 40 Kbps. 

POLL packets N 

without mechanism 36,033 
with mechanism on 9,193 

Table 6.3: Effectiveness of the mechanism to avoid the nagging parent syndrome. 

The scheme to decrease the frequency in which RI is polled by S while Rl waits for RI,1 was 

effective in minimizing the nagging syndrome: Table 6.3 shows that the POLL packet overhead 

was reduced in 74% when the mechanism was active. This contributes to a lower network cost, 

as N was reduced with the mechanism from 22.01 to 8.59. It is clear from the column T2 that 

the reduction in bandwidth achieved by the anti-nagging mechanism did not on the other hand 

introduce notable delays, since the mechanism did not affect the throughput of the protocol. 

6.5 The IMAGINARY Tree Topology 

The tree topology used in Section 6.3 may be unrealistic, because there were no network routers, 

and the corruption rates were higher for the links at the bottom. These factors favored PRMP 

and its hierarchical organization for two reasons: firstly, the tree with PRMP receivers perfectly 



6.5. THE IMAGINARY TREE TOPOLOGY 175 

matched the network topology; secondly, more frequent losses at the leaf receivers allowed their 

parent receivers to recover their losses more promptly (than in FF). 

A more "realistic" network configuration is described in this section, and used in the remain

der of the experiments reported in this chapter. The topology of this new network configuration 

is based on the "imaginary tree" described in [Papadopoulos98], and will therefore be denoted 

as IMAGINARY configuration (see Figure 6.6). The propagation latencies of each link are shown 

in the figure; those omitted are equal to 1ms. The default corruption rate assigned to links 

was 10-4% (i.e., percentage of bytes which get corrupted when traversing the link); some links 

have 0% of corruption losses, and these are indicated in Figure 6.6. 

There are 34 hosts in the tree; the host at the root, 'hO', is to be occupied by the source 

(and sending application). The remaining 33 hosts are all placed at leaf positions in the tree; 

there are 14 routers. 

The Figure 6.7 shows the allocation of the logical PRMP tree to the physical, network 

multicast tree of Figure 6.6. Note that in the tree of Figure 6.7, not a single internal receiver is 

located at a host node acting as a router. Given the way PRMP propagates data units (through 

its logical tree), there is an overhead in network cost and latency whenever an internal node 

forwards a data unit from one level to the next. For example, in Figure 6.7, when RI forwards a 

data unit to RI,I, the packet traverses upstream the link to router 'r1 ,1', and then downstream 

to RI,I. This forwarding has an impact on T and N of PRMP, and is the price paid by PRMP 

for carring out the data forwarding itself. 

Even though this forwarding process makes specially important the allocation of receivers 

to the network nodes (that is, the formation of the logical PRMP tree), the tree formation 

scheme is outside the scope of this thesis. The arbitrary allocation of receivers used in the 

IMAGINARY configuration is shown in Figure 6.7. For the Full Feedback protocol, its receivers 

do not follow any logical structure, and are sequentially allocated to host nodes (and thus the 

corresponding figure can be omitted). 

Tables 6.4 and 6.5 show the input values employed in the IMAGINARY configuration, at 

network and protocol level, respectively. 



176 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

~---

N. 
N. 

<
~ . ~ 

N. 

N. . -
N 

~ 

N. 

"'. 
"': 
ri 
~ 

"'. 
N: 
N: 
~ -. 
N: 
"': 
... 
..;: -. 
N: 
~ 

"'. "'. -. 
N . 

... : -. 
ri 
~ 

"'. N. -. 
"': 
~ 

N 
ri -. 
ri 

N: -. 
ri 
~ -. -. -. 

ri -. N. 
0;: 

~ 

N. 
N. -. 

+--::.!: 
ri 
~ 

ri 

Figure 6.6: IMAGINARY multicast tree configuration. 



6.5. THE IMAGINARY TREE TOPOLOGY 177 

:;; 
N. 
N • 

... -('~; 
<+---:-~ 

N. 

:;; 

-. -. 
~~---

:;; 
... 
..[ 

~ .. r.;: 
~ 

N 
..[ 

0,; .. r.;: 
~ 

..[ 

:;; 

:;; 
N. 
"I. 

.. r.;: 
:;; 

N: 

~-: 
N. 

:;; 

-. -. 
N. 

~ r.;: 
"i: :;; 

Figure 6.7: IMAGINARY multicast configuration with allocated PRMP source and receivers. 



178 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

meaning I variable value 

INCOMING max sizes Qi 16,384 bytes/64 packets 
OUTGOING max sizes Qo 8,192 bytes/64 packets 
DELIVERY max sizes Qd 8,192 bytes/64 packets 
Time to route packet Trout 2 ms (500 pis) 

Time to handle response packet Tresp 4 ms (250 pis) 
Time to handle data/poll packet Tpack 5 ms (200 pis) 

Time to consume data packet Tcons Oms (00 pis) 

Table 6.4: List of default network parameters employed in the IMAGINARY configuration. 

Input I Variable Name I Value 

window length L 100 packets 
data unit size unitSize 500 bytes 

transmission size DP 4,000 packets 
group size CS 33 receivers 

inter-packet gap fPC lOms 
epoch length EL 20ms 
response rate RR 100 RESP/S 

uni v. multicast threshold MTR 20% 

Table 6.5: Protocol inputs used in the experiments with the IMAGINARY configuration. 

6.6 Congestion Control Evaluation 

This section describes an experiment to evaluate the dynamics of the congestion control mech-

anism in face of fluctuations of the network load. To isolate congestion losses, the corruption 

rate of all links was set to 0% (thus there were only buffer overflow losses). The source transmits 

4, 000 units of 500 bytes each. 

An artificial load was induced into a router during the transmission, as follows. The first 

799 packets are transmitted by S normally; at the time the packet seq = 800 is sent, the router 

'r, 1,2,1,2,2,1,2', as shown in Figure 6.8, has its load increased 4 times: Qi +- ~, Qd +- ~, 

and Qo +- ~; further, Trout +- Trout X 4, so that there are four times less buffers available in 

all, and packets take four times longer to be routed. All stored> packets remain in the router 

and are forwarded normally; the new, shorter buffer size limit only applies to newly arrived 

packets. 

The router remains the bottleneck until the source transmits the packet seq = 1,300, when 

the capacity goes back to the original level, and is kept normal during the remaining 2, 700 data 



6.6. CONGESTION CONTROL EVALUATION 179 

.... 

"0 I!! 

I ~ ·iii .. 2! 

"!. 
"'. 

~~ 
"!. 
~ 

"!. 
"'. 

-.''1; "4....-::-: 
"!. 
:; 

"'. "': NN: 
~-;::: fill"": 

~f~-:; 
"': "'. :; 

;::-~: -. 
.: N: -. 

:; 

~~--- -. "': 
~ ~: :; 

"!. 
:; 

"'. "'. N.-. 
"'-at N: 

:; 

'" ..;: 

~-~: 
:; 

-i: 

'" "': 

:; 
N 
ri 

:; 

N: 

:; 

-. -. 
ri 
-;: :;; 

Figure 6.8: IMAGINARY multicast configuration with allocated PRMP source and receivers. 



180 CHAPTER 6. PROTOTYPINC & SIMULATION OF HIERARCHIC PRMP 

packets, i.e., until the end of the transfer. This experiment was run for both window-based 

(wb) and rate-based (rb) congestion control mechanisms, for the IMAGINARY configuration. 

Figures 6.9.(a) and 6.9.(b) depict the wb congestion control mechanism in action, and show 

the fluctuation of its control variable, the congestion window, through time. The sw.cwnd 

shown in the figure is that of the sending role of Rs: Rs is the parent of the receivers which 

will experience packet losses when congestion is induced. It is Rs that forwards packets to 

RS,2, which on its turn forwards data packets through the congested router to its own children, 

RS,2,1 and RS,2,2. Thus, RS,2 will also detect and reduce the load to reduce congestion. Figure 

6.9.(b) is a zoom into the time interval in which congestion was induced, and also indicates 

packets losses at the congested router. 

The mechanism starts in "slow-start": sw.cwnd increases exponentially from 1 until the 

limit L is reached, at around 2s. sw.cwnd remains unchanged until 8s, when the induced 

congestion at the router starts. Note that the concentration of vertical lines in Figure 6.9.(b) 

shows the large number of losses verified in the router. These multiple initial losses make 

sw.cwnd rapidly drop to 2 or 3 packets. While the router stays congested, sw.cwnd typically 

varied between 2 and 8 packets. Near 27s the router is relieved from congestion, and sw.cwnd 

starts growing with additive increase until the transmission ends, at time 57s. In this example, 

the transmission does not last long enough to allow the sw.cwnd of Rs to reach its maximum, 

L. 

Figures 6.l0.(a) and 6.W.(b) show the variation in value of the control variable of the rb 

mechanism, the inter-packet transmission gap, through time. Like in the previous example, the 

congestion control shown refers to the sending role of Rs (the value of fPC at Rs); 6.10. (b) is 

a zoom into the interval in which congestion was induced. 

The "sawtooth" pattern which is typical of sw.cwnd is also present in the rb scheme. The 

fPC starts at the provided default of 10ms and remains equal, to 10ms until congestion is 

induced at the router at around time 3s; note that congestion starts early in this example 

because rb does not employ a slow-start; instead, it starts transmitting using the default 

fPC = 10ms (IPCmin was set to Wms). Therefore, S will transmit packet seq = 800 earlier, 

and thus induced congestion will start earlier than in the window-based scheme. 



6.6. CONGESTION CONTROL EVALUATION 

100 

80 

~ 
~ 60 1il 
.e, 
0 z :;: 
() 

40 

20 

10 

30 

" 11 " " " " " :11 !! H " " " ." " " II II " 25 ......... :.lI .... IJ .. J.l .J.I 

20 

~ 
~ 
u ra 
.e, 15 
0 z :;: 
() 

10 

5 

o 
10 

" : : 
" 

, , 
" 

, , 
" 

, , 
" 

, , 
" 

, , 
.. l.L .. 1 .. 1 

Window-based Congestion Control 

20 30 
Time (sec) 

(a) complete 

40 

Window-based Congestion Control, Zoomed 

: : , , , , , , , , , , 
.•.. 1 

15 

i: H n :,: :,: l,l:,:,i Hi _ .. ,.:1:1:1 i:,i, : :i H l! 
i! i: n II III Hi iii n 1! 

..... IJ ..... ILI J •• LJ .. 11. J ... 111 .~J.ll ... 1 J .. J .1.1 .. It . .lJ.. 

.................... ; .. 

20 
Time (sec) 

(b) zoomed 

" " " :! , . 

181 

50 

25 30 

Figure 6.9: Variation of Rg.sw.cwnd in time with induced congestion (packet losses are marked 
at the top in Figure (b)). 



182 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

Rate-based Congestion Control 
200 

180 

160 

140 

en 120 
.s 
Q) 
::;, 100 iii 
> 
<!l 
~ 80 .......... ~ 

I 
i 

60 

I 

40 .......... ..i 
i 
i 
i 

20 
i 

············f 

! 

0 
0 10 20 30 40 50 60 

Time (sec) 

(a) complete 

Rate-based Congestion Control, Zoomed 

200 

150 

en .s 
Q) 
::;, 
iii 
> 
<!l 100 
~ 

50 

o~--~--------~------~--------~------~--------~------~ 
10 15 20 25 30 35 40 

Time (sec) 

(b) zoomed 

Figure 6.10: Variation of I PG in time with induced congestion; (packet losses are marked at 
the top in Figure (b)). 



6.6. CONGESTION CONTROL EVALUATION 183 

When induced congestion starts, there are multiple consecutive losses within a transmitted 

window (like in the window-based example), which makes the IPG jump to 200ms. Then the 

transmission rate is low enough to make losses stop, and the value of I PG starts decreasing. It 

decreases until I PG = 30ms, when the network capacity is exceeded and provokes 1 or 2 new 

packet losses. The pattern is repeated five times: quick decrease in rate, slow increase in rate, 

and eventually, losses. At around time 36s, the router is relieved from congestion, while the 

I PG is on decrease. There are no further losses, and at time 40s I PG reaches I PGmin that is, 

the maximum transmission rate set by the user. 

Table 6.6 compares numeric results for three settings regarding congestion control. It shows 

the number of buffer losses experienced at the congested router during the entire transmission, 

as well as the throughputs and the number of POLL packets exchanged. 

buffer losses at router 
Congestion Control total congestion impl. TdT2 POLLS 

None 2,256 2,115 141 304/282 1,263 
Window-Based 116 111 5 295/274 9,893 

Rate-Based 41 37 5 244/241 1,598 

Table 6.6: Numeric results obtained for transmissions using different congestion control mech
anisms. 

With either congestion control mechanism in place, it is evident the congestion mechanism 

of PRMP prevent congestion losses at the bottleneck router: 111 losses for wb, and 37 for rb, in 

contrast to 2,115 losses without any mechanism. There are few implosion losses in all 3 cases, 

but they were noticeably smaller with wb or rb active. 

The throughput of PRMP is affected by the congestion control mechanisms: the protocol 

slows down, instead of trying to keep up with transmission. Therefore, Tl and T2 of "greedy" 

PRMP (without congestion control) result in slightly higher throughput, despite incurred losses. 

Finally, note that the number of POLL packets required is substantially increased in the 

wb case. This poll overhead, as previously discussed, is due to the window blocking effect (see 

Section 4.2): the window blocks, one or more receivers need to be polled, and thus when their 

next poll plan is due, a POLL packet is sent to elicit the required feedback. Therefore, the 

rate-based mechanism may not tackle congestion so efficiently; however, POLL packets tend to 

be much smaller than data packets, and therefore do not contribute as much with an increase 



184 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

in the load. 

6.7 Flat v. Hierarchic 

The final set of experiments provides a comparison between the basic, flat PRMP, and the 

extended, hierarchic PRMP. It is well-known that the hierarchic schemes offer potential gains 

in terms of scalability of reliable multicast protocols; this section reports experiments which 

quantify such gain for the same IMAGINARY configuration which has been employed in the 

previous sections. An additional, alternative case was studied where the corruption rate of all 

the links downstream of router 'rl,2,1,2,2,1' were increased (as illustrated in Figure 6.11); 

this scenario was studied to highlight the potential gain stemming from local recovery when 

the losses are concentrated at lower levels of the tree. Its purpose was to evaluate the potential 

gains in T and N arising from the use of distributed error and flow control. 

Recovery times can be reduced when recovery is provided by nearby agents, avoiding long 

delays in reporting a loss to the source and in obtaining a retransmission from it. To realize 

the gain of local recovery, however, losses need to be concentrated at the "bottom" levels 

of the tree. Further, for PRMP, the gain is only possible if the point of loss is between the 

source and a parent node: in this case, the child receivers (and their receivers too, if any) will 

profit from local recovery. To measure this advantage, the average and maximum loss recovery 

times, from the receivers' point of view, were also recorded. Table 6.7 summarizes results. The 

window-based congestion control scheme was used in both cases. 

normal lossy 
flat hierarchic flat hierarchic 

POLL packets 11,648 9,079 18,812 11,440 

throughput TdT2 (Kbps) 76/76 202/202 43/43 172/171 
network cost N 3.816 3.853 5.518 4.134 

avg. recovery latency 285 124 345 87 

max. recovery latency 457 300 737, 507 

Table 6.7: Comparison between hierarchic and flat allocation of receivers. 

First note that, as expected, the overall results are consistently better in the "normal" 

configuration than in the "lossy": less POLL packets were required, higher T achieved, lower 



>-:rj 
aq' 
-= ., 
("!) 

0") 

~ 
~ 

U"1 
(") 
("!) 

l:! 
~ o· 
~. 
e+ 
l:!"' 
r.LJ o 
S 
("!) 

~ 
r.LJ 
'< -
~ 
r.LJ 

~ 

i -("!) 
~ 
tir 
o ...... 
e+ 
l:!"' 
("!) 

e+ ., 
("!) 
("!) 

A 
R1 IU,' Rl,2 Rl,3 

hl,l,1 h1,1,2 hl,l,3 h1,1,4 

rl.2,),I,1 

~ ~ 
[4 R.5 R5,1 15,2 R6 R6,1 R6,2 

h1,2,1,1,1,1 hl,2,1,1,2,1 111,2,1,1,2,2 h1,2,1,1,2,' 111,2,1,1,3,' h1,2,1,',3,2 hl,2,',1,3,3 

LOSSY REGION 

, , 

5 

1 
I .." R3 D.l Rl,2 D,3 

h1,\) 
1m.. 0'1. ~'3 hI," hI,' 

67 / \"'~ 
C! R2,1 122,2 122,3 

h1,2,2 h',2,3 h1,2,4 h1,2,5 

~ X 
/ / \ ~ 3m. /"_ "" 

l7 l7,1 R7,2 l7,3 .--~"---hi,2~~~-
.1,2,1,2,1,' h1,2,1.2.1,2 h1.2.',2,1,3 hl~2!.1!.2.Ll.&.4 __ -,,:,-~ / ",~,212 --- ___ _ 

" 
l8,2 R'.2. T R8,2,2 

hl.2,',2,2,1,2,1 h1,2,1,2,2,1,2,2 .',2,1,2,2,1,2.3 

, , 
I 

~ 
~ 

~ 
~ 
~ 

:::: 
~ 
gg 
;:t;. 
~ 

~ 
d 

~ 

00 
CJl 



186 CHAPTER 6. PROTOTYPING & SIMULATION OF HIERARCHIC PRMP 

N, and faster loss recovery. In each configuration, in general the hierarchic PRMP exceeded 

the flat PRMP. The number of POLL packets required by hierarchic PRMP was around 22% 

lower (i.e., better) in "normal", and 39% lower in the "lossy" scenario; this is due to the fact 

that the latencies between a sender and a receiver in the hierarchic PRMP are much smaller, 

and thus sw blocks less often. This shows on the throughput, which is significantly superior 

in the hierarchic PRMP for both scenarios. Localized error, flow, and congestion control is the 

chief reason for such gains. The N of hierarchic was not substantially better than that of 

the flat case; this is probably because of the overhead caused by the "detour" of data packets 

which are forwarded through the PRMP tree. In the flat case, data packets flow downstream 

through the tree and never traverse the same link twice; in the hierarchic case, the data packets 

are forwarded at protocol level, which implies some overhead. Finally, both the average and 

the maximum recovery times recorded were better with the hierarchic PRMP: in the "normal" 

scenario it was around 2/3 of the corresponding value in the flat, while in the "lossy" scenario 

the advantage of local recovery was even more evident: the average recovery time for receivers 

with the hierarchic PRMP was 1/4 of that verified in the flat PRMP. 



Chapter 7 

Concluding Remarks 

There has recently been substantial research in the field of scaleable reliable multicast protocols. 

One of the main issues discussed is the implosion feedback problem. It limits the scalability of 

reliable multicast protocols. Novel schemes for scaleable loss detection and recovery have been 

devised, resulting in the development of new reliable multicast protocols. Most of these proto

cols follow the same approach to solve the scalability limitation: make the sender independent 

from receivers. 

This thesis follows a radically different approach, by tackling the scalability problem through 

a polling-based implosion avoidance mechanism. It shows that the initial assumptions about 

sender-initiated protocols (according to [Pingali94]) need not be true, and can be circumvented 

by controlling the rate of feedback returned by receivers. The scalability of the protocol de

scribed in this thesis, PRMP, and its mechanisms is further enhanced by structuring receivers 

according to a hierarchic organization (i.e., a tree-based scheme). 

7.1 Synopsis 

Multicast communication allows the efficient transmission of packets to potentially large sets 

of receivers. Packets are propagated through a multicast tree, and each packet crosses a given 

edge only once before reaching a receiver. The IP multicast architecture allows multicast 

transmission in the Internet in a scaleable manner, but such transmission is unreliable, and 

packet losses are likely to occur. For many applications, some degree of packet loss is tolerable; 

187 



188 CHAPTER 7. CONCLUDING REMARKS 

examples are applications that broadcast events through the Mbone. For others, the contents 

transmitted by the sending application have to reach receiving applications integrally: receiving 

applications need to receive an exact copy of the data transmitted. This is known as fully

reliable multicasting. 

In certain uses of multicast, the sending application transmits data unaware of receiving 

applications: the sending application "announces" in a session directory the starting time of a 

transmission and the "channel" used (the multicast group id)i interested receivers join the group 

at the scheduled transmission time. This is like the event broadcasting example. In other cases, 

the sending application wishes to determine the exact list of receivers, and possibly to keep 

track of any changes in the membership which may occur during the transmission (known as 

sender-reliable mUlticasting). This is important, for example, whenever the sending application 

wishes to "bill" receiving applications for the contents transmitted. 

This thesis sets out to design a fully-, sender-reliable multicast protocol that can scale well 

in terms of both number of receivers and their geographical distribution (wide-area networks, 

sparse distribution, heterogeneous latencies, etc.). The scalability limitation to be overcome by 

this protocol and others is the ACK-implosion problem. Implosion happens in reliable multicast 

when the amount of feedback packets returned by receivers exceeds the sender or network 

capacity, leading to packet losses and, hence, loss of throughput and increase in network cost. 

To solve the ACK-implosion problem, a new class of protocols, the receiver-initiated proto

cols, has been designed. [Pingali94] has shown that traditional sender-initiated schemes, where 

the sender expects to receive an ACK packet from each receiver for every data packet multicast, 

scale poorly because of the ACK-implosion problem. Receiver-initiated protocols, in contrast, 

shift the initiative for loss detection and recovery to receivers: the sender is "passive" and 

after transmitting, it waits for receivers to request retransmissions. This makes the sender 

independent of the number of receivers, and allows a protocol of such a class to scale to very 

large groups. 

However, receiver-initiated protocols have their limitations, too, and they result from the 

fact that the sender does not have control of or knowledge about receivers. Firstly, implosion 

is still possible, when losses are correlated and shared by large sets of receivers (i.e., NACK-



7.1. SYNOPSIS 189 

implosion). Secondly, as the sender does not receIve positive confirmation of receipt from 

receivers, it does not know when it can "safely" release a data packet from its buffers. Therefore, 

it either cannot guarantee (within reasonably probability) full-reliability, or it has to store all 

data packets transmitted during the transmission and afterwards for an arbitrarily long time 

(i.e., rely on the "infinite buffer assumption"). Thirdly, because the sender does not know 

about receivers, heuristic inputs (e.g., maximum RTT) are often required; conservative values 

may need to be used, negatively affecting the protocol. Consequently, error control and flow 

control mechanisms suffer due to the lack of knowledge about receivers. Furthermore, because 

the design of sender and receiver initiated protocols differ radically, to "add the knowledge 

about receivers" to the sender of a receiver-initiated protocol will not automatically bring the 

benefits of having such knowledge at the sender. 

This thesis develops an alternative approach to solve the scalability limitation of sender

initiated protocols: the use of a polling-based implosion avoidance mechanism. This idea is not 

new [Hughes94], although it has only been applied within the context of local-area networks. 

The polling-based implosion avoidance mechanism described in this thesis extends that concept: 

receivers are polled at carefully-planned times, so that despite heterogeneous sets of RTTS, 

the rate of feedback packets arriving at the sender does not exceed the sender or network's 

capacity. The sender can therefore remain active in the role of controlling the communication 

with receivers (which is achieved through a multicast sliding window). The design of PRMP 

is based on a one-to-many sliding window mechanism, and error, flow, congestion and session 

control all derive from it. 

The resulting protocol is called PRMP: polling-based Reliable Multicast protocol. Its design 

process has been divided into two distinct stages: flat and hierarchic. The flat PRMP (Chapter 

3) was developed so that high-performance multicasting could be delivered to "medium-sized" 

groups (e.g., hundreds of receivers). The hierarchic PRMP (Chapter 5) is the extension that 

improves the scalability both in terms of group size and geographical distribution of receivers. 

In the flat PRMP, the sender directly communicates with all receivers. The protocol at 

the sender is scaleable due to its polling-feedback implosion avoidance mechanism. Its flow 

control mechanism prevents unnecessary packet losses caused by overrun receivers (the sender 



190 CHAPTER 7. CONCLUDING REMARKS 

has status about receivers and limits the transmission speed accordingly). The error control 

mechanism collects retransmission requests and judiciously decides between selective unicast 

and multicast retransmission (as discussed in Section 2.2.1, this is an important feature for the 

scalability of reliable multicast protocols). Furthermore, the error control mechanism prevents 

the unnecessary retransmissions that would arise from "obsolete NACKS". As shown in the 

simulation experiments, the end result is a scalable reliable multicast protocol which can deliver 

high throughput with low network cost. 

However, the number of receivers in which the flat PRMP protocol can achieve such good 

results is limited. There are two factors that restrict the scalability of flat PRMP. The first 

factor is that the capacity of the sender and the network in dealing with feedback is finite, so 

that the rate of feedback packets available to the sender is limited. For a given network, there 

will be a group size that is sufficiently large to reach this limit; thereafter the response rate will 

become the bottleneck in the transmission. The second factor is that flat PRMP cannot explore 

the topology. In wide-area multicasting, the round-trip delays between sender and receivers can 

be large; tree-based or hierarchic protocols employ a "representative receiver" that is able to 

recover losses more quickly by retransmitting to nearby receivers. Additionally, the hierarchic 

organization allows the protocol to scale better: only a subset of receivers communicates directly 

with the sender, reducing the risk of implosion, and the amount of state kept at the sender. 

The hierarchic PRMP extension was developed to increase the scalability of the flat PRMP. 

It has a fully-hierarchic nature, more so than other tree-based protocols: in PRMP, data packets 

are forwarded by the protocol receivers using multicast transmission between each two succes

sive levels. This fully-hierarchic nature is reflected on the design of the protocol: error control, 

flow control, etc. are fully distributed among members of the group. To provide reliable multi

cast in a "network-conscious manner" , two congestion control mechanisms were developed for 

PRMP: a window-based and a rate-based, both detecting congestion through aggregated packet 

status in the sliding window. 

The simulation in Chapter 6 extended the comparison between PRMP and the Full Feedback 

protocol (FF) shown in Chapter 4. It confirmed the previous results: while FF scales poorly 

because of implosion losses, PRMP can efficiently prevent such losses and, with the help of 



7.2. CONTRIBUTION 191 

its hierarchic organization, achieve high throughput and low network cost. The benefits of 

distributed error and flow control are visible in the experiments performed with multicast 

trees, and hierarchic PRMP outperformed flat PRMP in all aspects apart from network cost, in 

which case they were on par. The network cost is not improved with hierarchic PRMP (over the 

flat one) due to the nature in which data packets are transmitted from the sender to receivers 

in the hierarchic PRMP: they are forwarded by receivers, overlapping with the more efficient 

network-level routing. The simulation experiments also showed that both the anti-nagging and 

congestion control mechanisms are effective in reducing the number of POLLS and congestion 

losses, respectively. 

7.2 Contribution 

Sender-initiated protocols were shown to be poorly scaleable due to the ACK-implosion problem. 

This thesis explored the idea of making sender-initiated schemes scalable through a polling

based, sender-controlled implosion-avoidance mechanism. It demonstrated the feasibility of 

this approach through the design of an efficient and scalable reliable multicast protocol. The 

mechanism behind the scalability of the protocol is a novel implosion avoidance mechanism 

based on the timely planning of polls. 

The implosion avoidance allows the sender to maintain status about receivers; a novel one

to-many sliding window scheme has been devised. It introduces the concept of receiver sets and 

aggregation of attributes, and with these extended the abstraction of reliable unicast to reliable 

multicast. The design of novel error, flow, and congestion control mechanisms has been based 

on the aggregated attributes as well as receiver sets that are generated from the status stored 

in the sending window. As mentioned above, the error control mechanism of PRMP efficiently 

detects and recovers from packet losses; the flow control prevents overrunning of receivers; the 

congestion control reduces the load and substantially reduces the number of losses caused by 

buffer overflow at congested routers. 

A multi-threaded architecture was designed to implement the resulting protocol, and a net

work tool to simulate and evaluate its implementation. The simulation experiments illustrated 

that the PRMP can achieve high throughput and low network cost regardless of the group size. 



192 CHAPTER 7. CONCLUDING REMARKS 

7.3 Future Work 

This thesis described in detail the most important mechanisms of PRMP, including a prototype 

implementation; however, important issues regarding PRMP were not addressed. Both session 

and congestion controls require more work. In particular, with respect to session control, it 

is necessary to investigate the protocols and criteria behind the formation of the PRMP logical 

tree. This is an important issue for any tree-based reliable multicast protocol, but even more 

so for PRMP, considering its fully hierarchic structure. 

Congestion control also requires more investigation, with evaluation of network scenarios 

involving multiple unicast and multicast flows. Fairness among flows has not been addressed. 

Further, the loss-based, congestion detection mechanism can be improved: packet losses may 

not be due to congestion; also, the scheme is reactive, not proactive, and only reacts when 

congestion has already started. Imminent congestion can be detected and avoided, for example, 

by keeping track of RTTS (e.g., Tri-S [Wang91]). 

The PRMP protocol engine at the sender is complex. Even though the number of feedback 

packets transmitted to the sender is greatly reduced by the polling scheme, the work required 

to handle each response packet is substantially higher than with ordinary ACK packets (and so 

is the bandwidth). Additionally, the planning mechanism of PRMP requires fine-grain timers, 

so that it can uniformly implement a response rate through time. For example, if the trans

mission rate is low, the interval between the transmission of two successive polling requests 

increases, and with it the granularity of polling (Le., receivers polled by a single packet); this 

makes undesirable peaks in the response rate more likely. Therefore, it would be interesting 

to investigate a scheme with two I PGs, one for transmission of data packets, and another for 

transmission of polling requests. 

Finally, there are issues to be studied regarding the hierarchic structure of PRMP. Consider 

the rate at which data packets are made available for transmissio~ at an internal node; if the 

parent is slow to transmit (e.g., due to a large lPG, or small window, etc.), it is possible that 

an internal node will receive a data packet, forward it immediately, and then block without 

further data to transmit. As there is no other data to transmit, the internal node sends POLL 

packets to elicit needed responses from its receivers; this may happen periodically, leading to 



7.3. FUTURE WORK 193 

a notable increase in the number of POLL packets and hence in the network cost. This is 

particularly likely to happen in the rate-based congestion control mechanism. One potential 

alternative to be investigated is the multicast of data packets from the source to all receivers, 

as in other reliable multicast protocols. 

Finally, the current prototype, which runs on top of a simulated network environment, needs 

to be implemented and tested in real networks. For the forwarding of data packets between 

successive levels, multiple IP multicast groups can be used. But before, a formal specification of 

the protocol architecture, including the identification of real-time constraints, is recommended. 



194 CHAPTER 7. CONCLUDING REMARKS 



Bibliography 

[Ammar92] 

[Bagna1l97] 

[Bhagwat94] 

[Birman91] 

[Birtwistle73] 

[Buskens97] 

[Cheung95] 

Ammar, M. H., Wu, L. R. "Improving the Performance of Point to Multi-Point 

ARQ Protocols through Destination Set Splitting, " Proceedings of IEEE 

INFOCOM '92, Florence, Italy, May 1992, pp 262-271. 

P. Bagnall, B. Briscoe, A. Poppitt, "Taxonomy of Communications Requirements 

for Large-scale Multicast Applications", 21 Nov 1997, Internet Draft, 

http://www.labs.bt.com/people/briscorj/projects/lsma/taxonomy-reqs.txt 

P. Bhagwat, P. P. Mishra, S. Tripathi, "Effect of Topology on Performance of 

Reliable Multicast Communication" , INFOCOM'94. 

K. Birman, A. Schiper, P. Stephenson. "Lightweight Causal and Atomic Group 

Multicast", February 1991. ACM Transactions on Computer Systems, v.9, n.3, 

August 1991, pp 272-314. 

G.M.Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard, "Simula Begin", 

Petrocelli/Charter, New York, 1973, 391p. 

R. W.Buskens, M.A. Siddiqui, S. Paul, Reliable Multicast of Continuous Data 

Streams, Bell Labs Tech. Journal, Spring 1997, pp.151-174. 

Cheung, S. Y., Ammar, M. H., "Using Destination Set Grouping to Improve the 

Performance of Window-controlled Multipoint Connections, " Computer Commu

nications Journal, Vol. 19, 1996, pp723-736. (Also in, Proceedings ofInternational 

Conference on Computer Communication and Networks, Las Vegas, Nevada, 

September, 1995, pp388-395.) 

195 



196 

[Crowcroft88] 

[Deering91] 

[DeLucia97] 

[Floyd93] 

[Floyd95] 

[Grossglauser96] 

[Hofmann96] 

[Holbrook95] 

[Holzmann91] 

[Hughes94] 

[Jacobson88] 

BIBLIOGRAPHY 

J. Crowcroft, K. Paliwoda, "A Multicast Transport Protocol", ACM 

SIGCOMM'88, Stanford, 16-19 Aug. 1988. 

S. Deering, "Multicast Routing in a Datagram Internetwork" , PhD Thesis, 

Stanford University, Dec. 1991. 

D. DeLucia, K. Obraczka, "Multicast Feedback Suppression Using 

Representatives", IEEE INFOCOM'97, Kobe, Japan, 17-11 April 1997. 

S. Floyd, V. Jacobson, "Random Early Detection gateways for Congestion Avoid

ance", IEEE/ ACM Transactions on Networking, v.1, n.4, Aug. 1993, pp. 397-413. 

S. Floyd, V. Jacobson, S. McCanne, C. Liu, 1. Zhang, "A Reliable Multicast 

Framework for Light-Weight Sessions and Application Level Framing", ACM 

SIGCOMM'95, Conf. on Applications, Technologies, Architectures, and 

Protocols for Computer Communication. Aug. 28 - Sept. 1st, Cambridge, USA. 

M. Grossglauser, "Optimal Deterministic Timeouts for Reliable Scalable 

Multicast", IEEE INFOCOM'96, San Francisco, California, March 1996. 

M. Hofmann, "A Generic Concept for Large-Scale Multicast", Proc. of IntI. 

Zurich Seminar on Digital Communications, IZS'96, Zurich, Switzerland, 

Springer Verlag, Feb. 1996. 

H. Holbrook, S. Singhal, D. Cheriton, "Log-Based Receiver-Reliable Multicast 

for Distributed Interactive Simulation", ACM SIGCOMM'95, Conf. on 

Applications, Technologies, Architectures, and Protocols for Computer 

Communication. Aug. 28 - Sept. 1st, Cambridge, USA. 

G. J. Holzmann, "Design and Validation of Computer Protocols", Prentice-Hall 

Software Series, 1991, 500p. 

L. Hughes, M. Thomson, "Implosion-Avoidance Protocols for Reliable Group 

Communications", Proc. of 19th Conf. on Local Computer Networks, 

Minneapolis, Minnesota, October 1994. 

V. Jacobson, Congestion Avoidance and Control, Computer Communication 

Review, voLl8, no.4, pp.314-329, Aug. 1988. 



BIBLIOGRAPHY 197 

[Jones91] M.W. Jones, S. Sorensen, S. Wilbur, "Protocol design for large group 

multicasting: the message distribution protocol", Computer Communication, 

v.14, n.5, June 1991. 

[Levine97] 

[Lin96] 

[Macedo94] 

[McCanne96] 

[Miller97] 

[Mitrani82] 

[Moser96] 

B.N. Levine, J.J. Garcia-Luna-Aceves, "A Comparison of Reliable Multicast Pro

tocols", ACM Multimedia Systems Journal, August 1998 (accepted for publica

tion) 

J. Lin, S. Paul, "RMTP: A Reliable Multicast Transport Protocol", IEEE 

INFOCOM'96, 24-28 March 1996, San Francisco, pp.1414-1424 

R.J .A. Macedo. "Fault-Tolerant Group Communication Protocols For 

Asynchronous Systems". Ph.D. Thesis, Dept. of Computing Science, University 

of Newcastle upon Tyne, 1994. 

S. McCanne, V. Jacobson, M. Vetterli, "Receiver-driven Layered Multicast". ACM 

SIGCOMM, August 1996, Stanford, CA, pp. 117-130. 

K. Miller, K. Robertson, A. Tweedly, M. White, "Starbust Multicast File 

Transfer Protocol (MFTP) Specification", (expired) Internet Draft, January 

1997. 

I. Mitrani, Simulation Techniques for Discrete Event Systems, Cambrisge 

Computer Science Texts 14. Cambridge University Press, 1982. 

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. 

Lingley-Papadopoulos, "Totem: A Fault-Tolerant Multicast Group 

Communication System," Communications of the ACM, April 1996. 

[Nonnemacher97] J. Nonnemacher, E. W. Biersack, "Asynchronous Multicast Push: AMP", Proc. of 

ICCC'97 International Conference on Computer Communications, Cannes, France, 

Nov. 1997. 

[Nonnemacher97b] J. Nonnemacher, E. W. Biersack, D. Towsley, "Parity-Based Loss Recovery for 

Reliable Multicast Transmission", Proc. of ACM SIGCOMM'97, Cannes, France, 

Sept. 1997, pp.289-300. 



198 BIBLIOGRAPHY 

[Nonnemacher97c] J. Nonnemacher, E. W. Biersack, D. Towsley, "How Bad is Reliable Multicast 

without Local Recovery?", Proc. of IEEE INFOCOM'98, San Francisco, USA, 

April 1998, pp.972-979. 

[ns] ns network simulator web site, http://mash.cs.berkeley.edu/ns/ns.html 

[Papadopoulos95] C. Papadopoulos, G. Parulkar, "Implosion Control for Multipoint Applications", 

In Proc. of 10th Annual IEEE Workshop on Computer Communications, Rosario 

Resort, USA, Sept. 1995. 

[Papadopoulos98] C. Papadopoulos, G. Parulkar, and G. Varghese, An Error Control Scheme for 

Large-Scale Multicast Applications, INFOCOM'98, San Francisco, 28 March-2nd. 

April 98. 

[Pau194] S. Paul, K. Sabnani, and D. Kristol, "Multicast Transport Protocols for 

High-Speed Networks", Proc. of the IEEE IntI. Conf. on Network Protocols, 

p.4-14, 1994. 

[Pau197] 

[Paxson97] 

[Peterson96] 

[Pingali94] 

[Rajagopalan93] 

[Saltzer84] 

S. Paul, K. Sabnani, J. Lin, and S. Bhattacharryya, "Reliable Multicast 

Transport Protocol (RMTP}", IEEE Journal on Selected Areas in 

Communications, Vol. 15 No.3, April 1997, Pages 407-421. 

V. Paxson, End-to-End Internet Packet Dynamics, IEEE INFOCOM'98, San 

. Francisco, California, 29th March-2nd April 1998, pp.139-152. 

L. L. Peterson, B. S. Davie, "Computer Networks: A Systems Approach" , Morgan 

Kaufmann Publishers, San Francisco, USA, 1996, 552p. 

S. Pingali, D. Towsley, J. Kurose, "A Comparison of Sender-Initiated and 

Receiver-Initiated Reliable Multicast Protocols", Proc. ACM SIGMETRICS 

Conf. on Measurement and Modelling of Computer Systems, Nashville, May 

16-20, 1994. 

B. Rajagopalan, "A Mechanism for Scalable Concast Communication", 

Computer Communicatons, v.16, n.8, Aug. 1993. 

J. H. Saltzer, D. P. Reed, D. D. Clark, "End-To-End Arguments in System 

Design". Transactions on Computers, v.2, n.4, pp. 277-288, 1984 . 



BIBLIOGRAPHY 199 

[Sharma98] Sharma, P., Estrin, D., Floyd, S., and Zhang, L., Scalable Session Messages in 

SRM, Technical report, February 1998. 

[Speakman98] T. Speakman, D. Farinacci, S. Lin, A. Tweedly, Pretty Good Multicast 

Transport Protocol Specification, RFT Internet Draft, 8 January 1998. 

[Stevens94] 

[Talpade95] 

[Towsley87] 

[Tur letti94] 

[Vicisano98] 

[Wang91] 

[Yajnick96] 

[Yavatkar95] 

[Yavatkar95b] 

W. R. Stevens, "TCP lIP Illustrated, Vol. 1: The Protocols". Chapter 21: TCP 

Timeout and Retransmission, Addison-Wesley Professional Computing Series, 

Addison-Wesley, 1994. 

R. Talpade, M. Ammar, "Single Connection Emulation: An Architecture for Pro

viding a Reliable Multicast Transport Service" , in Proceedings of the 15th IEEE 

IntI Conf on Distributed Computing Systems, Vancouver, June 1995. 

D. Towsley, S. Mithal, "A Selective Repeat ARQ Protocol for a 

Point-to-Multipoint Channel," IEEE INFOCOM'87, 6th Annual Conference, San 

Francisco, March 31 - April 2, 1987. 

T. Turletti, J.C. Bolot, I. Wakeman, "Scalable Feedback Control for Multicast 

Video Distribution in the Internet" , In Proc. of SIGCOMM'94, London, 31 

Aug-2 Sept, 1994. 

L. Vicisano, L. Rizzo, J. Crowcroft, "TCP-like Congestion Control for Layered 

Multicast Data Transfer", Proc. of IEEE INFOCOM'98, San Francisco, USA, 

April 1998, pp.996-1003. 

Zheng Wang and Jon Crowcroft, "A New Congestion Control Scheme: Slow Start 

and Search (Tri-S)," ACM Computer Communication Review, vol. 21, pp. 32-43, 

Jan. 1991. 

M. Yajnick, J. Kurose, D.Tosley, Packet Loss Correlation in the Mbone Multicast 

Network, UMCASS CMPSCI Technical Report 96-32. 

R. Yavatkar, J. Griffioen, M. Sudan, "A Reliable Dissemination for Interactive 

Collaborative Applications", ACM Multimedia'95. 

R. Yavatkar, J. Griffioen, "Reliable Dissemination for Large-Scale Wide-Area 

Information Systems" , Proceedings of the 3rd. IEEE Workshop on the 



200 BIBLIOGRAPHY 

Architecture and Implementation of High Performance Communication 

Subsystems (HPCS'95), Aug. 1995. 


	246134_001
	246134_002
	246134_003
	246134_004
	246134_005
	246134_006
	246134_007
	246134_008
	246134_009
	246134_010
	246134_011
	246134_012
	246134_013
	246134_014
	246134_015
	246134_016
	246134_017
	246134_018
	246134_019
	246134_020
	246134_021
	246134_022
	246134_023
	246134_024
	246134_025
	246134_026
	246134_027
	246134_028
	246134_029
	246134_030
	246134_031
	246134_032
	246134_033
	246134_034
	246134_035
	246134_036
	246134_037
	246134_038
	246134_039
	246134_040
	246134_041
	246134_042
	246134_043
	246134_044
	246134_045
	246134_046
	246134_047
	246134_048
	246134_049
	246134_050
	246134_051
	246134_052
	246134_053
	246134_054
	246134_055
	246134_056
	246134_057
	246134_058
	246134_059
	246134_060
	246134_061
	246134_062
	246134_063
	246134_064
	246134_065
	246134_066
	246134_067
	246134_068
	246134_069
	246134_070
	246134_071
	246134_072
	246134_073
	246134_074
	246134_075
	246134_076
	246134_077
	246134_078
	246134_079
	246134_080
	246134_081
	246134_082
	246134_083
	246134_084
	246134_085
	246134_086
	246134_087
	246134_088
	246134_089
	246134_090
	246134_091
	246134_092
	246134_093
	246134_094
	246134_095
	246134_096
	246134_097
	246134_098
	246134_099
	246134_100
	246134_101
	246134_102
	246134_103
	246134_104
	246134_105
	246134_106
	246134_107
	246134_108
	246134_109
	246134_110
	246134_111
	246134_112
	246134_113
	246134_114
	246134_115
	246134_116
	246134_117
	246134_118
	246134_119
	246134_120
	246134_121
	246134_122
	246134_123
	246134_124
	246134_125
	246134_126
	246134_127
	246134_128
	246134_129
	246134_130
	246134_131
	246134_132
	246134_133
	246134_134
	246134_135
	246134_136
	246134_137
	246134_138
	246134_139
	246134_140
	246134_141
	246134_142
	246134_143
	246134_144
	246134_145
	246134_146
	246134_147
	246134_148
	246134_149
	246134_150
	246134_151
	246134_152
	246134_153
	246134_154
	246134_155
	246134_156
	246134_157
	246134_158
	246134_159
	246134_160
	246134_161
	246134_162
	246134_163
	246134_164
	246134_165
	246134_166
	246134_167
	246134_168
	246134_169
	246134_170
	246134_171
	246134_172
	246134_173
	246134_174
	246134_175
	246134_176
	246134_177
	246134_178
	246134_179
	246134_180
	246134_181
	246134_182
	246134_183
	246134_184
	246134_185
	246134_186
	246134_187
	246134_188
	246134_189
	246134_190
	246134_191
	246134_192
	246134_193
	246134_194
	246134_195
	246134_196
	246134_197
	246134_198
	246134_199
	246134_200

