ON THE SELECTION AND IMPLEMENTATION OF

DATA STRUCTURE REPRESENTATICNS

R, B, GIISON

esis . Maxch

Tniversity of Newcasile upon Tyne

1978

.;_\\' ":;"‘Si," o
o +

NEWCASTLE
'PON TYNE

’ A\’:S—'

ACKNOWLEDGEMENTS

I would like to thank Dr, Peter Hénderson for his supervision
during the research, fqr his patience during its writing up and for
his helpful comments on its presentation.

Thenks also to Mrs. Jill Kerr for her rapid and accurate typing
of the thesis, and to past and present colleagues at Newcastle for
Providing the right environment for the work to be carried out,

The research was supported by the Science Research Council.

ABSTRACT

The selection and the implementation of representations for the
data used in a computer program are considered in order to see what
assistance can be provided to the programmer in carrying out these
responsibilities, The notational and system support required to enable
a liBrary of generally applicable data representations to be established
and used during program develovment arelinvestigated.

An approach to data representation has been developed which is
based on transformations applied to the*source language form of a
program, A description is given of a notation for expressing such
. transformations in a form suitable for inclusion in a library of rep-
resentations. An experimental system to aid selection and implementétion
of data representations has been developed in order to investigate ﬁhe
consequences of adopting a transformational approach to data represen-
tation, Examples are pfesented of the operation of the experimental
system to demonstrate how a programmer may guide the choice of represen-
tations fof use in a program.

Some conclusions are drawn concerning the feasibility of the

transformeational approach, and its possible further development,

™~
v

CONTENTS

CHAPTER 1 INTRODUCTION

1.0 Summaxy

1o Complexity and Programming
1e1e1 The human factor
1e1.2 The programming task

1.2 The Representation of Data in Programs
1.2.1 Two cxample problems

143 Assisting the Progremming Task
1.3,1 Some approaches
1¢3,2 Assisting data representation
1.4 A Transformational Approach to Data Representation
1.4.1 Cbjectives
1.4.2 Approach
1,403 Benefits to be gained

1¢D Relation to Other Voxrk
1¢5.1 Work on program transformation

1.5.2 ‘York on assisting data representation

166 Organisation of Subsequent Chapters

CHAPTER 2 DATA RBEPRESEITATICN FOR PROGIRAMS

2,0 Summaxry

3,1 TFitting the Problem Solution to the Machine
9,14.1 The tarset lencuage
2¢1¢2 The solution algorithm
2¢1¢3 Implementing the algorithnm

2.1.4 TRaising the level of the ftarget language

1

14

18

20

20

20

2,2 Abstraction, Representation and Transformation 23
2+2o1 lastering complexity
20242 Procedural abstraction
2,243 Jata abstraction
2,2,4 BRepresentation

2.2,5 Program transformation

2,3 Data Types for Abstraction 29
2,301 Basic types
2,302 Programmer-defined types
. 2¢3¢3 Type specification

2.4 Data Structures 54
2¢4e1 Structures in programming languages
2+442 Structures for specification
2,443 Structuring methods
2,404 The representation of structures

CHAPTER 3 EXFRESSING DATA REPRESINTATIONS AS TRANSFORMATIONS 45

3,0 Summary o 45

361 Examples of Data Structure Representations 45
3¢1e1 Set represented as a sequence
3.1e2 Packed data

3,2 'Applying a Transformational Approach AT
3.2,1 Expressing representations
3,2.2 Matching and implementing trensfomations

343 Te Structure Transformation 50
343.1 The general form

3e4 Exanple Structure Transformations 51
3e4e1 Set as sequence
34442 Packed data

%ede3 Indirect representation

3¢5 Applying Structure ‘I‘ra.nsfomatio;qs to Progranms 55
3¢5¢1 Matching structures
34562 Transforming structures

3.6 Constructing a Library of Representations
34641 Sequences of transformations
34642 Completeness of a library
3¢603 An example library

CHAPTER 4 DATA OFERATIONS EXPRESSED AS TRANSFORMATIONS

440 Surmaxy
4.1 Problens in IExpressing Data Operations
4e1e1 Representation dependence
4e1e2 MNeed to express unconventional operations

4e1e3 Need to distinguish references and values

4e2 References and Values
442,1 Storage derivations
4e2,2 Definitions
- 44243 Assignment
42,4 Structured variables

443 Clagsification of Tata Operations
4e3,1 Owvmership of operations
4342 Operation categories
4¢3.3 Example operations
4o3.4 Example progrem

4e4 Operation Transformations
4e4e1 The general form

4e4s2 Exeample operation transformations

445 Applying Operation Transformations to Programs
4,5.1 latching operations
4,5.,2 Transfoming operations
4e5¢3 Optimisation

29

. 65

65
65

76

84

88

CHAPTER 5 ASSISTING THE SELECTION OF REPRESETATIONS

50 Summaxy

5e1 The Experimental System
5e1e1 Overall fom of the system
5¢142 TUse of the system

5.2 Matching Representations
5.2.1 Conditions to aid selection
5¢2,2 Ixample of matching

7563 BEvaluating Representations
5e3e1 Aims of evaluation
5e3¢2 DRelated work on evaluation
5¢3.3 Approach used in experimental system
5e3ed Stora.ge. space evaluation
5¢3¢5 Execution time evaluation
 5¢3.6 Problems of evaluation to assist selection
5¢3¢7 Evaluation and the transformational approach

S5¢4 Directing the Application of Transfomations
5¢4.1 An example of use of the experimental system
5el4.2 FEquivalence transformations
Se4e3 Options in guiding use

CHAPTER 6 ASSESSMENT OF TRAMSIOIMATIONAL APPROACH

6,0 Sumary

6e1 Benefits of the Approach
6e1s1 Concise notation
6e142 Selection and implementation
6e1e3 Building of libraries
6e1ed Re-use of software

93
93
93

98

105

121

135

135
135

6.2 Linjitations and Extensions of the Approach
6e2.1 Selection and evaluation
6.2.2 lore than one representation per type
6.2.3 Representation of more flexible data
62,4 Turther investigations

6.3 Conclusions

ATPENDIX I Summaxry of the St_ructuring Methods and Types

used in the Experiments
APPENDIX II Example Programs
APPENDIX IITI TFxample Representation Library
APPENDIX IV Example Representational Choice Session

REFERENCES

137

143

145
149
151
164

176

CHAPTER 1

INTRODUCTION

1,0 Summary
This chapter describes the context in which the subsequent
investigations are sét, The representation of data structures is
viewed as an important aspect of the programming process in which it
a.pﬁéars feasible and useful to augment the knowledge and skill of the
programmer with machine aide The form that such aid might take is
outlined, and the app.roé.ch investigated in this thesis is introduced.

The relationship to other work in similar areas is described,

el Complexity and Programming

Over the past few years there has been a growing realisation of

the difficulties that may, and often do, arise when writing computer
progrems, Much attention is now being given to investigating how these
difficulties may be reduced, both by the use of various methodologies and

by providing computer assistence with the programming task,

1e1e1 The Human Factor

Programming involves problem solving, and despite attempts to
automate parts of the task, the human programmexr still plays the central
role in developing a program, Dijkstra [1 3] has pointed out that
developing a successful program depends on & full appreciation of the
difficulties involved, and that the intrinsic limitations of the human

prograrmer mist be respected. Weinberg [55] has considered the many

ways in which human factors affect programming, and advocates a deeper

study of such factors, For example, the problem solving ability of
the programmer is central to the programming task, and a suitable
environment is needed in which such problem solving can take place for
it to be successfuls The information capacity of the human mind is
strictl;t limited in its ability to recall quickly large amounts of
ini‘orrﬁa.tion. If the difficulties of programming are to be reduced,
assistance (both methodological and mechanical) is required for those
aspects of the task in which the programmer's ability is limited.
However, at the same time we do not wish to hinder the programmer's
control over the eventual fomm of the program, We wish to augment the

capabilities of the programmer, not to replace him or her,

1¢142 The Programming Task

Many complexities arise in programming, Constraints on the size
and efficiency of the final program mean that it must often be expressed
in machine oriented terms, which are very different from the ;nachjne-
independent terms in which the problem to be solved is expresseds The
~amount of program code that has to be produced can lead to the inability
of the programmer to comprehend all the code and its complex inter-
relationships, which in turn advexrsely affects its correciness and
maintainability.

The programming task can be viewed as one in which the gap between
the problem to be solved and the machine on which it is to be solved rust
be bridged., Having established the problem concepts and worked out an
overall method of solution, it is the prograrmer's job to produce a
machine-acceptable, suitably efficient program to carry out the solution
2l gori thm,

In order to bridge the problem-machine gap, the programmer has to

choose representations for the processing and data concepts of his abstract

-3

solution and express them in terms of the basic concepts provided by the
machine or language actually used to implement the solutione

The prograrmmer is therefore faced withb the difficulty of choosing
sultable representations for the p rocessing aad data concepts he wishes
to use in his solution. His choice is congtra.ined by the limits on
the size and execution speed of the final program, as well as by the
basic programming concepts available in the language in which that
Program is to be written. Having chosen a representation, the programmer

mst also correctly implement his choice in terms of the basic concepts of

the language.

1.2. The Representati oﬁ of Data in Programs

For this work, we consider in particular the selection and
implementation of representations for the data used in programs. The
choic_:e of which data representations should be used is a basic factor in
the design of a program, but one which is far from simple. We wish to
consider the effect of making it the central theme of the development c¢f a
Program, so that the attention of the prograrmer is concentrated on
making revresentational choices, By this means we hope to make the wide

range of possible choices more explicit to the prograrmer, and give him
better facilities for exploring that range in order to select suitable
representations for his program.

Conventionally, the programmer only has his experience and intuition
to help him choose a suitable representation for his abstract data concepts,
The multiplicity of different ways of representing data makes the choice
of representation for any specific data construct difficuli. Usually
data. is organised in compownd structures, each component of which could
itself be compound. Any single component of a compound data structure

could involve o representational choice from many conventicnal storage

-4 -

techniques, such as lists, trees or hash tables, as well as many
unconventional storage techniques that are invented in an ad hoc fashion
by programers, So choosing representations for compound data
structures can become very complex,

The programmer, faced with the need to make many representational
choices, and usually under pressure toJ design and write a program quickly,
will often not consider a lot of possible representations, He is liable
to consider making a choice.only from among those representations with
vhich ‘he is familiar, and wili not have time to search the available
literature for a representation more suitable for his datas In addition,
his evaluation of the rvepresentations that he does consider is likely to
be sketchy or even non-existant, He will possibly just pick what he
intuitively feels to be the most appropriate representation, implement it
in his program, and only reluctantly conéider changing it when the program
is found to be too inefficient. _ _

There is therefore strong motiwféfion for investiga‘l;ing vwhether
assistance can be provided to help the programmer in selecting and

implementing data representations,

1e2s1 Two Example Problems

To illustrate the kind of problem to be faced when choosing data
represeniations, we shall introduce two examples from those used during
the experimentation, one fairly simple and the other somevhat more complex,
These examples will be used throughout the text to demonstrate the
concepts being discussed, Here we present the problems with some initial
contemplation of the variety of data representations that might be used

in their solution,

Birthdays Example (Initial problem): An unordered file

of data is given containing the day in the year on which

of the data during the execution of the solutione

-5 -
each of a collection of people were born, Each entry
in the file consists of a pair of integers, the first
representing the identification number (in the range
1 to 5000) of a person and the second representing

their birthday (in the range 1 %o 366)s There are

about 50, and not more than 100 pairs of data on the

input files It is required toxlist, for each day of
the year for vhich there is at least one birthday, the
identification number of each person having a .birthdw
on that day.

In this example, we require a data representation for the s

torage

It is necessary to

store the input data in the program since it is not possible to determine

the first item to be output wntil the last item has been input,

may be stored in many ways, It is necessary to choose a storage

The dats

representation which is practicable and suitably efficient for a proposed

implementing machine, in terms of both storage capacity and execution

time,

Card Game Example (Initial problem): It is required

to model the playing of a card game., In this game there
are two players who use a standard 52-card deck of
prlaying cards, The game proceeds as follows, The cards
are shuffled and placed in a pile face down, Each playexr

tekes seven cards from the pile., The next card on the top

of the face down pile is turned over to form the bottom card

of a new face-up pile, The players then take turns with the

object of discarding all the cards in their hand, the winne
being the first player to achieve this, At each tum a

Player may place one card from his hand face up on the top

r

-6 -

of the face-up pile but only if that card is eithexr the
same suit or the same rank as the card currently top of
the face-up pile, If no discard can be made in this

way, the player must pick up the top caxd of the face-

down pile,

This example ié chosen to demonsf)rate é case in which several data
structures are closely related in one problem, Representations must be
chosen for the playing cardé and the way in which they form two piles,
one face-up and the other face-down, each used in a different way.

The hands of the two players, and the insertion of cards into and
removal of cards from the hands, must also be represented, How might

a2 programmer represent tile data involved, say in denoting the hand of
one of the players ? Possibly he will drew some schematic diacrams of
how the available storege cells will be'used, as shown in Figure 1e1.
However, even having drawn such diagrams, the prograrmer is then still
left with the problems of vhether a better representation has been over-
looked, how to evaluate and choose between the different representations,
and how to code the pieces of program that are required to implement the
chosen representatiori'.' Clearly a more systematic approach to choosing

data representations could be of great help.

1¢3 Assisting the Programming Task

Many different approaches are being tried by many people in an attempt
to assist the prograrming task, In recent years the whole field has
assumed more impoxtance; the complexity of the problems being tackled
has increased, which has in turn shown the inadequacies in the previous
ed hoc approaches to programming, Attempts ave being made to provide

assistance both during the development of a program and in guiding

HAND rank| suit] rank| sui t} rankisuit] rank!suit| 0
M e S N e N o

cardi card?2 card3 cardq

tlast card marker

HAND 4 |rank|suit|rank|suit]|rank|suit|rank

suit

’ et M e N e Ny e’
number cardl card2 scard3 card4
of cards ’

’,--number of cards
HAND 3 !

rank{ suit

L}
g

suit] e rank| suit| ¢

card1 | card? 7 card3 =

r——number of camds
HAND ? 3

T .
v/ e
(:—" rank|suit "’_,____—' rank|suit 6"_*__,,—9 rank|suit]| ¢ ::
e N e L~-—\,.__--./ -
- cardl _ card?2

In any of ‘the above, the rank and suit could be packed into one cell:

Yank
“Eait
HARD 00101001001101000001001011010011010011110001001010001
1 { 52
4 bit i represents the presence in the hand
of the ith card in the pack
Figure 1,1 Diarrams showing some representations for a hand of cards

-8-

the form that the completed program should teke, Programming method-
ologies seek to provide a framework which the programer can adopt in
his approach to the task, and computér based tools can give mechanical
ald to the various stages of producing a program, In addition,
programming languages and notations have a marked; if not
disproportionate, influence on the programming task, and much work
hé,s been carried out on devising new l)anguages that try to provide
features more closely related to a given problem domaine
1e3+1 Some Approaches |
Programming languages, as pointed out by Cheatham [7], have
evolved a great deal towarde including facilities to aid the programer
in coding his solution, Language concepts such as the procedure or
subroutine allow the programmer to write a program in manageable sectionse.
High-level languages such as Algol 60[44] include control structures
that can be underatood more easily than the labels and jumps of
assembler code, Extensible languages [19,57 enable the programmer
to a certain extent to include data and operations more suited to his
problem, Very-high-level languages, such as SETL [47] or SAIL [1 8] ’
include general set-theoretic concepts, so that the progrermer can express
his problem solution in an almost completely machine-independent fashion,
Besides programming methodologies that advocate various kinds of
stepwise approach to program development, the prograrmer may be assisted
by computer-based tools that support each development, Experiences, such
as that of the TOPD system [23,24] s have shown how database support for
the growing program during development enable the programmer to concentrate
on elaborating the abstract concepts in his solution in 2 conirolled remmer.
One of t‘;;Qe other ways in vhich the amount of program code that has

to be written can be reduced is by using existiing routines to carry out

-9 -

-the more straightforward caleulationse In some application areas, for
example numerical analysis and statistics, libraries of useful programs
and routines have been established which the pfogrammer can link into
his own program. Such re-use of existing tried components both reduces
the workload on the programmer and may increase confidence in the
correctness of the components, .

Another approach to easing the programming task is that of the
program menipulation system, as described by, for example, Knuth ([32:[pEg282),
Using such a system, the programmer first specifies his program in an
easily e:tpressible but possibly inefficient fomm, then the program is
transformed by the system into an acceptably efficient onee Such a
system may be completely automatic, for example a conventional optimiser
ag included in some compilers, or may be used interactively by the
programmer to help guide the choice of the transformations to be applied,
1e3.2 Assisting Data Representation‘ -

It is natural to consider how these soxrts of approaches may be
applied to helping. the choice of data representations in programs. The
Programmer inust be aware of the range of representations available for him

to use, a range which may increase as hew representations are devised,
Following the idea of the use of libraries of useful numerical and other
algorithms, it appears beneficial to establish, if possible, a library of
useful data representations, which could be extended as suitable new
representations were found, |

In orxder to make effective use of such a data representation librery,
techniques are required for selecting from the library, evaluating

8uitgble representations for use in programs, and implementing the chosen

representations in the prograoms,

Other approaches have been attempted to help the programmer make
effective use of data in programs.‘ We suggest that some of these
approaches have not gone far enough, and séme of them have gone too
far in the amount of assistance given to the programmer., For example,

the class notation of Simula 67 [1OJ is a language feature which

- provides a good way of expressing p:goblem—oriented data concepts
required in the development of a program, The body of the Simula class
can be used to define thé representation of the class of data objects in
question, in terms of both the storage for and operations allowed on
those objects, The class construct is therefore suitable for
expressing the representation of a particular class of object in a
particular program, However it is not adequate to 21low a library of
different representations for each of a set of general data concepts to
be set up (as will be seen later) nor "does it ease the difficulties of
selecting appropriate representations. In this sense, the Simmla class
does not go far enough in helping the choice of data representation,

A second approach to assisting the programmer is that of the so
called very-high~level language such as SETL, In this languase, the
main way of expressing the problem is in set-theoretic terms, The
language itself provides an implementation of general sets, so that the
programmer does not need to get involved in representing his problem-
oriented concepts at all., However, this is going too far in ‘'assisting!
the progremmer since the given implementation of seis will often be
inappropriate and therefore inefficient for the particulai use made of
the sets by the programmer,

More recently, the designers of SEIL have turned to investigating
ways in which more control can be introduced over the representations

used in implementing SETL programs (Schwartsz [47,48] Yo

-1l -

We feel it to be essential that the programmer should be able to
use representations for the data which are suitably efficient for his
rarticular problems This means that uitir;xately the control over the
choice of representations must remain with the programmer, and we wish
to assist him make a suitable choice, rather than to impose an unsuitable

.choice upon him, N

1,4 A Transformzational Approach to Data Representation

In this thesis we present a transformational approach to the rep-
resentation of data in programs, and report on the investigations carried
out to examine how thg approach can assist the selection and implemen—
tation of data representations.

The work is directed specifically at the representation of the
data used in individual programs, where the menipulations to be carried
out on the data are to a large extent kmown. A different approach may
be required in situations, such as tﬁé representation of the data in
databases, where the use made of the data is often more diverse and
unpredictable,

14,1 Objectives

The objectives of the work. were therefore to examine the problems
involved in describing and setting up a library of useful data
representations, expressed as transformations, also to see if such a
library could be used to help the programmer in the selection and
implementation of data representations for his programs,.

The program transformation approach has zlready been applied to
local program optimisation and to comtrol flow manipulation (as
discussed in the next sectign). In the approach, having written an

initial program, successive transformations may be applied to it which,

~ 12 -

vhile preserving the specified action oi: the program on execution, alter
other features of the program (such as its efficiency) in a beneficial
waye

The tran_sfomational approach has also been adopted as one means
of obtaining program correctness, DBy startingwith an obviously correct
'pmé’ram, the application of provably correct transformations enable an
acceptable final program to be obtained which it would be difficult to
prove correct in isolations

Our objective is to adapt the approach so that the transformations
consist of the implementations of chosen data representations, By
starting with an ini:tial program which uses abstfact representation -
independent data concepts, successive transformations may be applied to
it in order to produce an efficient version of the program which uses
only concrete data concepts which are directly supported by a

programuing language implementation.

In order to apply this approach, means of expressing data
representations as transformations are required in a form that allows
them to be included in libraries. Their selection and implementation
from the libraries should be straightforward, and the range of
representations that can be incorporated in programs in this way should
be large and unconstrained,

Since the selection and implementation of representations is likely
to involve actions (such as searching libraries and consistently
applying transformations to prograns) which the human prograrmer is not
well suited to carxry out, the extent -to which machine a.id can be applied
to assisting these actions is also of concern in the investigation of

the transformational approache

-13 -

1e4e2 Approach ‘

The approach taken to the above objectives was to develop an
experimental system for aiding ther choice of data representations
that could act as a test-bed for the associated ideas. Because of
the current lack of knovkdge concerned with describing data
rep:f:esentations in a concise enough form for use with a machine, it
‘is initially necessaxry to investigaf:e the problems to which this
approach may give rise, The expeiimentai system therefore was
déveloped to allovw different ideas to v'be tried in order to discover
the problems and the important factors involved. This thesis
eXpa,nds upon the problems and factors involved in assisting the choice
of data representation using a transfomational approach, as brought to
light by the experimental systems The system was not designed as a
model for a final production system, and the efficiency of the system
implementation and its human engineering aspects, for example, were not
therefore of prime consideration, The examples of the use of the
system given later are intended to illustrate points concerned with
data represeﬁta.‘bi‘ona.l choice rather than to show how a practical system

Te4e3 Benefits to be Gained
By expressing data representations as transfomations in a

systematic fashion, certain benefits may be éained.

® The range of choice from which a representation for a particular
data concept may be chosen becomes explicit, giving less chance that
a suitable representation may be overlooked,

® The algorithams required to implement the representation are
Presented in :; form suitable for direct application within a program,

reducing programming effort by such re-usable components,

- 14 -

i The representation description is compkte, and may be tested

before inclusion in a representation library, It is also more
amenable to the kind of proof correctness described by, for example,
Hoare [26] « Use of such pre-"bested components is an aid to program
reliability,
- ® Describing transformations in a machine —~readable form, enables
machine aid to be uéed in their selection and implementation.

® Machine assistance in selecting representation enables larger -
libraries of representations to be contemplated than the unaided
prograéunezj could reasonably search,

¢ Machine application of the transformations when implementing a
‘:cepresentation‘ avoids possible programmer-introduced errors in their

implementation.

1.5 Relation to Other Work

The present work is related to, and brings together, two main
fields of current interests These are, firstly, the transformational
approach to program development, and secondly the provision of assistance
in the se.lection of data representations.
1e5¢1 Work on Program Transformation

In one of the first of a growing list of published work on progranm
transfomation, Knuth [32] suggests how an interactive program
manipulation system could be used to enable a programmer to successively
transform a correct, well-structured but possibly inefficient program
into a zuitably efficient form.

Various other authors have also considered the application of
transfomations in programming [1,3,8,49, 54] s mainly in the area of

local optimisations to program segments. Some of these authors propose

- 15 -
the development of interactive program manipulation systems, and give
some examples of the kinds of transformation they hope might be
achiéved through the use of the systems, however published experience
of the development of their systems is not yet available.

Transformational systems which have been developed include that of
Dar}ington & Burstall [11,6], who provide sets of transformation

.applicable to pmw gramas expressed a.s)first order recursion equations,

Their transformations include recursion removal, elimination of common
sﬁbexpressions, and in-line expansion of procedure bodies, Loveman [_-38]
describes various transformations that can be applied to a tree-structured
representation of a program, also mainly to achieved local optimisations
of data access and control flow. A recent paper by Kibler et. al.[BO]
describes how an interactive program manipulation system was implemented
using a special technique for organising sequences of program tians-
‘fomations. They give an exanmple of the kind of optimisations that can
be carried out on a matrix multiplication program.

Though some authors, including Knuth [32] end Balzer et.al, [3]
suggest that.the transfo:c"mational approach could be applied to the
representation of data as well as to the optimisation of program segments,
detailed considerations of how such an approach could be carried out have
not yet been made,

The correctness of transformations applied to programs is considered

by Gerhart [20] .

1¢542 Work on Assisting Data Representation,

The need for a means of isolating data representational choices has
| been pointed ont for several years (Balzer [2], d' Imperio [1 5], Mealy E’;ZJ),
hovever it is only fa.irly recently that any work has been carried out on

Providing automatic assistance to the prograrmer in this taske

- 16 =

Iow [39] descrives a system designed to deronstrate the feasibility
of automatically selecting low-level data structures for a program
expressed in terms of high-level structures based on relations, sets and
sequences, His system works in three phases, Firstly, it analyses
the program written in a high-level language (a subset of SAIL) which
~uses the data structuring methods of lists and sets, The analysis
gathers information on how the prog;:am manipulates the data, and attempts
tq partition the data into equivalence classes, in which the members of
each class will use a common representation. The second phase selects

a8 representing structure for each equivalence class from a library of
fixed structures such as variously linked lists, trees and hash tables,
These structures are tiirectly implemented in an assembly language.
Selection ends when a representation has been chosen for each equivalence

class, The third phasé consists of preparing the user's program for
compilation and executions One of the important parts of the selection
phase is the evaluation of altematiwfe structureé using space and time
cost estimates, This will be discussed further in section 5.3.

Low and Rovner [40,46} go on to discuss the extension of low's
system to also handle associations (ternary relations) as one of the high~
level data structuring methods, besides sets and lists, The approach is
similar to that already described by Lov [39] .

Gotlieb and Tompa [22] describe an algorithm for selecting a storage
schema for some informaticn whose logical structure has been specified,
The logical structure to beA represented is described using a relational
model, or what Gotlieb and Tompa describe as a 'subsiructure model',
and the operations upon the data structure required by the user are also
specifiede In order to choose a storage schema (i.e. a representation)
for the information structure, it is first subdivided into substructures,

80 that a suitable representation can be chosen for each, The

representations are chosen from a known set vhich includes such schema

- 17 ~

ag binary ring, contiguous store, hash, threaded binary tree and
unary chaine An algorithm is desgribed which initially eliminates
those schema which are not applicable to a given substructure, either
because they conflict with previously chosen schema, or because they do
not implement-operations required by the user, or because they would
‘require more storaée space than is available, From the remaining
schema, an efficient one must be ch;sen for the substructure. The
evaluation technique used by Gotlieb & Tompa to select a cost-effective
schema is described more fully in Tbmpa[51j , and will be referred to in
section 5.3, |

Both the represgntational choice schemes described by Low and Tompa
considér the represenfation of a data structure as an essentially single-
step transformétion from a high~level notation to a low-level implemen-
tation. The work vresented here differs in that it considers dava
representations as being composed of a series of transformations within
e single notation, In other words, the same notation is used to
express the initial abstract program as is used for the final concrete
program, the>change from one to the other being gchieved by a series of
transformations each denoting a particular representational choice,

Two additional papers have recently appeared on the selection of
data representeations, Kant [29] describes the design of a system which
aids the selection of representations for abstract constructs in a very~
high-level program description, The system acts as an evaluator of the
efficiency of application of refinement xules from a separate knowledge
base of such rules. Rosenschein & Katz [45] present a model of the
process of choosing representations which is ultimately intended as the
basis of a knqwledgenbased interactive systemes The model uses a special

program—independent language foxr describing the data structure

requirements, and considers the ways in which representations may be

combined to meet these requirements.

16 Organisation of Subsequent Chapters
The following chapters report on the concepts that were developed

and used in the experimental representational choice system and on the
conclusions that can be drawn from use of the system, ILittle will be
said about the actual implementation of the system, since, as has been
Amentioned, the objective was to investigaté the concepts involved
rather than the provision of a prod&ction system'.'

The next chapter takes a general look at the role of data
r;presentation in programs, how problem-oriented data concepts can be
transformed into machine-oriented terms, and the part played by
abstraction in program d.evelopment'. Some terminology that will be
used in the rest of the thesis is presented, including that of data types
and data structures, and the specification of the former in termns of
the latter,

Cha,ptexé 3 and 4 introduce the notation that was developed to
express data representations as transformation in the experimen tal
system, In Chapter 3 we consider the kinds of representation to be
expressed, and how a transformational approach can be applied to them,
We then take a closer look at transforming the structural specification
of data. In Chapter 4 the forms of operation involved in the
manipulation of data are considered, and a classification of these
operations is introduced, The transformatiqn of data operations is
given oloser attention in the remainder of this chapter,

In Chapter 5 the experimental representational choice system is
introduced, and iis method of use described, including the matohing of

Tepresentations from the library, The evaluation of representations is
given Pérticu;ax attention here, Examples of the use of the experimental

System are also presented.

.19 =

An assessment of the transformational approach to data

‘representation is made in Chapter 6, which concludes by surmarising

the achievements of the work,

~ 20 =

CHAPTER 2

DATA REPRESENTATION FOR PROGRAMS

) In this chapter we consider the, general role of data representation
in programs, demonstrating the part it plays in pmw gram development, In
particular, we consider abstraction, a fundemental aid to help formulate
programs, and relate it to the concept of a data types This leads to
the specification of data types in terms of data structures, and we try to
clarify some of the confusion that exists between data types and data

struétures.

S

2,1 Fitting the Problem Solution to the Machine,

24141 The Target Language. A

The objective of computer programming is to derive and express an ‘

algorithm for the solution of a given problem in a subsequently machine
executable form, The algorithm will generally bé expressed as a
Program in some kind of programming language, ra.ngihg from machine code
to a 'very-high-level! language, so that the program can subsequently be
compiled and executed (or interpreted) to solve the problem. The
Programming language, in vhich the fully developed program is to be
expressed, will be called the target lansuage,

It is the programmer's job to develop a target language program
that can be used to solve the given problem, Sometimes the programmer,
- eSpecially if he is inexperienced or believes the problem too small to
warrant more ca;,re, will immediately try to code a suitable pregram,
keeping only in his head details of the algorithm and data representations

being used, However, the 'humble progrommer! [1 3] , who realises how

- 21 -

easily small yet vital details can be overlooked in this fashion, will
try to make explicit the various assumptions made at each stage in the
development of the programe Indeed for large problems, which require
correspondingly large programs, it is essential to break the program

development down into manageable stages,

N

2¢1.2 The Solution Algorithm.

T oa program reflects a certain chosen approach ‘bo solving the given
Problem, It is the embodiment in the target language of a algoritim
for solving the prodleme The derivation of a suitable algorithm,
expressed in problem—c;riented rather than target-language terms, is
usually the firét step in reaching a solution. The expression of such
an algoArithm can take many forms, of varying degrees of precision.
Sometimes there are stondard algorithms that can be used if the problem

is fairly common, e

Example: If the problem is to find the average of a set
of numbers, a standard algorithm is t 'find the sum of
the numbers and then divide this by the number of items
in the set', VNote that the algorithm is completely
independent of such target—-lansuage~oriented features as
the representations of the individual numbers, or of the

set, or the order of taking the numbers etec,

24143 Implementing the Algorithm
Having decided upon a suitable algorithm to solve the p roblem,
- exXpressed in problem-oriented terms, the prograrmer then has the task of
deriving a target language prograxh to implement that algorithm,
However, usually the concepts available in the target languaze are very

different from those of %he probleme Even if the required concepts are

- 22 -

available in the language, that language may not provide suitably
efficient implementations of them for the given problem, The
Programmer's job therefore is to bridge the gap between the problem
concepts and the language concepts in such a way that the ultimate

execution of the solution on the machine is acceptably efficients

' Example: A useful data concept when writing a
compiler is that of a symbol table (with some associated
operations that can be performed upon such a ;bable, like
finding vhether a given symbol is currently in the table).
However, if the target language in which the compiler is

- eventually to be written is, for example, assembler-code,
the language does not directly implement the data concept
of a symbol table, It is therefore necessary to express
the problem-oriented data concept in texrms of concepts
such as words of storage which t_he assembler code does

gupporte

Soy in order to attain an efficient machine solution of the original
problem it is necessary not only to derive and express an algorithm
for the solution of the problem, but also to implement that algorithm

efficiently in machine terms,

2¢1¢4 Raising the level of the target lmguagé.

One apmroach to bridging the problem-machine gap has been the
development of higher level languages that txry to incorporate concepts
that are more suitable for expressing algorithms in problem-oriented
terms, High-level languages such as Algol, and so-called very-high-
level languages such as SETL, have provided means of expressing an

algorithm in terms closer to that of the problems within their scope of

application and so less dependent on machine features, However, when
such languages use fixed implementations for their structures and

operations, as embodied in their compilers and interpreters, in general
the higher the level of the language, the le ss efficient the resultent

execution of the program may become,

Examplet A symbol table and its associated operations
could be expressed in set-theoretic terms, and thus be

. directly expressible in a set~theoretic ta:rge';: language.
However, such a language, since it must support complex
operations such as generalised set uni.on, may implement
its sets as, f01: exzmple, linked lists of elements,
However tﬁis fixed implementation is probably completely
inappropriate and therefore inefficient for the partiealar
restructed set of operations actually required on the

symbol table in the application being considered,

In other words, the higher level language approach to bridging the

» Problem-machine gap generally takes away from the programmer the control
over the impiementations ultimately used in the machine that executes the
Program, arml thereby reduces the efficieny of execution. What we wish to
do is not to take control away from the programmer, but to assist him to
make more efficient use of the control that he can exercise, We mus?
therefore consider in more detailhow the problem-machine gap can be bridged

in a controlled manner.

242 Abstraction and Representation,

24241 Mastering Complexity

When trying to tackle any complicated task, human limitations

- 24 -

‘dictate that Yo avoid confusion and error the task must be broken down
into manageable stzges. Because of the réquirements for precision and
efficiency in programs, program development, especially for programs of

a non-trivial size, is certainly a complicated task, It is therefore
necessary to apply techniques that will a.llc;w the program to be developed
in easily understood stagese If we Jwish to express a complex problem-
oriented algorithm in machine-oriented terms, it is foolish to attempt

to do this in one step, since that step would itself be too complex to be
fully understood, Instead, the complexity of the task has to be overcome,

and a prime means for trying to understand complex phenomena is that of

abstraction,.

2,2,2 i’mcedura.l Abstraction,

To demonstrate the role abstraction can play in program development,
we will first consider what is perhaps its most frequent use at the
Present, namely the procedure, Essentially a procedure is a means of
grouping some program text together and giving it a single namne, wl?.ich
can subsequently be used to stand for the given piece of program when
constructing other program text., TNote that we are taking 'procedure!
in its most general sense, including such similar concepts as subroutines,
functions and macros, and not implying any pariicular implementation
(such as a stack for passing parameters and ho.lding return links),

At the moment we are considering progranm development, in which, for
example, it is often useful to introduce a procedure simply to group
Program text into a manageable unit. (The procedure may only be called
from one place and so be more efficiently implemented by being expanded
. in-line in the final program.,) In fact, the ahility of‘a procedure to

be used to break a program into nanageable pieces is exactly why it is

-25 -

useful to overcome complexity in program design. It allows the program
designer to igﬁore the detail of the procedure body, and use instead

simply the procedure name, in the context of the calling program section.
The design of the procedure body ca.n then be considered in its own right,

using what Di jkstra f1 4] calls the 'separation of concerns',

Card Game Example: A procedure may be declared so that
the identifier 'play' will stand for the actions taken by
one player when it is his turn to play. The programmer
may then call this procedure whenever he requires these
actions to be ta.ken in the program, without considering how
the computation is to be performed, He can separately
decide the way in which a player acts when it is his move,

and then program the body of the procedure accordingly.

Procedural abstraction is provided as a facility in most high-
level prograrming languages, and even inost assembly languages provide
Bome macro-definition facilities, However, though procedural

abstraction has received most attention in the past, data abstraction
is now being recognised as at least of equal importance in the develop-

ment of programs,

2.2,3 Data Abstraction,

In the same way that procedural abstraction allows the implementation
of a procedure to be ignored‘at one level, and only considered in detail
at an appropriate stage in the program development, so data abstraction
allows the repreéentation of a data object to be ignored at one level,

V.B.nd considered seperately in detail at another level, Data objects

differ somewhat from procedural objects in that firstly where a

Procedure may have several invocations, a data type may have instead
several instantiations, ’and secondly a single data item may be
manipulated in various ways (by assignment etc,) at various points in

a program, Thus a data abstraction consists at one level of the
introduction of a single identifier to stand for the type of data being
considered, and also the identification of those data operations which
may be applied to instances of the data type. At this level the
representation of the abstract type is ignored and instances of the type
may be created and manipulated in abstract terms. Only at some other
aprropriate stage need the representation of the type be-considered in

detail, together with the implementation of the operations on the type.

Birthdays Example: In the program for this problem
it is necessary to someho& store the person=-date
valﬁes which are input, and later to retrieve them
in a certain oiﬁer. A data abstraction !'table!

may be created for this, on which operations such
as 'insert-person.date' and 'any-person-with-the-
given-date?' may be defined, The program can

then be written in terms of these concepts without
considering at that stage the way in which the

table will be represented.

- 27 =

2+2.4 Representation

The separation, provided by the use of a.'bstraction, between the
the introduction of some concept and its elaboration allows the
elaboration to be given more precise consideration. The representation
of an abstract concept in terms of more concrete concepts both for
Procedural and data abstractions, determines the efficiency with which
that abstract concept may be handled in the program.

. By determining the use made of the abstract concept in an abstract
form of the program, a better choice may be made for its representation
in the xﬁore concrete forms of the program, Also, the implementation
details of the concepi.:, particularly where operatidns on abstract data
are concerned, may be better comprehended vhen considered separately
from their abstract use, P

If appropriate constructs are allowed in the target language, the
representations chosen for use in the program may be distinguishable
in the final program text, Tor example, if the target language supports
procedures, procedural abstraction is directly visible in the distinction
between a procedure call and the body of the procedure being callk d.
The representation of the procedural abstraction determines the form of
the procedure body, |

Of ten, however, the target language is not well suited to expressing
in the final program text the representations that have been chosen
during program development, In this case, it will depend on the
documentation of the program development as to whether the representations
implemented in the final program are clearly distinguishable, It is
important that the representations used in a program are clearly

" distinguishable both for making the initial implementation of them in the

program manageable and comprehensible and also for allowing future

- 28 -
changes in the program to be carried out in a controlled fashion.

202,5 Program Transformation.

The program development process, which takes the solution
algorithm and implements it in terms of a target language, may be
considered as a series of transformations that transform the abstract
problem-oriented concepts into concrete target-language-oriented
concepts, If such transfomations can be clearly expressed, the
program development process may be described by the application of a
given series of transi.‘omations to an initial abstract version of the
solution. algorithm,

Program transformations can .be perfonﬁed from one form of the
program expressed in one notation to another form of the program
expressed in a different notations In this case, the transformation
is applied to the complete program, For example, a compiler applies a
transformation from a source to an object language programe Frequently,
however, it is useful to perform transformations from a form of the
program expressed in some notation to another form of that program
expressed in the same notations In this case, such transformations can
be successively applied to selected parts of the program. “hen such
transformations are applied to the program expressed in the target
language (or .source language for some object program), they are known as
source~to-source program transformations (see, for example, Loveman [38_7).

Certain progrem transformstions are of frequent use in program
development, and in some sense may be said to capture the programmer's
knoWledge about the kinds of ways he can proceed during the development
| (Gerhart [21] Je If they can be expressed in a suitably concise form,
they provide a useful um.t for inclusion in a library of reusable progran

development concepts.

-29

We wish to apply program transformations to the representation of
data concepts during program development, In order that successive
transformations may be applied to parts of the program that are concerned
with each data concept in tum, the transformations will be between forms
of the program expressed in the same notation. This notation must allow
the expression of both the abstract form of data required in the initial

abstract solution, and of -the concrete form required in the target

language,

2.3 Data Types for Abstraction

As a first stép towards considering the representation of abstract
data concepts in programs, we look at the role of the data type for
expressing data abstractions.

Bagic types are familiar from traditional prpgra.ming languages,
More recent languages allow programmer-defined types to be introduced
in programs, and for thei¥ specification in terms of language-defined

structuring methodse

2,341 Basic Types.

Da.ta. types provided as primitives in programing languages are
familiar from languages such a;s Mool 60. Tﬁere, the simple types
integer, real and bodean are basic to the language, and allow the use
of data items of those types without the need to consider the
representation of the items in more primitive machine~oriented terms.
Upon defining a variable as, for example,

boolean b;
then it is implied that variable b can only take the conceptual values

- 30 -

true or false, It does not matter whether the variable is represented
as a single bit or a comple te word in the store of the machine‘ on which
the language is implemented or whether true is represented by a '0°
or '"1' value, Provided the implementation consistently supports the
true-false abstraction, it can be ignored when programming in Algol 60,
The language also provides certain basic operations that can be
Performed on booleans, such as 'and', 'or' and 'not', whose implementation
can also be ignored, provided the results of applying the operations are
consistent with the abstract notion of the operations' effects.

Similarly, reals and integers in Algol 60 have associated sets of
values that they may teke, and operations that may be applied to them,
Each operation requilres operands of a certain type, and & compiler can
vexrform type checking in order to detect (in most situations) whether
& programuing error has led to an incorrect use of some data items,

For a given target language, we shall call data types that are
~Qirectly implemented in the language bagic types. So therefore,
for example, real, integer and boolean are the basic types of Algol 60,
Similarly we shall call the operations on such types that are directly
implemented in a given language the basgic e operations for that
language, So, for example, division / is a basic type operation

on reals in-Algol 60,

2.3.2 Programmer-defined Types.

Languages providing a fixed set of data types, such as Algol 60,
may allow a programmer to define his own ‘operations' in the form of
Procedures, This has the advantage that since a procedure declaration
in Algol 60 must generally specify the types of its barameters, including

that of any result, type checking may be applied to the procedure calls.

-3 -

‘ However, the programmer cammot define his' own data types in such languages,
and thereby misses the opportunity to tailor the data concepts and the
associated type checking to his ovm needs,

Two main'approaches to the inclusion of programmer-defined types in
Programming languages may be distinguished, The first apmroach is
characterised by the use of types in Pascal [28] and of modes in
Algol 68 [57J e In these languages, the programmer may introduce an
identifier to stand for a kind of data concepte | This type identifier is
used when declaring variables or specifying parameters in order to
distinguish the type of data item involvedj this enables type checking
to be used to trap some kinds of programming error, When a programmer-
defined type is declared in such a language, it must be specified to
have a particular (often structured) set of valuess The structuring
methods allowed in the declaration are directly implemented by the
lenguage, so the type declaration therefore effectively fixes the
representation used for the type to be that provided for the declared
structure by the language. Operations allowed upon data items of the
‘progremnerf-defined type are those provided by the language on the structure
that the type is specified to have '

Example: In Pascal, a programmer-defined type could be
declared as

Yype lue = get of colour
This would fix the representation of data items of type
"hue' to be that provided for sets by the Pascal
implementation (usually a bit representation within one
machine word)e It would also fix the operations that
could be applied to data items of type 'hue' to be

union, intersection, set difference and set 'membership,

-32 -

The second approach to the inclusion of programmer-defined types
in programming languages is that of the ‘class' oxr fabstract data type',
illustrated in languages such as Simula 67 [10] , CLU [35,33,34]
and Alphard [60]. In these languages, the prograrmer not only introduces
en identifier for his new type, but also defines the operations that may
be applied to instances of the type, Programs may therefore be written
using the abstract concept of the type without any knowledge of its
representation, The representation of the type is defined by giving
the structure of the data used.to represent an instance of the type and
by <implementing the programmer-defined operations in terms of language-
specific operations on the structured data.s The representation, though
Partly depending on the language-implemented structuring methods as in
the first approach, is essentially programmed individually for each of

the programmer~defined typese.

Example: In Simula 67, a programmer may introduce the
data concept of a bounded queue of integers, with
oper‘ations to join and leave the queue, and to test
whether it is currently full or empty. Imstances of the
abstract type 'integerqueue! could be created:

zef (integerqueue) g;
q - pew integerqueue;

and used with the defined operations in writing the program:

= = - q.join (m); ~ - -
- - = if q. empty then q. leavehead (n)sj= ~ ~

- 33 -

The representation for the queue is defined in a class:?

class integerqueunes
begin integer front, backs
intezer array Q [1 :20];
procedure join (i); integer i;

begin .
front:= mod (front, 20) + 13

Q [front] =i
ends
end integerqueue;

which uses the language-provided array structure, plus
prograrmex-defined bodies for the operations, to give

the desired impl ementations

2.3.3 Type Specifications ’
Beforé a representation can be chosen for a programmer-defined type,

the specification to which the representation must conform must be knowvm,

Examples In the previous example, besides knowing the
identifiers and parameters of the operations on the type
'integerqueue!, it is also necessary to know the meaning
of the operations before either a program can be written

vwhich uses them, or a representation can be chosen for

the type.

A type specification may be left as an informal notion in the mind
of the programmer, or zn attempt may be made to document the specification
with varying degrees of formality. In oxrder 1o assist the selection of
representations .for the data concepts used in a program, some explicit

"~ form of specification is required,

- 34 -

Liskov and Zilles [36] describe various ways in which data
abstractions may be specifieds, They identify five techniques:
i) wuse of a fixed formal domain of objects

ii) wuse of an appropriate, but otherwise arbitary, known
-formal domain

iii) use of a state machine model
iv) use of axiomatic definitions
v) use of algebraic definitions
The above categories are in increasing order of 'abstractness .of
gpecification', the earlier ones tending to exhibit more representational
bias than the later ones.

For our purposes, a method of data specification was required which,
vhile hopefully. being largely representation-independent, was sufficiently
capable of fitting into the program development process that useful aid
could be provided in choosing data representajtions. The specification
method used is most closely related to Liskov é.nd Zilles second category,
the use of an arbitary formal discipline, which, as they point out, is
analogous to writihg programs in a language which provides several data
structuring facilities. We shall return to this approach in .

Subsection 2.442.

2,4 Data Structures

Although we wish to take a broader view of the term 'data structure',
it is useful first to consider the kinds of structures that are used in
conventional programming languages. |
2¢441 Structures in Programming Languages

In Algol 60, for example, the only kind of structure available for

data is the array, This consists of a mapping from a particular sub-

- 35 -

range of the integers (or the Cartesian product of integer subranges in
the case of multi~dimensional arriys) onto a basic type of the language
(integer, real or Boolean), There is an operation associated with the

array structure, namely that of indexing an element of the array.

Example: In an Algol 60 program an array could be

declared as

integer array A[1:10]
in vhich case the indexing operation A[i], where i6[1 o1 Q],

th

would select the i ™" element, of type integer, in the array,

The relative lack.of data structuring facilities in Algol 60 led to
the development of various Algol-like languages that tried to incorporate
better facilitiess For example, Algol W [58] includes recoxds as a
structuring method, allowing the Cartesian product of several different
data types to be constructed and named and so define what is essentially
the set of values of a new data type. As we described in 2.3.2,

Pascal [28] makes such type definitions even more explicit, and
introduces further structuring methods, including variant records and
sets, whilst in the declaration of modes, Algol 68 [57_7 uses structures
such as discriminated unions and flexible a.rrays—._

The data structuring techniques available in these and similar
1a.n_guages all share & common property - the 1a..nguage. provides a fixed
method of implementation for each kind of structure. Once the programmer
hag written his program in terms of tlese structures his representational
task is over, since the target language has been reached and no further

representational choices need be made.

- 36 -

| 2,4.2 Structures for Specification.

Our approach to the representé.tion of data uses' data structures in
a way that allows data concepts to be specified in terms of structures,
but does not :m_estrict their implementation as in a conventional
programing languages

In order to specify an abstract data type, and its associated
operations, we require that its (abstract) values are expressed in
terms of a structure chosen from a certain set of abstract data
structuring methods, and its opera'l:ioné are expressed in terms of
manipulations applicable to the specified structures The set of data
structuring methods, and the fixed set of manipulations defined on those
structures act as a formalism for the purposes of specification.

Consider, for example, the programmer-defined type 'complex',
introduced as an abstract data type into a program dealing with complex
numbers, The programmer might also define operations 'add' and
'subtract! on complex values, and so be able to write an abstract
program that manipulates complex items, ignoring for the time being how
those items are to be represented, Of course, when he uses the operation
'add' on two complex values in his abstract pmgraﬁ, the programmer kmows
how the operation should behave, though he may not yet have thought about
how he will actually implement it in texrms of the target language, By
giving a specification of the type 'complex', in terms of the logical
structure by which it could be described, and the effects of the operations
on such a structure, the prograrmer can define his conceptual view of the

type that he has introduced.

Example: The type 'complex' and the operation ‘'add!
might be specified as follows, using an ad hoc syntax:

type complex = (real_part: reals imag_part: real);

- 37 -

add (e1:compk x, c2:complex): complex
= complex (c1,real_part + c2,imag_part,
c1.imag_part + c2,imag_part)

This denotes that a complex item is considered as
composed of two components, both of type real, which
can be selected by the identifiers 'real-part' and
'imag-part', The_ 'add' operation is specifiedAas
teking two complex items and constructing a new
complex item, whose first component is the sum of the
real-paxrt's of the operands, and whose second component
is the sum of "the imag-parts, In other words the type
can be specified in terms ofé Cartesian product structure,
and the operations on the type can be specified in terms
of operations a.ssociéted with that structure (construction
of an item from its components! and selection of an

identified component of an item, in the above case).

Note that such a specification hasn't necessarily implied & particular
implementation of the type, since the Cartesian product structure, or the
operations associated with ity such as consiruction, need not be basic to
the target language, We will discuss this further in a moment,

First we define our usage of the term data structure.

A data structure is a means of specifying the way in which objects
of a compound type are composed in terms of constituent objects of
other types.

Each data structure is composed using one or more giructuring
nethods, ™ese are the type combinators from which complex structures

may be built,

- 38 -

Example: A Cartesian product is one kind of
structuring methods In the above compk x number
exarple, the logical structure of a complex number
was defined using a Cartesian pi‘oc}uct combination

of two real types.

A structuring method may be formally specified, Hoare [25]
gives axiomatic definitions of 21l the structuring methods used in
subsequent chapters, We shall concenfrate on the use to which such
structuring methods may be put rather than on their formal specification.
For each struct{u:'ing method there are an associated set of
operations which may be used to refer to or manipulate data objects

defined to have the given structure.

Example: In order to refer to the two components of
complex data objects, selection operations were used
above, and a new complex item was constructed from its
constituent partse Both the selection and construction
opérations are specifically associated with the

Cartesian product structuring method,

In order to be able to help the programmer to choose representations
for his data, we require that he specify the logical structure of the
abstract data types in his program in terms of a given set of structuring
methods (described in the next subsection), In addition, the operations
that he requires on his abstract data types must be specified in terms of
manipulations on those logical structures, using the given operations

associated with structures (illustrated in section 4.3)s Once the

Program has been expressed in terms of thesé structuring methods and

their associated operations, representations may be chosen for the data

structuregso that they can be implemented in the target language.

2¢4¢3 Structuring Methods.

For the purposes of specifying the structure of data types a
fixed set of sitructuring methods were used dunng the present
investigationss They correspond closely with those given by Hoare in
his 'Notes on Data Structuring' [25] , and were chosen to allow many
commonly encountered data strucmr:'ng concepts to be expressed by a
relatively small set.of structuring methods, For example, the concepts
of a stack, a list and a queue are all particular uses of the general
structuring method of a sequence,

The structuring methods nsed are the following:

integer subrange, Cartesian product, discriminated umnion,

array, set, sequence, recursive definition.

Ve have omitted enumeration from tle techniques discussed by Hoare
for the sake of simplicity. The transformation from an enumeration to

an integer subrange is straightforward and of only syntactic significance,

Example (Card game): Rather than specifying the type of
the suit of a playing card as

type SUIT = (hearts, clubs, di'amonds, spades)s
we shall presume that each value of the type is mapped
onto an integer 2nd specify the type as

type SUIT = 1..4;
This kind of representation will be presumed for all types

that could have been specified as emumerations,

(stric*;ly, enumerations and integer subranges do not specify structured

- 40 -

types, and should not therefore be called structuring methods, However,

in a situation where a structured type may possibly be represented in
terms of an unstructured type, as in the example that follows in

3..4. 2, the distinction is no longer so clear. We include integer
subrange as a structuring method so that we can refer to the structuring

method used in a type specification no matter whether the type is
structured or unstructured in conventional terms).

The structuring methods that we use include most of those
encountered in conventional programming languages, We presume for our
present purposes tha’g the target language towards which the program
dgvelopment is proceeding implements some restricted subset of the

given structuring méthods.

Example: Pascal [28] impleménts all the given
structuring methods, but only in a restrictéd form.

A Pascal file, for example, ié a restricted form of a
sequence, and a set may only have a limited maximum
cardinality, dependent on the word size of the
implementation. Low=level assembly |

languages generally only 'implement' a single array
structure, being the indexable storage of the machine

itself,

When writing the intial problem solution in the form of an abstract
program, the programmer may use any of the structuring methods in their
most general form, The objective during the representational choice
Process will be to implement those structures which the pmmer has

- in fact used in texms of the restricted structuring methods available

in tle. target language.

-4 -

The structuring methods are described informally in Appendix I,
vwhich also includes a description of the data operations associated
with each method (to be discussed further in Chapter 4). Hoare[?5]
presents a more formal, axiomatic, definition of the methods. We
shall illustrate the use of the structuring methods by giving the
type specifications used in the abstract forms of the programs for

the two example problems,

Birthdays example (type specifications):

type DAY = 1,,3663
type PERSON = 1,..5000;
. 4ype GROUP = get of PERSON;

type TABLE = array DAY of GROUP;
Types DAY and PERSON, both defined as integer sub-
ranges, will be used for the day of the year of a
birthday and the identification number of a person, as
required in the problem specification, A type GROUP is
introduced, specified as a set of people, to denote a group
of people born on the same day, The data to be stored in
the program can then be defined as a type TABLE, specified
to have one group of people for each dgr of the year,
This is the abstract form of the data. In practice,
the array will be sparse (since the problem specified a
maximum of 100 people, so many daye will have an empty
group of people’, and need not necessarily be represented
as 366 contiguous components, The representation for the

sets etc, has also still to be decided,

- 42 -

Card Game example (type specifications):

type PLAYER = 1,.2;
type RATK = 1,,13;

Yyre SUIT = 1,443

type PLAYING-CARD = (suit:SUIT; rank:RANK)j
type HAWD = set of PLAYING-CARD;

iype PLAYERS = array PLAYER of HAVD;

type FACE-UP-PILE = sequence PLAYING-CARD;
type FACE-DOWN-PILE = gequence PLAYTNG-GARD;

Two players are involved in the game, and a type PLAYER
is specified as having the values 1 or 2 to denote each
player respectivelye The RANK and SUIT of a card are
specified as integer subranges also, The type FLAYTNGw
CARD can then be specified as a Cartesian product (ox
record) having components of types RANK and SﬁIT, end
giving selectors in order that each component may be
identified separatelys A hand of cards is defired

then as a set of playing cards. 'The data relevant to
the states of both of the players hands of cards are
denoted by the type PLAYERS, which defies one HAND for
each player, The other cards in the game, not in either
of the players hands, are in one of the two PILEs,

Note that though both HAND and the PILEs contain PLAYING-
CARD components, the first is specified as a set and the
second two as sequences, This reflects the fact that
the cards in 2 hand are not in any specific order, end
will not be inserted and removed in a predetermined

fashion, vhereas in a pile the cards are ordered and

- 43 -

will be added or removed from a specific place, such
as the top of the pile, The two kinds of pile are
specified as different types because their manipu-
lation will be significantly different, and therefore
a different representation may be required for eachs
We associate one représentation per type, rather than
one representation per instance of a type, so in order
to allow different representations to be chosen, we
must have a different type for each pile. This
yestriction will be discussed at more length in

section 642.2.

2.4o4 The Representation of Structures,

Having defined the logical data sfructures required in the progran,
it remains to represent these in a suitable target language fom. A
structuring method such as a sequence—or a set may not be implemented
directly in the target language. In fact the kind of target language
most likely to be used for the sake of efficiency may only include the
array as a basic structuring methode It is therefore necessary to
express data having, say, a sequence structure in terms of some
representing data structure, and to express manipulations of the
sequence data in terms.of corresponding manipulations on the representing
data.

Besides those data structures which use structuring methods which
are not implemented in the target language, it is also necessary to
represent comple x data structures formed from a hierarchy of components
- each using a possibly different structuring method. In general,
therefore, we wish to have representations not only for various data

structuring methods, but also for compound data structures,

- 44 -

A data structure representation consists of the representation of

a given (possibly compound) data structure in terms of some other
(possibly compound) data structure and the implementation of each of
the operations associated with the first structure in terms of the
operation associated with the second structure.

Example: A data structure consisting of a sequence

of items of some type T may be represented in terms of

en array of items of type T together with the index of

the end of the sequence, 'The operation of inserting

a new item of_‘ type T onto the end of the sequence is

implemented in terms of updating the end index and

inserting the item into the appropriate element

of the array, -

In the next chapter data structure representatiors are discussed
in more detail, and in particular it ;’.s shown how they can be expressed

as program transformations,

L= 45 -

CHAPTER 3

EXPRESSTNG DATA REPRESENTATIONS AS TRANSFORMATICES

340 Summary

In this chapter we go oﬁ to consider how program transformations may
be used to express data representations,

First we look at some examples to illustrate the kinds of represen-
tations that we wish to express, and we discuss the factors involved in
applying e transformational approach to describing such representations.
The next sections in-the chapter are concemed with transforming the data

structure specification of a data type, and examples are gi#en of how
| representations may be expressed and applied in these terms, Foxr a
full description of a representation,”it is also necessary to consider
the transformation of the operations upon the type being represented,
fuller discussion of this being left %o the following chapter,s Finally
in this chapter we consider the construction of libraries of data
representations, and show how the transformational approach may assist

in building libraries.

3¢1 Examples of data structure representations.

Firstly in this éhapter, then, we consider some examples of the kinds
of data structure representations that may often be useful in pw granms,
They illustrate the sorts of representations that could suitably be

included in a library,

34141 Set represented as a sequence,

Suppose that a set of similar items is required to be manipulated

in a programe

Example (Bir{,hdays)z In the birthdays problem, we
require to store the set of people who have a birthday
on the same day of the year, for each such day. As
the input data is analysed, new elements will be added
to the appropriate sets.s To produce the required

oufput, the elements of each set are listed.

A common representation for such a set is to use a linked list of
items, one item for each current member of the set, When an item is
to be added to the set, it will be linked into the lis %, possibly with

& check to see if t}.xat item is already in the list. If an item is to

‘ be removed from the set, a search will be made for it in the list, and
it will be removed by manipulating the relevant links, In fact, there
are several ways of representing lists, with different linking arrange-
ments, or even contiguously within a piece of storage.

A generalisation and abstraction of the list, namely the sequence,
is one of the structuring methods adopted in 2.4.3 for specifying data
typess The representation of a set in terms of a sequence is therefore
a useful transformation to apply in the representational process, The
choice of a subsequent representation for the sequence can be made

independently,

3.:1.2 Packed data.

Another example of data representrtion, usually only made directly
available to the programmer of low=-level languages, is that of packed
datas, This nomally is required when it is necessary to storé several
- data items, each of which will only take a small range of values, and

where it would be inefficient to use one word of storége for each item,

- AT -

Of course, describing packed data representation in these terms depends
very much on factors such as the wbrd size of the machine, However,

it is possible to consider abstract counterparts to packed data
representation in a machine-independent form, better suited to inclusion

in a general library of representations.

Example: Given two separate items i and j whose valueé
can range over, sagy, the integers t to 10 and 1 to 20
respectively, it is possible to represent these two

"~ integer subranges in ferms of a single subrange 1 to 200,
with value (i-1)x20+ j corresponding to given‘ i and J

values,

342 Applying a Transformational Approach.
When we wish to investigate applying a transform~tional approach to

the representation of data, there are two main aspects to considerx,
Firstly, representations like those of the previous section must be
expressed as transformations, so that they can be included in libraries
etc, Segondly, it nust be possible to determine vhether a particular .
transformation is applicable to a given program, and, if so, how that

transformation is to be implemented,

5¢2¢1 Expressing Representations.

In order to expréss the representation of one data structure in
terms of another, as a transformation to be applied to a program, we
require a suitable notation for the taske This notation will be used

to write an initial version of the program containing abstract date

. eoncepts, will be used in the transfomation descriptions to express

the changes to be made to the program, will document the program at

each stage of transformation, and will finally be used to express the

target version of the program, It will include means for describing
not only abstract and concrete data structures, but also the manipu-
lations to be carried out on data items in programs which use such
structures,

Vie wish to illustrate some of the factors involved in choosing and
using such a notation. We have not considered in detail the design of
a notation to meet these requirements, so that the subsequent use of
specific notations is for purposes of illustration rather than a
suggestion for a new language. VWhere possible we shall adopt e Pascal-
like notation [28] in order that details irrelevant for our discussion
need not be explained at length,

In expressing a data representation as a transformation, two parts

may be distinguished, The siructure transformation part describes

how a data type specified in terms of a particular data structure may be

represented by a different structure,

Example: To describe the representation of 3.1.1,
the structure transformation will express how a
type specified to be a set may be represented

instead as a type spepcified to be a sequence.

The operations transformations part describes how each of the operations
applicable to the initial structure that are to be implemented by the

representation may be transformed into operations upon the new structure,

Example: For the representation of 3.1.1, an
operation such as inserting an item into a set
will be transformed into operations upon the

sequence which represents that set,

- 49 -

3e2e2¢ Matching and Implementing Transformations.

Besides devising a suitsble notation in which to express data
representations as transformations, such transformations must be applied
to a pmgram in an appropriate fashion. Given an abstract data concept,
specified as having a particdlar structure in a program, and given a
library of possible transformations, there is firstly the selection of
those transformations from the library that might be used in the
representation of the data.

In order for a transformation to be applicable, the data structure,
and the operations on the structure, which it transforms must match the

specification and use of the data in the program,

Example: For the set-as~-sequence representation of
3¢1e1, a transformation that expresses this
representation will not match, and hence not be
applicable to, a program if the representation

does not include a transformation for an operation,
such as removing an element from a set, which is
used in the program on an item of the ty'pé being

represented,

Given that a set of transformations may be matiched as being applic-
able to a data type in a program, theré remains firstly the choice of
vwhich of these, if any, to use in the program, and secondly the
implementation of the chosen one, The selection of the transformation
to implement involves an evaluation among the set that has been matched.
The implementation of the chosen transformation is carried out by
applying its constituent structure transformation and operation

transformations to the program, giving a new version of the program

- 50 -

to which further transformations may be applieds

3¢3 The Structure Transformation

In this section we introduce & notation for describing the structure
transformation part of a data representations 'The structure transfor-
mation shows how a data type in a program, specified by a partidula.r
data structure, may be represented by a different kind of structure,

In section 3.4, the form that the structure transformation takes
is described in more detail bjr oconsidering specific examples. Here

we introduce its general form,

" 343e¢1 The Gerlleral- Form,
The general form that a structure transformation takes in our
experimental system is as follows:
type specification >‘ type specification
for 'old' structure for 'new' structure
The '0ld stmétu;c-e is to be represented in ..terms 61‘ the ‘'new' structure,
so that a data type which has the 'old' structure in a program may be
transformed to have the 'new' structure,
Either or both of the structures may be simple or compound.
A simple structure consists of a single type specification, and a

compound structure consists of a related set of type specifications.

Examples of each will be given in the next section,

In order that a given structure tranéfonnation be applicable to a
given type in an abstract program, the specification of the type in the
program must match that of the old structure, If the o0ld siructure is
simple, only the specification of the type itself need match. If the

old structure is compound, not only the specification of the type, but

-5 -

also that of its related subtypes in the program must match the compound

structure, Matching is considered more fully in section 3¢5e7e

3“.“4 Example Structure Trangformations

We shall illustrate some possible fonﬁas' of structure transformation
by giving those that might be written for the two representations
introduced in section 3.1, plus an addition more general kind of

representation,

3e4e1 Set as sequence.'

The structure t;:ansfomation for this representation can be straight-
_ fémrdly written as:

Yype A = set of By => type A = sequence of B;

The type identifiers A and B stand for two distinet types in some
program, ‘The transformation expresses the fact that if some type A
in a program is specified as being a set of components of type B, then
if the set-as~sequence representation is implemented for type A, its
specification ié to be transformed to that of a sequence of components
of type B, 0

In this case, both theoldand new type specificatlions have a

simple structure,

30402 Packed datae.
For this example, two integer subrsnges are to be represented by a

single subranze, This is expressed as:

type A = (s1:B; s2:C);
Iype B = keol: -
type C = moen; => type A& = 0uo(lktt)*(nmgyt1)-1;

Here there is a compound old structure and a simple new structure,

- 52 -

- The old structure specifies that the type to be represented, 4, must be
gpecified as a Cartesian product of two other types, B and C, each in
tum specified to be an integer subrange, The bounds of the subranges
for types B and C are shown as constant identifiers, so that they will
match with whatever‘ values the bounds for the corresponding types in a
program may have, The new structure specifies that type A will be
transformed into an integer subrange with lowexr bounds of zero and an
upper bound given by an expression whose value may be determined once
the appropriete values for k,l,m and n are resolvede

3e¢4e3 Indirect Representation.

A general representation that may be applied to any data item, but
is particularly used for items of mﬂdown or variable size, introduces
a level of indirection into date manipulation, In this indirect
representation, instead of storing a Ldata. item in a given place in store,
vhich may lead to difficulties when the size of the item varies, a
pointer of fixed size is stored in that position which in turn points
to the actual iteme ‘e item itself is then stored in a suitably
gized section of a storage area containing other items of the same
kind, Usually some sort of storage allocation mechanism and possibly
garbage colkction musf control the common storage area, allowing the
size of the individual items to vaxy dynamically and yet the total
storage required to remain umder control. Indirect representations of
this sort can be used, for example, for several sequences of varying
length,_ or for recursive data structures where the depth of recursion
may vary. They also allow techniques such as shared data items, vhere,

if two items have the same value, they need only be implemented in temms

of pointers to a cormon shared value (though, as will be discussed in

- 53 -

section 4e1, this leads to problems with selective updatingj".

Note that we class such use of pointers as é, particular choice
61‘ representation for the data concemed, not as an essential part of
the definition of such data, as is required in many programming
languages (for example, records and references in Algol W [58])

We wish to define sequences and recursive structures in abstracf terms,
so that the choice of reéresenta.tion is left open in order that a
sultably efficient choice may be made from a set of alternatives,

An extension to the notation introduced so far is required for
expressing representations such as the indirect representation. This
is because these representations require some 'global storage's The
notation used so far has only allowed the description of represéntations
vhere there is a one~for-one change in/ the structure for each itam of
the type being representeds Each item of the type having the old
structure is implemented in terms of ‘the new structure, However, in
some cases, such as indirect representation, besides this change in
the form of each individual item, there is also a need for some data
that is cormon to all items of the type being represented and is
therefore global to the range in vhich items of the type may occur,

| The following structure transformation demonstrates the notation
used in the experimental system to cater for this and other extensions
to the notation presented so faxn
type A = anystruc;
=> type A = 1..MAXNUM (A);
type U = (lastused:A; s:STORE);
type STORE = array A of Bj

type B = anystrucs
global uu:U;

- 54 -

The specification of the old structure in this transformation consists

of the keyword anysiruc, which stands for ay structuring method. The
representation can therefore be applied to any type, no matter what its
structure specification, Vherever the keyword is repeated in the new
structure, in this case in the specification of type B, it will correspond
to that of the old specification of type As When the transformation is
applied to a2 program, whatever structure type A has before the transfor-
mation will be used by type B after it,

The new structure given to type A in the representation is a1 integer
subrange, wtere the upper limit to the subrange, MAXNUM (A), is a special
value, It denotes the maximum number of data items of type A that will
- be used in the progﬁ:am, and is one of a set of type properties that are
maintained in the experimental system and may be used in writing
representationse A full list of the properties are given in Appendix I,

At the end of the specifications of the types on the right hand
side of tle transformation there is a declaration of the global pmrt of
the representat on. This consists of a variable 'wu' of type U,
-declared using global rather than var, which is to be added as a global
variable in the program when the representation is implemented for a
types (The preservation of the uniqueness of identifiers when
transformations are applied will ensure that a different global
variable is used for each type that might use the indirect representation).
The type o.f" the global component U is specified to consist of an
indication of the 'mextfree' item of the new type A, and a storage
component made up of an array of elements each having the structure of
the original type A, 1In other words, storage is made globally available
to store the maximum possible number of items of the type being represented,
and this storage is managed by keeping track of the next free array

element that may be used by the program, Items of the 0ld type A are

- 55

now represented as an index to the element in the storage at which its
value is held, effectively acting as a pointer to the stored value,
The representation therefore alloss sharing of pointers in the
conventional manner of indirect referencing,.

.This is only one of the possible ways of handling an indirect
representations Other examples could be written which deal with

storage allocation in a more sophisticated fashion,

545 Applying structure transformations to programs

In order to apply a data representation to a type in an abstract
program, the representation must first be found to match with the given
type, and then the program must be transformed to reflect the new
representations We shall consider thé natching and transformation for
the structure transformation in this section, leaving the additional

consideration of the operation transformations to the following chapter.

3e5e1 Matching structures.

In order for a structure transformation to be applicabie to a
given type in an abstract program, the old structure specification in
the transformation must match with the specification ofthe type (and any
necessary subtypes of that type, if the old structure is compound) in

the program,

Example: Given a structure transformation such as that

for the set-as—sequence representation:

type A = set of By => 1ype A = sequence of B;

the identifiers A and B in the o0ld structure

specification may be matched to specific type

- 56 =

identifiers in a program only if those

identifiers are specified such that the first type
is a get of components of the second type. If
in the program we have the specifications:

4ype HAND = get of PLAY ING-CARD;

type PLAY ING-CARD = (s:SUIT; r:RANK);
then tle above structure {transformation may be
matched for the type HMIHEwith A and B being

matched to HAND and PLAYING-CARD respectively.

For a compound'étructure specification, the types can be regarded
_ aé forming a directed graph with type identifiexs at the nodes and
vith é link from one type to each of the other types used in its
specification, So, given an 0ld structure with the o mpound

specification:

tyve A = (s1:B; 82:C);
type B = get of D;
type C = array E of Dj

the following directed graph is obtained:

B‘//V/HA\\\\C
NN

In order that this specification matches that of a type to be represented
in a program, the corresponding portion of the program's type graph
- must be isomorphic in structure to the above, as well as having

corresponding structuring methods, So given the following type

=57 -

specifications in a program:

Yype T

= (x:7T2 y:'l‘});
Iype T2 = set of T4;

Yype T3 = array TS of T6;

this gives the directed graph:

Tz/'“\m
/ ‘I‘)'/ \T6

 which is not isomorphic to the previous graph, Hence type TM cammot be
matched with the old structure specifi’cation of the representation.

If in the program type T3 was specified differently as:

Yyre T3 = array T5 of T4;

then a match would be possible, since the graphs are then isomorphic
as well as the structures of the specifications corresponding.

As well as identifying the correspondences between the program
types and the old structure specification types, the matching may also
be used to fix other identifiers in the old structure, such as subrange
bounds, |

Example:s Given the o0ld structure specification for

the packed data representation of subsection 3.4.2:

type A = (s1:B; s2:0);
Iype B = kiolg
lype C = mien;

- 58 -

and given the following type specifications in

a program:

‘type PLAYING-CARD = (s:SUIT; r:RANK);

Yype SUIT = 1..4;
. Yype RANK = 1,.133

then type PLAYING-CARD may be matched with the old
structure specification with correspondences set

up as follows:

0ld structure | A B C st 82 kX 1 m n

Program PLAYING-CARD SUIT RANK s ' 1 4 1 13

3,502 Transforming stmétures.

Once a data type in a program has been matched with a particular
data representation, and it has been decicied to implement that
representation for the type, the program is transformed to meet the new
representations In the case of the siructure part of the representati.on,
the structure specification of the type is transformed from the old
structure to the new structure, All identifiers in the new structure
vwhich have had correspondences established with program valwe s in the
matching stage will be replaced by their program value, Any additional
idgntifiers in the new structure are incorporé,ted into the program
taking care that they do not clash with existing program identifiers.,

In the experimental system, each such identifier is modified by appending
a pair of digits unique to that implementation of the representation,
thus ensuring freedom from identifier clashes (assuming identifiers with

 this form were not used in the original abstract program),

Example: Continuing the example given in the
previous subsection for the mcked data
representation, the new structure specification

for this representation is:

type A = 04 (1-k+1)*(nem+1)=1 ;'
On replacing id entifiexrs with their program
coxrrespondences, and evaluating the arithmetic
expression, the transformed specifications fox

the types in the program are:

type PLAYDNG-CARD = 0,,51;

type SUIT = 1.4
m RANK = 11,4133

346 Constructing a library of Representations

When contemplating the construction of a library of data represeni-
ations from which choices can be made for implementation in a program, °
several factors must be considered, The feasibility of consiructing a
useful library depends largely on the number of representations that need
to be included, and the relative completeness of the ones that are
included, Clearly it is impossible to enumerate a2ll possible
representations, just as it is impossible to enumerate =1l possible
PTOZTams, The question remains as to whe ther a 'useful' set of
representations may be expressed in a manageably sized libraxy,

We shall consider how the transformational approach may help reduce
the size of the library required, and discuss the completeness of
represer.ltation‘ libraries, As an example of the kind of transformations
that could be incorporated in a library, we sumxﬁarise those used in the

experimental system,

- 39641

Sequences of transformations.

In our approach to the representati on of data, it is necessary to

apply successive transformations to the program, until eventually the

data is specified only in target language terms, This approach

vcontrasts to that of, say, Iow [39] s who considers a data representation

to take a data consitruct in an abstract program directly to a target

langusge implementations

The advantage of considering the separate individual transformations

as only a partial step from the abstract to the concrete, is that

different transformations may be combined into sequences in many varied

Wayse

It is therefore possible to achieve a greater range of represen~

" tations of the abstract in terms of the concrete program with relatively

few simple individual transformations,

Example: Consider the diagrarmatic representation for

& hand of playing cards that v;as suggested in 1.2,2 as

below:

rank rank rank .
HAND 5 —enit | —Fuit | —Fait

numbex card1 card? card?
of
cards

where each playing card is packed into one array element,
and the first element of the array denotes the number of
cards in the hand, This representation can be achieved by

a series of transfommations, Given the initial type

- 61 -

specifications for the hand:

type HAND = get of PLAYDIG-CARD;
iype PIAYING-CARD = (r:RANK; s: SUIT);

me_ RANK = 10013;
Ytype SUIT = 1,443

We can first choose to apply the set-as-sequence

representation of 3.4.1 to obtain.

Yype HAND = sequence of PLAYING-CARD;
type PLAYING-CARD = (r:BANK; s:SUIT);
type RANK = 144133

type SUIT = 1..43

(where vwe only show the transformed structure, though
corresponding chanées would be made to the rest of the
program as Qell); Next we apply a transformation which
represents the sequence as an array of contiguous elements
with an indication of the current length of the sequence

(and we' assume a maximum sequence length of 52):

type HAWD = (length:A; elements:B);
iype B = array C of PLAYING-CARD;
Iype A = 0..52;

type C = 144523

type PLAYING-CARD = (r:RAIK; s:SUIT);
type RAK = 14133

type SUIT = 1..43

Then we can choose the packed representation of

- 62 -

3e4e2 for the cards:

dype HAND = (length:A; elements:B);
.Xype B = array C of PLAYING-CARD;

type A = 0,.52;

type C = 1..52;

Zype PLAYING CARD = 0,,51;

Finally some further transformations can be applied
which represent the subrange values for PLAYING=CARD
and A as the basic type int, and amalgamate the length
field into the array to give:

Xype HAND = array D of ints
type D= 1,.53;

The separation, as demonsirated in the above e xample, between say
the transformation of a set into a sequence, then the transformation of
‘the sequence to something else, allows the set to use all the possible ‘
Sequence representa}:ions through the inclusion of only one transfommation
in a library, In a similar vay, only a single version of the packed
data representation may be used in combination with othertransformations

in many varied transformational sequences,

30662 Completeness of a library.

It is clear that no library of data repreéentations can ever be
conplete in the sense that it encompasses all possible representatiom,
since new representations are continually being devised, A library,
such as the one used in the experimental system for these investigations,

is inherently extensible so that newly-developed representations can be

added as required,

- 63 -

The number and kind of representations that shoﬁld be included
in a practically useful library would largely have to be determined
through experience, To a certain extent, the representations that
might be found worth including could be dependent on the nature of the
programs in which they were to be used and the target language in which

the concrete programs were to be written,

_ Example: If the target environment allowed bit-
addressable manipulations, if would probably be
necessary to include the representation of sub-

- ranges in terms of varied length bit sequences as

well as the fixed int type.

30643 An example library,

The llibra.:r.'y of representations that was used during the experimen-.
tation was devised to include examples of many common representationse
It probab}y does not, however, include g sufficiently varied range of
representations for a practical library., TFor example, only one hashing
algorithm is included, when a choice of several might be desirable,

A full listiné of the representations in the example library is
given in Appendix III, Here we shall summarise the various
representations to give an idea of the range available,

Those concerned with subranges, vroducts and unionss
SUBREP subrange represented as a basic int type
SUBCP Certesian product packed into a single subrange
DT dj_scrimjna’ced union with null altemnative packed into
a single subrange
o3 union with null altemative given a separate tag field
SUBDU1 disjoint union packed into a single subrange

SUBDU2 non-~disjoint discriminated union pracked into a subrange

- 64 -

Those concerned with arrays:

ARRAY

BITS
HASH

sparse array expanded into a non-sparse array

array of bits revrresented as array of int

sparse array hashed into non-sparse array

SPARRAY sparse array as default plus sequence of non-defaults

Those concerned with sets:

oW1
PoW2

set represented as array of bits

set represented as sequence

Those concerned with seguences:

SEQL
SEQ2
SEQ3
SEQ5
SEQ6

Others:

sequence as contiguous array with first element pointer
sequence as singly linked list

sequence as doubly linked list

sevefal sequences as singly linked lists in common storage

sequence as contiguous array with last item marker

INDIRECT all instances of a type in common storage with pointers

In addition, there are various transformations that act as

eQuivalences between different structures (such as a cartesian product

with two components of the same type, and an array with two elements of

that type), whose application will be discussed in section 5.4.

- 65 -

CHAPTER 4

DATA OPERATIONS EXPHRESSED AS TRANSFORMATIONS

In this chapter we tum our attention from the structure part to
the operations part of data representations expressed in terms of
program transformations., In the operations part of a representation,
data operations applicable to the '0ld!' structure are transformed
into operations on the ‘'new' structure.

When expressing the manipulation of data, and in particular when
- writing operations bn data structures, certain problems arise that
must be considered before a satisfactory means of writing representations
for the data can be deviseds We look at these problems in the following
section, and then go on to draw an important distinction between data
references and data values to clarify the concepts involved, This
leads to the introduction of a classification of data operations, and
the associated notation which was used in the experimental system.

The general form and some examples of operation transformations
are then given, and finally the g{plication of such transformations to

programs is discussed,

4.1 Problens in Expressing Data Operations

Firstly, then, we consider some of the factors involved in data
manipulation, and look at the sorts of problems that arise particularly
when operating upon abstract data whose representation has yet to be

chosen, We wish to be able to write an gbstract program that uses the

- 66 -

abstract data types declared by thé programmer and expresses the problem
solution in a data representation-independent fashion. The operations
“on the data used in the abstract program must however be transfommable
dinto appropriate operations on the final concrete data as the

representations to be used for the data are fixed.

4e1e1e Representation dependence.

In a conventional programming language, each kind of data . .structure
is represented in a particular fixed way, so that the operations available
on the structures (s;ch as indexing an element of an array, or selecting
& component of a record) are implemented to suit the representation,
However, when manipulating data structures whose repreéentation has not
yet been decided, the prograrmer does not yet know which operations will
be efficiently implemented, Indeed the choice of the representation
will be made in order to provide suitabl& efficient implementation of
ﬁhe.operations required in the abstract program.

The operations that may be used on data structures when writing
abstract programs must therefore be a sufficiently general set that the
programmer can express the abstréct manipulations to be carried out,
but must also allow for the selection of representations for the>
structures which perhaps only implement a res£ricted set of general
operations,

The selection of an appropriate general set of data structure
operations is 5 complex taske The set of operations we have used in
the experiments is not necessarily intended to be a complete or sufficient

 set, but does illustrate the need for operations not normally distinguished

in programming languages,

- 67 -

4e1e2 Need to express unconventional operations,

As an illustration of the kind of data structure operation that
appears necessary in a general set of operations, consider an array
structure, If wve declare a type and a variable of that type as

follows:

type A = axrray 1¢+4710 of 14483
var azh; ~

then the conventional operation on a variable of an array structured
type is that of indexing
a [i]

A1l changes in .value of the array variable are made by selective updating
of its components, a technique which suits the conventional representation
of allocating one array element per storage cell,

However,‘ if we wish to represent an array (which, say, is sparse,
having few element walues differing from a common default value) as
a defanlt element value plus a list of tﬁose elements whose values
differ from the default, then other array operations become desirable.
For example, this representation can easily implement an operation which
sets all array elements to have the same values Such an operation
could also be implemented for the conventional representation as a loop
which assigned the common value to each element in turn,

A note of caution is necessary, however, to check that operations
which are too special-purpose, even though efficiently implemented by
a particular representation, are not allowed to produce an over-large
set of data operationse It is not clear what criteria should be used
in judging whether an operation is of sufficient general use to be made

 available in writingabstract programs.

- 68 -

4e1e3 Need to distinguish references and values,

Not only are additional operations required beyond those
conventionally used on data structures, but the existing operations
are often too loosely used in programming notations for direct adoption
vhen expressing data representations, For example, returning to the
array of the previous subsection, the indexing operation has a different
meaning, and hence may require a different implementation, depending on

its context. When used on the left hand side of an assignment

af[i] :=
it denotes a reference to an array element, whereas on the right hand side
3= a[iJ
it denotes the value of an array element.
In the case of the conventional array representation, with one element
per storage cell, an indexed element has both a reference, enabling it
to be updated, and a value. However, say we used a representation which
packed the complete array into one word §f storage, as we could indeed
do for the above array, taking three bité per element for the ten elements,
In this case there is no way of individually obtaining a reference to an
element of the array (presuming a conventional target language or machine
which does not @llow bit-addressing).
For this reason we shall draw a clear distinction befween data

references and values in order to distinguish data operations more clearly.

4,2 References and Values

In order to clarify the different operations that may be applied to
data items, and to identify those operations that a given rerresentation

can implement, we shall make the distinction between data references and

-69 -

data values more explicitly than in most programming languaces. This

distinction, at its most basic, corresponds to the distinction between
the address of a cell in a computer store and the contents of that
cell, We shall considex it-_in those terms first, and then generalise
to its use when dealing with abstract data that has not yet been

represented in terms of storage cells,

44241 Storage derivations.

The distinction betweén references and values, particularly in the
context of programming languages, arises when relating the semantics of
programs to the underlying implementations in storage (see, for example,
Barron [5] , Iomet [37] and Walk [52])e Take, for example, the
case of two variables in Algol 60, deciared ass

integer i,Js
When the block containing this decla.r%mtion is entered during the
execution of the program in which it occurs, two storage cells will be
allocated, one for each variable, These will be used to hold the
values of the variables as they change during the subsequent manipu-
lations, These storage cells are referred to by their address in
storage, and vhen they are a.llocateci, a conceptual relation is set up
between the variable i-dentifier in the progran and the address of the
associated cell in store, Vhen, therefore, the variable is manipulated
in the program, the relevant cell in the language implementation can be
located and manipulated accordingly. Possibly the most cormon form of
data maxjipulation in Algol is assignment, so consider the assignment
. statement within the block containing the above declarations

is=13;

In storage terms, this means that the contents of the cell worresponding

- 70 -

" to the variable j should be stored at the address of the cell
corresponding to the variable i. In ofher words, the variables must
be interpreted to mean different things, the location of a cell or the
contents of a cell, depending on whether they occur on the left-hand or
right-hand side of the assi@ment statement, Strachey [50] pointed
out this distinction and used the terms I~value and R-value to refer to

the different results of evaluating the expression on each side of an

assignment statemente In Algol 60, besides a simple variable identifier,
many different kinds of expression may be written on the right-hand side

of an assignment, for example:

i 313

if j=0 then 0 else j+13

ali]s

(assuming 'a' is declared as an integer array)s Bach right-hand side

e
b

i

]

expression evaluates to an R-value, in other words an integer value in
these cases, However, on the 1eft—hand-side, Algol 60 only allows one
kind of expression besides the simple variable identifier, namely the
array subscription:

ali] : = 3
Here, the left-hand side must be evaluated to produce an I-~value, in
other words the address of the array element that is to have a new value
assigned to it, One of the early languagesithat was developed based on
Algol 60, CPL (Barron et. al. [4]) extended this idea to allow more
general L-value expressions. For example, the following assignment
could be written in CPL:

(1>53,3)3= O3

. meaning that either i or j was to be assigned the value 0, depending on

-T1 -

the value of the relational expression idj. In other w0rds? the
conditional expression.

idi>iyd
retums the aﬁdress of an integer variable as a result in this context,
but would return an integer value as a result if placed on the right-
hand side of an assignment.

To try and overcome the ambiguity of interpretation, some languages
have adopted a specific syntax to show the action of taking the contents
rather than the address denoted by a variable identifier. For example
Bliss [53] uses a dof notation '.' to denote the 'contents' operation,
so the above examples would be writtens

is=

oJ
= o8 [;jJ

i
aji] == 3 ete.

Mgol 68 [57] uses the terms 'mame' and 'value' instead of left-

hand value and right-hand value, and allows the name of a data item to
be a manipulable value itself, of mode ref M, M being the mode (or
type) of the item, This allows a large scope for menipulation of
references, and the dangerous potential of many levels of indirection,
which with the complex coercion rules of the language can lead to

difficulty in understanding the action of programs (see for example

Hoare [27]).

4,2,2 Definitions.

Ve shall adopt the terms 'reference' and 'value', but will not
consider references as manipulable items in the Algol 68 sense, We
}Vprefer to use these terms rather than, say, 'address' and 'contents!

since we wish to consider abstract data structures and their

-T2 -

representation, Real storage concepts such as addresses, which are
essentially low level concepts, will not be intmw duced until necessaxy
at an appropriate stage in the representation process,

So now consider the reference-value distinction in a general

representation—indepehdent sense, A data reference of a given type

denotes a piece of abstract storage that may contain a daota value of

the associated type. (The reference may even’bualiy map onto a specific
addressable storage location, or may not, depending on the representation
chosen for the type in question)s Nothing is assumed of the abstract
storage (i.e, it is x;ot necessarily of fixed or known size, or contiguous
or o mposed of.uniform component cells etc.), except that it may hold
any value of the associated types A8 representations are chosen for
the type and any of its components, the actual form of the storage will
be decided, so that the final program will use explicit target language

storage concepis,

4423 Assignment.

Given a reference to a particular data item,'va specific value may
be set in the abstract storage denoted by the reference using an
assignment operation. At any moment the current value associated with
a given reference nay be dexrived by a 'conteﬂts' operatione A
reference to a data item is established either vhen storage is initially
allocated for the item (e.ge. on entering the block in which a voriable
is declared) or when a new data item is inserted into a data structure
(e.g. inserting a new item into a sequence). Let us consider this

" for particular examples, firstly for a variable of an unstructured type,

- T3 =

then for a structured variable,
If the following unsiructured type has been declared in an

abstract program

type RANGE = 1,20
a variable of the type may be declared as

var r: RANGE;
Conceptually, this implies that if the abstract progrem were executed,
upon encountering the declaration during execution some abstract
storage must be allocated sufficient to hold any of the values of type
RANGE (i.e. 20 distinct values) but not necessarily one word of
concrete storage, or even 5 bits of concrete storage, will be allocated,
since this will depénd on the representation of type RANGE chosen
subsequentlyes Vhen the abstract storage is allocated, a reference is
established to the storage, and an association is set up between the
variable identifier 'r' and the referénce. When 'r' is then used in
the program, it will be taken to stand for the variable. So, upon
execution of a statement such asv

r: =33
the assignment takes the reference to the storage aenoted by 'r' on the
left~hand-side, and the value of the expression on the right-hand-side,
and sets the conients of the storage to be the given value, In oxder
40 access the current value of the variable, given the reference to the
storage in vhich it is stored, a 'contents' operation can be used, which
we shall denoie by the postfix operator '@ For example, the
statements |

| rs: =@+ 13

accesses the current contents of the variable whose reference is denoted

by 'r', adds one to that value, and assigns the result back to the

- T4 -

variable's storage. In a progranm expreséion such as this, it is

vossible to infer the existence of the contents operator, and therefore

omit it in the program text to conform to normal Algol-like syntax:
Tri=1r+ 1

Howvever, the operation must still be carried out, and we may require

that it have a particular implementation specified for it in the

operation implementation section of a representation.

4e2¢4 Structured variables,
Now consider the declaration of a structured variable in an abstract
programs

type PAIR = (first : RANGE; second : RANGE);
yar p : PAIR;

On encountering the variable declaration during program execution,
abstract storage must be allocated to hold any value of type PAIR
(i.e. 20 x 20 = 400 different values), ‘Again, whether these values are
eventually stored with one word for each component, or packed into a
single word, will depend on the representations chosen for pypes PATIR
and RANGE, A reference to this abstract storage is fixed upon allocation,
and denoted by the variable identifier 'p' in the programs But, since
we wish to be able to selectively update the components of p, references
also are established to the two components of p, and may be used on the
left-hand-side of assignment statements, These component references
may be derived from the reference to the complete variable, denoted by p,
by a reference-~selection operation:

Jfirst

So, to selectively update the 'first' component of the variable, we

-75 -

may writes

Pefirst ¢ = 43
(the notation is presented more fully in the next section)e Given the
reference to a component, its current value may be derived by the
tcontents' operator, as for the wnstructured example, so we may write
statements such as:

Do second t = p.first@;
(again, the '@' may be omitted and inferred from context, since the
expression is on the right-hand-side of an assignment, and therefore
must denote a value rather than a reference), But as well as taking
the contents of an unstructured component of a structured variable,
we also wish to be a;ble to obtain the (structured) value of the whole
variable from its reference byb the con_’cénts operation:

w .

In fact, if the type PAIR is represehfed in terms of a single word of
coﬁcrete storage, by packing both components into a single cell, it
may be impossible to individually reference the components within the
‘word in order to selectively update them, In which case,‘ it is
necessary to obtain the value stored in the cell, in other voxrds the
structured PAIR value, and perform 'value-selection' operations to
obtain the component values., Since in the abstract program we do not
yet know how the type will be represented, we cater for both reference-
selection and valuve selection, transforming between the two as necessaxy when
a particﬁlar representztion is to be implemeni:ed; So, ziven a structure value
of type PAIR, the value of its 'first' component may be obtained by a
. Velue-selection which uses the notation:

first
which can be applied to the complete velue of the variable p as follows:

p2first

mailto:p.first@;

- 76 -

In these examples, we have already begun to introduce the notation
for data operations used in the experimental systems The next section
classifies such operations and introduces the syntax developed to

distinguish between the various kinds of opera'bion’.

4.3 Classificztion of Data Overations

Having shown the need to distinguish between da‘ca references and
data values vhen considering data representations, and also shown the
need for unconventional data operations, we now try to clarify the
possible data operations‘. In this section we classify the operations
according to their oI;era.nds and their semantics, We also introduce a
nétation for textually distinguishing the different kinds of operation
when ‘writing prograns or writing operation implementations in
representationse The notation is not put forrard as a proposal for

clusion in an implemented programming language, but as an aid to
understanding cortain data menipulations. It will be used in the

subsequent examples of data transformations.

4431 Ownership of operations.

A fundamental notion that we adopt is that each data operation has
one and only one associated data type, which 'owns' the given operation.
This is because, vhen a rei)resentation is choéen for a data type having
a particular structure, it is necessary to implement each of the operations
on data items of that type in terms of operations on the representing
data, Thus it is necessary to know which operations mmust be elaborated

when a particular data type is represented, namely those operations ovmed

-7 -

by the type in the abstract program,

The ownership of operations by a particular type is similar to
the Simula class concépt and its derivatives mentioned previously,
However, there is an impor tant difference between the use in classes
and the use required here, In Simula, the operations in a class are
associated with an instance of the class, rather than the class as a
whole, In other words, conceptually each data object has its own set
of operations different from those used on other objects, even though
the objects may belong to the same class, Syntactically in Simula,
each operation is prefixed by the object instance to which it must be
applied; so each operation has a unique parameter of an object of the
owner class, This makes operations, such as equality, between two
objects of the clasgs inherently asymmétrical. In Simula this would
be written:

a . equals (b)

Here the operation 'equals' belongs to the object instance 'a', whereas
the other object ;b', of the same class as ‘'a'y, is relegated to be a
subordinate parameter. By saying that the operation ‘equals' is owmed
by the class (or type in our notation) of the two compared items, each
jtem can be a parametexr of equal importances:

a=D>

44342 Operation categories.

We classify all data operations into eight categories, and give a
particular distingvishing syntactic symbol to most of them in the
notation, Each category contains operations with a common parameter

specification and semantic interpretation,

1.
2.
3.
4.
De

Te
8.

Category

Update
Reference-select
Contents
Value-select
Contruction
Attribute

Relation

Iteration

Where: X is the owner data type of the ope'ra*bion.

- 78 =

Symbol General syntax

: xr:op(params)
. xz, op(params)
_ . Y v
U xv top(params)
$ X#op(pa,rams)
? xv?op(params)

Cefe xvi=xv2

eege foryv in xv do S

xr is a reference to an item of type X,

xv is a value of type X.

op is the operation name,

Y is the type of a component of X (hence yr,yv)e

zv is a value of a standard type such as logical oxr int.

lv is a value of type logical,

params are a set of value paremeters,

Figure 4,1

Operation Catesories

-T9 -

The distinguishing charactexristics of each category are listed
in Figure 4.1 Ve shall here briefly summarise the intent of each
category, and in the next subsection will give examples of data
operations which use the suggested notation,

Each data operation is applicable to data references or values of
ite owner type, and may take values of other types as parameters and
return references or values of various types as a results Iach
category of operation takes a particular combination of 0,1 or 2
references or values of the owner type, as shown in the general syntax
colum. Some kinds. of operation may take a bracketed parameter list
of one or more additional data values of 'bype.s which deioend on the
particul ax operatioﬁ. The characteristic symbol distinguishes the
'ca;l:e'gory by the syntax for six of the voperation kinds, the relation
and 'iteration having their own individual syntax. Within a category
each operation has its own individual name.

An update operation acts to change the value associated with the
data item whose referénce is given, It is the only operation which
causes a change in the stored data values, Assignment is the most
common form of update operation, whose operation 'mame' is the symbol =,
and which requires one additional value parameter of type X which is the
value to be assigned to the referenced data item,

The two kinds of selection, reference-—select and value-select have

been briefly introduced in section 4.2, as has the Contents operation.

A construction operation constructs a new value of the owner type,
generally taking a list of parameters to do so. It may also be used to
construét, say, an empty set or sequence, in which case no parameters
are required,

An atiribute operation is used to obtain, for example, the length

of a sequence, or whether a set is empty. or note It differs from a
value-select in that the latter selects a distinguishable component
of a structure, of a type depending on the structure specification.
The result of‘an attribute operation is of a standard type such as
integer or logicale Whereas a value-select usually has a counterpart
reference-select operation, the attribute operation has no such
reference~returning counterpart.

A relation is the conventional comparison operation between two
values of the owner type.

An jtexation operation is not conventionally considered as an
operation related to a particular data structure. Hovever, some
iterations, such as repeating some action for each item in a sequence
or set, clearly depend for their imi)lemen'ba’cion on the representation of
the structure concerned., It is therefore necessary to consider how
such an iteration is to implemented vwhen representing the data structure,

and so the operation belongs in a category of the data operations‘;

4e3e3 Bxample operations,

In order to illustrate the semantics and synfax of the various
operation categories, we give several examples in this subsection. A
more complete description of the operations associated with each of the
structuring methods that were used in the exx}eriments is given in
Appendix I,

For the following examples, we presume the existence of various

types and variables given by the following declarations:

tvpe A = set of Bs
type C = array D of Ej;
Iype D = 1..1003
type B = (s1:75 s2:G);

var ai A;
var bs B;

———r

var o: C;

By declaring variables in this way, & variadble identifier such as 'd!
may be used in a program to denote a reference to the data item of
type D that is allocated by the declaration, The value of the item is
obtained by the contents operation

d@
which may be used, say, in an arithmetic expression. A new value may
‘be assigned to the variable in the conventional way

d =8
using an update operation (where the brackets around the single parameter
181 are omitted to give the conventional assignment syntax)e Tests on
the current value of .the variable use the conventional relation operations
such as |

0= 6)

In the case of structured variables, such as the array 'c', elements
of the array are obtained by selection operations. Reference-seleciion
such as

0sindex(7)
takes a refarence to the variable 'c' and returns a reference in this
case to the element indexed by the value 7, A similar value-selection
c@'index(7)
takes a value of type C i.e. 'c¢c@!' and returns the velue of the seventh
element of the array, Since the elements of the array are themselves
structured as a Cartesian product with two components selected by the
selectors §1 and s2, it is possible to concatenate selection operations
to obtain, say a reference to the second component of third array element
c.index(3),s2
or the value of the first component of the last array element

o@'index(100)1s1

Turning now to the set structured variable 'a', as well as possibly
using assignment operations on such a variable, éther update operations
allows elements to be inserted into or removed from the set, for
example

a:insert(b@)
inserts the value of variable 'b' into set 'a', Attribute operations
may be used to test whether a particular value is currently an element
of the set value

2@7has(b@)
or vhether the set is empty

a@%empty
or determine the nmiber of elements in the set

-

a@Mmumel
In addition, it is possible to construct a new empty set value
. Aderpty -
so that, using an assignment, the set variable can be made empty
a.A:= A#emﬁ’&y
Finally, it is possible to repeat some action 's' for each element of
the set in tum |
for bv in a@do S
vhere the identifier bv may be used in S, and for each iteration will

deénote the value of a different element from the set,

4.504 Example program.
As an illustration of the use of the notations introduced so far,
we give the abstract program written for one of the two examples

introduced in the first chanter,

- 83 -

Bi rthdays Example: TFigure 4.2 gives the program
as input to the experimental system. The type
definitions are as explained 'in section 3¢3e1e
Three variables are declared; the first is the
table of people having birthdays on given days,
the others being auxiliary variables required

in the executions In the executable part of

the program, the table is initialised so that
‘each of its componeﬁts is an empty set, In

the input phase, controlled by the while loop,

the identity number of each person in tumn is
insefted in the set indexed by.their birthday,

In the output phase, tﬁo nested 1§ops, both being
iteration data operations, cycle first through
each day, and secondly thrdugh each element in the
chosen set, in orxder to write fhe identity
numbers'of fhose people with birthdays on each
‘day.

The abstract pmgram for the other example program is listed in

Appendix II, and provides a further illustration of the notation,

TYPEF TABLE=ARRAY DAY OF GROUP;
TYDFE DAY=1.436A%
TY2PE AROIP=SET OF PERSONS
TYPF DERSNANT] 5000
VAR T:TABLE; VAR D:DAY}; VAR PIPERSONS
REGIN
T:=TA3LFHALL (3R0UPEEMOTY) §
READ(P);
WHILE Da=0 DD
BREGIN REAN(D) 3
Te INDEX (D) INSFRT(P)
READ(D)Y 3
END 3
FOR D DO
REGIN WRITE(N)
FAIR P2 IN THINDEX(D) DN WRITE(PP);
END 3
FND

Pisare 4,2 Absiract prosram for Birihdays evonple.

-84 -

4ol Operation Transformat:ons

We have already described the trensformation of the structure
part of a representation in section 303 In this section we describe
the second part of the representation, the operation transformations,
The structure transform=tion shows hov the type being represented has
its structure specification modified from the old to the new structure,
The o ration transformetions show how operations on the old structure
are modified into operations on the new structure so that the desired

manipulation of the data is still carried out,

Example: Tﬂe structure transfomation for the packed
data represeﬁtation, given in 3.4.2, showed how a
Cartesian product of two . integer subranges could

be represented as a single subrange, It is necessaxry
to also express operation transformations so that, for
example, changing the value of a selected component of
the o0ld structure is transformed into an appropriate

change in the value of the new structure,

We shall describe the zeneral form of the operation transformation

and then go on to illustrate some specific transformations,

4e441 The general form.
The generazl form taken by an operation transformation is similar

to that for the structure transform-tion:?

operation on operations or piece of program

=>
101d' structure acting on 'new' structure
Just as the structures nay be simple or compound, so the operations

upon them may be simple or compound, A compound operation consists of

a continguous set of data operations, and will be illustratcd in the

-85 -~

following subsection, The implementation of the operation, given
on the right hand side of the transformation, may consist of a single
or compound operation, or may even be é. piece of program carrying out
a series of operations on the new structure,

For each representation there may be a number of operation
transformations, one for each of the operations on the old structure
that the writer of the répresentation wishes to support on the new
structure, In order that a representation be applicable to a data
type in a program, each of the operations on that type that are used
in the program must be implemented by the representation. In other
words it is necessary that each operation owned by that type in the
progranm is matched by an operation on the left hand side of one of the
operation trensformations for 'bhé repfesentation. Matching and
transforming operations is considered in the next section, lMeanwhile

we give some examples of operation transformations,

Aede2 Example operafion transformations,
For this set of example overation transformations we will consider
those that might be written for the packed data representatione. The
- 8tructure transformation for that representatil on; introduced in
30442y was as follows:

type A = (s1: B; s2: C);

type B = kuuls
m_e_ C = M, oNn$ = HR?. A= 04, (1—k+1)*(n—m—l»‘\)-1;

Firstly, consider a value-select operation on the old structure, whose
implementation can be given as the following transformation:
avtst => av mod (1-k+1) +k

in vhich av stands for any data value of type A On the left hand side

- 36 -

. of the transformation there is a simple value-select operation
applicable to the old structure. On the right hand side is an
arithmetic expression (M being the integer infix operator that gives
the remainder on dividing the first operand by the second), where av
is now interpreted as being a value of the new structure, hence a value
of an integer subrange, A similar implementation can be given for
selecting the value of the second component of the old structure,

The next operation that can be implemented for this representation
is construction of a new value of type A:

A# (bx_r,cv) = (cv-m)*(1-k+1) + (bv-k)

Given values bv and cv of types B and C respectively, constructing a
Cartesian product vé.lue of the old type A can be implemented as
evaluating the given arithmetic expression to give a value of the new
type A,

If we now tum to implement a réfgrence~se1ect operation on the
old structure, we find that it is not possible to return a reference
to a component in the new structure since the 'structure! is a single
integer value, However, it is possible to implement a compound
operation vhich updates a component of the old structure:

ar.sii= bv => ar:= (ar@ div (1-k+1))*(1-k+1) + (bv-k)

where ar is a reference to an item of type 4, and bv is a value of
type Bs The left hand side is a compound operation consisting of a
reference-select and an assignment operation, meaning that the value of
the s1 component of the referenced data item is to be changed to bv.
This is implemented as an assignment of a new value, computed from the
currentn value of the referenced item and bv, to the referenced item.

A simjlar implementation can be used for assigning a new value to the

- 87 -

other component,
To summarise, therefore, in Figure 4.3 ve give the complete set
of structure and operation transformations for the packed data

representation.

type A = (s1:B; s2:C)3
type B = keal; |
type C = m.un; => iype A = 0.0 (1-kc+1)*(nem+1)-1;

av'st => av mod (1-k+1) +k;

av's2 => av div (1-k+1) 4m;

ar,sls=bv => ar:=(ax@ div (I-k+1)P*(1-k+1) + (bv-k);
ar.s2i=cv => ari=(cv-n)*¥(1-k+1) + (ar® mod (1-k+1));
Af(bvyev) = (ev-m)*(1-k+1) + (bv-k);

Figure 4,3 Transformations fo:ng_acked representation

- 88 =

4,5 Applying Operation Transformations to Programs

In oxrder to apply a data representation to a type inan abstract
program, the two-stage process of matching and transforming applies to
the operation transformations just as for the structure transformations
discussed in section 3.5. First the representation must be found to
match the type to be represented, and then, if the representation is
chosen as the one to be implemented for the type, the program must be

transformed to reflect the new representation.

4.5.1 HMatching operationse

To match data operations it is necessary to determihe that the
representa'tion impl'ements each of the op rations used in the program
which is owned by the type to 'be-repre’sented. Thiz may be done by
making a scan of the program and, whenever an o ration owned by the
type is found, a search is made throu;gh the ope ration transformations
of the representation to find a matching 'old' operation,

The identifiers J.n the operations of the representation must be
interpreted according to the vaSSOOiations set up in the structure stage
of matching, Any additional identifiers in the left hand side of an
_ operation transformation are bound to specific program elements when a
match is made, so that subsequently the right hand side identifiers can
have appropriate substitutions made for them on implementing the

operation transformation,

- 89 -

Example: Taking the packed data representation of
4e442, and applying it to the following types in a
progran:

type PLAYING.CARD = (s:SUIT;r:RANK);

Lype SUIT = 1.443
type BANK = 1,4133

we obtain the correspondences shown in section 3e5.1,

including
Representation A s1
Program PLAYTNG~CARD s

On encountering the following operations in the program
therefoie |

pt= PLAYING-CARD4 (q@'s,13);
where p and q are both variables of type FLAYING-CARD,
there are two operations which the representation will
matchs

Mi(bv,ov) will match PLAYING-CARDE(...,...)

giving the additional identifier bindings

bv to q@'s
cv to 13
and also
“av'st will match q@'s

giving the additional binding
av to q@
Certain special operations owned by the type being represented need
not appear in the operation transformations of the representation, but

will not cause a match to fail. These operations are the ones that may

- 90 -

apply to items of any type, no matter what structure the type may be
specified to have, and will mean the samé whether applied to an item of
the type before or after the representation has been implementede

They are the aséignment operation (:=) and the contents operation (@)

Example: In the previous example the assignment
and contents ope:r._‘a,tions in
pi= PLAYTNG-CARD % (q@'s, 13);

belong to type PLAYING-CARD, However ,there is no

need for them to be implemented by the packed data

representation since they will apply equally well

to the type whether it is structured as a cartesian

product or a single integer subrange.

If a representation requies these operations to be implemented in

a special way, they can be included in the operation transformations
along with the other implemented operations, and their defined implemen-

tation will be used rather than defaulting,

4.5,2 Transforming operations,
On deciding that a representation which has been matched to a data
- type in a program will be implemented for that type, the program is
transformed accordingly. In the case of the operation transformations,
each operation in the program which has been matched with the left hand
side of an operation transformation is replaced by the right hand side
of the transformatione All identifiers in the right hand side which
have had correspondences established with program values in the matching

stages are replaced accordingly.

-9 -

Example: For the two operations considered in the
previous subsection, their right hand sides in the
representation description are respectively (see 4e4e2)¢

(evem)*(1=k+1) + (bv=k)
an
av mod (1-k+1) + k
On substituting the identifiers bound by the structure
matching and each operat matching these become:

(13=1) * (4=1+1) + (q@'s - 1)
and q@ mod (4-1+41) + 1

In the first of these, the operation q@'s, originating
from the pmg:r."am before application of the representation
itself, uses the implementation given in the second line,
Ths the original program statement

t= PLAYING-CARD# (q@'s, 13);
is transformed into

pi= (13=1)%(4=141)+ (q@mod (4=1+1)+1 = 1);

4¢5.3 Optimisation.

Of course applying a set of separate transformations to a program
nay 1eva.d to a new program in which various redundant expressions, or
" expressicns vhich may be simplified, will occur., Various degrees of
optimisation may therefore be applied after a program transformation.
In the experimental system a simple optimisation of evaluating all
arithmetic expressions where possible was applied and found to be
largely sufficient,

Example: The above tra.nsfox"med program statement

would be simplified by the experimental system to

P 3= 48 + q mod 43

-92 -

The transformational approach does not necessarily imply a mécro-
like implementation of all data operations. If an operation
implementation was a non-trivial piece of program and it was required
several times in a program, implementing it as a single procedure
declaration with a procedure call at each point of use might be
preferable, However, the additional complications introduced when

procedures are used have not been investigated (see section 6+2)s

- 93 =~

CHAPTER

ASSISTING Tilg SZLECTION OF REPRTSENTATIONS

50 Summary

Having desciibed an approach to data representétion by'programv
transformation, and investigated some of the notational techmiques
such an approach could adopt, we next go on to see how using the
approach could assist the programmer in tﬁe selection of data
representationse.

First we give a brief description of the experimental system that
was used as a test-bed during the investigations, Next, the matching
of representations is further discussed to show how representation
selection may be aided by more tailored matching,

The choice of representations israimed at obtaining a suitably
efficient final program, in terms of storage &pace and execution
time. The evaluation of representations in terms of their effect on ‘
program costs is discussed in the third section.s Finally, by use of
examples from the experimgntal system, the way in which the application
of a series of transformations can be guided to produce an acceptably

- efficient target program is considered,

5¢1 The Exverimental System

As a means of gaining experience with the problems involved in
taking a transform=tional approach to data representation, an
experimental interactive system was prograrmed to Tun on the IBM 370/163

- at Vewcastle Universitys, The objective in implementing the system vas

to provide a test-bed for examining the selection of data representntions,

- 94 -

rather than to investigate the detailed design of such a system itself,
We shall therefore give an overall view of the system in order that the
results of the experiments carried out in using it may be understood,

but avoid a description of its detailed implementations

5¢1e1 Overall form of the system,

An overall diagram of the system is shown in Figure 5.1

REPRESENTATION
° LIBRARY
USER
ABSTRACT EXPERTIMINTAL CONCRETE
— e
PROGRAM CHOICE SYSTEM PROGRAM

Figure 5,1 Overall System Diasram

The representation library consists of a file of 2ll the data
representations available for selection and implementation in the

user's abstract programs, The library is searched for suitable
representations whenever a specified type in the user's program is

to have a representation chosen for it, Initially, the user's abstract

. program is input to the system, Then, under the user's control, the

system helps in the selection, evaluvation and implementation of

- 95 =

representations for the data types in the abstract program, until
finally all the types and structures in the program are basic to the
target langusge, and the final concrete version of the program can be
outpute The user controls the representational choice process by
interactively monitoring the order in vhich data types are represented,
and by choosing the representation actually to be implemented from the
set of feasible representations selected and evaluated by the system
for any given data type.

The notation used to expiess both the representations stored in
the library and also.the abstract programs has been described alreadye.
A part of the system, that will not be elaborated further here, act as
a syntax analyéer énd checker for the notation, and generates an internal'
code version of either data représentéfions or abstract programs. This
internal code, which has been checked as forming a syntactically velid
representation description or program, is tre fomm in which representations
are stored in the library, and programs input to the choice system,
respectively. | |

Taking a closer look now at the internal orgenisation of the
experimental system, it consistsrof several logical sections indicated
. in Figure 5,2, We shall consider the purpose of each of these sections
in tum,

The abstract program, on being initially input to the systenm, is

stored there in its internal code form. Whenever the set of suitable

representations are to be examined for a siven data type in the program ,
the current stored program is accessed to determine the structure

specification and the data operations of the given type. When a chosen

- 96 -

LIBRARY USER

/’ﬂ\
-7 7\
P / \ N\
Ll 7/ N
\ r,’ II \ \\

SELECTIOCH EVALUATION|-e~ IIPLEMENTATION
‘\ ‘ \ /
\\
ABSTRACT'———-———4——e>(::iNTERNAL FORM OF PROGRA%jz}——-—-————u+>-CONCRETE

PROGRAM PROGRAM

Figure 5,2 Intemal Organisation of System

representation for a data type in the program is implemented, the stored
program is transformed to incorporate the new representation, both in
the structure specification of the type and in the operations verformed
on items of that typee In other words, the current program stored in
the system always reflects the set of data represent-tions that have
been implemented up to that point in the rep;esentational choice process,
Once a chosen representztion has been implemented, the stored form of
the program hss been irrevocably changed, and it is not possible to
subsequently restore it by 'undoing' the representztion of a given type,
since later representations may have in their turn transfomrmed the whole

of or parts of the structure specification or operations of the type.

- 97 -

5¢1e2 Use of the system,

At any given stage in the representation process, the system user
has the choice from the current data types in the program of which
type to investigate next, By issuing an appropriate cormand to the
system he may request the system t§ search its library for all the
suitable representations for a given type. The selection of the set
of feasible representatiéns for that type involves matching the current
specification of the type in the program with each representation in
the library. An evaluation of each of the feasible representations is
made in order to estimate the storage cost of each representation.

This evaluation, and the evaluation of execution time cost, is dealt
 with further in seétion 5¢3¢ Having seen the choices of representation
available to him, and been given some guidance as to the relative costs
of each choice, the user is then free to select one of those choices to
be implemented, The way in which iﬁplementation of a representation
transforms the stored program has been described already. If the

user decides that noné of The possible choices is suitable at that
roint in the representational choice process, he is free to specify a
different abstract type and investigate its representation.

A large zmount of guidance is therefore required from the user of
the experimentzl system, especially in droosing the order in which the
abstract types in the »rogram are to be represented, This freedom was
designed into the system on purpose so that different orders of choice
could be easily tried and the consequences of different selection
strategies investigateds The interactions between the choices of
representotions, particularly between hierarchically related types such

as the representation of a set and the representation of its elements,

-98 -

-can become complex, Some of the possiéle options available to the
user are discussed in section 5.4

Yhen all the types and structures have been repreéented in tems
of basic targgt language constructs, the final program can be output
by converting the intermal fomm into the syntax of the target language

(though this was not a feature included in the experimental system),

5¢2. liatchinz Representations

In order to determine the feasible representations that may be used
for a given data type at some point in the representational choice
process, a scan of the library of representations is made in order to
find those which match the type specifications In fact, in the
experimental system, matching representations is a three-stage process,
as showmn in Figure 5.3, TFirstly, the structure specification of the
type being represented, and any of its constituent types if necessary,
is matched with the '0ld' structure specification of the representation
(as described in subsection 3.5.1)e If itlis found to matech, a
conditional expression in the representation description, if present,
is evaluated, This expression allows the representation writer to
describe the circumstances in which the representation may be chosen,
This condition is described more fully in subsection 5¢2¢7s If the
condition is true, the third stage is undertéken, consisting of a scan
of the procedural part of the program checking that each data operation
owned by the data type being represented is implementable by the
representation (this was described in subsection 445016 Only if all
tiree possible stages in the matching process are successful can that
- particular representation bte considered as a feasible one for the given

data type.

-99 -

¢

Mateh structure specifications

of type and representation

Yatched 22

e
v
Match operation specifications
of type and representation
no
Matched £
v
Representation Representation
Matched Not Matched

Rigure 5,3 Matching Representations

- 100 -

5¢2.1 Conditions to aid selection.

For some representations, the conditions under which a representation
is applicable to a given data structure cammot be determined by the
structure and operation matching alone, For this reason, a representation
may include a conditional expression, defined by the writer of the
representation, which is evaluated during matching., The expression
may involve values, such as subrange bounds and structure properties,
which are determined during the structure matching of the representation
to a given type. Only if the condition evaluates to 'true' may the
may the matching continue to determine whether the representation is
applicable to the type, |

The condition may be used in Wo distinct ways, both of which
were found useful in the experimental system. The first use is in
order to specify a condition which must be true for the representation

to be applicable,

Example: The following representation includes such

a condition:

type A = (bb:B'cc:C); tyre B =keol; type C=meen;
=> fype A = keens
condition 1<m}

In this case, .it is possible to represent the
discriminated union of two subrange values by a single
subrange value having the same total range, provided
the two. initial subranges are disjoint, The condition,
~expressed in terns of the subrange limits, which will be
bound to specific values when matched to the structure
of a given data type, is necessary to ensure the
representation can only be fully matched if the ranges

do not overlap,

- 101 -

The second use for the condition is pragmatic, in that many
representations may be logically applicable to a given structure,
but it would not be possible to consider them as feasible in practice
because of other conctraints. The vwriter of a representation may
therefore use the condition to reduce the number of feasible
representations considered for any given structure by stating the

constraints he wishes to impose on the matching of the representation.

Example: Take the packed data representation of a
cartesian product of two subranges:

iype A=(bb:Bj cciC); type B = k.s1j iype C = m..nj
=> fype A = 0. CARD(A)-1;
condi tion CARD(A) < CARD(int);

Here we have used one of the type property
functions CARD, which gives the cardinality of
the argument type. (See Appendix I for a
description of the properties catered for in
the experimentzl system), In this example
CARD(A) is equivalent to (1-k+1)%(n-m+1).

The condition will only allow the
representation to be appiied in this case if
the cardinality of the type being represented
is less than that of the basic type int. The
reason for this resiriction is pragmatic in
that, though the representation can in theoxy be
applied to such a type no m tier what its
‘cardinality, in practice the resultantsubrange
mst iteelf bé represented eventually, If its

cardinality is greater than that of an int value,

- 102 -~

it carmot be represented in temms of a single int,
and therefore it must be split into manageable
su'b;:ang'es again, Rather than allow the initial
subrenges to be combined only to be later split
again, the writer of the representation has

excluded its application in this case.

5¢2¢2 Example of matching.

The matching process will be illustrated in full for an example to
bring together the structure matching (34541), operati on matching
(445.1) and use of the conditional expression (5¢2¢1)e

Toke as a.n exa.injale _the following representation, written in a form
similar to that in which it would be 2dded to the representation libraxy

of the experimental systems

rep subdu2;
4ype A = (bbiBlec:C)s
type B = keols
type C = meens

=> iyme A=0,,CARD(B)+CARD(C)-13

fype B=keol; type C=me.n;
condition CARD(A)< CARD(int);

operations

ax'bb => axtk;

ax'ce =y ax—CARD(B)+m;
ax7bb => ax{CARD(3B);
ax?ce => ax>=CARD(B);

Agob(bx) => bx-k;
AMcc(ex) => cx+CARD(B)-m;

endxrep

.. (e syntactic differences required to enable this representation to be

added to the exverimental library are minor ones which identify ax as a

value of type A, and bx and cx as values of type B and C respectively,
They have been omitted here for the sake of clarity)e
The representation, named 'subdu2' , allows a discriminated union
of two subranges to be represented by a single subrange, Values of
type B, discriminated by the selector tag 'bb', will be represented by
a value in the range 0.,CARD(B)-1, while the other alternative, with
selector tag 'ce', will be represented by values in the range
CARD(B),,CARD(B)+CARD(C)~1s The operations in the representation
allow the value of each alternative to be obtained (thecse value-
select operations presume that the prograrmer has already determined
that the appropriate alternate holds for the operation to be valid),
allow it to be determined vhether a given alternate is currently
assigned, and allow the construction of a value of one alternate ox
the other, The specification of types B and C are repeated on the
right hand side of the structure transformation since these types
lkeep the same specification after the representation has been
implemented, and values of the types are used on the right hand sides
of the operation transformations,
Now, suppose we wish o select a suitable representation foxr

type T specified in a program as:

type T = (selt:U]sel2:V);

type U= 1.4103

type V= 34073
Then upon encountering the above representation in the scon of the
library, a mztch will be atternted, The first stage of the maiching

process will succeed in matching the structure specifications, and will

have the additional effect of setting up associations between identifiers

- 104 -

in the reprecentation and the actual type specifications as follows_:

Representation identifier Program identifiex

A T

bb sell

B | | U

ce sel2

c v

k 1

1 10

n 3

n 7

With these associations set, the conditional expression in the
representation may be evaluated as

CARD(T) < CARD (int)
vhich wuld be true in this case, since CARD(T)=15, which i
less than the cardinality of the basic integer type.

The structure matching and condition evaluation having both been
successful, the next stage involves matching each operation upon type T
in the progran with the operations implemented by the representatiqn-;
For example, if the following stzotement occurred 1n the progr |

if t7?sell then xi= t'self;
(vhere t is a veriable of type T and x is a variable of type int).

there are two operotions owmed by type T, t?selt and t'seli, In the

list of operations in the representation we have the following two

definitions:
2x7bb = ax<CARD(B);
ax'bb => ax+ ks

Using the associations already established, the first matches t?seld,

‘giving the additional association of ax with . This association will

- 105 -

~ be used upon implementing the operation in order to enable its
implementation to be written as

t<10 (note ‘CARD(U)=10)
A similar mateh is possible for the other operation, so that the
original statement would therefore be tran..sfomed into the followving
upon implementation of the representation: |

if +<10 then xi= t+1g

5¢3 Bvaluating representations

In this section we consider the evaluation of feasidle data
representations, and present the simple evaluation scheme thatl was
used in the experimental system as a means of giving insight into the

problems involved, g

" 5.3,1 Adns of evaluation

Given an initial abstract program, we wish to choose suitable
representations for the data used in the program, in order to arrive
at an efficiently executable target languege programe In othex words,
we wish to reduce to an acceptable level the cosf of execution of the
resultant program, both in terms of the storszge used and the time taken,
and therefore require .some means of evaluating this cost, One way of
evalvating the resultant program would of cotﬁse be to monitor its
actual execution on some suitable test data, This method has the
disadventage of being slow and wasteful in this context, however,
Trequiring the time and expense of qompilation and execution of the

program as well as the selection of one, or possibly several charscteristic

sets of test data.

- 106 -

Complete accuracy of cost evaluation is not genexrally required when
choosing data representations. Rather, good estimates of costs are
sufficient to compare different representations, especially vhen the
costs being compared may differ by an opder of magnitudé. A static
evaluation of a prograrﬁ; estimating its execution costs from the static
progran text, therefore appears preferable in the circumstances., Tor
a given target language, .the average storage space and execution time
required for each of the basic data types and operations in the lenguage
may generally be determineds Ify, in addition, information is available
about the relative frequency of execution of the alternative and
repetetive constructs used in a given program (for example, the
rrobability that the conditional in an if or while statenent will evaluate
to true), total estinated space and time requirenents can be calculatied
from the program texte

Yhen choosing data representati;ns using the transformational
approach described here, hovever, a seéuence of representafional choices
will have to be made for the various abstract data types before a target
language progren is echieveds If costs estimates can only be made on
target langusge programs, comparisons will only be possible between
complete sequences of representationsl transformations, This will
provide little help in making a choice for an individual representztion,
and therefore be less effective in guiding the sequence of chosen
representations to a resultont efficient programe IExhaustive evaluation
of 211 of those possible sequences of representationel choices that
result in 2 target languege nrogranm is infeasible because of the
combinatorially large number of possible sequences,

For these roasons, -an attempt was made to see if useful estimates

- 107 -

of cost could be derived in order to compare the alternatives for a
single representational choice. In the case that an alternative .
results in an implementation involving only types and operations of the
target language, the cost estimates would reflect the real target
language costs. If, on the other hand, the altemative was expressed
in terms of further sbstract types and ope rations, not directily
implenented in the target language and therefore requiring further
representational choices to be made, estimates would be made of the
costs of the abstract types and operztions, The la tter estimates must
inevitably be only a.;gpro:d.ma‘be, since the true costs will depend on the
subsequent representations chosen for the abstract entities involvede
One of the points of investigation canceming the evaluation procedures
used in the experimsntal system was whether such estimates conld still
be a useful 2id in selecting suitable data representztionse
5¢3¢2 Related work on evaluation

Apart from the mathematicel analysis of algorithms (see, for
example, Knuth [31]), vhich »rovides a mathematical approach to
estimating progran execution times, and is at present beyond the scope
of aw.‘boma'bién, various other anproaches to program evaj.uation using
the stotic progranm text have been attempied,

wggbreit [53] describes a system which is able to perforn completely
antomatic analysis of simple Lisp progrars, vwith no additional infommation
provided by the prograrmer beyond the procram text itself, IHe chows
how a closed-form expression for program rumning time con be obtained,
expressed in tems of the size of the input.e However, in iis described

state his system is only suitable for analysing simple Lisp programs.

- 108 -~

Cohen and Zuckerman [9] pre‘sent a means of estimating program
efficiency in vhich the program to be analysed, written in a siaecia.l
language, is first transformed into a symbolic formula representing
the exeoution time of the program, This formla is then passed to
an interactive system, where the user may bind symbolic or numeric
values to the variables in the formula (including such variables as
the basic operation execution times and the probabilities of conditional
expressions evaluating to true or false), simplify the formulae, and, vhen
sufficient variables have been found, to plot the numeric results for
the progran executior.l ‘cimes"._

Middleton [43] models a program as a graph, and shows how storage
space and execution time requirements for a given program can be derived
fron the resource equations applicable Yo each of the basic graph
constructs, For example, for a FORTRAN D§-100p construct he gives
resource equations of:

TRME (D0(N,a)) = To+l*(Ty+ TOE(a)+Ty +Ty
STORE (D0(N,a)) = So+Si +S2+STORE(a)

vhere N is the nunmbexr ~f complete cycles of the loop
a is the action forming the body of the loop
To, Ty4T2 and So,S51,52 ar> the time and storege
requirenents for initialisation, tosting and

incrementing the control variable respectively,
This model allows the effectiveness of cer%ain time/storege trade~
offs to be enalysed, which is one of the factors that is of importonce
in comparing data represent-tions,
Hore specifically dcaling with data representations, Tompa [51]
has described an evalustion method involving an evaluestion motrixze
By using a special lenguege ('Counter') devised for the purposc,

first introduced in =n earli:r paper [22], the cost of each storage

- 109 -

schema (i.e—. rep’resentation) from whicl;x a choice cen be made is
expressed in terms of parameterised formulae. These are then used
to construct an évaluation matPix in which the element pair in row i
and colum j represents the run time and storage space contributed
by the jth structure vhen imblemented using the ith represen’cation:
Tompa shows [51] that in genersl, however, the least overall cost
(expressed as a space-time product) is not necessarily obtained by
selecting the least-cost representation for each individual stmcm‘re";
To avoid the exhaustive examination of all possible combinations of
structures snd representations that would otherwise be necessary, he
presents a branch and bound a2lgorithm to reduce the search space to a
manageable size,

Using the same approach as Tompa,j Low [39,40] also evaluates
data representations by using space and time cost functions associated
with each representation—.- The oost»fomulae, parameterised by
information such as the maximum number of components of the structure -
being represented, are determined maenually from the primitive storage
required and the execution time tcken by implementing code for the
representations, Information about the use of the structures to be
represented is derived from the program in which they are used in
oxrder to provide the é.ppropriate parameters for the evaluation, This
information is dexrived partly from monitoring sample executions of the
progran, and partly by direct interrogation of the usex,

Both Tompa end Low consider the representation of an abstract
dats smv.c*cure.directly in terms of a concrete representotion, They
are therefore able to estimate the cost of using a particuler

representation directly in terms of the cost of implementing primitives.

- 110 =

In the approach described here, however, several representational
tronsformations will in general be made before a given abstract
structure is impiemented in temms of concrete primitives. Because
of this, the approach to eveluating representations was made more

difficult than in the work described in this section.

5¢3¢3 Approach used in .the experimental system, -

A static evaluation approach was investigated in the experimental
system, estimating the program execution costs from the static program
texte To determine.the cost of using a particular data representation
for a given type in a program, the representation was implemented and
the resultant transformed program evaluated, By comparing the costs of
the various resultant programs, thercfore, the effectiveness of each of
a set of feasible representations for a given type can be corpared.

A progran is evaluoted in terms of the storage space required to
hold all the data items used by the program, and the time taken to
execute the compl te program; no attempt is made to give 5 single
overall cost, say in ter s of a space-~time product, since the relative
importance of the two factors may vaxry according to particulzr
circumstances, often the time being minimised within a fixed maximum
space.,

When static prosram analysis is cexried out, certain information
concerning the behaviour of the program at execution time, which cannot
be derived from the prosram text alone, must be additionally supplied,
In oxdér to calculate storage requirements it is necessary to specify,
for exenple, the maximm expected number of components in a secuence,
or the marirmmn expected number of non-default valued range elements in

a sparse array. oimilarly, to calculate execution times it is necessary

- 111 =

to specify, for example, the expecﬁed number of time a while loop
will be executed, or the expected probability that the condition in
an if statement will evaluate to trmue, One way to obtein such informa~
tion is to monitor the actual execution of the algorithm being
programmed, as suggestod by Low[%?]. Any implementation may be used
for the algoritlm in order to do this monitoring, it is not necessary
to choose an efficient implement-tion, since this of courseis the
object of the evaluation in the first place, Having obtained the usage
information, this can then be‘used to select an efficient implementietion
of the algorithm, If the prograrmer hes no idea of how his algorithm
will behave, it may be necessary to e rfom this initial trial and
moni toring prodess. However, the programmer will often be able to
give reasoncble estimates of the performeonce of his algorithm in ordex
to supply the usage information in his abstract program. (Indeed, it
may be suggested that the programmer who cammot estimate such infcrmation
does not know sufficient about his algorithm in the first place)s If
the initial usage' estimates are found to be inaccurate in the light of
the actual progren execution, they can be revised and the representational
choice system can be used to determine whether a different implementation
would be more suitoble,

In the experimental system, the prograrmer rmust provide all the
necessary usage information in the abstract program initially input
to the systeme In a more sophisticated system, it might be possible
to derive some of the information from careful analysis of thé program.
For example, if the conditional in en if statement consisted of a
predicate testing vhether a particulor data item was an element of =2

given set, the probability that the conditional would evaluate to true

- 112 -~

could be determined from the ratio of the average number of elerents
in the set to the total possible number, In feet, when writing
representations for the library this kind of reasoning is needed to
épecii‘y such J';ni'omation in the implementzations of the data operations,

In the experimental system, such probabilities etc, must be
specified as formulae by the writer of the representations In a
more sophisticated system, they might be derived automa’cicallyv.' Such
calculations for complex algo;'itluns, however, may require techniques
such as the mathematical a2nalysis mentioned earliex [31] , and so be
beyond the present scope of automation,

A refinement of the requirement for full information on program
usage to be supplied by the programmer, would allow for interactive use,
in vhich the systen requests from the /prograwmer only those i‘ems of
information neceded at any given moment in the choice process'.

In the following three subsectiéns, further details are given
of the storage space and execution ‘cime. evaluation methods used in
the experimental system, and some comments on estimating costs for

abstract progrems are mede,

5¢3¢4 Storage space evaluation.

In order to simplify the evaluation of storage requirements and
unify the data items in a program, the experimental system uses a |
special type 'GLOBAL' to encompass all the program variables, The

storage used by 2 program thorefore consists of a single instance

- 113 ~

of this type.
BExemple: Given an initial program with the
following type and variable declarstionst

Brpe A= - -
type B =~ - =
fpe C ===

var a:h; var biB; ver c:C;
this is held in the experimental system int the form:
type GIOBAL = (a:d; b:B; c:C);

Bype A = = = -3
Lype B == - -3
Yype C ==~ =

var g:GLOBALs
and all references to the variables a,b and ¢ are
instead held as reference—sel;ctions Tefly Seb and
g.¢ from the single global ‘va,riable e

Introducing such a global type é.iso enables representations to be
chosen for this type, so that, for exa.rﬁple, 211 the data in the program
can be represented in e single array of integers (corresponding to the
basic storage of an assembler-oriented target machine), Bvaluating the
storage required by a program therefore consists of working out the
storage required by an instance of type 'GIOBAL',

e cardinality of a data type is the number of distinct values that
belong to the type, and which can ther:fore be assigned to an instence
of the type. If ¢ is the cardinality of a type, an instaznce of that
type will require & minimm of

r log, 07
bits of storsge to hold eny value of the type. This is therefore the

minimm amount of storsge that o rerresent-tion of that type could use,

- 114 -

though it may use more storage. Each kind of structuring combinatoxr
has an associzted method of calculating the cardinality CARD(T) of a
type T specified in terms of that combinator:
Integer Subrence: type T = m, e

CARD(T) = n-m+1
* Cartesian Product: type T = (s1:T; 82:T25 400 s Sn:Th)

CARD(T) = CARD(TH)xCARD(T2)x oeexCARD(Th)
Discriminated Union: type T = (k1 :'IVIIkZ:'l‘Z, ves |Xm:m)

CARD(T) = CARD(T1)+ CARD(T2)+eso¢+CARD(Tn)

Array (Non-Sparse): type T = arrey ™ of T2
CARD(T) = CARD(To)CARD(T1)

PO\-rersetQ\Tdn-Sparse): trpe T = set of ™

The cardinality of a basic structure type such as jnt depends upon the
definition of the type as implemented in the target language.

In the cases of sparse arrays (in which most domain values map
onto the same default range value), spa;.rsé powersets (in which each
set value contains only a few of the possible set element values) and
sequences (wvhich would otherwise have infinite cardinality), the
calculation of the cardinality is somewhat more coﬁplex and depends on
the maximum number of components the structures will containe.

Sparse Array: type T = array U of V (MAXCOME=m)

Here, m denotes the maximum number of domain values, of type U,

that will map onto non-default renge values, of type V.
Let t. = CARD(T) with MAXCOMB=m, u = CARD(U), v = CARD(V),
Then t, =v (a single default value).

o=t v (2) (v=1)} (i>0)

(i.e. increasing i by one increases the cardinality of
the array by the number of possible non-default
domain-range combinations with exactly i non-default
entries), '

™M ' st
Tus ty,= v Z(‘;) (v-1)t 2 Ll%'}-— for wHm,

L:O

- 115 =

Sparse Powerset: type T = sget of U (MAXCOME:=m)

Here, m denotes the maximum number of set elements, of type U,
in any value of type T,

Let tm = CARD(T) with MAXCOMR=m, u=CARD(U),

Then to =1 (the empty set)

8= b +(‘§) (1)0)

(i.eo. increasing i by one increases the cardinality of
the set by the number of set values with exactly i
elements),

& fa
=0 *

m
u <
L= -y for w>>m,
*

Sequence: type T = sequence U (MAXCOME=m)

Here, m denotes the maximum number of sequence elements, of type U,
in any value of type T, P
Let +tm= CARD(T) with MAXCONP=m, u = CARD(U),
Then to = 1 (the empty sequence)
t; =t +ub (5>0)
(i.e., increasing i by one increases the cardinality of
the sequence by the number of sequence values with
exactly i elements),
m
Thus ty, = Z ut
izo0

™1

u-1 w1

m+ 1 u=1

- 116 =

Given a set of abstract type specifications in a program, the
above formulae enable the minimum theoretical storage space required
for the program to be calcula teds In practice, the representrtions
chosen for thé abstract types in the program will result in more
storage space being used, because to compress the data to its most
conpact form would require wnacceptable overheads for packing and
unpacking individual data items as they were neede for manipula tion
in the progrenm, For example, often an integer subrange of small
cardinality, such as type T = 1,.10
will be represented as an int, with a resultant increase in the
storage evaluation, simply because, if the instences of the iype are
frequently manipulated in the program, no extra execution time overhead
need be incurred for paclking ond unpac—'kin3 the values into a smollex

number of bits,

e3¢5 Execution.Time Bvaluation,

The calculation of the estimated execution timé of a given program
can be bn.)ken dowm into two parts, TFirstly the determination of the
time teken to perform each individual data operation in the program,
such as selecting a component of a structure, constructing a nev valne
from some component values, or assigning a new value to a named data
items Secondly, the combination of the individuzl operation times
according to the expected flow of control in the program to produce an
overall time for exccution of the complete prosgran. For data types end
structures which are basic to a given target languege, the average
. execution times for the data operations on those types and structures may
be deternmined for the particular implementation of that langurge that
will be used to compile and execute the finol procran. Tor ex=mple,

Wichma.rm[56] has produced such analyses for several different

- 117 -

implementations of Algol 60, On the other hand, estimating the time
to execule data operations for abstract types, which have not yet been
represented in target langucge terms, is very difficulte It is
considered further in the rext subsection.

Meanvhile, assuming times have been allocated for each individual
data operation, it remains to combine these times according to the.
structure of the programs~

Compound Operation: For a compound data operation, such as
aX,ourr := ax'aa'index(ax'curr)'next;
the execution time is the sum of the times for the component

operations,

Compound Stztement: S = begin S15 525 eee3 Sn end
time (S) =time (S1)+time(S2)+ veo +time(Sn)

~

If Statement: The probability p thet the condition C of the if
stotenent will evaluate as trve at execution time is
provided by the prograrmer (syntactically in the
experimental system it is included as an expression
enclosed in '$5' bracksts after the condition)e
S= if C $pf then S1 else S2
time (8) = time(C) + pxtime(51) + (1-p)xtime(52)
or alt>rnatively if the 'else' part is omitted
S= if C ¢ then S

time (S) = time (C) + p x time{51)

Yhile Statement: The average number of times f that the body
of the loop will be executed is provided by the programmer,
S = while C {5 do 51
time (8) = (£+1) x time (@) + £x time (S1)

For Stotements: As in the yhile stoiements, the average nunb-r of
times the loop will be executed is provided by the
hehoYguiarciin ion N
The first form of for stotement iteraizs over (at rost)
all the values that can be taken by a named datz item
¥ of a type T, the ovmer of the staterent,
Sz for W sl 4o Sy

time (8) = time (N) + fxtime(S1)

- 118 -

If no exits are made to terminate the iteration early,

f = CARD (T).
The second form of for stetement iterates a statement
for each of the element values in a given set or sequence
value V of type T.
S8 for X jin V% do S1
time (S) = time (V) + fxtime(S1)
If no exits from the loop are made, the number of iterations
will depend on the average number of components in the set
or sequence, 2 number vwhich cen be specified by the
‘prograrmer when declaring the set or sequence type,

£ = Avcoie (T),

The third form of for statement iterates for a named data
item N taking values over a given integer subrange, the
bounds of which are specified by integer values V1 and V2
S = for N:V1,.V2 % do S
time (S) = time(Wi+time (V1)+time(V2) + fxtime(S1)
If no exits frox: the loop are made, and V1, V2 are
constants that are known at the time of evaluation,

f= V2-V1+1, |

In the experimental system no extra times wére added in the above

calculations to allow for branching or looping overheads. In general,
such overheads will be small compared to the total time of execution
for the stotéments with which they are associateds If necessary, for
greater accuracy, the overheads incurred by such br-nching etc. could
be detvermined for the specific target lsmguagé being used, and the

approprizte additional zmounts included in the above formulae,

5¢3¢0 Problems of evaluation to assist selection,

For a given type, specified by a particuler data str-cture, it has

"~ been shown in subscction 5.3%e.4 how the minimum storage space required for

values of such a type nsy be deicrmined, This minimum concepntual storsse

- 119 -

" may be used as a representation-independent way of assessing cstorage
costs Unfortunately, there is no equivalent way of assessing the
cost of operatioﬁs on structures in a representation~independent
fashion, The cost of inserting an element into a set, for example,
depends entirely on the représentation of the set, and in tum on

the costs of the operations in that representation that implement

the insertion, The true cost of such an insert operation will only
be known when the set has been fully implemented in temms of primitive
language operations,

In the experimental system, the effects of providing very crude
estimates of the costs of abstract operations was investigated.
However, these experiments did not provide a useful guide to the
ultimate execution time costs of the éﬁosen representations, In
general different representations may have different balances of costs
‘among the operations they implement, » tlhereas with storage it is
possible to set a minimum on the amouni; of storage that may be used
Yo represent a data type instance, with data operations no such
minimm can be set, Representations cen be devised that minimise the
cost of one of their operations at the expense of making the other
operations more time consuming, However, it would not be possible to
assume such a minimum.for each of the operations of a representation,
since they cammot simultaneously achieve these minima.

Exanples of the storage evaluation provided by the experimental
system during the choice process are showm in the next section, They

demonstrate that the sforage evaluation alone is only of small use in

guiding the selection of representations.

- 120 =

5¢3e¢7 Bvaluation and the transformational approach.

Despite tie inadequate evaluation of representations that could
be provided durihg the choice process, the evaluation mechanisms
incorporated in the experimentol system are still of importance in
alloving a static program evaluation to be made once a target lansuage
form of the program has been reached. The evaluation experiments
that were carried out did. show that information on.control flow, which
is reguired in making an evaluation of execution time, could be carried
through the representstional stages from abstract to concrete program,
It is reasonable to ask the programmer to supply such informetion for
the abstract program that he has written, However, it would be
foolish to expect him to give such infarmation fof the concrete form of
the program after it hes undergone several transformations. If it were
not possible to carry the information through from abstract to concrete
progran, evaluating representations uéing the transformational approach
would be extremely difficult from the program text, and would require
dynamic execution of the concrete program to gather execution-time
statistics, Our experiments have demonstrated that the information can
be carried through, and that static evaluation is therefore feasible.

The means by which the selection of representations during the
choice process can be guided by evaluation is still largely unresolved.
One possibility is to use the storage evaluation as a coarse filter o
eliminate representations vhich require excessive sforage =nd so reduce
the space of feasible representsticns, If the search smce can be
reduced to a relatively small number of sequences of transformations
applied to the prozram, static evaluation of the concrete progran resuliing
from each sequence can be used to select the most efficient,s The

advantage of using a system of the kind presented here is that the

- 121 -

- investigation of different sequences of transformations is made
relatively easy, With the implementation of transformations,

the maintenance of evaluation inform=tion, and the final evaluation
of concrete prozram forms carried out éutor;zai_;ically by the system,

the user of the system can afford to investigate alternative sequences

of representational choices,

S5¢4 Dircctine the Application of Trancsformati-ns.

In order to see how the transformational approach may be guided
by a prograrmer in conjunction with machine support, we next considsr
an example of use of the experimental systemes The example is used
to demonstrate the storage evaluation included in the sycstem, and in
perticulor to show how the user is a"olé to direct the application of
transformations in oxder o achieve a final target langusge program.

The exemple demonstrates also so{ne of the problems and some of
the expediences taken to avoid problems in the systeme The amount
of guidance given directly by the system in choosing representations
is shown to be small, and possible means for assisting the programmer

further in the choice of representatiors are considered,

5.4¢1 An example of use of the experimental system.

This extended example will show the comple te representation of the
data in a progrem, starting with the prograrmer-writien abstract form
and finishing with a target language compatible form, The exzmnple to
be used is the ‘Birthdays Problem, described initially in 1.2.1 and
_ used for various other examples in the rest of the text.

An abstract program to solve the problem was given in 4.3.4

and the actual program input to the exverimental system at the start

- 122 =

of the session is showm in Appendix II, The latter differs from the
former only in including some additional informatione For two of the

data type declarations:

type TABLE = array DAY of GROUP (AVCOIP =50, MAXCOMP =100);
type GROUP = get of PERSON (AVCOMP = 1, MAXCOMP =10);

the additional information is given by the progrommer to initialise the
properties of the relevent types concemed with program dependent
usage of the types. In each cese the information specifies the
meximum and average number of components that an instance of the type
will containe In the case of the array, it refers to the maximum and
average number of array elements that differ from a cormon value (in this
case the empty GROUP set). In tle case of the set, it refers %o the
maximum and averasge mmber of elements that a set will mve, The
information is used to calculate the amount of storage required by the
data, as discussed in 5.3.4s The other difference is that in the
body of the abstract program 'thé programmer has provided additional
information about the frequency of execution of the loops, which is
required for carrying out the execution time evaluation discussed
in 54365

We shall presume for this example that the terget langusge for
which the user wishes to represent the data is one which includes
only varisbles of basic type int, and also singly dimensioned arrays
of elements of type int. In other words, at the end of the
representztional choice cession the data (i.c. the single instsnce of
type GIOBAL) should have the form of a Cartesien rroduct whose elemenss
are eitner of type int, or of types specified =2s arrays of jnt with
integer subranze index ’.cypes".

We nrow give a commentary on tle interactien of the user with the

system vhen selecting and implementing representations for the data.

- 123 =

User input to the system is distinguished by tre prefix ">",
Once the initial abstract program tes been input to the system,

the system is ready for use:

¥k REPRESENTATIONAL CHQICE SYSTEM %
COMMANDS
TYPES, RFDOS (TYBED>, EVAL, PRINT. QUIT,
SPLIT <TYPE> <SEL> <SEL>
>PRINT
TYPE GLOBAL=(PIPERSONIDINDAY ITITARLE)
TYPE TABLE=ARRAY DAY 0OF GRNUP (MAXCCHYP=100 AVCOMP=50)3
TYPE DAY=14s356;
TYRPE GROUP=SET OQF PEZRSON (MAXCOMP=10 AVCOMP=1)3
TYPE PRERSON=1+5000;
VAR G:GLOBAL
3FGIN ¢
GeTI=(TABLE#ALL (GROUPHEMIPTY))
READ{G.P);
WHILE GA'P~=0 DIJ
BEGIN
READ(G.D) 3
GeTINDEX(GD'D)IINSERT(GR'P) ;
READ(GeR) 3
END 3 -
FOR SN DN
B=GIN
WRITE(GD*D)
. FOR PP IN GA*TTINDEX(GD*N) DO
WRITE(RP);
END
END

'Ehe commands available to the system user have the following
meanings:

TYPES list the type definitions in the current form of
the program.

REPS {type> 1list the representations from the library which
match the given type.

EVAL evaluate the storage and execution time for the

current form of the program.

PRINT print the complete current form of the prozram,
QUIT terminate the session.
SFLIT, .. sece subsection 5.4.2.

The user has printed the current form of the program, which consists
of the initial absiract program ausmented by the system-introduced

GLOBAL type (See 50304)0

- 124 =

DRFEPS TABLE
CURRENTLY STOR= 1065068
CHNICE FOR TABLE

ARRAY STOR= 373628
SPARRAY STNR= 1125n8
HASH STNR= 113398

TO IMPLEMENT REP, GIVE CHOSEN REP NAME

Here, a request has been made for the system fo 1list the feasible
representations for the type TABLE. The system responds with an
indication of the minimum storage it computes to be necessary for the
current form of the program (10650 bits), and then goes on to list the
representations it has matched from the library. In this case three
represents tions, with the identifiers ARRAY, SPARRAY and HASH, have been
matchéd, and the system has evaluated the new minimal storage used if
each were to be implemented, The user is invited to name'one of the

fully matched representations to implement in the program.

REP ARRAYS)
TYPE A=ARRAY 8 2F C; => TYPRE A=ARRAY 2 OF C;
GLOBAL B3:8;
CCONPITION CARN(RB)K1000C0 AND MAXCOMP(A)DO;
OPERATIONS
S) AXMAI=AXALL(CX"C) => FOR FBE %CARND(B)% DO AX.INDEX{(B3):=CX;
R) AXMALJINNEX{(AX"H) => AX.INDEX(BX) .
V) AXMAYINDEX(RX"3) => AX!'INDEX(8X)]
ENDREP

The ARBAY representation listed above, vhich simply allows a sparse
array (as the program type TABLE is in this case) to be represented as a
non~-sparse array, is chosen by the user for implementation. (The outcome

of choosing differently at this point is considered in 5.4¢3).

>ARRAY
TYPE GLOBAL=(B3N1INAY ;2 IDERSONIDINDAYITITABLE) S
TYRE PEIINON=L « « 500203
TVYDE NDAY=1 «e3hA,
TYPE TASLE=ARDAY DAY OF GROUD S
TYPE GROUP=SET OF DEPSIN (MAXCOMI=10 AVCOMP=1)3

The system carries out the implementation by transforming the
internally stored program according to the representation description,

and prints out the type specifications of the new fom of the program.

- 125 =

These differ from the original in two respects in this case. Firsily,
the global variable B from the ARRAY representation has been included in
the GLOBAL type as an additional component with selector BBO1, derived
from the variable name by adding a qualifying pair of digits %o ensure
uniqueness. Secondly, the-MAXCOHP and AVCOMP qualifiers no longer
appear on type TABLE, showing that the array is no longer considered as
being sparse,

The user now requests that representations for the type GROUP be
matched,

>REPS GROUP

.CURRKRENTLY STNOR= 373628
CHOICFE £0R GRQUP

POwW1 ' STOR=183439018B

POW2 STOR= 476438

INDIRECT STOR= 406668
T IMPLEMFENT REP, GIVE CHIOSFEN pFD NAME
>P0ON2

TYPE GLOBSAL=(SP02: INTIBBO1:DAYPIPERSONID:IDAYTITABLE)
TYPE DAY=1.43H6;

TYPE PERSON=1.450003

TYYPE TABLE=ARRAY DAY 0OF GROUP;

TYPE GROUP=SEZEQUENCE OF PERSON (MAXCOMP=10 AVCOMP=1)3

The system matches three nossible choices, from which the user
selects the T0V2 representation to be implemented, which represents the

type as a sequence in place of a set,

>REPS GRNOUP

CURPENTLY STNOR= 476433
CHOICE FOR GROUP
SFEAQ1 STNR= 491338
INDIRECT STNR= 509468
SEQ2 STOR= A26810
SEQ3 STOR= 784198
SEQS STNAR= 2601110
SENA STOR= 524331
TO IMPLEMENT REP, GIVE CHOSEN REP NAMF
>SEQ1

The user again asks to choose a rerresentation for type GROUP, and

now six possible representations are found to match the sequence., The

user chooses the one with the least storage requirements, SEQ1, This

- 126 -

representation has the following structure transformation:

REP SFQ13
TYPE A=SEQUENCF OF 3
TYPE A= (FRST:F; AA
TYRPE C=ARRAY NH OF
TYPE D=1+ eMAXCOMP (
TYPE E=0,.,MAXCOMVP(
GLNBAL I :INT;

hence new types with appropriate specifications will be introduced
with identifiers CO3, D03, E03 and a new component I03 is added to the
GLOBAL type for the additional global variable (03 being the pair of
qualifyihg digits associated with this representation implementation).
The user prints ou} the current form of the program at this stage,
which shows the new types as well as the changes that have been made to

the data operations since the original abstract program was printed,

s

SPRINT i
TYPE GLOBAL=(I031INTISPO2IINTIBBOIIDAY;PIPERSONIDIDAY ;TS TAGLE) §
TYPE DAY=1.35563)
TYPE PERSON=1,.5000%
TYPE TABLE=ARRKRAY DAY OF GROUIP;
TYPF GROUP=(FRSTO3I!EN3JAAC3I203)
TYPE CC2=ARRAY D03 OF PERSONS
TYPE D03=14..1C3
VAR G:GLOBAL;
BEGIN
FOP G.B801 DO
GeTLINDEX{GD*BR01)FRSTNII=(0)3
READ(GeP) 3
WHILE G2'P-A=9 00
BEGIN
READ(GeD) 3
GeSPO2:=(GITLINDEX(GA*'"D)'FRSTNI) S
WHILE (=~(G2!SP02<1 TR Ga'5P02>1C)
AND GA*TYINDEX(GD'D) YAAC3 I INDEX(GR1SP02)~=Ga'P) NC

GaSPC2:={(52'SPN"? - 1))

IF (G@A*SP02<Y DR GA'YSOBC2>10) THEN
REGIN
GeTINDEX(GD'D) «FRSTOZII=((GAITYINDEX{GR*DI*FRSTO3 + 1))
GeTeINNDEX(5D'D) s AACILINNDEX(CGA' T INBEX(GRAID)I*FRETNZ)1=(GCR'D)
ENDS

REAND(G.D) 3

END .

FOR GeD DO

REGIN

vRITE(GRYD) S

FOR GalOd3i1e«eGAYTHIINDEX(GRA'D)I'FRSTCR DO
WRITE(GD* TP INDEX(Ga'D)*AAOI Y INDEX(GIYIN2));

END

- 127 -

Two integer subrange +types PERSON and EO3 are next chosen in tuin,
and each is represented, using SUBREP, as the basgic type int.

>REPS PEPSON
CURRENTLY STIR= 491398
CHJICE FOR PZRSON

SUBREP ’ STOR= 118FA28R
TO IMPLEMENT REP, GIVE CHBOSEN REP NAMF
>SURREPR

TYSE GLOBAL=(IN3: INTiSPO2:IINT;BBO1:DAYPIINTIDIDAYTITABLE)S
TYPE DAY=1.0365]
TYPE TARBLEZ=ARRAY DAY 0OF GROUP;
TYPE GRNOWUP=(FRSTO3:F0ZR;AA03:C035
TYDE E03=0..103
TYRPE CN3I=ARRAY DC3 OF INT;
TYORE D03=14410;
>REDS EO03
CURRFNTLY STNDR= 1186988
CHOICE FNR EO3

SURREP STOR= 128946R
TO IMPLEMENT REP, GIVE CHUSEN RE2 NAME
>SUBREP

TYPE GLOSBAL=(I103:INT;SPO2:INTIRBN1:INAY:R:INTIDIDAY;TITABLE)

TYPE DAY=1ee3653

TYPE TASLE=ARRAY DAY OF GROUD;

TYPE GROUP=(FRSTO3:INT;AA03:C03);

TYPE CO3=ARRAY DO3 OF INT;

TYPE DO03=14410;

Both of these representations, the first in particular, show how
the minimum storage requirements can increase when a representation is
applied which is 'wasteful' of space. In the case of type FERSON the

A subrange 1.,.5000 theoretically requires much less space than the 32 bits
presumed for type int, however the savings in execution time of operations
for accessing the latter type make the application of he representation
worthwhile,

In order %o progress further towards obtaining the desired target
language structures, it is hecessary to apply certain transformations to
the program which are not strictly data representations, but transform
a structure to an equivalent form that is more suited to subsequent
transformations. In the experimental system, these kinds of transforme-

ations werc written as if they were representations so that they could

be stored in the representation library, selected and implemented by the

- 128 =

- same means as more conventional representations,
One of these equivalence transformations, given the name SYN2 in the

library, has the following structure transformations:

RES SYN23 .
TYPE A=(BB:B:CC:C); TYPE C=ARRAY D.OF B; TYPL D=MseN3
=> TYPE A=ARRAY E OF Bj TYPE E=MeeN+1; TYPE D=MeoN;3

It shows the equivalence between a Cartesian product, with one component
being an array with elements of the same type as the other component of

the product, and a single array with all elements of that type.

>REBS GROUP
CURRENTLY STOR= 12894689
CHOICE FOR GRNOURP)

SYNCP STOR= 1289468
SYN2 STOR= 1293469
IN REP INDIRECT FOLLDWING N3T IMPLEMENTEDRI-

GeTeINDEX(GDINRC1)FRSTO3
TO IMPLEMENT REP, GIVE CHOSEN REP NAMF
>SYN? r
TY2Z GLO3AL=(IN3IINTISPIP2IINTIBE01I ICAYIRIINT N DAY T ITAHLE)
TYPE DAY=100756;
TYPE TARBLE=ARRAY DAY CF GRGUDS
TYPE GROUP=ARIRAY ECHA DOF INT;
TYRPE FN6=1eell} N
TYPE NO2=1lee103

The SYN2 equivalence has been applied to type GROUP, so that it now
takes the form of 2 single array, allowing a further equivalence to be
applied to type TABLE, (The system indicates above a representation which
failed to match, in order to aid analysis of its action).

DRFPS TABLE

CURRENTLY STNOR= 12894683
CHOICE FOR TASBLE

SYNAR STNR= 12305601

SYNS 3TNR= 12394/
TO T1"PLEMFENT REP, GIVF CH{SEN REP NAME
>SYNS

TYPE GLO3AL=(T10
TYOE DAY=1 44365
TY2E TAJBLE=ARRA
TYPS FN7=(B327
TYPE E0A=1es113

3TINTISPORIINTIBBCIIRAYICIINTIND DAY T:TABLE) §
+

Y F237 OF INTS

DAY IDDOT7IENG) S

The application of SYI'5 converts type TABLZE to a single array of
integers, but with a Cartesian product index type. This type, FO7, is
a.Cartesian product of two subranges, and so can be converted to a

single subrange by the SULBCP representation.

- 129 -

>RFPS FO7
CURRENTLY STNR= 1289468
CHNICE FOR FN7

IN PEP SYNCP FOLLOWING NOT INMFLEMENTED:-—
FO7#(GD'33N1,11)
SURCP STNR= 12R3468
TO IMPLEMENT RE®, GIVE CHOSEN RFP NANVE
>suBcCe .

TYPE GLN3AL=(IC3IINT;SPC2:INTIBBOLIINAYIPIINTINIDAYITITABLE) S
TYPE DAY=1.e3663
TYPE TABLE=ARRAY FO7 OF INT;
TYPE FO7=0e.40253
TYPE EO0HA=1lesl1l}
>DREPS DAY
CURRENTLY STOR= 12834608
CHOICE FODOR DAY

SUBRES STOR= 1289928
TO IMPLEMENT REP, GIVE CHOSEN REP NAME
>SUBREP

TYPE GLOBAL=(I03INTISPO2IINTIEROLIZINT {PIINT ;DIINTITITABLE)
TYRPE TABLE=ARRAY FO7 OF INT;
TYPE FO7=0e44025;

Finally, type DAY is represented as an int to achieve a set of type
specifications which conform to the requirements of the target language.
The user requests an evaluation of the final fomm of the prograrns

>FVAL
CURRENTLY STNOR= 1289928 T IME= 1.08*+C5

vhich shows that it requires storage of 128992 bits (i.e. 4031 int cells),
and that the predicted execution time is 1,08 x 105}n;(for the basic
operation costs preset in the system for the target language).

The final internal form of the program can now be printed, showing
the structures and transformed program in its concrete target language
compatible form, and the representational choice session is

terminated,

- 130 =

>PR!NT
TYPE GLOBAL= (X03 INTISPI2IINT; BBOI:[NT PIINTIDITINT;T:TABLE) ¢
TYPE TABLE=ARRAY F0O7 OF INT;
TYPE FO7=0e 40253
VAR G:GLOBAL
BEGIN ’
FOR Ge«RBO1I1,.366 DN
GeTINNDFX((GD*B301+3659)):=(0)3
READ(GeP) 3
WHILE GatD-~=0 DO
BEGIN
READ(GN)
GeSPO2:=(GA' T INDEX((GD'D+3659)))3
WHILE (<(G*tSP02<1 OR Ga'SPN2>10)
AND GASTYINNDEX((((GD'SPN2-1)*%366)+(Ga*'D~1)))~=G2'P) DO
GeSPN2:={(GD*SPN2~-1));
IF (Ga*SP02<1 N GA'SPO2>10) THFN
BEGIN
GeT<INDEX((G %'ﬂ+3650)):=((JE'T'INDFX((Gm'D+?659)) 1)
Ge T INDEX({((GD*TY INDEX{((GA'D+3659))-1)*%366)+(Ga*D~1
ENDS
READ(G.P) 3
ENDS
FNR GeNIlee356 DO
BEGIN
WRITE(GA'D
FOR GeIN3:
WRITE(G?
END
END

D'D+3659)) DO

)
1o GA' T INDEX((
Tl ((GD*'I03-1)*366)+(GD*D-1))));

TVINDEX ((

By performing some trivial editing (which includes changing the single
instance of type GLOBAL back into a set of variable declarations), the

final concrete program can be transliterated into the syntax of a language

such as AlgolVW, and this program can be cOmpiled and executed as normal.

BEGIN INTEGFR SPN2,P,D;
INTEG=ZR ARRAY T(0::4025);%
BEGIN
FOR BRBMN1:=1 UNTIL 1366 DO
T((BR0143K59)):=(0);
READ(P) S
WHILE Dw=n 950
BEGIN
READ(D) 3

SON2:=(T((D+3659)));
WHILF (=(SP92<1 0DQ SPO2>10)
AND T ((SPI2~-1)=%366)+(D-1)))~=P) DO
SPO2:=(({SPN2~-1))}
1T (SPO2<1 NN SPNO2>10) THEN

BEGIN
TO(D+3653))1=((T((D+3659))+1));
TOLLT((D+3659))1-1)%366)+(D=-1)))=(P) 3

>m
~Q

D e

) s
UNTIL 366 DN

M
Z
Q

70
rm
- Q)
e 1 D RIR e .4
—

FOR D

+3659)) DO
366)Y+(D-1))));

e Z
<40~
Mwo
w2

m
4
2

FND,

- 131 =

5¢4e2 Equivalence transformations.

‘ In the example session shown in the previous section‘two transform-
ations were used which express equivalences among different data
structures, These transformations were included in the representation
library as pseudo-representations SYN2 and SYN5, It was found necessary
to include a set of these transformations (SYN1 to SYN5 shown in
Appendix III) to express such structure equivalences, and alsq two
others (SYNCP and SYNAR) which express equivalences among operations
for two structuring methods. By writing these equivalences in the form
of representations and including them in the represent tion library, it
was possible to use thé same matching, selecting and implementing
routines for them as for the more conventional representations.

One further kind of equivalence was not found to be expressible in
the pseudo-representation foxrm, but the necessity for its inclusion in
the representation process required that a special command be included
té allow the system user to invoke its application. The need for this
equivalence arose from the desire to apply representations and equiv-
alences to Cartesian product and discriminated union structures with
more than two components, The form of representatioﬁ used in the
experimental sys tem cannot express representations for these structures
having arbitrary numbers of components, and the representations in the
library include only two;component structures in their 'old' structure
spe;ifications. It is possible to extend the application of these
representations to many—comﬁonent Cartesian products and discriminated
unions by repeatedly splitting two-component parts from the meny-component
structure, This can be achieved by using the equivalence:

Yype A = (s1 A1°82°A2;s3: 35 ees 3sniAn); =
= (s: 3833433 .. 3SnS An);
_tzp_e_ B = (s1:A1;s2:A2);

- 132 -

There are associated equivalences among the operations that can be
applied to each structure, A special system command was introduced to
perform this transformation:

SPLIT {yped> (ell> (Gel2d
which splits from the named type a type with a two-component structure
having the given selectors. Subseqﬁently, the type with the two-
component structure can be .represented as nommal, and if necessary

further two-component parts can be split from the remaining type.

Sede3 Options in guiding use,

The experinental system was implemented so that the user must
decide what to do next at any given moment during the choice process,
The two kinds of decision vhich affect the action of the system on the
program are, firstly, the choice of whiéh representation to implement
vwhen given a set of matched possibilit;es, and secondly the order in
vhich representations are to be attempted for the various data types
current at a given stage in the choice,

The first kind of decision could be made automatically if the
evalvation of different representations was of use as a guide, The
second kind of decision is one for which it appears difficult to give
guidelines, whéther in oxder to carry it out automaticelly or to assist
the usexr to get best results from the system. The decisions made are
important because they can affect the represenations applicable at
different stages in the choice, and hence the resultant representations
used in the final program,

In some instances, choosing and implementing a remresentation for
type A, then one for type B, will result in exactly the same program as
the case when B is implemented before A, However, in other cases,
particularly vhen one of A or B is a strictural component of the othex,

the implementation of one in a particular way first may rule out a

- 133 -

>8ubsequent representation for the other,
Example: In the example sessién of subsection 5;4.1, if type
PERSON had been represented as an jnt using SUBRZP before
investigating the representation of type GROUP, it would
then have been impossible to use the BITS representation
foxr GROUP,

As an example of the choices open to the user, aﬁd the way in which
the storage evaluvation acts as a possible guide to selection, in
Figure 5.4 we summarise some of the paths that can be taken to arrive
at a concrete program for the Birthdays problem, Fach path shovws a
sequence of representa%ional choices for the various types in the program.
At each branching node in the tree, the storage evaluation provided by
the system is shown for each branch, At the leaves of the tree,
denoting possible concrete programs, a full evaluation can be performed
by the system for both storage space and execution time. Only a small
number of the possible sequences of representational choice have been
shown.

It can be seen that the sixth route minimises the storage cost from
among the eight routes, and that the minimal execution times are given
by the second and fourth routes, though these use appreciably more
storage, (These evaluations depend on the target language costs that
are preset in the system, and the relative merits of the different
options may change if the basic costs are altered),

The example session of 5.4.1 followed the second route throush the
tree, selecting the 'array' representation for type TABLE, 'pow2! for
type GROUP, and 'seql' fox type GROUP im tum (plus further selections

‘not shown in the figure) to give a concrete program requiring 126k bits

of storage and 0+11 seconds execution time.

- 134 -

1800

co2 b GaouPy

bits| seql 1 seq2 ! seqs |, seqb

N i I]

| | | : :

i | t) !

i ! | | |

| i | | I

| l | | i

| : : I |
I] I -

i : : i i

| | |

@4 @' @' @ I @ |

¢) é é é
—= 1807 126 263 240 126

‘[88-1 0+ 11 023 0-11 013

execution time (seconds)

L storage space (k bits)

Figure 5,4 Xaths to a concrete prosram,

153

AAO1 ¢
powe

15-7

AAO1e
|
seq1 |

4641
0:17

du3

247|139

GROUP ¢
pow2

248

GROUP ¢
]
seqd

@ @

J ’
697 728
0+91 0-21

and evaluvation, for

Birthdays problem

It can be seen from the intermediate
provided by the system along the various

provide a limited relative indication of

storage evaluation figures,

choice routes, that they do

the final storage costs,

However, the earlier evaluations give little indication of the final

absolute costs for any given route, 'here such evaluation may be of

‘help is in eliminating routes, such as roule one in the figure, which

will lead to unacceptably high storage costs, and therefore reduce the

representational choice space that need be searched,

- 135 =

CHAPTER 6

ASSESSMENT OF TRANSFORMATIONAL APPROACH

6.0 Surmary,

In this chapter we assess the transformational approach to data
representatioﬁ that has been described znd demonstrated in the fore-
going chapters, The original objective was to investigate techniques
that would help the programmer in the selection and implementation of
data structures during program development, The approach that was
developed during the course of the ixwestigatiops and which e have
presenfed here will be critically evaluated to see how far it contributes
towards the original ‘objectives,

The assessment first considers the benefits of the approach, which
vere larsely the motivation for the direction taken in the research.

It then goes on to discuss the limitations te the approach that were
discovered, and other ways in which the approach might be extended but
which could not be further investigated within the extent of the present
work, |

Finally we conclude by summarising the main results that can be

drawn from the investigations.

6e1 Benefits of the Anmroach,

The expression of data representations in terms of program transfor-
mations as demonstrated in the present wors has several benefits which

will be considered in tumm.

6.1¢1 Concise notations
The notation developed and used for the investigations has allowed

a range of data representations to be written in a wniform and comrise

- 136 -

fashion. Some of the representations which were written during the
course of experimentation are shown in Appendix III, It was found that
the method of presentation of the representations, separating the
structure and operations, and fitting the latter into the categories
described in section 4.3, provided a usefui framework which enabled

the form of a new representation to be developed in a thorough

menner, At the same time, the notation is concise allowing the main
features of a representation to be more quickly isolated, and it enables
essential simple representations, which form the building bricks forx
more complicated rep?esentational transformation sequences, to be

individually expressed,

6.1.2 Selection and implementation, -

The selection of representations to be used in programs is aided by
the approach, Firstly the range of choice from which representations
may be chosen is made more explicit, and it is therefore less easy to
overlook feasible representations, Secondly the selection of feasible
réﬁresentations is helped, particularly when machine assistance,of the
form of the experimental system used here, is available., The
representation description clearly distinguishes the nature of the data
structure, and those of its associated operations, which it is designed
to represent. Matching feasible representations therefbre becomes
straightforward.

Having the representation described in a machine-manipulable
form also helps when implementing a chosen representation, since errors

introduced by manuel implementation can be avoided, and the implementation

effort is considerzsbly reduced,

- 157 =

6e1¢3 Building of libraries,

The concise form of the notation, and the general applicability
of the relatively small number of representations that were used
during experimentation, meke it appear feasible that useful libraries
of reasonably limited numbers of data reprc‘asenta'bions could be
constructed, However, only more extensive experiments could determine
whether the large range of representations currently in general use
could be obtained from various combinations of entries in a relatively
small 1library,
6e1e4d Re-use of software,

The programming involved in writing the implementing code for a
representation can be used to its maximum by the approach, since a
fixed set of implementations can be re-~used many times in different
programs, or even in the same program, If the implementation is
thoroughly tested, or even proved to be correct, then when used with
machine applied transformations,the re- use of such software could
increase the reliability of those significant portions of programs

which a2re concerned with supporting data representations;

6.2 Limitations and Extensions of the Approach

The transformational approach to data representation as presented
here has raised certain further questions, and there are other
limitations to the presént apmroach that were intentionally imposed to
restrict the investigations to an appropriate time and scope, In
addition there are various extensions that would be desirable in order
to make the use of the approach more feasible in a production environment,

but which wuld require further investisation,

- 138 =

66241 Selection and evaluation.

The original objective of the work was to provide the progranmer
with assistence in the choice of data representations, but not to take
away his control over those representotions which could be selecteds
This objective has been achieved to a large extent, However, as the
example and discussion in section 5.4+ has shown, the control that
rmust be exercised by the programmer in directing the action of the
experimental system is fairly extensive, This implies that a reasonably
close knowledge of the working of the system is required to make
effective use of its.capabilities;

It is a matter for further consideration as to how much more
assistance could be automafically provided in order that a less
experienced user could benefit from the systems One direction in
which more help night be given is in making a closer link between the
evaluation provided %y the system and the control over the investigation
of sequences of transfommation, 4 heuristic approach to limit the
space of representations under consideration might be possible, but

involves further investigatioh beyond the scope of the present work,

6e242. More than one representation per type.

One of the limitations of the approach adopted in these experiments
is that each type in a program is restricted to a single representation.
Whenever a representation is chosen for a specific type, all items and
operations belonging to the type must be implemented in terms of the
new structure and operations of the representation. If, however, there

are, for example, two cata items vhich conceptually have the same

| structure, but which are used in different ways in a program, they

- 139 -

might be better represented in different way, To do this in the
experimental system each item would have to be defined to be of a

different typee

Exanple: In the card game example, two kinds of
pile of cards are defined:

type PILE1 = sequence of FLAYTNG-CARD (IAXCOIMEB=52, AVCOIR=16)
type PILE2 = gequence of PLAYING-CARD (IAXCOMP=52, AVCONE=30)

The two separate types, which however have the same
conceptual strucmr_e, can be given separate usage
information as shown, and allow variables of each
type to be declared and used in separate ways.

They cen also possibly have separate representations

chosen for theme

Apong reasons for wanting to relax the rule of one representation
per type, two can be illustrated, both of which have inherent compli-
cationse

Firstly, consider the situation described above, where data items
of conceptually the same type might require the use of different
representations, and where it may not be easy for the programmer to
allocate each a different type beforehand, Attempting to overcome
this by using a different representation for éach data item rather
than one representation per data type leads to complications when
there are deta operations .that have orerations of the same type but

using different representations.

- 140 -

Example: Given the declarations

Yype PILE = sequence of FPLAY ING-CARD;

var face-up ¢ PILE; war face-down : PILE;
and if different representations are chosen for
the variables face-up and face—dowh because of
their different usage in the program, then an
operation such as

face-up := face-downs
would involve a difficult representation-transfex
implementation.'

The second reasén for relaxing the one representation pex type rule
is in the case of a single data item vwhose usage is very different in
different parts of a program, In this case 2 different representation
might be best for each program part, Complications arise here in
deciding at what pointsa representation change becomes suitable, and,

as in the previous case, in carrying out such a change in re resentation,

64243 Representation of more flexible data.

The form of progsram used during the experiments has been of the
most simple kind, limiting the data to be globally and statically
declared, and not considering the division of the program into sub-
components such as procedures, These limitafions were imposed in
order to keep the scope of the investigations within reasonable bounds,
It is likely that any préctical application would require more flexible
data to be considered.

Such flexibility could incluie block structured prosrams and
~ associated storage allocation, the inclusion of proce&ures with parameters
of types whose representation were under consicderation, and the extension

of represent~tional choice to input/output datas All those possibilities

- 141 -

involve non-trivial extensions beyond the present investigations, and
could prove difficult or even impossible without changes to the
approach,

Though the approach presented here is applicable to recursively
defined data structures, the experimental system was not extended to
support such structures, and so practical experiments on their
representation were not carried oute Handling such structures, where
their manipulation often involves recursive procedures, raises the
same kind of problems as inclusion ,°f procedureé for program subdivision.
6.2.4 TPaurther investigations,

Besides the problem ereas and limitations that have already been
pointed out as requiring more study, meny more topics associated with
data repr-sentation could be singled out for further investigation,

Ve will give some examples of the peripheral areas that have arisen
during these studies,

The structuring methods used in the experimental system were
selected from those used by Hoaie in his Yotes on Data Struoturing:[éi]
Further structuring methods could be included, in particular the
extension to include the n~ary relation as a structure would |
significantly increase the range of expressible structureé, especially
to include those often found in data~base applicationss The represent~
ation of data in data~bases is currently a topic of interest, and much
work has bcen published on ite The automatic design of the data
organisation for such applications has been considered by HcCuskay[ﬁ1J

The use of relations as structuring methods in high-level prograrming

languages has been explored by Eorley [16] s Feldman [‘173 and others,

- 142 -

The question of orderings on the component values of data
structures, such as the components of a sequence, and also orderings
on the values of a data type, such as type PLAYING-CARD denoting the
cards in a pack of playing cerds, have been largely ignbred in the
current investigations, Considerations of such orderings would
probably affect the representation chosen for the data. For example
an ordered sequence mighf be represented as an ordered binary tree, so
that insertion of a component value into the correct position could be
verformed more easily.

Fitting the representations chosen in a program to the particuler
data types and structuring methods available in a given target language
is another area of possible further investigation. The choice of
which representations to make aveilable in a library is likely to be
affected by whe ther or not, say, the language includes the Caxrtesian
product (record) as a structuring method, If it does not include the
structure, representations must be available to implement a Cartesian

product in terms, such as an array, that the language does supporte

- 143 -

643 Conclusiong

The investigations reported here have aimed to show the require-
ments for and feasibility of program ’cra.néformations 28 an approach
to assisting data structure representa.tion; In previous chapters
the concepts that were developed in order to express such representations
in a machine-manipulable form have been déécribed, and the experiences
gained from an experimental system embodying the concepts have been
presented,

The main :.t'esults obtained from the investigations can be summarised
as follows |
[We have exposed.’che concepts needed to express data representations
as program transformations, and embodied these concepts in a notation
which allows such transformations to be expressed in a concise but
readable form.
. We have used the notation to write a library qf data representztions
which enable many commonly encountered traditional representations to
be enumerated and made available for use in programs.
. We have shown how many representatiohs can be expressed as various
combinations of the basic transformations included in the library,
allowing the size of the library to be kept within reasonable limits
vwhile still providing a large range of possible representations.
e We have designed and inmplemented an expe;rimental system to a2id in
the selection a1 d implementation of representations, which has enabled
the identification of those features which would be desirable in a
practical represent~tional choice system,
® Ve have demonstrated hov the erperiment;a,l system can be used 1o

"select and implement representations for some example programs,

- 144 ~

The field of data structures and their representation is a vexry
large one that permeates all forms of computing. As such, the
investigations reported here have made only a small, but still
significant, contribution towards making the task of data representation
somevhat easier, Incevitably perhaps, many aspects of providing
asgistance with the choice of representation have been shown to
require furtiher investigation. However, only by ;ttempting the
kind of study reported here can progress be made towards a better

understanding of the concepts involved,

- 145 =

APPENDIX T

SUMIARY OF THE STRUCTURING METHODS AND TYPES USED IN THE EXPERTMENTS

The following structuring methods were adopted for the specification
of data types in the experimental system, For each structuring method
are given the syntax used in declarations of types which have that
structure, the calculation of the cardinality of such a type, the data
operations that were defined on operations belonging to that type, and
the type property functions (used in writing representations) which
apply to that type.

In addition to the operations specific to each structuring method
that are given below, the contents operation @, the assignment update
operation := and the equality operator = are applicable to data items of
any type.

In addition to the specific property functions that are given below,
the following property functions apply to any type Ts

CARD(T) cardinality of T,
STOR(T) storaze required by a value of type T (=flog, cARI(T)]).
MAXIUN(T) maximum number of items of type T used in program,

Avior(T) average number of items of type T used in program,

a) Intemer Subrange

Syntax: type T = meen

Cardinality: CARD(T) = n-—m+1

Operations: . v

iv) construct a value of type T from int value iv.

T¥IN?(tv) construct an int value from a T value tv,

(The above two operations which perform type-conversion between
subrange values and basic type int values can be inferred from
context in writing programs and representations, and need not
be explicitly showm in system input and output).

for tr do 5 repeat statenent 3 for tr taking each value of- type T

in tumn,

b)

- 146 -

Cartesian Product

Syntax: type T = (81:™M; eos 3sn:Th)
Cardinality: CARD(T) = CARD(™) x ... x CARD(Tn)

Operations:
T(t1Vy oee otnv) construct a value of type T from component values,
tr.si reference-selection of the ith component.
tvisi value-selection of the ith component.
for tr do S repeat statement S for tr teking each value of

type T in tum.

Discriminated Union

Syntax: type T= (K1:™M oee kn:Th)
Cardinality: CARD(T) = CARD(T1) + ... + CARD(Th)

Operations: '
Tki(tiv) construct a value with the ki altemate value tiv,
w7kl test whether tv is currently the ki alternate.
tr.ki reference-~select component of a ki alternate,
tviki value-select component of a ki alternate.
) Array
Syntax: type T = array ™ of T2
Cardinality: CARD(T) = CaRD(T2)CARR(T!) (see also subsection 5¢3.4)
Operations: o ,
THALL(t2v) construct array with all elements having value t2v,

tr, DIDEX(t1v) reference-select array element indexed by t1v,
tv!IDEX(t1v) value-select array element indexed by tive

Properties: MAXCOMP(T), AVCOMP(T) maximum and average nunbers of
elenents in arrays of type T which differ from a

cormon default (sparse arrays).

Set
Syntax: type T = set of T

CARD(T)

Cardinelity: CARD(T) = 2 (see also subscotion 5.3.4)

£)

- 147 -

 Operations:
THIAIPTY construct an empty set value.
tr s INSERT(t1v) insert element with value t1v into set tr.
tr e REOVE(t1v) Temove " wooooom oo wow
tv7HAS(t1v) test whether set tv contains value tiv,
tvIRIPTY test whether set tv is empty.
+vPNUIEL return number of elements currently in set tv.

for tiv in tv do S repeat S with t1v taking value of each element

of tv in turn.

Properties: MAXCOMP(T), AVCOMP(T) maximum and average numbers of

elements in sets of type T,

Sequence
Syntax: type- T = sequence of T4
- Cardinality: oo (but see subsection Se3e4)
Operationss
TREITPTY construct empty sequence value,
tr:APPEND_FIRST(t1v) append t1v to beginning of sequence tr,
tr: APPEEID_IAST(t1v) " " » n end " " "
trs REIOVE_FIRST remove first element from sequence tr.
tr:RENOVE_LAST " last " " " n
tr, FIRST reference~select first element of tr,
tl'. IIAST n last 1 " 1t
tv 1 FIRST value-select first element of tr.
WILAST " 18.81} 1] [} "
- tvTEMPTY test whether sequence tv is empty.
tv UM EL return number of elements in sequence tv,

foxr t1v in tv _(_1_6_ S repeat S for tiv taking values of each
element of sequence from first to last in
turn,

The following sequence operations allow a 'pointexr'! of type int

to be used to denote a position in the sequence for selecting,

inserting and removing elements,

v FIRST returms int pointer to first element,
tv?LAST u " n " Jast "
tv MEXT(pv) retums pointer to next element after that

indicated by pointer pv,
v PREV(pv) returns pointer to previous element before

that indicated by pointer pv,

- 148 -

tv?NOCURR(pv) tests whether pv does not indicate-a currently
valid element of the sequence,

tx, CURR(pv) reference-selection of element pointed to by pve

v CURR(pv) value-selection of element pointed to by pv.

tr:ISERT_NEXT(pv, t1v) insert value t1v after element pointed

to .by' Pve)

tr: TVSERT_FREV(pv,t1v) insert value t1v before element pointed
to by pv.

tr:REIOVE_CURR(pv) remove element pointed to by pve

Properties: IMAXCOMP(T), AVCOIP(T) maximum and average numbers of

elements in sequences of type T.

In the experimental system three basic types were included with the

following characteristics,

1) Basic type: int y
Storage: 32 bits
Values: 2% ., 23'-1

Operations: +y=y%,div,remy=,=,>,<,D=,{= as in conventional languages
ir:SETBIT(jv,1v) the integer denoted by ir has the bit.
in position jv set to 1 or O depending

on whether the logical value 1v is true

or false, .
iv'BIT(jv) returns true or false depending on
vhether bit jv is set to 1 oxr O,
2) Basic type: logical
Cardinality: 2
‘Values: true,false

Operations: AND,OR,NOT as in conventional languages.

3) Basic dype: null
Cardinality: 1
Value: nil

Operations: none.

- 149 -

APPINDIX IT

EXANMFLE __PROGRAIS

The following listings show the abstract programs written for the
two example problems used in the main text, These are in the form
that they are input to the experimental choice system, including the
prograrmer-provided usage information about the number of components

in structures and the frequency of execution of loops etce

Abstract program for Birthdays Problem

TYPE TABLE=ARRAY DAY 0OF GROUP (AVCOMP=S50,MAXCOMP=100);
TYDE DAY=]ea43563
TYRPE GROUP=SET NF OERSNON (AVCOMP= l:MAXCO“D‘IO).
TYPE DERSON=1450003
VAR T:TABLES VAR DIDAY; VAR PIPERSON]
BEGIN
T:=TABLEF#ALL(GRNOUDFEMDTY)
READ(R) §
WHILE ©9-.=2 ¥%52.% NOQ
BEGIN READ(D)
T INNEX(N) 1 INSERT(P)]
READ(2) 3
END S
FDQ D %366, nn
5IN WRYTF(O);
FﬂR 0D IN TrINDEX{D) %1.5% DO WQITF(PP).
END 3
END

- 150 -

Abstract prosram for Card Game Problem

TYDE PILF1I=SENUENCE NF DUAYING CARD (MAXCNMP=52, AVCOMD=1A) 3
TYPE PILE2=SEQYENCE OF PLAYING CAPD (MAXCOMP= 52, AVCOMP=30)3
TYDE PLAYFRSTARRAY PLAYFP 0OF HANDS
TYPE .DLAY‘:_R=1..2:
TYPE HAND=SET OF PLAYING_CARND (MAXCOMP=52, AVCOMP=3) 3
TYPE PLAYING_CARD=(SUITISUTITIPANKIRANK)]
TYPE RANK=1es13; TYDE SUIT=1es4}
VAR PLAYERS:IDLAYERS: VAR DLAYERIPLAYFR
VAR FACE yd3i?IL.E15 VAR FACF_DOWNIPTILE2S
VAR P:PLAYFR: VAR SLAYEN:LOGICAL;S :
VAR S:SUITS VAR RIRANK: VAR CIPLAYING_CARDS VAR I:INT;
. AFGIN
FACE UP:=PILEI1#FMPTY; FACE_DNWN? PILFZ#EMOTY,
PLAYERS: =DLAYERS#ALL (HAND#EMPTY)
FOR 1:0eeS51 %52.% NN
FACE_DDWN:APPEND_FIRST(PLAYING_CAPD#(I DIV 1341,1 REM 13+1))3
FOR P ¥2.% DN
FOR I21ee7 %7e% T30
BEGIN
PLAYERS, INNDEX(P) I IMNSERT(FACF_DOWN'FIRST)
FACFE_DIWNIREMOVE_FIPST3S
ENDS
FACE_UP:APPEND_FIRST(FACE_DNOWN'FIRST)
FACE_NOWNIREMIVE_FIRST
PLAYEDR ;=13 .
WHI'F A(PLAYERSYINDEX(1)2EMDPTY NR PLAYERS'INDEX(2)?2EMPTY) %30.% DO
GIN PLAYED:=FALSF; S:=1}
WRITF(FA”F UDIFTIRSTIRANK) 3 WRITF(FACE_UPTFIRST*SUIT) ;
WHILE ~PLAYED AND S<=4 %3.767 Do
BEGIN
C:=PLAYING CARND#(S,FACFE UP'FIR%T'RANK),-
IF PLAYERSTY INDEX(PLAYERY?HAS(C) %0.n6% THEN
BEGIN
FACF UDIADPEND_FINST(C)
DlAv:RS.INDCX(DLAVER) REMOVE(C) }
PLAYED:=TRUF ;
END
ELSE S:=S+1:
END}
Re=13
WHILE ~PLAYED AND R<=13 %6.% DO
BEGIN
C:=PLAYING_CARD#(FACE_UPI'FIRSTISUTIT,R);
IF PLAYFRISTINNDEX(DPLAYER) ?2HAS(C) %0.06% THEN
BFEGIN
FACE UPIAPPEND_FIRST(C) ;S
PLAYERS . INDEX(DLAYER):REMOVF(C); .
PILLAYEND:=TRUF 3

END
ELSE RI=R+13%
END S
IF =DLAYEN %N .57% THICN
BEGIN

WRITE (PLAYRER) 3
WRITE(FACE _DIWNIFIRST ' RANK) 3 WRITE(FACE_DOWN'FIRST*SUTT)
PLAYERS,. INDEX{ LAY R) { INSERT (FACE_DNWN'FIRST)}
FACE_DIWNIRFEMIVE_FIRST;
END S

DLAYERI=ILAYER REM 2 413

END;

WRITE (PLAYERS ' INDEX (1)2FMPTY) 3

END o -

- 151 =

APPENDIX ITT

EXAMPLE REFRESENTATION ITBRARY

The following listings show the representations that were included
in the library used during the experimentation, The representations
are divided into two groups, the first group being those that provide
the conventional representational transformations, and the second
group being pseudo-representations that define equivalences between
different structures and their operations and whose use was illustrated
in the example of section 5.4.

The choice of operations that are ihplemented for each represeatation
and the evaluation information that is provided in each representation
are both at the discretion of the writer of the representation, No
detailed analysis has been carried out on how appropriately these
factors have been covered in the example library, exqept that the
choice of operations has proved adequate for the experiments carried
out using the library,.

For ease of syntactic analysis in the experimental system, two con-
ventions were used in writing the operation trensformations. Firstly,
each operation transformation is preceded by the ammotation S), R) or
V) depending on whether the operation being transfommed takes the form
of a statement, a data reference or a data value respectively. Secondly
for each formal parameter on the left hend side of an operation trans-
formation, the type of that parsmeter is given by appending it with a
double quote after the parameter identifier, Thus AX"A denotes a

parareter of type A with identifier AX,

- 152 =

REP SUBREP]

TYPE A=Mg4 N7 => TYPE [INT3

CAONNTITION CARND(A)KCARD(INT);

OPFRATIONS

V) ARINT(AX1A) => AX;

V) A (CITMINTY => 3

S) FOR AX"™A DO S"STATEMENT => FOR AXIM. N XCARD(A)% DO S
ENDREP

SUBREP : subrange represented as a basic jnt type

REP SUBC=2;
TYPE A=(BB:IBICC:C): TYPE 3=Keel.; TYRPE C=MeoNy =>
TVPE A=Qe¢ e CARN(A)~1: TYDPFE Bz=Kesel i TYPF C=M¢aN;
CONDITION CARPD(A)IKCARD(INT) S
OPERATIONS ’
V) AXMA'BR => AX REM % _-K+1% +K; '
V) AXWASCC => AX DIV %L -K+1% +M;3

V) A#(BXUB,CX"C) => (CX-M)*%% —K+1% +(AX-K)

S) AXPA,BBI=8X"8 => AXI=(AX DIV %L-K+1%)*%L~-K+1% +(3X-K);

S) X"A CCi=CX"C => AXI=(CX-M)2%L~-K+1% +(AaX QEM XL=-K+1%)3
ENDRF

SUBCP : Cartesian product packed into a single subrange

REP DUl
TYPE A=(K1:NULULIK2:3); TVYPE B=MeseN; =>
TYPE A=Mga.N+137 TvYyOfE 3=Mgqs o N3}
DPFFATIONS
V) A¥KLI(NTIL) => %N+1%:

V) A#K2(BX'"3) => 13X}

V) AXMASK! => NIL;

V) AX"AIK?2 => AX;

V) Ax"A?Kl => AXTUN+1%;

V) AXWAZK2 => AXCS%N+1%;
ENDREP

DU1 : discriminated union with null slternative packed into
a single subrange

REP NU3;
TYPE A=(K1:INULL|{K2:R); =
TYPE A= (ALTICIVIE): TYDOE C=0eel;
NPERATINNS
S) AXMAIZAECLI(MIL) =3 AXJALTI=03
S) AXMAI=AGKD(AXM) => BEGIN AXALTI=03; AX.V:I=RBX END}S
p) ’XX"A.KQ => AX.VQ
V) AX"A'KI1 => NIL;
V) AXMAITKD => AX'V]
V) AXMAPKL => AX'ALT=N;
V) AXMA?K?Z => AXC'ALT=1:
V) A#K2(BXM"R) => A#(1,01X)
ENDRFP

DU} ¢ discrirninated union with null alternative represented

with 2 scparate tag field

- 153 -

REP SUBDUIL ; . _ ,
TYPE A=(BP:B]CC:1C)i TYPEF B=KesLi TYPE C=Msoh; =>
TYPE A=K a o3} TYPE B=K0.L: TYPE C=M, o N3} .
CONNITION L<M; v :
OOFRATIONS
V) -AX"A'BB => AX;

V) AX®A'CC => AXjJ
V) AX"A?2BB => AX<=Lj
V) AXPTA?2CC => AX>=M3
V) A#¥B3(8X"B) => 3X;
V) A#¥CC(CX™C) => CX;3
ENDREP ' ¢

SUBDU1 : disjoint discriminated union packed into a single subrange

REP SURDU2;
TYPE A=(BB:8|CC:
TYPE A=0esCARD
CONDITION CARD(A
OPERATIONS
V) AXUWAT8R => AX+K;
V) AXYA'CC => AX—-%CARD(B)-M%;
V) AXMAZBE => AXKCARD() ;
V) AX"A?CC => AX>=CARD(B);
V)
v)

) TYPE B
3)+cann(c

c)si
(3)
)XCARD(INT

A#3B(BX'"3) => BX-Kj
A#CC(CX"C) => CX+XCARND(B)-M%;

SUBDU2 : non-disjoint discriminated wnion packed into a subrange

" REP ARRAY;
i TYPE A=ARRAY 8 0OF C; => TYPF A=ARRAY B 0OF C;
GLOBAL B3:73;
COANDITION CARD(B)<100000 AND MAXCOMP(A)>O;
N9ER ATIONS
S) AXTAISAFALLI{CX"C) => FOR AB %CASN(3)% DD AX.INDEX(BB)I=cX
R) AXMALINNEX(BX"™3) => AX., INDEX(QY): -
V) AXMATINODEX(3X"3) => AX® INOVEX(RX)}
ENDRED

ARRAY : sparse array expanded into a non-sparse é,x-ray

- 154 -

RED BITS
TYFPS A=ARRAY 3 0F LOGICAL,; TYPE R=Mgq N] =>
TYPE A=ARRAY C OF INT] TYPE C=0ses(N=M) DIV 225 TYPE B=M.eN;

GLOBAL CC:C;
OPERATIONS

V) AXMAYINDEY(3X"3) => AX'INNDEX({BX-M) DIV
S) AXMALINDEX (XY= . NGICAL =>

AXe INDEX((BX=M) DIV 32):SETRIT((B3X~-M)
S} AXPAI=AxALL(TRUF) => FOR CC %{(N-M) NIV
S) AXWAIA#ALL{FALSE) => FOR CC %(N-M) D1V
V) AgALL(TRUE) => A¥ALL(0~-1)3
V) A#YALL (FALSE) => A#ALL(0);

ENDRED

BITS :

array of bits represented as array-of in

REP HASH;
TYPE A=ARRAY B OF C; TYPE B=Ms.Nj
TYPE A=(DEFICIRESTIN) '
TYPE AR QAY E OF F3
TYPE
TYPE
TYPE ‘W:Q:VAL:C);
TYPE le o NS
GLOBAL K:IF;
CONNDITEION MAXCAOMD(A)>0;
IPERATIONS)
S) AXMAT=AXALL{CX"C)
BEGIN AXeDEF:=CX3
FOR K %MAXCOMP(A)Y%
END
AgALL (CX"C)
AXSAY INDEX(BX"3) =>
BEGIN K:=1X REM MAXCOMP(A) 3
WHILE ~AX'RESTY INNEY(K) ?2NINE
AND =AXTRESTEINDEX(K)*SOMm
Ki=(K+1) RENM HMAXCOMP(A) S .
RESULT IF AX'RESTY INDEX(K)2NONE
%1 =AVCOMP(A) /CARD(A) Y

DO1HHO

(IR L I

DN AX

<<

=

AX AL INDEX(3X"3) i =CYnC
BEGIN K:=3X REW MAXCAMP (A)}
WHILE S AX'RESTY TUOEX (K)2NOND

AND ~AXSRESTYINDEX(K) 'SOMECIND= 33X %Z0.83%

K:z(K#+1) PEM MAXCOMP (A)]
AXeRESTLINDEX(K) t=FHSOYF(GH#{BX+CX))
END S

AXMA, INDEX(3IX"3) I ANY (P
BEGIN Ki:1=3X REM MAXCOH)2
WHILFE AX* ESTH INDEX(K ONE
AND S AXIREST [MNFV (K AMEC TNO=AX
Ke=(K#+1) &ZM 1AXCNMO (A) S
IF AXT25 ST e INDEX (W) 2NN
BEGIN AXRESTLINDEX(K)
AX ¢ 35S T 4 INDEX (X)) « SNMF VAL I ANYOD
ELSE
END §
ENDRED

S) >
P A
) ?N
)'s

AXe REST o INNDEX(K) « SOME JVALIANYQD

HASH : sparse array hashed into non-sperse array

cRESTLINDEX(K) ¢

ECIND=3X %Ce8%

%0 8%

SAVCCHD (AY /2
SF2SOAE (G (RX S AXINDEE)) S
END

32)'BIT{{(3X-M) REM

PEM 32,L);

32% NN AXe INNEX(CC
32% DO AXCINDEX(CC

=F&#NONE(NIL)

=> A#(CX«DAALL (FENONE(NIL)))

[>Y0)]

THEN AX'DEF
FLSE AX*RESTYINDEX(K)YSOME* VAL

END3

DA

na

«% THEN

32);:

T=0-13

=0
-

- 155 = . -

REP SDARRTAY S
TYPE A=ARRAY 3 OF C; =
TYPE A=(DEFICIRESTIN
TTYPE D=SEQUENCE NF F
TYPE E=(INDIDIVALIC)
GLOABAL SPIINT;
CONRITION MAXCOMP(A)DN;
OPERATIONS]
S) AXMA:=A#ALL (CXTC) => ABEGIN AXNEFI=ZCX; AXJREST i=D#EMPTY END
V) A#ALL(CXPC) => A#¥(CX,D¥EMPTY) S :
S) AXMALINDEX(3X™"3)I=CX"C =>
IF S (CX=AXK'IEF) %AVCOMP{A) /CARD(B) % THEN
BEGIN SP:I=AX'RFST?2rFIRST;
WHILE < AXIREST?NIICURR(SP) AND - (AX*RESTYCURR(SP) 'IND=BX)
%AVCIMPA) %¥0e3% DO
SRI=AXIREST2ANEXT(SP)
IF AX*REST2NOCURR(SP)Y %1—AVCOMP(AY/CARD(RB)I% THEN
AX JRESTIAPPEND _FINST(EA(OX,CX))
ELSE AX«RESTLCURP(SP) sVALI=CX S
ENDJ
S) AXMALINDEX{RBX"3)IANYOR =>
‘ BEGIN SP:=AX*REST?2FTIPST
WHILE SAX*'REST?NOCURR(SRP)
%UAVCOMP(A) x0.3% DO
SP:=AX*REST?NEXT (SP) 3
IF AXYREST?2NICURR(SP) %1-~AVCOMP(A)/CARND(DB)% THEN
BEGIN AX « IESTIAPPEND_FIRST(E#(BX,AX'DEF))
AXeRESTFIRSTWVALIANY P Y FND
ELSE AX.REST«CURRI(SP).VALIANYQP;
END S
V) AXMASINNDEX(3X"RB) =>
BEGIN S?2:=AX'REST?FIRSTS
WHILE ~AX*REST?NICURR(SP) AND ~(AX*RESTI*CURR(SP)*IND=8BX)
%AVCOMP(A)*¥0D 8% DO
SPI=AX'REST2NFEXT(SP) ’ '
RESULT TF AxtREST?2HNICHRR(SY) 41 —-AVCTVB(A)Y/CARTS{I) %THEN AXPDEF
ELSE AX'REST'CUFR(5P) ' VAL END

>
)

(MAXCOMP=MAXCOMD (A) , AVCOMP=AVCOMD(A))}

-e

AND ~(AX'REST'CURR(SP)* IND=BX)

ENDRED

SPARRAY : sparse array as default plus sequence of non-defaults o

REF® POW1 3§

TYPE A=SET NF 31 =>

TYPE A= (NUMBELIDIELIC)S

TYPE C=ARRAY 3 NOF LOGICAL,

TYPE D=0eARND(B); GLOBAL 3B B
CONPITION CARN(3)LK1200805

NPERATIONS

S) AXWA:INSERT(AX") =>
AX s NUMSE I AX o NUMBEL+1 S
END 3 _

S) AXMATREMAYVE(RX"]) =)
BEGIN A‘(.EL.INDEX(']X)::FALSt_:
AX'NUWRC'L':—AX'\JU‘AREL-—I;

END S

Ax"A?EM)TV => AXINIJMOFL =01

AXMAL=ASZADTY =D
AEGIN
AX e NUMPFL =03
AX,ELI=C¥ALL(FALSFE),

END S)

V) AEEMDTY =D AN (D CHALLIFALSE)) S

S) FOR BX IN AX"A D3 SYSTATLVENT =>

. A

n<g
~ o~

FRR B89 4CARD(B)Y% DO
IF Ax*ELINDEX (Y1) ¥aveawe(
V) AXWAZ2ZHAS(AXM"I) =D AX L Y IenEX(BY
V) AXMANUMEL => AXTNUMAFL S
ENDRFD

Y/CARD(RB)IY THEN S WITH BY =03
tI . .

W1 : set represented as arrsy cof bits

- 156 =

REP POW2 S
TYPE A=SFET 07 37 =>
TYPE A=SEQUENCE NF B (MAXCOMP=MAXCOMP (A) s AVCOMP=AVCOMP(A))
GLOBAL SP:IINTS
OPERATIONS
S) AXYATINSEQIT{(BX"3)
BEGIN SP:I=AX?F IR¢
WHILE ~AX?NOCURR
SO T AXPNSXT (S
IF AX?NICURR(SP)
END
S) AXMAIREMAOVE(RBXHR)
BEGIN SPI=AX?FIRS
WHILF aAX?2NNCURR
SP:=AX?NEXT(SP
I[F SAX?2NQOCURR(SP
END 3
V) AXTA?ZHAS(3X"3) =>
BEGIN S2:=AX?FIRST
WHILE —AX?2NOCURS(S
SP:=AX?NFXT(SP);
RESULT =AX?2NOCURR(SP) END;

~ e~ i
Lee TV

’
3P) AND AX*CURR(SP)~=BX %AVCOMP(A)*0.8% DO
0

«B% THEN AX:IAPPEND_FIRST(3X);

.
A

SP) AND AX'CURR(SP)~=0BX %AVCOMP(A)%0.R% DO

DN
NPty

— -~

%0e8% THEM AXIREMOVE_CURR(SP);

;
P) AMND AXY'CURR(SP)a=BX XAVCNOMP(A)*C 8% 0N

V) AXBAPEMDPTY => AX?EMPTY
V) AXMAPZNUMEL => AX?NUMEL
V) A4EMPTY => A#EMPTY;
S) FOR BX IN AX"A D0 SY"STATEMENT =>
FOR BX IN AX ZAVCOMP(A)% DN S
ENDREDP !

POW2 : set represented as sequence

- 157 -

RED SFQ13

TYPE A=SEQUENCE OF 33
TYOE A=(FRSTIES AA:Z
TYRPE C=ARAY D OF B
TYPE D=1e e MAXCOMP (A
TYDE €=0.¢"MAXCOMP (A
GLOBAL T :1INTS

OPERATIONS

R) AXMAFIRST => AX e AAe INDEX(AX*FRST) S
V) AXWMAYFIRST => AX'AA'INDEX(AX*FRSY)
Q) AXMALLAST => AX<AA,INDBEX(1) 3
V) AXTMATLAST => AX*AAY INDEX (1)
V) AXMAREMOTY => AXO'FRST=03
V)Y AXMA2NUMEL => AXYERSTS
S) AXMWALADIEND_FIRST(3X"3) =>
BEGIN AXFRSTI=AX'FRST+13
AX ¢ AAL INDEX{(AXPFRST) 1=8X; END;
S) AXWAIREANVE _FIRST =D AXFRSTI=ZAX'FRST-13
5) AX"A:R?MUVE_CURR(cp"rNT) =5)

BEGIN AX.ERST:=AX'FRST—1;
FOR I:SPesAX'FRST %AVCOMP(A)/2.% DO
CAX eAALINDEXT{I)I=AXTAATINDEX(I+1);
END
S) AXMAIAPPEND_LAST(RX"B) =>
BEGIN AX<FOST:=aAX'FRST+1;
FOR 1:AX'FRST..? %AVCOMP(A)%Z DN
AX oAA« INDEX(T)I=AX*AATY INDEX(I-1)3
AX AASINDEX (1) 3=8X;

END
S) AX'"AZ IN%FQT NEXTSPYINT,L3X"3) =>
BEGIN AXe FROGTI=AXYENST+ 1
FOR I1AX'FR3T 469241 4AVCUMP(A)/24% DN
AX e AA INDEX(T)I=AXTAAY INDEX(I-1)3
AXeAASINDEX(SP) =X}
END .
S) AXV"A:IINSERT_PREV(SPYINT,,BX"3) =>
BEGIN AXFRSTI=AXYFRST+1)
FOR T:AXTFRST.eS2+2 %AVCOU(A)/2.% DO
AX e AAe INDEX(T)I=AXYAA* INDEX(I-1)3
AXeAAe INDEX{SP+1):=8X;
END ¢
V) AXMA2F1QST => AX'FRST;
V) AXYAZLAST => 13
V) Ax"AvNSXT(JD"INT) => SP-13%
V) AXHAZPRSV(SPWINT) => SP+13
V) Ax"A?NOCnRO(Sp"IN*) => SPL1 R SPO>MAXCOMP(A)S
R) AX"A,CURR{(SOPMINT) => AXAALINDREX(S0);
V) Aan'CUQQ(CO"[NT) => AXTAA'INDEX(SP);
S) AXWAIZA$EAPTY => AXFRSTI=03
S) FOR BX IN AX"A DO SUSTATEMENT =>
FOR 1:1esAX'FRST %AVCUMP(A)YZ DO S WITH BX=AX'AACINDEX(1);
ENDPED

SEQ1 : sequence as contisuous array vith first element pointer

REP SEQ23
TYPE A=SEQUENCE QOFf B3
TYPE A=(FRST:E;FPEF
TYPE C=ARRAY D 0OF F
TYPE F=(VALIRINEX:E
TYPE D=1eeMAXCOUP(A
GLOBAL T:INT:
OPERATIONS
S) AXYAIZAKEMPTY =>_
BEGIN AX.FRST:=0; AXeFREF:=1: AX NUFL:=0:
FOR T:I1eeMAXCOMD(A)=- AMAXCOMP(A)Y=-1%Z DO
AX.AA-INDEX(I).NFX::I+1;
AX.AA.IMQEX(VAXCOMP(A))-NEX:=0;
END §
AXTALFIRRST

AX.AA.INDEX(AX'FRST).VA
AXMASFIRST yrv

> L
> AXTAACINDEX(AX'FRST AL
>
>

LY ¥

AXMA?PENMDTY AX.FRST:O;
AXWA?PNUVEL AXTNUFL 3
AXMAIAPREND_FIRST(BXY3) =>
BEGIN I:=AX*FREE; AXeFREEI=AX'AAY INDEX(AX'FREE) 'NEX
AX.AA.IND?Y(Y)::F#(BXoAX'FPST);
AX.FQST:=I:-AX-NUEL:=AX'NUEL+1;
END 3
S) AXMAIREMOVE_FIRST =>
: BEGIN I:=AX'AA'TMDEX(AX'FRST)'NEX
AX.AA-INDEX(AX'FQST)-NEX:=AX'FREE
AXeFREEI=AX'FRST;
AXeFRST:I=1: AX.NUEL:IAX'NUEL+13
END; .
AXMARF IRST => AXVFOST:
AXVAZINEXT(S2UINT) => AX$AAIINDEX(SP)YNEy:
AXMA?PNOCURR(SPUINT) => SP=9;
AXAZCURR(3PUINT) => AX-AA.INDEX(SD).VAL;
AXMAP CURR(S3OMINT) => AX'AA'INDEX(SD)'VAL:
AXUMAIINSERT _NEXT({SPHUINT,HX"73) => .
BEGIN I1:=AX*FREE; AX-FREE:zAX'AA'INDEX(AX'FREE)'NEX:
AXo QA INDEX(L)I=F#(AX4AXTAAT INDEX(SP) INEX) ;
AX.AAQINDEX(SP).Nszzl; AX.NUEL::AXONUEL+1;
END S
S) FOR BB IN AX"A nn SUSTATEMENT =>
BEGIN I:=AX'FRST;
WHILE T1-=0 %AVCCUP(AY% DN
BEGIN 35 wITH BB:AX'AA'INDEY(I)'VAL;
II=AXTAACINDEX(T)IYNEXS
END;
END 3
ENDREP

n<<< D
e et s

.
A
.
’

K4y : Ry
it wwt st Nt Nt

SEQ2 : sequence as singly linked list

f159"

REP SFQ3:

TYPE A=SEQUENCE nF g3 =>
TYPE A:(FQSTZE:LST:E;FRFEZE:NUEL:E:AA:C):
TYPE C=ARRAY D NF F:
TYPE F=(VALIBIPPEIEINEX:F);
TYPE D=1..MAXCIMI(A); TYPE E=0e e MAXCOMD(A);

GLDBAL 1:INT;
OPERATIONS
S) AXMAIZTAAEMDTY =>
BEGIN AX.FRST:=0; AXeLST =03 AXeFREE:=1}
FOR 1:1eeMAXCOMP(A)=-1 EMAXCOMP{AY=-1% DC
AX.AA.TNWEX(I).NEX:=I+1;
AX.AA.IVDEX(MAXCDMO(A))-NEX:=O$
END;
AXHALFIRST => AX.AA.INDFX(AX'FQST).VAL
AXMAIE IRST => AXYAA INDEX(AX'FRST) Y VAL
AXMALLAST => AX e AALTNDEX{AXT L STY vaL ;
AXMAY'L ASTY => AX'AA'INDEX(AX'LST)'VAL:
AXMAEMDTY => AXYFERST=03
AXTTAPZNUMEL => AXtNUEL
AXUAZADPPEND FIQRST(BX"3) =>)
BEGIN 1:=AX'FREF; Ax.FREE:zAx'AA'INDEX(AX'FRFE)‘NEX:
AX.AA.INDEX(I)'=Fﬂ(BX.O,AX'FRST):
AX.,FRST:=13 AX.NUEL:=AX'NUEL+1:
END ;
S) AXMAZAPPEND_LAST(BX'"'3) =>
BEGIN [:=AX*'FRFEF; AX.FPCE::AX'AA'INDEX(AX'FREE)'NEX;
AX.AA.INDEX(I)::F#(BX'AX'LST,O):
AXelLSTI=13; AX.NUFL':AX'NUEL+1;
END ;
S) AXMAIRFMNVE FINRST =>
BEGIN I::Ix'AAvINDEX(AX'FRST)'Nex:
AX.AA.INDEX(AX'FQST).NEX:=AX'FQEe;
AXsFREEI=AX'FRST
AX.FRST:=1; AX.NUEL:=AX'NUEL—11
END; '
S) AXWA IR
BEGIN I
AXeAALIN
AXqe FREFE?
END 3§
AX"MA?FTRST => AX'FRST:
AXPTA2LAST => AX'LST;
AXWANEXT (SOUINT) => AXTAAY INDEX(
AXYARPRIVISOUINT) => AXTAA' INDEX(
AXUAZNOCURR(SAMINT) => SpP=9;
AXT"ALCURR(SPINTY => AX sAQL INDFX(S
AXTATCURR(SAHINT) => AXTAATINDEX(S
AXTUALTINSERT_NEX PUINT.ax"3) =>
BEGIN [:=AxtF AX.FQEE::AX‘AA'INCEX(AX'FQEE)'NEXS
AXeAAINDEY(] F(BX,SPIAXPAAY[NDEX(SP) INFX)
AX e AA: INDEX(S EX:i=71; AX s NUEL I=AXY NUF(413
END;
S) AXPALDINSERT _NEXT(SPUINT,B3x"Y) =3
BFGIN T:=AX"FR{E7; \X.FQEE:TAX'AA'INDFX(AX'FRE
= 3P)

AXeNUEL =03

PYR T

VKKK D

H

LAST =>
XOAATINDEX (AX ST) 1PRE;
ZXCAXLST) e NEXI=AXIFREE 3

XPLSTS AXeMNUELISAX*NUEL=1; AXeLST:=1;

se

3 Hm

> b

S
S

aJ
1}
PYYYS

1
LTS

(2 s K S 4
N N Nl Nt st gt i b

T(s
RFCE
}i=r
2) N

on

JINEX

e M

AX.AA.[MOFY(T):Z'ﬂ(BX-AX'AA'INDFX(SP)'DRF‘ P
AXe AALINDEX(SP)ePRZ1=1; AX ‘NUEL::AX'NUEL_-O-I;
END .

S) AXHBAIREMOVE _CURR{SPINT) =>
BEGIN
Ax'Ax.quE‘(AX.AA.INDEX(SP)'pQF)ONEX::AX.\A'IVDEX(SP)lQEx;
AX g AALJINDEX{AXtAAY INDEY(SD)'NEX).pDE::AX'AA'INDEX(SD) 'D:E:

AX.AA.!VD;X(SD).NEX:=AK'FQSE: AX eFREFI=SMD;
AXeNUSL I=AX I NUEL -1 3
END S
'S) FAR B8 IN AX"A DU SUSTATEARENT =>
BEGIN I[:=AX'=057T;
WHILE I-=0 %AVCOVD(A)% pn
BETGIN S wATTH Q'*:AX’\\'[’\OFX([)'V“L:
TI=AXYAAN P INDTX (])..‘VT\(;
END S
. END S
ENDsE

SER3 : sequence as doubly linked list

- 160 —

RED® SEQS:
TYPE A=SEGUENCE 0OF 8: =>
TYPE A=Qe e MAXCOMP (A XMAXNUM(A) S
TYPE G=(LASTUIAJSTNRFIH);
TYPE H=ARRAY M 3F K3
TYPF K=(VALIR;NEIXIA);
TYDE M=1e e MAXCNMP (A)XMAXNUM(A)]
GLOBAL ST:G: GLOBAL I:A; GLCBAL J:INTS
PFRATIONS
Yy INIT => ST.LASTUZ=03
Y A¥EMPTY => 03 .
) AXMA2EMATY => AX=03
) AXMA?NUVEL =D
BEGIN J:=0; TI=AX]
WHILE I-~=9 %AVCOMP(
BFEGIN Ji=J+1l,; I:=
RESULT J ENDS
S) AXMAIAPRPEND_FIRST(BX"3) =>
SBEGIN ST.LASTUI=ST'LASTU+1
T=AX: AXI=ST'LASTU;
STeSTNRELINDEX{(AX) I=K# (383X, 1)3
END S
AXMASREMNAVE_FIRST => AXi=ST*STONTY INDEX(AX)'NEX;
AXMALFIRST => STLSTNRE. INDEX(AX) VAL
CAXMAYFIRST => STUSTORECTINNDEX(AX) *VAL
AXMA?F IRST => AX}
AXUAPINSEXT(SPUINT) => STI!STORE'INDEX(SP)'NEX
AXVA2NQOCURR{SOPUINT)Y => 5P=03
AXMAGCURR(SPMINT) => STSTORFJINDIX(3D) (VAL S
AXBALCURR{SIPNINT) => STI'STORFEYINDEX(SP) * vAL
AXUALINIERT_NEXT(SI2"INT,UxXx"82) =>
BEGIN ST.LASTUI=STILASTU+1}
STeSTIRFLINDEX(ST'LASTY) 1=K#(BX,STYSTORE*INDEX(SD)*NEX) S
STeSTNRE ¢ INDEX{SP) e NEXI=ST*LASTU; -

0
S
v
Vv
\'4

A)% DO
STYSTORETINDEX(1) ¢NEX FEND3S

NV IT®
N Nl N Nl Sl N P Nt Nt

ENDS
) FOR BX IN AX"A DO SYSTATEMENT =5

BFEGIN 1:=AX;

WHILE TI-=0 %AVCCWP(A)Y% N0
BEGIN S #WITH RX=ST'STORE*INDEX(T)*VvAL;
I¢=STISTOAREYINDEX(I)*NEXS
ENDS

END 3§

ENDREP

S®Q5 : several sequences as singly linked lists in common storage

- 161 ~

REP SEQ63
TYPE A=SEAQUENCE NF 33§ =>
TYPE A=ARRAY C 0OF D}
TYDE C=0a e MAXCOMD(A)]
TYDFE ND=(LST:NULL|VAL:IB)
GLOBAL I:INTS
DPERATIONS
R) AX"ALFIRST => AXeTNDEX(N) VAL
V) AX"A'FIRST => AX¢INDEX{N)*VALS
R) AX"ALLAST => »
BEGIN T:=03% ’
WHILE AX?VINDEX(TII?VAL %AVCOMP(A)% DN I:=I+413
RESULT AXe INDEX(T-1)4VAL ENDS
V) AXYWA'LAST =>
REGIN T:=03
WHILE AX'TNDEX({1)?2VAL XAVCOMP(A)X DO T:=T1+413
RESULT AX? INDEX(I-1)*'VAL FND3

V) AXHA?2EMDPTY => AX? INDEX(0O)?2LST;

V) AXTA?NUMEL =D
BEGIN T:=03 :
WHILE AXYINDEX(I)?VAL %AVCOMD(A)% DO Y:=1I+13
RESULT I END;JS .

S) AX"AI=A4EMPTY => AX. INDEX(N) s=DALSTINIL) S

V) A#EMPYY => A#ALL(D#LSTI(NIL))

S) AXWATAPPEND _FIRST(SX"H) =>

BEGIN 1:=03% .
WHILE AXT*INDEX{I)?VAl %AVCOMP(A)Y DN 1
FOR I:1+1e0l LAVCOMP(A)% DO AX. INDEX(I
AX INNDEX(0)1=D#VAL(BX)]
END3S

S) AXWATAPDEND_LAST(BX'"B) =>
BEGIN 1:=03
WHILE AX®*INNDEX(TI)}?2VAL %YAVCOMP(A)% DD I:=1+1
AX.INOFX(I):=D#VAL(BX);
AXSINDEX(T4+1) :=N¥LST(NIL)]
FND 3§

S) AXVAIREMOVE FIRST =>
BEGIN 1:=0:
WHILE AX'INDEX(T)?2VAL %XAVCOMP(A)% DO

]

INDEX(I-1)3%

-e

IEGIN AXeINDEX(TI) t=AX* INDEX{I+1)
END 3
S) AXM"AIREMNOVE_LAST =>
BEGIN 1:=93 '
WHILE AXTINDEX(I)?2VAL %AVCOMP(A)X DO I:=1+1
AXe TNDEX(1-1):=DALSTINIL)
END S

I:=1+41 END;

V) AXWA?FIQST => 023
V) AXYA?LAST =>
REGIN T:=01%
WHILE AX* INDEX(I)?VAL %AVCOMP({A)%X DN I:=1413
! : RESULT 1-1 FND3
| T W) AXWARNFEXYT(SOHINT) => SP+15
V) AXMAZNOCURR(SPHINT) => AX'INDEX(SP)?LST]
R) AXMALZURN(SIMINT) => AXINDEX(SP)eVALS
V) AX"A'CURR(SPWINT) => AXTINDFEX(SP) VAL
S) AXMAIINSERT_NEXT(SP"INT,BX"B) => .

BFGIN 1:=5P3%
- WHILE AX?'INDEX(I)?2VAL XAVCOMP(A)% NO Ti=T+1
FAR T:1+1.e5P+2 %AVCOMP(A) /2% DD AX. INDEX(
L AXo INDEX(SO+1) I=D2VAL(BX);
‘ END
| S) AXWAIREMAVE _CURR(SPM™INT) =>
BEGIN T:=5P5 -

’ WHILE AX*INOEX(I)2VAL %AYCOMD(A)
| BEGIN AX e INDEX(TI) :=AX'INDEX(I+
‘ FND ¢
; S) FOR BX IN AX"A DO SUSTATEMENT =>
i BEGIN T:=07
3 WHILF AX'INDEX(I)?2VAL %AVCOMP(A)}% DO

QEGIN S WITH BX=AX*INDFX(I)?*VAL

=y .

JI=SAXPINDEX(TI-1)3

% D0
1)3 It=1+41 END;

T:=1+1%
ENDS
ENDS

ENDREPR

. SEQ6 : sequence as contiguous array with last element marker

- 162 -

REP INDIRECT?
TYPE A=ANYSTRUICT =>
TYPE A=1eeMAXNUM(AY)]
TYPE U=(LASTY:N; S:STORE)S
CTYPE B=0+MAXNUM(A)]
TYPF STORE=ARRRAY A OF AAS
TYPE AA=ANYSTRUC (MAXCOMP=MAXCOMP (A), AVCOMP=AVCOMP(A))
GILOBAL UUIIU,
CONDITION “AXNUM(CA)>1 AND STOR(CA)IDSTAOR(CINT)
OPFRATIONS
S) INIT => UU.LASTUI=
V) AXTAYANYNDD => YUss
V) AXYA2ANYOP => UU*S
V) A#ANYOPRP =>
BEGIN UULASTU: =Y LASTU+) 3
UUe S INDEX(UULASTU) I=AAXANYOP S
RESULT UJYLLASTI) ENDJ
S) ALIMAI=A2WA => Al =A2]
V) ALMA=A2"A => (A1=A2) DR (UU'STINDEX(A1)=UU?ST INDEX(A2)) 3
S) AXMAIANYDP => i
BEGIN UULLASTUI=IITLASTU+1
UUeS « INDEX(JUTLASTU) :=UUTS T INDEX(AX) 3
UUeSeINDEX{UUTLASTU) T ANYID
AX S =UU'LASTYS
END 3
S) FOR BX IN AX"A DO SYSTATEMENT =>
FOR BX IN UU'STINNDEX(AX) %AVCUMP(A)% DO S3

ENDREO .

q.
VINDEX(AX) PANYOP S
VINPDEX (AX) 2ANYOP ;

IWDIRECT : all instances of a type in common storage with pointers

Favivalence transformations

REP SYNCPS i -

TYPE A=(S1:8:52:C); => TYPE A=(S1:03:352:C)

OOPERATIONS .

5) AXMA:=AY"A => 3FGIN AX S1:=AY*S) S AX,S?2:i=AY*S2 END;
)} AXMYA=AY"A => [AXTSI=AY!'S1) AND (AX®32=AY1S52): ‘
} OAXUAI=A#(IXM3,CXYC) => REGIN AX.S1:=fAX: AXe532:=CX END;
) AXUA= A3 X3 ¢CXMC) => (AX*'S51=8BX) AND (AX*S2=CX):
) AX'ALS1 => AXeS13
)
)
)

AXMALS2 => AXe523
AXUA'SE => AX'S1;
AXMAYS2 => AX'S523
ENDRFD

<K<K <nN<

REP SYNARS
TYPE A=ARRAY 8 NF C; => TYPFE A=ARRAY R OF C:
GLOSAL RS3:3; GLIOBAL EQILOGICALS
CORDITION YWAXCOUP(A) =0}
O FRATIONS
S) AX'"AI=AY"A => FOR AR CARD()7 00 AXGINDEX(3B)1=AY' INDEX(1373) ;
V) AXuA=AY"A =D :
BEGIN EJ:=TRUE;
FOR B3 %CARD(R)I% DO .
FRe=FEN AND (AXYINDEX(BR)AYLINNEX(23)) 3
RFSULT £ ENNDJS
) AXMAI=AYALL(CX"C) => FOR 27 2CARN(T)% DO AXGINDSX(33):1=CX;
) AXWALINIEX(8X"3) => AXe INDZX(DX); ' Sl T
) AXMALINOIEX(DEX"T) => AX'INOEX(DX)]

- 163 -

REP SYNI13 : -
TYPE A=(B1:B3iB2:8); => TYPE A=ARRAY C 0OF B TYPE C=0eel:
OPFRATINNS

R) AX"A.B1 => AX INDEX(0);
R) AX"A.B2 => AXJINNEX(1)
V) AX'"MA'81 => AX!'INNDEX(0) 3
V) AX®AIB2 => AX!' INDEX(1)3
ENDREP
REP SYN2;

TYPE A=(BB:3:3CC:C); TYPE C=ARRAY D NF B TYPE D=M..N;
=> TYPE A= ARRAY E OF B; TYPF E="eeN+1; TYPE D=Mge N;
DPERATICNS :
R) AX"A,R3 => AX.INDEX(%N+1%);
R) AXM"ALCCsINDEX(DODHMN) => AXINDEX(NDD)
V) AxX®A183 => AXTINDEX({%N+1%);
VY AXMAYCCYINDEX(NDDNUD) => AX!'INCEX(DD) 3

ENDRFP

REP SYN3; :
TYPF A=(BR:3:iCC:C); TYPE B=ARPAY D INF C; TYPE D=Me.N:
=> TYPE A=ARRAY F OF C;} TYDPE FE=Me.aeN+1; TYPFE D=, N3}
OPFRATIONS
R) AX"A,CC => AXINNDEX(%EN+1%) 3
R) AXMAL3B, INDEX(DODUD) => AXINDEX(ND);
V) AXTAICC => AXTINDEX{%AN+1%) 3
V) AXTAIBR!IINDEXINDDUD) => AX'INCEX(DD);
ENDREP

7

RFP SYN4, .
TYPE A=(33:83;CC:C); TYPE P=APRAY D Nf £;
=> TYPE A=ARRAY G 0OF E; TYPE G=(ND:D]|FF
OPERATIONS
R) AXMALBRGINDIEX{DOX"™D) => AXe INNEX(GHYND(ND
R) AXMA,CC+INDEX(FX®F) => AXe INDEX(GHFF(F
(n
(F

YPE C=ARRAY F 0OF £3
)3

V) AXUA'BBIINDEX(DXUD) => AXTINCEX(G4DD
V) AX"ATCC'INDEX(FX"F) => AX'INDEX(GH4FF
ENDREP

-t N st
“sEr wewr

_REP SVN5;
TYBE A=APRAY 3 NF Cj; TYDPE C=ARRAY 0O OF E;
=> TYPE A=ARRAY F OF E; TYPE F=(33:33;DN:D)}
OPERATIONS
Q) AXMALINOEX(AX"T) INDEX(DXTN) => AX, INDEX (F # (73X,
V) AXMATINDEX(3X"3) ¢ INDEX(DX"D) => AXS INDEX(F # (3%,
V) ARALL(CH#ALL(EX"ED)) => A#ALL(EX);

ENDREP ‘

J9

X))
X))

coan

- 164 -

APPEIDIX IV

EXAMPLE RUPRESENTATIONAL CHOICE SESSION

As another example of the use of the experimental system, besides
that given in section 5.4, the following listing shows a complete
sequence of representational choice made for the Card Game Problem.
It is presumed that the tafget language includes single-dimensioned
arrays as its only structuring method., The representétions that are
matched and implemented during the course of this'session are all

detailed in Appendix III.

- 165 ~

% REPRESENTATIONAL CHOICE SYSTEM %%

COMMANDS
TYRPESs RFPS KTYPED>, EVAL,
SPLIT CTYPRPE> <SEL> <SEL>
>TYRES

TYPE GLORAL=(I:INTSCIPLAYING CARC;QfQANK;StSU
PLAYEFDILIOGICAL iR IRPLAYFERIFACF_POWNIRPILE?FAC

DRINT,

QUIT,

PLAYERIPLAYER:PLAVERS DL AYERS) §

CHJICE FOR Cn2

IN REP SYNAR
Co2#ALL(
nReED INOIR
GePLAYER
BITS

IN

TN
>31ITS

JVPLEMENT RS

FOLLOVING NOT TYOLEMENTEN:=

FALSE)
ecT TOLLOVING NAT
SeINDEX(GD ') (FLO2

5T0OR= 31an
€3, GIVI CHOSEN

RICP NAMCS

IVELPvENTCT:_
« INREX(GR*FACE_DOWNYFIRST)

175
E_UP:IOILEY

TYPE PILFEI=SEQUEMNCE NF PLAY.ING_CARD (AVCOMP=15 MAXCOMP=52)
TYPE PILE2=3ENIFNCE NOF PLAYING_CADD (AVCOVR=30 MAXCO#P=52)
TYPE PLAYERS=ARRAY PLAYER 0OF HAND;]
TYPE PLAYER=1.42;
TYPE HAND=SET NOF PLAYING_CARD (AVCOMP=3 MAXCOMP=52);
TYPE PLAYING_CARD=(SUITISUITIRANKIRANK) ;
TYPE RANK=1+413;
TYPFE SUIT=1ee43
SREOS OLAYTING_CARD
CUPRENTLY STOR= 8133
CHONICE FJR PLAYING_CARD
IN REP SYNCP FOLLOWING NOT IMPLEMENTED:-
PLAYING_CARDZ{((GA*] REM 13) + 1),((Ga*I NIv 13) + 1))
SURCP | STOR= 3138 .
TO IMPLEMENT RER, GIVE CHOSEN REPRP NAME
>susc2
TYPE GULN3AL=(IINTICIPLAYING CARDIR:RANK; s SUILT;,
PLAYED:LIGICAL ;2 t0LAYFER jFATE DAANIPILE2JFACE UDIPILEL
PLAYER:PLAYER;PLAYERSIPLAYERS) B
TYPE PLAYING_CARD=N,,51}
TYoE SUIT=1004:
TYPE RANK=1ese13:
TYPE PLAYER=14423
TYPE PILE2=SENUENCE 0OF PLAYING_CARD (AYCOMD=30 MAXCOMD=52)
TYPE PILI1=SFIJENTE NF DLAYING_CARD (AVCIVD=16 MAXCD''D=52)
TY>= PLAYERSTAIRAY SLAYER NF HANDS
TY3E HAND=SZIT JF PLAYING_CARD (AVCOVPR=2 VAXCOMP=52);
>DREPS HAND
CURRENTLY STNOR= 8138 _
CHOICE FOR HAND)
oMWl STOR= 793R
POwW?2 STOR= 13278
INDIRECT STOR= B1713
TN IMDLEMENT REP, GIVE CHNSEN REP NAME
>POwW1
TYPFE GLOBAL=(33)2I1RLAYING_CAIDFTIINTICIPLAYING CARDIRIRANK,
SESUITIPLAYSDILIGICALPIPLAYERIFACE _DOWNIDILE 2
FACE_UP:2ILT1IPLAVERIPLAYERIPLAYERSTPLAYERS)
TYPE PLAYING_CARN=N4+451;
TYPE RANK=1ee13%
TYPE SUIT=1laee43
TYPE PLAYSZR=1e473
TYPE PIL??:SECJ:V”F N¥ DLAYINC_CARD (AVCOAP=30 MAXLOUNDR=52)
TY2E PILEL=SEUSNCE OF BLAYING_CARD (AVCCA2=156 4AXCOWI=352)
TYPE PLAYSISTARINAY GLAYFR OF HAND
TYPE HAND=(NUM3EL32IN0235 FL”9'CC°)'
TY2E CO02=A2°AY PLAYING_CARD 0OF LCGICAL
TY2E DO2=NeeBH23
>REDS €02
CURRENTLY STAR= 7938

- 166 -

TYRE GLOBAL=(CC032C03;BBOQ:DLAYING_CARD:IIINT:C:PLAYING_CARD:
R:RANK:S!SUIT:DLAYED:LUGICAL;P:PLAYER;FACE_DOWNZPILER;
FACE_UO:DILEI:pLAYER:PLAYEQ;PLAYERS:PLAYERS):

TYPE PLAYING_CAQD=O-.51;

TYPE RANK=1,7173;

TYPE SUIT=t.,.4;

TYPE PDLAYERS] , .2

TYPE PILE2=SFQUENCFE ng pLAYlNG‘CARD (AVCOMP=30 MAXCOMP=52);
TYRPE PILE1 =SSQUENCE aF PLAYING_CARD (AvVCQOnMP=16 MAXCOMP =52) ¢
TYPE PLAYFRIS=ARRAY PLAYER nNF HANM 3§
TYRPE HANDZ(NUMBELOZ:DOZ;ELOZ:COZ);
TYPE DO2=n,,32; .
TYPE C02=AAY C03 OF INT;
TYPE CO3=0..1
>REPS no2
CURPENTLY STOR= 3118
CHIICE FOR DO>
SUBRrREP i STNR= 8708
TO IMPLEMENT RED, GIVE CHOSEN REP NAME
>SUBREP
TYPE GLOBAL=(CC03:C03:BBO?:PLAYING_CA?D:I:INT;C:DLAYING_CAQD
R:QANK:S:SUIT:pLAYrD:LOGTCAL;P:DLQYER;FACE DOWNIPILFE2S
FACE_UP:DILEI:PLAYER:DLAYER;DLAYERS:PLAYERg);
TYPE C03=O-'l ;
TYRPE 9LAYIVG_CAQP=Co051;
TYPE RANK=1,,13;
TYPE SUIT=1.,4
TYDE PLAYER=1,,.,2:

<9
JYPE PILE2=SEQUENCE OF PLAYING cAan (AVCOMP=30 MAXCOMP=52)
TYDE PILEI=SEQUENCFE Of PLAYING_CARD (avCpup=1e MAXCOMP=52)
TYDE PLAYERS=ARRAY PLAYER OF HAND:
TYPE HAND=(NUMSELO2:INTIELO2:Cnp)
TYPE Cn2=A22AY CAz AF 1N7s
>RENS DI AYEPS

“s ve

CURRFNTLY STOR= 3708
CHJICE FOR PLAYERS
SYNAR STOR= 8721
YO IMPLEMENT RES, GIVE CHOSEN REP NAME
>SYNAR
TYPE GLOBAL=(EOOS:LOGICAL;@BOS:PLAY?Q:CCOB:C 3
8802:PLAYING_CARD:I:INT;C:DLAYING CARDIRIPANKISISUIT:
oLAvED:LGGICAL:P:DLAYER;FACE_Doww?prLez:FAcg URIPILF]
DLAYER‘DLAYFQ:PLAYERS:PLAYERS)3 -
TYPE C03=0..1:
TYPE OLAY[VG_CAQOTQ.-SI;
TYPF RANK=1.51.3;

TYPE SUIT=1,.43
TYPE OL AYFR=1,,2 ‘

TYPE PILE2=SEQUENCE nF PLAYING_CARD (AVCOMP=3¢ MAXCOMP=52) ;
TYPE PILE]=SEAUENEE OF PLAYING_CARND (AyCOMP=16 MAXCOMP=52) 3

TYPE PLAYSRS=AGRAY OLAVER OF HAND §
TYPE HAND=(NUMBELO2 INTCLO2:ChR)
TYPE C02=A22AY C03 OF [NT;
>REPS HAND
CURRENTLY STOR= 8728
"CHOIGCE SR HAND :
SYNC STOR= 37213
IN RED SyYN? FOLLOANING NOT IMPLENMENTED: -
HAND# (0, Cn2%aLt1_ (n))
IN REP INDIRECT FOLLOWING N3T INOLEMENTED:-
: GePLAYIRS . INDEX({GAID) & o
TO IMPLEMENT RED, GIVE CHASEN REo NAME
>SYNCO :

- 167 -

TYPE GLO@AL=(EQOS:LOGICAL;BUOS:PLNYFR;CCCB:CO?;

BROZ2IPLAYING

PLAYERIPLAYER;PLAYERS: PLAYERS) ;
TYDPE C03=0001;
TYPE PLAYING_CARD=0,,51 3
TYPE RANK=10013;
TYDE SUIT:lcca;
TYPE PILE2=SEQUENCE NF PLAY ING_CARD
TYDE PILF1I=SFQUENCE 0OF PLAYING_CARD
TYPE PLAYERS=ARRAY PLAYER OF HAND:
TYPE HAND=(NUMBELC2IINT;FLC2:Cn7) »
TYPE CO2=ARRAY CO3 OF INT;
>REPS CO2
CURRFENTLY STIR=
CHDICE FOR CO2

872R

IN REP BASH FOLLOWING
Co2#ALL(N)
SYNAR STOR= 874R

IN REP INPIRECT FOLLLOWING

TO IMPLEMENT
>SYNAR

RE2, GIVE CHOSEN RED NAME

TYPE GLﬂGAL=(EOO7:LHGICAL;BBO7:CO?:?QCS:LCGYCA
CCO3:CO?:3?02:QLAYING_CAQD:I:INT:C:PLAYING C
S:SUIT:PLAYED:LOGICAL;D;DLAYEQ;FACE DOWNIPTL
FACE_UP:?ILEI:DLAYFQ:pLAvEQ;PLAYEQs?pLAYFRs)

TYPF DLAYER=1002;

TYDE C03=0441

TYPE PLAYING_CAQD=0-.51;

TYpE RANK=1..1.:

TYPE SUIT=1e44} ,
TYPE PILE2=SENUSNCE OF PLAYING Cca2n
TYPE PILIL=SZQUENCE NF pLAay ING CARD
TYPE PLAYEQS=ARRAY D AYFE NF HAND

TYPE HAND=(NUMBEL02!INT;EL022C02):
TYPE CO2=ARRAY CO3 OF INT;
>REPS HAND
CURRENTLY STOR= 3748
CHJICE FOR HAND h
SYNCP STOR= 874R
SYN?2 STNR= 3748

IN REP INDIRECT FOLLOWING
G.DLAY?RS.INDEX(GE'QROS).NUNWEL”?
TO IMPLEMENT RED, GIVE CHOSEN PRED NAME

>SYN2
TYPE GLO%AL=(5007:LOGICAL;HB??:COB:
CCOB:C)?;3%02:DLAYING_CARO:I:INF;
S:SUIT:PLAYED:LDGICAL:Q:PLAYFQ:FA
FAC:_UD:DILEI;PLAYFQtpLAYEQ:PLAYF
TYPE C03=Q-ol:
TYPE PLAYER=14,23
TYRE PLAYING_CARD=0,4451 3
TYRE RAN.‘(:loolz;
TYPE SUIT=1es4]
TYPE PILE2=SEQENCF OF QLAYING_CAQD
TYPE PILSLI=3E0QUENCE (OF PLAYTING_CARD
TYDE PLAYERISSAIRAY PLAYER OF HAND;
TYPE HAND=ARRAY EOR (OF L
TYPE E08=0,.,23
DREPS DLAYERS
CURREMTLY STOR= B748
CHOICE FNOR 2LAYERS
SYNAR STNR= 37A0
SYNS STNR™= R7417
TO IMDPLEMENT RI?, GIVE CHOISEN RED naue

>SYNS

_CARD;I:INT;C:DLAYING_CAQD:Q:RANK:S:SUI
DLAYED:LOGICAL:Q:DLAYER;FACE DONN:PILEZ;FACE_UPZPIL

LoOnm
LETES)
ol U

[9)]

(AVCCMP=30 MAXCOMP=52)
(AVCCMP=16 MAXCOMP=52)

NOT INMPLENMENTFR: -

. NCT IMFPLFMENTED: -
G.PLAYERS.INDEX(G&'P)oFLO2oINDFX((G

T'FACE_DOWN'FIRST DIV

P

RANK §

M

e

(AVCNMO=3In MAXCOUI=53)
(AVCCMP=16 MAXCOMP=32)

NJT IMOLEMENTED: -

Y

<A
B
T

pe)

s Ui

aoron
0 es
»E <
<Z~0
Mee Z 5O
DIO—=
N Qe
Ty
T) oo
zZr
A
-s

m

pe

N =l

(AvCcCevp=730 VYAXCOMD=3)D)
(AVCCi4P=14 MAXCOUD =52)

PLAYER

PYYY

32))

e we

-e we

- 168 -

TYPE GLOBAL=(END7:LOGICALIPRO7ICO3IFQOSILOGICAL (NR0OSIPLAYER
cco3: CO3.3”°°‘°LAYING CARDSIIINTICIPLAY ING CARDIPIRANK

SISUITIPLAYENILOGICAL iPIPLAYERIFACE_COWNIPTLE?;
FACE_UP:21LEL;PLAYER? PLAYFR PLAYERSIPLAYEPS)

TYPE CO3=0Deel}

TYRPE PLAYER=1e423%

TYPE PLAYING CARN=04s51;

TYPE SUIT=1.443

TYRPFE PILE2=SEQUENCE 0OF PLAYTING_CARD (AVCNMP=30 MAXCOMP=
TYPE PILE1=SFQUENCFE 0OF pLAYIN(CARD (AVCCVMP=16/ MAXCNMD=C
TYPE PLAYERS=ARRAY FOHo 0OF INT;S

TYPE FO9=(330J:PLAYERIDNCIIENR)
TYPE EO08=0ee2
>REPS F 09

CURKRFNTLY STNR= 3749
CHDICFE FOR FO9
IN REP SYNCP FOULOWING NOT IMPLEMENTED: -
FOIX(GD'RB234+2)
SuUnRcCp STOR= }74F
TO IMPLEMENT RE?, GIVE CHOSEN REP NAME
- >suUBCP '

TYPE GLDBAL=(EOO?:LOGICAL;9907:CO?:EOOS:LOGYCAL:QGCSZPLA
CCO03:C03:8BBO2IPLAYING _CARDJIIINTICIPLAYING_CARDRIRANK
SISUIT:PLAYFD? LUQI(AL‘”'PLAV[T;FACF_DOWN:DILEZ:

FACE UD'DILEI.PLAYFQ PLAYERIPLAYFRSIPLAYERS) S

TYPE CO0Z2=0eel:

TYPE PLAYFER=1+e2%

TYRPE PLAYING_CARD=04.513
TYPE RANK=1+s133

TYPE SUIT=1.447

L)

2)

TYPE PILE2=SEQUENCE OF PLAYING_CARD {AVCCHP=30 MAXCOMP=32)
TYRPE PILFI=SEQUENCE OF PLAYING_CARD (AVCCMP=16 MAXCOMP=52)

TYPE PLAYFERS=ARRAY FNGg OF INT;
TY2E FLG=Nas™
TYPE EO0S=0Cee2

>REPS PILFI1

CURRENTLY STOR= 3749 »
CHOICE FOR PILF1 -
SEQl STNR= 9128
SFQ2 STIR= 12360 (
SEO03 STNR= 15533
SENS STAR= 12360
SEQ6 STNR= 91213
TO IMPLEMENT REP, GIVE CHNGEN RED NAME
>SEQ1

TYPE GLOSAL
B3OS PLAYS
RIRANK ;S
FACE US:DILE

TYPE CA3=0.413

TYPE DLAYSR=! e

TYPE PLAYING_CA

TYDE RANK=les133

TYPE SUIT=1ee4:

TYPE PILT2=3E0U

- =
Y
4
9
A

INTIFEGO7:LRGICAL i3007:CO7IFQNS:LAGT CAL 3
O3ICO0TFE 02 IPLAVING _CARDITIINT JCIPLAYING
PLAYEDILCGICALIOI L AYERIFACE DOYNIPILERS
PLAYER:PLAYER;PLAYERS :DLAYERS) §

e we it N
C

TYPE OILEI=(F 1 Flrienaaltlscil)s
TYPE C11=4R2A D1 a8 PL\VIHG_CAQD:
TVOE D11=1+s52%
TYPE PLAYERS=ARRAY F0C9 QF INT
TYPE FOO=Dee53
>DREDS DILFE2
CURRFNTLY STIR= 312R
CHIOICE FOR PILZ2
SEQL STOR= G5 NR
SE N STNR= 12747
XX STN= 15311
SENS STO= 1274183
SEQA STNR= asnp

TO IVPLEMENT REP, GIVE CHOSEN REP NAYE
>S5F01 '

PYY

_CanrnD;

HNCE OF PlAYING_CAQD XAVCCMD=3O MAXCQOMP=52) 3
13
1

- 169 ~

TYPE GLORAL=(112:INT;Ill2{NTZFéﬂ7!LDGICALZBRO7:CO3;

EQOSILAGICALIBBOGSIPLLAVERICCO3:ICORIREQO2IPLAY ING_CARD I INTS
C:PLAYING_CARDIFRIRANK ;SISUIT;PLAYEDILOGICAL ;P IPLAYER]
FACE_DOWNTIPILEZ2:iFACE _UPIPILET PLAYERIPLAYER PLAYERSIPLAYERS

TYPE CO3=Dssl

TYPE PLAYFR=1+42%

TYPE PLAYING_CARD=0+e¢51 3
TYPE RAMK=lae13;

TYPE SUIT=1004;

TYRE PILE2=(FRSTI2:5123AA12:C12)3

TYPE Cl12=5RRAY D12 OF PLAYING_CARD;

TYPE D12=1,4523%

TYPE E12=0+se52,

TYPE PILE1I=(FRSTITIIE115AA112C11)

TYPE PLAYERS=ARQRAY FOO9 QF INT;

TYyog E1l:')co‘5?v

TYPE C11=ARRAY D11 OF PLAYING_CARD;

TYPE FO9=N4e5 3

TYPE D11=1,e5%23%

SREPS PLAYING_CARD
CURRENTLY STOR= . 9508
CHODICE FOR PLAYING_CARD
SUBREP STOR= 37068
TO TMPLEMENT REP, GIVE CHOSEN RERP NAMF
>SUBREP '

TYPE GLOBAL=(TL122INTI11 INT:FCO?:LUGICAL:BQC?:CO?:
EQOSILNIGICALIBE0S N AYERSICCC2ZICOR3aRN22 INTS IS INTS
RIRANK ;SISUITiPLAYED: LOGIL\L;P:P AYERJFACE_ _DOWN:IP
FACE_UP:OILEI {PLAYERIPLAYERIPLAYERS: “LAYFQS):

TYPE CO3="eel;

TYPF PLAYFR=1,423}

TYPE RANK=1,.133

TYPE SUIT=1..43 ,

TYOE PILE2=(FRSTI2:T12508123C12)

TYPE PILFI=(FRI/STLITIIELIAALLICLILI)

TYPE PLAYERS=ARPAY Frra OF INT:

TYPE E12=04e523

TYPE Cl12=ARRAY D12 0OF INT: .

TYPE F11=04.523

TYDE C11=ARAY D11 OF INT: -

TYPE FOQO=0ee53 X

TYPE DI12=1e45?;

TYPE D11=1ee52;

>REPS F11
CURREMTLY STR= 37068
CHOICE FOR F11l
SUPREP STOR= 3722R
TO IMPLEMENT RFP, GIVE CHOSEN REP NAME
>SUBRBRE®S

TYPE GLOSAL=(T12:INTII1IIIINTIFRCO7: GICAL :1BBRN7:C03;
EQNSs? LWGIC\L:3?”"9[AYLP;(C332F0"QWO°"NT.I:IVT;
RIRANK ISISUITIPLAYEDILOGICALIPIPLAYERIFACE DOWNLP
FACF_UPID2TLEI IPLAYFRIPLAVER (PILAYERS: PLAYrRS)'

TYPE CO03=Nael

TYPE DLAYFQzloq?;

1VDE RANMNK=1 o213,

TYPE SUIT=14e4

TYPE PILE2=(FRSTI2IF12AA122:C12)

TYPE PILEI=(FRSETIIIIMTAALLISCYIY) S

TYPE PLAYERS=ZANRAY F09 0OF INT:_

TYRPE Fl12=N.a523

TYPE C12=A2AY D12 NF [MNT}

TYDE C11=A2RAY D11 F INT;

TYDE FO9=NeeS s

TYPE D12=14.523

TYDE D11=1,.523%

PREPS 12
CURRENTLY ST IR= 37328
CHIICS FOR EY12
SURREP STNR= 2751383
TO IMOLEMENT REP, GIVE CHOSEN REP NAME

>SURNREP

- 170 =

TYPE GLOBAL=(1
EQO05:LNGICAl
R:RANK ;S : S5l
FACE_UD:2IL

TYPE CO03=N,.1

TYPE PLAYER=

TYPE RANK=

TYDE ~

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYOE

TY2E

>REPS PILE1
CURRENTLY STNOR= 37
CHNICE FOR PILE1
SYNCD STNR
R
I

SINTITH1IDINTSEQO7ILODGICAL 33307 :C033
43 SIPLAYFRICCO3ICO338BB302 INTITIINT IC:
PLAYEDILOGICAL P "l\YFR FACFE _DOWN? DIL
)LAYFR.PLAYFQ‘PIAYFQQZPLAYEQS)-

v-‘.jo- o
wteor j ;\)
-

-V

wn
pd
—
ey

INTIAALZ
INT.AAll
FOn OF 1
OF INTS
OF INT;

29NNV VU
pot ot () pn ot [gt
—=NO=ive
Wi << Imiii—
O PPN
s 8 o LGOI I
e o o G gyt ~r~e o
AN D> Tidle o
NWYee L X > 0L -m»-u
e ae A DNGres ie
OL -+
v—-.—}>.—-...

Jl

533

37538
37588

SYN2 STNR=
VE CHUSEN REP NAME

TN IMPLEMENT REP, G
>SYN2

TYPE GLO3AIL=

— af oo e
.eae I

TYPE c03=0..
TYPE PLAYER
TYPE RANK=
TYPE
TY2E
TYPE
TYDE
TYDE
TYDE
TYPE C1
TYPE FOO
TYPE DI12=

>REDS PILF2

CURRFNTLY STOR= 3

CHOICE FDOR PILE?

SYNCP STO
SYN2 ST

TO IMDLEMENT REP, 6

>SYN2

TYPE GLO3

e 1)

[9))
[
—
-
s

o

INTIAR12:C12)
5 OF INT;

T 0

—r —

~—r
Desee > jles e

<

—

oI m
[~ v e
N> D7
P =<d i mii
JD

—'\)Dm'-"-"‘".) 1]

AY FC9I OF INTS
12 OF INT;

o e e o |} |

e 8o e o >~ s |

Nee X BN AP oo e[m
-a

VE CHNSFN RED NANF

AL $3307:C03;
PUINTSIIINTS C!
yFACE POSNIPIL
LAYCRQ),

Do ™

* e 1pe e e e jle —(NOD I
wsoe UN

T ") ee

I11: 1LCG
YLAYFE S CCO3'CC B
D LHICQL'”:DIAY
NIPLAYFRSIPLAYEKS

— e
o e
>
<
1™ D .

]
<
0 m
m (-
0.
MMUuUIMRmymnoNmM
N Do
< ee iV

£17 OF INT;

E16 0OF INTS
RAY F09 0OF INTS

< H IR Yoo O
<

Y MM e = (DY MO o NG >

O™ {7 mire et C B> O

ULl KA N De o e C >

e AP O VMNASLre oo (T} =" =
oo I) J>as es Das) e

DO PpIINONT—Z plaC.
e e Uije o

SREPS CO3
CURRENTLY STNR= 27E ARy
CHIYICE FOR C27
SUIREP STa2= EXSICAANS
TO TUOLEMENT RE®s GIVF CHOSEN RE2 NANMS
>SUGBRER

""r--c

- 171 -

TYPE GLO3AL=(1
EQOS:LIGICAL
RIRANK ;SISU]
FACE U3‘3IL7

TYPE PLAYEI=1.

TYPE RANK=1+.4,13;

TYDE SUIT=1e44;

TYPE DILFE2=ARRAY E17 OF INT;

TYPE PILZ1=APRAY E1K 0OF [INT;

TY2E PLAYERS=ARRAY F09 OF INTS

TYPE E17=1.,453;

TYPE E16=14453;

TYPE FOQG=0ee5;

>REDS PLAYFR

2IINTIIL1IINTIFOO7ILOGICAL ; B807:INTS
BRBOSIPLAYER CCC'?‘INT Bao 2 I'\T ITTINTICIINT
SPLAYED: LUFICAL 2 PLAYFR FACE_DOWN:IPILE?;
tPLAYERIPLAYER pLAYERS PLAYEQS)-

23 : :

CURRENTLY STOR= 32208
CHOICE FOR PLAYER
SURREP STOR= 39138
YO INMPLEMENT REP, GIVE CHNOSEN REP NAME
>SURBREPR

TYPE GLOSBAL=(T12:INT;111 :INT:EOQ? LDGICAL;HRC? INT
EQOS:LIGICALIBBO05IINTICCAR:IN sPBOZ2I INTIIIINTICIINT IR RANK S
SISUIT, PLAY¢H LDGILAla’:INT:FACL TOWNS PILE? FACE UD'DILEX'
PLAYER: INTSPLAYERS:: PLAY YERS)

TYPE RANK=1.41733

TYPE SUIT=1..4%

TYPE PILE2=ARRAY E17 nNF INTS

TYPE PILF1 =ARRAY El1s OF INT;

TYPE PLAYERS=ARRAY F09Q OF INT S

TYPE El17=1+e573;

TYPE E16=1..53;

TYPE FO09=0e453%

>RFOS RANK 2
CUR2ENTLY STOR= 371329
CHOICE FNR PANK

SURRED STOR= 3a4103
TO IMPLEMENT REP, GIVE CHOSEN REP NAME
>SU3RER L

TYPE GLDBAL=(Y!2:INT:II!:INT;FOG? LDGICAL 838072 INT,
EQOS:LDGIC&L:BBOS:INT;CCO?:INT (Rro2 IN1'I:INT:C:IN TIRTINTS
SISUIT;PLAYED: LDGICAL;P:INT:FACE_DOWN‘PILFZ FACE_UP:IPILEL;S
PLAYER: INTiPLAYERSIPLAVERS) ;

TYPE SUITul..a'

TYPE PILE?=ARRAY E17 OF INT:

TYPE PILE1=ARRAY E1A DOF IMT}

TYPE PLAYERSTAROAY F09 (OF INT;

TYPE E17=1ese53;

TYPE c_lﬁ 10-)7'

TYPE F09=0.¢5:

>REPS SUIT
CURRENTLY STNR= 3941R
CHNOICE FQOR SUIT
SUBREP STNR= 3371193
TO [MBLEMENT RSP, GIVE CHOSEN REP NAMS
>SUBREP)

TyPe GLuBAL:(Il?:INT:Ill:INT:FOP7:L?GICAL:QQQ7:INT;
EQOS:LOGXCAL:BBOS:INT:CC03!XNT;HPC?:INT:I:INT;czlmT;R:INT;
S:INT;°LAYED:LOGICAL;D:INT;FACE_DUWN:PILF?:FACE UPIPILED :
PLAYER: INTIRPLAYSRS: 3 AYERS) S -

TYPE PILE?2=ARRAY £17 0OF [INT:

TYRPE PILZ1=ARRAY £1H (GF INT

TYPE PLAYZRS53=ARRAY F0a OF INT:

TYRPE E17=1ee33;

TYPEZ F16=14e533%

TYDPE FO9="Nee'3s

>EVAL
. CURRENTLY STAR= 39718 TIME= 54538 104

DPRINT

TYPE GLOBAL=(I12:1]
EOOS‘LUaICAL
SIINT;2LAYFD L.

TINT
FACE

7ILOGICAL ;B
_DOwWN:

3 T
N N
F

N7:IN
7n0?'! T3 I
PILE2]S

> 5
oo =

V-
— T

™
" »e
T
-2z
.s —f

1
I: yCIN
F23FACE_u»

-s

TYOE
TYRE
TYPE
TVYDE
TY?E
TYO2E

BE

Ge

GeFACE DOWN,., [NNEX

FO

FO

£0

Ge
Ge

Goe
Ge.
Wi

PLAYERIINTSDLAY
PILE2=ARRAY F17 DF
PILEI=ARRAY E16 OF I
PLAYFRS=ARRAY FD9Q Qf
E17= 1003?0
F16=14453;

F09=0005;
GIN

FACE_UP. INDEX{S {

o

53):=)
X{(s3) (c
R G.BB05:1..2 DO

REGIN
GePLAYERS.INDEX((Ga?

FOR G.B8B07:0.,.1 DO

BBOS+3)):=(0);

Ge pLAvEQS.INDFX(((Ga'RBo7*2)+(Ga'BBOS-1))):=(0):
END
R GeliDes51 NN
REGIN
G.FACE_DIOWNLINDEX(S3):i=((Ga 'FACE_DOWNtIND FX(53)+1)):
GeFACE™ DJWN.IND:X(Gﬂ'FACF _DOWN'INDEX(S53)) s=
(C((TGP*'T REM 13)+1)-1)*4)+(((Gﬂ'1 DIV 13)+1)~-1))):
END
=3 G.D:lo.? 0N
FOR Gelilee7 DO
S8EGIN
G.DLAYEQS.INDEX((((Gd'FACF _DOWNY INNDEX(GCRYFACE _DOWNTINDEX(52))

DIV 32)%2)4+(GDv2—11))): SFTLIT((G“'FACF DOAN'INDE X (G

'FACE DDWN'IN)CX(GS)) REM 32, TRUF)
G.PLAYERS 5« INDEX((GD'P+3))Y i=((Gar 'PLAVERSTINDEX((GA'243))+1))3
GeFACE_DNWNLINDEX (52 (UG YFACE DOWN'INDFX(SJ)—]));
END;
FACE_UPINDEX(53):1=((G3 ACE_UP'INOFX(53)+1)).
FACE UP.INDZ X{Gp?* FACF_UP INDEX(53))s=
(GaTFAcr njwv'IwDFX(Gﬂ'FACF ONWUNY INNEX(53)))
FACE _DOWNTINDEX(33):= ((Gi'IFACTE _DOMNY INDEX(S52)— 1))

PLAYER:=(1);

ILE S(Ga PLAYERSYINDEX(4)=C 0OR Ga'PLAYERS'INDEX(S):O) DO
BREGIN
G«PLAYED:=(FALSE): -
GeSiz=(1);)
WRITE(((GAYFACE UI Y INDE X (GA'FACF UD'INDEX(%B)) DIV 4)+1));
WRITE(((GH?FACE™ UP'INDLX(Fa *FACE U INNEX(53)) REM 4)+1));
WHILE (=Gd'2LAYED AYD GA*3<=4) nO
REGIN .
GeCi=((((((GRAYFACE_yo Iy NDEX{GD'FACE ~UPTINDEX(53)) DIV 4)
+1)—1)*4)+(Gm's—1))):
IF GO'DLAYTRSEINDEX((((57 'C DIV 322)#2)4+(Gad PLAYER=-11}))
"RIT((GR2*C REM 32)) THEN
BEGIN
Ge.FACFE JP.IMWEK(%X)::((Ga'FACF_UP'INDEx(S 3¥+1)):
GeFACE ™ P L INDIX(GD 'FACE_UD'INDEX(SB)):f(G Dp*C)
G pL4prg.IVUEX((((G9 *C DIy 32)*2)+(GE'PLAYEQ-1)))
SSETIIT (S C REYM 1p)y, FALSE) ;
GePLAYERS ,INNDT X{{GAYDLAYER+2)) =
({5 DYPLAYERSHINDEX((G PLAYCQ+?)) 1))
GePLAYED S =(TRUE) ;
END
ELSF
GeSI=((GD'S+1));
END;
GeRI=(1)
WHILE (-GA'PLAYED aNn GIIRL=13) DN -
BEGIN
GeCi=({((5 -1)*4)+(((Gﬂ'cACF_U7'INDEX(G&'FAC¢ P INDEX (5
Q:M 4)+1)-1)))
TF GR'ILAYERSYINDEX((((G2'C NIV 32)*¥2)+ (5221 AvER-1)))
'BITO(SAYC RF 4 32)) TrHEN

REGIN

G,FACE_Uo.[NgEx(ﬁ3)::((Ga'Facr_UD'twﬁFx(53)+1));
GeFACE U INDEX(GI TACE URTINDEX(33))1=(r39¢);
G.PLAYE?S«INWEX((((G@’C DIV 32)#2)+(CaesaveEniyyy)

G R:z((aD'°+l))'
ENDS

23))

I ~Ga*2LAYED THEN
BEGIN
WRITE(G%'DLAYFR) ’

WRITE(((GD*FACE_DNWN' INDEX(GR*FACE_DOWN* INDEX(52)) DIV 4)
WRITE(((GD*FACE_NOWNY INDEX(GRIFACF_DNWN! INDEX (53)) REM 4)
GePLAYFRS 4 INDEXT{ ((GP'FACE_ DOWNY INBEX(GZ'FACE_DOWNY INDEX(¢
NIV 32)%2)+(GA'PLAYER=1)))SETBIT((GAIFACE_DOWN® INDEX(GA
'FACE_DOWN'INDEX(53)) REYU 32), TRUE);
GePLAYERSTINDEX((GAPLAVER2)) =
((GA'PLAYERST INDEX((GATPLAYER43))+1))3
G+FACE_DOWNSINDEX(53):=((GD*FACE_DONNY INDEX(53)~-1))
END
G PLAYER:= (((GD'PLAYER REM 2)41))3
END 3 ,
WRITE(GD'PLAYERS® INDEX(4)=0)]

END

The final action in the abqve session was to print the concrete fomm
of the program in the system notation, |

As was done for the Birthdays program in section 5.4.1, the final
program for the Card Game problem has been transliterated into AlgolW
to give the program shown on the following page., This program can

then be comviled and executed a2s normal,

- \ - 174 -

BEGIN INTEGER I12+711,CCO3+BBN02,CeRsS»PLAYERS
LOGICAL EQO7+ENQ05.PLAYED;

INTEGER ARPAY FACE_DOWN(1::%32);

INTEGER ARRAY FACE_UR(1::53);

INTEGER ARRAY PLAYERS(0I:5) 3

LOGSICAL PROCEDURE BIT({(INTEGER VALUE 1.BITNUM) S
((BITSTRING(I) SHL BITN)J) ANN #8N0C0) = #3003

PROCEDURE SETBIT(INTEGFR VALUE RESULT 17 INTEGER VALUE BTTNUMZS
LOGICAL VALUE OUON)3
IF ON THEN TI=NUMBER(IITSTRING(I) OR (#3000 SHR BITNUM))
ELSE 1:=NUMBER(BITSTRING(I) AND -(#3000 SHR BITNUM))

3EGIN
FACE_UP(53):=(0);
FACE_DOWN(33):=(2) 3
FOR BROS:=1 UNTIL 2 D0

REGIN
PLAYERS ((BBN5+3)):
FOR BBO7:=0 UNTIL

PLAYERS(((Ran7x2
F_ND']

FOR T:=1 UNTIL S22 DO
NBEGIN
FACE DOWN(33
FACE_DOWN(FA

({(T((1 REM
END 3 _

FOR P3$=1 UNTIL 2

FOR I:=1 UNTIL
BEGIN
SETRIT(PLAYF!

DIV 32)%x2)

FACE DOWN (!

PLAYERT((2+3

FACE_DOWNI(5
END:

FACE_UP(53)

vF‘H
va

)~
...'1..

WN(S3))) 5
T _POWN(33)-1)) 3
PLAYER:=(1)};
WHILE -(PLAYSRS(4)=
BEGIN
PLAYED:=(FALSE); -
S:i=(1);
WRITE(((FACE_UP(FACE_UP(53)) DIV 4)+1
WRITECN(((FATE_UP(FATE_UP(52)) REV 4)
WHILFE (-PLAYFD AND S<=4) nQ

DR BLAYERS(5)=0) DO

1) 3
+1))3

BEGIN
t=((((((FACFE UD(FACF _UP({53)) DIV 4)
+1)-1)Y%4)+(35-1)))
IF aIT(PLAYERS{(((C DIy 32)*?)+(PLAYEQ-1)))
s (C REM 32)) THEN
SEGIN
FACF_UP(33):=((FACE_UP(52)+1));
FACF_UP(FACE_UP(53))i=(C) 3
SETATT(RPLAYERS((((C NIV 32)%2)4+(PLAYER=-1)))
¢+ (C REM R2), FALSE);
PLAYERS ((DPLAYER+3))I=
((PLAYERS({(RPLAYFR+3))=-1))3
PLAYED:=(TRUF)
END
. ELSFE
S:t={{S+1))
END
:=(1)3 i
WHILE (~PLAYFED AND R<=13) DN
"BEGIN
C:=((((R=1)*4)+(((FACE_UP(FACF_UP(53))
REM 4)+1)-1))) 3
IF BITIPLAYERS{(((C DIV 322)*2)+(PLAYER-1)))
s (C PEM 22)) THEN
3EG!T
FACE_U2(53)I1={(FACE_UP(53)+41));
FACE_UP(FACE_yn(aR))i=(C)
SETBIT(PLAYERS((((C D1V 3?)#°)+(DLAYFQ—I)))
o (C RPE"M 32), FALSFE)
PLAYERS({(PLAYER+T)Y) =
((PLAYERS((PLAYER+3))-1)):
PLAYED = THRUE) §
FND
Et. S

R:=((R+1))3
END;

- 175 -

IF —SLAYED THEN
BEGIN
WRITE(PLAYER,"™ PICKS UP "),

WRITEON(((FACE_DNOWNM(FACE_DOWN(53))
WRITEON(({FACE DOWH{FACE_DCWN(53))
SETBIT(PLAYERST(((FACE_DRDWN{FACE_D?
DIV 32)%2)+(2LAYRENR=-1))), (FACE_DOW
FACE_DOWN(S53)) REM 32), TRUE) 3
PLAYERS((PLAYER+3)) 1=
((PLAYERS((PLAYSR+3))+1))3
FACE_DIWHNI(S3) 1 =((FACE_DOWN(S3)-1));
END3J.
PLAYER:=({({(PLAYER RFM 2)+1));
END ;

WRITE(PLAYERS(4)=0," PLAYER 1 WINS'");
NP
ENDe.

-t e

- 176 -

REFERENCES

[1] Arsac, J.J.
'Program Transforms as a Programming Tool',
Univ, Pierre et Marie Curie, Inst. de Programmation Repoxt 1976,

[2] zelzer, RN
'Dataless Programming'.
Proc. AFIPS 1967 FJCC, pp 535-544.
[3] 3alzer, R, Goldnan, N, & Vile, D,
'On the Transformational Implementation Approach to Programming',
Procs 2nd Int.Conf, on Software Ingineering, San Francisco,
Oct. 1976. pp 337-344.

[4:] Barron,D.'7ey Buxton,J.Ne, Hartley,D.F., Nixon,E. & Stra.chey,C.
tfhe Main Features of CFL!,
Computer Journal, 6, 1963, pp 134~143.

[5] Barron, D.V,.
'An Introduction to the Study of Programming Languages'.
Cambridge University Press 1977,

[6] Burstall, R.lM. & Darlington, J.
'A Transformation System for Developing Recursive Programs'.
JACI 2441, Jan. 1977. pp 44~67.

[7] Cheatham, T.E.Jnr,
'The Recent Evolution of Programming Languages's.
Proc, IFIP Congress, Aug. 1971. vp I/118-I/134.

(.8] Cheatham, T.E,Jnr, & Wegbreit, B.
*A Laboratory for the Study of Automatic Programming'.
Proc, AFIPS 1972 SJCC. pp 11-21.

[9] conen, 5. & zuckeman, c.
'Two Languages for Dstimating Program Efficiency!,

[1o]
L[]

(2]

- 177 -

Dahl, O0-J. , Myhrhaug, Be. & Nygaard, K.
'Simula Common Base Ianguage'.
Noxrwegian Computing Centre 1970,

Darlington, Je & Burstall, R},
1A System which Automatically Improves Programs'e
Proc. 3rd Int, Conf., on A.I., Stanford 1973. pp 479-485.

Dijkstra, E.VW..
*Notes on Structured Programming',
In Dahl,Dijkstra,Hoare 'Structured Programming!. Academic
Press 1972,

Dijkstra, E.W.
'The Humble Programmex?',
CACM 15,10, Oct. 1972. pp 859-866,
Di jkstra, E.VW.
'A Discipline of Programming'.
Academic Press 1976, '

D'Im.perio’ I'I.E.
~ 'Data Structures and their Represéntation in Storage'.
ARAP 5, 1969, pp 1-=T5.

Earley, J.
1Relational Level Data Structures for Programming Languages's,
Aeta Informatica 2, 1973. pp 293-309.

Feldman, J.A. & Rovner, P.D,
'An Algol-Based Associative Language',
CACH 12,8, Aug. 1969+ P 439-449.

Peldman, J.A. , low, J.R. , Swinehart, D.C. & Taylor, R.H.

'Recent Developments in SAIL -~ an Algol-based language for A,IL,°'.

Proc, AFIPS 1972 FJCC, pp 1193-1202,

Galler, B.A., & Perlis, A.J.
'A Proposal for Definitions in Algol’,
CACII 10,4, April 1967. pp 204-~219,

(20]
{21]

[22]

[2]

2

[]

| [26]
(=]
[2]

[#]

- 178 -

Gerhart, S.L.
'Correctness-Preserving Program Transformations'.
Proc, 2nd Symp, on Principles of Prog,langs., Palo Alto,
Jan, 1975. pp 54~66.

Gerhart, S.L.
'Knowledge about Programs: A Model and Case Study'.
Proc, Int. Conf, on Reliable Sof tware, Los Angeles,

April 1975. pp 88-95.

Gotlieb, C.C, & Tompa, F.V,
iChoosing a Storage Schema',
Acta Infomatica 3, 1974. pp 297-319.

Henderson, P. & Snowdon, R.A.
‘A Tool fox Structured Program Development',
Proc, IFIP Congress, Stockholm. Auge. 1974 PP 204-207.

Henderson,Pe, Snowdon,R.A., Gorrie,J.D. & King,I.I.

tThe TOFD System!', p

Univ, of Newcastle-upon-Tyne Technical Report 77. Sepie 1975
Hoare, C.A.R. ‘ .

"Notes on Data Structuring',

In Dahl,Dijkstra,Hoare 'Structured Programming'.

Academic Press 1972,

Hoare, C.AQR.

'Proof of Correctness of Data Representations'.
Acta Informatica 1, 1972, pp 271-281,

Hoare, C.A.R.

'Hints on Programming Language Design?',

Stanford Univ. Report STAN-CS~73-403. Dec. 1973
Jensen, K. & Wirth, N,

'PASCAL User Manual and Report!',

Lecture Notes in Comp. Sci. 18. Springer-Verlag 1974.

Kant, E.
 'The Selection of Efficient Implementations for a High-Level
Language',
SIGELAY Notices 12,8+ Aug. 1977. pp 140-146.

(0]
(5]
[52]
(]
[34]
(3]
[]
[]
)

[»]
[«]

- 179 -

Kibler,DoFo’ Neighbors’JoI‘Io & Stafldish,T.A.
'Program Manipulation via an Efficient Production System!®,
SIGFLAN Notices 12,8, Augs 1977. Pp 163=173.

kuth, D.E,.
'Mathematical Analysis of Algorithms!',
Proc, IFIP Congress, Aug, 1971. pp I/135-I/143,

Fnuth’ D.EO
'Structured Programming with 'goto' Statements's
Comp. Surveys 6,4o 1974, pp 261~301,

LiSkOV, B,
'A Note on CLU',
MIT Computation Structures Group Memo 112-1. Nov. 1974.

Liskov,B., Snyder,A., Atkinson,R. & Schaffert,C.
tAbstraction Mechanisms in CLU',

CACM 20,8, Aug. 1977. Pp564-576,

Liskovy B. & Zilles, S,
' Programming with Abstract Data Types'.
SIGPLAN XYotices 9,4. April 1974. pp 50-59.
Liskov, Be & Zilles, S.

'Specification Techniques for Data Abstractions',
IEET Trans, on Software Engineering SBE-1,1. March 1975, pp 7=19.

Lomet, D.B.
'Objects and Values: The Basis of a Storage lodel for
Procedural Languages's
IBlT J. Res.& Dev, 20,2, larch 1976, pp 157=167.

Loveman, D.B.
"Prograrnn Improvement by Source to Source Transformation',
JACH 24,1, Jan. 1977. pp 121-145,

Low, J.R.
tAutomatic Coding: Choice of Data Structure!,
Stanford Tniv. Revort STAI-CS-T74-452, Auge 1974.

Low, Je & Rovner, P,
'Techniques for the Automatic Selection of Data Structures'.
Proc, 3rd ACI Symp, on Frinciples of Prog. langs,, Atlanta,
Jan., 1976. pp 58=67.

[«]
(4]

(4]

[47]

o]

[#]

[50]

- 180 ~

McCuskey, W.A.
'On Automatic Design of Data Organisation',
Proc, AFIPS 1970 FJCC. pp 187-199,

'Another ILook at Data'.
Proc, AFIPS 1967 FICC, pp 525-534,

Middleton, A.G.
1A Structured lodel of Programs for Analysing Time/Storage
Trade-0ffst, .
SIGPLAN Notices 9,9, Sept. 1974, pp 18~28,

Naur, P. et.al,
'Revised Report on the Algorithmic Language Algol 6Q'.
CACM 6,1. Ja-no 1963. PP 1“170

Rosenschein, S.J. & Katz, S.l,
tSelection of Representations for Data Structures',
SIGPLAN Notices 12,8, Aug. 1977. Pp 147-154.

Rovner, P.D,
YAutomatic Representation Selection for Associative Data
Structures?,
Rochester Univ. Report TR10, Septe. 1976.

Schwartz, J.T,.
tAutomatic and Semiautomatic Optimisation of SETL!,
SIGPLAN Notices 9,4, April 1974, pp 43-49,

Schwartz, J.T.
"Automatic Data Structure Choice in a Language of Very
High Level!, '
CACM 18,12, Deé€, 1975, pp T22-728,

Standish,T.A., Kibler,D.F. & MNeighbors,J.M.
'Improving and Refining Programs by Program Manipulation'.
Proc, ACM Conf,, Houston, Oct. 1976. pp 509-516,

Strachey, C.
'Towards a Formal Semantics!',
In T.B.Steel 'Formal Lancuagze Description Languages?',
Worth~llolland 1966. pp 198-220. ’

- 181 =

[51] Tompa, F.W. o
'Bvaluating the Efficiency of Storage Structures',
Univ, of Waterloo Report CS-75-16, May 1975

[52| valk, K.
1odelling of Storage Properties of Higher-level Languages',
Int,J, Comp.& Inf, Sci. 2,1, MHaxrch 1973, pp 1-24.

[53] Yegbreit, B.
'‘Mechanical Program Analysis!'.
CACH 18,9. Septs 1975, pp 528-539.
[54] Wegbreit, B, ,
1Goal-Directed Program Transformation!,
Proc, 3rd Symp. on Principles of Prog, lengs., Atlanta,
Jan, 1976 pp 153=-170.

[55] Weinberg, Gl
'The Psychology of Computer Programming'.
Van llostrand Reinhold Co. 1871.

[56] ‘-“IiChmaIm, B.A.
' 'Algol 60 Compilation and Assessment',
Academic Press 1973.

f57] Viijngaarden, A.van, et.al,
'Report on the Algorithmic Language Algol 681,
Yumerische lMathematik 14, 1969, pp 79-218,
[58] Wirth, N. & Hoare, C.A.R.
tA Contribution o the Development of Algol!,
CACH 9,6, June 1966, pp 413=432,

[59] Wulf,Y.A., Russell,D.B. & Habermann,A.H.
'BLISS: a Language for Systems Programming'.
CACM 14,12, Dec. 1971. pp T50=T790,

EGO] Wulf,7.A., London,R.L. & Shaw,M,
'Abstraction and Verification in ALPHARD: Introduction
to Language & lMethodology!'s
USC-ISI Report ISI/RR-76-46, June 1976,

