Object-Oriented Design Methodologies

for

Software Systems

by

Luiz Fernando Capretz

Ph.D. Thesis

UNIVERSITY OF
NEWCASTLE UPON TYNE

University of Newcastle upon Tyne
Computing Laboratory
November 1991

Abstract

In the last few years, demand for object-oriented software systems has
increased dramatically, and it is widely accepted that present software
engineering methodologies are unable to cope with the needs of that demand.
The object-oriented paradigm has promised to revolutionise software
development, and it has been seen as an attempt to extend and apply the
techniques of encapsulation and inheritance, not only in the implementation
phase but also during the design and system analysis phases of the software
development process. As a result, several methodologies have recently arisen
to support software development based on an object-oriented approach.

This thesis is concerned with object-oriented design methodologies for
software systems and addresses four points. First, a classification scheme for
object-oriented development methodologies is proposed and their problems
and limitations are pointed out. Second, a general methodology for object-
oriented design (called MOOD) is presented. MOOD is unrelated to any
programming language, yet is capable of being used to design a variety of
object-oriented software systems. In particular, MOOD allows the creation of
a design mainly in terms of classes, objects and inheritance, and the
representation of a design graphically by a set of class hierarchy diagrams,
composition diagrams, object diagrams and operation diagrams. Third, the
thesis puts software development into a new perspective, by proposing an
alternative software life cycle model which links system analysis, domain
analysis, design and implementation to form a coherent object-oriented
software development life cycle model that takes reusability into account
during the design phase. Lastly, a prototype of an environment which
supports MOOD has been developed and is described.

Acknowledgements

It is my pleasure to acknowledge some people who have influenced and
contributed to the research reported in this thesis.

First and foremost, I am indebted to my supervisor, Professor Peter A. Lee,
for many reasons. He has been a constant source of useful advice and
guidance over the last few years. He has challenged me to form many ideas
in this thesis and encouraged me throughout their development. His detailed
readings, numerous comments and constructive criticisms on the early drafts
of this thesis have been invaluable and added many improvements to the
content of the thesis. I am also extremely grateful for the tremendous effort
that Pete has made so that this thesis could be finished on time. His efforts
are greatly appreciated and will not be forgotten.

I would like to thank several staff members of the Computing Laboratory. In
particular, I wish to acknowledge useful technical discussions with Dr.
Lindsay Marshall, Dan McCue, Ron Kerr and Jim Wight. I am thankful to
Shirley Craig for her patience and efficiency in searching out many relevant
references for this thesis.

I have also been very fortunate to receive support and assistance from my
wife, Miriam, during some very difficult periods (for both of us) throughout
this research. If I had been her, I would not have put up with myself.

Special thanks are due to my family, in Brazil, for understanding my absence
during the moments they most needed me. Their endurance has been really
admirable. My mother, especially, has given me strength and motivation
throughout my studies, and for teaching me the meaning of perseverance.

Financial support for this research has been provided by grants from CAPES
(Brazilian Federal Agency for Postgraduate Education).

-ii -

Table of Contents

Abstract e i
Acknowledgements il i
TableofContentsottt iii
Listof Figures ittt vl
Listof Tablesoiiiiiiiiiiiii ittt it viii
1INTRODUCTION e e e e e i 1

11ITHESIS AIMS ...ttt tiae e eiaeeeneeans 7

12THESISOUTLINEttt iii i 8

2 OBJECT-ORIENTED DESIGN
2.1 APPLICATION DOMAINS AND SOLUTION DOMAINS 13
2.2 THE PROFILE OF PRESENT SOFTWARE SYSTEMS
2.3 TOWARDS AN OBJECT-ORIENTED APPROACH
2.3.1 Abstract DataTypesccooeviiiiiiiiiiiiia., 19
2.3.2 Evolution of Abstraction in Programming Languages . 22
2.3.3 Comparison between "Object-Oriented" Languages ... 26
2.4 CHARACTERISATION OF AN OBJECT-ORIENTED

MODEL ... e e e 34
2.4.10DJECES ittt e et e 37
2.4.2C18886St e 37
243Inheritancecciiiiiiiiiii i 39
2.5 PHILOSOPHY OF OBJECT-ORIENTED DESIGN 41
2.5.1 Domain Analysisccciiiiiiiiiiiiiiii 44
2.5.2Reuseof Softwareccviiiiiiiiii i 46
2.5.3 Software Life Cycle Models 51
2.6 SUMMARY .. e e 59

3 CLASSIFICATION OF OBJECT-ORIENTED

METHODOLOGIES i it it 61

3.1 CLASSIFICATION OF METHODOLOGIES 62
3.1.1 Classification of Existing Object-Oriented

Methodologies v iiiiiiiiii i 67

3.2 SURVEY OF EXISTING METHODOLOGIES 69

-1l -

3.2.1 The Booch Methodologies and Their Influences 70
B.2.2008D ... e e 81
3.2.3 Responsibility-Driven Design 83
3.2400RA 85
3250MTooviiiiiiii e e 88
B 28008 A . e e e 89
3.2.7 Other Methodologiescciiiiiiininnenn.. 91
3.3 FINAL REMARKS ON CLASSIFICATION 98
4 AMETHODOLOGY FOR OBJECT-ORIENTED DESIGN 100
4.1 THE CONTEXTOFMOODccoiiiiiiiiiiiiiiieennnn. 101
4.2 THE STEPS FOR OBJECT-ORIENTED DESIGN 105
4.2.1 Representation of the Design Model 105
4.2.2 Identification of Components 107
4.2 3 IdentificationofClassesccvivivnnn.... 108
4.2 4 Identification of Inheritance 110
4.2.5 Identificationof Objects, 117
4.2.6 Identification of Software System Behaviour 121
4.3 FIRSTEXPERIENCE WITHMOOD 124
4.3.1 An Electronic MailSystem 124
4.3.2 Identifying and Representing the EMS Classes 125
4.3.3 Identifying and Representing Inheritance 129
4.3.4 Comments on Inheritance within MOOD 132
4.4 ACASE ENVIRONMENTFORMOOD 134
4.5 FINALREMARKSONMOODt 137
5 REUSABILITY AND SOFTWARE LIFE CYCLE ISSUES 140
5.1 REUSABILITY WITHINMOOD 141
5.1.1 Relationships between Components 142
5.1.2 The Process of ComponentReuse 145
5.1.3 The Lifetime of Reusable Components 146
5.2 MOOD WITHIN A SOFTWARE LIFE CYCLE MODEL 150

5.2.1 The Role of the Knowledge about the Application
Domain ... i 150
5.2.2 The Proposed Software Development Life Cycle 151

5.3 COMMENTS ON THE SOFTWARE DEVELOPMENT

PROCESS 158

-iv-

6 THE MOOD PROTOTYPEo i 160
6.1 OVERALL IMPLEMENTATION ISSUES 161

6.1.1 InterViews R R R R PP 163

6.2 THE MOOD INTERFACE P 166

6.2.1 The Interface of a Diagram Editor 168

6.2.2 The Interface of the Checkers 169

6.3THE MOOD DATABASE ...ttt 171
6.3.1Persistencec.cciiiiiiiiiii i i e 171

6.3.2 Manipulation of the Design Information 172

6.4THE TOOLS i i et e i 173

6.4.1 The Class Hierarchy Diagram Editor 174

6.4.2 The Object Diagram Editor 174

6.4.3 The Operation Diagram Editor 175

6.4.4 The Composition Diagram Editor 176
6.4.5TheCheckersccuiiiiiiiiiiniiniiiiinnnn.. 177

6.5 CONSIDERATIONS ON THE MOOD PROTOTYPE 182
7EXPERIENCE WITHMOODiiiiiiiiiinn.. 184
7.1 THE SUITABILITYOFMOOD, 184

7.2 GENERALISSUESRELATEDTOMOOD 188
BCONCLUSIONS ... i e e e 193
Bl DISCUSSION ...ttt tei ettt it 193

8.2 DIRECTIONS FORFUTURERESEARCH 198
8.3IN CONCLUSION ..ttt e, 201
References ciiiiiiiiiii i e 203

List of Figures

Figure 2.1 Mapping between Application and Solution Domains
Figure 2.2 The Background of the Object-Oriented Paradigm 18
Figure 2.3 Language Evolution
Figure 2.4 Concepts Related to the Object-Oriented Paradigm
Figure 2.5 Hierarchy Representing Inheritance 40

Figure 2.6 The Classic Waterfall Software Life Cycle Model 52
Figure 2.7 A Spiral Software Life Cycle Model 55
Figure 3.1 Some Combinations of Approaches 65

Figure 3.2 ClassesasPackagesccooviiiiin .. 75

Figure 3.3 Seniority Hierarchy in Object Diagrams 77
Figure 3.4 Class RepresentationinOOSD 82
Figure 3.5 AClassCardcooivviniiiniiina 85
Figure 3.6 Object Representationin OORA 87
Figure 3.7 An Object Model Diagram 88
Figure 3.8 An Information Structure Diagram, 90
Figure 3.9 An ObjectOry Systemovuvniirenrnnennnnnnn . 94
Figure 3.10 Representing Classesand Methods 96
Figure 3.11 Notation for Classes, Objects, Methods and Inheritance 97
Figure 4.1 The Context of MOODcouvninuninn i, 103
Figure 4.2 A Composition Diagram for an Environment 109
Figure 4.3 Identification of Inheritance from Venn Diagrams 113
Figure 4.4 A Generic Class Hierarchy Diagram 115
Figure 4.5 Correspondence between Components and Classes 116

" Figure 4.6 A State Transition Diagram for a Screen-Window Object .. 119
Figure 4.7 An Object Diagram for Objects in an Environment 120
Figure 4.8 An Operation Diagram for Drawing a Polygon 123
Figure 4.9 The Message Classforthe EMS 127

.......................... 130
Figure 4.11 The Class Hierarchy for the EMS Mailfile 131
Figure 4.12 The Class Hierarchy for the EMS Menus 132
Figure 4.13 The Static and Dynamic Layers of a Software System 137
Figure 4.14 The Steps Recommended by MOOD 138

-Ul_

Figure 5.1 Reusability within MOODccc..... 142

Figure 5.2 A Procedure to Reuse aComponent 147
Figure 5.3 The Lifetime of a Reusable Component 148
Figure 5.4 MOOD within a Software Development Life Cycle 152
Figure 6.1 The Interactor Class Hierarchy 164
Figure 6.2 A Scene Compositionoiiiiiiinnnnnnai... 165
Figure 6.3 The Tools of the MOOD Environment 167
Figure 6.4 The Class Hierarchy Diagram Editor Window 169
Figure 6.5 A Composition Diagrams foran Editor 170
Figure 6.6 The Interface for the Checkers 171
Figure 6.7 The Class Hierarchy Diagram Editor 175
Figure 6.8 The Object Diagram Editor 176
Figure 6.9 The Operation Diagram Editor 177
Figure 6.10 The Composition Diagram Editor 178
Figure 6.11 The Consistency Checkercooouo ... 179
Figure 6.12The Class BrowSerceuvevineinnenneennnnnnn... 180
Figure 6.13 The Configuration Management Tool 182
Figure 7.1 Phases VersusTimec.oiiuiinninnnnnnnn ... 191

- VLl -

List of Tables

Table 2.1 Comparison among "Object-Oriented"” Languages

Table 5.1 Input, Tasks and Output of each Phase
Table 7.1 Phases Versus Abstraction Mechanisms

- Vil -

...........

..........

..........

Chapter1

INTRODUCTION

The development of software systems is now regarded as among the most
complex tasks performed by mankind. The problems that are caused by the
scale of this complexity have been recognised for a long time. This
complexity affects the costs and time expended on the construction of
software systems. Moreover, after being built, software systems are often
unreliable, difficult to use and, what is worse, they are frequently extremely
difficult to maintain and evolve. These problems, together with the ever-
increasing demand for software systems, have led to what has become known

as the software crisis.

Most of the complexity found in software systems is left to be mastered by
software engineers helped (or hindered!) by the discipline of software
engineering. As its name suggests, software engineering is concerned with
the establishment and use of sound engineering principles and good
management practice. It involves the development of new techniques,
methodologies and tools, and their use as an appropriate engineering
approach to control and overcome the complexity inherent in software
systems. The aim is to obtain, within adequate resource limitations, software
which is of high quality in an explicitly defined sense.

For many years, it has been recognised that the use of methodologies has an
important role to play in order to accomplish a well-engineered software
system. Methodologies provide a set of rules, principles, guidelines and
notational conventions which helps software engineers to understand,
organise and decompose software systems, and hence manage their
complexity. Such methodologies, therefore, facilitate the development of

Chapter 1 - Introduction

complex and/or large software systems and give the software engineers the
feeling that technology is an extension of their capabilities. In the past few
years, many methodologies have been proposed to support the engineering of
software systems. These methodologies have addressed different aspects of
software development ranging from requirements through to testing. Many
of these methodologies have appeared in response to new ideas about how to
handle software complexity.

A recent idea which has been receiving a great deal of attention from
software engineers is the object-oriented paradigm. Currently, this
paradigm is thought to be an important aspect of software development, so
much so that it is now a major research area which is expected to bring
significant benefits in the design of software systems. The rapid development
of this paradigm during the past ten years can be attributed to several
important reasons, which are discussed in more detail later in this thesis, but
which include: better modelling of real-world applications; better structure
for software systems based on abstract data type concepts; and the possibility
of software reuse during the design of software systems.

Because of the rapid developments in the object-oriented field, it has become
very fashionable to describe many kinds of software systems using object-
oriented terminology. The term itself has become a buzzword, meaning
different things to different people and hence has come to be somewhat of a
minefield of contradictions and confusion. These issues are discussed in
detail later in this thesis, but for the moment it is important to establish
some object-oriented terminology.

In the scope of this thesis, an object embodies an abstraction characterised
by an entity in the real-world. A class (or type) is a template description
which specifies common properties and behaviour for a group of similar
objects and an object is an instance of a class. The classes themselves can be
organised into class hierarchies. Such class hierarchies allow similar classes
to be related together in such a way that commonalities of one class can be
inherited (reused) rather than duplicated by classes lower in the hierarchy,
thus simplifying the design and implementation of those lower level classes.

The properties and behaviour of objects, and hence their commonalities, are
described in terms of attributes and operations. An attribute is a named
property of an object which holds a value and maintains an abstract state for

Chapter 1 - Introduction

that object. An operation identifies an action which may be applied to objects
of a class. Objects from each class are manipulated by invoking the
operations upon the attributes of these objects. Inheritance is a mechanism
which permits classes to share attributes and operations based on
relationships of specialisation and generalisation between them within a
hierarchy of classes.

An object-oriented approach encourages abstraction because a class
represents a common abstraction of a collection of similar objects. In general,
classes are seen as a means of expressing the commonalities between a group
of similar objects when building a software system, whereas objects are
instantiated from a class in an executing software system and encompass the
behaviour of a particular real-world application. In this way, an object-
oriented approach allows designers to create abstractions with which it is
possible to deal with concepts which are close to real-world applications.

Because of the perceived importance of an object-oriented approach, several
methodologies have recently emerged to support object-oriented design.
Ideally, an object-oriented design methodology should allow designers to
produce software systems mainly in terms of classes, objects and inheritance.
Nevertheless, this point of view is not usually emphasised by some current
methodologies as will be seen in Chapter Three.

Another important idea brought forward by software engineering is the
concept of software life cycle models. Software life cycle models have been
proposed in order to systematise the several stages which a software system
goes through. The software life cycle can be divided into different phases,
although in practice some phases may overlap each other. Despite some
variations, the main phases for the traditional and best known software life
cycle model are: analysis (requirements and specification), design,

implementation and maintenance.

Software development involves a set of transformations starting from
requirements and ending with implementation. Between these two points, a
number of other abstract representations are described. The aim is to divide
a complex software system by steps into more manageable pieces, that is,
each new abstract representation gives the designers more details about a
software system than the previous one and allows them to make additional
refinements in order to move towards the next abstract representation. Thus,

Chapter 1 - Introduction

software development may also be seen as a process of creation,
manipulation and refinement of abstractions of real-world applications. The
complete software life cycle spans from requirements to implementation,
followed by an operational phase of maintenance during which bugs are fixed
and enhancements are introduced. Therefore, the software life cycle
circumscribes the time from the definition of the need for a software system
until the moment when it falls into disuse.

Nevertheless, the most well-known software life cycle models do not take
into account the issue of how to reuse existing software components when the
design of a new software system is being undertaken. The main issue in
software reuse is the creation of components which can be reused in software
systems other than that software system for which they were originally
created. Reusability is seen as a suitable technique for improving software
quality and reducing software development costs and time, and it has
therefore emerged as an important issue in software engineering.

In the past, reusability was primarily concerned with using subroutines from
a library during the implementation phase of the software life cycle.
Nowadays, however, a great deal of research has been carried out in order to
accomplish reusability during the design phase as well. The idea of
reusability within an object-oriented approach is special because it is not just
a matter of reusing only the code of a subroutine but any commonality

expressed in class hierarchies.

The inheritance mechanism encourages reusability within an object-
oriented approach (rather than reinvention) by permitting a class to be used
in a modified form by deriving a sub-class from it. Reusability should also be
easier to accomplish within an object-oriented approach because classes
support encapsulation. Encapsulation hides internal details of attributes and
operations concerned with class implementation in such a way that the
designer (as a re-user) needs to know only how to call an operation.
Encapsulation encourages reusability because it rewards the development of
modular components. In an object-oriented approach, classes are the

potentially reusable modular components.

However, one of the major problems which designers are faced with in trying
to reuse software is the difficulty of finding reusable components, once such
components have been produced. This is primarily because few mechanisms

Chapter 1 - Introduction

are available to help identify and relate components. In order to provide
more convenient reuse, the question of which kinds of mechanisms might
help solve this problem arises. The answer is typically couched in terms of
finding components which provide specific functionality, from a library of
potentially reusable components linked through relationships which express
their semantics and functionality. Clearly, what is needed are techniques to
create, classify and relate components, and tools which help to store, select
and retrieve potentially reusable components. As will be seen, reusability
and its supporting mechanisms form a major part of the research reported in

this thesis.

Despite all of the progress so far in the object-oriented paradigm, there is a
gap in the knowledge concerning object-oriented design. That is, despite the
acknowledged importance of software design methodologies and the
increasing popularity of the object-oriented paradigm, there is no generally
accepted object-oriented design methodology which essentially addresses
object-oriented design and considers reusability as part of the software life
cycle model. From the theoretical and practical point of view, the
development of a new object-oriented design methodology remains a topic of

major research interest.

This research is aimed at the creation of a Methodology for Object-
Oriented Design (MOOD)!, which takes reusability into account as an
important aspect of the software life cycle. The main characteristic obtained
through the use of MOOD is the design of a software system following
strictly object-oriented concepts, as MOOD concentrates on identifying and
representing classes, inheritance and objects. In doing so, the architecture of
an object-oriented software system at the design level is built around sets of
classes and objects. Moreover, considering reusability as a pragmatic (and
desirable!) process within the design phase helps the designer to relate
software components to each other through relationships which show where
a component is defined and used, and in what context. In this way,
reusability is considered within a software life cycle model as part of the

object-oriented design methodology.
In the context of this research, the product of an object-oriented design is
viewed partly as a collection of classes and objects. Classes model real-world

1. Belatedly, another methodology with the same name was discovered, however, the
similarity ends in the acronym, as will be seen in Chapter Three.

Chapter 1 - Introduction

applications and can be related to one another through the application of
inheritance, where inheritance is seen as a mechanism for organising classes
with similar properties and behaviour into class hierarchies. MOOD is based
on graphical representations of classes, objects and inheritance, with
associated rules, principles and guidelines which facilitate the identification
and representation of software systems in terms of these classes, objects and

inheritance.

MOOD is aimed at designing software systems by following prescribed steps
which allow the designer to represent and describe software systems at
different levels of abstraction. A design using MOOD basically starts from a
given system analysis and produces a graphical description to be
implemented, which comprises an information model and a behaviour model,
together called the design model. The information model is a static
representation of a software system using a set of diagrams which shows a
global view of the classes and the class hierarchies, built during a stage
named static design. The behaviour model shows the dynamic relationships
between objects, created during a stage denominated dynamic design. The
design model enables MOOD to maintain close links between the system
analysis, design and implementation phases of the software life cycle model,
so that the gap which often exists between these three phases can be bridged.
In this way, MOOD supports traceability from system analysis through to
implementation, and this is believed to be another important aspect of this

research.

MOOD employs steps which help the designer to identify classes, build class
hierarchies using inheritance, describe the software system behaviour with
objects and represent a design graphically with several kinds of diagrams.
The rigorousness of the proposed notation increases as the steps are carried
out because the design process starts from a given abstract model of the
application, often informal, and ends with an object-oriented graphical

representation of the software system.

This graphical representation and description can be built interactively
within a software development environment or CASE (Computer-Aided
Software Engineering) environment. Such an environment provides
computer-aided support for a methodology through a set of tools which form
that environment, and brings many improvements in software quality and

Chapter 1 - Introduction

efficiency for software production. The support encompasses consistent
coordinated aid and traceability between abstract representations of the
software system throughout different phases of the software life cycle. As a
by-product of using such an environment, communication among designers
is enhanced because they use the same tools to develop a software system.
Indeed, it has been found that CASE environments have a profound effect on
software development as well as on the software system produced.

Hence, the last few years have also seen a growing interest not only in new
methodologies for software development, but also the way in which these
methodologies can be supported by computerised tools. Consequently, the
ultimate aim for MOOD is that it should be supported by a CASE
environment. By this means, the rules, principles, guidelines and graphical
notations set up by MOOD can be enforced and followed by designers, and
design inconsistencies can be exposed. A MOOD prototype comprising a set
of tools which provides automated support for MOOD was implemented in
C++ and InterViews, and this will be described later in this thesis.

The MOOD prototype has tools which facilitate the construction of the
MOOD diagrams, allow the consistency and completeness of a software
design to be checked, and perform the functions of software configuration
management. The tools also handle the problem of feedback information
(which is a vital part of a design) and help provide documentation for a
software system via a report generator. The tools in the MOOD prototype are
integrated with each other through a common interface together with a
single database used to store design information such as names of classes,
attributes, operations and objects, in a uniform representation model.

1.1 THESIS AIMS

This thesis presents the results of research into the development of MOOD.
This research also gives emphasis to a different software life cycle model
which explicitly recognises the importance of reusability during the design

phase. Thus, the primary goals of this research are:

® to classify existing object-oriented methodologies according to their
suitability for a particular phase of the software life cycle and their

Chapter 1 - Introduction

domains of applicability. This classification can be used to understand
which methodology is best applied to specific phases of the software
life cycle or certain kinds of software systems;

® to create and evaluate a new methodology for object-oriented design
independent of any other methodology or any programming language.
This methodology (MOOD) can be applied to the design of software
systems which will then conform to object-oriented concepts such as
classes, objects and inheritance;

® to propose an alternative software life cycle model within an object-
oriented framework, which emphasises the importance of software
reuse during the development of object-oriented software systems;

® to implement a prototype of an integrated environment for object-
oriented design, called the MOOD environment, consisting of a set of
tools which provides automated support for the steps, principles and
notational conventions proposed by MOOD.

1.2 THESIS OUTLINE
The remainder of this thesis is organised into seven chapters as follows.

Chapter Two expands upon the background of the object-oriented paradigm
and is divided into six sections. Section one presents the notions of
application domains and solution domains, and shows how the object-
oriented paradigm helps to bridge the gap between these two domains.
Section two discusses the profile of present software systems in terms of
complexity, friendliness, extensibility and reusability. The road towards an
object-oriented approach is described in section three which also presents an
overview of the most familiar object-oriented programming languages.
Section four reviews the main concepts related to an object-oriented
approach, and introduces the terminology associated with the object-oriented
paradigm which is used in the remainder of this thesis. The terminology to
be presented is independent of any object-oriented programming language or
system. The fifth section presents the philosophy upon which object-oriented
design is based, and discusses important issues related to object-oriented

Chapter 1 - Introduction

software development such as domain analysis, reusability and software life
cycle models. A summary of this chapter is presented in the sixth section.

Chapter Three discusses a series of classification schemes to assist in the
understanding of several existing object-oriented methodologies. In the first
section of the chapter a series of different schemes for classifying object-
oriented methodologies is discussed. This section also compares and
contrasts the main differences between the methodologies and their
divergent background. The second section introduces the most well-known
methodologies, methods and techniques to tackle the analysis and design
phases of object-oriented software development. This section discusses the
different terminologies employed by them, evaluates the problems and
limitations of those methodologies and hence identifies the necessity of
developing a new methodology for object-oriented design which can overcome
those problems and limitations. The conclusion which can be drawn from this
chapter is that up to the present, there is no widely accepted methodology for
developing software systems based solely within an object-oriented

framework.

Chapter Four contains a detailed description of a new methodology for object-
oriented design (named MOOD), which is based on the concepts described in
the second chapter. The first section places the methodology in the context of
software development. The steps which must be followed in order to design a
software system according to MOOD are discussed in the second section. A
means of graphically representing the produced design with a series of
different diagrams is presented as well. The section also discusses how to
structure a large software system into manageable pieces. In the third
section of the chapter, the methodology is applied to model an electronic mail
system in terms of its classes and inheritance. The results of this first
experience with MOOD have been used as feedback to improve the
methodology and have shown the need for a software development
environment to support MOOD. The requirements for an integrated software
development environment consisting of a set of tools which automates
MOOD is presented in the fourth section. The chapter concludes with a
review of the MOOD steps, outlining some of the issues which should be
considered when designing an object-oriented software system.

Chapter 1 - Introduction

Chapter Five provides an account of reusability and software life cycle issues
which arise during object-oriented design. The first section outlines existing
mechanisms for achieving reusability. Besides, it concentrates on the main
reasons why software components are not reused and examines the problems
associated with reusability during the design phase. Additionally, in this
section software reusability is added to the framework of the new
methodology presented in Chapter Four. Section two proposes a new
software life cycle model which encompasses MOOD and addresses
reusability, within an object-oriented software development framework. The
section also considers the role (during software development) of the
knowledge about the application domain, and discusses how the knowledge
that the designer has about the application domain can affect the
development of object-oriented software systems in terms of a top-down,
bottom-up or middle-out approach to software development. The chapter
finishes with comments on the software development process presented in

the two previous sections.

Chapter Six describes the MOOD prototype, the prototype of an
environment for object-oriented design which provides automated support
for the methodology introduced in Chapter Four. The first section of the
chapter discusses overall issues related to the implementation of the
prototype. Section two presents the interface for the environment and
discusses how the interface classes are derived from the classes provided by
InterViews. Section three describes the MOOD database and shows how
integration among tools is accomplished using a unified representation
model, a single database and a uniform interface. In the fourth section, the
features of the tools are outlined. The chapter ends with observations on the
use of the MOOD prototype and the design process.

Chapter Seven discusses the results of using MOOD to design a software
development environment comprising a set of tools which automates MOOD
itself. The purpose of this activity was twofold: firstly, to help improve earlier
versions of that methodology by providing feedback based on the outcome of
such an experiment; and secondly, to evaluate that methodology and the
potential benefits which can be gained through its use, as presented in the
first section of this chapter. Other general aspects related to the fully

-10 -

Chapter 1 - Introduction

applicability of MOOD within the proposed software development life cycle
model are discussed throughout section two.

Finally, Chapter Eight concludes this thesis by reiterating the aims of the
research reported in the thesis and discussing the work which has been
carried out together with its main contributions. Section one provides some
concluding remarks on the experience gained designing and experimenting
with MOOD within the alternative software life cycle model proposed. The
second section considers future directions and further ideas for the research
which has been presented in previous chapters. The last section presents an
overall conclusion of the thesis regarding the future of object-oriented

software engineering.

-11-

Chapter 2

OBJECT-ORIENTED DESIGN

Over the past twenty years, several software development methodologies
have appeared. Such methodologies address some phases of the software life
cycle ranging from requirements to maintenance. These methodologies have
often been developed in response to new ideas about how to cope with
complexity in software systems. More recently, due to the increasing
popularity of object-oriented programming, development of object-oriented
methodologies has become a growing field of interest.

There has also been an explosive growth in the number of software systems
described as object-oriented. Some object-oriented ideas have already been
applied to various areas such as software engineering, office information
systems, system simulation and artificial intelligence. Moreover,
programming languages, programming styles and user interfaces have been
defined using the object-oriented paradigm, and the need for software
development methodologies which follows this paradigm has become

imperative.

This chapter covers the background of the object-oriented paradigm and is
divided as follows. Section one presents an introduction to application
domains and solution domains. Section two discusses the profile of present
software systems and shows that the object-oriented paradigm is suitable to
develop such software systems. The third section shows that the object-
oriented paradigm is not new. Actually, it is based on ideas which have been
evolving since the early 1970s, and it combines, purifies and evolves existing
techniques, such as abstract data types and system simulation. Section four
reviews the main concepts related to the object-oriented paradigm, and

212

Chapter 2 - Object-Oriented Design

introduces the terminology to be used in the next chapters. The fifth section
presents the philosophy of object-oriented design. The chapter ends with a

summary of its main topics.

2.1 APPLICATION DOMAINS AND SOLUTION DOMAINS

In order to attempt to characterise software development methodologies, it is
necessary to understand the concept of software in terms of application
domains and solution domains. An application domain may be defined as a
set of real-world applications. Similarly, a solution domain is a set of possible
solutions to those real-world applications. An entity which belongs to an
application domain may be mapped into a solution domain through an
abstract representation in such a way that operations on this abstract
representation correspond to operations in the real-world application.

In software terms, mapping requires the main ideas about a real-world
application to be represented in abstract terms so that the designer can
understand the application. The designer can then use those abstractions to
develop a model which simulates that real-world application. The mapping
may be viewed as a process of building up a model which, when executed by a
computer, provides output which is equivalent to results of the application
behaviour. Thus, when the designer thinks about a real-world application in
an application domain, there should be a mapping to a solution in a solution
domain. The solution might be represented by a software system which
models the behaviour of that real-world application. The process by which a
software system is built up may be aided by a software development
methodology. Figure 2.1 illustrates such concepts.

Software development methodologies can provide the means by which it is
possible to map an abstraction of a real-world application (which belongs to
an application domain) into a software representation (which belongs to a
solution domain). A software system represents one model of a solution,
among possible solutions to that real-world application. Therefore, software
development may be seen as a process of creation, manipulation and
refinement of representations which model real-world applications. When
the designer transforms a representation or creates an initial one, different
representations of a software system are being dealt with.

-13

Chapter 2 - Object-Oriented Design

An Application Domain A Solution Domain
A Methodology
: a software
arealworld|| | S‘YStelmttO
icati simulate
application mapping Yo
application

Figure 2.1 Mapping between Application and Solution Domains

The distance between an application domain and a solution domain is called
the semantic gap. Intuitively, it seems to be evident that the smaller the
semantic gap (that is, the closer a software system is to the modelled real-
world application) the easier will be the development of that software
system, and the greater will be the possibility of guaranteeing
understandability, reliability and quality in the achieved solution. One of
the objectives which should be pursued during the creation of a new software
development methodology, programming language or tool is to narrow the
semantic gap as much as possible (Ledgard, 1977).

In spite of some advances, for the last twenty years software development
has in the main concentrated on procedures and data separately. Unlike
other approaches, an object-oriented approach gathers together procedures
and data into a unit, named an object. This point of view for software
development comes from the principle that the real-world consists of entities
which are composed of data, and operations which manipulate that data.
Such entities can be represented by objects and can be abstracted to
constitute classes of objects, and each object encompasses data and a set of
operations which are meaningful to these data.

-14 -

Chapter 2 - Object-Oriented Design

In this aspect, an object-oriented approach allows the designer to create
abstractions with which it is possible to deal with concepts that are close to
the real-world application and the designer is only concerned with those
abstractions. Thus, an alternative approach which is based on the
identification and manipulation of abstractions represented by classes and
objects, and is able to narrow the semantic gap, has appeared.

To summarise, during software development, designers should map a real-
world application in an application domain onto an abstract solution
(represented by a software system) in a solution domain. Using an object-
oriented methodology designers can create abstractions in terms of classes
and objects. Like other approaches, an object-oriented approach deals with
methodologies and languages, both of which discipline the abstraction
process to build software systems. However, in this case, classes and objects
are the main items used to model real-world applications.

2.2 THE PROFILE OF PRESENT SOFTWARE SYSTEMS

This section discusses the profile of present software systems and shows that
the object-oriented paradigm is suitable to develop software systems that
meet that profile. Some important features of new software systems and

their requirements include:

e Complexity: the internal architecture of current software systems is
complex, often including concurrency and parallelism. Abstraction is
a technique that helps to deal with complexity. Abstraction involves a
selective examination of certain aspects of an application. It has the
goal of isolating those aspects which are important for an
understanding of the application, and also suppressing those aspects
which are unimportant. Abstraction must have a purpose, because the
purpose determines what is and is not important for the abstraction.
Many different abstractions of the same thing are possible, depending
on the purpose for which they are made. Forming abstractions of an
application in terms of classes and objects is one of the fundamental

elements of the object-oriented paradigm.

15 .

Chapter 2 - Object-Oriented Design

e Friendliness: this is a relevant requirement of current software
systems. Iconic interfaces provide a user-friendly interaction between
users and software systems. Icons are graphical representations of
objects on the screen and are usually manipulated with the use of a
mouse, which has come to be known as WYSIWYG (What You See Is
What You Get) interaction. In such interfaces, windows, menus and
graphical elements are all viewed as objects. The trend to object-
oriented graphical interfaces is permeating many areas of software
development. This is acknowledged in the most recent generations of
software systems for window management systems. Experience would
suggest that user interfaces are significantly easier to develop when
they are written in an object-oriented fashion. Thus, the object-
oriented nature of the WYSIWYG interfaces maps quite naturally
into the concepts of the object-oriented paradigm.

e Extensibility: this is a property that permits new functionality to be
easily added with little modification to existing software systems.
With this property, software systems can be easily extended to meet
new requirements. New software developments may be carried out
entirely by making modifications to what already exists. This
incremental development is part of object-oriented thinking.

e Reusability: this property facilitates rapid software development by
reusing software components already available and also promotes the
production of components that could be reused in future software
developments. Taking components created by others should be
considered more desirable than creating new ones. If there exists a
good library of reusable components, reviewing existing components
to identify opportunities for reuse could have precedence over writing
new software components from scratch. Inheritance is an object-
oriented mechanism that increases software reusability.

There are several ways to tackle the problem of software complexity and to
achieve friendliness, extensibility and reusability. Investigations of new
methodologies, and proposals for new software life cycle models, as well as
automated support provided by tools within a software development
environment, have all been under research. These trends may be gathered

-16 -

Chapter 2 - Object-Oriented Design

together, and an object-oriented approach seems to be the way to converge
them, as can be inferred from the discussion above.

2.3 TOWARDS AN OBJECT-ORIENTED APPROACH

The notion of objects naturally plays a central role in object-oriented
software systems and although this concept is much in evidence nowadays,
the idea is not a new one. In fact, it could be said that the object-oriented
paradigm was not invented, but it actually evolved by refining already
existing practices. The confluence of the object-oriented paradigm with other
concepts of computer science suggests that the object-oriented paradigm has
been biased by other approaches.

The term object emerged almost independently in various areas of computer
science. Some approaches that have influenced the object-oriented paradigm
are: simulation, operating systems, data abstraction and artificial
intelligence. Appearing almost simultaneously from the early 1970s, these
approaches all cope with the complexity of software in such a way that
objects represent abstract components of a software system. For instance,
some notions of objects that have emerged in these fields are:

® Classes of objects used to simulate real-world application, in Simula-
67 (Dahl, 1970). In this language an execution of a computer program
is organised as a combined execution of a collection of objects, and
objects sharing common behaviour are said to constitute a class.

® Protected resources in operating systems. Hoare (1974) proposed the
idea of using an enclosed area as a software unit and introduced the
concept of a monitor, which is concerned with process synchronisation
and contention for resources among processes.

e Data abstraction in programming languages such as CLU (Liskov,
1977), which refers to a programming style in which instances of
abstract data types (i.e. objects) are manipulated by operations that are
exclusively encapsulated within a protected region.

® Units of knowledge called frames, used for knowledge representation.
Minsky (1975) proposed the notion of frames to capture the idea that

17-

Chapter 2 - Object-Oriented Design

behaviour goes with the entity whose behaviour is being described.
Thus, a frame can also be represented as an object.

These influences are shown in Figure 2.2. The common characteristics of
these concepts are that an object is a logical or a physical entity that is self-
contained. Clearly, other items could be added to this list, such as advances
in programming languages, as demonstrated in Ada (Buzzard, 1985); and
advances in programming methods, including the notion of modularization
and encapsulation, as in Modula (Wirth, 1976).

N ,é 7

Simulati Operating Data Artificial
rmuia I]Jll Systems Abstraction Intelligence
classes monitors abstract data types frames

+ encapsulation

Yy

Object-Oriented i
3 Paradigm i

Figure 2.2 The Background of the Object-Oriented Paradigm

The Simula-67 was the first programming language which had objects and
classes as central concepts. Simula-67 was initially developed as a language
for programming discrete-event simulations, and objects in the language
were used to model entities in the real-world application which was being
simulated. Despite the early innovation of Simula-67, the term object-
oriented became prominent from the Smalltalk language (Goldberg, 1983).
The Smalltalk language, first developed in 1972 in the Learning Research
Group at Xerox Palo Alto Research Center, was greatly influenced by

-18-

Chapter 2 - Object-Oriented Design

Simula-67 and also by Lisp. Smalltalk was the software half of an ambitious
project known as the Dynabook which was intended to be a powerful personal
computer. Research on Smalltalk has continued and the Smalltalk-80
language and environment are the product of that work.

From Smalltalk, some common concepts and ideas have been identified
which have given support, at least informally, to the object-oriented
paradigm which has now established itself. On account of the evolution and
dissemination of programming languages like Smalltalk, this new paradigm
has been evolved by several research groups, and aew methodologies,
languages and tools have been appearing. The object-oriented paradigm
deals with its own concepts, terminology and notation for software
development. These issues are discussed further, later in this chapter. The
evolution from abstract data types and classes to the object-oriented
paradigm is the focus of the next subsections.

2.3.1 Abstract Data Types

It is easiest to learn new ideas in terms of more familiar ones. Because the
object-oriented paradigm has been strongly influenced by the notion of
abstract data types, it is convenient to understand this influence, and the
evolution from the concept of abstract data types to the object-oriented

paradigm.

The notion of abstract data types is one of the most important ideas that has
emerged from research in programming languages. The term abstract data
types refers to a concept in which data structures, and related operations
which manipulate those data structures, are encapsulated within a protected
region. A language is said to support abstract data types when it allows
designers to define new abstract data types consisting of declarations that
bring together operations which manipulate private data structures.

According to Liskov and Zilles (1975), abstract data types can be used by
designers to introduce new data types which are deemed useful in the
application domain. The designer is concerned with the behaviour of those
data types and what kind of information can be stored into them and
obtained from them. Nevertheless, the designer is not concerned with how to

-19.

Chapter 2 - Object-Oriented Design

implement them. Therefore, designing with abstract data types can be
considered as a way of managing complexity since the designer can define
and make use of abstract data types without concern for their internal

implementation.

The object-oriented style has been influenced by the notion of abstract data
types because an object can be viewed as an instance of an abstract data type,
which encapsulates a data type and provides a defined set of operations to
manipulate and access that data type. Actually, in most object-oriented
programming languages, a class definition describes a data type and the
operations which can be performed on that data type. Furthermore, the
concept of abstract data types assumes an important role within an object-
oriented approach because it may be seen as a way of providing abstract and
simplified representation for a software system. In addition, abstract data
types bring others benefits such as modularization and encapsulation that
are also relevant to the object-oriented paradigm, as is discussed next.

Modularization

Modularization is inherent to the successful development of large software
systems because it is used to break a large software system into small
modules which can be combined to simulate the original application. The
production of a large software system presents many challenging problems
that do not arise when developed via smaller modules (DeRemer, 1976).
Therefore, the same methods and techniques that work well with modules do
not necessarily apply to large software systems. Restrictions that merely
apply to the size of the modules, however, do not improve the quality of a
software system in any real sense, and splitting a large module into a
sequence of smaller modules does not necessarily make a software system

any better.

Modularity can be achieved by a collection of abstract data types which the
designer thinks belong together, and provided with an interface which
specifies the data structures and operations which can be used outside a
module. A more helpful notion of modularity refers to the factoring of large
software systems into units that can be modified independently, which
means that each module should be understood and, possibly, implemented

20

Chapter 2 - Object-Oriented Design

independently of any other modules of the software system. Thus, each
module should realise a single and a simple conceptual functionality of a

software system.

Modularization relates to the idea of cohesion, which measures the degree of
connectivity among modules. The most desirable form of cohesion is
functional cohesion, in which modules are closely related and provide
particular functionality. Sommerville (1989) argues that a high degree of
cohesion is a feature of object-oriented software systems because classes
making up a software system are naturally cohesive since they should
encompass operations to achieve a particular purpose.

Encapsulation

Another important topic which relates to abstract data types is
encapsulation, also known as information hiding. Encapsulation suggests
that a data structure must be resident within a module. An interface
provides the access to that data structure which is needed by other modules.
Thus, communication among modules should be done through well-defined
interfaces which prevent data structures inside a module to be directly
accessed. Encapsulation minimises inter-dependencies among separately
written modules by defining strict interfaces.

Parnas (1972) attempted to systematise the modularization process, based on
the concept of encapsulation as a criterion for decomposing software systems
into modules. Encapsulation as a design principle favours the production of
highly independent modules because the state of a module is contained in its
private data structures, visible only within the scope of the module. In fact,
design decisions internal to a module are hidden and do not affect the
cooperation between modules. Once the module interface has been carefully
designed, modules can be developed independently of each other, stored in a
library, combined later to build a unique software system, and reused in

other software developments.

21

Chapter 2 - Object-Oriented Design

2.3.2 Evolution of Abstraction in Programming Languages

According to Ghezzi and Jazayeri (1982) abstraction helps cope with
complexity. By using an abstraction of an application, one is able to
concentrate only on the relevant qualities or properties of that application.
What is relevant depends on the purpose for which the abstraction is being
made. For example, someone learning to drive can represent a car by four
properties: an accelerator, a brake, a clutch and a steering wheel. These are
abstractions for some visible elements of a car. For a driver, chemical
reactions going on inside an engine and the engine itself are irrelevant
properties but they would not be for an abstraction made by a mechanic.

In the same way, programs may be seen as an abstraction of the computer
central processing unit and memory locations. For example, in a program for
calculating the area of a square, the designer can use self-explanatory names
such as area and side, and perform the operation side multiplied by side,
assigning the result to area. With this examplle in mind the designer can
divide the abstraction of a program into two different aspects: the data and
the control aspects. The data aspect models the operands manipulated by
programs and the control aspect models the operations performed by

programs.

At the beginning of programming language development, assembly
languages only enabled designers to write programs based on machine
instructions (operators) which manipulate the contents of memory locations
(operands). Therefore, the level of data and control abstraction achieved was
very low. A great step forward occurred when the first high level languages
such as Fortran, Algol and Pascal appeared. The operators turned into
statements and operands into variables and data structures. The traditional
view of programs in these languages is that they are composed of a collection
of variables which represent some data, and a set of procedures which
manipulate these variables. Most traditional programming languages
support this data-procedure paradigm. That is, active procedures operate
upon passive data that is passed to them. Things happen in a software
system by invoking a procedure and passing it some data to manipulate.
Early high level programming languages have reasonable support for
representing actions through statements and procedures; however, they are
deficient in representing abstract data types.

- 22

Chapter 2 - Object-Oriented Design

Abstract data types are abstractions that may exist at a higher level than
operands and operators, or variables and procedures separately. The starting
point for creating a specification of an abstract data type is to identify the
operations on that particular data type (Cardelli, 1985). For example,
suppose the designer wants to manipulate a pile to model a first-in-last-out
queue discipline. Two operations that are fundamental to manipulating a
pile are push and pop. Basically, push adds an element to the top of the pile
and pop gets an element from the top of the pile. Then the designer could
gather together into an abstract data type, a pile data structure and the
operations push and pop which are relevant to them. More advanced
programming languages have depended on abstract data types to manage
complexity (Shaw, 1984). Some languages such as Simula-67 provide a
construct that allows both variables and procedures to be defined in a single
unit called a class, which enhances the definition of abstract data types.
Equivalent ideas can also be found in CLU (Liskov, 1977) through the
concept of cluster and Ada (Buzzard, 1985) through the package construct.

The object-oriented paradigm goes a step further than abstract data types. If
two abstract data types are similar but not identical, there is no means of
expressing their similarities conveniently in a programming language which
supports only abstract data types. However, object-oriented languages allow
similarities and differences between abstract data types to be expressed
through inheritance, which is a key defining feature of the object-oriented
paradigm. Therefore, it would be better to characterise the evolution of
object-oriented languages based on abstract data types and inheritance; in
this case the immediate ancestor of object-oriented languages is Simula-67,
which is an Algol-based language and also first introduced the concept of
classes. Besides, because object-oriented concepts have also arisen from the
artificial intelligence community, it is not surprising that Lisp has
influenced a number of object-oriented languages as well. Some of these are
Flavors (Moon, 1986), Loops (Stefik, 1986) and CLOS (DeMichiel, 1987),
which have used concepts from Lisp and Smalltalk.

The prominence of the object-oriented paradigm has influenced the design of
other languages. There has been some work to add object-oriented constructs
to the popular C, Pascal and Modula-2 languages, resulting in the hybrid
languages Objective-C (Cox, 1986), C++ (Stroustrup, 1986), Object Pascal
(Tesler, 1985) and Modula-3 (Cardelli, 1989). The addition of object-oriented

-23-

Chapter 2 - Object-Oriented Design

ideas into traditional languages has sophisticated them, in that,
programmers have the flexibility to use or not use the object-oriented
extensions and its benefits. Although these hybrid languages have become
more complex, these extensions have given a handle to programmers who
have considerable experience with those traditional languages, to explore
incrementally the different concepts provided by the object-oriented
paradigm. Nevertheless, when using a hybrid language, programmers must
exercise more discipline than those using a pure object-oriented language
because it is too easy to deviate from sound object-oriented principles. For
example, C++ permits the use of global variables, which violates the

fundamental principle of encapsulation.

As far as concurrency is concerned, objects can also be defined as concurrent
agents which interact by message passing, and emphasise the role of entities
such as actors and servers in the structure of the real-world application. The
main idea behind object-oriented languages which support concurrency is to
provide designers with powerful constructs which allow objects to run
concurrently. Concurrency adds the idea of simultaneously executing
objects, exploiting parallelism on a large scale. Languages with this purpose
include Actor (Agha, 1986), ABCL/1 (Yonezawa, 1987), POOL-T (America,
1987), Orient/84 (Yutaka, 1986), ConcurrentSmalltalk (Yokote, 1987) and

Mushroom/Must (Hopkins, 1987; Hopkins, 1989).

Other languages, such as Beta (Kristensen, 1985), Trellis/Owl (Schaffert,
1986) and Eiffel (Meyer, 1988), have also appeared (influenced basically by
Simula-67, CLU and Smalltalk) and are believed to give good support for the
object-oriented paradigm. Although Smalltalk, Trellis/Owl and Eiffel seem
to be the most coherent object-oriented languages and provide an integrated
programming environment, it is more likely that C++ will continue to be the
object-oriented language most used in the near future because of the
influence of UNIX, the portability and efficiency of C++, and the knowledge
and popularity of the C language from which C++ has derived. However,
C++ still requires a more robust program development environment to
manage library of classes. Analysing the evolution of all those languages
through time leads to the dependency graph shown in Figure 2.3.

224 -

Chapter 2 - Object-Oriented Design

50s Assembly
Fortran
Y
60s Llsp AlgOl
Simula-67 Pascal
v
N

70s
: Ada C CLU

Smalltalk
Y Modula-
Beta odula-2
++

80s C

Flavors Actor Objective-C Trellis’lOwl Object Pascal

Loops ABCL/1 Eiffel Modula-3
CLOS POOL-T
Orient/84
Concurrentst.
Y Mushroom/Must

Figure 2.3 Language Evolution

.25 -

Chapter 2 - Object-Oriented Design

2.3.3 Comparison between "Object-Oriented" Languages

Object-oriented design has naturally evolved from object-oriented
programming. Thus, it is helpful to study some object-oriented languages to
realise how object-oriented design has emerged. As discussed above, the
object-oriented paradigm has been implemented in different languages, and
over the last decade a number of object-oriented languages have appeared. In
this subsection some so-called "object-oriented” languages are briefly
reviewed and compared, and their main features are outlined.

Object-oriented programming has been defined in such a way that any
language in which a particular unit has a state, and applicable operations
associated with it, is said to be an object-oriented language. Nowadays, there
is an attempt to explain object-oriented programming by examining the
presence or lack of specific programming features, such as messages and
inheritance. But, which features must a programming language have, to be

considered an object-oriented language?

Wegner (1987) claims that a programming language is called object-based if
it is based on objects. A language is called object-oriented if it provides
linguistic support for objects and additionally requires that objects are
instances of classes. Furthermore, an inheritance mechanism must be
supported. Thus: object-oriented = objects + classes + inheritance.
According to this classification, the set of object-based languages includes
Ada and CLU because objects in Ada are realised by packages and objects in
CLU are instances of clusters. The set of object-oriented languages is
narrower than the set of object-based languages, and excludes languages like
Ada and CLU but includes languages like Smalltalk and C++ because the

latter two provide inheritance.

The characterisation of object-oriented languages to be presented here is an
informal one which appears appropriate in the context of the object-oriented
paradigm in general. It is claimed that an object-oriented language should
support abstract data types, inheritance, dynamic binding and it is relevant
that all items be objects. Dynamic binding provides great flexibility in
manipulating objects at run-time and is one of the major reasons for the
flexibility of object-oriented languages. In addition, support for library

-26-

Chapter 2 - Object-Oriented Design

facilities, which is not part of the language definition, but useful for object-

oriented software development is considered.

Clearly, some languages are better suited than others for supporting an
object-oriented approach. For example, Smalltalk provides clear ways to
work within an object-oriented approach but other languages, such as Ada,
may be used in an object-oriented fashion through the use of some language
tricks. The main point is how far a particular programming language can
naturally embody and enforce the properties of classes, objects and

inheritance.

Simula-67

Many of the ideas behind object-oriented languages have roots going back to
Simula-67, which introduced the notion of class as a mechanism for
encapsulating variables and procedures. In Simula-67, one class X can be a
specialisation of another class Y. That is, X inherits all local variables and
procedures of Y. In addition, X can add variables and procedures of its own.
Simula-67 is a general purpose language which supports abstract data types,
single inheritance and dynamic binding. It is a strongly-typed language but
does not provide library facilities nor multiple inheritance.

CLU

CLU was motivated by a desire to support general mechanisms for the
definition of abstract data types which make their representation completely
encapsulated, in such a way that user-defined abstract data types are treated
as similarly as possible to built-in types. An abstract data type in CLU is
implemented by a language construct called the cluster which identifies a set
of data structures and a set of operations for manipulating those data
structures. In this aspect, CLU also made a serious effort toward an object-

oriented approach.

27 -

Chapter 2 - Object-Oriented Design

Ada

Ada is a general purpose language which has been designed primarily to
embody and enforce software engineering principles of abstraction,
encapsulation and modularity. Ada is not really an object-oriented language.
It has a construct, namely the package, which can be used to represent a class
and helps to support an object-oriented approach. However, in Ada there are
serious limitations on defining new abstract data types by specialising some
existing ones. This weakness results in the impracticability of using
inheritance. Ada is a strongly-typed language that performs all binding at
compile-time, but there is a reasonable support for library facilities.

Smalltalk

Following the introduction of Simula-67 and CLU, a number of languages
that support abstract data types have been introduced. However, in spite of
earlier languages which also contain some object-oriented ideas, the term
object-oriented itself is generally associated with Smalltalk. More than a
programming language, Smalltalk is a complete programming environment
composed of an object-oriented language kernel, a persistent programming
system and a user-friendly interface (Goldberg, 1984). Although Lisp
influenced Smalltalk and the notion of class came from Simula-67, many
concepts were born with it, such as message-selectors and methods. The
radical difference between Smalltalk and previous languages is that in
Smalltalk everything is an object, from the primitive language types like
integers and characters to user-defined types such as graphics and windows.

In Smalltalk, there is one basic unit, called an object, which contains
instance variable declarations and method definitions. Every object is an
instance of some class. Smalltalk also supports inheritance which permits a
hierarchy of classes to be built. All instance variables and methods of an
object are defined in the class of that object, or in its super-classes. The top
level super-class is called Object. All classes are refinements of the Object
super-class in that they add new or different methods or allow more variables
in their instances. Classes themselves are objects and are instances of other

classes, named the meta-classes.

.28-

Chapter 2 - Object-Oriented Design

Smalltalk objects interact by exchanging messages. In addition to message
passing, different objects of a class can share instance variables, called class
variables. Class variables are defined in a meta-class and are accessible to
any method defined in that class. Smalltalk supports automatic garbage
collection which means that the lifetime of all objects is determined not by
the programmers but by the system. Smalltalk provides excellent
information hiding, dynamic binding and an extensive library which
encourages prototyping and reuse of existing classes.

Objective-C

Two separate efforts attempt to make some of the benefits of the object-
oriented paradigm available to programmers trained in the C language.
Objective-C and C++ are both hybrid languages, designed as extensions of
the C language and contain the facilities offered by C, such as efficiency and
portability. Although the aims of both languages are similar, the two
languages differ significantly in that Objective-C adds Smalltalk constructs
to C, whereas C++ shows a clear Simula-67 influence. In fact, Objective-C is a
super-set of C, that is, it kept some C features and included some object-
oriented basic concepts. As a result, Objective-C provides encapsulation and
adds the notion of a class definition mechanism to C as well as inheritance
and dynamic binding. With Objective-C the term Software-IC also was
introduced to identify the possibility for reusable software components.

C++

As far as C++ is concerned, it is a general purpose language and a super-set
of C. Objects in C++ are instances of some class. Variables and functions are
referred to as the members of the class. A member can be public, private or
protected. A public member can be accessed by both members and non-
members of the class. A private member is accessible only to other members
of the class and protected members are accessible to other members of the
class and sub-classes. A constructor is a special operation used to create and
initialise objects. On the other hand, another special operation called the
destructor can be invoked to destroy an object. Inheritance can be used to

-29

Chapter 2 - Object-Oriented Design

implement derived classes which have the refined commonalities of some

other base classes.

Assuming that the learning curve from C to C++ is not very significant, the
real hurdle of using C++ has to do more with programming style than with
language syntax. For those who know C, the real advantage of C++, is that
new object-oriented programming features can be learned incrementally (or
corrupted gradually!). This is advantageous for some and disadvantageous
for others who claim that there is a danger of "cheating” and reverting to
procedural programming using an object-oriented language.

CLOS

In the early eighties a number of programming languages merged concepts
of Lisp and Smalltalk. Flavors and Loops were derived from Lisp with object-
oriented concepts built on top, and follow the same concepts adopted by
Smalltalk; both provide multiple inheritance, but do not provide library
facilities. Through the experience derived from both these languages,
another object-oriented language called CLOS has appeared. CLOS is also a
Lisp-based language based on the concepts of class, meta-class, method and
multiple inheritance. A common criticism that can be made for these
languages is that, due to the Lisp influence, all of them provide features
useful to deal basically with artificial intelligence applications.

Object Pascal

Object Pascal is an object-oriented extension of Pascal developed by Apple
Computer for the Macintosh personal computer. Object Pascal implements
classes as an extension of the Pascal record structures. In this language a
module is called a unit. A unit is divided into an interface component and an
implementation component, which can be compiled separately. The greatest
strength of Object Pascal is its simplicity, which was an attempt to
streamline the object-oriented language learning curve.

.30 -

Chapter 2 - Object-Oriented Design

Beta

Beta is a language in the Simula-67 tradition. A program in Beta is regarded
as a simulation of an application modelled by interacting objects. Beta
replaces class and type notions by another very general abstraction concept
called the pattern which also may be organised in a classification hierarchy
by means of sub-patterns. However, Beta does not support multiple
inheritance. An object in Beta is described by a set of attributes, which
portrays the properties of the object, and a sequence of actions. Finally,
patterns may be checked at compile time, even though the binding is done at

run-time.

Eiffel

Eiffel is a true object-oriented language and shares the basic properties of the
languages shown above by offering single and multiple inheritance, generic
classes and dynamic binding. Furthermore, Eiffel combines the object-
oriented paradigm with expressions of formal program properties such as
assertions and invariants. The language also comes with an environment
geared towards the development of sizable software systems in a production

environment.

Trellis/Owl

Trellis/Owl consists of an object-oriented programming environment called
Trellis, with a programming language called Owl. Trellis consists of several
user-friendly tools which support editing, compiling and debugging. Owl is a
general purpose object-oriented language which is strongly-typed, therefore,
it is necessary to specify the type of all references to all objects. Owl enforces
abstraction, provides multiple inheritance and an extensive library. Like
Smalltalk and Eiffel, Trellis/Owl provides a good support for the object-

oriented paradigm.

Table 2.1 shows a comparison among the so-called "object-oriented"
programming languages discussed.

-31-

Chapter 2 - Object-Oriented Design

Features | Abs. | Inherit. | Mult. | Dyna. | Allare | Library

Languages * —s | DtTy. Inher. | Bind. Object | Support
Simula-67 y y n y n n
CLU y n n y n n
Ada y n n n n y
Smalltalk y y y y y y
Objective-C y y n y n y
Ct+t y y y y n n
Davors,loors, |y |y |y |y |y |n
Object Pascal y y n y n n
Beta y y n y n n
Eiffel y y y y y y
Trellis/Owl y y y y y y

Table 2.1 Comparison among "Object-Oriented" Languages

('y' means yes, the feature is present;
'n' means no, the feature is not present)

32 -

Chapter 2 - Object-Oriented Design

Some of the current languages support the object-oriented paradigm better
than others, however, the perspective on the paradigm is as important as the
language statements. It is possible to think in object-oriented terms without
a language that supports the paradigm. But, the main point is not to force
languages to deal with concepts which are not naturally supported. Although
it is possible to conform to an object-oriented approach using standard Pascal
(Jacky, 1987), it is not as suitable for the object-oriented paradigm as
Smalltalk, Eiffel, Trellis/Owl or even C++ are.

Stroustrup (1987) states that a language is said to support a paradigm of
programming if it provides facilities which make it easy, safe and efficient to
use that paradigm. On the other hand, a language does not support a
paradigm if it takes exceptional effort or exceptional skill to follow such a
paradigm. This means that support for a paradigm must come not only in the
obvious form of language facilities that allow direct use of the paradigm, but
also in the more subtle form of compile-time and run-time checks against
unintentional deviation from the paradigm.

It can also be concluded that, despite the possibility of following an object-
oriented approach using these languages (shown in Table 2.1) with less or
more difficulty, direct language support is beneficial in facilitating and
encouraging the use of the object-oriented paradigm, such as in Smalltalk,
Eiffel or Trellis/Owl. Not only do these languages support the object-oriented
paradigm, but they also enforce it because the main concepts dealt with are
classes and objects. The danger in trying to force object-oriented concepts
into a language, such as in Ada, which does not enforce object-oriented
concepts is that inconsistent constructions may be produced, impairing
software development and jeopardising the quality of the resulting software

systems.

-33-

Chapter 2 - Object-Oriented Design

2.4 CHARACTERISATION OF AN OBJECT-ORIENTED
MODEL

Although object-oriented programming has its roots in the 1960s, there are
many definitions about precisely what the term object-oriented means, but at
the moment, none generally accepted. The term means different things to
different people because it has become very fashionable to describe any
software system in terms of object-oriented concepts.

To some, the concept of object is merely a new name for abstract data types;
each object has its own private variables and local procedures, resulting in
modularity and encapsulation. To others, classes and objects are a concrete
form of type theory. In this view, each object is considered to be an element of
a class which itself can be related through sub-type and super-type
relationships. To others still, object-oriented software systems are a way of
organising and sharing code in large software systems. Individual
procedures and the data they manipulate are organised into a tree structure.
Objects at any level of this tree structure inherit behaviour of higher level
objects; such inheritance is the main structuring mechanism which makes it
possible for similar objects to share a program code.

Despite many authors being concerned with providing precise definitions for
the object-oriented paradigm, it is difficult to come up with a single
definition. The object-oriented paradigm is not something that can be simply
defined. Therefore, it would be fairer to characterise an object-oriented
approach for software development, as will be seen later in this section.

Rentsch (1982) defines object-oriented programming in terms of inheritance,
encapsulation, methods and messages, as found in Smalltalk. Objects are
uniform in that all items are objects and no object properties are visible to an
outside observer. All objects communicate using the same mechanism of
message passing, and processing activity takes place inside objects.
Inheritance allows classifying, sub-classifying and super-classifying of
objects, which permits their properties to be shared.

Pascoe (1986) also presents object-oriented concepts, terminology and
characteristics from the Smalltalk perspective. Pascoe defines an object-
oriented approach in terms of encapsulation, data abstraction, methods,

-34-

Chapter 2 - Object-Oriented Design

messages, inheritance, and dynamic binding for object-oriented languages. It
can be seen that these features are slightly different from those identified by
Rentsch because the former does not consider the importance of dynamic
binding. Pascoe also affirms that some languages that have one or two of
these features have been improperly called object-oriented languages. For
instance, Ada could not be considered an object-oriented language because
Ada does not provide inheritance.

On one hand, according to Pascoe and Rentsch, messages and inheritance are
fundamentals in object-oriented programming, so any language which does
not support messages and inheritance can not be called an object-oriented
language. Other authors, such as Robson (1981), Stefik and Bobrow (1986)
and Thomas (1989) also emphasise the idea of message passing between
objects and dynamic binding as fundamental to object-oriented
programming. In fact, all of these authors have been influenced by
Smalltalk, where the message passing mechanism plays a fundamental role
as the way of communication among objects. However, message passing is
just an implementation technique and not at all an inherent part of the
object-oriented paradigm (e.g. Trellis’Owl and Eiffel use procedure calls). On
the other hand, Stroustrup (1987) claims that object-oriented programming
can be seen as programming using inheritance. Thus, object-oriented
programming would be: decide which classes designers want; provide a full
set of operations for each class and make commonality explicit by using

inheritance.

Nygaard (1986) discusses object-oriented programming in terms of the
concept of objects in Simula-67. In that language an execution of a computer
program is organised as the joint execution of a collection of objects. The
collection as a whole simulates a real-world application, and objects sharing
common properties are said to constitute a class. Madsen and Moller-
Pedersen (1988), like Nygaard, regard object-oriented programming as a
model which simulates the behaviour of either a real or imaginary part of the
real-world. The model consists of objects defined by attributes and actions,
and the objects simulate phenomena. Any transformation of a phenomenon
is reflected by actions on the attributes. The state of an object is expressed by
its attributes and the state of the whole model is the state of the objects in
that model.

-35.

Chapter 2 - Object-Oriented Design

Nevertheless, there is more to object-oriented programming than message
passing and simulation. The object-oriented paradigm is still lacking a well-
known and profound theoretical understanding, but some research has been
appearing in this area. For instance, Wolczko (1988) attempts to define
object-oriented programming, by defining what an object-oriented language
is. Wolczko goes on to describe the essential features of the object-oriented
paradigm, such as objects, classes, dynamic binding and inheritance with
formal methods using denotational semantics based on VDM (Jones, 1986).

Lastly, Wegner (1987) defines an object-oriented approach in terms of
objects, classes, inheritance and abstract data types. Objects are autonomous
entities that respond to messages or operations and have a state; classes
classify objects by their common operations; inheritance serves to classify
classes by their shared behaviour; and abstract data types hide the
representation of data and the implementation of operations. The
characterisation of an object-oriented approach by Wegner is closest to the
one to be presented in this thesis.

As it has been shown, there are many different interpretations of the object-
oriented paradigm. Nevertheless, one thing that all definitions have in
common, not surprisingly, is the recognition that object is the primitive
concept for the object-oriented paradigm. Therefore, it is better to
characterise what the term object means before starting to use it. Curiously
though, it is notoriously difficult to capture precisely what is meant by an
object. In fact, there are two aspects with which the object-oriented paradigm
deals: the first is an object-oriented model composed of objects, classes and
inheritance mechanism (discussed in the next subsections) and the second is
the philosophy of object-oriented design (discussed in the next section).

The object-oriented model comprises a collection of principles which forms
the foundation of the object-oriented paradigm. The next subsections cover
the concepts, features and mechanisms which are common to the object-
oriented paradigm and set the terminology to be used in the remainder of

this thesis.

-36 -

Chapter 2 - Object-Oriented Design

2.4.1 Objects

An object is an encapsulation of some state together with a defined set of
operations on that state. An object embodies an abstraction characterised by
an entity in the real-world. Hence, it exists in time, it may have a changeable
state and can be created and destroyed. An object has an identity (which is a
distinguishing characteristic of an object) that denotes a separate existence
from other objects. The object's behaviour characterises how an object acts
and reacts in terms of changes in its state. In fact, each object could be viewed
as a computer endowed with a memory and a central processing unit, and

able to provide a service.

2.4.2 Classes

A class (or type) is a template description which specifies properties and
behaviour for a set of similar objects. Every object is an instance of only one
class. A class may have no instances (usually termed an abstract class).
Every class has a name and a body that defines the set of attributes and
operations possessed by its instances. Note that the term object is sometimes
used to refer to both class and instance (especially with languages like
Smalltalk where a class is itself an object). However, it is important to
distinguish between an object and its class; here the term class is used to
identify a group of objects and the term object to mean an instance of a class.

Attributes and operations are usually part of the definition of classes.
Attributes are named properties of an object and hold abstract states of each
object. Operations characterise the behaviour of an object, which is
expressible in terms of the operations meaningful to that object. The
operations are the only means for accessing, manipulating and modifying the
attributes of an object. An object communicates with another through a
request, which identifies the operation to be performed on the second object.
The object responds to a request by possibly changing its attributes or by
returning a result. The interface comprises of the set of operations which can
be requested by other objects; the external view of an object is nothing more
than its interface. Figure 2.4 represents a real-world entity called dictionary
mapped in terms of object-oriented concepts.

-37-

Chapter 2 - Object-Oriented Design

By using the concepts involving classes and objects as stated above some
important characteristics, such as abstraction, encapsulation and
modularity are achieved. These characteristics are recognised as being
features of good quality software, therefore the object-oriented paradigm, in
theory, encourages high quality software development.

CLASS DICTIONARY

real-world entity Attributes:

@ Number of entries

® List of words and meanings

Dictionary |

Operations:

® Add-word (word, meaning)

® Delete-word (word)

® Look-up-word (word)

O OD D

h

Requests:

Add-word(new-word, meaning)

Delete-word(old-word)

Look-up-word(a-word)

Figure 2.4 Concepts Related to the Object-Oriented Paradigm

-38-

Chapter 2 - Object-Oriented Design

2.4.3 Inheritance

The Inheritance mechanism can be used to represent a relationship
between classes. It is a mechanism for sharing commonalities (in terms of
attributes and operations) between classes. Every inheritance relationship
has parents called the super-classes and children called the sub-classes, and
attributes and operations inherited. When a sub-class inherits
commonalities from one super-class, this is called single inheritance. When a
sub-class inherits commonalities from two or more super-classes, this is
called multiple inheritance. Thus, single inheritance is a particular case of

multiple inheritance.

For example, quadrangles and triangles are special kinds of polygons. In the
same way, squares and rectangles are special kinds of quadrangles. These
relationships are easily captured by inheritance, as illustrated as a
hierarchy of classes in Figure 2.5. When the quadrangle class inherits from
the polygon class, quadrangle class is referred to as sub-class and polygon
class as super-class. At the highest level, all polygon objects may have the
number-of-sides attribute, and are able to be drawn and scaled, which can be
seen as operations on polygon objects. These attributes and operations may
be defined in the root polygon class and inherited as they are, or even be
modified in the quadrangle class. The quadrangle class might also define the
rotate operation for itself. In this case, the quadrangle class has two parts, an
inherited part and an incremental part. The inherited part is derived from
the polygon class and the incremental part is the new part defined in the

quadrangle class.

Problems with Inheritance

Inheritance is a powerful concept but gives rise to some complex issues
including overriding of inherited commonalities. The evaluation of
inheritance also reveals that it may violate encapsulation because by using
inheritance a sub-class might access or refer to an attribute in its super- :lass
and an operation in a sub-class can call a private operation of its super-class.

Furthermore, inheritance could also be misused in the situation where a
super-class is created as an aggregation of sub-classes, not as a

-39-

Chapter 2 - Object-Oriented Design

polygon

triangle
quadrangle

square rectangle

Figure 2.5 Hierarchy Representing Inheritance

specialisation. For instance, a course class might be created as an
aggregation of a student class and a lecturer class, but in the real-world,
students and lecturers are not specialisations of courses, and therefore they
should not be sub-classes of a course class.

The use of inheritance is sometimes acceptable but not recommendable when
it does not reflect concepts in the real-world. For instance, an ellipse defined
by two focii and one radius is not a specialisation of a circle defined by one
focus and one radius. Actually, a circle is conceptually a specialisation of an
ellipse because a circle has two coincident focii.

In the context of this thesis, inheritance is defined as a mechanism for a
hierarchical classification of attributes and operations at design level, and
resource sharing at implementation level based on class hierarchies. Since
commonalities can be shared by means of inheritance, a library of reusable
components is typical during an object-oriented software development as can

be seen in Chapter Five.

-40 -

Chapter 2 - Object-Oriented Design

2.5 PHILOSOPHY OF OBJECT-ORIENTED DESIGN

Object-oriented design is an approach to software development in which the
design of a software system is based on the creation of a collection of classes
which map entities of a real-world application into a software solution in a
solution domain. The real-world entities are subsequently simulated in a
computer by corresponding software objects which mirror the behaviour of
their real-world counterparts. The design process, in itself, is independent of
any particular programming language, and similarly, a good design
methodology should be independent of any programming language.

Some designers are used to thinking in terms of functional decomposition,
emphasising functions and processes, rather than in terms of classes and
objects which characterise object-oriented design. As a result, when those
designers first try to use the object-oriented paradigm, they map the
functions they would have created directly onto objects. They also have other
difficulties such as mapping system behaviour with wrong objects, or
creating class hierarchies which poorly correspond to the real-world
applications. The problem is that such designers are not skilled in how to

apply the object-oriented paradigm.

Other designers suggest that a good way to find classes for an object-oriented
software system is to start from a natural language description of the
software requirements and to underline nouns which will represent objects.
For example, a sentence from a requirements description of the form "the
radar must track the position and speed of an incoming aeroplane" would
lead an object-oriented designer to detect the need for two objects, radar and

aeroplane.

According to Meyer (1988), this is only a simple minded technique, and it can
only give rough first results. For example, it is not clear whether two of the
nouns in the sentence, position and speed should also be identified as objects
rather than attributes of an aeroplane object. A better approach is to use the
idea behind abstract data types: a concept should only be made into a class if
it describes a group of objects marked by interesting operations with
meaningful properties. So, should the position of airplanes yield a class? If
there are no specific operations on position, then it should be an attribute of a
class aeroplane. Alternatively, if position is a meaningful entity with

-4 -

Chapter 2 - Object-Oriented Design

associated operations (for instance, distance to another point, measurement
error or conversion to another coordinate system) then it is worthwhile

defining a position class.

Despite the importance of creating a model of an application during software
design, current object-oriented design methodologies have not highlighted
how to construct a design model based only on classes, objects and
inheritance. Designers using these methodologies are often faced with the

following difficulties:
® where do classes and objects come from?

® what concept in the application is to be a class of objects, and what is
not to be?

® what is the best way to decompose a software system into a set of

classes and objects?
e which operation realises a required functionality?

e which is the best set of operations to perform a particular

functionality?

These were the central questions posed at the Workshop on Specification and
Design of Objects (Power, 1988). Unfortunately, the consensus among the
participants was that it is difficult to find the right classes and objects.
Nevertheless, a design methodology might help to answer these questions
because it provides rules and guidelines which aim to build a design model
composed of classes and objects, and therefore this would systematise the

whole design process.

Building a design model is an activity of fundamental importance because
the efficiency of the design process and the quality of the final software
system greatly depend on the clarity, completeness and consistency of that
design model. The representation of a model may consist of organisational
and graphical notations suitable for describing the application
diagramatically. Certain diagrams are believed to be useful for describing
the design model. For instance, class diagrams might show the hierarchies
among the classes, and object diagrams could show communications between

objects.

-42 -

Chapter 2 - Object-Oriented Design

Therefore, the best way to characterise the philosophy behind object-oriented
design is to centralise the design process on the concepts of classes and
objects. That is, similar objects in an application domain are identified and
abstracted as classes in an solution domain; properties of the objects are
abstracted as attributes and operations, and communications between
objects are abstracted as requests. Relationships between classes define class
hierarchies; classes with common properties may be generalised into a super-
class; classes may also be specialised into sub-classes. This process can be
repeated and, as a result, several class hierarchies might emerge.

The philosophy of object-oriented design is inspired by three different ways
in which designers can structure their knowledge about an application:

1) Classification and instantiation.
2) Generalisation and specialisation.

3) Decomposition and composition.

Classification and instantiation help organise objects into classes because
a class is a set of objects which share common properties; classification of
objects leads to classes, whereas instantiation of classes leads to objects.
Typically, classification starts by identifying properties shared by more than
one object in a given design. Identification of common properties depends on
the intended use of the objects. The objects which share the same properties
are grouped together into classes and regrouping may occur several times
until the organisation of a set of classes becomes stable.

Generalisation and specialisation introduce the concepts of super-classes
and sub-classes. These closely related concepts provide much of the power of
the object-oriented paradigm. Generalisation supports the exploitation of
commonalities between classes. When two or more classes represent
overlapping sets of attributes and operations, the commonalities may be
factored out of both classes and used to create a new super-class with those
previously overlapping commonalities. Specialisation guides designers in
the reuse of existing abstractions by defining new sub-classes which are
more specific than existing classes. The sequence of creating class
hierarchies may vary. A super-class may be created first and then the sub-

classes, or vice versa.

-43 -

Chapter 2 - Object-Oriented Design

Decomposition and composition are two important techniques which can
be used during the design process. Decomposition divides a large component
into smaller and simpler components which may then be refined
independently. Using the object-oriented paradigm, decomposition is based
on classes and objects. In contrast, small and simple components can be
aggregated and evolve incrementally into larger components through

composition.

During object-oriented design a hierarchy of classes may be built from
general to particular, from particular to general or through a mixture of both
approaches. The first approach starts from a general class and through
specialisation reaches sub-classes, and eventually objects. The second
approach starts with objects or sub-classes, from which properties are
generalised into super-classes. Classification, instantiation, generalisation
and specialisation may be used to structure and rearrange existing classes
into new ones or into class hierarchies. In fact, a combination of both
approaches is more likely to be used, depending on what designers know
best; whether classes as a whole or some objects. These issues are further

investigated in Chapter Five.

2.5.1 Domain Analysis

Domain analysis involves the investigation of a specific application domain
and seeks to identify and classify the components which commonly occur in
software systems within that application domain in order to formulate
concepts about that application domain (Prieto-Diaz, 1988). Thus, domain
analysis is an activity which can be carried out at the beginning of software

development.

The idea of domain analysis is to attempt to identify and classify components
and relationships which are perceived to be important within an application
domain. Such identification and classification of components may arise from
the vocabulary used in that application domain, usually in the form of key
words and semantic relationships between the components. The
identification and classification of components help to establish important

-44 -

Chapter 2 - Object-Oriented Design

relationships between them, which can be connected and organised
according to their semantic meaning in that application domain.

Domain analysis and the object-oriented paradigm are closely related. The
domain analysis process can be employed to produce an initial set of classes
which are reflections of the main conceptual entities within an application
domain. Essential features of that application domain can be captured and
initial candidates for classes can be identified. Consider for example the
application domain of airline reservation systems. Typical components of
these systems are: seats, flights, crews and passengers; and relationships
might be: schedule a flight, reserve a seat to a passenger, assign a crew to a
flight, and so on. During object-oriented software development, designers
also have to identify entities in the real-world application which will become
classes and objects in the software system. The identification of classes and

objects can also be pertinent to a domain analysis process.

Relatively little work has been done in the area of object-oriented domain
analysis. Perhaps the most significant work is being carried out within the
Ithaca environment (Tsichritzis, 1989), where a range of object-oriented tools
for early software development has been created. Ithaca aims at building an
environment to support the development of object-oriented software systems
in a variety of application domains. The environment includes:

® An object-oriented language with database support.

® A software information base which stores and manages information
concerning reusable software and its intended use.

® A selection tool for browsing and querying the software information

base.

® A variety of application development tools built around the software

information base.

The main idea behind Ithaca is to provide an environment which will support
software engineers in developing and maintaining software systems in a
number of different selected application domains. Instead of focusing on the
individual application, the goal is to produce workbenches containing

-45-

Chapter 2 - Object-Oriented Design

software components and generic application frameworks which characterise
the software systems of a particular application domain.

Gossin and Anderson (1990) propose a method for domain analysis which
produces a collection of reusable components specific to an application
domain. They claim that the components which result from domain analysis
are better suited for reuse because they capture the essential functionality
required in that application domain. Thus, designers find these components
easier to include in new software systems in that application domain. The
key issue is a careful domain analysis in order to identify the basic
components within that application domain and, if possible, reuse them from

a library of reusable components.

2.5.2 Reuse of Software

Reusability is the practice of incorporating existing software components
into software systems for which they were not originally intended.
Reusability is an important area in software engineering and holds the
promise of improving software quality and reducing software development
costs and time; as a result, reusability can bring about great improvements
in productivity. It is likely to be more cost effective spending some time
searching for a reusable component rather than defining, implementing and

testing a new component.

In the past, the idea of reusability was linked with source code reuse or
invoking subroutines from a library. Therefore, software reuse was usually
performed at the implementation phase (Freeman, 1984). However, reuse of
source code during the implementation phase is a very limited kind of
reusability. Moreover, it is too late to consider reusability only at the
implementation phase. Greater benefits are obtained when reusability
occurs at more conceptual levels. From the beginning of the software life
cycle, designers should be aware of the potentially reusable software
components because reusability at design time will certainly influence the

implementation phase.

Some researchers have been investigating means to reuse parts of a software
specification and design (Lanergan, 1984; Horowitz, 1984; Neighbours,

- 46 -

Chapter 2 - Object-Oriented Design

1984). At a higher level than implementation, reusability involves a
classification of software components which gives the information on what
each component does, and accessibility which allows a component to be
searched for, retrieved and hence reused (Bifferstaff, 1987).

There are many reasons for disappointments regarding design with
reusability. Most of the difficulties have centred around the problems of
classifying the components, searching for potentially reusable components
and accessirig libraries of reusable components. Furthermore, reusability is
inhibited by a high initial amount of time required to explore libraries of
reusable components, which may also involve accessing components, and
adapting them if necessary. Components may have a lot of characteristics
which need to be understood, and this is, of course, time consuming. Another
relevant factor that hinders reusability is that many software development
environments do not have an automated support for libraries of reusable
components, and those which have, suffer from a steep learning curve

because the components were not explicitly designed for reuse.

In addition, there are problems involving the design of components for
reusability. For instance, there is a conflict between the need to develop
components on schedule for use in a specific software system or to take
additional time to make them generic for possible reuse in future software
developments. Therefore, reusable components need more development effort
because more time is spent to make them generic and robust.

Reusability throughout the entire software life cycle is an idea that has
appealed to software engineers for a long time. Unfortunately, the infamous
not-invented-here argument is particularly apparent when dealing with
reuse of software. Additionally, Tracz (1988) exposes some myths about

software reuse and states that:

® Software reuse is a technical and non-technical problem involving

psychological and economic barriers.

® Available database technology can be applied to store and retrieve

reusable components.

® Reuse at most doubles productivity during software development.

-47 -

Chapter 2 - Object-Oriented Design

® Domain analysis can play a role in solving the reuse problem.

® Designing software from reusable parts is not like designing hardware
using available integrated circuits.

® Reusing software that was not planned for reuse is harder than
reusing software that was designed for reuse.

® Software reuse will not just happen.

This thesis is only concerned with the mechanisms used to put reusability
into the context of the methodology for object-oriented design which has been
developed (see Chapters Four and Five); it does not consider how software
components are stored in a reusable library nor how they are retrieved. It is
simply assumed that software components are available from a reusable
library. Some solutions to the problem of how object-oriented software
components are managed within a reusable library can be found in Tarumi et
al. (1988), Oosthuizen et al. (1990), Embley and Woodfield (1987) using
expert systems, and Sixtensson and Wenchuan (1990) for telecommunication

systems.

Reusability during Object-Oriented Design

The ability to support software reuse is an important aspect of the object-
oriented paradigm. This paradigm encourages reusability rather than
reinvention because it offers some advantages such as:

® C(Classes and objects are good abstractions of concepts present in real-

world applications.
® (Classes and objects support modularity and encapsulation.
® Reusable classes can be easily stored in and retrieved from libraries.

@ (lasses can be specialised by sub-classifying, and both attributes and
operations can be reused in sub-classes.

e (Classes can be organised into frameworks to serve as templates to a

particular application domain.

-48 -

Chapter 2 - Object-Oriented Design

Micallef (1988) suggests that when an existing class is not exactly what is
required for a new software system, designers should customise that existing
class in some way to fit its new purposes. There are three ways of performing

such customisation:
a) modify the original class definition;

b) make a copy of the original class definition and modify the copy;

¢) modify the original by augmentation.

The problem with the first approach is that the original class becomes more
complicated as it is tailored for use in several applications. The modification
usually consists of a case statement which executes a different code
depending on which application is currently using that class. This creates
classes which are difficult to understand and to extend, and this really is
against the object-oriented paradigm. Modifying a copy of a class has an
updating problem, because replicated changes are not usually made
automatically to all copies. The third alternative is achieved with
inheritance where a new abstraction is defined by specifying in a new sub-
class the difference between that new class and a preexisting super-class,
and appending that new class to the old one by making the former a

specialisation of the latter.

A good example of reusability can be found within the Smalltalk system
community who has no aversion to reusing the system components. Users of
the Smalltalk system often spend as much time browsing the system classes
to see whether there are classes which can be reused as they spend writing
new classes. Software reuse in Smalltalk is prevalent because the Smalltalk
language and environment are so special that it is easier to modify and reuse
existing classes than to create new ones.

Nevertheless, reusability is not straightforward in practice. Raj and Levy
(1989) observe that in order to make reusability a reality under an object-
oriented approach, designers must create new reusable classes and easily
find potentially reusable ones, already developed. Creating new reusable
classes is a difficult task because the class correctness becomes more critical
since errors are replicated whenever and wherever a carelessly designed

class is reused.

=49 -

Chapter 2 - Object-Oriented Design

Finding existing classes means organising them in such a way that they can
be rapidly found when needed by designers. One real disadvantage of reusing
classes from reusable libraries is the time that it takes to master large, and
not always well organised, libraries of reusable classes. Traditionally, ways
to overcome these difficulties have included attempts to provide written
documentation for classes and to develop browsers which facilitate the
selection and reuse of a class. Another major problem in designing a large
reusable library is organising the complex semantic relationships that exist
between classes in an application domain. Therefore, there will be a slow
learning curve due to the inherent difficulties in understanding and relating

the classes in a reusable library.

These problems often turn reusability into a superficial and haphazard
process, and the usefulness of a reusable component depends more on the
similarity of two applications, luck, and foresight of designers rather than on
engineering purpose. To achieve anything better than this ad hoc process,
semantic relationships between the reusable components need to be
identified and kept in reusable libraries. A set of fixed relations which can be
derived from the methodology for object-oriented design proposed in this
thesis, and which can express links between software components is proposed

in Chapter Five.

Johnson and Foote (1988) emphasise that the object-oriented paradigm is not
a panacea for reusability. They argue that software reusability does not
happen by chance and designers must plan to reuse old classes and new
classes must be designed for reusability. Tools which facilitate the selection
of potentially reusable components and methodologies which enforce
reusability are the keys to successful reuse of software components.
Reusability should be enforced as part of a methodology which gives support
for it through pragmatic steps which help identify reusable components. As
will also be presented in Chapter Five, by using the object-oriented
methodology proposed in this thesis, reusability is taken into account during

the design of a software system.

-50-

Chapter 2 - Object-Oriented Design

2.5.3 Software Life Cycle Models

In this subsection, some important issues concerning software life cycle
models are discussed. It is appropriate to examine different software life
cycle models in general and to point out their strengths and weaknesses
before a new one is proposed. This discussion provides background
understanding the object-oriented software life cycle model proposed in

Chapter Five.

Software life cycle models for software engineering have long been used by
the software development community. The primary utility of software life
cycle models is to determine the order of the phases or stages involved in
software development and evolution. Software life cycle models are also
important because they provide guidance for the order in which the major
tasks to construct a software system should be carried out.

The Waterfall Software Life Cycle Model

The classic description of the software life cycle is based on a model
commonly referred to as the iterative waterfall model (Royce, 1987), which
has become the most prevalent software life cycle model. This model initially
attempts to identify phases within software development as a linear series of
actions, each of which must be completed before the next is commenced.
Although there are a variety of different names for each of the phases, they
are basically: requirements, specification, design, implementation and

maintenance.

At a gross scale, three phases of the waterfall model are generally agreed
upon: specification, design and implementation. Often the requirements and
specification phases are called analysis, and therefore the analysis phase
covers the time from the initiation of the software system, through the user
needs and feasibility study, to the high level specification for the software
system. Design can be divided into early design and detailed design;
following from the design, implementation is carried out. During the
maintenance phase, software engineers are asked to add new functionality,
fix faults or modify some existing behaviour.

.51

Chapter 2 - Object-Oriented Design

The waterfall model is marked by the apparently neat, concise and logical
ordering of the series of obvious phases which must be followed in order to
obtain a software system. Such a model assumes that the specification phase
should be completed and verified before design could begin, and that the
design phase should be completed and verified before implementation could
begin, and so on. Therefore, the waterfall model supposes that designers

complete an entire step, before going to the next.

Further refinements to this software life cycle model consider that
completion is seldom absolute and that iteration back to a previous stage is
likely to happen. In an iterative model, if there is sufficient reason to do so,
designers may return to a previously completed step, introduce a change, and
then propagate the effects of that change forward in the software life cycle, as

represented in Figure 2.6.

Requirements

‘\ Specification \
\ Design

k- Implementation \
A\ Maintenance

Figure 2.6 The Classic Waterfall Software Life Cycle Model

The waterfall model, as described above, is frequently based on a view of the
real-world application interpreted in terms of a functional decomposition.
The idea is simple enough: select a piece of the application (initially the

-52-

Chapter 2 - Object-Oriented Design

whole application) and determine its main parts, generally based on the
required functionality for the software system. Repeat the previous steps on
each of the subparts until the functionality is well detailed. Functional
decomposition is typically a top-down process and tools used to support this
approach, which is usually based on functions and data flow, include data
flow diagram editors, data dictionary generators and structure chart editors.

It is possible to describe the functional decomposition approach as
fundamentally top-down. A top-down approach has the following

characteristics:
® it progresses from the general to the specific;

® it decomposes software systems into layers and in each layer there is a

uniform level of abstraction;

e components at higher level of abstraction treat components at lower

level of abstraction as black boxes;

® components at low level of abstraction are unaware of components at

higher levels of abstraction.

The top-down approach imposes some discipline during software
development, but it has been criticised as not being totally appropriate to

support contemporary software development paradigms, such as prototyping
and object-oriented. However, despite the frequent criticism of the waterfall

model, no satisfactory replacement has gained widespread acceptance. The
main flaws in the waterfall model can be summarised as follows:

® it takes no account of evolutionary development and prototyping;

® it often characterises a software system as a single and large high

level function;

® it is based on a functional decomposition approach, and the data

aspects are often neglected;
® it does not encourage reusability within its phases;

® it does not address the concern of developing similar software systems;

.53-

Chapter 2 - Object-Oriented Design

® it does not consider the previous knowledge that designers may have

about the application domain;

® it assumes a relatively uniform progression through software

development;

® it attempts to separate software development into distinct phases,
though it is quite common to carry out some of them in parallel.

The successive stages used in the waterfall model have helped eliminate
many of the difficulties previously encountered during software development
and it has gained great acceptability. But even with the extensive revisions
and refinements of the waterfall model, its basic scheme has encountered
significant difficulties, and these have led to the formulation of substitute

software life cycle models.

A Spiral Software Life Cycle Model

An alternative software life cycle model, named a spiral model (Boehm,
1988), has been proposed mainly in order to speed up software development.
A spiral model, as simply depicted in Figure 2.7, makes software

development more flexible but it is strongly linked with prototyping.
Prototyping is the process of building software system models which exhibit
some of the behaviour of the final software system. Prototyping provides
constructive feedback to the potential users and designers so that
requirements can be refined and clarified early during software

development.
A typical spiral model usually observes the following stages:
1) identify the basic requirements and objectives of the software system;

2) study alternatives to implement a software system which meets these

requirements;

3) select one alternative which satisfies partial requirements of the

software system,;

-54 -

Chapter 2 - Object-Oriented Design

Design Requirements

N,

Validation Prototyping

Figure 2.7 A Spiral Software Life Cycle Model

4) implement a prototype with a minimum effort in order to understand
the overall nature of the software system;

5) exercise and validate the prototype against the requirements and
objectives, based on the experience from its use;

6) use the feedback to understand better the design and requirements to

reflect the user needs;
7) go back to the first step.

The idea of producing, as early as possible, a working prototype is widely
accepted in engineering. The main idea behind this software life cycle model
is to build, cheaply and quickly, a prototype which partially meets known
requirements for a software system, with a small team of designers. The
purpose of a software prototype is to produce an experimental model which is

Chapter 2 - Object-Oriented Design

essentially a learning device and provides feedback to designers so that the
final implemented version has a better chance of meeting the requirements.

A big advantage that a prototype can bring to the requirements definition
process is the capability of bridging the communications gap which often
exists between final users and designers because of their different
background. The potential users utilise the prototype for a period of time and
supply feedback to designers concerning its strengths and weaknesses. Each
cycle is completed with a validation and review of the prototype, and the
improvements to be added to the prototype, until a complete software system

is built.

There are some advantages to this kind of incremental software

development:

® important feedback to designers is provided at the beginning of
software development, when it is most needed and most useful;

® designers could use several prototypes, which allow them to evaluate
and take a decision among several alternatives;

® many errors, non-viable and unattractive alternatives can be

eliminated early;

® iterations and feedback are accommodated in the software life cycle

model;
® the system interface is defined and tested early;

® designers and users can see results much earlier in the development
process, which provide a good psychological boost to them;

® and most important, costs are reduced because users do not change
their requirements late in the development process.

A spiral model presents an organised approach to prototyping and eventually
to software development. Furthermore, a spiral model is useful in software
developments where many options are possible, and requirements and
constraints are unknown at the beginning of software development.
Evolutionary prototypes provide incremental software development, so that
software systems may be gradually developed and tested, allowing errors to

-56 -

Chapter 2 - Object-Oriented Design

be revealed and corrected earlier than in the waterfall model, which means

that they are often cheaper to fix.

A prototype is not intended to be complete nor is it supposed to be robust in
the sense of a final piece of implemented software system. Therefore, not all
aspects of the software system are prototyped. Only the most important
functionality is emphasised, not the exceptional conditions nor particular
special cases. Data validation and error handling are not as comprehensive
in the prototype as they are in the final software system. Performance
considerations are frequently ignored in the prototype. Thus, a prototype is
usually inefficient and clumsy because it has very limited error trapping and
recovery procedures. Basically, the prototype is there to simply show,

develop and test an idea.

Because of those limitations, prototyping can be effective but only as part of a
disciplined software development. Without clear and explicit goals and a
commitment to keep design up to date, this style can degenerate into
uncontrolled hacking. Consequently, employing rapid prototyping can be a
risk if it is decided to deliver a prototype as a product instead of discarding it.

The construction of a prototype follows essentially a bottom-up approach. A
bottom-up approach has the following characteristics:

® it surveys an application and attempts to identify necessary

components;

® it gives priority to the discovery or modification of components over

creation of new ones;
® it usually considers components as black-boxes;
® it assembles simple components to form larger and more complex ones;
® it progresses from the specific to the general.

Nevertheless, a bottom-up approach is sometimes chaotic, and some
designers might say that it is marked by a code-first-think-later mentality.
Moreover, a purely bottom-up approach is not appropriate for developing
large software systems, thus, the smaller a software system is, the greater
the likelihood that a bottom-up approach will be used.

-57-

Chapter 2 - Object-Oriented Design

Other Software Life Cycle Model Proposals

Blair et al. (1991) state that there is a significant change to software life cycle
models as a result of the new way of using an object-oriented approach to
software development. Many object-oriented designers have identified the
need for software life cycle models which permit the kind of iterative
software development and gradual change which occurs in the development
of large object-oriented software systems. However, only recently have
object-oriented software life cycle models been studied.

Henderson-Sellers and Edwards (1990) propose a top-down analysis and a
bottom-up implementation of object-oriented software systems. This is based
on the recognition that the designer's view of a software system changes
continuously, and software development is rarely well-behaved. The
fountain model proposed by them defines the software life cycle in terms of
merging and overlapping the following activities: requirements analysis,
user requirements specification, software requirements specification, system
design, program design, coding, unit testing, system testing, program use
and maintenance or further software developments. Nevertheless, the
fountain model does not state clearly, for example, when one stage finishes
and another starts or what the product of each stage should be. Actually, this
model is different from the waterfall model, in that, it acknowledges natural

overlapping between two adjacent phases.

Booch (1991) argues that it is not possible to categorise object-oriented
design as fundamentally a top-down or bottom-up approach. Booch proposes
what is called "analyse a little, design a little and implement a little"
approach to software development. However, there are no systematic stages
in this approach and it seems to be a kind of design by trial and error offering
an excuse for hacking. This style might be viewed as similar to a middle-out
approach. This line of thought does not make much sense because it is
difficult to trace software development accurately, and depending on the
predominant directions, it could be classified into a top-down or a bottom-up

approach.

Software life cycle models should provide a systematic framework for
software development in such a way that progress can be effectively
monitored with a provision of checkpoints and well-defined stages. Planning

-58 -

Chapter 2 - Object-Oriented Design

techniques should be effectively applied and a library of reusable
components could be extensively used. An alternative software life cycle
model suitable for object-oriented software development is presented in

Chapter Five.

2.6 SUMMARY

This chapter has expanded on the background of the object-oriented
paradigm described in this thesis. At first, it has introduced the notions of
application domains and solution domains, and has showed how the object-
oriented paradigm helps to bring these domains together. After, the profile of
current software systems has been characterised in terms of complexity,
friendliness, extensibility and reusability. Then, the chapter has described
the road towards object-oriented design, has presented an overview of the
most well-known object-oriented languages and has showed how an object-
oriented approach helps tackle the issues presented earlier.

Furthermore, this chapter has investigated the main trends in the object-
oriented arena and introduced some definitions for terms and concepts
related to an object-oriented model (in particular for classes, objects and
inheritance) in order to establish the terminology employed in this thesis.
This has been necessary because there have been no generally accepted
definitions of what these various terms mean even though the object-
oriented paradigm has its roots back in the late 1960s. The terminology
presented is programming language independent and is not linked with any
object-oriented system. In fact, the proposed terminology has been used as
way to characterise an object-oriented model, rather than a precise definition

of the object-oriented paradigm.

Additionally, the chapter has presented essential background knowledge,
and the philosophy upon which object-oriented design is based, by addressing
questions such as: How can one design software systems entirely within an
object-oriented framework? How can one represent and describe software
systems designed in this fashion? How can one relate application domain,
reusability and software life cycle models with an object-oriented approach?
By addressing these issues, the most relevant features of object-oriented
design have been characterised for use in subsequent chapters. It is

-59.-

Chapter 2 - Object-Oriented Design

important that the object-oriented design methodology to be reported in this
thesis be general enough to cover these issues.

In parallel with advances in object-oriented programming languages, several
software development methodologies have been emerging, as well as tools
which totally or partially automate such methodologies. In particular,
various object-oriented methodologies have recently arisen to support
software development based on the object—orier}ted paradigm, as will be seen

in the next chapter.

-60 -

Chapter 3

CLASSIFICATION OF OBJECT-ORIENTED
METHODOLOGIES

This chapter presents the current state-of-the-art in object-oriented
methodologies. The purpose of the first section is to identify the major
similarities and differences between the methodologies, and hence to
compare and classify them. To a large extent, the classification and
comparison synthesise different directions of thoughts, for instance, the
phase of the software life cycle for which a methodology is suitable; whether
it is language-dependent; and whether it mixes with other approaches.

The second section presents a flavour of the most well-known object-oriented
methodologies, in order to evaluate their main strengths and weaknesses.
The coverage of these methodologies is concise and any graphical notation
associated with each methodology is shown only briefly; the references can
be used to provide additional information. From this outlook, the chapter
points out gaps which could be filled by new methodologies.

It is useful at this point to define concepts such as method, technique,
methodology, tool and environment. A method is defined as a set of
systematic activities to carry out a task. A technique is the way to execute
activities recommended by methods, and a methodology is a set of methods
and techniques with which an objective may be reached. A tool is a resource,
automated or manual, that aids the application of a methodology; and
finally, an environment is a set of tools.

61-

Chapter 3 - Classification of Object-Oriented Methodologies

3.1 CLASSIFICATION OF METHODOLOGIES

Many methodologies have been proposed over the last few years. Such
methodologies provide some discipline in handling the problem of software
complexity because they usually offer a set of rules and guidelines to help
software engineers understand, organise, decompose and represent software
systems. Such methodologies may be classified into three approaches.
Firstly, some methodologies deal with functions; they emphasise refinement
through functional decomposition. Typically, software development follows a
top-down fashion by successively refining functions, for example, Structured
Design (Yourdon, 1979), HIPO (Stay, 1976) and Stepwise Refinement

(Wirth, 1971).

In a second trend, there are methodologies which recommend that software
systems should be developed with emphasis on data rather than functions.
That is, the system architecture is based on the structure of the data to be
processed by a software system. The software system should be structured
mainly through the identification of data components and their meaning.
This sort of style can be noted in an early Jackson Structured Programming
methodology (Jackson, 1975), SLAN-4 (Beichter, 1984) and the Entity-
Relationship Model (Chen, 1976). The Entity-Relationship Model (ERM) is
the most common approach to data modelling. ERM is a graphical technique
which is easy to understand, yet powerful enough to model real-world
applications, and entity-relationship diagrams are readily translated into a

database implementation.

A third fashion consists of methodologies which aim to develop software
systems from both functional and data points of view but separately.
Examples of such methodologies are SADT (Ross, 1977), Structured Analysis
and System Specification (DeMarco, 1979) and Structured System Analysis
(Gane, 1979). SADT provides different kinds of diagrams to represent
functions and data. As far as Structured Analysis and Structured System
Analysis are concerned, designers can represent and refine functions
through data flow diagrams and use a data dictionary to describe data. These
methodologies organise a specification and design around hierarchies of
functions. They begin by identifying one or more high level functions which
describe the overall purpose of a software system. Then, each high level

-62 -

Chapter 3 - Classification of Object-Oriented Methodologies

function is decomposed into smaller, less complex functions, until they can be

implemented.

There are also some software development environments which have
automated some of those methodologies. The chief purposes of these
environments are to increase productivity and enhance the quality of the
developed software system. PSL/PSA (Teichroew, 1977) and EPOS (Lauber,
1982) are good examples of such environments.

A combination of approaches which follow a structured analysis, structured
design and structured programming is collectively known as the structured
development approach. Structured development iteratively divides
complex functions into subfunctions. When the resulting subfunctions are
simple enough, decomposition stops. This process of decomposition is known
as the functional decomposition approach. Structured development also
includes a variety of notations for representing software systems. During the
specification and analysis phases, data flow diagrams, entity-relationship
diagrams and a data dictionary are used to logically describe a software
system. In the design phase, details are added to the specification model and
the data flow diagrams are converted into structure chart diagrams ready to

be implemented in a procedural language.

Preferably, there should be specific methodologies suitable to object-oriented
software development because there are specific object-oriented concepts
involved. The unsuitability of those mentioned methodologies for tackling
the object-oriented software development problem suggests the use of
different methodologies followed by an informal change of approach, from a
functional decomposition to an object-oriented, during software
development. For instance, the designer starts analysis following a
functional decomposition point of view and afterward, during the
implementation phase, changes to an object-oriented point of view. This
change in approach leads the thought process to follow an object-oriented
approach in the middle of software development instead of starting software
development based on classes, objects and inheritance from the outset.

Structured analysis has been suggested as an attractive front-end to object-
oriented design primarily because it is well-known, many designers are
trained in its techniques, and many tools support its notation. However,
structured analysis is not the optimal front-end to object-oriented design,

-63-

Chapter 3 - Classification of Object-Oriented Methodologies

mainly because it can perpetuate a functional decomposition view of the real-
world application. Applying a functional decomposition approach first and
an object-oriented approach later on the same software system is likely to
lead to trouble because functional decomposition can not be properly mapped
into object-oriented decomposition. A better trend in analysis is to use an
object-oriented analysis method in which there are attempts to identify and
model the essential classes and objects of a software system.

The object-oriented paradigm organises software systems into classes and
establishes relationships between them. Objects model real-world entities
and combine both attributes and operations. Each object is an instance of a
class which is the building block of a system architecture. A positive benefit
of following an object-oriented approach is traceability between software
abstractions and reality because organising a software system around
classes maps real-world entities into software components, particularly
classes and objects. Thus, any methodology which deals with the object-
oriented paradigm should have a means of representing classes, objects and
inheritance. Ideally, object-oriented design and implementation should be
part of a software development process in which an object-oriented
philosophy was used throughout software development, as illustrated in
Figure 3.1. Such a figure was derived from discussions on similar issues
presented by Loy (1990) and Henderson-Sellers and Constantine (1991). In
Figure 3.1, the dashed arrows represent an unnatural mapping between
concepts of different approaches as opposed to bold arrows.

Experience has shown that simply attempting to combine an object-oriented
approach with a structured development approach is likely to give rise to
some problems. It jeopardises traceability from requirements to
implementation because, in early phases, a software system is described in
terms of functions and later on the description is changed in terms of object-
oriented concepts (see Figure 3.1). Furthermore, structured development
methodologies do not localise information around objects but on data flow
between functions, and a software system is composed of data flow and
functions. In contrast, the object-oriented paradigm organises a software
system around classes and objects which exist in the designer's view of the

real-world application.

- 64 -

Chapter 3 - Classification of Object-Oriented Methodologies

ANALYSI . .
S Structured Object-Oriented
Analysis Analysis
data flow + ‘o
entity- class diagrams
relationship
diagrams i
e
DESIGN Object-Oriented
Structured Design
Design | (]
"""""""" . class +
structure object
charts diagrams
N
=
IMPLEMENT. Structured Object-Oriented
Programming Programming
data encapsulation
structure + (attributes +
functions operations)
Figure 3.1 Some Combinations of Approaches

Moreover, since the concepts of class, object and inheritance are fundamental
to the object-oriented paradigm, if a software system has been designed using
object-oriented concepts, an object-oriented programming language should
be used for the implementation phase. Of course, there are attempts to
implement concepts without a language that directly supports them, but the
results are not likely to be as good as using a proper object-oriented
language. Thus, to implement an object-oriented design, an object-oriented
language is also recommended.

65 -

Chapter 3 - Classification of Object-Oriented Methodologies

From the Designer's Point of View

Designers who have a strong background in object-oriented programming
naturally have a good grasp of object-oriented concepts and have almost no
problem in identifying classes and objects, but some of them tend to consider
software engineering methodologies unnecessary. These designers have
written code using an object-oriented programming language but are often
unable to separate design from implementation. Some of them sometimes
even suggest that methodologies are unnecessary, and that the object-
oriented paradigm obviates the need for methodologies.

A second trend is defined by designers who have good experience with
structured development methodologies. These designers have a relevant
background based on data flow diagrams, entity-relationship diagrams and
structure charts, and argue that structured development and an object-
oriented approach are correlative. These designers have a grasp of more
traditional software engineering approaches and tend to freely mix concepts
from a number of different approaches with an object-oriented approach.
They believe that structured development and an object-oriented approach
are complementary rather than opposing techniques and each might be
applicable at different stages of software development. However, these
designers have come to realise that those traditional structured
methodologies based on a functional decomposition approach do not take the
advantage of the inheritance mechanism.

Another trend is characterised by those designers with a good understanding
of both object-oriented concepts and software engineering principles. Such
designers have attempted to introduce new software engineering concepts
and bring them into synchronisation with the object-oriented paradigm.
They believe that the object-oriented paradigm is so unique that designers
basically have to throw away traditional ideas of the past and tackle object-
oriented software development with a clean slate. This author and the work
presented in this thesis are associated with this trend. These tendencies are
further discussed in the next subsection.

- 66 -

Chapter 3 - Classification of Object-Oriented Methodologies

3.1.1 Classification of Existing Object-Oriented
Methodologies

Recently, there has been a profusion of object-oriented methodologies for
analysis and design influenced by a variety of different backgrounds (Arnold,
1991). Nevertheless, it can be noticed that there are two major directions
concerning object-oriented methodologies:

a) adaptation: this is concerned with the mixing of an object-oriented
approach with well-known structured development methodologies;

b) assimilation: this emphasises the use of an object-oriented approach
for developing software systems, but following the traditional
waterfall software life cycle model.

Adaptation

Adaptation proposes a framework for mixing an object-oriented approach
with existing methodologies. It has been suggested that a combination of
structured development and an object-oriented approach helps tackle the
problem of software development. Designers use their experience and
intuition to derive a specification from an informal description in order to get
a high level abstraction for a software system, based on functional
decomposition. The adaptation of structured development to an object-
oriented approach preserves the specification and analysis phases using data
flow diagrams and proposes heuristics to convert these diagrams into an
object model in such way that subsequent phases can then follow an object-

oriented approach.
The advantages of this adaptive approach are:

® a complementary (though unnatural) coupling between structured
development and an object-oriented approach;

® structured development methodologies are widely known and used,
and support top-down functional decomposition, the most common
fashion for software development;

.67 -

Chapter 3 - Classification of Object-Oriented Methodologies

® asmoother migration from an old, practised and well-known approach
to a new one including classes, objects and inheritance;

® a gradual change of tools and environments to an object-oriented
approach.

Currently, the most widely used software engineering methodologies are
those for structured development. Those methodologies are popular because
they are applicable to many types of application domains. On account of this
popularity, structured development has been mixed up with an object-
oriented approach. Therefore, those desighers who come from a traditional
software engineering background, such as functional decomposition and data
modelling techniques, will probably find the methodologies of Shlaer and
Mellor (1988), Coad and Yourdon (1990) and Rumbaugh et al. (1991) familiar
because these methodologies are clearly adaptations of traditional
structured development methodologies and data modelling techniques.
These methodologies may be used during a period of transition from
structured development to an object-oriented approach as a compromise.
However, they cannot permit the full advantages of an object-oriented
approach to be gained.

This tendency can also be clearly seen in the early version of Booch (1986)
methodology and its successors, such as Seidewitz (1989), Heitz (1989) and
Jalote (1989). These methodologies do not make an adequate distinction
between definition of class and use of objects, which is essential for the
exploitation of the object-oriented paradigm. Similarly, they have offered
limited support for inheritance of commonalities in a hierarchy of classes;
they tend to be oriented to Ada notations of package and task, rather than to
more general notions of object-oriented design.

Other less known proposals where object-oriented concepts are by-products of
structured development could also be considered. Some of these methods are
merely extensions of structured development methodologies. Masiero and
Germano (1988) and Hull et al. (1989) put together an object-oriented
approach with Jackson (1983) methodology, and the product of a design is
implemented in Ada. Kerth (1988) extends Ward and Mellor (1985)
structured development methodology for real-time systems. Bailin (1989)
and Bulman (1989) mix up an object-oriented approach with Structured

68 -

Chapter 3 - Classification of Object-Oriented Methodologies

System Analysis (Gane, 1979) and the Entity-Relationship Model (Chen,
1976) for a object-oriented requirements specification model. Lastly, Alabiso
(1988) and Ward (1989) combine the object-oriented style with Structured
Analysis (DeMarco, 1979), Structured Design (Yourdon, 1979) and the
Entity-Relationship Model (Chen, 1976)."

Adaptation approaches are trying to evolve object-oriented methods from
existing ones and as a result bringing their limitations with them. More
importantly, they do not fit object-oriented software development because
inheritance is not fully exploited.

Assimilation

Assimilation is a trend that puts the object-oriented paradigm within the
traditional waterfall software life cycle model. In recent years several object-
oriented methodologies have appeared but they cover only partially that
software life cycle model. Several authors have tried to fit the object-oriented
paradigm into this framework: Booch (1991), Wirfs-Brock et al. (1990),
Wasserman et al. (1990), Pun and Winder (1989), and Lorensen (1986) can be
considered as good examples.

So far these methodologies are not well-known and not generally accepted,
but their main ideas encompass object-oriented concepts because they are
based on at least classes, objects and inheritance. These methodologies still
need to be used in practical contexts to develop large scale software systems
in order to be evaluated and improved. A discussion of why a new
methodology is required is presented in the third section of this chapter, after
a survey of existing object-oriented methodologies.

3.2 SURVEY OF EXISTING METHODOLOGIES

When unimportant or trivial software systems must be developed, there is no
need to consider software development methodologies. Designers go directly
to the computer and start writing their programs immediately; a lot of
programs have been written in this way. This form of development is feasible
if a few designers work on a small software system, but it is not suitable

69 -

Chapter 3 - Classification of Object-Oriented Methodologies

when large software systems have to be built. In this case, the use of software
development methodologies is highly recommended because they help to
structure software systems as a whole and standardise software development
among designers.

3

Because software systems are essentially abstract, they'themselves are
difficult to represent. In fact, there are many kinds of software systems, for
instance, real-time, process-control, scientific and commercial software
systems, which all require different supporting methodologies. Since the
application domains are different, methodologies with particular
characteristics should be employed. Moreover, there are some specific
methodologies which are applied to specific phases of the software life cycle.
Such restrictions are manifested in the absence of one methodology for
software development which is widely accepted and used. As a result there
are a number of methodologies, methods and techniques, different notations
and conflicting rules, each with its own advantages and disadvantages, as
can be seen in the next subsections.

3.2.1 The Booch Methodologies and Their Influences

The history of object-oriented technology dates from the 1970s, but up to the
mid-1980s, much of the work in the object-oriented arena focused on object-
oriented programming. The application of an object-oriented approach to
software design has occurred since that time, mainly for those familiar with
Simula-67. From the beginning of the 1980s, some attempts to develop
software systems using an object-oriented approach have emerged. The first
significant step towards an object-oriented design methodology, started
within the Ada community. Many ideas about object-oriented design came
out with the research of Abbott (1983) and Booch (1983a), (1983b).

Booch set out to find some mechanism for introducing software engineering
into the Ada training effort and identified the work of Abbott as relevant.
Abbott had described a simple methodology to design using nouns and verbs.
Booch rationalised that methodology, and referred to it as Object-Oriented
Design (Booch, 1983b). Both Abbott and Booch have recommended that a
design should start with an informal description of the real-world application
and from this description designers could identify objects. The work of Booch

-70 -

Chapter 3 - Classification of Object-Oriented Methodologies

is significant because it was one of the earliest object-oriented design
methodologies to be described in the literature. Booch is also one of the most
influential advocates of object-oriented design within the Ada community.

As far as Booch's influences are concerned, they can be summarised a
follows: what has come to be known as object-oriented design in the context
of Ada was first proposed by Booch (1983b), later extended by Booch (1986)
and after refined by Seidewitz (1989), Heitz (1989) and Jalote (1989). Berard
(1986) and Sincovec and Wierner (1987) also present principles and methods
biased by Booch (1983a) with implementation also totally driven towards
Ada. These design methodologies concentrate on identifying objects and
operations, and are object-oriented in the sense that they view a software
system as a set of objects. Most of these methodologies are based on an
informal description or representation of the software requirements, from
which objects, attributes and operations can be identified. Moreover, all of
these methodologies apply hierarchical decomposition, a trend to decompose
a software system by breaking it into its components through a series of top-
down refinements.

The Abbott Methodology

The Abbott methodology is based on the definition of a real-world application
using a natural language description, and deriving a design by considering
mainly nouns and verbs in that description. Abbott believes that the main
ideas of the application should be stated in sentences with which designers
work in order to understand and refine the features of the application.

The Abbott methodology consists of three steps:

1) Develop informal and general statements for the application. This
informal description, which states the application domain and the
application itself, should be expressed in application domain terms. In
other words, write straightforward natural language paragraphs
which describe the application within its application domain.

2) Formalise the informal description. The formalisation consists of
identifying data types, objects, operations and control structures by

S71

Chapter 3 - Classification of Object-Oriented Methodologies

looking at the natural language words and phrases in the informal
description. The formalisation sub-steps are:

a) Identify the data types. Common nouns and noun phrases are
good candidates.

b) Identify the objects (program variables) for those data types. A
proper noun or direct reference suggests an object.

c) Identify the operations to be applied to those objects. This can
be done by examining verbs, predicates and descriptive
expressions.

d) Organise the operations into the control structures implied in a
straightforward way by the informal description.

3) Segregate the solution into two parts: packages and subprograms. The
packages will contain the formalisation of the application domain,
that is, the data types (objects) and their operations. The subprograms
will contain the specific steps (expressed in terms of the data types and
operations defined in the packages) for simulating that particular
application.

The steps focus on what must be done to solve a problem and then how a
solution can be accomplished. The level of abstraction is very high before
step 3 is reached. In simple terms, the main idea is to identify all nouns and
verbs in a specification. Objects in a design will derive from nouns; object
operations will derive from verbs. Obviously, some judgment must be used to
disregard irrelevant nouns and verbs and to translate the remaining
concepts into a design of objects. Adjectives and adverbs become attributes of
objects and operations, respectively. An attribute helps discern specific
characteristics of objects, and can be used to establish the constraints of a
software system. ‘

It must be noticed that although these steps may appear mechanical, they
are not an automatic procedure. It requires intuitive understanding of the
application by designers. The process of identifying the data types, objects,
operations and control structures from a given natural language description
requires a great deal of knowledge about the application and an intuitive

-72-

Chapter 3 - Classification of Object-Oriented Methodologies

understanding of the application domain. It is not just a matter of examining
the syntax of a natural language description.

Several observations can be made at this point. Firstly, Abbott is not
concerned with the concept of inheritance as the steps are being carried out.
Secondly, the viability of the technique of creating an informal narrative
description of a problem, and then selecting data types, objects, operations
and attributes of a software system from nouns, verbs, adjectives and
adverbs of this narrative description is questionable. It inherently lacks
rigour due to the impreciseness of natural languages. Thirdly, methodologies
which rely on natural languages are useful to describe very small software
systems where conceptual links are minimal, but not to design large and
complex software systems because of the ambiguity of natural languages and
the lack of standard structures. Finally, when a software system is large and
complex with many interacting components, it is very difficult to produce a
precise, concise and complete narrative description. Therefore, the
suitability of the Abbott methodology for developing large and complex
software systems may be questioned.

The Booch Methodologies

Booch (1983b) has also viewed the technique of identifying nouns and verbs
as one out of many which could help identify objects. However, realising the
drawbacks of this technique in early works and recognising that this
technique was never actually intended for developing large software
systems, Booch (1986), (1987) methodologies have not advocated the use of a
narrative description anymore. Instead, Booch (1986) has combined object-
oriented design with existing methodologies and called it Object-Oriented
Development. Booch suggested that existing methodologies such as SREM
(Alford, 1977), Structured System Analysis (Gane, 1979) or Jackson
Structured Development (Jackson, 1983) could be used during the
requirements and specification phases as a step before object-oriented
design.

Booch describes a methodology for object-oriented design which begins with
a data-flow-diagram-based specification, decomposes the specification into
objects, finds dependencies between objects, and maps the design into Ada

-73 -

Chapter 3 - Classification of Object-Oriented Methodologies

statements. Booch argues that inheritance is an important, but not a
necessary, object-oriented concept and that software development without
inheritance still constitutes object-oriented software development.

According to Booch (1986) methodology, object-oriented software
development can be divided into the following steps:

1) Define the problem, even informally.

2) Devise a specification.

3) Identify the objects and their attributes from the specification.
4) Identify the operations provided by and required of each object.
5) Establish the visibility to each object in relation to other objects.
6) Establish the interface of each object.

7) Implement each object.

Booch defines an object as an entity that:

has state;

® isdenoted by a name;

® isan instance of some class;

® has restricted visibility of and by other objects;

® ischaracterised by actions that it provides and that it requires of other
objects.

While the identification of objects is being carried out, objects with similar
properties should establish a class, so the concept of class appears early in a
design. Booch also uses a graphical representation for a class which is helpful
in visualising the architecture of a software system (see Figure 3.2), based on
a box which consists of an externally visible part which represents a type and
its operations, and a private part used to describe implementation details.
Such boxes compose diagrams which show the inter-dependencies among the
objects through arrows.

-74 -

Chapter 3 - Classification of Object-Oriented Methodologies

package
operation
l ™~
operation \

— D

Figure 3.2 Classes as Packages

The implementation of a class is to be performed using Ada. The
transformation of a design described by a graphical notation is
straightforward; each class represented by a box is denoted as a package in
Ada. A package is made up of two parts: a specification that defines the data
types which can be used externally, and a package body which describes the
implementation of the specified operations.

Booch (1991) has proposed a new version of the methodology derived from the
previous one, that is Booch (1986). But at this time Booch has tried to convey
the opinion that the new version of the methodology is not Ada-oriented
anymore. The first step involves the identification of classes and objects at a
high level of abstraction; at that level, the important activity is the discovery
of key abstractions in the application. The second step involves the
identification of the semantics of these classes and objects; here, the
important activity is for designers to act as detached outsiders, viewing each
class from the perspective of its interface.

=75 -

Chapter 3 - Classification of Object-Oriented Methodologies

The third step involves the identification of relationships among these
classes and objects; this step establishes how objects interact within the
software system, with regard to the semantics of the key abstractions found
in the former step. The fourth step im/rolves the implementation of these
classes and objects; the important activ’ity is choosing a representation for
each class and object, and allocating them to modules. The fourth step is not
necessarily the last step because its completion usually requires that the
whole design process needs to be done all over again, but this time more
details about the application are known.

The methodology also proposes a graphical notation to represent a design,
which can form the basis for automated tools. Nevertheless, most of the
notational conventions are directed towards the representation of Ada
concepts, such as packages (see Figure 3.2), task communications and
module visibility. As previously, Booch has not strongly considered
inheritance because Ada is in the background of this methodology, and Ada
does not provide inheritance. Besides, there is no consideration of reusability
during the design process.

GOOD

Seidewitz (1989), influenced by Booch (1986) and Yourdon and Constantine
(1979) works, has created a General Object-Oriented Development (GOOD)
methodology. GOOD also begins a design with data flow diagrams, at the
specification level, then objects are identified and refined into object
diagrams. Once the design level is completed, each object may be decomposed
into sub-objects represented by lower level object diagrams designed to meet
the specification for the object in the upper level. The result is a layered
collection of object diagrams which completely describes the hierarchical
structure of a software system (see Figure 3.3). The object diagrams show
control flow and module dependencies between objects. At the lowest level,
objects are completely decomposed into procedures and their internal data
structures. '

A seniority hierarchy, as illustrated in Figure 3.3, is expressed by the
topology of connections on object diagrams. Each object is a node of a graph,
and if object A somehow invokes any operation of object B, then there is an

-76 -

Chapter 3 - Classification of Object-Oriented Methodologies

virtual
layer 1

EEEE— virtual
< layer 2

A

virtual
layer 3

Figure 3.3 Seniority Hierarchy in Object Diagrams

arrow from A to B. Any layer in a seniority hierarchy can call on any
operation in an equivalent or lower level layer, but never any operation in a
higher level layer. Thus, all cyclic links between objects must be contained
within the same layer in the seniority hierarchy. GOOD also provides an
object description which includes a list of all operations provided by an
object, and for each outgoing arrow, the operations required by the object.

The GOOD methodology is similar in many ways to the traditional
structured development through functional decomposition, and does not even
seem to consider class hierarchies. At the lowest level, objects are completely
decomposed into primitive objects and then each p.rimitive object is
implemented in Ada.

.77 -

Chapter 3 - Classification of Object-Oriented Methodologies

HOOD

Hierarchical Object-Oriented Design (HOOD) (Heitz, 1989) is also an Ada-
based methodology, that is, with Ada as the target programming language.
HOOD was developed taking mainly ds its starting point the ideas from
Booch (1983a) methodology. HOOD proposes four stages for software
development:

1) Definition and analysis of the real-world application.
2) Specification of a design solution using natural language descriptions.

3) Selection of nouns to make a list of objects and verbs to form a list of
operations. This is called the Informal Solution Strategy.

4) Production of a formal Object Description Skeleton which will be used
to generate code in Ada.

The HOOD tool set provides support for the third stage by building word lists
for object and operations. The objects and operations lists are then combined
into an object operation table from which object diagrams can be produced.
These diagrams do not show a software system as a collection of classes but
show the behaviour of objects. There is also a tool to deal with the generation
of code in Ada from the Object Description Skeleton which contains formal
descriptions of the operations. Although the design process is based on the
encapsulation of data and procedures by means of objects, inheritance is not
considered.

The Jalote Methodology

Jalote (1989) has proposed an object-oriented design methodology which
consists of three main steps:

1) Define the problem.
2) Develop an informal strategy.

3) Formalise the strategy. This step has four sub-steps:

-78 -

Chapter 3 - Classification of Object-Oriented Methodologies

a) identify the objects and their attributes;
b) identify the operations on the objects;

¢) establish the interfaces of the objects;

d) implement the operations.

The aim of the first step is to properly understand the nature of the problem.
In the second step an informal strategy to solve that problem is stated using
natural language descriptions. In the third step, the objects are first
identified from an informal strategy. Then the operations on the objects are
identified. The interfaces of the objects are then established by describing the
visibility of each object. The informal strategy is then converted into a formal
description of the problem by associating the operations in the informal
strategy with the identified objects.

Jalote has introduced two concepts called the functional refinement stages
and nested objects. In the functional refinement stages, new objects and
operations are identified. Furthermore, operations may also be identified
upon the objects which were identified in earlier functional refinement
stages. The methodology refers to the group of all identified objects, when the
functional refinement stages terminate, as the Problem Space Object Set
(PSOS). When this refinement process finishes, the algorithms needed to
solve the original problem would have been decomposed to some required
level, with each operation in the algorithms being an operation on some
object.

To refine an object, informal descriptions of all operations defined on the
object are written. Then new objects (called nested objects) which were
required to implement these operations are identified. This process is
repeated for each object in the PSOS. Once all the operations on the objects
are identified, the refinement of nested objects can begin. This step ends
when objects are simple enough to be implemented directly, which is carried
outin Ada.

By introducing the idea of nested objects, the methodology incorporates a
top-down refinement technique with object-oriented design, which is more
general and more suitable for designing large software systems.

-79-

Chapter 3 - Classification of Object-Oriented Methodologies

Nevertheless, the methodology focuses only on a systematic process to
carried out design towards implementation in Ada, and does not introduce
any graphical notation for representing a design, nor considers inheritance
and software reuse.

Comments on Booch Methodologies and Their Influences

Biased by Booch methodologies, several object-oriented design
methodologies which combine object-oriented concepts with other well-
known methodologies have emerged, as has been described briefly above.
Nevertheless, methodologies based on natural language descriptions have
many problems because of the informality and ambiguity inherent in the use
of natural languages. For example, what exactly does the phrase "get a
course from a course list and assign the course a room number in a building"
mean? It is not enough to rely on normal usage of these terms; a more
complete explanation is required to derive a design. In fact, the production of
a complete application description is neither straightforward nor concise,
and usually needs much more detailed information about the application and
its constraints. Natural language descriptions work well when the narrative
description of the application can be written concisely. However, when the
narrative description is large, that description can be very difficult to be
written and understood.

In addition, all methodologies influenced by Booch methodologies are based
on hierarchical decomposition of software systems into layers, supporting a
top-down fashion which allows designers to start with a high level
abstraction and work top-down towards an implementation in Ada.
Therefore, those methodologies do not strongly address an important object-
oriented concept (that is, inheritance) which makes the object-oriented
paradigm more powerful. Booch (1991) extends previous Ada-oriented work
to object-oriented software development in general. The latest methodology
from Booch includes a variety of models which address functional and
dynamic aspects of software systems. However, the phases at the beginning
of software development are not addressed in depth.

-80 -

Chapter 3 - Classification of Object-Oriented Methodologies

3.2.200SD

Wasserman et al. (1990) have proposed OOSD, a graphical representation for
Object-Oriented Structured Design. OOSD provides a standard design
notation by supporting concepts of both structured and object-oriented design
since the main ideas behind OOSD come from Structured Design (Yourdon,
1979) and Booch (1986) notation for Ada packages. Therefore, OOSD allows
designers to gradually shift from structured development to an object-
oriented approach. OOSD also incorporates the concept of monitors for
concurrent programming and has other important features:

® it supports class hierarchy and inheritance;

® itisindependent of any programming language;

® it provides a BNF grammar for a textual description of a design;
¢ ithasamechanism to represent exceptional conditions;

® it supports a wide variety of software systems, including both
sequential and concurrent models of execution.

In general terms, OOSD represents a class with a rectangle and uses
overlapping small boxes to show operations. An operation overlapping a
class rectangle suggests a visible part of that class. Moreover, an operation
can also be placed completely inside a class rectangle to indicate that the
operation is hidden from other classes. OOSD uses the parameter passing
notation of Structured Design, where arrows indicate the kind of parameters
(e.g. data or control). Exceptions are represented by diamonds overlapping a
class rectangle anywhere around its perimeter (see Figure 3.4). After
defining a class, designers can instantiate its objects. However, OOSD
regards this step as a matter of implementation because the instantiation is
related to the use of a class not to its definition. Inheritance is represented by
a hierarchy of class rectangles linked by dashed arrows.

It is evident that OOSD mixes up object-oriented concepts with another
approach because the convention for representing parameter passing comes
from Structured Design. OOSD gathers together Booch ideas with
Structured Design principles following a top-down functional decomposition
into modules and ends up with Ada as an implicitly suggested

-81-

Chapter 3 - Classification of Object-Oriented Methodologies

E

s

operation
Class

!

Figure 3.4 Class Representation in OOSD

implementation language, and thereby accommodates two important design
notations.

OOSD focuses mainly on a graphical representation without addressing the
method by which a design could be created and gives no explicit technique for
diagramming software system decomposition, needed for large software
systems. Furthermore, it does not set up guidelines to identify classes and
operations, so it is supposed that designers should follow steps recommended
by other methodologies. Although OOSD clearly shows relationships
between classes, it does not represent detailed interactions between objects.
It is expected that designers will use their own methods together with OOSD,
which simply provides a notation for object-oriented design, not a step-by-
step methodology.

-82-

Chapter 3 - Classification of Object-Oriented Methodologies

3.2.3 Responsibility-Driven Design

Wirfs-Brock et al. (1990) have focussed on the identification of
responsibilities and contracts to build a responsibility-driven design.
Responsibilities are a way to apportion work among a group of objects which
comprise an application. A contract is a set of related responsibilities defined
by object interactions, and describes the ways in which a given client object
can interact with a server object.

This methodology emphasises the actions that must be accomplished and
which objects will perform these actions. The responsibilities of an object are
the services it provides for all objects which communicate with it. Both
objects must fulfil a contract: the client object by making the requests that
the contract specifies, and the server object by responding appropriately to
these requests. Objects fulfil their responsibilities either by performing the
necessary computation themselves or by collaborating with other objects.
The responsibility-driven design recommends the following steps to design a
software system:

1) Select noun phrases from the specification and build a list of nouns.
Identify candidate classes from noun phrases by modelling physical
and conceptual entities in the application. Then, identify candidates
for high level classes by grouping entities which share common
properties, and write a short statement of the purpose of each class on
a class card which is used to capture information about a class.

2) The design continues by defining the purpose of each class and the role
it will play in the software system in terms of responsibilities.
Responsibilities include the state that a class maintains and actions
that a class provides. When responsibilities are assigned to a class,
every instance of that class will naturally have those responsibilities.
Therefore, responsibilities are meant to convey the services which an
object provides and its place in the software system. The
responsibilities are found by recalling the purpose of each class in
terms of the actions that its objects offer. This step considers the use of
inheritance as a means of grouping common responsibilities as high as
possible in class hierarchies so that the relationship is-kind-of
between classes is valid. Services defined by a class include those

.83

Chapter 3 - Classification of Object-Oriented Methodologies

listed on the class card definition, plus the responsibilities inherited
from its super-classes.

3) During the third step, subsystems are identified. A subsystem is a
collection of classes (and possibly other subsystems) collaborating to
fulfil a common set of responsibilities (contracts). From the outside, a
subsystem can be viewed as a collection of classes which provide
clearly delimited services. In order to identify possible subsystems,
designers should look for collaborations which happen frequently.
Collaborations represent an exchange of messages from one object to
another in fulfilment of a contract. Classes in a subsystem should
collaborate to support a cohesive set of responsibilities; should be
strongly interdependent and the subsystem division should minimise
the number of collaborations a class has with other classes or
subsystems. The methodology also recommends going back to earlier
stages to refine the responsibilities, classes and subsystems.

As the steps are followed, the responsibility-driven design methodology
considers walk-throughs to explore design possibilities and to record the
result of a design on class cards. The technique of recording design on cards
was introduced by Beck and Cunningham (1989) who have proposed the
Class, Responsibility, and Collaboration (CRC) cards. They have found that
index cards are a simple technique for teaching object-oriented thinking to
newcomers of the object-oriented paradigm.

Each class card contains the name of a class, a description of the
responsibilities associated with that class and its collaborators. They also
record sub-class and super-class relationships. Each candidate class is
written on a class card, asillustrated in Figure 3.5, its super-classes and sub-
classes are described in the lines below the class name. Each identified
responsibility is succinctly written on the left side of the card. If
collaborations are required to fulfil a responsibility, the name of each class
which provides the necessary services is recorded to the right of the
responsibility.

Some observations should be made on responsibility-driven design. The
methodology is based on the identification of classes by looking at nounsin a
natural language description of the system specification. This technique has
the same problems as the first versions of Abbott and Booch methodologies.

-84 -

Chapter 3v- Classification of Object-Oriented Methodologies

Class: CreationTool

Tool

RectangleTool, LineTool, EllipseTool, TextTool

Know which elements it contains

Figure 3.5 A Class Card

The methodology also suggests the use of class cards to describe classes and
subsystems. This technique may work well with simple software systems but
its use in the design of large and complex software systems is doubtful
because as the number of classes and subsystems grows sharply, the number
and arrangements of class cards may become cumbersome and difficulr to
manage.

Additionally, responsibility-driven design bases inheritance only on
responsibilities, and ignores inheritance of attributes. Moreover, the
methodology divides a large software system into subsystem only after
identifying some classes and their responsibilities. However, the
partitioning a software system into subsystems should be considered at the
beginning of software development as a technique to decompose large
software systems.

3.24 O0ORA

The main steps established by Coad and Yourdon (1990) to an Object-
Oriented Requirements Analysis (OORA) methodology can be briefly
described as:

-85 -

Chapter 3 - Classification of Object-Oriented Methodologies

® identify objects;

® identify structures;

® identify subjects; ,
@ define attributes;

® define services.

Identification of objects encompasses the understanding of the application
domain and finding abstractions of data and processing on that data.
Designers have to concentrate on the application domain and look for
entities, devices, events, roles played and organisational units in order to
consider needed behaviour, requested services and essential requirements,
which at the end of this stage are identified as objects.

Identification of structures aims at managing the complexity in the
application domain by constructing a hierarchy based on specialisation and
generalisation of objects; and by assembling objects by aggregation and
decomposition, reflecting whole and parts of a software system. Subjects
provide a mechanism for controlling how much of a software system a
designer is able to consider and comprehend at one time. They are associated
with the structures identified in the previous step. Subjects divide a software
system into partitions composed of structures, and grouping together similar
subjects defines subsystems.

Attributes are seen as data elements used to describe objects. Defining the
attributes involves examining the application domain, and attaching an
individual data element or a collection of related data elements to the entity
which it actually describes and then to the object associated with that entity.
A service is the processing to be performed upon receipt of a message. The
central issue in defining services is to identify the required behaviour for
each object. A second issue in defining services is to arrange the necessary
communication between objects. The methodology starts by considering
fundamental services such as store and calculate based on external events
and required responses to an object during its lifetime.

OORA also presents a graphical notation for objects, as illustrated in Figure
3.6. Basically, an object is represented individually by a rectangle containing

-86 -

Chapter 3‘ - Classification of Object-Oriented Methodologies

its name and its attributes and services. Specialisation is denoted by lines
with semicircles at the end of the sub-objects. Subjects are separated by
dotted lines. The relationships between objects can be 1:1 or N:M. Finally,
messages are indicated by dashed lines linking the involved objects.

s

Object

name

attributes

services |« == = = = - -

A

Figure 3.6 Object Representation in OORA

Coad and Yourdon have oversimplified the object-oriented paradigm by
misusing the concepts of classes and objects during the analysis phase as
objects only. Throughout the methodology there is confusion about the
concepts of classes and objects. Basically, OORA concentrates on modelling
real-world entities as objects, and it can be considered as an extension of the
Entity-Relationship Model (Chen, 1976), suggesting that OORA is an
incremental improvement over an existing approach to data modelling.
Unfortunately, Coad and Yourdon have proposed the use of ordinary 3" by 5"
index cards as a substitute for software tools, which is a trivialisation of the
benefits of using computer-aided tools. Moreover, they have not discussed the
impact of their methodology on other phases of the software life cycle.

-87-

Chapter 3'- Classification of Object-Oriented Methodologies

3.2.5 OMT

Rumbaugh et al. (1991) have developed the Object Modelling Technique
(OMT) which focuses on object modelling as a software development
technique. Basically, OMT proposes three models for software development:

® The object model describes the aspects of a software system in terms of
classes, in an object model diagram. The object model is represented by
graphs whose nodes are classes and arcs denote relationships of
specialisation, composition, or any association between classes (see
Figure 3.7).

® The dynamic model describes the aspects of a software system which
may change over time due to events, and it is used to understand the
control flow of a software system. The dynamic model is represented
by familiar state transition diagrams whose nodes are states and arcs
are transitions (caused by events) between states.

® The functional model describes the data transformations within a
software system and employs the well-known data flow diagrams to
represent computations of output values from input values.

has 1+
figure point

polygon circle line arc

Figure 3.7 An Object Model Diagram

OMT proposes three stages which should be carried out to produce a design:

1) The analysis stage captures important properties which are
meaningful to a real-world application and uses the object, dynamic

- 88 -

Chapter 3 - Classification of Object-Oriented Methodologies

and functional models to represent those properties. The purpose of
this stage is to understand the application in terms of classes.

2) The system design stage focuses on decisions about the high level
structure of a software system. In this stage the software system is
divided into subsystems, and no concept related to the object-oriented
paradigm is employed.

3) The object design stage is targeted at the data structures and
algorithms need to implement each class in the object model. During
this stage, dynamic and functional aspects are combined and refined,
and more details about the control flow of a software system are
defined.

Some considerations on OMT can be made at this point. The first stage of
OMT is equivalent to OORA, in that it basically models the application in
terms of classes and special relationships between them. However, it is
confusing that the object model actually deals with classes. Later, during the
system design and object design stages, OMT incorporates structured
development based on a functional decomposition approach following the
traditional waterfall software life cycle model.

3.2.6 00SA

Shlaer and Mellor (1988) have proposed a system analysis methodology and
an associated graphical notation called the Object-Oriented System Analysis
(OOSA) which is based on a variation of the Entity-Relationship Model
(Chen, 1976) combined with Structured System Analysis (Gane, 1979). The
notation can be used to describe objects, attributes and relationships, where
relationships are any pattern of association between objects.

OOSA suggests that designers should construct three models:
@ the information model;
® the state model;

® the process model.

-89 -

Chapter 3 - Classification of Object-Oriented Methodologies

The information model represents objects, attributes and relationships in an
information structure diagram, as illustrated in Figure 3.8. The state model
expands the information model by representing the behaviour of each object
using a standard state transition diagram. The process model comprises data
flow diagrams representing states and transitions in the state model.

writes

Author /’—-\ Book

*name written-by *title

Figure 3.8 An Information Structure Diagram

OOSA provides a data modelling technique and embraces the concept of an
object as a record in a relational database. Nevertheless, OOSA fails to
account for the vast majority of object-oriented concepts and no new
graphical notation is provided for object-oriented system analysis. Instead,
the graphical notation is taken primarily from entity-relationship diagrams
and data flow diagrams found in others structured methods. Moreover, there
is no way to express concepts such as classes and operations, and the notion
of inheritance is entirely missing.

Shlaer and Mellor have described a methodology for object-oriented system
analysis which is, in many aspects, similar to OMT and OORA. All these
methodologies have in common the emphasis on data modelling as the first
task to be performed during software development. However, the excessive
preoccupation in OOSA with relational databases has little to do with the
object-oriented paradigm.

.90 -

Chapter 3 - Classification of Object-Oriented Methodologies

3.2.7 Other Methodologies

The state-of-the-art of object-oriented methodologies is evolving rapidly. As
object-oriented methodologies mature, they are likely to borrow ideas from
one another. This subsection describe$ more restrictive and less known
object-oriented methodologies.

The Pun and Winder Methodology

Pun and Winder (1989) have proposed a methodology targeted at object-
oriented design and programming. The methodology is divided into three
levels: conceptual, system and specification levels. The first level assists
designers in analysing and examining the application in an object-oriented
fashion. The second level concentrates on some important issues of the
design process, such as objects and inheritance. Finally, the third level
concerns the production of a class structure chart which will be passed to the
implementation phase.

The main objective of the conceptual level is to identify the objects and their
interactions involved in a particular software system. Designers take the
output of a conceptual analysis phase and generate a set of object interaction
diagrams. Object interaction diagrams are divided into two layers: the user-
interface layer and the user-transparent layer. The user-interface layer
contains objects which communicate and interact directly with the end-users
of the software system. This layer provides a visual presentation of how a
software system appears to its end-users, and menus and forms are depicted
as typical interfacing objects.

The user-transparent layer contains specific software system objects which
are transparent to end-users who need not be aware of the existence of such
objects. Only designers know exactly what these objects are. The separation
of the conceptual level into two layers highlights the importance of user
interface design during software development. Object interaction diagrams
are the documentation of the objects and interactions found in the software
system. Thus, at the end of the conceptual level, a list of objects and actions
have been identified.

-91-

Chapter 3 - Classification of Object-Oriented Methodologies

After identifying the objects and operations which are involved in ‘the
software system, designers have to build such objects. The system level is
where the construction of each individual object takes place. The
construction emphasises object instantiation and inheritance. During the
process of object creation, every object has to be an instance of some class. If
there is no suitable class for an object, designers have to make up a new one.
So, at this point, designers have to search and get to know which classes are
available. The new class may be a completely new one or it can be either a
sub-class or super-class of existing classes. Thus, the creation of new classes
may involve inheritance.

The specification level mainly helps designers to set up an implementation
for a software system. With the information obtained from the conceptual
and the system levels, designers can identify the main objects and their
interactions. These interactions are presented in class structure charts. The
objectives of class structure charts are to explicitly express class hierarchical
structures and lay out operations and messages related to classes.

Some observations concerning this design methodology can be made. Firstly,
Pun and Winder have claimed that very often an object can be an abstraction
of several objects. This argument leads to the misleading concept of sub-
objects rather than sub-classes. Secondly, this methodology always starts
software development by identifying objects rather than abstracting the
main classes in a software system.

The Lorensen Methodology

Lorensen (1986) has described the rudiments of object-oriented software
development by explaining that it is fundamentally different from
traditional structured development, such as those based on data flow
diagrams and a functional decomposition approach. The methodology
suggests the following steps to design a software system:

1) Identify the abstractions from the real-world a.pplication. Working
from the requirements document, the abstraction process should be
performed top-down when possible. These abstractions will be the

-92 -

Chapter 3 - Classification of Object-Oriented Methodologies

classes of the software system. Often the classes correspond to a group
of physical entities within the application being modelled.

2) Identify attributes for each abstraction. The attributes will become
the instance variables for each class. If classes correspond to physical
entities, the required instance variables should be obvious.

3) Identify operations for each abstraction. The operations are specific to
each class. Some operations access and update instance variables,
while others execute actions unique to a class.

4) Apply inheritance where appropriate. If the abstraction process in
step 1 is performed from abstract classes, introduce inheritance there.
However, if abstractions are created bottom-up, apply inheritance
before going to a higher level of abstraction.

5) Create objects and identify interactions between them. This step
defines the messages that objects send to each other. New objects may
be required to respond to requests from other objects in the software
system.

6) Assess the ability of the design to match the system requirements and
work out interactions to satisfy each requirement.

Designers should repeat these steps in order to refine a design. Lorensen has
described an alternative methodology to object-oriented design which has
evolved from software development using Smalltalk, which directly supports
classes and inheritance. The methodology aims to identify and characterise
abstractions in a manner that results in a definition of all important classes,
attributes, operations, objects and messages during the design phase.

ObjectOry

Jacobson (1987) has claimed to have a full object-oriented development
methodology called the ObjectOry. It combines a technique to develop large
software systems, called the block design (Jacobson, 1986), with
Conceptual Modelling (Borgida, 1985) and object-oriented concepts. Jacobson
has stated that it is quite natural to unite these three approaches since they

-93-

Chapter 3 - Classification of Object-Oriented Methodologies

rely on similar ideas aiming at, among other things, the production of
reusable software components. Conceptual modelling emphasises finding
concepts suitable to model a real-world application, and it is appropriate for
representing the entities of the application as well as the relationships
between such entities. ObjectOry concerns the design of some large scale
software systems which have been developed today using techniques such as
SADT (Ross, 1977) and Structured System Analysis (Gane, 1979).

The base of the methodology is a design technique named the block design,
originating from Ericsson Telecom, which is now widespread within the
telecommunication industry. Block design can be seen as assembling a
collection of properly interconnected blocks and components, each one
representing a packaged service of a software system (see Figure 3.9). The
software system is viewed as a group of properly interconnected blocks and
components which are selected in a top-down fashion. In a simplified form:
the software system is built from a group of reusable blocks. A block may
itself be made up of lower level reusable components. Components are
standard modules which can be used in many different software systems.
Reusable blocks and components are implemented as classes using an object-
oriented programming language.

system

block

et e

N\ component

Figure 3.9 An ObjectOry System

-94-

Chapter 3 - Classification of Object-Oriented Methodologies

The scenario that ObjectOry assumes for building a software systeﬁl is
similar to the manner in which production is carried out in many other
engineering disciplines such as house construction or the design of electronic
systems. The main criticism that can be made of ObjectOry concerns the fact
that this methodology is not purely ol;ject-oriented because it is mixed up
with other different approaches. Furthermore, the niche where this
methodology excels is telecommunications applications because block design
was created to address software development in that application domain.

JSD

Jackson has proposed a methodology called the Jackson System
Development (JSD) (Jackson, 1983). JSD does not distinguish between
analysis and design and instead lumps both phases together as specification.
The methodology begins by considering the real-world application and first
determines the what-to-do and then the how-to-do. This methodology is
intended especially for real-world applications in which timing is important.
A specification model describes the application in terms of entities, actions
and ordering of actions. JSD also accepts that entities usually come out as
nouns in requirements statements and actions emerge from verbs in that
description.

JSD has some features which may appear on the surface to be similar to
object-oriented design. The main task is to model the real-world application
and to identify entities (which could be viewed as objects), actions (i.e.
operations) and their interactions. However, JSD is not fully suitable for
object-oriented design because there is very little to support the object-
oriented paradigm. For instance, there is no consideration of encapsulation
and inheritance.

Multiple-view Object Oriented Design

Multiple-view Object Oriented Design has been proposed by Kerth (1988) as
a methodology for structured object-oriented design, and supports the
construction of programs from an abstract model with real-time extensions

-95-

Chapter 3 - Classification of Object-Oriented Methodologies

developed by Ward and Mellor (1985). The methodology addresses different
issues, including identification of objects and concurrency, and allows
concurrent processes to be expressed as tasks rather than objects. The
methodology supports an object-oriented approach. However, from its root, it
can be concluded that this methodology has its fundamentals based on
traditional structured methods for software development. (The MOOD
acronym has also been used in this thesis before Kerth's was uncovered).

Graphical Notations for Implementation

Cunningham and Beck (1986) have proposed diagrams for representing
Smalltalk programs. In the diagrams, objects are represented by boxes, as
shown in Figure 3.10. Each box is labelled by a class name and possibly its
super-class. The diagrams also emphasise the representation of the message
passing which takes place between objects. When one object invokes a
method upon another object through a message, that message is shown as an
arc originating in the sending object and landing in the receiving object. The
various computations are implemented by distinct methods, each labelled
with the method selector.

N

v/,
Set | add: \
\
Collection at:put:

" Integer hash

Figure 3.10 Representing Classes and Methods

-96 -

Chapter 3 - Classification of Object-Oriented Methodologies

The diagrams as proposed are only suitable to small programs because the
power of representation is weak. Classes are listed with the most specialised
class at the top leading some designers to complain that it is not intuitive to
place sub-classes above super-classes. Another limitation concerns the
restrictiveness of the graphical elements in the diagrams, which are more
suitable for representing Smalltalk programs and are more likely to be used
during the implementation phase.

Asfar as C++ is concerned, Ackroyd and Daum (1991) have suggested a basic
graphical notation for classes, objects, methods and inheritance (see Figure
3.11). The graphical notation also adds numerous specialised representation
for polymorphism, overloading, delegation, static variables and many other
properties, which can provide graphical representation for object-oriented
programs. Nevertheless, the proposed notation is tied closely to C++ features,
particularly those for private, protected and public classes. Besides, it is not
apparent how to use the proposed notation for other programming languages
nor how to use it as a language-independent graphical notation for object-
oriented design. Additionally, the diagrams may depict an extensive
representation of implementation details which, makes them hard to use and
comprehend for large and complex programs.

is-a
T | E T1
(data) C
meth

obj

Figure 3.11 Notation for Classes, Objects, Methods and Inheritance

-97-

Chapter 3. Classification of Object-Oriented Methodologies

3.3 FINAL REMARKS ON CLASSIFICATION

This chapter has briefly reviewed many object-oriented methodologies and
outlined their oversights and weaknesses. There is some dissatisfaction with
current methodologies which seem to place too much emphasis on designing
for the task in hand and not enough on designing reusable components nor
designing with reusable components. Based on this survey, it is evident that
further research on object-oriented methodologies is required in order to
overcome the deficiencies and limitations of existing software development
methodologies.

Most of the early object-oriented methodologies which have appeared either
focus on an implementation in Ada (which does not provide inheritance) or
disregard abstraction in terms of classes, and instead focus on object
instantiation. Other methodologies with the intention of combining existing
structured methodologies together with object-oriented concepts have led to
the misuse of objects only as data without regarding the operations on that
data; the operations are treated separately as functions. Another problem
with such combinations is the mapping of concepts from one approach to
another. The adoption of new concepts, the change of vocabulary and
notation can confuse designers about which one should be used in which
phase of the software life cycle.

Therefore, it can be concluded that so far there has been no generally
accepted object-oriented design methodology. Only limited object-oriented
methodologies have been found. As a result it is the intention of this research
to create an object-oriented design methodology which allows designers to
apply powerful object-oriented principles to the design of a wide range of
applications from the beginning of software development. To put it in other
words, revolution is what is needed to tackle the problems of software
development. New methodologies which exploit the benefits of the object-
oriented paradigm within a substitute software life cycle model have to be
pursued.

This research is interested in an approach which yields a single coherent
object-oriented design methodology, rather than separate methods to solve
specific parts of a design. Such a methodology must pay attention to object-
oriented concepts already discussed, for instance, classes, objects and

-98 -

Chapter 3- Classification of Object-Oriented Methodologies

inheritance. The proper use of these concepts can lead to a truly general
object-oriented design methodology as independent as possible of any
programming language. Moreover, reusability should be emphasised as part
of the methodology within an alternative software life cycle model. Another
objective of this research is to provide a CASE environment to design object-
oriented software systems. The environment should offer diagram editors
and checkers, and encourage the use of reusable components to build
software systems. These issues are covered in the next chapters.

-99-

Chapter 4

A METHODOLOGY FOR
OBJECT-ORIENTED DESIGN

It has been claimed in the literature that software systems developed using
an object-oriented approach can be significantly more elegant than those
developed using traditional structured development approaches, and that
more software components can be reused during software development.
However, using an object-oriented programming language does not, by itself,
guarantee miraculous results. Like any other engineering activity,
methodologies play an important role during the design of object-oriented
software systems.

The early chapters have presented some aspects related to the object-
oriented paradigm and the advantages achieved when it is used. A variety of
existing methodologies have been discussed and their strengths and
weaknesses have been pointed out. As can be seen from previous chapters,
although the general principles of abstract data types, modularization and
encapsulation are generally accepted as good mechanisms for software
design, there is little agreement on either a design methodology or a design
notation for representing an object-oriented design. Indeed, so far there has
been a proliferation of such notations rather than a single well-known and
widely used representation.

This chapter presents a new methodology for object-oriented design called
MOOD, which is based on, and obtains the benefits of the object-oriented
paradigm presented in the second chapter. MOOD supports the design of a
software system following an object-oriented approach and it is independent

100

Chabter 4 - A Methodology for Object-Oriented Design

of the idiosyncrasies of any particular programming language. The chapter
contains five sections. The first section places MOOD into the context of
software development. In broad terms, MOOD starts with an abstract model
of the application and ends with a design model to be implemented. Between
these two representations there are steps which guide the designer
throughout software design.

The steps which must be followed in order to design a software system using
MOOD are discussed in the second section. Such steps help the designer
identify classes, build class hierarchies using inheritance, identify objects
and understand the behaviour of the software system, as well as represent
the design model graphically with four types of diagrams. This section also
describes a means for partitioning a large software system into manageable
pieces. This partitioning is based on the functionality of the software system,
which in turn is related to classes which provide that functionality.

The third section presents an example of a partial software design in which
MOOD has been applied and discusses some benefits and drawbacks of the
methodology. The results of the experience of applying MOOD provided
valuable information about its applicability and have been used as feedback
to improve the methodology and to support it within a software development
environment. The fourth section presents the main requirements for a CASE
environment to support an object-oriented design methodology. A prototype
of such a software development environment is presented in Chapter Six.
This chapter concludes with final remarks on MOOD, outlining some of the
issues which should be considered when designing and representing an
object-oriented software system. In addition, the last section presents a
summary of the MOOD steps.

4.1 THE CONTEXT OF MOOD

The designer of a software system should start the design from an abstract
model of the application, which is accomplished through a system analysis.
That abstract model is the first representation of the software system. But
what should the system analysis be? System analysis is characterised by
obtaining information about the application, and hence this information is
non-structured, often incomplete and sometimes contradictory. The system

101 -

Chabter 4 - A Methodology for Object-Oriented Design

analysis then produces a description in terms of the requirements and
objectives of the software system which can be refined through the addition
of details to that abstract model.

Methodologies which aim to give support for system analysis should consider
the possibility of dealing with an incomplete abstract model and describing
partial aspects of the application, then refining and complementing that
abstract model. The result of system analysis comes as a graphical or textual,
informal or formal, abstract model of the application. The more complete and
consistent it is, the better. Therefore, system analysis is a means for
understanding the application. The purpose of an abstract model is to
provide a description (graphical or textual, informal or formal) of the
application.

MOOD commences with an abstract model of the application as input and
supports the production of a design model as output. The design model
comprises an information model and a behaviour model. The information
model is a static representation of the software system using a set of
diagrams which represents a global view of the software system classes and
components. The behaviour model depicts the dynamic of the software
system. Figure 4.1 shows, within the dashed rectangle, the context of MOOD.
Although the boundary between each representation is usually fuzzy, the
abstract model of the application, the design model and the program are
three different, yet related abstractions of the software system.

MOOD consists of a sequence of steps which help the designer to refine an
abstract model of the application. By using MOOD, the designer could begin
by identifying classes and considering object interactions. It has to be
emphasised that the use of MOOD is aimed at maintaining as close a
relationship as possible between the application and the object-oriented
software system by representing real-world entities only through classes,
objects and inheritance. '

It is sometimes affirmed that the distinction between system analysis and
design is that system analysis states "What?" is to. be built and design
represents "How?" it is to be built. Therefore, during the system analysis, the
question "What is the software system supposed to do?" should be answered,
while during the design the question "How should the software system do
what is stated during the system analysis?" would be addressed. This

-102 -

Chapter 4 - A Methodology for Object-Oriented Design

| 1
. Object-Oriented .
Systen} Analysis :Pesign : I:mplementatlon
I I
I |
V Abstract " : Y
e e Model
Application — of the +—>| Program
‘ Application : :
: I |
|

Doméin
Analysis

v

/

Reusable
Library

Figure 4.1 The Context of MOOD

distinction contains some important truths but ignores other subtle issues.
For instance, is there any definite boundary between system analysis and
the design process within an object-oriented framework?

This is difficult to answer because software development may be seen as a
process of creation, manipulation and refinement of abstractions. When
creating or transforming an abstraction, the designer actually deals with
different representations of these abstractions. In order to make the
refinement from one abstract representation to another as simple and as free
from error as possible, it must be easy to relate one abstract representation to
the next. This requires abstractions to be related to one another and concepts
which were introduced in one of the abstractions should be found in the other
abstraction. The object-oriented paradigm allows the designer to create
abstractions that are close to the application, and to manipulate these
abstractions throughout software development. Therefore, within an object-
oriented framework, it is even more difficult to draw a distinct line between
system analysis and design.

-103 -

Chapter 4 - A Methodology for Object-Oriented Design

As far as the reusable library is concerned (see Figure 4.1), this contains a
collection of reusable components, from both application and solution
domains, put into and taken from there during software development. The
use of a reusable library aims to identify components which can be reused in
the developing software system. A reusable library requires a good way of
classifying, storing and recovering components. The reuse of such
components can take place in two ways: either directly when the component
corresponds exactly to that required, or through inheritance when there are
some differences, and specialisation and/or generalisation are necessary.

Most software systems are concerned with an application domain, and the
identification of the vocabulary for the application domain is the main role of
domain analysis. Domain analysis also plays a fundamental role in
identifying potentially reusable components within an application domain
because it helps the designer to establish a vocabulary for a given application
domain and therefore components which are related to software systems
within that application domain. A comprehensive hierarchy of classes for an
application domain provides the designer not only with application domain
reusable components, but also potential parts for a software system. The
essence of a good object-oriented design is: design with reuse as well as
design for reuse. That means finding application domain reusable
components which can be taken from reusable libraries as well as producing
solution domain reusable components which may be stored in a library.

The designer cannot be expected to have a perfect understanding of the
software system at the beginning of the design. Rather, that understanding
evolves through iterations and refinements with constant feedback, but each
iteration makes the design model increasingly clear. A top-down fashion for
software development generally creates the software system by successive
refinements of software system components. If the software system is not
trivially simple, it should be decomposed into large components which may
be further decomposed. Nevertheless, it is not easy for the designer to divide
a software system into components if the software system is almost
unknown. It could be argued that the top-down decomposition only works
when the designer already knows the application domain. In contrast, a
bottom-up approach would be more appropriate. These issues will be further
discussed in Chapter Five, but for now the MOOD steps are introduced.

-104 -

Cha'pter 4 - A Methodology for Object-Oriented Design

4.2 THE STEPS FOR OBJECT-ORIENTED DESIGN

In order to produce the design model following an object-oriented approach, it
is necessary to identify and represent: '

® software system classes;
® inheritance between classes;

® software system behaviour in terms of object interactions.

An important aspect of MOOD is how the designer tackles the problem of
designing in successive steps in order to produce the design model to be
implemented subsequently. Briefly, the fundamental steps proposed by
MOOD are:

® divide the software system into manageable components;

® identify classes and/or objects which model the application;

® identify inheritance between classes;

@ represent classes and inheritance;

® identify software system behaviour in terms of objects and operations;
® represent software system behaviour in terms of object interactions.

The MOOD approach to tackling these steps is discussed in the next
subsections. It is important to note that the sequence in which these steps are
carried out depends on the knowledge that the designer has about the
application domain, but this issue is discussed in the next chapter.

4.2.1 Representation of the Design Model

Graphical notations have been an integral part of most software engineering
techniques. In fact, there are very few software engineéring activities which
do not benefit from some forms of graphical notation. The use of graphical
notations has proved to be an effective mechanism for expressing a design

- 105 -

Chabpter 4 - A Methodology for Object-Oriented Design

because a clean graphical notation can show the architecture of a software
system clearer than a textually-based notation.

A systematic approach to software design can be offered by a set of guidelines
supported by a graphical notation used to represent a software system. A
good graphical notation should be simple, straightforward and a reflection of
the paradigm used to build the software system. Thus, a graphical notation
chosen for object-oriented design should directly support the object-oriented
paradigm, by providing representation for classes, objects and inheritance.

An important aspect of MOOD is the graphical notation which allows a
straightforward visual representation of an object-oriented design. The
graphical notation to be presented later in this chapter comprises different
types of diagrams which depict the features of a generic object-oriented
representation that goes hand in hand with MOOD. The diagrams are
independent of any programming language, provide a high level
representation of a software system design and span a broad range of object-
oriented concepts without making any assumptions about implementation.
The guiding principle behind the proposal of these diagrams has been to keep
the diagrams as simple as possible.

There are four main types of diagrams:

o Composition Diagrams: these represent the composition and
decomposition of a software system in terms of its components.

e C(lass Hierarchy Diagrams: these are a simple but effective way to
display classes, their attributes and operations, and inheritance
relationships.

® Object Diagrams: these show relationships among objects based on
requests for operations between them.

® Operation Diagrams: these depict how operations are combined to
provide particular software system functionality.

Each diagram proposed by MOOD and used during'the design should be
associated with a unique identifier. It is recommended that the identification
should give a clue to the type, the number and the name of each diagram.
The identification for a composition diagram could start with "CO", class

- 106 -

Chabter 4 - A Methodology for Object-Oriented Design

hierarchy diagrams with "CL", object diagrams with "OB" and operation
diagrams with "OP"; followed by the number and name of the diagram.

These diagrams are the principal means for representing the design using
MOOD. They constitute the graphical representation of the software system
design as a whole and can be viewed as communicating meaning between
designers. The diagrams are composed of simple symbols, and their
automated support in a computer-aided software development environment
will be presented in Chapter Six. The number of different basic symbols is
small, the symbols are unambiguous and the visual impact of the
arrangements of the basic symbols connotes the semantics of object-oriented
concepts.

These diagrams are integrated with each other, and the information present
in a particular diagram must be consistent with that information used in
another diagram. For instance, the operations used in a certain operation
diagram must be defined in any class of another class hierarchy diagram.
Such interrelationships between diagrams makes them a powerful collection
of graphical notations capable of representing a whole design. The next
subsections show how to build up these types of diagrams which are the
means by which the designer represents the software system at design level
when MOOD is used.

4.2.2 Identification of Components

The development of large software systems imposes some characteristics on
the design process. Often, the design of a software system of any significant
size must be divided among different designers or several designers grouped
into small teams. A large software system will probably require numerous
components which make such a software system difficult to comprehend. The
complexity of a large software system can be mastered by first identifying
large software components based on the functionality required from the
software system.

When should identification of components be introduced? This depends on
the functionality of the software system. Large components are more likely
to be identified during the early stages of a design and can be further divided

-107 -

Chahter 4 - A Methodology for Object-Oriented Design

into sub-components. In a small software system, where just a few services
are provided, identification of components may not be necessary. However, a
large and/or complex software system, providing many different and complex
services, needs decomposition to be applied from the beginning of the design.
Nevertheless, finding a good division into components for an object-oriented
software system still seems to be subjective.

Composition Diagrams

Composition diagrams can be used to represent all or part of a software
system in terms of its components. Composition diagrams show aggregations
of components, where components can be any software item such as
subsystems, modules, classes or objects which make up the software system.
A component may also be subdivided into other smaller sub-components and
vice versa, for instance, interdependent and cooperating components can be
composed to offer a particular service.

Each component in a composition diagram fulfils the role of a software item
in terms of the services provided by that component. Figure 4.2 illustrates a
composition diagram in which a CASE environment software system can be
composed of three different components representing the tools
(graphiceditor, texteditor and checkers) of the environment. That figure also
shows how the checkers can be composed of its sub-components (consistency
and completeness). Each component is represented in the diagram by an
ellipse. It is not the intention of composition diagrams to capture all the
details of a software system, rather the purpose is simply to represent
broadly the components of a software system. The relationship between large
components and classes will be discussed later in this section.

4.2.3 Identification of Classes

Classes are the most important concept for object-oriented design.
Identification of classes in MOOD involves the recognition of important
classes in an abstract model of the application. Nevertheless, there is no easy
and fast way of defining what is and what is not a good class. Part of the
identification process is to assess the consequences of including or excluding

- 108 -

Chapter 4 - A Methodology for Object-Oriented Design

environment

~

texteditor

checkers

Figure 4.2 A Composition Diagram for an Environment

graphiceditor

potential classes. An abstraction in terms of classes depends on the purpose
the classes play in the software system as a whole.

Finding classes requires several iterations before a suitable collection of
classes can be determined. This is part of an iterative process for object-
oriented software development to be presented in the next chapter. Iterations
are not a sign of bad design and should be regarded as a healthy process by
which learning takes place. The number of iterations depends on the
knowledge that the designer has about the application domain, and the
intuition and skills of the designer, which are gained through insight and
experience. As a result, it is only possible to propose guidelines which assist
the designer in determining the classes for a particular design.

Firstly, the designer needs to understand the concept of a class and what may
be a class in the software system. Candidate classes can be:

- 109 -

Chapter 4 - A Methodology for Object-Oriented Design

® abstractions of things: e.g. books, planes, sensors;
® abstractions of people: e.g. students, engineers;
® abstractions of concepts: e.g. departments, graphics, flights, accidents;

® roles played by things, people or concepts: e.g. people are voters for
politicians or taxpayers for the government;

-® relationships between abstractions of things, people and concepts: e.g.
people purchase things, people marry people.

As described in the second chapter, other important concepts concerned with
a class are attributes and operations. As far as this step of MOOD is
concerned, the designer should also consider the abstract model of the
application and take into account services provided by a class, which can be
identified as its operations. In order to identify the services, for each class,
the designer should answer these questions:

® Which operations can be performed on instances of this class?
® Which actions do the attributes of this class undergo?

At the end of this stage, a set of classes (which provide abstractions for
conceptual entities of the real-world application) and their attributes and
operations should be identified. Thus, the designer can view the software
system design represented as a collection of classes. The graphical notation
which has been developed to represent classes is discussed in the next
subsection.

4.2.4 Identification of Inheritance

Identifying classes is only the first step in designing an object-oriented
software system. After some classes have been identified, they can be related
to one another to form class hierarchies. The notion ef inheritance plays a
key role during object-oriented design because it helps the designer to derive
new classes from primitive ones by exploiting their commonalities in terms
of attributes and operations, and build up class hierarchies.

-110-

Chapter 4 - A Methodology for Object-Oriented Design

Inheritance enables the designer to create a new class simply by specifying
the differences between a new class and an existing class instead of starting
from scratch each time. As a design technique, the use of inheritance is
similar to a stepwise refinement appx:oach where inheritance divides the
classes which model an application/ into hierarchies of classes. Thus,
inheritance can be used by defining a new class to be a specialisation or
generalisation of existing ones.

Although formal or automated techniques for refining class hierarchies do
not exist, there are a few rules which might help reorganise a collection of
classes into hierarchies. The main rule for building a class hierarchy is to
identify common attributes and operations and migrate them to a super-
class, then eliminate from the super-class those operations that are
frequently overridden in its sub-classes rather than inherited by these sub-
classes. This rule makes the super-class more abstract and hence more
generally useful.

In order to identify inheritance, the designer must settle upon a collection of
primitive classes from which all others can be derived by using the
generalisation and specialisation mechanisms. A common example of
inheritance by generalisation is a basic-screen-window class which has been
created as a super-class from the coloured-window and framed-window sub-
classes. Such a super-class embodies the minimal characteristic of all screen
windows. The two sub-classes could add greater functionality to the basic-
screen-window class by defining such attributes as foreground and
background colour, and border-width.

As far as inheritance by specialisation is concerned, the designer should try
to identify classes that cannot properly describe all their instances. In this
case two or more specialised sub-classes can be derived. It is possible to
specialise in the sub-class the general properties defined in the super-class. A
good example of inheritance by specialisation is the following: consider a
vehicle class, with attributes licence-number, maker and model. This class
can be further specialised into freighter, bus and car sub-classes. This
hierarchy of classes could be depicted textually using the following
indentation scheme:

-111-

Chapter 4 - A Methodology for Object-Oriented Design

® vyvehicle class: licence-number, maker and model attributes;

- freighter sub-class: licence-number, maker, model and
permitted-load attributes;

o

- bus sub-class: licence-number, maker, model and number-of-
passengers attributes;

— car sub-class: licence-number, maker, model and nationality
attributes.

The freighter class could be specialised into van and lorry sub-classes. The
attributes of the vehicle class are inherited by its sub-classes so that, for
instance, a van object has the licence-number attribute (from the vehicle
class), as well as the permitted-load attribute (from the freighter class)
besides its private attributes. A van object could now be handled either as a
vehicle object, as a freighter object, or as a van object; the different viewpoints
imply restricted visibility of the attributes, and make it possible to handle all
sub-classes simply as a vehicle class, whenever that is desirable. Attributes
and operations of the super-class are available to their sub-classes and new
attributes and operations can be defined within the sub-classes. Overriding
and renaming of attributes and operations are permitted to adjust the sub-
classes to a particular context.

After having identified the primitives classes which may form the basis for
the software system, the designer can also use set theory in such a way that
intersections between sets of attributes and operations of different classes
can be singled out and inheritance identified. Venn diagrams are a
convenient means of representing sets and can be used as a technique to help
in the identification of inheritance as well. Such diagrams increase the
understanding of inheritance by treating classes as sets of attributes and
operations. Venn diagrams can give a hint of possible super-classes by
showing which attributes and operations are held in common among classes.
If two or more classes have some attributes or operations in common, they
could inherit them from a common super-class. If that common super-class
does not already exist, the designer should create one and move the common
attributes and operations to it. By using Venn diagrams, inheritance is
founded on the underlying mathematical basis of set theory.

112 -

Chapter 4 - A Methodology for Object-Oriented Design

The procedure for identification of inheritance from Venn diagrams is as
follows: for each class define a set comprising the attributes and operations
associated with that class and look for intersection between these sets. The
intersection may define a new super-class Figure 4.3 shows some examples
of identification of inheritance from Venn diagrams. The class hierarchy is
created by pulling up the commonalities and by pushing down the
differences. The main goal of this procedure is to place common attributes
and operations as high as possible in the class hierarchy so that more sub-
classes can share them.

Single Inheritance

C3

=n 5
= 0! So2 OO

C1 C2

C1 c2
C3

Multiple Inheritance

AA

—— A1l = A4 A2 A5
01 04 02 05 |

A 2 N
DO VAR
RN

c1 c2
Ca C5

Figure 4.3 Identification of Inheritance from Venn Diagrams
(A: Attributes, O: Operations, C: Classes)

-113-

Chapter 4 - A Methodology for Object-Oriented Design

The following kinds of changes to the collection of classes are to be expécted
during the evolution of a design, while the class hierarchies are being built:

® add new classes to the collection;

s

® change the attributes and operations of a class;

® reorganise the class hierarchy using the specialisation and
generalisation mechanisms.

The designer may change a class either to add or delete some attributes or
operations. The designer can also define new classes when new key
abstractions are discovered. The reorganisation of the class hierarchies takes
the form of changing inheritance relationships, adding new generic classes
and shifting attributes and operations in the class hierarchies.
Reorganisation happens frequently at the beginning of the design and then
stabilises over time as the designer better understands the key abstractions.

Class Hierarchy Diagrams

Class hierarchy diagrams in MOOD show the existence of classes and their
relationships in a design of a software system. Such diagrams depict how
classes are arranged hierarchically. The designer can use class hierarchy
diagrams to represent static aspects of the software system, by using only the
fixed set of symbols as illustrated in Figure 4.4. A rectangle represents a
class and is annotated with its mnemonic name. A class name is indicated in
a class hierarchy diagram followed by its attributes and operations. A class
may restrict its attributes and operations from other classes by specifying
them as public or protected. Any other attributes and operations in a class
will be regarded as private, that is, part of the implementation details of that
class and not visible in the class hierarchy diagrams.

A rectangle representing a class displays the externally visible (public)
attributes and operations that instances of that class will possess. Sub-
classes derived from a super-class can, through the application of
inheritance, make direct use of the public attributes and operations of the
super-class. As well as public attributes and operations, a class designer may
wish to export additional attributes and operations which can only be used

-114 -

Chapter 4 - A Methodology for Object-Oriented Design

by sub-classes. These attributes and operations of a class may be labelled
protected, and will not be part of the normal interface of an object of that
class. In the class hierarchy diagrams, protected attributes and operations
are preceded by an asterisk ('+').

Classl:
attl,
*att2
operl
Class2: Class3:
att3 satt4
+oper2, oper4
oper3
Figure 4.4 A Generic Class Hierarchy Diagram

Relationships between Class Hierarchies and Components

It is possible to divide a software system following an object-oriented
approach by partitioning it into independent components and making a
correspondence between the services provided by each component and the
operations of different classes in the class hierarchies. Large components
identify functionality at a high level of abstraction, to be fulfilled by
operations of different classes, and a class is associated with a component
only if it contributes to the functionality provided by that component.

Large components will represent a collection of logically related classes, each
providing different services which, when put together, provide the
functionality required from the software system. A particular component has

-115-

Chapter 4 - A Methodology for Object-Oriented Design

nothing to do with a specific class hierarchy, but with the functionality of the
software system. In fact, composition diagrams are orthogonal to class
hierarchy diagrams. Large components may use the services of several
classes placed in different class hierarchies to contribute to the overall
functionality of the software system.

The correspondence between large components and classes defines a context
where functionality is provided by a set of operations of different classes, as
depicted, within the dashed lines, in Figure 4.5 (in that figure, the dotted
lines represent links between operations on objects of different classes). A
context consists typically of a set of classes, connected together by
inheritance relationship and a well-defined pattern of interaction between
the objects of these classes. A context groups classes together so that a
portion of the overall system functionality can be provided. Contexts will
maintain traceability between classes and functionality; indirectly, a context
shows the classes related to a component.

Class Hierarchies Software System

decomposition

| Q\\\\Q

correspondence

Figure 4.5 Correspondence between Components and Classes

-116 -

Chapter 4 - A Methodology for Object-Oriented Design

4.2.5 Identification of Objects

This step is concerned with objects by focusing on when and how they are
created, destroyed, accessed and changed. An object in the sense of an object-
oriented design is a set of operations gathered together with attributes, and
instantiated from a class. Some characteristics of object-oriented design
regarding objects are:

® objects are instances of some class;
® objects can be created and destroyed;
@ operations are related to objects;

® attributes are encapsulated into objects so that other objects can only
access them via operations;

® requests are sent between objects to invoke operations or return
results;

® functionality can be provided by operations on several objects.

Concrete entities in an application domain, such as people and things, are
very likely to be objects in the software system. Therefore, they should be the
initial targets to be identified as objects. Identification of objects involves:

® understanding the application;

® depicting its main entiti.es as objects;

@ identifying the attributes of an object;

® identifying the operations on an object;

® focussing on interaction be'tween the objects.

Identification of objects is also important because it helps define the dynamic
behaviour of the software system in terms of object instantiation. The control
flow of the operations, which defines the sequence in which the operations
are requested can also be identified. The representation of software system
behaviour consists mainly of a network of objects manipulated by operations.

117 -

Chapter 4 - A Methodology for Object-Oriented Design

Each object has its own internal states and is linked to the network through
requests that establish the sequence of the operations.

In order to understand the interaction among objects, it is necessary to:

identify the operations requested by an object;

identify the operations provided by an object;

identify the relationships between the objects;

identify the exceptional conditions within the operations;

identify the operations that can change the state of an object.

All objects go through various states during their lifetime, which means that
they assume different states, defined by the values of their attributes. An
object is in exactly one state at a time and its current state is recorded in its
attributes. Only an operation can change the state of an object.

The states that an object can go through can be represented in a state
transition diagram. Such a diagram shows the states of an object and the
events which cause a transition from one state to another. A state transition
diagram can depict the behaviour of an object over a period of time through
the states which an object assumes and the events which cause that change
of state. The designer should look at the objects, viewing them as state
machines and set the events applicable to each state. State transition
diagrams may be used as a technique which can help the designer to identify
the operations on objects because the events that provoke the change of state
of an object can be related to operations on that object. Each event may have
conditions associated with it, and these conditions must be satisfied in order
to have an operation triggered.

Figure 4.6 represents a state transition diagram for a screen-window object.
In that figure, the labels in bold represent the various states which a screen-
window object can go through. The labelled arrows represent events and
possible operations on that screen-window object, and the effect that these
events have on the state of that object. Some operations cause a change of
state only when the object is in a certain state, for example the edit operation

-118 -

Chapter 4 - A Methodology for Object-Oriented Design

has no effect when a screen-window object is closed. These constraints helps
the designer to understand the behaviour of the software system.

edit
/N —) move
open OP E
CLOSED / /
<~ close
\ open iconify

ae [

S~ ICONIFIED

Figure 4.6 A State Transition Diagram for a Screen-Window Object

Object Diagrams

The graphical notation to be introduced in this subsection helps the designer
to capture the behaviour of a software system by using object diagrams. Such
diagrams show objects and the requests for operations on other objects. A
request relates one object to another when one object requires another object
to perform an operation. A request also depicts the dependency between a
client object (the one which requests an operation) and a server object (the
one which performs that operation). An object diagram is simply a network
in which the nodes represent objects, and arcs connecting them represent
operations. The interactions between objects happen one at a time;
concurrency and parallelism are not considered in the object diagrams.

Figure 4.7 shows an example of an object diagram. An object is represented
by a circle containing its identification and the class name from which that
object has been instantiated. Each object has a unique identifier that allows
it to be referenced unambiguously within its class. A line entering an object
represents a provided operation and a line leaving an object represents a

-119-

Chapter 4 - A Methodology for Object-Oriented Design

requested operation. Object diagrams partially define the overall pattern of
communication in the software system because they show which objects
request which operations from other objects.

—_
open /‘
move

atool awindow ok
edit —
tool window
close /u
P update
iconify

amanager

manager

0

Figure 4.7 An Object Diagram for Objects in an Environment

The object diagram represented in Figure 4.7 conveys the behaviour of some
objects when a hypothetical tool is used in a CASE environment. When an
atool object manipulates an awindow object, the window object in turn can
display a warning message awarn object and gets its state updated in a
window manager amanager object. When an atool object is used, it can open
an awindow object, which can also be moved, edited, closed and iconified. An
awindow object can also set a warning message awarn object to appear on the
screen and this disappears after an ok operation occurs. A window manager
amanager object can receive a request to update the position of an awindow
object. It can also be seen that a client object (an atool object) controls the
requests to another server object (an awindow object).

-120 -

Chapter 4 - A Methodology for Object-Oriented Design

4.2.6 Identification of Software System Behaviour

An object-oriented software system can be regarded as having a group of
objects together with a design which establishes a detailed order of
interaction on and between objects. These interactions défine the behaviour
of a software system. It is helpful to define the dynamic behaviour of a
software system in terms of the control flow which defines the pattern of
interaction between objects. Therefore, software system behaviour focuses on
when objects interact with other objects and when and how objects are
created, destroyed, accessed and changed. Thus required functionality of the
software system is realised as patterns of interactions between objects.

The designer should consider the sequence in which the operations must be
performed. In order to identify the behaviour of a software system, three
points are important:

® which operations are performed;
® which attributes are manipulated;
® when the operations are carried out.

Answering the following questions is a useful way to characterise the
behaviour of a software system:

® Which objects adequately provide particular functionality?

® When are objects created and destroyed?

® When are objects accessed and changed?

® Which request is needed in order to provide a required service?
® Which services do the objects participate in?

® When does an interaction between two objects take place?

As the design details are expanded, it is normal to realise that in order to
define the behaviour of a software system and accomplish a particular
service, several operations could be involved, which means that one
operation of one class should invoke other operations on objects of other

121 -

Chapter 4 - A Methodology for Object-Oriented Design

classes and may get some results. The pattern of these invocations
establishes the control flow of the software system and shows how a
particular service can be accomplished. There are basically two different
trends which can be used to express the control flow of an object-oriented
software system, namely centralised and decentralised control flow:

® For a centralised control flow, there is always a client object which
acts as a scheduler. When a server object finishes executing an
operation, the control returns to the client object before the next
operation is requested.

® For a decentralised control flow, there is no unique object which can
give an overall view of the activity of the software system, but the
control flow is spread out among several objects. To invoke an
operation, a request is sent to an object. Such an object can send other
requests to other objects and the control flow passes between objects
until the execution of the software system is over.

At the end of this step software system behaviour is identified in terms of
interactions between objects. The definition of the behaviour of a software
system is completed when the main objects in the software system have been
identified and the pattern of interaction upon these objects has been defined.
Operation diagrams, as shown below, can depict software system behaviour.

Operation Diagrams

The functionality of a software system is defined by the services offered by
that software system, and can be provided by an operation or a combination
of operations. A class alone often cannot provide enough operations to meet
the required functionality. Therefore, a set of operations need to be formed so
that a service can be offered. For instance, to provide the "landing"
functionality for an object of an aeroplane class, it is necessary to request
operations to manipulate the ailerons in its right and left wings. These wings
might be objects of two leftwing and rightwing sub-classes of a wing super-
class, in which the operations to control the movements of the ailerons are
defined. Thus, the "landing" functionality is provided by requesting
operations of two other classes (leftwing and rightwing classes).

-122 -

Chapter 4 - A Methodology for Object-Oriented Design

An operation diagram is a graphical representation showing how operations
can be combined. Operation diagrams are important because they show:

® which operations are used, and when and where they are used;

~

@ relationships between operations of different classes;
@ which operations are needed to offer particular functionality.

An example of an operation diagram is represented in Figure 4.8. A square
represents an operation and is annotated with the operation name together
with the class name where that operation is defined. The example shows the
use of an operation diagram representing the drawing of a polygon on a
screen window with its possible associated label, and with the polygon then
being stored in a database.

- string apoly/graphic
getstring _» | drawpoly > store

A
v

label 1 graphic 3 database

2 ‘ linepoints

drawline

-graphic

Figure 4.8 An Operation Diagram for Drawing a Polygon

In an operation diagram, a solid arrow means that a caller operation
requests a called operation and gets the control flow back after the called
operation has been completed. A dashed arrow is used when a caller
operation requests a called operation which retains the control flow or passes
the control flow to yet another operation while the operation is being carried
out. An open circle at the beginning of an arrow means a conditional passage
of control flow whereas a filled circle represents an iterative passage of

-123-

Chapter 4 - A Methodology for Object-Oriented Design

control flow. The numbers dictate the sequence in which the operatioﬁs are
requested in that operation diagram. These conventions help represent the
control flow of the software system.

Because operation diagrams focus on the control flow of the software system,
they also have to show information and results that might be passed between
operations. Each operation has a signature which determines the parameters
involved in the requesting of that operation. Parameters are split into input
and output parameters. Input parameters are provided by the caller
operation and can just be used by the called operation. Output parameters
can only be updated by the called operation and are available to the caller
operation. Parameters are represented by small arrows beside the operation
which they are related to (see Figure 4.8). Besides, objects can also be
parameters and in this case the class to which the object belongs must appear
after the identification of the object, separated by a slash. Thus, operation
diagrams also enable the designer to trace the information flow.

4.3 FIRST EXPERIENCE WITH MOOD

This section presents an example showing how the designer can identify and
represent classes and inheritance during the design of an Electronic Mail
System following the MOOD steps. This software system is sufficiently
complex to show some of the design principles behind MOOD.

4.3.1 An Electronic Mail System

An Electronic Mail System (EMS) should be a unified environment for
dealing with electronic correspondence and could contain a number of other
facilities to make the processing of electronic messages easy. A simplified list
of requirements for the EMS may be as follows.

Each user of the EMS has a unique identifier, called the electronic mail
address. An electronic mail address consists of two parts separated by "@":
the recipient name and the domain name. An example of a valid electronic
mail address might be L.F.Capretz@newcastle.ac.uk. Basically, users of the
EMS may send messages to other users and read messages that other users

-124-

mailto:L.F.Capretz@newcastle.ac.uk.

Chapter 4 - A Methodology for Object-Oriented Design

have sent to them. Information sent through a message can be read by the
recipient user at any terminal with access to the EMS. As well as being able
to send and receive a message, the EMS also includes facilities which allow,
for instance, users to get help on how to use the system.

After receiving a message in a special box for incoming messages called the
mailbox, the user may read that particular message, redirect that message to
another user or save that message into a box of messages for later reading.
Several messages may be kept in standard structures called the messagefiles
which are similar to separate folders of messages. When the user quits the
system, unread messages go back to the mailbox. A message may be deleted
by redirecting it to a special wastebin owned by the user, and the messages
remain there for some time before being permanently discarded. Thus,
messages can be recovered from the wastebin before the wastebin is emptied.
The user is presented with a menu from where all of these services or
facilities can be chosen.

It is also important to be able to set up a personal mail profile which specifies
mail filtering actions to be carried out on incoming messages. The user may
define in a mail profile that the messages from a particular user or the
messages with a particular subject must be processed by a filter before being
put in the user mailbox. This notion of mail filtering is a powerful one which
is also intended to support automatic mail redirection and classification
according to the preference of the receiver.

These sketchy requirements do not provide enough information about all the
attributes and operations for the possible set of classes for the EMS. During
the design process it is expected that more knowledge about this application
is gained and hence more details added, such as the subject and date of a
message. In the next subsections, early steps recommended by MOOD are
applied in order to obtain some class hierarchies for the EMS.

4.3.2 Identifying and Representing the EMS Classes

At this step, the requirements presented above should be taken by the
designer as a guide to produce an abstract model of the application which can
be used by the designer in the identification of classes. The abstract model of

- 125 -

Chapter 4 - A Methodology for Object-Oriented Design

the application sets up the functionality and facilities that the software
system must provide and it can also be seen as an abstract solution for the
software system which offers electronic mail facilities. The designer could
select, in principle, the following classes:

® message class because the basic entities in the EMS are messages;
® messagefile class to keep different types of messages;

® menu class for the user interface.

Following this first identification of the main classes, the designer can
realise that the EMS has some independent classes, and then identify some
general operations which can be applied to objects of these classes. Recalling
from the requirements that the user views the EMS as a software system
which provides some facilities such as:

@ send a message;

® receive a message;
e filter a message;

® save a message;

® gethelp.

These facilities could be seen at a first glance as operations on the objects of
those previously identified classes.

The message class is one of the most important in the EMS because the main
services are related to messages. At this point, the designer has a rough idea
about attributes of a message; and, in conjunction with the requirements, it
is possible to infer that a message contains at least the following attributes:

@ the addresses of the sender and the receiver;

the subject of the message;
® the date it was sent;

® the text of the message itself.

-126 -

Chapter 4 - A Methodology for Object-Oriented Design

The next stage is to attempt to identify the operations which are associated
with the classes. For example, for the message class a possible list of
operations could be as follows (see Figure 4.9 also):

o

message:
addresses,
subject,
date, text

create,

send, read,

save, reply,
rint,
orward

Figure 4.9 The Message Class for the EMS

® create a message, which means filling in the addresses of the sender
and the receiver, the subject of the message and so on;

® send a message to another user;

® read a message on the screen;

® save amessage in a messagefile;

® reply to a message;

® print a message;

e forward a message to another user.

The second most important class is the one called the messagefile whose
instances are lists of messages. Every incoming message is accumulated into
a single mailbox associated with the electronic mail address of the user. The
EMS takes the messages to be read by the user from that mailbox. There are
certain messages which the user may wish to place into a particular

-127 -

Chapter 4 - A Methodology for Object-Oriented Design

messagefile, identified by a label, to be read later. It allows the user to
preserve or hold any message in separate folders or lists of messages which
are instances of the messagefile class. Some basic operations that can be
applied upon instances of the messagefile class are:

® putamessage into a messagefile;

® list the contents of a messagefile;

® get a message from a messagefile;

@ copy a message from one messagefile to another;
@ move a message from one messagefile to another;
® delete a message from a messagefile.

The filter facilities allow the user to define a set of rules by which all
incoming messages should be screened, and a subsequent operation to be
performed based on whether conditions described in the mail profile have
been met or not. Each rule is represented by a boolean expression followed by
an action. The expression can be based on the subject of the message, and
from whom the message was sent.

When the user invokes the EMS, the system accesses the mailbox of that
user and performs the filtering operation on those newly received messages.
The following actions can be performed upon messages of a mailbox class:

@ list the contentsofa mailbox;

® putamessage in a mailbox;

® get a message from a mailbox;

® delete a message froma méilbox;
@ filter a message from a mailbox.

Deleting a message causes the EMS to put it into a wastebin which is a list of
discarded messages. The user may look at which messages have been put in
the wastebin and may retrieve any of them before the wastebin is cleaned up.
The operations associated with the wastebin class might be set as follows:

-128 -

Chapter 4 - A Methodology for Object-Oriented Design

® put a message into a wastebin;

@ list the contents of a wastebin;

® retrieve a particular message from a wastebin;
® clean up a wastebin.

So far, several classes with some attributes and operations have been
identified. These classes model the main entities in the EMS and provide the
basic functionality required from the software system. However, to achieve
the best use of an object-oriented approach, inheritance must be used
effectively as the major class organising principle. Although the proper use
of inheritance is a difficult skill to master, the existence of guidelines to
assist the designer can help work out this problem.

4.3.3 Identifying and Representing Inheritance

Having identified classes, the designer needs to identify inheritance. MOOD
presents some guidelines and techniques which help both the novice and
experienced designer to use the inheritance mechanism during the design
phase. Inheritance occurs between classes and provides a way of sharing
commonalities between them. Such a useful mechanism plays an important
role in the design and construction of class hierarchies. As far as
identification of inheritance by generalisation is concerned, the designer
should represent the set of attributes and operations of each class in a Venn
diagram and look at intersections between sets in order to determine
whether an appropriate super-class may be created.

In the case of the EMS, the designer might realise, for instance, that the
mailbox, messagefile and wastebin classes share similar attributes and
operations (see the Venn diagram shown in Figure 4.10). The objects of each
of these classes are lists of messages (folders) with slightly different
operations on these lists. A new abstract mailfile class which encompasses all
message storage can therefore be created as the super-class of the mailbox,
messagefile and wastebin classes.

-129 -

Chapter 4 - A Methodology for Object-Oriented Design

mailfile
: wastebin
mailbox ST
get N8R 2855 ”
NN\ e e retrieve
delete folder ::/l/ga:;;/up
NN oo 3 ’
filter N put SHEE //
PO 1iSt 66 ¢
SRS &
label = copy = get
messagefile delete - move ?
Vay > 4
Figure 4.10 A Venn Diagram for the EMS

The designer could put these three conceptually related classes in the same
hierarchy, sharing some common attributes and operations placed in a
mailfile super-class. Each sub-class with some special operations, such as a
filter operation for the mailbox class, a clean-up operation for the wastebin
class and a label attribute for the messagefile class, can then be derived from
that mailfile super-class. A more general picture of the mailfile super-class
and its sub-classes can be depicted in the class hierarchy diagram
represented in Figure 4.11.

As far as inheritance by specialisation is concerned, it is common to view a
class as a specialisation of another more generic super-class. The specialised
class inherits general properties from the generic super-class, defining only
its specific differences. Thus, the mechanism of specialisation allows specific
abstractions to be designed using more general ones. For the EMS, all
services are to be provided via a menu-driven interface, with several kinds of
menus, each with a different purpose. Actually, a menu deals basically with
groups of lines which are showed on the screen. The main operations
provided by a menu class are related to displaying and hiding a particular

-130-

Chapter 4 - A Methodology for Object-Oriented Design

mailfile:
folder
put,
list
mailbox: messagefile: wastebin:
label
get, retrieve,
delete, get, copy, clean-up
filter move, delete
Figure 4.11 The Class Hierarchy for the EMS Mailfile

menu. There may be three different sub-classes of menus which might be
specialised from a generic menu class. These specialisations are important
because different operations may be defined for the sub-classes of menus:

® Menu-option: this sub-class represents only menus of lines showing to
the user possible choices in a particular situation. This sub-class also
needs an operation to get the chosen option. For instance, an object of
this sub-class could be the following line of strings: "put, get or list?".

® Menu-error: this sub-class defines only a line containing an error
message. For example, an instance of this sub-class might be "mail
impossible to deliver - domain does not exist".

® Menu-help: this sub-class depicts some instructions to help the user.
An example of an instance of this sub-class might be "press <ESC>
at the end of the text editor".

-131-

Chapter 4 - A Methodology for Object-Oriented Design

These three sub-classes can inherit the display and hide operations from the
menu super-class, as illustrated in Figure 4.12. The menu-option sub-class
inherits the operations display and hide from the menu class but it also
defines a particular operation to get gn option from the user. The inherited
operations for the menu-error sub-class are just display and hide an error
message. The inherited operations for the menu-help sub-class are display
and hide a help message.

menu:

display,

hide
menu- menu- menu-
option: error: help:
line-option line-error line-help

get-option

Figure 4.12 The Class Hierarchy for the EMS Menus

4.3.4 Comments on Inheritance within MOOD

Some comments on the use of.inheritance can be made at this point.
Inheritance could be misused as a composition of attributes. It is a frequent
mistake to consider a super-class and then try to derive sub-classes based on
the attributes which make up that super-class. For example, consider a car
class as the main class in a software system. A car can be divided into engine,
transmission, brakes, suspension and so on. An engine can be further
partitioned into components like ignition, fuel-injection, starter and so forth.
Nevertheless, an engine class must not be considered as a sub-class of a car

-132-

Chapter 4 - A Methodology for Object-Oriented Design

class because an engine is just part of a car and it is not a specialisation of a
car. Certainly, the attributes and operations applied to a car class are
completely different from those applied to an engine class.

The most important concept relating to inheritance should be specialisation
and generalisation, never composition. The philosophy of using inheritance
should be as follows: only use inheritance as a specialisation or
generalisation mechanism. Successful use of inheritance depends on using a
methodology which enforces or guides the application of this mechanism.
The use of Venn diagrams as recommended by MOOD helps prevent this
misuse of inheritance because the intersections between the set of attributes
and operations of those car and engine classes would be empty, thus, one
would not be a super-class of the other.

Another common pitfall is to overuse inheritance. In this case class
hierarchies comprise too many sub-classes, with not enough difference in
functionality between such classes, leading to a fine granularity. That is,
many classes, each one with few attributes and operations. Although this
high granularity may offer more potential for reuse, it makes the class
hierarchies more difficult to understand. Classes that offer the same sort of
services should be merged. Two courses of actions are open: either merge
similar classes into one new class, or make them sub-classes of a common
super-class providing the shared functionality.

Inheritance perhaps works best in the development of small software
systems, which are likely to require a small number of designers to be
developed. Where there are many designers updating and extending the
class hierarchies, it is very likely that communication problems will cause
unawareness of a particular change in the class hierarchies made by some
designer. The following recommendations can be made to avoid this
mismanagement of class hierarchies:

® All class hierarchies should be represented using the MOOD
diagrams.

® Software configuration management techniques should be applied to
control versions of classes and to keep track of the history of a design.

-133-

Chapter 4 - A Methodology for Object-Oriented Design

® An experienced software engineer to manage the several class
hierarchies seems to be necessary.

This section has presented some issues related to the design of an Electronic
Mail System. Although other design$ (even better ones) are possible, the
EMS design has shown how the early steps and the graphical notation
introduced by MOOD can be used to produce a partial static design of that
software system in terms of its classes and inheritance among such classes.
Note that it was not intended to produce a complete design of a software
system, but rather to acquire some experience of early MOOD steps, done by
hand, not tools.

Many problems and constraints, such as how to manipulate large number of
classes and the difficulty of doing a complete design entirely by hand, were
enough to show that the use of tools is imperative during the design phase.
The limitations presented in that design might be solved if the methodology
were supported by a set of tools integrated within a software development
environment (this issue is further discussed in the next section). The real
evaluation of MOOD, to be presented in Chapter Seven, will be based on the
experience of designing a CASE environment which supports MOOD, by
using MOOD itself.

4.4 A CASE ENVIRONMENT FOR MOOD

The high cost of software development and maintenance, and the need for
reusable software components are some of the factors stimulating the
research for better CASE environments that support software development
methodologies. Actually, putting a methodology into practice is almost
impossible without an environment that provides a set of tools which gives
automated support for that methodology.

Ideally, an environment should support a software development
methodology by sustaining the steps, rules, principles and guidelines
dictated by that methodology. The environment should also support
consistency and completeness checking to guarantee that the principles of
the methodology are obeyed. The tools should check rules that govern the
syntax and semantics of the underlying methodology. These types of checks

-134-

Chapter 4 - A Methodology for Object-Oriented Design

can eliminate a large proportion of design errors prior to the
implementation.

A software development environment is often used in the construction of
large software systems because in -general those software systems are
complex and require a large amount of interrelated information. In such
circumstances, an environment is also useful because it ideally:

e simplifies the traceability between different phases of the software life
cycle;

® enhances communication among designers;
® provides a uniform means of software representation;
® assists in keeping documentation through report generators;

@ provides a means of producing graphical notation from information
stored in its database;

® supports team work across many different workstations;

® manages coordination among designers in terms of assignment,
deadlines and integration of tasks.

The object-oriented paradigm has been influencing the way that software
development environments have been built because some tools are quite
related to that paradigm. For instance:

® Library management tools to allow the searching for potentially
reusable components such as classes.

® Browsers to facilitate navigation through class hierarchies, storage
and recovery of classes, and definition and visualisation of classes in
terms of their interfaces, attributes and operations.

® Object-oriented diagram editors to support an object-oriented
graphical notation in terms of classes, inheritance and object
interaction.

-135-

Chapter 4 - A Methodology for Object-Oriented Design

Based on the diagrams presented earlier in this chapter and the aspects of an
object-oriented environment discussed above, the following tools can be
identified in order to build an environment that supports MOOD:

® aclass hierarchy diagram editor;
® an object diagram editor;

® an operation diagram editor;

@ acomposition diagram editor.

These diagram editors not only support the drawing of the MOOD diagrams
but also ensure that the design which is being represented conforms to the
rules and principles of the underlying methodology. There should also be
other useful tools such as:

® aclassbrowser;

® an object inspector;

® alibrary management tool;

® a consistency checker;

® acompleteness checker;

® areport generator;

® aconfiguration management tool.

These tools should give some freedom to designers, letting them make some
temporary omissions and then checking for such mistakes later in the design
process. Moreover, the tools must also relate concepts on one diagram to
other diagrams and point out the links and problems. A prototype of an
environment that supports MOOD and satisfies the requirements discussed
in this section is presented in Chapter Six.

136 -

Chapter 4 - A Methodology for Object-Oriented Design

4.5 FINAL REMARKS ON MOOD

An object-oriented software system can be seen at two different layers of
abstraction as shown in Figure 4.13. There is an upper generic layer which
‘shows the static description of a soffware system and a lower level layer
which consists of objects and shows the behaviour of a software system. The
upper layer can represent the set of classes from which any software system
may be constructed, while the lower layer depicts the actual objects and
potential object interactions required in a particular software system. The
design of each layer may be carried out simultaneously.

Figure 4.13 The Static and Dynamic Layers of a Software System

It is important to remember that identifying classes is not the same as
identifying objects. Classes are a means of expressing static commonalities
between objects and templates to create them, whereas objects will have a
dynamic life in a running software system. The MOOD diagrams show both
the static and dynamic aspects of a design. On one hand, the static design
consists of class hierarchy and composition diagrams. On the other hand, the

-137 -

Chapter 4 - A Methodology for Object-Oriented Design

dynamic design is expanded with both object and operation diagrams which
represent the overall dynamic behaviour of a software system. At first, the
operations on individual objects are presented in object diagrams and then
these operations are combined to perform the functionality required for the
software system. The steps proposed by MOOD, as discussed earlier in this
chapter, are shown in Figure 4.14.

An Abstract Model
of the Application { MOOD

———-—————--——1

IDENTIFY AND REPRESENT COMPONENTS

]

IDENTIFY CLASSES IN TERMS OF
ATTRIBUTES AND OPERATIONS

A

IDENTIFY INHERITANCE BETWEEN CLASSES
IN TERMS OF COMMONALITIES

]

REPRESENT CLASSES AND INHERITANCE
USING CLASS HIERARCHY DIAGRAMS

X

IDENTIFY SOFTWARE SYSTEM BEHAVIOUR
IN TERMS OF OBJECTS AND THEIR INTERACTIONS

N

REPRESENT SOFTWARE SYSTEM BEHAVIOUR
USING OBJECT AND OPERATION DIAGRAMS

> A Design Model

Figure 4.14 The Steps Recommended by MOOD

-138-

Chapter 4 - A Methodology for Object-Oriented Design

The steps emphasise design before implementation and are independent of
any programming language. The design process originates with an abstract
model of the application and culminates with a design model ready to be
implemented. The path connecting these two models is not a straight line,
but rather an iterative refinement process. In the course of building an
object-oriented software system, the steps involved in the design of the
necessary classes and objects are almost certain to be repeated many times.

The designer can use MOOD to represent a software system by using only a
fixed set of diagrams. Class hierarchy diagrams are graphical notations
depicting how classes are arranged hierarchically. Object diagrams and
operation diagrams are used to represent the behaviour of a software system.
More detailed examples of MOOD diagrams from a particular software
system are given in Chapter Six.

The graphical notation proposed could be used manually but a prototype of
an environment that provides automated support for MOOD is also
presented in Chapter Six. In that prototype there are also tools to provide
consistency and completeness checks, browsers and configuration
management facilities. The next chapter discusses how to consider
reusability issues within the MOOD context and a software development life
cycle model that encompasses MOOD.

-139-

Chapter 5

REUSABILITY AND
SOFTWARE LIFE CYCLE ISSUES

This chapter discusses reusability and software life cycle issues which arise
during the design of object-oriented software systems. Such issues are
related to the previously described topics of domain analysis and application
domain, and placed in the context of the MOOD methodology presented in
the previous chapter.

The first section of the chapter outlines existing mechanisms for achieving
reusability, such as composition and inheritance. The section also
concentrates on the main reasons why software is not reused and examines
the problems associated with reusability during the design phase.
Additionally, in this section reusability is added to the context of the MOOD
methodology. '

In section two, the main issues concerning an alternative software life cycle
model are discussed. The purpose of this section is twofold: firstly, to discuss
how different levels of knowledge that the designer has about the application
domain can affect software develppment; and secondly, to present a software
development life cycle which encompasses MOOD and takes reusability into
account. The chapter ends with comments on the object-oriented software
development process with regard to reusability and the software
development life cycle proposed. ‘

- 140 -

Chapter 5 - Reusability and Software Life Cycle Issues

5.1 REUSABILITY WITHIN MOOD

The concepts of reusability and object-oriented methodologies are so
interrelated that it is often difficult to talk about one without mentioning the
other. This subsection presents an approach to software reuse while the
design process is performed. The approach to be presented is in accordance
with the philosophy of MOOD, in such way that while the MOOD steps are
carried out, reusability through the composition, generalisation and
specialisation mechanisms is taken into account.

The approach focuses on a collection of software systems within a particular
application domain, and encourages reuse of components from an existing
reusable library within that application domain. Such an approach addresses
the mechanisms used when components are reused from the reusable library.
Moreover, the approach recognises the iterative nature of software
development, hence iterations are incorporated into the design process where
appropriate.

A diagrammatic representation of reusability within MOOD is shown in
Figure 5.1. The reuse process is well-suited for an object-oriented software
development because the composition, generalisation and specialisation
mechanisms, which are part of the object-oriented design process (as
presented in Chapter Two) are considered. Underlying the reuse of software
components is the process which addresses both the identification of reusable
components and their deployment into the developing software system.

Reusability involves design with reuse and design for reuse. Initially, the
designer identifies potentially reusable components from an existing
reusable library, the components are then selected and reused through
composition, generalisation and specialisation mechanisms. At the end of
software development, there may be many new reusable components which
need to be classified and then to be stored into a reusable library. In the
future, such components can be reused in other software systems. The second
issue will be discussed later in this section.

-141 -

Chapter 5 - Reusability and Software Life Cycle Issues

System Analysis

:-abstractior}) Design (MOOD)-:

| (decomposition/ I

I classification) I

: - ' : Domain

| Static Model generailisati on/ I Analysis
i) specialisation I

I \ I

I . selection | | | B bl

Potentiall eusabie

: refinement Reusab?e Y < : — Library
I Components l T
I |

: y composition :

i Dynamic Model i

I I

I |

I translation I
I d

y
Implementation
Figure 5.1 Reusability within MOOD

5.1.1 Relationships between Components

So far, most of the work which has been done in the reusability arena
involves storing and recovering components from reusable libraries, but
there are still many problems related to reusing such components. For
instance, as a software system becomes mature, the libraries may grow as
domain-specific libraries and reusable components can be added over time. It
does not take long for such libraries to expand to enormous proportions and
often with multiple versions of a component, which makes it difficult for
designers to look for components which might meet their needs.

142

Chapter 5 - Reusability and Software Life Cycle Issues

Reusable libraries are usually large and their organisation makes it
problematic to find potentially reusable components. One of the great
difficulties in identifying reusable components lies in the fact that there is a
discordance in terminology between different designers so that components
which designers are looking for are described in the libraries by unfamiliar
or unexpected terminology.

In order to reuse a component, the designer must first find it. Therefore, a
good classification scheme for arranging components is central to the
selection process. This classification can be an aid to understanding a
component when software reuse demands adaption of that component to
match new requirements. The learning curve for reusable components may
be substantial. Besides, the search for a component is a difficult task in that
the designer must select one which requires the least effort to adapt, with the
goal being an exact matching between what is needed and what is available.
The time and effort required for this selection process is decreased by the
presence of semantic information within the reusable library. The potential
re-user of software must be able to find a connection between what is needed
and what is available. Relationships between components could be used to
facilitate the search for potentially reusable ones.

The semantics supported in the diagrams proposed by MOOD can be
expressed by relationships between components. For instance, has-a
relationships can be found in composition diagrams, is-a relationships are
presented in class hierarchy diagrams, uses-a relationships can be shown in
operation diagrams, and is-part-of relationships can link a component to a
particular context. Such relationships can be used as a classification scheme
to provide a network of pre-defined links between components, thus
introducing some semantic information and a vocabulary into a reusable
library.

One way to express relationships between components of a reusable library
involves organising them through a set of pre-defined relations. Such
relations allow components to be classified and correlated to others which
could also be reused. In addition, relations can be used to express a link
between different components, facilitating the understanding of the
components. Relations used to represent design information between two
reusable components can help to solve the problem of discordance of

143 -

Chapter 5 - Reusability and Software Life Cycle Issues

terminology between designers because the relations can establish some
fixed semantic concepts between components. Four different relations to link
components and express concepts related to MOOD are proposed:

1) Compose (<component-1>, <list-of-components>): This relation
represents <component-1> as a composition of components in a
<list-of-components> (has-a relationship). This information is
available from the composition diagrams.

2) Inherit (<component-1>, <component-2>): This relation indicates
that <component-1> is a generalisation of <component-2> or the
other way round that <component-2> is a specialisation of
<component-1> (is-a relationship). This information can be found in
the class hierarchy diagrams.

3) Use (<component-1>, <list-of-components>): This relation
indicates that <component-1> interacts with components in a <list-
of-components> (uses-a relationship). It means that any operation of
<component-1> uses any operations defined in any component in a
<list-of-components>. A complete link of dependencies among
operations of different components can be built with information from
the operation diagrams.

4) Context (<component-1>, <context-1>): This relation associates a
<component-1> with a <context-1> defined by the designer (is-
part-of relationship). The <context-1> can be a particular
application domain or a framework. This process involves
classification of components and depends on the experience of the
designer.

The compose, inherit and use relations can be perceived straight from the
MOOD diagrams or, if necessary, complemented with other information
provided by the designer, whereas the context relation should be given by the
designer. The designer may use the relations proposed above as an
alternative textual representation to describe a software system.
Furthermore, enquiries to a reusable library which stores such relations and
manipulates the same concepts as MOOD can be undertaken.

144 -

éhapter 5 - Reusability and Software Life Cycle Issues

Given that the information present in a reusable library is compatible with
the information dealt with in MOOD, the MOOD diagrams proposed in the
previous chapter can be used to represent reusable components in the
reusable library. Moreover, because the semantics of the MOOD diagrams
can depict relationships between reusable components, reusability is
naturally encouraged by the use of MOOD.

5.1.2 The Process of Component Reuse

The decisions involving the reuse of a component are very important in that
the designer must select the component which requires the least effort to
adapt, with an exact match between what is needed and what is available
being the goal. Basically, the selection of a component from a reusable
library involves four steps:

1) identifying the required (target) component;
2) selecting potentially reusable components;
3) understanding the components;

4) adapting (specialising, generalising, composing or adjusting) the
components to satisfy the needs of the developing software system.

The search for a component in a reusable library can lead to one of the
following possible results:

® An identical match between the target and an available component is
reached.

® Some fitting components are collected (only a partial match), then
adaptations are necessary.

® The requirements are changed in order to fit available components.

® No reusable component can be found, then the target component
should be created from scratch.

-145-

éhapter 5 - Reusability and Software Life Cycle Issues

Following a procedure which helps select potentially reusable componeﬁts is
vital to the reuse process. The procedure shown in Figure 5.2 illustrates a
typical attempt to reuse a component from a reusable library. The procedure
describes only the selection of reusable components; classification and
storage issues are discussed later in this section. By properly classifying a
component using the relations proposed previously, the chance of finding
potentially reusable components is increased. Furthermore, the effort
required to get a suitable component is reduced because the classification
scheme based on relations can guide the designer through the various
relations quickly and efficiently.

While searching for components it is necessary to address the equivalence
between the required (target) component and any near matching
components. The best component selected for reuse may also require
specialisation, generalisation or adjustment to the requirements of the new
software system in which it will be reused. Sometimes, it is preferable to
change the requirements in order to reuse the available components. The
adaptability of the components depends on the difference between the
requirements and the features offered by the existing components, as well as
the skill and experience of the designer. The process of adapting components
is the least likely to become automated in the software reuse process.

5.1.3 The Lifetime of Reusable Components

Reusability not only involves feusing existing components in a new software
system but also designing components which are meant for reuse. When a
software system has been developed, the designer may realise that some
components can be generalised and reused in future software developments.
An important consideration in the quest of reusability is how to make a
potentially reusable component available to other designers. The component
must be understandable, well-written and well-documented. Finally, the
component must be easily adaptable for different uses, either in original orin
modified form. Therefore, developing reusable components is considerable
more difficult and involves much greater expense then producing ordinary
components, although it may still be worth the investment.

-146 -

Chapter 5 - Reusability and Software Life Cycle Issues

Begin
// The process of component reuse

given a key name (the name of the target component),
search library for potentially reusable components and
their relations

if identical match between the target and an available component
then

// reuse by composition

retrieve it and reuse it

else
collect fitting components
for each collected component
assess the degree of matching
endfor
rank and select the best component
ifh the target can be a sub-class of the best component
then
// reuse by specialisation
put the target as a sub-class and inherit commonalities

else
i1;‘the target shares commonalities with the best component
then
// reuse by generalisation
create a generic super-class,
put the target and the best component as sub-classes
else
// specialisation and generalisation are not convenient
if possible
then .
adjust the best component to the requirements or
: adjust the requirements to the best component
else
create the target component from scratch
endif
endif
endif
endif

end

Figure 5.2 A Procedure to Reuse a Component

- 147 -

Chapter 5 - Reusability and Software Life Cycie Issues

In an object-oriented approach, classes are the most important reusable
components. Since an object-oriented software system is developed
essentially as an interrelated collection of independently developed classes,
it is important to understand the stages which such components go through.
The stages should reflect the activities involving the identification, design,
implementation, validation, classification, storage and reuse of the
component. Figure 5.3 depicts the lifetime of a reusable component.

Identification
i
Software Refinement \ Selection/Reuse
System > Design <
Database .
i Reusable
] Library
Implementation
a i
]
Validation
1
|/
Classification
. Storage/Relations
Figure 5.3 The Lifetime of a Reusable Component

Through the introduction of explicit stages of specialisation, generalisation
and composition during the design phase, application-dependent classes are
revised so that they can be sufficiently generic to be of use in a wider range of
software systems rather than the single software system for which they were
originally developed. This generality requires extra effort during the design
and implementation phases in the short term, but in the long term, when a
sufficiently broad reusable library has been constructed, it will lead to a
significant reduction in overall software development time and effort.

- 148 -

Chapter 5 - Reusability and Software Life Cycle issues

There must be in fact two main libraries: the reusable library from which
components of interest can be picked up (and to which new generic reusable
components can be added), and the software system database (or MOOD
database as used in Chapter Six) which stores information concerning a
particular software system under devélopment. '

If a newly implemented component does not exist in the reusable library,
then a decision has to be made as to whether the new component should be
classified as reusable component and to be put in the reusable library. Before
a component can be added to the reusable library, it must be validated and
frozen. The validation is just applied to that component, not to the whole
software system and should include treatment of exceptional conditions. For
instance, for a class to be a viable candidate for inclusion into the reusable
library, it must first:

® be well-defined in terms of its attributes and operations;

® have a reasonable performance in terms of time and space required to
carry out its operations;

® be a generic abstraction, which means that the functionality it
provides must be sufficient to model the real-world entities abstracted;

® have a robust behaviour when it is misused or pushed to its limits,
that is, exceptions must be handled.

It is also very important to separate classes of client objects and server
objects. Client objects are often highly application dependent and they make
decisions and switch the control flow among several server objects. Client
objects should not directly perform calculations or implement complex
algorithms. On the other hand, server objects perform specific and detailed
operations, executing general computations to implement a particular self-
contained algorithm and rarely change the control flow. Therefore, server
objects are more likely to be reused in other software systems than client
objects since the former are more application-independent and basically wait
to receive requests from client objects. Thus, as far as design for reuse is
concerned, classes of server objects are preferable.

-149 -

éhapter 5 - Reusability and Software Life Cycle Issues

It is not recommended that components in the reusable library be modified,
but a copy of a component should be taken into the software system database
and adaptations carried out there. Tools can manipulate the reusable library
by storing, selecting and browsing the library. Storing a component involves
classifying it, getting it from the software system database, relating it to
other components and putting it into the reusable library. Selection involves
browsing to find a component, retrieving it and transferring it from the
reusable library to the software system database.

5.2 MOOD WITHIN A SOFTWARE LIFE CYCLE MODEL

This section presents an alternative object-oriented software development
life cycle that encompasses MOOD. The proposed software life cycle model is
influenced by the knowledge that the designer has about the application
domain and also addresses reusability within an object-oriented approach to
software development.

5.2.1 The Role of the Knowledge about the Application
Domain

Software system designers hardly ever solve a new problem from scratch.
Instead, they try to identify similarities between the new application and
previous applications and their solutions. By making suitable
transformations from previous experience, designers attempt to solve the
new problem. This process is referred to as solving by analogy, which is
considered to be a natural way in which people learn. The successful use of
analogy depends on recognising the similarities between two problems and
recalling the solution of the analbgous problem. Therefore, it can be assumed
that the knowledge designers have about an application domain increases
the chance of reusing solutions from previous experience. However, many
object-oriented methodologies do not take this human feature into account.

When designers are developing software systems in an unfamiliar
application domain they do not have the same knowledge and skills
available to them as when they are developing software systems in a familiar

-150 -

Chapter 5 - Reusability and Software Life Cycle Issues

domain. Of course, there are differences in the approach to developing
software systems if designers can apply their knowledge and skills acquired
when software systems in a known domain have been developed before.

Adelson and Soloway (1985) claim that the experts explicitly construct high
level abstractions of a software system whereas novices think about low level
entities and their behaviour within a software system. Therefore, the
knowledge that designers have about an application domain affects the way
software development is carried out. The experts tend to think in more
abstract and high level terms following a top-down approach whereas the
novices usually start thinking about low level abstractions of a software
system and software development is thus predominantly bottom-up.

A strictly top-down or bottom-up approach to software development is not
quite appropriate for an object-oriented software development. This section
proposes a top-down or bottom-up approach to software development,
depending on the knowledge that designers have about an application
domain. This knowledge naturally determines the predominant approach to
subsequent software development.

If designers know the application domain, they should start thinking about
high level abstractions (such as class hierarchies), whereas when designers
do not know much about the application domain, they should start
instantiating some objects and trying to understand the low level behaviour
of a software system. As software development proceeds, designers may
sometimes utilise a mixed approach to software development, switching
between a top-down and a bbttom-up approach as designers may explore
options. However, the predominant approach is determined by the designers'
knowledge about the application domain.

5.2.2 The Proposed Software Development Life Cycle

Software development is characterised by change and instability, and
therefore any diagrammatic representation of a software life cycle model
should take into account overlapping and iteration between phases. Based on
the steps proposed by MOOD, a consensus may be drawn on the phases
pertinent to a software development life cycle and the common tasks carried

-151 -

’Chapter 5 - Reusability and Software Life Cycle Issues

out following MOOD. A proposed software development life cycle which
encompasses MOOD and takes reusability into account is represented in
Figure 5.4. Although the main phases may overlap each other and iteration
is also possible, the proposed phases are: system analysis, domain analysis,
design (static and dynamic) and ithplementation. Maintenance is an
important operational phase, in which bugs are corrected and new
requirements met; it will not be further discussed.

System Analysis
A

Domain Analysis

Reusable
Library

e e W |

: Static Dynamic
i Design Design

R o o s o o o e - o e - el

Implementation

Figure 5.4 MOOD within a Software Development Life Cycle

Another outcome of the proposed software life cycle model is the emphasis on
reusability during software development and the production of reusable
components meant to be useful in future software developments. This is
naturally supported by the object-oriented paradigm because of inheritance
and encapsulation. Reusability also implies using composition techniques
during software development. This is achieved by initially selecting reusable
components and aggregating them, or by decomposing the software system to
a point where it is possible to identify components that can be reused from a
reusable library.

-152 -

'Chapter 5 - Reusability and Software Life Cycle Issues

Figure 5.4 presents a diagrammatic representation of how the sy\stem
analysis, domain analysis, design and implementation phases proceed
iteratively over time and how reuse of components from a reusable library is
taken into consideration within the proposed software development life
cycle. Reusability within the proposeci software life cycle model is smoother
and more effective than the traditional waterfall software life cycle model
because MOOD integrates at its core (through relations) the concern for
reuse and its mechanisms, as shown in the previous section.

System Analysis

This phase involves high level analysis of the application in terms of the
functionality that the software system should provide. The system analysis
phase requires the designer to:

® understand the application;

® understand the requirements expected to be satisfied by the software
system;

® propose an abstract model of the application in which such
requirements are accomplished.

The main purpose of the system analysis phase is to provide a graphical or
textual description of an abstract model of the application. This phase may
conduce to the identification of the major parts of the application so that the
software system may be divided into large components, based on the
functionality that should be provided. A first idea of the classes and objects
which model the application could also be picked up. If several similar
relevant objects have been found, a class should be established. In the same
way, if correlative classes have been identified, class hierarchies should be
worked out.

The functionality the software system should afford in fact defines the
subsystems and modules. However, as compared to functional decomposition,
this phase is not concerned with the details of one function or procedure in
terms of the algorithms they implement, nor that one function can be refined

-153-

"Chapter 5 - Reusability and Software Life Cycle Issues

in terms of other subfunctions but it is concerned with decomposition in
terms of classes and objects.

The result of this phase is an object-oriented abstract model of the
application, which may be graphical pr textual, using a formal or informal
method. At this phase it seems unnecessary to detail classes in terms of their
attributes and operations, or look for communication patterns among objects
of different classes, since what is more important is a high level view of the
software system.

Domain Analysis

The domain analysis phase primarily seeks to abstract and classify concepts
which form the vocabulary of the application domain. During this phase a
common terminology is drawn from the application domain, as discussed in
Chapter Two. Large applications should be broken into parts, so that
specialists in a particular application domain can carry on the domain
analysis in that application domain.

During this phase, the abstract model of the application comprising high
level abstract representations of software components may be refined and
new classes and objects to encompass these components can be defined.
Therefore, the boundary between system analysis and domain analysis may
at times seems fuzzy because identifying key abstractions in the application
domain may be viewed as part of system analysis or part of domain analysis.
Nevertheless, at this level, domain analysis is more concerned with the
identification and organisation of potentially reusable components.

Selection of reusable components from previous software systems or from a
reusable library should be considered. When doing domain analysis, there
might be a sketchy idea about candidate classes and some attributes and
operations. Sub-classes can be derived from the classes in a particular
application domain, and objects can be instantiated from classes in a
reusable library and composed with other objects. In the context of the
proposed software development life cycle, the main result of the domain
analysis phase should be the reuse of software components which have
already been developed (see Table 5.1).

154 -

Chapter 5 - Reusability and Software Life Cycle issues

Design

Object-oriented design is an exploratory process. The designer looks for
classes and objects trying out a variety of schemes in order to discover the
most natural and reasonable way to’ model the application. During the
design phase the primary concern is to build a design model which will fulfil
the overall software system functionality. The construction of the design
model involves defining relevant classes and objects, and producing both the
static design and the dynamic design.

The static design comprises a static model of the software system and
basically makes use of class hierarchy and composition diagrams. The
dynamic design consists of a dynamic model showing the behaviour of the
software system with object and operation diagrams. During the design
phase those abstractions identified in previous phases are turned into
concepts which represent the software system in more detail and afford the
functionality that the software system should provide.

The static design captures the generic and essential features of a software
system and can be expanded for other software systems within the same
application domain. In contrast, the dynamic design captures dynamic
aspects of a particular software system and is therefore more difficult to
generalise to other software systems. To do both designs, the MOOD
graphical notation introduced in the previous chapter must be used.

When object-oriented designers face an application, they should not ask
"How do I work out a solution to this problem?". Instead designers should
ask, "Where are the classes and objects that I can directly or indirectly reuse
to solve this problem?". A procedure to guide the designer over this task was
presented in the previous section. At this point the designer should be able to
examine a reusable library and to select components which closely match the
classes and objects needed to build the developing software system.

A good browser is useful to trace the class hierarchies and see the attributes
and operations possible to apply to a particular object. One of the biggest
problems with object-oriented software design is that in order to understand
the class hierarchies it might be necessary to scan three or four super-classes
to find out all attributes and operations which make up each sub-class. Thus,
a browser is necessary to locate information in the class hierarchies. A

- 155 -

Chapter 5 - Reusability and Software Life Cycle Issues

browser could copy automatically all inherited attributes and operations into
a sub-class together with the related super-class names. In this way, once the
designer is browsing a class, all the features of that class and of its super-
classes are available. Although browsers are very useful for discovering and
understanding the characteristics of “classes in a library, they are by no
means a sufficient tool for finding suitable candidate classes for reuse.

As more classes are identified, re-evaluation of the complete set of classes is
required and decisions whether new sub-classes or super-classes should be
made. The iterations are not unusual, since good design usually takes many
iterations. The number of iterations also depends on the insight, experience
and knowledge about the application domain. A bottom-up approach
(instantiation of some objects) should be considered if the designer does not
have a good perception of the application domain.

The classes and objects which are identified during the design phase might
undergo another stage of refinement (for example, treatment of exceptional
conditions could be considered) until they become generic and robust enough
to be placed in a reusable library. This may add an overhead to software
development, but this overhead should be more than compensated for by the
long term saving when future software systems reuse such components.

Implementation

The implementation phase is characterised by the translation into an object-
oriented programming language of the static concepts and the dynamic
behaviour represented by the output from the design phase, that is, the
MOOD diagrams. In this phase the major tasks are to implement the
identified classes, along with the cooperation among the objects in order to
fulfil the software system functionality.

The line between design and implementation is also a thin one.
Implementing a class requires definitions of the data structures
corresponding to attributes and the algorithms corresponding to operations
of that class. It is also necessary to implement the control flow which realises
the interaction between objects and defines the overall behaviour of the
software system. The best approach is to isolate a class or an object and

- 156 -

Chapter 5 - Reusability and Software Life Cycle Issues

decide whether a component which matches that class or object can be
reused, or whether it has to be implemented from scratch.

Table 5.1 summarises the phases of the software development life cycle
proposed. The table shows the input, tasks performed and output of each
phase. Such phases evolve dynamically as the understanding the designer
has about the software system grows. The phases can be traced during
software development and determine an object-oriented software life cycle

model.
Phases | Input Tasks Output
application: create an abstract
System user needs and abstract model
Analysis software system model of the of the
requirements application application
abstract identify potentially
Domain model possible reusable
Analysis of the reusable components
application components
abstract buil static
model of the stualti(%: (generic)
Design application and and and
potentially dynamic dynamic
reusable models (behaviour)
components models
static) software
(generic) implement system
Implement. and the solution
dynamic - models for the
(behaviour) application
models

Table 5.1 Input, Tasks and Output of each' Phase

-157 -

Chapter 5 - Reusability and Software Life Cycle Issues

5.3 COMMENTS ON THE SOFTWARE DEVELOPMENT
PROCESS

The phases of the proposed software development life cycle are highly
integrated. At the system analysis and domain analysis phases, user needs,
requirements, functionality, objectives and the constraints of the software
system are very much of interest. Thus, it is important to understand the
real-world application, and an abstract model of that application should be
accomplished. When the design phase is entered, the abstractions are
detailed. The design process should stop when the key generic abstractions
and the software system behaviour are detailed enough to be translated to a
programming language. Thus, the design phase generates the templates for
the implementation phase of the software system.

Because experts tend to think in terms of high level abstractions, their
prevailing approach to software development is top-down, whereas novices
tend to use a predominantly bottom-up approach. When designers have good
knowledge about the application domain, it is easier for them to divide the
software system into large components and think about high level
abstractions. On the contrary, for designers who have no previous knowledge
about the application domain, it is easier to think in terms of low level
abstractions and instantiate some objects at that level to depict the overall
behaviour of the software system. In broad terms, it could be concluded that
everything should be built top-down, except for the first time.

The top-down and bottom-up approaches have a significant effect on
reusability because a top-down approach applies reusability predominantly
in terms of generalisation and specialisation of abstractions, whereas a
bottom-up approach uses reusability predominantly as aggregation of
components. Following an object-oriented approach, reusability not only
becomes easier as a consequence of the correspondence between real-world
entities and its software components, but it will also become enhanced by
mechanisms such as inheritance and composition which are supported by
MOOD and its tools. '

Nevertheless, a software system will not be produced out of reusable
components only. On the contrary, usually, components selected and derived
from reusable libraries will be combined with newly written components,

- 158 -

Chapter 5 - Reusability and Software Life Cycle Issues

and these components have to be bound together in a particular software
system. With some of the components of such a software system, the designer
will face the decision of whether to reuse them straightforwardly, adapt
them and reuse, or write them from scratch. It has been argued that the
break-even-point of reusing versus redoing would be where the cost of search
plus adaptation exceeds the cost of producing the respective piece of software.

Putting such arguments into an object-oriented software development
framework, and particularly relating them to MOOD produces the following
observations. If the application domain is known by the designer then it is
easier to start abstracting classes, finding commonalities between them, and
building the class hierarchies. The use of the class hierarchy diagrams, as
recommended by MOOD, is likely to be more appropriate for this task. On
the other hand, if the designer wants to start a design by instantiating some
objects, then the object diagrams and operation diagrams, as recommended
by MOOD, are the most appropriate to represent the abstractions.

The implication of such observations on tools which automate software
development, and particularly tools supporting MOOD, is relevant. The
designer should be aided by a whole range of tools. However, which tool is
most helpful depends on the level of knowledge that the designer has about
the software system being developed and on the application domain as well.
Therefore, all tools should be available to the designer at any time during
software development. The designer picks up those tools which will help deal
with the concepts manipulated at that moment, such as classes or object
behaviour. By using a variety of tools, the designer is able to decide which of
them is the most appropriate for each task. Therefore, an environment
should allow both bottom-up and top-down approaches to an object-oriented
software development. Some tools which are indispensable at different
stages of an object-oriented design are presented in the next chapter.

- 159 -

Chapter 6

THE MOOD PROTOTYPE

Computer-Aided Software Engineering (CASE) environments gained
significant impetus in the 1980s. With the need to produce large and complex
software systems, the provision of computer-aided tools to support the use of
design methodologies has become increasingly imperative. Fortunately, the
advent of inexpensive powerful workstations with graphical capabilities has
permitted such tools to be built and made available.

The tools can take a wide variety of forms, including diagram editors which
help document the use of graphical notations relating to an underlying
design methodology, type checkers for particular notations, checkers for the
consistency and completeness of a design, and even transformation tools for
assisting in the conversion of elements of a design from one representation to
another.

This chapter discusses how MOOD can be supported by a CASE environment
and presents the MOOD prototype. This is the prototype of an environment
which provides automated support for MOOD through diagram editors,
browsers and checkers. The primary aim of the MOOD prototype is to offer
its users (software designers) a compatible set of tools for supporting object-
oriented design. This is achieved by building a full environment containing
the tools discussed in Chapter Four.

The first section of this chapter presents the overall issues related to the
implementation of the MOOD prototype. This section also describes the
particular InterViews (Linton, 1989) classes relevant to the context of that
implementation. Some of those classes were used as super-classes during the

-160 -

Chapter 6 - The MOOD Prototype

design and implementation of the MOOD interface. In the second section,
the main features of the prototype interface are outlined. The section, as a
whole, also presents an approach for building other environment tools.

Section three describes the design .and implementation of the MOOD
database which supports persistency for MOOD objects, and shows how
integration among tools is accomplished using a unified representation
model, in this case an object-oriented model. In the fourth section, the
semantics and behaviour of the MOOD environment tools are presented,
showing examples of their use. The chapter finishes with considerations on
the use of the prototype during the design process. It should be noticed that
all windows shown in this chapter were generated using the MOOD
prototype, which helped to evaluate the MOOD environment interface.

6.1 OVERALLIMPLEMENTATION ISSUES

The MOOD environment is more than a set of different tools put together to
support object-oriented design. Integration of tools is achieved by bringing
them together under an object-oriented framework, enabling a software
system to be designed within this unified framework, rather than using a
collection of disjointed tools. Integration allows the user to freely
interchange information between one tool and another, facilitating
communication among tools. The MOOD prototype can use multiple views to
display windows of different tools simultaneously and it is possible to change
from one tool to another so that the output of one tool can be used as input to
another.

Integration is also accomplished under a single database, the MOOD
database, and through a common interface. The MOOD prototype has a
database structure and a unified representation model to describe the design
information in the database, in this case a uniform object-oriented model.
When a unified representation model is used to describe information, it has
the added advantage of supporting traceability throughout software
development because that model deals with uniform concepts continuously.
That is, the same concepts can be carried from the system analysis and
design phases to the implementation phase, even though the concepts change
as they gain additional details during the later stages.

-161-

Chapter 6 - The MOOD Prototype

The interface is probably the most important factor in producing an
environment that is acceptable. It is especially imperative for MOOD
because of its graphical notations and iterative behaviour. Hence the MOOD
prototype needs interface features driven by mouse, icons and menus, not
command-line driven. In an environment like this, interactions with the
tools can be seen as a set of actions without any prescribed order but driven
by events from the mouse. Therefore, the MOOD interface is based on mouse
interaction and multi-windows, one for each tool, where the user can create,
edit and delete diagrams. The MOOD interface provides a uniform behaviour
for all tools in the environment and should support a consistent view
independent of which tool is being used.

The entire implementation of the MOOD prototype has been constructed
using C++ (Stroustrup, 1986) and the reusable InterViews library (Vlissides,
1989) which provides classes of interactive objects, and uses X Window
(Scheiffler, 1986) primitives for presenting them. The prototype
implementation also contains a database in which the design information
associated with the developing software system resides. The database
provides basic functionality for object management such as creation, access
and deletion of objects, and has also been implemented in C++; naturally,
persistence for MOOD objects is supported.

The reusable InterViews library contains a variety of pre-defined classes and
components. Only some of those which were used in the implementation of
the MOOD prototype are outlined below, so that it becomes easier to
understand how the MOOD prototype objects behave and why the interface
classes were inherited from some particular InterViews classes. The MOOD
prototype uses many features of InterViews and the C++ inheritance
mechanism. A strategy pursued during the design and implementation of the
MOOD prototype, and particularly its interface, has been to reuse the classes
provided by the InterViews library as much as possible.

Each tool in the MOOD prototype uses InterViews classes and utilises the
database operations to store and retrieve MOOD objects. As distinct from
several tools which mostly act as a mere drawing editor of polygons, the tools
presented in this chapter reinforce software engineering principles of the
MOOD methodology and provide syntactic and semantic checks in the
software development life cycle.

-162 -

Chapter 6 - The MOOD Prototype

6.1.1 InterViews

InterViews (Interactive Views) is an object-oriented framework which
assists in the design and implementation of graphical user interfaces.
InterViews allows user interfaces to be-defined by the composition of existing
objects and new classes to be inherited from existing ones. InterViews
provides a rich set of primitive and composition objects (such as scroll bars,
dialogue boxes and buttons) which promote flexibility in the implementation
of different user interfaces. Additionally, it offers a broad range of interface
styles such as pop-up, pull-down and pull-right menus which can be
customised on a per-user basis and according to the philosophy required by
different styles of user interfaces.

InterViews also gives the choice of graphical and/or textual manipulation,
and allows the separation of the user interface from the functionality of a
software system (Linton, 1988). InterViews has been primarily chosen for
this implementation because there is a close correspondence between its
classes and the objects and concepts which are manipulated by the MOOD
environment tools, such as graphical elements, texts and menus.

The interactor class is the most important class of InterViews. All interactive
classes, such as button, stringeditor and menu are sub-classes of the
interactor class. An interactor object manages some area of potential input
and output on the screen and typically interprets input events and produces
graphical output. The interactor class has associated attributes which define
the shape and size of its objects. In addition, the interactor class defines a set
of operations (which characterises the behaviour of its objects) such as draw,
resize, redraw, update and handle events.

Figure 6.1 partially depicts the interactor class hierarchy. (For the sake of
clarity, a slight simplification of attribute and operation names has been
made). Button is an interactor sub-class which manipulates the value of an
associated button-state attribute. A button object, when clicked, may initiate
some actions. Stringeditor is an interactor sub-class which provides a
convenient mouse-based interactive editor for text strings. It is suitable for
incorporating into interfaces in order to get textual input.

-163 -

Chapter 6 - The MOOD Prototype

00 MOOD - Class Hierarchy Diagram Editor EI

Oclass CLASS: interactor
ATTR: shape
ize
®hier, s
OPER: draw
resize
Oinfor, redraw
update
handle
Omove
Oscale
QOerase
CLASS: button cLASS:scene| [CLASS:stringeditor CLRSS: menu CLASS: dialog CLRS
ATTR: btstate ATTR: ATTR: string ATTR: ATTR: ATTR
OPER:getstate] lo..o. nsert| |[OPER: editstring OPER: OPER: OPER
remove scrollstring

returnstring

move
raise
lower

Figure 6.1 The Interactor Class Hierarchy

The scene sub-class defines basic operations, such as insert, remove, move,
raise and lower, for managing compositions of interactor objects. Scene
objects are used to compose a group of one or more interactor objects and, for
instance, to tile them within box objects separated by glue objects. Therefore,
complex software system behaviour can be accomplished by building
compositions which combine the simple behaviour of several types of objects.
Figure 6.2 presents a scene object composed of two box objects, and a box

object composed of a button object and a stringeditor object separated by a
glue object.

- 164 -

Chapter 6 - The MOOQOD Prototype

3 MOOD -~ (De)Composition Diagram Editor
LM

o []]

Qelement v

®compose @

O1infor,

Omove

—_— CORRCEE

Qerase

° o
000 <o
LR ReE anctherbox

Figure 6.2 A Scene Composition

The rubberband class provides graphical feedback to a user during an
interactive manipulation. This is very useful to implement the idea of
animation of objects that are drawn, moved, resized, and scaled on the
screen. A rubberband object varies its appearance as its tracking point is
changed following mouse motion. For example, there are rubberband sub-
classes for animating the creation of a rectangle defined by two points
corresponding to opposing corners, the sliding of an ellipse from one point on
the screen to another and the scaling of a circle around its centre. InterViews
also provides mechanisms to handle scrolling, zooming and panning
operations on a window (see the arrows at the bottom left of Figure 6.1).

-165-

Chapter 6 - The MOOD Prototype

6.2 THE MOOD INTERFACE

The objective of this section is to describe the uniform user interface for the
MOOD environment. It is desirable to maintain a consistent "look and feel"
fashion across the environment tools $o that the user is not presented with
completely different interface styles for each different tool used.
Nevertheless, graphical tools (such as the Class Hierarchy Diagram Editor
and the Object Diagram Editor) place emphasis upon icons and graphical
elements on the screen. On the other hand, the Checkers are driven by
options chosen from pop-up, pull-down and pull-right menus, and texts are
displayed on the window. Naturally, there have been some slight differences
in the look of some of the tools' interfaces because the nature of the tools is
different.

The first window which appears on the screen when the MOOD prototype is
executed allows the user to choose from the tools in the environment. The
user can choose any diagram editors (Class Hierarchy Diagram Editor,
Object Diagram Editor, Composition Diagram Editor, Operation Diagram
Editor) or the Checkers, or invoke all of them. An example of this first
window is given in Figure 6.3 which shows how the screen might appear
when several tools are active at the same time. A tool can be active but not
displayed; in this case that tool appears as an icon entry at the top right of
the screen.

Figure 6.3 also shows that all diagram editors look similar because all of
them manipulate mainly graphical elements, and one, two or three text
lines. In contrast, at the bottom of that figure, the Checkers deals mainly
with textual descriptions of design information. These two trends are
discussed separately in the following subsections which describe the
interface of the Class Hierarchy Diagram Editor as a representative example
of a diagram editor, and the interface of the Checkers with some options
available.

- 166 -

Chapter 6 - The MOOQD Prototype

B TWM Icon Manager

~
e . Envi t
X MOOD - Class Hierarchy Diagram Editor AR —_]
— ® MOOD - Object Diagram Editor
®class ®object
Ohier. [® MOOD - Methodology for Object-Oriented De:
Qinfor,
Omove]
ENVIRONMENT TOOLS]
Oscale
Oerase (Class Hierarchy Diagrem)
?—
w 8 Fon Editor
((De)Composition Diagram)
(Operation Diagram)
Checkers Tools

#All Toolse

Ll

IE MOOD - Operation Di Bourr

®operation
Ocontrel
Oinfor,
Omove
Oscale
Oerase

o;o = [@ M00D - Checkers Tools
Class Object Report Consistency Completeness Configuration

: < nt_Name>

#o Consistency errors we

Class Qdindow> not subclass of (Screen>
Operation <display> not defined in class lindow>
Rttribute <position> not described

EONTROLS: Control |

RIALOG, :

Figure 6.3 The Tools of the MOOD Environment

-167 -

Chapter 6 - The MOQD Prototype

6.2.1 The Interface of a Diagram Editor

The purpose of this subsection is to present the interface of the Class
Hierarchy Diagram Editor. Other tools such as the Object Diagram Editor,
the Composition Diagram Editor and the Operation Diagram Editor have
been designed in a similar fashion.

Figure 6.4 presents the window of the Class Hierarchy Diagram Editor
which provides services that allow the user to:

® draw, move, scale and erase rectangles representing classes;
® establish a class hierarchy;

® scroll the window in four directions;

® zoom in and out a class hierarchy diagram in its entirety.

This tool also allows the user to enter the text for the names of the classes,
and their attributes and operations. This information defines the semantics
of a class, is kept in the MOOD database and can be manipulated by other
tools, such as the Checkers.

Each of the features described above supports animated feedback (follows the
mouse motion) as the user creates, points at and manipulates classes as
rectangles on the screen. Animation helps users to believe (or deceives them
with the illusion!) that real-world objects are being dealt with, and in this
way, it improves the friendlihess of the interface. There is also a pop-up
menu containing commands to open a new diagram, clear the canvas, invert
the canvas background, save the diagram into the MOOD database, return
the diagram to its original size if it has been zoomed in or out, delete the
diagram, and to exit from that tool. The elements of this interface can be
composed as illustrated in the MOOD composition diagram presented in
Figure 6.5.

- 168 -

Chapter 6 - The MOOD Prototype

® MOOD ~ Class Hierarchy Diagram Editor [N
B

@class
open
. clear
Ohter. invert
original
O infor, CLASS: delete
ATTR: exit
OPER:
Omove
Oscale
Qerase

CLASS NAME: <Class name
TTRIBUTES; <Attribute LiSED
PERATIONS: <Operation list>

Figure 6.4 The Class Hierarchy Diagram Editor Window

6.2.2 The Interface of the Checkers

The Checkers are basically driven by menus. Figure 6.6 shows how its
window appears on the screen. From a menu bar, the user can select a tool to
activate a particular checking option. The menu bar is composed of a list of
tools represented by menu items. (Figures 6.7 and 6.10, which will appear in
the next section, show the class hierarchy diagram and the composition
diagram for this interface). A tool is invoked by clicking on the corresponding
menu item. A menu item can also be used to activate a pull-down or pull-
right menu presenting a list of sub-options (commands) offered by that tool.
When an option is chosen, a request is sent to the appropriate tool to perform
the corresponding functionality.

- 169 -

Chapter 6 - The MOOD Prototype

funct,

buttons

[® MOOD - (De)Composition Diagram Editor 2]
Oelement
+ Gaited
O compose
Oinfor. T Crborder) Cebox >
Omove
@ T (hbox) Chbordery C _hbox (
Oscale @

Glider> Cagver—> Czoomer D

@®@@
TR,

Crecta D Labels > Cinesd

Figure 6.5 A Composition Diagram for an Editor

There is also a pop-up menu which can be pinned to or unpinned from the
canvas and contains commands relevant to all Checkers. Such commands
can be used to open and save the canvas in the MOOD database, edit (insert,
move, copy and delete) the contents of the canvas, and to exit from the tools.

These facilities let the user, for

instance, select a class with the class

browser, edit its attributes and operations, and then save the new version of

that class in the MOOD database.

-170-

Chapter 6 - The MOOD Prototype

[MOOD - Checkers Tools
Class Object Report Consistency Completeness Configuration

IALOG, ;

Figure 6.6 The Interface for the Checkers

6.3 THE MOOD DATABASE

The MOOD database offers a flexible way to store, recover and update design
information which semantically represents classes, attributes, operations
and objects related to the software system being designed. There is a straight
mapping between the structure of the information kept in the tool memory
and that stored in the database. Essentially, the philosophy of this
implementation is record-oriented and the main advantage is that the
database supports random access of any record location for a read or a write
transaction and, of course, persistence.

6.3.1 Persistence

Persistence is the property of an object by which that object continues to exist
after its creator ceases its execution. The object can also be moved from the
address space in which it was created to another place.

There are various ways of providing persistence in software systems, and the
use of a file is the most common. In this case, persistence may be seen as a

« 171 -

Chapter 6 - The MOOD Prototype

storage mechanism for transient structures in memory. The basic idea is to
be able to transfer information from transient structures to persistent
storage and back. There should be explicit operations which write and
retrieve information to and from the persistent storage. Such operations
must preserve the structure of the information in both memories so that after
each transaction the transient and the persistent structures remain
consistent.

There are four main reasons for implementing persistence in the MOOD
database:

® It provides a mechanism for passing objects from one tool to another.

® Persistent objects can resume their existence in a later use of the
environment.

® Persistent objects free users from worrying about storage.

® Persistent objects are often useful for historical purposes.

6.3.2 Manipulation of the Design Information

The MOOD database consists of two classes: the filesystem super-class and
the database sub-class. The filesystem class deals with the physical aspects of
the storage mechanism, and the database class copes with logical aspects. By
creating two general-purpose classes the designer was forced to consider
which were the essential features of the software system and to describe
these features in the highest super-class.

The filesystem class has been designed and implemented to encompass the
necessary transactions on the MOOD database. It offers operations to open
and close a file, to seek any record in a file, to read and write a record in a file,
and to handle errors. The filesystem class is a parameterised or generic class.
Parameterised classes represent an ordered collection of objects, in general.
Good examples of such classes are linked-lists, trees, and naturally, files of
records. Indeed, the filesystem class represents a logically ordered collection
of fixed length records within a file.

-172 -

Chapter 6 - The MOOD Prototype

The database class provides operations to add, delete and update design
information in the MOOD database. The database class is more that a simple
structured file system and supports most of the services used to manipulate
the semantic information of the software system under design. This class
affords addition, access, update and delétion of classes, attributes, operations
and objects of a developing software system in the MOOD database.

These operations are called by tools when a MOOD diagram is being edited,
or checks are being performed. All design information displayed by a tool
must be stored or updated in the MOOD database. This updating is based on
the information kept in the tool memory, which is directly manipulated by
that tool, and also stored in the MOOD database. The advantage of using a
uniform object-oriented representation model is to facilitate the
manipulation of the design information because inside the MOOD database
everything is an object, and only objects, not combinations of different
concepts such as functions, data, archives, and so forth.

6.4 THE TOOLS

Good designs come from good designers, not just from good tools. Although
methodologies can be empowered by tools, tools by themselves cannot
guarantee the production of a good design. There are some things which tools
can do well and others which they cannot do at all. For instance, tools can
make it easy to discover the class in which an operation has been defined,
although tools cannot guide designers to invent new classes, which would
simplify the class hierarchies.

This section presents prototypes of tools that are useful for the object-
oriented design methodology which underlies the MOOD environment. This
environment is an integrated CASE environment that facilitates the design
of object-oriented software systems. The tools described below compose the
MOOD prototype that has been implemented. The tools interact with each
other sharing the design information retained in the MOOD database. Such
tools can be used in a generic object-oriented design and are, therefore,
independent of any particular programming language.

173 -

Chapter 6 - The MOQOD Prototype

6.4.1 The Class Hierarchy Diagram Editor

This tool automates the construction of the class hierarchy diagrams as
presented in Chapter Four. Such a tool can be used very early in the design
process (static design) to enforce the notational conventions of MOOD for
that kind of diagrams. Furthermore, the Class Hierarchy Diagram Editor is
likely to be used throughout the proposed software development life cycle
because as a design evolves from the system analysis phase into the
implementation phase, the class hierarchy diagrams are refined.

As an example, Figure 6.7 presents the class hierarchy diagram for the
Checkers interface, as discussed previously. At the top of the window a
warning message is shown to request the definition of the attributes and
operations of the objectbrowser class which is just defined. If the requested
information is not available at the moment, the user has to click the mouse
inside the ok button in the dialog-box object presenting the warning.

6.4.2 The Object Diagram Editor

Such a tool is used to build object diagrams according to the MOOD
notational conventions. The Object Diagram Editor might be the first tool to
be used by novice designers, who may decide to experiment with some
specific objects in order to understand their behaviour or to begin a bottom-
up design.

Figure 6.8 illustrates an example of an object diagram in which an input
information is requested by an object named aneditor (which is an instance of
a diagram class) to an astringed object through the returnstring operation.
Eventually, this input information is dispatched to the appropriate object for
further processing which might be passing that information to an acanvas
object to be displayed as a rectangle, and then to an areclogic object to be
stored in a database as part of a class definition. Of course, at the end of a
design, the classes and operations shown in object diagrams must be in
accordance with those described in class hierarchy diagrams. These kind of
checks are carried out by the Checkers, described later in this section.

174 -

Chapter 6 - The MOOD Prototype

E ge.out
RTT_and QPR need to be defined 0K?
A L S
B MOOD - Class Hierarchy Diagram Editor
®class
CLAES: menu
Ohier.
Oinfor,
CLASS: checkerstools
Omove
Oscale
Oerase ICLQSS: brouue\:l [CLRSS: consistency ”CLQSS: completeness "CLASS: report ICLﬂSS:conﬂ(urauon

lcx.ass: classbrowser l CLASS: obJectbrowser

[< ATTR:
% < OPER:

Figure 6.7 The Class Hierarchy Diagram Editor

6.4.3 The Operation Diagram Editor

The construction of operation diagrams is supported by the Operation
Diagram Editor. Figure 6.9 shows an example of an operation diagram which
provides the service of defining a class. The createclass operation (for objects
of a diagram class) passes control to the returnstring operation and gets
control back with a string output parameter.

Afterward, the drawgraphic operation is called to draw the graphics
associated with a class. This includes the drawing of labels for the class name
together with its attributes and operations. Then, the addclattoper operation
is called to store all the necessary information related to the newly created
class, in the MOOD database. The names which appear near the small

-175 -

Chapter 6 - The MOOD Prototype

& MOOD - Object Diagram Editor

Qobject

@operation aneditor returnstring

astringed

astringeditor

Qinfor,

Omove

addclass displayclass

Oscele

Oerase

Figure 6.8 The Object Diagram Editor

arrows are parameters for the corresponding operations, as explained in
Chapter Four.

6.4.4 The Composition Diagram Editor

This tool is used to produce composition diagrams, which depict the main
components (software items) of a software system. For instance, Figure 6.10
shows the composition of an amenubar object of the Checkers described
previously. That amenubar object is composed of six menu components
(classitem, objectitem and so on) which correspond to the options offered by
the Checkers. '

Some of these menu components are further decomposed into their
constituent components, for instance, the configitem component is

-176-

Chapter 6 - The MOOD Prototype

F MOCD - Operation Diagram Editor %
Qoperation
i .
®control returnstring ““n" createclass clettop’er addclattoper
1 6
Qinfor, stringeditor disgram recordlogic
Omove 2 clattoper
arect/graphic
Qscale
Qerase
labelo
labelclass 1:.’;1‘: drawgraphic PN labeloper
3 5
label view label
e o 1
(- 4||labela
() <
labelatt
label
;addclattoper
sclattoper

Figure 6.9 The Operation Diagram Editor

decomposed into the manageitem and versionitem sub-components and so on.
These sub-components can be related to sub-options or commands particular
to each tool (as can be seen in the next subsection).

6.4.5 The Checkers

The set of tools known as Checkers have been put together because they use a
common interface which deals basically with displaying and editing strings
of texts. Some Checkers are used to point out to users any problem related to
inconsistencies or incompleteness in a design. The Checkers complain about
perceived problems but let the users decide whether the complaints are valid
or not and how to fix them.

177 -

Chapter 6 - The MOOD Prototype

{00 MOOD ~ (De)Composition Diagram Editor

Oelement) @

O compose

Qinfor, I @

Omove m m

. Conereszn > Graesaseend

Qerase @

o (=]

QOO <
E DR WL

Figure 6.10 The Composition Diagram Editor

In order to resolve such problems, it is also necessary that the user be able to
browse through the classes, inspect the objects, and even produce a report
from the contents of the MOOD database. Browsers are interactive tools
which provide views of the class definitions and class hierarchies.
Additionally, browsers help navigate through existing classes and invite the
user to create new classes. Furthermore, while using the diagram editors
presented in the previous subsections, the user has freedom to speculate
among several choices and experiment with different options. Therefore, a

configuration management tool is necessary for controlling different
versions of a design.

178 -

Chapter 6 - The MOOD Prototype

Consistency and Completeness Checkers

These tools are used to evaluate the consistency and completeness of a design
which is held in the MOOD database, by checking the interrelationships of
the design information in different diagrams, for example, whether class
names which appear in an object diagram are defined in any class hierarchy
diagram. Checks can be made to ensure that definitions presented in one
diagram are consistent with those in another and that rules of the
methodology are followed. The consistency tool checks for rules that are not
allowed to be violated, which means that any rule of MOOD was disobeyed,
as shown in Figure 6.11.

® MOOD - Checkers Tools N
Lons tency

Class Object Report Completeness Configuration

Consistency Checker »
Class: canvas
not subclass of <window)

. operation <display> not defined

IALOG, ;canvas

Figure 6.11 The Consistency Checker

The completeness tool basically points out any essential details which have
been so far omitted from a design. Typical completeness checks include:

® all classes must have unique names;
e all attributes and operations within a class must have unique names;

® overridden attributes and operations within a sub-class must be
defined in any super-class in that class hierarchy.

-179 -

Chapter 6 - The MOQCD Prototype

Browsers

The class browser knows about class hierarchies and allows the user to
navigate through classes and their class hierarchies within the MOOD
database. Class hierarchies can becomeé so complex that without the help of
browsers it is difficult even to find the classes which are part of a design or
components which are candidates for reuse. With the class browser the user
is able to examine all classes available in the MOOD database. The class
browser typically shows class hierarchies, their attributes and operations, as
illustrated in Figure 6.12.

® MOOD - Checkers Tools I

Object Report Consistency Completeness Configuration
Hierarchy

Operation

#» Class Browser #
Class editor
Pttributes: currentfunct

Operations: insertcanvas, composeinter,popupmenu,
selectfunct

lsuper-classes: interactor

ub-classes: <none>
IALOG, ;editor

Figure 6.12 The Class Browser

A report generator basically produces reports from the design information
retained in the MOOD database. The facilities provided by this tool allow the
user to enter the name of a diagram and get all information related to that
diagram. Other capabilities include, for instance, the ability to find the class
which defines a particular attribute or implements a particular operation.

Facilities to browse the MOOD database can save the user many hours of
work. Therefore, it is worth spending some time browsing through classes,
and if there are no suitable classes for reuse it might be worth building
generic classes which could be reused in future software development. The
more time is spent in such browsing activities, the more is the payoff for

- 180 -

Chapter 6 - The MOOD Prototype

reusability in future software systems. For this reason, browsers are
imperative tools for an object-oriented design.

Software Configuration Managemerit

Software configuration management is one of the biggest problems facing
designers of large software systems. This activity is concerned with
controlling the evolution of software systems (Bersoff, 1984; Tichy, 1985).
With large software systems and several designers working together,
designers must be sure that having made use of a particular class, the
version of that class will remain unchanged.

Classes are the best software configuration items to be controlled in object-
oriented software systems, and it is useful to keep track of different versions
of classes which make up a particular version of a software system.
Therefore, a software configuration management tool is necessary to control
those versions. All changes must be automatically logged and the
configuration management tool should permit the re-creation and inspection
of earlier versions, and it could also point out the differences between
versions.

Versioning is a particularly appealing technique for managing class
evolution because it enables designers to try different paths when modelling
complex real-world applications, and to record the history of class
modifications during the design process. The hierarchy of versions is
somewhat similar to the class hierarchy. Each version is complemented with
generic information and specific information. Generic information includes
those features which are common to most of the versions, while specific
information contains variations which are associated with a particular
version.

The MOOD configuration management tool provides capabilities for the
modification of classes and for keeping different versions of classes. The
version control which traces the history of class modifications uses a
derivation tree which keeps track of the differences between two adjacent
versions of the same class. Version numbers are used to distinguish between
various versions of a class. The configuration management tool provides

-181-

Chapter 6 - The MOOD Prototype

facilities to manipulate different versions, as presented in Figure 6.13. The
CCin command gets any previous version of a class and the CCout command
stores the current classes as new versions.

= T SRR N R R I
(8 MOOD - Checkers Tools ‘

Class Object Report Consistency Completeness NI SEITELSTld]

#» Configuration Management =
- Version Control -

New Version Generate
Nersion Number: 2.0
Date: 08/03/90
Time: 17:15:44
Comments: Added Operation <display> to Class <{canvas>
Author: Andrew

IALOG, :

Figure 6.13 The Configuration Management Tool

6.5 CONSIDERATIONS ON THE MOOD PROTOTYPE

The design phase is a stage of refinements of an abstract model of the
application and it is essentially a creative and iterative process, not a
mechanical one. The iterative nature of the design process is reflected in the
way in which the MOOD prototype operates and in the chance that users
have to choose the most appropriate tool within that environment. There are
several independent tools, but with functionality linked in such a way that
these tools cover all design stages, and information supplied by a particular
tool is accessible to others. The integration between these tools is achieved
through the use of a unified representation model, a single database and a
uniform interface which establishes the communication protocol between the
tools, and between the environment and its users (software designers).

As discussed in the previous chapter, the design phase strongly depends on
the knowledge that designers have about the application domain. This
experience will guide designers to use the most appropriate tool. During the
static design, the most abstract aspects of a software system are picked up,

-182 -

Chapter 6 - The MOOD Prototype

therefore the Class Hierarchy Diagram Editor is more likely to be used. On
the other hand, in the dynamic design, the behaviour of the software system
is understood in more detail and the use of the Object Diagram Editor and
the Operation Diagram Editor are more suitable. During object-oriented
software development, these two design sub-phases can become blurred and
iterative, and therefore the boundary between them becomes even more
indistinct. Hence, the importance of interrelated tools.

The fact that classes and objects can be identified in the early phases of
software development, and can undergo detailed design and may be
implemented separately means that the system analysis and design phases
spawn classes and objects which are to be passed on to an implementation
phase. The dealing with a unified representation model makes iteration
between the proposed software development life cycle phases a smooth
process. Even though a considerable amount of work remains to be done, the
design of a prototype capable of showing how MOOD could be supported in a
CASE environment has been implemented. The MOOD prototype provides a
user-friendly interface and supports a centralised and uniform storage of the
design information in a single database.

-183-

Chapter 7

EXPERIENCE WITH MOOD

This chapter discusses some of the results from experience with the
development of the MOOD prototype using MOOD itself. While the chapter
has not attempted to produce a comprehensive study and a detailed design of
a software system, it has provided an evaluation of MOOD as a design
methodology.

The first section of the chapter highlights the design aspects in which
problems have been found and also presents an evaluation of the proposed
methodology. Section two covers other general aspects which form a more
complete assessment of the whole software development process, not only
design. For instance, the abstraction mechanisms most frequently used, and
an estimate of the time and effort spent in each phase of the proposed
software development life cycle.

7.1 THE SUITABILITY OF MOOD

The main aspects of MOOD, which have been under consideration in this
section, relate to its graphical notations and the feasibility of its steps to
design object-oriented software systems. Such discussion also helps improve
the MOOD methodology by providing the necessary feedback based on the
results of a real design.

- 184 -

Chapter 7 - Experience with MOOD

Partitioning Issues

In order to manage the complexity inherent in the construction of a CASE
environment for MOOD, the decomposition of such an environment into a
number of smaller tools which can -be seen as large components, is
recommended. The main purpose of such decomposition is to relate some
classes to a context which provides particular functionality. Thus, the
division is based on the functionality provided by the various tools. Further
decomposition of large components into sub-components was not at all
intuitive and accentuated the problems of dividing functionality into classes.
Additionally, the methodology emphasises an early decision about
separation between attributes and operations. It also recommends early
judgment about the choice between the use of composition and inheritance
for software reuse.

These observations lead to the following conclusions about the relationship
between functionality, classes and reusability. The notion of class hierarchy
is not enough to divide object-oriented software systems into manageable
pieces. It is important to realise how orthogonal the concepts of inheritance
(employed in class hierarchies) and composition (associated with
functionality) are. Inheritance can be taken to express an is-a relationship
(that is, an integer is a kind of a number), whereas composition expresses a
uses-a relationship (thus, a number uses digits). Hence, while class
hierarchy diagrams aim to represent generalisation and specialisation
mechanisms, composition diagrams convey decomposition and composition
concepts. As a result, composition diagrams were introduced to MOOD in
order to supplement class hierarchy diagrams. Together, such diagrams
enable MOOD to provide an adequate representation for large software
systems and their functionality.

Despite class hierarchies being a crucial aspect of the object-oriented
paradigm, some drawbacks associated with a large number of classes and
multiple inheritance have been noticed. Experience has shown that large
class hierarchies overwhelm designers when they attempt to understand the
overriding process, especially when many levels of sub-classes are used and
multiple inheritance occurs. Designers of deeply-nested class hierarchies
have problems grasping the many different super-classes and sub-classes,
and their inherited properties. Possible features which could be integrated in

-185 -

Chapter 7 - Experience with MOQOD

browsers are global views of the system architecture in order to help
designers to depict their position in the software system.

Representation of the Control Flow ~

The decomposition of object-oriented software systems into components
disperses their control flow and obscures the operations present in their class
hierarchy diagrams. Such dispersion is due to the spread of the control flow
among several objects, making the global control flow less visible in object-
oriented software systems than in software systems constructed by
functional decomposition. A possible reason for this dispersion of the control
flow is that unlike functionally decomposed software systems, where a high
level function could be seen as an abstraction of lower level subfunctions,
object-oriented software systems could be viewed as an aggregation of
independent objects, which might be running virtually in parallel.

The software system behaviour depends on the overall interactions among
objects as well as on the control flow within each operation. Object diagrams
and operation diagrams help designers to understand the control flow within
a software system and make it possible to realise interaction patterns to
achieve particular functionality. Such diagrams have demonstrated
themselves to be a useful design aid for the understanding of the interactions
between objects and their interfaces. In particular, operation diagrams have
proven a valuable means of representing the control flow of object-oriented
software systems.

The dispersion of control flow in object-oriented software systems also brings
about difficulties in treating exceptions because the exception handling
operations will require recovering from exceptional conditions in many
different circumstances. One idea which might have been considered is the
possibility of designing the MOOD prototype so that each of its class
hierarchies had a handler in order to minimise the negative effect of having
one exception handler within each main operation. Trials should be extended
to further investigate the effects of exception handling mechanisms upon the
overall control flow when exception handlers are put either into super-
classes (and then inherited by their sub-classes) or in a special class
hierarchy of exceptions.

- 186 -

Chapter 7 - Experience with MOOD

State transition diagrams are useful to capture aspects of the behaviour of
software systems and to identify operations to be implemented by different
objects. However, this technique has inherent limitations: in particular, the
inability to express recursive applications, and the difficulties of describing
algorithms which are distributed between two or more different kinds of
objects. As well, in many realistic real-world applications, there are simply
too many events to be represented within a state transition diagram.

Object Interactions

In a synchronous communication model, requests are sequential; a client
object requests an operation and waits idly for a response from a server object
before continuing execution, implying that a single thread of control is
passed from one object to another. Such object interactions are simplistic and
not rich enough to describe all kinds of interactions between objects.

With asynchronous communications, a client object is free to take further
action after requesting a particular operation from a server object. A client
object may proceed concurrently without waiting for a server object to reply.
Concurrency fits quite well within an object-oriented approach because the
autonomy of objects makes them a natural unit for concurrent execution.
However, object diagrams do not provide clear notation to show concurrency
and no account of timing is made. Therefore, determining an appropriate set
of additional notational conventions to represent sequence and concurrency
in object diagrams should be investigated.

The methodology does not consider issues concerning dynamic objects, that
is, when the number and type of objects varies as the software system runs.
As well, it has ignored problems arising from sharing of objects, especially
the accidental sharing that can occur in programming languages where two
objects can both reference the same third object. These shortcomings are
worth examining and appropriate additions to the methodology to cope with
such designs should be proposed.

-187 -

Chapter 7 - Experience with MOOD

7.2 GENERAL ISSUES RELATED TO MOOD

The remainder of this chapter contains some general issues, and reusability
in particular, which are associated with MOOD within the proposed software
life cycle model. The aspects to be discussed also include the prevailing
abstraction mechanisms employed in each phase of the software
development life cycle and an estimate of the percentage of time spent in
each phase.

Reusability

There are differences in the mechanisms used to achieve reusability when
different kinds of reusable components are involved. The most basic software
components (i.e. objects) are often reused by composition which can be seen
as a process of building a piece of software from elementary self-contained
components. Nevertheless, reusability is better linked, from an object-
oriented point of view, with reuse of classes through inheritance. In this case,
it takes place by specialisation and generalisation of commonalities between
classes. Not all classes identified early in software development are
implemented because some of them can be refined during the design phase or
taken from a library of reusable components. It is better to reuse high level
components such as classes during design because they have fewer
implementation details which would constrain their applicability.

There is a need for tools to support the creation of domain-specific collections
of components or contexts (also known as frameworks) which could form a
reusable library for an application domain. A context could be viewed as a
generic structure which provides a skeleton for designing software systems
in a particular application domain. It is sometimes necessary to adapt the
new developing software system so that it can be fitted within an available
context, which results in a tremendous gain in productivity. Many
advantages have come from the adoption of contexts. In this aspect, several
independent reusable contexts are more effective for reuse than a single
universal library of components. Therefore, rather than developing a single
library for a centralised repository of components, the strategy should be the
development of a reusable library for each particular application domain.

-188 -

Chapter 7 - Experience with MOOD

Reusability through inheritance and composition has been largely applied
during the design of the MOOD prototype. The primary objective has been to
design the environment interface reusing, as much as possible, software
components from the InterViews library. Reusable contexts such as
InterViews provided a good incentive to implement object-oriented graphical
interfaces as an independent software component. Therefore, an object-
oriented approach was introduced as early as possible during software
development because abstractions were based on classes and objects in an
application domain for which reusable components were available,
increasing reusability considerably.

Software Development Life Cycle Issues

The experience of using MOOD to design a large and complex software
system, such as the MOOD environment, has firstly shown that it was very
difficult to follow either a strict top-down or bottom-up approach, and that it
was necessary to switch between both approaches. This implies that it is
useful to identify high level functionality in the software system along with
the identification of some objects and their interactions. As a result, when
developing large software systems, it is important to synthesise ideas from
both top-down and bottom-up approaches, and to relate how classes and
objects provide particular functionality.

One great advantage of using the object-oriented paradigm is the conceptual
continuity across all phases of the software development life cycle. The
conceptual structure of a software system not only remains the same from
system analysis down through implementation, but also remains the same
during the refinement of a design. Therefore, when the object-oriented
paradigm is used, the design phase is linked more closely to the system
analysis and the implementation phases because designers have to deal with
similar abstract concepts (such as classes and objects) throughout software
development.

-189-

Chapter 7 - Experience with MOOD

Mechanisms Prevalent in each Development Life Cycle Phase

The four phases of the proposed software development life cycle are highly
integrated. Table 7.1 shows the mechanisms used most often in each phase of
the software life cycle model followed during the construction of the MOOD
prototype. These mechanisms are part of an abstraction process inherent to
object-oriented software development as discussed early in Chapter Two.

The system analysis phase emphasises classification of high level concepts in
a real-world application and decomposition of a software system. Several
mechanisms are relevant to the domain analysis phase but specialisation,
generalisation and composition are fundamental in order to achieve
reusability. During the design phase all mechanisms are of paramount
importance as can be realised from the MOOD steps along with its diagrams.
In the implementation phase, almost all mechanisms are essential except for
decomposition since at this phase the partition of a software system will have
been done.

phases | gystem | Domain | Design | Implement.

mechanisms * Analysis | Analysis

classification ° ° ° °
instantiation ® °
generalisation ° ° ®
specialisation ° ° °
decomposition ° ‘ °

composition ° ° ®

Table 7.1 Phases Versus Abstraction Mechanisms

-190 -

Chapter 7 - Experience with MOOD

Percentage of Time per each Development Life Cycle Phase

Although it is difficult to draw distinct lines between two adjacent software
life cycle phases, the mechanisms more frequently used in each phase can be
pointed out. Figure 7.1 shows an approximate percentage of the amount of
time likely to be spent in each software life cycle phase during the complete
development of a software system. These times were taken from the
development of the MOOD prototype. Despite the system analysis, design
and implementation phases being deeply interrelated, it is clear that the
design phase is the longest and most important because most of the tasks are
done during that phase.

Domain analysis is relevant to identifying potentially reusable components
during object-oriented software development. Consequently, the amount of
time spent in this phase, naturally, must not be longer than that spent in
other phases. If the perceived cost of finding a certain component is higher
than the cost of creating a new component from scratch, then all hope for
reuse is lost. For this reason, it is important to have at least some minimal
librarian tools which allow designers to locate and add useful components as
they are identified.

Implementation System
Analysis
25% 25%
10%
40%
, Domain
Design Analysis

Figure 7.1 Phases Versus Time

-191 -

Chapter 7 - Experience with MOOD

Although maintenance accounts for the vast majority of software system
costs, it is not considered in Figure 7.1 because it can be seen as an
operational phase which succeeds software development. It is felt that the
basic reuse issues which MOOD encourages would form a useful basis for
supporting software maintenance and e¢olution, although -enhancements to
MOOD to encompass these aspects is an area requiring further research.

This chapter has provided some remarks on the experience gained from
designing and experimenting with MOOD within the proposed software
development life cycle. It can be summarised from such experience that
MOOD brings about some characteristics which might be considered
inexpedient by some, but it is believed that the benefits from the use of
MOOD outweigh its drawbacks.

-192 -

Chapter 8

CONCLUSIONS

This thesis has concentrated on object-oriented design methodologies for
software systems. The purpose of this final chapter is twofold: firstly, to
discuss the research which has been done together with its main
contributions; and secondly, to suggest other possible directions and ideas for
future research concerning object-oriented design of software systems.

8.1 DISCUSSION

With a topic as broad as the object-oriented paradigm, whose literature offers
a myriad of different interpretations and points of view, it has been difficult
to give a precise definition for object-oriented concepts. Since there have been
many subtle flavours which might be combined to give the overall picture of
an object-oriented approach, it has been better to characterise an object-
oriented model. Therefore, this thesis started by giving a characterisation of
an object-oriented model based on what the author felt to be its most relevant
concepts (such as classes, objects and inheritance, and their background)
along with the philosophy of object-oriented design (see Chapter Two).

This thesis faces the object-oriented paradigm from a methodology
standpoint, rather than from an implementation standpoint. The research
was prompted by the perceived inadequacy of existing object-oriented
methodologies for designing object-oriented software systems, and has
sought to establish a viable and comprehensive object-oriented design
methodology which obtains the benefits of the object-oriented paradigm,

- 193 -

Chapter 8 - Conclusions

such as encapsulation and inheritance. To reiterate, the four major
contributions which have been achieved by this research are:

® The setting of a classification scheme for object-oriented
methodologies and the presentat/ion of the state-of-the-art of object-
oriented analysis and design methodologies, outlining their problems
and limitations (Chapter Three).

® The development of a methodology for object-oriented design (MOOD)
(Chapter Four) which can be used to design software systems based on
an object-oriented approach; and to evaluate its applicability by
partially designing two software systems (Chapter Seven).

® The proposal of an alternative software life cycle model for object-
oriented development which takes reusability into account and
considers how the knowledge that designers have about the
application domain affects software development (Chapter Five).

® The implementation of a prototype of an integrated CASE
environment, and its associated tools for object-oriented design, which
supports the MOOD methodology (Chapter Six).

There have been many claims about the object-oriented paradigm regarding
power of representation, maintainability, and clarity and correctness of
object-oriented software systems. However, at present few of such claims can
be fully validated because most of the attention has been focussed on the
implementation phase. From the point of view of programming languages,
the road to an object-oriented approach is an evolutionary step, whereas from
the point of view of software development methodologies, the differences
which exist between traditional structured development methodologies
(based on functional decomposition) and those based on an object-oriented
approach suggest that a revolution is taking place.

Although a number of object-oriented design methodologies are becoming
available and gaining increasing use in order to answer a broad range of
software engineering questions, such methodologies are still at a relatively
early stage of growth. It is clear that even more experimentation is required
(particularly in developing very large software systems using an object-
oriented approach) before this paradigm can claim to be a mature subject.

- 194 -

Chapter 8 - Conclusions

Additionally, new experiments will provide several case studies to evaluate
the various claims made about the object-oriented paradigm, which can only
be fully tested when applied to developing substantial software systems. -

The outcome of such experience will progress towards a better understanding
of the strengths and weaknesses of an object-oriented approach to software
development and might also lead to a re-evaluation of some claims made
about it in recent years. Therefore, further experimentation is expected to
result in a better understanding of object-oriented methodologies
independent of any programming language; the consolidation of object-
oriented concepts and terms; the dissemination of well-accepted notations
and the appearance of several libraries of reusable software components for
particular application domains.

The Assessment of MOOD

As presented in Chapter Three, there are design trends which try to
integrate object-oriented concepts with different methodologies such as
Structured System Analysis and SADT. There also are other methodologies
which lead to implementation using Ada. Nevertheless, this research has
sought to show that only one approach, in this case an object-oriented
approach, is enough to develop software systems and it does not need to be
complemented with other approaches or methodologies. This point of view
encourages the designer to conform to the object-oriented paradigm and to
benefit from features such as abstraction, encapsulation, inheritance and
reusability, from the beginning of software development.

MOOD produces a design by progressive refinement, adding details to the
same design model which is strictly object-oriented, and remains consistent
through the design phase. Another result of the research described in this
thesis has been the creation of a graphical notation to represent object-
oriented design, which makes use of class hierarchy diagrams (identifying
attributes and operations), composition diagrams, object diagrams and
operation diagrams. In addition, since the use of MOOD results in an object-
oriented design, it encompasses many of the benefits claimed to be inherent
in any object-oriented software system, such as clarity, modularity and
extensibility.

- 195 -

Chapter 8 - Conclusions

Methodologies are especially important for developing large scale software
systems. Only recently however, have object-oriented methodologies been
exposed to many designers. MOOD has already been applied by the author to
the design of a small number of medium size software systems, but naturally
it can evolve and mature from additional experience with its application to
develop large software systems. Of course, further use of MOOD may
indicate some areas of refinements, for instance in the separation of class
features into attributes and operations, although such refinements would not
constitute a major change to MOOD. So far, MOOD has proved to be
beneficial and has led to a better understanding of object-oriented design.

The MOOD approach for design could be thought of as a rigorous one as it
lies between an informal and a formal approach. Informal approaches are
based on natural language descriptions but suffer from the ambiguity
intrinsic in the use of a natural language. Rigorous approaches have a well-
defined syntax and may not be ambiguous. However, they do not have a well-
defined semantics so it is difficult to prove their correctness. Formal
apprbaches can derive proofs by rules of logic that a design is correct, but
they are difficult to be used by ordinary designers. MOOD, as currently
defined, practised and used is a pragmatic and systematic approach to
designing software systems.

This research has also shown how an object-oriented approach can permeate
the entire software development process from system analysis to
implementation, and can affect the whole software engineering one way or
another. Hitherto, there is no object-oriented software life cycle model which
has yet gained great acceptance. However, by trying to incorporate the
advantages of an object-oriented approach and encompassing MOOD, the
phases proposed in Chapter Five seem appropriate. Therefore, a new
software development life cycle, linking system analysis, domain analysis,
design (static and dynamic) and implementation to form a coherent software
development life cycle, has been put forward in this thesis.

The proposed software development life cycle considers iteration, takes into
account the knowledge that designers have about the application domain
(which dictates a bottom-up or top-down approach to software development)
and incorporates reusability as a natural part of the design phase.
Reusability is a main concern of MOOD and domain analysis is a good

- 196 -

Chapter 8 - Conclusions

framework to encourage it, built upon the mechanisms of inheritance and
composition. The use of reusable libraries is a major plus for productivity;
however, there is an overhead cost in developing a component for use in a
specific product while making it generic and robust for future reuse.

The employment of a uniform object-oriénted model from system analysis to
implementation also facilitates a consistent binding between the various
phases of software development. Therefore, it would be better if the
implementation of an object-oriented design were carried out using an object-
oriented programming language because concepts presented by the proposed
notational conventions could be more easily mapped into such a
programming language. In achieving this, it becomes easier to transform one
representation into another, from system analysis to implementation, and
MOOD would be able to support traceability from system analysis to design
and from design to implementation, bridging the gaps between these phases.

Experience with the Development of the MOOD Prototype

MOOD has been applied to design its own prototype, but a full
implementation of the MOOD environment and the support to manipulate
libraries of reusable components are still necessary in order to get MOOD
fully automated. In concluding the implementation of the MOOD prototype
some experience can be reported. First, the applicability of any methodology
within an environment is limited by the capacity of the environment to
automate that methodology, which means that, although automated support
is imperative, it is difficult to implement some aspects of MOOD such as
small details of its graphical notation.

Although InterViews is another layer of abstraction between the prototype
and the user interface, it provides an elegant abstraction of graphical objects,
and the gain in productivity and quality provided by reusing the InterViews
library has paid off. Experience with the prototype design showed the
importance of the inheritance and composition mechanisms during the
design phase, and how these concepts can be easily mapped into C++ and
InterViews during the implementation phase. In spite of the interface
aspects of the MOOD environment being more complicated than those of the
database, both (the interface and database implementations) took the same

-197 -

Chapter 8 - Conclusions

effort to build because InterViews facilitated the job tremendously, and
provided further evidence of the importance of software reuse.

In order to improve the implemented prototype, a distributed architecture for
the MOOD environment would be appropriate because software development
tends to involve groups of designers cool;erating on given tasks which would
require an environment running on a number of workstations interconnected
by a network. It is therefore envisaged that the MOOD environment has to
evolve from a single machine to multiple machines, thus multi-user and
multi-access features are desirable features for the MOOD database.
Nevertheless, the issues of distributed object-oriented software systems and
sharing objects with multiple users are complicated areas of work and much
still has to be done to solve the problems of distributed inheritance,
consistency of objects states, migrations of objects and persistence.

As far as persistence is concerned, there are several researchers working on
this issue and important results have been accomplished. In particular,
McCue and Shrivastava (1990) present a structure for persistent object-
oriented software systems in a distributed environment. Nevertheless, the
general problem of what happens to persistent objects when their definitions
are changed is very much a topic of research. The long lifetime of persistent
objects implies that mechanisms might be needed to allow objects to evolve,
so that they may use new operations and attributes which have been added
to their classes by different designers. Further developments in this field
should be incorporated to the MOOD environment.

8.2 DIRECTIONS FOR FUTURE RESEARCH

This section describes potential areas of future work related to the subject of
object-oriented design methodologies. Actually, in some of the areas
identified, significant progress is already emerging. Some key areas
particularly relevant to the scope of this thesis, which is believed to be
worthy of further consideration include: object-oriented analysis, metrics,
formal methods and exception handling mechanisms.

Methodologies such as MOOD have led to a better understanding of object-
oriented design and topics related to the identification and representation of

-198 -

Chapter 8 - Conclusions

classes, objects and inheritance during the design phase. However, object-
oriented analysis methodologies covering requirements definitions and
specification are still incipient and research in this direction should
continue. They should be compatible with object-oriented principles so that
traceability is achieved between software life cycle phases. Thus, the object-
oriented paradigm could be extended to cover the whole software life cycle
model. Appropriate object-oriented analysis methodologies might therefore
be integrated with MOOD in the future.

Most large software systems need to be partitioned early so that designers
have reasonably sized parts of the application to work with. Unfortunately,
methodologies for large scale object-oriented software systems remain
untested. Currently, this decomposition is done on the basis of experience
and intuition. Therefore, there is still a great need to investigate this
partitioning problem and it is hoped that in the future this important branch
of object-oriented software development can be probed more deeply.

Although a considerable amount of information concerning metrics exists,
until now, there are no widely accepted metrics for evaluating object-
oriented designs in terms of their complexity, quality, size and costs.
Therefore, new directions in metrics are needed which cater for the features
of object-oriented software systems and reusability. There remain certain
measures which this research might benefit from; metrics could be used in
order to get measurements from large object-oriented designs and compared
with other paradigms. For instance, there could be comparisons regarding:
size and performance of software systems created in an object-oriented
approach versus similar features of software systems created using other
approaches; the differences between schedules and estimating when software
systems are built pursuing an object-oriented software development life cycle
and when other trends are followed.

Another area of future work related to metrics which might be examined is
whether new forms of software metrics can be applied to the object-oriented
paradigm to improve the prediction of time and costs involved in an object-
oriented software development. The number of constructs in an object-
oriented design (for instance, the number of operations for each class) could
be used to estimate the size of a software system and might be good
predictors of the total effort involved in its implementation. Laranjeira

- 199 -

Chapter 8 - Conclusions

(1990) argues that when an object-oriented approach is used it is easier to
estimate at early stages of the software life cycle model the time and costs
involved in the whole software development, because of the traceability
between specification and implementation.

The MOOD tools may collect informat&on on how software systems are
developed, for example, the number of classes, objects and operations
defined. When it comes to reviewing a particular object-oriented design,
metrics could also be used to measure qualitative and quantitative aspects of
that design, for instance the number of changes requested on classes, how
many times a specific diagram has been edited and the number of
inconsistencies reported. These measures are useful to assess the overall
quality of a design.

An interesting area for further research would be that of providing a more
formal treatment for object-oriented design. Formal methods are important
because they could provide a solid base for the semantics of an object-
oriented methodology and enforce a coherent use of a design language across
the design phase. This would not only improve the verification of object-
oriented software systems but it would also help to clarify the semantics of
object-oriented design methodologies. Some research has already appeared
in this area. For instance, the work of Harel (1988) on visual formalisms
could be incorporated into MOOD in order to enrich its graphical notations.

Another reason for using formal approaches is that software development
involves several tasks where there is a significant risk of human and
machine faults occurring. Since human beings may make mistakes, software
development is therefore susceptible to human faults. Nevertheless, software
systems should be robust enough to deal as far as possible with human and
machine faults. A robust software system is one which continues to behave
reasonably and in a well-defined way even in the presence of a fault. If a
software system is unable to deal with some exceptional conditions, at least
it should report the problem and avoid harmful consequences.

Further research to understand exception handling mechanisms within an
object-oriented approach is still required. As Lee and Anderson (1990) state:
"Software is prone to design faults because, despite modern software
construction methodologies, most software systems continue to be
enormously complex". Designers should be forced to think about which

-200 -

Chapter 8 - Conclusions

exceptions might occur and what should be done about them before the
implementation phase, and this may lead to the uncovering of more faults
during the design phase than might otherwise have been the case. As far as
exception handling is concerned, within an object-oriented framework, the
following topics should be considered: .,

® How to deal with exceptions during object-oriented design.

® How to respond to exceptions from an operation point of view.

e How to cope with propagation of exceptions across an object boundary.
® How to achieve modularity in the presence of exceptions.

® How to represent exceptions in an object-oriented software system.

If designers think about exceptional conditions during the design phase, it
becomes easy to map these exceptions into a programming language during
the implementation phase, although the complexity of a design is increased.
Therefore, the effect of exception handling in object-oriented software
systems must be further investigated, and the inclusion of exception
treatment as part of the design process would be very useful.

8.3 IN CONCLUSION

As with most topics is computer science, a multitude of additional research
fields can easily be identified. The most important topics following from the
author's research have been outlined above. Although the object-oriented
paradigm has an evidential learning curve and the adoption of an object-
oriented approach does not represent the solution for all software
engineering problems, the author is confident that the object-oriented
paradigm is here to stay because it is a step towards better quality software
and reusability.

The idea of software reuse based on the exploitation of the inheritance and
composition mechanisms during the design phase has been put forward in
this thesis. Reusability is a technique for improving software productivity
and quality which is finally finding general acceptance. The object-oriented
paradigm is especially important for software reuse because it provides

-201-

Chapter 8 - Conclusions

important facilities, such as inheritance and encapsulation, which make
reusability feasible. This suggests that the object-oriented paradigm may
contribute significantly to the solution of the so-called software crisis.

The object-oriented paradigm is such a powerful set of concepts that
eventually it will get completely absori)ed into the software development
culture, in the same way that structured development methodologies and to
some extent abstract data types concepts have been. This is evident in the
abundance of research looking at various aspects of the paradigm.
Consequently, the 1990s are likely to be a period of gradual acceptance of the
object-oriented paradigm which will become the main approach to
developing software systems in this decade. Despite its limitations, MOOD is
a significant step forward in this direction.

The future of object-oriented software engineering might well be to accept a
hybrid trend with other approaches and mapping of concepts between such
approaches. However, the author believes that the object-oriented paradigm
should (and hopefully will!) pervade the entire software life cycle. The object-
oriented paradigm has needed an organised and disciplined view of software
development, and to be extended to cover more phases of the software life
cycle model. MOOD is believed to represent an important step forward in the
understanding and promotion of object-oriented design methodologies.

- 202 -

References

Abbott R. J. (1983) "Programming Design by Informal English Description”,
Communications of the ACM, 26(11), November 1983, pp. 882-894.

Ackroyd M. and Daum D. (1991) "Graphical Notation for Object-Oriented
Design and Programming", Journal of Object-Oriented Programming, 3(5),
January 1991, pp. 18-28.

Adelson B. and Soloway E. (1985) "The Role of Domain Experience in
Software Design", IEEE Transactions on Software Engineering, SE-11(11),
November 1985, pp. 1351-1360.

Agha G. (1986) "An Overview of Actor Languages", ACM SIGPLAN Notices
21(10), October 1986, pp. 58-67.

Alabiso B. (1988) "Transformation of Data Flow Analysis Model to Object-
Oriented Design", Meyrowitz N. (ed.) Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages and Applications -
OOPSLA 88, San Diego, California, September 1988, ACM SIGPLAN
Notices, 23(11), November 1988, pp. 335-353.

Alford M. W. (1977) "A Requirements Engineering Methodology for Real-
Time Processing Requirements", I[IEEE Transactions on Software
Engineering, SE-3(1), January 1977, pp. 60-69.

America P. (1987) "POOL-T: A Parallel Object-Oriented Language",
Yonezawa A. and Tokoro M. (ed.) Object-Oriented Concurrent Programming,
The MIT Press, Cambridge, Massachusetts, pp. 199-220.

Arnold P., Bodoff S., Coleman D., Gilchrist H. and Hayes F. (1991) An
Evaluation of Five Object-Oriented Development Methods, Hewlett-Packard
Laboratories, Bristol, United Kingdom, May 1991.

Bailin S. C. (1989) "An Object-Oriented Requirements Specification
Method", Communications of the ACM, 32(5), May 1989, pp. 608-623.

-203 -

References

Beck K. and Cunningham W. (1989) "A Laboratory for Teaching Object-
Oriented Thinking", Meyrowitz N. (ed.) Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages and Applications -
OOPSLA 89, New Orleans, Lousiana, ACM SIGPLAN Notices, 24(10),
October 1989, pp. 1-6. ‘

Beichter F. W., Herzog O. and Petzsh H. (1984) "SLAN-4 - A Software
Specification and Design Language", IEEE Transactions on Software
Engineering, SE-10(3), March 1984, pp. 155-162.

Berard E. (1986) An Object-Oriented Design Handbook, EVB Software
Engineering Inc., Rockville, Maryland.

Bersoff E. H. (1984) "Elements of Software Configuration Management",
IEEE Transactions on Software Engineering, SE-10(1), January 1984, pp.
79-87.

Bifferstaff T. and Richter C. (1987) "Reusability Framework, Assessment
and Directions", IEEE Software, 4(3), March 1987, pp. 41-49.

Blair G., Gallagher J., Hutchison D. and Shepherd D. (1991) Object-Oriented
Languages, System and Applications, Pitman Publishing, London.

Boehm B. W. (1988) "A Spiral Model of Software Development and
Enhancement”, Computer, 21(5), May 1988, pp. 61-72.

Booch G. (1983a) Software Engineering with Ada, Benjamin/Cummings,
Menlo Park, California. ’

Booch G. (1983b) "Object-Oriented Design", Freeman P. and Wasserman A.
I. (eds.) Tutorial on Software Design Techniques, Fourth Edition, IEEE,
Silver Spring, Maryland, pp. 420-436.

Booch G. (1986) "Object—Orientea Development", IEEE Transactions on
Software Engineering, SE-12(2), February 1986, pp. 211-221.

Booch G. (1987) Software Components with Ada, Benjamin/Cummings,
Menlo Park, California.

-204 -

References

Booch G. (1991) Object-Oriented Design with Applications, Benjamin/
Cummings, Redwood City, California. }

Borgida A. (1985) "Features of Languages for the Development of
Information System at the Conceptual Level", IEEE Software, 2(1), January
1985, pp. 63-72.

Bulman D. M. (1989) "An Object-Based Development Model", Computer
Language, 6(8), August 1989, pp. 49-59.

Buzzard G. D. and Mudge T. N. (1985) "Object-Based Computing and the Ada
Language", Computer 18(3), March 1985, pp. 11-19.

Cardelli L. and Wegner P. (1985) "On Understanding Types, Data
Abstraction, and Polymorphism", ACM Computing Surveys, 17(4), December
1985, pp. 471-522.

Cardelli L., et al. (1989) Modula-3 Report, Systems Research Center of
Digital Equipment Corporation, Palo Alto, California.

Chen P. P. (1976) "The Entity-Relationship Model: Toward a Unified View of
Data", ACM Transactions on Database Systems, 1(1), March 1976, pp. 9-36.

Coad P. and Yourdon E. (1990) Object-Oriented Analysis, Prentice-Hall,
Englewood Cliffs, New Jersey.

Cox B. J. (1986) Object-Oriented Programming - An Evolutionary Approach,
Addison-Wesley, Readings, Massachusetts.

Cunningham W. and Beck K. (1986) "A Diagram for Object-Oriented
Programs", Meyrowitz N. (ed.) Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages and Applications -
OOPSLA 86, Portland, Oregon, September 1986, ACM SIGPLAN Notices,
21(11), November 1986, pp. 361-367.

Dahl O.-J., Myhrhaug B. and Nygaard K. (1970) SIMULA67 Common Base
Language, Publication No. S-22, Norwegian Computing Centre, Oslo
October 1970.

- 205 -

References

DeMarco T. (1979) Structured Analysis and System Specification, Prentice-
Hall, Englewood Cliffs, New Jersey.

DeMichiel L. G. and Gabriel R. P. (1987) "The Common Lisp Object System:
An Overview", Bézivin J., Hullot J.-M.; Cointe P. and Liberman H. (eds.)
Proceedings of the European Conference on Object-Oriented Programming -
ECOOP 87, Paris, June 1987, Lecture Notes in Computer Science, No. 276,
Springer-Verlag, Berlin, pp. 151-170.

DeRemer F. and Kron H. H. (1976) "Programming-in-the-Large Versus
Programming-in-the-Small", IEEE Transactions on Software Engineering,
SE-2(2), June 1976, pp. 80-86.

Embley E. W. and Woodfield S. N. (1987) "A Knowledge Structure for
Reusing Abstract Data Types", Proceedings of the Ninth International
Conference on Software Engineering, Monterey, California, March 1987,
IEEE Computer Society Press, Washington, D.C., pp. 360-368.

Freeman P. (1984) "Reusable Software Engineering: Concepts and Research
Directions", Freeman P. and Wasserman A. I. (eds.) Tutorial on Software
Design Techniques, Fourth Edition, IEEE, Silver Spring, Maryland, pp. 63-
76.

Gane C. and Sarson T. (1979) Structured System Analysis: Tools and
Techniques, Prentice-Hall, Englewood Cliffs, New Jersey.

Ghezzi C. and Jazayeri M. (1982) Programming Language Concepts, John
Wiley & Sons, New York, New York.

Goldberg A. and Robson D. (1983) Smalltalk-80: The Language and its
Implementation, Addison-Wesley, Reading, Massachusetts.

Goldberg A. (1984) Smalltalk-80: The Interactive Programming
Environment, Addison-Wesley, Reading, Massachusetts.

- 206 -

References

Gossain S. and Anderson B. (1990) "An Iterative-Design Model for Reusable
Object-Oriented Software", Meyrowitz N. (ed.) Proceeding of the Conference
on Object-Oriented Programming: Systems, Languages and Applications and
the European Conference on Object-Oriented Programming -
OOPSLA/ECOOP90, Ottawa, ACM SIGPLAN Notices, 25(10), October
1990, pp. 12-27.

Harel D. (1988) "On Visual Formalisms", Communications of the ACM,
31(5), May 1988, pp. 515-530.

Heitz M. (1989) HOOD Reference Manual, Issue 3.0, European Space
Agency, Noordwijk, The Netherlands, September 1989.

Henderson-Sellers B. and Edwards J. M. (1990) "The Object-Oriented
Systems Life Cycle", Communications of the ACM, 33(9), September 1990,
pp. 142-159.

Henderson-Sellers B. and Constantine L. L. (1991) "Object-Oriented
Development and Functional Decomposition", Journal of Object-Oriented
Programming, 3(5), January 1991, pp. 11-17.

Hoare C. A. R. (1974) "Monitors: an Operating Systems Structuring
Concept", Communications of the ACM, 17(10), October 1974, pp. 549-577.

Hopkins T. P., Williams I. W. and Wolczko M. I. "MUSHROOM - a
Distributed Multi-user Object-oriented Programming Environment",
presented at the British Computer Society joint Object-Oriented
Programming and Systems and Parallel Programming Specialist Groups
Workshop on Parallel Processing, October 1987.

Hopkins T. P. and Wolczko M. L. (1989) "Writing Concurrent Object-Oriented
Programs Using Smalltalk-80", The Computer Journal, 32(4), August 1989,
pp. 341-350. '

Horowitz E. and Munson J. B. (1984) "An Expansive View of Reusable
Software", IEEE Transactions on Software Engineering, SE-10(5), May
1984, pp. 477-487.

- 207 -

References

Hull M. E. C., Zarca-Aliabadi A. and Guthrie D. A. (1989) "Object-Oriented
Design, Jackson System Development (JSD) Specification and Concurrency”,
Software Engineering Journal, 4(2), March 1989, pp. 79-86.

Jackson M. A. (1975) Principles of Program Design, Academic Press, New
York, New York.

Jackson M. A. (1983) System Development, Prentice-Hall, London.

Jacky J. P. and Kalet I. (1987) "An Object-Oriented Programming Discipline
for Standard Pascal”, Communications of the ACM, 30(9), September 1987,
pp. 772-776.

Jacobson I. (1986) "Language Support for Changeable Large Real Time
System", Meyrowitz N. (ed.) Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages and Applications -
OOPSLA 86, Portland, Oregon, September 1986, ACM SIGPLAN Notices,
21(11), November 1986, pp. 377-384.

Jacobson I. (1987) "Object Oriented Development in an Industrial
Environment", Meyrowitz N. (ed.) Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages and Applications -
OOPSLA 87, Orlando, Florida, October 1987, ACM SIGPLAN Notices,
22(12), December 1987, pp. 183-191.

Jalote P. (1989) "Functional Refinement and Nested Objects for Object-
Oriented Design", IEEE Transactions on Software Engineering, SE-15(3),
March 1989, pp. 264-270.

Johnson R. E. and Foote B. (1988) "Designing Reusable Classes", Journal of
Object-Oriented Programming, 1(2), June/July 1988, pp. 22-35.

Jones C. B. (1986) Systematic Software Development Using VDM, Prentice
Hall, Englewood Cliffs, New Jersey.

Kerth N. (1988) "A Methodology for Structured Object-Oriented Design",
Tutorial presented at the Conference on Object-Oriented Programming:
Systems, Languages and Applications - OOPSLA 88, San Diego, California,
September 1988.

-208 -

References

Kristensen B. B., Madsen O. L., Moller-Pedersen B. and Nygaard K. (1985)
Multi-Sequential Execution in the Beta Programming Language", ACM
SIGPLAN Notices, 20(4), April 1985, pp. 57-70.

Lanergan R. G. and Grasso C. A. (1984) "Software Engineering with
Reusable Design and Code", IEEE Transactions on Software Engineering,
SE-10(5), May 1984, pp. 498-501.

Laranjeira L. A. (1990) "Software Size Estimation of Object-Oriented
Systems", IEEE Transactions on Software Engineering, SE-16(5), May 1990,
pp. 510-522,

Lauber R. J. (1982) "Development Support Systems", Computer, 15(5), May
1982, pp. 36-46.

Ledgard H. F. and Taylor R. W. (1977) "Two Views of Data Abstraction”,
Communications of the ACM, 20(6), June 1977, pp. 382-384.

Lee P. A. and Anderson T. (1990) Fault Tolerance - Principles and Practice,
Second Edition, Springer-Verlag, Wien.

Linton M. A., Calder P. R. and Vlissides J. M. (1988) InterViews: A C++
Graphical Interface Toolkit, Technical Report CSL-TR-88-358, Computer
Systems Laboratory, Department of Electrical Engineering and Computer
Systems, Stanford University, July 1988.

Linton M. A. (1989) InterViews Reference Manual, Version 2.6, Computer
Systems Laboratory, Department of Electrical Engineering and Computer
Systems, Stanford University, November 1989.

Liskov B. and Zilles S. N. (1975) "Specification Techniques for Data
Abstractions", IEEE Transactions on Software Engineering, SE-1(1), March
1975, pp. 7-19. ‘

Liskov B., Snyder A., Atkinson R. and Schaffert, C. (1977) "Abstraction
Mechanisms in CLU", Communications of the ACM, 20(8), August 1977, pp.
564-576. '

- 209 -

References

Lorensen W. (1986) Object-Oriented Design, CRD Software Engineering
Guidelines, General Electric Co., Corporate Research and Development
Center.

Loy P. H. (1990) "A Comparison of .Object-Oriented and Structured
Development Methods", Software Engineering Notes, 15(1), January 1990,
pp. 44-48.

Madsen O. L. and Moller-Pedersen B. (1988) "What Object-Oriented
Programming May Be and What It Does Not Have to Be", Gjessing S. and
Nygaard K. (eds.) Proceedings of the European Conference on Object-Oriented
Programming - ECOOP 88, Oslo, August 1988, Lecture Notes in Computer
Science, No. 322, Springer-Verlag, Berlin, pp. 1-20.

Masiero P. and Germano F. S. R. (1988) "JSD as an Object-Oriented Design
Method", Software Engineering Notes, 13(3), July 1988, pp. 22-23.

McCue D. L. and Shrivastava S. K. (1990) "Structuring Fault-Tolerant
Object Systems for Portability", Fourth ACM SIGOPT Workshop, Bologna,
September 1990.

Meyer B. (1988) Object-Oriented Software Construction, Prentice-Hall,
Englewood Cliffs, New Jersey.

Micallef J. (1988) "Encapsulation, Reusability and Extensibility in Object-
Oriented Programming Languages", Journal of Object-Oriented
Programming, 1(1), April 1988, pp. 12-36.

Minsky M. (1975) "A Framework for Representing Knowledge", Wiston P.
(ed.) The Psychology of Computer Vision, McGraw-Hill, New York.

Moon D. A. (1986) "Object-Oriented Programming with Flavors", Meyrowitz
N. (ed.) Proceedings of the Conference on Object-Oriented Programming:
Systems, Languages and Applications - OOPSLA 86, Portland, Oregon,
September 1986, ACM SIGPLAN Notices, 21(11), November 1986, pp. 1-8.

Neighbours J. M. (1984) "The DRACO Approach to Constructing Software
from Reusable Components", IEEE Transactions on Software Engineering,
SE-10(5), May 1984, pp. 564-574.

-210-

References

Nygaard K. (1986) "Basic Concepts in Object Oriented Programming", ACM
SIGPLAN Notices, 21(10), October 1986, pp. 128-132.

Oosthuizen G. D., Bekker C. and Avenant C. (1990) "Managing Classes in
Very Large Classes Repository", Proceedings of the Second International
Conference TOOLS, Angkor, Paris, pp. 625-633.

Parnas D. L. (1972) "On the Criteria to Be Used in Decomposing Systems
into Modules", Communications of the ACM, 15(12), December 1972, pp.
1053-1058.

Pascoe G. A. (1986) "Elements of Object-Oriented Programming", Byte 11(8),
August 1986, pp. 139-144.

Power L. (1988) "Workshop on the Specification and Design of Objects",
Power L. and Weiss Z. (eds.) Addendum to the Proceedings of the Conference
on Object-Oriented Programming: Systems, Languages and Applications -
OOPSLA 87, Orlando, Florida, October 1987, ACM SIGPLAN Notices, 23(5),
May 1988, pp. 7-16.

Prieto-Diaz R. (1988) "Domain Analysis for Reusability", Tracz W. (ed.)
IEEE Tutorial: Software Reuse: Emerging Technology, IEEE Computer
Society Press, Washington, D.C., pp. 347-353.

Pun W. W. Y and Winder R. L. (1989) "A Design Method for Object-Oriented
Programming”, Cook, S. (ed.) Proceedings of the European Conference on
Object-Oriented Programming - ECOOP 89, Nottingham, United Kingdom,
July 1989, Cambridge University Press, Cambridge, pp. 225-240.

Raj R. K. and Levy H. M. (1989) "A Compositional Model for Software
Reuse", Cook S. (ed.) Proceedings of the European Conference on Object-
Oriented Programming - ECOOP 89, Nottingham, United Kingdom, July
1989, Cambridge University Press, Cambridge, pp. 3-24.

Rentsch T. (1982) "Object Oriented Programming", ACM SIGPLAN Notices,
17(9), September 1982, pp. 51-57.

Robson D. (1981) "Object-Oriented Software Systems", Byte, 6(8), August
1981, pp. 74-86.

-211 -

References

Ross T. R. and Schoman K. E. (1977) "Structured Analysis for Requirements
Definitions", IEEE Transactions on Software Engineering, SE-3(1), January
1977, pp. 6-15.

Royce W. W. (1987) "Managing the Development of Large Software
Systems", Proceedings of the Ninth International Conference on Software
Enginnering, Monterey, California, March 1987, IEEE Computer Society
Press, Washington, D. C., pp. 328-338.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorensen W. (1991)
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, New
Jersey.

Schaffert C., et al. (1986) "An Introduction to Trellis/Owl", Meyrowitz N.
(ed.) Proceedings of the Conference on Object-Oriented Programming:
Systems, Languages and Applications - OOPSLA 86, Portland, Oregon,
September 1986, ACM SIGPLAN Notices, 21(11), November 1986, pp. 9-16.

Scheiffler R. W. and Gettys, J. (1986) "The X Window System", ACM
Transactions on Graphics, 5(2), April 1986, pp. 79-109.

Seidewitz E. (1989) "General Object-Oriented Software Development:
Background and Experience", The Journal of Systems and Software, 9(2),
February 1989, pp. 95-108.

Shaw M. (1984) "Abstraction Techniques in Modern Programming
Languages", IEEE Software, 1(4), October 1984, pp. 10-26.

Shlaer S. and Mellor S. J. (1988) Object-Oriented Systems Analysis:
Modeling the World in Data, Prentice-Hall, Englewood Cliffs, New Jersey.

Sincovec R. F. and Wierner R. S. (1987) "Modular Software Construction and
Object-Oriented Design Using Ada", Peterson G. E. (ed.) Tutorial: Object-

Oriented Computing, IEEE Computer Society Press, Washington, D.C., pp.
30-36.

Sixtensson A. and Wenchuan Y. (1990) "Object-Oriented Technology and
Reuse in Telecommunication Application - Practical Experience",
Proceedings of the Second International Conference TOOLS, Angkor, Paris,
pp. 433-441.

-212-

References

Sommerville, I. (1989) Software Engineering, Addison-Wesley, Wokingham,
England.

Stay J. F. (1976) "HIPO and Integrated Program Design", IBM System
Journal, 15(2), April 1976, pp. 143-154. .

Stefik M. and Bobrow D. G. (1986) "Object-Oriented Programming: Themes
and Variations", The Al Magazine, 6(4), April 1986, pp. 40-62.

Stroustrup B. (1986) The C++ Programming Language, Addison-Wesley,
Reading, Massachusetts.

Stroustrup B (1987) "What is Object-Oriented Programming?", Bézivin J.,
Hullot J.-M., Cointe P. and Liberman H. (eds.) Proceeding of the European
Conference on Object-Oriented Programming - ECOOP 87, Paris, June 1987,
Lecture Notes in Computer Science, No. 276, Springer-Verlag, Berlin, pp. 51-
70.

Tarumi H., Agusa K. and Ohno Y. (1988) "A Programming Environment
Supporting Reuse of Object-Oriented Software", Proceedings of the Tenth
International Conference on Software Engineering, Singapore, April 1988,
IEEE Computer Society Press, Washington, D.C., pp. 265-273.

~ Teichroew D. and Hersey E. A. (1977) "PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems", IEEE Transactions on Software Engineering, SE-3(1),
January 1977, pp. 41-48.

Tesler L. (1985) Object Pascal Report, Apple Computer, Santa Ciara,
California.

Thomas D. (1989) "What's in an Object", Byte, 14(3), March 1989, pp. 231-
240. ‘

Tichy W. F. (1985) "RCS - A System for Version Control", Software - Practice
and Experience, 15(7), July 1985, pp. 637-654.

Tracz W. (1988) "Software Reuse Myths", Software Engineering Notes, 13(1),
January 1988, pp. 18-22.

-213-

References

Tsichritzis D. (1989) "Object-Oriented Development for Open Systems”,
Ritter G. X. (ed.) Proceedings of the IFIP 11th World Computer Congress, San
Francisco, August 1989, North Holland, Amsterdam, pp. 1033-1040.

Vlissides J. (1989) A Tutorial for InterViews Programmers - Part III: An
Application Using Structured Graphics, Computer Systems Laboratory,
Department of Electrical Engineering and Computer Systems, Stanford
University.

Ward P. and Mellor S. (1985) Structured Development for Real-Time
Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Ward P. (1989) "How to Integrate Object Orientation with Structured
Analysis and Design", IEEE Software, 6(2), March 1989, pp. 74-82.

Wasserman A. I, Pircher P. A. and Muller R. J. (1990) "The Object-Oriented
Structured Design Notation for Software Design Representation”, Computer,
23(3), March 1990, pp. 50-63.

Wegner P. (1987) "Dimensions of Object-Based Language Design",
Meyrowitz N. (ed.) Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages and Applications - OOPSLA 87,
Orlando, Florida, October 1987, ACM SIGPLAN Notices, 22(12), December
1987, pp. 168-182.

Wirfs-Brock R., Wilkerson B. and Wiener L. (1990) Designing Object-
Oriented Software, Prentice Hall, Englewood Cliffs, New Jersey.

Wirth N. (1971) "Program Development by Stepwise Refinement",
Communications of the ACM, 14(4), April 1971, pp. 221-227.

Wirth N. (1976) "Modula: A Language for Modular Multiprogramming",
Software - Practice and Experience,7(1), January/February 1977, pp. 3-35.

Wolczko M. (1988) Semantics of Object-Oriented Languages, Ph.D. Thesis,
Manchester University, United Kingdom.

-214 -

References

Yokote A. and Tokoro M. (1987) "Concurrent Programming in
ConcurrentSmalltalk"”, Yonezawa A. and Tokoro M. (eds.) Object-Oriented
Concurrent Programming, The MIT Press, Cambridge, Massachusetts, pp.
129-158.

o

Yonezawa A., Shibayama E., Takada T. and Honda Y. (1987)‘ "Modelling and
Programming in an Object-Oriented Concurrent Language ABCL/1",
Yonezawa A. and Tokoro M. (eds.) Object-Oriented Concurrent
Programming, The MIT Press, Cambridge, Massachusetts, pp. 55-90.

Yourdon E. and Constantine L. L. (1979) Structured Design, Prentice-Hall,
Englewood Cliffs, New Jersey.

Yutaka I. and Tokoro M. (1986) "A Concurrent Object Oriented Knowledge
Representation Language Orient84/K: Its Features and Implementation”,
Meyrowitz N. (ed.) Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages and Applications - OOPSLA ‘86,
Portland, Oregon, September 1986, ACM SIGPLAN Notices, 21(11),
November 1988, pp. 232-241.

2215 -

