
THE DE3IGN, I}~Pl.F}lENTATIONAND USE OF

A COHPUTER-ASSISTED INSTRUCTION SYSTEH.

A Thesis

submitted to the
UNIVERSITY OF NEWCASTLE UPON TYNE

for the Degree
of

DOCTOR OF PHILOSOPHY

M. W. DOv/SEY

SEPTE2-LBER, 1970.

BEST COpy
..

, .AVAILABLE

, Var'iable print quality

,

PAGE NUMBERS CLOSE
TO THE EDGE OF THE

PAGE
SOME ARE CUT OFF

(i)

COl:llmter-<.1csistediL.,t:cuction has deve.Loped over the J_~tGt decade fror.:
simple te?,chinG machine principles to Cl. wiele vard.e ty of Lnst.ructtiona.L
strategies. This development has changed the characteristics of the
instructional system and the skills of the people involved.

Design considerations for computer-assisted instruction systems ar-e
discussed, current operational systems ar~ described a.nd the need for anot.her
system is explained. In particular, attributes of author laneuages a.re
discussed with reference to those in use at the present time and the author
1anzuage which was embedded in the instructional system is described. liow
the system was implemented under a general-purpose time-sharing system is
described, together with possible modifications and additions.

An investigation was carried out using the instructional system with
two aims in view. Firstly, an attempt was made to validate the system and
provide an. appraisal of the facilities and services. S,econdly, it \-/al;
desired to study the teaching of programming languages by various methods.
The methods employed allowed the comparisons of conventional teaching to
teaching using computer-assisted instruction and demonstration classes to
on-line examples classes to be made. The stUdents' performance data is
discussed and suggestions are made for future investigations of this kirid.

In contrast to the use of author languages, which, being programming
languages, some authors find difficult to .learn, an easy author entry
system was designed. This allows entry of course material in English on
planning forms and provides self-documentation for the author.

Further details of the instructional system, together with examples
of source code in the author language, student dialogue and stUdent
performance information, are contained in the appendices.

ACK1!oy,rLEIXIBk~jTS •

I am indebted to the Science Research Council for awar-di.ngme a Research

Studentship to enable me to study at the University of Newcastle upon Tyne

from October 1967 to September 1970 and to Professor E. S. Page for

admitting me to the ComputingLaboratory to carry out research ror· a Ph.D.

I wish to express my sincere thanks to Hr. L. B. Wilson for his

invaluable advice and guidance throuGhout the research project and in

preparation,olthe text.

Also. I wish to thank all those persons whohelped to make the

iDves~tion possible. They include Professor E. S. Page, whogave

permission tor the course 'to take pla.ne in the form :i.t did; Miss E. D.

~clough, who made,the terminals and machine time available; Hessrs.

J.S.Clowes, M. J. Elphick and L. B. Wilson, who.helped in preparation

of the course meterial; Hr. J. F. Dunn, whobelpedwith the NUTS/PIL

interface; }ttr.L. Waller, who made available the performance statistics;

aDd Messrs. T. Andersoll, D. R.Appleton, P. Henderson and J., L. Lloyd,

who heiped 'check out the instructional programs•

.:-_ .

(iii)

CONiE;;ilTS. PAGE

CHAPTER 1. Introduction. 1

1.1 COIDl)uter-assisted instruction. 1

1.2 The emergence of computer-assisted inctruction. 2

1.3 Methocls of using the computer.
1.,.1 Drill and practice.
1.,.2 Author-controlled tutorial.
1.'.3 Socratic tutorial.1.,.4 Learner control.
1.'.5 Simulation and gaming.
1.,.6 Paired students.
1.,.? Test and assessment.
1.3.8 Computer-managed instruction.

7

?
?
8
8
9
9
9
10

1.4 Personnel required for computer-assisted
instruction. 11

1.5 Layout of this thesis.

2.1.1 Introduction.
2.1.2 Early operational systems.
2.1.3 Design considerations.
2.1.4 Current systems.
2.1.5 The need for NUTS.

14
15
15
15
16
19
25
33

CHAPTER 2. The Newcastle University TeaChing System (NUTS).
2.1 Computer-assisted instruction systems.

2.2 Michigan Terminal System and its infiuences. '5
2.2.1 UMKPS and,MTS: a general description of

the operating system. 35
2.2.2 The dependence of NUTS·upon MTS. 37 '

2.3 A glossary of terms ~or NUTS. 39.
2.4 Description ot files used in NUTS. 4,
2.5 The command language : design and implementation. 46

2.5.1 Introduction.
2.5.2 The choice ot commands.
2.5.3Col!llllandmode.
2.5.1• General description of the command

'language processor.
2.5.5 Com$and implementation.

46
46
48

48
49

2.6 The author language : design and implementation. 60 '

2.6.1 Previous author languages : the need to
create another. 60

2.6.2 Elements of the language that were needed. 71
2.6., Use of the author language within NUTS. 79

(av)

2.6.1;- The transla ter.
2.6.5 The controller.
2.6.6 Implementation teclmiques.

2.7 The calculating language.
2.7.1 DesiGn considerations.
2.7.2 Use of the calculatine languCl.ge

"Iithin NUTS.
2.7.3 The translater and controller.
2.7.4 Implementation techniques.

2.8 The desk machine.
2.8.1 Design considerations.
2.8.2 Implementation.

2.9 The Pittsburgh Interpretive Language, PIL.

PAGE
81
84
84
91

91

92
92
92
95
95
95
97

2.9.1 Reasons for its inclusion in NU'l'S. 97
2.9.2 The programming language. 97
2.9.3 The implementation of PIL within NUTS. 98

2.10 Performance.
2.10.1 General statistics.
2.10.2 Current use.
2.10.3 Possible future developments and

improvements.
An investigation into the use of NUTS to teach a
programming language.

Previous attempts at programming courees ,
3.1.1 Other course structures.
3.1.2 Significant features of this course.

3.2 Description of the course.
3.2.1 Background to the course and the

students on it.
3.2.2 CAl content of the course.
3.2.3 The selection of the groups.
3.2.1~ The course log.

100

100
100

100

102
102
102
107
109

-109
111
116
117

3.3 Data obtained from the course and discussion
of the results. 123

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

The pre-test.
The post-test.
Analysis of the scores for the pre-test
and the post-test.
Responses and their relation to
performance.
Response times and their relation to
performance.
Performance of croup C students during
examples classes.

123
126

126

133
137
146

CP.AP'I'ER4.

Cv)

3.3.7 The atti trude quee td onnad r ee ,
3.3.8 System performance during the couroe.

3.lj· Conclusions from the investigation.
From author laneuages to easy author entry systems.
4.1 Introduction.
4.2 Previous easy author entry systems.
4.3 The Course Plannine ForlU.
4.4 A guide for authors.
4.5 A guide for keypunch operators.
4.6 The action ot the pre-processor.
4.7 Macros used.
4.8 Sample input and output~
4.9 Conclusion.

SUMHARY AND CONCLUSIONS.
REFERENCE2 •

APPENDIX A.

APPENDIX B.
APPENDIX C.

~XD.

!pm·mIX E.

APPENDIX F.

Newcastle University Teaching System. User's Guide.

The post-test.
The attitude questionnaires.
Part of a NUTS session which contains source code in
t];leauthor language. from the course.
Part of a student session from the course.
The student performance. information corresponding to
that session.

T)" f""lj'1
... J. ..U.lj

11..~
"" (.. ~- ..' :)

165

168

171

177

179

182

188

1e.9
193

201

257

264

268
293

1

CHAPTER 1 Introduction
1.1 Computer-assisted instruction

The effects of the population explosion together with the tremendous
growth of science and technology in recent years have presented increl3.sing
challenges to educators in schools, universities and industry. In addition,
sociological changes including higher educational requirements for all
students and increased emphasis on personality development have added to
the responsibilities of teachers. To keep pace with these developments,
ne,.,ways have been sought to help teachers absorb these new responsibilities
while continuing to maintain high standards of academic achievement. These
efforts have inspired the development and use of many new instructional
techniques. Among these are audio/visual aids, instructional films,
educational television, programmed instruction (PI) and, most recently,
computer-assisted instruction (CAl).

The basic principle of CAl is that each student can learn a concept
or subject according to his own particular requirements. This not only
means that each student can learn as quickly as possible, but also that
the amount and content of material presented can be tailored to his
individual needs. Using this system, students who are ablo to grasp and
retain subject matter with a minimum amount of explanation can advance to
new material in accordance with their ability. Slower students can be
directed to alternative presentations and exercises that allow them to learn
at a slower pace. The teacher can obtain performance records that indicate
which questions were answered correctly or incorrectly, whether any
unanticipated responses were returned, actual response times, and other
information to aid the evaluation of the individual student's performance.
!bis makes it possible for a teacher to pinpoint areas where a stUdent is
experiencing dif'ficulty \'Iith course material. lIe can then take remedial
action by·giving special attention to the student involved or by revising
the presentation if analysis shows that performance of many studerrts is 101:/.

2

1.2 The e;;1Cre;cnce of comT)uter-<'E;~>isted im truction

Teaching r.lQcHnes "'ere patented as early as 1809 (Eellan, 1936)
but the current interest in teaching machines is generally traced back
to Pressey, a psychologist at Ohio State University, who in the 1920's
built several ingenious machines that automatically tested students by
presenting a series of multiple-choice questions, printed on a roll of
paper, whi.ch could be answered by pushing one of four keys. If the
student was right, the ~chine presented the next question. If he was
wrong, the machine recorded the fact and required the student to try
again. The machine was small, quite simple and admirably served the

testing purpose Pressey had in mind.
Pressey received little encouragement from the educational world

for bis ideas, and he indicated in 1932 that he was regretfully dropping
further work while hoping that he had done enough to stimulate other
research workers.

Other workers were apparently not stimulated by Pressey's work and
it was not carried on. It was not until twenty years later that the
idea of teaching by machine was effectively put forward, this time by
Skinner of Harvard Universi ty. Skinner (1954) proposed a method of teaching
based largely on his many years of research using pigeons as subjects.
In his approach, a key aspect of teaching was to reinforce correct
responses as quickly as possible, by rewards of food in the case of
pigeons. Skinner believed that reinforcement could be effective in human
learning.

Accordingly, he developed a method of teaching in which students
are required to answer a sequence of questions, each only a little more
advanced than the previous question. The stUdent finds out immediately
whether or not his answer is correct, and since it almost always is
because the steps are small, his response is presumably reinforced.

A few years later, a different approach to machine teaching was put

forward by Crowder (1960). This was "intrinsi~ pr-ogz-ammi.ng!", in 't/hich

larger steps are taken in the progr-ammed material. If the student
assim"ilates the new material, he moves ahead, If not, he is "branched"
to a remedie~ presentation.

The intrinsic program has two practical limitations which may be
important. Firstly, the student cannot formulate his own answer to a
question, but must choose one of the answers given. Secondly, the
number of levels of branching feasible with a simple machine or with
a more common "programmed textbook" is not very large. The number of
individual paths increases as the product of the number of possible
incorrect responses at each level of branching, and this proliferation
of possible paths in branching program.::presents a formidable obstacle
to intrinsic programming using books or simple machines. In addition,
branching can be based ~nly on the student's last response.

Certain criteria developed for programmed instruction are now
generally accepted. They are as follows (Silvern and Silvern, 1966b):

(i) instruction is provided without presence or intervention
by a human instructor.

(ii) the student learns at his own rate, as opposed to films,
television, conventional group instruction, etc.

(iii) instruction is presented in small incremental steps
requiring frequent respons~s by the student; step size
is a function of subject matter and characteristics of the
stUdent population.

(iv) thele is a two-way communication be~~een student and
instructional program.

Cv) the student receives immediate feedback informing him of
his progress.

(vi). reinforcement is used to strengthen learning.
(vii) the sequence of lessons is carefully controlled and consistent.

(viii) the instructional program shapes and controls the student
behaviour.

4

A substantial amount of research has been d.one on simple linear
programs 'but much less on intrinsic programs. A revieV/ of research
results up to early 1963 (Schramm, 1964) indicates that experimenta.l
evidence about the effectiveness of progrwamed instruction techniques
studied is not very clear-cut.

Schramm found 36 reports of research in which programs wer-e
compared directly ,,,.ith conventional classroom instruction. Of these
36 studies, 18 showed no significant difference, 17 showed some
superiority for the programmed course, and one showed superiority
for conventional teaching. However, Schramm ponders over the problem
of what kind of teacher is being compared with what kind of program and
discusses the novelty effects of such features, but admits that it is
almost impossible to make allowances for novelty.

This aniother studies of programmed instruction show two things with
reasonable certainty. Firstly, the hopes of early proponents of programming
that the process would teach more effectively than human teachers have not
been demonstrated convincingly. Secondly, Pressey's original idea, that
programmed teaching could free the human teacher from a good deal of the
drudgery of presenting straightforvard factual material, and testing
students on it, appears to be quite valid.

In the late 1950's, a number of people recognised that computers
might be ideally suited to programmed instruction, since they could
overcome the severe limitations of the simple machines or programmed
textbooks that were being tried. Computers can accept and evaluate
responses constructed by the student, can provide almost unlimited
branching capabilities, and can branch based on a variety of criteria.
They can also control a wide variety of terminal equipment and in other
ways provide far greater flexibility than is possible with simple teaching
machines.

Perhaps the first CAl experiment was carried out at the IBM Watson

5

Research laboratory (Hath et al., 1960) in 1958. Other early CAl studies
were performed by the University of Illinois, System Development
Corporation and Bolt, Beranek and Newman , Inc.

The potentin.l of ccmputors for instruction W1'J.S summa:r.isedby Uttal
(1962) who suggested that the computer teaching machine concept is quite
different from the linearly programmed teaching machines. The flexibility
and range of capabilities offered to the teacher by the powerful decision
logic and large memory of computers transcend mere quantitative differences
and suggest that there is a true qualitative difference between the two.

Some of the qualitative differences envisioned at that time were:
(i) the computer can continuously compare the student's

performance with criteria established by the teacher,
and present new material, or direct the student to the teacher
or to the library, depending on his performance. "Performance"
can be judged on the basis of a rather large number of
individual responses by the student.

(ii) the ability to do what amounts to continuous testing can be
used to prevent a student's moving ahead before he has

mastered the material at hand, as well as preventing his
beiIig held back by the constraints imposed by classroom
teaching.
the computer can keep quite elaborate records of the(iii)
details of each student's progress, and the teacher can
query the machine about any student at any time. Ideally,
the teacher can be far better informed about his students'
progress than is possible in an ordinary classroom situation
or with simple teaching machines.

(iv) since course material is stored in a computer's memory, it
is easy to change. Thus computer courses can be improved
quite easily with experience, while it is relatively
difficul t to change teaching machine programs or programmed

6

textbooks once they have been printed.
The early experiments in CAl used rather simple programs and presented

students with what was probably the most pedantic teacher of all time.
Such trivial differences as double-spacing between words er missing commas
between the student's response and the specified answer caused the machine
to mark the student wrong.

These experiments showed that it was essential to develop computer
programs that could ignore minor errors or variations in wording in a
student's response and somehow determine itl. meaning. It was also
recognised at this time that flexible and convenient student terminals
and a programming language that would make possible the writing of
courses by people who knew little about computer programming were essential
for long-range development of CAl.

7

1.3 Eethods of using the comnuter
There are blo modes in whi.ch computer based systems are cur-r-errt.Ly

being used. Firstly, there is the direct mode in whi.chthe teaching
actually takes place at a terminal. There are a number of met.hodswh.ich
fall into this modp.~ Secondly, there is the indirect mode "hich makes
less demand on computer facilities and is based upon broader app:ications
of programmed learning principles, capitalising on existing teaclringand
training instruments rather tl~ attempting to replace them. CAI does not
generally embrace this latter mode, but for completeness, brief descriptions
of the two methods from the mode appear as the latter two in the follo'"in.;
descriptions of methods. The first f'ourdescribed are the mont widely used
and probably the most important.
1.3.1 Drill and nractice

This is usually associated with presentation of basic skills and is
probably the most easily programmed. Drill is a technique to supplement
the student's knowledge by supplying him with common facts and skills.
Practice allows him to use these facts and skills until a certain degree
of pro~iciency is achieved. If it is a linear proeram, all stUdents
negotiate the sam~ pattern of questions. The orilyindividualisation is
in rate of completion. However, if adaptive, the program may present
graded sets of exercises, and by compar~son and response latency, it
presents the student with selected feed-back and adapts the sequencins
to fit the individual. The computer also records a complete performance
history.
1.3.2 Author-controlled tutorial

Here, information is first presented to the student and then he is
required to respond to a question based on the facts just received. The
system j~dges the answers by comparison with expected responses. In an
intrinsic program, usually made up of a sequence of multiple choice items t

the selection of each presentation is based on the student's response to the

8

previous stimulus. Thus, by brunching, each student may take Cl cJifferent
path through the subject matter. The program is adap ti.voin pace and in
the amount of instruction each student receives. In NI adaptive tntoriD~
program, each presentation is baaed on an extensive history of student
responses to the program. In either case, the author of the material
maintains the initiative throughout and plans an optimum path through the
program whi ch he expects the better students to f0110\·/.

1.'3.3 Socratic tutorial
The Socratic method is characterised by the program permitting

dialogues between the student and the computer. It goes beyond tutorial
logics by allowing the student to assert an answer or solution at any

point in the interaction, or to ask for data. The author retains considerable
control over the student's behaviour as he usually makes the computer
messages dependent not only on the student's last response but also on the
history of the conversation. However, he must be prepared to return a
meaningful reply to almost any reasonable request the student may make.
The author may sequence the availability of information during the inquiry
stage and may guide the student towards an acceptable solution in the

decision-making stage.
1.3.4 Learner control

This relatively new logic originated by Grubb (1968) places the
initiative with the student, who accesses only the subject matter which
interests him and hence learns by discovery. This allo\Y'sthe students
to approach the subject in different ways t fro!!'those who only ",ant to
browse through the course to those who seek specific information.
Originally, an outline map is presented to the student. This contains the
structure of the course material indicating the various concepts and topics
involved. On choosing a particular concept, the student is confronted with
a further, more detailed map of this area. At the 10\Y'estlevel, instructional
material is presented to the student but at any point in time the student may

9

branch forward to skip over a question, branch backwards to repeat a
presentation, junlP to a glossary for definitions, or jump to the current
level of subject outline if he is in too deep. Comparison studies of this
technique have been made (Grubb, 1969).
1.3.5· Simulation and gamins

The logic behind silT.ulationis to duplicate in the learning situation
the format and sequen~e of stimulus events in the real world. It can
provide experience for the student under conditions of greater safety,
greater economy or with great savings of time. Gaming differs from
simulation in that there need be no real situation. Usually, there is
an element of competition, particularly involving eroups of stUdents.
The program may allow the stUdent to work in a self-instructional mode,
and provide basic tuition, automatically setting up problems for him to
solve, giving specific assistance where necessary and assessing his
performance.
1.3.6 Paired students

In an effort to combat the fact that during a CAl session the stUdent
learns in isolation yet the classroom is potentially wealthy in dynamic
social interactions, Grubb (1965) carried out a study on the effects of
paired student interaction. Little work, however, has been done in this
direction.
1.3.7. Test and assessment

This method is an indirect interaction and hence is not normally
regarded as being CAl. The computer is used frointime to time to
administer criterion tests to measure whether educational objectives
are being met. During the test, a correct response is met with
immediate reinforcement whereas an incorrect response causes further
questioning in an effort to discover exactly what difficulties are
occurring. The computer assembles information to assist the teacher in
preparing and scheduling future classwork.

10

1.3.8 COlilputer-mana;:;edinstru_~

'J.'ms is management;of the Learrri ng process, not presentation of the

instructional lli8.terial itself. Usually, there is a \"lell structured series

of wor-kasad.gnment.s or activities whi.ch may call Oll numerous different

learning resources and wh.ich tlay LncLudo many parD.llel options. After

each activity, the system tests the student on-line and hence determines

his next, assignment, either appropr-Lat.e remedial wor-kor further study.

The teacher is provided \a th the analysis of the test data and the

sequence of activities to indicate the proeress of each individual

student. A description of a project of this type is given by Gilligan

(1969).

11

1.4 Personnel required for comptlter-assist~d instructio'1.
In comparison to conventional teachin3 where each class is taught

and supervised by one teacher at any point in time, numerous personnel,
each gifted in some particular skill, are required for a CAl project of

any size. Quite naturally, the number of students that such a project
would support is increased in proportion.

Just exactly how many different members of staff are required and
what their.speciality should be has always been a matter for conjecture.

Silvern and Silvern (1966a) suggest that there should be:
(i) the teacher, who becomes the manager of the education process

and evaluates ~ld counsels students with the help of reports
from the computer. He provides special and remedial
instruction and is thus elevated from the present position
of communicator to that of directing communications.··

(ii) the instructional programmer, or author, who, in fact, may
be a team of persons or one senior individual with a staff
of specialised assistants. He initially performs a job and
task analysis, then proceeds to eBtabli~h behavioural
objectives, devise criterion tests to measure these, develop
the course outline and finally write the steps in the lesson
plan •

.(iii) the computer systems programmer, who may be expected to write
the·CAl compiler, integrate the processor into the operating
system or add capabilities .beyond··the norn:al CAl language.

(iv) the computer operator (or proctor as he is sometimes called),
who looks after the running of the machine and its
peripherals, and helps students use the equipment.

Zinn (1968) proposes that the job of the instructional programmer,
as defined above, should actually be divided into three separate positions:

(i) instructors, who select programmed strategies into which
they need only enter the teaching material and some answer-

12

processing rules. They vJill be managers of self-instruction
yet not expected to have special knovf.edge of computer-

programming.
(ii) authors of instructional strategies, simulations or academic

games, who, using a special-purpose language, provide a basic
strategy and organisation of content which an instructor might
later modify in superficial ways.

(iii) instructional researchers, who should be able to invent special
strategies to switch from one instructional mode to another,
accumulating and comparing data on performance of different
students.

In the light of the experience of a large scale physics project,

Hansen (1970) describes the various roles which evolved:
(i) content scholars, who prepared a detailed conceptual outline

of the course.
(ii) behavioural scientists, who provided criteria for the behavioural

consequences of the instruction and analysed the issues dealing
with the topics of entry behaviours, task analysis, behavioural

objectives and instructional strategies.
(iii) physics writers, who, since the talents of the two preceding

groups were in short supply, performed the detailed writing of
the instructional materials.

(iv) CAl coders, who entered the instructional material into the
CAl F:vstem, using the author language.

(v) media specialists, who helped prepare the concept films and
audio tapes.

(vi)
(vii)

computer operators, who supervised the running of the machine.
computer systems programmers, who developed a data analysis and
management system for the project.

(viii) a data analysis programmer, who amended statistical programs to

provide performance reports.

13

(ix) CAl proctors, who assisted students in preparing the multi-
media devices for utilisation.

(x) graduate students, who acted as demonstrators for the course
and raised queries about the overall systems approach,
including strategy and media selection.

The need for such an array of staff naturally raises the question
of cost of CAl. A thorough discussion of this aspect, and comparison
with the conventional method of teaching is given by Kopstein and
Seidel (1967).

14

1.5 Layout of this thesis

The remainder of this thesis. is divided into four sections, three

of wlri ch are ae.Lf'-ecorrte.i.ned, ChaT-lter2 Gives a de tad.Led description of

the t.eachi.ngsystem thut vas desiened and implemented in Ilewcast.Le ,

complete 'vIith a description of other systems. Chapber- 3 describes an

investigation whi ch was designed to provide a validation and evaluation

of the system and de.termine hO\-Ibest it can be used in the area of

teaching programming languages. Chapter 4- turns away from the idea of

generating instructional material via an author language and suegests a

method by which the vast team mentioned in 1.4 can be :-:-epla.ced

effectively. The final section provides a summary together with

conclusions of the ...,hole study.

In the appendices are given the userls guide to the teaching system,

a sampl~ of the author language coding used in the investigation, a sample

s tuderrt dialogue with the course and the per-formance record resulting from

th::tsdialogue.

15

CHAPTER 2 The Newcastle University Teaching System (NUTS)

2.1 Computer-assisted instruction systems
2.1.1 Introduction

The first attempts at producing CAl programs started over a decade
ago and used computer systems and programming languages currently in use
at that time. Only one user at a time could use the machine, whether he
was the author developing the course or one of the students receiving the
instructional material. The fact that an existing programming language
was used to code the programs probably meant that the response processing
was the least sophisticated ever attempted. When the student responded
to a question from the computer, he WRS judged wrong by the machine if he
made such trivial mistakes as double spacing between words or leaving out
a comma.

Perhaps the first experiment with computers for instruction was
carried out by Rath et 81.(1960) in 1958 at the IBM Research Centre using
an IBM 650 computer to teach binary arithmetic. Other early CAl experiments
were carried out at the University of Illinois, System Development
Corporation and Bolt, Beranek and Newman, Inc.

Since that time, there has been a general' trend towards a specialised
CAl system. Instructional programs are assembl.ed into a format that can
easily be executed by an interpreter i~ real time during instructional.
sessions. In addition, background programs permit users to schedul.e card
assemblies, list courses and student records, load functions, macros,
dictionaries, g..:aphics,etc.

However, in more recent years, CAl subsystems running under general-
purpose time-sharing systems are being developed.

16

2.1.2 Early operational systerr~
During the period 1962-65, CA! systems grew, more or less independently,

in several laboratories. These pioneering examples of CA! shared some
common features, such ~s time-sharing. Each also had unique features.
In this section, several well-established systems of that period are
listed and described.

In that time, each of tha systems was restricted to the laboratory
or campus on ",hich it was generated. However, in 1965, remote terminals
for several of these systems were installed at other laboratories and
universities, sometimes many miles distant. Thus, some systems became
no longer identifiable soleli with a particular institution, except
historically or administratively.
2.1.2.1 IBM Yorktown. An extensive system was based on the IBM Watson
Research Laboratory at Yorktown Heights, New York. This system originally
used an IBM 650 RAMAC with 20 terminals and a disk file for.6 million
bytes and 0.8 seconds maximum access time (Grubb and Selfridge, 1963).
In 1964, an IBM 1440 replaced the 650.

Students at Pennsylvania State and Florida State Universities took
courses transmitted from the Yorktown complex (Wodtke et al., 1965). The
course was presented at a modified electric typewriter and used a random-•
access slide projector and a tape-recorder.
2.1.2.2 IBH Poughkeepsie. A system similar to the Yorktown system was
based on an IBM 1440 at Poughkeepsie. Through 12 IBH 10.50terminals
located at IBH .:"fficesat Poughkeepsie, Los Angeles, San Francisco, and

,.

Washington D.C., IBM customer engineers received training while on call
at their offices.
2.1.2.3 CLASS. The Computer-based Laboratory for Automated School
System (CLASS), developed by the System Development Corporation,
provided instruction for up to 20 students under the control of a computer.
It was designed to study branching effects and permitted the investigation

17

of systems problems as well as individual learning processes in a controlled
environment (Ruans, 1963). In addition to a practical course on statistical
inference, CLASS was used for computer-based student counselling and field
eValuation of an elementary Spanish course.
2.1.2.4 System 437L. System 437L was a comnwmd-control system operated by
the U.S. Air Force. It included an automated instructional subsystem wInch
taught Air Force console operators the query language to be used in
communicating with the main system (Clapp et al., 1964). Because of
obsolescence of the basic system, the training subsystem was not implemented.
2.1.2.5 ~. The best known of the machines developed in the U.K. by
Pask (1959) was Solartron Automatic Keyboard Instructor (SAKI), whi~h
instructed the stUdent in keyboard operation. Errors and response times
were calculated by SAKI, compared with the standard performance, and fed
back to the student. It was not a time-shared system.
2.1.2.6 CODIS. The Computer-Based Instructional System (COBIS), located
at the Electronic System Division, Ranscon Air Force Base, Bedford, Mass.,
was based on a DEC PDP-1 (Baker, 1965). It had three principal features.
Firstly, a light pencil was used as the medium of communication between the
stUdent and the computer; secondly, the stUdent indicated his degree of
certainty for each alternative in the multiple choice array by adjusting
bars of light next to each answer on the cathode ray tube; and, finally,
the computer considered both the student's answers and his degree of
certainty when branching to remedial sequences or further steps. A
special scoring system was developed accordin&~y.
2.1.2.7 The Socratic System. In the Socratic System, built by Bolt,
Beranek and Newman, Inc., in April 1963 around a DEC PDP-1, the teacher
and student carryon a dialogue in depth (Swets and Feurzeig, 1965).

The computer states the problem, sets up conditions, asks questions,
provides requested data, and answers questions, while observing the
student's course of action in a task. The system has been applied to
instruction in medical diagnosis and business decision making.

18

2.1.2.8 SOCR.A'l'BS. SOCF..l'i'l'BSwas a time-shared system developed at the

'l'raining Resear-ch Laboratory (TIDJ) of the University of Illinoi8 (St011u'01.:,

1965b). It was adaptive in three \·Iays. Firstly, it learnt about the
student as it taught him. Secondly, it might make decisions about the
effectiveness of the rules used to teach the student; and, finally,
it might make decisions about the criteria which wer-e used for evalua t:;_n.c;

performance.
The SOCRATES I student interface was put on-line in Hay 1961+. l''ive

terminals were available duriIl2'the summer of that yea.r. It used an IEl-l

RAHAC external disk memory of 2 million-byte capacity to supplement the
internal storage of an IE~ 1620 cooputer.

In SOCRATES II, an 1131-11311 disk replaced the RANAC disk and d:i..rferer..·:~
terminals wer-e used. The new terminals displayed not only 35 mm. frames,
but also a set of six fixed messages, each of which would be selectively
called by the program. In addition, these stUdent terminals provided
random access to any of 1500 frames of film and contained a keyboard
consisting of 15 keys with interchangeable .characters.

SOCRATES software permi tted the storage and use of historical
information by student rather than by tel~i~. The student file permitted
full use of the idiographic model. SOCRATES provided records of every
response of each student, in terms of both· the time it took and the
cbarac.ter of the response.

The projectwa6 discontinued late in 1966.

2.1.2.9 PLATO. At the Computer-based Education Research ·Laboratory (CERL)
o.rthe University of Illinois, a single-student version of the PLATO
(Programmed Logic for Automatic Teaching Operations) system was used to

present a variety of subject matter ranging from mathematics to French
grammar. PLATO II, the first multiple-student teaching device from the
laboratory, used the ILLIAC computer with a high-speed memory of only 1024

words, which limited the system to two terminals. The "electronic-blackboard"

television display technique has both a cathode ray tube and a slide
display superimposed. Such function keys as "help" and "aha!" are also
available to the student.

In 1964, transition was made to PLATO III, based on the CDC 1604

computer. PLATO III had a theoretical limit of 1000 terminals, but
only 20 were implemented. The "help" sequences were increased from
one to eight. Analysis of the student performance records on-line
became available and intercommunication between terminals, added 1n
1965, made experiments in gaming, simulation and group interaction
possible. A description of the PLATO system is given by Bitzer and
Easley (1965).

2.1.3 Design considerations
The design of a CAl system, quite naturally, depends to a large

extent upon the type of system that is required. For the most part,
CAl systems are implemented upon general-purpose computers but they
are a separate entity, apart from any other subsystem available on
the machine. However, there exist great advantages in constructing
CAl subsystems which are able to transfer c~ntrol back to the operating
system to obtain any other subsystem such as a compiler, simulator, etc.,
,before returning to the instructional subsystem. Finally, there is a
class of CAl systems which is highly specialised. For instance, specfal
considers.tion may be made as to the method of course assembly, type of
instructional strategy, or method and reason for use by ·the student.
2.1.3.1 General stand-alone systems. The minimum requirements and
desirable characteristics of an instructional system aided by a. .

general~purpose computer are given by Zinn (1965). He considers the six

lines of communication between student, learning materials and author
and to each of these six lines attributes one requirement:

(i) development of an author language for material presentation
and strategy definition;

(ii) analysis of material, strategy and student performance;

(iii)
(iv)
(v)

(vi)

20

display of material;
processing of student responses;
furnishing of Ull8nticipated student requests; and
provision of individualised instruction.

Tonge (1968) suggests that any new system should also allow
student-course interactions of the type already familiar in other
systems, as above, but suggests further that the system should

(i) permit the entry of course programs either on-line or using
batch input devices and should allow the author to correct
and immediately test material on-line, even during student
usage of other parts of the same course;
provide to the course author capabilities for calculation,

test analysis, data base access, and abbreviated reference

(ii)

to commonly used sequences of material (a macro facility);
allow "easy" modification. of language syntax and semantics
so as to encourage course authors to consider and suggest
language improvements;

(iv) facilitate experimentation by authors with more sophisticated

algorithms for response processing;

(iii)

(v) provide a computational facility to students, in the context
of the course program; and

(vi) be'implemented so as to maximise the efficiency of the highly
repetitive student interactions rather than the less frequent
author debugging sessions.

Adams (1967) reinforces most of these considerations but, in addition,

points out that
(i) the system response should be "very fast", about a tenth of the

time it took the student to frame the message;
(ii) as well as both on-line and off-line entry of programs, there

should be a very fast compile service where small alterations
are made to a program;

21

there should be a capability to mark and specify the contents
of transaction records ~Jhich may include time data, contents
of storage and the text of messages;

(iv) the system should offer a recovery from malfunction; and
(v) the system should be open-ended, i.e. capable of executing

(iii)

special routines written in a lower-level language and adding
new routines to the source language at will.

As for implementation, Silvern and Silvern (1966a) suggest that the
basic CAI system be machine independent and written in a \'lidely-used
language such as FORTRAN, and, since the system would handle many
students taking the same or different courses simultaneously in a time-
sharing mode, it should use re-entrant coding. They also put forward
the ideas that the sign-on procedures should be simple, yet give adequate
security, and that a student should have no difficulty restarting a
course after a previous session. Perhaps their most sensible suggestion,
but probably the most difficult to implement, is that the system should
respond with "WAIT" if there is a time lag of over three seconds when
processing a resPonse.
2.1.3.2 CA! systems as subsystems. Instructional systems may incorporate
other programming facilities which can be used by both author and student.
Already, a basic version of COURSEWRITER has been "married" with FORTRAN
in a conversational, tutorial system called TUTOR at CERL, University.of
Illinois. The curriculum expert can set the problem for the student and
provide some discussion in the tutorial mode. The student shifts to the
edit mode to construct his solution and then calls the FORTRAN compiler

or other system software to complete the job.
PLANIT, at System Development Corporation (Feingold, 1967), permits

the author to specifY statistics problems for which the computer generates
data and determines the correct answer. The student can use the computer
as a desk calculator, call on avai~able subroutines and write simple

L" .•

22

programs of his own,

In addition to simple computational aids, some lesson designers may
want to provide an algebraic language, a text processing language, a
model-building or simulation language, perhaps a specific system or model
written for student use, or information organisation and retrieval
capability.

A broadly conceived instructional system probably should begin with
a general-purpose system and add the facility for moving from the terminal
mode into other user subsystems, returning when an exercise is completed.
Some authors need to maintain contact with the student through some means
of monitoring his work on a problem. It may be necessary to bring him
back to the tutorial mode because of elapsed time, number of problem
attempts, or even anticipated error which requires special attention.

Eng~ld and Hughes (1968b) have designed such a subsystem. They
point out that adding a number of functions to make a teaching system more
flexible would require extensive additional programming and the number of
such functions that could be added might be limited by the size of the
computer memory for which the teaching system was designed. In order to
improve man-computer communication, they made the computer controllable
from a display unit. All the resources of the operating system can be
summoned by having the user point a light pen at the display. Thus,
these full resources (language processors, compilers, models and other
library and user programs) can be cal.Led upon from the display in order
to enrich the teaching process. In addition, the user can be instructed
or guided in employing this software by exercising the system's tutorial
function.
2.1.3.3 Special purpose CAl systems. We have mentioned that the design
considerations of a CAl system may depend on some special feature of that
system; for instance, the instructional strategy, the method of generation
of material or the reasons for use of the system.

23

StolttrO\';(196,53.)defines systems analysis as the construction of
models and pr-ocedur-esto optimise some function of the variables
involved in the nodel. He useCian operational model of instruction
to create SOCRATES (1965b). The model is ideomorphic in that it
considers the learner's characteristics, and is itself adajrt ive during
instruction. TC-.i.sinvolves three steps in a cycle. Firstly, the
pretutorial step selects the optimum teaching program for each student;
secondly, a specific set of instructions, ta.skparameters, definition of
tasks and rules is implemented; and, fil1ally, the tutorial design is clli~ged
or a better set of rules is adopted to reach the desired performance.

A similar approach has been m..ade !Itthe Human Resources Research
Office (Hum RRO) with project D1PAC'_r (Kopstein, 1969). The philosophy
there is that, if an instructional system is to be better than that of
a good human instructional system, more predicative indices must be used.
Starting from a simple (minded) instructional decision model empirical
data is collected and fed back to modify the model. The current version
is tested diagnostically to find indications to what is right and what is
wrons with it and the model is then adjusted in terms of the data obtained.
It considers such factors as the student's abilities and educational back-
ground, his fluctuating motivations, his cumulative patterns of progress
toward mastery and his pattern oferror~ in recent criterion tests, and
relates them in a logical and unvarying way to instructional options,
such as the available subject matter information, the available media and
the available me~hods or forms of presentation.

Several systems have been suggested, designed and implemented which
emphasise the ease of generation of instructional material.

Meadow et al. (1968) produced a course generator, CG-1, an interactive
program, .which produces a course program as the result of a conversation
between the computer and the course author carried on in natural language.
The generated programs are in a language called PI/I Interactive Dialect

24

(PIlI ID) which is a dialect of PI/I and which can be compiled and run on
most IBM System/360 computers.

The system due to Kerr et al. (1969) is quite different. In it, a
course consists of units called frames. Frame elements are composed,
punched into cards 'and then stored as records en a direct access storage
device. The authors believe that run-time generation of these frames,
which are actually stored as character strings, is a more suitable approach
than material prepared in a special or general-purpose language and compiled
for instructional use. Courses can be changed and expanded without
changing the processing programs, and no computer program is required to
include new courses in the system.

Whereas both previous systems have allowed for a wide range of
question-types during the generated course, Ul~ (1969) proposes a system
in which the author must specify the general type of question he would
like to ask. The program generates a sequence of questions in some
particular problem domain during, and as a function of, its interactions
with the particular student it is teaching. Rather than pre-programming•
the text into the computer, the teacher only codes, in a standard format,
the type of question he wishes to ask. The program then generates a long
sequence of particular questions, questions that become progressively more
difficult as the student succeeds in answering the simpler ones, and
branches back to simpler material when the student fails.

For the most part, CAl systems have been used directly in the,teaching
environment. However, Winkler (1968) suggestt that the traditional forms
of CAl are in the process of developing into a public "utility" of organised
kno''lledge. He postulates a nation-wide network of computers which will be
used by schools to supplement instruction and for placement ,and certification
purposes. The system will also be used by libraries for browsing, by
corporations for inservice training and personnel selection and by
individuals as a device for learning what one needs to know in order to
gain knowledge in particular fields. This follows from the different levels

25

of difficulty attributed to all the available CAl programs 0.nd the chain
references from one to the next. One important technique suggested is
bha t all computers woul.d keep a listinG on drum or disk of the CAl

programs in the current inventory. The lack of a requested program in
the inventory would cause the executive to dial tha appropriate higher
level to secure the program. This continues until the program is
secured, from the national cOLlputer, if necessary. The CAl program,
in being transmitted back to the requestor, is then stored in each level
in anticipation of future use by this or some other requestor. Each
"levell! of request: will, therefore, become a reservoir of CAl programs
and the function of this reservoir is to reduce the number of requests sent
to the next higher level by a factor of at least the ratio of the number
of computers at the two levels.
2.1.4 Current systems

This section contains a summary of those CA! systems currently in
use.
2.1.4.1 IBM System 1500. In the IBM 1500 Instructional System, different
operations can be performed by students taking courses, teachers wr~ting
courses, and proctors supervising the overall operation of CAl. In addition,
background jobs can be completed when the system is not being used for
.instructional purposes. The major functions of the operating system
include:

scheduling service requests so that each station is offered
an o~portunity to use the system facilities in turn;
directing proctor assistance to the students requiring it;
accumulating student records;
analysing and executing proctor instructions;
providing information about system operation to the proctor
when necessary; and

(vi)' storing and maintaining all data needed by the programs under

(i)

(ii)
(iii)
(iv)
(v)

operating system controi.

The significCll1tcharacteristics of the operating system are that it
is a re-entrant, natural-interrupt, terminal-oriented, time-sharing systeln.
It is divided into five major sections: station lOGS, scheduler, command
processor, service routines and applications. The system can be based on
either an IBM 1130 or 1800 and with 32K core can support up to 32 stations.
A system summary is given in an IBM (1967) manual.
2.1.4.2 RCA Instructional 70. Lesson material is organised as a series
of concept blocks, each of which provides drill and review material to
students at various levels of difficulty. The computer is programmed to
present these concept blocks in a specific sequence but the teacher may
change this sequence to parallel his own presentation. The computer
also produces two reports for teachers: the daily status report and the
concept block progress report. The daily status reports are produced
after each day's student sessions; one report is produced for each
class. The concept block progress reports provide detailed information
about each student's progress within a concept block. The programming
elemen1B of the system include:

(i) the Instruction Systems Language - 1 (ISL-1);

the text editor (used to create the files of data constituting
the cUrriculum data base);
the data translater (used to translate material from the text
editor into the format expected by the 70 system procedure
program) ;

(iv) the operating system; and
(v) the data management system.

(ii)

(iii)

The operating system controls the on-line instructional process,
and is divided into four subsystems: the control monitor, interpreter,
communications control system and disk control system •. The data management
system produces the off-line progress reports. A Spectra 70/45 processor
unit is ~ed with a 262144 - byte core storage and each line concentrator

may service up to 48 terminals. General information is found in an RCA(1967)

report.
2.1.4.3 RCA Instructional 71. The four main functions of the operating
system are:

(i) operation of the central processor, auxiliary storage units,
operator's console, and communication interface;
file maintai~Ance after instruction has ceased;
entrance of the curriculum materials into the system using
ISL-1; and

(iv) translation of ISL-1 procedure programs into a machine-oriented

(ii)

(iii)

format.
The system is controlled by an RCA 716 CPU, which has 65536 bytes of

high-speed core and can handle as few as 14and as many as 48 students,
depending upon system configuration. A description is given in an RCA
(1968) report.
2.1.4.4 Technomics 6700. This system has three major parts: the central
computer, the teaching consoles and DIALOG, the lesson-unit compiler.
DIALOG, the most important part, allows the teacher and student to
converse with the system in natural English. The task of writing a
program has been reduced to a relatively small set of choices or decisions.
The CPU is a 16-bit machine with a core memory of 16000 words expandable
to twice that size. In the basic system, 30 consoles may be simultaneously
in use but with access to a large computer, the system may be expanded to
50 or 75 consoles. The console has a television-tube display on which
video pictures, line drawings and written text may be presented (Hickey,
1968).
2.1.4.5 PLATO. The operating system for PLATO is based on a CDC 1604
and includes 20 teaching stations with video capability. The author may
project slides on a television screen via an "electronic book" and
superimpose writings or diagrams by means of an "electronic blackboard"
function. Student response is by teletype keyboard with user-defined

characters or special symbols appearing on the television screen at a

28

location pr'edetermi.ned by the author or pr-ogr-ammer- (Bit.zer and E:JGley, 1?1~~)).

A special system I'or- response anaLyai s (Easley, 1967) provf.des gcncr-a L

facili ty for retrieval and review of records on a visual display. 'l'jw

author is able to rcvi.ewa trace of the student's procress t.luough an
instruGtional sequence, obtaining summary statistics o.t various hovels of
detail, or even rep:!.ayat a student console a complete interaction. In
this latter case he may also specify the relative speed that is required.
compared to the oriGinal. The soft'trareto specify the logical structure
of an instructional sequence is ,."ritten in an extended FORTP.AN for the
PLATO compiler, CATO (Compiler for Automatic Teaching Operation).
Considerable flexibili ty is allovred the user familiar vIith the three
levels of language: CATO, FORTRAN and assembly. In 1970, a Lar'ge
computer capable of controlling more than 4000 stations will be ordered
to reach the goal of 4096 stations in 1974, by which time it is expected
that the cost per student hour for terminal and CPU time will be less than
25 cents.

2.1.4.6 The Socratic System. For the "Socratic Systemll (Feurzeig, 1965),
a language called NEliTOR was developed for authors to use in constructin~
conversa.tional, tutorial dialogues. The author of materials may, via
computer storage and logic, take the role of advisor, monitor, interviewer,
consultant, examiner or tutor. Typically, a situation is established in
which a problem may be solved by the gradual acquisition of information.
The student types enquiries of declarations selected from a list of
acceptable terms, and the machine identifies these even when mj.sspe1Une
occurs and types an appropriate reply according to complex conditional
statements provided by the author. The system uses teletn>es attached
to a modified PDP-1. HENTOR is written in LISP, and sections of instruction9~
programs otherwise coded in t-:ENTOR may be Written in LISP. The same systeLI
is used with an on-line computational language, TELCOHP, for instruction
in schools.

29

2.1.4.7 PLANIT. The initial design started in January 1966; by June,
PLANIT (Feingold, 1967) was operational. It was written in JOVIAL
(Perstein, 1966) and used an IBM AN/FSQ-32V computer via an interactive
console under the SDC time-sharing system. The user (lesson designer
or student) communicates \,Ii th the system via a keyboard device l:&'nl(ed
by either telex or telephone to the computer. PLANIT comprises not only
the author language but also a program developed for time-shared use.
The system operates in four modes: lesson building, editing, execution
and calculation. The first two modes permit the author to construct ruld
edit lesson frames in various formats and store them in designated
sequences for later presentation to the student in the execution mode.
The calculation mode is particularly oriented to mathematical subject
matter and can be used as a calculation aid for the author (when building
the lesson) or the stUdent (when perfo~ming the lesson). While the
student has access only to execution and calculation modes, the author
may use all four. PLANIT allows one lesson to <all another, and any program
(or subroutine) written in JOVIAL can be added to the lesson and
executed at any time.
2.1.4.8 CAL (Irvine). The CAL (Computer-Assisted Learning) system
(Tonge, 1968) at the University of California, Irvine, is implemented
on an IBM 360 model 50 under an Interactive Application Supervisor
(Summers et al., 1967) which furnishes; the scheduling algori tbm,
terminal control and file-handling capabilities for all subsystems.·
The supervisor provides standard editing feat~es and conventions
for all subsystems, allowing backspace and type over, underlining and
80 forth. The components of the CAL system include table driven
syntactic and semantic analysers, an assembler, a pseudo machine
(interpreter) for processing assembled stUdent programs, and interface
routines for communicating with the student and course author. Two
of the more interesting basic files are the error file and thu'response log.

The error file contains a list of error messages as they occur during the
day, including the student context at the time of the error so that
authors and system progrrumners may analyse and correct error situations.
The response log contains the record of all student responses and appropriate
stUdent context information, as re~uested by course authors for later
analysis.
2.1.4.9 The Leeds system. The Leeds system has been implemented on an
Elliott 903C computer, which has 8K words of main store, a paper tape
punch, a paper tape reader and an on-line teletype (Sleeman and Hartley,
1968). For each session, the processor, which controls the learning
process, has to be read into the mach+ne through the paper tape reader
and at the beginning of each different lesson the appropriate teaching
material has to be put into the remainder of the main store in a similar
manner. One important feature of the system is that, during instruction,
the student can have access to files which are stored in the computer
provided that he types the proper request on the teletype (Hartley and
Sleeman, 1968). Exactly which files are set up depend upon the nature
of the problem, but they are always referenced by function and include
such requests as FACTS, for information; MEANINGS, trom which definitions,
symbols or formulae can be obtained; EXAMPLE orTBST, to provide practice
on the use of the meanings; CALCULATE,. for numerical capability; and HELP.
The Elliott 903C has now been replaced by a MODULAR-1.
2.1.4.10 ADEPT. The ADEPr (A Display Expedited Processing and Tutorial)
System was deve.oped experimentally for the IBM 360 model 40 and the
22.50 display unit, model 1 (Engvrold and Hughes, 1968a). It operates
under OS 360 and the machine used bas 2,56Kstorage, 3 disk storage devices
and 4 magnetic tape units. The 22.50bas an 8K buffer and a light-pen,
alphameric keyboard and a program function keyboard. All secondary
storage resides on disk. The system has three main parts:

31

(i) a lanGuage containing control and text codes which operate in
one of either the author mode, the user mode or the programmer
mode, all of which are freely interchanc;eable;

(ii) an interpreter program that processes programmer, author and
user control codes and automatically switches the system from
one mode to another; and

(iii) routines that autor.atically terminate and reschedule ADEPT for
a restart later, trrulsfer control to the operating s~stem for
processing and execution of a new job (assembly, co~pilation,
siclUlation, etc.) and restart the ADEPT job when this job is
completed.

For ease of transfer between machines, ADEPT was written in 37 FORTRAN IV
subroutines \v.Lthonly two assembly-language subroutines.
2.1.4.11 £Q.:.1. CG-1 is a course generating system (r1eadow~t al., 1968)

which produces a course program as the result of a conversation carried on
in natural language. The generated programs are in P~I Interactive
Dialect (P~I ID) "/hichmakes use of a limited set of PI/I stater.Jents,
several subroutines which perform instruction-related functions, and
some syntactic rules governing the writing of programs. This dialect may
be compiled and run on most Ig~ SystemV360 computers. The system has the
following features and limitations:

(i) little programming skill is required by course authors, but
"those authors with programming skill may enter ~ statements
of their own into the generated instruction program;

(ii) only multiple-choice questions can be generated;
(iii) an instructor may insert PI/! language statements to

analyse or process responses or process other data; and
(iv) the genera ted c-ourseallows three unrecognisable responses,

after which the student is automatically cut off from the
computer.

A second system, CG-2, is under development. This is an updated version

32

of CG-1 and en.largE:sthe number of possible answer- types and correspcnding
response analyflis and allows more complex deciGion branching.
2.1.4.12 HSUCf~I. The v!o_shingt.onState University Computer-Assisted
Instruction system (Kerr et al., 1969) is im!)lemcnted on an IEH 360

model 67 with 756 K bytes of core storae;e, an IBN 2314 disk storage
device and an IE,!2321 data cell. The oper-a'ting system is Hultipror;rDJ;)ming
,,:ith a Fixed number of Tasks (HPI')using the Houston Automatic Spoolinc
Priority system (HASP). The five partitions usually run are HASP, batch
processing, plotter, graphics and teleprocessing. v/SUCAI uses a
package written for terminal interface that runs in the teleproccssinr;
partition. Other application programs run in that partition and no time-
sharing is involved. The control program for \..,SUCAIincludes:

(i) an instructional system, which may take either the form of
successive frame presentation or review mode;

(ii) a recording system, which collects information on the sequence
of frames and total instruction time by student, total
operation time and frequency of operation by terminal,
and frequency of each response and average reaction time by

frame number; and
a management system to generate reports for instructors and
descriptive system reports for those developing vISUCAI.

..

(iii)

The control program is "lritten in FORTRAN IV and is as machine independent
as possible.
2.1.'4.13 n!I"ORH. INFORr-1 at Pailco-Fo!'(J(1970a) is a magnetic tape
oriented system implemented on a Philco-Ford J.lodel102 Processor and a
J.Iodel173 J.la.gneticCore };temoryof 32768 words. The fio,.,of information
through the system and the many varied forms taken by the data is as
follows. Specially designed coding forms are used by the author in the
INFORM Author Language and contain his step-by-step teaching techniques
and curriculum material. A keypunch operator punches the information

33

into cards which are then recorded on magnetic tape and.processed by the
INFORH Translater Program. The translater generates an intermediate
language and recorda it on magnetic tape. At the same time a "curriculum
edit" listing is printed. The author can look at this listing to check
the original information that he intended for his instructional material
and the Author Language tape may be stored for future use. The Interpreter
Program transmits the course information to the student via an individual
SAVI (Student Audio-Visual Interface) display screen. The student is
able to respond using a keyboard and light-pen.

The INFORM Control Instructions provide a variety of initiation and
update service functions. These instructions are \lsed to prepare
curriculum files, copy curriculum programs from one magnetic tape on to
another and to add, delete and replace individual carda or entire
concepts during these operations.

One specific application of INFOml has been the ~ject GROW System
(Philco-Ford, 1970b) which was designed specifically for the Philadelphia
School District.
2.1.5 The need for ~.

One of the main reasons for designing another CAl system was that in
the autumn of 1968 there was no pre-packaged system available for
implementation on the IBM 360 model 67 at Newcastle, either from the
manufacturer or from any other installation using CAl. We wished to

combine as many of those attributes mentioned in 2.1.3 as possible in
one system. Considered of great importance p~ng these were

(i) the availability of an author language to ease the author's task
of entering his material into the computer yet at the same time
allowing him to provide all the stUdent-course interactions of
the type already familiar in other systems;

(ii) ability to enter courses either from a terminal or from cards;
(iii) a- computational capability to be available at all times to all

users; and

(iv) a recovery from malfWlction such that the author does not
lose any course material he may have entered or the student
has to repeat as little of the dialogue as possible.

As for implementation, i~ an effort to design a machine independent
system, FORTruu~ was considered essential. It is a universal language
and hence transfer of the system between machines would not require
extensive reprogramming; only alterations owing to a different operating
system would need to be made. Other reasons for its use were that
communication of FORTRAN programs is not difficult, which would allo\,.
amendments to be made by other people, and it is quick to \'lrite for an
experienced programmer and easy to debug, which would give a small
elapsed time between the start of the project and the first test version,
an important factor in this context.

It was not possible to include all the design considerations given
in 2.1.3 and those not realised were

(i) re-entrant, shared code "lasnot available for FORTRAN (or
.fer assembler, even, at that time) in the operating system;

(ii) the necessity for providing an open-ended command structure
was not considered important as it was hoped to provide all
those facilities that would be needed, but, in any case,
having chosen FORTRAN, addition of further commands would
not cause any difficulty; and

(iii) a stalld-alone system was designed, not a subsystem able to
-co~uunicate with the operating system because a simple system
was required quickly to enable further research to be carried
out aAd, in any event, it would be an easy matter to arrange
for the command language to include functions of the general
operating system by virtue of dynamic loading of these other facilities

It was in this frame of reference that NUTS was designed and implemented.

35

2.2 ~1ichigan Terminal System and its influences.
2.2.1 UMMPS and NTS : A general description ~f the operatinEL system.

UNMPS (University of Hichigan Nulti-Programming System) is a
multiproeramming operating system for the IBM System /360 series of
computers. m'll1PS executes jobs, which are initiated and controlled
from the operator's console. Each job runs in problem state and uses
supervisor calls for all its input and output operations.

A job program is the basic set of instructions which are executed
when a UMMPS job is run. Job programs are core resident, along with the
~ws supervisor and subroutines. A re-entrant job program can be executed
at the same time by more than one job. When a job program is v~itten, a
set of device types and a set of memory buffers of various.sizes are
specified. Corresponding actual device~ and memory space are allocated
for any job initiated with that job program, and these are retained until
the termination of the job. By means of supervisor calls, jobs may
obtain and release additional devices and storage space during their
execution. A single device (e.g. a card reader, communications terminal,
or a disk module) is available for only one job at any given instant.

The version of ~n{ps in Newcastle uses the dynamic relocation
hardware peculiar to the 360 model 67 in order ~o provide a virtual memory
bUffer space of 256 pages (one page = 4096 b~tes) for each job. The
supervisor manages real core memory with a demand paging algorithm, using
an IBM Drum for secondary storage.

1·1TS (Hichi.:_.,an'rerminal System) is a re-E:lntral1tjob program in
UHNPS. It provides the capability of loading, executing and controlling
programs from remote terminals and through a batch stream. T~gether with
~·ws.MTS provides a simple but powerful time-shared computer system, whose

.
salient. features are these (University of Michigan, 1967).

(i) Several dozen commands are available to cause the running and

monitoring of programs, the manipulation of line files, and other

36

conununication with the system.
(ii) A system of information oreanised in units of lines (1 to 256

characters) and files (0 to many thousands of lines) is
provided for the storage of programs and data. A file may be
public ,or private, and a private file may be permanent or
temporary. These files reside on direct-access storage
devices.

(iii) When an M~ user specifies the origin or disposition of data,
he may give, interchangeably, the name of a filo location or
a physical device. A logical device name or number is then
attached to it. It may refer, for example, to a system (public)
file, a new temporary priv~te file, a card punch, or the
operator's console.

(iv) A program to dynamically load programs is an integral part of
MTS. It may be invoked by both commands and subroutine calls.

(v) External symbols, which have been referred to by a set of loaded
programs, but not defined, may be resolved by reference to a
private or a system library, ~hich is a file containing object
programs in a special format. Facilities exist in HTS and the
Loader to pass over a library and selectively load only the
required subroutines (and the subroutines that they need,
etc.).

(vi) The MTS system makes available the IBM System /360 F-level
assembler, the IBl.fFORTRAN IV G-level compiler, the IBM AUJOL
F-level compiler, the IBM ~1 F-level compiler, WATFOR
(University of Waterloo FORTRAN load and go compiler), PIL
(Pittsburgh Interpretive Language), SNOBOIJ+ (a string
manipulation language), and UMlST, a string processor based
on the TRAC text-processing language. These programs reside
in system files, and are executed in the same way as user
programs produced by these processors. Other powerful system

37

features, such as the IOIV360 input-output conversion
subroutines, macro librari€s, plotting routines, etc.,
reside in the library and other system files.

2.2.2 The dependence of NUTS upon HTS.
Although one of the main design considerations of NUTS was that it

should be as independent of MTS as possible, there are some areas in
which dependence upon the opera tine system was unavoidable. However,
in each case, very little, if any, re-programming would have to be
carried out if NUTS were to be implemented under a similar general-
purpose time-sharing system. Those areas are described in this section.
2.2.2.1 Execution. NTS treats NUTS as though it were just another
problem program. The object code is owned by the system designer but
any registered NUTS user may request its use and he receives a complete
copy of the system in his virtual memory.
2.2.2.2 MTS command generation. Each user initiates NUTS by transferring
MTS control to bis file called "nuts" which at that time contains the
MTS commands to load and start NUTS. Depending upon which command he
then requests, it may cause the command language processor to write
appropriate MTS commands in the next available line in "nuts". On

the completion of the command language processor's scan, NUTS
execution is interrupted and MTS control passes to the next available
line in file "nuts", which should contain the corresponding MTS commands
to the user Is NUTS request. Less than half of the 17 NUTS commands
require HTS command generation. The commands which are produced concern
the creation and copying of files and restarting with a different file
assigned to a particular FORTRAN logical device number.
2.2.2.3 MTS supervisor calls. There exists two assembly language subroutines,
each of which are essentially just a supervisor call. The first one is used
to measure the elapsed time of students' responses and the total session
time whilst the second indicates whether the user is currently using NUTS

on terminal 0:' in batch. This is iu::_)o:?:'tant~;.0certain corunanda are OllJ.~·

available fron a terminul and Hithin tLe lanCll<lceprocessors prO!Jl'til1S

does not occur in batch.
2.2.2.4 Uce of l1ernittec1. files. i:TS a'l.Iows one user to r-ead the file:..,
of a second uaez-pr-ovLderi the aecond user has }_)Grmi tted hi ra HCCe[,;,s.
This facility is used in the sit.uation that aTcel' an author has checked
out a lesson in a course he releases that lesson for General use, or,
in other wor-ds, he perm ts its use. From that point on, a student may
use that lesson, but, of course, only ",hilst the author keeps it
released.
2.2.2.5 Privile'c;ed use. If a user in HTS is afforded priviledeed status
then he may look at other people's files without their consent. Thus,
every author is given this status as from time to time he may \</ishto
observe how some of the students are progressing throueh one of his
courses. Re does this by looking into their response file for that
course. ·In another instance, authors may wish to look.in the HUTS
student index and lesson inde~ to see wluch students are currently
using l-mTS and ~/hich lessons are available. These files are ovmed by
the system desiBner but are not p~rmitted by him as they are updated
periodically and permitted files nay not be ~Titten into.

39

2.3 A glossary of terms for NUTS.
author

author
Language

calculating
language

command
language

a user who is able to create and build pieces of instructional
material, extensively check them out before releasine them
for general use, then monitor the performance of the
subject using this material.
this is used by authors onl~ to write courses of
instructional material. It is especially designed for
this purpose and so includes source statements which specify
material to be displayed and acceptable student responses,
access past student performance information, load and
unload return address stacks, etc. The author Language

processor analyses the source statements and translates
them into intermediate code for future calling via a
controller. If errors are detected, appropriate
diagnostic error messages are produced.
this is used by authors and students alike during a NUTS
session to write programs for applications that involve
mathematical computations and other manipulation of
numerical data. The calculating language processor analyses
the source statements and translates them into intermediate
code for future c~ling via a controller. If errors are
detected, appropriate diagnostic error messages are
produced.
this is the principal medium ~f communication between NUi~

and the various users of the system. The author may
employ the facilities of the command language to construct,
check out and release his lessons, to monitor his own and
his students' response files, and to use the calculation
facili ties. The student is able to use released courses
and invoke the calculation aids.

course

lesson

PIL

program

40

the name given to a collec tion of from one to ten Leasone
wh.i ch will nor::1allybe subject interdependent with one
another and tosether form a completely self-contained
study. The Clctual nruncof a course is from one. to five
upper' case letters.
examples : l·:J1.T?.B t EIST. invalid: CHE-'i2,PHYSIC,s.
the name given to a piece of instructional material. The
author prepares this by coding statements in the author
language. The name of a lesson may be from one to five
upper case letters followed by a diGit. The letter part
of the name must be identified to the name of the course
of which the lesson is to be a part. Lesson ¢ of a course,
however, is of special interest. It must contain the
beginning of a course and, for that reason, must be the
first lesson of a course to be created and the last
lesson of a course to be destroyed.
examples : HATES2, PL1. invalid: BATHS, PHYSICS, PL12.

The Pittsburgh Interpretive Language is a remote terminal
language designed to provide the user with much assistance
through the use of terminal diagnostics, user interaction
with the machine and associated error recovery procedures.
It is available to users during a NUTS session when they
may wish to employ a facility for numerical and string
rnt:.:.~ipulation(Flanigan, 1968).

a set of statements from the calculating language which
the user writes to carry out a mathematical computation
for him during a NUTS session. The name of a program
may be from one to six upper case letters.

examples : CUBICS, SQ. invalid: QUARTIC, ORDER2..

~'1

(student)
response file for every course in which he takes par t , a student is

absie;ned a response file. In this is stored his proGress
through the course, that is, the specific route he has
taken, the responses he has rnade and ",hether they Were
expected or unantd.cd.pabed, and how long he took over
each response. The information is available to the author
to decide any future branching in the course. Also
contained in the response file is the restart address
(and other allied information) from where the student
recommences after a voluntary or enforced interruption of
the course. The name of a student response file is the
associated course name folLowed by the characters t;1JtA1I.

examples : l-iATlISH¢,l!ISTfI¢. invalid: MATIJSI#:2,HLS~.
response file for checkout purposes, the author may use up to ten different
(author) response files per course. When he checks out a course, he

is given the option of which response file to usc. If he
ohooses one which has already been used he then has the
option to recommence from the stored restart address,
or specify from where in the course he wishes to proceed.
The name of an author response file is the associated
course name follo\l/edby the character "#=" then a dieit.
examples : JllATHSIIQ, HISTIt¢. invalid: lvIATHS'23,CUBICs#f3.
each lesson in a course is divided into segments ofsegment
instruction material. Theso usually comprise tr.esmallest
piece of material, the subject content of which embraces
one specific concept. The start of a segment, therefore,
is intended to be used as a possible restart point in a
course. Whenever a segment start is encountered during a
course, this address is entered into the response file
along with other such information as"the state of all the

student

variables and stacks, all of which is necessary to
represent the current state of the student's courGC.
There r.uy be up to 99 secments in any lesson of a course.
Their name is the letter "S" folloHed by an unsigned
integer from 1 to ~9.
example : 82, S73. invalid: 8123, S¢.
a user who is the subject of the instructional material
(at certain times one author may be acting as a student
to another author). Unlike the author, he has no
freedom to move around the course at will, unless the
author gives him the option of doing so. However , he
has av~ilable to him certain calculation aids and the
housekeeping associated with them.
every student who ~~ll use any of the available cot~ces
must first be registered. Tlus entails entering his
userid (t~er identification), which is also his MTS
userid, in a NUTS catalogue of stUdents.

userid

2.4 Description of files used in NUTS.
Despite the fact that all files reside on disk, a direct access

storage device, some are used in a sequential manner. However, the
best classification of files is with respect to ownership.
2.4.1 Files owned by the designer.

The system designer owns all the system files. These comprise the
object modules, the student index and the lesson index. He is not a user
of the system but acts in the capacity of manager. The object modules
are contained in sequential files and are permitted for general use. The
student index contains an index of the I1TS userid of all students and
authors joined to NUTS. It is updated by the manager by hand and searched
whenever an author issues a request to view the response file of one of
his students so that the system first ascertains whether the student is
in fact joined to NUTS. The lesson index contains an index of all the
lessons, together with their author, currently released. It is updated
automatically whenever an author releases a lesson and whenever the author
either restricts further use of the lesson or destroys it altogether. The
index is searched whenever a stUdent issues a request to use a course so
that the system can first find out if the appropriate lesson is available
and then, if it is, determine the unique name of the file which is to be

used.
2.•4.2 .Files essential to all users.

When the user is joined to NUTS, the manager creates and initialises
two files for him. As mentioned in 2.2.2.2, every user owns an MTS commana
generation file. It is initially created with three iines only and every
time a user wishes to invoke NUTS he transfers control to the first three
lines which load and start the system. Any subsequent command he requests
may generate an MTS command but these are written sequentially in the
command generation file commencing at line 4. The other file is the user's
file catalogue. Nearly every NUTS command operates on one type of file or

44

another. Also, some commands arc only available to authors. Consequently,
every user is given a file catalogue vhich stores such information as
whether the owner-is an author or a student, what files he possesses,
what the limits arc on the number of files of each t~~e he may possess
at one time and how much time he has used in NUTS. \'fueneverthe user
needs access to a file, his catalOGue is searched. For ease of storing
file names, a unique numeric code is used. This is based on mapping the
letters of the alphabet into the numbers1 to 26 and then converting any
sequence of letters as though it were a base 27 number system, neglecting ¢.
2.4.3 Files exclusive to authors.

Only authors may own lesson files. This file contains instructional
material which the author has generated using author language statements.
Both the source statements and the corresponding intermediate code are
stored in this file so that it is the same file that is used firstly by
the author in the development stage and the~after release, by the student
in the instructional stage. Its organisation is as follo\'Is.As the author
enters his lesson, each of his source statements is given a line number.
The lesson file has a line directory to denote whether or not any line out
of the total possible is contained in the lesson. Source lines are stored
with their length preceding them. The placement of a source line in the
lesson file is given by a convenient algorithm which utilises the direct
access capability available. For convenience at translation time, the
currently largest line number and the line number of the ~~ source
statement are stored. The intermediate code is stored sequentially in
blocks of ten lines and a counter keeps note of the number of such blocks
produced. Also stored are the addressefs in the intermediate code corresponding
to the start of each segment used.
2.4.4 Files owned by any user.

Program files, a PIL statement file and response files may be owned
by authors and stUdents. Using the calculating language, authors and

students may construct and store proGrC:;.msfor their own use at any tiw;.

The oreanisatior. of program files is almost identical to that of lesson

files. The only differences are the size of the line directory since t!~()

range of possible line number-s is smeller and the absence of a seGment

start address directory cinco proer2~S are not divided into secments.

PIL statements written during one session with PIL are stored in the PIL

statement file for use in subsequent PIL sessions. This file may not be
destroyed by a user. It is created when the user is joined to the system
and, of course, may never be used if not desired. A response file stores
a complete record of a user's interaction with a course. Students create
a response file implicitly whenever they commence a course and may only
have this one response file for that particular course. Authors,
however, because they need to check out the constituent lessons ~cithin a
course before release, are given the option to create up to ten response
files per course. Within.the response file is kept such information as the
exact route through a course, the responses given to each question
attempted and the time taken for the rcsponse. This information is stored
for thc author's benefit as he may base his strategy for course sequence
on it. The total time to date for the course and that of the last
session is also kept.

46

2.5 The command lancnage des:i.1)nand ir~~cnlentF.l.tion.
2.5.1 Introduction.

The command languace can be used in two modes called conversational
and non-conversational. In conversational mode, the user remains on-
line to NUTS, ensasinb in a dialor,;uewith it. In non-conversa tio:;,.::.lmode ,
the command language serves as t.hejob control language for operations tha.t
do not require a dialogue "litht he user, tImt is, operation submitted to
the system for execution without user-monitoring.
2.5.2 The choice of commands ,

The rationale for deciding whi ch commands should be available to
NUTS users was as fo110"/s.
2.5.2.1 Processors. Commands were needed to invoke each of the four pr-ococsor...
available \'Iithin HUTS. Consequently, choice of command in this case is
equivalent to choosinz that particular processor. The flmdamental processor
in a CAl system is that for the author language. Hence, the BUILD comnand
\'Iasdesigned to call upon the author language translater. In order to
give students a sicple calculation facility which they could use at any
time within h~S - even during a course - a simple pro~rnmming languaGe
was included. This enabled students to develop and test proer~s, store
them away, then return to them at some later stage. The CA.lJJcommand plc.ce.s
the calculating lancuase translater at their disposal. At a later point
in time in the development of NUTS facilities, it tms thought tr~t
perhaps a language which students may have learned before ever using NUTS,
a Language whi h would be available at any time in WIZ, should be ava'i.Lab'Ie

to them during a r~ session. The language that fitted these requirenents
was PIL (Flaniean, 1968),the Pittsburgh Interpretive Language. The
command to request PIL is simply PIL. In order to provide a sim~le
desk cB:lculating device, a desk machine, activated by the command DE3K,
was included. This, of course, has now been super$eded,by the direct
mode facilities of PIL.

47

2.5.2.2 Execution. Having developed Lessono and programs, users need
commands to execute these. To allow authors to check out their lessons,
and students to enter into courses, there is the COURSE command. The
CALC command, which has already been mentioned, invokes the controller
after a successful translation. However, for execution of correct programs
without re-translation, there is the PROG command.
2.5.2.3 General file handling. So that users are able to update files
from time to time, three commands were designed for this purpose. Firstly,
there is the INSERT command, which aJ.lows users to insert, replace or
delete lines in a file by referring to the actual line number. Secondly,
there is the COPY command, which allows the wholesale copying of one file
into another, instead of re-typing. Finally, the RID command destroys any
unwanted file.
2.5.2.4 Housekeeping. Two commands were devised to aid the user in his
housekeeping activities. The CAT command effectively gives a listing of
the file catalogue. In the case of an author, he is told of all the files
he possesses, that is, lessons, programs and response files, but the
student only finds out which programs he owns, for his response files
are not available for his inspection and, of course, he does not own any
lessons. Having found out which lesson and program files he owns, the
user may obtain a listing, either in part or in full, by using the LIST

command.
2.5.2.5 Author's file ~dling. By virtue of his privile'ge of owning
lesson files, the author has available to him the following commands. To

obtain a list of all currently released lessons and their owners, there is
the LESSON command. To release a lesson of his own after careful check-
out, there is the REt command. Then, quite naturally, there is the
opposite command, RES, which restricts use of a lesson until the author bas

been able to modify and re-release it. The response file contains much
information which the author may wish to see from time to time. Firstly,

"tU

when he is checking out.hi s lesson, he uses the HFII.£ command to give him
Lnf'or-matdon about one of his own response files. Then, af'Lez'releasing
the lesson and.when the students are using the course, he may use the SFlLE
cOlmr~d to check the students' response files. This can be done while
stucents are enGaged on the course.
2.5.2.6 NUTS initiation and termination. To invoke the system, the }iTS
command, ,I;?BOURCE 1'UTS", is used. ,,!hena session is over, QUIT returns
control to MTS.
2.5.3 Command mode.

In reply to the initiD.ting HTS command and in general when it is
ready to accept the next command, NUTS signifies that the user is in
command mode by prompting with an ast~risk, then unlocking the keyboard
after a carriage return-line feed. In conversational mode, the user's
contribution to the dialogue consists of the commands and source language
statements, if any, that he enters during the execution of his task, and
the replies he makes to the messages issued by the system. The system's
contribution consists of the messages it issues to the user, the responses
it makes to his commands, and the requests for the next command. During
execution of a non-conversational task, there is no communication between
the user and the system. The system analyses each command of the command
sequence and, if it is valid, executes it. If the command is invalid, the
system ignores it and continues until a'valid command is read.
2.5.4 General description of the command language processor.

Every command entered by the user is executed interpretively. The
command is first read into a buffer and all embedded blanks removed. The
leading string of alphabetic characters is then converted to a unique
numerical value using the base 27 number system technique. This value is
compared with the table of commands. As the number of commands is fixed
and small, hash table techniques were not employed. Simple table lookup
provides a quick enough check. If a match is not found, an error is
assumed and the command prompt re-appears. If a command is recognised,

49

further syntax checking is carried out on its operands. Except; for QUIT,
if a valid sequence is present, the command is executed by means of an
appropriate subroutine call, but in some cases this follows the writing
of the necessary HTS commands in the HTS command generation file. When
QUIT is recognised, the session time and total time to date are printed
and stored, after which time control returns to HTS.
2.5.5 Command implementation.

Nearly half the NUTS commands use the }1TS command generation
technique. This was necessary for two main reasons. Firstly, FORTRAN
execution under MTS requires that files needed during the run be attached
to the appropriate logical device number at load time or when execution is
restarted after a pause in execution. As the particular file is only
determined from analysis of the NUTS command, allocation of the file
must therefore take place together with a restart. Secondly, some comme~ds
require that files be created. This may only be carried out in NTS command
mode so that a pause in execution of NUTS is required. To satisfy these
two conditiona, NUTS executaon is temporarily stopped using a FORTRAN PAUSE

statement, but prior to this the necessary MTS commands have been written
into the command generation file. Control passes to HTS with the commands
coming from the appropriate lines in this file. The last command is always
a restart so that NUTS execution recommences.

The following table contains a list of all the NUTS commands. For
each command, information is given about its purpose, when it is available
and to whom, its modes of use and which HTS commands are generated.
More detailed discussion of .implementation follows in the rest of this
section.

• •
"'"" C\I

• •
"'"" C\I

• • • • • • • •r C\I tr\ r C\I t-'\ r C\I

I<

I

• •rC\l • •or C\I

• •r C\J

• •
rC\j

• •rC\J

•r.

•• •rC\J J<\

51

•r

4)

~

1!...,
..., s::
C) 0
'r-! co
J..t co
""4)COr-!
4)
J..t lI1
O~
""0

•~-

I/}:a

• •
'r C\I

52

•
'r

53

2.5.5.1 BUILD. The first operand, the lesson nrune, is converted to a
unique numerical value. The digit part of the name is the next character
after the string of letters. A table lookup takes place in the author's
file catalogue to see vhe thez- the lesson exists, whether lesson p5 exists
and whether the lesson is currently released or not. For protection
purposes, two constraints are made. Firstly, a released lesson may not
be re-translated. It must be \,lithdrawn from general use before the
author may update it. Secondly, lesson ~ must be the first lesson
created in a course. This is because lesson~ must contain the starting
point of that cause. After the restart, a subroutine transfers control
to the author language translater, passing across the mode of use, the
starting line number and the increment as parameters •.
2.5.5.2 ~. The first operand expected is the program name, for which
a unique numerical code is derived. A table lookup into the user's file
catalogue ascertains whether the program already exists. A subroutine
similar to that for BUILD is called after the restart.
2.5.5.3 £!!. After the mode of use is analysed, a subroutine is called
which searches the appropriate part of the user's file catalogue and
decodes each entry from the unique numerical code back to the actual file
-name.
2.5.5.4 ~. The expected operands are two file-names, either lessons
or programs, separated by a comma. A lesson name is easily recognisable
by its trailing digit. Table lookup on both files follows to see whether
they exist and what type of file they are. As well as the obvious restric+ion
t~t the first file must already exist, two further constraints are imposed
for protection purposes. Firstly, both files must be of the same type.
This is for the simple reason that certain statements are available in
one language but not in the other. Secondly, as mentioned before, if a
new lesson must be created, then lesson ¢ of that course must already exist.
No subroutine is needed, only the MTS command to give an exact copy. However,

54

only the source statements are copied, so that retranslation is essentiD~
before execution of the new copy.
2.5.5.5 COURSE. The command language interpreter first recognises the
course name.

For an author; table lookup occurs to see whether lesson ~ exists,
that is, whether the author is going to run one of his own courses. If
he is not, he is treated like a student. The author is the~ asked to
indicate which response file he wants to use. A single digit is sufficient
to identify it. Table lookup determines whether or not it exists. For a
new response file, that part of the file corresponding to lesson ~ is
initialised by a subroutine call. This entails reading from lesson 0 the
number of real and integer variables needed and setting up storage for
them. Also, the return address stacks corresponding to lesson 0are
initialised, and the course restart address is set to the beginning of lesson
D. The course restart address is then read from the response file and the
author is given the choice of continuing from that segment or specifying
a different segment or lesson even. In any event, the required segment
is determined but in the latter case a search is made in the specified
lesson's segment directory to see whether the segment does exist. The
actual address in the intermediate code can then be read from the lesson's
segment directory. This method allows for considerable changes to be made
to a lesson, but so long as the seg1Dent siirectory is up to date, the correct
address in the intermediate code is found. A subroutine call invokes the
course controller.

A student is not given the choices afforded an author. Once it has

been confirmed that the course is available by a search through the
lesson directory, a table lookup determines if the response file already
exists. If it does not, initialisation takes place the same as for an
author but in any case the course restart address is read from the response
file, the actual intermediate code address determined and the course controller
then called.

55

sequence contr-oi.Leddasl: machine at the user's dJ.sl.)oc;al.
2.5.5.7 IHSER'T.'.The first operand cxpcct.edis 8. file narne , ei ther a
procrnr.lor a lesson. The difference is easily distinguishable by the
presence of a digit to dcnoto the lesson number. A table lookup trikes
place to determine such facts as whether-the file exists and, if a
lesson, whether it has been releaDed. Upon the restart, a subroutine
call causes execution of the command. The mode of use, starting line
and increment, and a line number limit, which, in effect, just indicates
whether a lesson or a proeram is beine updated, are passed as paxameters.
There are two modes of use of the command. One a110\."sprompted entry of
statements whereas the other requires specification of the line number by
the user each time.

For the first mode of use, the user is prompted by a line number
each time. The length of·the input line is calculated usinS the right-
most non-blank character. Using a simple relationship, the MTS line
number corresponding to the 1~S file line number is evaluated, and, using
a direct access output statement, the line 'is written to disk. Knowing
the lensth conserves disk space. The line directory is also updated.

'A further prompt is then issued. A blank input line indicates command
, 'termination. If the first character is ,~lt, then the user wishes to over-

ride the line number and his line contains a line number followed by the
contents but separated by a comma. This kind ,of input line is treated as
though it were of the second mode, but ~pon completion of the output to
disk, further line number prompting occurs.

In the second mode of use, a prompt occurs but without line number.
The user enters his source line consistill8 of line number and contents,
separated by a comma. The digits he entered at the beginning of the
line are converted to an unsigned inteeer and the separator is tested.
If the line number is in the correct range, the length of the actual

input line is calculated. 'I'h.i s line is then out.put to disk and a further
prompt occurs. As before, a blank input line indicates command termination.
It should be noted that the second mode Dust be used to delete lines.

\·lhenevera previously successfully translated program or lesson is
updated, the intermediate code becomes inaccessible so that retranslation
is necessary before use. This Guards aGainst possible confusion Hhich miGht
arise if the source code in Cl. file did not correspond to the intermediate
code.

In non-conversational mode, the user receives a printed copy of
each of his input lines so that he may check them afterwa.rds.
2.5.5.8 LESSOiI. The command interpreter calls a subroutine whi.ch
searches the NUTS lesson index file and prints out those lessons and

their authors whi ch appear.
2.5.5.9 ~. The first operand expected is either a lesson name or a
program name. Table lookup of the user's file cataloGUe occurs to determine
whether the file exists. The mode of use is determined by a search for a
blank, for all the file, an unsigned integer within parentheses, for the
rest of the file commencing at that line number, or two unsf.gned integers
separated by a comma and enclosed within parentheses, for that port of
the file between the given line numbers. The line numbers are checked for
magnitude •

. A subroutine is called when NU~restarts to list those lines
indicated. To save unnecessary searching of the line directory if the
user has specified a finishing line number greater than the last line
number in the file, the current last line number value is read from the
file. The storage of the length of the source line saves time on output
to a terminal, which is very slo\,/.
2.5.5.10 PIL. This command has no operand. \-/henthe command interpreter
recognises it, a subroutine is called. In this, a branch is made to the
PILinterpreter but first a dummy input stream is used. This loads into
the PIL workspace the statements that have been stored in the user's PIL

57

file since his last usage of PIL. \Vhen the user indicates his desire to
return to command mode, a dummy output stream first issues the requests to
empty the PIL file, then copy the contents of the current PIJ, workspace
into the file. After tIllshas been accomplished, the return request is
properly furnished and control returns from the PIL interpreter to NUTS.
2.5.5.11 ~. The only operand for this command is the program name.
A table lookup occurs in the usual way to see whether the program exists.
Then, a subroutine call invokes the calculating language controller.
2.5.5.12 ~UIT. This command has no operand. When it has been recoenised,
a supervisor call within an assembly language subroutine is made to

determine the time. From this and the result of a similar call when NUTS
was initiated, it is possible to calculate the length of the session.
The total time to date is then read from the user's file catalogue, ruld
the updated total and session time are written back to it. In addition,
a copy is written out to the user, after which control returns to MTS.
2.5.5.13 ~. The operand is a lesson file. A table lookup on the
author's catalogue file occurs to find out if it exists. On top of
this, a further lookup occurs on the corresponding lesson ¢to determine
if it has been released. Lesson ~ must be the first lesson released in
a course as it contains the starting point for that course. If the
author is trying to release lesson~, a table lookup occurs on the
lesson index file. This is to find out if the course name is unique.
To avoid possible confusion, authors are not allowed to have courses
of the same nan.'.t. The solution is for 'the second author to rename his
course by copying the lessons into other lessons with a different name.
All these conditions being satisfied, the course name, lesson number and
author's userid are entered in the lesson index.
2.5.5.14 ~. As in the REt command, the interpreter expects a lesson
file. A table lookup on the authors file catalogue determines whether
the lesson exists. If it does, a further lookup in the lesson index
determines the state of the lesson at that time. If the lesson is released,

a bit in the table entry is set to indicate the restricted condition. Thib
was done in preference to deletion of the entry as it was expected thnt
restricted lessons would be released later.
2.5.5.15 RFlLE. This command has one operand, a response file name,
which the interpreter easily recognises by the character" #" and a digit
after a course name. A table lookup then determines whether the response
file exists. The contents of the response file are displayed in the
following way. The first line gives the current position in terms of
lesson number and segment number, both of \'/hichare read from the same
line of the response file. The route through the course iD then read
into a buffer and from this information one line is generated in sequence
for each question attempted. The route is stored as a sequence of numbers,
the values of which are the lesson number multiplied by 100 with the
question number added. As up to 99 questions per lesson are allowed, the
mapping is 1-1. The information corresponding to each attempt is stored
in direct acceea fashion, the MTS line number consisting of the route
number. defined above, as the integer part, and the attempt number of the
question, which allows for up to 999 entries, as the fraction part.
Working through the route buffer in sequence and counting which attempt
number per question is required indicates which line of the response file
is to be accessed. This line of information i8 read in andthe following
format is given to the author. He receives the lesson number, question
number, a code for either anticipated answer, unanticipated answer or not
mswered, truth values for the response elemer.:.sif an anticipated answer,
time taken, and, finally, the actual reply if unanticipated. He receives
one such line for every question attempt. Finally, the total time to date
and that for the last session with the course are given.
2.,5.,5.16 ~. This command expects a file name B13 its operand. An

author may destroy a lesson, program or response file whereas a student
may only get rid of a program. A table lookup takes place to determine

if the file exists. For an existing program or response file all that

59

happens is that the appropriate entry ill the user's file catalocue is
deleted. A further constraint, however, is placed on a lesson if that
lesson is lesson p. The tablc lookup also indicates whether Blly other
lessons exist. If one does, then lesson ¢ is not destroyed, for it must
be the last lesson 'in a course to be destroyed as it contains the
course's starting point. If the lesson can be destroyed, thcn a table
lookup occurs in the lesson index file to see if an entry appears there.
If one does, it is deleted. Once the table entries have been removed, Lhc
file is removed from NTS.
2.5.5.17 SFILE. This command has a course name as the first operand. ~'nhle

looh~p for lesson 0 occurs to determine whether the author owns such a
course. If he does, the command interpreter then determines the userid
of the stUdent whose response file is to be listed. Table lookup in the
stUdent index then shows if that particular stUdent has been joined to
NUTS~ To determine whether the student has yet commenced the course,
his file catalogue is searched to see if the particular response file
exists. A subroutine call similar to that for RFILE is then made.

,

ov

2.6 The Ruthor language : design fUld implementation.
2.6.1 Previous .a.uthorlanGUages : the need to create another.
2.6.1.1 Author languaGe attribute~. An author is unlikely to have
programming skills or an assistant to code instructions for a computer.
In fact, the author in a CAl system should be able to write in his
own language wi th the minimum of restrictions the instructional material
he plans to use. He will also wish to employ the computer logic to
provide individualised instruction, and it should be easy for him to do so
using instructional strategies with which he is comfortable.

An essential characteristic of an author language is that it be
user oriented without denying the author access to any of the system
capabilities. For example, the novice should be able to prepare material
for instruction after only a short time studying the language, and t~e
experienced author should be able to use the full capacity of the computer
to construct as complex a procedure as he wishes.

Zinn (1967) suggests that CAI systemsshould provide author input
facility by author languages at three levels. In the first, the author
only enters his text and rules for evaluating answers in some standard
pattern of instruction, e.g. a PLATO tutorial teaching logic. No
.knowledge of computers is required. The second level allows the author
to specify his particular pattern of instruction in a relatively simple
language that can be learnt in a short time. At the third level, an
author having some training in computer programming extends the author
language by writing out his own routines and strategies, employing the
~ull capability of the computer system by perhaps using machine code.

A comprehensive list of important constituents of an author language
is given by Adams (1969). For variables, he suggests several dozen arith-
metic variables, including fioating point, at least 100 logicals,
probably more than 10 alphameric strings each of about 100 characters,
data structures having programmer specified format and lists. Control
statements might include : conditional, iteration, transfer, subroutine,

61

storage allocation, restart point, time dependent transfer and log ent.ry,
A macro processor within the author language and library routines "'Jriteen
in other languages which can be used in the author language would be desirable.

Important processing operations on nn.tural language strings include :
definition or detection of substrine;s, transformationa.l proccssin~ and
tests on numbers or strings which might include character match, numerical
equality, numerical range match, degree of match, pattern bsts and
general user defined tests.
2.6.1.2 Comparison of author languages. About 30 different Languages and
dialects have been developed especially for programming conversational
instruction. This number is changing so rapidly and up-to-date
documentation is so sparse that a complete appraisal of the many languaees
is impossible. Any comparisons which are made between languages naturally
become invalidated quite rapidly by subsequent revisions of the languaees.

When evaluating the merits of author lansuages, Frye (1968) suggests
that the aspects to be considered should include : user orientation,
lesson handling, record handling, conditional. branching, answer matching
service routines, calculation provisions and communication devices. He
points out the two methods most often used when comparing languages. These
are to categorise their capabilities, noting the absence of certain features
and to code a sample instruction sequence in each competing language,
noting some efficiency measure such as the number of lines of instructions
for each task. Among the pitfalls in these comparisons are

(i)

(ii)
the Language documents arc not equr.lly current;
the categories on which the comparisons were based were taken
from one of the languages, introducing a bias; and
the test cases were selected from those particularly suited
to one of the languages.

A comparison of two standard languages for authors with two low-cost

(iii)

languages, one an author language, the other an extended scientific language

62

is given by Zinn (1968).
2.6.1.3 zY.p~s of author language. Zinn (1968, 19?O) has succ;ested
classes into Hhich author languages may be grouped, dependinf, on such
factors as modes of use, ca.pabilities and development. Here, however ,
we discuss a classification into four types ;

TYPE 1

TYPE 2

TYPE 3

presentation of successive frames,
conversation within a limited context,
presentation of a curriculum file by a standard
procedure, and
interactive problem-solving languages.TYPE4

TYPE 1 has evolved because the most common application of computers
for instruction appears to be an extension of programmed instruction.
Most languages serve this function and are characterised by their
convenience for displaying text, acceptance and classification of
relatively short strings of texts in the student's response, automatic
recording of performance data and implicit branching determined by the
categorisation of an answer or the contents of a counter which is part
of,the response history.

Conversation within a limited context, TYPE 2, is offered by only
a small proportion of computer-based instruction programs of the tutorial
variety. The~e encourage additional initiative on the part of,the student
and provide a meaningful reply whatever he may do. Typically, the author
must provide in the instructional program a set of conditional statements
which, for any stage of discussion, make the computer reply dependent not
only on the current response, but also on the history of the conversation.

Some languages are suitable for writing strategies which can be
applied to various files of content, TYPE 3. The author adopts a logic
which can be defined in a procedure statement. The programming of the
logic may have been done by the author or by a programmer experienced in
using the system. The author applies this and other strategies to

·b_3-----·-------·-·------

curriculwn (or data) files of ind~finite size.
Llmsuaees for on-line programming and debugging of simple problema,

and which also have some string processing capability, TYPE 4, can serve
an author as well or better than so-called author lanb~aees. However,
interactive proeramming on a general-purpose system is not likely to
include the proctor operations and other systems support wr~ch may be
important in educational investigations. Such features could be added; the
cost of the modifications depends on the characteristics of the operating
system. Some general-purpose systems already have convenient file handling
routines, protect and permit procedures, etc. Through suitable modifications,
some of these languages and systems could serve most of the needs of
instructional applications.

A discussion of languages of these latter b'o types, complete "lith
summaries of six examples and their more useful procedural features, is
given by Lyon and Zinn (1970).
2.6.1.4 Author languages currently in use. TYPE 1.

COURS~1RlTER I (Mayer, 1964) was one of the first languages used
and was devised originally for use on the IH-I 1440 system. COURSEWRITER II

(IBM, 1968) is similar except that it has additional operation codes for
controlling visual displays, using macros, calling user-defined functions
and making use of strings, counters and switches to control course
execution based on student performance. Its main features include

(i)

(ii)
(iii)
(iv)
(v)

the ability to cause a pause in execution for a set period of time;
a provision to interrupt the student before he finishes his response;
user-defined label fielda;
a macro facility to prevent excessive repeated coding; and
user-written functions, coded. in assembler, to make the
language flexible and open-ended.

However, COURSEWRITER II is inadequate with respect to the recording and
manipulation of data. Recorda are limited to a small number of strings,

counters and switches and calculations are restricted to integer arithmetic

64

on two counters only. A calculational capability woul.d also be desirable.
ThouGh easy to learn, the implicit branching convcl~tions may cause some
authors a little concern.

CAL (Course Author Language) at Irvine (Keller, 1968) generates
progran1s which are organised into courses, chapters, sections and lines.
Automatic line numbering is given by the system but may be over-ridden by
the author. Program statements may extend beyond one line and may have
labels in addition to line numbers. Desirable features include :

(i) some statements may be either executed immediately or stored
as part of a program for later execution and hence the course
author has available as debugging aids such statements used
in constructing a course aa assigning v.alues to variables,
typing out data or statements, etc;
allowable data types include both logical and string variables(ii)
as well as numerical variables of both real and integer mode;
three special time counters which contain the total terminal
time since the student started the courso, the total torminal
time since the beginning of the current session, and the time
required to make a response to the last input statement, and

(iv) provision of a computational capability to students, in the

(iii)

context of the course program.
However, a branching facility- depending upon previous student history;
would be an advantage.

C~~T (Starkweather and Turner, 1966) is a problem-oriented
language for computer-assisted instruction, testing and interviewing,
designed for an Is-r 1620. Sequences of instructional material and test
questions may be written in natural language and a variety of prompts
may be used for the recognition of a correct answer from typewriter
input. The answer may determine the comment returned and the choice of
next question to be asked.

PILOT, an acronym for rrogrammed Inquiry, Learning Or TeaChing,

65

(Starkweather, 1968) was developed from COMPUTEST. It is Hritten in PL/I
and was desdgned so that its use is not restricted to a par tdcu'l.ar-
manufacturer's equipment. In fact, it is eeneral enough to be used at
any level of program complexity on a range of machines from a small
compu ter \'Iith a typev/riter to a larGe systernHi th many tYJlC\'Jritel'Sand
visual displays, using different courses simultaneously. Desirable
features include

(i)
(ii)
(iii)

the speed with which a small subset may be learned and used;
a powerful subroutine facility;
provision to store comments for subsequent perusal by the
author; and

(iv) simple string operators.
However, limitations exist, such as

(i) the language becomes quite unreadable when complex programs are

written;
(ii) there is no provision for numerical matching or display of

numerical values;
(iii)
(iv)'

only very elementary algebraic expressions are allowed; and
there is no student performance record.

Most author text codes in ADEPT (Engv~ld and Hughes, 1968a) are
similar to those of COURSEWRlTER for the sake of compatability. Additional
codes have been added to take advantage of the display capabilities and
the facility to call upon other catalogued procedures from the operating
system.

LYRIC (Silvern and Silvern, 1966a) shows a remarkable resemblance
to COURSEWRITER, especially that some of the operation codes introduced
replace the earlier user-defined functions of COURSEWRITER such as editing
of superfluous characters, specification of keyword matching, percentage
matching and numerical limits. No attempt bas been made to provide real
variables, a calculational capability or student information records.

66

\~'RlTEACOURSE(Hunt and Zosel, 1968) was de:::de:;nedso that the lbllLur:t·:~

should be natural for the teacher and its syntax and eeman+i cc should

conform to his habits. Also, readebility and machine independence were

sought. To meet these criteria, WRITEAOOURSEwas modeled on ALGOLand

its translation program was written in PL/I. Despite the eaae with wh:i.ch

it can be written, WRITEACOURSElacks any response matching more

sophisticated than exact matching and does not provide ally record of

the student's interaction. There is a limited arithmetical capability

based on a set of counters but the extent to which these may be used

only includes binary operatiollB using integer arithmetic.

The majority of instructional.programs written for the PLATOsystem

(Bitzer and Easley, 1965) have used a tutorial logic programmed in

an extended FORTRANcalled CA'lO. This gives a format for linear teaching

which makes the instructor's task very easy. However, recently, CATOhas

been used for the preparation of a high-level language called TUTOR(Avner

and Tenczar, 1969) which resembles OOURSEWRITERand thus allows authors

to design their own strategies.

For a system which has the capability to display graphics, the author

language must deal with the problem of description of spatial coordinates

and diagrams on the screen. INroRM(Philco-Ford, 19'70a) includes one

approach to handling this task. The author prepares the display, denotes

the region for a correct answer from the lightpen, etc., in the form in

which it is to appear on the screen; an assistant punches this information

line by line on cards and an automatic translater prepares it for inter-

pretation by the operating system •.. The language's particularly good features

are:

(i) the facility to pause for a specified amount of time;

(ii) when displaying text it is possible to add, insert, overlay or

erase other text; and

(iii) there exist system counters for such information as correct

answers, wrong answers, time-up answers, etc., which are

67

automatically incremented and are initialised aga i,na t t.lie

start of every unit called a topic.
However, the computational capability ia very limited. Only binary
operations between 32 counters, 32 switches and 8 return reeictel's are
allowed. The response analysis a110\·/ssome r.:irnplekeyword matching but
no numerical matching at all.

DIALOG (Kristy, 1968) haa a highly-structured mode for conversational
entry of curriculum files into the machine. The user selects from
prescribed formats, enters strings of text which are to be displayed
to the student, or enters alternative answers which are to be searched
for in the student's response. As increasing control is assumed by
the system, the chances are improved that sufficient information for
some conversation with the student will be obtained from the author~
However, it does not follow that the quality of the material will be
correspondingly higher.

TYPE 2.
For the express purpose of making the machine reply depend not

only on the current student response but also his previous inputs,
MENTOR (Feurzeig, 1965) was developed at Bolt, Beranek, and Newman, Inc.
Because the history of the conversation is stored almost automatically,
and complex conditional expressions can be written with considerable ease,
it is convenient for describing a dialogue of this nature. MENIDR ia an
interpreter written in LISP, which uses a special "front end" to make
LISP accept inputs that are well suited for $eneral usaee. At execu+Icn
time, MEN'IDR does not recognise arbitrary natural-language responses, but
only items from a list of strings. Any string to be output is simply
prestored, not generated.

ELIZA (Hayward, 1968) was originally developed by Weizenbaum (1966, 1967)
to study natural language tutorial conversations between man and machine and
the :im:portanceof context to both human and machine ~derstanding. It is less

68

cOllvenient for conditional expressions but makes considerable usc of lir;t-
processing routines to divide a string of characters, the etudent.!s rcuponae ,
into words and phrases so that the reply can be assembled from clement:.;of
the input as \'/ellas material prestored by the author. ELIZA's main features
include

(i) ability to diagnose a wide range of responses;
(ii) ability to follow a line of argument along several or alternative

paths;
(iii) the student need not concern himself too much about the format

of his response;
the student has some control over the conversation by means of

certain commands; and
the programs are easily interchangeable.

(iv)

(v)

However, it is not easy to produce large quantities of ELIZA "scripts",
nor is the language easily adaptable to other systems.

Perhaps the author language currently in use with the most powerful
features is PLANIT (Frye et al., 1968). Chief among these are the
calculational capability and the facility for criterion brancldng. The
on-line calculational capability, CALC, allows either the author or
stUdent to perform calculations involving trignometrical functions,
algebraic functions, and matrix operations. The author may requost
the student to compute some data within a lesson and can specity that
the student's answer be compared with the results of evaluating a
previously defined function. PLANIT allows the author to specify
conditions for branching based on the student's performance over any
portion of the leason. Conditions for branching may include response
latency on anyone answer or group of answers, number of errors made on
any group of questions, help received from CALC (functions used or not
used), the actual path through the leason up to that point, or any

combination of the preceding four points. Other useful features of PLAIIIT
are:

69

(L) calculation results may be displayed as "Jell as text;
(ii) execution may be suspended for a specified time;
(iii) there is a provision to interrupt the student before he finishes

his response;
(iv) response'processing includes an exact mutch, keyword se.Arch,

phonetic comparison, numerical limit match and formula equivalence;
and

(v) a subroutine facility.
Probably the only disadvantages of the language are its frame-structure
restraints and the consequent lack of readability.

FOIL (File-Oriented Interpretive Language) (Hesselbart, 1968) was
developed to provide conversational lesson-writing capability for potential
authors on a general-purpose, time~sharing system. The interpretive mode
allows fevl constraints to be placed on the syntax of the language and
enables immediate execution of statements entered during testing. FOIL
was written in FORTRAN for speed of production and the ease it offers
for revision and addition. Its main features include

(i) the ability to type out expression values;
(ii) response processing which includes an exact match, a keyword

search, percentage match, numerical limits and expression evaluation;
(iii) a subroutine facility; and
(iv) performance recording which consists of an automatic trace of the

student's path through the lesson and a copy of all unrecognised
responses.

However, only integer arithmetic is provided and the use of indentation
for compound statements, though possibly of great use, may cause
considerable trouble to inexperienced authors.

A language suitable for writing strategies which can be applied to
various files of content is CATO, an extension of FORTRAN prepared for
the PLATO system. System programmers prepare various teaching loeics
or basic strategies into which curriculum authors c~ p1ac:e their lnc'lteria1.

70

Other examples of this type of author Language LncLudo TCL:chcr-stwk;-lt

ALGOL (TS1I.), useJ. at the Institute of l·bthematic[,lStudio;; in t.he Social
Sciences at Stanford; Instructional Languages 1 and 2 (1BL-1 emu 1.5L-2)
designed by RCA, Palo Alto; and SKOOLBOL, used at the LearninG Hesearch
and Development Centre, University of Pittsburgh.

TYPE 4.
APL has been used to provide instructional material (Gross et al.,

1969). Features to recommend its use in CA! are:
(i) the language is definitely interactive and conversational;
(ii) all input/output is unformatted via APL functions;
(iii) the use of logical operators and a random number generator

together with branches to statement numbers or labelled
statements allow conditional branches to be written with ease;

(iv) a wide range of mathematical operators and user-named variables
give a powerful calculational capability; and

(v) a time-or-day function allows response times to be stored.
PIL (Flanigan, 1968) has been employed in a similar manner but the

requirement that strings be enclosed in double quotes when used in input
and output statements is not desirable •

. Similar languages include Beginners' All-purpose Symbolic Instruction
Code (BASIC) from Dartmouth; Conversational Algorithmic Lancuage (CAL) from
the University of California, Berkeley; Formula Calculator (FOCAL) from
Digital Equipment Corporation; the Engineering and Scientific Interpreter
(ESI) from Applied Data Research, Inc., and TELCOHP from Bcl t, Beranek and
Newman, Inc.
2.6.1~5 The need to create another author language. NUTS was to be
implemented under the Hichigan Terminal System which offered a wide choice of
existing algebraic and symbol manipulation laneuages. However, none of these
was considered suitable for conversational dialogue for one or more of the
fOllOWing reasons :

71

(i) some authors would be non-programmers and hence tho notation
would appear quite foreign to them~

(ii) program listings would not readily illustrate the structure of
the dialogue owi.ng to numerous superfluous charac ters;

(iii) potentiai a.uthorswould need to know far more of the Language
than appeared directly related to their material;

(iv) many desirable features, in particular performance recording,
would not be available; and

(v) the frequency of revision and correction of dialogue programs
demanded on-line editing and debugging.

Consequently, an author. language had to be used. However-, at the
time of requirement, none was available from the manufacturernor WaD

there another author language which could be easily implemented under the
current operating system. In addition, although much information on the.
desirable characteristics of such languages was gathered from studying
those languages mentioned in 2.6.1.4, none of these was considered
suitable for the variety of dialogue development anticipated. The search for

•
and development of new characteristics and the widely varying demands made by
authors rendered such features as the frame structure restraints of PLANIT
or the limited computational facilities and student performance recordings
of COURSE\'1RITERII and FOIL a severe drawback. The result was the design
of another author language t but one \'/hichcould be easily learned and
conveniently used by subject matter experts and educa.tional technologists.
2.6.2 Elements of the language that were nee~ed •

.Bearing in mind the comments in the last section on previous author
languages, this section describes the design considerations and resulting
language. It is a more complete version of that given by Dowsey (1970c).
A detailed description of the language itself is contained in Appendix A.
2.6.2.1 ~ll computational facilities. It was considered important that
the author have available full computational capability as he may ...ri.sh the CAl

72

proGre.m to domons tr-at.ecornp'Lexcalculations rcau.Ltin:; from studon ts!
inputs, for instance. Thus, real constants at::Holl as :inteGer conGtnnts,
user-defined. vnriable names and a wide ranee of atanuard fUllctions nre
a.l.Lowed, The convenience of complicated subscript expr-casLono and stand:U'd

function ar-gumerrte is catered for by allowing up to five nestill[:-;S of
expressions and/or are;uments.

Two features are included which do not exist in FORTRAN IV.
Firstly, an additional operator is used for integer division, but it
differs from tlmt usually seen in ALGOL by the fact that either or both
of the operands may be of mode real. Rounding occurs first, if necessary,
before the integer division. Secondly, a multiple assignmont statement for
subscripted variables was considered advantageous. An array element
appears on the left-hand side and any number of arithmetic expressions, each
separated by a comma, appear on the right-hand side. Values are stored in
successive elements commencing with that element specified.
2.6.2.2 Labels. In order that certain parts of a lesson be distinguishable
from others and, indeed, any statement be addressable from any other, labels.
were included. They may be assigned in any order without affecting the
order of execution of the lesson. There are three types of label.

(d) Statement labels. Any statement except a final END may be
optionally labelled for reference from other statements.

(ii) Segment labels. It was desirable that the author could divide his
lessons into segments so that when the student restarts a course he
does so in the segment he was in when he terminated his last
session. For this purpose, segment labels are inserted, and, when
encountered, they cause the system to store all variable and stack
values necessary to describe the current condition of that lesson.

(iii) Suestion labels. To form an indexing system for the storing of student
response information in the response file during a course, each
question is given a corresponding question label. This label may
also be referred to by the author when he monitors the student's responses.

73

2.6.2.3 Display of material. An essential facility for an author
language is that of being able to display Lex t , HOHeVOl', it ve«: a'luo
considered necessary to al101lJ authors to output numerical values of var-Lab'l.cn,
expressions, etc. This would be most heLpf'ul,to display calculations,
especially those for which the student has supplied either data or intermediate
results.

It was also thought necessary to allow for different formats of output.
To this end, an integer value is specified after a string to indicate at
which co'Lumn the string will commence, and three such values follO\·,an
expression. These indicate the starting column, the length of field and
the number of decimal places required after the point respectively. The
latter two values allow for any possible numerical format. If the number
of decimal places required is zero, an inteeer format is given; if it is
positive, a fixed point real number is given; if negative, floating point
occurs. The constraints placed are that only up to seven decimal places
are allowed and the length of field must accomodate the necessary sign,
Point or even exponent part.

In order that the student may not be flooded by a continuous stream
of information from successive TYPE statements, a PAUSE statement was
included which suspends execution of a lesson for as lone as the
stUdent desires. When he is ready he simply presses the RETUPJJ key to
continue.
2.6.2.4 Anticipating responses. One important aspect of CAl is that
an author shoulC be able to recognise most, if not all, of the responses which
the student may make. This necessitates that the author enumerate the
responses he is willing to accept for each and every question. Two ways
of doing this were considered. Firstly, after the response has been read
in, the response processor would search for each combination of strings
and numerical values that the author specified, possibly in a conditional
branch statement. The only problem with this method is that the same

74

strine or value might appear in the different combinations np0cified so
that repetitive Ecarchine would occur. Consequently, this r.;trategyWUG
not accepted. Instead, the author has the power to assign combi~~tions
of strings and values to response elements before the responGc is
accepted and then tne response proccssor searches for each of thesc
specified response combinations in turn before assigning the value ~
or false to each of the response elements that were specified. As a
resul t, such additional information as the number of strings, whe ther'
they must be ordered or not, the number of values and whether they must
be ordered or not must be given to indicate what the author requires to
be an "overall match" of that response element by the student's response.
There exist 20 such response elements, 1lCA¢, #CA1, •••• , /fcA9, IWA¢,
\{A1, •••• , IWA9, the mnemonics standing for correct answer and wrong
answer, but the author mayor may not use this fact.

Even after the response elements are assigned their truth values,
the author may form conditional branches depending upon combinations of
these values. In this ,,,ay,the author is provided with a powerful
anticipated response tool, upon which he may base his course strateeies.

Strings and values themselves may be specified in varying degrees of
accuracy as follows.

A string may be required in three possible ways. If the author
requires an exact match, he simply encloses the string in single quotes.
However, if he wishes to attempt to match a response which may have been
spelt incorrectly, he may specify either of the following. An unsigned
integer indicates that up to this maximwn number of characters may be
misplaced in a string of the same length from the student's response
yet still provide a match. Or, if ''K'' is specified, a kernel match is
sought. For this, the author indicates certain characters (but no blanks)
from a required answer and a match will occur if the student's response
contains a string of any length which has the given characters in the given
order. Such a variety of string checking was thought to provide the author

'15

"Iith the f'aciLi,ty to carry out any string r-caponae evaluation thD.t he n:i.cht
wish to make ,

II. value need not simply be an absolute number but any arithmetic
expression. This allows the author to specify an antri.ci.pated response
in terms of any previously calculated result and/or student's input. In
addi tion, the author may specify a second arithmetic expression whi ch is to
indicate the error interval of the numerical response. If orni,Hed,:
an exact match is attempted.
2.6.2.5 Response acceptance. The statement RESP was included for the
author to indicate when he wished the student to rrakea response. In an
effort to prevent possible omissions, one constraint was decided upon
when using RESP. The author must have specified at least one response
element between his indication of the start of a question by means of a
question label and the RESP statement.

One powerful feature that it was decided to include was that the author
be allowed to specify variables into which successive numerical values from
the response would be placed, if present. The author would probably use
this information in either the future reference of these particular values

or further calculations using the~.
Three methods of specifying a variable are allowed. Two of them

quite simply are the non-subscripted variable and the array element.
However, a third was devised in case a large number of values was expected
and it would be inconvenient to specify a correspondingly large number of
variables. This entails specification of an array together with a starting
position, which itself can be either a constant or a non-subscripted variable.
Thus, any resulting values are stored in successive array elements starting
at the position indicated. Within any RESP statement, any combination of
these three methods is allowed.

If more variables are specified than values in the response, then a
predetermined large positive constant is stored in the r~maining variables.

This enables the author to test not only for the values entered but also the

l1Umtlerof SUGh values.
2.6.2.6 Condi t i.cna.L exnressions. Conditional expr-eee.i one ar-c included to
allow authors the conditional branching capability needed in CAL The loCicc1.1
quantities ava.ilable for such expressions are:

(i) the response elements;
(ii) values obtained using the relational operators in conjunction

(iii)
(iv)

with expressions, variables or constants;
implicit response elements, not yet mentioned; and
the result given back from a request to the past student
performance facili ty, 1/ PERF•

Any of these quantities may be combined with the logical operators to give a

conditional expression.
The implicit response elements are DUA, RNA and #RTn • These, the

author may not assign, but they are given truth values after the response
processing has taken place. #UA stands for Unanticipated Response and it
becomes ~ if all the specified ICA's and /lWA'a are false. NNA means
Not Answered and becomes ~ if the student simply hit RETURN or entered
blanks only as a response. #Irrn becomes ~ if the time for the latest
response was less than or equal to n seconds.

By far the most impressive feature of the author language when compared
with others is the comprehensive past student performance facility, ~PERF,
which enables authors to act on student performance information stored in
the student's response file.

#PERF acts in a similar way to a standard function in that it is
invoked merely by writing it together with an appropriate argument. There
are eight kinds of past performance about which the author may enquire, all
concerned with the student's record during the current lesBon.

(i)

(ii)
(iii)
(iv)

qCAd - student matched Correct Answer d to question q.- -
qWAd - student matched ~rong !PBwer d to question q.
qNS - student has !!otSeen question q yet.
qNA - student did Not Answer question q.

7'7

(v) fiUA - s tudent [juve an ~)'l_;:mt.jcil'[lteu f:_l1i3i/cr to que.sti on q ,

(vi) c;)'.:.'n - student anower-cd question q in Less than or equal to n see,)ndc.

(vii) (r:'1,c:2, ••• ,q3-:1lf-, •••) n XX, vher-e n is an un.si:_snecli~lteger and XX

t f et' ~ "2 - ~ 1 ~ ') I, 1;1 ,,··t' '.OU 0 que•.,~on..,ql,q ., ••• ,C"0,q;>+,q..:)+{-, ••• ,'1r, ••• _lC.:.> 1.'.([on(;

sutisfied the property XX nt least n tin:cs. It iG in thin con+ext

vhcr-o it matters vhether-the author used CA for tis correct
answer-a and \JAfor his wr-ong answer-a or not.

(viii) q1-q2-q3- •••- the student's path throu,zh the lesson \lassuccessively
questions q1,q2,q3, ••• If a question Has attempted hlice in
succession, then a match ,.,rillbe Given only if that question number
was specified twice in succession.

In addition to these enquiries, it is possible to test the truth of the
conjunction of any number- of these eight types. Given all theae faciE ties,
the author is provided with the capability of choosing innumerable branchinG
criteria depending upon student performance.
2.6.2.7 Branching. It was important to allo\>1extensive branching
techniques. Firstly, branching "dthin lessons is essential and then, since a
course may consist of a number of lessons, branching bet~/een lessons becomes
necessary. The following statements form the basis of the branching capability:

(i) IF. Branching may be unconditional or, more likely, as has bee~
mentioned in the previous section, conditional. For this purpose,
the IF statement was designed and depending upon the truth of the
corresponding boolean expression, the branch takes place or the
next instruction in sequence is executed. The executable part of
the IF statement need not necessarily be a branch, as any other
statement is allO\'/edexcept another IF.

(ii) JUl:I'. The most common operation in branching an author per-forms
is that of jumpine to another part of the current lesson. To
this end, the Jt.t1.~ stabement. allo\,/sbranchine; to any type of

'18

(iii)

label.
TRANS. In order to transfer control from one lesson to another
in a course, there is the TRANS statement in which the author
specifics which lesson and to Hhich segment in that lesson
control is to be passed.

(iv) BACK. Having diagnosed an incorrect or pa.rtly correct response,
the author may wish to receive another attempt at the same
question. An implicit branch back to the most recently
executed RESP statement was considered the best way of allowing
this. Hence the BACK statement was designed. Without parameters,
only the branch occurs. However, all the facilities of TYPE are
available within BACK BO that any message may be given to the student

before he is expected to make another response.
(v) CTRL. To facilitate the writing of lessons using Learner Control

techniques suggested by Grubb (1968), the CTRL statement was
created. In it. the author specifies four valid labels of any
type whose addresses in the intermediate code are then loaded
into four control address registers. Whenever the keyboard is
unlocked to a student, entry of one of four possible pre-determined
responses will cause the student to be branched to an address
given by the corresponding control address register. The choice
of the four pre-determined responses was "?FII, "?B", "?5" and
"?Gn which indicate a forward sld.p,a backward sldp, a skip to
the subject outline and a skip to the glossary, respectively.
However, these meanings are completely arbitrary and the author
may decide on a quite different interpretation of the pre-
determined responses. The only constraint placed on the author
is that, for the statement to be effective, it must appear at
least once in a segment. This is because the four addresses are
retained in the registers until they are either replaced by
another CTRL statement or lost upon entry into a different segment.

79

If the author has not specified a CTRL statement \',ithin a .sC[}l1cnt,
then entry of one of the pre-determined responses results in either
a restart in the case of a pause or an incorrect response in the
case of a question.

2.6.2.8 Subroutine facility. To cope with the fact that certain parts of
a lesson might be executed any number of times, a subroutine facility was
considered necessary. The statements designed, however, do not allo\,1the
passing of parameters, for tlus was not deemed necessary, but did allow a
return to Wherever the author desired rather than to the point where the cnll
was made. The explanation is as follows. Two different statements constitute
the call. Firstly, there is a LOAD statement which specifies the return address,
any valid label. Then, a JUMP statement transfers control. After the common
statements have been executed, RETN transfers control to the address given in
the last LOAD statement. In fact, there are five stacks of return addresses.
Correspondingly, there are five different LOADn statements, each of which
load the given address on the top of a push-down stack, and five different
RETNn statements, each of which unload the address on the top of the
corresponding stack and transfer control to it. In this way the author
is able to employ numerous implied branches, including nesting up to 10 calls
in each stack.
2.6.2.9 Other statements. For completeness, the STOP statement was added to
terminate execution of a course. The only constraint placed on its use is
that either itself ora TRANS statement must appear at least once in a
lesson as either of them indicate the dynamic end of a lesson.

The END statement is non-executable and defines the static end of a
lesson for the translater.
2.6.3 Use of the author language within NUTS.

There are three modes of operation of the author language translater
that the author may request. He obtains these by his choice of operands in
the BUILD command.

80

2.6.3.1 Node 1. The author may v/ish to create a new lesson and en ~;crhis
source statements after prompting of the line number. He may optionally
give the starting line number for the statements in the lesson and the
increment \"lithwhi ch the line number will increase on successive prompts.
After the system prompts, the author enters his source statement uhi ch is
immediately parsed and intermediate code generated. In batch, the statement
is listed on the author's print-out for possible debugging purposes.

If the statement is successful, the line number is incremented and the
system prompts once more. If unsuccessful and from a terminal, an
appropriate diagnostic error message is returned, together with a prompt
to make a modification. At this point, the author may modify any previous
line, delete any previous line, or insert any line in his lesson. If
unsuccessful and in batch, the incremented line number prompt continues
as if it had been correct after an error message is given.

The format for modifications is simply the line number follo\·tedby a
comma and then the line contents. For deletion, the line contents would be
null. One consideration when making modifications in this way is as follows
if the author corrects a line immediately he is told it is incorrect, then
the processor may continue with one and only one pass, no re-translation of
the whole lesson being necessary; otherwise, in the event of the
modification of a different line from that given in the current incremented
linenwnber prompt, this line is checked syntactically wi thin itself, but
without reference to the rest of the lesson. The whole lesson is re-
translated at a later stage. When the author has completed his modifications,
he Simply presses RETURN to go back to the incremented line number prompt.

On entry of the statement END, the translater completes such processing
as segment address recording, label chaining, etc. Then, the author using a
terminal is given the option for a cOr:1pleteor part source listinG, v/hether
he wishes to make further modifications, and whether he ,,/ishesto continue
processing. In batch, none of these operations is available. If the
translation bas been successful, the conunand terminates. However, if

81

unsuccessful, then the author on a terminal has the further option for mod i I'«
ications, but in batch termination occurs with an appr-oprLate mcr.if:;()[jC.

2.6.3.2 Hode 2. The author may wish to retranslate a previously existinG
lesson but first enter modifications. Nodifications are then entored in
the same format as Q_escribed above. If an incorrect sourcc statcment is
entered for a modification, then, from a terminal it may itself be modified,
but, in batch, modifications cease at that point. Of course, tlus will
produce invalid commands in the command sequence, all of which vlill
subsequently be ignored. When modifications have all been entered,
execution continues as in mode 1 with options for source listing, etc.
2.6.3.3 Mode 3. The author may wish to re-translate only a previously
existing lesson. If the translation is unsuccessful, then the terminal
author has the chance to enter modifications. In batch, termination occurs
with the appropriate message.
2.6.4 The translater.

There are two distinct stages in the use of the author language :
the translation stage and the control stage. Such a method was chosen
instead of an interpreter because it was thought that stUdent session time
would be much greater than author preparation time. Thus, re-translation of
source code every time it is encountered would be less efficient.

The translater produces an intermediate code which is stored away Until
the controller uses it to produce the instructional material. The reasons
for producing intermediate code are as follows.

(i) Having produced a simple intermediate code it is relatively easy
to devise a controller to execute it.

(ii) The intermediate code produced is independent of the machine beine
used. Thus, courses produced on one machine could be run on
another.

(iii) The intermediate code is independent of the language that produced
it. Therefore, future developments may allow a different ruthor

language to produce the same intermediate code.

82

(av) It is much easier and therefore quicker bhan ce)lcratinc maclrl no

code. This vas considered most important as it \'IUS escont.LcL to
have the system operational as quickly os poosiblc.

Every source statement produccs at least one clement of intermediat.e code.
This element may consist of the code value only, us in STOP, or perhul>3,
a code value together \-/i th numerous other integer values, as in a 'l'P.AliS

statement where the lesson number and the segment number are also stored
in the intermediate code.

A brief description of the translater logic will now be given. Mode 1
usage is assumed, for it is the most general.

A prompt together with a line number is given. Upon entry of a
source line follo,,'edby RETURN, this is first stored in the appropriate
place in the lesson file and a version without superfluous blanks is
retained in a buffer for processing. Intermediate code is produced to
identify the line number. This was adopted in order to give a line number
with control time failure messaees.

The buffer is then searched for a label whose identification is made
easier by the fact that they are all terminated by a right parenthesis.
After a label, a statement must follow. Some statements such as the
response assignmen.t, statement and the array arithmetic assignment statement
commence with special characters which make~ them easily distinguishable.
In the absence of a special character, the next characters in the buffer
must be a string of letters for we have already precluded digits by having
searched for labels. This string is then converted to a unique numerical
value in the usual way. A tes't to see if the character immediately follo\'ling
this string is an n=" or not determines whether the statement is a non»

subscripted variable arithmetic assignment statement or a code word such as
TYPE, IF, etc. In either case, further extensive processing and appropriate
generation of intermediate code occurs.

o-x
u_)

If the sour-ce stat omcnt is incorrect, [1 dic.:.:;no;-jtic error L:C[;,;;'<_;ci::

produced and t.h.....line number is p'Luccd in theeJ.'l'or tnble. 'l')lell, n
l)rOnll't OCC1l.J.'[: for 2, mod.iI'i.cation. This is read into a buf'fei- and LLe 111'0

number- and ~'(:llclr2.tort.rimmed off. If the line irs bLo.nk, cont.r o'lr0tllrliC'; Lo
th.eline number pr-ompt, If the line number is th::,tof the SOUl'CO Lino
just entered and no out-of-sequence entry of source lines 119.6 Laken r,lace,

then the pointer to the next a.vailableposition in the interr,lecliatecode
buffer is returned to its position before the entry of the erroneous line.
Also, other informa.tion from the last line, such as label bblc entries,
is discarded in order to recover from the error. The actual line is then
stored and a version without superfluous blaru~s is processed as described
above. As many modifications as is required may be made after which the
line number prompt returns.

For a successfully translated statement, the error table is searched
to see if the new version of the line can nullify such an error. The
intermediate code is stored sequentially as it is produced in a. buffer of
200 elements. A check is made at this point to see if, as a result of the
last statement, the buffer is over !la1ffull. If it is, then the first
half of the buffer is written to the lesson file on disk and the latter
half is transferred to the first half. In this manner, only a fraction of
the total intermediate code produced is ever stored within the translater
and that contained on disk is stored in blocks of 100 elements.

Upon entry of uiD, the remainder of the intermediate code is written
to disle. Also stored are the numbers of real and integer variables used
and the addresses in the intermediate code of the start of each segment ,
Then, label chaining is carried out to assign to each incomplete label
reference label addresses of those labels which were undefined when first
encountered.

2.6.5 Tho controller. \"lhenevera user Gulls for a course, tIlecontroller
takes the stored Lrrtermedfate code from the appropriate lesson and executes
the instructional p.lutcriul. The logic of the controller is dencr-i bcd beLow ,

It is first determined whether that part of the response file
corresponding to the lesson at hand exists. This information is obtained
from an index in the response file itself. If necessary, the arpropriate
initialisation takes place and the index is updated.

The restart seement is read from the response file and the corresponding
address in the intermediate code picked up from the segment directory of the
lesson. Two appropriate blockS of intermediate code are read in from the
lesson file on disk together with the current values of all variables and
stacks from the response file.

Control then passes to a section to which it returns at the end of
execution of every single code. There, a cheek is made to see if the pointer
to the current position in the intermediate code is indicating the second of
the two included blocks. If it is, and if all blocks have not yet been read
in, the latter block replaces the first one and a new block is read in in
sequence. The pointer to the intermediate code is adjusted accordingly. In
any event, the next element of the intermediate code is read and a switch
decides where execution will be transfered de~ending upon the code. For
certain branching instructions, when addresses become out of rango of the
two included blocks, two new blocks are read in.

When a STOP code has been executed or "'lEND" has been entered by a
user, control passes to the terminating sequence, in which the time of day
is obtained, the session time calculated from that and a previous call at
the start of the controller, and the session time recorded in the response
file.

2.6.6 Implementation techniques.
2.6.6.1 Labels. To each type of label there corresponds a label table.

Each errbr-y in such D table indicates whetho r t.ha t Labe l :i..<; unur.cd , or,

if used, gives the addi-cas in the intermcdiote code of it:., occurrence.
Vlhen reference is made to a Labe l , the cor-r-cupoud ing nddrcr;:; :i.e b:ron[)d~

from the table, if it oxdat.s, If not, a chain value ie entered in the
intermediate code. This chain value cont.ai ns a backward pointer to tho

previous position wher-e an unresolved label reference in pCncliYl[j and the
currently required label. The last reference in the croin has a zero pointer.
After entry of END, when all labels should be present, chaininG backvJarus
through the intermediate code occurs, and the missing addresses are ndded.
2.6.6.2 Arithmetic expressions. The input string is converted to reverse
Polish. Each occurence of an object, that is, constant, variable or
standard function reference, generates several elements of interme~iate
code, whereas operators produce only the corresponding code element. The
algorithm used for conversion to reverse Polish is as follows. If the
priority of the current operator is greater than that of the operator on
top of the stack then stack the current operator; otherwise unstack, placins
the operator from the stack in the intermediate code, then test tl1.epriority
of the current operator ...zi th that nov on top of the stack. For a left
parenthesis, ~lhichhas the 10\'/estpriori ty t always stack it; for a right
parenthesis, unstack all operators into the intermediate code up to the
next left parenthesis, which may now be discarded.

Constants are analysed using a state table teclUlique. So that the
intermediate code produced is of mode inte5er, the code stored is of the
form inteGer mantissa then e)~onent. \Vhena variable name is encountered,
a search of the hash table occurs. If it is the first occurence of that
name and if there is no ambiguity between an array name and a non-subscripted
variable name, then a store address for that variable is assigned. Any
future reference to that name v/illuse the sarnestore address. Only the
code for the particular standard function is generated. That for the
parameter expression precedes it. Array subscript e:q?ressions are treated
in the same way.

86

At control tilile,executLon is per-f'orrncd uoinC a vlorh: cLack, Only
the top t\-!oelemen t.s at most ar-e changed 'by an operation code. For c~:~)rc[;~;:i.on::;,
the codes consist solely of those for I'etching variables and COl1::;bJltS,

calling the standard. functions and execu ti.ngthe arithmetic cper-at i.onc, Hith
standard function parameters and array subscript expr-osndons , the value is
at the top of the stack when it is needed.
2.6.6.3 Response assignments. For each response assignment, the translater
produces many different intermediate operation codes. A code is eenerated
for the type of response element followed by the actual element number.
Then for every string an~or value specified, code is generated as follows.

A string is recognised by a single quote in the input buffer. Every
character between the pair of single ~uotes is recorded in the code,
preceded by the number of such characters. Appended to each string is
a code and value to indicate with what error the string is to be matched. A
value may appear on its own, in v/hieh case no error is to be tolerated in
the numerical match, or be followed by a second value which is to be the
error bound. The code produced for both of these is composed mainly of
that already mentioned in connection with arithmetic expressions •. The
exceptions are that in the first case a value code and a default error
term code follow the code generated for the value expression whereas in the
second case, code for the error expression is followed by an error code.

At execution time, two buffers, one each for strings and values, are
loaded with all the response assignments before the particular response
acceptance request. Of course, at this stage, the actual values for values
and error bounds are known and it is these that are loaded into the value
buffer.
2.6.6.4 ~m{. The translater recognises strings and arithmetic
expressions during a TYPE statement in much the same 't/ay as for a response
BSsienment. The notable addition is in the format specification for these
two types. At the end of the statement, the format information is
converted to form a FORTRAN dynamic format using the FORTRAN T format to

specify starting positions, the li'ORTRAH literal f'orrnrrc fox'the :.:;tl'inCG

and l"OR11IU\.N I, F or E formats as appropriate for the oxpr'oaei ona , The
dynamic format is packed four char-acter-ato a wor-d rmcl then stored in
the intermediate code preceded by the number of woi-ds ,

At execution time, the dynamic format is read into an array.
Taking into account the constraint that Cl. maximum of fiYe expressions may
be output in any TYPE statement, the number of different combinations of
real and integer list elements for 0 to 5 e>""Pressionsis 63. ThuG, the
controller contains 63 FORTRAN output statements, one of "lhich is
appropriate for each combination of list elements. This method may ceem
a little crude and, indeed, has the limitation that only a fixed nwnber
of items may be output, but implemen~.tion is so much easier than it
might have been if non-FORTRAN codine; had been used, as it certainly
would have to have been for a more sophisticated output statement.
2.6.6.5 ~. In its simplest form, the statement consists only of the
keyword and in that case only an intermediate operation code is produced.
However, variables may be 'specified to contain the numerical values that
the response might contain after entry. These are dealt with in ti~ee
different ways. For a non-subscripted variable or an array element, the
hash table is used to obtain a store address for the name. An ·array
name followed by a starting position is the last possibility. Here,
store addresses are needed for both the array name and the startincs
pOSition, unless, of course, this is given by a constant.

Despite the fact that the trans1ater has an easy task to analyse a
RESP statement, the controller is faced "lith a considerable amount 'ofwork
at run time. The keyboard is unlocked to allow a response to be input. The
last non-blank character is located and, if it is the continuation character,
then another line is read in. Up to four such continuution lines arc alloued
and the whole response then resides in the response buffer. The beginning
of this buffer is then searched for the four pre-determined responses
connected with the control address registers. If one is present and if a

CTnL statement is in effect, then tr~llwfcr of control OCC1.L~':·;. Other\l:LfJ(!,

the buffer is searched f'urthea- for other pre-cJetcl'J;l:i.n('dr-oquor.t.s , If

II'/El-lD"is requested, then the session ends and con t.i-o.L returnc to the
command language interpreter. The other tHO poes ib:i.libee nrc "?CAI.C" or
"?PROG". In each caso , the user is prompted for appropr-Late illforma tion
regarding which pr-ogram and what mode of use is required. Upon return
to the lesson, the user is prompted to make the res)!onse that he used
instead to request the calculating laneuace.

If no request or pre-determined response was entered, responoe
processing continues as follows. The string buffer contains all those
strings indicated during the response assignment statements, the decree
to which they have to match the resporwe, the number needed to give an
overall match and whether ordering is important. For each separate response
assignment statement, the strings are compared with the contents of the
response bUffer. In this way each of the response elements can be fOWld
to be true or false with respect to string matching. In order to save-
time, there is a forward pointer in each part of the string buffer so that
comparison will cease when the required number is obtained. Alternating
with the string comparison for each response element is that for values
using the value buffer, whose organisation is much the same as for the string
buffer. However, when the first value comparison has been indicated, all
values contained in the response are immediately processed and stored
sequentially in an array. In this way, the values are converted from
input characters only once and subsequent comparison involves only a search
through this array. Thus, each of the response elements is found to be
~ or false with respect to value matching. If both types of matching are
~ then the response element itself becomes ~.

If variables were specified for the storage of any numerical values
which might be contained in the response then the values are available in
the correct sequence in the array. These are transferred to the variables,

a Lar-gepositive constant being substituted for a ahortago of va.Luco,
Successive calls for time of day before [,ld after the r-eepono e \'las

made give the response time. This and the truth values for the rcnpons(::
elements are then stored in the appropriate part of the response file. If
all the response elements are false, the first $0 characters of the response--
are also stored for future reference. This is an unant.i.cLpa'tedr-csponae,
2.6.6.6 Logical expressions. As for aritr~etic expressions, the input
string is converted to reverse Polish. Here an object may be a response
element, either implicit or explicit, a reference to the past student
performance facility, or two arithmetic expressions separated by a
relational operator. The algoritl~ used is the same as before.

There are eight different kinds of enquiry that may be made during
a HpE.RF request. It is also possible to test the truth of the conjunction
of any number of these eieht types. Thus, the translater produces nine
"subcodes" for this facility, the extra one denoting the end of the
request. One extra piece of information stored is the address of the
last element of the intermediate code produced for the call. ~~s is
most useful as time can be saved if anyone enquiry proves false,
therefore making the \'Iholerequest false, and rendering the rest of
the enquiries useless. Execution passes straight to the next operation
code in this instance.

. At control time, the same work stack is used as for all the a:rithmetic
operations. The only difference is that ~ is represented by the value 1
and false by -1. To provide protection in the use of logical quantities,
a value "undetermined" may be returned to the stack. This occurs if a
particular response element has not been used yet referred to or if the
ifPERl!' facility is being interrogated about a question for whi.ch there is
no information. In this case a run time failure occurs and the appropriate
diagnostic error message and line number is returned to the author for
debuesing purposes.

90

2.6.6.7 IF. After the code c;enera:cedfor the Logf.ce.Lexpression, there is
the IF operation code folloy/ed by a blank element, vrh.i ch can only be
filled in after the translater has processed the executable po.rt of the
IF statement which may be any other valid statement except another IF.

At execution time, the executable part is obeyed depending upon the
truth of the lOGical expression. This value is on top of the stack. If
it is false, the instruction address pointer takes the address of the
next statement, as mentioned above.
2.6.6.8 TRANS. It is a simple matter for the translater to generate
the operation code for this statement followed by the lesson number and
the segment number but not 50 straightforward at run time. If the user
is a student, then a table lookup in the lesson index occurs to see if the
new lesson is released. For an author, a table lookup on his file catalogue
indicates whether the new lesson exists. In either case, an HTS restart command
iB generated BO that after NUTS execution pauses and restarts the new
lesson file may be accessed. The segment index then shows whether the
segment specified does exist. If it does, the corresponding address is
obtained and the current position information in the response file
updated.

91

'i'1-!C e;·J.clll'~ tin!"" l;:Ul."Wlr;c._____ ...,__ ~_~,i.-~._~

In a Cill environment, :i.t J.G essential that the t,tuc1entbe [Jble to
call upon calculation aida during a C01U' ..~e of instruction. Cel'tain

ques tdone he may be asked could require more compute, tio)'}than can r-eaeonab.Ly

be expec t.edby hand calculation. In an effort to surmount. this problem,
NUTS supplies a simple computing lansuac;e, the procrnr.Jsof which may be stored

for subsequent use. The Language may be used in command mode but its
primary importance is use during a course Hhilst D.nswerinc;Cl. question. 'I'he
student may vlrite his pr-ogr-amon either occae ion and may caL'lupon it,
even making alterations as necessary, ,,,ithin a cour-se,

The design considerations of the calculatine language in many ways
resemble closely those for the author languas;e. Consequently, in this
section, only those features whi ch differ from those of the author Language
are pointed out.
2.7.1.1 r~bels. Statement labels are provided in the calculating language
to reference one statement from another by branching. They may be 8ssiened
in any order "Iithout affecting the order of executaon of a program.
However, neither question labels nor segment labels are meaningful in
this context and are not available.
2.7.1.2 Output. The identical capabilities outline.d in 2.6.2.3 are
available using the TYPE statement. However, no PAUSE exists as that
facility is meaningless in the context of mathematical computations.
2.7.1.3 Input. The READ statement was included so that the user may
enter any data he requires. He specifies the variable into which the
data entered at run time is placed. Three methods of specifying the
variable are allowed. TvlO of them quite simply are Cl. non-subscripted
variable or an array element. However, a third was devised in case a
large number of numbers was to be read in. This entails specification
of an array together with a starting position, which itself can be either

Lt constant or a non-subscripted variable. ThuG, any datn read in, Hhich

may be 8. vari.ab.Lezunoun t , is stored in succecsive o:rray eIemen tc startinG
at the position indicated.
2.7.1.4 Condi t:i.o~:l~E~gionc. To allow condi tional branching and, in
particular, the buildinG of loops in a procrElffi,conditional expressions
are included. Logical quantities, available for such expressions, are
formed from t\'10arithmetic expressions aepar-ated by a relational opera tor.
Logical operators are available to form expressions from these quantities.
2.7.1.5 Branching. The branching facility comprises IF and JUHP. TRANS,
BACK and CTRL are author language sta'tementson'Ly,
2.7.1.6 Other statements. Other statements include S'l1()P,which represents
a dynamic end to a program, and END, l:!1ichis non-executable and only serves
the purpose of informing the translater that the static end of the program
has been reached. No subroutine facility was included as the programs
generated were expected to be so small as not to warrant such an addition.
2.7.2 Use of the calculating language within }WTS.

Substituting the command CALC for BUILD in 2.6.3, the description
of the use of the calculating language within NUTS is otherwise identical
to that for the use of the author language. The only additional feature
is that after a successful translation of a program, it is immediately
executed. For further execution, the PROG command is used.
2.7.3 The translater and controller.

Like the author language, there are two distinct stages in the use
of the calculating language: the translation stage and the control stage.
The logic of the calculating language translater and controller is similar
to that of those of the author language.
2.7.4 Implementation techniques.

The techniques used to implement the calculating language correspond
exactly to the techniques for those statements which are the same in the
author language. The only additional statement not covered in 2.6.6 is

Rt2m. Three different type::>of variL-..ble spec:i.ficc:t:i.on Llay OCGllI' \'Ii thin i:'_

l?Ef.D c tatemcnt , H11cn the tl'[:nslatcr r(~co:.::nil_'e:_;one of these t.)101'ofo1'e

it eeneruteD the oper-a L.lon code for RE!.D fo110l-{0(\ by the "aubcodo!' for Lho

pCJ_'ticular spccifj_cntion. In the cac e of a nm;-:su1x3cripted variable, t.ho h"'_sh

table is searched and the store addr-eas uri tten into the in tCl'I:1Cd_Late code.

In order to pr-ov i do a pr-ompt. at run time, the var-i.ab'Le namo , preceded by

its lensth, is also stored. For an array elewent, the code is firGt

generated for the subscript expression in the usual VlaY. Then, the store

o.ddress and the characters in the array nurne are determined and stored.

The third t;)l?einvolves the specification of a startinr; posi bon along

wi th the array name , This startinG ponitd.on is onl.y optional, however ,

and defaults to the first element of the array if absent. In either

case, the code generated in the first instance is that for the store address,

the length of the array name and the characters in the array name. The

code which determines the starting position is then generated.

At run time, when a simple variable is to be read in, the user is

prompted "lith the name of the variable. RoundinG occurs, if necessary,

after a warning measage , \'lhenan array element is needed, the user is

prompted for the actual element number required, that is, the system

has already evaluated the subscript expression. \<fhena sequence of

array elements is to be read. in, the system prompts ,'liththe array name

follo\'/edby the actual' startinG element number. The user enters as many

consta~ts as he desires and these are stored in consecutive elements of

the array. He eepaz-abes them by COf:1f.1O..S but termina.tes the sequence ,·!ith

a semi-colon. As the constraint that only 80 characters ma.y be entered

in one line is imposed on the user, he may continue on another line by

neglecting to terminate the previous line correctly. The system ...lill

then prompt for the next element in sequence. If em error is detected

in a line of constants, the user is asked to re-input the current line.

Entry of commas only in sequence causes zeros to be entered in the

cor-r capondd ng D_rray eLement.s , Wwre r-ound i.ng occurc , Lhe uce r iG war-ned for

which element th:is has been carried out.

2.8 ~r.hcder;k machine.

95

To enable D. HUTS m;er dur-Lng a lesson or, more il:Jportant,a student

about to ansvez- a question dur-Ing a COUl'CC to make a simp.Le "once -on.Ly!'

calculation, it was decided to include a sequence controlled dOGk

calculator.

2.8.1 DesiGn considcrations~

To allow calculation and a very limited storace facility, there is

one accumulator and 100 storace registers. All numbers, whether written

as reals or integers are held in floatinG pOirit form. The following

instructions provide the ability to perform simple calculations as desired.

The operand X denotes either the number of a register between 1 and 100

or that of the accumulator whi.ch is O. \Vhere meaninGful, this operand may

be replaced by an actual number.

(i) I X #number

(ii) T X

(iii) L X

(iv) u X

(v) A X

(vi) S X

(vii) 1-1 X

(viii) D X

(ix) E X

(x) H

initialises register X to the number.

types out the current value of register X.

loads reeister X into the accumulator.

unloads the accumulator into register X.

adds register X into the accumulator.

subtracts register X from the accumulator.

multiplies the accumulator by register X.

divides the accumulator by register X.

raises the accumulator to the power given in

register X.

terminates execution of the desk machine.

2.8.2 Implementation.

Instructions entered for the desk machine are executed immediately.

The whole line is read into an input buffer which is then stripped of all

superfluous blanks. What remains in the buffer is easily recognised by

the fact that the instruction code is a single letter, a storage register

including the accumulator is an unsigned integer of one to three digits

96

and a number, signed or unsigned, is preceded by a 11 #= " •

Once these parts have been recognised, Cl s,...i tch directs control to

the code for the par-tdcu'Ler instruction and the values of the acctunul.ator-

or storage register which reside in an array are updated Ctccordinc;ly.

Diagnostic error messages are returned for misconstructcd instructions and

for d.ivision by zero and any exporentiation operands that woul.dgive an

infinite, imaginary or indeterminate result.

9'?

rr~le Pitl:c>1Jlrc,~11 Ln t cr-or-o t ivo Lnn,(:u=,:'e. PIT, •._.. ..._.~_~._.____... ._t_,._~_

'l'o use either of the '(;\.'0 ca'LcuLet ion f::,dl:itic[; ~rov:i.(10cl,cs~)eci;,IJ_].y
the cc.Lcu'Latd.ngl:cn2_;uac;e,t!1C user hOG to Lear-n the eLemcnts of the
Language and then ,itmay take him a short \lhilc to become l)ro:ficientin
using it. It waa therefore decided that it wouLd be a (jl'o.?to.dvant.ageto
inclucle in NUTS a simple Language , easy to learn, but \,Iith those power-f'u'l

features that wor-emissinz; from the calculatinG Languagc , such as strine:
manipulation, extended input/output, etc. If such a Language existed
already in HTS, then the fact that a NUTS user may already have some
knowledge of it would also recommend its inclusion. The languaGe that
fitted these requirements was PIL. lt is also suitable for usc in a Learning
environment as it possesses error recovery capability, "'hich is most suitable
for use in testing algorithms and other allied problems.

It was also essential to a'l.Lowusers the facility to store PIL
programs from one call of the interpreter to the next. Therefore,
one file is set aside for this purpose. Naturally, if a number of different
programs are to be stored' then the user is burdened with remembering \,lhich
PIL parts they are in, for these must, of necessity, be unique.

PIL possessea a most power-ful,"direct" mode, which is equivalent to
a desk machine. Consequently, the inclusion of PIL tends to make the
sequence controlled calculator, and, to some extent, the calculating
language, somewhat; superfluous, although, for ease of storage of progz-ams,
the calculatinr, laneuage is still of use.
2.9.2 The programming lancuaee.

PIL was designed and implemented at the University of Pittsbureh. It
is a remote terminal languaGe, desie;ned to make advantac;e of the computer-
user interaction made possible by terminal interface in a time-s~~ing or
multiprogramming environment. Although similar to earlier conversational
lrulguages such as JOSS and BASIC it has major differences in debugGing

98

facilities, error r-epor ti.ngand problem coLv.i.ng capab.iLi.t.ies ,

PIL provider; the user "lithmuch Greater nssi6bncc than the ucuaL
batch compilers offer. This includes the use of t.ermi.na'ldiacnostics,
user interaction "'liththe machine and asuoci.at.ederror recovery procedures.
A major goal of the language waa that errors be recoverable. '1'0 u user,
this means tha"1;it is possible to sit dOVl!1at a t.ernrina'LVJi th a problem
and work towards a solution. As he becomes awar-e of the need to make corrections
or improvements, PIL allo\"16him to alter his proGram and to continue \"ithout
requiring a new start (the PIL IIGO" statement). PIL sacrifices machine
efficiency in the hope of eaining increased human efficiency. It is a
clear, unambiguous language, quite easy to learn, so that stUdents and
researchers alike quickly master the l~guage and its use.

For simple computing tasks, FIL typically generates answers as fast as
the user ~t a terminal can assimilate them. As more complex tasks are
programmed, a point may be reached where the user regards the performance
of PIL as less than ideal. The response time may become too slo"'lor too
much computer time may be used.

Unlike the usual compiler languages such as FORTRAN, ALGOL or P~,
PIL does not translate a symbolic program into a machine language program
for later execution. In PIL, the original symbolic statements are
maintained in storage and these statements are interpreted each time they
are executed in a PIL run. Thus, it should be recognised that PIL is not
the appropriate vehicle for large "production" jobs. It may be of value,
however, to code such a program initially in PIL. The debugging facilities
can be used to check out the logic of the algorithms for such jobs. Then
the code should be transcribed into a compiler laneuage for more rapid
execution.

A full description of PIL is given by Flanigan (1968).
2.9.3 The implementation of PIL within NUTS.

The PIL interpreter used is simply a copy of that available in HTS

99

C:l.S a library file. The only addi hans made are to provide ,en intcrfnce

\Ii th NUTS. A brief description of thi.s apponi-s in 2.5·5.10.

100

2.10.1 General st~ti~ticG.
NUTS ccmpz-Lsca a ma.i,n procram and 40 cubr-ou ti.naacocledin roTITltU'[IV,

and three subz-outi.nes I:Jri tt en j_l1 assembler. The total number of source
statements is around 9000. The asoembler routines are syctem dependent
and are used to return the clock time, indicate whether-the user is
performing a conversational or non-conversntional job, and destroy a named
file. In use, the whoLe system occupies 80 virtual pages on the drum,

2.10.2 ~rrent use.
After initial test and demonstration programs for checkout purposes,

NUTS was first used in an investigation into the production of instructional
programs for elementary electricity and magnetism (Adams, 1969). 'iilemain
application of the system to date is the PIL proBramrning course, a full
description of whi ch appears in Chapter 3. As well as being used for the
~urse, the instructional programs are available for general use to anyone
desirous of learning PIL.
2.10.3 Possible future developments and improvements.

It has been mentioned earlier that NUTS was designed and implemented
in as simple a way as possible so that an operational system on which to
carry out further research could be available as soon after the commencement
of the project as possible. For tlus reason, reflections on the design and
implementation have suggested that the system can be made to run more
efficiently with some alterations. Also, some additional features would
be most useful. Some possible amendments are given below.

With respect to the implementation of NUTS, increased efficiency in the
future demands that shared code be used, At present, the virtual memory
integral (VMI) in the wait state is enormous, which gives quite an overhead.
To alleviate this problem by some other means, if that "/erepossible, woul.d
necessitate a study into the use of dynamically loaded routines. In other
words, when NUTS is initiated, instead of all the routines being loaded in

'10'1

<, t tilCt poi.n t, only the commandpr-occs.sor' vould Le loaded c'lid, de;1cl [(lin:: upon

vlri ch commandW1S rcc1uestec.l, other routines \10111d DC loaded in vhen r-cqui r-cd ,

'v]}Jen these routines had been used, the counnand pr-oceaeor' woul.dbe reloaded.

Certainly, bhis organisation wou'ld lend i tseJ.f to muchama.ll.er- virtual

memoryrequirements and hence less paging, but whethcz this \'Iould off.sct

the increased use of the loader is a matter for conjecture. Unfor-cunc:tcly,

D.t this point in time, the data. collection by the generlll oper-atdng system

does not provide information for such a study.

One additional facility that woul.denhance the author Language wou.Ld

be the introduction of string variables and fu..l1ctions. This \/ould Give

the ability to menipulate the response, "'hich would be Etutol'1atically stored

in a predetermined varie.ble, using f;tring functions such as edi tint;

characters, concaternation "lith other strings etc. This wouLd allo\'1

the author to reply to the student in the actual Hords of the student's

responses. The main reason "/hy this facility was not implemented \·i8.S

that such complex string manipulation as was visualised is difficult to

execute usinG FORTRAN.Also, the exberrt to whdch this particular part of

the Language would be used was not considered great enough to vrarrant the

time it would take to include it.

Increased efficiency in the author Language proceosors vrould be e;ained

if the literals used during response assignments and.output statements wer-e

stored as characters and not as their equivalent nt~erical representation

in the intermediate code. Also, the response buffer used during response

analysis would be better created when the respOnse assignments are paxsed,

not in two stages, both durine translation and interpretation of the

response assiGnment statements.

A more detailed appraisal of the system, in the light of the

investigation \'/hich included the PIL course, is given in section 3.4.

102

CHAPTER3 An investi~.~ion int.~ the use of NUTSto teach a prosremmi?1i2lnn~;1L[;:".

3.1 Previous attempts :J~t programming courses.

3.1.1 Other course structures.

Very few programming language courses have been given using CA!. This

is surprising in that there is an ever-increasing number of academic

disciplines pervaded by computer-baaed techniques and hence the overall

demand for people who can program is growing very rapidly.

In order to become reasonably proficient, considerable practice is needed

and so adequate opportunity to run programs must be given. Of similar

importance is the necessity for this practical experience to be coordinated

with the theory behind the students' problems. This requires supervision,

which, under normal teaching circumstances, puts a heavy demandon lecturing

staff whose time is considered at a premium. The investigation that was

chosen was a comparison study between various methods of teaching a

programming language. It was hoped to ascertain whether it is feasible to

use CAI to teach a programming language and hence free academic staff for

IlOre research.

SomepreTious attempts at such courses have used a computer in the

learning process but not for CAl as defined in this thesis. SCOOP,Student

COntrolled On-line Programming (Lambert, 1968), assumed that a student

has learnt the rules of a programming language and that what he needs is

practical experience in manipulating these rules. On a teletypewriter,

the computer provides the student with the content of storage locations

upon which his program is going to work. As the student types in his list

of coded iJlstructions, the computer checks that they are acceptable and

carries them out at the student's command. No correct answers are stored,

but the resulting 'Values of the storage locations are returned for the

student's perusal. Con'Versationally, the student is also able to edit his

program, step through the execution one instruction at a time and display

various locations. A request for help causes a demonstrator to come to his aid.

103

A similar project at Brigbton College of Technology (ICL, 1969), but
non-conversational, provides FORTRAN tuition by private work on a
programmed text. Then, using standard software but given pre-punched cards
for easy entry, the student compiles and tests example proerams. When
satisfied that a program is working correctly, he submits it to the computer.
for judging by comparison with results for standard data. Facilities for
teachers to put different programming problems into the system and to
obtain information on project progress by student or by problem are provided.

In other projects, programming languages have been specially designed
so that actual programming techniques can be taught, not simply an existing
language.

Lorton and Slimick (1969) list the advantages of teaching a IIsymbol
manipulation-list processing" language. However, as some machine level
concepts might be usefully included in the course, they provide also a
Qimple assembly language. TO this end they designed a driver program to

supervise the interaction of the student with the curriculum material and
the language processors, an interactive assembly language processor and an
interpretive processor for the "symbol manipulation-J.ist processing"
language. As well as providing communication with the language processors,
the driver program presents the instructional text and ~valuates responses.
The symbol manipulation-list processing language used is a dialect of LOGO
(Feurzeig and Papert, 1968).

Whilst designing their TEACH system, Fenichel et al. (1970) considered
that their chief objective was to teach programming, not a particular
language, but realised that some language was required as a vehicle to convey
the ideas. In fulfilling their design criteria, they devised an interpretive
language resembling JOSS that

(i) allowed students to adjust easily to any standard algebraic
language afterwards;

(ii) contained all the fundamental ideas of current programming

practice; and

(iii) allo~led presentation of an important idea only after a need for

it had been established.

They surrounded the language processor with a teaching system which

presents lessons to the student, supervises his progress and permits him

to exercise his skills. The teaching system language generates "scripts"

and is quite general, allowing arbitrary recursion, conditional transfers,

scanning of student :input for keywords, etc. The "scripts" have little

control over what the stUdent does with the programming language interpreter

but an important feature is that the syntax scanner of the interpreter

will not recognise any construction which the "scripts" have not already

discussed. Otherwise the scripts engage in a limited dialogue with the

student, allowing him to request h1ntsabout the suggested problems and

to determine whether certain sections should be skipped.

At the University of Texas (Homeyer, 1970), using the PItLS

instructional system under the RESR>NDtime sharing system on a COO6600,

a CAl course has been developed to teach assembly language programming.

A language called ELASTICwas designed •. It is written in FORTRANand is

composed of an assembler and an interpreter, self-contained and can be

executed, with minor modifications, on any machine with a R>RTRANcompiler.

The capabilities of the ELASTICassembly language may be presented in

segments ot gradually increasing difficulty and sophistication and hence

the ELASTICsystem is divided into four "com~uters" to facilitate this

pedagogical approach. The main feature of the course is that execution

of programs written in ELASTICis allowed at any time during a CAl teletype

session.

There have been a number of courses, however, Which have taught

existing progr8Dllling languages.

10]

Schur-dak (19-57) at:tCr1lYcedto moasur o the eIf'octivcnens of Cl.l ~.ll

teac hi.ng the FOIyrllAIl Language , Iie used l;·8 o'hc1cnts [m.o c1:i.v idcd Lhcn equnJJ.:r

in to three srollJ:lG, one .srouI> taking convcrrt.i cna'l Lnc Lr-uc'lion, ano':';]ier

blcinc a pr-ogr-ammedinstruction te::t only and the third bJd.nC C!.I. '1'he

students wer-e further c'l.aae i f'Led in other subgr-oups such ClS l'Cl.:i.d/not pa i.d ,

graduo.te/unc1ere;raduatc, etc. Using an aptitude tc::.t and a one-day retent:i.on
test, and \-,i th a CAl program that vee basically linear drill-e.nd-prt1ctice
"/ith some immediate effective correction procedures, Schur-dak reported a
significant difference, at the ~6 level, of criterion test per-formance for
the CAl group, as well as a similar standard deviation of test scores for
this group. Students \,/ith high pre-test scores appeared to score approxdma teJ.y
the same on the post-test, but, at the other end of the aptitude test
score scale, it apparently made El. very large difference as to how a student
was instructed in FORTRA}T, even within a superior sample such as university
stUdents. ~~o important points should be mentioned about this course.
Firstly, the CAl group receives their initial presentation of material from
a ",ell-known text on FORTRAN. Their understanding of the ma.terial is
tested on a terminal. If the student meets the test criteria, the computer
indicates that he should read the next lesson but if he is uncertain of
the subject matter, but still passes, he has the option of receivinc further
questions but not explanatory text. If the student does not meet the test
criteria, he receives a series of diagnostic drill-and-practice questions,
which have all to be answered correctly before he may proceed. Secondly,
if the text material is not adequate, the computer ~ives the stUdent
addi tional e:;"''Planatoryor remedial material taken from a .../ell known PI
manual. Obherwi.ae, the computer does not give any textual Jllt:"l.terial.

Gross et al. (1969) carried out a similar investiGation into the
teaChing of FO~~ using APt as the instructional lanGUaee. 76 stUdents
\-Jere divided into a CAl group, a PI group and a group who received

106

out vrith l'cspect to r.t.udcnt choice GS :[['.1' a;;]_)oc,slble, the only l:i.mitinc;

factor be i.ng tha.t the sex ratio \KUi consistent in each Group. An alwlYI3:i.r;

of variance on the aptitude ecor cc revealed tkd; there vms no sir;nificant

difference be-tween the 8roups initially. During the cour ao , the Lee.rrri.ng

curves of the first Group of CAl students are used to dcve Iop a non-linear

aequenc ing of course material. A heur-Ls t i.c learning model uaea cumulative

frequency distribut:i.om.;of all student responses to different combd.nnt.Lone

of questions to decide the sequence of questions for a.ny one student.

Performance scores for each group wer-e obtained from three FOR'llRAN tests

and four FORTRAN problems. Only on the first tuo tests did significant

differences appear , Ilowever , an eXaJliination of mean scores indicated it

was the PI group that Gave a superior score. The source of the superiority

is suggested by the total time data. The average course completion times

for the CA! and conventional groups \-Iereabout one third and one half

respectively of that for the PI croup.

Other courses developed to teach progranunine laneuaces include:

(i) The University of Texas at Austin use a course to teach

COURSEI..mITF..R I using tutorial lOGic. It was \'rri tten at

Florida State University in COURSEHRITER I.

(ii) Pennsy'lvania State Univerai ty have a course 'which presents

information regarding the various instructions in COURS~iRlTER II.

It is \,/ritten in COURSE.mlTER II and has an adaptive strategy.

(iii) For prospective authors of coursesin CAILll.N',the CAl

laboratory at Harvard have a course on CAlLAN written in

CAIlJUT and using both Socratic and tutorial dialogues.

(iv) A course to teach COBOL is under continuing development at the

Human Resources Research. Office (Hum RRO) in Alexandria, Virginia.

107

(v) The Aerospace Corporati.on of'Fa Segundo, California, are
developing a FORTRAN course under the PROC'IOR system which
monitors the interaction between the student at the tenninal
and the instructional program on disk. 1utorio.l.logic is used
and students are permitted to enter FORTP~ statements for
checking by the FORTRAN compiler, receiviug diagnostic error
messages as approprinte.

3.1.2 Significant features 0f this course.
It was decided that an existing programming language should be taught

in the course. This would al.low for future use of the language by the
students as it is available under Michigan Terminal System. Also, the
fact that the language processor was available for modification, if necessary,
was taken ihto account.

Two comparisons on the relative effectiveness of different teaching
methods were desired. Firstly, CA! was to be compared with conventional
teaching. Secondly, for examples sessions, on-line practical classes were
to be compared with the conventional demonstration classes. As a result,
three groups were needed (see 3.2.1).

The CAl part of the course was divided into two parts. The lessons,
which presented the instructional material to the student and continually
questioned him as to his understanding of it, were structured using an
adaptive tutorial logic. However, the examples sessions, which were
interspersed with the lessons, contained a linear sequence of problems but
used a learner control strategy within problems. This latter choice was
necessary in the light of the second comparison as mentioned above.
Normally, during problems classes, control is with the student. He decides
what resources he needs to tackle the problem, when he needs help, and
when he wishes to test his solution. Consequently, two most important
facilities were placed at the student's disposal during the problems classes.

108

These were the language processor wh:i.chhe could request ri.t any time and

which stores all his previous statements for that particular problem and

a comprehensive help facility which returns the steps into which the problem

may be divided and either programming or logic help with any of the steps.

All the stUdent has to do in either case is inform the machine exactly

what he requires.

109

3.2 Description of the course.
3.2.1 Background to the course and the students on it.

Irrespective of whether they intend to do Honours Maths or Honours
Computing Science eventually, students in their first year are required
to take a qualifying course in Mathematics as their main subject. (The
curriculum is being revised for year 1970-71 so that there will be a first
year course in Computing Science for potential Honours students.) However,
during the last week of the second term, an introductory course to
Computing Science is held, the main purposes of which are that the students
find out a little about what their future course holds in store for them
and that the staff of the Computing J.aboratory find out a little about
their potential in computing. In addition to those students who entered
University to read Computing Science and are therefore required to attend
the course, an invitation is given to potential Honours Maths students who
may wish to switch to Computing Science.

The course lasts for fiTe afternooDB; in fact, when the stUdents
are available. In the three previous years when the course bas been given,
the format has been simply:

(i) the first afternoon comprised a lecture on "Introduction to

Computing" followed by a programming aptitude test;
(ii) during the next three afternoons a programming language was

taught; and
(iii) on the last afternoon a talk on liTheComputing Science Honours

~urse" was given, followed by a display of the equipDent.
For the first two years, the language taught was ALGOL, the teaching

language of the laboratory. A punching service was provided and every
student was expected to haTe made at least one program run on KDF9 during
the week.

110

VIith the advent of Michigan Tenninal System on the IBN360/67, it

was thought that the students would benefit Ir.ore by sceing their programs

entered from a tenainal and the appropriate results anq/or diagnostic

errOl' messages returned. A demonstrator sat at a terminal and typed in

the students' programs. Upon detection of errors, the student indicated

his intention but when in difficulty the demonstrator was at hand to give

help. The language needed had to be a simple, easily-defined, tenninal

language with good diagnostic error messages. That language was PIL.

It was intended to ascertain the validity of NUTSfor use in CAl

and to discover whether the use of CAl together with an on-line processor

was feasible in the teaching of a programming language. Thus, the five

afternoon course for potential Compu~ingScience studants seemed to

fulfil these requirements. Other reasons that recommendedits use were:

(i) it was important that there would be a sufficient number ot

students available to provide the required number ot groups

yet at the GaJDetime that the groups wuld be small enough

. to allow the use ot the small number of terminals available;

(ii) ·NUTScould easily be modified slightly so that PIL could

be called from the author language, instead of its being

available only by virtue of a NUTScommandor a pre-determined

response;

(iii) the course was long enough to be able to make some broad

conclusions and recommendations for future use yet short

enough not to disrup~ the use of the available terminals

in the laboratory; and

(iv) although the course usually provides useful extra information

about potential Honours students, any untoward events during

the course would not disrupt the selection process as the

examination score at the end of the year is the vital factor.

111

The students wer-e divided into t.hr-eo croll:!':>:

(i) Crou}!A, those who vrou.ld have convcnt i.ona'l lectures f'o.l.Lowerl by

the usual examples class - the control. croup;

(ii) e;rouI)]3, t.hoce \'1110 vrouLd be Liven Leoaono of Cl~Imaterial

follov!cd by the same examp'Les cIv_eses [\13 Group A; and

gr-oup C, those who wou'ld rece:i.ve the same Lns tz-uctd.ona'l

material on the terminals as croup B but would then have

CAl examples classes in whi.ch the PIL interpreter would be

available to them on-line.

The list of enrolments for the course finally totalled 22, with 12

being potential ComputingScience honours students, Etndthe remaining 10

:potential Baths honours students who indicated their interest in the Comllutin~

Science course. The fact that seven terminals wer-e made available in the

laboratory for the week of the course and that almost all the students wer-e

available until 1000 each day, determined the following timetable.

Group A: lecture 1400-1515, exampkee class 1545-1700.

CAl lesson 1400-1530, examples class 15L~5-1700•.Group B:

Group C: CAl Lesson fo'Ll.owed by CAl examp'l.eaCIMS 1530-1800.

Group A contained eieht students and groups Band C seven each.

3.2.2 CAl content of the course.

The CAl course designed for three afternoons of the week consisted of

two parts; that of three lessons which both croup B ~~d eroup C were given
)

and that of three examples classes which only group C received.

The first difficulty exper-ienced in coding the lessons was concerned

particularly "Iith lesson one. It is a "reIl known fact tht.lt students must

be taught, quite an appreciable amount;about a programmi.nglanguage before

they can attempt the easiest of problems. To teach PIL, the topics Hhich

should be covered before an examp'l,emay be attem!1ted az-et - a ceneral

description of PIL, direct mode, arithmetic, 10£;ica.1s, simple I/O, indirect

112

mode with :parts and steps and running et.o r-e d proe;rruus. Consequently, care
has to be taken not to make this first lesson excessively long particularly
since students in group B are expected to have been t.aughtan equivalent amount;
as those in group A when they start the first examples class. The greatest
difficul ty W8.S that the length of the first lesson could not be tested in
the same conditions as the students would find, that is, seven tenninals
running the course whilst the machine was being used with its normal load.

Another point to consider is that, owing to time considerations, any
questions asked the student have to be fairly simple and straightforward.
However, at the same time, as the subject content is rather high, the
instructional material in this first lesson must be liberally interspersed
with pauses for reflections and questions for clarification.

Thus, for the most part, questions asked during that lesson are of
either multiple choice or simple construoted response type.

The second and third lessons dwell upon particular aspects of the
language and hence more advanced and therefore more interesting questions
can be asked. The second lesson contains: the IF statement, implied loops,
explicit loops and restarts. As a result, questions are asked of the student
that require entry of a PIL statement. This is checked by NUTS and not the
PIL interpreter •. Another type of question included is that of following the
course of a series of statements (usually containing a loop) and supplying
values of variables at certain stages. The last lesson deals with character
strings, string functions and extended console I/O. As in the previous
lessons, multiple choice and simple constructed response questions are uspd
but much more remedial branching 1s included.

During each lesson, the student receives a lot of feedback to his
responses. Tb ensure that he 1s not misled by having guessed the correct answer
each feedback message for a correct response usually reinforces the reason
for the success. Except for a binary choice, in which case an incorrect

113

answer- is commented upon in full, an incorrect or po.rtially correct respouse
usunlly receives a hint as to its invalidity or incompleteness and the
student is invited to try again. At most, three attempts are allowed
before a full explanation is given. In addition to feedback messages for
each question, where there is a sequence of questions, the student ie given
his score over the sequence, together with an appropriate comment. Similarly,
over lessons as a whole, comments are made on scores for such sequences.

Each of the three examples classes that group C are given contain four
problems. These examples are given in sequence but once at work on e
particular problem the student is given the freedom of learner control
(Grubb, 1968) to choose the next facility he requires. Decisions such as
when to use the PIL interpreter, what steps the problem may be divided into,
what help is needed next, when to attempt an answer, etc. are all left to

the student. The various paths that a student may take within a problem
are best described by a flow diagram (Figure 3.1).

Each double-lined decision box represents a decision stage for the
student. The decision stage of primary importance is that which the student
encounters immediately after the statement of the problem and to which he
returns frequently during the solution of the problem. There are four choices.

(i) INFO. This gives the student a numbered list of the sections
into which the problem may be logically divided. Such sections as
input of data, output of results, setting up a loop, etc. might
be included in the list.

(ii) PIL. ~ia provides the student with the PIL interpreter. If
he wishes to ask for help or simply return to the primary decision
stage, he enters "MTS" to the interpreter. All hie source
statements will be saved in a file related to that particular
problem so that the next PIL request places them at his disposal
without re-typing.

r---------,/ P I L
PIL -

Inte rp rete rI---~
MTS

BACK

EXPL

exp lanat Ion of
problem

specimen
sol ut Ion

114

-----jstatement of
problem

ANS

response
accepted

INFO
statement of

~--------------~problem steps

y
help element

next problem

NEXT

F 19u re 3.1

115

(iii) HELP. A secondary decision stage is roached \}herc the studcn t
requests what type of help he requires.

(Lv) AIm. The student is ready to submit his answer to the prob.Lem ,

A constraint that he must have accessed the PIL interpreter at
least once is placed upon the student before his request to
enter his response is accepted.

During the HELP decision stage, the possible requests are as follows.
(i) INFO. This gives the student exactly the same list as already

described. It is included within the HELP stage as the numbers
are required to obtain further help and it would be a waste of time
for the student to have to return to the primary decision stage
to obtain these.

(ii) A division number together with ''L'' or "P". The student may
obtain further information about a particular section of the
problem by stating the number given to that section by the INFO
output. Two types of help may be obtained; help with either the
logic or the programming of the section of the problem. Tbus,
either ''L'' or "P" must be given with the division number.

(iii) BACK. This merely returns the stUdent to the primary decision
stage.

The request to enter an answer is treated as follows.
The response is accepted and tested for correctness. If it is correct, then
the student may choose to receive a specimen solution of the problem before
continuing to the next problem by entering 80LN or simply to proceed to the
next problem immediately by entering NEXT. If it is incorrect, the course
of action depends upon whether it is the first attempt at an answer or not;
for a first attempt, the student is returned to the primary decision stage
but for a subsequent attempt, the stUdent chooses to return to the primary
decision stage by entering BACK or to receive an explanation of the problem

11G

followed by a specjmen solution before proceeding to the next problem by
entering EXPL.

To facilitate the running of the course by the students during the
week, certain additions and slight modifications were made to NUTS.

Normally, the PIL interpreter is available to the InTTS user either
through a NUTS command or through a predetermined response during a COURSE
command. However, in either case, statements are only stored in the one
PIL file which would become rather perplexing when 12 problems are to be
attempted. The course of action chosen was to provide the PIL interpreter
whenever the student requests it in the examples class and to supply a
separate PIL file for every problem. This entailed introducing a further
statement to the author language which s1mply called the PIL interpreter.
Also, this statement would include the number of the problem currently
being attempted.

As the student would not need any other facility but the COURSE command,
a version of NUTS was used which only allowed biJu to use that command.
3.2.3 The selection of the groups.

A number of factors inaueneed the choice of the groups. Ideally, a
selection based solely on the result of the programming aptitude test would
have been preferred but as the students varied also in background, availability,
etc., these factors also had to be taken into account.

Amongst other questions that appeared, the questiamaire given on day 1
asked the students whether they had any objections to taking part in a CAl
course, vhethe" they ..-ouldbe available until 1800 on days 2, 3 and '+ and
whether they had had any previous programming experience t stating, if so t

how much. No one at all objected to being taught by CAl methods so this did

not affect the selection. However, three students indicated their non-
availabilitT to stay until 1800 (and hence be placed in group C) so the,.were
placed two in group A and the other in group B. Four students indicated
that theT had had more than a week's programming experience and hence two

11'7

wer-e placed illgroup A and one ea.ch in both of the. other groups.
Out of the 22 students enrolled, four ver-e girls and these were placed

two in group B and one each in groups A and C. As mentioned before, 12

students were potential Computer Science candidates. TheBe were divided
equally. Of the remainder, four were placed in group A and three each in

the ~ther groups.
As the aptitude test was given on the first part of day 1 yet the

groups had to be decided later that day in order to explain the different
procedures involved for each group, there was a little difficulty involved
in marking the aptitude tests in time. However the scores derived, even
though some were later amended, formed the basis of the selection, after the
constraints mentioned above had been imposed.

Tb discover whether there was any significant difference between the
selected groups before the course, an analysis of variance on the corrected
aptitude scores was carried out.r--.--~~------.------.--

Corrected Aptitude Scores. Totals Means
-___.:.---l------- ------ - --l549 68.6

501 71.6
...J__::..:5~ .,-_15. 7 _

-------.------group A. 77 94 64 91 16 88 49 70
group B 88 85 33 66 74 81 74
group c 92 69 55 99 56 85 74 ---_-_._._-.

Analysis of Variance Table.
source of variation sum 0f squares degrees of freedom mean square F~,_19_

~- - -------_- ----188--- -between treatments 2 94 <1
residual 8597 19 452
total 8785 21

3.2.4 The course log.
3.2.4.1 Day 1. Following a brief introduction in which CAl was only just
mentioned, the students were given a pre-course attitude quest~taire.
Then, the XCL programming aptitude test was given luting about 90 minutes.
Whilst the students were baving a break, and then during the next short
session which contained a brie f talk on computing hardware, including slides,
the students were selected for the different groups. After this they were
told of their group assignments and the procedure to follow in each case.

118

3.2.LI-.2 Day 2. MTS became operational at 1400, at which time everyone in

group B was told to commence. As at that time the students on the course
were not only competing against each other for the loader but with every other
user on the system, there was quite a delay before everyone got started.
However, the last student had commenced by 1415.

At first the respo.nse was not as good as expected. This was owing
to the fact that, even though the students were not using much CPU time,
they were causing a lot of paging. The situation was greatly improved,
however, when other users who currently had a large virtual memory were
advised to leave their terminal. and return after 1800 when the service
would get better.

Group B were allowed to continue until 1530 when they were' replaced
by group C. As suspected, the first lesson was 60 long that no-one was
finished in the allotted time. Only one person managed to get into the last
section on program stops, four were at various stages of the section on
running stored programs, whilst two 1I8reinvolved with parts and steps.

As tbe first examples class relied on the student's knowledge of
parts and steps, the two students who had been unable to complete this section
were given the necessary information by one of the demonstrators. However,
both volunteered to return to a terminal after the e~ples session and,
in fact, comp1.eted the lesson by the end of that day.

Despite the fact that the concept of CAl allows for self-paced
instruction, it was decided that, through lack of time, the response files
of some students should be updated overnight so that they wOuld start on 8

par with the other students the next day. This was only carried out
reluctantly and where essential, but when a stUdent was skipped over any
part of the instructional material he was furnished the next day with a
copy of the conversation be might have had with that subject matter he missed.
At the end of dJq 2, four group B students were updated in this manner.

119

The changeover to group C was effected in 10 minutes with the. exception

of one student, who, it was found out after some t ,me, had got into a

system disk error loop. She eventually commencedat 1615.

The response remained about the same until 1700 when it became

progressively better owing to other users of the system going away. Even

though the students were only required to stay until 1800, two stayed until

1820 and a further two until 1840.

Only one student managed to complete all four examples whereas three

were in the middle of the third problem. These three were movedon to the

start of the second lesson overnight. The remaining three, whowere in

variouR stages of the first example,. were movedon to the last two examples.

In all eaees, sample output was given to these students whose response

files were manually updated.

3.2.4.3 Day 3. In order to get the students started more quickly, it was

arranged that only their terminals were to be activated for the first two

minutes of the MTSsession. This meant that they were able to load in

NUTSmuchmore quickly as they were only competing with one another and hence

effectively gained from five to ten minutes. Everycne in group B commenced

by 1410. The response was certainly much better than on day 2.

Ae it seemed more important to allow members of group B more time to

complete their lesson than to enable members of group C to finish all of

their problems, and, in any case, most of group C seemed willing to stay

later than 1800, group B were given the use of the terminals until 1545.

In spite of this, four students returned after their examples clas'S as the!·

wished to get through to the end of the second lesson. However, they were

at no disadvantage during the class, as DOneof the examples involved work

introduced towards the end of lesson two. By the end of day 3, three

students had finished off the second lesson, two were almost finished the

last part of it and the remaining two were updated overnight.

120

Aa in day 2, the changeover- to group C took about ten minutes. 1'V10

students stayed unt~ 1825 and another two until 1845. Again, only one

student managed to finish off all four examples. Of the rest, one hod

completed three problems, two were in the middle of the second problem

and the remaining three were struggling withi;he first one. Out of these,

the latter five were movedon by two problems.

3.2.4.4 Day 4. The start of day 4 was much the same as ti.la.t for day 3.

The students were again given preference over other MTS users for about

five minutes and this, coupled with the fact that theJ were becoming more

proficient at Signing on and restarting the course, meant that they were able

to get started very soOn after 1400.

The time for handing over to group C was mademuchmore flexible on

day 4, as it was the last lesson. Only one student finished the course

without interruption, and that was by virtue of staying on until 1600 with

the permission of the group C student who had finished all the examples in

the previous days. Two more students returned after the examples class to

finish off the final section on extended console I/O but the remaining four

were simply given a co~ of the subject matter they were unable to complete,

the next day.

Of the students in group Ct one had to leave at 1700 and hence was

unable to commencethe last set of examples, let alone complete them; two

managed to finish off the four problems, but remained until 18;0 to do so;

one student was on each of problem 2 and 3, whilst the remaining two were

struggling with the first problem. CopieE o: explanations and solutions

to the first two examples of the last set were distributed as necessary

on day 5.
3.2.4.5 Day 5. After the students were given a talk on the Computing

Science Honours course, they received a short telit on the programming

language PIL. This was immediately followed by a post-course attitude

que s tdonnad.r-c for member-s of Groups B an d C \olbilsttroup A wae given the

opportunity to test on Cl. terminal any 0f the exampl.cs they had written dul'ing
the week. When group B had finished the qucl3Uonnaire they were able to
attempt exmoples on-line in the Gmae manner.

Unfortunately, two students failed to appear for day 5 which was the
last day of term. As a result, information reGarding their post scores
and post attitudes is unavailable and therefore affects sone of the data
described in 3.3.
3.2.4.6. In general. Over days 2, 3 and 4 as a whole, the following general
observations were made.

There simply was not sufficient time to allow the majority of tho
students to complete the course at their leisure. One great advantage of
CAl is that it provides individualised instruction, which, in itself,
produces a self-paced situation. Consequently, a trade off had to be made
so that the student was not deprived of an.yvital information. He 'was
updated where necessary to the more important parts of the lessons while
the missing material was provided in handouts.

Some students who considered the system quite slow in analysing
responses and restarting after pauses did not pause when they were given
the opportunity. They used the time taken for the restart to take effect
after a pause to read the subject material.

A careful study of the students' response files was made for C8ses
in which either the student was not given credit for a correct answer or
he was not given assistance when he had made a common incorrect response.
However only two cases of note were found and a later version corrected
the anomolies.

Studying the students' response files also revealed that the response
times for the questions asked in the section which describes boolean
variables and expressions were much higher on average than any other section.
This ~uld suggest eith~r that the material displayed was of poor quality or

122

that ouch more time should be spent on such a difficult aspect of a

programmi.ng language.

3.3 Data obtn:::nedfrom thc-·cour-se end d:iXC1U3:-:ioll r:; f the rf:[:lll tr: ,

3.3.1 The Prc-:.cr;t.
The pro-test given to the students was the ICL QUIS (Questions Using

Instruction Sequences) proGrAmming aptd.tude tc::st. A description of the
test and its reliability followed by the reason for ito choice in this
context appear in this section.
3.3.1.1 The QUIS aptitude test. The test is designed to assess a student's
ability to do programming work. It may also be valuable in helping to select
operators since it is expected that an operator should at least be able to

understand programming and to form simple programming sequences.
The test incorporates a nUmber of problems v:hich can be solved

following the acquisition by a student Qf a carefully designed procedure
and certain rules to be followed in presenting solutions. Thus, solutions
must be presented in a clearly defined logical framework.

lCL feel that the test offers the following advantages over the normal
type of intelligence test:

(i) a variety of response is permitted to each problem, to give better
opportunity to the creative worker;

(ii) each problem requires a significant amount of thought and analysis
and it is impossible to provide a correct solution by luck;

(iii) the test is not only of ability to solve problems but also of
ability to comprehend and apply a simple 'programming language';
and

(iv) since each solution has to be developed and presented in a number of
sequential steps, the solution reveals not only whether it is correct
or incorrect but also shows how errors have been made and also
the economy of correct solutions; thus, it is possible to use a
marking system which can award marks for solutions of various
quality.

The procedure for giving the test iE; as folIo,,'::>. Student:.; arc given

a booklet whi.ch describes the nature of the problems and explains how

solutions are to be presented, emphasising the special rules which have to
be foLlowed, Examples are then worked by the students to familiarise

themselves ,'lith the technique. The actual test cont.afns ten problema and

one hour is allowed for it.

3.3.1.2 Reliability of the test. For several years, students whohave taken

the Joint Honours course which includes the Computingoption have been given

the QUIStest at the beginning of the course. Their results have since

been comparedwith their eventual showing in the examination at the end of

the year. As the aptitude test' is designed to test ability to do

programmingwork, the scores were comparedwith the results of the practical

examination only. The scores are available for the last two years and

exclude those students whohave either seen the test before or are repeating

:the year. Exactly one hundred student scores are to hand and are included

in the following analysis (see Figure 3.2).

Analysis of Variance Table.
---------------,------ ---- - .._----------------.,------,,-----,

~~rc~_p_!_!~ri_~tiC?_~__ §__umo.f__'?q_~are~__ ..Deg!'~~~_9_Lf.!,_~ed_Qm_f!1e~_fJ_quarti.f.v:altie:
~due to regression 789 1 789 11.3'"
paraIlel-r-Jiles versue ~

1 single I
line (between years) 793 1 793 1; 3'J
residual after fitting ~ .is:«:

~!--:-ral-;--lellinea I 6788~_-_+----99--97-._---t-. _._-~'lQ_- _
total sum of squares I _8}J_O__ -,---'-_____ . /

The tabulated Fvalue on 1 and 97degrees of freedom is 7.0at the ~

level. Of lesser importance is the fact that there is a significant

differeAce in performance between the two years. The main conclusion is

that the dependence of a student's practical examination score on his

programmingaptitude score is significant at the 1.% level, which suggests

that the test may be en estimate of programmingability.

125

Graph of pract Jc<11 examination s c o re aga inst (lUIS score

for, Joint
,

HOnOlJ r s students. OJ
" !...\ ", \ 0

'. \
\ \ U

\ '. VI
N \ 1""'4\ \

\ \ (/)

\ So. \ 1-\~ \ to =:>
\ OJ Cl

\' ,>-. \ ,
<:I

\ \ <:I
\
\

r-4

X \
0 \

>< \
)(' \

\0
\ X
0\ 0

0 \ 0\X \ 0\

0 \
x 0 \ <:I

'\ 00o X \ x
0 0 0 \

0 e \

0 0 \ 0 0 x
(;) \ o x ex e

0 0 \ 0
0\ ')C

X 0 \ e 0x \ o
o e x 0 ex

0 0 e
0X 0 Cl>

X la
X G

G
X o x 0

0 x x e
x x x

0 <0
X x X 0\ oc x \ \

X
0 \x \ 0 cX .::t

X X \x x

0
r-4 N 0

s.. 1-
10 10
Cl) Cl)

>- >- x 0
N

en en
Cl) OJ.....
0 0
c c
Cl) Cl)
"0 "0

0 X I
j

-\t=0 0 0
.::t tt\ N

Ft gure 3.2

126

3.3.1.3 Choice of the test for this course. The results quoted above
for the reliability of the QUIS test are based on observations tAken
at an interval of nine months. During this time, how hard the student worked
on his programming problems contributed to his examination score. In the
case of the PIL cour-se, the post-test was to be given in the same week as
the QUIS test 60 that such factors as loss of interest and interference
from other sources would not affect the validity of the test as much.
This fact, together with the fact that the course was in particular about
a programming language suggested strongly that the QUIS test was a good
choice in this situation.
3.3.2 The post-test.

The post-test was designed with the thought in mind that if it were
either too easy or too difficult then not a sufficiently large spread would
be obtained in the scores. Also, the test had to determine the students'
comprehension of what they had been taught during the week as well as their
ability to understand simple programming techniques. Tb this end, the
categpries of questions that were considered necessary were factual questiono,
expression evaluation, simple program tracing and simple program writing.

The actual questions that appeared are contained in Appendix B,
together with the marking scheme adopted. Thus, the marks allotted to the
four categories mentioned above are 18, 38, 16 and 28, respectively.
,.,., Analysis of thescorcs for the pre-test and the post-test.

'We are concerned with the use of the analysis of variance technique
to compare the post-test scores for the thre~ groups, the dependent
variables, ~ ,when the effects of differences in the values of some
underlying, independent variable, ~ ,the pre-test score, have been
eliminated. The object is to allow the comparisons between the values of
the dependent variable to be made more accurately. In other words,
comparisons of the effects of placement in a particular group on the post

127

score of a student maybe mademore accurntely if the effects of unequal,

initial aptitudt:! score are eliminated. Mcasuremc;lts of thi.s type which

may be used to account for some of the variability in 't have been called

'concomitant' observations. It is important that the values of concomitant

variables are not affected by the treatments which the experiment is designed

to compare. Obviously, in our case, this is satisfied.

The basic assumption is that within each homogeneousgroup there is a

linear regression of lj on ~ with the same slope and with normally

distributed errors of constant and equal variance for all groupe.

The following table gives the scores obtained for both tests. A linear

tranefonnation has been applied to the pre-test score.':' This will not affect

any calculations but as the transfonnation has the result of giving the

pre-test scores the same mean as the post-test scores tben the effect is

that comparisons of the groups and of particular students "by eye" are made

far easier. Graphs of post-test score against pre-test score for groups

A, B and C are contained in figures 3.3, 3.4 and 3.5, respectively.

Two students failed to appear for the post-test and hence are not

contained in the analysis. Their respective aptitude scores (transformed)

vere 43 for the missing group A student and 64 for the missing group B student.

128

Graph of post-test score avafnst pre-test score for group A.

post-test
score

80

o

100

~.o

"

20 40 60
pre-test score

80

Ft gu re 3.3

129
Graph of post-test score a~aTnst pre-test score for ~roup R.

post-test
score

100

o
40

20

o
20 40 60

p re-test score
80

FIgure 3.4

130
Graph of post-test score against pre-test score for group C.

post ..test
score

100 i

~1:Ie.t 1

40

o

207

----·t-------+---
20 40

I .-
60

··_·····--1···--
80

pre-test score

o

FIgure 3.5

'1)1

'l'he following L3tatistJ.cs wer-e computed •
..... ------···--- .. r - --- .. -----:-- .. -.-.-.--. ·---·-r--····· - r" ---,

i A ' B i C I _ to tal I
Z'J-~;a. I 26973 24091 I 34011 i 850'15
I:~. I 421 365 481 I 1267
(:t");' i 1653 1887 I 959 i 4499
~1i.1. I 30436 24491 i 31673 ! 86600
I:,,-. . 436 371 i 461 I 1268
(x.")j I 3279 1551 I 1313 6143
~%..i. ..':f~ 28137 21928 i 31120 81185
(;-:1Tj. 1915 -641: -55? ?1?
~j 0.5840 '. -0.4133 :-0.l.242! /

(~i~{~);' j ._O•.~~.~§_...:.:O_.3~~~k.4~~~__._j_ .._16)9
....Residual sum of squares after fitting 3 slopes, R (~ > -Ii)

= 4499 - 1619 with (N-2k) d.f. = 2880 with 14 d.f.
1\ 1\

Residual sum of squares after fitting 3 parallel lines, R (~ I")
2

= 4499 - ~~43with (N-k-1) d.!. = 4415 with 16d.f.

Tabulated F2,14 at the ~ level is 3.7. T.hus, as the derived F-statistic
is equal to the tabulated value at the ~ level, we may reject the null
hypothesis that within each group there is a linear regression of ~ on :x.

with the same slope and ~ggest that the treatment effects differ
significantly. The fitted regression equations are:

group A : y = 0.5840 'C. + 23.76

group B : y = -o.4133x..+ 86.38
group C : y = -o.4242~+ 96.65

Standardising at the most convenient pre-test score, 63.4, the overall mean,
the adjusted estimated post-test scores become

group A : 60.8

group B .: 60.2

group C 69.8

132

From the fitted slopes, it appears that the difference between groups
is caused by group A exhibiting a different effect from both group B and
group C. Standardising at the pre-test mean, the post score for group C
appears higher than those for groups A and B but as the slopes are so
different we must introduce a different model to attempt to compare the
group effects further.

In the above model we have
for j = 1, 2, 3.

This gave a residual with 14 degrees of freedom as we estimated 6 parameters.
The second model is

for j = 1, 2, 3.

In other words, at the overall mean, the intercept is the same for each
group and the residual will have 16 degrees ot freedom as we are estimating
4 parameters.

Residual sum of squares atter fitting 3 slopes with a common intercept,
= 3261 on 16 d.f., which gives an estimated variance of 204.

Adding a further line to the analysis of covariance table we get that for
3 different versus 1 common intercept (within groups), lDean .,quare = 190 and
degrees of freedom = 2. This estimate does not give a significant result.

From this analysis we may conclude that the positive response given by
group A differs significantly at the ~ level from the negative response.,
given by both group B and group C.

We mi8ht calculate the estimate of the missing score from group B.

The second mo~~l gave:
1\

2(& 63.69
~, IL 0.5907

-0.3924
-O.}475

Thus, E £1-1 x.

, vo.1- {~1·10.}4
, vo.i- ($J : 0.0620
, VQ.1-t t.J. 0.1306
, '\IQ.....t ~,l:0.1.521

= 64, group B} = 63.46
and the 9~ confidence interval is (56.17.70.75).

133

3.3.4 ResEonses and their relation to performance.
Examination of the students' response files returns totals for the

number of questions the students from groups B and C answered during the
CAl lessons and the number of these questions that were an6wered correctly
first time. The main reason. why different students answered differing
numbers of questions has been mentioned previously. It is that there was
insufficient time to allow all students to come to completion at their
own pace. In addition, some students took slightly different routes through
the course and in some cases this produced a different number of questions.

From this data, it was hoped to show that there was no evidence to

support the assumption that students who had been in a pOsition to attempt
more questions, and hence seem more of the course actually on a terminal,
might do better in the post-test. In other words it was hoped to determine
whether the handouts given when the students were unable to complete the
lesson had had the desired effect of suitably replacing the conversation
tor which there was insufficient time.

Also, it was hoped to find out if a relationship existed between post-
test score and percentage of questions answered correctly at the tirst
attempt.

The observations were:
post-test score number of questions attemptedr------------------+--------------

43 4957 ~
77 63
58 47
90 53
40 48
57 59
70 74
73 87
51 8966 80
74 61

'-- 9O ~ 8L _

~.

_ .__._~ right first time I
57.1
63.2
61.9
63.8
67.9
41.7
59.366.2
57.5
69.7
57.5
63.9
69.7----_.__ ._.- .._ -.--.---~

A regression analysis was performed against both the other variables
in turn. The observations were treated as coming from one source, not two

134

separate groups as, no matter in what group the student \-lasplaced, he still
received identical CA! lessons. Graphs of th~ post-test Gcore against the
number of questions attempted and the percentage right first time are
contained in figures 3.6 and 3.7 respectively.

The analysis 'of variance table for the regression of post-test score
against the number of questions attempted is:

~~~~i1~~~~~!;f;r~~!~~~~qu;.~=f~1~trel:~~\~~1
The tabulated value of F1,11 at the ~ level is 4.8. Thus, we may conclude
that there is no significant dependence of the post-test score on the
,number of questions attempted. This suggests that the handing out of
simulated dialogues to some students owing to insufficient time did not
adversely affect those students' performance in the post-test.

The analysis of variance table for the regression of post-test score
against the percentage of questions answered correctly at the first attempt
is

-
source of variation degrees of freedom sum of squares mean

---due to regression 1 1079 10
-devlation- abO'u-tregressionI_~J! 1968-- ---1
total 12 36q2-- ---

--~----square F1 11------ .---. '--- .79 ,6.0-9-17--f-==cz---
The equation of the fitted line is y = 1.279:1t.- 13.57;
estimated S.E. l~} = 0.5207, 9~ confidence interval for ~ is (0.133,2.425);
correlation coefficient, T = 0.595.

As the F value exceeds the tabulated F1,11 statistic at the 5% level,
we may conclude that the post-test score may be estimated from the percentage
of questions answered correctly first time using the above linear
relationship.

Using this to estimate the missing group B post score, we have:



135
Graph of post-test score agaInst percentage of questfons
answered correctly fIrst tIme.

1
90 I

post- I
test
.score

o 0

80

o

o

70

o

so

o

60
e

o

e

e

3__~ ; +- +-

50 60 70
t correct first time

F1gure 3.6



136

Graph of post-test score against number of questions answered
during the CAl lessons.

o o

80

o

post-
test
score

e
so ....._

40 0

o

3 i
50 60 70 80number of Quest tons attempted

90

Figure 3.7



137

estimated S.E. t.E.( 11x..;": SCf_ "7)1 ...3. 11 ~

and the 95% confidence interval is (54.49~71.09).
3.3.5 Response times and their relation to perform~l1ce.

In addition to information about the number of questions attempted,
a search through the students' response fLles also furnishes data on the
time for every response and how mlU'\Yresponses were made (as opposed to

how many questions were set). From this data, it was hoped to ascertain
whether a relationship existed between post-test score and anyone or more of:

(i) average response time for the first attempt;
(ii) average response time over all responses;
(iii) average response time per question, summing times ove!"all

attempts; and
(iv) ,(v) and (vi) their inverses.

The observations were:
----

post-test no. of questions no. of total time time for first
score attempted attempts (sec) responses (seo)

made

43 49 65 4426 3242
57 68 92 5984 4913
77 63 84 6905 4982
58 47 75 5325 2680
90 53 72 4274 2396
40 48 82 7418 4510
57 59 76 6631 5128
70 74 90 7771 6653
73 87 122 6188 511551 89 113 8082 671566 80 102 4199 344774 61 83 6158 4599
90 89 114 . 4454 3821

From this table, a regression analyfiis was r·.,rformedon the post-test score
against each of the six variables tabulated below.



I~st- - ~v. time recipe of av, time recipe oiTav-:-~~~-1-1'~~~~~I test for av, time for av, time per av, ~~e I
I score first for first al.l for al.l question; per ,

response response responses responsesi :question j

(sec) (x 10-2secr-1) (sec) (x 10-2seci1) (sec) '(x 10-2sec-1) ~
-----+- f-'------ ..------- -...-..-.--.....-.---. ------·····----·-1

43 66.2 151 68.1 147 90.3 111
57 72.3 138 65.0 154 88.0 114
77 79.1 126 82.2 122 109.6 91
58 57.0 175 71.0 141 113.3 88
90 45.2 221 59.4 168 80.6 127
40 94.0 106 90.5 111 154.5 65
57 86.9 115 87.3 115 112.4 89
70 89.9 111 86.3 116 105.0 95
73 58.8 170 50.7 197 71.1 141
51 75.4 133 71.5 140 90.8 110
66 43.1 232 41.2 243 52.5 191
74 75.4 133 74.2 135 101.0 99
90 42.9 233 39.1 256 50.0 200·--·_---'_-"-0....__ -,--1_--0-- · _

Graphs of the post-test score against each of these six variables in turn are
contained in figures 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13.
3.3.5.1 Regression of post-test score against the average time for the first

response to a question.
r-----

I --source of degrees of sum of mean square '1,11variation freedom equares
due to
regression 1 875 825 4.4
deviation"l"
regr~ss;on 11 2172 197 /total 12 Yi47 1 .1
As the tabulated value of F1,11 at the ~ level is 4.8, the result is not
significant. Hence, we may conclude that there is a suggestion from the
data that there is no linear relationship between the post-test score and
the average time that the student took to make his first response.
3.3.5.2 Regression of post-test score against the reciprocal of the aver~e~

time for the first response to a question.
source of degrees of freedom BUID of mean square F1,11 Ivariation squares
due to

~.~ess.!on 1 987 987 5.'deviation about
~E.~~~!:Qn I 11 2060 187 /total 12 3647 _f_ 1-



139

Graph of post-test score agaInst average tIme for fIrst respnr.s0..

I
90~

post- i
test
score

70--

60

SOT

<:) 0

o

o
o

o

o

o
o

o

•
e

9~80
average response tIme for fIrst attempt (sec.)

Figure 3.8



Graph of post-test score aza Inst rec l p roc a l of average

time for first response.

gal
post- I
test !

sec::1
o o

70

o

o
e

o

e

60-.

I
o

o

o

40 -I 0

I
3-s-l------+1---------t1:_-------t--------r!-

9 120 160 200 240recIprocal of average tIme for fIrst response
-2 -1

(x 10 sec. )F 1gu re3 .9



141

Graph of post-test score axa inst average t Irne over

all responses.

90 I 0 0.,
post- I

I
test
score

o

o

70

40

o
50

o

40 50 60 70 80
ave rage time ove r a11 responses (sec.)

---~-
90

Figure 3.10



142
Graph of post-test score against reciprocal of the avpraFe
time taken over all responses.

90

post-
test
score

80

70

50 -+-

40

o

o

o

o

o

CD

35.~~ __ ~~ ~~ ~~----------~~~------1 0 2 0 240
reciprocal of the average time

-2
(x 10

o
o

o

o

F I gu re 3.11
taken
-1

sec. )



Graph of post-test score a aa inst ave ro xe total response t imp.

per question answered.

901
I

post- I'

test
score

o o

70

o

60

o

4p 80

F tgure 3.12

o

o

o

o

o

o

I I I100 120 140average time per question (sec.)



post-
test
score

144
Graph of post-test score against the recIprocal of th~
average total response tIme per question answererl.

90

o

o o

80

o

o

70

ee

.50 ~

40 o

o

3._+-----~~------------+_------------_r-------------+----
610 160

t ota 1 response
-2

(x 10

120
ree I proca 1 of ave rage

80 200
t lme

-1
sec. )FIgure 3.13



The fact that the F value obtained is significant at the 5% lev01 tends to
suggest that the post-test score may be inversely proportional t.othe
average time a student takes to make his first attempt.
The equation of the fitted line is 't = 0.1989 ~ + 33.81;

estimated s.e. f}];:O.oca~(,~ 9.5%confidence interval for ~ is (0.0084, 0.3894);

correlation coefficient,'_ = 0.569.

Using the above relationship to estimate the missing group B post
score, we have:

Et tt 1x= 'S'4-l-~lt-.4-4- j e.sl"lt\...tt.6. S. E.. LE. (~Ix.:: 15"4-)} .. 3. ~';
9~ confidence interval is (56.07,72.81).

3.3.5.3 Regression of post-test score against the average time taken over
all responses made.

------------~r_---------+-----------r---------
'degrees of

freedom
sum ot
squares

source of
variation

mean square

regression 1 705 705

_"~~~';~alxlUj-_B__ -+-- __ ~-=~__ t _.;2"'-1L .. ~ __

The F value derived is not significant. Thus, the data suggests that DO

linear relationship exiats between the post-teat score and the averaae
response time taken over all responees made.

Regression of post-test score against the reciprocal of the
average time taken over all responses made.

source of k1egrees of sum ot lleaD square '1,11variation treedom squares
f---.

du~ to
regression 1 726 726 2_~~_~---- ....---.deviation about
regression 11 2321 211 Ltotal 12 ~7 7 --
The F value obtained is not significant. Hence, the data suggests that the
post-test score is not 1nversel1 proportional to the average response time
taken over all responses made.



146

3.3.5.5 Regression of post-test score against the averase total responBc

time per q~estion answered.
-.-.- _.. . . - -.-_.I-··--·_·_--·-· .- ..-- .--.

source of egrees of sum of squares
variation freedom

mean square

due to
.__.__1_ . . _9~1___._.. .__._ ---_._2~1 ..__ . .._5~J.

__ ~086 . . . 190_. . ,;_j
______~7 .._._. . L ._ / .-

.. _._----_ .._----- --_._-_ ....-..-...__ ...._---_. __ ..._-_._----- ._--- --_.__ . __ ._. __ -.__ ._-- .._. _ .._------

_2:~gr~ssion
deviation abOu
regression·-·totai-·----~

The derived F value is significant at the 5% level. Thie tendeto suggest
that the poet-score may be directly proportional to the average total
response time per question answered, with negative gradient.
The equation of the fitted line is 't = -0.3231~ + 95.38;

estimat.ed S.E. i~l = 0.1437; 9~ confidence interval for f3 is
(-0.6392, -0.0070); correlation coefficient,~ = -0.562

Using the fitted parameters to estimate the missing group B post score,
we have:

E L}J.x. a 1f'.1} = 69.95; estimated S.E. (e.(1'.x.: ;t·,)l= 4.39;

9~ confidence interval is (60.29,79.61).

'.'.5.6 Regression or post-test score against the reciprocal or the
average total response time per question answered.

source of ~egrees ot sum of squares I mean square '1 11'variation freedom ' I,. - -.
due to Iregression ! 1 810 810 .__,4·!>-ideviation about
re_gression 11

~~
~.2 Ii

~fal· 12 / / J
The F value obtained is not significant. Hence, the data suggests that
no inversely linear relationship exists betveen the post-test score and
the total response time per question.
'.3.6 Performance of group C students during examples classes.

Section ,.2.2 outlines the structure of the examples classes which
group C students were given on terminals. The students' response tiles
contain all the information about ~ich choice they made at any or the

decision stages. Of particular interest are the numbers ot times the
Dm> and HELP facilities vere used durin solution of he



147

The following table shows for each student:
(i) the fraction of the number of queatzlcr.s he answered in which

he requested IlOO (maximum 1.00);
(ii) the average number of HELP elements he received per answered

qUEstion; and
(iii) the fraction of the number of questions he answered correctly/

incorrectly wit~without HELP.

.0.50
0.75
0.67
0.29
0.43
1.00

_1 _~ .
L<?.!::E~ill.2_~_50_G

INro Im.P
requests e

! correct with . correct with wrong with wrong with
lemen ts I no help help no help help

..._ ..._-._-- -. ._----- ----.--------- -~.-----~-.--
0.75 0.2.5 0.2.5 0.2.5 0.2.5
1.00 0.50 0 0.25 0.25
0.83 0.33 0 0.33 0·33
0.43 0.86 0 0 0.14
0.86 0.71 0.29 0 0
3.25 0 0.7.5 0 0.2.5
0.41 0.83 -0·11 9._ 0-_ ... ----~.89 I 0•.59 0.18 0.09 ._Q~~-~--_j

The discouraging part of this data is that on average INro was
requested for only .5~ of the questions attempted by all students and the
average number of HELP elements accessed was 0.89 out of, on average, 8
such elements per question. However, this may be explained by the fact that 59.i

of all questions attempted were answered correctly without any assistance.
Of the 41% remaining, 1~ were answered correctly after assistance but only
9j were answered incorrectly without any help at all. This 9.i 18 made up
by .3 students only.

An attempt was made to give an example class score to each of the
students, based on such items as whether they answered questions correctly,
whether they £·lked for HELP or INFO, and whether they made more than the
minimum number of attempta required. The rationale for deCiding the
scoring scheme was as follows. For a correct response:

(i) with no assistance, 20 marks;
(ii) if INFO was requested then 4 marks were deducted;
(iii) if HELP was requested then 2 marks per elements were deducted;
(iv) so long as the response was eventually correct, the student

was not penalised for extra attempts; and



this meant that only the first three HELP E:lern~ntswarrant a
deduction.

For an incorrect anewer t

(L) each additional attempt over the minimum of two gained 2 marks;
(ii) a request for INFO gained 3 markb;
(iii) each IlliLP element added 1 mark; and
(iv) a ceiling of 9 WllS imposed which meant that only the firGt

four HELP elements affected the score.
This scheme was applied to each question attempted and the average over

the number of questions, converted to a percentage, was attributed to each
student. The scores were: .

r------------------- ,_- --------.--.----..----
post-test score fitted examples class score

57 49
70 60
73 50
51 ~
66 86
74 48
.20 83

The correlation coefficient for these scores is -0.0001. Consequently,
we may conclude that the examples class scores that were fitted have no
bearing whatsoever on post-test scores. A scatter diagram is shown in

figure ,.14.

'.'.7 The attitude questionnaires.
Much information on the student's ability and performance is given

by the results of the programming aptitude test and the post-test and by
examination of the students' response files for the course. However, to
gain such valuable data as the students' attitudes to the course, both
beforehand and afterwards, their change of opinion on certain aspects
over the week and their assessment of the structure, content and



I90 ~.

post- r
test I
score I

80

70

60

so

1tl ~J
Scatter diagram of post-test score against fitted

examples class score.

o

e e

o

e

;s s6 6t 7'0 8
fItted examples class score

FIgure 3.14



150

presentation 0 f the course, two questionnaires v:ere given. Unfortunately,
owi.ng to lack of suitable sets of subjects and time before the course
itself, it was not rossible to arrange a pre-trial for the quee tLonnad.r-es,

The first questionnaire was given immediately on commencement of the
course on day 1. 'All that the students were told was that some of them
were to receive the course from a typewriter terminal - they were not
"sold" the advantages of CAl. Also included in this questionnaire were
such questions from which selection of the groups could be made.

The second questionnaire was given on day 5 after the instruction had
been completed. Only groups B and C were given it as the questions were
not applicable to those taught conventionally since the questionnaire
assumed the experience 0f a CA! course.

The results of the questionnaires are contained in Appendix C. For
questions which seek a comparison of attitudes before and after, the
response matrices follow the two questionnaires. The results are divided
into sub-totals for each group. For the pre-questionnaire, the grand
total includes the answers recorded for the two students who did not
attend day 5.
3.3.7.1 Pre-course attitude.

Before the course, the stUdents were asked their opinions on various
aspects of their impending use of terminals for the course. The vast
majority regarded their typing as being too slow yet about the same
number decided that they would not be inconvenienced in having to wait for
the course material to be typed out. Similarly, most of them thought thaA:
listening to a typewriter for an hour or so would do tbeir mental health
no harm at all. It was no surprise,' therefore, that only a small fraction
bad a preference for a noiseless, swift visual display instead of a
typewriter, since, in addition, nearly everyone thought that a hard copy
of notes was essential.



151

At this stage of the course, a lack of confid~nce and slight
apprehension of the unknown was apparent. Three quarters of the students
thought that being taught in a definite sequence of topics rather than
having a choice of their o~m was preferable and just over half the total
suggested that two people seated at one terminal would be a better idea
than individual instruction.
3.3.7.2 Bost-course attitude. Having been subjected to CAl for three
afternoons, the students were able to form a preliminary appraisal of the
method of instruction. On the statement that the method was too impersonal,
both groups were split down the middle. However, over half of the total
agreed that this would not be the case if CAl sessions were reinfc:ced
with small tutorial classes.

As for the structure of the CAl course, only 1~ of the students
indicated a preference for multiple choice questions as opposed to

questions where they were asked to construct their own response. For
feedback messages, two-thirds preferred something more than just an
impersonal "yes" or "no". One out of this majority suggested 'if (the
response is) correct, just pass on; if incorrect, '(give) an explanation'.

Group C students were split on whether they preferred the structure
of the lessons, which was predetermined, or the structure of the examples
sessions, where learner control techniques allowed them some degree ot

freedom. However, in the examples classes, they all agreed that the idea
of requesting the help they wanted, not what the machine thought they
wanted, was most desirable, although, in detence of the infrequency of
use 'of the help facility, one student added 'I suggest that the word
"help" be changed to "advice" and we may have used it more'.
3.3.7.3 Change of attitude over the course. The most striking change
of attitude encountered was certainly that concerning the preference of
lectures to other methods of teaching~ Out of the group B students,



152

four originally preferred lectures but afterwar ds only one was of the
same opinion. In group e, all showed preference for lectures at first,
but half of these changed their mind after the course. The reason for
this change of heart seems almost certainly to be that the attractive
features of CAI, such as self-pacing, individualised learning, etc.,
have impressed themselves,on the students, although one wonders how much
the novelty effect has had on both their performance and attitude.

The students' views on the relative effectiveness of lessons and
practical classes provided a further comparison between conventional
problems classes and those on a terminal. Out of the six students in
group B, four originally estimated that they learned more from examples
classes than lessons but two of these changed their mind whUe one of the
others changed the other way. This result is about what was expected,
as the examples class structure was already well known to them. In group
C, all the students initially considered examples classes more fruitful
but after the course two-thirds bad had a change 0 f opinion. This may
possibly-be explained by the fact that by and large group e did not have
enough time to complete their sets of problems each dB:y. Also, unlike
conventional examples classes with a demonstrator, they suffered from
not being able to ask specific questions, perhaps about theory, rather
than just access predete~ined help messages.

There was quite a shift of opinion on whether CAl courses would
be enhanced if two students sat at one terminal. Originally, seven out
of the thirtt..:nstudents thought this way but only one of these did not
change his attitude. Another student experienced a change of opinion in
the reverse direction. This tends to suggest that the experience of a
CAl course is not so frightening as at first thought. Perhaps it was
realised that the questions during the lessons were not too difficult
and adequate reinforcement was given on incorrect responses.



153

On the question of whether it is preferable to be taught in a

definite sequence of topics rather than have a choice, which group Chad

the opportunity to compare in the light of their experience, five out of

seven originally chose definite sequences but two of these changed

their preference after the course. This shift in opinion may be explained

by the students' preference for the freedom that learner control techniques

offer.

Someinteresting changes of attitude were recorded with respect

to the interface of stUdent and machine, the typewriter terminal.

All of group B originally reckoned that their typing would be too

slow but two-thirds of them changed this opinion. All but one of

group C had similar misgivings beforehand but half were converted during

the course. The reason for this change was probably that during the

course typing was at a minimum,despite the fact that there were not many

multiple choice questions included. ~ite a few responses required

single-value constructed replies containing only a few characters.

As for the irritation that listening to a typewriter for an hour

or so at a time might cause, only three out of the total of thirteen

thought it would bother them, but afterwards they changed their minds

completely.

Discussion of the nuisance in having to wait for the course material

to be typed out brought differing overall responses from the two groups.

Originally, group B all thought that it would not cause them annoyance

but two-thirtiB of them changed their opinion afterwards. With group C,

only one student expressed concern at first. After the course, there

was no change in opinion at all. Tworeasons spring to mind for this

state of affairs. As the operating system tends to improve after 1630 or so,

group C tended to have better performance from the machine on the average.

Also for some part of their course, the problems classes, the environment



154

is somewhat different. They are not waiting to see what happens next,
but only request as much as they want and when they van t it. This learner
control aspect may be very important when trying to assess student attitude.

The inadequacies of the terminal typewriter seem to be amply
compensated f~r by the fact that printed notes are generated. Only two
out of the thirteen stated that they originally had a preference for a
noiseless, swift, visual display even though it would not give a hard
copy but even these students were converted during the course. As one
student remarked, 'Hard copy is essential'.
'.'.7.4 The structure of the course and the performance of the system. Much
information was gathered as to the :possible structure and content of
fUture courses.

Of the thirteen students who received CAl lessons, only one thought
that the notes he had received were poor. However, the students' opinions
on the subject content, as far as volume is concerned, varied widely. An

equal proportion, almost, suggested that there was too much, insufficient
or about the right amount of subject matter. As for the number of worked
examples in the lessons, slightly over half the students considered that
there were about the right number, but one thought that there were too many.

Only one student considered that there were too few questions asked
during the lessons; the rest were quite satisfied. So much so that
everyone thought that the level of difficulty of these questions was about
right. However, about two-thirds of the total suggested that in some
instances th~y just did not gather what was required of them.

Slightly over half the students considered that feedback messages
appeared with the desired regularity, but, of the others, there was an
even split with opposing views. As for the receipt of overall scores on
sequences of questions, again slightly more than half were satisfied that
this information was given about the right number of times but, of the
remainder, the majority would have preferred more performance data.



155

Only one student considered that the "pauses" did not allow him to
proceed at his own pace but eight thought that the number of "pauses" was
too large. This may be attributed to the fact that all the students were
of the opinion that the response from the system Vias too slow. In fact,
one student suggested that fewer "pauses" would help overcome this particular
difficul ty.

As was quite apparent from the response files, everyone suggested that
more time each day would have helped greatly, although three students did
not believe that three days was too short for such a course.

The majority of group C students considered four questions in an
examplas session was too many but the rest thought this was the right number.
3.3.8 System performance during the course.

The following tables represent to what extent the PIL course used the
computer duriilg the three days of instruction.

The first table compares usage between the total number of terminal
users in the day, that is from 1000 to 1200 and from 1400 to 2000, and
groups B and e, with respect to average tenninal elapsed time, average
CPU time, average virtual memory integral (VMI) in the CPU state and
average virtual memory integral in the wait state. By and large, group E
used the terminals from 1400 to 1545 and group C, together with the
occasional group B student for part of the time, from 1545 to 1830.

However, in this table, there is no confusion between entries for group B
and for group C.

The second table compares the average total number of virtual pagec
on the drum with the average number used for the course, taken at quarter
hourly intervals. The two periods of comparison represent those times
just spec.ified, for group B alone and for mainly group C with one or two
group B members. To obtain a rough estimate of the n1.unberof students
from the course using the terminals over these periods it may be noted



156

that if only group B students used the machine about 210 virtual pages

would be needed whereas if only group C students were considered this

would be about 300 virtual pages. During the course of instruction there

r------- ---.----.----.-.~ ---
sessions number of avo

sessions t·
(m-----_._- -~-.------

all 266
day 2 group B 10

group C 7 1
ail 2~1

day3 group B 11
~oup C 7 1- all 281

day 4 group B 8
group C 7 1

were seven students in each group.

~~apsed -~~im~ro-~~~oo-jav :-OO-:ai-;-
~?:~_..._.__ ... (min>. ~p~~~-se~.~_.._(.~age:_~_=c)_
31 0.55 981 43907
62 0.4~ 819 107400
74 1.22 2859 40528632---' --o:3;r- ---- 91'+ --45-601::---i
69 0.50 877 121545
~~ 6~·§~r--~§~6 --~t'~T~--J
89 0.71 1247 157002
60 1.}4 3390 417857----r .. --

time avo total avo virtual memory ratio
virtual memory for course

(pages) I (pages) (%)

day2 1400-1545 676 187 28
1~-1§~ 696 278 40

day3 1400-1545 595 209 35
1~5::1.~2Q 7!±2 _3_lt~. -'+Q-

day 4 1~-1545 700 208 30
154,?,:,,18~_679 28Z 42

The most interesting observation is that, whereas the average elapsed

time of a group B session is about twi.ce. that over all sessions, the

CPUtime used is of the same magnitude. Similarly, average elapsed time

of a group C session is about five times that over all sessions but CPU

time used is only twice as much. This confirms that CAl programs require

a much smaller ratio of CPUtime to elapsed time then the "average" job.

The reason is that such programs are concerned mainly with input/output

and only need a small amount 0 f computing ~.)r response matching and

conditional branching from time to time.

In contrast to the small amount of CPUtime needed, the stu'dents on

the PIL course were each required to have a considerable amount of virtual

memory. In the case of group B, each student had a constant 30 virtual

pages throughout the course. A group C student needed 40 when he started,

then up to .50 by the end of the course. This is explained by the fact



157

that the PIL interpreter was available to him in addition, and use of
successive PIL files to store the examples necessitated more and more
work space for the interpreter. The figures given for the VMI in the
CPU state and the VMI in the wait state provide interesting comparisons.
For group B, whose sessions are twice the length of the average session
but only use the same amount of CPU time, the VMI in the CPU state is of
the same order but the VMI in the wait state is about three times as
great. This suggests that even though the same virtual memory is being
efficiently used, more is being required just to sit on the drum waiting.
For group C, whose sessions are five times the length of the average
session but only use twice as much CPU time, the VMI in the CPU state is
three times as great as the average but the VMI in the wait state is nine times·
as great. This suggests that, in proportion, more than the average virtual
memory is being used efficiently by members of group C but nearly twice
the average over the whole session is required to wait on the drum.

Unfortunately, the number of drum reads is not available at all for
comparison. However, it may be that with such large amounts of virtual
storage needed, the small amount of CPU time required may be offset by the
amount of paging needed. Certainly, the introduction of shared code, which
would vastly reduce the amount of virtual memory needed per student, would
greatly increase the efficiency in the use of the computer for such a course.

The excessive use of virtual storage is shown in table 2 for each day.

Between 1400 and 1545, 25% of the terminals, that is, those being used for
the course, U." 3d 3~ 0 f the to tal virtual meClory on the drum whereas
between 1545 and 1830, about ~ of the terminals used slightly over ~
of the total virtual memory.

The following table gives the cost of computer facilities used to run
the course. The rates used are those for University departments, these
being approximately one third of the industrial rates.



.----- ..------ .. -- .. -- ---.-.---- - .- ..-- -. -._.. . ..- -... .. ......_ .. -' - "J
group B (£) gl~Up C (£)-_._._-_._-_. -------- _ _.__ .__.__ .. _ ----._ ._ .._.- -.- ~

terminal elapsed time 21 34
~t~· 16 ~
VHI, CPU 4 9
VMI, wait 99 240
file storage 2 3
system file storage 6 6
total 148 318----------- ------.------ -----

The outstanding feature of this table is the high percentage of the total
cost that the VMI in the wait state contributes, yet again suggesting that
shared code is essential for future investigations.

The total student hours logged for the course using CA! were 34.7
and 57.4 for groups B and 0, respectively. Thus, the corresponding cost
in pound'aper student hour was 4.3 and .5.4. This includes the charge for
hardware, system software and operation and maintainence but not for
instructional software. It would be difficult to obtain an estimate for
this as not only is it difficult to fit a charge to the number of hours of
author time used but also in our case the number of student hours actually
used is far smaller than those which might have been used and, indeed,
might continue to be used. The National Council for Educational Technology
(1968) est:imated the cost per terminal hour in a University using ten
tYFCwriter terminals as £1.5, excluding cost for instructional software.
Thus, the cost for the course was far in excess of their estimate.
However, three points of difference should be stressed. Firstly, their
estimates were for a dedicated system as opposed to a general-purpose
time-sharing system. Secondly, introduction of shared code would reduce
the cost by at least half the total (that is, the cost of the VMI in the
wait state with shared code would only be about a quarter of its previous
value). Finally, two years have elapsed since the estimate was made.

As a contrast, the cost of conventional teaching in the sciences
at a University NCET estimated to be £0.7 per student hour.



159

3.4 Conclusions from the investigation.
One important function of the investigation was an eValuation of the

NUTS author language and system in general.
The production of five hours of CAl lessons, which totalled 3300

source statements, and about four hours of on-line example classes,
another 1500 source statements, took about 600 hours in all. This included

(i) preparation ot subject material, which was already well known
to the author;

(ii) .coding in the author language, which should have been made
easier by the tact that the author was also the designer;

(iii) punching, which was carried out by experienced key-punch
operators;

(iv) debugging;
Cv) testing, by numerous people, and
(vi) recoding , where necessary.

Thus, taking all these facts into consideration, a slightly larger
production time ~uld normally be the case. As it was, a ratio of about
70-1 for the production time against the course time vas achieved.

The scope that the author language gave enabled a wide variety of
question types to be attempted. Response checking was coped with quite
adequately and the only two questions for which correct answers were not
credited during the course were amended quite easily afterwards.

In general, the response time given by the time-she.ring system
was too slow. This certainly can not be accounted for on the basis that
more load was being put on the system as the ratio of the CPU time to
elapsed time was of the order of 120 to 1 over all the students. However,
a heavier load was put on the drum but a measure of this load was not
available. Shared code among the partiCipating students would alleviate
the problem to some extent, but time-sharing systems usually suffer from a
misuse of the facilities by terminal users in general.



160

\~ilst the course was being debugged and tested, it was very

difficult to estimate with any degree of accuracy the length of the

constituent lessons. Even though a number of different people went

through the course, there were at most two of them on terminals at anyone

time. Comparing this situation with the cour-se proper when at least seven

students were receiving instruction at any one time, it can easily be

seen that a false estimate of the length was obtained.

In an effort to improve the service given by the time-sharing system

and. hence, overcome the shortage of time, certain organisational changes

were successfully made. The chief of these was that of allowing the

students to commencepromptly when the system was ready, before t~e general

users were permitted to begin. This greatly reduced competition for the

loader. Another movewas to advise general users with large virtual

memories to terminate their sessions and return later if they needed a

terminal.

The general conclusion on the use of NUTSis that it may easily be

used to generate instructional programs. As to the performance of the

dialogue, though this is not as good as desired, the causes have been

mentioned above and a future investigation would certainly include their

::i.mprovement.

The second important purpose of the investigation was to compare

different methods of teaching programming languages. Such features as CAl

lessons and the on-line availability of the language processor and a "help"

facility were used together with the contro~ methods of conventional

lectures and examples classes with demonstrators.

An analysis of covcrian.cerevealed that there was a significant

difference between the performance scores of the conventional class and

those for the CAl groups. A positive response was achieved by the

control group. This is what was expected, as lectures do not make any



L .

extra concessions to the pocrez-students and, normal.Ly, good students do
well no matter what, teaching method is used. The students from the CAl
groups gave a negative response. This suggests that the poorer students
benefit'ed greatly from the individualised instruction they received.
They chose their own routes by virtue of the different combinations of
right and wrong answers and continued at their own pace as necessary.
The puzzling feature of the results from the two CAl groups is that the
students with higher aptitude showed up poorer than expected. The most
likely reason for this is that the course failed to give these students
the motivation to do well throughout the week, and hence they became less
interested. This theory js borne out by certain results taken from the
post-questionnaire 0 f those five students who fall into that category
which had in it students of above average aptitude but below average
performance. The co-ordinates of these students, as described in 3.3.3,
are (64,40), (77,43), and (74,57) from group B and (86,51) and (80,57)
from group C.

,
On the question of whether it is a nuisance having to wait for the

typewriter to produce the notes, four out of five agreed with this opinion
but, of the remaining eight, as many as seven disagreed. Similarly,
four out of the five suggested that their typing was too slow for CAl
techniques yet seven of the remainder were against this suggestion. These
two opinions, coupled with the fact that the split was four to one for
the view that the method was too impersonal. yet three to five against
this from th~ rest, do certainly point to the suggestion that the attitude

•after the course of these five was one of disinterest and, perhaps, boredom.
In the light of this, it seems that the question of motdvation

should be studied more deeply before BIJ.Y future investigations of this
kind are made, but the results to hand tend to suggest that placement of
those students whose aptitude scores for programming are poorer than
average should be into groups where methode of CAl are being employed



.._ .

162

GO +haL they may benefit from the individllD.lined, i.iclf-paccdim:;;tl'uctioll.
'l'herest may be Given conventional lectures and demonstration clC'.G,:'es

without detriment.
Other information returned from the response files sugGests tho.t:
(i) performance score did not seom to depend on the amount of the

course that the student had been able to get through;
(ii) ·there may be a dependence of performance score on the percentRt;e

of questions the student answered correctly at the first attempt;
(iii) performance score may be inversely proportional to the average

time to make a first attempt;
there is a significant negatdve correlntion between performance
score and average total response time per question.

These relationships,together with the fitted lines from the analysis of

and (iv)

covariance, may possibly be used to suggest how well the students are doin3
'during the course and especially may be used if a student is absent for the
final performance test. For example, for the student from group B who
failed to appear for the post-test, 9~~confidence limits for her score from
each of the above relationships are:

(i) analysis of covariance, group B slope: (56.17,70.75);
percentage of questions correct at the first attempt: (54.49,
71.09);

reciprocal of the average time for the first attempt: (56.07,
72.81), and
average total response time per question answered: (60.29,

79.61).
The study of the students' attitudes and their chanee in attitude

(ii)

(iii)

(iv)

over the course brought some interesting results. Host striking was the
change in attitude of preference of one type of teaching to another, in
our case',from lectures to CAl methods. Certainly, the majority of students
seemed to take to CAl and its advantages but, of course, it is impossible



to eliminate novelty effects from this one invest.igation. As for examples
classes, the student.s who had the conventional sessions were virtua.lly
unchanged in their estimate of relative usefulness of these as compared
with lectures, but the students who had problems sessions using CAl shifted
completely from their original estimate that more is usually learned from
examples classes than from lectures. However, these latter students did
agree that such a "help" facUity as was available, one in which the
student had control, was most useful~ The main reason for this change in

opinion is probably that the CA! examples classes lacked the feature of the
student having free, unlimited access to a two-way conversation, as given
by a demonstrator.

On the question of whether CAl is too impersonal, there was an even
split in both groups but over three-quarters of the students felt that,
interspersed with small tutorial classes, CAl courses would not be too
impersonal at all. This suggests that any future investigation should not
attempt to provide instruction without adequate human interaction during
the course and, in fact, reinforces the theory that CAl should never be
allowed to replace conventional teaching but only supplement it, paying
particular attention to those areas where conventional teaching is not so
effective.

The main impression received regarding the interface between student
and machine was one of reasonable satisfaction. Almost two-thirds of the
total were not bothered about having to wait for the subject material to

be typed out and the same number thought that their typing was good enough.
No one was disturbed by the noise of the typewriter. In fact, everyone
showed preference for a terminal typewriter rather than a visual display,
the main reason being that hard copy of notes is considered essential.

Of the course in general, the most obvious conclusion is that more
time would have been a great advantage but this restriction was imposed by



164

the non-availability of the students for any longer than five afternoons.
The situation would have been eased by a shorter course, but an exact
estimate of its length was not available from the pre-course trials.

The extent to which the group C students used the "help" facility
was rather disappointing. Admittedly, 41% of allexamplcs attempted were
answered correctly with no help at all, and a further 18% were solved
after INFO had been used, but it is the remaining 41% that causes concern.
Although another 18% were solved after use of the "help" facility, still
23% remain. Perhaps the solution to the problem does lie in the suggestion
made by a student that the "help" facility should be renamed the "advice"
facility, but there is always the basic difficulty that students pr~fer to
be asked if they require assistance; they do not like to ask themselves.
Obviously, the request mechanism as provided does not alleviate this
psychological barrier.



CHAPTER 4. From aut.hor l£llf;aUag_cn to easy author entry svs+ems;
4.1 Introduction.

To be effective in computer-assisted instl~ction and programmed
instruction, an author requires a rather severe self-discipline and a
considerable ~unt of specialised knowledge. He must first of all know
his subject matter and be a good writer. Beyond these basic reqUirements,
a programmed instruction writer must know how to write to stated objectives
and how to ask meaningful questions. In addition to this, a CAl author
must know how a computer operates and the specific details 0 f the computer
language he ia using. It is unreasonable, perhaps, to ask an author to
possess so many skills in order to b~g1n to write for CAl. Indeed, few
authors who are not already experienced computer prograrnm~ have been
persuaded to take the time and effort to learn a CAl language. The result
has been that CAl materials have been on the whole written by people
conversant with computers rather than by good teachers conversant with their
disciplines.

Tb overcome this problem to a certain extent, the author who does not
know a CAl language has usually seconded assistance from a number of
different people to get his subject content from the initial draft into the
computer memory successfully.

Firstly, the author must have an editor to perform a grammatical
edit of his subject matter. The corrected draft must then be typed and
given to a programmer who converts the English statements into valid
computer program statements. If not coded on-line, the program must be
punched into cards, entered into the computer by an operator, and checked
for validity in the programming language. If errors exist, someone must
debug the program, make the necessary changes and re-test. Finally, the
material is returned to the author who checks it for inconsistencies in
content and logic before it is released to the stUdents.



166

For the author who has not been persuaded to learn an instructional
codi.nglanguage, a new system has been devised uhich precludes the need
for considerable assistance as outlined above. The system allows the
generated material to make effective use of the power of a CAl system, which,
in this instance, is COURSEWRITER II for the IBH 1500 System. However,
the problem and proposed solutions are not restricted. The devised system
also dispenses with the necessity of having a programmer produce ODURSE-
WRITER II statements and then someone to debug the program for.language
errors. This is simply achieved by providing the author with a Course
Planning Form on which he may enter his subject presentation, his questions
and expected answers, and the corres:~nding courses 0f action in almost
unlimited format.



167

4.2 Previous easy autho~ entry systems.
Not a great deal of research has been carried out in the past to

provide ear:.yauthor entry.
Perhaps the easiest system to use from an author's point of vie,.,is

that designed by Dean (1969). Authors fill i~ planning guides, on each
page of which they indicate some form of identification, text presentation,
anticipated responses and resultant branching. These are then edited for
grammar, syntax and spelling before a cardpunch operator converts them by
punching one card for identification and one card for each line 0f text
on the planning guide. An editor uses standard cards from a pre-punched
supply to make the author's deck ready for assembly. The immediat~

advantages 0 f this system are that any card-punch operator can make up
about 90% of the required cards directly from the planning guide, and an
editor can supply most of the rest without coding. The small amount of
coding required is nearly automatic since it consists of entries taken in

sequence directly from the author's manuscript. The disadvantages are
&that the code generated is not very elegent, consisting of macros to a

large extent, and that there is not enough variety offered for response
matching. Only exact keyword and lightpen responses may be spec1fied~

Other easy author entry systems have been by and large more general
CAl systems but with a distinct emphasis on ease of code generation.
They include those designed by Kerr et al. (1969) and Meadow et al. (1968).
Descriptions of both of these appear in section 2.1.4.



168

4.3 The Course Plannj.~~f.'iForm,
Up to the present, moot authors have prepared course material in one

particular format, namely, the presentation of sinGle f'r-emea to the etudent,
Then, if he answers successfully, the student is allowed to continue to
the next frame in sequence. If he does not, he sees a frame containing
remedial information. As this format for course preparation is in common
use, the system to be described provides a process which will quickly
generate such course materials. The objective is that any author should
be able to prepare CAl course material in a form which, when punched into
cards, is immediately converted to COURSE WRITER II by this system. Such a
system is properly termed a pre-processor.

The layout of the Course Planning Form was determined by the technical
specifications of the 1510 CRT Display Unit. The 1510 is divided into
32 rows and 40 columns of addressable spaces. However, as two roWs are
required per character, the 1510 effectively displays 16 rows by 40 columns.
This determined the layout of the planning form inasmuch as one space is
provided for each character, but half-line shifting for superscripting or
subscripting is still available despite the tact that spaces do not exist
for this purpose on the form.

As suggested by Dean (1969), far from imposing a restriction on the
author by insisting that he works within the confines of a 16 by 40

character form, the discipline imposed by the form may well assist him in
his efforts to communicate with students. Since the stUdent can see but
one frame at a time, it is important that tl.:aauthor provide a clear,
meaningful presentation in each frame. If he is too verbose, he will be
unable to complete his presentation in Bufficient space to appear as a
single display. The 16 by 40 form serves to remind him when such an
event will occur.



The form is divided into four sections.
(i) Identification: this sect:i.onmust be completed.
(ii) Presentation: this section must include entries if any

instructional material is to be shown.
(iii) Decision: the entries tell the computer which frame to display

next.
(iv) Response analysis: the author specifies his contingency

prescriptions:
Sections (iii) and (iv) are alternatives. Either section may be used but
not both.

In an effort to make the form pasier to use, mandatory parts have
been assigned solid boxes or underlining, whereas optional parts are
indicated by broken lines. A Course Planning Form is shown in Figure 4.1.

The numbers contained in parentheses under each entry indicate the
particular card columns the keypunch operator must use to record that
information. (An optical scanner would allow the keypunch operator to be
bypassed completely). Corresponding to the four sections of the form,
there are four types of card produced: one only for section (i) of the
form; any number (including zero) for section (ii); one only for section
(iii); and at least two cards for section (iv), one of which is similar to
that for section (iii) plus at least one for the response analysis.

Naturally, it is expected that the form, being of a general nature,
will not allow the author to create all types 0f teaching procedures.
However, once ~he author has become proficient in the instructional coding
language, he can then use hand coding techniques on the code produced from
the form via the pre-processor.



170

Figure 4.1

PAGE LABEL CD
i(2Dj-:From row ~ 2d c

(16-17)

(1-1fl _I:® :Rester+ point? Check if required.
(22)

~-~;
to roW~ erased.

(19-20)

TEXT
(6-71)
(72 is continuation)

Columns
o 2 4

Pause Time
In seconds
,(75-80)

6 8 ID n w ~ m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
'(5)

N'1
.!.1......
~ 1
~1

1
2
2
2
2
2

3

0_ -IDJTi- r!--t-~ - .,'_,_.~- _._I --2 4- I L!!·'~I~!~I~RI<llefl. r~II:5 ,,~I
_1-. 1 .:;; •

I ---r I4 _L .. W ,-- ._'_
6 ~ I~.__It iJ:tJf ~ -r--'_I_ _~__ I ~I___I I
8 _LI I . I - ----!- ....-0 6: 3 I~ T I

- .1 ~ i-~ r-'--;--1-. i ...J_. -~
2 -~-'r--T±-I...-4 ~ ~ ~V.)]_~. "'~ \3 C:~ c t-'" -'J"'",

:~~-'" - - I -I - :...6 - F""-i_[T~_.,f- t8r-'_ I- - ,__ fA ~.~r-I .

~ -1-') ,__ FFlT -P-r-TO~
-:- -}-1--· I I L!rrr _L -, -""I -rl+rhrL'_r~[

:- l~T~:n±6

[l~ -ribt _t1--'1--,11 'rrt T . tb· -_CLc . ~.. L,-L'-_-
After this frome, the student should 90 to:

:-€J>l The Return Point
~B:The Next logical Frame

;-g)! The last Question
(1)

[gl] A Frame Named •••
(1) (you may enter a

Enter E, K, N I 2-character
P or U. response 'identifier)

__®__tao:..-_ if his ~ response was ®;:IooR.c.b :u(iJ95 U!
____ if his D response was -:-____ DO
____ ifhis CJ response was CJc.J

Of hO D .......,...-.____ I IS response was ~L_j
if hi s r--J response was :- ••• : :- - ""IL-J '---I~

-:--__-- if his D response was ;-- "";L~J
(1-12) (14) -(1-6--7-1)------- (75)(76)



171

4.4 A guide fC?!:.. <lutltors .•

The following explanatory notes correspond to circled numbers on the
Cour-se Planning Form in Figure 4.1 (Tne numbers are used in this instance
merely to facilitate the following discussion).

1. The page'label must appear on every sheet except a continuation
sheet (see note 9. condition (v)). The label is automatically
displayed in columns 34-39 of row 0 to aid debugging. The
display format is as follows. The page label is an unsigned
integer optionally followed by a string of alphabetic characters
(either upper or lower case), the total length being not more
than six characters. The purpose of insisting on unsigned
integers as labels is to provide notation in ascending order of
magnitude, which is the logical sequence of the course as
written by the author. The first page label in a particular
frame will be the unsigned integer itself, but any subsequent
pages may be labelled by the unsigned integer followed by a
string of letters. This is to allow the author freedom to use
learner control techniques as suggested by Grubb (1968). Among
other things, the stUdent will be able either to brmlch backward
to the last logical frame or to skip forward to the next logical
frame.

2. Before presentation of any text, the author specifies which rows
(if any) he wants erased.
2.1 Here he enters the first row of the sequence. It is a

number greater than or equal to zero but less than or
equal to 31. If there is no entry, a default value of
zero is assumed.



172

2.2 Here he enters the last row of the sequence , also a number
greater than or equal to zero but less than or equal t.o31.
Naturally, the number entered in 2.1 must be less than or
equal to that entered in 2.2. If no entries appear, all 32
rows are erased. Both entries must be zero to produce no
erasure at all.

3. If the author desires this point in the course to be a restart
point, he ticks the box. At a restart point all current information
about the student and the course is stored in the 1500'? student
record file. Consequently, if he stops, whether through choice
or system failure, the system will restart him at this pnint,
with all up-to-date information, when he decides to return.

4. The author fills in the form in exactly the same way he wishes to
present his material. He must not forget that each character
requires two rows on the screen, but to aid him the form is
divided into double rows as is indicated by the left margin
row numbers.
4.1 He writ~s small letters, capital letters, punctuation,

underlining, subscription, superscription, etc., as required.
4.2 To denote where the cursor (moving indicator) is to appear

OD the screen and the subsequent answer space for a keyboard
response, the author fills in the appropriate positions

with a "t".
4.3 A shorthand form 0f this is t<.. mark the cursor position

with a "~,,and then draw a line throughout the rest of the
required answer space.

4.4 To denote a light patch area for a light pen response, the
author shades in the appropriate positions, as shown.



173

Of course there are some necessary :r·estrictions.
(i) The author may not specify both a keyboard and a lightpcn

response simultaneously.
(ii) For a keyboard response, there may be only one continuous

answer space. In other words, no embedded characters or
blanks are allowed. However, responses larger than one line
are permitted.

5. The author has the option to specify pause times, in seconds, for
each line of the display. The pause provided by the pre-processor
after the last line continues until the student presses the
space bar to continue.

6. The author should complete either the De.cision section or the
Response Analysis section, not both. If there is no response
required of the student, then the author must fill in the
Decision section by ticking one, and only one, 0 f the branching
boxes.
6.1 The Return Point box is ticked in situations such as the

follOWing. An author may wish to generate the same comments
whenever he receives a certain response. To save repetitive
generation of the same coding, he may initially jump to a
frame where the comments are generated and from that frame
"return" to the next logical frame after the one from which
he made the initial jump.

6.2 The Next Logical Frame box is ticked when the now is to

be to the first frame in the next logical section. For
example, it may be used when there was no question asked,
but merely text presented at label 6. Then the Next Logical
Frame is 7. If the author was supplying the correct answer
at label 6xy, then the NextLogical Frame is still 7.



174

. 6.3 The Last Question box is t.Lck od when the aut.hor I-li.sher:; the

student to atteml)t the last question aG'-~-in.Uaua.l.l y, t.ho

current frame will be some remedial hint after an inco:crcct
response \'lasd.i.agnoe ed,

7. The Response Analysis section iG filled in when r-eaponec pr-oceeeing
is required after a question. The Fr-ame Named box is ticked
and there must follo\'1at least one entry in the matchine;
specification list.

8. Here, the author enters the page label of the frame that is to
f0110\ ...if the student's response is successfully matched. It
follows the same format as the vae;e label entry in 1.

9. To determine the type of response processing required, the author
",rites into 9a) one of the follo\,lingletters: E, K, N, P or U;

and then places into 9b) the aotuaL "required response" characters.
9.1 E. An exact keY\'lordmatch is required. The characters,

including any required b'Lanks, are written in 9b). If
this is left blank, then any string of characters the
stUdent enters \'fillprovide a r:Jateh.

9.2 K. This allows for misspelling, etc. A "kernel" match is
permitted, but the essential characters being sought (no
blanks) are written in 9b). For example, :Lfthe author
seeks "FORTRAN", then he may enter "FTRH" in the hope that
the student may obtain a match even allowine; for incorrect
characters, nussins characters, etc., usually caused by
misspelling or typographical errors. So lone as the
specified characters appeur in order someHherc in the
student's r-eaponse, but "'Iithoutembedded blanks, a match is
considered to have been made.

9.3 N. This allows a search for a particular numerical value.
Two types of checking may be specified. Firstly, if an



175

exact value is requested, Lho aul.hor- t;rlccifjcs the vn.l.ue ,

A mat ch w.i Ll, occur if tho i-eaponce conl.a i nn a nuncr-i oo.L

constarrt Viithin the interval formed by the value pJ.l.w or
mdnus half the least significant power- of ten Given in the
value. Secondly, if a range will 6uffir:o, the author enters
the Lower- bound and the upper- bound sepnra ted by a minus
sien. This causes a match to occur if the response contains
a numerical constant greater than or equal to the Lower bound
and less than or equal to the upper bound. However, if the

author requires one exact value, that is, no possible error,
he must use checking cf the second type and make the Lover

and upper bounds both equal to the exact value sought. In
addition to the choice of a numerical check, the author may
test the truth of the disjunction of some of each or both by
separating each value or ranee by a comma. For example, he
may enter:- 273, 31.2-37.6, -21--18, 98.1~

9.l~ P. This si8nifies et light pen response. In 9b) the author
enters the coordinates in the form "row, column" of any
point in the light patch with vlhich he \'/ishesto associate
this attempted match.

9.5 U. This is entered to denote an unanticipated response.
Here 9b) is left blank.
There are a feH conditions imposed on the use of these five
kinds of entries.

(ii)

There is no default for an entry in 9b) except for E

and U.

Lightpen response matching cannot be mixed \,lith any

type of keyboard res~onse matching.
For keyboard response matching, all U's must appear
last in sequence; that is, no E, K or N may follo\'!a U.

(iii)



176

(iv) For lightpen response matching, only P may be
entered in 9a). No U's are allowed. However, the
pre-processor produces code which displays on row
30 the suggestion that the student re-answer if he
pointed to anywhere except to a specified light patch.

(v) There is no limit to the number of response processing
entries there may be. If one form is insufficient,
the author may use additional forms.

10. The author may enter a t~o-character response identifier in
columns 75 and 76. Then when the computer-listed student
response record is made available, the author can quick~y
determine how the student answered each of the questions.



1.... _

177

L~.5 ~lide for }wy-p1l..11ch operntor-s,
This section demonstrates the ease with which information is

transferred from the Course Planning Forms to card input by the keypunch
operator.

There are four types of card, each correspondinc roughly to each
section of the form, if used. Each input deck is ended by a card containing
only tI *tI in column 1.
4.5.1 Identification card.

(i) Page label: columns 1-12; use "<,, for upshift, ">" for
downahd.f't ,

(ii) Starting line for erasure: columns 16-17; for a one-digit
number, use either column.

(iii) Finishing line for erasure: columns 19-20; for a one-digit
number, use either column.

(iv) Restart point: any character other than blank in colQ~n 22.
All other columns must be blank.
4.5.2 Presentation card.

The keypunch operator must begin the line at the lowest row number,
that is, that part of the line nearest the top of the form. and work down
the form if necessary by indexing. This is important, of course, when
8uperscripting has been used. The following conventions apply.

(i)

(ii).
(iii)

for upshift use "(".
for downshift use ")".
l.:>ra keyboard response use "~,,but where the author's

shorthand notation is used all II~"S must be entered.
(iv) for lightpen response use. ",VII.
(v) for index use "I".
(vi) for reverse index use 1111".

(vii) for backspace use I~~II.

(viii) for multiply sien use II@fI.

(ix) for divide sign use "(@ II •



178

The card layout is as follows.

(L) Row number: columns 1-2; for a one-digit number either column

maybe used. If the keypunch.operator does not specify the

row number, it will default to the "last one used" +2.

(ii) Text: columns 6-71, using the given notation.

(iii) Continuation: any character in column 72. This will be

necessary if manyupshifts, downshifts, backspaces, etc.,

are needed.

(iv) Pause duration: columns 75-8o.For less than five-digit

numbers, any consecutive columns out of columns 75-80 may be

used.

4.5.3 Decision card.

Column1 is used on this card. All others should be blank.

(i) For "return point" enter "R".

(ii) For "next frame" enter "N".

(iii) For "last question" enter "Q".
(iv) There is also a fourth alternative which is used when the

Response Analysis section has been filled in. It is the

first card corresponding to that section. Thus, for "a frame

named••• " enter "T".

4.5.4 Response Analysis card.

(i) Page label: columns 1-12•

.(ii) Type 0 f response matching: in column 14 either ''E'', "K", "N",
"P" or "U" is entered.

(iii) Text: columns 16-71.

(iv) Two-character response identifier: columns 75-76.

All other columns must be blank.



179

4.6 The action of the pre-processor.

The pre-processor was written in FORTRANbecause this language

(i) is universal and thUs allows ease of communication between

programmers,

(ii) is easily and readily debugged,

(iii) allows the addition of other facilities as further developments

are tackled in the project, and

(iv) is supported on the IBM1130 or IBM1800 CPUused with 1500

Systems.

The current version of the pre-processor comprises approximately 1500

basic FORTRANIV source statements. The pre-processor's action is as

follows.

1. Read in an Identification card. If it is the last card, pass

to 12.

2. Check for a valid label name, whether erasure is requested and

whether a restart point is required. Check parameters for.

OOURSEWRITERII "de" (display erase) instruction. If no errors,

write each card :image to disk and give a listing of it on the

printer. Otherwise, give appropriate diagnostic message

with the card number and, in some cases, the column number.

Also increment the error count. In either case, pass to ,.

,. Read in a card. If it is the last card, pass to 12.

4. Check to see whether the card read in is a Decision card. If it is,

pas& to 6.

5. Check for valid row number (or defaulted row number), response

requests, text presentation and pauses. Check parameters

for the "dt" (display text) instruction. Either write to disk

or give diagnostics. Pass to ,.

6. Check to see whether the Decision section or the Response Analysis

part has been filled in. If the Decision section has been

completed, generate the appropriate branch instruction and pass to 1.



180

7. Read in a Response Analysis card. If it is the last card, pass
to 12.

8. Check to see whether there is a response type entry. If not,
it must be an Identification card, so pass to 2.

9. If this is not the first Response Analysis card of the series,
pass to 11.

10. From the information given by the Presentation cards, generate
the instructions "dl.:" (display emphasis line) if the keyboard
response is a one-line insertion, and either "ep" (enter and
process response) for a keyboard response, "epi" for a keyboard
insertion response or "epp" for a lightpen response. Write
to disk or give diagnostics as necessary. Immediately before the
enter and process response instruction the label name of the
next logical label in sequence is loaded into return register 0
so that any future branching back to "return point" will be
meaningful. Just after a keyboard enter and process reepoaee
instruction, a macro call of "ercalc" (see 4.7) is generated.

11. Check for valid label name, see which type of response analysis
is requested and generate, if possible, the appropriate instructions.
(i) For ''E'', "aa" (anticipated answer).
(ii) For "K", a "ld kernel characters" (loads text into buffer)

followed by a call of the function "keyl" (keyletter).
(iii) For "N", a call of the function ''It''(limit).
(iv) For "P", "aap" (anticipated answer, lightpen).
(v). For "U", "un" (unrecognisable response).
Before the first "un", a macro call of "emany" (see 4.7) is
inserted. After the particular instruction(s) specifying the
analysis is generated, the branch-to-label name is formed. Either
write to disk or give diagnostics. Pass to 7.



181

12. Check the error count to see if there have been any errors.
If so, terminate, but otherwise produce a punched card deck from
the card images resident on disk, and then terminate.

The pre-processor will find only one error per card. When an error is
detected, the card is "rejected" and the pre-processor reads in the next
card. Naturally, this may produce further errors, but only in the current
logical frame. For each error an appropriate diagnostic message is listed
with the card number. In some cases, where meaningful, the column number
is also given.



182

4.7 Macros used.
The research being undertaken by the IBM Education Research

Department, San Jose, is geared towards the use of learner control
techniques. The main effect for the stUdent is to allow him to move
freely throughout the course, that is, to sk:i.pforward, move backward,
proceed to the glossary, return to the course outline map, etc.

In an effort to coordinate the course material produced by the
pre-processor with the requirements of the learner control coding, the
macro "emany" is called before an unanticipated response is produced.
This macro searches the response to see whether the student called upon
any of the above mentioned utilities and then performs whatever action
is required. The three parameters necessary for "emany" are the "current
frame", the "next logical frame" and the "last logical frame". Since the
author uses sequential numbering for his logical frames, these parameters
are readily available and provided by the pre-processor.

A second facility provided is that in which the student's response,
if it contains an" arithmetic operator, is :tedinto an arithmetic syntactic
analyser from which the equivalent reduced value is returned to the
calling program to be checked in the response analysis. To effect this,
a call is made upon the macro "ercalc" immed3.ately after the response
is entered. No parameters are required for this macro.



l .. ,~'.

4.8 Sample input and output.
There follows part of a simple example demonstrating the use of the

pre-processor. In Figure 4.2 is some of the author's input on Course
Planning Forms. Figure 4.3 shows the printout 0 f the keypunch operator's
card deck. The corresponding output from the pre-processor is shown in
Figure 4.4 with the COURSEWRITER II instructions and also the diagnostic
messages.



184

Figure 4.2

3PAGE LABEL

(16-17)

... - -,--,
to row! : 0: erased.

(19-20)

(1-1~1__,
tL} Restart poi nt?
(22)

Check if required.
j--,---,

From row I I 01
• , I

TEXT
(6-71)
(72 is continuation)

Columns
o 2 .. 6 8

Pause Tlrne
In seconds
. (75-80)

ID ~ M ~ m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
--...--.

O~-J-f-+-r-'-+--I! -d-t-H:-(-f-f<--+-~f -t-+-t-}oo+-+-+-..'-,-I-il-!t·_i-t-i-iL,'f-t_L--I-t-ot-i

------
_1Q__

After this frame, the student should go to:'----.
I I The Return Point~
:----: The Next logical Frame
~
":---, The Last Question
(T)-----------------------------------------------------------------------------------
[2] A Frame Named •••
(1)

3b

(You may enter a
Enter E, K,N, 2-charaeter
P or U. response identifier)'-"~-,,"....,

If his rn response was _'2/)_"",,1 ~ICO.;.._ ._____ ~L_!
if hi s rn responso was ,_. q ;-F'10
if his [1J response was la ~2. re:U:.:.:J
if his ~ response was DC,:_]
if his CJ response was c.:JCJ
lf h 0 -_..
I is response was L--l!___J

(14) (16-71) (75) (76)

3c::.

(1-12)



185

Figure 4.2 (cont.)

PAGE LABEL 30..
(1-1fl __ ,

L__I Restart point? Check if required.
(22)

j--.---. ,..--,--",
From row: : 0: to row! : 0: erased.

(16-17) (19-20)

TEXT
(6-71)
(72 is continuation)

Columns
o 2 4

Pause Time
In seconds
. (75-80)

6 8 ID ~ M ~ re ID ~ ~ ~ ~ ~ ~ ~ ~ ~

After this frame, the student should go to:.----.t__J The Return Point

rZ-i The Next logical Frame
:----: The Last Question
'----J
(1)-----------------------------------------------------------------------------------o A Frame Named •••
(1) (You may enter Cl

Enter E, K,N, 2-character
P or U. response identifier)

if his D response was . r---l:----!
if his D response was DD
if his c:J response was CJO
'f hl D ,---..,,..---,I I S response was ~ L_j

if his r:::J response was C.:J [:-_]
if his r-l response was :-- "":r"'",:

-:-- --- L-.J \.....-..! '--~
(1-12) (14) (16-71) (75) (76)



L...

186

Keypunch operator's card deck

,V~V ~V~V ~V~V
(E)NGlISH (f)RENCH (N)ORMAN

..
.

----;r----------------------------------------------------------------------------------------------~--- ----
t 3A P 20. It» . ! N----:iB-----------------p-~i-;9-----~--------------------------------------------------------------~-~--- ....

3' P 23,32 ~CAQ 53 f E
3e u ~CfWt) 51t- i .
3A 0 0----2s-----<V>olT-tlnrrAHiiY--KNuw--iouR"-(E)NGL"fstf-.fis-fORY-.---------------------------- --..

'----~8---------------------0---()---------------------------------------------.-------------------~-----.-
28 <V>fRY NEARLY (H)E CAME FROM (F)RANCE BUTWASN'T EXACTLY <F>RfNCH. (P)lEASf fRY AGAJN.
Q - cM.b c.~ (..()&...a.)M~ ~----3i~------------------o---(f-------------------L--------------------------------------------------.
2~ (G>OOO HEAVENS. (P>ERHAPS YOU HAD BEITER----1fO-----RE-AO--U-~-(jN--jtii-s;----------------------------------------------------------------:----. ----

-.--------------------------------_----------------------------------------------------------------------- ~---.

Figure 4.3



187

COURSEWRITER II instructions and diagnostic messages

PRR.-----------O-i---O~-34~/-~I'~/-j--------------------------------------------------------------------------------
DTI 14,O,/2,14,/38,O,/<I>'M SURE YOU MUST KNOW THAT THE YICrOK
UTI 16,u'/2,lb,/34,0'/WA~ <~>lllIAM THE <C>UNQUEROR. <~>UT CAN.----- Q_t!__!»_t~~!_~J_!~_~!~~9Jl9_~l_~Y_~_~QJ_~J__J_Q __~j_~ __~~tj_Q~~bJ_!Y_1 _
PA 100.-------- Q_t!__~J!1_l~1_~J_~9_~!_l~_~1_~l~Y~~~y_~y ~~~_~ __
OTI 22,l,/2,2Z,/16,1,/,Y,Y ,y,y ,y,y
Ofl 24,O,/2,24-./23,0,/<t>NGlISH <F)RENCH <N)QRHAN
PAE.--- ~~ ~~llt69 _
EPP 9.99o.j'13.-- ~_~e__~1_~~t~_tJ_~~~ ~---------------------------------__
8R .lA
AAP 4,20,2,8~/F
~i( 36

RE~PONSE REQUfST IN'ONSISTENT WITH RESPONSE INDICATIONS·--<:AR-U--NUf4B-fR-----5~---------------------------------------------------------------------------------------
ONLY 'P' SHOULD BE t:NJERED WHEN LIGHT PATCH HAS BEEN INDICATED·--C-AR-O-iNU-M6-Ek-----~~-----------~-----------------------------------------------------------------------_J __

lA
DJ O,34 ../,/.../3A
DTI 28,O,/2,28 .../40,O ../<y)O~ CfRTAJNLY KNOW YOUR <E)NGLISH HISTORYC'-----------------------------------------------------------------------------------------------------------------• PAE-----------8-R---~-----------------------------------------------------------------------------------------------
or 0,34../../.../36
DT1 2~,O,/2,28 ../36,O ../<Y)ERY NEARLY <H)f CAME fROM <f)RANCE BUT-----------Dfr-3-6;-o~·l2~-30.;T4(f;o:;/WASN-.-j--E.XiCii-i--(i=)RENCIi-.--(-p)-.::e-AS-e--iif'rAGAiiiC----

•-----------P-AE-------------------------------------------------------------------------~------------------------
BR RE

EMBEDUEO BLANKS Nor ALLOWED IN lABELS
CARD NUMBER 62 C~LUMN NUMBER 2-----------[)f---O-;~~~/-~Jr~J'3Er--~---------------------------------------------------------------------------

OIl 28,O .../2.2S ../l6,O ../<G>OOO HEAVENS. <P)ERHAPS YOU HAD BErlER-----------lfrl--3-0;-6~Jr2~-3~jri6-;cr.;'1lE-AD--Olf-olN~-f~fsr;-------------------------------------------~
EN •

·-lio1J-1EN1FEFfE1f----6-4--CA-RDS~-----------------------------------------------------------------------------.
116 COURSEWRIT~R 11 ~TAl~MENlS HAVE BEEN PRODUCED--](N()-lrCiu--H-AV-------~--ERfioiis~--------------------------------------..-------:-------------------------~--.

CARD OUTPut HAS BEEN SUPREsseo. --- _ .._. --- ---_ .. __
- ._----------------------------._------------------._------------------- .. ----~--------------------~ ..-------_ .._-----.
'- ..---------- .----------_.'-------------------------------------------------------------_._---------_._----------._.

Figure 4.4



188

4.9 Conclusion.
This system is a prototype of many other possible systems. It was

designed to free the author from dependency on a specific CAl language
or any particular computer. This achieves a level of standardisation
that is not at present possible with the many variants of OOURSEWRlTER
currently available. Furthermore, the system is self-documenting. This
permits reviews to evaluate the program without going through an entire
course as a student would or reading a complete computer listing for such
purposes.

The current implementation generates COURSEWRITER II for the IBM
1500 Instructional System, but this is the result of a particular
implementation and in no sense reflects a limitation on the system. In
generic terms, the system is a pre-processor.

A system description similar to that given in this chapter appears
elsewhere (Dowsey, 1970b) and an extended version called COURSEMAKER,
which is being developed by the IBM Education Research Department, San
Jose, is described by Dean (1970a,b,c).



SUMMARY AND CONCLUSIONS.

During the course of this study a teaching system evolved.

Information gathered about other systems and a comparison of commands

available shows that this teaching system offers as wide a range of

facilities as may reasonably be required to use CAl. Authors may design,

edit and test CAl lessons in an author language, monitor students' progress

through courses of lessons and perform virtually any calculations necessary

through the provision of a calculating language, desk machine and the

programming language, PIL. Further improvements would not seem to be

in the inclusion of more commandsbut mainly in increasing efficiency.

This is largely dependent on the operating system and extension of its .

facilities. However, future work might include further evaluation studies

and more widespread use.

The most important part of any teaching system is its author

language. The study of previous author languages pointed out such

glaring omissions as a powerful calculational capability, extensive

response processing and a iaeili ty to allow branching to depend upon some

aspect of the student's response history. Perhaps the most significant

single addition to this author language is a flexible, comprehensive

recording file, the response file. Far too many previous languages

have not provided the author with sufficient feedback information,

especially that which can be used actually in the CAl program. However,

this author language is easy to use, quite r.~adable and is capable of

providing any type of dialogue normally associated with CAl. Probably

the only improvement in the actual language would be the addition 0 f

string manipulation. The choice of FORTRANfor the implementation

language proved most satisfactory since the processors were written and

debugged in a very short time. This was preferable to gaining a small



190

amount of time by using a machine code, which would have made the
implementation of such features as response processing and text output
easier, but losing a greater amount overall in that the whole operation
of writing and testing would have been far longer. As efficiency of the
processors was not studied in any great detail, since working versions
were required as quickly as possible, studies involving such aspects as
efficiency in translation and re-translation might be carried out.
Probable future work might include an interpretive version of the language
or a version in which the intermediate code is stored in direct access
fashion 60 that complete re-translation would not be necessary for
correction of just a few errors.

The author language approach to CAl means providing statements,the
effects of which the author must understand fully before he can use them

..to advantage. On the other hand, the easy. author entry approach means
that the author may write courses much more quickly and easily but there is
a trade-off of facilities for the decreased author time and involvement
in programming. After a decade of CAl, in which authors in general have not
been persuaded to learn author languages, the awing seems to be toward
easy author entry systems. Such a prototype system has been provided.
It is extremely easy to use, with a simple planning form, and contains
about the same response processing facilities as the author language but,
of course, not nearly as much de·cision branching capability. As the
uppermost design criterion was to keep it easy from the author's point
of view, a de~radation in the facilities available was inevitable. Since
the system takes the form ot a pre-processor, there must be a suitable
language which is generated. The language used was not ideal Owing to
its lack of any kind of performance recording but adequate for a
prototype version. The NUTS author language would certainly have been



191

better as it pr-ovi dca a greater variety of reGl)once matchinc;, a powcr-I'uL
perrorma..Ylcerecording facility and calculational c[lpability. However,
COURSEVIRITER II does provide for the use of displays and was used because
the operating system availfl.ble"laS the IBN 1500 Instructional System.
There is limitless opportunity for improvements, in providinG more facilities,
yet still keeping the system uncomplicated. Performance r-ocor-dfngllould
a.lLow more extensive decision branching. Future systems miGht dispose ,.,ith
the pre-processor idea and produce an object code directly from the
form. This could either be a simple intermediate code or an actual
machine code.

In the investigation comparins the conventional teaching of a
programming language with that using two CAl methods, students with
below average aptitude seemed to benefit more from CAl in general but the
rest seemed as well off with conventional teaching. Also, there seemed to
be little or no difference between the use of on-line examples classes
and demonstration sessions. The "help" facility, whi.chvas available to
one CAl group, was not particularly ,...ell used. Perhaps this can be explained
by the fact that, on the \'/hole,students prefer to be approached
rather than ask for help themselves. Although the investigation had too
few students to make any definite conclusions, some tentative suggestions
for future experiments might be made. Firstly, the motivation aspect
should be studied thoroughly. This might explain why some of the
potentially better students performed less well using CAl. Secondly,
the design of ~AI courses might be al.Lcwed to depend to some exbenf upon
the students' attitude to such a course. Attitude questionnaires provide
much useful information toeether ''liththat fror,lresponse files. Thirdly,
an estimate of the real effect of an on-line processor should be studied
more carefully. It is an accepted principle that hands-on e::periencc
is invaluable but justification of such a facility is important. Finally,



L.

192

the psychological problems associated \>liththe suggestion that the "help"
facility be renamed the "advice" facility might be studied.

A rough estimate of the cost of the investigation suggested that it
was rather higher than generally accepted. However, certain deficiencies
in the operating system account for a greater part of this extra cost.
A future study might consider what changes need to be made if a dedicated
CAl system were to be used instead of a general-purpose time-sharing
system. Naturally, certain features associated with large systems would
be unavailable but the trade-off of these for decreased cost might
possibly be tempting.



193

REFERENCES.

Adams, D.M. (1969). "An investigation into methods of presenting material

for use in computer-assisted instruction." M.Sc. dissertation,

Computing Laboratory, University of Newcastle upon Tyne, September,

1969.

Adams, E.N. (1967). "Reflections on the design of a CAl Operating System."

IBMResearch, Watson Research Centre, Yorktown Heights, N.Y.,

RC 1745, January 23, 1967.

Adams, E.N. (1969). "Technical considerations in the design of a CAl

operating system. II IBMResearch, Watson Research Centre, Yorktown

Heights, N.Y., RC2557, July 29, 1969.

Avner, R.A. and Tcwczar, P. (1969). "The TtrroRmanual", Computer-based

Education Research Laboratory, University of Illinois, January 1969.

Baker, J.D. (1965). "COBIScomputer-based instruction system." Newsletter,

Greater Boston Chapter of the Society for Programmed Instruction,

1,·4, 1965.
Bitzer, D.L. and Easley, J.A. (1965). "PLAm: A computer-controlled

teaching system," in Sass and W~.lkinsoD(Eds.), Computer

Augmentation of HumanLearning, Washington, Spartan Books, pp.89-103.

Clapp, D.J., Yens, D.P., Shettel, H.R. and Mayer, S.R. (1964).

"Development and evaluation of a self-instructional course in the

operational training capability query language for system 4731,

USAFHQII. Air Force Electronic Systems Division, Decision ScienC\J

Laboratory, Report No.ESD-TR-64-662, 1964.

Crowder, N.A. (1960) in "Teaching Machines and Programmed :Learning", eds.

Lumsdaine and Glaser, National Education Association, 1960.

Dean, P.M. (1969). "Preliminary Report on the Development of a Simplified

System for CAI". Unpublished Report, IBMEducation Research

Department, San Jose, 1969.



194

Dean, P.M. (1970a). "Author's Guide to the OOURSEt'IAKERSystem", IBMEducation

Research Department, San Jose, July, 1970.

Dean, P.M. (1970b). "Keypunch Operator's Guide to the COURSEMAKERSystem", IBM

Education Research Department, San Jose, August, 1970.

Dean, P.M. (1970c). "The COURSEMAKERSystem", IBMEducation Research Department,

San Jose, August, 1970.

Ihwsey, M.W. (1970a). "NUTS- User's Guide", Unpublished Report, Computing

Laboratory, University of Newcastle upon Tyne, January 1, 1970.

Dowsey, M.W. (1970b). "Towards a true author entry system for CAl", Programmed

Learning and Educational TeChnology, 1, 1 (January, 1970) pp 43-62.

Dowsey, M.W. (19700). "A language to facilitate computer-aided instructbn",

Proceedings of I.E.E. Conference on Man-Computer Interaction, September,

19'70, pp 72-76.

Easley, J.A. (1967). "Second midyear report for project SIRA", University of

Illinois, Urbana, September, 1967.

Engvold, K.J. and Hughes, J .L. (1968a). "A general-purpose display processing

and tutorial system", Technical Report TR 00.1694, IBMSystems

Developnent Division, Pougbkeepsie, N.Y., January 11, 1968.

Engvold, K.J. and Hughes, J.L. (1968b). "A multi-functional display system for

processing and teaching", Proceedings of IFlP Congress 1968, North Holland

Publishing CompaDY,Amsterdam.

Feingold, S.L. (1967). "PLANIT- A nexible Language Designed for Computer-

HumanInteraction", AFXPSConference Proceedings, FJCC, 1967.

Fenichel, R.R., WeizenbaUIDt J. and Yochelson, J.C. (19'70). "A Program to Teach

. Programming", .Q!g!, 12, 3 (March 19'70), pp 141-146.

Feurzeig, w. (1965). "The Socratic System: A Computer System to aid in Teaching

Complex Concepts", Bolt, Beranek and Newman, Inc., Cambridge, Mass., 1965.

Feurzeig, W. and Papert, S.A. (1968). "Programming Languages as a Conceptual

Framework for Teaching Mathematics", Proceedings of the NA1UConference

on Computers and Learnin~, Nice, May, 1968.



195

Flanigan, L.K. (1968). "Introduction to PIL in MTS." Unpublished Report,

Computing Centre, University ot Michigan, Ann Arbor, May, 1968.

Frye, C.H. (1968). "CAl languages: capabilities and applications."

Datamation, 1!, 9 (September, 1968) pp 34-37.

Frye, C.H., Bennick, F.D. and Feingold, S.L. (1968). "Interim user'e

guide to PLANIT: the Author Language ot the Instructor's Computer

Utility." TN3055/000/03, System Development Corp., Santa Monica,

October 16, 1968.

Gilligan, J. (1969). "CAl Crawley". Technical Report, I01 Education

Research Department, Loudwater, High Wycombe,September, 1969.

Gross, P.F., Cropley, A., Hebb, B., and Palmer, R. (1969). "APLand

remote terminal usage for CAl". Paper presented at DATAFAIR1969,

Manchester, August 27, 1969.

Grubb, R.E. (1965). "The Effects of Pa:irai Student Interaction in the

Computer Tutoring of Statistics". Paper read at National Convention

of the National Society for Programmed Instruction, Philadelphia,

May, 1965.

Grubb, R.E. (1968). ''Learner Controlled Statistics," ProgrammedLearning

and Educational Technology, ~, pp 18 - 24, January, 1968.

Grubb, R.E. (1969). "A study of differential treatments in the learning

of elemental"1 statistiCS," paper presented at DAVIConference,

Portland, Oregon, April 28, 1969.

Grubb, R.E. and Selfridge, R.E. (1963). "Computer Tutoring in Statistics",

Computers and Automation, .12, 3 (March, 1963).

Hansen, D.N. (1970). "Developnent processes in CAl problems, techniques

and implications", Proceedings of a seminar on Computer-Based

Learning Systems, NCET,March, 1970.

Hartley, J.R. and Sleeman, D.H. (1968). "Problem solving and simulation

using a com~ter-based system", Proceedings of a NAm Conference

Major Trends in Programmed Learning Research, Nice, May, 1968.



Hayward, P.R. (1968). ''ELIZA scriptwriter's manual", Educational

Research Centre, MIT, Crunbridge, Mass., 1968.

Hesselbart, J.C. (1968) "FOIL: a file-oriented interpretive language",

Proceedings of ACMNational Conference, 1968.

Hickey, A.E. (1968). "Computer-assisted instruction: a survey of the

literature. 3rd edition", ENTELEK Inc., Newburyport, Mass.

October 1, 1968.

Homeyer, F.C. (1970). "Developnent and Evaluation of an Automated Assembly

Language Teacher", Technical Report, CAl Laboratory, The University

of Texas at Austin, 1970.

Hunt, E. and Zosel, M. (1968). "WRITEAOOURSE:an educational programming

language", AFIPS Conference Proceedings, FJCC, 1968.

IBMCorp. (1967). "The 1500 Instructional System: Introduction to Computer-

assisted Instruction and System Summary", IBMSystems

Development Division, Product Publications, San Jose, 1967.

IBMCorp. (1968). "The 1.500 Instructional System: COURSEWRI'l'ERII,

Author's Guide." Form Y26-1580-o, Special Systems Programming

lbcumentation, San Jose, 1968.

ICL (1969) "The Brighton Project", Education Research Department, Loudwater,

High wycombe, 1969.

Keller, L. (1968) "Reference Manual: Course Author Language (CAL)",

Computer Facility, University of California, Irvine, August, 1968.

Kerr, E.G., Ting, T.C. and Walden, W.E. (1969). "A control program for

computer-assisted instruction on a general-purpose computer",

Proceedings of ACMNational Conference, 1969, pp 111-116.

Kopstein, F.F. (1969). "Computers and Instruction at Hum ROO", Educational

Technology, i, 7 (July, 1969) pp 25-28.

Kopstein, F.F. and Seidel, R.J. (1967). "Computer-administered instruction

verses traditionally administered instruction: economics".

Professional Paper 31-67, HumRID, Alexandria, Virginia,

June, 1967.



197

Kristy, N.F. (1968). "Innovations of the Technomics 6700 System",

Technomics, Inc., Santa Monica, Hay, 1968.

Lambert, P. (1968). "Computers and the Educational System", Aspects of

Educational Technology, 2, 1968, Menthu:en.

Lorton, P. and Slirnick, J. (1969). "Computer-based instruction 'in

computer programming - a symbol manipulation - list processing

approach", AFIPS Conference Proceedings, FJCC, 1969, .22" pp

535-544.

Lyon, G. and Zinn, K.L. "Some procedural language elements useful in an

instructional. environment," Proceedinss of a Seminar on Computer-

based Learning Systems, NCET,March, 1970.

Maher, A. (1964). "Computer-Based Instruction (CBI): introduction to the

IBMResearch Project," IBMResearch, Watson Research Centre,

Yorktown Heights, N.Y., RC1.I14,March 6, 1964.

Meadow,C.T., Waugh, D.W. and Miller, F.M. (1968). "00-1, a course

generating program for computer-assisted instruction",

Proceedings of ACMNational Conference, 1968, pp 99-110.

Mellan, I. (1936), in Journal of Experimental.Education, ~, March, 1936.

National Council for Educational Technology (1968). "Computer Based

Learning Systems", Report of a working party of the National

Council for Educational Technology, November, 1968.

Pask, G. (1959). "The Teaching Machine", The Overseas Engineer, February,

1959, pp 231-232.

Perstein, M.li. (1966). "Grammarand lexicon for basic JOVIAL", System

Developnent Corp., Santa Monica, Technical Memorandum,

TM-555/005/00, May 10, ,1966.

Philco-Ford Corp. (1970a). "INIDRMAuthor Reference Manual", Communications

.and Technical Services Division, Willow Grove,

Pennsylvania, February, 1970.



198

Philco-Ford Corp. (1970b). "Project GROWUser's l1anual", Communications

and Technical Services Division, Willow Grove,

Pennsylvania, April, 1970.

RCA(1967). "Instructional 70, General Information Manual", RCA

Instructional Systems Division, Palo Alto, California, 1967.

RCA(1968). "Instructional 71, General Information Manual", RCA

Instructional Systems DiVision, Palo Alto, California, 1968.

Rath, G.J., Anderson, N.S. and Brainerd, R.C. (1960). "The IBMResearch

Centre Teaching Machine Projectlt, in Galanter (Ed.), Automatic

Teaching, The State of the Art, NewYork, Wiley, 1960.

Ruans, D.G. (1963). "An Information Systems approach to Education",

System Development Corp., Technical Memorandum,TN-1495, 1963.

Schramm, w. (1964). "The Research on ProgrammedInstruction, an

Annotated Bibliography", U.S. Office of Education Bulletin

No. 35, 1964.

Schurdak, J. (1967). "An Approach to the use of ·computers in the

instructional process and an evaluation", IBMResearch, Watson

Research Centre, Yorktown Heights, N.Y., RC 1432, 1967.

Silvern G.M. and Silvern L.C. (1966a). "Computer-assisted instruction:

Specification 0 f attributes for CAl programs and programmers",

Proceedings of ACMNational Conference, 1966, pp 57-62.

Silvern, G.M. and Silvern, L.C. (1966b). "ProgrammedInstruction and

computer-assisted instruction .... an overview", Proceedings of

the IEEE, ~t December, 1966, pp 1648-1655.

Skinner, B.F.(1954). "The Science of Learning and the Art of Teaching",

Harvard Educational Review, ~, Spring, 1954, pp 86-97.

Sleeman, D.B. and Hartley, J.R. (1968). "The design and some possible uses

of a computer-assisted :teaming system", Aspects of Educational

Technology, £, 1968, pp 537-542.



199

Starkweather, J.A. (1968). "PIWT User's guide: a conversational computer

language", University 0 f California Medical Centre, San

Francisco, December 1, 1968.

Starkweather, J .A. and Turner, W. (1966). "COMPUTESTII-D: a programming

language for computer-assisted instruction, testing and

interviewing", Computer Centre,. University of California,

San Fransisco, November, 1966.

Stolurow, L.M. (196.5~). "Model the Master Teacher or Master the Teaohing

Model", in Krumboltz (Ed.), Learning and the Education Process,

Chicago, Rand McNally and Co., 196,5, Chapter 9. pp 223-247.

Stolurow, L.M. (196,5b). "Computer-based instruction", University of

Illinois, Training Research Laboratory, Contract NONR398,5(04),

Report No.9, 1965.

Summers, R.C., Wood, J.R., Citron, J.P. and Bray, R.R. (1967). "Design

of a Supervisor for Interactive Applications" I IBMLos Angeles

Scientific Centre, 1967.

Swets, J.A. and Feurzeig, W. (1965). "Computer-Aided Instruction",

Science, .j2Q, 3696 (October 29, 1965) pp 572-576.

Tonge~ F.M. (1968). ttDesign of a programming language and system for

computer-assisted learning", Proceedings of IFIP Congress 1968,

North Bolland Publishing Company, Amsterdam.

Uhr, L. (1969). "Teaching machine programs that generate problems as a

function of interaction with students", Proceedings of ACMNational

Conference, 1969, pp 12,5-134.

University of Michigan (1967). "Michigan Terminal System", User's manual,

Computing Centre, University of Michigan, Ann Arbor,

2nd. edition, December 1, 1967.

Uttal, W.R. (1962). "My Teacher has Three Arms!!!", IBMResearch, Watson

Research Centre, Yorktown Heights, N.Y., RC788, September, 196a.



200

Weizenbaum, J. (1966). "ELIZA- a computer program for study of natural

language communication between man and machine", fMlli., .2,
1 (January, 1966) pp 36-45.

Weizenbaum, J. (1967). "Contextual understanding by computers", CAC1.f,10,
8 (August, 1967), pp 474-480.

Winkler, C.E. (1968). "Computer-assisted instruction as an information

retrieval public utility", Proceedings of the ,American Society

for Information Science, 5, (1968), pp 169-173.
'Hodtke, K.W., Mitzel, H.E., and Brown, B.R. (1965). "Some preliminary

results on the reactions of students to computer-assisted instruction",

Pennsylvania State University, Paper for a symposium, Systematic

Instruction, APAConvention, 1965.
Zinn, K.L. (1965). "Functional specifications for computer-assisted

instructional systems", in Goodman(Ed.) Automated Education

Handbook, Detroit, Automated Education Centre, 196.5, IV, A21-;2.
Zinn, K.L. (1967). "Computer Assistance for Instruction: A Review of

Systems and Projects", in Bushnell and Allen (Eds.) "The Computer

in American Education", John Wiley, 1967.
Zinn, K.L. (1968). "Programming conversational use of computers for

instruction", Proceedings of ACMNational Conference, pp 85-92.
Zinn, K.L. (1970). IfA comparative study of languages for programming

interactive use of computers in instruction", Proceedings of a

seminar on Computer-Based Learning Systems, NetT, March, 1970.



201

APPENDIX A.

Newcastle University Teaching System (NUTS).
User's Guide

September 30 1970.



202

CON1fENTS.
PAGE

Introduction.
Conventions. 204

The command language. 206

Introduction. 206

Requests for next command. 206

Entering commands. 206

Command format. 206

Command descriptions. 206

Commands.
BUILD
CAW
CAT
COpy
COURSE
DESK
INSERT
LESSON
LIST
PIL
FROG
QUIT
REt
RES
RFILE
RID
SFILE

207

208
211
21l~
216
217
220
221
22l.J·
225
226
227
229
,230
231
232
233
234

The author lane;uage. 235
Introduction. 235

Coding Statements. 235
Constants. 235

Variables.

The Past Student Performance Facility, /fPERF.

235

236
236
237

238
2l~

Arrays.
Subscripts.
Standard Functions.
Expressions.



203

PAGE

Assigmnent Statements. 241

Labels. 2l:.ll·

Control Statements. 2lj.5

JUHP 2h5
LOADn 2!tr::. ',..1

RETNn 2LJ·6
TRANS 246
CTRL 2l~6
IF 2l~7
PAUSE 247
STOP 21t7
END 247

Input/Output Statements. 248

RESP 248
TYPE 21;'9
BACK 250

Sample program. 250

The calculating language. 251

Introduction. 251

Coding Statements. 251

The language. 251·

Sample Programs. 25.3



204

Introduc tiOll
!!m'!castle!Lnivor-s i ty !eRchin[5 §,ystem is a system dcai.gned to permit

natural communf.catdon Hith a computer- by providing the f'aciLi.ties for a
conversational diD.loCUe to take place be tween a person and a comput.er ,
One class of user called an author is able to build lcGGons which \lill form----part of a course which, in bur-n , is used for the purpose of teaching
another class of UGer called a student.

The basis of the system is the command Language, all of whi ch may be
used by an author but only a subset of which may be used by a student.

The author builds his lessons by using the author lancuaGe. This is
a high-level programming languaee which enables him to present subject
material to the student, ask a question then specify combinations of
keywords and/or values to be sought in specified degrees of accuracy in
the student's ensuing reply. Depending upon the nature of t~is reply,
and, perhaps, any previous response in the student's history of the lesson,
the author then directs the student to follo..., a particular path through the
rest of the course.

The student may come to the terminal for a session \'lithone or more
of the courses whenever it is convenient, for the author usually \1rites
each lesson in the course in se~nents and at the start of each session
the student re-starts at the begiruling of the seement he was in at the
end of the previous session. He can terminate his session whenever the
keyboard is unlocked to him. Alterna.tively, the author may allO\·rthe
student complete freedom to move about the course at \-Jillby specifying
points in a lesson to which the student may proceed by using predetermined
responses.

For his o~m use, the author retains information about each student
using his courses in what are called response files.

As an aid to anewez-Lng any question, a simple calculating language
(which generates .9~o.Grams)and a sequence controlled desk machine are
available to the student at any time, i.e. not only during a reply to a
question but in the command language.

Also included is PIL, a simple languaee, easy to learn, but with
such powerful features as string manipulation, e:~tended I/O, etc. PIL
possesses a powerful "direct" mode loJhichhas superceded the sequence
controlled desk machine. "Indirect" statements may be stored from one
call of the interpreter to the next.

Apart from during a session when a course is being taken, all input
to the system is of entirely free format, emL~dded blanks being allowed.
CONVENTIONS

The notational conventions described here are used in the command and
language source statement 'format illustrations to explain how each operand
is to be written. To facili~~te the representation of the statements in
the format illustrations, three metasymbols are used as follow6:-
braces{} To enclose and therefore delimit syntactical units (one or more

operands) that may be repeated. Alternatives may be indicated
by aligning the choices vertically within the braces: {~}

brackets[ ] (a) to enclose and thus delimit alternatives,
(b) to enclose and thus delimit optional names and/or



205

operands Hi thin the appropriate fields. Stacked items vIi thin
the optional syntactical unit show alternatives.

ellipses ••• To indicate that the preceding syntactical unit may be repeated
one or more timos. Should a system limit to the number of
repetitions permitted exist, this v/ill be Biven in the operand
list that follo\'lsthe format illustration.

,



206

THE COEHAlm IlI.J.iGUAGE

INTRODUCTION

The command Language is desri.gne d for users who communicate "lith !-JUTS
wlri Le it is executing operations for them. This mode of operation is
called conversational, since the user remains on-line to HUTS, ene;ae;ingin
a dialogue with it.

The conunand language also serves as the job control language for
operations that do not require a dialoGue \'liththe user; i.e. operations
submi tted to the system for execution \-,ithout user monitoring. This second
mode of operation, in Hhich the user is not·on-line to the system, is
described as the non-conversational mode. Both modes use the same command
language, except that some commands are only available in conversational
mode.
TASK INITIATION

The user initiates his task by firstly signing on to Hichigan Terminal
2_ystem. \O[henhis signon has been accepted and he is prompted by a number
sign (if.), he enters the HTS command "$'SOURCENUTS". This activates NUTS
and the user is in command mode after the appearance of ".11.

The system informs the user that it is ready to accept his next
command by printing an asterisk, ".", then unlocking the keyboard after
giving a carriage return line feed.
ENTERING COHHANDS

Every· command entered from a terminal keyboard starts on the new
line after the prompt, ".". The user may employ a completely free format,
with as many embedded blanks as he requires in any position. The only
restriction is that commands may not exceed one line and this line must
not exceed 80 characters. Truncation of extra characters occurs. The
end of the command line is indicated by pressing the RETURN key.

If commands are entered from cards, each must start on a new card,
but other\orisethe above rules apply.
CONMAND FOWIAT

The general format of the command language statements is:
OPERATION SEPARATOR

command name a comma; blank if
and only if operand
field is blank.

one or more operands
delimited by commas;
field may be blank.

The operand field is separated from the operation field by a comma.
The operand field itself may be blank for certain commands or may contain
several operands separated from one another by commas.
CONNAN])DE3CRIPTIONS

The command descriptions are in alphabetical order; each has the
follovling arrangement:



207

1. the command nelme.
2. D brief stc'_temcntof the commend!s f'unc ti one ,
3. when E'_ndby whom it may be used.
It. the command forme.t is illustn ted ,'nd each operand is deccr-i bed ,

5. D. description of the command is then given, discuscin[; \·:11.3.tthe
command doe a :fromt: user's ct,::ndpoint,and telling abou tits
r estr-i.ctdons and Li.mit.::ltions.

6. finally, one or more examp.l.e s arc r;iven to chow exac tLy how the
command is used.

Here is Cl list of apec i aI C.;ermsused in command de acr-Lpt.ione ,
ar rname is cc vaLi.d array name consisting of .:'_namper-sand (&)

follo\-/edby 011e through si;~letters.
caname _is a valid course name consisting of be tween one and

five letters.
digit is a valid digit, 0 through 9.
element number is an inter;er 1 through 100.
finline is the finishing line of a sequence of line numbers and

is ~n integer greater than zero but less t~n or equal
to 999/99999 for programs/lessons.

incr

line number

lname

name
prname

rfile

segment number
stline

userid

varname

COMHAN])s

is the increment between succecsdve line numbers. Its
bounds are as for finline.
is an integer vhf.eh is valid if between 1 and 999/99999
for programs/lessons.
is a valid lesson name consisting of the constituent
course name' s one tl1.roughfive letters follo\·:edby a
digit.
is a string of characters inadvertently entered.
is a valid program neJ!leconsisting of between one and
six letters.
is a valid response file name consisting of the course
nCJlle'sone through five letters followed by a number sign
e#) then a digit.
is an integer 1 through 99.
is the starting line of a sequence of line numbers. Its
bounds are as for finline.
is a valid user identification sequence consisting of two
letters followed by either a letter and a digit or a digit
and a letter.
is a valid simple variable name consisting of one through
six letters.

The commands are presented in alphabetical order for ease of
reference.



208

BUILD CONliAND

1. BUILD.

2. lJ.'hiscommand is used to translate a series of author Language source
statements into intermediate code. If errors are detected, appropriate
diagnostic error messages are produced but if successful a lesson is
"built" and may be subsequently called upon. The source statements mA.y
be entered in full or in part within the BUILD command or, if desired,
may already exist in full in the lesson file.

3. On terminal and in batch. Authors only.
4. BUILD, Iname

4.1 lname
( {::~[,stline,incr]}]
If the second operand is "N" or blank then the lesson
file must already exist; if "N", the lesson should not
yet exist.

4.2.1 N is entered if a new lesson is to be created. Prompting
then occurs for each source statement, vrhd ch is
processed immediately, before a prompt is given for the
next line.

4.2.2M is entered if modifications are to be made to the lesson
source statements before translation is attempted.

4.2.3 (blank) specifies that translation only will take place. No
chance is given to the author to enter source statements
prior to processing.

4.3 stline is entered only if "N" is the second operand. It
specifies the line number to be given to the first
statement prompted for. Limits are 1 and 99999. If
absent, the default value is 10.

4.4 incr is also entered only if "N" is the second operand. It
specifies the increment between any successive line
number prompts. Limits are also 1 and 99999. If
absent - it may be absent if and only ifl'stlinell is
absent - the default value is also 10.

5. It iS,obvious that there are three modes of operation of the command BUILD.
5.1 mode 1

5.1.1 The author may ...!ish to create a new lesson and enter his source
statements vIi thin the command , To do this he specifies N and
optionally gives the starting line number for the statements in
the lesson and the increment \"Iith wlri ch the line number \'Iill
increase on successive pr-ompbs, The system prompts "line number)".
The author then enters his source statement which is immediately
parsed and intermediate code generated.

5.1.2 If this is successful, the line number is incremented and the
system prompts once more.

5.1.3.1 If unsuccessful and from a terminal, an appropriate dia8nostic
message is returned, together'\'/i th a prompt to make a
modification. This takes the form ">I~ At this point the terminal
author may modify any previous line, delete any previous line
or insert any line to his lesson, all in the sruneformat.



209

5.1.3.2 This format is:
line number, line contents

wher-e the line number must be a valid integer between 1 and
99999 and the line contents contain the modified line, b.Lank
as necessary for deletion. The comma is mandatory. As the
maximuni length of line aLLowed by the author Language
processor is 80, in the case of a modification, the lenGth
of an'actual line Vlillbe slightly less. One consideration
when making modifications in this ,yay is as follo\'ls: if the
author corrects a line immediately he is told it is incorrect,
then the processor may continue with one and only one pass,
no re-translation of the whol,elesson would be neceasar'y ;
otherwise, in the event of a modification of a different line
from that given in the current incremented line number prompt,
the line is checked syntactically ,·Ii thin itself, but without
reference to the rest of the lesson. The whole lesson is
re-translated at a later stage. When the author has completed
his modifications, he simply presses RETURN to go back to the
incremented line number prompt.

5.1.3.3 If unsuccessful and in batch, the incremented line nur.iberprompt
continues as if it had been correct.

5.1.4 On entry of the statement ~~, the processor completes the label
chaining, etc.

5.1.5 Then, if from a terminal, the author is given the option for a
complete or part source listing, whe thez-he ",ishes to make
further modifications, and whether he vi.shee to continue
processing. In batch none of these options is available.
Finally, if,the translation has been successful, the command
terminates, but if unsuccessful then the author from a terminal
has a further option for modifications but in batch, termination
occurs with an appropriate message •

.5.2 mode 2 The author may \'/ishto re-translate a previously existine lesson
but first enter some modifications. To do this he specifies H.
The modifications are entered in the format specified in 5.1.3.2.
If an incorrect source statement is entered for a modification,
then, from a terminal it may itself be modified but, in batch,
modifications cease at the point. Of course, this \-lillproduce
invalid commands in the command sequence, all of which will sub-
sequently be ignored. When modifications have all been entered,
execution continues as in .5.~.5.

5.3 mode 3 The author may \-lishto re-translate only a previously existing
lesson. He leaves the second operand of the command blank.
If the translation is unsuccessful, then the terminal author
has the chance to enter modifications. In batch, termination
occurs with an appropriate message.

6. Examples.
6.1 mode 1

user
sys
sys
sys
user
sys
users:

BUILD,HIST¢,N,1¢¢,2¢
FILE IlHIST¢ II HAS BEEN CREATED
ENTER STATE4ENTS
100 >
(enters his source line)
120 >
(enters next source line)

••ETC.



210
A new Loscon named "IU,sT¢" has been created and Li nec entered by

pr-ompti.nga.t 100, .incr-eao i.ngby 20 each time.

user BUILD,GEOG¢,l'T
sys FILE "GEOG¢fIHAS BEEN CREATED
sys El')TER ST1I.'I'}]-1ElmS
sys 10 >
user (enters his source line)
sys 20 ')
user (enters next source line)

•
ETC.

A new lesson named "GE03¢" has been created but this time the starting
line prompt and the increment have been a.Ll.owedto default to 10.
6.2 mode 2

user
sys
sys
user
sys
user

•••
ETC.

BUILD,ARITH2,N
~~1~R MODIFICATIONS
>(enters source line with line number)
>(enters source line \'Ii til line number)

A previously existins lesson "ARITE2" is to be re-translated but
modifications are to be entered first.
6.3 mode 3

user
ays
sys :

BUILD ,ALGEB9
ElID OF •BUILD'•

A previously existing lesson "AWEB9" is to be re-translated only.
(The example assumes an error-free translation)



1. CALC.

211

CALC COHI1l'.ND

2. This command is used to translate a series of calculatine lanGuaGe source
statements into intermediate code. If errors are detected, appropriate
diagnostic messaeeG are returned, but if successful the user runs the
program whi.ch is also stored for future use. The source statements r.1r?.y
be entered in full or in par-t \-Jithinthe CALC command, or, if desired,
may already exist in full in the program file.

4.
3. On terminal and in batch. Authors and stUdents.

CALC, prname [{: :~~[,stline,iner]}]

4.1 prname

4.2.1 N

4.2.2 M

4.2.3 (blank)

4.3 stline

11-.4 incr.

must be a valid program name. If the second operand is
"Hit or blank then the program file must already exist;
if "N" the program should not yet exist.
is entered if a new program 'prname' is to be created.
Prompting then occurs for each source statement, whi.ch
is processed immediately, before a prompt is eiven for
the next line.
is entered if modifications are to be made to the program
source statements before translation is attempted.
specifies that translation only will take place. No
chance is given the user to enter source statements prior
to processing.
is entered only if "N" is the second operand. It
specifies the line number to be given to the first
statement prompted for. Limits, for "stline" are 1
and 999. If absent when "N" has been entered, the
default value is 10.
is also entered only if "1'1" is the second operand. It
specifies the increment between any successive line
nt~ber prompts. Limits are 1 and 999. If absent - it
may be absent if and only if "stline" is absent - the
default value is also 10.

5. As in the BUILD command, there are three modes of operation of the command
CALC.

5.1 mode 1
5.1.1 The user may wish to create a new program and enter his source

statements within the command. To do this, he specifies N and
optionally gives the starting line number for the statements in
the program and the increments with which the line number will
increase on successive prompts. The system prompts "line number>".
The user then enters his source line whi.chis immediately parsed,
and intermediate code generated.

5.1.2 If this is successful, the line number is incremented and the
system prompts once more.



212

5.1.3.1 If un.succescful and from 11. terminal, an a:ppropriate diaGnor:;tic
mC:3GHC;Cis Given, to[';otlwr\"litha pr-ompt. to make 1l. modification.
This takes tho form ">". At this point the terminal user m::.<y
modify any previous lines delete any previous line or insert
any line to his proGram, nIl in the same format.
This format 1°~~.D.

l~ne number, line contents
where the line number must be a valid integer betwaon 1 and 999,
and the line contents contain the modified line, b.Lank, if
necessary, for deletion. The comma is nandator-y, As the
maximum length of line allo\"ledby the calculatinG language
processor is 80, in the case of a modification, the lenGth of
an actual source line will be slightly less than 80. One
considera tion when modi fying lines in this way is as follO\/s:
if the user corrects a line immediG".telyhe is told that it is
incorrect, then the processor may continue with one and only
one pass; no retransla tion of the whole program wouLd be
necessary; otherwise, in the event of the modification of a
different line from that given in the current incremented
line number prompt, the line is checked syntactically within
itself, but without reference to the rest of the program.
When the author has completed his modifications he simply
presses RE'ruRN to go back to the incremented line number
prompt.

5.1.3.3 If unsuccessful and in batch, the incremented line number
prompt continues as if tho line had been correct.

5.1.4 On entry of the statement END, the processor completes the
label chaining, etc.

5.1.5 Then, if from a terminal, the user is given the opportunity
to acquire a complete or part source listing, to make further
modifications and to continue processing. In batch, none of
these options is available. Finally, if the translation has
been successful, the program runs with the user supplying
data as requested. If unsuccessful, the terminal user has a
fUrther chance for supplying modifications, but in batch,
termination occurs with an appropriate message.

5.2 mode 2 The user may wish to re-translate a previously existing program
but first enter some modifications. To do this he specifies H. The
modifications are entered in the format specified in 5.1.3.2. If an
incorrect source statement is entered for a modification then from a
terminal, it may itself be r.lodif:iedbut. in batch, modifications cease
at that point. Of course this \,/illproduce inva.lid conunands in the
command sequence, all of which will subsequently be ignored. When
modifications have all been entered, execution continues as in 5.1.5.

5.3 mode 2. The user may \vish to re-translate only a previously existing
program. He leaves the second operand of the command blank. If the
translation is unsuccessful, then the terminal user has the opportunity
to enter modifications. In batch, termination occurs ,·Iith an appropriate
message.

6. EY.amples.



213

6.1 mode 1---
user CALC,CUBrCS,N,50,15
sys FILl:; IICUDICS II Hl,S B}:;EN CREATED
sys ENTEl< STATEt-iENTS
sys 50 >
user (enters his source line)
sys 65 :>
user (enters next source line)

ETC.

A new program named "CUBICS" has been created and the lines to be
entered prompted for starting at 50 and increasing by 15.

user CALC,SUH,N
sys FILE "SID,. "HAS BEEN CREATED
sys ENTER STATUiEN'lZ
sys 10 >
user (enters his source line)
sye 20 >
user (enters next source line)

•••
ETC.

A new program named "SID-1" has been created but this time the starting
line prompt wld the increment have been allowed to default to 10.

6.2 mode 2

user
sys
sys
user
sys
user

CA.1.£,JACOBI ,H
ENTER NODIFICATIONS
>(enters Bource line with line number)
>(enters line with line number)

•••
ETC.

A previously existing program "JACOBI" is to be re-translated but
modifications are to be entered first.
6.3 mode 3

user CALC,STD
sys (pro~pts for required inputs)

•••
ETC.

A previously existing program "STD" is to be re-translated only.
(The exanlpleassumes an error-free translation and so the program runs).



214

1.' CA'l'.
CAT C01;J·,jfJ-iD

2. 'I'lri.s command tells the User which files he po.sSCGSCS at Lha t point in time.
3. On terminal and in batch. Authorn and students.
4.

CAT [ {it}1
LI-.1.1 (blank) - student is told wlri ch programa he mills (this is the only

valid.\'Jaya student may use the command)
author is given a list of lessons, progrruns and response
files he owns ,

4.1.2 L (author only) ; a list of lessons is given.
4.1.3 P (author only) ; a list of prcgr-ams is e;iven.
4.1.4R (author only) ; a list of r-esponse files is given.

5. Each list is given an appropriate heading. If it is null, therefore,
only the heading will appear. In the case of lessons, the word "RELEl\,SED"
\odllappear against the lesson name if it has been released for general
use. Only the author is permitted to see which response files he O"IllS.

6. Examples.
6.1 author

user CAT
Bys PROGRAIJ'JS
ByB CUBICS
sys SU}!
sys .. '

sys LESSONS
sys l-lATHS¢
sys
sys RESPONSE FILES
sys
sys END OF 'CAT'
sys •
All the author's files are'listed. He has two programs, one lesson

but no response file.
user CAT,L
sys LESSONS
sye HIST¢ RELEASED
Bye HIST1
sys GECXJ¢
ays
sys END OF 'CAT'ays •
The author has requested only the list of his current lessons. He

has three, one of which has been released for general use.
6.2 student

user CAT
sys PROG~m
sys JACOBI
sys STD
sys SQUARE
sys



215

sys END OF 'CAT'
•sys

The student is given a list of the proGrams he possesses. Evon
though he may mm some response files implicitly, that they exist is of no
useful value to him so he is not told of their existence.



216

COPY CO)·il1AND

1. COPY.
2. This command a'Ll.ows the user to cOllYan existing file into another file,

vhi.ch may already exist or need to be created.
3. On terminal and in batch. Authors and students.
4. COPY, file1, file2.

4.1 file1 must be a valid lesson (authors only) or program which
exists.

4.2 file2 must be a valid name of a file of the same type as
l!file111• It mayor may not exist already.

5. The source statements only are copied from "file111• To run either
the lesson or program subsequently, it must be translated.

6. Examples.
user
sys

COpy ,ALGEB1 ,HATES7
•

The source statements of lesson IlAIGEB111are copied into lesson lIl-iATHS711,
which already exists.

user
sys
sys

COpy ,CUBICS ,SOLVE
FILE "BOLVEII HAS BEEN CREATED
•

The source statements of program "CUBICS" are copied into program "SOr.VE",
which has first been created.



217

COURSE COLI-:AND
1. COURSE.
2. This command allows the user to take part in a course, if it exists and.

has been translated successfully. In the case of students, the constit-
uent lesson 0 (at least) must have already been released for general
use.

3. On terminal only. Authors and students.
4. COURSE, csname

4.1 csname is a valid course which exists. Authors may use the
command to check out the constituent lessons of tho
course before satisfying themselves that these are
fit for release. Students may use the command only
if lesson 0 of the course has already been released.

5. The system first decides whether the user is an author or a student
(9ne author may be acting as a student to another author); also if
the course exists.

5.1 author: the author is asked which r-espcnse file he wishes to use for
this particular run of the course. He has ten response files available
to him per course - they are known by digi ts 0 to 9 to him. They are
available so that the author may explore the many possible routes
through his course and correct inconsistencies, if necessary, before
allo\'lingstudents to use it.

The system then tells him at what segment he will begin and in
what lesson. If he "dshes to carryon from this specified point in
the course, the author just presses RETURN; otherll/isehe is allo\'/ed
to specify the segment and the lesson from \'Iherehe will re-commence.

If the lesson is available for use, i.e. if it has been trans-
lated successfully, and the segment exists, then the course is taken
up at that point. There will only be any doubt about the existence
of a segment if the author has specified his ollmre-entry point and
not just carried on from where he left off previously.

5.2 student: if the course specified by the student is available to him,
then he usually re-commences at the beginning of the segment he was
in when he terminated his last course session. HOl;/ever,the nuthor
may overrule this convention if he wishes the student to have complete
freedom within a course.

5.3 Once inside the instructional material, the user "/ill be presented with
various facts and from time to time asked questions on the subject
content of the course. Thus, the keyboard is unlocked to the user when
he is expected to reply to a question. Ius response may be up to five
lines long, providing the continuation character, "-", is used at the
end of the previous line all the \'Jay. The length of each line must not
exceed 80 characters, including the continuation character.

The only other time that the keyboard is unlocked to the user is
when the course author has specified a pause at that point. The
system prompts with a ":", followed by a carriage return line feed, and
then the user may restart when he is ready by simply pressing Rh:ruRN
only.



218

Whenever the keyboard is unlocked, the user may per-f'orrncertain
basks other bhan simply maki.ng a reply in the caae of Et question, or
proceedinc; in the case of a pause.

5.3.1 ?END if the user enters "?END" in either instance, the course
is terminated at that point and he is returned to the
command language prompt.

5.3.2 ?F durinG any seGment, an author may specify certain parts of
the lesson to \-,hienthe student \-Jillbe sent if he enters
a predetermined non-solution response when the keyboard is
unlocked to him. This the author does by use of a CTRL

• statement. If a user· enters "?1"1I then he ,</illbe sent to
the point described by the first parruneter of the CTRL
statement. If the author has not specified a CTRL statement
within the segment, then the "7FIIis ignored, i.e. in
the case of a question, "?F" is assumed to indicate the
student's answer; in the case of a pause, "?FIIwill caUse
a restart. The reaSon the letter F was chosen was that
the first parameter might be used for a forward skip;
however , this is completely arbi trary.

5.3.3 7B this is exactly the same as for "?F" except that the student
will be sent to the point described by the second parameter
of the CTRL statement, if it has been used. The letter B
was intended to suggest a E_a.ckwardskip.

5.3.l~?5 as for "?F" but the point is given by the third parameter
of CTRL, if it has been used. The letter S was intended
to suggest a skip to the ~l.lbjectoutline.

5.3.5'lG as for "?F" but the point is given by the fourth parameter
of CTRL, if it has been used. The letter G was intended
to suggest a skip to a ~lossary.

5.3.~ ?CALC this may only be entered in reply to a question. It
indicates that the student wishes to write or modify a
program in the calculating language. Of course, the usual
reason for his wanting to do this is that it will help him
answer the question. The system asks him either to enter
the parameters (see command CALC) or simply press ~r
if he ...zi.aheeto cancel the request. \fuen he is finished
using his prosram or, indeed, when he has cancelled the
request, the student is reminded to answer the question.

5.3.7 ?PROG this ma.yonly be entered in reply to a question. It
+ndicabee that the student ...lishes to run a progr-am in the
calculating language. The system asks him either to enter
the filename of the program (see command PROG) or simply
press RETURN if he ,·nshes to cancel the request. On
completion, the student is reminded to answer the question
by the system.

5.3.8 ?DESK this may only be entered in reply to a question. It indicates
that the student wishes to use the desk calculator. On exit,
he is reminded to ans...sex: the question.

5.3.9 ?PIL this may only be entered in reply to a question. It indicates
t}1.atthe student wishes to use the PIL interpreter. On exd,t,
he is prompted to answer the question.



219

6. Examples.

6.1 Author

user COURSE,llATIL'3
sys ENTER DIGIT TO DENO'.VE \VHICI! RESPONSE FII,E TO USE
user 2
sys YOUR STAH~rlnG POSr'.I'ION HILL BE LESSOn L,. Bffil·~E1';T 13.
sys IF YOU \JISH '1'0 COl-ITIHUE FROi,j TEERE JUS~~ PHE3S RETUHn.
sys OTHERivISE ENTER 'LESSON NO., SEG. NO.' TO P..ESTART.
user 3,27
sys (course continues)

The author continues to check out course 'l-1ATF",c:)Iusi.ngresponse
file IMTF.s#2 but restarting from lesson 3, segment; 27 instead of
lesson 4 seement 13.

6.2 Student

user COURSE,FJST
sys (course continues)

The student merely declared his intention to use the course; where he
recommences is determined already by the author.



220

DDSK Cor-n'lAND

1. DE3K.
2. This corrunandallo\'lsthe user access to the sequence controlled desk

calculator.

3. On terminal only. Authors and students.

4. DESK.



221

IW3ERT C01·j}l!.l'lD

1. INSERT.

2. This command allows users to create new lessons or pr-ogr-amsor update
existinG ones by entering source statements into specified lines of the
files. No syntax checkinG is carried out.

3. On terminal and in batch. Authors and students.

INSERT, filename, {{~}[ ,stline,incr]\
4.1 filename must be either a va{id lesson name or a valid program

name. "L" requires th.atit is a lemon which does or
does not already exist, "P" Cl.. proc;ram which does or
does not already exist. "U" allo';{seither so long as
the file does exist.

4.2.1 L is entered if a new lesson is to be created or if an
existing lesson is to be updated by successive line
number prompts.

4.2.2.P is entered if a new program is to be created nr if an
existing program is to be updated by successive line
number prompts.

4.2.3 u is entered if a previously existing file is to be
updated but in such a 'tlaythat the line number as
well as the line is enterc.d after a prompt.

4.3 stline is entered only if either L or P is the second operand.
It specifies the line number to be given to the first
statement prompted for. Limits are 1 and 99999 for L
but 1 and 999 for P. If absent when either L or P is
given, the default value is 10.

4.4 incr is also entered only if either L or P is the second
operand. It specifies the increment between any
successive line number prompts. The limits are as
for t1stline". If absent - it may be absent if and
only if "stline" is absent - the default value is also
10.

5. It is obvious that there are two modes of operation of the command II~F.RT.
5.1 mode 1 The user may wish to enter his modifications in a rigid pattern

of line numbers, for example, thirty lines each ten lines apart,
(whether the file into which he is to ir.3ert exists or not is of littlc
consequence except toot he is warned when it does already e::dst)• To
do this he specifies L or P depending on the type of file and optionally
gives the line number for the first statement he is to enter and the
increment with which the line number will increase on successive prompts.
The system prompts lllinenumber>lI. The user then enters his source
statement and presses RETURN. Prompting of line number then occurs
until the user wishes to enter no more lines. At that point he simply
presses RETURN in reply to the prompt and the command terminates.

The user may override the line number prompt at any time he wishes
to modify or delete any other existins line or insert one out of
sequence by enterinG his line in the format:

% line number, line contents



222

wher-e the line number- is a valid one delJondinc;on who thcr L or P \'IetG

specified, and line contents are the actual insertion required.

After this particular line has been entered, the sys t.em prompte
the aame line number agad.n that Has overridden.

5.2 mode 2 If the mcdf.ficatdons to be made seem randomly scet tor ed about
the file, then the user will not vran t Cl ri:::;idline number prompt.
Inste8.d he will supply the line number to each modification. To do
this he specifies U 8.13 the second operand, an action wlri.ch requires
that the file must already exist. The system prompts simply \,lith ">"
to which the user replies by entering his mod'if'Lcat.i.on in the form

line number, line contents

where,as before, the line number is a valid one depending on whether
~he file beine; updated is a lesson or a program, and line contents are
the actual insertion desired.

On each successive return from the user, the system gives a
further prompt, to vthich the user replies RETUHN only if he ...fishes to
discontinue entering modifications.

It is important to note that updatin~ a previously translated file
via the UTSERT command destroys the intermediate code and necessitates
a re-translation before further use.

6. Examples.

6.1 mode 1

User INSERT ,1-1ATHS¢,L,25,50
sys FILE "NATHS¢II HAS BEEN CREATED
sys ·25 >
user (enters source line)
sys 75 >
user (enters source line)

•••
E':ro.

An author has created a new lesson "NATIJS¢n and wishes to insert
source lines commencing at line 25 and thereafter increasing by 50 on
successive prompts.

user
sys
sys ..
user
sys
user

•••
ETC.

INSERT,ROOT,P
WARNING. PROORAM 'ROOT 'ALREADY EXIS'llS
10>
(enters source lino)
20 >
(enters source line)

An author or student wishes to insert source lines in a lesson
"ROOT" which already exists. The starting line number and increment
have been allowed to default to 10.



223

6.2 mode 2
user INSE.i~~,Lfl.TnJ5, U
sys >
user (enters source line together \-lithline number)
sys :>

•

ETC.
An author wishes to update an existing lesson "LATIN5" but each

modification he enters will contain a line number.



J:..E<3,sOH COli}!i\rm

1. LESSON.

2. This commandis available to inform authors wh.ich lessons are currently
released for general use and who are their authors.

3. On terr.-Iiual and in batch. Authors only.

4. LESSON.

5.
6. Example.

user LESSON
sys COURSE I.ESSON NUl-iBER AUTHOR
sys l-lATHS 0 OLC7
sys PIL 0 DLCO
sys 11ATF.E 1 OLC7
sys HATES 5 OLC7
sys PDE 0 Q009
sys END OF 'LESSON'
sys •
Five lessons fro~ three different courses here have been released
so far.



1. LIST.

I. _..

225

LIST C01·U';AND

2. This commHnd gives the user a current listing of the file he specifics.

4.
3. On terminal and in batch. Authors and students.

JIST f'l [{(stline,finline)}]~ ,l. ename '( bLi )s l.ne

4.1 filename is the nruneof either a lesson or a program which exists.
4.2.1 (blank) specifies tha'ca listine of all the lesson or proGram

is required.
4.2.2 stline is the line number of the first line of the listine.

If this does not exist, then the first line will be
the one \",ith the next greater line number them stline.

4.3 finline is the line number of the last line of the li.:Jting.
If this does not exist, then the last line will be the
one with the next smaller line number than finline.

5. The user is supplied with a current listing which contains all the linos
in the specified part of the file. If the specified part is empty,
then the command simply gives back a heading follo\'ledby an end of
command message.

6. Example.
The follovtingNUTS dialogue shows how the command LIST may be used

in three forms, using the same program, SQROOT, each time.
user :
Bys
Bys
ByS
Bys
Bys
sys
sys
ByS
ByS
user
sys
ByS
Bys
ByS
ByS
user
Bys
SY'S
BY'S
BY'S
BY'S
Bys

LIST,SQROOT
CURRENT LISTING

50 1)READ(X)
100 IF(X<LT>O )JUNP)2
150 TYPE('X='1<X>3,10,5'S~UARE ROOT OF X='15(#SQT(X»33,10,5)
200 JUHP)1
250 2)STOP
300 END

END OF 'LIST'
•LIST,SQROOT(170,250)

CURRENT LISTING
200 JUHP)1
250 2)STOP

END OF 'LIST'
•

..

LIST,SQROOT(200)
CURRENT LISTING

200 JUJ.!P>1
250 2)STOP
300 END

END OF 'LIST'
•



226

PIL CO;·TI;.i\.!lJ)

1. PIL

2. 'l'hiscommand places the PIL interpreter at the user's disposal.

3. On terminal and in batch. Authors and students.

4. PIL

5. The user has available all "indirect" statements from previous usaee
of the interpreter. Upon completion, entry of IIHTSII returns the user
to command mode.



227

PROO CC;·jH:\.ED

1. PROG.

2. This command is used to run any pr-ogr-amin the calcula tine Language
which has heen translnted successfully. All inputs are prompted for
by var-LahLc name and run time diagnostic messages are civen wher-e
appropriRte.

3. On terminal and in batch. Authors and students.
4. PROO, prname
~.1 prname must be the valid name of a program which existe and has

been successfully translated previously by the CALC command.
5. The only messaees to be given back apart from output results and output

text are run time diagnostics and prompts resulting from the source
statement READ.

5.1 The letter C before the diaenostic message indicates to the user that
it is a controller failure. The run terminates immediately.

5.2 There are ~hree types of READ statement, all of which generate
different prompts to the user.
5.2.1 \~lena simple variable is to be read in, the system prompts

with the name of the variable. The user is required to enter
one valid constant only, follo\'/edby RETURN. Entry of a real
constant when an integer constant \'lasasked for causes the
printinG of a warrri.ngmessage and rounding occurs.

5.2.2 ~r.~enan array element is to be read in, the system prompts with
the actual element numb~r required; that is, it evaluates any
expr-eeef.onrepresentinG the array element, then prints out the
array name followed by the element number value, contained in
parentheses. As above, the user is required to enter one
constant only, follo\'1edby RETURN. Also, this may be rounded,
as appropriate.

5~2~3 When a sequence of array elements is to be read in, the system
prompts with the array name and the actual element number from
whence the constants are required; that is, it eValuates the
simple variable which defines the starting element, if used
instead of a constant. The user enters as many constants as
he desires and these are stored in consecutive elements of the
array. He 5e!~rates them by a conwa but terminates the sequen~e
with a semi-colon. As the user may only enter 80 characters
in anyone line, he may continue on another line by neelecting
to end the current line with a semi-colon, e.g. by a space or a
comma. The system \"Iillthen prompt for the next element in
sequence. The user then either carries on or simply terminates
with a semi-colon. If an error is detected in a line of
constants, the user is asked to re-input the current line.
Entry of commas only in sequence will cause zeros to be
entered in the corresponding array elements. Also, rounding
may occur as appropriate, but with warning.



6. Example.

user
sye
user
sys
sys
user
sys
user
sys
sys
sys
sys
user
sys

•••ETC.

223

PI\X,CUDICS
EN'l'EJ1 D1.TA FOR VAnIAJJLE LEI-!G'l'H
25.7
H REI~L COHSTil.HT INSTEAD OF' HL'BC±ER - ROUNDniG OCCURS
El'ITER DA'l'/I. FOR ARHAY ELEHEflT &'l'IHE (16)
1.38lt
ENTER DJ.TA :F'OR ARRf~Y &NUN STARTING AT F.•LEHENT 10
5 0 7. ~ "0,0,.:.>."-', I
W REAL COI'fSTAN'l: InSTEAD OF INTEGER - ROUNDING OCCURS
ELEHEN'£ HUHBER 12
'vI LINE ENDS \lITHOUT Tb"'RlHNATIOH
ENTEH TERHINATOR OR RECONHENCE \11TH ELEr1ENT 14
12",,9;
END OF RElI.D. LAST DATA 'vIAS FOR ELEl".ENT 18

An existing, successfully translated proeram CUBICS is run, and
prompting and warrri.ngmeceages Si ven.



229

Qurr COHNAND

1. QUIT.

2. This command a'l Lows the user to terminate his NUTSsession and return
to Nichigan Terminal System.

3. On terminal and in batch. Authors ruld students.

4.. QUIT•

.5. \Vhen the system siens the user off, it tells him how lone in hours he
has been si~ned on to NUTSto date and also hovr long in minutes the
last session was.

6. Example.

user QUIT
sys TOTAL TIHE = 10.42!IRS. THIS SESSION = 61.86 MINS.
sys #- (HTS command prompt).



230

REI, C0i·11:J'J'm

1. REt.

2. This command is used to r-cl.cacelessons for ceneral use. In other
words, the author \Jishcs to a'Ll.ow students to usc the released Lcseon ,

3. On terminal qnly. Authors only.
4. REL, Lname

4.1 lname is the valid name of a lesson owned (, translated and
~uccessfully checked out) by the author issuinc; the command.

5. Once the system has decided that the lesson to be released is valid, it
makes the further check that if this is not lesson 0, then lesson °
must already be released. This is becCtuoe lesson ° is the fundnmenta1
lesson in a course and must be released before all.others.

It may happen that some other author has already released a
lesson in a course of the same name as the course, the lesson of whi ch
is now being released. If so, the current author must first copy his
lesson to one of a different name and re-translate it before trying to
release it again, as identical course names between authors is not
allo\·/ed.

6. Examples.
user
sys

REL,HATHSO
•

.The fundamental lesson 0 of course MATHS is released, allO\'ring
students to commence the course.
user
sys

REL,HIST9
•

Lesson 9 of course HIST is released, assuming lesson RISTO has
been released, thus allowing students to carryon further \'riththe
course.



231

RF..s COI·'l:L!.I'lD

1. RES.

2. This COJn!ERndis used to Hith<lrnH lessons from general use. In other
wor-ds , the author \·;ishesto amend the lesson.

3. On terminal only. Authors only.

4. RES, Lname

4.1 lname is the valid name of a lesson owned and already released
by the author issuing the command.



232

1. RFILE.
2. This command gives an [luthor 8. listing of thc contents of any onc

of the response files he pcaseeeee , He uses it wh'iLst he is choclri.ng
out the logic of his courses.

3. On terminal al)din batch. Authors only.
4. RFlLE, rfile.

4.1 rfile is the valid name of a response file owned by the author
himself.

5. If the response file is a valid one then the follO\vinginformation
is returned to the author.

5.1 current position: the current lesson number of the course and the
seement numb.er in that lesson are given, together with the corres-
ponding a.ddress in the intermediate code. A restart woul.doccur from
this position.

5.2 route: information is given in chronoloGical order of responses. For
each response this is:
5.2.1 lesson number.
5.2.2 question number.
5.2.3 response type: this may be one of A(nticipated), U(nanticipated)

or N(ot answer-ed}, In addition, I+DI, '+Cl, I+PI, '+DP', etc. is
added depending upon whether ?DESK, ?CAJ.A;,?PIL or some
combination was used.

5.2.4 truth value = 0 if that particular #CAlII:,JA element was not used.= 1 if that element was contained in the response.
=-1 if not.
This is only included if the response type is A.

5.2.5 time taken: from keyboard unlocking to RETum!; in seconds.
5.2.6 actual response : the first 60 characters of the response, but

only if unanticipated.
5.3 times: the total time on the course and the duration of the last

session a~e given in minutes.
6. See Appendix F for an example of a response file listing.



233

RID COl!;l-IAIlD

1. HID.
2. This command is used to destroy files; les80l1s, programs and respOlw0

files in the case of authors but proGrams only in the case of students.

3. On terminal only. Authors and students.

4. RID, name

4.1 name is the valid name of an existing file:-
El lesson,proeratn or re.sponse file in the Gase of an author.
a program in the case of a student.

=5. \'I'hena file is got rid of, it is deleted from the system and its
reference in the user's catalogue removed.

6. Examples.

user
sys
user
ays
user
ays

RID,HATHS2
•
RID,CUBICS
•
RID ,NATHSf5
•

One of each type of file is destroyed.



234

SFILE cm :I-iAND

1. 81"I1.E.

2. This command gives an au thor- a lishnc; of the contents of a r-eeponso
file of a student who is using one of his cour ses , It is used to
study the student's current position and progress in the course.

3. On terminal and in batch. Authors only.

4. Sli'ILE,csname, userid

4.1 csname is the valid name of a course owned by the author,
(Naturally, some of the lessons of this course must
be released).

4.2 userid is the valid user identification number of a student who
has been added to the student index, i.e. has been
joined to the system.

5. After verifyine; the validity of the course name, the system
ascertains whether the student has been joined to the system. If
not, a message indicating this is returned. Then, it decides whe thez-
the student has or has not commenced this particular course. If
he has, a listins of the form mentioned in paragraph 5 of the RFILE
comnand is given.

6. See Appendix F for an example of a response file listing.



235

THE AU'l'HOn IJI.NGUAGE

IN'l'RODUGTION

The author Language is used to design diaLogues between the nachi.ne
and students. Source statements Hritten in the author lunf,uaee consist
of a set of statementn constructed by the author from the lanc;uQ[jcelements
described in this section.

In a process called translation, a prozram called the author Inneuaee
translater analyses the source statements [tnd translates them into blocks
of intermediate code which \1ill subsequently be executed by the controller.
In addition, when the translater detects errors in the source progr-am, it
produces appropriate diagnostic error messages.
CODING STATEl-')ENTS

Statements are "/ritten one per line and have a maxdmum Leng bh of 80
characters.
CONST..'\NTS.

A constant is a fixed, unvarying quantity "lhichmay be either of mode
integer or real.

1. Definition of inte$er constD.llt- a "/holenumber I.<,ritten "Iithout
a decimal point. Naximum
magnitude 2147483647.

2. Definition of real constant - has one of three forms: a basic real
constant, a basic real constant
followed by a decimal e:cponent, or
an integer constant follo\-ledby a
decimal exponent. (A basic real
constant is a string of decimal
digits fe\ierthan 8, with a decimal
point). l{agrdtude 0 or 10-78 .
thrOue;h 1075.

The decimal e~ponent permits the expression of a real constant
as the product of a basic real constant or an integer constant
times 10 raised to a desired po\'/er: An exponent consists of
·the character ".,"follo\'/edby a signed or unsigned 1- or 2-
digit inteeer constant.

VARIABLES

A variable is a symbolic representation of a quantity tl~t occupies
a storage area. The value specified by the name is always the current
value stored in the area.

The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable real data, etc. There are 3 types of variable, 2 of which are
numeric. The name of a numeric variable is from 1 through 6 alphabetic
characters. There is a predefined convention used to specify variables as
integer or real as follO\-Is:

1. If the first character of the variable name is I,J,K,L,H or N the
variable is integer.



236

2. If the first char-act.er- is any other Lot t.cr , the variable is real.
The last type of variable is of mode loc;ical.

3. Un'li.ke numeric variables when the author may create and name his
own, there is H fixed number, i:.3; of lOGical varial>les to which
the author only implicitly assiGns values; that is, it is the
student, by his reponses, \-Ihofixes the values of these loeicnl
variables.

3.1 'Pher-e exist 20 response elements #tcAo,I#cAI,••• ,ItcA9,nHAO, •••
#1tlA9 which give namen to up to 20 responses for which an
author may want to test in reply to his question. To each
of these elements may be assigned any combination of strinGs
and values. 'rhe author also indicates how many of each are
required to give an "overall match" and also if ordering is
to be taken into account. After the student has entered lus
response, each of the #tCAs and I#'JAsbecomes true or false (or
undetermined if not used by the author), dep'ffild'ingupon the
response.

The implicit response element .UA becomes ~ if an
unanticipated response is given.

The implicit response element#NA becomes true if the question
was not answered; that is, the student simply hit RETURN. In
that case tUA becomes false.

The implicit response element #RTn becomes true if the response
was made in less than or equal to n seconds:--

.ARRAYS

An array is a set of variables identified by a single variable name.
A particular variable in the array may be referred to by its position in
the array; e.g. first variable, third variable, t~'lentieth variable. Each
variable (element) in an array consists of the name of the array immediately
followed by a number enclosed in parentheses, called a subscript quantity.
The variables which the array comprises are called subscripted variables.
To refer to any element in an array, the array name must be subscripted.
In particular, array name alone does not represent the first element.

The size and t;~e of an array: the number of elements of an array in the
author languaee is fixed at 100. Also, the number of subscript quantities
allowed is one, llk'1..~inga one-dimensional array of 100 elements. An array
name consists of the character "&" follo\\'edby from 1 through 6 alphabetic
characters. The type of an array name is determined by the same conventions
as we used to specify the type of a variable name. Each element of an array
is of the type specified by the array name.

SUESCRIPrS

A subscript is an integer subscript quantity tlmt is used to identify
a particular element of an array. It is enclosed in parentheses and written
immediately after the array name. The following rules apply to the construction
of subscript quanti ties (see sections STi'J'lDARDFUNCTIOUS and EXPRESSIOnS for
addi tional information about the terms used belovr). ,

1. subscript quantities may contain arithmetic expressior~ usinB
any of the arithmetic opera tors: +, -, ., /, %, •••



237

2. subscript quantities may contain standard function references.
3. aubacrd.pt quantities may contain subscripted names.
Lt. the total nestLng of subscripted names and standar-dfunction

references \od thin subscript quantities must not exceed 5.

5. mixed mode expreGsions (real and intc;:;eronly) within subscript
quantities are eval.uated at run tir:1c.If the evaluated
expression is real, rounding occurs.

6. the evaluated result of a subscript quantity should always be
greater than zero and less than or equal to 100.
examples &ARRAY (I'nm)

&}IATRIX(&A(1)-t-e:E(x·d/sIN(TIlETA»)
&x(J.j~~3-l-7.2) .
&A (#SIN(X+f#Cos(&mn·l(&E( 1»») - (maximum of 5 nestinBs)

invalid &ARRAY(-2)
&l'lATRIX( 123)
&X(Y<GT>Z)

(must not be negative)
(must not exceed 100)
(must not assume a logical quantity)

STANDARD FUNCTIONS
The scope and value of expressions in the author language are enhanced

by a facility for inserting functions, just as variables may be inserted.
The name of the function, together with the appropriate argument, is merely
written. The "standard" functions are some of the more frequently .
occurring functions of analysis and are recognised by the character 'W"
followed by a 3-letter mnemonic code. The argument is enclosed in
parentheses and \'Iritten irrunediatelyafter the standard function name.

lABS
ISQT
I SIN
I COS
'TAN
IFXP
lENT
INLN
/fcrn
'ACT
/lACS
tACC

absolute value
square root, argument ~O
sine, argument in radians
cosine, arc~ent in radians
tangent, argument in radians
exponential function
largest integer not greater than the value of the argument.
natural logarithm
common logarithm
arc tangent
arc sine
arc cosine

The follo\"ringrules apply to the construction of arsuments (see
sections SUBSCRIPTS and EXPRESSIONS for additional information about the
terms used belm/).

1. arguments may contain arithmetic expressiotSusing any of the
arithmetic operators: +, -, *, I, %, **.

2. arguments may contain standard function references.
3. arguments may contain subscripted names.
4. the total nesting of subscript names and standard function

references within arguments must not exceed 5.



exru:1nle.s/SIN(U.(X.:#COS(2<I!lJl-;(8.:13( 1)))))
IfF.J.JT(X/5+3.1j- )

#COS(t:A( 1 )·j·&:D(X+&HATRJX(N)))

invalid
EXPRESSIOIJS

(maxdrnum of 5 nestings)

If SQT(Y<GT>Z) (must not assume logical qualltity)

The author language provides three kinds of e:-:presDion:arithmetic,
lOGical and response. The value of an arithmetic expression is always a
number vhoae type is inteGer or real. The value of either a logical
expr-eeaf.on or a response expression is a.Lways a truth value: true or false.
Expressions may appear in assigrunent statements, in certain control
statements and in output statements.

The simplest urithmetic expression consists of a primary which may be
a single constant, variable, subscripted variable, standard function, or
another expression enclosed in parentheses. The prine-ry may be either
integer or real.
1.1 Arithmetic operators

1.1.1 ••

1.1.2. *
1.1.3/

1.1.4 %

1.1.5 +

1.1.6 -

is the sign of exponentiation. The base precedeS the
sign and the exponent follows. The operation is
effected as in ordinary arithmetic \'liththe follo\'1ing
comments and exceptions. No values of base and
exponent which would lead to infinite, indeterminate or
imaeinary results are af.Lowed , and when the exponent is
real the value of the base may never be negative.
multiplication, conventional meaning.
real division. The operands may be of any combination
but a real result occurs: e.g. 14/5 = 2.8
integer division. The operands may be of ~~y combination
but first they are rounded to integers if real, before
inteGer division yields a result as follo\,/s:
~~y ::sign (rounded x/rounded y). whole number part

(modulus (rounded x/rounded y)

e.g. 14.4 % 4.6 = 14 % 5 = 2.
addition, conventional meaning.
subtraction, conventional meaning.

1.2 Rules for constructinG arithmetic expressions
1.2.1 All desired computations must be specified explicitly; i.e. if

more than one primary appears in an arithmetic expression, they
must be separated from one another by an arithmetic operator,
e.g. AB is written A*B if multiplication is intended.

1.2.2 No two arithmetic operators may appear in sequence in'the same
expression.
e.g. A*/B and A·-B. To correct the latter, parentheses are

added, A·(-B).



239

1.2.3 Or(101'of cor~t(:tti~: comput.at i.on in per-for-mod f'r-om left to
richt accor-d i.ng to the hierarchy of opcr-at.Lons GhUD:

Hierarchy
first (hicheDt)
second
third
fourth
fifth

Oneration
evaluation of standard functions
exponen tintion (...)
mul tirlication and division( *, / and ?G)
negation (-)
addition and subtraction (+ and -)

'llhishierarchy is used to determine which of two consecutive
operations is performed first. If the first operator is
higher than or equal to the second, the first operation is
performed. If not, the second operator is compared \"liththe
third, etc. \fuen the end of the expression is encountered,
all of the remaining operations are performed in reverse order.

Parentheses may be used in arithmetic expressions, as in
algebra, to specify the order in which the arithmetic operations
are to be computed. \'lhereparentheses are used, the expression
within the parentheses is evaluated before the result is used
This is equivalent to the definition above since a par~nthesised
expression is a primary.

2. Logical expressions
The simplest form of logical expression consists of one of the 23

pre-nruned logical variables, or a logical expression enclosed in parentheses,
which always has the value ~ or false.

More complicated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of the follO\ofing
three forma:

relational operators combined with arithmetic expressions OR
loeical operators combined \nth logical primaries OR
logical operators combined with either or both forms of the
logical expressions described in the first two forms.

2.1 Relational onerators
The 6 relational operators, each of which must be preceded by "("

and followed by II>" are as follows:
(GT,) greater than (~)
<GE> greater than or equal to (~)
<LT> less than «)
<LE> less than or equal to (~)
<~> equal to (=)
<NE> not equal to (I)

The relational operators express an arithmetic condition whi ch can be
eith~r true or false. Only arithmetic expressions may be combined by
relation;r-operators.
examples A<GT>N

X **3.1<EQ>(Z+W)·3
.6<LPEPS

invalid ICA3<QX+Y
X ··3<LT3.2
(GT>?

(logical quantity not
allowed)
(II>" missing)
(missing arit~etic
expression)



2.2 ;LoGical operutors
The 3 logical operators, each of which mus t be preceded by "<,, and

followed by">" are as follows. Each takes its conventional meaning.
Two logical operators may appear in Gcquence only if the second one is the
logical operator <NOT>. Only those expressions which, when evaluated,
have the value true or false may be combined with the logical operators
to form logical expressions.
examples &ARRAY(X+2) <'GT> 0 <»m'>lWA9

ICA2 <.AND><'NOT>/lWAO
invalid X <AND~CA2 (X not a logical expression)

<OR> X <'GT> Y ( <OR> must be preceded by a logical expression)
#CA2 <ANDXOR>#CA3 (<AND> and <OR> must be separated by a

logical expression)
IIcA2 <'NOT><AND>HcA3 «NOT> must not precede <AND> or <OR> )

2.3 Order of computation in logical expressions
~he order in which the operations are performed is:
Hierarchy Operation
first (highest)
second
third
fourth
fifth
siXth
sev~nth
eighth
ninth

evaluation of standard functions
exponentiation (••)
multiplication and division (., / and %)
negation (-)
addition and subtraction (+ and -)
<GT>, (GE), <LT>, <LE), <EQ), <NE>
<NOT>
<AND>
(OR>

Parentheses may be used in logical expressions to specifY the order in
which the operations are to be performed. When parentheses are used,
the expression contained within the most deeply nested parentheses
(i.e. the innermost pair of parentheses) is effectively evaluated first.

The logical expression to which the logical operator <NOT> applies
must. be enclosed in parentheses if it contains two or more quantities.
e.g., if A and B represent logical primaries, then the following two
expressions are not equivalent.

<NOT> (A <OR> B) ; <NOT> A <OR> B

In the first <OR> operates on A and B first then <NOT> acts on the result.
In the second <NOT> acts on A first and then <OR> operates on this result
and B.

,. ReSponse expressions
A complete description of response expressions appears in the section

ASSIGNMENT STATEr-tENTS.

THE PAST STUDENT PEP.FORHANCE FACILITY! #-PERF •

This is a logical function which acts in some ways like a standard
function in that it is invoked merely by writing it together with an



241

appropriate ar~ur:tentcontained in parentheses. The d:i.fferenceis tho.t the
one r-ecul, t Ehat is returned nay only have the value true or f:;IGe.

There are 8 kinds of pas t performance about uh.i ch the author may
inquire, all concerned vIith the student's record during the current lesson.
In all types, the range of question number is 1 throuGh 99 and that of
answer number from 0 bhr-ough 9.

1.
2.
3.4.

qCAd -
qWAd
qNS
'INA
qUA

student
student
student
student
student

matched Correct Answer d to question q.
matched Wrong AllD\-Jerd to question q.
has Hot Seen question q yet.
did Eot Ansvler question q.
gave-an !Inanticipated !!:_nS\'lerto

e.g. IpERF (26cA3)
e.g. #PERF (3H1I.0)
e.g. HPElli" (99HS)
e.g. #PEHF (1r/NA)

question q. e.g.
H PERF (36UA)

5.
6. qRTn. student answer-ed question q in less than or equal to n seconds.

e.g. IPERF (46RT10)
7. (q1,q2, •••,q3-q4, •••)nXX where n is an unsiened integer and XX may be

anyone of CA, 'vIA, NS, N1I.or UA vIi th 111eappropriate meaning ,
out of question q1, q2, •••,q3,q3+1,q3+2, •••,ql~,••• the
student satisfied the XX property n times, e.g. #PERF (7,8,11-15,
19,23-26) 10CA. This m~ans tlmt out of the 12 specified
questions, the student gave 10 correct answers, no n~tter
which answer number.

8. q1-q2-q3-q4- •••• - the student's path t.hrough the lesson was successively
questions q1, q2, q3, q4 •••• e.g. #PERF (7-8-11-12-12-13).
This means that the student's route thl.·our.;hthe questions was
from 7 to 8 to 11 to 12 (t\;lOattempts) to 13.

To supply a more complex argument to#PERF, it is possible to test
the conjunction of combinations of each of these 8 kinds of past performance
by simply separating each different inquiry by a comma. Naturally, if one
enquiry proves false, the whole 'PERF call gives back the value false.
EXaIU'I">le IIF'ERF (1CA4,2\'iA1 ,3NS,lINA,,5UA,6RT3Q,(7,8, 11-15),5CA,16-19-20)
this is true if

the student's response to question 1 contained correct answer- If. AND
his response to question 2 contained vrrong answer- 1 AND
he has not seen question 3 yet AND
he did not answer question 4 AND
he gave an unanticipated answer to question ,5 AND
he answered question 6 within 30 seconds AND
he made at least 5 correct responses (of any answer number) to questions
7,8,11,12,13,14,15 AND

he procee~dd from question 16 to'19 to 20.
ASSImn,IENT STATF.lIENTS

There are two types of assignment statements: arithmetic and response.
1. Arithmetic assignment statement
1.1 ~on-subscripted variable

a = b , where a is a non-subscripted variable and b is an arithmetic
eA-pression. This statement closely resembles a conventional alcebraic
equation; however , the equal sign specifies replacement rather than
equivalence; i.e. the expression to the right ot the equal sign is



242

cvn.luntcd, and the resultinc value replaces the current value of tho
var-Lab'Le to the left of the equal sien. The ar-Lthmet i.c c:cl)ression
must not contain D.ny variable wh.i ch }!£W Hot been previously acsigned
a value.

E::ample DrST = THiE*VEL

1.2 array

a = b1,b2,b3, bN, \-lherea is a subscripted variable or an
array name only and b1,b2,b3, •••, bN are arithmetic expressions.
If the array name only is given, the subscript is asslUned to be 1,
the first element of the array. The expressions to the right of
the equal sign are evaluated, and the resulting values replace the
current values of the successive array elements commencing with that
specified on the left of the equal sign. The arithmetic expressions
of the subscript quantity and the right hand side must not contain any
variable whi ch has not been previously assigned a value.

Example &AltRAY(12) = 0,0,X,Y,3,0
After this statement, values of array &ARRAY become:
&ARRAY (1) :bo&ARRAY (11) unchanged
&ARRAY (12) = °&ARRAY (13) :: 0
&ARRAY (14) :: value of X
&ARRAY (15) :: value of Y
&ARRAY ( 'l6) :: 3
&ARRAY (17) :: 0
&ARRAY (18) :: to &ARRAY (100) unchanged.

2. Response assicnment statement

r= ['61'[{i~}],'62'wm,···· 1,[<v{ ,.+ -r ,eT'···J. [ sm[{~}]Hvn[t~}]
where r is a response element,

s1,s2, •••• are strinzs of characters,
i1,i2, •••• are unsigned integers,
v1,v2, •••• are "exact value" arithmetic expressions,
e1,e2, •••• are "error" arithmetic expressions, .

and m,n are unsigned integers.
The strin$~, values, string number specification and value n,~ber
specification may be in any order so long as they are separated by
commas.

At least one string or value must be present.
After asking the student a question and before indicating when

the response is required, the author HUST specify at least one
expected response. He does this by z;taldnga response assi.gnmerrt,
There exist 20 response elements, RCAO, ICA1, ••••, ICA9, f!\vAO,
IWA9, which eive names to up to 20 expected responses for which an
author may t/ant to test.

...,

2.1 To each of these elements may be assigned any combination of strinGs
and Ydlues.



,,- ..

243

2.1.1 A ntrinG is sim})ly a collection of chcr-act.ei-s cncLoaed by II , "e
and opt Lona.lLy fo lLowed by cither an uns i.gned in tcc;cror the
letter 11K".
2. '1.1.1 If neither unsigned integer nor "K" follows the string,

then thc author requires the exact string in the
student's response.
e.g. 'FORTRl'.N' - requires exactly "FORTRlI.N" somewher-e

in the r-eaponae,
2.1.1.2 If an unsigned integer follo·..:s the ctring, this indicates

the maximum number of characters wlri.ch may be wrong in
a string of the snme length from the student's reGponsc
and yet still provide a match.
e.g. 'FORTRAH'1 - requires ""ORTRAN",IIF*~TRAN", FO*TRAH",

etc,, wher-e ,.is any character, sonewher e in the
response. However, "FOURTRAN" does not match as
the system is searching for a 7-character string
with only one error. 7 consecutive characters
from "FOUTITRAN" has at minimum 2 errors. ("0URTRAN").

2.1.1.3 If the letter "K" follo",S the string, a Kernel match is
sought. This is the specification of certain characters
(no blanks) from a required answer e~d a match will occur
if the student's response contains a string of any
length which has the characters in the given order.
e.g. 'FTRN' K - requires "FTRN". "FORTRAN". "FOURTRAN",

"FARTRON", etc. somewhere in the response.
2.1.2 A value is any arithmetic expression enclosed by "<" and ")".

However, if the value is to have error bounds, that is, an
exact value match is not required, then there are two arithmetic
expressions separated by a comma and all enclosed by "(" and ')".
In this case, the first expression indicates the value soueht
and the second expression the allowable error.
Examples <1066> - the integer 1066 in the student's

response gives a match.
<10.50,.50> - any integer from 1000 through 1100

gives a match.
2.2 Any combination of strings and values, each separated bya comma,

may be assigned to a response element. Consequently, the number of
strings, whether they must be ordered or not, the number of values,
whebhez- t' .eymust be ordered or not, all must be specified to
indicate \·,hatthe author requires to be an "overall match" by the
student's response. This the author does by adding, somewher-e
within the assie;nment, after a comma (unless innnediately after "=")"
a specification for strings followed by a COmDa (unless at the end of
the line) and, after a comma (unless immediately after "="), a
specification for values fo110\'ledby a comma (unless at the end of
the line). These take the form

where s/V stands for strings/values,
n .isan unsigned integer giving the number required

and ojU stands for ordere~unordered.



244

0/u is optional and defaults to 0 if absent. Both these apoc i I'Lca t ione
are themselves optional and default to one only of t.ha t tYre for an
!loveretllmatch". .

Once the student has entered his response, the response elements
become true or false (or undetermined if not used by the [.luthor)
depending upon the response.

Example IICA3 = 'computer', 'ftrn'K, S20, <1970>, <'1969;>-
#CA3 \dll become true if the student's response contains both
IIcomputerll(exactlYJand a strinG containing "ftrn" in that
order, in that order and either intec;er 1969 or intec;er 1970;
that is, the responselifn 1969 our computer "Jill use more
fourtran than at present".

LABELS

There are three different types of label:
1. Statement labels. Any statement except END may be labelled for

reference from other statements. The statement label co~~ists
of from 1 through 3 decimal digits (except that the label value 0
is not permitted) followed by a rieht parenthesis. The statement
follows this. These statement labels may be assigneu in any
order and their value does not affect the order in which the
statements are executed in the lesson.

27~END

(value 0 not permitted)
(only up to 3 digits
permitted)

(statement ID.'!)must
not be labelled).

Examples 9)A=1
983)STOP

invalid OO)A=1
2137)X=2

2. Segment labels. The author usually divides his lesson into
segments as the system restar.ts a student in the segment, he was in
when he terminated his last session with the course. Any statement
except EHD may be labelled as the start of a sec;ment. In order to
use the seement label as a restart point, the system stores all
variable and stack values when it encounters the segment label
during executd.on of the course. Also, it cancels the current
addresses contained in the 4 control address registers (see
statement CTRL). The segment label consists of the letter "5"
followed by a 1- or 2- digit number (except that label value 0
is not permitted) fol10wed.by a.right parenthesis. The statement
fo110 .../s this. These segment labels may be assiened in any order
and their value does not affect the order in which the segments
are executed illthe lesson.

Examples S3)A=1
S7.5)X=3

invalid SO)A=3
S225)E=1
S31)END

(value 0 not permitted)
(mecdraumof 2 digits
permitted)
(statement mfD must not
be labelled)

3. Question labels. \oJheneverthe author "'/ishesto ask the student to
make a response, he inserts a question label on the statement whdch
commences the question. This ensures that during execution of the
course, the system will store the student response information in
the correctly indexed position in the response file. Any statement
except END may be labelled as the start of a question. The only



245

rcstrictjon is that there existn at least one r-ccponae [1.CL>icnrncnt
between the question label and the r-eaponsc r equcst , ~_'11equeet.i on
label consi6ts of the letter tlQrI follm/cd by either a 1- or 2-
dicit number- (excep t th:1.tlabel vaLuo 0 is not perr.rit ted) fo l.Lowod
by a riGht par-ent.he sds, The statement f0110\:::.; this. 'I'hosio
question labels may be asad.gned in any or-der- and their value docs
not affect the order in wlri ch the questions E1l'C execut.cd in the
lesson. Reference to question numbers in the /lPERF fncility is
to the 1~ or 2- d:i.e;it number- follo\/ine the IIQII.

Examples Q5)A=1
Q83)X=2

invalid QOO)A=5 .(value 0 not permi tted)
Q123)1JU11=5 (only maximum of 2 dieits

permitted)
(statement END must not
be labelled)

Source statements may be multi-labelled ''lithdifferent kinds of
label but there exists a priority of:

Q52)END

segment label before question label before statement label.
example S27)Q43)297)A=3
invalid Q5)S17)B=2

Q7)103)21)N=N+1
(segment label must precede question label)

(multi-labelling mllstnot contain 2 or
more labels of the same type).

CONTROL STATEljENTS

1. JUNP STATEl1ENT
JUHP) label

where label is either a statement label, segment label or question
label. Jm·w statements permit transfer of control to another
executable sta.tement specified by a label of any type. Used on
its own, the J~~ statement causes unconditional transfer, but,
together with an IF statement, the transfer is conditional.
examples Jm,1P> 157

JlJ1.iP> 873
JUHP;> Q2

2. LOAD STATEHENTS

invalid JUI.IP83 (">,, is missing)

LOADn>label
wh~re n is a digit from 1 through 5.
and label is either a statement label, segment label or
question label.

There exist 5 stacks each of 10 elements which the author may
use to stack return addresses (specified by labels) and subsequently
unstack when returning control to these addresses via the RETN
statements. The 5 stacks are known by the di.:;it~ 1 to 5 and are
referenced by virtue of supplying the "required digit to the
statement itself.
examples LOAD1>853

LOAD3)S17
LOAD4')Q2

invalid LOAD2S71
LOAD>Q3
LOAD6>91

(II>" is missing)
(digit specifying the
stack is missing)

(only stacks 1 through
5 exist)



246

3. RETN STATEUENTS

RETNn
where n is a digit from 1 through 5.

This statement looks at the return address on the top of stack n,
unstacks, then returns control to this address. If the particular
stack specified is empty when RETNn is encountered, the statement
is ignored and control passes to the next statement.
examples RETN1

RETN4
invalid RETN (digit specifying stack

absent)
RETN6 (stack 6 does not exist)

4. TRANS STATEMENT

TRANS (lesson number, segment number)
where lesson number is a valid lesson number from 1 through 9
and segment number is a v"J.id segment number from 1 through 99.

As courses may consist of up to ten lessons, the author must
transfer control out of lesson 0, the fundamental lesson, at
some stage to another lesson if more than one is used. If more
than two are used, of course, then control may be transferred
from second to third as well as back to first, etc. To effect
thiS, the author uses the TRANS statement in which he specifies
the lesson to which he wishes to transfer control and also the
particular segment which will be the continuation point in that
lesson. A TRANS statement indicates a dynamic end 0f the lesson.

invalid

TRANS(0,72) - transfer control to segment 72 0f lesson o.
TRANS (8,19) - transfer control to segment 19 of lesson 8.
TRANS (12,61) - invalid lesson number.
TRANS(},192) - invalid segment number.

examples

Of course, a segment number may be valid but not exist in the
lesson specified. In that case, an error message is returned at
run time.

5. CTRL STATEMENT

CTRL (label1, labe12, label}, labe14)
wl')re label1, labe12, label} and label4 are each either a
statement label, segment label or question label.

As explained in the COURSE COMMAND, the student may enter
predetermined responses when the keyboard is unlocked to him.
These are non-solution responses and have other functions. Four
of these are "'IF'',"?B" t "'lS" and "'lG". There exist 4 control
address registers which, at the beginning of a segment, are
emptied. Ho~e~er, the author msy supply four valid addresses
to these registers by using a CTRL statement to supply four
labels of any type and combination. Then, after this CTRL
statement but before the start of another segment or, indeed,
another CTRL statement in the same segment, if the student
enters "?F", "'lB", "1S" or "'lG", control is passed to the
corresponding address given by the first, second, third or fourth



247

parameter, respectively, of the CTRL statement. If the author does
not supply a CTl~L statement wi thin Cl seur.ent or if he asks the
student to make et response before the CrmL st..rtemen t is effective
in a sec;ment, entry ol' one of the four :predetermined resJ:lonsesby
the student is ienored as such. The re,,;pOllGeis +aken as either
an actual response to a question or a request to end a rause,
depending on the circumstance.
example CTRL (S19, Q33, S7, 237)

This statement means that up to the next CTRL statement or
segment start, whichever is the sooner:

entry of "?FII causes control to pass
" II "?B" II

" It "1S" "
" " "?G" "

to S19
Q33
S7

237
6. IF STATEI-lEHT

IF (logical expression) stntement
where lo~ical expression is any valid lOGical cxpression
and statement is any statement except END or another IF
statement.

The IF statement is used to evaluate the logical expression contained
in parentheses and to execute or skip the statement depending on
whether the value of the expression is ~ or false, reSl)ectively.
example IF(#CA3<.AND>N <LT>3) JUHP>Q15

~lis statement specifies that control is to be transferred to
question 15 if the student's response to the last qucstion contained
the author's correct answer 3 and the value of the variable N is
less than 3. Other\'lise,the next statement is executed.

7. PAUSE STATEMENT

PAUSE

The PAUSE statement causes the keyboard to unlock after printing
" : It on a new line. This charac ter indi eates to the studen t
that he may pause at this point in the course if he desires,
~/ithout the system displayine any more text or requestinc MY
more responses. To continue, the student simply presses RETURN.

8. STOP STATEl·iENT

STOP

The STOP statement terminates the execution of the course. It thus
indicates a dynamic end of the lesson.

9. END STATEl'!ENT

END

The END statement is a non-executable statement that defines the
static end of a lesson for the translater. Physically, it must be
the last statement of the lesson. It may not be labelled. nor be



248

tho statCl;Jentpar f of an IF statcmen t , The Elm stutoucrrt UOCG

not terminate execut ion of the lcm_;on. To t.errmnat e executi.on
of the lesson, a STOP or TR.'\.i'YSstatement is required. ThuG,
eoch lesson must contain at least one of either of those.

INPUT/OUTPUT STAT:EliE!fJ'}.'S

1. RFBP STATE!·iET;T

RESP' [ <V1XV2)~ •• <s1)<S2) ••• <et 1,{:~}><a2'{~~}>...J
wher-e v1, v2 are non-subscripted variables,

s1, s2 • •• are subscripted variables,
a1, a2 • •• are array names,
w1, ",2 • •• arc non-subscripted variables,
c1, c2 ·.. ar-e constants.and

The RESP statement unlocks the keyboard for a student's response.
It should only be entered if the author has made at least one
response assienment since he inserted £t question label. The
statement may just be the statement name itself. However , if
the author desires to store any numerical values contained in the'
student's response, he specifies variables into whi.ch the successive
values will be placed. He may specify these variables in any of
three ways and use any combination of these throe "lays, in any
order:
1.1 non-subscripted variable - the variable name is enclosed

in "(" and ">", e.g. <LENGTH>.
1.2 subscripted variable - the array name followed by a subscript

quantity "/ithin parentheses, all enclosed in ',<II and ">11,
e.g. <edUmAY(I+2».

1.3 array name with starting point - the array name follo\.,redby
a comma then either a constant or.a non-subscripted variable,
all enclosed in "<" and ">". The significance of the
constant or non-subscripted variable is to denote the element
of the array where the next in the series of values is to be
placed and thereafter the valueG will be placed in successive
elements, e.g. <&ARRAY,START> or <&NATRIX,91).

If there are more variables specified than numerical values
available from the response, the variables not yet assigned
a value are given the value 999 999 999.
e:mmj;le RESP<NUNX&FIRST( 5»(e.:HATRIX,96XMRRAY ,96>
if the student's reply "las:
"There r.avebeen 10 leap years: 1932, 1936, 1940, 1944, 1948,
1952, 1956, 1960, 1964 and 1968."
then the above variables will be assigned as follows:

N'UM=10
EeFIRST(5)=1932
&MATRrl( 1) TO &l,U\TRr.{(95)- unchanged
WJATRIX(96) TO 8-:l,!ATRIX(100)=1936, 1940, 1944, 1943, 1952,

respectively.
&ARRAY(1) TO &ARRAY(95) ..unchanged
&ARRAY(96) TO &ARRAY(100)= 1956, 1960, 1964, 1968, 999 999 999,

res c~ivel.



TYPE ('strl'p1'str2'r2 ••• <ae1.~q1,\·'1,d1<ne2>q2,VJ2td2•••)
where str1, str2 are st.rines of cha.racters,

p1, r2 are unsiGned, non-zero integers,
ae1, ae2 • •• are arithmetic expr oaai ons ,
q1, q2 ·.. are unsiGned, non-zero int.eGers,
~11, 1:12 ·.. are unsiGned, non-;::.erointeGerc,

and d1, d2 ·.. are inteGers, siened or unai gned ,

The TYPE statement is used to display character strinc;s and
arithmetic expression values in specified positions on the
terminal/line printer.
2.1 flny character may be contained in the strine VIi thin sinGle

quotes, with the restrictions that" , " must be re:presented
as " " " and" 1 ", "¢"," "and "backspace" must be
represented as "11", "l¢", ii"f_" and "I backspace",
reSl)ectively.

2.2 The unsi~ned integer ~fter the strins indicates the
starting column of the string.

2.3 There may be a ma~iml~ of 10 strines within a TYPE statement.
2.4 Any valid arithme:bic expression may be contained ",ithin "("

and ">,, so long as each variable within the expression has
previously been assigned a value.

2.5 The q's, w's and d's in the description of the TYPE
statement represent the startine column of the value of the
expression, the ,",idthof field of this value, ano the
number of decimal places to the rieht of the decimal point,
respectively.
2.5.1 if d=O, then an integer is printed.
2.5.2 if d)O, then a fixed point number is printed. Note

that "/~+3 to allo\"!for sien, decimal point and at
least one digit to the left of the decinal point.

2.5.3 if d<O, then a floatine point number is printed.
Note that \./;.modulus (d)+7 to allow for sien,
decimal point, at least one di~it to the left of
the decimal point, letter E for exponent, siGn for
exponent and two digits for magndtude of exponent ,

2.~.4 modulus (d) must not be rr,reaterthan seven~ the
maximum precision allo\'/ed.

2.6 There may be a maxdmum of 5 expressions within a TYPE statement.
2.7 There must be at least one strine or expression within the

pe~entheses of the TYPE statement.
example
TYPE( 'NEAH'1<SUH/N)6, 10,5'VAR' 21<Sln-tSQ-SUHu2/N>25, 12,-5'N='41<N)43,

2,0)



250

If the current values 01 SUM, N and SUHSQ are 65, 10 and 441,
resrectively and if "s" represents a space, then this statement
will give the output:

HEANssss6.50000sssssVARss1.85000E+01ssssN=10

3. BACK STATEHENT

BACK ('str1'p1'str2'p2 •••<ae1>q1,w1,d1<ae2)q2,w2,d2 ••••. )

where the abbreviations and their meaning are exactly the same
as for the TYPE statement.

Since the parentheses and their contents are optional there is
one difference. The BACK statement returns the student to the
last RESP statement for another attempt at the question. If
the parentheses are absent, no message is given back before the
next response, but if present, the contents are displayed first.

SAMPLE POOGRAM

See Appendix D.



251

THE Cfl.LCUI.A'1'ING L.I\)\:GUAGE

INTRODUCTIOH: the co.Leu.Latine Language is used in \·rritine pr-ogr-amsfor
applico.tions that involve mu.bhema tdco.L computations and other manipulation
of numer-i ca.ldata. Source stD.tements written in the cn'LcuLatLng ID.nGuClGc
consist of a set of statements constructed by the UGcr from the languD.ge
elements described in this section.

In a pr-oceas called t.rans Iat.Lon, a pr-ogr-am called the calculating
languaGe trmls1ater analyses the source statements and translates them
into b'Locke of intermediate code which \'Jillsubsequently be e::ecuted by
the controller. In addition, ",hen the translater detects errors in the
source pr-ogram, it produces appropriate diagnostic error measages ,

CODING STATEHEHTS
Statements are \-Iritten one per line and have a maximum length of80 characters.

CONSTANTS
As author language.

VARL\BLES

As author language.
ARRAYS

As author language.
SUBSCRIPTS

As author language.
ST.ANI1,\RDFUNCTIOnS

As author language.
EXPRESSIONS

The calculating language provides t\<lOIdnds of expression : arithmetic
and lOGical. The aritlwetic is the same as that contained in the author
language.

The simplest form of logical expression consists of two arithmetic
expressions s~~Jarated by a relational operator, or a logical expression
enclosed in parentheses, \'1hichalways has the value ~ or false.

More complicated logical expressions may be formed by using logical
operators co~bined with logical primaries.
ASSIG!IHENT STATnIENTS

There is only one type of assignment statement: the arithmetic
assignment statement. This is the same as that in the author language.
UBELS

There is only one kind of label allo\,ledin the calculatin~ language



252

the stntenwnt label. It is similar to the statement. label of the nuthor
Language except that it may only coned et;of a 1- or 2- di[:;i t numbcr ,

CONTROIJ STATEI-iENTS

1. J1Jl,lP STATEl lENT

As author languaGe, to a statement label.
2. IF STArn·lENT

As author languaGe.
3. STOP STATEKENT

As author language.
4. END STATUIENT

As author lane~age.
INPUT/OUTPUT STATEHENTS

1. READ STATUiElIT

{

nSV1
READ( sv(

an ,

where nsv1, nsv2 are non-subscripted variables,
sv is a subscripted variable,
an is an array name,

and c is a constant.

The READ statement unlocks the keyboard to allO\.,.the user to enter
the data he requires. A prompt is given for every READ statement
at run time, indicatins either the variable name alone or the
variable name and either subscript quantity or startinr; point,
"/hichever is applicable. There are basically three types of READ
statement:
1.1 non-subscripted variable - a valid variable name only is

entered bet\·reenthe parentheses; e.g. READ(LENGTH), REI\D(DIST).

1.2 subscripted variable - a valid array name followed by a
subscript quantity \,/ithin parentheses are all entered between
further parentheses;
e.g. READ (&ARRAY CC...HSQT (y) », READ(&HATRIX( I)

1.3 array lk~e with starting point - the array n~me optio~~lly
followed by a comma then either a constant or a non-subscripted
variable, all enclosed in parentheses. The significance of
the constant or non-subscripted variable is to denote the
element of the array wher-e the first of the series of
constants entered after prompt at run time is to be placed,
and, thereafter, the constants \,/i1lbe placed in successive
elements. If the comma and the constant or non-subscripted
variablo arQ omitted, then the array element to be assigned
the first input constant defaults to be the first element of



253

the array.
~.g. READ (P.:ARRAY ,START), READ (&HATRIX ,59), R.~AD(&NUH)

For description of prompts and use of READ at run time, see
PROG COHMAND.

2. TYPE STATE~fENT

As author language

SIMPLE PROGRANS

The first program finds all the prime numbers up to 100
by -the Sieve of Eratosthenes Method. The second program reads
in a series of ages ° to 99 followed by a terminator greater
than 99, then groups the ages into 0-19, 20-39, etc.

1. Prime numbers
TYPE('FOLlOWING IS A LIST OF PRIME NUMBERS FroM 2 ID 100'1)
TYPE('2'5)
TYPE('3'5)
1=5 -1)K =ISQT(I)-0.5
J = 32)IF(~·J<EQ>I)JUMP>3
J I: J+2
IF(J<LE>K)JUMP>2
TYPE«D1,5,0)
3)1 = 1+2
IF(I<LE>100)JUMP>1
TYPE( 'END OF LIST'1)
SIDP
END

2. Age grouping
TYPE ( 'ENTER THE ELEMENT WHERETHE FIRST AGE IS 'ro BE S'roRED' 1 )
READ{I)
TYPE( 'ENTER A SERIES OF AGES BETWEEN ° AND 99 TERMINATED BY A

NUHBER'1)
TYP.E('GREATER THAN 99'1)
READ(&IAGE,I)
J = 11)&M(J)::O
J= J+1IF(J<LE>5)JUMP)1
2)IF(&IAGE(I)<GT>99)JUMP>3.
&M{&IAGE(I)%20+1)=&M(&IAGE(I)%20+1)+1
1+1+1
JUMP>2
3)TYPE( 'AGES Group AS roLU>WS: '1)
TYP.E{'0-19'3'20-39'13'40-59'23 '60-79'33'80-99'43)
TYP.E{<&H(1»1 ,5,0<&M(2»11 ,5,O<&M(3»21 ,5,o<&M(4»31 ,5,0<&M(5»

41,5,0)
S'roP
END



APPENDIX B.

The post-teet.



255

1. All the following PIL statements contain one error. In each case

say what it is.

(a) SETb=c·d-e 2 marks

(b) xesqr-t of (a*b). 2

(c) SETy=x**2-2*x+1. 2

(d) IF x>y TYPEx. 3

(e) roR 1=1 ID N SETA(1)=I. 3

(a) C

(b) cos of 3.141.59*2
(c) X(1,2)"X(2,1)
(d) X(1,3)
(e) ip of «B··2-4·A·C)/2/A
(f) A $OT B $AND $roT C=O

3. Look at the following sequence:

=1.1 demanda,b,c.

ado part 1.

2. Given the following sequence of instructions:

SETA=3.

SETB=1.
SET X(A,1)=1.
SETX(2,B)=2.
SETX(B+A-3, (A+B)/2)=3.
SET C=A*·2-4* B-A+1 •
What are the values of the following expressions?

2 marks

3

2

2

3

2

a=

-4.
b=

=a+sqrt of a.

c=



Is this valid?

If yes, [1.= , u= ,c= 6 marks
l~. "[rite n statement bhat 'vIill:

print a number 'm if it is dividble by 7.

(Hint: use "ip of (m/7)*7")
5. Hrite u statement that ",ill:

do nothing if x is negative or ereater than 1000,

11~ marks

othervJise set'y,' equal to x;
6. After the sequence:

=1.1 set 6=0.
=1.2 for j=1 to 20 by j

=2.1 set s=s+j.
=2.2 set j=j+1.
=do part 1.
\'lhatare the final values of s and j?

do part 2.

6= ,j= 16 marks
7. Given that

61= "abc"
62= "01234"

63= 'III

s4= "bcd012"
wha t are the values of the follo\.,rine;expressions:
(a) 61+s2 3 marks
(b) 62(s4 3

(c) 1 of (s2+s3+s4) 3

(d) 2 $FC sl" 3
(e) 31LC s4+"34"+s3 = 5 $FC 62 3

(f) 2$FC 4 tLC 64 3

(g) TIlE VALUE OF 62 3
(h) 63=" " 3



257

APPENDIX c.

The attitude questionnaires.



The pre-questionnaire.

1. Name.
2. Have you had any previous programming experience? YEsjNO.
3. If yes, how much? DAYS/'dEEKSjMJNTHS. ~Jhatlanguages?
4. Do you have any objections to being taught by means of a typewriter

terminal? YES/NO. If yes, please state them.
(For the remaining questions, the student was asked to choose one of
VERY TRUE/TRUE/FALSE/VERY FALSE. The results are given in this order for
each question.)

6. I would prefer to proceed through the course at
my own pace rather than at the lecturer's pace.

7. Being asked questions on the subject matter
.from time to time is a good idea.

8. It is a decided nuisance having to wait for
the course material to be typed out in front

of me.

9. Listening to a typewriter for an hour or more
typing away would do my nerves no good.

10. When attending a course, I like to receive
printed lecture notes (i.e. hard copy).

11. Any method of teaching is better than
lecturing.

12. In a practical class, I prefer demonstrators
to approach me periodically rather than have
to ask them for help.

A
2
4
1
o
1
6
o
o
o
2
.5o

o
.1
6
o

6
1
o
o
o
1
4
2

1
5
1
o

B C
1 .,
4 4
1 0
o 0

o
6
o
o
o
o
6
o

o
1
3
2

4
2
o
o
o
2
3
1

1
2
3o

total
7
13
2
o

5
2
o
o

6
16
o
o

o
1
5
1

1
:3
17
1

o
2
4
1

o
4
15
3

1
4
2
o

12
8
2
o
1
3
13
5

o
o
5
2

o
6
1
o

2
14
6
o



259

.13. I learn more from practical classes
than from lectures.

14. I prefer a lecturer to give me good notes
on the blackboard rather than an inspiring
lecture.

15. When conversing with the typewriter, I
prefer to be told if I make a wrong answer.

16. I prefer to be given my overall score on
questions from time to time.

17. My typing is too slow for this method
of teaching.

18. I would prefer a noiseless, swift, visual
display to a typewriter, even though I
would not get a hard copy.

19. This method of teaching would be better
if two people sat at one typewriter.

20. I would prefer to be taught in a definite
sequence of topics rather than choose for
myself the topics I learn and when I learn
them.

The post questionnaire.
For group B and group C:-

1. ~e "pauses" allowed me to proceed at my own
pace.

2. The number of pauses was

TRUE
FALSE

A

3
3
1
o
2
5
o
o

2
.5
o
o
1
6
o
o

1
4
2
o
o
1
6
o

1
3
3
o
2,.
1
o

B

o
4
2
o
1
4
1
o

4
2
o
o
2
4
o
o

2,.
o
o
o
o
.5
1

o,.
1
1
o
4
2
o

100 LARGE 0
100 SMALL 3
AEOUT RIGHT 3

C
4
6
1
o

total

2
4
1
o

6
13
3o

1
6
o
o

8
14
o
o

o
6
1
o

3
18
1
o

1
5
1
o

,.
15
3
o
2
2
17
1

1
1
5
o

o
3
3
1
1
4
2
o

2
10
8
2,.
13
.5
o

B

6
o

C

6
1

o
.5
2



260

3. The number of questions I was asked during TOO FEW
'lOO MANY
ABOUT RIGHTthe lessons was

4. The questions were TOO EASY 0
TOO DIFFICULT 0
ABOUT RIGHT 6

5. I prefer multiple choice questions to those VERYTRUE
TRUE
FALSE
VERYFALSE

where I had to enter my own answer.

6. In some questions I did not gather what VERYTRUE
TRUE
FALSE
VERY FALSE

was required.

7. It is a decided nuisance having to wait for VER"Y TRUE
TRUE
FALSE
VERYFALSE

the course material to be typed out in front

of me.

8. Listening to a typewriter for an hour or so VERYTRUE
TRUE
FALSE
VERYFALSE

got on my nerves.

9. The notes I received from the typewriter were VERYGOOD
GOOD
JOOR
VERY lOOR

10. This method 0 f teaching is pre ferable to VERYTRUE
TRUE

lectures. (N.B. 1 abstension). FALSE
VERYFALSE

11. I learned more from the practical sessions than VERYTRUE
TRUE

from the lessons. (N.B. 1 abstension). FALSE
VERY FAlSE

12. This metho·~ of teaching is too impersonal. VERYTRUE
TRUE
FALSE
VERYFALSE

13. However, if reinforced by small tutorial classes, VERYTRUE
TRUE

this would not be the case. FALSE
VERYFALSE

14. The number of feedback messages to my roo FEW
roo MANY

responses was! JUST RIGHT

B C
1
o
5

o
o
7

o
o
7

o 0
2 0
2 6
2 1

1 0
4 5
1 2
00

o 1
4 0
1 5
1 1

o
o
3
3

o
o
4
3

.3
4
o
o

1
4
1
o
1
4
1
o

1
2
.3o

o
.3
3o
o
.3
3o

o
2
4
o
o
4
.3o

2
.3
1
o

1
5
1
o

2
1
.3

1
2
4



261

15. I prefer the feedback messages to be chatty,

not just "YES" or "NO".

B

VERY TRUE 1
TRUE 3
FALSE 1
VERYFAlSE 1

c
o
5
o
2

16. I was told my overall score on series TOOOFTEN 0 2
roo INFRF.QUENTLY 2 2

of questions: ABOUT~rIlERIGHTFREQUENCY 4 3

17. My typing is too slow for this method.

18. I would prefer a noiseless, swift, visual

display to a typewriter, even though I

l'lOuld not get a hard copy.

19. This method of teaching would be better if

two people sat at one tenninal.

20. The response from the system was

21. The subject content of the lessons was

22. The number of worked examples was

23. I did not have sufficient time each day.

24. Three days is too short for such a course.

VERYTRUE 0
TRUE 2
FALSE 4
VERYFALSE 0

VERYTRUE 0
TRUE 0
FALSE 4
VERY FALSE 2

o
3
3
1

o
o
4
3

VERYTRUE 1 0
TRUE 0 1
FALSE 3 5
VERYFALSE 2 1

'lOO SlOW 6 7
O.K. 0 0

100 MUCH 2. 1
INSUFFICIENT 3 3
AB:>UT RIGHT' 1 3

100 FEW 3 2
iOO MANY 0 1

AEOUT RIGHT 3 4

VERYTRUE 2 . 5
TRUE 4 2
FALSE 0 0
VERY FALSE 0 0

VERYTRUE 3
TRUE 1
FALSE 2
VERYFALSE 0

2
'+
1
o

25. This method of teaching would be fine for one VERYTRUE 0 1
TRUE 5 3

or two hours per week. FALSE 0 3
VERYFALSE 1 0

26. This method of teaching would be better for VERYTRUE 1 1
TRUE 2 '+

end of yea:r revision rather than original FALSE 3 2
VERY FALSE 0 0

course work.

27:· Would you like to be able to ask the

typewriter questions?

YES
M)

6
o

6
1



262

Croup Conly

28. Four questions in any examples class was

what I do next (in an examples session).

WO MANY 4
roo FEH 0
ABOUT RIGHT 3

VERY TRUE 0
TRUE 3
FALSE 3
VERY FALSE 1

VERY TRUE 2
TRUE 5
FALSE 0
VERY FALSE 0

29. I prefer to be taught in a definite sequence
of topics '(like a lesson) rather than decide

30. In the examples classes, I liked the idea
of requesting that help which I wanted,
not what the computer thought I wanted.
ResE2nse matrices for com~arison guestions.
(i) It is a decided nuisance having to wait for the course m~terial to

be typed out in front of me.
B C total

T F VF VT T F VF VT '!' F VF roST
VT

PRE '!' 1 1
F 4 1 1 4 1 4 5 2
VF 1 1

(ii) .Listening to a typewriter for an hour or so would get/got on my
nerves.

T F VF VT '1' F VF VT '!' F VF roS'!'
-VT

PRJ!: '!' 1 2 2 1
F 2 1 2 2 4 ,
VF 1 1 1 1 2

(iii) Any method/this method of teaching is better than lecturing.
T F VF VT '1' F VF VT T F VF roS'!'

VT
PRJ!: T 2 2

F 1 1 1 1 2 1 2 , 2 (1 abstc.n.-
VF 1 2 1 2 .ion) •

(iv) I learn/learned more from practical classes than from lectures.
VT T r VF VT '1' F VF VT T F VF roS'!'

VT
. PRE T 2 2 2 4 4 6 (1 absten-

F 1 1 1 1 sian) •
VF

(v) My typing is too slow for this method.



'B C total

~T ~ f :'i~' VT T .J!' VI<' VT T .F VF FeST
VT 1 1 1 1 2

PRE T 1 3 3 2 4 5
F 1 1
VF

(vi) I would prefer a noiseless, swift, visual display to a

typewriter, even though I would not get a hard copy.

VT T F VF VT T F VF VT T F VF FeST
VT 1 1

PRE T 1 1
F 3 2 :3 2 6 4
VF 1 1

(vii) This method of teaching would be better if two people sat

at one terminal.

VT T F VF VT T F VF VT T F VF mST
VT

PRE T 1 2 1 :3 1 5 1
F 1 1 2 1 :3VF 1 1 2

(viii) I (would) prefer to be taught in a definite sequence of

topics rather than decide what I do next (group Conly).
C

VT ~ F VF lOST
VT 1

PRE T 3 1
F 1 1



I..

264

APPENDIX D.

Part of a NUTS session which contains some
source code in the author language from the course.



265

•cat
PROGRAIIS
lESSO~S

PilCO RELEASED
PILCI RELEASED
PIlC2 RELEASED
PILC3 RELEASED
PILC.. RELEASED
PILCs RELEASEDPILCG RELEASED
PILC7 RElEASEO

RESPONSE FilESPILCII)
E~IDOF 'CAT'
•1Ist,pllc3C2820,3s90)

CURrtENT LISTING
2820 Q13)TYPEC'L OF (S3+S"+S5) - 115)2830 ICAO-ClO>
23..0 N-O
2850 RESP
28GO N-~+l
2870 IFCICAO)JUMP>131
2880 IFCIPERFCl"NS»JUMP>132
2890 I~C<NOT>'PERF(8NS»JUMP>133
2900 TYPECII ASSUI·IETHEN IT IS NOT SitBUT SS YOU HAVE~I"T r,OTHOLD OF Pr.OPEI'LYYET'l)
2nD LO/\Dl>Q132920 JUt~P>Q8
2!)30 133)TYPF.C'IIRO"lGAGAIN. IIERE IS THE ANS\oIER:'l)
29..0 TYPEC'l OF (S3+S"+Ss)·1t+2+"-10.'1)
2950 TYPEC'NO\l YOU SlIOULD KNo\.,li!IAT53, SitAND S5 ARE EXACTLY.'I)
2960 JUI-1P>Q1S
2970 l31)TYPECIEXCELLENT. YOU OBVIOUSLY KNO'"ABOUT 53, SIIAND S5 EXACTLy.ll)
2980 JutIP>Q15
2990 132>TYPE(INO, BUT NEVER WORRY II YOU CAN cor·iEBACK TO nus ONE. ItOWABOUTI'P3000 Q1It)TYPE('SIt· 1'5)'---
3010 ICAO-IUCC'"
3020 ICAl-'CC'
3030 ICA2-"""K30..0 N-O
3050 RESP
3060 N-N+l3070 IF(ICAO)JUMP>lltl
3080 IF(ICAl(AND>(NOT>ICA2)BACK('ENTER YOUR RESPONSE AGAIN, aUT USE DELIMITERS.'l)



266

....
fI\

en

....
r4•

..J....•en...wen
en

r4•....
-.a:::0
"'"'" .........
Cluoto'"c
: r4• •en-
... g:wo
en '"• •

ooooooooooo~o~ooooo~ooooo~ocoooeoooocooooooooo
~0r4N"~~~~~~~Oer4NfI\4~~~~~rr4NfI\~~~~~~O~NfI\4~~~~~0r4N
0r4r4r4r4r4r4r4~r4r4r4NNNNNNNNNNNfI\fI\fI\fI\fI\fI\fI\fI\fI\fI\4444444444~~~
fl\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\"fI\~fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\fI\



267

3530
3540
3550
35GO
3570
3580
35«]0

END OF

TYPE('-TYPE A,S.'3'TYPE('A(l' - ",\"'4'
TYPE('A(2' - "B"'4'TYPE( 'AO) • "C"'4)
TYPE('A('" - "0"'4'
TYPE('S - "EFG"''''
TYPE(' 'I'
'1.1 ST'

*course,pllcENTER DIGIT TO DENOTE ~flCH RESPONSE FILE TO USE
o
YOUR STARTING POSITION WILL BE LESSON 0 SEGMENT "IF YOU \~ISII TO CONT INUE FROt1 THERE JUST PRESS RETURN
OT~ERWISE ENTEn 'LESSON NO.,SEG. NO.' TO RESTART
3,1
ENTER '1END' IF YOU WISH TO FINISH NOW AT THIS PAUSE, OR OTHERWISE
:fIT' RETUP-IIAS USUAL.

CIIABACTEB STRINGS.ONE OF TItE MORE POWERFUL FEATURES IN' P IL' IS TIfE IfANOLING PF CHARAC-
TER STR INGS. A CHARACTER STR ING IS ANY SEQUENCE OF ClfARACTERS (INelUD-
ING A NULL SEQUENCE). A CHARACTER STRING CONSTAflT IS ANY STftlNG EtIClOS-
ED IN DOUBLE QUOTATION MARKS (").-SET A-"A STRING OF CHARACTERS".

-SET NUll-"".

ANY lEGITIMATE INPUT CHARACTERS MAY BE INCLUDED ·IN A STRING, EXCEPTFOR ("), WHICH MAY ACT ONLY AS A DELIMITER IN A CUAI'tACTEBSTRING
CONSTANT AND IS NOT PART OF THE STRING. AN UPPEB LIMIT OF 255 CHARACT-
ERS IN A SINGLE STRING IS IMPOSED.·•

STRING COMPARISON.
ANY STR!tIG MAY BE COMPARED WITH ANY OT~fEn STR ING, US ING ANY OF THE

DEFINED RELATIONAL OPERATORS. STRINGS AnE COMPARED LEFT TO RIGHT. IF
STRINGS ARE OF AN UNEQUAL LENGTH, THE SIfORTEB STRING IS TREATED AS THOIT '~ERE PADDED AT THE RIGUT END ,.,ITI'BLANKS FO" COP1PARISOrl.

TlfE FOLLOW INt;COLLAT ING SEQUENCE IS TlfE !lASIS FOP. COr,\PARISON OF
STRINGS:(BlANK)(PUNCTUATION(a,h, ••,z(A,B, ••Z(O,1, ••,9
E.G.

-IF "X<"Y",TYPE "YES".
YES-IF· "ABCO"-"ABCD ",TYPE "BLANKS IGNORED".IlLANKS IGNORED··?end

•



268

.APPENDIX E.

Part of a student session from the course.



269

ENTER '?END' IF YOU UISH TO FINISH NOW AT THIS PAUSE, OR OTHERWISE
HIT 'RETURN AS USUAL.

CHARACTER STRINGS.ONE OF THE MORE POWERFUL FEATURES IN 'PIL' IS THE HANDLING OF CHARAC-
TER STRINGS. A CHARACTER STRING IS ANY SEQUENCE OF CHARACTERS (INCLUD-ING A NULL SEQUENCE). A CHARACTER STRING CONSTANT IS ANY STRING ENCLOS-
ED IN DOUBLE QUOTATION MARKS (").

-SET A."A STRING OF CHARACTERS".·SET NULL.'....

ANY LEGITIt~ATE INPUT CHARACTERS MAY BE INCLUDED IN A STRING, EXCEPTFOR (II), WHICH MAY ACT ONLY AS A DELIMITER IN A CHARACTER STRING
CONSTANT AND IS NOT PART OF THE STRING. AN UPPER LIMIT OF 255 CHARACT-
ERS IN A SINGLE STRING IS IMPOSED.

STRING COMPARISON.
ANY STRING MAY BE COMPARED WITH ANY OTHER STRING, USING ANY OF THE

DEFINED RELATIONAL OPERATORS. STRINGS ARE COMPARED LEFT TO RIGHT. IFSTRINGS ARE OF AN UNEQUAL LENGTH, THE SHORTER STRING IS TREATED AS THO
IT WERE PADDED AT TI.E RIGHT END WITH BLANKS FOR COMPARISON.

THE FOLLOWING COLLATING SEQUENCE IS THE BASIS FOR COMPARISON OF
STRINGS:

(BLANK)(PUNCTUATION(a,b, ••,z(A,B, ••Z(O,1, ••,9E.G.
·IF "X("Y",TYPE "YES".YES-IF "ABCD"."ABCD ",TYPE "BLANKS IGNORED".
BLANKS IGNORED

HOWEVER, IF YOU REMEMBER, 'a,b, ••,z' ARE NOT AVAILABLE TO YOU IN
TH IS COURSE. IF YOU TYPE THEM, TUEY ARE AUTOMATI CALLY CONVERTED TO'A,B,C, •••,Z· RESPECTIVELY.

IT IS ASSUMED THAT BLANK IS THE LOWEST CHARACTER TliATA STRING WILL
CONTAIN.IN THE FOLLOWING BOOLEAN EXPRESSIONS \~IICH INVOLVE STRING COMPARISON
, ENTER 'T' OR 'F' DEPENDING ON WHETHER YOU TtflNK THE VALUE OF THE
EXPRESSION IS TRUE OR FALSE.

"GREATER"("GREATEST"
tGOOD, AN EASY ONE TO BEGIN WITU.

" APL975" $GT "APL97$" SAND "A21X" - "A21X "



270

no Idealt
ENTER 'T' OR 'F'.
t
THIS IS MORE TRICKY. IN AN ATTEMPT TO FOOL YOU, THE FIRST STRING BEGINS
WITH A BLANK WHILE THE SECOND ONE DOES NOT. HENCE THE FIRST CONDITION
IS FALSE. TliUS, AS THE RESULTS ARE TO BE 'ANDED', IT DOES NOT HATTER
WHAT THE SECOND CONDITION TURNS OUT TO BE. AS IT HAPPENS, TRAILING
BLANKS ARE IGNORED SO IT IS TRUE, BUT THE WHOLE EXPRESSION IS FALSE.

"1000">"999"
f
YES, TliE LEADING CHARACTER TELLS ALLlt

"YORKS" $GE "YORKSHIRE"f •
PERFECT-A GOOD WAY TO FINISH OFF A SEQUENCE OF QUESTIONS.

STRING OPERATIONS & FUNCTIQNS
HERE IS A TABLE OF STRING OPERATORS AND FUNCTIONS AVAILABLE TO YOUIN 'PIL'. AS WITH TltEARITHMETRIC FUNCTIONS THERE ARE LONG AND SHORTFORMS TO SOME Of THESE.

SHORT LONG
+
"

OPERATOR MEANING

L OFN $LC A
N $FC A

THE LENGTIt OF
THE LAST N CHARACTERS OF A
THE FIRST N CHARACTERS OF A
THE VALUE OF
THE BCD VALUE OF

CONCATERNATION
STRING DELIMITE~
LENGTH OF A CHARACTER STRING
DECONCATERNATION
DECONCATERNATION
EVALUATE CONTENTS AS A 'PIL' EXPRESSION
CONVERTS RADIX OF ALL OPERANDS TO STRING

TWO STRINGS MAY BE CONCATERNATED, I.E. THE SECOND JOINED TO THE END
OF THE FIRST. THE '+' (PLUS) OPERATOR PERFORMS THIS TASK, PROVIDED
THAT BOTH OPERANDS ARE OF STRING MODE. THE LENGTH OF THE CONCATERNATION
RESULT IS THE SUM OF THE LENGTHS OF THE 2 OPERANDS. TO ILLUSTRATE:

-SET X-"123""-SET Y-"567890"-SET Z-X+Y+"ABC"
-TYPE Z,THE LENGTIi OF Z.
Z-"123"567890AOC"
nu LENGTH OF Z - 13.0

YOU WILL HAVE NOTICED THE INTRODUCTION OF TItE LENGTH FUNCTION.TO DETERMINE THE LENGTH OF A STRING, 'TliELENGTH OF' (OR 'L OF')FUNCTION IS USED. ITS VALUE, A NUMERIC, IS THE COUNT OF THECUARACTERS CONTAINED IN TltE GIVEN STRING. IT \'IILLALWAYS BE AN INTEGER
IN THE RANGE 0 TO 255.-TYPE THE LENGTH OF lit" L OF ("AO"+"BC").

TUE LENGTH OF "" - 0.0
L OF ("AB"+"BC") - ".0STRING SUBTRACTION IS NOT IIELL DEFINED, AND IS TIIEREFORE NOT

ALLOWED. IT IS USEFUL, HOWEVER, EITHER TO REMOVE OR EXAr11NE SOME
PORTION OF A LONG STRING.



271

TO OBTAIN SUCH SUBSTRINGS FROt1 STRINGS, 'PIL' PROVIDES 2 FUNCTIONSNAt·IED:
rue FIRST U CHARACTERS OF S
THE LAST N CHARACTERS OF SWHERE' N IS ANY ARITIH~ETIC EXPRESSION AND S IS A STRING.

:

THE ABBREVIATIONS FOR THESE FUNCTIONS ARE, RESPECTIVELY,N $FC S
N $Le S

TO GET THE FIRST OR LAST CHARACTER OF A STRING, S, ONE MAY URITE 1 FOR
N IN THE ABOVE OR USE THE NAMES: '

THE FIRST CHARACTER OF S
TItE LAST CItARACTER OF S

EACU FUNCTION IS SELF-EXPLANATORY. THE NUt1BER SPECIFIED MUST BENON-NEGATIVE, AND NOT GREATER THAN TUE LENGTH OF THE STRING TO BEOPERATED ON.
E.G. 3 $FC "ABCDEFG" - "ABC"

2 'LC "12345" - "45"

COMBINATIONS OF 'THE FIRST' AND 'THE LAST' ALLOW EXAMINATION AT ANY
POINT \~ITHIN A STRING:

-SET XaTHE FIRST CHARACTER OF THE LAST 3 CHARACTERS OF "ABCDEFG".aTYPE X.X a "E"
GIVEN THE FOLLOWING SEQUENCE OF 'PIL' INSTRUCTIONS:

aSET S1-"ABC".
-SET S2-"BCDEF".-SET S3-2 $LC S1 + (L OF S1 -1) $FC S2.
-SET S4-1 $FC 3 $LC S3 + THE LAST CHARACTER OF SI.-SET SS-THE FIRST 1 CHARACTERS OF S2 + 1 $FC 4 $LC S2 +«L OF S2)-(l OF SI» ~Fr. S3.
-SET M-L OF S2 + L OF SS.
-SET N-L OF «L OF S3) $FC S2).
-SET 81-S3-SS.
-SET B2-S3+S4<S2+"BC".

ENTER THE VALUE OF THE FOLLOWING EXPRESSIONS (DON'T FORGET TO ENTER
THE DELIMITERS OF A STRING WHEN THE ANSWER IS A STRINGIIII
YOU NEEDN'T THINK TOO LONG OVER THESE QUESTIONS-YOU WILL
GET HELP IF YOU SIMPLY HIT 'RETURN'.

S3 - ?abbe
(l OF SI-I) IS SIMPLY (3-1)·2. NOW TRY AGAIN.
bebc
TRY RE-ENTERING YOUR ANS\'IER\lITH STRING DELH1.S
"bcbc"CORRECT. S3-"BCBC".

B1. - ?
help??
81 IS A LOGICAL,YOU KNOWIIII
NEVER MIND ABOUT THAT QUESTION-WE'LL COME BACK TO IT. TRY TItIS
ONE FIRST.

SS - ?"bcbb"



272

NO. L OF 52-5 & L OF 51-3 SO TIIAT (5-3) $FC S3-"BC". NO\.,TRY.
"bccb"
NO,AGAIN. 1 $FC 4 $LC S2 -I SFC "CDEF"-"C".TRY AGAIN, 55 - ?"bccc"
STILL NOll THE FIRST 1 CHARACTERS OF S2 -"B". NOW, SURELY II"bcbc"
THAT'S THE ONEil
NOW, WHAT ABOUT THE QUESTION YOU WERE HAVING TROUBLE \."THll

Bl - ?true
GOOD, YOU OBVIOUSLY KNOW THAT SS-"BCBC", TOO.

TItE SQUARE ROOT OF (M*M+9*N**2) - ?don't know
NO,SORRY~ O.K., TRY THIS EASIER QUESTION FIRST BEFORE YOU TRY AGAIN.

N - ?..
QUITE CORRECT. NOW BACK TO THE SQUARE ROOT QUESTION.

THE SQUARE ROOT OF (M*M+9*N**2) - ?
5
YOU NOW KNOW WUAT N IS ..6 M-s+,,-g. SO, ANSWER • ?15
GOOD, YOU OBVIOUSLY KNOW THAT M-9 AND N....

Bl & $NOT B2 - ?true
GOOD. YOU'RE DEAD RIGItT THAT B2 IS FALSE.

L OF (S3+S".SS) • ?
10
EXCELLENT. YOU OBVIOUSLY KNOW ABOUT S3, S" AND SS EXACTLY.

Sl+"8C" $GE "A".Ss - ?
false
Sl."BC"·"ABCBC" AND "A"+Ss·"ABCBC" SO THAT THE ANS\'1ERIS TRUE.

NO\.,LET US LOOK AT 3 WORKED EXAMPLES.

FIRSTLY, SUPPOSE WE ARE GIVEN A STRING, S, WHOSE LENGTH IS AT LEAST
4. \'1EARE REQU IRED TO TAKE THE FIRST ,.CHARACTERS OF S AND PLACE THEM
INTO A(1),A(2),A(3) & A(4),RESPECTIVELY, LEAVING THE REMAINING STRINGIN S.

THERE ARE ..BASIC STEPS TO TIfE SOLUTION:
1. WE MUST OBTAIN A VALUE FOR S. THIS WE WILL ASSUI1E IS MERELY 'SET'

TO A VALUE. (IF WE WERE GOING TO USE INDIRECT MODE, 'DEMAND' WOULD
MOST PROOAULY BE USED.)

2. TilE FIRST ELEI\ENT OF SIS PLACED INTO TUE NEXT VACANT POS ITION IN
TUE ARRAY.

3. S IS REDUCED IN SIZE BY REMOVING THE FIRST CHARACTER.
4. TUE FINAL VALUES OF A AND S ARE PRINTED.



273

AS YOU HILL HAVE NO DOUBT REALISED, STEPS 2 & 3 ARE EACH OBEYED 4TIMES. THIS SUGGESTS A 'FOR' STATE,.,ENT.1f0UEVER, AS BOTH STEPS HAVETO BE OBEYED UNDER TUE CONTROL OF TIll S 'FOR' STATE'4ENT, A SECOflD'FOR' '''AYBE INTRODUCED TO PREVENT THE INTRODUCTION OF AN INDIRECT'PIL' PART. REDUCING A STRING TO 'ITSELF MINUS THE FIRST CHARACTER'IS TUE SAHE AS 'THE LAST N CHARACTERS' WHERE N IS THE CURRENT LENGTH,.,I~US ONE. SO WE HAVE:..
-SET S-"ABCDEFG".-FOR 1-1 TO 4:FOR A(I)-l $FC S:SET S-(L OF S -1) $LC S.-TYPE A,S.A(l) _ "A"
AU) - "B"
AU) - "c"
A(") - "0"
S - "EFG"
NOW FOR OUR SECOND WORKED EXAMPLE.HERE IT IS:READ,IN A CHARACTER ST~ING AND PRINT IT IN REVERSE ORDER.

HERE AGAIN THE PROBLEM CAN BE BROKEN DOWN INTO ..STAGES.
1. WE MUST READ IN THE STRING,S,SAY. .2. THE REVERSE STRING, R, SAY, 'S SET TO THE NULL STRING.
3. WORKING FROM BACK TO FRONT THROUGH S, ONE CHARACTER AT A TIME IS

ADDED TO R•...R IS PRINTED OUT. .
:

STAGE 1 IS EASILY PERFORMEDUSING,A'OtMANO' INSTRUCTION. THE NULLSTRING IS SIMPLY 2 CONSE~UTIVE DELIMITERS. STAGE 3 MUST BE CARRIED OUTTHE SAME NUMBER OF TIMES AS THE LENGTH OF S. THIS SUGGESTS A 'FOR'STATEMENT 'TO L OF S'. TO.PICK UP THE CHARACTER TO ADD TO R, 'THEFIRST CHARACTER OF TUE LAST I CUARACTERS Gt= S' IS USED, ASSUMING THATI IS THE 'FOR' VARIABLE.

-1.1 DEMAND S.-1.2 SET R-"".-1.3 FOR I-I TQ L OF S:SET R-R+l ,Fe I ,LC S.-I." TYPE R.-DO PART 1.
S -"QWERT"
R - "TREWQ"EASY, ISN'T ITllll
AND SO TO OUR LAST WORKED EXAt4PLE IN THESE 3.BUT FIRST LET ME EXPLAIN ONE SMALL 'PIL' FUNCTION YOU NEED TO KNOWFOR THIS EXAMPLE. .



274

IT IS THE 'SWAP' STATEMENT, UUICIi INTERCHANGES TIiE VALUES AND MODESOF 2 VARIABLES.
-SET A-3.
-SET B-l<2.
-SWAP A,B.
-TYPE A,B.
A - TRUEB-3

THIS AFFECTS A & B IN THE SAME WAY (BUT MORE EFFICIENTLY) AS THESEQUENCE:
-SET TEMP-A.
-SET A-B.
-SET B-TEMP.

NOW TO THE EXAMPLE:IF THE VECTOR WORDS(I) FOR l-l,2, •••N, CONTAINS A SET OF N STRINGS,
WRITE A PROGRAM TO PLACE THESE STRINGS INTO ALPHABETIC ORDER IN WORDS.··

THE METHOD TO USE FOR THIS ONE MAY BE 'THE OLD WIFE'S SORT'.
THE FIRST ALPHABETICAL WORD IS FOUND IN THE ARRAY THEN SWAPPED WITH THE
FIRST ELEMENT. THEN THE NEXT ALPUABETICAL WORD IS FOUND AND SWAPPEDWITH THE SECOND WORD. AND SO ON.··

-8.1 FOR I-I TO N-l:DO PART 9.
-9.1 SET J-I. .-9.2 FOR "-1+1 TO N: IF WORDS (J»\~ORDS(K),SET J-K.
-9.3 SWAP WORDS(I),WORDS(J).

WHICH, WITH A TEST RUN, MAY GIVE:
-SET WORDS(l)-"DOG".-SET WORDS(2)-"CAT".
-SET WORDS(3)-"360/67".
-SET \~ORDS(")-"CAMEL".liDO PART 8.
-TYPE WORDS.
WORDS(1) - "CAt1EL"WORDS(2) - "CAT"WORDS(3) - "DOG"
WORDS(4) - "3GO/67"

AND TUERE \~EARE II
THERE ARE SOHE ADDITIONAL STRING FUNCTIONS TO 'PIL'.

TItE MOST UNUSUAL IS 'TilEVALUE' FUNCTION.

IT IS DEFINED AS FOLLOWS: IF TilE MODE OF TilE OPERAND IS STRING, THISSTRING IS EVALUATED AS A 'PIL' EXPRESSION. IF THE MODE IS NOT STRING,
TlfE RESULT IS THE SAr~E AS TIiE OPERAND. ONE USE FOR TillS FUNCT ION ISCONVERTING A STRING CONTAINING NUMERIC DIGITS TO INTERNAL NOTATION.



275

E.G.
-SET A-3.-SET B-S.
-SET C-"A+B*.2".
-TYPE TUE VALUE OF C.
THE VALUE OF C • 13.0-TYPE TUE VALUE OF .1112345".
TUE VALUE OF "12345" - 12345.0

'THE BCD VALUE' FUNCTION ALLOWS CONVERSION IN THE OTHER DIRECTION.IF ANY OPERAND IS NUMERIC, THE RESULT WILL BE A STRING OF DIGITSIDENTICAL TO THE \~AY TUE NUMBER UOULD LOOK IF TYPED OUT WITH A LENGTHOF 14. IF THE OPERAND IS STRING. THE 'BCD VALUE' IS IDENTICAL TO THEOPERAND. IF THE OPERAND IS BOOLEAN, THE 'BCD VALUE' \H LL BE EITHER"TRUE" OR "FALSE".

E.G.
-SET A-3.-TYPE THE BCD VALUE OF (A.A),THE BCD VALUE OF (A)4).
THE BCD VALUE OF (A.A) - " 9.0 "THE BCD VALUE OF (A>~) - "FALSE"THE FORMAT OF THE RESULT OF THE VALUE IS ALWAYS THE SAME AS THAT

GENERATED BY 'TYPE'.

GIVEN THE INSTRUCTIONS:
-SET A-10.
-SET 0-0.-SET C-4.-SET D."A*SQRT OF C+S".
·SET E-"B SLE 0 SAND A>C".

ENTER TilE VALUES OF THE FOLLOWING:
THE VALUE OF C - ?

" ~.O ..COME ALONGI I IT'S MUCH EASIER TUAN IT LOOKS. TRY AGAIN... '

GOOD. FOR A NUMERIC, THE VALUE IS ITSELF.
THE VALUE OF 0 • ?25

QU ITE CORRECT. IT'S EASY, REALLY, SO LONG AS YOU KNOW HO\~ TO
EVALUATE EXPRESSIONS.

THE VALUE OF E·?
true
JOLLY GOOD. THE ANSWER IS A STRAIGHTFORWARD BOOLEAN.

THE BCD VALUE OF (A.COS OF B) - ?10
FOR A START, THE ANSWER SHOULD BE A STRINGII TRY AGAIN."10.0 II

A.COS OF B -10*1-10. THE BCD VALUE IS THUS II 10.0
HERE IS AN EXAMPLE ON THE USE OF 'THE VALUE OF '

II

READ IN A CHARACTER STRING, S, WHERE TItE FIRST TUO CttARACTERS REPRESENT
A DEC H1AL INTEGER, I,SAY, WU ILE TliE TillRD AND FOURTH CIiARACTERS ALSO
REPRESENT A DEC H1AL INTEGER, J,SAY. PR INT OUT TIlE SUBtrR lNG, R, OF
LENGTH J BEGINNING AT THE I TilPOSITION OF TilE STRING READ IN.E.G. I0804ABCDEFGItIJK" GIVES "DEFG".



276

TItE POINTS TO REMEMBER UERE ARE:1. I WILL BE TUE VALUE OF THE FIRST 2 CHARACTERS OF S.2. '"WILL BE THE VALUE OF TUE LAST 2 CHARACTERS OF TIfE FIRST 4CUARACTERS OF S.
3. THE SUBSTRING WILL BE THE LAST J CItARACTERS OF THE FIRST (I+J-1>CHARACTERS OF S.

-1.1 DEMAND S.
-1.2 SET I-THE VALUE OF 2 $FC S.-1.3 SET J-THE VALUE OF 2 $LC 4 $FC S.-1.4 SET R-'"$LC (I+J-1) $FC S.-1.5 TYPE R.-DO PART 1.
S -"0804ABCDEFGliI"'K"R - "DEFG"

QU ITE STRA IGHTFOR\.,ARD,DON IT YOU TH INI(III I
ENOUGH OF STRINGS. NOW LET US LOOK AT SOME MORE INPUT/OUTPUT.

EXTENDED CONSOLE JlQTHERE IS A METHOD BY WHICH TilEUSER MAY CONTROL THE FORMAT OF AN OUTPUTOR INPUT LINE, ALLOWING SPECIFICATION OF ANY NUMBER OF ITEMS ON ASINGLE LINE.

THE PERTINENT STATEMENTS ARE:TYPE IN FORM N,LIST.DEMAND IN FORM N,LIST.WIiERE LIST IS THE SAME AS FOR THE NORMAL 'TYPE' AND 'DEHAND'STATEr·'ENTS,AND N IS ONE OF THREE ElEt"ENTS AS FOLLOWS:

1. A STRING CONSTANT (LITERAL) TO BE USED AS A 'FORM'.
2. AN ARITHMETIC EXPRESSION USED TO REFERENCE A 'FORM' ALREADY

DEFINED.
3. A VARIABLE ~tOSE CONTENT IS A STRING TO BE USED AS A 'FORM'.

THUS, THE FOLLOWING ARE EQUIVALENT:
-TYPE IN FOroi"""ll, LIST. (l,ABOVE)OR
-FORrI 1.""-TYPE IN FORro'1,lIST. U,ABOVE)OR
-SET X-"""".-TYPE IN ForoiX,LIST. (3,ABOVE)



277

AS CAN ~E SEEN, A 'FOro,' MAY BE DEFINED AS A NORMAL STRING, EITHER
IN A VARIABLE OR IN TUE 'TYPE' OR 'DEf"AND' STATn1ENT, OR BY TItE
'FORI." STATEHENT. THE FORt·'STATEMENT HAS THE FOR~'AT:

-FO~' N.WHERE N IS AN INTEGER FROt" 1 TO " 0 IGITS LONG.

TUE li£1l INPUT LINE AFTEr. TUE 'FORM'STATEtlENT IS TAKEN AS THE FORt1 ITSELF; Foro·1SI1AY BE DEF INED IN
DIRECT W)M.,WiU, SINCE TliE 'FORM'STATEMENT t.,AYOCCUR IN DIRECT MODE ONLY. NOTE TUAT A TERtHNAL PERIOD
IS NOT REQUIRED FOR A FORH.

STUQY THE FOLLOWING STATEMENTS:
-SET 1-2.
-SET J-3.-SET K-l.-FORM 4.
-II
-FORt" 7.-",
-SET X-""'''.-SET Y-"""".
-SET Z-""".

ARE THE FOLLO\~ING 2 STATEt.,ENTS EQUIVALENT? ENTER 'YES' OR 'NO'.
-TYPE IN FOro" I*J+K-J*(I-K-l),LIST.
-TYPE IN FORt~ Z."''',LIST.

yes
GOOD. WOULD YOU LIKE TO SAY WHAT THE FORM IS?

II.
YES, '.11', FORM 7, IS CORRECT.ARE THESE 2 EQUIVALENT? AGAIN ENTER 'YES' OR 'NO'.

-TYPE IN FO~l X,LIST.-TYPE IN FOro.,(J $FC (L OF Z+I) $LC Y),LIST.
no
NO, THEY'RE THE SAME ONCE AGAIN.
TttE FORMER IS FO~l X, \lHICH IS'''''.
AND THE LATTER IS FORM (3 $FC (2+1) $LC "lfll" • 3 $FC 3 $LC .."""
-""'''. YOU SHOULD DE WITH THIS NOWIIOK. ONE RIGHT, ONE \~RONG. LET'S FINISH OFF WITH A \HNNERII
ttOW AtlOUT TU IS PA IR?-TYPE IN FORM (L OF X +K),LIST.-TYPE IN FORM TUE VALUE OF "L OF X + L OF Y",LIST.
ARE THEY EQUIVALENT? ENTER 'YES' OR 'NO'.
no
SPOT ON. TUE FIRST ONE GIVES THE FORti '''' BUT THE SECO,m ONE
GIVES '''''.BEFORE WE CONTINUE TO DISCUSS THE DIFFERENT TYPES OF FORM, LET
ME REMIND YOU TO TAKE PARTICULAR CARE Wlnt ntE ENTRY OF A
MEANINGFUL '_I AND A MEANINGFUL 'I' TO THIS TERMINAL.
IT IS MENTIONED IN YOUR NOTES.

A FORti SPEC IF IE5 rue FORt·1ATOF THE L INE TO BE READ OR PR INTED. THE
FORti ITSELF IS A STRING OF CHARACTERS. HERE ARE THE MEANINGS OF SOME
OF THESE. )-

NUMERIC
1. 'STANDARD fWttERIC FIELD.



278

A STANDARD NUMERIC FIELD IS REPRESENTED BY A SERIES OF UNDERLINE
CHARACTERS AND AN OPTIONAL DECIMAL POINT •..

EACH UNDERLINE INDICATES A POSSIBLE DIGIT POSITION, LIMITED BY THE
NUMBER OF ALLOWABLE SIGNIFICANT DIGITS IN A 'PIL' NUMBER. AT LEAST
ONE HIGH ORDER POSITION SHOULD BE SPECIFIED IN ORDER TO ACCOMODATE APOSSIBLE MINUS SIGN.E.G. ( THE 'TYPE FORM' STATEf-1ENTUSED HERE CAN BE USED EITHER TO

EXAMINE A FORM FOR ERRORS, OR TO TYPE OUT A HEADER LINEENTERED AS A FORM. NO IDENTIFICATION IS TYPED WITH THE FORM.)-FORM 3.
-1_1_.1_1_1_
-TYPE FORM 3._.--TYPE IN FORM 3,1.2376.1.237

NOTICE "TItATADDITIONAL HIGH ORDER POSITIONS ARE LEFT BLANK, WHILE THE
NUMBER IS TRUNCATED(Jgl ROUNDED)AFTER THE NUMBER OF ALLOWABLE
DIGITS TO THE RIGUT OF THE DEC It-1ALPOI NT.

HOW WOULD THE NUMBER '.06789' APPEAR IF TYPED IN THE ABOVE FORM?
.067

VERY NEARLY. WUY A SPACE BEFORE THE DECIMAL POINT?? TRY AGAIN.
0.067

EXCELLENT. EXACTLY RIGHT.
NOW TRY THE NUHf-1ER'-1.1' IN THE SAr..,EFORf~.

-1.100
PERFECT. RIGHT ALL THE WAYIIBOTH RIGHT-YOU UNDERSTAND THAT FORf-1OK.

2. SCIENTIFIC NOTATION.
THIS t-1AYBE REQUESTED IN A SPECIAL 'FORr-1'SPECIFICATION.E.G.

-FORM 2•
•• • • • • • • • • •-TYPE FORM 2•
• • • • • • • • • •-TYPE IN FORM 2,-.123456.
-1.234E-01

AS YOU WILL NOTICE, SCIENTIFIC NOTATION GIVES TltE GREATEST NUMBER OF
SIGNIFICANT FIGURES POSSIBLE FOR THE NUMBER OF PERIODS WE ALLOTTED.

AT LEAST 7 CONSECUTIVE PERIODS ARE REQUIRED FOR 1 SIGNIFICANT DIGITOF OUTPUT (USING SCIENTIFIC NOTATION), EACIt ADDITIONAL PERIOD ALLOWING
ONE MORE DIGIT OF SIGNIFICANCE, UP TO TltE LIMITATION OF 'PIL' NUMBERSANY NUMBER CAN BE TYPED OUT SUCCESSFULLY IN THIS FORM. "



279

+3. n1593.+00
GIVEN THE FORt1 ,•••••••••••• , liO\'I WOULD THE NUr~BER '3.141593'

APPEAR IF TYPED IN THIS FORM?+3.141593.+00
WHEN POSITIVE, A BLANK APPEARS INSTEAD OF '+'.
12 PERIODS, LESS 7 FOR SIGNS,EXPONENT ETC. LEAVES 5,NOT 6, FORTHE RHSII
TRY AGAI N.
3.1"159.+00

EXCELLENT. YOU'VE GOT IT EXACTLY RIGHT.
WHAT ABOUT TUE NUt-tBER'-12345.67' IN THIS SAME FORM?

1.23"57.~0"YOU'VE CORRECTLY GIVEN ONLY 5 PLACES, BUT ROUNDED,NOT TRUNCATEDPLEASE TRY AGAIN.1.23456.+0"
NO. THE ANSWER IS: '-1.23456E+0"'.!tAVING GOT THE LAST ONE RIGHT, YOU SHOULD HAVE HAD THIS ONE, TOOII
THE 'FLOATING POINT' IDEA ISN'T TOO DIFFICULT, REALLY.

NUMBERS WHICH ARE TOO LARGE FOR STANDARD NUMERIC FORMS WILL GENERATE
A DIAGNOSTIC MESSAGE. SUCH NUMBERS MAY BE TYPED IN SCIENTIFIC NOTATION
OR TYPED IN THE FOLLOWING SPECIAL NOTATION.

-FORM 6.
-1_1_.1_1_1_11111111
-TYPE FORM 6.
_._1111

THE FORM IS A STANDARD NUMERIC FORM FOLLOWED BY 4 (BUT TO YOU, REALLY
',REMEMBER?) EXCLAMATION MARKS. THE FORM WILL TYPE OUT STANDARD NUMERIC
WHEN THE NUMBER IS WITHIN RANGE OF THE SPECIFICATION, BUT WILL SWITCH
TO SCALED NOTAT ION WHEN TItE NUMBER IS TOO LARGE OR TOO St·\ALL.AS WITHSCIENTIFIC NOTATION, ALL NUMBERS CAN BE TYPED OUT IN THIS FORM.

CONSIDER THE FOLLO\lING FORM:
-FORt" 23.
-1_1_.1_1_1_111 111111_1_1_. I_I_I I 11I 111
-TYPE FORt·'23.
_._11 II_._IIII
-TYPE IN FORM 23,3.14159,1327.6.

3.141 132.76E+Ol
YOU WILL NOTICE THAT 4 SPACES SEPERATE THE 2 NUMBERS AS AN EXPONENT WAS
NOT REQUIRED FOR THE FIRST ONE.ALPIIABETIC INFORHATION.

THE CHARACTER "~I INDICATES ONE POSITION OF ALPHABETIC INFORMATION.
OPERANDS IN DOUBLE QUOTES, STRING VARIAGLES, OR BOOLEAN EXPRESSIONS
WILL TYPE IN THIS FORM.



280

E.G.
-FORM 10.
_" 1 1 ""
-TYPE-FORI4 10." ""-TYPEIN FORM 10,"X",10,"STRING".
X 10 STRI

AS CAN BE SEEN I N THE ABOVE EXAt4PLE, TItERE I S A SPACE AFTER THE FIRST
ALPItABETIC FIELD AND A SPACE AFTER THE NUMERIC FIELD. IN FACT, ANY
CHARACTERS ARE ALLOWED I N A FORM. THEY \-11 LL BE OUTPUT WHEN THE FORM IS
USED IN A 'TYPE' STATEMENT.

E.G.
-FORM 9.
-X-I_I_I_ Y-I_I_I_. 1_1_
-TYPE FORM 9.X-_ Y-_._
-TYPE IN FORM 9,X,Y.
X-S37 Y- "9.83

NO\-l LET US RETURN TO THE 'TYPE I N FORt·' N, LI ST.' STATEMENT.
SHOULD TUE LIST CONTAIN MORE ITEHS TUAN TUE FOR~1ALLOWS, THE FORM WILL
BE RESCANNED FROM TUE BEGI NNI NG UNT I L ALL I THiS I ~f TlfE LIST HAVE BEEN
TYPED. E.G.

·FORt·' 8.
·1_1- 1_1_
·TYPE FORM 8 •

• 'fYPEIN FORt4 8,I,J,K.
9 10
11

CONSIDER THE FOLLO\-IING SEQUENCE OF 'PIL' STATEMENTS:
·FORM 326.
·1_1_ 1_1_ 1_1_
·TYPE FORM 326 •

• FO'R-r.r-TO 3: FOR J·l TO 3:SET A(I,J).I*lO+J.
·TYPE IN FORM 326,A.

L-lIIAT WILL THE NEXT LINE (AN OUTPUT LINE) OF TIUS SEQUENCE BE?

11 12 13
GOOU. TUE REST SItOULD BE " CAKE-\-IALKI

HELL, THEN,G I VE fiE TIlE NEXT OUTPUT Lt NE.
21 22 23



281

YES-YOU'VE GOT IT RIGHTllAND FINALLY, \mAT IS TUE LAST LINE RESULTING FROM THE 'TYPE'STATEHENT? .
31 32 33
CORRECT. JUST TUE WAY TO FINISH A SEQUENCE.

WE "AVE PREVIOUSLY MENTIONED THE STATE'~ENT 'DEHAND IN FORr~ N,LIST.'HOWEVER, THE FOLLOWING NOTES AND RESTRICTIONS APPLY:··
1. NUMERIC FOR,.,FIELDS MERELY INDICATE THAT NU'~ERIC INPUT IS EXPECTED

AND NO ALtGNMENT OF INPUT TO DECIMAL POINTS IS UECESSARY, AND NOSCALING IS PERFORMED.

2. THE CHARACTER" (DOUBLE QUOTE) IS NOT AN ACCEPTABLE INPUT CHARACTER
IN AN ALPHABETIC FORM FIELD.

3. THE FORM FIELDS DRIVING THE INPUT LINE MUST BE COMPLETELY SATISFIED,
IT IS AN ERROR IF A 'DEMAND IN FORM' STATEt~ENT WITH .. INPUT PARAMS.
,COUPLED WITH A FORM WITH 4 FIELDS, RECEIVES ONLY 3 INPUT ITEMS ON ALINE.

AND FINALLY ••••••EXTgNRER I/O LISTED FEATURES.THERE IS A WAY BY WHICH A 'FOR' CAN OPERATE WITHIN BOTH 'DEMAND'
AND 'TYPE' STATEMENTS IN THE STANDARD I/O LISTS.E.G.

-1.8 TYPE (FOR 1-1 TO 5: A(I),B(I».
-1.9 DE~ND (FOR I-I TO 5: A(I».

THIS EXTENSION IS MOST USEFUL IN CONJUNCTION WITH USER DIRECTED INPUT
AND OUTPUT, AS IT ALLOWS SPECIFICATION OF SEVERAL ITEMS IN AN ARRAY
WITHOUT LISTING THEM INDIVIDUALLY. THE STANDARD RULES FOR 'FOR' APPLY,INCLUDING NESTING.··

CONSIDER THIS EXAMPLE:-FOR I-I TO 5:FOR J-l TO 5:SET A(I,J)-I*J.-TYPE (FOR I-I TO 5: (FOR J-l TO 5:A(I,J»).
AU,!) - 1.0
AU,2) • 2.0

.
AU,") • 20.0A(5,5) • 25.0RESULTS IN ALL ELEMENTS FOR A(l,l), •••,A(S,S) BEING TYPED. THE

PARENTliESES MUST BE EVENLY MATCHED(SAME NUMBER OF LEFT ONES AS RIGHT
ONES) AND THOSE AROUND THE 'FOR' ARE REQUIRED.



282

WEll, THAT CONCLUDES YOUR 'Pll' COURSE USING ~ETHODS OF 'COMPUTER
ASSISTED INSTRUCTION'. I ONLY 1i0PETHAT YOU ENJOYED THE EXPERIENCE
AND,NOT lEAST OF All, lEARNED SOME 'PIL'.
NOl.,FOR YOUR DEMONSTRATION CLASS.

AND SO TO YOUR TH IRD EXAMPLES CLASS! I HOPE YOU'RE US ING rus
REQUESTS TO YOUR FULL ADVANTAGE.I'VE JUST HAD A THOUGHT! YOU HAVEN'T HAD AN EXAMPLE USING ARRAYS
YET - SO lET'S KICK OFF WITH ONE.
YOU ARE GIVEN.A SET OF DATA WHIDf CONSISTS OF A SERIES OF AGESIN THE RANGE 0-99 TERMINATED BY A NUMBER GREATER THAN 100. WRITE APROGRAM TO COUNT AND OUTPUT THE NUMBER OF AGES IN THE RANGES 0-19,20-39
,40-59,60-79 AND 80-99 USING AN ARRAY, COUNT, OF 5 ELEt~ENTS FOR THE5 COUNTERS.NOTE THAT THERE IS A SIf.1PlEWAY TO DETERMINE FROM THE VALUE OF A
NUMBER THE RANGE TO WHICH IT BELONGS.FOR YOUR DATA USE : 29,58,87,16,45,74,3,32,61,90,19,~8,999.

YO~R REQUEST t4AY BE ONE OF THE FOLLOW ING :INFO
Pll
HELP
ANS
.nl
YOU HAVEN'T ACCESSED 'Pll' YET SO HOW CAN YOU ATTEMPT AN ANSWERII

YOUR REQUEST MAY BE ONE OF THE FOLLOWING:INFO
Pil
tlElP
ANSInfo

THE PROBlE,.,MAY BE D IVIOED AS FOLLOWS :
1. INITIALISE THE ARRAY TO BE USED AS THE COUNTER.
2. READ IN AN AGE AND DECIDE IF IT IS A TRUE AGE.3. IF IT IS NECESSARY, INCREMENT THE CORRESPONDING COUNTER.
4. PRINT OUT THE VALUES OF THE COUNTERS IF A TERMINATING AGE HAS BEEN

REACHED.
YOUR REQUEST HAY BE ONE OF TIfE FOLLOWING:INFO

PILIIELP
ANSplk
INVALID REQUEST. PLEASE RE-ENTER.
p 11

'Pll' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODESIMPLY ENTER 'MTS' TO THE INTERPRETER.'PIL( 1:01) Ready:
-1.1 for 1-0 to 4:set count(I)·O.-1.2 demand ale.
-1.3 If ale)100, 10 to step 1.9-mts YOUR REQUEST t~AY BE ONE OF TlfE FOLLOUIUGINFOPIL
ItELP
AilS



283

help
YOU MAY NOW REQUEST :A DIVISION NUt~IlERTOGETHER \'IITIl EITHER 'le OR 'pl.INFO

BACK
:5
NO TYPE GIVEN WITH DIVISION :5. PLEASE RE-ENTER REQUEST.
3 1
'PIL' MAKES THIS DIVISION OF TIlE PROBLEM VERY EASY. FIRSTLY, YOU
ARE ALLOWED A SUBSCRIPT WHOSE VALUE IS O. SECONDLY, A SUBSCRIPT WHICH
HAS A FRACTION VALUE IS TRUNCATED TO FIND OUT WHICH ELEMENT'IS TO BE
ACCESSED. TOGETHER WITII THE GIVEN NOTE, DO YOU NOW KNOW 'THE SIMPLE\lAY'?

YOU MAY NOW REQUEST :
A DIVtSI6N NUMBER TOGETHER WITH EITHER 'L' OR 'Pl.INFO
BACK
3 p
IN THE 'SET' INSTRUCTION WHICH INCREASES THE APPROPRIATE COUNTER
BY 1, WOULD YOU AGREE THAT THE APPROPRIATE SUBSCRIPT IS (AGE/20)??

YOU MAY NOW REQUEST :
A DIVISION NUMBER TOGETHER \HTU EITHER 'L' OR 'pl.
INFO
BACK
back

YOUR REQUEST MAY BE ONE OF rue FOLLOWI NG
INFO
PIL
HELP
ANS
p 11

'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER.

-t~pe part 1.
1.1 FOR 1-0 TO 4:SET COUNT(I)-O.

\ 1.2 DEMAND AGE.
1.3 IF AGE)lOO, GO TO STEP 1.9

-1.4 set countCace/20)-count(age/20)+1.
-1.5 to step 1.2
-1.9 t~pe count.
-do part 1.
AGE --29
AGE --58
AGE --87
AGE --16
AGE --45
AGE --74



284

AGE •
·3AGE •
·32AGE •
·61AGE •
·90AGE •
·19AGE •....
AGE •

·999ERROR AT STEP 1.3: DIRECT COMMAND ONLY
·1.3 If age)100, to step 1.9
·go.COUNT(O). 3.0COUNT(1). 2.0COUNTU)· 3.0COUNT( 3)· 2. 0·COUNT<It). 2.0·mts YOUR REQUEST MAY BE ONE OF THE FOLLOWINGINFO
PilHELPANS
an.IN YOU ANSWER ENTER THE VALUES YOU GOT FOR THE COUNTERS IN
ASCENDING ORDER OF RANGE, PLEASE.
3 2 322EXCELLENT. PERFECTLY CORRECTII

YOU '''AYNOW REQUESTSOLNNEXTnextA CUSTOMER'S CREDIT NUMBER IS A ~TRING OF 8 DECIMAL DIGITS, S.A NINTIt DIGIT, ADDED AT THE RIGHT HAND END TO PREVENT FRAUD, ISOBTAINED BY FIRST ADDING THE SUM OF THE SQUARES OF THE ODD DIGITS TOTHE SUM OF THE CUBES OF THE.EVEN DIGITS. THE LAST DIGIT IN THIS SUM ISTHE CHECK DIGIT. WRITE A PROGRAM TO READ IN S AND OUTPUT THE VALUE OFITS CHECK DIGIT.
FOR YOUR DATA USE S • "82790677"

YOUR REQUEST MAY BE ONE OF THE FOLLOWINGINFOPILHELPANS
help YOU MAY NOW REQUEST :A DIVISION NUMBER WITH EITHER ILl OR 'pl.
INFOBACK
Info



285

THE PROBLEM MAY BE DIVIDED AS FOLLOWS
1.- INITIALISE THE SUM AND READ IN S.
2. PERFORM TilE SUt·1ON THE ODD 0 IG ITS.
3. PERFOrut1TUE SUtt1ON THE EVEN 0 IG ITS.
4. WORK OUT AND PRINT OUT THE LAST DIGIT IN TUE SUt~.

YOU MAY NOW' REQUEST :A DIVISION NUMBER WITH EITHER 'L' OR 'pl.INFO
BACK.
21
WE NEED TO LOOK AT THE ODD DIGITS OF S,I.E. DIGITS IN POSITIONS 1,3,
5 & 7. THAT SOUNDS LIKE A 'FOR' STATEMENT I AS FOR THE SUM; EACH TIME
WE ADD TliE SQUARE OF TUE VALUE OF TUE LAST DIGIT OF TUE FIRST I DIGITS,
WHERE I.IS 1,3,5 OR 7. GET IT?

YOU tt1AY NO\i REQUEST :A DIVISION NUMBER WITH EITHER 'L.'OR 'Pl •.
INFO
BACK
2p
THE 'FOR' STATEMENT WILL NATURALLY BE 'BY 2:'. AS FOR THE OBJECT
STATEMENT, THE EXPRESSION TO BE ADDED TO TliE OLD SUM USES THE STRING
FUNCTIONS: 'THE VALUE OF ','M $LC STRING' a 'N $FC STRING'
IN TIIAT ORDER.

YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'pl.
INFO
BACK
p3
TilE 'FOR' STATEtt1ENT \IILL OF COURSE BE 'BY 2:'. AS FOR TUE
OBJECT STATEt-1ENT, TUE EXPRESS ION TO BE ADDED TO THE OLD SUf.,USES THE
STRING FUNCTIONS 'THE VALUE OF ','M $LC STRING' & 'N $FC STRING'
IN THAT ORDER.

YOU MAY NO\I REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'Pl.
INFO
BACK
1 4
UE NEED THE LAST DIGIT OF TUIS sur1 WIICH IS AN INTEGER. THAT'S ITI
\IIIYDON'T UE TAKE TilE FRACT ION PART OF A TENTII OF THE SUt1 THEN
MULTIPLY IT UY 10?

YOU MAY NO\I REQUEST :
A DIVISION NU:1BER WITH EITHER 'L' OR 'P'.
It~FO
!lACK



286

back
YOUR REQUEST MAY BE ONE OF THE FOLLOH INGINFOPIL

HELP
ANSpt1

'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODESIMPLY ENTER 'MTS' TO THE INTERPRETER.PIL( 1:01) Ready:
-1.1 set sum-O.-1.2 demand s•.
-1.3 for 1-1 to 7 by 2:set sum-sum+(the value of (1 SIc Sfc 5»**2.
-1.4 for 1-2 by

to a by 2:5et sum-sum+(the value of (1 SIc $fc 5»**3.
-1.5 set x-fp of sum/10*10.-1.6 set_
LINE DELETED
-1.6 type x.
-do part 1
S --"82790677"
X - 0.0-mts

YOUR REQUEST MAY BE ONE OF TUE FOLLOWINGINFOPIL
HELPANSans
IN YOUR ANSWER PLEASE ENTER THE CHECK DIGIT.o
INCORRECT.AS THAT WAS YOUR FIRST ATTEMPT I SUGGEST TliATYOU RETURN TO REQUESTMODE AND TYPE 'HELP'.

YOUR REQUEST t4AYBE ONE OF TUE FOLLOWING:INFOPILlIELPANS
helpYOU MAY NOW REQUEST :A DIVISION NUMBER WITH EITHER 'L' OR 'P'.INFOBACKpS
INVALID REQUEST. PLEASE RE-ENTER.
pit..EARD OF THE ARITUMETIC FUNCTION IFP OF 111

YOU MAY NO\-IREQUEST :A DIVtSION NUMBER WITH EITHER 'LI OR Ip'.INFOBACK
back



287

YOUR REQUEST f·,AYBE ONE OF TUE FOLLOW INGINFOPILUELPANSpll
IP ILI IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST t~OOE

SIMPLY ENTER IMTSI TO THE INTERPRETER.
·l.S"set x.fp of (sum/10*10).
·do part 1.
S -.1182790677"
X - 0.0-1.5 set x-fp of ·(sum/10)*lO.
-do part 1.
S -."82790677"
X - 8.0

-mts YOUR REQUEST MAY BE ONE OF TUE FOLLOWINGINFOPILHELPANS
ans
IN YOUR ANSWER PLEASE ENTER THE CHECK DIGIT.
8 •EXCELLENT. PERFECTLY CORRECTI!

YOU MAY NOW REQUEST :SOLNNEXT
next
WRITE A PROGRAM TO READ IN A CHARACTER STRING, S, AND PRINT OUTTHE NUMBER OF LETTERS, L, AND THE NUMBER OF DIGITS, D, CONTAINED INTUE STRING.FOR YOUR DATA USE S-IX?P37BG**P9P8P1?+Q-X3*X4.7"

YOUR REQUEST '·'AYBE ONE OF THE FOLLOWI NG :INFOPILHELPANS
Info

THE PROBLEM MAY BE DIVIDED AS FOLLOWS :
1. INITIALISE THE COUNTERS AND READ IN S.2. SET UP A SUITABLE LOOP.
3. INCREMENT THE COUNTERS ACCORDfNG TO EACU CHARACTER.4. PRINT OUT THE RESULTS.

YOUR REQUEST tiAY BE ONE OF TItE FOLLOWI NG :INFOPILHELPANS
p 11 IPILI IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST '~OOESIMPLY ENTER IHTSI TO THE INTERPRETER.P L( 1:01) Ready:



288

-1.1 set 1-0
-1.2 set d-O
-1.3 demand s ,
-1.4 set len-I of s.
-1.5 for 1-1 to len: do part 2.
-2.1 set r-1 $lc I $fc s.
-2.2 If r $ge "O",set d-d+l;set 1=1+1.
=do part 1.
S --"x?p37bg*~p9p8p7?+q-x4.7"
-type 1,d.
L - 16.0
D - 7.0
-mts

YOUR REQUEST 1·1AY[lE ONE OF TilE FOLLo\-I1NGINFO
PIL
HELP
ANS
ans
'IN YOUR ANSWER PLEASE ENTER TIfE NUMBER OF LETTEns AND TIfE NUHBER
OF DIGITS IN THAT onDER.16 7
INCORRECT.
AS THAT WAS YOUR FIRST ATTEMPT I SUGGEST TIiAT YOU RETURN TO REQUEST
MODE AND TYPE 'ItELP'.

YOUR REQUEST t1AY BE ONE OF TilE FOLLOUI NG :INFO
PIL
HELP
ANS
pll

'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SU1PLY ENTER 't1TS' TO rut INTERPRETER.

-do part 1.
S --"x?P37bg**p9p8p7?+Q-x3*x4.7"-type 1,d.
L· 18.0
D - 8.0
-mts

YOUR REQUEST fiAY BE ONE OF TIfE FOLLO\'IIur.INFO
PIL
ItELP
ANS
ans
HI YOUR ANS\'1ER PLEASE ENTER TIfE NUt-1BER OF LETTERS AND THE NUt.mEROF DIGITS IN THAT ORDER.
18 8
SORRY, BUT THAT IS TIfE URONG ANSHER.

YOU MAY REQUEST ONE OF :
BACK
EXPLexpl



289

EXPLANATION.
TItE STRING IS READ IU AND L la 0 SET TO O. THE LENGTH OF TUE INPUT
STRING IS FOUND AS IT IS THIS Nur·mER OF CHARACTERS WE \HLL BE COMPARING
IN TUE PROBLE,,,.A LOOP IS TItEREFORE SET UP USING A 'FOR' STATE'''ENT
WITH TilE LENGTU OF S AS THE Lit-tiT.TUE OBJECT STATEMENT OF THIS 'FOR'
IS BEST A 'DO PART N.' INSTRUCTION, NOT ONLY FOR CLARITY BUT ALSO FOR
A SLIGIIT SAVING OF WORK. AS WE MAKE 2 SETS OF COMPARISONS ON THEISOLATED CHARACTER, IT IS PERHAPS BEST TO ASSIGN THIS CHARACTER TO A
STRING VARIABLE R HAVING WORKED IT OUT ONCE ONLY. TO WORK IT OUT, THE
'LAST CHARACTER OF THE FIRST I CUARACTERS OF ' IS USED. THE
COMPARISONS ARE AS FOLLOWS: FOR DIGITS, IF R IS GREATER THAN OR EQUAL
TO "0", D IS INCREMENTED; FOR LETTERS, IF R IS GREATER THAN OR EQUAL TO
"A" AND LESS THAN OR EQUAL TO "Z", L IS INCREMENTED. ON COMPLETION OF
THE LOOP, LAND 0 ARE OUTPUT.

SPEC IMEN PROGRAr".
-3.1 DEMAND S·.
-3.2 SET lENGTH-l OF S.
-3.3 SET l-O.
-3.4 SET 0-0.-3.5 FOR I-I TO lENGTH: DO PART 4.
-3.6 TYPE L,D.
-4.1 SET R-l $lC I $FC S.
-4.2 IF R $GE "O",SET 0-0+1.
-4.3 IF R $GE "A" $AND R $lE "Z",SET l-l+1.

FOR S-"X?P37BG**P9P8P7?+Q-X4.7", l-lO AND 0-8.
USING THE PROGRAM YOU ALREADY IIAVE FOR THE SUM,.,ATIONOF THE G.P.:

2 N-l
A , AR , AR ,•••••,ARAMEND IT TO GIVE OUT TUE VALUES OF :
A) THE N Tit. TERt.,IN SCIENTIFIC NOTATION \HTH 5 PLACES OF DECIMALS.
B) THE SUM IN STANDARD NOTATION WITH 3 PLACES OF DECIMALS.

FOR YOUR DATA USE A-12, R-O.5 AND N-20.
YOUR REQUEST MAY BE ONE OF THE FOLLOWING:INFO

PIL
HELP
ANS
Info

THE PROBLEM MAY BE DIVIDED AS FOLLOUS
1. A 'FORt" FOR THE N ru. TERt~.
2. A 'FORtI' FOR THE sua.



290

YOUR REQUEST I·IAY BE ONE OF TUE FOLLOUIUG
INFO
Pll
HELP
AUS
p l 1

'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
S IMPLY ENTER 'I1TS' TO TIlE INTERPRETER.
Pll( 1:01) Ready:

-form 1•..........'..
-form 2.
-1_1_1_.1_1_1_
-1.1 demand a,r,n.
-1.2 set term-a.
-1.3 set sum-a.
-1.4 for 1-1 to n-1:do part 2.
-1.5 type In form 1,term.
-1.6 type In form 2,sum.
-2.1 set term-term*r.
-2.2 set sum-sum+term.
-do part 1.
A --12
R --0.5
N --20
2.2888E-05
23.999

-mts
YOUR REQUEST MAY BE ONE OF TUE FOLLO~II NG

INFO
PIL
HELP
ANS
help

YOU MAY NOW REQUEST:
A DIVISION NUMBER TOGETHER \HTIi EITHER 'L' OR 'P'.
INFO
BACK
1 p
QUITE SIMPLY, SCIENTIFIC NOTATION USES 1 PERIOD PER CIIARACTER OF
U I DTII.

YOU '·IAY UO\'4 REQUEST:
A DIVISION NUt-1BER TOGETHER WITH EITIiER 'L' OR 'pl.
INFO
[lACK
1 I
FOR 5 PLACES OF DEClltALS, SCIENTIFIC NOTATION NEEDS A \'lIDTIt OF
(5+7).

YOU MAY NOW REQUEST:
A D I V I S ION NUt·lBER TOGETUER \'11ru El TIiER 'l' OR 'P'.
INFO
BACK
back



291

YOUR REQUEST t1AYBE ONE OF THE FOLLO~H NG
INFO
PIL
IIELP.ANSpll 'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER.

-type form 1•
• • • • • • • • • • •-form 1•
•• • • • • • • • • • • •-type forml,foem 2.
Eh? FORMI -?

-type form 1,form 2•
• • • • • • • • • • • •_.-

-do part 1•.
A •-12
R --0.5
N •-20
2.28881E-05
23.999

-mtl
YOUR REQUEST MAY BE ONE OF THE FOLLOWINGINFO

PILHELPANSaniIN YOUR ANSWER, PLEASE ENTER YOUR VALUES FOR THE NTH. TERM AND THESU'~ IN THAT ORDER. BE SURE TO ENTER TUEM IN THE EXACT FORMAT OF YOUR
OUTPUT.
2.2888e-05,23.999INCORRECT.AS THAT WAS YOUR FIRST ATTEMPT I SUGGEST THAT YOU RETURN TO REQUESTMODE AND TYPE 'HELP'.

YOUR REQUEST MAY BE ONE OF TIfEFOLLOWING:
INFOPILHELPANS
ansIN YOUR ANSWER, PLEASE ENTER YOUR VALUES FOR THE NTH. TERM AND THE
sur~ IN TIiATORDER. BE SURE TO ENTER THEM IN THE EXACT FORMAT OF YOUR
OUTPUT.
2.28881e-05,23.999



292

0::UJ
0..
0

•UJ::> en
0 ...J
>- UJ
~ <!!- 0::%-< ::>--- O::I:~t- >-t-0e:z

Z::>LL
0-
LL ,,-
::>z-

LL 0-3
LL >-t-o0 enzz t-UJ •
" < c:::- en- :I:LLI-'Zen t-t---Zo.%
0 LIJ--t- o.. 00

Ot-t-"'"UJ :=en::> •0:: <000-e -UJCO.-t
0.. ...J<.-tLIJ -. •c:: UJt--'Z
0.. t-<...JO« «-

• IJJ ::;0:: en
«D en UJ3en_. « 't- 0 W- t- UJ t-:;)zen

t- o:: ...J oo.~
(.) « • Q. ...J% en
UJ 0..:::: • 0:;)-
a: •• 0::% 0 ...J(')OX
a: OUJ::> • en < >-t-
0 t- et-(/) .:!: - LIJ
(.) Cl) •• , ,0::0:: Z COXUJ •UJ • ......N .. UJ :3 o::t-o.CI)
>- ::> ::: • I ::::t- 0 UJ 00::
...J C! « Z Z::::::E:C:::+ Cl >z:::
t- UJ ex: , • C:::O::LIJ::: t- OO
(.) ex: 0 0::< ·ooot-::> ::> a: - 00
UJ 0 ,n <t-LLLL n Cl) -- Q.CI) en-LL :3 0:: • • <:::: II :::: II en UJ , •
a:: 0 0.. • IN o:::: ... ZZ"::: O::CI)W.-t
UJ :z • _. eLIJ::>II--UJ:;:) 0 LLJCl) Cl)

0.. Z • I::: zt-(/)- t-en t- >-<0::
>- LLJ • _.o:: -e UJ UJ ...J::>II

• « :E: • • • 10 :::t-t-ex:o..c.t-t- Cl) (/)(.)oUJ
t- =:: ... • N _. LL IUJ UJ UJ 0>- >- UJ UJ UJ - u:t:
z u • • C(I)(I)LLt-t-(I)(I) t- t-en -UJ ::> .UJ .::" •z IUJ ::> «LLJLLt-
...J 0 0.. C2 • ex:_. 0.. .... N tl'\ ~ Lt'\ c.o ... N Z ~...JO
...J >- Cl) 0 • 0 1>- I · · · · · · · · t-o.. ...J
UJ zt-c: LL • LL _. t- Lt'\Lt'\Lt'\Lt'\Lt'\Lt'\«Dc.o '"0;" ""=' ,et:- -U ...J)(- II II II II II II II II II II II II II <et-
)( OLLIO Z xzo
UJ (l)Z«ll L1J LLJ<t-t-



293

APPENDIX F.

The student performance information corresponding to that session.



294

>-
-J~
UJ
Cl:

C
UJ....
ete, =
t,)

.... 4
Z 3 0
et 0 +
Z Z UJ
:;:) et ~ IQ

UJ p. &1\

C e- .... 0 4
t,) e, ""CD -J Z 4 N

0 CD UJ 0
Z et :r C &1\ = P"'I.. .. ..UJ~""N~~NIQ1Q4~1Q00P"'lNIQ~P"'IN""m~4""4~~m&l\~~m""~0~4~&I\~4m

~P"'I"'P"'INP"'IIQP"'IP"'I~IQNNIQ~4N4NP"'IN""""""P"'INN""~""~NN""P"'I""P"'IIQP"'INP"'IP"'IN
....
o 000
o
o
o

000
000
0.00
000
000
000
000
000
r4P"'Ir4

I I
000
000
000
000
000

000
000
000
000
P"'IP"'Ir4
I

00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00

00

P"'IP"'I
Ir4P"'I
P"'IP"'I
I

00000
00000
00000
00000
00000

00000
00000
00000
OOOOP"'l

IOOOOP"'l
I

00000
00000
00000
00000
00000
00000
00000
P"'I~~P"'IO
P"'I~r4P"'10
I I IP"'I~r4P"'1P"'1
I I I

o 0000
o 0000
o 0000
o 0000
o 0000
o 0000
o 0000
o 0000
o 000r4

Io 0r40r4
Io 0000

o 0000
o 0000
o 0000
o 0000
o 0000
o 0000
o 0000
o 0000
P"'IP"'Ir4P"'1r4

I

000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000P"'lP"'lOP"'lr40

I I I
OOP"'lOOOP"'lOOP"'l~P"'IP"'IP"'IP"'I

I I I I I IP"'Ir4P"'IO0 P"'IP"'I~ ~P"'I~ P"'IP"'I,r4P"'I
I I I I I I I I I I
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
OOOP"'l~OOOOOOOOOO
OOOP"'l~O"'OOOOOOOO

IP"'I~P"'IP"'IP"'IP"'I"'P"'IP"'IP"'IP"'IP"'IP"'IP"'IP"'I
I I I I I I I

0000
0000
0000

0000
0000
0000
OCOO
OCOO
0000
P"'IP"'IP"'IO
0000
0000
OCOO
OCOC
0000
0000
OCCP"'I
OCOP"'l

ICCOP"'l
IP"'IP"'IP"'IP"'I
I

o
o
o
C...
I

"" 0""""CI)O~UJ
:;:)0_,

UJCOQ>o C
YcC
..30"'.o.e
.... 0
ZC
"'YOX.
Cl ...

'"Cl)..IQZ
Cl:

ZOo C:;:)cetet:;:)CC:;:)««<:;:)CC:;:)CCCCCCCC:;:)CCCCCC<et<CCCCcC«CCCCCC<:;:)CCCCCCC
CI):;:)
Cl) ..
UJCC
-J

C

··ZZo
0-_ ....P"'INN4"'IQIQW~~~~~~mommP"'l"""'lQw~~mmO~N4~~~~mOOP"'lN"" ...
.... 11) P"'I P"'IP"'IP"'I"'P"'IP"'I"'P"'IP"'INNNNNNNNN""""""""""- '"11):;:)
OC!~
....zz
"'0=II)""""""""""""""""""""""""""""""",,""""""""""""""""""""""""""""""~~~~~~~~~~IQ= ,..,
:;:)'"
t,)-J



295

co
co
co

'"N..
'"o
I.....
co
co
co
N

o 0000000000000000000 00000000000 00 000000000 000
o 0000000000000000000 00000000000 00 000 000000 000
o 0000000000000000000 00000000000 00 000000000 000
o 0000000000000000000 00000000000 00 000 000000 000

o 0000000000000000000 00000000000 00 000 000000 000
o 0000000000000000000 00000000000 00 000000000 000
o 0000000000000000000 00000000000 00 000 000000 000
o OOOOOpOOOOOOOOOOOOO 00000000000 00 000 000000 000
o 0000000000000000000 00000000000 00 000 000000 000
o 0000000000000000000 00000000000 00 000 000000 000
o
o
o
o
o
o
....
I....
I....
I....

00 00000 00
I I I I I I I I

00 00000 00
I I I I I I I I I

00 00000 00
I I I I I I I

00 00000 00
I I I I I I I

0000000000000000000
00 00000 00

I I I I I I I I I
................................00 ....
I I I I I I I I I I I
................................00 ....
I I I I I I I I I I I I I
................................0 ....

I I I I I I I I I I I I I I
........0000 ....................000000 ........
I I I I I I I I

0 ..............0000000
I I

0 ............0000000
I I I

0 ............0000000
I

0 ............0000000
I I I

00000000000
0 ............0000000

I I
........................00 ............
I I I I I I I

........ t""1P"'1 .... t""1QO ............
I I I I I I I I

f""4P"t"t""1~ .... O" ........t"""t
I I I I I I I
....000 ....
I I I I I I

00

00
00
00

00
00

000 0 ............00
I I

000 0 ............00
I I I

000 0 ............00
I I

000 0 ............00
I I

000 000000

000

000
000 •

'"oooZ
000%
000'"....
....00....
....00•
I z:
....0 ....0
I 1-............ '"
I '".....t.,

...
'"0(<1:~~~~<=»«<..J

000 000000
........
I........
I I........
I.......

I I

0 ........
I I

0 ........
I I............
I............

I I

....000........
I I.... ...................
I I I I I.... ....................

I I I
....000........
I I I

<=»<~<~<~«««««~«=»«««<~«~J<<1:=»<<~

'"Z
%

'"................"''''''''''~N ....''''''''''''''''''........~ ....''''''~........~N ............4 ........4'''............"'''''''........4 ....4N ....
............. NNNNNN N NNC"'.a N ,.."'\ tt'\ .#'4".#.# .# rot

•.....
::::...
..J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~< ...o...


