THE DESIGN, INMPLEMENTATION AND USE OF

A COMPUTER-ASSISTED INSTRUCTION SYSTEM.

A Thesis
submitted to the
UNIVERSITY OF NEWCASTLE UPON TYNE
for the Degree

of

DOCTOR OF PHILOSOPHY

M. W. DOWSEY

SEPTEMBER, 1970.

'~ BEST COPY |
. AVAILABLE

o Va;riable print quality

PAGE NUMBERS CLOSE

- TO THE EDGE OF THE
PAGE

SOME ARE CUT OFF

(1)

f i
.Lu.n.) 2)n. J.L -
———

————

Computer-assisted irsiruction has developed over the last decade from
sinple teaching machine principles to a wide variety of instructional
strategies. This development has cheonged the characteristics of the
instructional sysfem and the skills of the people involved.

Design considerations for computer-asssisted instruction systems ere
discussed, current operational systems are described and the need for another
system is explained. In particular, attributes of author languages are
discussed with reference to those in use at the present time and the author
language which was embedded in the instructional system is described. How
the system was implemented under a general-purpose time-sharing systen is
described, together with possible modifications and additions.

An investigation wes carried out using the instructional system with
two aims in view., Firstly, an attempt was made to validate the system and
provide‘ap appraisal of the facilities and services. Sgcondly, it vwas
desired to study the teaching of programming 1anguages by various methods.
The methods employed allowed the comparisons of conventionai teaching to
teaching using cdmputer—assisted instruction and demonstration classes to
on-line examples classes to be made. The studeﬁts' performance data is
discussed and suggestions are made for future investigations of this kind.

In contrast to the use of author languages, which, being programming
languages, some authors find difficult to learn, ah'easy author entry
system was designed; This allows entry of course ﬁaterial in English on
planning forms and provides self-documentation for the author,

Further details of the instructional system, together with examples
of source code in the author language, student dialogue and student

performance 1nformatlon, are contained in the appendices.

(41)

I am indebted to the Science Research Council for awarding me a Research

Studentship to enable me to study at the University of HNewecastle upon Tyne
from October 1967 to Septembe; 1970 and to Professor E. S. Page for
admitting me to the Compufing Laboratory to carry out research for a Ph.D.

I wish to express my sincere thanks to Mr. L. B. Wilson for his
1nvaluab1e adv1ce and guldance throughout the research project and in
‘ preparatlon of the text.

Also, I wish to thank all those persons who helped to make the
binveStigati9n possib1e. They include Professor E. S. Page, who gave
'pexv-miSsionlfor-vthe.cour‘sé to take place in the form it did; Miss E. D.
Barracloﬁgh, who made the terminals and'machine time available; Messrs.

J. S;’ciqwes; M. J.‘Elphick and L. B. Wilson, who helped in preparation
. of the course meterial; Mr. J. F. Dunn,,whb helped with the NUTS/PIL |
intérfacé;'Mr; L. Valler; who made available the performance stétistics'
* and.uessrs. T. Anderson, D. R. Appleton, P. Henderson and J.. L. Lloyd,

'f'vho helped check out the 1nstructlona1 programs.

CHAPTER 1.

CHAPTER 2.

(iii)
CONTENTS.

Introduction.

1.1 Computer—assisted instruction.

1.2 The emergence of computer-assisted instruction.
1.2 Hethods of using the computer.

Drill and practice.
Author-controlled tutorial.
Socratic tutorial.

Learner control.

Simulation and gaming.
Paired students,

Test and assessment.
Computer-managed instruction.

-) e A
¢ 5 & o o o s @
O OV WD -

1.4 Personnel required for computer-assisted
instruction. .

1.5 Layout of this thesis.,
The Newcastle University Teaching System (NUTS).
2.1 Computer-assisted instruction systems.

2.1.1 Introduction.

2.1.2 Early operational systems.
2.1.3 Design considerations.
2.1.t Current systems.

2.1.5 The need for NUTS.

2.2 Michigan Terminsl System and ite influences.

, 26241 UMHPS ‘and MTS: a general descript*on of
the operatlng system.)
2.2 2 The dependence of NUTS upon MTS.

2.3 A glossary of terms for NUTS.
2.4 Description of files used in NUTS.
2.5 The command language : design and iﬁp&ementation.

2.5.1 Introduction.

2.5.2 The choice of commands,

2.5.3 Command mode.

2.5.4 General description of the command
" language processor.

2.5.5 Command implementation.

2.6 The author language : design and implementation.

2.6.1 Previous author languages : the need to
create another.

2.6,2 Flements of the language that were needed.

2.6.3 Use of the author language within NUTS.

PAGE

R .
OWVOWVW oI

11
14
15
15

45

16
19
25
33

35
35
37
39

‘h3

46

-3
-b

CHAPTER 3.

(iv)

€. The translater.
.6.5 The controller.
.6.6 Implementation techniques.

(RS

2.7 The calculating language.

2.7.1 Design considerations.

2.7.2 Use of the calculating language
within NUTS,.

2.7.3 The translater and controller.

2.7.44 Implementation technigues.

2.8 The desk machine.

2.8.1 Design considerations.
2.6.2 Implementation.

2.9 The Pittsburgh Interpretive Language, PIL.

2.9.1 Reasons for its inclusion in NUTS.
2.9.2 The programming language.
2.9.3 The implementation of PIL within NUTS.

2.10 Performance.

2.10.1 General statistics.

2.10,2 Current use.

2.10.3 Possivle future developments and
improvements.

An investigation into the use of NUTS to teach a
programming language.

3.1 Previous attempts at programming courses,

2.1.1 Other course structures.
3.1.2 8ignificant features of this course.

3.2 Description of the course.

3.2+1 Background to the course and the
students on it.

3.2.2 CAI content of the course.

3.2.3 The selection of the’ groups.

3.2.4 The course log.

3.3 Data obtained from the course and discussion
of the results.

3431 The pre-test.

3¢3.2 The post-test.

3¢3¢3 Analysis of the scores for the pre-test
and the post-test.

3.3.4 Responses and their relation to
performance. _

3.3.5 Response times and their relation to
performance,

3.3.6 Performance of group C students during
exanmples classes.

PAGE
81
8l
91
91
92
92
92
95

95
95

97
98
100

100
100

. 100

102
102

102
107

109

109

111
116
117
123

123
126

126
133

137
446

CHAPTER L4,

(v)

3.3.,7 The attitude guestionnaires.
3.3.8 System performance during the course.

3.4 Conclusions from the investigation.
From author languages to easy author entry systems.

4,1 Introduction.

4,2 Previous easy author entry systems.

4.3 fThe Course Planning Form.

4,4 A guide for authors.

" 4,5 A guide for keypunch operators.

L,6 The action of the pre-processor.
4,7 Macros used.
4,8 Sample input and output:

4,9 Conclusion.

SUMMARY AND CONCLUSIONS.

REFERENCES,
APPENDIX A.
APPENDIX B,
APPENDIX C.

AFFENDIX Do

APPRNDIX E.

APPENDIX F.

Newcastle University Teaching System. User's Guide.

The‘post-test.

The attitude questionnaires.

Part of a NUTS session which contains source code in
the author language from the course.

Part of a student Session from the course.

The student performance information corresponding to

“that session.

171

179
182

188

268

293

CHAPTER 1 Introduction

1.7 Computer-assisted instruction

The effects of the population explosion together with the tremendous
growth of science and technology in recent years have presented increasing
challenges to educators in schools, universities and industry. In addition,
sociological changes including higher educational requirements for all
students and increased emphasis on personality development have added to
Vthe responsibilities of teachers. To keep pace with these developments,
new ways have been sought to help teachers absorb these new responsibilities
while continuing to maintain high standards of academic achievement. These
efforts have inspired the develoément and use of many new instructional
techniques. Among these are audio/visual aids, instructional films,
educational television, programmed instruction (PI) and, most recently,
computer-assisted instruction (CAI).

The basic principle of CAI is that each student can learn a concept
or subject according to his own particular requirements. This not only
means that each student can learn as quickly as possible, but also that
the amount and content of material presented can be tailored to his

“individual needs. Using this system,'students who are able to grasp and
retain subject matter with a minimum amount of explanation can advance to
new materialAin accordance with their ability. Slower students can be
directed to alternative presentations and exercises that allow them to learn
at a slower pace. The teacher can obtain performance records that indicate
which questions were answered correctly or incorrectly, whether any
unanticipated responses were returned, actual response times, and other
»information to aid the evaluation of the individual student's performance.
This makes it possible for a teacher to pinpoint areas where a student is
experiencing difficulty with course material. He can then take remedial
action by giving special attention to the student involved or by revising

the presentation if analysis shows that performance of many students is low.

1.2 The emergence of computer-essisted instruction

Teaching maclines were patented as early as 1809 (¥ellan, 1976)
but the current interest in teaching machines is generally traced back
to Fressey, a psychologisti at Ohio State University, who in the 1920's
built several ingenious machines that automatically tested students by
presenting a series of multiple-choice questions, printed on a roll of
paper, which could be answered by pushing one of four keys. If the
student was right, the machine presented the next question. If he was
wrong, the machine recorded the fact and required the student to try
again. The machine was small, quite simple and admirably served the
testing purpose Pressey had in mind.

Pressey received little encouragement from the educational world
for his ideas, and he iudicated in 1922 that he was regretfully dropping
further work while hoping that he had done enough to stimulate other
research workeré.

Other workers were apparently not stimulated by Pressey's work and
it was not carried on. It was not until twenty years later that the
idea of teaching by machine was effectively put forward, this time by
Skinner of Harvard University. Skinner (1954) proposed a method of teaching
based largely on his many years of research using pigeons as subjects.
'In his approach, a key aspect of feaching was to reinforce correct .
respoﬁses as quickly as possible, by reﬁards of food in the case of
pigeons. Skinner believed that reinforcement could be effective in hﬁman
learning. | ' |

Accordingly, he developed a method of teaching in which students
are required to answer a sequence of questions, each only a little more
advanced than the previous question. The student finds out immediately
whether or not his answer is correct, and since it almost always is
because the steps are small, his response is presumably reinforced.

A few years later, a different approach to machine teaching was put

forward by Crowder (1960). This was "“intrinsi: programmiug', in which
larger steps are taken in the programmed material. If the student
assimilates the new material, he noves ahead. If not, he is '"branched"
to a remedial presentation.

The intrinsic program has two practical limitations which may be
important. Firstly, the student camnot formulate his own answer to a
question, but must choose one of the answers given. Secondly, the
number of levels of branching rfeasible with a simple machine or with
a more common ‘'programmed textbook! is not very large. The number of
individual paths increases as the product of the number of possible
incorrect responses at each level of branching, and this proliferation
of possible paths in branching programc presents a formidable obstacle
to intrinsic programming using books or simplé machines. In addition,
branching can be based only on the student's last response.

Certain criteria developed for programmed instruction are now
generally accepted. They are as follows (Silvern and Silvern, 1966b):

(i) instruction is provided without presence or intervention

' by a human instructor.

(ii) fhe student learns at his own rate, as opposed to films,

television, conventional group instruction, etc.

(iii) instruction is présented in small incremental steps

| requiring frequent responses by the student; step size.
is a function of subject matter and characteristics of the
student population. |

(iv) . there is a two-way communication between student and

instructional program. ”

(v) the student receives immediate feedback informing'him of

his progress.

(vi) reinforcement is used to strengthen learning.

(vii) the sequence of lessons is carefully controlled and consistent.

(viii) the instructional program shapes and controls the student

behaviour.

A substantial amount of research has been done on simple linear
programs ‘but much less on intrinsic programs. A review of research
results up to early 1963 (Schramm, 1964) indicates that experimental
evidence about the effectiveness of programmed insiruction techniques
studied is not very clear-cut.

Schramm found %6 reports of research in which programs were
compared directly with conventional classroom instruction. Of these
36 studies, 18 showed no significant difference, 17 showed some
superiority for the programmed course, and one showed superiority
for conventional teaching. However, Schramm ponders over the problem
of what kind of teacher is being compared with what kind of program and
discusses the novelty effects of such features, but admits that it is
almost impossible to make allowances for novelty.

This anjother studies of programmed instruction show two things with
reasonable certainty. Firstly, the hopes of early proponents of programming
that the process would teach more effectively than human teachers have not
been demonstrated convincingly. Segondly, Pressey's original idea, that
programmed teaching could free the human teacher from a good deal of the
drudgery of presenting straightforward factual material, and testing
students on it, appears to be quite #alid. .

In the late 1950's, a number of people recognised that computers
might be ideally suited to programmed iﬁstruction, since they could
overcome the severe limitations of the simple machines or programmed
textbooks that were being tried. Computefs can accept and evaluate
responses constructed'by the student, can provide almost unlimited
branching capabilities, ﬁnd can branch based on a variety of criteria.
They can also control a wide variety of terminal equipment and in other
ways provide far greater flexibility than is possible with simple teaching
machines; '

Perhaps the first CAI experiment was carried out at the IBM Watson

Research Laboratory (Rath et al., 1960) in 1958. Other early CAIL studies
were performed by the University of Illinois, System Development
Corporation and Bolt, Beranek and Newmen, Inc.

The potential of ccmputers for instruction was summarised by Uttal
(1962) who suggestcd that the computer teaching machine concept is quite
different from the linearly programmed teaching machines. The flexibility
and range of capabilities offered to the teacher by the powerful decision
logic and large memory of computers transcend mere quantitative differences
and suggest that there is a true qualitative difference between the two.

Some of the qualitative differences envisioned at that time were:

(i) the computer can continuously compare the student's
verformance with criteria established by tke teacher,
and present new material, or direct the student to the teacher
or to the library, depending on his performance. "Performance'"
can be judged on the basis of a rather large number of
individual responses by the student.

(ii) the ability to do what amounts to continuous testing can be
used to prevent a student's moving ahecad before he has
mastered the material at hand, as well as preventing his
being held back by the constraints imposed by classroom
teaching. |

(iii) the computer can keep quite elaborate records of the
details of each student's progress, and the teacher can
query the machine about any student at any time. Ideally,
the teacher can be far better informed about his students!
progress than is possible in an ordinary classroom situation
or with simple teaching machines.

(iv) since course material is stored in a computer's memory, it

. is easy to change. Thus computer courses can be improved
quite easily with experience, while it is relatively

difficult to change teaching machine programs or programmed

textbooks once they have been printed.

The early experiments in CAI used rather simple programs and presented
students with what was probably the most pedantic teacher of all time.
Such trivial differences as double~-spacing between words or missing commas
between the student's response and the specified answer caused the machine
to mark the student wrong.

These experiments showed that it was essential to develop computer
programs that could ignore minor errors or variations in wording in a
student's response and somehow determine il9# meaning. It was also
recognised at this time that flexible and convenient student terminals
and a programming language that would make possible the writing of
courses by people who knew little about computer programming were essential

for long=-raunge development of CAI.

1.3 Fethods of using the computer

There are two modes in which computer based systems are currently
being used. Firstly, there is the direct mode in which the teaching
actually takes place at a terminal. There are a number of methods vhich
fall into this mode. Secondly, there is the indirect rode vhich makes
less demand on computer facilities and is based upon broader applications
of programmed learning principles, capitalising on existing teaching and
training instruments rather than attempting to replace them. CAI does not
generally embrace this latter mode, but for completeness, brief descriptions
of the two methods from the mode appear as the latter two in the following
descriptions of methods. The first four described are the most widely used
and probably the most important. |

1.3.17 Drill and vractice

This is usually associated with presentation of basic skills and is
probably the most easily programmed. Drill is a technique to supplement
the student's knowledge by supplying him with common facts and skills.
Practice allows him to use these facts and skills until a certain degree
~ of proficiency is achieveds If it is a linear progfam, all students
negotiate the same pattern of questions. The only individualisation is
in rate of completion., Fowever, if adaptive, the program may present
graded seté of exercises, and by comparison and responsenlatency, it
presents the student with selected feed-back and adapts the sequencing
t6 fit the individual. The computer also records a coﬁplete performance
history.

1.3.2 Author-controlled tutorial

Here, information is first presented to the student and then he is
required to respond to a question based on the facts just received. The
system judges the answers by comparison with expected responses. In an
intrinsic progfam, usually made up of a sequence of multiple choice items,

the selection of each presentation is based on the student's response to the

previous stimulus, Thus, by btranching, each student may take a different
path through the subject matter. The program is adaptive in pace snd in
the amount of instruction each student receives. In an adaptive tutorial
program, each presentation is baced on an extensive history of student
responses to the program, In either case, the author of the material
maintains the initiative throughout and plans an optimum path through the
program which he expects the better students to follow.

13«3 Socratic tutorial .

The Socratic method is characterised by the program permitting
dialogues between the student and the computer. It goes beyond tutorial
logics by allowing the student to assert an answer or solution at any
point in the interaction, or to ask for data. The author retains considerable
control over the student's behaviour as he usually makes the computer
messages dependent not only on the student's last response but also on the
history of the conversation. However, he must be prepared to return a
meaningful reply to almost any reasonable request the student may make.
The author may sequence the availability of information during the inquiry
stage and may guide the student towards an acceptable solution in the
.decision-making staée.

1.3.k Learner control

This relatively new logic originated by Grubb (1968) places the
initiative with the student, who accesses only the subject matter which
interests him and hence learns by discovery. This allows the students
to approach the'subject in different ways, fror those who only want to
browse through the course to those who seek specific infbrmation.-

Originally, an outline map is presented to the student. This contains the
structure of the course material indicating the various concepts and topics
involved. On choosing a particular concept, the student is confronted with

a further, more detailed map of this area. At the lowest level, instructional

material is presented to the student but at any point in time the student may

branch forward to skip over a question, branch backwards to repeat a
presentation, jumf to a glossary for definitions, or jump to the current
level of subject outline if he is in too deep. Comparison studies of this
technique have been made (Grubb, 1969).

1.3.5. Simulation and gaming

The logic behind simutlation is to duplicate in the learning situation
the format and sequence of stimulus events in the real world. It can
provide experience for the student under conditions of greater safety,
greater cconomy or with great savings of time. Gaming differs from
simulation in that there need be no real situation. Usually, there is
an element of competition, particularly involving groups of students.

The program may allow the student to‘work in a self-instructional mode,
and provide basic tuition, automatically setting up problems for him to
solve, giving specific assistance where necessary and assessing his
performance.

| 1.3.6. Paired students

In an effort to combat the fact that during a CAI session the student
learns in isolation yet the classroom is péténtially wealthy in dynamic
.soci#l interactions, Grubb (1965) carried out a study on the effects of
-paired student interaction. ILittle work, however, has been done in this
direction. | | | | |

1.3.7: Test aﬁd assessment

This method is an indirect interaction and hence is not normally
regarded as being CAI. The computer is used from time to fime to
adﬁinister criterion tests to measure whether educational objectives
are being met. During the test, a correct response is met with
immediate reinforcement whereas an incorrect response causes further
questioning in an effort to discover exactly what difficulties are
occurring. The computer assembles information to assist the teacher in

preparing and scheduling future classworke.

10

1.3.8 Computer-manaced instruvction

This is menagement of the learning procesc, not presentation of the
instructional material itself., Usually, there is a well structured series
of work assignments or activities which may call on pnumerous different
learning resources and which may include many parollel options. After
each activity, the system tests the student on-line and hence determines
his next assignment, either appropriate remedial work or further study.
The teacher is provided with the analysis of the test data and the
sequence of activities to indicate the progress of each individual
student. A description of a project of this type is given by Gilligan

(1969).

1

1.4 Personnel required for computer-assisted instruction.

In comparison to conventional teaching where each class is taught

and supervised by one teacher at any point in time, numerous personnel,

each gifted in some particular skill, are required for a CAI project of

any size. Quite ﬁaturally, the number of students that such a project

would support is increased in proportion.

Just exactly how many different members of staff are required and

what their.speciality should be has always been a matter for conjecture.

Silvern and Silvern (1966a) suggest that there should be:

(1)

(i)

"(iii)

(iv)

Zinn
as defined

(1)

the teacher, who becomes the manager of the education process
and evaluates and counsels students with the help of reports
from the computer. He provides special and remedial
instruction and is thus elevated from the present position
of communicator to that of directing communications.

the instructional programmer, or author, whq, in fact, may

be a team of persons or one senior individual with a staff
of specialised assistants. He initially performs a jot and
task analysis, then proceeds t§ establish behavioural
objectives, devise criterion tests to measure these, develop
the.course sutline and finally write the steps in the lesson
-plan. | . .

the computér systemé programmer, who may be expecied to write
the:CAI compiler, integrate the processor into the operating
system or add capabilities beyond the normal'CAI language.
the computer operator (or proctor as he is sometimes called),
who looks after the running of the Qachine and its
peripherals, and helps students use the equipment.

(1968) proposes that the job of the instructional programmer,
above, should actually be divided into three separate positions:
instructors, who select programmed strategies into which

they need only enter the teaching material and some answer-

(ii)

(iii)

12

processing rules. They will be managers of self-instruction
yet not expected to have special knowledge of computer
Programming.

authors of instructional strategies, simulations or academic
games, who, using a special-purpose language, provide a basic
strategy and organisation of content which an instructor might
later modify in superficial ways.

instructional researchers, who should be able to invent special
strategies to switch from one instructional mode to another,
accumulating and comparing data on performance of different

students.

In the light of the experience of a large scale physics project,

Hansen (1970) describes the various roles which evolved:

(i)

(ii)

(iii).

(iv)
(v)

(vi)

(vii)

(viii)

content scholars, who prepared a detailed conceptual outline

of the course.

behavioural scientists, who provided criteria for the behavioural
consequences of the instruction and analysed the issues dealing
with the topics of entry behaviours, task analysis, behavioural
objectives and instructional strategies.

physicé writers, who, since the talents of the two preceding‘
groups were in short supply, performed the detailed vriting of
the instructional materials.. '
CAI'coders, who entered the instructional material into the

CAI evstem, using the author language.

media specialists, who helped prepare the concept films and
audio tapes.

computer operators, who supervised the running of the machine.
computer systems programmers, who developed a data analysis and
management system for the project.

a data analysis programmer, who amended statistical programs to

prrovide performance reports.

13

(ix) CAI proctors, who assisted students in preparing the multi-
media devices for utilisation.

(x) graduate students, who acted as demonstrators for the course
and raised queries about the overall systems approach,
including strategy and media selection.

The need for such an array of staff naturally raises the question
of cost of CAI. A thorough discussion of this aspect, and comparison
with the conventional method of teaching is given by Kopstein and

Seidel (1967).

1.5 Layout of this thesis

The remainder of this thesis is divided into four sections, three
of which are self--contained. Cﬁapter 2 pgives a detailed description of
the teaching system that was designed and implemented in lewcastle,
corplete with a description of other systems. Chapter 3 describes an
investigation which was designed to provide a validation and evaluation
of the system and determine how best it can be used in the area of
teaching programming languages. Chapter 4 turns away from the idea of
generating instructional material via an author language and suggests a
method by which the vast team mentioned in 1.4 can be replaced
effectively. The final section provides a summary together with
conclusions of the whole study.

In the appendices are given the user's guide to the teaching system,
a sample of the author language coding used in the investigation, a sample
student dialogue with the course and the performance record resulting from

this dielogue.

15

CHAPTER 2 The Newcastle University Teaching System (NUTS)

2.1 Computer-assisted instruction systems

2.1.1 Introduction

The first attempts at producing CAI programs started over a decade
agé and used computer systems and programming languages currently in use
at that time. Only one user at a time could use the machine, whether he
was the author developing the course or one of the students receiving the
instructional material. The fact that an existing programming language
was used to code the programs probably meant that the response processing
was the least sophisticated ever attempted. When the student responded
to a question from the computer, he was judged wrong by the machine if he
made such trivial mistakes as double spacing between words or leaving out
a comma.

Perhaps the first experiment with computers for instruction was
carried out by Rath et al.(1960) in 1958 at the IEM Research Centre using
an IBM 650 computer to teach binary arithmetic. Other early CAI experiments
vere carried out at the University of Illinois, System Development
Corporation and Bolt, Beranek and Newman, Inc,

Since that time, there has been a’general'trend towards a specialised
CAI system. Instructional programs are assembled into a format that can
easily be executed by an interpreter in real time during instructional
séssions. In addition, background programs permit users to schedule cafd
@ssemblies, list courses and student records, load fuhctions, macros,
dictionaries, g.aphics, etc.

However, in more recent years, CAT subsystems running under general¥

purpose time-sharing systems are being deveioped.

16

2.1.2 Early operational systems

During the period 1962-65, CAI systems grew, more or less independently,
in several laboratories. These pioneering examples of CAI shared some
common features, such as time-sharing. Each also had unique features.
In this section, several well-established systems of that period are
listed and described.

In that time, each of the systems was restricted to the laboratory
or campus on vhich it was generated. However, in 1965, remote terminals
for several of these systems were installed at other laboratories and
universities, sometimes many miles distant. Thus, some systems became
no longer identifiable solely with a particular institution, except
historically or administratively. | |

2+.1.2.1 IBM Yorktown. An extensive system was based on the IBM Watson

Research Laboratory at Yorktown Heights, New York. This system originally
used an IBM 650 RAMAC with 20 terminals and a disk file for 6 million
bytes and 0.8 seconds maximum access time (Grubb and Selfridge, 1963).
In 1964, an IBM 1440 replaced the 650.

Students at Pennsylvania State and Florida State Universities took
courses transmitted from the Yorktéwn complex (Wodtke et al., 1965). The
course was presented at a modifiﬁg electric typewriter and used a random=-

access slide projector and a tape-recorder.

2.1.2.2 IRM Poughkeepsie. A system similar to the Yorktown system was

based on an IBY 1440 at Poughkeepsie. Through 12 IBM 1050 terminals
located at IBM uffices at Poughkeepsie, Los Angeles, San Francisco, and
Washington D.C., IBM customer enginee}s received training while on call

at their offices.

2.1.2.3 CILASS. The Computer-based Laboratory for Automated School

System (CLASS), developed by the System Development Corporation,

provided instruction for up to 20 students under the control of a computer.

It was designed to study branching effects and permitted the investigation

17

of systems problems as well as individual learning processes in a contrelled
environment (Ruans, 1963). In addition to a practical course on statistical
inference, CLASS was used for computer-based student counselling and field
evaluation of an elementary Spanish course.

2.1.2.4 System 437L. System 437L was a command-control system operated by
the U.5. Air Force. It included an automated instructional subsystem which
taught Air Force console operators the query language to be used in
communicating with the main system (Clapp et al., 1964). Because of
obsolescence of the basic system, the training subsystem was not implemented.
2.1.2.5 SAKI. The best known of the machines developed in the U.K. by
Pask (1959) was Solartron Automatic Keyboard Instructor (SAKI), which
instructed the student in keyboard operation. Errérs and response times
were calculated by SAKI, compared with the standard performénce, and fed
back to the student. It was not a time-shared system. A

2.1.2.6 COBIS. The Computer-Based Instructional System (COBIS), located
at the Electronic System Division, Hanscon Air Force Base, Bedford, Mass.,
was based on a DEC PDP-1 (Baker, 1965). It had three principal features.

~ Firstly, a light pencil was used as the medium of communication between the
student and the computer; secondly, the student indicated his degree of
certainty for each alternative in the multiplé choice array by adjusting
bars of light next to each answer on the cathode ray tube; and, finally,

the computer considered both the student's answers and his degree of
certainty when branching to remedial sequences or further steps. A

special scoring system was developed according.y.

2.1.2.7 The Socratic System. In the Socratic System, built by Bolt,

Beranek and Newman, Inc., in April 1963 around a DEC PDP-1, the teacher
and student carry on a dialogue in depth (Swets and Feurzeig, 1965).

The computer states the problem, sets up conditions, asks questions,
pr;vides requested data, and answers questions, while observing the
student's course of action in a task. The system has been applied to

instruction in medical diagnosis and business decision makiﬁg.

18

2.1.2.8 SOCRATRES. SOCRATES was a time-shared system developed at the
Praining Research Laboratory (TRL) of the University of Illinois (Stolurov,
1965b). It was adaptive in three ways. Firstly, it learnt about the
student as it taught him. Secondly, it might make decisions about the
effectiveness of thg rules used to teach the student; and, finally,

it might make decisions about the criteria which were used for evaluating
performance.

The SOCRATES I student interface was put on-line in May 196k. Five
terminals were available during the summer of that year. It used an IBH
RAMAC external disk memory of 2 million-byte capacity to supplement the
internal storage of an IEM 1620 computer.

In SOCRATES II, an IEB{ 1311 disk replaced the RAMAC disk and different
terminals were used. The neh terminals displayed not only 35 mm. frames,
but aiéo a set of six fixed messages, each of which wouldlbe selectively
callgd by the program. In addition, these stﬁdent terminals provided
random access to any of 150C frames of film and contained a keyboard
consisting of 15 keys with interchahgeable,charaeters.

SOCRATES software permitted the storage and use of historical
information by student rather than by terminal. The student file permitted
full use of the idiographic model. SOCRATES provided records of. every
' response of each student, in terms of both the time it toox and the '
character of the response.

The project was discontinued late in 1966.

2. 1 2.9 PLATO. At the Computer-based Educatlon Research Laboratory (CERL)
of the University of Illinois, a 81ngle-student version of the PLATO
(Programmed Logic for Automatic Teaching Operationg) system was used to
present a variety of subject matter ranging from mathematics to French
grammar. PLATO II, the first multiple-student teaching device from the
laboratory, used the ILLIAC computer with & high-speed memory of only 1024

words, vwhich limited the system to two terminals, The "electronic-blackboard"

television display technique has both a cathode ray tube and a slide
display superimposed. Such function keys as "help'" and "ahal" are also
available to the student.

In 1964, transition was made to PLATO III, based on the CDC 1604
computer. PLATO III had a theoretical limit of 1000 terminals, but
only 20 were impleﬁented. The "help! sequences were increased from
one to eight. Analysis of the student performance records on~line
became available and intercommunication be£ween términals, added in
1965, made experiments in gaming, simulation and group interaction
possible. A description of the PLATO system is given by Bitzer and
Easley (1965).

2.1.3 Design considerations

The design of a CAI system, quite naturally, depends to a large
extenf upon the type of system that is required. For the most part,
CAL systems are implemented upon general-purpose §ompu£ers but they
are é separate entity, apart from any other subsystem available on |
the machine. However, there exist great advantages in'constructing
CAI éubsystems which are able to transfer control back to thg operating
system to obtain any other subsystem such as a compiler, simulator, etc.,
before returning to the instructional subsystem. Finally, there is a
class of.CAI systems which is highly specialised. For instance, speciél
considér;tion may be made as to the method of course assembly, type of
instructional strategy, or method and reason for use by the student.

2.1.3.1 General stand-alone systems. The minimum requireménts and

@ésirable characteristics of an instrucfional systemAaided by a
géneralépurpose computer are given by Zinn (1965). He considers the six
lines of communication between student, learning materials and author
and to each of these six lines attributes one requirement:
(i) development of an author language for material presentation
and strategy definition;

(ii) analysis of material, strategy and student performance;

(iii)
(iv)
(v)
(vi)

Tonge

display of materialj

processing of student responses;

furnishing of unanticipated student requests; and
provision of individualised instruction.

(1968) suggests that any new system should also allow

student-course interactions of the type already familiar in other

systems, as above, but suggests further that the system should

(1)

(ii)

(iii)

(iv)
- (V)
(vi)
Adams
points out
(i)

(ii)

permit the entry of course programseither on~line or using
batch input devices and should allow the author to correct
and immediately test material on-line, even during student
usage of other parts of the same course;

provide to the course author capabilities for calculation,
test analysis, data base access, and abbreviafed reference
to commonly used sequences of material (a macro facility);
allow "Yeasy" modification of language syntax and semantics

s0 as to encourage course authors to consider and suggest

‘language improvements;

facilitate experimentation by authors with more sophisticated
algorithms for response processing;
provide a computational facility to students, in the context

of the course program§ and

'be implemented so as to maximise the efficiency of the highly

repetifive student interactions rather than the less freqﬁent

" author debugging sessions.

(1967) reinforces most of‘thése considerations but, in addition,
that

the system response should be 'very fast", about a tenth of the
time it took the student to frame the message;

as well as both on-line and off-line entry of programs, there
should be a very fast compile service where small alterations

are made to a program;

21

(iii) there should be a capability to mark and specify the contents
of transaction records which may include time data, contents
of storage and the text of messages;

(iv) the system should offer a recovery from malfunction; and

(v) the system should be open-ended, i.e. capable of executing
special routines written in a lower-level language and adding
new routines to the source language at will. .

As for implementation, Silvern and Silvern (1966a) suggest that the
basic CAI system be machine independent and written in a widely-used
language such as FORTRAN, and, since the system would handle many
students taking the same or different courses simultaneously in a time-
sharing mode, it should use re-entrant coding. They also put forward
the ideas that the sign-on procedures should be simple, yet give adequate
security, and that a student should have no difficulty restarting a
course after a previous session. Perhﬁps their most sensible suggestion,
but probably the most difficult to implement, is that the system §hou1d
respond with "WAITY if there is a time lag of over three seconds when

processing a response.

2+1.3.2 CAI systems as subsystems. Instructional systems may incorporate

.‘ofher programming facilifies which can bevused by both author and student.
Already, a Baéic version of COURSEWRITER has been “marriedﬁ wiﬁh FORTRAN
in a éonversational, tutbrial system called TUTOR at CERL, University of
Illinois. The cﬁrriculum expert can set tﬁe problem for the student and
provide some discussion in the tutorial mode. MThe student shifts to the
edit mode to construct his solution and then calls the FORTRAN compiler
or other system softwarelto complete the job. | V
PLANIT, at System Development Corporation (Feingold, 1967), permits
the author to specify statistics problems for which the computer geherates
data and determines the correct answer. The student can use the computer

as a desk calculator, call on available subroutines and write simple

22

programs of his own.

In addition to simple computational aids, some lesson designers may
want to provide an algebraic language, a text processing language, a
model-building or simulation language, perhaps a specific system or model
written for student use, or information organisation and retrieval
capability.

A broadly conceived instructional system probably should begin with
a general-purpose system and add the facility for moving from the terminal
mode into other user subsystems, returning when an exercise is completed.
Some authors need to maintain contact with the student through some means
of monitoring his work on a problem. It may be necessary to bring him
back to the tutorial mode because of elapsed time, number of problem
attempts, or even anticipated error which requires special attention.

Engvold and Hughes (1968b) have designed such a subsystem. They
point out that adding a number of functions to make a teaching system more
flexible would require extensive additional programming and the number of
such functions that could be added might be limited by the size of the
computer memory for which the teaching system was designed. In order to
improve man-computer communication, they made the computer controllable
from a display unit. All the resources of the operating system can be
summoned by having the user point a light pen at the display. Thus,
these full resources (language processors, compilers, models and other
library and user programs) can be called upon from the display in order
to enrich the teaching process. In addition, the user can be instructed
or guided in employing this software by exercising the system's tutorial
function.

2¢1.3.3 BSpecial purpose CAI systems. We have mentioned that the design

considerations of a CAIL system may depend on some special feature of that
system; for instance, the instructional strategy, the method of generation

of material or the reasons for use of the system,

23

Stolurow (1965a) defines systems analysis as the construction of
models and procedures to optimise some function of the variables
involved in the riodel. He used an operational model of instruction
to create SOCRATES (1965b). The model is ideomorphic in that it
considers the learner's characteristics, and is itself adaptive during
instruction. Tanis involves three steps in a cycle. Firstly, the
pretutorial step selects the optimum teaching program for each student;
secondly, a specific set of instructions, tesk parameters, definition of
tasks and rules is implemented; and, finally, the tutorial design is changed
or a better set of rules is adopted to reach the desired performance.

A similar approach has been made at the Human Resources Research
Office (Hum RRO) with project IMPACT (Kopsfein, 1969). The philosovhy
there is that, if an instructional system is to be better than that of
a good human instructional system, more predicative indices must be used.
Starting from a simple (minded) instructional decision model empirical
data is collected and fed back to modify the model. The current version
is tested diagrostically to find indications to what is right and what is
wrong with it and the model is then adjusted in terms of the data obtained.
It considers such factors as the stﬁdent's abilities and educational back-
ground, his fluctuating motivations, his cumulative patterns of progress
toward mastery and his pattern of errors in recent criterion tests, and
reiates them in a logical and unvarying way to instructional options,
such as the available subject matter information, the évailable media and
the available mechods or forms of presentation.

Several systems have been suggestéd, designed and implemented which
emphasise the ease of generation of instructional material.

Meadow et al. (1968) produced a course generator, CG-1, an interactive
program, which produces a course program as the result of a conversation
betweenvfhe computer and the course author carried on in natural language.

The generated programs are in a language called PL/I Interactive Dialect

ek

(PL/I ID) which is a dialect of PL/I and which can be compiled and run on
most IBM System/360 computers.

The system due to Kerr et al. (1969) is quite different. In it, a
course consists of units called frames. Frame elements are composed,
punched into cards and then stored as records ca a direct access sborage
device. The authors believe that run-time generation of these frames,
which are actually stored as character strings, is a more suitable approach
than material prepared in a special or general-purpose language and compiled
for instructional use. Courses can be changed and expanded without
changing the processing programs, and no computer program is required to
include new courses in the system.

Whereas both previous systems have allowed for a wide range of
question~-types during the generated course, Uhr (1969) proposes a system
in which the author must specify the general type of question he would
like to ask. The program generates a sequence of questions in some
particular problem domain during, aﬁd as a function of, its interactions
with the particular student it is teaching. Rather than pre-programming
the text into the computer, the teacher only codes, in a standard format,
the type of question he wishes to ask. The program then generates a long
sequence of particular questions, questions that become progressively more
difficult as the student succeeds in answering the simpler ones, and
branches back to simpler material when the student fails.

For the most part, CAI systems have been used directly in the teaching
environment. However, Winkler (1968) suggest: that the traditional forms
of CAI are in the process of developing into a public Mutility" of organised
knowledge. He postulates a nation-wide network of computers which will be
used by schools to supplement instruction and for placement and certification
purposes. The system will also be used by libraries for browsing, by
corporations for inservice training and personnel selection and by
individuals as a device for learning what one needs to know in order to

gain knowledge in particular fields. This follows from the different levels

25

of difficulty attributed to all the available CAI programs and the chain
references from one to the next. One important technique suggested is
that all computers would keep a listing on drum or disk of the CAI
programs in the current inventory. The lack of a requested program in
the inventory would cause the executive to disl the appropriate higher
level to secure the program. This continues until the program is
secured, from the national couputer, if necessary. The CAl program,

in being transmitted back to the requestor, is then stored in éach level
in anticipation of future use by this- or some other requestor. Each
"level! of request. will, therefore, become a reservoir of CAI programs
and the function of this reservoir is to reduce the number of requests sent
to the next higher level by a factor of at ieast the ratio of the number
of computers at the two levels.

2.1.4 Current systems

This section contains a summary of those CAI systems currently in
use.

2.1.k.1 IBM System 1500. In the IBM 1500 Instructional System, different

operations can be performed by students taking courses, teachers writing
courses, and proctors supervising fhe overall operation of CAI. In addition,
background jobs can be completed when the system is not being used for
.instructional purposes. The major functions of the operating system
iﬁclude:

(i) scﬁeduling service requests so that each station is offered

an ogportunity to use the system facilities in turn;

(ii) directing proctor assistance to the students requiring it;

(iii) accumulating student records;

(iv) analysing and executing proctor instructions;

(v) providing information about system operation to the proctor

4 when necessary; and
(vi) storing and maintaining all data needed by the programs under

operating system control.

‘The significant characteristics of the operating system are that it
is a re-entrant, natural~-interrupt, terminal-oriented, time-sharing system.
It is divided into five major sections: station IOCS, scheduler, command
processor, service routines and applications. The system can be based on
either an IBM 1130vor 1800 and with 32K core can support up to 32 stations.
A system summary is given in an IBM (1967) manual.

2.1.4.2 RCA Instructional 70. Lesson material is orgenised as a series

of concept blocks, each of which provides drill and review material to
students at various levels of difficulty. The computer is programmed to
present these concept blocks in a specific sequence but the teacher may
change this sequence to parallel his own presentation. The computer
also produces two reports for teachers: the daily status report and the
concept block progress report. The daily status reports are produced
after each day's student sessions; one report is produced for each
class. The concept block progress reports provide detailed information
about each student's progress within a concept block. The programming
elements of the system include:

(i) the Instruction Systems Language - 1 (ISL~1);

(ii) the text editor (used to create the files of data constituting
the curriculum data base);

(iii) the data translater (used to translate material from the text
editor into the format expected by the 70 system procedure
program);

(iv) the operating system; and

(v) the data management system.

The operating system controls the on-line instructional process,
and is divided into four subsystems: the control monitor, interpreter,
communications control system and disk control systeﬁ.~ The data management
system produces the off-line progress reports. A Spectra 70/45 processor

unit is used with a 262144 - byte core storage and each line concentrator

may service up to 48 terminals. General information is found in an RCA(1967)

report.

2.1.4.3 RCA Instructional 71. The four main functions of the operating

system are:
(i) operation of the central processor, auxiliary storage units,

‘operator's console, and communication interface;

(ii) file maintainance after instruction has ceased;

(iii) entrance of the curriculum materials into the system using
ISL-1; and

(iv) translation of ISI-1 procedure programs into a machine-oriented
format.

The system is controlled by an RCA 716 CPU, which has 65536 bytes of
high-speed core and can handle as few as 14 and as many as 48 students,
depending upon system configuration. A description is given in an RCA
(1968) report.

2.1.4.4 Technomics 6700. This system has three major parts: the central

computer, the teaching consoles and DIALOG, the lesson-unit compiler.
DIALOG, the wost important part, allows the teacher and student to
converse with the system in natural English. The task of writing a
program has been reduced to a relatively smalliset of choices or decisions.
The CPU is a 16~bit machine with a core memory of 16000 words expandable
to twice that size. In the basic system, 30 coﬂsoles may be simultaneously
in use but with access to a large computer, the system may be expanded to
50 or 75 consoles. The console has a television-tube display on which
video pictures, line drawings and written text may be presented (Hickey,
1968). |

2.1.4.5 PIATO. The operating system for PLATO is based on a CDC 160k

and includes 20 teaching stations with video capability. The author may
project slides on a television screen via}an "electronic.book" and
superimbose writings or di#grams by means of an "electronic blackboard"
functidn, Student response is by teletype keyboard with user-defined

characters or special symbols appearing on the television screen at a

28

location predetermined by the author or programmer (Bitzer and Easley, 100%).
A special system for respouse anzlysis (Ezsley, 1907) provides general
facility for retrieval and review of records on a visuval display. The
author is able to review a‘trace of thne student's progress throush an
instructional sequence, obtaining summary statistics ot various levels of
detail, or even replay at a student console a complete interaction. In
this latter case he may also specify the relative speed that is required
compared to the original. The software to specify the logical structure
of an instructional sequence is written in an extended FORTRAN for the
PLATO compiler, CATO (Compiler for Autcmatic Teaching Operation).
Considerable flexibility is allowed the user familiar with the three
levels of language: CATO, FORTRAN and assembly. In 1970, a large

computer capable of controlling more than 4000 stations will be ordered

to reach the goal of 4096 stations in 1974, by which time it is expected
that the cost per student hour for terminal and CPU time will be less than
25 cents,

2.1.4.6 The Socratic System. For the "Socratic System" (Feurzeig, 1965),

a language called MENTOR was developed for authors to use in constructing
conQersational, tutorial dialogues. The author of materiais may, via
computer storage and logic, take the role of advisor, monitor, interviewver,
consultant, examiner or tutor. .Typically,'a situation is established in
which a proBleﬁ may be solved by the gfadual acquisition of infbrmatipn.
The student types enquiries of declarations selected from a }ist of
acceptable terms, and the machine identifies tbeée even whén misspelling
occurs and types an appropriate reply according to complex conditional
statements provided by the author. The system uses teletypes attached

to a modified PDP-1, MENTOR is written in LISP, and sections‘of instructionsl
programs otherwise coded in MENTOR may be written in LISP. The same systeu
is used with an on-line computational language, TELCOMP, for instruction

in schools.

29

2.1.4.7 PLANIT. The initial design started in January 1966; by June,
PLANIT (Feingold, 1967) was operational. It was written in JOVIAL
(Perstein, 1966) and used an IEM AN/FSQ-32V computer via an interactive
console under the SDC time-sharing system. The user (lesson designer

or student) communicates with the system via a keyboard device linked

by either telex or telephone to the computer. PLANIT comprises not only
the author language but also a program developed for time-shared use.

The system operates in four modes: lesson building, editing, execution
and calculation. The first two modes permit the author to construct and
edit lesson frames in various formats and store them in designated
sequences for later presentation to the student in the execution mode.
The calculation mode is particularly oriented to mathematical subject
matter and can be used as a calculation aid for the author (when building
the lesson) or the student (when performing the lesson). While the
student has access only to execution and calculation modes, the author
may use all four. PLANIT allows one lesson to all another, and any program
(or subroutine) written in JOVIAL can be added to the lesson and

executed at any time.

2.1.4.8 CAL (Irvine). The CAL (Cdmputer-Assisted Learning) system

(Tonge, 1968) at the University of California, Irvine, is implemented
on an IBM 360 model 50 under an Interactive Appliéation Supervisor
(Summers et al., 1967) which furnishes: the scheduling algorithm,
terminal control and file-handling capabilities for all subsystems,’
The supervisor provides standard editing fealures and conventions

for all subsystems, allowing backspgce and type over, underlining and'
so forth. The components of the CAL system include table driven
syntactic and semantic analysers, an assembler, a pseudo machine
(interpreter) for processing assembled student programs, and interface
routines for communicating with the student and course author. Two

of the more interesting basic files are the error file and the 'response log.

The error file contains a list of error messages as they occur during the
day, including the student context at the time of the error so that

authors and system programmers may analyse and correct error situations.

The response log contains the record of all student responses and appropriate
student context information, as requested by course authors for later
analysis.

2.1.4.9 The Leeds system. The Leeds system has been implemented on an

Elliott 903C computer, which has 8K words of main store, a paper tape
punch, a paper tape reader and an on-line teletype (Sleeman and Hartley,
1968). For each session, the processor, which controls the learning
process, has to be read into the machine through the paper tape reader
and at the beginning of éach different lessén the appropriate teaching
material has to be put into the remainder of the main store in a similar
manner. One important feature of the system is that, during instruction,
the student can have access to files which are stored in the computer
provided that he types the proper request on the teletype (Hartley and

" Sleeman, 1968)., Exactly which files are set up depend upon the nature

of the problem, but they are always referenced by function and include
such requests as FACTS, for information; MEANINGS, from which definitions,
symbols or formulae can be obtained; EXAMPLE or TEST, to provide practice
on the use of the meanings; CAILCULATE, for numerical capability; and HELP.
The Elliott 903C has now been replaced by a MODULAR-1.

2.1.4.10 ADEPT. The ADEPT (A Display Expedited Processing and Tutorial)
System was deve.oped experimentally for the IEM 360 model 40 and the

2250 display unit, model 1 (Engwold and Hughes, 1968a). It operates
under 0S5 360 and the machine used has 256K storage, 3 disk storage devices
and 4 magnetic tape units. The 2250 has an 8K buffer and a light-pen,
alphameric keyboard and a program function keyboard. All secondary

storage resides on disk. The system has three main parts:

31 ' 4 ‘ '

N

(i) a language containing control and text codes which operate in
one of either the author mode, the user mode or the programmer
mode, all of which are freely interchangeable;

(ii) an interpreter program that processes programmer, author and
user control codes and automatically switches the system from
one mode to another; and

(iii) routines that automatically terminate and reschedule ADEPT for
a restart later, transfer control to the operating system for
processing and execution of a new job (assembly, compilation,
simulation, etc.) and restart the ADEPT job when this job is
completéd.

For ease of transfer between machines, ADEPT was written in 37 FORTRAN IV
subroutines with only two assembly-language subroutines.

2.1.4.11 CG-1. CG-1 is a course generating system (Meadow et al., 1968)
which produces a course program as the result of a conversation carried on'.
in natural language. The generated programs are in PL/I Interacfivg
Dialect (PL/I ID) which makes use of a limited set of PL/I statenments,
several subroutines which perform instruction-related functions, and

some syntactic rules governing the writing of programs. This dialect may
be compiled and run on most IR System/360 comﬁuters. The system has the
following features and limitétions:

(i) little programming skill is requifed by course authors, but
‘those authors with programming skill may gnter PL/I statements
of their own into the generated instruction program;

(ii) ~only multiple-choice questions can be genefated;

(iii) an instructor may insert PL/I language statements to
analyse or process responses or process other data; and

(iv) the generated course allows three unrecognisable responses,
after which the student is automatically cut off from the
computer.

A second system, CG-2, is under development. Thig is an updated version

32

of C3-1 and enlarzes the number of possible answer types and correspcndéing
response analysis and allows more complex decision branching.

2.1.4.12 WSUCALI. The Veshington State University Computer-Assisted
Instruction system (Kerr et al., 1969) is implemcnted on an IBM 360

model 67 with 755 K bytes of core storage, an IBM 2314 disk storage

device and an IEM 2321 data cell. The operating system is Multiprogromming
with a TFixed number of Tasks (MFT) using the lHouston Automatic Spooling
Priority system (HASP). ‘The five partitions usually run are HASP, batch
processing, plotter, graphics and teleprocessing. WSUCAL uses a

package written for terminal interface that runs in the teleprocessing
partition. Other application programs ruﬁ in that partition and no time-
sharing is involved. The control program for WSUCAI includes:

(1) an instructional system, which may take either the form of
“successive frame presentation or review mode;

(ii) a recording system, which collects information on the sequence
of frames and total instruction time by student, total
voperation time and frequency of operation by terminal,
and frequency of each response éﬁd average reaction time by
frame number; and

] "~ (iii) . a management s&stem to génerate reports for instructors and.

: deécriptive system reports for fhose developing WSUCAi.
The éontrolvpr;gfam is written in FORTRAN IV and is as machine independent
as possiblg. o

2e1e 413 ZSEQEE- INFORM at Philco-Ford (1970a) is a magnetic tape
ofiented system implemented on a Philco-Ford Model 102 Processor and a
Model 173 Magnetic Core Memory of 32768 words. The flow of information
through the system and the many varied forms taken by the data is as
follows. Specially designed coding forms are used by the author in the

INFORM Author Language and contain his step-by-step teaching technigues

and curriculum material. A keypunch operator punches the information

33

into cards which are then recorded on magnetic tape and processed by the
INFORM Translater Program. The translater generates an intermediate
language and records it on magnetic tape. At the same time a "curriculum
edit" listing is printed. The author can look at this listing to check

the original information that he intended for his instructional material
and the Author Language tape may be stored fbr future use. The Interpreter
Program transmits the course information to the student vie an indivicdual
SAVI (Student Audio-Visual Interface) display screen. The student is

able to respond using a keyboard and light-pen.

The INFORM Control Instructions provide a variety of initiation and
update service functions. These instructions are used to prepare
curriculum files, copy curriculum programs from one magnetic tape on to
another and to add, delete and replace individual cards or entire
concepts during these operations.

One specific application of INFORM has been the Project GROW System
(Philco-Ford, 1970b) which was designed specifically for the Philadelphia
School District.

2.1.5 The need for NUTS.

One of the main reasons for designing another CAI system was that in
the autumn of 1968 there was no pre-packaged system available for
implementation on the IBM 360 model 67 at Newcastle, either from the
manufacturer or from any other installation using CAI. We wished to
combine as many of those attributes mentioned in 2.1.3 as possible in
one system. Considered of great importance smong these were

(i) the availability of an author language to ease the author's task
of entering his material into the computer yet at the same time
allowing him to provide all the student-course interactions of
the type already familiar in other systems;

(ii) ability to enter courses either from a terminal or from cards;

(iii) a computational capability to be available at all times to all

users; and

(iv)

a recovery from malfunction such that the author does nct
lose any course material he may have entered or the student

has to repeat as little of the dialogue as possible.

As for implementation, in an effort to design a machine independent

system, FORTRAN was considered essential. It is a universal language

and hence transfer of the system between machines would not require

extensive reprogramming; only alterations owing to a different operating

system would need to be made. Other reasons for its use were that

comnunicaivion of FORTRAN programs is not difficult, which would allow

amendments to be made by other people, and it is quick to write.for an

experienced programmer end easy to debug, which would give a small

elapsed time between the start of the projecﬁ and the first test version,

an important factor in this context.

It was not possible to include all the design considerations given

in 2.1.3 and those not realised were

(1)

(ii)

(iii)

re-entrant, shared code was not available for FORTRAN (or

' for assembler, even, at that time) in the operating systenm;
the necessity for providing anvoben-ended command structure
was not considered important as it was hoped to provide all

those facilities that would be needed, but, in any cése,

-' having chosen FORTRAN, addition of further comménds wvould

not cause any difficulty; and

a stand-alone system was designéd, not a subsystem able to

- comunicate with the opesrating system because a simple system

was required quickly to enable further research to be carried
out amd, in any event, it would be an easy matter to arrange
for the command language to include functions of the general

operating system by virtue of dynamic loading of these other facilities

It was in this frame of reference that NUTS was designed and implemented.

35

2.2 Michipgan Terminal System and its influences.

2.2.17 UMMPS and MIS : A general description of the operating system.

UMMPS (University of Michigan Multi-Programming System) is a
multiprogramming operating system for the IBM System /360 series of
computers. UMMPS executes jobs, which are initiated and controlled
from the operator's console. Each job runs in problem state and uses
supervisor calls for all its input and output operations.

A job program is the basic set of instructions which are executed
vwhen a UMMPS job is run., Job programs are core resident, along with the
UMMPS supervisor and subroutines. A re-entrant job program can be executed
at the same time by more than one job. When a joﬁ program is written, a
set of device types and a set of memory buffers of various.sizes are
specified. Corresponding actual devices and memory space are allocated
for any job initiated with that job program, and these are retained until
the termination of the job. By means of supervisor calls, jobs ﬁay
obtain and release additional devices and storage space during their
execution. A single device (e.g. a card reader, communications terminal,
or a disk module) is available for only one job at any given instant..

The versiontof UMMPS in Newcaétle uses the dynamic relocation
hardware peculiar to the 360 model 67 in order to provide a virtual memory
buffer space of 256 pages (one page = 4096 bytes) for each job. The
sﬁpervisor manages real core memory with a demand paging algorithm, usiﬂg
an IEM Drum for secondary storage.

| MTS (Michi,an Terminal System) is a re-entrant job program in
UMMPS. It provides the capability of loading, executing and controlling
programs from remote terminals and through a batch stream. Together with
UMMPS, MTS provides a simple but powerful time-shared computer system, whose
salient features are these (University of Michigan, 1§67).

(i)‘ Seyeral dozen commands are available to cause the running and

. monitoring of programs, the manipulation of line files, and other

communication with the system.

(ii) A system of information organised in units of lines (1 to 256
characters) and files (0 to many thousands of lines) is
provided for the storage of programs and data. A file may be
public or private, and a private file may be permanent or
temporary. These files reside on direct-access storage
devices.

(iii) When an MTS user specifies the origin or disposition of data,
he may give, interchangeably, the name of a file location or
a physical device. A logical device name or number is then
attached to it. It may refer, for example, to a system (public)
file, a new temporary private file, a card punch, or the
operator's console.

(iv) A program to dynamically load programs is an integral part of
MIS. It may be invoked by both commands and subroutine calls.

(v) External symbols, which have been referred to by a.set of loaded

. programs, but not defined, may be resolved by reference to a
private or a system library, which is a file containing object
programs in a special format. Facilities exist in MTS and the
Loader to pass over a library and selectively load only the

- required subfoutines (and the subroutines that they neéd,
etc.).

(vi) The MTS system makes available the IEM System /360 F-level

 assembler, the IRM FORTRAN IV G-level compiler, the IEM ALGOL
F-level compiler, the IBM PL/1 F-level compiler, WATFOR
(University of Waterloo FORTRAN load and go compiler), PIL
(Pittsburgh Interpretive Language), SNOBOL4+ (a string
manipulation language), and UMIST, a string processor based
on the TRAC text-processing language. These programs reside
in system files, and are executed in the same way as user

rrograms produced by these processors. Other powerful system

37

features, such as the IOH/360 input-output conversion
subroutines, macro libraries, plotting routines, etc.,
reside in the library and other system files.

2.2.2 The dependence of NUTS upon MNTS,

Although one of the main design considerations of NUTS was that it
should be as independent of MTS as possible, there are some areas in
which dependence upon the operating system was unavoidable. However,
in each case, very little, if any, re-programming would have to be
carried out if NUTS were to be implemented under a similar general-
purpose time-sharing system. Those areas are described in this section.
2.2.2.1 Execution. MTS treats NUTS as though it were just another
problem program. The object code is owned by the system'designer but
any registered NUTS user may request its use and he receives a complete
copy of the system in his virtual memory.

2+2.2.2 MIS command ggneration. Each user initiates NUTS by transferring

MTS control to his file called '"nuts" which at that time contains the
MIS commands to load and start NUTS. Depending upon which command he
then requests, it may cause the command language processor to write
appropriate MTS commands in the next available line in "nuts", On

the completion of the command language processor's scan, NUTS

execution is interrupted and MTS control passes to the next available
line in file '"nuts', which should contain the corresponding MTS commands
to the user!s NUTS request. Less than half of the 17 NUTS commands
require NMIS command generation. The commands which are produced concern
the creation and copying of files and restarting with a different file
assigned to a particular FORTRAN logical device number.

2.2.2.3 MTS supervisor calls. There exists two assembly language subroutines,

each of which are essentially just a supervisor call. The first one is used
to measure the elapsed time of students' responses and the total session

time whilst the second indicates whether the user is currently using NUTS

W
o5}

on terminal or in batch. This is imwortant as certain cominands are only
available from a terminal and within the lanpuare processcrs proupting
does not occur in batch,

2.2.2.4%4 Use of permitted Files. TS allows one user to read the files

of a second user provided the second user has permitted him access.
This facility is used in the situvation that after an author has checlked
out a lesson in a course he releases that lesson for general use, or,
in other words, he permits its use. From that point on, a student may
use that lesson, but, of course, only whilst the author keeps it
released.

2.2.2.5 Privilefzed use. If a user in MTS is afforded priviledged status

then he may look at other veople's files without their consent. Thus,
every author is given this status as from time to time he may wish to
observe how some of the students are progressing through one of his
courses. Ee does this by looking into their response file for that
course. -In another instance, authors may wish to look in the KUTS
student index and lesson index to'see which students are currently
using NUTS and which lessons are available. These files are owmed by
the system designer but are not permitted by him as they are updated

periodically and permitted files may not be written into.

39

2.3 A glossary of terms for NUTS.

author a user vwho is able to create and build pieces of instructional
material, extensively check them out before releasing them
for general use, then monitor the performance of the
subject using this material.

author this is used by authors only, to write courses of

language ihstructional material. It is especially designed for
this purpose and so includes source statements which specify
material to be displayed and acceptable student resyonses,
access past student performance information, load and
unload return address stacks, etc. The author language
processor analyses the source statements and translates
them into intermediate code for future calling via a
controller. If errors are detected, appropriate
diagnostic error messages are produced.

calculating this is used by authors and studeﬁts alike during a NUTS

language session to write programs for applications that involve
mathematical computations and other manipulation of
numerical data. The calculating language processor analyses
the source statements and translates them into intermediate_
code for future calling via a controller. If errors are
detected, appropriate diagnostic error messages are

produced.

command this is the principal medium .f communication between NULS
language and the various users of the system. The author may

employ the facilities of the command language to construct,
check out and release his lessons, to monitor his own and
his students! response files, and to use the calculation
facilities. The student is able to use released courses

and invoke the calculation aids.

course

lesson

PIL

program

4o

the name given to a collection of from one to ten lessons
which will normally be subject interdependent with one
another and tozether form a completely self-contained
study. The actual name of a course is from one to five
upper case letters.

examples : [IATHES, HIST., invalid : CHEM2, PHYSICS,

the name given to a piece of instructional material. The
author prepared this by coding stétements in the author
language. The name of a lesson may be from one to five
upper case letters followed by a digit. The letter part
of the name must be identified to the name of the course
of which the lesson is to be a part. Lesson @ of a course,
however, is of special interest. It must contain the
beginning of a course and, for that reason, must be the
first lesson of a course to be created and the last

lesson of a course to be destroyed.

examples : MATHSZ2, PL1. invalid : MATHS, PHYSICS, FL12.
The Pittsburgh Interpretive Language is a remote terminal
language designed to provide the user with much assistance
through the use of terminal diagnostics, user interaction
with the machine and associated error recovery procedures.
It is available to users during a NUTS session when they |
ﬁay wish to employ a facility for numerical and string
nauipulation (Flanigan, 1968).

a set of statements from the calculating language which
the user writes to carry out a mathematical computation
for him during a NUTS session. The name of a program

may be from one to six upper case letters.

examples : CUBICS, SQ. invalid : QUARTIC, ORDERZ2, .

b1

response file for every course in which he takes part, a student is
(student) assigned a response file. In this is stored his progress
through the course, that is, the specific route he has
taken, the responses he has made and whether they were
expected or unanticipated, and how long he took over
each response. The information is available to the author
to decide any future branching in the course. Also
contained in the response {ile is the restart address
(and other allied information) from where the student
recommenceéafter a voluntary or enforced interruption of
the course. The name of a student reSponse.file is the
associated course name followed by the characters “#g".
examples : MATHSHZ, HISTAS. invalid : MATHS#Z2, HISTY.
response file for checkout purposes, the author may use up to ten different
(author) response files per course. When he checks out a course, he
is given the option of which response file to use. If he
chooses one which has already been used he then has the
option to recormence from tﬁé stored restart address,
or specify from where in the course he wishes tb proceed.
The name of an author response file is the associated
" course name followed by the 'character ngEn then a‘digit.
.‘é:;amp]:es ¢ MATHSHD, HISTHS. invalid : MATHSE23, CUBICSH3.
segment . each lesson in a course is divided into seguents of
instruction material. Thesc usually qompriée tre smallest
piece of material, the subject content of which embraces
one specifi; concept. The start of a segment, therefore,
is intended to be used as a possible restart point in a
course. Whenever a segment start is encountered during a
course, this address is entered into the response file

along with other such information as the state of all the

student

userid

L2

variables and stacks, all of which is necessary to
represent the current state of the student's coursc.
There may be up to 99 segments in any lesson of a course.
Their name is the letter "SY followed by an unsigned
integer from 1 to 09.

example : S2, S73. invalid : S123, Sg.

a user who is the subject of the instructional material
(at certain times one author may be acting as a student
to another author). Unlike the author, he has no
freedom to move around the course at will, unless the
author gives him the cption of doing so. However, he
has available to him certain calculation aids and the
housekeening associated with them.

every student who will use any of the available cources
must first be registered. This entails entering his
userid (user identification), which is also his MTS

userid, in a NUTS catalogue of students.

1;3

2.4 Description of files used in NUTS.

Despite the fact that all files reside on disk, a direct access
storage device, some are used in a sequential manner. However, the
best classification of files is with respect to ownership.

2.ks1 Files owned by the designer.

The system designer owns all the system files. These comprise the
object modules, the student index and the lesson index. He is not a user
of the system but acts in the capacity of manager. The object modules
are contained in sequential files and are permitted for general use. The
student index contains an index of the MTS userid of all students and
authors joined to NUTS. It is updated by the manager by hand and searched
whenever an author issues a request to view the response file of one of
his students so that the system first ascertains whether the student is
in fact joined to NUTS. The lesson index contains an index of all the
lessons, together with their author, currently released. It is updated
automatically whenever an author releases a lesson and whenever the author
either restricts further use of the lesson or destroys it altogether. The
index is searched whenever a student issues.a request to use a course so
thaf the system can first find out if the appropriate lesson is available
) and then, if it is, determine the unique name of the file which is to be
used. | | | |

2.4,2 Files essential to all users.

When the user is joined to NUTS, the ménager creates and initialises
two files for him. As mentioned in 2.2.2.2, every user owns an MTS command
generation file. It is initially created with three lines only and every
time a user wishes to invoke NUTS he transfers control to the first three
lines which load and start the system. Any subsequent command he requests
may generate an MTS command but these are written sequentially in the
command generation file commencing at line 4. The other file is the user's

file catalogue. Nearly every NUTS command operates on one type of file or

another. Also, some commands arc only available to authors. Conscquently,
every user is given a file catalogue which stores such information as
whether the owner is an author or a student, what files he possesses,

what the limits are on the number of files of each type he may possess

at one time and how much time he has used in NUTS, Whenever the user

needs access to a file, his catalogue is searched. For case of storing
file names, a unigque numeric code is used. This is based on mapping the
letters of the alphabet into the numbersq to 26 and then converting any
sequence of letters as though it were a base 27 number system, neglecting &

2.4.3 Files exclusive to authors.

Only authors may own lesson files. This file contains instructional
material which the author has generated using author language statements.
Both the source statements and the corresponding intermediate code are
stored in this file so that it is the same file that is used firstly by
the author in the development stage and then, after release, by the student
in the instructional stage. Its organisation is as follows. As the author
enters his lesson, each of his source statements is given a line number.
The lesson file has a line directory to deﬁote whether or not any line out
of the total possible is contained in the lesson. Source lines are stored
Awith their length preceding them. The placement of a source liﬁe in the
lesson filé i; given by a convenient algorithm which utiliées tﬁe direct
access capability availéble. For convenience at translation time, the
currently 1arges¥ line number and thgiline‘number of the END source
statement are stored. The intermediate code is stored sequentially in
Biocks of ten lines and a counter keeps note of the number of such blocks
produced. Also stored aie the addresses in the intermediate code corresponding
to the start of each segment used.

2.4.4 Files owned by any user.

Program files, a PIL statement file and response files may be owned

by authors and students. Using the calculating language, authors and

l|.5

students may construct and store programs for their own use at any iine.
The organisatior of program files is almost identical to that of lesson
files. The only differences are the size of the line directory since the
range of possible line numbers is smeller and the absence of a segment
start address directory since programs are not divided into segments.

PIL statements written during one session with PIL are stored in the PIL
statement file for use in subsequent PIL sessions. This file may not be
destroyed by a user., It is created when the user is joined to the system
and, of course, may never be used if not desired. A response file stores
a complete record of a user's interaction with a course. Students create
a response file implicitly whenever they commence a course and may only
have this one response file for that particular course. Authors,

however, because they need to check out the constituent lessons within a
course before release, are gi&en the option to create up to ten response
files per course. Within the response file is kept such information as the
exact route through a course, the responses given to each question
attempted and the time taken for the response. This information is stored
for the author's benefit as he may base his strategy for course sequence
on it. The total time to date for the course and that of the last

-session is also kept.

46

2.5 The command lauguvage : design and implementation.

2.5.17 Introduction.

The command language can be used in two modes called conversational
and non~conversational, In conversational mode, the user remains on-
line to NWUTS, engaging in a dialogue with it. In non-conversatiorzl node,
the command language serves as the job control language for operations that
do not reqguire a dialogue with the user, that is, operation submitted to
the system for execution without user-monitoring.

2.5.2 The choice of commands.

The rationale for deciding which commands should be available to
NUTS users was as follows,
2.5.2.1 Processors. Commands were needed fo invoke each of the four processor:.
available within NUTS., Consequently, choice of command in this case is
equivalent to choosing that particular processor. The fundamental processcr
in a CAI system is that for the author language. Hence, the BUILD comnand
vas designed to call upon the author language translater. In order to
give students a simple calculation facility which they could use at any
time within NUTS - even during a course - a simple programming language
vas included. This enabled studeﬁts to develop and test programs, store
them away, then return to them at some later stage. The CAIC command places
the calculating language translater at their disposal. At a later point
in time in the develoovment of NUTS facilities, it was thought that '
ﬁerhaps a laﬂguage vhich students may have learned before ever using IUTS,
a language whi h would be available &t any fime in MTS, should be availzble
| to them during a NUTS session. The 1anguage that fitted these reguirenments
vas PIL (Flanigan, 1568), the Pittsburgh Interpretive language. The
command to request PIL is simply PIL. In order to provide a simple
desk calculating device, a desk machine, activated by the command DESK,
was included. This, of course, has now been super’eded_by the direct

mode facilities of PIL.

274

2.5.2.2 Execution. Having developed lessons and programs, users need
commands to execute these. To allow authors to check out their lessons,
and students to enter into courses, there is the COURSE command. The

CALC command, which has alfeady been mentioned, invokes the controller
after a successful translation. However, for execution of correct programs
without re-translation, there is the PROG command.

2.5.2.3 General file handling. So that users are able to update files

from time to time, three commands were designed for this purpose. Firstly,
there is the INSERT command, which allows users to insert, replace or
delete lines in a file by referring to the actual line number. Secondly,
there is the COPY command, which allows the wholesale copying of one file
into another, instead of re-typing.. Finally, the RID command destroys any

unwanted file.

2.5.2.4 Housekeeping. Two commands were devisedAto aid the user in his
housekeeping activities. The CAT command effectively gives a listing of
the file catalogue. In the case of an author, he is told of all the files
he possesses, that is, lessons, programs and response files, but the
student only finds out which programs he owns, for his response files

are not availablé for his inspectioh and, 6f course, he does not own any
lessons. Having found out which lesson and program files he owns, the
user may obtain a listing, either in pért or in full, by using the LIST
command.

2.5.2.5 Author's file handling. By virtue of his priviledge of owning

lesson files, the author has available to him the following commands. To
obtain a list of all currently released lessons and their owners, there is
the LESSON command. To release a lesson of his own after careful check-
out, there is the REL command. Then, quite naturally, there is the
opposité command, RES, which restricts use of a lesson until the author has
been abie to modify and re-release it. The response file contains much

information which the author may wish to see from time to time. Firstly,

vhen he is checking out his lesson, he uses the RFILE command to give him
information about one ol his own response files. Then, afler releasing

the lesson and when the students are using the course, he may use the SFILE
command to check the students' response files. This can be done while
students are engaged on the course.

2.5.2.6 NUTS initiation and termination. To invoke the system, the NTS

command, "ZSOURCE NUTSY, is used. When a session is over, QUIT returns
control to MTS.

2.5.3 Command mode.

In reply to the initiating MTS command and in general when it is
ready to accept the next command, NUTS signifies that the user is in
comnand mode by prompting with an asterisk, then unlocking the keyboard
after a carriage return-line feed. In conversational mode, the user's
contribution to the dialogue consists of the commands and source language -
' statements,'if any, that he enters during the execution of his task, ané
the replies he makes to the messages issued by the system. The system's
contribution consists of the messages it issues to the user, the responses
it makes to his commands, and the requests for the next command. During
execution of a non-conversational task, there is no communication between
the user and the system. The system analyses eéch command of the command
sequénce and, if it is valid, execufes it. If the command is invalid, the

system ignores it and continues until a valid command is read.

2,5.& General description of the command language processor.

Everj command entered by the user is executed interpretively. The
command is first read into a buffer and all embedded blanks removed. The
leading string of alphabetic characters is then converted to a unique
numerical value using the base 27 number system technique. This value is
compared with the table of commands. As the number of commands is fixed
and small, hash table techniques were not employed. Simple table lookup
provides a quick enough check. If a match is not found, an error is

assumed and the command prompt re-appears. If a command is recognised,

49

further syntax checking is carried out on its operands. Except for QUIT,
if a valid sequence is present, the command is executed by means of an
appropriate subroutine call, but in some cases this follows the writing
of the necessary MIS commands in the MTS command generation file. When
QUIT is recognised, the session time and total time to date are printed
and stored, after which time control returns to MTS.

2.5.5 Command implementation.

Nearly half the NUTS commands use the MTS command generation
technique. This was necessary for two main reasons. Firstly, FORTRAN
execution under MTS requires that files needed during the run be attached
to the appropriate logical device number at load time or when execution is
restarted after a pause in execution. As the particular file is oniy
determined from analysis of the NUTS command, allocation of the file
must therefore take place together with a restart. Secondly, some commends
require that files be created. This may only be carried out in MTS command
mode so that a pause in execution of NUTS is required. To satisfy these
two conditions, NUTS execution is temporarily stopped using a FORTRAN PAUSE
statement, but prior to this the necessary MTS commands have been written
into the command generation file. Control passes to MTS with the commands
coming from the appropriate lines in this file, The last command is always
a restart so that NUTS execution recommences.

The following table contains a list of all the NUTS commands., For
each command, information is given about its purpose, when it is available
and to whom, its modes of use and which HTS commands are generated.

More detailed discussion of implementation follows in the rest of this

section.

L

uosssT
a3etadoadde pue aTTI
asuodsax U3 TM IYVISHH °2
Aresgeodu JT
‘oTtsy esuodsex FIVHHD °L

£T90exd 140D °2
mou JT ‘STTF HIVEYD °L

9T1I

weadoad Y3 M JUVISTH °2
Mmasu JT.

toTTr wealoxad FLVINH °L

a1ty
UOSSAT U3TH INVISEE °2
MaU JT

$oTTI uosSSST FIVEYD "L

CLLVIINTD SANVWWOD SIN

jurod jxejsex

3y} pue 97Ty 2suodsa
YoTym asooyd Leu Joune
JF0 3¥ST oY aa8ym

WOII g1ae}SeI juUepnys

J9Uy3 9801 saay3 TR I0
s9T1] ssuodssa g0 sweadoad

‘suossoT g4senbax Lew Joynmw
suno ay sumrxdoxd yYoTUM

ATuo pTo3} ST juUspPNlS

£TUO0 uoT3EISURI}

uotjet

~-SUeI] USY) SUOTIIEOTITpOoWm
UOT}eTSURI] USY] Squsl
-92€]s Jo Axjus pajduoad
! £Tuo uorjersueay
uotjet

-SUeJ] UsY) SUOTFROTITPOW
UOTFETSUBI] USY3 SjuUsUW
-33e3s Jo Axjue pajzdmoxd

IS0 0 SHAOW

.2

*L

2

L

2
L
¢
2

‘L

qojeq pue Teutuwrag
‘gyiuopngs pue sIoyine

ATuo TeuTwrsy
‘gquopnys pue sxoyjne
qo3eq pue TeuTWIS}

‘gquopnys pue sIoyjine

yojeq pue TeuTwmadl
‘sjuspngs pue sIoyzne

[o3eq pue TeuUTWIS]}
‘gjuopnys pus sIoyjine

Uojeq pue

TeuTwIdag ‘ATuo sxoyane -

TTIVIIVAV NIHM

J03eTnoTeo
3eop POTTOIFUOD
eouanbas ayy oxoAuTt 0%

98In0d
B ut 3xed oxE} 0%

oTLy
J9yjoue O3uT ITTJ
Burystxe we £doo 0g

sogsagsod
oY 9STTI YOTUM
J9sn Y3 WIOJUT 03

Josgadoad

o8enBuer Surjernored
9Y3 9oaur 03

J93vTsuex; aSenluer
J0UINR 9Y3 93OAUT 03

Js0ddnd

ST

ISYNOD

X400

IvVD

oIV

a1Ing

YN ANVIHIWOD

51

91Ty osuodgoa

OUT U3ITM qyyLguy L

8113

wexdoxd Y3 IM TYVISHI °L

STTI U3t TYVISHY °L

9T UITM TYVIST °2
mau YT *oTI¥ AIVEHD °*L

CLLVIANID SANVWHOD ST

potIToads

soury Sutystutrl

pue Jurire3s yjoq
pus ay3 o3

ouTT SuTjaele B WOIF
81T 930Tdwoo ayy

POPNTOUT JOquUmU
SuTT Y3 ™ Lxgue
Lxzus pogdwoxd

451 J0 SIION .

°¢

2
*L

°e
°L

Yo3eq pPuR TBUTWISY
tLTuo saouyjnm

LIuo Teutwaay
¢L1uo sxoygne

LTuo TeuTwIO]
tLTuc sxoyjne

yoleq pue TeUTWILY
¢‘sauspuis pue saoyzne
Yojeq pue TeUTWISY

¢sjuspngs pue saoyzne

Yo3eq pue TeUTuIas
$gquapnys pue saoyznw

yojeq pue TeUTWLISY
¢gquepnys pue saoyzne

Yo3eq pue

Teutwxay ‘LTuo saoyzne

Yojeq pue TeUIWIS]
¢gjuspnys pur gIoyzne

TIGVIIVAV NIHM.

g9T1F ssuodsax
STY JO duo Jo Jurlsrl
v Joyjne dyy oATd 03

uog9sSaT ®© JO
asn a9y 30TJI3S9I 03

ssn Texausd o3
uosgdT © 9989TOX 0%

uoTS99s
SLON ® 932uTWIS] O3

wex3oad pajersueIs
L£Ingsgooons

e a3noaxe 03-

J930xdI93UT
TId 943 O30Aut 03

91Ty © JO JurysIT
3U9IIMO B UTE}qO O3

saoyne JIT9Y3}
pUQ SUOSSST POSesTIX
JO 3STT ® uTe3qo 0%

UOT}BTSURIF~9I

- 3INOYFTM SITTJ UOSSST
J0 wexdoxd 3Tpe 03

ASORING.

CPBIe|

II0d

bo¥d

TId

LSTT
NOSSTI

LHASNI

VN ANVIWHOD

.

5e

87T esuodsax

STY pue andoreied

STHF s,3udpnys
973 UITM T¥VLISEY L

CGILVEINID SMIVINOD SIH

SSTTF
ST JO Aue KLoxjsep
Lew Jougne ue °*2
streaSoad
LTuo Loxasasp
Leuw quspnys e °L

gs0 0 SHAON

Yojeq pue TRUTUISG
¢ LTuo sxoyzne

LTuo TeuTWIS]
‘gyuspnys pue saoygjine

TIEVITIVAV NIHM

. SaTT¥

sguodged ;S3UIPNLS STY
Jo suo JOo BuTrysTT ®
Joyjne oYy SAT3I 03

o113 ® Loxzsep 03

IS0qdNd

TILIS

JWVN ANVHIWOD

2.505.7 BUILD. The first operand, the lesson name, is converted to a
unigue numerical value. The digit part of the name is the next character
after the string of letters. A table lookup takes place in the author's
file catalogue to see whether the lesson exists, whether lesson f exists
and whether the lesson is currently released or not. For protection
purposes, two constraints are made. Firstly, a released lesson may not

be re-translated. It must be withdrawn from general use before the

author may update it. Secondly, lesson # must be the first lesson

created in a course. This is because lesson @ must contain the starting
point of that cause. After the restart, a subroutine transfers control

to the author language translater, passing across the mode of use, the
starting line number‘and the increment as parameters.

2.5.5.2 CAIC. The first operand expected is the program name, for which
a unique numerical code is derived. A table lookup into the user's file
catalogue asceftains whether the program already exists. A subroutine
similar to that for BUILD is called after the restart.

2.5.5.3 CAT. After the mode of use is analysed, a subroutine is called
which searches the appropriate part of the user's file catalogue and
decodes each entry from the unique numerical code back to the actual file
‘name,

2.5.5.4 COPY. The expected opéfands are two file names, either lessons

or programs, éeparated by a comma. A iesson name is easily reéognisable

by its trailing digit. Table lookup on both files follows to see whether
they exist.and what type of file they are. As well as the obvious restriction
that the first file must already exist, two furthervconstraints are imposed
for protection purposes. Firstly, both files must be of the same type.
This is for the simple feason that certain statements are available in

one language but not in the other. Secondly, as mentioned before, if a
new lesson must be created, then lesson # of that course must already exist.

No subroutine is needed, only the MIS command to give an exact copy. However,

54

only the source statements are copied, so that retranslation is essential
before execution of the new copy.
2.5.5.5 COURSE. The command language interpreter first recognises the
course name.,

For an author, table lookup occurs to see whether lesson ¢ exists,
that is, whether the author is going to run one of his own courses. If
he is not, he is treated like a student. The author is thea asked to
indicate which response file he wants to use. A single digit is sufficient
to identify it. Table lookup determines whether or not it exists. For a
new response file, that part of the file corresponding to lesson ¢ is
initialised by a subroutine call. This entails reading from lesson # the
number of real and integer variables needed and setting up storage for
them. Also, the return address stacks corresponding to lesson d are
initialised, and the course restart address is set to the beginning of lesson
6. The course restart address is then read from the response file.and the
author is given the choice of continuing from that segment or specifying
a different segment or lesson even. In any event, the required segment
is determined but in the latter case a search is made in the specified
lesson's segment directory to see whether the segment does exist. The
actual address in the intermediate code can then be read from the lesson's
segment directory. This method allows for considerable changes to be made
to a lesson, but so long as the segment directory is up to date, the correct
address in the intermediate code is found. A subroutine call invokes the
course controller.

A student is not givén the choices afforded an author. Once it has
been confirmed that the course is available by a search through the
lesson directory, a table lookup determines if the response file already
exists, If it does not, initialisation takes place the same as for an
author but in any case the course restart address is read from the response

file, the actual intermediate code address determined and the course controller

then called.

55

2.5.5.6 Du3K. This cormaznd hes no operands. A subroutine call places the
seguerice controiled desk machine at the user's dicposal.

2.5.5.7 INSERT. The first operand expected is a file name, either a
progran or a lesson, The difference is easily distinguishable by the
presence of a digit to denote the lesson number. A table lookup takes
place to determine such facts as whether the file exists and, if a
lesson, whether it has been released. Upon the restart, a subroutine
call causes execution of the command. The mode of use, starting line

and increment, and a line number limit, which, in effect, just indicates
whether a lesson or a program is being updéted, are pvassed as paraneters.
There are two modes of use of the command. One allows prompted entry of
statements whereas the other requires specification of the line number by
the user each time.

For the first mode of use, the user is prompted by a line number
each time. Tﬁe length of the input line is calculated using the right-
most non-blank character.- Using a simple relationship, fhe MTS line
number corresponding to the NUTS file line number is evaluated, and, using
a direct access output statement, the line is written to disk. Knowing
thé length conserves disk &pace. The line directory is also updated.

"A further prompt is thenlissued. A blank input line indicates command
termination. If the first chafacter is "%", then the user wishes to over-
ridé the linéAnﬁmber and his line contains a line number followed byAthe
contents but separated by a comma., This kind of input line is treated as
though it were of the second mode, but upon completion of the output to
disk, further line number prompting occurs. | |

In the second mode of use, a prompt occurs but without line number.
The user enters his soﬁrce line consisting of line number and contents,
separated by a comma. The digits he entered at the beginning of the
line are converted to an unsigned integer and the separator is tested.

If the line number is in the correct range, the length of the actual

input line is calculated. This line is then output to disk and a further
prompt occurs. As before, a blank input line indicates command termination.
It should be noted that the second mode rmust be used to delete lines.

Whenever a previously successfully translated program or lesson is
updated, the intermediate code beconmes inaccessible so that retranslation
is necessary befofe use. This guards against possible confusion which might
arise if the source code in a file did not correspond to the intermediate
code.

In non-conversational mode, the user receiveé a printed copy of
each of his input lines so that he may check them afterwards.
2.5.5.8 1IFSSON. The command interpreter calls a subroutine which
searches the NUTS lesson index file and prints out those lessons and
their authors which appear.
2.5.5.9 LIST. The first operand expected is either a lesson name or &
program name. Table lookup of the user's file cétalogue occurs to determine
whefher the file exists. ‘The mode of use is determined by a search for a
blank, for all the file, an unsigned integer within parentheses, for the
rest of the file commencing at that line ngmber, or two unsigned integers
separated by a comma and enclosed within parentheses, for that part of
fhe file between the given line numbers. The line numbers are ghecked for
magnitude. ‘ |

Y sﬁbroutine is éalled when NUTS restarts totlist those lines

indicated. To save unnecessary searchiné of the line directory if the
user has specified a finishing line number greater than the last line
number in the file, the current last line number value is read from the
file. The storage of the length of the source line gaves timg on outéut
to a terminal, which is very slow. |
2.5.5.10 PIL. This command has no operand. When the command interpreter
recognises it, a subroutine is called. In this, a branch is made to the
PIL interpreter but first a dummy input stream is used. This loads into

the PIL workspace the statements that have been stored in the user's PIL.

file since his last usage of PIL. When the user indicates his desire to
return to command mode, a dummy output stream first issues the requests to
enpty the PIL file, then copy the contents of the current PIL workspace
into the file. After this has been accomplished, the return request is
properly furnished and control returns from the PIL interpreter to NUTS,
2.5.5.11 PROG. The only operand for this command is the program name.
A table lookup occurs in the usual way to see whether the program exists.
Then, a subroutine call invokes the calculating language controller.
2.5.5.12 QUIT. This command has no operand. When it has been recognised,
& supervisor call within an assembly language subroutine is made to
determine the time. From this and the result of a similar call when NUTS
was initiated, it is possible to calculate fhe length of the session.

The total time to date is then read from the user's file catalogue, and
the updated total and session time are written back to it. In addition,
a copy is written out to the user, after which control returns to NTS.
2.5.5.13 REL. The operand is a lesson file. A table lookup on the
author's catalogue file occurs to find out if it exists. On top of

this, a further lookup occurs on the corresponding lesson @ to determine
if it has been rgleased. Lesson.ﬁ'must be the first lesson released in
a course as it contains the starting point for that course. If the
author is trying to release lesson f, a table lookup occurs on the
lesson index file. This is to find out if the course name is unique.

To avoid possible confusion, authors are not allowed to have courses

of the same nan:. The solution is for ‘the second author to rename his
course by copying the lessons into other lessons with a different name.
All these conditions being satisfied, the course name, lesson number and
author's userid are entered in the lesson index.

2.5.5.1% RES. As in the REL command, the interpreter expects a lesson
file. A table lookup on the authors file catalogue determines whether
the lesson exists. If it does, a further lookup in the lesson index

determines the state of the lesson at that time. If the lesson is released,

58

a bit in the table entry is set to indicate the restricted condition. This
was done in preference to deletion of the entry as it was expected that
restricted lessons would be released later.

2.5.5.15 RFILE. This command has one operand, a response file name,
which the interpreter easily recognises by the character "#" and a digit
after a course name. A table lookup then determines whether the response
file exists. The contents of the response file are displaysd in the
following way. The first line gives the current position in terms of
lesson number and segment number, both of which are read from the.same
line of the response file. The route through the course is then read

into a buffer and from this information one line is generated in sequence
for each question attempted. The route is stored as a sequence of numbers,
the values of which are the lesson number multiplied by 100 with the .
question number added. As up tp 99 duestions per lesson are allowed, the
mapping is 1=1. The information corresponding to each attempt is stored
in direct access fashion, the MTS line number consisting of the route

- number, defined above, as the integer part, and the attempt number of the
question, which allows for up to 999 entries, as the fraction part.
Working through the route buffer in sequence and counting which attempt
number per question is required indicates thch liﬁe of the response file
is to be accessed. This line of information is read in amithe following
format is given to the author. He receives the lesson number, question
number, a code for either anticipated answer, unanticipatéd answer or not
aswered, truth values for the response elemen's if an anticip;ted answer,
fime taken, and, finally, the actual reply if unanticipated. He receives
one such line for every question attempt. Finally, the total time to date
and that for the last session with the course are given.

2.5.5.16 RID. This command expects a file name as its operand. An
aﬁfhor may destroy a lesson, program or response file whereas a student

may only get rid of a program. A table lookup takes place to determine

if the file exists. For an existing program or response file all that

59

happens is that the appropriate entry in the user's file catalogue is
deleted. A further constraint, however, is placed on a lesson if that
lesson is lesson P. The table lookup also indicates whether any other
lessons exist. If one does, then lesson @ is not destroyed, for it must
be the last lesson in a course to be destroyed as it contains the

course's starting point. If the lesson can be destroyed, then a table
lookup occurs in the lesson index file to see if an entry appears there.
If one does, it is deleted. Once the table entries have been removed, thc
file is removed from MTS.

2.5.5.17 SFILE. This command has a course name as the first operand. Table
lookup for lesson ¢ occurs to determine whether the author owns such a
course. If he does, the command interpreter then determines the userid
of the student whose response file is to be listed. Table lookup in the
student index then shows if that particular student has been joined to
NUT8; To determine whether the student has yet commenced the course,

his file catalogue is searched to see if the particular response file

exists. A subroutine call similar to that for RFILE is then made.

2.0 The author lancuace : design and implementation.

2.6.1 Previous author languages : the need to create another.

2.6.7.17 Author language attributes. An author is unlikely to have

programming skills or an assistant to code instructions for a computer.

In fact, the author in a CAI system should be able to write in his

own language with the minimum of restrictions the instructional material
he plans to use. He will also wish to employ the computer logic to
provide individualised instruction, and it should be easy for him to do so
using instructional strategies with which he is comfortable.

An essential characteristic 6f an author language is that it be
user oriented without denying the author access to any of the system
capabilities. For example, the novice should be able to prepare material
for instruction after only a short time studying the langﬁage, and the
experienced author should be able to use the full capacity of the computer
to construct as complex a procedure as he wishes.

.Zinn (1967) suggests that CAI systemﬁshould provide author input
facility by author languages at three levels. In the first, the author
only enters his text and rules for evaluating answers in some standard
vattern of instruction, e.g. a PLATO tutorial teaching logic. No
knowledge of computers is required. The second level allows the author
to specif& his particular pattern of instruction in a relatively simplé
language'that can be learnt in a short time. At the third level, an
author having some training in computer programming extends the author
language by writihg out his own routines and sﬁrategies, émploying the
full capability of the compufer system by perhaps using machine code.

A comprehensive list of important constituents of an author language
is given by Adams (1969). For variables, he suggests several dozen arith-
metic variables, including floating point, at least 100 logicals,
probably more than 10 alphameric strings each of about 100 characters,
data structures having programmer specified format and lists. Control

statements might include : conditional, iteration, transfer, subroutine,

61

storage allocation, restart point, tine dependent transfer and log entry.

A macro processor within the author language and library routines written

in other languages which can be used in the author language would be desirable.
Important processing operations on natural language strings include :
definition or detection of substrings, transformational processing and

tests on numbers or strings which might include character match, numerical
equality, numerical range match, degree of match, pattern tessts and

general user defined tests.

2.6.1.2 Comparison of author lanpuases. About 30 different languages and

dialects have been developed especially for programming conversational
instruction. This number is changing so rapidly and up-to-date
documentation is so sparse that a complete appraisal of the many languages
is impossible. Any comparisons which are made between languages naturally
become invalidated quite rapidly by subsequent revisions of the languages.
When evaluating the merits of author languages, Frye (1968) suggests

that the aspects to be considered should include : user orientation,
lesson handling, record handling, conditional branching, answer matching
service routines, calculation provisions and communication devices. He
points out the two methods most often used when comparing languages. These
are to categorise their capabilities, noting the absence of certain features
and to code a sample instruction sequence in each competing language, .
noting some efficiency measure such as the number of lines of instructions
for each task. Among the pitfalls in these comparisons are :

(i) the language documents are not equclly current;

(ii) the categories on which the comparisons were based were taken

from one of the languages, introducing a bias; and
(iii) the test cases were selected from those partiéulquy suited
to one of the languages. '
A comparison of two standard languages for authors with two low-cost .

languages, one an author language, the other an extended scientific language

62

is given by Zinn (1968).

2.6.1.3 Types of author language. Zinn (1968, 1970) has sugested

classes into which author languages may be grouved, depending on such
factors as modes of use, capabilities and development. Here, however,

we discuss a classification into four types :

TYPE 1 -~ presentation of successive frames,

TYPE 2 - conversation within a limited context,

TYPE 3 =~ ©presentation of a curriculum file by a standard
procedure, and

TYPE 4 =~ interactive problem-solving languages.

TYPE 1 has evolved because the most common applicaﬁibn of computers
for instruction appears to be an extension of programmed instruction.
Most languages serve this function and are characterised by their
convenience for displaying text, acceptance and classification of
relatively short strings of texts in the student's response, automatic
recording of performance data and implicit branching determined by the
categorisation of an answer or the contents of a counter which is part
of the response history. |

Converéation within‘g limited context, TYPE 2, is offered by only
a small propqrtion of cobputerebased instruction programs of the tutorial
variety. These encodrage additional initiative on.the part of the student
and pfovide a meaningfui reply whatever he may do. Typically, the author
must provide in fhe instructional program a set of conditional statements
which, for any stage of discussion, make the cémputer reply dependent not
6hly on the current response, but also on the historj of the conversation.

Some languages are guitable for writing strategies whichican be
applied to various files of content, TYPE 3, The author édopts a logic
which can be defined in a procedure statement., The programming of the
logic may have been done by the author or by a programmer experienced in

using the system. The author applies this and other strategies to

curriculum (or data) files of indefinite size.

Languages for on-line prograumming and debugging of simple problems,
and which also have some string processing capability, TYPE 4, can scrve
an author as well or better than so-called author langnages. However,
interactive programming on a general-purpose system is not likely to
include the proctor operations and other systems support which may be
important in educational investigations. Such features could be added; the
cost of the modifications depends on the characteristics of the operating
system. Some general-purpose systems already have convenient file handling
routines, protect and permit procedures, etc. Through suitable modifications,
some of these languages and systems could serve most of the needs of
instructional applications.

A discussion of languages of these latter two types, complete with
summaries of six examples and their more useful procedural features, is
given by Lyon and Zinn (1970).

2.6.1.4 Author languages currently in use. TYPE 1.

COURSEVWRITER I (Mayer, 1964) was one of the first languages used

and was devised originally for use on the IBM 1440 system. COURSEWRITER II
(IRM, 1968) is similar except fhat it has additional operation codes for
controlling visual displa&s, using macros, calling user-defined functions
and making use of strings, counters and switches to control course
execution based on student performance. Its main features include :

(i) the ability to cause a pause in execution for a set period of time;

(ii) a provision to interrupt the student before he finishes his response;

(idii) user—defiﬁed label fields;

(iv) a macro facility to prevent excessive repeated coding; and

(v) user-written functions, coded in assembler, to make the

language flexible and open-ended.

However, COURSEWRITER II is inadequate with ;espect to the recording and
manipulation of data. Records are limited tp a small number of strings,

counters and switches and calculations are restricted to integer arithmetic

on two counters only. A calculational capability would also be desirable.
Though easy to learn, the implicit branching conveutions may cause some
authors a little concern.

CAL (Course Author Language) at Irvine (Keller, 1968) gencfates
progréms which are organised into courses, chapters, sections and lines.
Automatic line numbering is given by the system but may be over-ridden by
the author. Program statements may extend beyond one line and may have
labels in addition to line numbers. Desirable features include :

(i) some statements may be either executed immediately or stored
as part of a program for later execution and hence the course
author has available as debugging aids such statements used
in constructing a course as assigning values to variables,
typing out datﬁ or statements, etc;

(ii) allowable data types include both logical and string variables
as well as numerical variables of both real'and integer mode;

(iii) three special time counters which contain the total terminal

. time since the student started the course, the total terminal
time since the beginning of fhe current session, and the time
required to make a response to the last input statement, and

(iv) provision of a computational capability to students, in the
context of the course program. |

However, a branching facility. depending upon previous student history.
would be an advantage.

COMPUTEST (Starkweather and Turner, 1966) is a problem-oriented
language for computer-assisted instruction, testing and interviewing,
designed for an IBM 1620. Sequences of instructional material and test
questions may be written in natural language and a variety of prompts
may be used for the recognition of a correct answer from tybewriter
input. The answer may determine the cbmment returned and the choice of

next question to be asked.

PIIOT, an acronym for Programmed Inquiry, Learning Or Teaching,

65

(Starkweather, 1968) was developed from COMPUTEST. It is written in PL/I
and vas designed so that its use is not restricted to a particular
manufacturer's equipment. In fact, it is general enough to be uced at
any level of program complexity on a range of machines from a small
computer with a typewriter to a large system with many typeuriters and
visual displays, using different cburses similtaneously. Desirable
features include :

(1) the speed with which a small subset may be learned and used;

(ii) a powerful subroutine facility;

(iii) provision to store comments for subsequent perusal by the

author; and
(iv) simple string operators.

However, limitations exist, such as :

(1) the language becomes quite unreadable when complex programs are
vwritten;
(ii) there is no provision for numerical matching or display of

‘numerical values;
(iii) only very elementary algebraic expressions are allowed; and
(iv) there is no student performance record.

Most author text codes in ADEPT (Engvold and Hughes, 1968a) are
similar to those of COURSEWRITER for the sake of compatability. Additional
codes have been added to take advantage of the display capabilities and
the facility to call upon other catalogued procedures from the operating
system.

LYRIC (Silvern and Silvern, 1966a) shows a remarkable resemblance
to COURSEWRITER, especially that some of the operation codes introduced
replace the earlier user-defined functions of COURSEWRITER such as editing
of superfluous characters, specification of keyword matching, percentage
matching and numerical limits. No attempt has been made to provide real

variables, a calculational capability or student information records.

66

WRITEACOURSE (Hunt and Zosel, 1968) was designed so that the lauguug:
should be natural for the teacher and its syntsx and semantics should
conform to his habits. Also, readebility and machine independence were
sought. To meet these criteria, WRITEACOURSE was modeled on ALGOL and
its translation program was written in PL/I. Despite the ease with which
it can be written, WRITEACCURSZ lacks any response matching more
sophisticated than exact matching and does not provide any record of
the student's interaction. There is a limited arithmetical capability
based on a set of counters but the extent to which these may be used
only includes binary operations using integer arithmetic.

The majority of instructional .programs written for the PLATO system
(Bitzer and Easley, 1965) have used a tutorial logic programmed in
an extended FORTRAN called CATO. This gives a format for linear teaching
which makes the instructor's task very easy. However, recently, CATO has
been used for the preparation of a high-level language called TUTOR (Avner
and Tenczar, 1969) which resembles COURSEWRITER and thus allows authors
to design their own strategies. |

For a system which has the capability to display graphics, the author
language must deal with the problem of description of spatial coordinates
and diagrams oﬂ the screen. INFORM (Philco~Ford, 1970a) includes one
approach to handiing this task. The author prepares the display, denotes
‘the region for a correct answer from the lightpen, etc., in the form in
which it is to appear on the scfeen; an assistant punches this information
line by line on cards and an automatic translater pfepares it for inter-
pretation by the operating system. : The language's particularly good features
are:

(1) the facility to pause for a specified amount of time;

(ii) when displaying text it is possible to add, insert, overlay or

. . erase other text; and

| (iii) there exist system countéfa for such information as correct

answers, wrong enswers, time-up answers, etc., which are

67

automatically incremented and are initialised apain at the
start of every unit called a topic.
However, the computational capability is very limited. Only binary
operations between 32 counters, 32 switches and 8 return registers ere
allowed. The response analysis allows some cimple keyword matching but
no numerical matching at all.

DIALOG (Kristy, 1968) has a highly-structured mode for conversational
entry of curriculum files into the machine. The user selects from
prescribed formats, enters strings of text which are to be displayed
to the student, or enters alternative answers which are to be searched
for in the student's response. As increasing control is assumed by
the system, the chances are improved that sufficient information for
some conversation with the student will be obtained from the author,
However, it does not follow that the quality of the materisl will be
correspondingly higher.

IYPE 2.

For the express purpose of meking the machine reply depend not
only on the current student response but also his previous inputs,

MENTOR (Feurzeig, 1965) was developed at Bolt, Beranek, and Newman, Inc.
Because the history of the conversation is stored almost automatically,
an@ complex conditional expressions can be written with considerable ease;
it is convenient for describing a dialogue of this nature. MENITOR is an
interpreter written in LISP, which uses a special "front end" to make
LISP accept inputs that are well suited for general usage. At execution
time, MENTOR does not recognise arbitrary natural-language responses, but
pnly items from a list of strings. Any string to be output is simply
prestored, not generated.

ELIZA (Hayward, 1968) was originally developed by Weizenbaum (1966, 1967)
to study natural language tutorial conversations between man and machine and

the importance of context to both human and machine understanding. It is less

convenient for conditional expressions but makes considerable usc of list-
processing routines to divide a string of characters, the student's rcuponse,
into words and phrases so that the reply can be assembled from elements of

the input as well as material prestored by the author. ELIYA's main features

include :
(i) ability to diagnose a wide range of responses;
(ii) ability to follow a line of argument along several or alternative

paths;
(iii) the student need not concern himself too much about the format
of his response; |
(iv) the student has some control over the conversation by means of
certain commands; and
(v) the programs are easily interchangeable.
Howevef, it is not easy to produce large quantities of ELIZA ''scripts'!,
nor is the language easily adaptable to other systems.

Perhaps the author language currently in use with the most powerful
features is PIANIT (Frye et al., 1968). Chief among these are the
calculational capability and the facility for criterion branching. The
on-line calculational capability, CAIC, allows either the author or
student to perform calculations involving trignometrical functions,
algebraic functions, and matrix operations. The author may request
the student to compute some data within a lesson and can specify that
the student's answer be compared with the results of evaluating a
previously defined function. PLANIT allows the author to specify
conditions for branching based on the student's performance over any
vortion of the lesson. Conditions for branching may include response
latency on any one answer or group of answers, number of errors made on
any group of questions, help received from CALC (functions used or not
used), the actual path through the lesson up to that point, or any
combination of the preceding four points. Other useful features of PLANIT

are:

69

(1) calculation results may be displayed as well as text;

(ii) execution may be suspended for a specified time;

(4i1) there is a provision to interrupt the student before he finishes
his response;

(iv) response processing includes an exact match, keyword scarch,
phonetic comparison, numerical limit match and formula cquivalencc;
and

(v) a subroutine facility.

Probably the only disadvantages of the language are its frame-structure
restraints and the consequent lack of readability.

FOIL (File-Oriented Interpretive Language) (Hesselbart, 1968) was
developed to provide conversational lesson-writing capability for potential
authors on a general-purpose, time-sharing system. The interpretive mnode
allows few constraints to be placed on the syntax of the language and
enables immediate execution of statements entered during testing. FOIL
was written in FORTRAN for speed of production and the ease it offers
for revision and addition. Its main features include :

(1) the ability to type out expression values;

(ii) response processing which includes an exact match, a keyword
search, percentage match, numerical limits and expression evaluation;

(iii) a subroutine facility; and

(iv) performance recording which consists of an automatic trace of the
student's path through the lesson and a copy of all unrecognised
responses. |

However, only integer arithmetic is provided and the use of indentation
for compound statements, though possibly of great use, may cause
considerable trouble to inexperienced authors.

TIEE 3.

A language suitable for writing strategies which can be applied to
various files of content is CATO, an extension of FORTRAN prepared for

the PLATO system. System programmers prepare various teaching logics
or basic strategies into which curriculum authors can place their materisl.

70

Other examples of this type of author languusge include Tecclicr-studcnt
ALGOL (TsA), used at the Institute of Mathematical Studies in the Sociol
Sciences at Stanford; Instructional Languages 1 and 2 (ISL-1 and ISL-2)
designed by RCA, Palo Alto; and SKOOLBOL, used at the Learning Research
and Developmént Centre, University of Pittsburgh.

TYPE b,

APL has been used to provide instructional material (Gross et al.,
1969). Features to recommend its use in CAI'are :

(i) the language is definitely interactive and convcrsational;

(ii) all input/output is unformatted via APL functions;

(iii) the use of logical operators andba random number generator
together with branches to statement numbers or labelled
statements allow conditional branches to be written with ease;

(iv) a wide range of mathematical operators and user-named variables
give a powerful calculational capability; and

(v) a time~of-day function allows response times to be stored.

PIL (Flanigan, 1968) has been employed in a similar manner but the
requirenent that strings be enclosed in double quotes when used in input
and output statements is not desirable.

_ Similar languages include Beginners' All-purpose Symbolic Instruction
Code (BASIC) from Dartmouth; Conversational Algorithmic Language (CAL) from
the University of California, Berkeley; Formula Calculator (FOCAL) from
Digital Equipment Corporation; the Engineering and Scientific Interpreter
(ESI) from Applied Data Research, Inc., and TELCOMP from Bolt, Reranek and
Newman, Inc,

2.6.1,5 The need to create another author language. NUTS was to be

implemented under the Michigan Terminal System which offered a wide choice of
existing algebraic and symbol manipulation languages. However, none of these
was considered suitable for conversational dialogue for one or more of the

following reasons @

71

(i) some authors would be non~programmers and hence the notation
would appear quite foreign to themg
(ii) program listings would not readily illustrate the structure of
the dialogue owing to numerous superfluous characters;
(iii) potential authors would need to know far more of the liunguage
than appeared directly related to their material;
(iv) many desirable features, in particular performance recording,
would not be available; and
(v) the frequency of revision and correction of dialogue programs
demanded on-line editing and debugging.
Consequently, an author language had to be used. However, at the
time of requirement, none was available from the manufacturernor was
there another author language which could be easily implemented under the
current operating system. In addition, although much information on the
desirable characteristics of such languages was gathered from studying
those languages mentioned in 2.6.1.4, none of these was considered
suitable for the variety of dialogue development anticipated. The search for
and development of new chara;téristics and the widely varying demands made by
authors rendered such features as the frame structure restraints of PLANIT
or the limited computational facilities and student performance recordings
of COURSEWRITER II and FOIL a severe drawback. The result was the design
of another author language, but one vhich could be easily learned and

conveniently used by subject matter experts and educational technologists.

2.6.2 Elements of the lanruage that were neeced.

Bearing in mind the comments in the last section on previous author
languages, this section describes the design considerations and resulting
language, It is a more complete version of that given by Dowsey (1970c¢).
A detailed description of the language itself is contained in Appendix A.

2.6.2,1 Full computational facilities. It was considered important that

the author have available full computational capability as he may wish the CAI

program to demonstrate complex calculations resulting from students!
inputs, for instance. Thus, real constants ac well as integer conctants,
user~defined variable names and a wide range of standard functions are
allowed. The convenience of complicated subscript expressions and standard
function arguments is catered for by allowing up to five nestings of
expressions and/or arguments.

Two features are included which do not exist in FORTRAN IV.
Firstly, an additional operator is used for integer division, but it
differs from that usually seen in ALGOL by the fact that either or both
of the operands may be of mode real. Rounding occurs first, if necessary,
before the integer division. Secondly, a multiple assignmant statement for
subscripted variables was considered advantageous. An array element
appears on the left-hand side and any number of arithmetic expressions, each
separated by a comma, appear on the right-hand side. Values are stored in
successive elements commencing with that element specified.
2.6:2.2 Labels. In order that certain parts of a lesson be distinguishable
from others and, indeed, any statement be a@dressable from any other, labels
were included. They may be assigned in any order without affecting the
order of execution of the lesson. There are three types of label.

(i) Statement labels. Any statement except a final END may be

optionally labelled for reference from other statements.

(ii) Segment labels. It was desirable that the author could divide his

lessons into segments so that when the student restarts a course he
does s0 in the segment he was in when he terminated his last
session. For this purpose, segment labels are inserted, and, when
encountered, they cause the system to store all variable and stack
values necessary to describe the current condition of that lesson.

(iii) Question labels. To form an indexing system for the storing of student

response information in the response file during a course, each
question is given a corresponding question label. This label may

also be referred to by the author when he monitors the student's responses,.

2.6.2.3 Display of material. An essential facility for an author

language is that of being able to display text. However, it was aluo
considered necessary to allow authors to output numerical values of variables,
expressions, etc. This would be most helpful to display calculations,
especially those for which the student has supplied either data or intermediate
results,

It was also thought neceesary to allow for different formats of output.
To this end, an integer value is specified after a string to indicate at
which éolumn the string will commence, ond three such values follow an
erpression. These indicate the starting column, the length of field and
the number of decimal places required after the point respectively. The
latter two values allow for any possible numerical format. If the number
of decimal places required is zero, an integer format is given; if it is
positive, a fixed point real number is given; if negative, floating point
occurs. The constraints placed are that only up to seven decimal places
are allowed and the length of fikld must accomodate the necessary sign,
point or even exponent part.

In order that the student may not be flooded by a continuous stream
of information from successive TYPE statements, a PAUSE statement was
included which suspends execution of a lesson for as long as the
student desires. When he is ready he simply presses the RETURN key to
continue.,

2.6.2.4 Anticipating responses. One important aspect of CAI is that

an author should be able to recognise most, if not all, of the responses which
the student may make. This necessitates that the author enumerate the
responses he is willing to accept for each and every question. Two ways

of doing this were considered. Firstly, after the response has been read

in, the response processor would search for each combination of strings

and numerical values that the author specified, possibly in a conditional

branch statement. The only problem with this method is that the same

7h

string or value might appear in the different combinations specified so
that repetitive gearching would occur. Consequently, this strategy was
not accepted. Instead, the author has the power to assign combinations
of strings and values to response elements before the response is
accepted and then the response processor searches for each of these
specified response combinations in turn before assigning the value true
or false to each of the response elements that were specified, As a
result, such édditional information as the number of strings, whether
they must be ordered or not, the number of values and whether they must
be ordered or not must be given to indicate what the author requires to
be an "overall match" of that response element by the student's response.
There exist 20 such response elements, #CA¢, #CA'], cseey #CA9, #WA¢,
#hMﬂ, coney #WA9, the mnemonics standing for correct answer and wrong
answer, but the author may or may not use this fact.

Even after the response elements are assigned their truth values,
the author may form conditional branches depending upon combinations of
these values. In this way, the author is provided with a powerful
anticipated response tool, upon which he may base his course strategies.

Strings and values themselves may be specified in varying degrees of
accuracy as follows,

A string may be required in three possible ways. If the author
requires an exact match, he simply encloses the string in single quotes.
However, if he vishes to attempt to match a response which may have been
spelt incorrectly, he may specify either of the following. An unsigned
integer indicates that up to this maximum number of characters may be
misplaced in a striné of the same length from the student's response
Yet still provide a match. Or, if "K" is specified, a kernel match is
sought. For this, the author indicates certain characters (but no blanks)
from a required answer and a match will occur if the student's response
contains a string of any length which has the given characters in the given

order. Such a variety of string chécking was thought to provide the author

with the facility to carry out any string response evaluotion that he might
wish to make.

A value need not simply be an absolute number but any arithmetic
expression. This allows the author to specify an anticipated response
in terms of any previously calculated result and/or student's input. In
addition, the author may specify a éecond arithmetic expression which is to
indicate the error interval of the numerical response. If omitted,.
an exact match is attempted.

2.6.2.5 Response acceptance. The statement RESP was included for the

author to indicate when he wished the student to make a response. In an
effort to prevent possible omissions, one constraint was decided upon
when using RESP. The aufhor must have specified at least one response
element between his indication of the start of a question by means of a
question label and the RESP statement.

One powerful feature that it was decided to include was that the author
be allowed to specify variables into which successive numerical values from
the response would be placed, if present. The author would probably_use
this information in either the future reference of these particular values
or further calculations using them.

Three methods of specifying a variable are allowed. Two of them
quite simply are the non-subscripted variable and the array element.
However, a third was devised in case a large number of values was expected
and it would be inconvenient to specify a correspondingly large number of

variables. This entails specification of an erray together with a starting
position, which itself can be either a constant or a non-subscripted variable.
Thus, any resulting values are stored in successive array elements starting
at the position indicated. Within any RESP statement, any combination of
these three methods is allowed.

If more variables are specified than values in the response, then a
predetefmined large positive constant is stored in the remaining variables.

This enables the author to test not only for the values entered but also the

1/6

nunber of such values.

2.6.2,6 Conditicaal expressions. Conditional expressions are included to

allow authors the conditional branching capability needed in CAI. The logical
quantities available for such expressions are :

(i) the response elements;

(ii) values obtained using the relational operators in conjunction

' with expressions, variables or constants;

(iii) implicit response elements, not yet mentioned; and

(iv) the result given back from a request to the past student

performance facility, # PERF.

Any of these quantities may be combined with the logical operators to give a
conditional expression.

The implicit response elements are #UA, #NA and HrTn . These, the
author may not assign, but they are given truth values after the response
processing has taken place. #UA stands for Unanticipated Response and it
becomes true if all the specified #CA's and AWA's are false. ANA means
Not Answered and becomes true if the student simply hit RETURN or entered
blanks only as a response. #RTN becomes true if the time for the latest
response was less than or equal to n seconds.

By far the most impressive feature of the author language when compared
with others is the comprehensive past student performance facility, #PERF,
which enables authors to act on student performance information stored in
the student's response file.

#PERF acts in a similar way to a standard function in that it is
invoked merely by writing it together with an appropriate argument. There
are eight kinds of past performance about which the author may enquire, all
concerned with the student's record during the current lesson.

(i) qCAd - student matched Correct Answer d to question q.
(ii) qWAd - student matched Wrong Answer d to question g.
(iii) gNS - student has Not Seen question q yet.

(iv) oNA - student did Not Answer question q.

’}
=3

(v) Ui = stadent gave an Unanticipated Answer to questlon (.

(vi) ¢RI - student answered guestion g in less than or equal to n secunds.

(vii) (5,02 e0e3Go~Gtyees) n XX, vhere n is an unsigned integer and X
ray be one of CA, VWA, NS, HA or UA with the apvronrviate meaning -
out of questions 1402y eee3G3303+7903425 000 3Gty 0es the student
satisfied the property XX ot least n times. It iz in this context
vherce it matters whether the author used CA for lis correct
ensvers and WA for his wrong answers or note.

(viii) g1~42-q3-...~ the student's path throuzh the lesson vas successively
questions ¢1,42,93,... If a question was attempted twice in
succession, then a match will be given only if that question number
was specified twice in succession. .

In addition to these enquiries, it is possible to test the truth of the
conjunction of any number of these eight types. Given all these facilities,
the author is nrovided with the capability of choosing innumerable branching
criteria depending upon student performance.
2.6.2.7 Branching. It was important to allow extensive branching'
techniques. Firstly, branching within lessons is essential and then, since a
course may consist of a number of lessons, branching between lessons becomes
necessary. The following statements form the basis of the branching capability:

(i) IF. Branching may be unconditional or, more likely, as has been
mentioned in the previous section, conditional. For this purpose,

the IF statement was designed and depending upon the truth of the
corresponding boolean expression, the branch takes place or the
next instruction in sequence is executed. The executable part of
the IF statement need not necessarily be a branch, as any other
statement is allowed except another IF.

(ii) JUI'P. The most common operation in branching an author performs

is that of jumping to another part of the current lesson. To

this end, the JUMNP statement allows branching to any type of

label.

(iii) TRANS. In order to transfer control from one lesson to another
in a course, there is the TRANS statement in which the author
specifies which lesson and to which segment in that lesson
control is to be passed.

(iv) BACK. Having diagnosed an incorrect or partly correct response,
the author may wish to receive another attempt at the same
question. An implicit branch back to the most recently
executed RESP statement vwas considered the best way of allowing
this. Hence the BACK statement was designed. Without parameters,
only the branch occurs. However, all the facilities of TYPE are
available within BACK so that any message may be given to the student
before he is expected to makeAanother response.

(v) CTRL. To facilitate the writing of lessons using Learner Control
techniques suggested by Grubb (1968), the CIRL statement was
created. In it, the author specifies four valid labels of any
type whose addresses in the intermediate code are then loaded
into four control address registers. Whenever the keyboard is
unlocked to a student, entry of one of four possible pre-determined
responses will cause the student to be branched to an address
given by the corresponding control address register. The choice
of the four pre~determined responses was "7F%, "?B", "25'" and
12G" which indicate a forward skip, a backward skip, & skip to
the subject outline and a skip to the glossary, respectively.
However, these meanings are completely arbitrary and the author
may decide on a quite different interpretation of the pre-

" determined responses. The only constraint placed on the author
is that, for the statement to be effective, it must appear at
least once in a segment. This is because the four addresses are
retained in the registers until they are either replaced by

another CIRL statement or lost upon entry into a different segment.

79

If the author has not specified a CTRL statement within a segment,
then entry of one of the pre-determined responses results in either
a restart in the case of a pause or an incorrect response in the
case of a question.

2.6.2.8 Subroutine facility. To cope with the fact that certain parts of

a lesson might be executed any number of times, a subroutine facility was
considered necessary. The statements designed, however, do not allow the
passing of parameters, for this was not deemed necessary, but did allow a
return to wherever the author desired rather than to the point where the call
was made. The explanation is as follows. Two different statements constitute
the call. Firstly, there is a LOAD statement which specifies the return address,
any valid label. Then, a JUMP statement transfers control. After the common
statements have been executed, RETN transfers control to the address given in
the last LOAD statement. In fact, there are five stacks of return addresses.

‘ Correspondingly, there are five different LOAIn statements, each of which
load the given address on the top of a push-down stack, and five different
REINn statements, each of which unload the address on the top of the
corresponding stack and transfer control to it. In this way the author

is able to employ numerous implied branches, including nesting up to 10 calls
in each stack.

2.6.2,9 Other statements. For completeness, the STOP statement was added to

terminate execution of a course. The only constraint placed on its use is
that either itself or a TRANS statement must appear at least once in a
lesson as either of them indicate the dynamic end of a lesson.

The END statement is non-executable and defines the static end of a
lesson for the translater.

2.6.3 Use of the author language within NUTS.

There are three modes of operation of the author language translater
that the author may request. He obtains these by his choice of operands in

the BUILD command.

&0

2.6.3.1 Mode 1. The author may wish to create a new lesson and enver lis
source statements after prompting of the line number., He may optionally
give the starting line number for the statements in the lesson and the
increment with vwhich the line number will increase on successive proupts.
After the system prompts, the author enters his source statement which is
immediately parsed and intermediate code generated. In batch, the statcment
is listed on the author's print-out for possible debugging purposes.

If the statement is successful, the line number is incremented and the
system prompts once more. If unsuccessful and from a terminal, an
appropriate diagnostic error message is returned, together with a prompt
to make a modification. At this point, the author may modify any previous
line, delete any previous line, or insert any line in his lesson. If
unsuccessful and iﬁ batch, the incremented line number prompt continues
as if it had been correct after an error message is given.

' The format for modifications is simply the line number followed by a
comma and then the line contents. For deletion, the line contents would be
null. One consideration when making modifications in this way is as follows :
if the author corrects a line immediately he is told it is incorrect, then
the processor may continue with one and only one pass, no re-translation of
the whole lesson being necessary; otherwise, in the event of the
modification of a different line from that given in the cwrrent incremented
line number prompt, this line is checked syntactically within itself, but
without reference to the rest of the lesson. The whole lesson is re-
translated at a later stage. When the author has completed his modifications,
he simply presses RETURN to go back to the incremented line number prompt.

On entry of the statement END, the translater completes such processing
as segment address recording, label chaining, th. Then, the author using a
terminal is given the option for a complete or part source listing, whether
he wishes to make further modifications, and whether he wishes to continue
processing. In batch, none of these operations is available. If the

translation has been successful, the command terminates. However, if

81

unsuccessful, then the author on a terminal has the further option for modi (-
ications, but in batch termination occurs with an appropriate message.
2.6.3.2 lode 2. The author may wish to retranslate a previously existing
lesson but first enter modifications. Modifications are then entered in
the same format as described above. If an incorrect source statenent is
entered for a modification, then, from a terminal it may itself be modified,
but, in batch, modifications cease at that point. Of course, this will
produce invalid commands in the command sequence, all of which will
subsequently be ignored., When modifications have all been entered,
execution continues as in mode 1 with options for source listing, etc.
2.6.3.3 Mode 3, The author may wish to re-translate only a previously
existing lesson. If the translation is unsuccessful, then the terminal
author has the chahce to enter modifications. In batch, termination occurs
with the appropriate message.

2.6.4 The translater.

There are two distinct stages in the use of the author language :
the translation stage and the control stage. Such a method was chosen
instead of an interpreter because it was thought that student session time
would be much greater than author preparation time. Thus, re-translation of
source code every time it is encountered would be less efficient.

The translater produces an intermediate code which is stored away until
the controller uses it to produce the instructional material. The reasons
for producing intermediate code are as follows.

(1) Having produced a simple intermediate code it is relatively easy
to devise a controller to execute it.

(ii) The intermediate code produced is independent of the machine being
used. Thus, courses produced on oné machine could be run on
another,

(iii) The intermediate Eode is independent of the language that produced

it. Therefore, future developments may allow a different aithor

language to produce the same intermediate code.

82

(iv) It is much easier and therefore guicker than generating mochine
code. This was considered most important as it was essential to
have the system operational as quickly as possible.

Every source statement produces at least one element of intermediate code.
This element may consist of the code value only, as in STOP, or perhaps,

a code value together with numerous other integer values, as in a TRANS
statement where the lesson number and the segment number are also stored
in the intermediate code.

A brief description of the translater logic will now be given. Mode 1
usage is assumed, for it is the most general.

A prompt together with a line number is given. Upon entry of a
source line followed by RETURN, this is first stored in the appropriate
Place in the lesson file and a version without superfluous blanks is
retained in a buffer for processing. Intermediate code is produced to
identify the line number. This was adopted in order to give a line number
with control time failure messages.

The buffer is then searched for a label whose identification is made
easier by the fact that they are all terminated by a right parenthesis.
After a label, a statement must follow. Some statementssuch as the
response assignment . statement and the array arithmetic assignment statement
commence with special characters which makés them easily distinguishable.

In the absence of a special character, the next characters in thé‘guffer

must be a string of Jetters for we have already precluded digits by having
searched for labels. This string is then converted to a unique numerical
value in the usual way. A test to see if the character immediately following
this string is an m= or not determines whether the statement is a non-
subscripted variable arithmetic assignment statement or a code word such as
TYPE, IF, etc. In either case, further extensive processing and appropriate

generation of intermediate code occurs.

[@e]
ASN

If the source statement is incorrect, a dicgnostic crror iessoge in
produced and th~ line number is placed in the error table. Then, a
proupt occurs for a modification. This is read into a buffer and Lhie lire
nunber and separator trimuned off., If the line is blank, control returns to
the line number prompt. If the line number is that of the source line
Jjust entered and no out~of-sequence entry of source lines has taken place,
then the pointer to the next available position in the intermediate code
buffer is returned to its position before the entry of the erroneous line.
Also, other information from the last line, such as label table entries,
is discarded in order to recover from the error. The actual line is then
stored and a version without superfluous blanks is processed as described
above. As many modifications as is required may be made after which the
line number prompt returns.

For a successfully translated statement, the error table is searched
to see if the new version of the line can nullify such an error. The
intermediate code is stored sequentially as it is produced in a huffer of
200 elements. A check is made at thislpoint to sce if, as a result of the
last statement, the buffer is over half full. If it is, then the first
half of the buffér is written to the lesson file on disk and the latter
half is transferred to the first half. In this manner, only a fraction of
the total intermediate code éroduced is ever stored within the translater
and that contained on disk is stored in blocks of 100 elements.

Upon entry of EiD, the remainder of the intermediate code is written
to disk. Also stored are the numbers of real and integer variables used
| and the addresses in the intermediate code of the start of each segment.
Then, label chaining is carried out to assign to each incomplete label
reference label addresses of those labels which were undefined when first

encountered,

84

2.6.5 The controller. Whenever a user calls for a course, the controller

takes the stored intermediate code from the appropriate lesson wud cxecutes
the instructional material. The logic of the controller is deccribed below.

It is first determined whether that part of the response file
corresponding to the lesson at hand exists. This information is obtained
from an index in the response file itself. If necessary, the appropriate
initialisation takes place and the index is updated.

The restart segment is read from thé response file and the corresponding
addfess in the intermediate code picked up from the segment directory of the
lesson. Two appropriate blocks.of intermediate code are read in from the
lesson file on disk together with the current values of all variables and
stacks from the response file. |

Control then passes to a section to which it returns at the end of
execution of every single code. There, a check is made to see if the pointer
to the current position in the intermediate code is indicating the second of
the two included blocks. If it is, and if all blocks have not yet been read
in, the latter block replaces the first one and a new block is read in in
sequence. The pointer to the intermediate code is adjusted accordingly. 1In
any event, the next element of the intermediate code is read and a switch
decides where execution will be transfered demending upon the code. For
certain branching instructions, when addresses become out of range of the
two included blocks, two néw blocks are read in.

When a STOP code has been executed or "?ENDY" has been entered by a
user, control passes to the terminating sequence, in which the time of day
is obtained, the session time calculated from that and a previous call at
the start of the controller, and the session time recorded in the response
file.

2.6.6 Implementation techniques.

2.6.6.1 Labels. To each type of label there corresponds a label table.

85

Iach entry in such a table indicates whether that label is ununcd, or,

if used, gives the address in the intermediate code of its occurrence.

When reference is made to & label, the correspouding addres: is broupht

from the table, if it exists. If not, a chain value is entered in the
intermediate code. This chain value contains a backward pointer to the
previous position where an unresolved label reference is pending and the
currently required label. The last reference in the chain has a zero pointer.
After entry of END, when all labels should be present, chaining backwards
through the intermediate code occurs, and the missing addresses arc added.

2.6.6.2 Arithmetic expressions. The input string is converted to reverse

Polish. Each occurence of an object, that is, constant, variable or
standard function reference, generates several elements of intermeliate
code, whereas operators produce only the corresponding code element. The
algorithm used for conversion to reverse Polish is as follows. If the
rriority of the current operator is greater than that of the operator on

top of the stack then stéck»the current operat;r; otherwise unstack, placing
the operatpr from the stack in the intermediate code, then test the priority
of the current operator with that now on top of the stack. For a leit
prarenthesis, which has the lowest priority, always stack it; for a right
parenthesis, unstack all operators into the intermediate code up to the

next left parenthesis, which may now be discarded.

Constants are anélysed usigg a state table technique. So that the
intermediate code produced is of mode integer, the code stored is of the
form integer mantissa then exponent. When a variable name is encountered,

a search of the hash table occurs, If it is the first occurence of that
name and if there is no ambiguity between an array name and a non-subscripted
variable name, then a store address for that variable is assigned. Any
future reference to that name will use the same store address. Only the
code for the particular standard function is generated., That for the
farameter expression precedes it. Array subscript expressions are treated

in the same way.

86

At control time, execution is performed using a work stack. Only
the top two elements at most are changed Ly an operation code. For cimressions,
the codes consist solely of those for fetching variables ond consitants,
calling the standard functions and executing the aritliietic operations. With
standard function pgrameters and array subscript expressions, the value is
at the top of the stack when it is needed.

2.6.6.3 Response assignments. TFor each response assignment, the translater

yroduces many different intermediate operation codes. A code is generated
for the type of response element followed by the actual element number.
Then for every string and/or value specified, code is generated as follows.

A string is recognised by a single quote in the input buffer. Every
character between the pair of single yuotes is recorded in the code,
rreceded by the number of such characters. Appended to each string is
a code and value to indicate with what error the string is to be matched. A
value may appear on its own, in which case no error is to be tolerated in
the numerical match, or be followed by a second value which is to be the
error bound. The code produced for both of these is composed mainly of
that already mentioned in connection with arithmetic expressions., The
exceptions are that in the first case a value code and a default error
term code follow the code generated for the value expression whereas in the
second case, code for the error expression is followed by an error code.

At execution time, two buffers, one each for strings and values, are
loaded with all the response assignments before the particular response
acceptance request., Of course, at this stage, the actual values for values
and error bounds are known and it is these that are loaded into the value
buifer,
2.6.6.4 TYPE/BACK. The translater recognises strings and arithmetic
expressions during a TYPE statement in much the same way as for a response
assignment. The notable addition is in the format specification for these
two types. At the end of the statement, the format information is

converted to form a FORTRAN dynamic format using the FORTRAN T format to

o7

specify starting positions, the FORTRAI literal format for the strings
and FORIRAN I, F or E formats as appropriate for the expressions. The
dynamic format is packed four characters to a word and tlien stored in
the intermediate code preceded by the numbér of words.

At execution time, the dynamic format is read into an array.

Taking into accountthe constraint that a maximum of five expressions may
“be output in any TYPE statement, the number of different combinations of
real and integer list elements for O to 5 expressions is 63. Thus, the
controller contains 63 FORTRAN output statements, one of which is
appropriate for each combination of list elements. This method may ceem
a little crude and, indeed, has the limitation that only a fixed number
of items may be output, but implementotion is so much easier than it
might have been if non-FORTRAN coding had been used, as it certainly
would have to have been fqr a more sophisticated output statement,
2.6.6.5 RESP. In its simplest form, the statement consists only of the
keyword and in that case only an intermediate operation code is produced,
However, variables may be:specified to contain the numerical values that
the response might contain after entry. These are dealt with in three
different ways. For a non-subscripted variable or an array element, the
hash table is used to obtain a store address for the name. An array
name followed by a starting position is the last possibility. Here,
store addresses are needed for both the array name and the starting
position, unless, of course, this is given by a constant.

Despite the fact that the translater has an easy task to analyse a
RESP statement, the controller is faced with a considerable amount of work
at run time, The keyboard is unlocked to allow a response to be input. The
last non-blank character is located and, if it is the continuation character,
then another line is read in. Up to four such continuation lines are allowed
and the whole response then resides in the response buffer. The beginning
of this buffer is then searched for the four pre-determined responses

connected with the control address registers. If one is present and if a

cn
&x

CIRL statement is in effect, then trunsfer of conirol occurs., Otherwisce,
the buffer is scarched further for other pre-deternined requests. If
"?END" is requested, then the session ends and control returns to the
conmand language interpreter. The other two possibilities are "?CAIC" or
"?PROG". In each case, the user is prompted for avpropriate information
regarding which program and what mode of use is required. Upon return

to the lesson, the user is prompted to make the response that he used
instead to request the calculating language.

If no request or pre-determined response was entered, response
rrocessing continues as follows. The string buffer contains all those
strings indicated during the reép0nse assignment statements, the degree
to which they have to match the response, the number nceded to give an
overall match and whether ordering is important. For each separate response
assignment statement, the strings are compared with the contents of the
response buffer. In this way each of the response elements can be found

to be true or false with respect to string matching. In order to save

time, there is a forward pointer in each part of the string buffer so that
comparison will cease when the required number is obtained. Alternating
with the string comparison for each response element is that for values
using the value buffer, whose organisation is much the same as for the string
buffer. However, when the first value comparison has been indicated, all
values contained in the response are immediately processed and stored
sequentially in an array. In this way, the values are converted from

input characters only once and subsequent comparison involves only a search
through this array. Thus, each of the response elements is found to be

true or false with respect to value matching. If both types of matching are

true then the response element itself becomes truec.
If variables were specified for the storage of any numerical values
which might be contained in the response then the values are available in

the correct sequence in the array. These are transferred to the variables,

&9

a large positive constant being substituted for a shortage of values.
Successive calls for time of day before cad after the response was

nmade give the response time., This and the truth values for the resnonse

elements are then stored in the appropriate part of the response file. If

all the response elements are false, the first 80 characters of the response

are also stored for future reference. This is an unanticipated response.

2.6.6.6 logical expressions. As for arithmetic expressions, the input

string is converted to reverse Polish. Here an object may be a response
element, either implicit or explicit, a reference to the past student
performance facility, or two arithmetic expressions separated by a
relational operator. The algorithm used is the same as before.

There are eight different kinds of enquiry that may be made during
a #Imim’request. It is also possible to test the truth of the conjunction
of any number of these eipght types. Thus, the translater produces nine
"subcodes!" for this facility, the extra one denoting the end of the
request. One extra piece of information stored is the address of the
last element of the intermediate code produced for the call. This is
most useful as time can be saved if any one enquiry proves false,
therefore making the whole request 52153, and rendering the rest of
the enquiries useless. Execution passes straighf to the next operation
code in this instance.

At control time, the same work stack is used as for all the erithmetic
operations. The only difference is that true is represented by the value 1
and false by -1. To provide protection in the use of logical quantities,

a value "undetermined" may be returned to the stack. This occurs if a
particular response element has not begn used yet referred to or if the

PERF facility is being interrogated about a question for which there is
no information. In this case a run time failure occurs and the appropriate
diagnostic error message and line number is returned to the author for

debugging purposes.

90

2.6.6.7 IF. After the code pgenerated for the logical expression, there is
the IT operation code followed by a blank element, which can only be
filled in after the translatcer has processed the executable part of the
IF statement which may be any other valid statement except another IF,

At execution time, the extecutable part is obeyed depending upon the
truth of the logical expression. This value is on top of the stack. If
it is false, the instruction address pointer takes the address of the
next statement, as mentioned above. |
2,6.6.8 TRANS. It is a simple matter for the translater to generate
the operation code for this statement followed by the lesson number and
the segment number but not so straightforward at run time. If the user
is a student, then a table lookup in the 1essoh index occurs to see if the
new lesson is released. For an author, a table lookup on his file catalogue
indicates whether the new lesson exists. In either case, an MTS restart command
is generated so that after NUTS execution yauses and restarts the new
lesson file may be accessed. The segment index then shows whether the
segment specified does exist. If it does, the corresponding address is
obtained and the current position information in the response file

updated.

91

2.7 Whe caleulating Jancuage.,

2.7.7 Desirn cornsiderations.

In a CAT enviromment, it is essential that the student be uble to
call upon calculation aids during a ccurse of instruction. Ceritain
guestions he may be asked could require more computation than can reasonnbly
be expected by hand calculation. In an effort to surmount this problem,
NUTS supplies a simple computing lauguage, the programs of which may be stored
for subsequent use. The language may be used in command mode but its
primary importance is use during a course whilst answering a question. The
student may write his program on either occasion and may call upon it,
even making alterations as necessary, within a course,

The design considerations of the calculating language in many ways
resemble closely those for the author language. Conseguently, in this
section, only those features which differ from those of the author language
are pointed out,.
2.7.1.1 lLabels. Statement labels are provided in the calculating language
to reference one statement from another by branching. They may be sssigned
in any order without affecting the order of erecution of a vrogram.
However, neither question labels nor segment labels are meaningful in
this context and are not available.
2.7.1.2 OQutput. The identical capabilities outlined in 2.6.2.3 are
available using the TYPE statement., However, no PAUSE exists as that
facility is meaningless in the context of mathematical computations.,
2.7.1.3 Input. The READ statement was included so that the user may
enter any data he requires., He specifies the variable into which the
data entered at run time is placed. Three methods of specifying the
variable are allowed. Two of them quite simply are a non-subscripted
variable or an array element. However, a third was devised in case a
large number of numbers was to be read in. This entails specification

of an array together with a starting position, which itself can be either

4 constant or a non-subscripted variable. Thus, any data read in, which
may be a variable amount, is stored in succecsive orray elements starting
at the position indicated.

2.7.7.4 Conditional expressions. To allow conditional branching and, in

particular, the building of loops in a program, conditional expressions
are included. Logical quantities, available for such expressions, are
formed from two arithmetic expressions separated by a relational operator.
Logical operators are available tq form expressions from these quantities.
2.7.1.5 Branching. The branching facility comprises IF and JUMP. TRANS,
BACK and CTRL are author language statementsonly.

2.7.1.6 Other statements. Other statements include STOP, which represents

a dynamic end to a program, and END, vhich is non~executable and only serves
the purpose of informing the translater that the static end of the program
has been reached. No subroutine facility was included as the programs
generated were expected to be so small as not to warrant such an addition.

2.7.2 Use of the calculating language within NUTS.

Substituting the command CALC for BUILD in 2.6.3, the description
of the use of the calculating language within NUTS is otherwise identical
to that for the use of the author language. The only additional feature
is that after a successful transiation of a program, it is immediately
executed. For further execution, the PROG command is used.

2.7.3 The translater and controller.

Like the author language, there are two distinct stages in the use
of the calculating language: the translation stage and the control stage.
The logic of the calculating language translater and controller is similar
tQ that of those of the author language.

2.7.4t Implementation techniques.

The techniques used to implement the calculating language correspond
exactly to the techniques for those statements which are the same in the

author language. The only additional statement not covered in 2.6.6 is

9%

REiD. Three different types of variable specification may occur within o
RELD statement. Waen the translater recognices one of these therefore

it generates the operation code for READ followed by the "subcode' for the
porticular specification, In the case of a non-subseripted variable, the hash
table is searched and the store address written inlo the intermediate code.
In order to provide a prompt at run time, the variable nanmec, preceded by

its length, is also stored. TFor an array element, the code is first
generated for the subscript exprgssion in the usual way. Then, the store
address and the characters in the array name are determined and stored.

The third type involves the specification of a starting position along

with the array name. This starting position is only optional, however,

and defaults to the first element of the array if absent. In either

case, the code generated in the first instance is that for the store address,
the length of the array name and the characters in the array name. The

code which determines the starting position is then generated.

At run time, when a simple variable is to be read in, the user is
prompted with the name of the variable. Rounding occurs, if necessary,
after a warning message. When an array element is needed, the user is
prompted for the actual element number required, that is, the system
has already evaluated the subscript expression. When a sequence of
array elemenfs is to be read in, the system prompts with the array name
followed by the actual starting element number. The user enters as many
constants as he desires and these arc stored in consecutive elements of
the array. le separates them by cormas but terminates the sequence with
a semi-colon. As the constraint that only 80 characters may be entered
in one line is imposed on the user, he may continue on another line by
neglecting to terminate the previous line correctly. The system will
then prompt for the next element in sequence. If an error is detected
in a line of constants, the user is asked to re-input the current line.

Entry of commas only in sequence causes zeros to be entered in the

9k

corresponding array elements. Where rounding occurs, the user is warned Tor

i

which element this has been carried out.

95

2.8 The desk machine.

To enable a HNUT3 user during a lesson or, more important, a student
about to ansvwer a question during a course to make a simple "once-only"
calculation, it was decided to include a sequence controlled desk
calculator.

2.8.1 Design considerations.

To allow calculation and a very limited storasge facility, there is
one accumulator and 100 storage registers. All numbers, whether written
as reals or integers are held in floating point form. The following
instructions provide the ability to perform simble calculations as desired.
The operand X denotes either the number of a register between 1 and 100
or that of the accumulator which is O. Where meaningful, this operand may

be replaced by an actual number.

(i) I X #number -~ initialises register X to the number.

(ii) T X - types out the current value of register X.

(iii) L X - loads register X into the accumulator.

(iv) U X - unloads the accumulator into register X.

(v) A X - adds register X into the accumulator.

(vi) S X ~ subtracts register X from the accumulator.

(vii) M X ~ multiplies the accumulator by register X.

(viii) D X - divides the accumula#or by register X.

(ix) E X -~ raises the accumulator to the power given in
register X.

(x) H - terminates execution of the desk machine,

2.8.2 Implementation.

Instructions entered for the desk machine are executed immediately.
The whole line is read into an input buffer wgich is then stripped of all
superfluous blanks. What remains in the buffer is easily recognised by
the fact that the instruction code is a single letter, a storage register

including the accumulator is an unsigned integer of one to three digits

and a number, signed or unsigned, is preceded by a ngw,

Once these parts have been recognised, a switch directs control to
the code for the particular instruction and the values of the accumulator
or storage register which reside in an array are updated accordingly.
Diagnostic error messages are returned for misconstructed instructions and
for division by zero and any eﬁporentiation operands that would give an

infinite, imaginary or indeterminate result.

97

2.9 The Pittsbursh Intervretive Loncunce, PUTL.

2.9.17 Reasons for its inclusion in MUTH,

To use either of the tvo calculation facilities wnrovided, esneciunlly
the calculating language, the user hos to learn the clements of the
lansuage and then it may toke him a short while to hecome proficient in
using it. It was therefore decided that it would be a greaﬁ advantase to
include in NUTS a simpie lanpuage, easy to learn, but with those powerful
features that were missing from the calculating lenguage, such as string
manipulation, extended input/output, etc. If such a language existed
already in MTS, then the fact that a NUTS user may already have some
knowledge of it would also recommend its inclusion. The language that
fitted these requirements was PIL, 1t is also suitable for use in a learning
environment as it possesses error recovery capability, which is most suitable
for use in testing algorithms and other allied problems,

It was also essential to allow users the facility to store PIL
programs from one call of the interpreter to the next. Therefore,
one file is set aside for this purpose. HNaturally, if a number of different
prograns are to be stored'thén the user is burdened with remembering which
PIL parts they are in, for these must, of necessity, be unique.

PIL possessea a most powerful "direct'" modec, which is equivalent to
a desk machine. Consequently, the inclusion of PIL tends to make the
sequence controlled calculator, and, to some extent, the calculating
language, somewhat superfluous, although, for ease of storage of programs,
the calculating language is still of use.

2.9.2 The programming lancuage.

PIL was designed and implemented at the University of Pittsburgh. It
is a remote terminal language, designed to make advantage of the computer-
user interaction made possible by terminal interface in a time-sharing or
multiprogramming environment. Although similar to earlier conversational

languages such as JOSS and BASIC it has major differences in debugging

facilities, error reporting and problem solving capabilities.

PIL provides the user with much greater assistance than the usual
batch compilers offer. This includes the use of terminal diagnostics,
user interaction with the machine and associated exrror recovery procedures.
A major goal of the language was that errors be recoverable. o a user,
this means that it is possible to sit down at a terminal with a problem
and work towards a.solution. As he becoies aware of the need to make corrections
or improvements, PIL allows him to alter his program and to continue without
requiring a new start (the PIL "GO" statement). PIL sacrifices machine
~efficiency in the hope of gaining increased human efficiency. It is a
clear, unambiguous language, quite easy to learn, so that students and
researchers alike quickly master the language and its use.

For simple computing tasks, PIL typically generates answers as fast as
the user at a terminal can assimilate them. As more complex tasks are
programmed, a point may be reached where the user regards the performance
of PIL as less than ideal. The response time may become too slow or too
much computer time may be used.

Unlike the usual compiler languages such as FORTRAN, ALGOL or PL/I,
PIL does not trgnslate a symbolic program into a machine language program
for later execution. In PIL, the original symbolic statements are
maintained in storage and these statements are interpreted each time they
are executed in a PIL run. Thus, it should be recognised that PIL is not
the appropriate vehicle for large ''‘production” jobs., It may be of value,
however, to code such a program initially in PIL. The debugging facilities
can be used to check out the logic of the algorithms for such jobs. Then
the code should be transcribed into a compiler language for more rapid
execution.

A full description of PIL is given by Flanigan (1968).

2.9.3 The implementation of PIL within NUTS.

The PIL interpreter used is simply a copy of that available in MTS

9%

s a library file. The only additions made are to provide &n interfnce

with NUTS. A brief description of this appears in 2.5.5.710.

100

2,10 Perforimance.

2.10.,1 Ceneral siatistics.

NUTS comprises a main progran and 4O subroutines coded in FORTRAN IV,
and three subroutines written in assembler. The total number of source
statements is around 9000. The assembler roulines are syctem dependent
and are used to return the clock time, indicote whether the user is
performing a conversational or non-conversotional job, and destroy a named
file. In use, the whole system occupies 80 virtual pages on the drum.
2.10.2 Current use.

After initial test and demonstration programs for checkout purposes,
NUTS was first used in an investigation into the production of instructional
programs for elementary electricity and magnetism (Adams, 1969). ‘he main
application of the system to date is the PIL programming course, a full
description of which appears in Chapfer 3. As well as being used for the
ourse, the instructional programs are available for general use to anyone
desirous of learning PIL,

2.10.3 Possible future developments and improvements.

It has béen mentioned earlier that NUTS was designed and implemented
in as simple a way as possible so that an operational system on which to
carry out further research could be available as soon éfter the commencenment
of the project as possible. For this reason, reflections on the design and
implementation have suggested that the system can be made to run more
efficiently with some alterations. Also, some additional features would
be most useful. Some possible amendments are given below,

With respect to the implementation of NUTS, increased efficiency in the
future demands that shared code be used: At present, the virtuai memory
integral (VMI) in the wait state is enormous, which gives quite an overhead.
To alleviafe this problem by some other means, if that were possible, would
necessitate a study into the use of dynamically loaded routines. In other

words, when NUTS is initiated, instead of all the routines being loaded in

107

¢t thot point, only the command processor would be loaded end, denending upon
vhich command was requested, other routines would be loaded in vhen reguircd.
When these routines had been used, the command processor would be reloaded.
Certainly, this organisation would lend itself to much smaller virtual
memory requirements and hence less paging, but whether this would offset

the increased use bf the loader is a matter for conjecture. Unfortunately,
ot this point in time, the data collection by the general operating system
does not provide information for such a study.

One additional facility that would enhance the author language would
be the introduction of string variables and functions. This would give
the ability to manipulate the response, which would be automatically stored
in a predetermined varisble, using siring functions such as edifing
characters, concaternation with other strings etc. This would allow
the author to reply to the student in the actusl words of the student's
responses. The main reason why this facility was not implemented vas
that such complex string manipulation as was visualised is difficult to
execute using FORTRAN. Also, the extent to which this particular part of
the 1anguége would be used was not considered great enough to varrant the
time it would take to include it.

Increased efficiency in the author language processors would be gained
if the literals used during response assignments and output statements were
stored as characters and not as their equivalent numerical representation
in the intermediate code. Also, the response buffer used during response
analysis would be better created when the response assignments are narsed,
not in two stages, both during translation and interpretation of the
response assipgnnment statements.

A more detailed appraisal of the system, in the light of the

investigation which included the PIL course, is given in section 3.lk.

102

CHAPTER 3 An investigation into the use of NUTS to teach a progremming languaca,

3.1 Previous attempts ot programming courses.

3.1.1 Other course structures.

Very few programming language courses have been given using CAI. This
is surprising in that there is an ever-increasing number of academic
disciplines pervaded by computer-based techniques and hence the overall
demand for people who can program is growing very rapidly.

In order to become reasonably proficient, considerable practice is needed
and so adequate opportunity to run programs must be given. Of similar
importance is the necessity for this practical experience to be coordinated
with the theory behind the students' problems. This requires supervision,
vhich, under normal teaching circumstances, puts a heavy demand on lecturing
staff whose time is consideréd at a premium. The investigation that was
chosen was a comparison study between various ﬁethods of teaching a
programming language. It was hoped to ascertain whether it is feasible to
use CAI to teach a programming language and hence free academic staff for
more research.

Some previous attempts at such courses have used a computer in the
learning process but not for CAI as defined in this thesis. SCOCP, Student
COntrolled On-line Proéramming (Lambert, 1968), assumed that a student
has learnt the rules of a programming language and that what he needs is
practical experience in manipulating these rules. bn a teletypewriter,
the computgr provides the student with the content of storage locations
upon which his program is going to work. As the student types in his list
of coded instructions, the computer checks that they are acceptable and
carries them out at the student's comménd. No correct answers are stored,
but the resulting values of the storage locations are returned for the
student's perusal. Conversationally, the student is also able to edit his
program, step through the execution one instruction at a time and display

various locations. A request for help causes a demonstrator to come to his aid.

103

A similar project at Brighton College of Technology (ICL, 1962), but
non-conversational, provides FORTRAN tuition by private work on a
programmed text. Then, using standard software but given pre-punched cards
for easy entry, the student compiles and tests example programs. When
satisfied that a program is working correctly, he submits it to the computer
for judging byvcomparison with results for standard data. Facilities for
teachers to put different programming problems into the system and to
obtain information on project progress by student or by problem are provided.

In other projects, programming languages have been specially designed
so that actual programming techniques can be taught, not simply an existing
language.

Lorton and Slimick (1969) list the advantages of teaching a "symbol
manipulation-list processing" language. However, as some machine level
concepts might be usefully included in the course, they provide also a
simple assembly language. To this end they designed a driver program to
supervise the interaction of the.atudent with the curriculum material and
the language processors, an interactive assembly language processor and an
interpretive processor for the "symbol manipulation-list processing"
language. As well as providing communication with the language processors,
the driver program presents the instructional text and qvalﬁates responses.
The symbol naniphlation-list processing language used is a dialect of LOGO
(Feurzeig and Papert, 1968).

Whilst designing thgir TEACH system, Fenichel et al. (1970) considered
that their chief objective was to teach programming, not a particular
language, but realised that some language was required as a vehicle to convey
the ideas. In fulfilling their design‘criteria, they devised an interpretive
language resembling JOSS that

(1) allowed students to adjust easily to any standard algebraic

language afterwards;

104

(ii) contained all the fundemental ideas of current programming

practice; and

(iii) allowed presentation of an important idea only after a need for

it had been established.

They surrounded the language processor with a teaching system which
presents lessons to the student, supervises his progress and permits him
to exercise his skills. The teaching system language generates '"'scripts"
and is quite general, allowing arbitrary recursion, conditional transfers,
scanning of student input for keywords, etc. The "scripts'" have little
| control over what the student does with the programming language interpreter
but an important feature is that the syntax scanner of the interpreter
will not recognise any construction which the "scripts" have not already
discussed. Otherwise the scripts engage in a limited dialogue with the
student, allowing him to request hints about the suggested problems and
to determine whether cértain sections should be skipped.

At the University of Texas (Homeyer, 1970), using the PICLS
instructional system under the RESPOND time sharing system on a CDC 6600,
a CAI course has been developed to teach assembly language programming.
A language called ELASTIC was designed.. It is written in FORTRAN and is
composed of an essembler and an interpreter, self-contained and can be
executed, with minor modifications, on any machine with a FORTRAN compiler.
The capabilities of the ELASTIC assembly language may be presented in
segments of gradually increasing difficulty and sophistication and hence
the ELASTIC system is divided into four "comwuters' to facilitate this
pedagogical approach. The main feature of the course is that execution
of programs written in ELASTIC is allowed at any time during a CAI teletype
session.

There have been a number of courses, however, which have taught

existing progremming languages.

105

Schurdak (1947) attemnted to measurce the effectiveness of CAL in
teaching the FORTRAN lenguare. Jie used L8 stidents and divided ihen equally
into trxree rroups, one croun taking conventional instruction, another
tuking a programmed instruction text only and the third toliing CAT., The
students were Turther classified in other subgrouns such as paid/not vaid,
graduate/undergradﬁatc, etc. Using an aptitude test and a one-day retention
test, and with a CAI program that was basically linear drill-and-practice
with some immediate effective correction procedures, Schurdak reported a
significant difference, at the 1% level, of criterion test performence for
the CAI group, as well as a similar standard deviation of test scores for
this group. Students with high pre-test scores appeared lo score approximately
the same on the post-test, but, at the other end of the aptitude test
score scale, it apparently made a very large difference as to how a student
was instructed in FORTRAN, even within a superior sample such as university
students. Two importaﬁt points should be mentioned about this course,
Firstly, the CAI group receives their initial presentation of material fronm
a weil-known text on FORTRAN, Tﬁeir underétanding of the material is
tested on a terminal. If the student meets the test criteria, the computer
indicates that he should read the next lesson but if he is uncertain of
the subject matter, but still passes, he has the option of receiving further
questions but not explanatory text. If the student does not meet the test
criteria, he receives a series of diagnostic drill-and-practice questions,
which have all to be answered correctly before he may proceed. Secondly,
if the text material is not adequate, the computer gives the student
additional explanatory or remedial material taken from & well known PI
nmanual, Otherwise, the computer does not give any textual material.

Gross et 2l. (1969) carried out a similar investigation into the
teaching of FORTRAN using APL as the instructional language. 76 students

were divided into a CAI group, a PI group and a group who received

106

conventional lectures and classzs. Distribution into groups uas carried
out with respecl to student choice as far an posvible, the only limiting
actor being that the sex ratio was consistent in each group. An analysis
of variance on the aptitude scores revealed that there was no sipgnificant
difference between.the groups initially. During the coursc, the learning
'curves of the first group of CAL students are used to develop a non-linear
sequencing of course material. A hewristic lecarning model uses cumulative
frequency distributions of all student responses to different combinations
of questions to decide the sequence of questions for any onc student.
Performance scores for each group were obtazined from three FORIRAN tests
and four FORTRAN problems. Only on the first two tests did significant
differences appear. However, an exauination of mean scores indicated it
was the PI group that gave a superior score. The source of the superiority
is suggested by the total time data. The average course completion times
for the CAI and conveﬁfional groups-were about one third and one half
respectively of that for the PL group.
Other courses devecloped to teach programming languages include:
(1) The University of Texas at Austin use a course to teach
COURSEWRITER I using tutorial logic. It was written at
Florida State University in COURSEUVRITER I,
(ii) Pennsylvania State University have a course which presents
information regarding the various instructions in COURSEWRITER II.
It is written in COURSEVRITER II and has an adaptive strategy.
(iii) For prospective authors of coursesin CAILAN, the CAI
lavoratory at Harvard have a course on CAILAN written in
CAILAN and using both Socratic and tutorial dialogues.
(iv) A course to teach COBOL is under continuing development at the

Human Resources Research Office (llum RRO) in Alexandria, Virginia.

107

(v) The Aerospace Corporation of El Segundo, California, are
developing a FORTRAN course under the PROCIOR system which
monitors the interaction between the student at the terminal
and the instructional program on disk. Tutorial logic is used
and students are permitted to enter FORTRAN statements for
checking by the FORTRAN compiler, receiving diagnostic error
Amessages as appropriate.

3.1.2 Significant features of this course.

It‘was decided that an existing programming language should be taught
in the course. This would allow for future use of the language by the
students as it is available under Michigan Terminal System. Also, the
fact that the language processor was available for médification, if necessary,
was taken into account.

Two comparisons on the relative effectiveness of different teaching
methods were desired. lFirstly, CAL was to be compared with conventional
teaching. Secondly, for examples sessions, on-line practical classes were
to be.compared with the conventional demonstration classes. As a result,
three groups were needed (see 3.2.1).

The CAI part of the course was divided into two parts. The lessons,
vhich presented the instructional material to the student and continually
questioned him as to his understanding of it, were structured using an
adaptive tutorial logic. However, the examples sessions, which were
interspersed with the lessons, contained a linear sequence of problems but
used a learner control strategy within problems. This latter choice was
necessary in the light of the second comparison as mentioned above.
Normally, during problems classes, control is with the student. He decides
what resources he needs to tackle the problem, when he néeds help, and
when he wishes to test his solution. Consequently, two most important

facilities were placed at the student's disposal during the problems classes.

{ r

105

ta

These were the language processor which he could request st any time and
which stores all his previous statements for that particular problem and

a comprehensive help faéility which returns the steps into which the problem
may be divided and either programming or logic help with any of the steps.
All the student has to do in either case is inform the machine exactly

what he requires.

109

3.2 Description of the course.

3.2.1 Background to the course and the studente on it.

Irrespective of whether they intend to do Honours Maths or Honours
Computing Science eventually, students in their first year are required
to fake a qualifying course in Mathematics as their main subject. (The
curriculum is being revised for year 1970-71 so that there will be a first
year course iﬁ Computing Science for potential Honours students.) However,
during the last week of the second term, an introductory course to
Computing Science is held, the main purposes of which are that the students
find out a little about what their future course holds in store for them
and that the staff of the Computing Jaboratory find out a little about
their potential in computing. In addition to those students who entered
University to read Computing Science and are therefore required to attend
the course, an invitation is given to potential Honours Maths students who
may wish to switch to Computing Science.

The course lasts for five afternoons; in fact, when the students
are available. In the three previous years when the course has been given,
the format has been simply:

(i) the first afternoon comprised a lecture on "Introduction to

Computing" followed by a programming aptitude test;
(ii) during the next three afternoons a programming language was
taught; and
(1ii) on the last afternoon a talk on "The Computing Science Honours
Course! was given, followed by a display of the equipment.

For the first two years, the language taught was ALGOL, the teaching
language of the laboratory. A punching service was provided and every
student was expected to have made at least one program run on KDF9 during

the week.

110

With the advent of Michigan Terminal System on the IBM 360/67, it
was thought that the students would benefit more by seceing their programs
entered from a terminal and the appropriate results and/or diagnostic
error nmessages returned. A demonstrater sat at a terminal and typed in
the students' programs. Upon detection of errors, the student indicated
his intention but when in difficulty the demonstrator was at hand to give
help. The language needed had to be a simple, easily~defined, terminal
language with good diagnostic error messages. That language was PIL.

It was intended to ascertain the validity of NUTS for use in CAI'
and to discover whether the use of CAI together with an on-line processor
vas feasible in the teaching of a programming language. Thus, the five
afternoon course for potential Computing Science studants seemed to
fulfil these requirements. Other reasons that recommended its use were:

(i) it was important that there would be a sufficient number of

students available to provide the required number of groups
yet at the same time that the groups would be small enough
. to allow the use of the small number of terminals available;
(ii) NUTS could easily be modified slightly so that PIL could
be called from the author language, instead of its being
available only by virtue of a NUTS command or a pre-determined
response;

(iii) the course was long enough to be able to make some broad
conclusions and recommendations for future use yet short
enough not to disrupt the use of the available terminals
in the laboratory; and o

(iv) although the cdurse'usually provides useful extra information

sbout potential Honours students, any untoward events during
the course would not disrupt the selection process as the

examination score at the end of the year is the vital factor.

111

The students were divided into three grounc:

(1) groun A, those who would have conventional lecctures followed by

the usual examplés class ~ the control group;

(ii) group B, those wlio would be riven lessons of CAT material

folloved by the same evamples clesses as group Aj; and

(iii) group C, those who would reccive the same instructional

material on the terminals as groun B but would then have
CAI examples classes in which the PIL interpreter would be
available to them on-line.

The list of enrolments for the course finally totalled 22, with 12
being nctential Computing Science honours students, and the remaining 10
potential Maths honours students who indicated their interest in the Comﬁuting
Science course. The fact that seven terminals were made available in the
laboratory for the week of the course and that almost all the students were
available until 1000 each day, determined the following timetable.

Group A: lecture 1400-1515, examyles class 1545-1700.

'Group BE: CAI lesson 1400-1530, examples class 1545-1700.

Group C: CAI lesson followed by CAI evamvles class 1530-1800.

Group A contained eight students and groups B and C seven each.

3.2.2 CAI content of the course.

The CAI course designed for three afternoons of the week consisted of
two ?arts; thét of three lessons which both group B and group C were given
and fhat of three examples classes which only group C received,

4The first difficulty experienced in coding the lessons was concerned
particularly with lesson one. It is a well known fact that students must
be taught quite an appreciable amount about a programming language before
they can attempt the easiest of problems. To teach PIL, the tovics which
should be covered before an e::ample may be attempnted are:~ a general

description of PIL, direct mode, arithmetic, logicals, simple I/0, indirect

112

mode with parts and steps and running stored programs. Consequently, care
has to be tzken not to make this first lesson excessively long particularly
since students in group B are expected to have been taught an equivalent amount
as those in group A when they start the first examples class. The greatest
difficulty was that the length of the first lesson could not be tested in
the pame conditions as the students would find, that is, seven terminals
running the course whilst the machine was being used with its normal load.

Another point to consider is that, owing to time considerations, any
questions asked the student have to be fairly simple and straightforward.
However, at the same time, as the subject content is rather high, the
instructional materiasl in this first lesson must be liberally interspersed
with pauses for reflections and questions for clarification.

Thus, for the most part, questions asked during that lesson are of
either multiple choice or simple constructed response type.

The second and third lessons dwell upon particular aspects of the
languagé and hence more advanced and therefore more interesting questions
can be asked. The second lesson contains: the IF statement, implied loops,
explicit loops and restarts. As a result, questions are asked of the student
that require entry of a PIL statement. This is checked by NUTS and not the
PIL interpreter. Another type of question included is that of following the
course of a series of statements (usually containing a loop) and supplying
values of variables at certain stages. The last lesson deals with character
strings, string functions and extended console 1/0. As in the previous
lessons, multiple choice and simple constructed response questions are used
but much more remedial branching is included.

During each lesson, the student receives a lot of feedback to his
responses. To ensure that he is not misled by having guessed the correct answer
each feedback message for a correct response usually reinforces the reason

for the success. Except for a binary choice, in which case an incorrect

answer is commented upon in full, an incorrect or partially correct response
usually rececives a hint as to its invalidity or incompleteness and the
student is invited to try again. At most, three attempts are allowed

befofe a full explanation is given. In addition to feedback messages for
each question, where there is a sequence of questions, the student is given
his score over the sequence, together with an appropriaste comment. Similarly,
over lessons as a whole, comments are made on scores for svch sequences.

Each of the three examples classes that group C are given contain four
problems. These examples are given in sequence but once at work on 2
- particular problem the student is given the freedom of learner control
(Grubb, 1968) to choose the next facility he requires. Decisions such as
when to use the PIL interpreter, what steps the problem may be divided into,
what hélp is needed next, when to attempt an answer, etc. are all left to
the student. The various paths that a student may take within a problem
are best described by a flow diagram (Figure 3.1).

Each double~lined decision box represents a decision stage for the
student. The decision stage of primary importance is that which the student
encounters immediately after the statement of the problem and to which he
returns frequently during the solution of the problem. There are four choices.

(i) INFO. This gives the student a numbered list of the sections

into which the problem may be logically divided. Such sections as
input of data, output of results, setting up a loop, etc. might
be included in the list.
(ii) PIL. This provides the student with the PIL interpreter. If
he wishes to ask for help or simply return to the primary decision
stage, he enters "MIS" to the interpreter. All hie source
statements will be saved in a file related to that particular
problem so that the next PIL request places them at his disposal

without re-typing.

114

statement of
problem

PIL
interpreter|

INFO

response
accepted

problem

explanation of

spec Imen
solut fon

NEXT

. next problem

Figure 3.1

statement of
problem steps

fvision numbe
plus L or P
INFO
ACK

\/

help element

/'

(iii) HELP. A secondary decicion stage is reached vherc the student

requests what typec of help he requires.

(iv) ANS. The student is ready to submit his answer to the prollem.
A constraint that he must have accessed the PIL interpreter at
least once is placed upon the student before his request to
enter his response is accepted.

During the HELP decision stage, the possible requests are as followvs.

(1) INFO. This gives the student exactly the same list as already
described. It is included within the HELP stage as the numbers

are required to obtain further help and it would be a waste of time
for the student to have to return to the primary decision stage
to obtain these.

(ii) A division number together with "L" or "P". The student may
obtain further information about a particular section of the
problem by stating the number given to that section by the INFO

- output. Two types of help may be obtained; help with either the
logic or the programming of the section of the problem. Thus,
either "L" or "P" must be given with the division number.

(iii) BACK. This merely returns the student to the primary decision

stage.

The request to enter an answer is treated as follows.

The response is accepted and tested for correctnéss. If it is correct, then
the student may choose to receive a specimen solution of the problem before
continuing to the next problem by entering SOLN or simply to proceed to the
next problem immediately by entering NEXT. If it is incorrect, the course
of action depends upon whether it is the first attempt at an answer or not;
for a first attempt, the stﬁdent is returned to the primary decision stage
but for a subsequent attempt, the student chooses to return to the‘primary

decision stage by entering BACK or to receive an explanation of the problem

116

followed by a specimen solution before proceeding to the mext problem by
entering EXFL.

To facilitate the running of the course by the students during the
week, certain additions and slight modifications were made to NUTS.

Normally, the PIL interpreter is available to the NUTS user either
through a NUTS command or through a predetermined response during a COURSE
command. However, in either case, statements are only stored in the one
Plﬁ file thch would become rather perplexing when 12 problems are to be
attempted. The course of action chosen was to provide the PIL interpreter
whenever the student requests it in the examples class and to supply a
separate PIL file for every problem. This entailed introducing a further
statement to the author language which simply called the FIL interpreter.
Also, this statement would include the number of the problem currently
being attempted.

_ As the student would not need any other facility but the COURSE command,

a version of NUTS was used which only allowed him to use that command.

2.2.3 The selection of the groups.

A number of factors influenced the choice of the groups. Ideally, a
selection based solely on the result of the programming aptitude test would
have been preferred but as the students varied also in background, availability,
etc., these factors also had to be taken into account.

Amongst other questions that appeared, the questicqumire given on day 1
asked the students whether they had any objections to taking part in a CAI
course, whethe~ they would be available until 1800 on days 2, 3 and 4 and
whether they had had any previous programming experience, stating, if so,
how much. No one at all objected to being taught by CAI methods so this did
not affect the selection. However, three students indicated their non-
availability to stay until 1800 (and hence be placed in group C) so they were
placed two in group A and the other in group B. Four students indicated

that they had had more than a week's programming experience and hence two

197

vere placed in group A and one each in both of the other groups.

Out of the 22 students enrolled, four were girls and these were placed
two in group B and one each in groups A and C. As mentioned before, 12
students were potential Computer Science candidates. These were divided
equally. Of the remainder, four were placed in group A and three each in
the ather groups. |

As the aptitude test was given on the first part of day 1 yet the
groups had to be decided later that day in order to explain the different
procedures involved for each group, there was a little difficulty involved
in marking the aptitude tests in time. However the scores derived, even
though some were later amended, formed the basis of the selection, after the
constraints mentioned above had been imposed.

To discover whether there was any significant difference between the
selected gfoups before the course, an analysis of variance on the corrected

aptitude scores was carried out.

Corrected Aptitude Scores. ' Totals Means
group A | 77 94 64 91 16 88 49 70 549 68.6
group B| 88 85 33 66 74 81 74 501 7.6
group C | 92 69 55 99 56 85 74 530 75.7

Analyesis of Variance Table.
source of variation sum of squares | degrees of freedom | mean square Ié 19
Gy L7

between treatments 188 2 94 <1
residual 8597 19 hs2
total 8785 21

3.2.4 The course log.

3.2.4.1 Day 1. Following a brief introduction in which CAI was only jﬁst
mentioned, the students were given a pre-course attitude questimmire.

Then, the ICL programming aptitude test was given lasting about 90 minutes.
Whilst the students were having a break, and then during the next short
session which contained & brief talk on computing hardware, including slides,
the students were selected for the different groups. After this they were

told of their group assignments and the procedure to follow in each case.

116

3.2.4.2' Day 2. MTS became operational at 1400, at which time everyone in
group B was told to commence. As at that time the students on the course
were not only competing against each other for the loader but with every other
user on the system, there was quite a delay before everyone got started.
However, the last student had commenced by 1415.

At first the response was not as good as expected. This was owing
to the fact that, even though the students were not using much CPU time,
they were causing a lot of paéing. The situation was greatly improved,
however, when other users who currently had a large virtual memory were
advised to leave their terminal and return after 1800 when the service
would get better.

Group B were allowed to continue until 1530 when they were replaced
by group C. As suspected, the first lesson was so long that no-one was
finished in the allotted time. Only one person managed to get into the last
gsection on program stops, four were at various stages of the section on
running stored programs, whilst two were involved with parts and steps.

As the first examples class relied on the student's knowledge of
parts and steps, the two students wbo had been unable to complete this section
were given the necessary information by one of the demonstrators. However,
both volunteered to return to a terminal after the examples session and,
in fact, comp&efed the lesson by the end of that day.

Despite the fact that the concept of CAI allows for self-paced
instruction, it was decided that, through lack of time, the response files
of some students should be updated overnight so that they would start on e
par with the other students the next day. This was only carried out
reluctantly and where essential, but when a student was skipped over any
part of the instructional material he was furnished the mext day with a
copy of the conversation he might have had with that subject matter he missed.

At the end of day 2, four group B students were updated in this manner.

119

The changeover to group C was effected in 10 minutes with the exception
of one student, who, it was found out after some t.:c, had got into a
system disk error loop. She eventually commenced at 1615.

The response remained about the same until 1700 when it becanme
progressively better owing to other users of the system going away. Even
though the students were only required to stay until 1800, two stayed until
1820 and a further two until 1840.

Only one student managed to complete all four examples wherecas three
were in the middle of the third problem. These three were moved on to the
start of the second lesson overnight. The remaining three, who were in
various stages-of the first example; . were moved on to the last two examples.
In all cases, sample output was given to these students whose response
~ files were manually updated.
3.2.4.3 Day 3. 1In order to get the students started more quickly, it was
arranged that only their terminals were to be activated for the first two
minutes of the MI'S session. This meant that they were able to load in
NUTS much more quickly as they were only competing with one another and hence
effectivély gained from five to ten minutes. Everycne in group B commenced
by 1410. The response was certainly much better than on day 2.

A8 it seemed more important to allow members of group B more time to
complete their lesson than to enable members of group C to finish all of
their problems, and, in any case, most of group C seemed willing to stay
later than 1800, group B were given the use of the terminals until} 1545.

In spite of this, four students returned after their examples ¢lass as ther
wished to get through to the end of the second lesson. However, they were
at no disadvantage during the class, as none of the examples involved work
introduced towards the end of lesson two. By the end of day 3, three
students had finished off the second lesson, two were almost finished the

last part of it and the remaining two were updated overnight.

120

As in day 2, the changeover to group C took about ten minutes. Tvo
students stayed until 1825 and snother two until 1845. Again, only one
student managed to finish off all four exsmples. Of the rest, one had
completed three problems, two were in the middle of the second problem
and the remaining three were struggling with the first one. Out of these,
the latter five were moved on by two problems.
3.2.bels Day 4. The start of day 4 was much the same as tiaat for day 3.
The students were again given preference over dther MIS users for about
five minutes and this, coupled with the fact that the¥ were becoming more
proficient at signing on and restarting the course, meant that they were able
to get started very soan after 1400.

The time for hending over to group C was made much more flexible on
~ day i, as it was the last lesson. Only one student finished the course
without interruption, and that was by virtue of staying on until 1600 with
the permission of the group C student who had finished all the examples in
the previous days. Two more students returned after the examples class to
finish off the final section on extended console I/0 but the remaining four
were simply given a copy of the subject matter they were unable to complete,
the next day.

0f the studenfs in group C, one had to leave at 1700 and hence was
unable to commence the last set of examples, let alone complete themj two
managed to finish off the four problems, but remained until 1850 to do so;
one student was on each of problem 2 and 3, whilst the remaining two were
struggling with the first problem. Copier o7 explanations and solutions
to the first two exampleé of the last set were distributed as necessary
on day 5.
3.2.4.5 Day 5. After the students were given a talk on the Computing
Science Honours course, they received a short test on the programming

language PIL. This was immediately followed by a post-course attitude

121

questionnaire for members of groups B and C whilst group A was given the
oprortunity to test on a terminal any of the examples thcy had written during
the week. When group B had finished the questionnaire they were able to
attempt examples on-line in the same manner.

Unfortunately, two students failed to appear for day 5 which was the
last day of term. As a result, information regarding their post scores
and post attitudes is unavailable and thereforec affects sone of the data
described in 3.3.
3.2.4.6. In peneral. Over days 2, 3 and 4 as a whole, the following general
observations were made.

There simply was not sufficient time to allow the majority of the
students to complete the course at their leisﬁre. One great advantage of

CAI is that it provides individualised instruction, which, in itself,

produces a self-paced situation. Consequently, a trade off had to be made
so that the student was not deprived of any vital information. He was
vupdated vhere necessary to the more important parts of the lessons while
the missing material was provided in handouts.

‘Some students who considered the system quite slow in analysing
responses and restarting after pauses did not pause when they were given
the opportunity. They used the time taken for the restart to take effect
after a pause to read the subject material.

A careful study of the studeﬂts' response files was made for cases
in which either the student was not given credit for a correct answer or
he was not given assistance when he had made a common incorrect response.
However only two cases of note were found and & later version corrected
the anomolies.

Studying the students' response files also revealed that the response
times for the questions asked in the section which describes boolean
variables and expressions were much higher on average than any other section.

This would suggest either that the material displayed was of poor quality or

22

that ruch more time should be spent on such a difficult aspect of a

programing language.

-
[§S;
we

3.3 Data obtained from the course and discussion of the resulteo.

3.3.1 The Pre-lcst.

The pre-test given to the students was the ICL QUIS (Questions Using
Instruction Sequences) programming aptitude test. A description of the
test and its reliability followed by the reason for its choice in this
context appear in this section.

3.3.1.1 The QUIS aptitude test. The test is designed to assess a student's

ability to do programming work. It may also be valuable in helping to select
operators since it is_expeéted that an operatof should at least be able to
understand programming and to form simple programming sequences.

The test incorporates a number of problems vhich can be solvéd

following the acquisition by a student of a carefully designed procedure
and certain rules to be fbllowed in preéenting solutions. Thus, solutions
must be presented in a clearly defined logical framework.

- ICL feel that the test offers the following advantages over the normal

type of intelligence test:

(i) . a variety of response is permitted to each problem, to give better

opportunity to the creative worker;

(ii) each problem requires a significant amount of thought and analysis

and it is impossible to provide a correct solution by luck;

(iii) the test is not only of ability to solve problems but also of
ability to comprehend and apply a simple 'programming language';
and

(iv) since each solution has to be developed and presented in a number of

sequential steps, the solution reveals not only whether it is correct
or incorrect but also shows how errors have been made and also

the economy of correct solutions; thus, it is possible to use a
marking system which cen award marks for solutions of various

quality.

The procedure for giving the test is as follows. Studentis are given
a booklet which describes the nature of the problems and explains how
solutions are to be presented, emphasising the special rules which have to
be followed. Examples are then worked by the students to femiliarise
themselvee with the technique. The actual test contains ten problems and
one hour is allowed for it.

3.3+1.2 Reliability of the test. For several years, students who have taken

the Joint Honours course which includes the Computing option have been given
the QUIS test at the beginning of the course. Their results have since

been compared with their eventual showing in the examination at the end of
the year. As the aptitude test is designed to test ability to do
programming work, the scores were compared with the results of the practicel
examination only. The scores are availéble for the last two years and
exclude those students who have either seen the test before or are repeating
the year. Exactly one hundred student scores are to hand and are included
in the following analysis (see Figure 3.2).

Analysis of Variance Table.

source of variation Sum of squares Degrees of freedom mean square Eyaluéj
:due to regression 789 1 789 1.3
2 parallel lines versus -

1 single

line (between years) 793 1 793 11.3%*
residual after fitting 2

parallel lines 6788 97 7 /
total sum of squares | 8370 , 99 / /

The tabulated F value on 1 and 97 degrees of freedom is 7.0 at the 1%
level; Of lesser importance is the fact that there is a significant
differepnce in performance between the two years. The main conclusion is
that the dependence of a student's practical examination score on his
pPrograzmming aptitude score is significant at the 1% level, which suggests

that the test may be en estimate of programming ability.

125
Graph of practlcal examinatlion score against QOUIS score

for Joint Honours students.,

Figure 3,2

\ o~
\\L.
\\m
1
<
\
X
1
© X
0] (0]
. X o
% 0]
O X
©
X X o ©
© 3
. (o]
(0]
o x X o
o)
X
b g
X
(o]
- N o
- &
8 ©
0 o
P-S >
w n
QO o
o
&) ©
c
Q [}
T v
© X
J‘ (1 1 - |
T i T
o o o \\) \\
- 4 M ()] -4

QUIS score

100

80

20) 60

4

126

3.3.1.3 Choice of the test for this course. The results quoted above

for the reliability of the QUIS test are based on observations taken

at an interval of nine months. During this time, how hard the student worked

on his.programming problems contributed to his examination score. 1In the

case of the PIL course, the post-test was to be given in the same week as

the QUIS test so that such factors as loss of interest and interference

from other sources would not affect fhe validity of the test as much.

This fact, together with the fact that the course was in particular about

a programming language suggested strongly that the QUIS test was a good
choice in this situation.

303'2 The pOSt—teSt.

The posf-test was designed with the thought in mind that if it were
either too easy or too difficult then not & sufficiently large spread would
be obtained in the scores. Also, the test had to determine the students'
comprehension of what they had been taught during the week as well as their
ability to understand simple programming techniques. To this end, the
categories of questions that were considered necessary were factual questions,
expression evaluation, simple program tracing and simple program writing.

The actual questions that appeared are contained in Appendix B,
together with the marking scheme adopted. Thus, the marks allotted to the
four categories mentioned above are 18, 38, 16 and 28, respectively.

3.3.3 Analysis of the scores for the pre~test and the post-test.

‘'We are concerned with the use of the analysis of variance technique
to compare the post-test scores for the threr groups, the dependent
variables, Yy , when the effects of differences in the values of some
underlying, independent variable, & , the pre-test score, have been
eliminated. The object is to allow the comparisons between the values of
the dependent variable to be made more accurately. In other words,

comparisons of the effects of placement in a particular group on the post

-
o
~3

ecore of a student may be made more accurately if the effccts of uncqual
initial aptitude score are eliminated. Mcasuremci:its of this type which

may be used to account for some of the variability in Y have been called
‘concomitant' observations. It is important that the values of concomitant
variablesare not affected by the treatments which the experiment is designed
to compare. Obviously, in our cese, this is satisfied.

The basic assumption is that within each homogencous group there is a
linear regression of Y on * with the same slope and with normally
distributed errors of constant and equal variance for all groups.

The fbllowiné table gives the scores obtained for both tests. A linear
transformation has been applied to the pre-test score. This will not affect
any calculations but as the transformation has the result of giving the
rre-test scores the same mean as the post-test scores then the effect is
that comparisons of the groups and of particular students '"by eye" are made
far easier. Graphs of post-test score against pre-test score for groups
A, B and C are contained in figures 3.3, 3.4 and 3.5, respectively.

Two students failed to appear for the post-test and hence are not
contained in the analysis. Their respective aptitude scores (transformed)

were 43 for the missing group A student and 64 for the missing group B student.

T GROUP A B (v -
Variable |y(post score) x(pre score)y = ' y =
» 73 67 43 77 57 80
79 82 57 74 70 60
61 56 77 29 73 48
Observation 67 79 58 57 51 86
: 34 14 90 70 66 49
66 - » ho 64 74 7is

e W6 Vb9 6% |

Ty,i| 421 365 481

Totals Th. K36 371 461

Total number of observations, N = 20. Number of treatments, k = 3.

128

Graph of post-test score agalnst pre-test score for group A,

post-test
score

4
100

80 ‘ ' o

60 .

Model 2

0]
40 T
///
20 -
0 } } } t
0 20 40 60 80

pre-test score

Flgure 3.3

Graph of post-test

post~-test
score

100

40

]

L.

T

Model 1.

129

score agalnst pre-test score for group B.

20

Figure 3.4

L0

L)

60
pre~test score

{
——

80

130

Graph of post-test score agalnst pre-test score for sroup C.

post~test
score
100 L

~
\Mo‘dej\ 1

80

601

40

20

L — 1 |..
} 1 1 |

0 20 50 60 80
pre~test score

Flgure 3.5

151

The following statistics were computed.

P A . B | ¢ total |
| Zy* 26973 | 24091 34011 85075
Tqi Lo1 | %65 L84 1267
(¢35 | 1653 | 1887 959 4459
=<t 20436 | 24491 31673 | 86600
Zx: 436 371 461 1268
(=)} 3279 | 1551 1313 6143
Zxiy; 281327 21928 | 31120 81185
u;ﬁ- 1915 ~641 | =557 717
B 0.5840 - -0.4133 -0.4242 /
Gupdi 7/ () 1118 | 265 236 1619
| T 7| 0.8226 | -0.3746 pO.hgek | /.

Residual sum of squares after fitting 3 slopes, R (2 , é\,)
= 4499 -~ 1619 with (N-2k) d.f. = 2880 with 14 d.f.

Residual sum of squares after fitting 3 parallel lines, R (x , f'i)
= 4499 - %1%3 with (N-k-1) d.t. = 4415 with 16d.f.

143
These give the following analysis of covariance table.

source of variation degrees of freedom | sum of squaree mean aq_gggg'
3 different v 1 common slope
(within groups) 2 1535 768
residual after fitting 3 slopes
(within groups) 14 2880 206
residual after f:.tt:.ng 3
| parallel lines 16 k415 /

Tabulated F, b at the 5% level is 3.7. Thus, as the derived F-statistic
is equal to the tabulated value at the 5% level, we may reject the null
hypothesis that within each group there is a linear regression of 'j’ on x
with the same slope and suggest that the treatment effects differ
significantly. The fitted regression equations are:

0.5840x + 23.76

]

Eroup A : Y
~0.41332 + 86.38

groupB : ¥y

group C : ¥y = -0.hk242x + 96.65
Standardising at the most convenient pre~test score, 63.4, the overall mean,
the adjusted estimated post~test scores become

group A : 60.8

group B ¢ 60.2

group C : 69.8

From the fitted slopes, it appears that the difference between groups
is caused by group A exhibiting a different effect from both group B and
‘group C. Standardising at the pre-test mean, the post score for group C
appears higher than those for groups A and B but as the slopes are so
different we must ‘introduce a different model to attempt to compare the
group effects further.

In the above model we have

Ei%z;l“} = ‘}*ﬁ}(*"i) for j =1, 2, 3.
This gave a residual with 14 degrees of freedom as we estimated 6 parameters.

The second model is

E {g,;ﬂ,g} = Y+ 5} (3";) for § =1, 2, 3.
In other words, at the overall mean, the intercept is the same for each
group and the residual will have 16 degrees of freedom as we are estimating
L parameters.

Residual sum of squares after fitting 3 slopes with a common intercept,

R (? , 3) = 3261 on 16 d.f., which gives an estimated variance of 20k4.
Adding a further line to the analysis of covariance table we get that for
3 different versus 1 common intercept (within groups), mean square = 190 and
degrees of freedom = 2. This estimate does nmot give a significant result.

From this analysis we may conclude that the positive response given by
group A differs significantly at the 5% level from the negative responses
given by both group B and.group C.

We might calculate the estimate of the missing score from group B.

The secﬁnd mou2l gave:
g« 6369 , ver 18} 10,3
g = 0.5907 ,var{83=0.0620
§,« -o.302b ,var¥83r0.1306
g; = «0.3475 vart gs} * 0.1521

Thus, ﬁi}l x = 64, group B’} = 63.46
and the 95% confidence interval is (56.17.70.75).

3
N
W

3.3.4 Responses and their relation to performance.

Examination of the students' response files returns totals for the

number of questions the students from groups B and C answered during the

CAI lessons and the number of these questions that were answered correctly

first time. The main reason. why different students answered differing

numbers of questions has been mentioned previously.

It is that there was

insufficient time to allow all students to come to completion at their

own pace. In addition, some students took slightly different routes through

the course and in some cases this produced a different number of questions.

From this data, it was hoped to show that there was no evidence to

support the assumption that students who had been in a pasition to attempt

more questions, and hence seem more of the course actually on a terminal,

might do better in the post-test.

In other words it was hoped to determine

whether the handouts given when the students were unable to complete the

lesson had had the desired effect of suitably replacing the conversation

for which there wag insufficient time.

Also, it was hoped to find out if a relationship existed between post~

test score and percentage of questions answered correctly at the first

attempt.

The observations were:

post-test score number of questions attempted % right first time
b3 k9 57.1
57 68 63.2
7?7 63 61.9
58 47 63.8
90 53 67.9
Lo L8 k1.7 !
57 59 5943
70 74 66.2
73 87 57.5
o1 89 69.7
66 80 57.5
74 61 63.9
% 89 69.7 |

A regression analysis was performed against both the other variables

in turn. The observations were treated as coming from one source, not two

134

separate groups as, no matter in what group the student was placed, he still
received identical CAI lessons. Graphs of the post-test score against the
nunber of questions attempted and the percentage right first time are
contained in figures 3.6 and 3.7 respectively.

The analysis of variance table for the regression of post-test score

against the number of questions attempted is:

source of variation | degree of freedom sum_d—g ;qtza—res n;ean square F1 11
— JOVRSUNDUIE U (SRR N S
due to regression 1 80 380_ 1.6
| deviation about regression | 11 2667 1 242 | /. .
total)] 12 3047 / /
The tabulated value of F, 11‘ at the 5% level is 4.8. Thus, we may conclude
9

that there is no significant dependence of the post-test score on the
number of questions attempted. This suggests that the handing out of
simulated dialogues to some students owing to insufficient time did not
adversely affect those students' performance in the post-test.

The analysis of variance table for the regression of post-test score
against the percentage of questions answered correctly at the first attempt

is

source of variation | degrees of freedom| sum of squares| mean square| F 1
. A

|_due to regression 2 1079 1079 -0
deviation about regression| 11 __ 1968 179 /
total 1 12 30h2 /

The equation of the fitted line is ¥ = 1.279% = 13.57;

X)
estimated S.E. {p} = 0.5207, 95% confidence interval for p is (0.133,2.425);
correlation coefficient, <~ = 0.595.

As the F value exceeds the tabulated F statistic at the 5% level,

1,11
we may conclude that the post-test score may be estimated from the percentage
of questions answered correctly first time using the above linear

relationship.

Using this to estimate the missing group B post score, we have:

E{ylx=52.73 = ¢2.79;

135
Graph of post-test score agalinst percentage of questlons

answered correctly first time.

90 © O

post~ ;
test i
score

W
P“I

40 50 60 70
¢ correct flrst time

Flgure 3.6

136

Graph of post-test score agalnst number of questions answered

during the CAl lessons.

90 | ©

post-
test
score

50 _L_ o
Q)

40 T O]

'35 } } i i +
50 60 70 80 90

number of questlions attempted

Figure 3.7

157

estimated S.E. ié(n& [x= ‘5‘?."?)){ =3.717;
and the 95% confidence interval is (54.49,71.09).

3+.3.5 Response times and their relation to performance.

In addition to information about the number of questions attempted,
a search through the students{ response files also furnishes datla on the
time for every response and how many responses were made (as opposed to
how many questions were set). from this data, it was hoped to ascertain
vhether a relationship existed between post-tes§ score and any one or more of:
(i) average response time for the first attempt;
(ii) average response time over all responses;
(iii) average response time per question, summing times over all
attempts; and
(iv) ,(v) and (vi) their inverses.

The observations were:

post-test | no. of questions| no. of total time | time for first
score attempted attempts (sec) responses (sec)
made
b3 ko 65 Li26 3242
57 68 92 5984 4913
77 63 84 6905 4982
58 47 7 5325 2680
90 53 72 274 2396
4o 48 82 72418 4510
57 59 76 6631 5128
70 74 90 7N 6653
23 - 87 1 122 6188 5115
51 89 113 8082 6715
66 80 102 4199 3447
74 61 83 6158 4599
9 89 ' 14 ks 3821

From this table, & regression analysis was parformed on the post-test score

against each of the six variables tabulated below.

138

e

post~- | av. time | recip. of| av. time |recip. of | av. time | rccip. of

test for av, time for av. time per ave. time

score first for first all for all questioni per
response response; responses responses‘ | question
(sec) |(x 10-2530“1) (sec) | (x 10-25‘?9&’_‘.2.__(_.‘?7?.‘:.). (x J_ijf?fi-i.)m

L3 66.2 151 68.1 147 90.3 111

57 72.3 138 65.0 154 88.0 114

77 79.1 126 82.2 122 109.6 91

58 57.0 175 71.0 14 113.3 88

30 45,2 221 59.4 168 80.6 127

Lo 94.0 106 90.5 1M1 154.5 65

57 86.9 115 87.3 115 112.4 89

70 89.9 111 86.3 116 105.0 95

73 58.8 170 50.7 197 71.1 141

51 75.4 133 71.5 140 90.8 110

66 43,1 232 4.2 243 52.5 191

74 75.4 133 © k.2 135 101.0 99

90 k2.9 233 39.1 256 $0.0 200

Graphs of the post-test score against each of these six variables in turn are
contained in figures 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13.

3.3.5.1 Regression of post-test score against the average time for the first

response to a question.

source of degrees of sum of mean square F1 1
variation freedom squares !
due to

regression 1 875 875 bob
deviation abdut

regression 11 2172 197 /
total 12 3047 / ./

As the tabulated value of F at the 5% level is 4.8, the result is not
. ’ L}

1,1

significant. Hence, we may conclude that there is a suggestion from the
data that there is no linear relationship between the post-test score and
the average time that the student took to make his‘ first response.

3.3.5.2 Regression of post-test score against the reciprocal of the aver:..e

time for the first response to a question.

source of Idegrees of freedom sum of ' mean square F1 1
variation squares '
due to

regression 1 987 987 2+3
deviation about

regression 1 2060 187 /
total 12 3047 / /

139

Graph of post-test score agalnst average time for first resporso,

90— o o
post-
test
SCcore

70~

60

-

50T

40 - C

1 | | | |
40 50 60 - 70 80 90
average response time for flirst attempt (sec.)

Figure 3.8

140

Graph of post=-test score agalnst recliprocael of average

time for first response.

90

post-
test
score

Q]
4o —
L
35— { | % 1
90 120 160 200 240
reclprocal of average time for flrst response
-2 -1

Figure 3,9 (x 10 sec,)

14l
Graph of post-test score against average time over

all responses.

90 +~ o o}

post-
test
score

m-

70 —

60 _|

0,
50 T
©
40 | ~ ©
35- : | % % % 1—
40 50 60 70 80 90

average time over all responses (sec.)

Figure 3.10

142
Graph of post~test score against reciprocal of the average

time taken over all responses.

90 |

post~-
test
score

50 | ©
0}
40 — O
35 . l ! l
100 120 160 200 240
reciprocal of the average time taken
-2 -1

Flgure 3.11 (x 10 sec,)

143
Graph of post-test score against average total response time

per question answered,

90 o)} o

post-
test
score

}] | |

i | |
4D 60 80 100 120 140 160
average time per question (sec.)

W
"

Figure 3.12

14y
Graph of post~test score against the recliprocal of the

average total response time per question answered.

90 +- o) o

post-
test
score

(o
50 =
0]
40 40
35 : } % t
60 80 120 160 200
reclprocal of average total response time

-2 -1
Figure 3,13 (x 10 sec.,)

s

The fact that the F value obtained is significant at the 5% level tends to

suggest that the post-test score may be inversely proportional to the

average time a student takes to make his first attempt.

The equation of the fitted line is

= 0.1989 x + 33.81;

estimated $6.E. E&}=0.0‘%6' 9%% confidence interval for is (0.0084, 0.3894);
?

correlation coefficient, ¥

= 00569.

Using the above relationship to estimate the missing group B post

score, we have:

EQylrs 1SUdbl bl ; estimated S.€. LE(ylem150)3 - 3. 81,

95% confidence interval is (56.07,72.81).

3.3.5.3 Regression of post-test score against the average time taken over

all responses made.

source of degrees of sum of mean square F
; 1,11

variation freedom squares
due to

|_regression 1 705 705 33
deviation about

|__regression - 11 2342 213 /
total 12 3047 / /

The F value derived is not significant. Thus, the data suggests that no

linear relationship exists between the post-test score and the average

response time taken over all responses made.

3+.3.5.4 Regression of post-test score against the reciprocal of the

average time taken over all responses made.

source of degrees of sum of mean square FH 1
variation freedom squares '
due to

regression 1 726 726 3.4
deviation about

regression 11 __2321 211 /
total 12 3047 / /

The F value obtained is not significant.

Hence, the data suggests that the

post-test score is not inversely proportional to the average response time

taken over all responses made.

146

3.3.5.5 Regression of post-test score against the average total responsc
time per question answered.
source of |legrees of | sum of squares | mean square | F_
s 1,11

variation freedom
due to N

| regression | - 1 961 _ S-S I N 2%
deviation about

. .regression 1 2086 190 L]
total 12 3047 / /

The derived F value is significant at the 5¥ level. This tends to suggest
that the post-score may be directly proportional to the average total
response time per question answered, with negative gradient.

The equation of the fitted line is Y = -0.3231 ¢ + 95.38;

estimated S.E. ié} = 0.1437; 95% confidence interval for ﬁ is
(-0.6392, -0.0070); correlation coefficient, ¥ = -0.562
Using the fitted parameters to estimate the missing group B post score,
we have:
éi_g,lx- 76.7] = 69.95; estimated s.n.ié(g.l:a 79 = 4.39;
95% confidence interval is (60.29,79.61).

3.3.5.6 Regression of post-test score against the reciprocal of the

average total response time per question answered.

source of degrees of sum of squares mean square F1 11!
variation freedom Y
due to l
regression 1 810 810 4.0
deviation about

regression 11 2237 203 /
total 12 3047 / /

The F value obtained is not significant.

Hence, the data suggests that

no inversely linear relationship exists between the post-test score and

the total response time per question.

3.3.6 Performance of group C students during examples classes.

Section 3.2.2 outlines the structure of the examples classes which

group C students were given on terminals.

The students' response files

contain all the information about which choice they made at any of the

decision stages

+ Of particular interest are the numbers of times the

INFO and HELP facilities were used during solution of the nroblems.

147

The following table shows for each student:
(i) the fraction of the number of questions he answered in which
he requested INFO (maximum 1.00);
(ii) the average number of HELP elements he received per answered
' question; and
(iii) the fraction of the number of questions he answered correctly/

incorrectly with/without HELP.

INFO HELP correct with | correct with | wrong with | wrong with

| _requesis | elements | no help help no help help
.0.50 0.75 0.25 0.25 0.25 0.25
0.75 1.00 0.50 o 0.25 0.25
0.67 0.83 0.33 0 0.33 0.33
0.29 0.43 0.86 (o] o 0.14
0.43 0.86 0.71 0.29 o 0
1.00 3.25 0 0.75 ¢ 0.25
0.50 0.41 0.83 ‘017 0 0
[overall]0.50 0.89 0.59 0.18 0.09 0.14

The discouraging part of this data is that on average INFO was
requested for only 50% of the questions attempted by all students and the
average number of HELP elements accessed was 0.89 out of, on average, 8
such eleménts per question. However, this may be explained by the fact that 59%
of all questions attempted were answered correctly without any assistance.
0f the 41% remaining, 18% were answered correctly after assistance but only
9% were answered incorrectly without any help at all. This 9% is made up
by 3 students only.

An attempt was made to give an example class score to each of the
students, based on such items as whether they answered questions correctly,
whether they ¢iked for HELP or INFO, and whether they made more than the
minimum number of attempts required. The rationale for deciding the
scoring scheme was as follows. For a correct response:

(i) with no assistance, 20 marks;

(ii) 3if INFO was requested then 4 marks were deducted;

(1ii) if HELP was requested then 2 marks per elements were deducted;

(iv) so long as the response was eventually correct, the student

was not penalised for extra attempts; and

e Mae) o n lannm wee wlored an tha aenre fAr 8 fAarract anawer. 10 marks -

148

this mezant that only the first three HELP elements warrant a
deduction.
For an incorrect answer:
(1) each additional attempt over the minimum of two gained 2 marks;
(ii) a reqﬁest for INFO gained 3 marke;
(iii) each HELP element added 1 mark; and
(iv) a ceiling of 9 was imposed which meant that only the first
four HELP elements affected the score.
This scheme was applied to each question attempted and the average over
the number of questions, converted to a percentage, was attributed to each

student. The scores were:

post-test score fitted examiles class score
57 49
70 60
73 50
51 85
66 86
74 L8
90 83

The correlation coefficient for these scores is -0.0001. Consequently,
ve may cénclude that the examples class scores that were fitted have no
bearing whatsoever on post-test scores. A scatter diagram is shown in
figure 3.14.

3.3.7 The attitude questionnaires.

Much information on the student's ability and performance is given
by the results of the programming aptitude test and the post-test and by
examination of the students' response files for the course. However, to
gain such valuable data as the students' attitudes to the course, both
beforehand and afterwards, their change of opinion on certain aspects

over the week and their assessment of the structure, content and

post=-
test
score

80

—

60

Lo _

35

149

Scatter diagram of post-test score agalnst fitted

examples class score.

45

i |
60 70 80
fitted examples class score

Flgure 3.14

150

presentation of the course, two questionnaires vere given. Unfortunately,
owing to lack of suitable sets of subjects and time before the course
itself, it was not possible to arrange a pre~-trial for the questionnaires.

The first quesfionnaire was given immediately on commencement of the
course on day 1. All thét the students were told was that some of them
were to receive the course from a typewriter terminal - they were not
"sold" the advantages of CAI. Also included in this questionnaire were
such questions from which selection of the groups could be made.

The second questionnaire was given on day 5 after the instruction had
been completed. Only groups B and C were given it as the questions were
not applicable to those taught conventionally since the questionnaife
assumed the experience of a CAI course.

The results of the questionnaires are contained in Appendix C. For
questions which seek a comparison of attitudes before and after, the
response matrices follow the two questionnaires. The results are divided
into sub-totals for each group. For the pre-questionnaire, the grand
total includes ﬁhe answers recorded for the two students who did not
attend day 5.

3.3.7.1 Pre-course attitude.

Before the course, the students were asked their opinions on various
aspects of their‘impending use of terminals for the course. The vast
majorify regarded their typing as being too slow yet about the same
number decided that they would not be inconvenienced in having to wait for
the course materiel to be typed out. Similarly, mostAof them thought tha*
listening to a typewriter for an hour or so would do their mental health
no harm at all. It was no surprise, therefore, that only a small fraction
bad a preference for a noiseless, swift visual display instead of a
typewriter, since, in addition, nearly everyone thought that a hard copy

of notes was essential.

151

At this stage of the course, a lack of confidance and glight
apprehension of the unknown was apparent. Three quarters of the students
thought that being taught in a definite sequence of topics rather than
having a choice of their own was preferable and just over half the total
suggested that twé people seated at one terminal would be a better idea

than individual instruction.

3¢3.7.2 Post-course attitude. Having been subjected to CAI for three
afternoons, the students were able to form a preliminary appraisal of the
method of instruction. On the statement tﬁat the method was too impersonal,
both groups were split down the middle. However, over half of the total
agreed that this would not be the case if CAI sessions were reinfcrced

with small tutorial classes.

As for the structure of the CAI course, only 15% of the students
indicated a preference for multiple choice questions as opposed to
questions where they were asked to construct their own response. For
feedback mességes, two-thirds preferred something more than just an
1mpersonai “yes" or '"no". One out of this majority suggested ‘'if (the
response is) correct, just pass on; if incorrect, (give) an explanation'.

Group C students were split on whether they preferred the structure
of the lessons, which was predetermined, or the structure of the examples
sessions, where learner control techniques allowed them some degree of
freedom. However, in the examples classes, they all agreed that tﬁe igea
of requesting the help they wanted, not what the machine thought they
wanted, was most desirable, although, in detence of the infrequency of
use of the heip facility, one student added 'l suggest that the word
Yhelp" be changed to M"advice' and we mﬁy have used it more'.

3e3.7.3 Change of attitude over the course. The most striking change

~ of attitude encountered was certainly that concerning the preference of

lectures to other methods of teaching. Out of the group B students,

four originally preferred lectures but afterwards only one was of the
same opinion. In group C, all showed preference for lectures at first,
but half of these changed their mind after the course. The reason for
this change of heart seems almost certainly to be that the attractive
features of CAI, such as self-pacing, individualised learning, etc.,
have impressed themselves on the students, although one wonders how much
the novelty effect has had on both their performance and attitude.

The students' views on the relative effectiveness of lessons and
practical classes provided a further comparison between conventional
problems classes and those on a terminal. Out of the six students in
group B, four originally estimated that they learned more from examples
classes than lessons but two of these changed their mind while one of the
others changed the other way. This result is about what was expected,
as the examples class structure was already well known to them. In group
C, all the students initially considered examples classes more fruitful
but after the course two-thirds had had a change of opinion. This may
possibly be explained by the fact that by and large group C did not have
enough time to complete their sets of problems each day. Also, unlike
conventional examples classes with a demonstrator, they suffered from
not being able to ask specific questions, perhaps about theory, rather
than just access predetermined help messages.

There was quite a shift of opinion on whether CAI courses would
be enhanced if two students sat at one terminal. Originally, seven out
of the thirteun students thought this way but only one of these did not
change his attitude. Another student experienced a change of opinion in
the reverse direction. This tends to suggest that the experience of a
CAI course is not so frightening as at first thought. Perhaps it was
realised.that the questions during the lessons were not too difficult

and adequate reinforcement was given on incorrect responses.

153

On the question of whether it is preferable to be taught in a
definite sequence of topics rather than have a choice, which group C had
the opportunity to compare in the light of their experience, five out of
seven originally chose definite sequences but two of these changed
their preference'after the course. This shift in opinion may be explained
by the students' preference for the freedom that learner control techniques
offer. |

Some interesting changes of attitude were recorded with respect
to the interface of student and machine, the typewriter terminal.

All of'group B originally reckoned that their typing would be too
slow but two-thirds of them changed this opinion. All but one of
group C had similar misgivings beforehand but half were converted during
the course. The reason for this change was probably that during the
course typing was at a minimum, despite the fact that there were not many
multiple choice questions included. Quite a few responses required |
single-value constructed replies containing only a few characters.

As for the irritation that listening to & typewriter for an hour
or so at a time might cause, only three out of the total of thirteen
thought it would bother them, but afterwards they changed their minds
completely.

Discussion of the nuisance in having to wait for the course material
to be typed out brought differing overall responses from the two groups.
Originally, group B all thought that it would not cause them annoyance
but two-thirus of them changed their opinion afterwards. With group C,
only one student expressed concern at first. After the course, there
was no change in opinion at all. Two reasons spring to mind for this
state of affairs. As the operating system tends to improve after 1630 or so,
group C tended to have better performance from the machine on the average.

Also for some part of their course, the problems classes, the environment

154

is somewhat different. They are not waiting to see what happens next,

but only request as much as they want and when they want it. This lcarner

control aspect may be very important when trying to assessstudent attitude.
The inadequacies of the terminal typewriter seem to be amply

compensated for by the fact that printed notes are generated. Only two

out of the thirteen stated that they originally had a preference for a

noiseless, swift, visual display even though it would not give a hard

copy but even these students were converted during the course. As one

student remarked, 'Hard copy is essential'. ‘

3.3.7.4 The structure of the course and the performance of the system. Much

information was gathered as to the possible structure and content of
future courses.

Of the thirteen students who received CAI lessons, only one thought
that the notes he had received were poor. However, the students' opinions
on the subject content, as far as volume is concerned, varied widely. An
equal proportion, almost, suggested that there was too much, insufficient
or about the right amount of subject matter. As for the number of worked
examples in the lessons, slightly over half the students considered that
there were about the right number, but one thought that there were too many.

Only one student considered that there were too few questions asked
during the lessons; the rest were quite satisfied. So much so that
everyone thought that the level of difficulty of these questions was about
right. However, about two-thirds of the total suggested that in some
instances they just did not gather what was required of them.

Slightly over half the students considered that feedback messages
appeared with the desired regularity,.but, of the others, there was an
even split with opposing views. As for the receipt of overall scores on
sequences of questions, again slightly more than half were satisfied that
this information was given about the right number of times but, of the

remainder, the majority would have preferred more performance data.

125

Only one student considered that the Y“pauses!' did not allow him to
proceed at his own pace but eight thought that the number of "pauses" was
too large. This may be attiributed to the fact that all the students were
of the opinion that the response from the system was too slow. In fact,
one student suggested that fewer "pauses" would help overcome this particular
difficulty.

As was quite apparent from the response files, everyone suggested that
more time each day would have helped greatly, although three students did
not.believe that three days was too short for such a course.

The majority of group C students considered four questions in an
examples session was too many but the rest thought this was the right number.

3.3.8 System performance during the course.

The following tables represent to what extent the PIL course used the
computer during the three days of instruction.

The first table compares usage between the total number of terminal
users in the day, that is from 1000 to 1200 and from 1400 to 2000, and
groups B and C, wiﬁh respect to average terminal elapsed time, average
CPU time, average virtual memory integral (VMI) in the CPU state and
average virtual memory integral ih the wait state. By and large, group b
used the terminals from 1400 to 1545 and group C, together with the
occasional group B student for part of the time, from 1545 to 1830.
However, in this table, there is no confusion between entries for group B
and for group C.

The second table'compares the average total number of virtual pagec
on the drum with the average number used for the course, taken at quarter
hourly intervals. The two periods of comparison represent those times
Just specified, for group B alone and for mainly group C with one or two
group B members. To obtain a rough estimate of the number of students

from the course using the terminals over these periods it may be noted

156

that if only group B students used the machine about 210 virtual pages
would be needed whereas if only group C students were considered this
would be about 300 virtual pages. During the course of instruction there

were seven students in each group.

sessions | number of | av. elapsed | ave CPU | av. VMI |av. VMI wait
sessions time time CPruU
(min) (min) (page-sec) (page-sec)
all 266 31 0.55 981 42907
day 2| group B 10 62 0.4 819 107400
group C ? 174 1.22 2859 L05286
all 201 22 0.5 97 L5601
day 3| group B 11 69 0.50 877 121545
| group G 7 158 1,18 | 3275 Lho7s
all 281 32 0.51 920 L4617
day 4| group B ' 8 89 0.71 1247 157002
group C ? 160 1.34 3390 417857
time ave. total av. virtual memory | ratio
virtual memory for course .
(pages) (pages) %)
day 2 1400-1545 676 ' 187 28
1545-1830 | 696 278 Lo
day 3 1400-1545 595 209 35
1545-1830 749 3h4 46
day & 1400-1545 700 208 30
1545-1830 679 287 42

The most interestiné observation is that, whereas the average elapsed
time of a group B session is about twice that over all sessions, the
- CPU time used is of the same magnitude. Similarly, average elapsed time
of a group C session is about five times that over all sessions but CPU
time used is only twice as much. This confirms that CAI programs require
& much smaller ratio of CPU time to elapsed time then the "average" job.
The reason is that such programs are concerned mainly with input/output
and only need a small amount of computing for response matching and
conditional branching from time to time.

In contrast to thg emall amount of CPU time needed, the students on
the PIL course were eaéh required to have a considerable amount of virtual
memory. In the case of group B, each student had a constant 30 virtual
rages throughout the course. A group C student needed 40 when he started,

then up to 50 by the end of the course. This is explained by the fact

157

that the PIL interpreter was available to him in addition, and use of
successive PIL files to store the examples necessitated more and more
work space for the interpreter. The figures given for the VMI in the
CPU state and the VMI in the wait state provide interesting comparisons.
For group B, whose sessions are twice the length of the average session
but only use the same amount of CPU time, the VMI in the CPU state is of
the same order but the VMI :in the wait state is about three times as
great. This suggests that even though the same virtual memory is being
efficiently used, more is being required just to sit on the drum waiting.
For group C, whose sessions are five times the length of the average
session but only use twice as much CPU time, the VMI in the CPU state is
three times as great as the average but the VMI in the wait state is nine times-
as great. This suggests that, in proportion, more than the average virtual
memory is being used efficiently by members of group C but nearly twice
the average over the whole session is required to wait on the drum.
Unfortunately, the number of drum reads is not available at all for
comparison. However, it may be that with such large amounts of virtual
storage needed, the small amount of CPU time fequired may be offset by the
amount of paging needed. Certainly, the introduction of shared code,'which
would vastly reduce the amount of virtual memory needed per student, would
greatly increase the efficiency in the use of the computer for such a course.
The excessive use of virtual storage is shown in table 2 for each day.
Between 1400 and 1545, 25% of the terminals, that is, those being used for
the course, u.2d 30% of the total virtual memory on the drum whereas
between 1545 and 1830, about 30¥ of tﬁe terminals used slightly over 4O¥
of the total virtual memory.
The following table gives the cost of computer facilities used to run
the course. The rates used are those for University departments, these

being approximately one third of the industrial rates.

group B (£) group C (£)
terminal elapsed time 21 34
CPU time 16 26
VMI, CPU L 9
VMI, wait 99 240
file storage 2 3
system file storage 6 6
total . 148 318

The outstanding feature of this table is the high percentage of the total
cost that the VMI in the wait state contributes, yet again suggesting that
shared code is essential for future investigations.

The total student hours logged for the course using CAI were 34.7
and 57.4 for groups B and C, respectively. Thus, the corresponding cost
in pounds per student hour was 4.3 and 5.4. This includes the charge for
hardwarg, system software and operation and maintainence but not for
instructional software. It would be difficult to obtain an estimate for
this as not only is it difficult to fit a charge to the number of hours of
~ author time used but also in our case the number 6f student hours actually
used is far smaller than those which might have been used and, indeed,
might continue to be used. The National Council for Educational Technology
(1968) estimated the cost per terminal hour in a University using ten
typewriter terminals as £1.5, excluding cost for instructional software.
Thus, the cost for the course was far in excess of their estimate.'
However, three points of difference should be stressed. Firstly, their
estimates were for a dedicated system as opposed to a general-purpose
time-sharing system. Secondly, introduction of shared code would reduce
the cost by at least half the total (that is, the cost of the VMI in the
wait state with shared code would only be about a quarter of its previous
value). Finally, two years have elapsed since the estimate was made.

As a contrast, the cost of conventional teaching in the sciences

at a University NCET estimated to be £0.7 per student hour.

159

3.4 Conclusions from the investigation.

One important function of the investigation was an evaluation of the
NUTS author language and system in general.

The production of five hours of CAI lessons, which totalled 3300
source statementé, and about four hours of on-line example classes,
another 1500 source statements, took about 600 hours in all. This included

(i) preparation of subject material, which was already well known

to the author;

(i1) ~coding in the author language, which should have been made

easier by the fact that the author was also the designer;

(iii) punching, which was carried out by experienced key-punch

operators;

(iv) debugging;

(v) testing, by numerous people, and

(vi) recoding, where necessary.

Thus, taking all these facts into consideration, a slightly larger
productibn time would normally be the case. As it was, a ratio of about
70-i for the production time against the course time was achieved.

The scope that the author language gave enabled a wide variety of
question types to be attempted. Response checking was coped with quite
adequately and the only two questions for which correct answers were not
credited during the course were amended quite easily afterwards.

In general, the response time given by the time-shering system
was too slow. This certainly can not be accounted for on the basis that
more load was being put on the system as the ratio of the CPU time to
elapsed time was of the order of 120 to 1 over all the students. However,
a heavier load was put on the drum but a measure of this load was not
available. Shared code among the participating students would alleviate
the problem to some extent, but time-sharing systems usually suffer from a

misuse of the facilities by terminal users in general.

160

Whilst the course was being debugged and tested, it was very
difficult to estimate with any degree of accuracy the length of the
constituent lessons. Even though a number of different people went
through the course, there were at most two of them on terminals at any one
time. Comparing'this situation with the covrse proper when at least seven
students were receiving instruction at any one time, it can easily be
seen that a false estimate of the length was obtained.

In an effort to improve the service given by the time-sharing system
and, hence, overcome the shortage of time, certain organisational chahges
were successfully made. The chief of these was that of allowing the
students to commence promptly when the system was ready, before the general
users were permitted to begin. This greatly reduced competition for the
loader. Another move was to advise general users with large virtual
memories to terminate their sessions and return later if they needed a
terminal.

The general conclusion on the use of NUTS is that it may easily be
used tb generate instructional programs. As to the performance of the
dialogue, though this is not as good as desired, the causes have been
menfioned sbove and a future investigation would certainly include their
improvement. |

The second important purpose of the investigation was to compare
different methods of teaching programming languages. Such featurés as CAI
lessons and the on-line availability of the language processor and a '"help"
facility were used together with the contro. methods of conventional
lectures and examples classes with demonstrators.

An analysis of covariancerevealed that there was a significant
difference between the performance scores of the conventional class and
those for the CAI groups. A positive response was achieved by the

control group. This is what was expected, as lectures do not make any

161

extra concessions to the poorer students and, normally, good students do
well no matter what teaching method is used. The students from the CAI
groups gave a negative response. This suggests that the poorer students
benefit#ed greatly from the individualised instruction they received.
They chose their‘own routes by virtue of the different combinations of
right and wrong answers and continued at their own pace as necessary.
The puzzling feature of the results from the two CAI groups is that the
students with higher aptitude showed up poorer than expected. The most
likely reason for this is that the course failed to give these students
the motivation to do well throughout the week, and hence they became less
interested. This theory is borne cut by certain results taken from the
post~questionniire of those five students who fall into that category -
wvhich had in it students of above average aptitude but below average
performance. The co~ordinates of these students, as described in 3.3.3,
are (64,40), (77,43), and (74,57) frém group B and (86,51) and (80,57)
from group C.

On the question of whether it is a nuisance having to wait for the
typewriter to produce the notes, four out of five agreed with this opinion
but, of the remaining eight, as many as seven disagreed. Similarly,
four out of the five suggested that their typing was too slow for CAI
techniques yet seven of the remainder were against this suggestion. These
two opinions, coupled with the fact that the split was four to one for
| the view that the method was too impersonal yet three to five against
this from the rest, do certainly point to the suggestion that the attitude
after the course of these five was one of disinterest and, perhaps,~boredom.

In the light of this, it seems that the question of motivation
should be studied more deeply Befbre any future investigations of this
kind are made, but the results to hand tend to suggest that placement of
those students whose aptitude scores for programming are poorer than

average should be into groups where methods of CAI are being employed

162

50 that they may benefit from the individuwalised, sell-paced instruction.
The rest may be given conventional lectures and demonstration clasces
without detriment.
Other information returned from the response files sugrests that:
(i) perférmance score did not seem to depend on the amount of the
course that the student had beeﬁ able to get through;
(ii) there may be a dependence of performance score on the percentage
of questions the student answered correctly at the first attempt;
(iii) performance score may be inversely proportional to the average
time to make a first attempt;
and (iv) there is a significant negative correlation between performance
score and average total response time per question.
These relationships, together with the fitted lines from the analysis of
covarianée, may possibly be used to suggest how well the students are doing
‘during the course and especiaily may be used if a student is absent for the
final performance test. For example, for the student from group B who
failed to.appear for the post-test, 95% confidence limits for her score from
each of the above relationships are:
(i) analysis of covariance, group B slope: (56.17,70.75);
(ii) percentage of questions correct at the first attempt: (54.49,
71.09);
(iii) reciprocal of the average time for the first attempt: (56.07,
72.81), and |
(iv) average total response time per question answered: (60.29,
79.61).
The stﬁdy of the students' attitudes and their change in atfitude
over the coﬁrse brought some interesting results, Most striking was the
change in attitude of preference of one type of teaching to another, in
our casey from lectures to CAI methods. Certainly, the majority of students

seemed to take to CAI and its advantages but, of course, it is impossidle

163

to eliminate novelty effects from this one investigation. As for examples
classes, the students who had the conventional sessions vere virtuelly
unchanged in their estimate of relative usefulness of these as compared
with lectures, but the students who had problems sessions using CAI shifted
completely from tﬁeir original estimate that more is usually learned from
examples classes than from lectures. However, these latter students did
agree that such a “help' facility as was available, one in which the
student had control, was most useful. The main reason for this change in
opinion is probably that the CAI examples classes lacked the feature of the
student having free, unlimited access to a two-way conversation, as given
by a demonstrator.

On the question of whether CAI is too impersonal, there was an even
split in both groups but over three-quarters of the students felt that,
interspersed with small tutorial classes, CAI courses would not be too
impersonal at all. This suggests that any future investigation should not
attempt to provide instruction without adequate human interaction duriﬁg
the coursé and, in fact, reinforces the theory that CAI should never be
allowed to feplace conventional teaching but only supplement it, paying
particular attention to those areas where conventional teaching is not so
effective.

The main impression received regarding the interface between student
and machine was one of reasonable satisfaction. Almost two-thirds of the
total were not bothered about having to wait for the subject material to
be typed out and the same number thought that their typing was good enough.
No one was disturbed by the noise of the typewriter. In fact, everyone
showed preference for a terminal typewriter rather than a visual display,
the main reason being that hard copy of notes is considered essential.

Of the course in general, the most obvious conclusion is that more

time would have been a great advantage but this restriction was imposed by

164

the non~availability of the students for sny longer than five afternoons.
The situation would have been eased by a shorter course, but an exact
estimate of its length was not availahble from the pre~course trials.

The extent to which the group C students used the "help" facility
was rather disappointing. Admittedly, 41% of all examples attempted were
answered correctly with no help at all, and a further 18% were solved
after INFO had been used, but it is the remaining 41% that causes concern.
Although another 18% were solved after use of the "help" facility, still
2%% remain. Perhaps the solution to the problem does lie in the suggestion
made by a student that the "help" facility shouwld be renamed the "advice"
facility, but there is always the basic difficulty that studénts prafer to
be asked if they require assistance; they do not like to ask themselves.
Obviously, the request mechanism as provided does not alleviate this

psychological barrier.

165

CHAPTER 4. From author languagcs to easy author entry systems.

4.1 Introduction.

To be effective in computer-assisted instruction and programmed
instruction, an author requires a rather severe sell-discipline and a
considerable amouﬁt of specialised knowledge. He must first of all know
his subject matter and be a good writer. Beyond these basic requirements,
a programmed instruction writer must know how to write to stated objectives
and how to ask meaningful questions. In addition to this, a CAI author
must know how a computer operates and the specific details of the computer
language he is using. It is unreasonable, perhaps, to ask an author to
possess so many skills in order to hLegin to write for CAI. Indeed, few
authors who are not already experienced computer programmers have been
rersuaded to take the time and effort to learn a CAI language. The result
has been that CAI mdterials have been on the whole written by people
conversant with computers rather than by good teachers conversant with their
disciplines.

To évercome this problem to & certain extent, the author who does not
know a CAI language has usually seconded assistance from a number of
different pcople to get his subject content from the initial draft into the
computer memory successfully.

Firstly, the author must have an editor to perform a grammatical
edit of his subject matter. The corrected draft must then be typed and
given to a programmer who converts the English statements into valid
computer program statements. If not coded on-line, the program must be
punched into cards, entered into the computer by an operator, and checked
for validity in the programming language. If errors exist, someone must
debug the program, make the necessary changes and re-test. Finally, the
material is returned to the author who checks it for inconsistencies in

content and logic before it is released to the students.

166

For the author who has not been persuaded to learn an instructional
coding language, a new system has been devised vhich precludes the need
for considerable assistance as outlined above. The system allows the
generated material to make effective use of the power of a CAI system, which,
in this instance, is COURSEWRITER II for the IBM 1500 System. However,
the problem and proposed solutions are not restricted. The devised system
also dispenses with the necessity of having a programmer produce COURSE=-
WRITER II statements and then someone to debug the program for language
errors. This is simply achieved by providing the author with a Course
Planning Form on which he may enter his subject presentation, his questions

and expected answers, and the corresponding courses of action in almost

unlimited format.

167

k,2 Previous easy author entry systems.

Not a great deal of research has been carried out in the‘past to
provide easy author entry.

' Perhaps the easiest system to use from an author's point of view is
that designed by Dean (1969). Authors fill in planning guides, on each
page of which they indicate some form of identification, text presentation,
anticipated responses and resultant branching. These are then edited for
grammar, syntax and spelling before a cardpunch operator converts them by
punching one card for identification and one card for each line of text
on the planning guide. An editor uses standard cards from a pre-punched
supply to make the author's deck ready for assembly. The immediate
advantages of this.system are that any card-punch operator can make up
about 90% of the required cards directly from the planning guide, and an
editor can supply most of the rest without coding. The small amount of
coding required is nearly automatic since it consists of entries taken in
sequence directly from the author's manuscript. The disadvantages are
that the éode generated is not very eleg:nt, consisting of macros to a
large extent, and that there is not enough variety offered for response
matching. Only exact keyword and lightpen responses may be specified.

Other easy author entry systems have been by and large more general
CAI systems but with a distinct emphasis on ease of code generation.
They include those designed by Kerr et al. (1969) and Meadow et al. (1968).

Descriptions of both of these appear in section 2.1.4.

168

4.3 The Course Planning Form.

Up to the present, most authors have prepared course material in one
particular format, namely, the presentation of single fremes to the student.
Then, if he answers successfully, the student is allowed to continue to
the next frame in sequence. If he does not, he sces a frame containing
remedial information. As this format for course preparation is in common
use, the system to be described provides a process which will quickly
generate such course materials. The objective is that any author should
be able to prepare CAI course material in a form which, when punched into
cards, is immediately converted to COURSEWRITER II by this system. Such a
system is properly termed a pre-processor.

The layout of the Course Planning Form was determined by the technical
sﬁecifications of the 1510 CRT Display Unit. The 1510 is divided into
32 rows and 40 columns of addressable spaces. However, as two rows are
required per character, the 1510 effectively displays 16 rows by 40 columns.
This determined the 1éyout of the planning form inasmuch as one space is
provided for each character, but half-line shifting for superscripting or
subscripting is still available despite the fact that spaces do not exist
for this purpose on the form.

As suggested by Dean (1969), far from imposing a restriction on the
author by insisting that he works within the confines of a 16 by 40
character form, the discipline imposed by the form may well assist him in
his efforts to communicate with students. Since the student can see but
one frame at a time, it is important that tle author provide a clear,
meaningful presentation in each frame. If he is too verbose, he will be
unable to complete his presentation in sufficient space to appear as a
single display. The 16 by 40 form serves to remind him when such an

event will occur.

169

The form is divided into four sections.

(i) Identification: this section must be completed.

(ii) Presentation: this section must include entries if any

instructional material is to be shown.

(iii) Decision: the entries tell the computer which frame to display

_ next.
(iv) Response analysis: the author specifies his contingency
presériptions:
Sections (iii) and (iv) are alternatives. Either section may be used but
not both.

In an effort to make the form easier to use, mandatory parts have
been assigned sol%d boxes or underlining, whereas optional parts are
indicated by broken lines. A.Course Planning Form is shown in Figure 4.1.

The numbers contained in parentheses under each entry indicate the
particular card columns the keypunch operator must use to record that
information. (An optical scanner would allow the keypunch operator to be
bypassed cbmpletely). Corresponding to the four sections of the form,
there are four types of card produced: one only for section (i) of the
form; any numbef (including zero) for section (ii); one only for section
(ii1); and at least two cards for section (iv), one of which is similar to
that for section (iii) plus at least one for the response analysis.

Naturally, it is expected that the form, being of a general nature,
will not allow the author to create all types of teaching procedures.
However, once :he author has become proficient in the instructional coding
language, he can then use hand coding techniques on the code produced from

the form via the pre-processor.

170

Pigure 4.1

PAGE LABEL (D)

— .

_____ . (1-12) _ :
From row @ to row@j erased, :@ ."Resforf point? Check if required.
(16-17) (19-20) (22) '
TEXT
(6-71)
(72 is continuation) . Pause Time
in seconds
Columns @ " (75-80)

0246810121416182)'32426%3)&343616

0 NEANEN [EERAR SN
2 G | e iUlel e lthels | Rlel ls] Qe T UL LI T e
4 LUt -
6 i K2kakabaka
: . Tl
5;710 13 f. - 1
=12
£14 ﬁ A % 0C T el | -
ez 16

s (1 I NENE RN RN NN -

'-:@.} The Return Point
) The Next Logical Frame

s_@ The Lost Question

Mm
A Frome Nomed
(1) . (You may enter a
Enter E,K,N, - 2-character ,
Por U. respon'sg_'ident_ifi.er)
® if his [@g) response was L_LM
if his [] response was TR
if his D response was TN
if his l response was ‘:""i!‘:;}
if his [] response was SRt
if his [] respense was WS

(1-12) (14) (16-71) (75) (76)

171

L.t A guide for authors.

The following explanatory notes correspond to cirecled numbers on the

Course Planning Form in Figure 4.1 (The numbers are used in this instance

merely to facilitate the following discussion).

1.

2.

The page label must appear on every sheet except a continuation
sheet (see note 9. condition (v)). The label is automatically
displayed in columns 34-39 of row O to ald debugging. The
display format is as follows. The page label is an unsigned
integer optionally followed by a string of aiphabetic characters
(either upper or lower case), the total length being not more
than six characters. The purpose of insisting on unsigned
integers as labels is to provide notation in ascending order of
magnitude, whibh is the logicél sequence of the course as
written by the author. The first page label in a particular
frame will be the unsigned integer itself, but any subsequent

pages may be labelled by the unsigned integer followed by a

string of letters. This is to allow the author freedom to use

learner control techniques as suggested by Grubb (1968). Among
other things, the student will be able either to branch backward
to the last logical frame or to skip forward to the next logical
frame.
Before presentation of any text, the author specifies which rows
(if any) he wants erased.
2.1 Here he enters the first row of the sequence. It is a
number greater than or equal to zero but less than or
equal to 31. If there is no entry, a default value of

zero is assumed.

e

k.

172

2.2 Here he enters the last row of the sequence, also a number
greater than or equel to zero but less than or equal to 31.
Naturally, the number entered in 2.1 must be less than or
equal to that entered in 2.2. If no entries appear, all 32
rows are erased. DBoth entries must be zero to produce no
erasure at all.

If the author desires this point in the course to be a restart

point, he ticks the box. At a restart point all current information

about the student and the course is stored in the 1500's student
record file. Consequently, if he stops, whether through choice

or system failure, the system will restart him at this print,

with a1l up-to-date information, when he decides to return.

The author fills in the form in exactly the same way he wishes to

present his material. He musf not forget that each character

requires two rows on the screem, but to aid him the form is

divided into double rows as is indicated by the left margin

row numbers.

4,1 He writcs small 1etters,'capital letters, punctuation,
underlining, subscription, superscription, etc., as required.

4,2 To denote where the cursor (moving indicator) is to appear
on the screen and the subsequent answer space for a keyboard
response, the author fills in the appropriate positions
with a "¢,

k.3 A shorthand form of this is to¢ mark the cursor position
with a "§" and then draw a line throughout the rest of the
required answer space.

4.4 To denote a light patch area for a light pen response, the

author shades in the appropriate positions, as shown.

173

Of course there are some necessary restrictions.

5.

(i) The author may not sbecify both a keyboard and a lightpen

response simultaneously.

(ii) For a keyboard response, there may be only one continuous
ansﬁer space. In other words, io embedded characters or
blanks are allowed. However, responses larger than one line
are permitted.

The author has the option to specify pause times, in seconds, for

each line of the display. The pause provided by the pre~processor

after the last line continues until the student presses the

space bar to continue.

The author should complete either the Deacision section or the

Response Analysis section, not both, If there is no response

required of the student, then the author must fill in the

Decisién section by ticking one, and only one, of the branching

boxes.

6.1 The Return Point box is ticked in situations such as the
following. An author may wish to generate the same comments
whenever he receives a certaln response. To save repetitive
generation of the same coding, he may initially jump to a
framé where the comments are generated and from that frame
ttreturn' to the next logical frame after the one from which
he made the initial jump.

6.2 The Next logical Frame box is ticked when the flow is to
be to the first frame in the next logical section. For
exemple, it may be used when there was no question asked,
but merely text presented at label 6. Then the Next logical
Frame is 7. If the author was supplying the correct answer

at label 6xy, then the Next Logical Frame is still 7.

9.

174

- 6.3 The Last Question hox is ticked vhen the author wishes the

student to attempt the last question agein. Usnully, the
current frame will be some remedial hint aftér an incorrect
response was diapnosed.
The Resbonse Analysis section is filled in when response processing
is required after a question. The Frame Nomed box is ticked
and there must follow at least one entry in the matching
specification list.
Here, the author enters the page label of the frame that is to
follow if the student's response is successfully matched. It
follows the same format as the page label entry in 1.
To determine the type of response processing required, the author
vrites into 9a) one of the following letters: E, K, N, P or U;
and then places into 9b) the actual 'required response! characters.
9.1 E. An exact keyword match is required. The characters,
including any required blanks, are written in 9b). If
this is left blank, then any string of characters the
student enters will provide a match.
9.2 K. This allows for misspelling, etc. A “kernel" match is
permitted, but the essential characters being sought (no
Elanks) are written in 9b). For example, if the author
seeks "FORTRAN", then he may enter "FTRH" in the hope that
the student may obtain a match even allowing for incorrect
characters, missing characters, etc., usually caused by
misspelling or typographical errors. So long as the
specified chafacters appear in order somevhere in the
student's resnonse, but without embedded blanks, a match is
considered to have been made,
9.3 N. This allows a search for a particular numerical value.

Two types of checking may be specified. Firstly, if an

175

exact value is requested, the author specifies the value,
A match will occur if the response contains a numerical
constant within the interval formed by the value plus or
minus half the least significant power of ten piven in the
value. Secondly, if a range will suffice, the autihor enlers
the lower bound and the upper bound separated by a minus
sign. This causes a match to occur if the response contains
a numerical constant greater than or equal to the lower bound
and less than or equal to the upper bound. However, if the
author requires one exact value, that is, no possible error,
he must use checking cf the second type and make the lower
and upper bounds both equal to the exact value sought., In
addition to the choice of a nﬁmerical check, the author may
test the truth of the disjunction of some of each or both by
separating each value or range by a comma. For example, he
may enter:- 2?3, 31.2=37.6, =21--18, 98.4

9.4 hP. This signifies a light pen response. In 9b) the author
enters the coordinates in the form '"row, column" of any
point in the light p&tch with which he wishes to associate
this attempted match.

9.5 U. This is entered to denote an unanticipated response.

| Here 9b) is left blank.

There are a few conditions imposed on the use of these five

kinds qf entries.

(i) There is no default for an entry in 9b) except for E
and U.
(ii) Lightpen response matching cannot be mixed with any

type of keyboard resnonse matching.
(iii) For keyboard response matching, all U's must appear

last in sequence; that is, no E, X or I may follow a U.

10.

176

(iv) TFor lightpen response matching, only P may be
entered in 9a). No U's are allowed. However, the
pre-processor produces code which displays on row
30 the suggestion that the student re-answer if he
pointed to anywhere exceptvto a specified light patch.
(v) There is no limit to the number of response processing
entries there may be. If one form is insufficient,

the author may use additional forms.

The author may enter a two-character response identifier in

columns 75 and 76. Then when the computer-listed student
response record is made available, the author can quickly

determine how the student answered each of the questions.

177

L.5 A guide for key-punch overators.

This section demonstrafes the ease with which information is
transferred from the Course Planning Forms to card input by the keypunch
operator. |

There are four typés of card, each corresponding roughly to each
section of the form, if used. Each input deck is ended by a card containing
only "*" in column 1.

4,5.1 Identification card.

(i) Page label: columns 1-12; use '"C" for upshift, '»" for
downshift.
(ii) Starting line for erasure: columns 16-17; for a one-digit

- number, use either column.

(iii) Finishing line for erasure: columns 19-20; for a one-digit
number, use either column.

(iv) Restart point: any character other than blank in column 22.
A1l other columns must be blank.

L,5.2 Presentation card.

The keypunch operator must’begin the line at the lowest row number,
thaf is, that part of the line nearest the top of the form, and work down
the form if necessary by indexing. This is important, of course, when
superscripting has been used. The following conventions apply.

(i) for upshift use 'K'". |

(ii) for downshift use '»'".

(iii) 1or a keyboard response use "§" but where the author's

shorthand notation is used all "¢''s must be entered.

(iv) for lightpen response use: "V",
(v) for index use "],
(vi) for reverse index use MM,

(vii) for backspace use ',
(viii) for multiply sign use "@",

(ix) for divide sign use '@ " .

178

The card layout is as follows.

(i) Row number: columns 1-2; for a one-digit number either column
may be used. If the keypunch.operator does not specify the
row number, it will default to the "last one used" +2.

(ii) Text: columns 6-71, using the given notation.

(iii) Continuation: any character in column 72. This will be
necessary if many upshifts, downshifts, backspaces, etc.,
are needed.

(iv) Pause duration: columns 75-80. For less than five-digit

numbers, any consecutive columns out of columns 75-80 may be

used.

4.5.3 Decision card.

Column 1 is used on this card. All others should be blank.
(1) For Yreturn point" enter "R'". |
(ii) For "next frame" enter "N",
(i4i) For "last question" enter "Q".
(iv) There is also a fourth alternative which is used when the
Response Analysis section has been filled in. It is the

first card corresponding to that section. Thus, for "a frame
named..." enter "TH,

“’0504 Resmnse AnaJ.NSis card.

(i) Page label: columns 1-12.

(i1) Type of response matching: in column 14 either "E", WKW, "N",
"wp" or "U" is gnteréd.

(iii) Text: columns 16-71.

(iv) Two-character response identifier: columns 75-76.

All other columns must be blank.

179

4,6 The action of the pre-processor.

The pre-processor was written in FORTRAN because this language

(i) is universal and thus allows ease of communication between

programmers,

(ii) is easily and readily debugged,

(1iii) allows the addition of other facilities as further developments

are tackled in the project, and

(iv) is supported on the IBM 1130 or IBM 1800 CPU used with 1500

Systenms.

The current version of the pre-processor comprises approximately 1500

basic FORTRAN IV source statements. The pre-processor's action is as

fbllows,

1.

2.

Se

Read in an Identification card. If it is the last card, pass
to 12.
Check for a valid label name, whether erasure is requested and

whether a restart point is required. Check parameters for .

'COURSEWRITER II "de" (display erase) instruction. If no errors,

write each card image to disk and give a listing of it on the
printef. Othérwise, give appropriate diagnostic message

with the card number and, in some cases, the column number.

Also increment the error count. In either case, pass to 3.

Read in a card. If it is the last card, pass to 12.

Check to see whether the card read in is a Decision card. If it is,
pass to 6. |

Check for valid row number (or defaulted row number), response
requests, text presentation and pauses. Check parameters

for the "dt" (display text) instruction. Either write to disk

or give diagnostics. Pass to 3.

Check to see whether the Decision section or the Response Anélysis
part has been filled in. If the Decision section has been

completed, generate the appropriate branch instruction and pass to 1.

?-

9.

10.

1.

180

Read in & Reséonse Analysis card. If it is the last card, pass

to 12.

Check to see whether there is a response type entry. If not,

it must be'an Identification card, so pass to 2.

If this is not the first Response Analysis card of the series,

pass to 11. '

Mm the information given by the Presentation cards, generate

the instructions "dl* (display emphasis line) if the keyboard

response is a one-line insertion, and either Yep" (enter and

process response‘) for a keyboard response, "epi" for a keyboard

insertion response or "epp" for a lightpen response. Write

to disk or give diagnostics as necessary. Immediately before the

enter and process response instruction the label name of the

next logical label in sequence is loaded into return 'register 0

so that any future branching back to "feturn point" will be

meaningful. Just after a keyboard enter and process response

instruction, a macro call of Mercalc" (see 4.7) is generated.

Check for valid label name, see which type of response analysis

is requested and generate, if possible, the appropriate instructions.

(i) For "E", "aa" (anticipated answer).

(4i) For “K", a "ld kerhel characters" (loads text into buffer)
followed by a call of the function "keyl" (keyletter).

(iii) For "N", a call of the function "1t" (limit).

(iv) For “P", "eap" (anticipated answer, lightpen).

(v). For "U", "un" (unrecognisable response).

Before the first "un", a macro call of "emany" (see 4.7) is

inserted. After the particular instruction(s) specifying the

analysis is generated, the branch-to-label name is formed. Either

write to disk or give diagnostics. Pass to 7.

181

12. Check the error count to see if there have been any errors.

If so, terminate, but otherwise produce a punched card deck from

thé card images resident on disk, and then terminate,
The pre-processor will find only one error per card. When an error is
detected, the‘card is "rejected" and the pre-processor reads in the next
card. Naturally, this may produce further errors, but only in the current
logical frame. For each error an appropriate diagnostic message is listed
with the card number. In some cases, where meaningful, the column nﬁmber

is also given.

e

182

4.7 Macros used.

The research being undertaken by the IBM Education Research
Department, San Jose, is geared towards the use of learner control
techniques. The main effect for the student is to allow him to move
freely throughout'the course, that is, to skip forward, move backward,
pfoceed to the glossary, return to the course outline map, etc.

In an effort to coordinate the course material produced by the
pre-processor with the requirements of the learner control coding, the
macro "emany" is called pefore an unanticipated response is produced.
This macro searches the response to see whether the student called upon
any of the above mentioned utilities and then performs whatever action
is required. The three parameters necessary for "emany" are the "current
frame",‘the "next logical frame™ and the "last logical frame'. Since the
author uses sequential numbering fdr his logical frames, these parameters
are readily avéilable and provided by the pre-processor.

A second facility provided is that in which the student's response,
if it contains an arithmetic operator, is fed into an arithmetic synfactic
enalyser from which the equivalent reduced value is returned to the
calling program to be checked in the response analysis. To effect this,

- & call is méde upon the macro "ercalc" immediafely after the response

is entered. No parameters are required for this macro.

183

4.8 Sample input and output.

| There follows part of a simple example demonstrating the use of the
pre-procesesor. In Figure 4,2 is some of the author's input on Course
Planning Forms. Figure 4.3 shows the printout of the keypunch operator's
card deck. The corresponding output from the pre-processor is shown in
Figure 4.4 with the COURSEWRITER II instructions and also the diagnostic

messages..

184

Figure 4.2
PAGE LABEL
------ R -1
From row‘ " o« torow! tO! erased. !é Restart point? Check lfrequured
(16-17) (19-20) (22)
TEXT
(6-71)
(72 is continuation) - Pause Time
In seconds
Columns - (75-80)

0 2 4 6 8 1012 UW ¥ B D 224 %8B D D A P B

l | | |

BN O OO0 AM NO

Rows (1-2)

1 s ko ~fe elul IKlwlohil |ehial€ L vicld€loln ————
16 “Q.S w; LL [t"_ CA-O s\JtL(.LL ~, 3 W (Je.n] emee-
184 clolale] 6] ek no—éCca\&(th? | - io
P T O
22 b TRy o
24{Elnlq{Uc s | clefujch mhcr»«'@h\ | T T
) s nate] e
i rrIrrrrrrrreryyrrrrerer ey =

x N

After this frame, the student should go to:

" 1 The Return Point
]

v 1 The Next Logical Frame

 d -

‘ ! The Lost Question

o

[

A Frome Nomed
1)) . (You may enter a
Enter E,K,N, - 2=character
PorU. response identifier)
Ba if his m response was 20,16 N
3L ff his | (o] | response wos 24,9 %:F:?:'_‘-'.':
3¢ if his [P | response was 23,32 CE 3
3c if his] U | response was oA
: _ if his [] response was FotueTT
if his [respense was cTTA S

(1-12) (14) (16-71) (75) (74)

185

Figure 4.2 (cont.)

PAGE LABEL 3

______ . - (1-12)__ :
From rowE 'Ol to rowf '01: erased, ' 'gResfarf point? Check if required.
(16-17) (19-20) (22)
TEXT
(6-71)
(72 is continuation) ‘ Pause Time
in seconds
Columns " (75-80)

0 2 4 &6 8 1012 UW ¥ B D22 %8B D 2 A P 3B

l] | \

o clefrltldfaltlel Tkinlokel luls I 18wlqlUele Il wlcls
3G |] 7,

F“‘g 4

After this frame, the student should go to:

v 1 The Return Point
/1 The Next Logical Frame
| i The Last Question

Cecd
M
A Frame Nomed
)} . (You may enter a
Enter E,K,N, - 2-character
PorU. response identifier)
if his [] response was oo
if his [] response was oA
if his [] response was I
if his [] response was T
if his B response was coteT T
if his [] response was CTTTW R
(1-12) (14) (16-71) (75) (78)

186

Keypunch operator's card deck

3 0 _0R

WAS <WOILLIAM THE <C>UNQUERCOKe UT CAN

et - = ——— Cm——————

YOU POINT TO HIS NATIONALITY? 10
VoV «VaV =YV
VAV V=V V=V T
SEDNGLISH <FORENCH <NXORMAN e
T ----------------- At
3A P 20416 ‘N
3B P 21,9 £
3C P 23,32 €—CARD §3 "E
3C U € CARD S , i
.34 O O
28 <Y>OU CERIAINLY KNGW YGUR <EDNGLTSH HISTORY. T
N
R Y - J 00 T TTTmTTTTTTT T
28 <V>ERY NEARLY <H>E CAME FRUM <F>RANCE BUT
WASNYT EXACTLY <F>RENCH. <P>LEASE TRY AGAIN.
Q ARD G2, COLUMN Q
R SE—— — e o
----28____<6>000 HEAVENS. <P>E“HAPS.-!.QP.-‘.*AQ_-*}P_!_T_EB. __________
30 TREAD UP ON TRIS. —— TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTITI I T T T e

Figure 4.3

187

COURSEWRITER 1l instructions and diagnostic messages

_PRR

DT (),3_(,‘/,/‘/3
DII 14,0~/2914~/38,0~/<1>*'M SURE YOU MUST KNOW THAT THE VICTOK

DTI 16yU~/2910~/3440~/KWAS <WOILLIAM THE <C>UNQUEROR. UT CAN
DYI_1890/2418-4/29,0~/YUU POINT _TO HIS_NATIONALITY?

PA 100
_______ DVI_2091~/2420%/16¢12/VV VY aVaV
OTI 22491-/72¢22~/1641~/~N~V allal) V=V
DYl 24,0~/2524~/23,0~/<EXNGLISH <F>RENCH <N>QORMAN ;
PAE
- LR___4~/RRO -

EPP 9999~/3
~AAP 4120.2[15‘/"

BR 3A
AAP 4,20,2,8~/F

BR 38
__RESPONSE REQUEST INLONSISTENT WITH RESPONSE INODICATIONS __

CARD NUMBER %
ONLY 'P" SHOULD BE ENT&RED WHEN LIGHT PATCH HAS BEEN INDICATED

CARD NUMBER %4

- - - - e e o 0 e e o o 9 e e 2 -) e 2 2 e e B o O i S 0 e 0 o e 0 2 e o

_3A
DT 0934/~/~/3A -
- DTI 2890~/2428~/40, 0*I<Y>OU CERTAINLY KNOW YOUR <E>NGLISH HISTORYC
-~ PAE ' e i
BR 4
38

DT 0y34~/~/~/38

0T 30.0~IZ;30~/40.0~/“ASN'T EXACTLY <F>RENCH. <P>LEASE TRY AGAINC

PAE
BR RE

~ EMBEDDED BLANKS NOT ALLOWED IN LABELS
_CARD NUMBER 62 CILUMN NUMBER 2

DT 0434~/~/~/38 .
DTl 2840+/2¢28-/3690+/<G>000 HEAVENS. <P>ERHAPS YOU HAD BETTER

DTT 30,0~/72,30~/16,0~/KEAD UP ON .THIS.
EN

3 - - : - . oy -

“YOGU ENTERED 64 CARDS.

AND "YOU HAD 5 ERRORS.
_CARD QUTPUT HAS BEEN SUPRESSED.

S e e e = e ———— o - 4 o = e = S T A e % o = e A e = B D A - S o = S - Y B T e e W M At S P EEme memen— -,

Figure 4.4

188

k.9 Conclusion.

This system is a prototype of many other possible systems. It was
designed to free the author from dependency on a specific CAI language
or any particular computer. This achieves a level of standardisation
that is not at présent possible with the many variants of COURSEWRITER
currently available. Furthermore, the system is self-documenting. This
permits reviews to evaluate the program without going through aﬁ entire
course as a étudent would or reading a complete computer listing for such
purposes.

The current implementation generates COURSEWRITER II for the IBM
1500 Instructional System, but this is the result of a particular
implementation and in no sense reflects a limitation on the system. In
generic terms, the system is a pre-processor.

A system description similar to that given in this chapter appears
elsewhere (Dowsey, 1970b) and an extended version called COURSEMAKER,
vhich is being developed by the IBM Education Research Department, San

Jose, is described by Dean (1970a,b,c).

189

SUMMARY AND CONCLUSIONS.

During the course of this study a teaching system evolved.
Information gathered about other systems and a comparison of commands
available shows that this teaching system offers as wide a range of
facilities as may reasonably be required to use CAI. Authors may design,
edit and test CAI lessons in an author language, monitor students' progress
through courses of lessons and perform virtually any calculations necessa#y
through the provision of a calculating language, desk machine and the
rrogramming langlage, PIL. Further improvements would not seem to be
in the inclusion of more commands but mainly in increasing efficiency.
This is largely dependent on the operating system and extension of its .
facilities. However, future work might include further evéluation studies
and more widespread use.

The most important part of any teaching system is its author
language. The study of previous author languages pointed out such
glaring omissions as a powerful calculational capability, extensive
response processing and a facility to allow branching to depend upon some
aspect of the student's response history. Perhaps the most significant
single addition to this author language is a flexible, comprehensive
recording file, the response file. Far too many previous languages
. have not provided the author with sufficient feedback information,
especially that which can be used actually in the CAI program. However,
this author language is easy to use, quite r-~adable and is capable of
providing any type of dialogue normally associated with CAI. Probably
the only improvement in the actual language would be the addition of
string manipulation. The choice of FORTRAN for the implementation
language proved most satisfactory since the processors were written and

debugged in a very short time. This was preferable to gaining a small

190

amount of time by using a machine code, which would have made the
implementation of such features as response processing and text output
easier, but losing a greater amount overall in that the whole operation
of writing and testing would have been far longer. As efficiency of the
processors was not studied in any great detail, since working versions
were required as quickly as possible, studies involving such aspects as
efficiency in translation and re-translation might be carried out.
Probable future work might include an interpretive version of the language
or a version in which the intermediate code is stored in direct access
fashion so that complete re-translation would not be necessary for
correction of just a few errors.

| The author 1anguagé approach to CAI means providing statements, the
effects of which the author must understand fully before he can use them
to‘;dvantage. On the other hand, the easy author entry approach means
that the author may write courses much more quickly and easily but there is
a trade-off of facilities for the decreased author time and involvement
in programming. After a decade of CAI, in which authors iﬁ general have not
been persuaded to learn author languages, the =swing seems to be toward
easy author entry systems. Such a prototype system has been provided.
It is extremely easy to use, with a simple planning form, and contains
about the seme response processing facilities as the author language dut,
of course, not nearly as much decision branching capability. As the
uppermost design criterion was to keep it easy from the author;s point
6f view, a degradation in the facilities available was inevitable. Since
the system takes the form of a pre-processor, there must be a suitable
language which is generated. The language used was not ideal owing to
its lack of any kind of performance recording but adequate for a

prototype version. The NUTS author language would certainly have been

better as it provides a greater variety of resvonse matching, a powerful
periormance recording facility and calculational capability. However,
COURSEWRITER II does provide for'the use of displays and was used bhecause
the operating system available was the IBM 1500 Instructional System.
There is limitless opportunity for improvements, in providing more facilities,
yet still keeping the system uncomplicated., Ferformance recording would
allow more extensive decision branching. Future systems might dispose with
the pre4processor idea énd produce an object code directly from the
form. This could either be a simple intermediate qode or an actual
machine code.

In the investigation comparing the copventional teaching of a
programming language with that using two CAI methods, students with
below average aptitude seemed to benefit more from CAI in general but the
rest seemed as well off with conventional teaching, Also, there seemed to
be little or no difference between the use of on-line examples classes
and demonstration sessions. The "help" facility, which was available to
-one CAI group, was not particularly well used. Perhaps this can be explained
by the fact that, on the whole, students prefer to be approached
rather than ask for help themselves. Although the investigation had too
few students to make any definite conclusions, some tentative suggestions
for future experiments might be made. Firstly, the motivation aspect
should be studied thoroughly. This might explain vwhy some of the
potentially better students performed less well using CAI. Secondly,
thé design of'CAI courses might be allowed to depend to some extent uéon
the students!'! attitude to such a course. Attitude questionnaires provide
much useful information together with that from response files. Thirdly,
an estimate of the real effect of an on-line processor should be studied
more carefully. It is an accepted principle that hands-on e:perience

is invaluable but justification of such a facility is important. Finally,

192

the psychological problems associated with the suggestion that the '"help"
facility be renamed the "advice" facility might be studied.

A rough estimate of the cost of the investigation suggested that it
was rather higher than generally accepted. Hoﬁever, certain deficiencies
in the operating éyétem account for a greater part of this extra cost.

A future study might consider what changes need to be made if a dedicated
CAI system were to be used instead of a general-purpose time-sharing
system. Naturally, certain features associated with large systems would
be unavailable but the trade-off of these for decreased cost might

possibly be tempting.

193

REFERENCES.

Adams, D.M. (1969). '"An investigation into methods of presenting material
for use in computer-assisted instruction." M.Sc. dissertation,
Computing Laboratory, University of Newcastle upon Tyne, September,
1969.

Adams, E.N. (1967). "Reflections on the design of a CAI Operating System."
' IBM Research, Watson Research Centre, Yorktown Heights, N.Y.,
RC 1745, January 23, 1967.

Adams, E.N. (1969). '"Technical considerations in the design of a CAI
operating system.'" IBM Research, Watson Research Centre, Yorktown
Heights, N.Y., RC 2557, July 29, 1969.

Avner, R.A. and Tenczar, P. (1969). '"The TUTOR manual', Computer-based
Education Research Laboratory, University of Illinois, January 1969.

Baker, J.D. (1965). "COBIS computer-based instruction system." Newsletter,
Greater Boston Chapter of the Society for Programmed Instruction,

1, 4, 1965. |

Bitzer, D.L. and Easley, J.A. (1965). "FLATO: A computer-controlled

teaching system," in Sass and Wilkinson (Eds.), Computer

Augmentation of Human Learning, Washington, Sparten Books, pp.89-103.

Clapp, D.J., Yens, D.P., Shettel, H.H. and Mayer, S.R. (1964).
" Development and evaluation of a self-instructional course in the
operational training capability query language for system 473L,
USAF HQ". Air Force Electronic Systems Division, Decision Sciencu
Laboratory, Report No.ESD-TR-64-662, 196L.
Crowder, N.A. (1960) in "Teaching Machines and Programmed Learning", eds.
Lumsdaine and Glaser, National Education Association, 1960.
Dean, P.M. (1969). '"Preliminary Report on the Development of a Simplified
System for CAI". Unpublished Report, IBM Education Research

Department, San Jose, 1969.

194

Dean, P.M. (1970a). "Author's Guide to the COURSEMAKER System!", IEM Education
' Research Department, San Jose, July, 1970.

Dean, P.M. (1970b). '"Keypunch Operator's Guide to the COURSEMAKER System', IBM
Education Research Department, San Jose, August, 1970.

Dean, P.M. (1970c¢c). "The'COURSEMAKER System", IBM Ecducation Research Department,
San Jose, August,‘1970.

Dowsey, M.W. (1970a). "NUTS - User's Guide', Unpublished Report, Computing.

Laboratory, University of Newcastle upon Tyne, January 1, 1970.
Dowsey, M.W. (1970b). "Towards a true author entry system for CAI", Programmed

Learning and Educational Technology, 7, 1 (January, 1970) pp 43-62.

Dowsey, M.W. (1970c). "A language to facilitate computer-aided instruction",

Proceedings of I.E.E. Conference on Man-Computer Interaction, September,

1970, pp 72-76.
Easley, J.A. (1967). "“Second midyear report fbr project SIRA", University of
Illinois, Urbana, September, 1967.

Engvold, X.J. and Hughes, J.L. (1968a). “A generél-purpose display processing
and tutorial system", Technical Report TR 00.1694, IBM Systems
Development Division, Poughkeepsie, N.Y., Janvary 11, 1968.

Engvold, K.J. and Hughes, J.L. (1968b). "A multi-functional display system for

processing and teaching!, Proceedings of IFIP Congress 1968, North Holland

Publishing Company, Amsterdam.
Feingold, S.L. (1967). "PLANIT - A Flexible Language Designed for Computer-

Human Interaction", AFIPS Conference Proceedings, FJCC, 1967.

Ienichel, R.R., Weizenbaum, J. and chhelsoﬁ, J.C. (1970). "A Program to Teach
Programming", CACM, 13, 3 (March 1970), pp 141-146.

Feurzeig, W. (1965). "The Socratic System: A Computer System to aid in Teaching
Complex.Concepts", Bolt, Beranek and Newman, Inc., Cambridge, Mass., 1965.

Feurzeig, W. and Papert, S.A. (1968). "Programming Languages as a Conceptual |

Framework for Teaching Mathematics", Proceedings of the NATO Conference

on Computers and lLearning, Nice, May, 1968.

195

Flanigan, L.K. (1968). "Introduction to PIL in MI'S." Unpublished Report,
Computing Centre, University of Michigan, Ann Arbor, May, 1968.

Frye, C.H. (1968). "CAI languages: capabilities and applications.';
Datamation, 1%, 9 (September, 1968) pp 34-37.

Frye, C.H., Bennick, F.D. and Feingold, S.L. (1968). "Interim user's
guide to PLANIT: the Author Language of the Instructor's Computer
Utility." TM 3055/000/03, System Development Corp., Santa Monica,
October 16, 1968.

Gilligan, J. (1969). "CAI Crawley". Technical Report, ICL Education

Research Department, lLoudwater, High Wycombe, September, 1969.

- Grose, P.F., Cropley, A., Hebb, B., and Palmer, R. (1969). "APL and
remote terminal usage for CAI". Paper presented at DATAFAIR 1969,
Manchester, August 27, 1969.

Grubb, R.E. (1965). "The Effects of Pairel Student Interaction in the
Computer Tutoring of Statistics". Paper read at National Convention
of the National Society for Programmed Instruction, Philadelphia,
May, 1965.

Grubb, R.E. (1968). '"Learner Controlled Statistics," Programmed Learning

and Educational Technology, 4, pp 18 - 24, Jenuary, 1968.

Grubb, R.E. (1969). "A study of differential treatments in the learning
of elementary statistics," paper presented at DAVI Conference,
Portland, Oregon, April 28, 1969.

Grubb, R.E. and Selfridge, R.E. (1963). "Computer Tutoring in Statistics",

Computers and Automation, 13, 3 (March, 1963).

Hansen, D.N. (1970). '"Development processes in CAI problems, techniques

and implications", Proceedings of a seminar on Computer-Based

Learning Systems, NCET, March, 1970.

Hartley, J.R. and Sleeman, D.H. (1968). "Problem solving end simulation

using a computer-based system", Proceedings of a NATO Conference

Major Trends in Programmed Learning Research, Nice, May, 1968.

b

196

Hayward, P.R. (1968). "ELIZA scriptwriter's manual", Educational
Research Centre, MIT, Cambridge, Mass., 1968.
Hesselbart, J.C. (1968) "FOIL: a file-oriented interpretive language",

Proceedings of ACM National Conference, 1968.

Hickey, A.E. (1968). "Computer-assisted instruction: a survey of the
literature. 3rdledition", ENTELEK Inc., Newburyport, Mass.
October 1, ‘i968. (

Homeyer, F.C. (1970). "Development and Evaluation of an Automated Assembly
Language Teacher', Technical Report, CAI Laboratory, The University
of Texas at Austin, 1970. |

Hunt, E. and Zosel, M. (1968). "WRITEACOURSE: an educational programming

language", AFIPS Conference Proceedings, FJCC, 1968.

IBM Corp. (1967). "The 1500 Instructional System: Introduction to Computer-
assisted Instruction and System Summéry", IBM Systems
Development Division, Product Publications, San Jose, 1967.
IBM Corp. (1968). "The 1500 Instructional System: COURSEWRITER II,
Author's Guide." Form Y26-1580-0, Special Systems Programming
Documentation, San Jose, 1968.
ICL (1969) "The Brighton Project", Education Research Department, Loudwater,
High Wycombe, 1969.
Keller, L. (1968) "Reference Manual: Course Author Language (CAL)",
Computer Facility, University of California, Irvine, August, 1968.
Kerr, E.G., Ting, T.C. and Walden, W.E. (1969). "A control program for
computer-assisted instruction on a general-purpose computer!,

Proceedings of ACM National Conference, 1969, pp 111-116.

Kopstein, F.F. (1969). "Computers and Instruction at Hum RRO", Educational
Pechnology, 9, 7 (July, 1969) pp 25-28.

Kopstein, F.F. and Seidel, R.J. (1967). "Computer-administered instruction
verses traditionally administered instruction: economics".
Professional Paper 31-67, Hum RRO, Alexandria, Virginia,

June, 1967.

197

Kristy,'N.F. (1968). "Innovations of the Technomics 6700 System",
Technomics, Inc., Santa Monica, May, 1968.
Lambert, P. (1968). "Computers and the Educational System", Aspects of

Educational Technology, 2, 1968, Menthuen.

Iorton, P. and Slimick, J. (1969). "Computer-based instruction in
computer programming = a symbol manipulation - list processing
approach", AFIPS Conference Proceedings, FJCC, 1969, 35, pp

535-5kk.

Lyon, G. and Zinn, K.L. "Some procedural language elements useful in an

instructional enviromment," Proceedings of a Seminar on Computer-

based Learning Systems, NCET, March, 1970.

Maher, A. (1964). "Computer-Based Instruction (CBI): introduction to the
IBM Research Project," IBM Research, Watson Research Centre,
Yorktown Heights, N.Y., RCM14, March 6, 1964.

Meadow, C.T., Waugh, D.W. and Miller, F.M. (1968). "CG-1, a course

generating program for computer-assisted instruction,

Proceedings of ACM National Conference, 1968, pp 99-110.

Mellan, I. (1936), in Journal of Experimental Education, 4, March, 1936.

National Council for Educational Technology.(1968). "Computer Based
Learning Systems'", Report of a working party of the National

Council for Educational Technology, November, 1968,

Pask, G. (1959). "The Teaching Machine", The Overseas Engineer, February,
1959, pp 231-232. |
Perstein, M.h. (1966). 'Grammar and lexicon for basic JOVIAL", System
Development Corp., Santa Monica, Technical Memorandum,
T™-555/005/00, May 10, .1966. |
Philco-Ford Corp. (1970a). "INFORM Author Reference Manual', Communications
.and Technical Services Division, Willow Grove,

Pennsylvania, February, 1970.

198

Philco-Ford Corp.(1970b). 'Project GROW User's Manual', Communications
and Technical Services Division, Willow Grove,
Pennsylvania, April, 1970.
RCA (1967). "Instructional 70, General Information Manual', RCA
Instructional Systems Division, Palo Alto, California, 1967.
RCA (1968). "Instructional 71, General Information Manual', RCA
o Instructional Systems Division, Palo Alto, California, 1968.
Rath, G.J., Anderson, N.S. and Brainerd, R.C. (1960). "The IBM Research
Centre Teaching Machine Project", in Galanter (Ed.), Automatic

Teaching, The State of the Art, New York, Wiley, 1960.

Ruans, D.G. (1963). "An Information Systems approach to Education",
System Development Corp., Technical Memorandum, TN-1495, 1963. .
Schramm, W. (1964). 'The Research on Programmed Instruction, an
Annotated Bibliography", U.S. Office of Education Bulletin
No. 35, 1964.
Schurdak, J. (1967). "An Approach to the use of computers in the
~ instructional process and an evaluation", IBM Research, Watson
Research Centre, Yorktown Heights, N.Y., RC 1432, 1967.
Silvern G.M. and Silvern L.C. (1966a). "Comfuter-assisted instruction:
Specification of attributes for CAI programs amnd programmers",

Proceedings of ACM National Conference, 1966, pp 57-62.

Silvern, G.M. and Silvern, L.C. (1966b). "Programmed Instruction and

computer-assisted instruction....an overview", Proceedings of

the IEEE, 54, December, 1966, pp 1648-1655.
Skinner, B.F.(1954). "The Science of Learning and the Art of Teaching",

Harvard Educational Review, 24, Spring, 1954, pp 86-97.

Sleeman, D.H. and Hartley, J.R. (1968). "The design and some possible uses

of a computer-assisted learning system", Aspects of Educational

Technology, 2, 1968, pp 537-5k2.

199

Starkweather, J.A. (1968). "PIIOT User's guide: a conversational computer
language', University of California Medical Centre, San
Francisco, December 1, 1968.

Starkweather, J.A. and Turner, W. (1966). "COMPUTEST II-D: a programming
laﬁguage for computer-assisted instruction, testing and |
interviewing', Computer Centre, University of California,
San Fransisco, November, 1966.

Stolurow, L.M. (1965a). "Model the Master Teacher or Master the Teaching

Model", in Krumboltz (Ed.), learning and the Education Process,

Chicago, Rand McNally and Co., 1965, Chapter 9, pp 223-247.

Stolurow, L;M. (1965b). '"'Computer-based instrucﬁion", University of

Illinois, Training Research Laboratory, Contract NONR 3985(04),
Report No.9, 1965.

Summers, R.C., Wood, J.R., Citron, J.P. and Bray, R.R. (1967). "Design
of a Supervisor for Interactive Applications', IBM los Anéeles
Scientific Centre, 1967.

Swets, J;A. and Feurzeig, W. (1965). "Computer-Aided Instruction",

Science, 150, 2696 CDctober 29, 1965) pp 572-576.

Tonge, F.M. (1968). "Design of a programming language and system for

computer-assisted learning", Proceedings of IFIP Congress 1968,

North Holland Publishing Company, Amsterdam.
Uhr, L. (1969). "Teaching machine programs that generate problems as a

function of interaction with students", Proceedings of ACM National

Conference, 1969, pp 125-134.
University of Michigan (1967). "Michigan Terminal System", User's manual,
Computing Centre, University of Michigan, Ann Arbor,
2nd. edition, Deéember 1, 1967.
Uttal, W.R. (1962). "My Teacher has Three Arms!!!", IBM Research, Watson

Research Centre, Yorktown Heights, N.Y., RC 788, September, 1962.

200

Weizenbaum, J. (1966). "ELIZA - a computer program for study of natural
language communication between man and machine'", CACM, 9,
1 (January, 1966) pp 36-45.

Weizenbaum, J. (1967). ''Contextual understanding by computers', CACM, 10,
8 (August, 1967), pp 474-480.

Winkler, C.E. (1968). '"Computer-assisted instruction as an information

retrieval public utility", Proceedings of the American Society

for Information Science, 5, (1968), pp 169-173.

Wodtke, K.W., Mitzel, H.E., and Brown, B.R. (1965). "Some preliminary
results on the reactions of students to computer-assisted instruction",
Pennsylvania State University, Paper for a symposium, Systematic
Instruction, APA Convention, 1965.

Zinn, K.L. (1965). "Functional specifications for computer-assisted

instructional systems", in Goodman (Ed.) Automated Education

Handbook, Detroit, Automated Education Centre, 1965, IV, A21-32.
Zinn, K.L. (1967). "Computer Assistance for Instruction: A Review of
Systems and Projects", in Bushnell and Allen (Eds.) "The Computer
in American Education", John Wiley, 1967.
Zinn, K.L. (1968). "Programming conversational use of computers for

instruction", Proceedings of ACM National Conference, pp 85-92.

Zinn, K.L. (1970). "A comparative study of languages for programming

interactive use of computers in instruction", Proceedings of a

seminar on Computer-Based Learning Systems, NCET, March, 1970.

201

APPENDIX A.
Newcastle University Teaching System (NUTS).
User's Guide

September 30 1970.

202

CONTENTS.

PAGE

Introduction. 20k
Conventions. 204
The command language. 206
Introduction. 206
Requests for next command. 206
Entering commands. : 206
Command format. 206
Command descriptions. » . 206
Commands, 207
BUILD ~ 208

CALC S 211

CAT o 214

COPrY 216

COURSE o217

DESK ‘ 220

INSERT | 221

LESSON : . ' 224

LIST 225

PIL , 226

PROG 227

QUIT 229

REL ' 230

RES 251

RFILE 252

RID 233

SFILE _ 23k

The author language, 235
Introduction, 235
Coding Statements. 235
Constants. 25
Variables. 235
Arrays. 236
Subscripts. 236
Standard Functions. 237
Expressions. 258

The Past Student Performance Facility, ffPERF. 240

Assignment Statements.
Labels,
Control Statements,

JUMP
LOADn
RETn
TRANS
CTRL
Ir
PAUSE
STOP
END

Input/Output Statements.
RESP
TYPE
BACK

Sample program.

The calculating language.

Introduction.

Coding Statements,

The ianguage.

Sample Programs.

PAGE

2k
24l
2hs

245
ohg
2hs
2hs
246
2l
247
2hy
b7

243
2

2k9
250
250
251

251

.251

251

20k

Introduction

Newcastle University Teaching System is a system designed to permit
natural communication with a conuuter by providing the facilities for a
conversational dinlogue to take vlace between a person and a conmuter.
One class of user called an author is able to build lessons which will form
part of a course which, in turr, is used for the purpose of teaching
another class of user called a student.

The basis of the system is the command language, all of which may be
used by an author but only a subset of which may be used by a student.

The author builds his lessons by using the author language. This is
a high-level programming language which enables him to present subject
material to the student, ask a question then specify combinations of
keywords and/or values to be sought in specified degrees of accuracy in
the student's ensuing reply. Depending upon the nature of this reply,
and, perhaps, any previous response in the student's history of the lesson,
the author then directs the student to follow a particular path through tbe
rest of the course.

The student may come to the terminal for a session with one or more
of the courses whenever it is convenient, for the author usuwally writes
each lesson in the course in segments and at the start of each session
the student re-starts at the beginning of the segment he was in at the
end of the previous session. He can terminate his session whenever the
keyboard is unlocked to him., Alternatively, the author may allow the
student complete freedom to move about the course at will by specifying
points in a lesson to which the student may proceed by uulng predetermined

responses.,

For his own use, the author retains information about each student
using his courses in what are called response files.

As an aid to answering any question, a simple calculating language
(which generates programs) and a seguence controlled desk machine are
available to the student at any time, i.e. not only during a reply to a

question but in the command language.

Also included is PIL, a simple language, easy to learn, but with
such powerful features as string manipulation, extended I/0, etc. PIL
possesses a powerful "direct! mode which has superceded the sequence
controlled desk machine. "Indirect" statements may be stored from one
call of the interpreter to the next.

Apart from during a session when a course is being taken, all input
to the system is of entirely free format, emleodded blanks being allowed.

CONVENTIONS

The notational conventlons described here are used in the command and
1anguage source statement format illustrations to explain how each operand
is to be written. To facilitate the representation of the statements in
the format illustrations, three metasymbols are used as follows:~

braces-{ } To enclose and therefore delimit syntactical units (one or more
operands) that may be repeated., Alternatives may be 1nd1cated
by aligning the choices vertically within the braces {g}

bracket5[} (a) to enclose and thus delimit alternatives,

(b) to enclose and thus delimit optional names and/or

ellipses ...

205

operands within the appropriate fields. Stacked items within
the optional syntactical unit show alternatives.

To indicate that the preceding syntactical unit may be repeated
one or more times. Should a system limit to the number of
repetitions permitted exist, this will be given in the operand
list that follows the format illustration.

206

TS COMMARD TANGUAGE

INTRODUCTION

The command language is designed for users who communicate with NUT
while it is executing overations for them. This mode of operation is
called conversational, since the user remains on-line to NUTS, engaging in
a dialogue with it. :

The command language also serves as the job control language for
operations that do not require a dialogue with the user; i.e. operations
submitted to the system for execution without user monitoring. This second
mode of operation, in which the user is not- on-line to the systen, is
described as the non-conversational mode. Both modes use the same command
language, except that some commands are only available in conversational
mode.

TASK INITIATION

The user initiates his task by firstly signing on to Michigan Terminal
System. When his signon has been accepted and he is prompted by a number
sign (#), he enters the MTS command "FSOURCE NUTS". This activates NUTS
and the user is in command mode after the appearance of "*¥,

REQUESTS FOR NEXT COMMAND

The system informs the user that it is ready to accept his next
command by printing an asterisk, "+, then unlocking the keyboard after
giving a carriage return line feed.

ENTERING COMMANDS

Every command entered from a terminal keyboard starts on the new
line after the prompt, "4', The user may employ a completely free format,
with as many embedded blanks as he requires in any position. The only
restriction is that commands may not exceed one line and this line must
not exceed 80 characters. Truncation of extra characters occurs. The
end of the command line is indicated by pressing the RETURN key.

If commands are entered from cards, each must start on a new card,
but otherwise the above rules apply.

COMMAND FORMAT

The general format of the command language statements is:

OPERATION _ SEPARATOR OPERAND

command name a comma; blank if one or more operands
and only if operand delimited by commas;
field is blank. field may be blank,

The operand field is separated from the operation field by a comma.
The operand field itself may be blank for certain commands or may contain
several operands separated from one another by commas,

COMMAND DESCRIPTIONS

T@e command descriptions are in alphabetical order; each has the
following arrangement:

N
Q
N

1. the command name.

ne
.

a brief stotement of the commeznd's funcitions.

3. when znd by vhom it may be used.

. the command formet is illustreted :nd each operand is described.

5. & description of the command is then given, discuscing what the
command does from & user's stondpoint, and telling about its
restrictions and limitations.

6. finally, one or more exzmples are given to show exactly how the
commznd is used.

Here is a list of special terms used in commend descriptions.

arrname
csnane

digit

element number
finline

incr

line number
lname

name

prnzme

rfile

segment number
stline

userid

varname

COMMANDS

is & valid array neme consisting of cn ampersand (&)
followed by one through sixt letters.

~is a valid course nzame consisting of between one and

five letters.

is a valid digit, O through 9.

is an integer 1 through 100.

is the finishing line of a sequence of line numbers and

is an integer greater than zero but less than or equal
to 999/99999 for programa/lessons.

is the increcment between successive line numbers. Its
bounds are as for finline.

is an integer which is valid if between 1 and 999/99999
for progroms/lessons.

is & valid lesson name consisting of the constituent
course name's one through five letters followed by a
digit.

is a string of characters inadvertently entered,

is a valid program name consisting of between one and
six letters. :

is a2 valid response {ile nzme consisting of the course
ncme's one through five letters followed by a number sign
(#) then a digit.

is zn integer 1 through 99.

is the starting line of a sequence of line numbers. Its
bounds are as for finline.

is a valid user identification sequence consisting of two
letters followed by either a letter and a digit or a digit
and a letter.

is a valid simple variable name consisting of one through
six letters.

The commands are presented in alphabetical order for ease of

reference,

5]
Q
[05)

BUILD CCHIMAMND

1. BUILD.

2. This command is used to translate a series of author lanpuage source
statements into intermediate code. If errors are detected, appropriate
diagnostic error messages are produced but if successful a lesson is
"built® and may be subsequently called upon. The source statements may
be entered in full or in part within the BUILD command or, if desired,
may already exist in full in the lesson file,

3. On terminal and in batch, Authors only.

e BUILD, lname [{?E[aStllne,lnch
'

L,1 lname If the second operand is '"M" or blank then the lesson
file must already exist; if YN'', the lesson should not
yet exist.

k2,1 N is entered if a new lesson is to be created. Prompting
then occurs for each source statement, which is
processed immediately, before a prompt is given for the
next line, '

b,2,.2 M is entered if modifications are to be made to the lesson
source statements before translation is attempted.

k.2,3 (blank) specifies that translation only will take place. No
' chance is given to the author to enter source statements
prior to processing.

k.3 stline is entered only if "N" is the second operand. It
‘ specifies the line number to be given to the first
statenent prompted for. Limits are 1 and 99999. If
absent, the default value is 10.

L4 iner is also entered only if "N" is the second operand. It
specifies the increment beiween any successive line
number prompts. Limits are also 1 and 99999. If
absent - it may be absent if and only if''stline" is
absent - the default value is also 10.

5. It is,obvious that there are three modes of operation of the command BUILD.

5.1 node 1

5.1.1 The author may wish to create a new lesson and enter his source
statements within the command. To do this he specifies N and
optionally gives the starting line number for the statements in
the lesson and the increment with which the line number will
increase on successive prompts. The system prompts "line numberd'.
The author then enters his source statement which is immediately
parsed and intermediate code generated.

5¢1.2 If this is successful, the line number is incremented and the
system prompts once more.

5¢1:3.1 If unsuccessful and from a terminal, an appropriate diagnostic
message is returned, together with a promot to make a
modification. This takes the form ">" At this point the terminal
autpor may modify any previous line, delete any previous line
or insert any line to his lesson, all in the same format.

5.1.3.2

5¢1:3.3

5.1.4

5.1.5

5.2 mode 2

209

This format is:
line number, line contents

where the line number must be a valid integer between 1 and
99999 and the line contcnts contain the modified line, blanl
as necessary for deletion. The comma is mandatory. As the
maximun length of line allowed by the author language
processor is 80, in the case of a modification, the lenszth

of an actual line will be slightly less. One consideration
when making modifications in this way is as follows: 1if the
aunthor corrects a line immediately he is told it is incorrect,
then the processor may continue with one and only one pass,

no re-translation of the whole lesson would be necessary;
otherwise, in the event of a modification of a different line
from that given in the current incremented line number prompt,
the line is checked syntactically within itself, but without
reference to the rest of the lesson. The whole lesson is
re-translated at a later stage. When the author has completed
his modifications, he simply presses RETURN to go back to the
incremented line number prompt.

If unsuccessful and in batch, the incremented line number prompt
continues as if it had been correct.

On entry of the statement END, the processor completes the label
chaining, etc.

Then, if from a terminal, the author is given the option for a
complete or part source listing, vwhether he wishes to make
further modifications, and whether he wishes to continue
processing. In batch none of these options is available.
Finally, if the translation has been successful, the command
terminates, but if unsuccessful then the author from a terminal
has a further option for modifications but in batch, termlnatlon
occurs with an appropriate message.

The author may wish to re-translate a previously existing lesson
but first enter some modifications. To do this he specifies M.
The modifications are entered in the format specified in 5.1.3.2.
If an incorrect source statement is entered for a modification,
then, from a terminal it may itself be modified but, in batch,
modifications cease at the point. Of course, this will produce
invalid commands in the command sequence, all of which will sub-
sequently be ignored. When modifications have all been entered,
execution continues as in 5.71.5.

5.3 mode 3 The author may wish to re~translate only a previously existing
lesson. He leaves the second operand of the command blank,
If the translation is unsuccessful, then the terminal author
has the chance to enter modifications. In batch, termination
: occurs with an appropriate message.
6. Examples.,
6.1 mode 1
user : BUILD,HISTE,N,18%,28
sys ¢ FILE “HISTY ' HAS BEEN CREATED
8ys ! ENTER STATEMENTS
s8ys : 100 >
user : (enters his source line)
sys : 120
users: (enters next source line)

ETC.

210

A new lesson named "HISTZY has been created and lines entered by
prompting at 100, increasing by 20 each time,

user : BUILD,GEOGH,H

sys : FILE “GBOCﬂ” HAS BEEN CREATED
sys ¢ ENTER STATEMEINTS

sys : 10 >

user (enters his source line)

sys 20 7
user : (enters next source line)

ETC.

A new lesson named “GEOGZ" has been created but this time the starting
line prompt and the increment have been allowed to default to 0.

6.2 mode 2

user : BUILD,ARITH2,M

sys : ENTER MODIFLICATIONS

sys : ¥ .

user : (enters source line with line number)
sys :) _

user : (enters source line witi line number)
EI‘C.

A previously existing lesson YARITH2Y is to be re-translated but
modifications are to be entered first..

6.3 mode 3
user : BUILD,ALGER9
sys : END OF ‘BUILD®

sys *
A previously existing lesson "ALGEB9" is to be re-translated only.

(The example assumes an error-free translation)

CALC COMMAND

1. CAIC.

2. This command is used to translate a series of calculating language source
statements into intermediate code. If errors are declected, appropriate
diagnostic messages are returned, but if successful the user runs the
program which is also stored for future use. The source statements nay
be entered in full or in part within the CALC command, or, if desired,
may already exist in full in the program file.

3. On terminal and in batch. Authors and students.
he CALC, prname [{’i‘i[;stllne,lncr]}]
Y

k.1 prname must be a valid program name. If the second operand is
"' or blank then the program file must already exist;
if "N" the program should not yet exist,

L,2.,1 N is entered if a new program 'prname' is to be created.
Prompting then occurs for each source statement, which
is processed immediately, before a prompt is given for
the next line.

k2.2 M is entered if modifications are to be made to the program
source statements before translation is attempted.

L,2,3 (blank) specifies that translation only will take place. No
' chance is given the user to enter source statements prior
to processing.

4,3 stline is entered only if "N" is the second operand. It
specifies the line number to be given to the first
statement prompted for. Limits. for "stline" are 1
and 999. If absent when 'N" has been entered, the
default value is 10,

L4 incr. is also entered only if '"N" is the second overand. It
specifies the increment between any successive line
number prompts. Limits are 1 and 999. If absent - it
may be absent if and only if "stline" is absent - the
default value is also 10.

5. As in the BUILD command, there are three modes of operation of the command
CAIC.

5.1 mode 1

5¢1.1 The user may wish to create a new program and enter his source
statements within the command. To do this, he specifies N and
optionally gives the starting line number for the statements in
the program and the increments with which the line number will
increase on successive prompts. The system prompts "line numberD".
The user then enters his source line which is immediately parsed,
and intermediate code generated.

5¢1.2 If this is successful, the line number is incremented and the
system prompts once more.

5.2

5137 If unsuccessful and from a terminal, an avpropriate diagnostic
message 1s given, together with a pronpt to make o modification.
This takes the form "> ", Al this point the terminal user may
modify any previous line, delete any previous line or insert
any line to his program, all in the same format.

5.13.2 This format is:
line number, line contents

where the line number must be a valid integer between 1 and 999,
and the line contents contain the modified line, blank, if
necessary, for deletion. The comma is mandatory. As the
maximum length of line allowed by the calculating language
processor is 80, in the casec of a modification, the length of
an actual source line will be slightly less than 80. One
consideration when modifying lines in this way is as follows:
if the user corrects a line immediately he is told that it is
incorrect, then the processor may continue with one and only
one pass; no retranslation of the whole program would be
necessary; otherwise, in the event of the modification of a
different line from that given in the current incremented
line number prompt, the line is checked syntactically within
itself, but without reference to the rest of the program.
When the author has completed his modifications he simply
presses RETURMN to go back to the incremented line number
prompt.

5¢1.3.3 If unsuccessful and in batch, the incremented line number
prompt continues as if the line had been correct.

S5.1.4 On entry of the statement END, the processor completes the
label chaining, etc. .

5:.1.5 Then, if from a terminal, the user is given the ovportunity
to acquire a complete or part source listing, to make further
modifications and to continue processing. In batch, none of
these options is available. Finally, if the translation has
been successful, the program runs with the user supplying
data as requested. If unsuccessful, the terminal user has a
further chance for supplying modifications, but in batch,
termination occurs with an appropriate message.

mode 2 The user may wish to re-translate a previously existing program

but first enter some modifications. To do this he specifies M. The

modifications are entered in the format specified in 5.1.3.2. If an
incorrect source statement is entered for a modification then from a
terminal, it may itself be modified but. in batch, modifications cease
at that point. Of course this will produce invalid commands in the
command sequence, all of which will subsequently be ignored. When
modifications have all been entered, execution continues as in 5.1.5.

5.3 mode 3 The user may wish to re-translate only a previously existing

program. He leaves the second operand of the command blank. If the
translation is unsuccessful, then the terminal user has the opportunity
to enter modifications. In batch, termination occurs with an appropriate
message.

Examples.

6.1 mode

ucer o

sys
s5ys
sys
user
sys
user

ETC.

213

1

CALC,CUBICS,N,50,15
: FILE "CUSICS " HAS BEEN CREATED
: ENTER STATEMENTS

50 ¥
: (enters his source line)
: 65>

: (enters next source line)

A new program named "CUBICS' has been created and the lines to be
entered prompted for starting at 50 and increasing by 15.

user
sys
sys
sys
user
sys
user

ETC.

: CALC,SUM,N

FILE “SUM Y HAS BEEN CREATED
ENTER STATEMENTS

10 >

(enters his source line)

20 »

(enters next source line)

A new program named ''SUMY" has been created but this time the starting
line prompt and the increment have been allowed to default to 10.

6.2 mode 2
user : CALC,JACOBI M
sys ¢ ENTER MODIFICATIONS
sys : »
user : (enters source line with line number)
sys @
user : (enters line with line number)
ETC,

A previously existing program "JACOBI' is to be re~translated but
modifications are to be entered first.

6.3 mode >
user : CALC,STD
s8ys : (prompts for required inputs)
EIC.

A previously existing program “STD" is to be re-translated only,
(The example assumes an error-free translation and 80 the program runs).

- BYyS

but

6.2

by
-
=

CAT COMMALID

CAT.
This commond tells the user which files Le possesses at that point in tlime.

On terminal and in batch. Authors and students.

o [{#]

Lo1.1 (blank) ~ student is told which programs he owns (this is the only
valid way a student may use the command)

author is given a list of lessons, programs and response
files he owns.

L.1.2 L (author only); a list of lessons is given.
L,1.3 P (author only); a list of programs is given.
L,1.4 R (author only); a list of response files is given.

Each list is given an appropriate heading. If it is null, therefore,

only the heading will appear. In the case of lessons, the word “"RELEASED"
will appear against the lesson name if it has been released for general
use., Only the author is permitted to see which response files he owns,

Examples.
author
usér CAT
5ys
sys
sys

sys

: PROGRAMS
sys LESSONS

CUBICS
SUM

sys MATHS@
sys
5ys
sys
sys

RESPONSE FILES

END OF 'CAT!
L

All the author's files are listed. He has two programs, one lesson
no response file.

user : CAT,L

8ys LESSONS

sys : HISTY RELEASED
sys ¢ HIST

sys : GEOGH

8ys

§ys ¢ END OF ‘CAT?
sys ¢ *

The author has requested only the list of his current lessons. He
three, one of which has been released for general use.

student

user : CAT

sys ¢ PROGRAMS
sys : JACOBI

sys ¢ STD

sys ¢ SQUARE

sys

END OF 'CAT!
*

The student is given a list of the programs he possesses. Dven
though he may own some response files implicitly, that they exist is of no
useful value to him so he is not told of their existence.

et

216

COPY COMIMAND

Ccory,

This command allows the user to copy an existing file into another file,
vhich may already exist or need to be created.

On terminal and in batch. Authors and students.
COPY, file1l, file2.

k.1 file1 - must be a valid lesson (authors only) or program which
exists,

k,2 file2 - must be a valid name of a file of the same type as
'file1. It may or may not exist already.

The source statements only are copied from ""file1%. To run either
the lesson or program subsequently, it must be translated.

Examples.
user ¢ COPY,ALGEB1,MATHS?
sys ¢ ¢

The source statements of lesson "ALGEB1" are copied into lesson “NMATHS?7Y,

which already exists.

user ¢ COPY,CUBICS,SOLVE
sys ¢ FILE "SOLVE" HAS BEEN CREATED
sys ¢ *

The source statements of program "CUBICS" are copied into program "SOLVE"Y

which has first been created.

bl

217

COURSE CORIAND

1. COURSE.

2. This command allows the user to take part in a course, if it exists and
has been translated successfully. In the case of students, the constit-
uent lesson O (at least) must have already been released for general
use.

3. On terminal only. Authors and students.
L, COURSE, csname

L.1 csname is a valid course which exists. Authors may use the
command to check out the constituent lessons of the
course before satisfying themselves that these are
fit for release. Students may use the command only
if lesson O of the course has already been released.

5. The system first decides whether the user is an author or a student
(one author may be acting as a student to another author); also if
the course exists. .

5.1 author: the author is asked which respdhse file he wishes to use for
this particular run of the course., He has ten response files available
to him per course - they are known by digits O to 9 to him. They are
available so that the author may explore the many possible routes
through his course and correct inconsistencies, if necessary, before
allowing students to use it.

The system then tells him at what segment he will begin and in
vhat lesson. If he wishes to carry on from this specified point in
the course, the author just presses RETURN; otherwise he is allowed
to specify the segment and the lesson from where he will re-commence. |,

If the lesson is available for use, i.e. if it has been trans-
lated successfully, and the segment exists, then the course is taken
up at that point. There will only be any doubt about the existence
of a segment if the author has specified his ovn re-entry point and
not just carried on from where he left off previously.

5.2 student: if the course specified by the student is available to him,
then he usually re-commences at the beginning of the segment he was
in when he terminated his last course session. However, the author
may overrule this convention if he wishes the student to have complete
freedom within a course.

5.3 Once inside the instructional material, the user will be presented with
various facts and from time to time asked gquestions on the subject
content of the course. Thus, the keyboard is unlocked to the user when
he is expected to reply to a guestion. His response may be up to five
lines long, providing the continuation character, "-", is used at the
end of the previous line all the way. The length of each line must not
exceed 80 characters, including the continuation character.

The only other time that the keyboard is unlocked to the user is
when the course author has specified a pause at that point. The
system prompts with a "“:", followed by a carriage return line feed, and
thin the user may restart when he is ready by simply pressing RETURN
only. :

218 .

Whenever the keyboard is unlocked, the user may verform certain
tasks other than simply making a reply in the case of a guestion, or
proceeding in the case of a pause.

56317 2END if the user enters "7ENDY" in either instance, the course
is terminated at that point and he is returned to the
command language pronmpt.

5.%.2 2F during any segment, an author may specify certain parts of
the lesson to which the student will be sent if he enters
a predetermined non-solution response when the keyboard is
unlocked to him. This the author does by use of a CTRL

¢ statement. If a user enters "?F" then he will be sent to

the point described by the first parameter of the CTRL
statement. If the author has nol specified a CTRL statement
within the segment, then the "?F" is ignored, i.e. in
the case of a question, "?F" is assumed to indicate the
student's answer; in the case of a pause, "?F" will cause
a restart. The reason the letter F was chosen was that
the first parameter might be used for a forward skip;
however, this is completely arbitrary.

5.3.3 7B this is exactly the same as for "?F" except that the student
will be sent to the point described by the second parameter
of the CTRL statement, if it has been used. The letter B
vas intended to suggest a backward skip.

Se3.4 285 as for "?F" but the point is given by the third parameter
of CTRL, if it has been used. The letter S was intended
to suggest a skip to the subject outline.

5.3.5 2G as for "?F" but the point is given by the fourth parameter
: of CTRL, if it has been used. The letter G was intended
to suggest a skip to a glossary.

5.3.6 7CALC this may only be entered in reply to a question. It

" indicates that the student wishes to write or modify a
program in the calculating language. Of course, the usual
reason for his wanting to do this is that it will help him
answer the question. The system asks him either to enter
the parameters (see command CALC) or simply press RETURN
if he wishes to cancel the request. When he is finished
using his program or, indeed, when he has cancelled the
request, the student is reminded to answer the question.

5.3.7 ?PROG this may only be entered in reply to a question. It
indicates that the student wishes to run a program in the
calculating language. The system asks him either to enter
the filename of the program (see command PROG) or simply
press RETURN if he wishes to cancel the request. On
completion, the student is reminded to answer the question
by the system.

5.3.8 ?DESK this may only be entered in reply to a question. It indicates
that the student wishes to use the desk calculator. On exit,
he is reminded to answer the question,

5.3.9 *%PIL this may only be entered in reply to a guestion. It indicates
that the student wishes to use the PIL interpreter. On exit,
he is prompted to answer the guestion.

219

6. IExamples.
6.1 Author

user : COURSE,HATIHS

sys : ENTER DIGIT TO DENOTE WHICH RESPONSE FILE TO USE
user : 2
sys ¢ YOUR STARTING POSITION WILL BE LESSON L SIOEMEST 13.

sys : IF YOU WISH TO CONTINUE FRCM THLRE JUST PRESS RETURI.
sys : OTHERWISE ENTER 'LESSON NO., SEG. NO.' TO RESTART.
user : 3,27

sys : (course continues)

The author continues to check out course 'MATHS' using response
file MATHS#2 but restarting from lesson 3, segment 27 instead of
lesson 4 segment 13.

6.2 Student

user : COURSE,HIST
sys : (course continues)

The student merely declared his intention to use the course; where he
recommences is determined already by the author.

Te

2e

DESK.

This command allows the user access to the sequence controlled desk

calculator.
On terminal only.

DESK.

220

DiESK COMMAND

Authors and students.

INSERT.

THSERT COFMAND

This commond allows users to crecate new lessons or programs or update
existing ones by entering source statements into specified lines of the
files. No syntax checking is carried out.

On terminal and in batch. Authors and students.

INSERT, filename, {{g}[,Stline,incl,]

4.1 filename

k2.1 L

k.2.2.P

k.2.30

L,2 stline

L4 incr

It is obvious that there are two modes of operation of the command INSFRT.

muat be eiiher a va};d lesson name or a valid prograon
name. "L" requires that it is a lescon which does or
does not already exist, '"P" a program which does or
does not already exist. 'U'" allows either so long as
the file does exist.

is entered if a new lesson is to be created or if an
existing lesson is to be updated by successive line
number prompts. :

is entered if a new program is to be created or if an
existing program is to be updated by successive line
number prompts.

is entered if a previously existing file is to be
updated but in such a way that the line number as
well as the line is entercd after a prompt.

is entered only if either L or P is the second operand.
It specifies the line number to be given to the first
statement prompted for. Limits are 1 and 99999 for L
but 4 and 999 for P. If absent when either L or P is
given, the default value is 10,

is also entered only if either L or P is the second
operand., It specifies the increment between any
successive line number prompts. The limits are as

for VWstline'. If absent ~ it may be absent if and
only if "stline" is absent - the default value is also
10.

mode 1 The user may wish to enter his modifications in a rigid pattern

of line numbers, for example, thirty lines each ten lines apart,

(whether the file into which he is to irsert exists or not is of little
consequence except that he is warned when it does already exist). To

do this he specifies L or P depending on the type of file and optionally
gives the line numbter for the first statement he is to enter and the
increment with which the line number will increase on successive prompts.
The syztem prompts ""line number>", The user then enters his source
statement and presses RETURN., Prompting of line number then occurs
until the user wishes to enter no more lines. At that point he simply
presses RETURN in reply to the prompt and the commend terminates.

The user may override the line number prompt at any time he wishes
to modify or delete any other existing line or insert one out of
sequence by entering his line in the format:

% line number, line contents

5.2

S
™
B

-~

where the line number is a valid one depending on whether L or P was
speclificd, and line contents are the actual insertion reguired.

After this particular line has been entered, the system prompts
the same line number again that was overridden.

mode 2 If the modifications to be made scem randomly scattered about

the file, then the user will not want a rizid line number prompt.

Instead he will supply the line number lo each modification. To do
this he specifies U as the second operand, an action which requires
that the file must already exist. The system prompts simply with ">
to which the user replies by entering his modification in the form

line number, line contents

where,as before, the line number is a valid one depending on whether
the file being updated is a lesson or a program, and line contents are
the actual insertion desired.

On each successive return from the user, the system gives a
further prompt, to which the user replies RETURN only if he wishes to
discontinue entering modificatiouns.,

It is important to note that updating a previously translated file
via the INSERT command destroys the intermediate code and necessitates
a re-translation before further use,

Examples.

mode 1

user : INSERT,MATHS@,L,25,50

sys : FILE "MATHSﬂ" HAS BEEMN CREATED
sys : 25>

user : (enters source line)

sys : 75>

user : (enters source line)

ETC.

An author has created a new lesson "MATIIS@" and wishes to insert
source lines commencing at line 25 and thereafter increasing by 50 on
successive prompts.

user : INSERT,ROOT,P

sys : WARNING. PROGRAM 'ROOT ' ALREADY EXISTS
sys : 10>

user : (enters source line)

sys : 20>

user : (enters source line)

EIC.,
An author or student wishes to insert source lines in a lesson

"ROOT" which already exists. The starting line number and increment
have been allowed to default to 10.

AV]

223

user : INSERT,IATING,U

sys ¢ >
user : (enters source line together with line number)
sys : D

An author wishes to update an existing lesson "LATINS' but each
modification he enters will contain a line number,

LESSON.

This command is available to inform authors which lessons aré currently
released for general use and who are their authors.

On terminal and in batch.

LESSON.

Example.

user
sys
sys
sys
sys
sys
sys
sys
sys

S0 o8 o0 ¢ 28 s se 0 s

Five lessons from three different courses here have been released

so far.

LESSON COMMAND

22k

LESSON
COURSE
MATHS
PIL
MATHS
MATHS
PDE

END OF 'LESSON!

.

oOUnaAa0O0

LESSON NUIMBER

Authors only.

AUTHOR

CIC?
DICO
CIC7
C1C?7
QCCY

5.

6.

225

LIST COMMAND

LIST,
This command gives the user a current listing of the file he specifics.

On terminal and in batch. Authors and students.

LIST,filename [(stline,finline)}]

'{(stline)
4,1 filename is the name of either a lesson or a program which exists.

L.2.1 (blank) specifies thal a listing of all the lesson or program
is required.

L,2.2 stline is the line number of the first line of the listing.
If this does not exist, then the first line will be
the one with the next greater line number than stline.

4,3 finline is the line number of the last line of the listing.
If this does not exist, then the last line will be the
one with the next smaller line number than finline.

The user is supplied with a current listing which contains all the lines
in the specified part of the file. If the specified part is empty,

then the command simply gives back a heading followed by an end of
command message.

Example.

The following NUTS dialogue shows how the command LIST may be used
in three forms, using the same program, SQROOT, each time.

user : LIST,SQRCOT

sys @ CURRENT LISTING
. 8ys 1 50 1)READ(X)

sys ¢ 100 IF(XCLT>0)JUMP»2

sys 150 TYPE('X="'1KX>3,10,5'SQUARE ROOT OF X='15#SQT(X)»33,10,5)

sys 200 JUMPX1

sys 250 2)STOP

Bys ¢ 300 END

sys ¢ END OF LIST!

8ys * v

user : LIST,SQROOT(170,250)

sys CURRENT LISTING

8ys : 200 JUMP>1

sys 250 2)STOP

8ys : END OF 'LIST!

sys .

user : LIST,SQROOT(200)

sys CURRENT LISTING

sys 200 JUEPY1

sys 250 2)STOP

sys @ 300 END

sys : END OF 'LIST!

: *

sys

226

PIL COANID

PIL

This command places the PIL interpreter at the user's disposal.

On terminal and in batch. Authors and students,

PIL |

The user has available all "“indircct" statements from previous usage

of the interpreter. Upon completion, entry of "HTIS" returns the user
to command mode. ‘

30
l"‘
4.1

5.1

5.2

27

PROG CCHMAIND

PROG.

This commend is used to run any program in the calculating languace
which has been translated successfully. All inputs are prompted for
by variable name and run time diagnostic messages are given wherc
appropriate.

On terminal and in batch. Authors and students.
PROG, prname

prname must be the valid name of a program which exists and has
been successfully translated previously by the CALC command.

The only messages to be given back apart from output results and output
text are run time diagnostics and prompts resulting from the source
statement READ.

The letter C before the diagnostic message indicates to the user that
it is a controller failure. The run terminates immediately.

There are three types of READ statement, all of which'generate
different prompts to the user.

5.2.1 When a simple variable is to be read in, the system prompts
with the name of the variable. The user is required to enter
one valid constant only, followed by RETURN. Entry of a real
constant when an integer constant was asked for causes the
printing of a warning message and rounding occurs,

>5.2.2- When an array element is to be read in, the system prompts with

the actual element number required; that is, it evaluates any
expression representing the array element, then brints out the
array name followed by the element number value, contained in
parentheses. As above, the user is required to enter one
constant only, followed by RETURN. Also, this may be rounded,
as appropriate.

5.2.3 When a sequence of array elements is to be read in, the system
prompts with the array name and the actual element number from
whence the constants are required; that is, it evaluates the
simple variable which defines the starting element, if used
instead of a constant. The user enters as many constants as
he desires and these are stored in consecutive elements of the
array. He sevarates them by a corma but terminates the seguenre
with a semi-colon. As the user may only enter 80 characters
in any one line, he may continue on another line by neglecting
to end the current line with a semi-colon, e.g. by a space or a
comma. The system will then prompt for the next element in
sequence. The user then either carries on or simply terminates
with a semi-colon. If an error is detected in a line of
constants, the user is asked to re~input the current line.
Entry of commas only in sequence will cause zeros to be
entered in the corresponding array elements. Also, rounding
may occur as appropriate, but with warning.

220

Bxample.

user : PROG,CUDICS

sys ¢ ENTER DATA FOR VARIADBLE LENGTH

user : 25.7

sys ¢ VW REAL CONSTANT INSTEAD OF INJEGER - ROUNDILNG OCCURS
sys : ENTER DATA FOR ARRAY ELEMENT &TIME (16)

user : 1.364 ‘

sys ¢ ENTER DATA FOR ARRAY &NUM STARTING AT ELEMENT 10
user : 5,8,3.2,%0

sys ¢ W REAL CONSTANT INSTEAD OF INTEGER - ROUNDING OCCURS
sys ¢ ELEMENT NUMBER 12

sys ¢ VW LINE ENDS WITHOUT TERMINATION

sys ¢ ENTER TERMINATOR OR RECOMYENCE WITH ELEMENT 14

user ¢ 124444,9;

sys : END OF READ. IAST DATA WAS FOR ELEMENT 18

»
*

ETC.

An existing, successfully translated program CUBICS is run, and
prompting and warning nessages given.

229

QUIT COMMAND

QUIT.

This command allows the user to terminate his NUTS session and return
to Michigan Terminal System.

On terminal and in batch,. Authors and students.

QUIT,

When the system signs the user off, it tells him how long in hours he
has been sisned on to NUTS to date and also how long in minutes the
last session was.

Example.

user QUIT

sys : TOTAL TIME = 10.42 HRS. THIS SESSION = 61.86 MINS.,
sys : # (MTS command prompt).

5.

REL COMEATN
REL.

This command is used to release lessons for general use. In other
words, the author wishes to allow students to use the released lesson.

On terminal only. Authors only.
REL, lname

4,17 lname is the valid nome of a lesson owned (,translated and
successfully checked out) by the author issuing the command,

Once the system has decided that the lesson to be released is valid, it
makes the further check that if this is not lesson O, then lesson O
must already be released., This is because lesson O is the fundamental
lesson in a course and must be released before all others,

It may happen that some other author has already released a
lesson in a course of the same name as the course, the lesson of which
is now being released. If so, the current author must first copy his
lesson to one of a different name and re~translate it before trying to
release it again, as identical course names between authors is not
allowed.

Examples.
user : REL,MATHSO
sys : *

- The fundamental lesson O of course MATHS is released, allowing
students to commence the course.

user : REL,HISTO
sys : *

Lesson 9 of course HIST is released, assuming lesson HISTO has
been released, thus allowing students to carry on further with the
course,

5.

RES,

RI55 COMEAND

This comrand is used to withdraw lessons from general use. In other
words, the author wishes to amend the lesson.

On terminal only. Authors only.

RES, 1name

4,1 lname

is the valid name of a lesson owned and already released
by the author issuing the command.

5.3

N
Ui
)

RFILE COIMAND

RFILE.

This coummand gives an author a listing of the contents of any one
of the response files he possesses., e uses it whilst he is checking
out the logic of his courses.

On terminal and in batch. Authors only.
RFILE, rfile.

4,1 rfile is the valid name of a response file owned by the author
himself,

If the response file is a valid one then the following information
is returned to the author.

current position: the current lesson number of the course and the
segment number in that lesson are given, together with the corres-
ponding address in the intermediate code. A restart would occur from
this position.

route: information is given in chronological order of responses. For

each response this is:
5.2.1 lesson number,
5.2.2 question number.

5.2.3 response type : this may be one of A(nticipated), U(nanticipated)

or N(ot ansvered). In addition, '+D', '4C', '4P', '4DP', etc. is

added depending upon whether ?DESK, ?CAIC, ?PIL or some
combination was used.

5.2.4 truth value = O if that particular HCA/#WA element was not used.
= 1 if that element was contained in the response.
==1 if not.

This is only included if the response type is A.

5.2.5 time taken: from keyboard unlocking to RETURM; in seconds.

5.2.6 actual response : the first 60 characters of the response, but
only if unanticipated.

times: the total time on the course and the duration of the last

session are given in minutes,

See Appendix F for an example of a response file listing.

6.

233

RID COMMAID
RID.

This commond is used to destroy files; lessons, vrograms and response
files in the case of authors but prozrams only in the case of studentis.

On terminal only. Authors and students.
RID, name
ko1 name is the valid name of an existing file:-
a lesson,prosram or response file in the case of an author.

a program in the case of a student.

When a file is got rid of, it is deleted from the system and its
reference in the user's catalogue removed.

Examples.

user : RID,MATHS2
sys ¢ *

user : RID,CUBICS
Bys ¢ *

user : RID,MATHSHS
sys s *

One of each type of file is destroyed.

23h

SIFTLE COMMARD

STILE.

This commond gives an author a listing of the contents of a responsc
file of a student who is using one of his courses. It is used to
study the student's current position and progress in the course.

On terminal and in batch. Authors only.
SFILE, csname, userid

k.1 csname is the valid name of a course owned by the author,
: (Naturally, some of the lessons of this course must
be released).

L,2 userid is the valid user identification number of a student who
has been added to the student index, i.e. has been
joined to the system.

After verifying the validity of the course name, the system
ascertains whether the student has been joined to the system. If
not, a message indicating this is returned. Then, it decides whether
the student has or has not commenced this particular course, If

he has, a listing of the form mentioned in paragraph 5 of the RFILE
command is given,

See Appendix F for an example of a response file listing.

235

THE AUTHOR LANGUAGEH

INTRODUCTION

The author languace is used to desipgn dialogues bhetween the nmachine
and students. Source statements written in the author language consist
of a set of statements constructed by the author from the languape elements
described in this section.

In a process called translation, a program called the author languapge
translater analyses the source statements and translates them into blocks
of intermediate code which will subsequently be executed by the controller.
In addition, when the translater detects errors in the source program, it
produces appropriate diagnostic error messages.

CODING STATEMENTS

Statements are written one per line and have a maxzimum length of 80
characters.

.

CONSTANTS.

A constant is a fixed, unvarying quantity which may be either of mode
integer or real.

1. Definition of inteser constant - a whole number written without
a decimal point., Maximum
magnitude 2147483647,

2. Definition of real constant - has one of three forms: a basic real
constant, a basic real constant
followed by a decimal exponent, or
an integer constant followed by a
decimal exponent. (A basic real
constant is a string of decimal
digits fewer than 8, with a gecimal
point). Magnitude O or 10~7 ’
through 1072,

The decimal exponent permits the expression of a real constant
as the product of a basic real constant or an integer constant
times 10 raised to a desired power. An exponent consists of
‘the character "-" followed by a signed or unsigned 1- or 2-
digit integer constant.

VARIAELES

A variable is a symbolic representation of a guantity that occupies
a storage area. The value specified by the name is always the current
value stored in the area.

~ The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable real data, etc. There are 3 types of variable, 2 of which are
numeric. The name of a numeric variable is from 1 through 6 alphabetic
characters. There is a predefined convention used to specify variables as
integer or real as follows:

1. If the first character of the variable name is I,0,KyLyM or N the
variable is integer.

2. If the first character is any other letter, the variable is real.
The last type of variable is of mode logical.

2. Unlike numeric variables when the author may create and name his
own, there is a fixed number, 3, of lorical variables to which
the author only implicitly assigns values; that is, it is the
student, by his reponses, who fixes the values of these logical
variables.

3¢1 'There exist 20 reswponse clements #CAO,#CAI,...,#CA9,#WAO,...
#VA9 which give names to up to 20 responses for which an
author may want to test in reply to his question. To each
of these elements may be assigned any combination of strings
and values. The author also indicates how many of each are
required to give an ''overall match' and also if ordering is
to be taken into account. After the student has entered his
response, each of the #CAs and Hiis becomes true or false (or
undetermined if not used by the author), depending upon the
response.

3.2 The implicit response element #UA becomes true if an
unanticipated response is given.

3.3 The 1mpllclt response element #NA becomes true if the question
was not answered; that is, the student 51mnly hit RETURN. In
that case #fUA becomes false.

3.4 The implicit response element #RTn becomes true if the response
wvas made in less than or equal to n seconds.

ARRAYS

An array is a set of variables identified by a single variable name.
A particular variable in the array may be referred to by its position in
the array; e.g. first variable, third variable, twentieth varioble. Each
variable (element) in an array consists of the name of the array immediately
followed by a number enclosed in parentheses, called a subscript quantity.
The variables which the array comprises are called subscripted variables.
To refer to any element in an array, the array name must be subscripted.
In particular, array name alone does not represent the first element.

The size and type of an array: the number of elements of an array in the
author language is fixed at 100. Also, the number of subscript quantities
allowed is one, making a one-dimensional array of 100 elements. An array
name consists of the character "&" followed by from 1 through 6 alphabetic
characters. The type of an array name is determined by the same conventions
as ve used to specify the type of a variable name. Each element of an array
is of the type specified by the array name.

SUBSCRIPTS

A subscript is an integer subscript quantity that is used to identify
a particular element of an array., It is enclosed in parentheses and written
immediately after the array name., The following rules apply to the construction
of subscript quantities (see sections STANDARD FUNCTIONS and EXPRESSIONS for
additional information about the terms used below). |,

1. subscript quantities may contain arithmetic expressions using
any of the arithmetic operators: +, —y *, /, %, **.

237

2, subscrip] antities may contain standar weti eferences.
2 subscript quantities may cont st ard function referenc

e subscript quantities may contain subscripted names.

. the total nesting of subscripted names and standard function

references within subscript guantities must not exceed 5.

5 mixed mode expressions (real and integer only) within subscrint
quantities are evaluated at run time. If the evaluated
expression is real, rounding occurs.

6. the evaluated result of a subscript quantity should always be
greater than zero and less than or equal to 100,

examples &ARRAY(NUM)

EMATRIX(&A(1) +LE(X+#SIN(TIETA)))
EX(1553+742) '
&A(HSIN(X+RCOS (&NUM(EE(1))))) - (maximum of 5 nestings)

invalid &ARRAY(-2) (must not be negative)

EMATRIX(123) (must not exceed 100)
8X(YKGT>Z) (must not assume a logical quantity)

STANDARD FUNCTIONS

The scope and value of expressions in the author language are enhanced
by a facility for inserting functions, just as variables may be inserted.

The name of

the function, together with the appropriate argument, is merely

written. The "standard" functions are some of the more frequently
occurring functions of analysis and are recognised by the character 'Y"
folloved by a 3-letter mnemonic code. The argument is enclosed in

parentheses

#ABS
#5QT
SIN
¥ cos
TAN
¥ Exp
¥ ENT
NIN
#cin
#acT
#aCs
kacce

and written immediately after the standard function name.

- absolute value

- square root, argument 30

~ sine, argument in radians

- cosine, argument in radians
- tangent, argument in radians
- exponential function

- largest integer not greater than the value of the argument.
- natural logerithm

- common logarithm

- arc tangent

- arc sine

- arc cosine

The following rules apvly to the construction of arguments (see
sections SUBSCRIPTS and EXPRESSIONS for additional information about the
terms used below).

1. arguments may contain arithmetic expressiorsusing any of the
arithmetic operators: +, =, *, /y %, **.

2. arguments may contain standard function references.

3. arguments may contain subscripted names.

L, the total nesting of subscript names and standard function
references within arguments must not exceed 5.

238

examvles FSTH(eA(Z-#cos(eammi(eB(1))))) (mexinum of 5 nestings)
#ENT(X/5+%)
#COS (&A1) +8B(+IATRIX (1))

invalid *£SQT(Y<GT>Z) (must not assume logical quantity)
LY PRESSTONS

The author language provides three kinds of exbression: arithmetic,
logical and resvonse, The value of an arithmetic exyression is always a
number whose type is integer or real., The value of either a logical
expression or a response expression is always a truth value: ftrue or false.
Expressions may appear in assignment statements, in certain control
statements and in output statements.

1. Arithmetic expressions

The simplest arithmetic expression consists of a primary which may be
a single constant, variable, subscripted variable, standard function, or
another expression enclosed in parentheses. The prinary may be either
integer or real.

1.1 Arithmetic overators

1.7.1 ** is the sign of exponentiation. The base precedes the
sign and the exponent follows. The operation is
effected as in ordinary arithmetic with the following
comments and exceptions. No values of base and
exponent vhich would lead to infinite, indeterminate or
imaginary results are allowed, and when the e:ponent is
real the value of the base may never be negative.

1.1.2 * multiplication, conventional meaning.

1.1.3 / real division. The operands may be of any combination
but a real result occurs: e.g. 14/5 = 2.8

1.1.4 % integer division. The operands may be of any combination
but first they are rounded to integers if real, before
integer division yields a result as follows:

¥iy = sign (rounded x/rounded y)* whole number part
(modulus (rounded x/roundedy)

eogo 14.1"' % 1*06 = 14 7(,1 5 = 2.
1.1.5 + addition, conventional meaning.
10746 = subtraction, conventional meaning.,

1.2 Rules for constructing arithmetic exwnressions

1.2.1 All desired computations must be specified explicitly; i.e. if
more than one primary appears in an arithmetic expression, they
must be separated from one another by an arithmetic operator,
e.g. AB is written A*B if multiplication is intended.

12,2 No two arithmetic operators may apvear in sequence in the same
expression.
e.g. A*/B and A*-B, To correct the latter, parentheses are
added, A*(-B).

1.2.3 Order of computation: computation is performed from left to
right according to the hiersrchy of opcrations thus:

IHerarchy Operation

first (highest) evaluation of standard functions
second exponentiation (**)

third multiplication and division(*, / and %
fourth negation (-)

fifth addition and subtraction (+ and =)

This hierarchy is used to determine which of two consecutive
operations is performed first. If the first operator is
higher than or equal to the second, the first overation is
performed. If not, the second operator is compared with the
third, etc. When the end of the expression is encountered,

all of the remaining operations are performed in reverse order.

Parentheses may be used in arithmetic expressions, as in
algebra, to specify the order in which the arithmetic operations
are to be computed. Where parentheses are used, the expression
within the parentheses is evaluated before the result is used
This is equivalent to the definition above since a varcnthesised
expression is a primary.

2. Logical exvressions

The simplest form of logical expression consists of one of the 23
pre-named logical variables, or a logical expression enclosed in parenthescs,
which always has the value true or false.

More compliéated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of the following
three forms:

relational operators combined with arithmetic expressions OR
logical operators combined with logical primaries OR
logical operators combined with either or both forms of the
logical expressions described in the first two forms.

2.1 Relational operators

The 6 relational operators, each of which must be preceded by '%
and followed by '">'' are as follows:

<GT> greater than ()

<GE> greater than or equal to (?)
<LT> less than (<)

<LE> less than or equal to (®)
<EQ? equal to (=)

<HE> not equal to (¥£)

The relational operators express an arithmetic condition which can be
either true or false. Only arithmetic expressions may be combined by
reletional operators. :

examples A<GTON invalid #CAKEDX+Y (logical quantity not
X **3, KB (Z4W) *3 allowed)
6<LE>EPS : X **KIT3,2 (™" missing)
<GT>7 (missing arithmetic

expression)

2ho

2.2 Logical operators

The 3 1dgical operators, each of which must be preceded by "<" and
followed by "> " are as follows. Each takes its conventional meaning.

Two logical operators may appcar in sequence only if the second one is the
logical operator <NOT>. Only those expressions which, when evaluated,
have the value true or false may be combined with the logical operators
to form logical expressions.

examples &ARRAY (X+2) <. GT> O < ANDD#WA9
#CA2 < AND><HNOT>H#WAO

invalid X <AND>#CA2 (X not a logical expression)
<OR> X <GT> Y (<OR> must be preceded by a logical expression)
£ CA2 <AND>OR>#CA3 (<AND> and <OR> must be separated by a
: logical expression)
#CA2 <NOT><ANDX#CA3 (<NOT> must not precede <AND> or <OR>)

2.3 Order of computation in logical expressions

“he order in which the operations are performed is:

Hierarchy Operation

first (highest) evaluation of standard functions

second exponentiation (**)

third multiplication and division (*, / and %)
fourth negation (-)

fifth) addition and subtraction (+ and =)
sixth ' <GT», <GE>, <LT>, <LE>, <EQ>, <NE>
seventh <NOT>

eighth <AND>

ninth : <OR>

Parentheses may be used in logical expressions to specify the order in
which the operations are to be performed. When parentheses are used,
the expression contained within the most deeply nested parentheses

(i.e. the innermost pair of parentheses) is effectively evaluated first.

The logical expression to which the logical operator <NOT> applies
must be enclosed in parentheses if it contains two or more quantities.
€.g.4 if A and B represent logical primaries, then the following two
expressions are not equivalent.

<NOT> (A <OR> B) ; <NOT> A <OR> B
In the first <OR> operates on A and B first then <NOT> acts on the result.
In the second <NOT> acts on A first and then <OR> operates on this result
and B.

3. Response expressions

A complete description of response expressions appears in the section
ASSIGNMENT STATEMENTS.

THE PAST STUDENT PERFORMANCE FACILITY, #PERF.

This is a logical function which acts in some ways like a standard
function in that it is invoked merely by writing it together with an

2k

appropriate argument contained in parentheses. The difference is that the
one result that is returned may only have the value true or folse.

There are § kinds of past performance about vhich the author may
inguire, all concerned with the student's record during the current lesson.
In all types, the range of question number is 1 through 99 and that of
ansver number from O through 9.

1« qCAd - student matched Correct Answer d to question q. e.g. #PERF (26CA3)
2. gWAd - student matched Wrong Answer d to question q. e.g. #PERF (3VA0)
3. gNS - student has Not Seen question g yet. e.5. #PERF (9O1IS)
k. qNA - student did ot Answer question q. c.g. #PERF (17HA)
5 qUA - student gave an Eﬁanticipated Ansver to question q. e.g.

PERF (56UA)
6. gRTn - student answered question g in less than or equal to n seconds.

e.g. FPERF (46RT10)
7 (91,92, ¢evyQ3-agltyeee)nXX where n is an unsigned integer and XX may be
any one of CA, WA, NS, NA or UA withthe appropriate meaning.

- out of question g1, G2, «..,43,03+1,03+2, «..;qlt, ... the
student satisfied the XX property n times, e.g. #PERF (7,8,11-15,
19,23-26)10CA. This means that out of the 12 specified
questions, the student gave 10 correct answers, no matter
which answer number.

8. q1-g2-g3=ql= .ee. = the student's vath through the lesson was successively
questions q1, 92, 63, G4 oo o €eg. #PERF (7-8-11-12-12-13).
This means that the student's route through the questions was
from 7 to 8 to 11 to 12 (two attempts) to 13.

To supply a more complex argument to #PERF, it is possible to test
the conjunction of combinations of each of these 8 kinds of past performance
by simply separating each different inquiry by a comma, Naturally, if one
enquiry proves false, the whole #PERF call gives back the value false.

Examnle #fPERF (1CAk, A1, 3NS , 4NA, 5UA , 6RT30, (748,11-15)5CA, 16=19-20)
this is true if

the student's response to question 1 contained correct answer U AND
his response to question 2 contained wrong answer 1 AND

he has not seen question 3 yet AND

he did not answer question & AND

he gave an unanticipated answer to question 5 AND

he answered guestion 6 within 30 seconds AND

he made at least 5 correct responses (of any answer number) to questions
7,8,11,12,13,14,15 AND

he proceeced from guestion 16 to 19 to 20.

ASSIGNMENT STATEMENTS

There are two types of assignment statements: arithmetic and response.

1o Arithmetic assignment statement

1.1 non-subscripted variable

a=> » Where a is a non-subscripted variable and b is an arithmetic
expression. This statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equivalence; i.e. the expression to theright of the equal sign is

1.2

2.

242

evaluated, and the resulting value replaces the current value of the
voriable to the left of the equal sign. The aritlmetic ciwvression
must not contain any variable which bas not been previously assigned
a value.

Example DIST = TIME*VEL
array

a = b1,b24b3, ¢ece. BN , where a is a subscripted varizble or an
array nane only and b1,b2,b3,..., bN are arithmetic expressions.,

If the array name only is given, the subscript is assumed to be 1,

the first element of the array. The expressions to the right of

the equal sign are evaluated, and the resulting values replace the
current values of the successive array celements commencing with that
specified on the left of the equal sign. The arithmetic expressions
of the subscript quantity and the right hand side must not contain any
variable which has not been previously assigned a value.

After this statement, values of array &ARRAY become:

EARRAY (1) to S&ARRAY (11) unchanged

&ARRAY (12) = O

&ARRAY (13) = O

&ARRAY (14) = value of X

EARRAY (15) = wvalue of Y

&ARRAY (7i6) = 3

&ARRAY (17) = O .
&ARRAY (18) = to &ARRAY (100) unchanged.

Resvonse assicnment statement

o R R) I P R B SN P [)

2.1

vhere r is a response element,

51,52, are strings of characters,
i1,i2, +.e.. are unsigned integers,
V1,v2, «.e. are 'exact value' arithmetic expressions,
el,e2, «... are "error'" arithmetic expressions,
and my,n are unsigned integers.

The string-, values, string number specification and value number
specification may be in any order so long as they are separated by
commas,

At least one stfing or value must be present.

After asking the student a question and before indicating when
the response is required, the author MUST specify at least one
expected response. He does this by making a response assignment.
There exisi 20 response elements, MCAO, FCA1,, £CA9, HKWa0, ...,
#WA9, which give names to up to 20 expected responses for which an
author may want to test. :

To each of these elements may be assigned any combination of strings
and ¥alues., :

243

2.7.17 A string is simply a collection of chzracters enclosed by 't ' Vg
and optionally followed by either an unsigned intepger or the
letter "K",

B.le1.1 IT neither unsigned integer nor "K" follows the string,
then the author requires the exact string in the
student's resnonse.

e.3. 'FORTRAN! - requires exactly "FORTRAN" somevhere
in the response.

2.%7.1.2 If an un51gned integer follows the string, this indicates
the maximum number of characters which may be wrong in
a string of the same length from the student's response
and yet still vrovide a match.

€.« 'FORTRAN'1T =~ requires '"*ORTRAN',"F*RTRAN'", FO*TRAN",
etc., where * is any character, sonevhere in the
response, However, "FOURTRANY does not match as
the system is searching for a 7-character stiring
with only one error. 7 consecutive characters
from YFOURTRAN" has at minimum 2 errors. ("OURTRAN"),

2.1.1.3 If the letter "K" follows the string, a Kernel match is
sought. This is the specification of certain characters
(no blanks) from a required answer and a match will occur
if the student's response contains a string of any
length which has the characters in the given order.

e.g. 'FIRN'K -~ requires "FTRN'", "FORTRAN', "FOURTRAN"Y,
WFARTRON'', etc, somewhere in the response.

2.1.2 A value is any arithmetic expression enclosed by "' and """,

’ " However, if the value is to have error bounds, that is, an
exact value match is not required, then there are two arlthmetlc
expressions separated by a comma and all enclosed by ' and '»",
In this case, the first expression indicates the value sought
and the second expression the allowable error.

Examples <1066> - the integer 1066 in the student's
response gives a match.
<1050,50> - any integer from 1000 through 1100
gives a match,

2.2 Any combination of strings and values, each separated by a comma,
may be assigned to a response element. Consequently, the number of
strings,vhether they must be ordered or not, the number of values,
whether t’ey must be ordered or not, all must be specified to
indicate what the author requires to be an “overall match' by the
student's response. This the author does by adding, somevhere
within the assignment, after a comma (unless irmediately after "=").,
a specification for strings followed by a comma (unless at the end of
the line) and, after a comma (unless immediately after "="), a
specification for values followed by a comma (unless at the end of
the line). These take the form

o [
v U
where S/V stands for strings/values,

n is an unsigned integer giving the number required

and O/U stands for ordered/unordered.

2k

C/U is optional and defaults to O if absent. Ioth these spccifications
are themselves optional and default to one only of that type for an
Yoverall match",

Once the student has entered his response, the response elements
become true or false (or undetermined if not uscd by the author)
depending upon the response.

Example #CA% = 'computer', 'ftrn'K, 520, <1970>, <1969

#CA3 will become true if the student's response contains both
Weomputer! (exactly) and a string containing "ftrn" in that
order, in that order and either integer 1969 or integer 1970;
that is, the response "In 1969 our computer will use nore
fourtran than at present',

IABELS
There are three different types of label:

1. Statement labels. Any statement except END may be labelled for
reference from other statements. The statement label conzists
of from 1 through 3 decimal digits (except that the label value 0
is not permitted) followed by a right parenthesis. The statement
follows this. These statement labels may be assigned in any
order and their value does not affect the order in whiéh the
statements are executed in the lesson,

Examples 9)A=1 invalid@ 00)A=1 (value O not permitted)
983)STOP 2137)%=2 (only up to 3 digits
‘ permitted)

27)END (statement END must
not be labelled).

' 2. Segment labels. The author usually divides his lesson into
segments as the system restarts a student in the segment he was in
when he terminated his last session with the course. Any statement
except EIID may be labelled as the start of a segment. In order to
use the segment label as a restart point, the system stores all
variable and stack values when it encounters the segment label
during execution of the course. Also, it cancels the current
addresses contained in the 4 control address registers (see
statement CTRL). The segment label consists of the letter "s"
followed by a 1= or 2- digit number (excent that label value O
is not permitted) followed by a right parenthesis. The statement
follows this. These segment labels may be assigned in any order
and their value does not affect the order in which the segments
are executed in the lesson.

Examnles S3)A=1 invalid SO0)A=3 (valge 0 not pe?m%tted)
575)X=3 S225)E=1 (maximunm of 2 digits
permitted)

S31)ED (statement END must not
be labelled)

3. Question labels. Whenever the author wishes to ask the student to
make a response, he inserts a question label on the statement which
commences the question. This ensures that during execution of the
course, the system will store the student resvonse information in
the correctly indexed position in the response file. Any statement
except END may be labelled as the start of a question. The only

245

restriction is that there exisis at least one response assignment
between the question label and the response request. The question
label consists of the letter "G" fellowed by cither a 1= or 2-
digit nuber (excent thot label value O is not vermitted) followed
by a right parenthesis. The statement follous this. These
guestion labels may be assigned in any order and their value docs
not affect the order in which the questions are executed in the
lesson. Reference to question numbers in the H#PERF facility is

to the 1= or 2~ digit munber following the “g'.

Examples Q5)A=1 invalid QO0)A=5 .(value 0 not permitted)
@63)X=2 Q123)M0i=5 (only maximum of 2 digits
permitted)
Q52)END (statement EID must not

be labelled)
Source statements may be multi-labelled with different kinds of
label but there exists a priority of:

segment label before question label before statement label.

example S$27)Q43)297)A=3
invalid Q5)S17)B=2 (segment label must precede question label)
Q7)103)21)N=H+1 (multi-labelling must not contain 2 or
more labels of the same type).

CONTROL STATEMENTS

1 JUMP STATEMENT

JUMP > label

where label is either a statement label, segment label or question
label. JUMP statements permit transfer of control to another
executable statement specified by a label of any type. Used on
its own, the JUMP statement causes unconditional transfer, but,
together with an IF statement, the transfer is conditional.

examples JUMPY 157 invalid JUMP83 ("' is missing)
JuiP> 873
JUMP> Q2

2. IOAD STATEMENTS

LOADn>label

where n is a digit from 1 through 5.
and label is either a statement label, segment label or
question label.

There exist 5 stacks each of 10 elements which the author may

use to stack return addresses (svecified by labels) and subsequently
unstack when returning control to these addresses via the RETN
statements. The 5 stacks are known by the digits 1 to 5 and are
referenced by virtue of supplying the required digit to the
statement itself.

examples LOAD1>853 invalid LOAD2S?71 (™" is missing)
LOAD3>S17 LOAIPQ3 (digit specifying the
LOADY»Q2 stack is missing)

10AD6>91 (only stacks 1 through
5 exist)

246

3. RETN STATEMENTS

RETNn
where n is a digit from 1 through 5.

This statement looks at the return address on the top of stack n,
unstacks, then returns control to this address. If the particular
stack specified is empty when RETNn is encountered, the statement
is ignored and control passes to the next statement.

examples RETN1 invelid RETN (digit specifying stack
RETN4 absent)
RETN6‘(stack 6 does not exist)

4, TRANS STATEMENT

TRANS (lesson number, segment number)

where lesson number is a valid lesson number from 1% through 9
and segment number is a valid segment number from 1 through 99.

As courses may consist of up to ten lessons, the author must
transfer control out of lesson 0, the fundamental lesson, at
some stage to another lesson if more than one is used. 1f more
than two are used, of course, then control may be transferred
from second to third as well as back to first, etc. To effect
this, the author uses the TRANS statement in which he specifies
the lesson to which he wishes to transfer control and also the
particular segment which will be the continuation point in that
lesson. A TRANS statement indicates a dynamic end of the lesson.

examples TRANS (0,72) - transfer control to segment 72 of lesson O.
TRANS (8,19) - transfer control to segment 19 of lesson 8.
invalid TRANS (12,61) - invalid lesson number.
TRANS (3,192) - invalid segment number.

Of course, a segment number may be valid but not exist in the
lesson specified. In that case, an error message is returned at
run time.

5. CTRL STATEMENT

CTRL (labell, label2, label3, labelk)

wlore label1, label2, label3 and labelk are each either a
statement label, segment label or question label.

As explained in the COURSE COMMAND, the student may enter
predetermined responses when the keyboard is unlocked to him.
These are non-solution responses and have other functions. Four
of these are "7F", "?BY, "?S" and "?G". There exist 4 control
address registers which, at the beginning of a segment, are
emptied. However, the author mey supply four valid addresses

to these registers by using a CThL statement to supply four
labels of any type and combination. Then, after this CIRL
statement but before the start of another segment or, indeed,
another CTRL statement in the same segment, if the student
enters "“2F', NPBM, W2SHM or "2GM, control is passed to the
corresponding address given by the first, second, third or fourth

7.

247

paraneter, respectively, of the CTRL statement, If the author does
not supply a CTRL statement within a segment or if he asks the
student to make a response before the CTRL stitement is effective
in a segment, entry of one of the four nredetermined responses by
the student is ignored as such. The resnonse is taken as elther
an actual response to a question or a request to end a pause,
depending on the circumstance.

example CTRL (S19, Q33, S7, 237)

This statement means that up to the next CTRL statement or
segment start, whichever is the sooner:

entry of "?F" causes control to pass to $19

U0 ugpnH u Q33
oo nggn " s7
noooun oupan " 237

IF STATEMELNT ' -

IF (logical expression) statement

vhere logical expression is any valid lonical expression
and statement is any statement except END or another IF
statement.

The IF statement is used to evaluvate the logical expression contained

in parentheses and to execute or skip the statement depending on
whether the value of the expression is true or false, respectively.

example IF(#CAZCANDINKLTY3) JUMFPQ15

This statement specifies that control is to be transferred to
question 15 if the student's response to the last question contained
the author's correct answer 3 and the value of the variable N is
less than 3. Otherwise, the next statement is executed.

PAUSE STATEMENT

PAUSE

The PAUSE statement causes the keyboard to unlock after printing
":" on a new line. This character indicates to the student

that he may pause at this point in the course if he desires,
without the system displaying any more text or requesting any
more responses. To continue, the student simply presses RETURIN.

STOP STATEMENT

STOP

The STOP statement terminates the execution of the course, It thus
indicates a dynamic end of the lesson.

END STATEENT

END

The END statement is a non-executable statement that defines the
static end of a lesson for the translater. Physically, it must be

the last statement of the lesson. It may not be labelled. nor be

248

the statement part of an IF statement. The HID statement does
not terminate execution of the lesson. To terminate execution
of the lesson, a STOP or TRANS statcment is required. Thus,
cach lesson must conlain at least one of either of these.

INFUT/OUTEUT STATHIENTS

1e RESP STATIZIUT

RESP [<v’l><v2>... <sés2D. .. <al {“1}>< a2, {"2}>...]

where v1, v2 ... are non-subscripted variables,
s1, 82 ... are subscripted variables,
al, a2 ... are array names,
w1, W2 ... are non-subscripted variables,
and ¢1, c2 ... are constants.

The RESP statement unlocks the keyboard for a student's response.

It should only be entered if the author has made at least one
response assipgnment since he inserted a question label. The
statement may just be the statement name itself. However, if

the author desires to storc any numerical values contained in the’
student's response, he specifies variables into which the successive
values will be placed. He may specify these variables in any of
three ways and use any combination of these three ways, in any
order:

1.1 non-subscripted variable ~ the variable name is enclosed
in "M and "y, e.g. <LENGTH?.

1.2 subscriptéd variable - the array name followed by a subscript
quantity within parentheses, all enclosed in '€ and '»",
e.ge <EARRAY(I+2)>.

1.3 array name with starting point -~ the array name followed by
a comma then either a constant or a non-subscripted variable,
all enclosed in '"C" and ">". The significance of the
constant or non-subscripted variable is to denote the element
of the array where the next in the series of values is to be
placed and thereafter the values will be placed in successive
elements, e.g. <&ARRAY,START? or <&MATRIX,917.

If there are more variables specified than numerical values
available from the response, the variables not yet assigned
a value are given the value 999 999 999.

examle RESPKNUM><&FIRST(5)><EMATRIX,96>KLARRAY, 96>

if the student's reply was:

"There have been 10 leap years: 1932, 1936, 1940, 19k, 1948,
1952, 1956, 1960, 1964 and 1968."

then the above variables will be assigned as follows:

NUM=10

&FIRST(5)=1932

&MATRIX(1) TO &MATRIZ(95) - unchanged

ENMATRIX(95) TO eMATRIX (100)=1936, 1940, 194l+, 1943, 1952,
respectively.

&ARRAY(1) TO &ARRAY(95) - unchanged

&ARRAY(96) TO &ARRAY(100)= 1956, 1960, 1964, 1968, 999 999 999,
respectlvely.

2L9

2. TYPE STATEMEINT

TYPE ('st'p1'str2'p2 ... <aetq1,ul,dKae2>g2,w2,42...)

where stril, str2 ... are strings of characters,

pl, r2 es. are unsigned, non-zero integers,

ael, aeld eee are arithmetic expressions,

ql, g2 ees are unsirned, non-zero integers,

wl, w2 «ee are unsirned, non-zero intepgers,
and d1, &2 eee are integers, signed or wnsigned.

The TYPE statement is used to display character strings and
arithnetic expression values in specified positions on the
terminal/line printer.

2.1 Any character may be contained in the string within single

quotes, with the restrictions that " ' " must be revresented
as W 1V Wand My onougn o 1 1 oand "backspace' must be
represented as "iiM, Mgt TE W and "} backspace",
respectively.

2.2 The unsigned integer aofter the string indicates the
starting column of the string.

2.3 There may be a maximum of 10 strings within a TYPE statement.

2.4 Any valid arithmedic expression may be contained within '¢"
and '"»" so long as each variable within the expression has
previously been assigned a value.

2.5 The gq's, w's and d's in the description of the TYPE
statement represent the starting column of the value of the
expression, the width of field of this value, and the
number of decimal places to the right of the decimal point,
respectively. '

2.5.1 if d=0, then an integer is printed,

2.5.2 if d?>0, then a fixed voint number is printed. DNote
that w2d+3 to allow for sign, decimal point and at
least one digit to the left of the decimal point.

2.5.3 if d€0, then a floating point number is printed.
Note that w> modulus (d)+7 to allow for sign,
decimal point, at least one digit to the left of
the decimal point, letter E for exponent, sign for
exponent and two digits for magnitude of exponent.

2.5.4 modulus (d) must not be greater than seven, the
maximum precision allowed.

2.6 There may be a maximua of 5 expressions within a TYPE statement.

2.7 There must be at least one string or expression within the
parentheses of the TYPE statement.

example
TYPE('HEHH'1<SUM/N>6,10,5'VAR'21<SUMSQ—SUM“2/N>25,12,-5'N='41<N>43,
2,0)

250

If the current values ot SUM, N and SUMSQ are 65, 10 and 441,
respectively and if "s" represents a space, then this statement
will give the output:
MEANssSss6.50000sss5sVARss 1. 85000E+01s55sN=10

3. BACK STATEMENT

BACK ('str1'p1'str2'p2 ...<ae?q1,w1,d1€ae2>q2,v2,d2 ce.c.-)

where the abbreviations and their meaning are exactly the same
as for the TYPE statement.

Since the parentheses snd their contents are optional there is
one difference. The BACK statement returns the student to the
last RESP statement for another attempt at the question. If
the parentheses are absent, no message is given back before the
next response, but if present, the contents are displayed first.

SAMPLE PROGRAM

See Appendix D.

251

THE CALCUTASING LARGUAGE

INTRODUCTION: the calculating language is used in writing programs for
applications that involve mathematicol computations and other ronipulation
of numerical data. Source statements written in the calculating lancuage
consist of a set of statements constructed by the user from the lanpguege
elements describved in this section.

In a process called translation, a program called the calculating
language trauslater analyses the source statements and translates them
into blocks of intermediate code which will subsequently be executed by
the controller. In addition, when the translater detects errors in the
source program, it produces appropriate diagnostic error messages.

CODING STATEMENTS

Statements are written one per line and have a maximum length of
80 characters.

CONSTANTS

As author language.
VARIABLES

As author language.
ARRAYS

As author 1anéuage.
SUBSCRIPTS

As author language.

STANDARD FUNCTIONS

As author language.
EXPRESSIONS

The calculating language provides two kinds of expression : arithmetic
and logical. The arithmetic is the same as that contained in the author
language.

The simplest form of logical expression consists of two arithmetic
expressions separated by a relational operator, or a logical expression
enclosed in parentheses, which always has the value true or false.

More complicated logical expressions may be formed by u81ng logical
operators combined with logical primaries.

ASSIGIMENT STATEMENTS

There is only one type of assignment statement : the arithmetic
assignment statement, This is the same as that in the author language.

LABELS

There is only one kind of label allowed in the calculating language :

252

the statement label. It is similar to the statement label of the author
language except that it may only consict of a 1- or 2~ digit number.

CONTROL STATEMENTS

1. JUMP STATEIENT

As author language, to a statement label.

2e IT STATEMENT

As author language.

3. STOP STATEMENT

As author language.

4, END STATEMENT

As author language.

INPUT/OUTPUT STATEMENTS

1. READ STATEMEIT

| nsv
READ(

ol 3]

where nsv1, nsv2 are non-subscripted variables,

sv is a subscripted variable,
an is an array name,

and ¢ is a constant.

The READ statement unlocks the keyboard to allow the user to enter
the data he requires. A prompt is given for every READ statement
at run time, indicating either the variable name alone or the
variable name and either subscript quantity or starting point,
vhichever is applicable. There are basically three types of READ

statement:
1.1 non-subscripted variable - a valid variable name only is

entered between the parentheses; e.g. READ(LENGTH), READ(DIST).

1.2 subscripted variable - a valid array name followed by a
subscript quantity within parentheses are all entered between
further parentheses;
e.g. READ(RARRAY(X-#5QT(Y))), READ(MATRIX(I))

1.3 array name with starting point - the array n~ame optionally

followed by a comma then either a constant or a non-subscripted
variable, all enclosed in parentheses. The significance of

the constant or non-subscripted variable is to denote the
element of the array where the first of the series of

constants entered after prompt at run time is to be placed,
and, thereafter, the constants will be placed in successive
elements. If the comma and the constant or non-subscripted
variable are omitted, then the array element to be assigned

the first input constant defaults to be the first element of

253

the array.
©.g. READ(ZARRAY,START), READ(&MATRIX,59), RTAD(&NUM)

For description of prompts and use of READ at run time, see
PROG COMMAND.

TYPE STATEMENT

As author language

SIMPLE PROGRAMS

The first program finds all the prime numbers up to 100

by ‘the Sieve of Eratosthenes Method. The second program reads
in a series of ages 0 to 99 followed by a terminator greater
than 99, then groups the ages into 0-19, 20-39, etc.

1.

2.

Prime numbers

TYPE('FOLLOWING IS A LIST OF PRIME NUMBERS FROM 2 T0 100'1)
TYPE('2'5)
TYPE('3'S)

I=5 .

1)K =#5QT(1)-0.5
J=3
2)IF(I%I*ICEQDI)IUMPY 3
Jd = J+2

TF(JLE>K) JUMP>2
TYPE(I>1,5,0)

3)I = I+2
IF(IC1E>100)JUMP>1
TYPE('END OF LIST'1)
STOP

END

Age grouping

ng'z)mrzn THE ELEMENT WHERE THE FIRST AGE IS TO BE STORED'1)

READ(I

TYPE('ENTER A SERIES OF AGES BETWEEN O AND 99 TERMINATED BY A
NUMRER'1)

TYPE ('GREATER THAN 99'1)

READ(&TAGE,I)

J=1

1)&M(J)=0

Jd = J+1

IF(JKLE>S)JUMP»

2)IF(LIAGE(I)XGT>99)JUMP>3

&M(&IAGE (I)%20+1) =&M(&IAGE (1)%20+1) +1

I+I41

JUMP>2

3)TYPE('AGES GROUP AS FOLIOWS:*'1)

TYPE('0-19'3'20-39'13'40-59'23 '60-79'33'80-99'43)

TIPE(<?4(1)>;,5,0<&M(2)>11.5,0<&M(3)>a1.5 ,0<&M(4)>31,5,0&M(5)>

1,5,0
STOP
END

25k

APFENDIX B.

The post-test.

1.

2.

3.

255

All the following PIL statements contain one error.

say what it is.

(a) SET b=c*d-e

(b) x=sqrt of (a*b).
(c) SETy=x**2-2%x+1.
(a) IF x>y TYPE x.

(e) TFOR I=1 TO N SET A(I)=I.

2 marks
2

2

3
3

Given the following sequence of instructions:

SET A=3.

SET B=1,
SET X(A,1)=1.
SET X(2,B)=2.
SET X(B+A-3, (A+B)/2)=3.

SET C=A**2-4* B-A+1 .

What are the values of the following expressions?

(a) C

“(b) cos of 3.14159*2

(c) X(1,2)**x(2,1)

(@) Xx(1,3)

(e) ip of ((B**2-4*A*C)/2/A
(£) A ZGT B ZAND ZNOT C=0
Look at the following sequence:
=1.1 demand a,b,c.

=do part 1.

a=

=4,

b=

=a+sqrt of a.

Cc=

=a‘b .

2 marks

3
2

SN W

In cach cese

256

Is this valid?

If yes, a= ,b= ,c=

Write a statement that will:

print a

(Hint: use "ip of (m/7)*7")

Virite a statement that will:

do nothing if x is negative or greater than 1000,

othervise set Yy’ equal to x.

After the seguence:

set 5=0,

for j=1 to 20 by j : do part 2.

set s=s+j,

set j=j+1.

=do part 1.

what are the final values of s and j?

5= -

1J=

Given that

s51= Yabc'

§2= 101234

83= "M

sh= bcdo12"

what are the valués of the following expressions:

(a)
(b)
(c)
@
(e)
(£)
(&)
(h)

s1+82
s2< sk

1 of (s2+s3+sh)

2 gFC sh
3 ZLC sh+"34M4s3 = 5 ZFC s2
28rC 4 gic sb

THE VALUE OF s2

g3=4 o

number m if it is divisible by 7.

1 marks

14 marks

16 marks

3 marks

W W W W W W W

257

APPENDIX C.

The attitude questionnaires.

258

The pre-questionnaire.

1. Name.

2. Have you had any previous programming experience? YES/NO.

3. If yes, how much? DAYS/WEEKS/MONTHS. What languages?

4; Do you have any objections to being taught by means of a typewriter
terminal? YES/NO. If yes, please state them.
(For the remaining questions, the student was asked to choose one of
VERY TRUE/TRUE/FALSE/VERY FALSE. The results are given in this order for

each question.)

A B c total
6. I would prefer to proceed through the course at ﬁ 1 -3 7
b 13
my own pace rather than at the lecturer's pace. 1 1 0 2
o (o] o] 0
7. Being asked questions on the subject matter 1 0 5 6
: 6 6 2 16
“from time to time is a good idea. 0 0 0 0
0 0 0 0
8. It is a decided nuisance having to wait for 0 (o] (o] 1
2 o] 1 3
the course material to be typed out in front 5 6 5 17
o o 1 1
of me.
9. Listening to a typewriter for an hour or more ¢ o o 0
' 1 1 2 b
typing away would do my nerves no good. 6 3 b 15
0 2 1 3
10. VWhen attending a course, I like to receive 6 4 1 13
1 2 b
printed lecture notes (i.e. hard copy). o 0 2 2
o) 8] 0 0
11. Any method of teaching is better than 0 0 0 1
1 2 0 3
lecturing. L 3 5 13
2 1 2 5
12. In a practical class, I prefer demonstrators 1 1 0 2
N 5 2 6 14
to approach me periodically rather than have 1 3 1 6
' 0 c. o0 0

to_ask them for help.

-13.

1k,

15.

16,

17.

18.

19.

20.

Te

2.

259

I learn more from practical classes

than from lectures.

I prefer a lecturer to give me good notes
on the blackboard rather than an inspiring

lecture.

When conversing with the typewriter, I

prefer to be told if I make a wrong answer.

I prefer to be given my overall score on

' questions from time to time.

My typing is too slow for this method

of teaching.

I would prefer a noiseless, swift, visual
display to a typewriter, even though I

would not get a hard'copy.

This method of teaching would be better

if two people sét at one typewriter.

I would prefer to be taught in a definite

sequence of topics rather than choose for

myself the topics I learn and when I learn

them.

The post questionnaire.

For group B and group C:
The "pauses'" allowed me to proceed at my own
pace. |

The number of pauses was

A B c

3 0 b4
3 4 6
1 2 1

0 0 0

2 1 2

5 4 b
0 1 1
0 0 0

2 b1
5 2 6
0 0 0
0 0 0

1 2 0

6 4 6
0 0 1
0 0 0
12 1
L b 5
2 0 1
o 0 o
0 0 1

1 o 1

6 5 5
o 1 0
1 0 0

3 k3
> 1 3
o 1 1
2 0 1
bbb
1 2 e

o o o
B

TRUE 6
FALSE 0
700 LARGE 0
00 SMALL 3

ABOUT RIGHT 3

total

1

- 3
owvweoey O F

=2
- =3 N owwun &= O = oW OO+

-d -—

-d

-2
oOUVWwE VOO N

rownn O

260

)
Q

3. The number of questions I was asked during TOO FEW
TOO MANY
the lessons was ABOUT RIGHT
k. The questions were TOO EASY
TOO DIFFICULT
ABOUT RIGHT
>+ I prefer multiple choice questions to those VERY TRUE
: TRUE
where I had to enter my own answer. FALSE
VERY FALSE
6. In some questions I did not gather what VERY TRUE
TRUE
was required. FALSE
VERY FALSE
7. It is a decided nuisance having to wait for VERY TRUE
TRUE
the course material to be typed out in front FALSE
VERY FALSE
of me.
8. Listening to a typewriter for an hour or so VERY TRUE
TRUE
got on my nerves. FALSE
VERY FALSE
9. The notes I received from the typewriter were VERY GOOD
' GOOD
POOR
VERY FPOOR
10. This method of teaching is preferable to VERY TRUE
TRUE
lectures. (N.B. 1 abstension). FALSE
VERY FALSE
11. I learned more from the practical sessions than VERY TRUE
TRUE
from the lessons. (N.B. 1 abstension). FALSE
: ‘ VERY FALSE
12. This metho: of teaching is too impersonal. VERY TRUE
' TRUE
FALSE
VERY FALSE
13. However, if reinforced by small tutorial classes, VERY TRUE
TRUE
this would not be the case. FALSE
VERY FALSE
14. The number of feedback messages to my TOO FEW
T00 MANY
responses was. JUST RIGHT

OAaPa YVWOO IO Ye) Oara MoONO NOO VO -

OWWO OWwWwwo Oapra

W= C 2w

omnwuwo

20000 OO ~NOO

SN0 a

QO +FHrWwW WLroo

oW £ 0O (o0 g \\ Mo/ OoOWwmnN -

Oanla

£

15,

16.

17.

18.

. 19.

21.

22.

23,

2k,

25,

26,

27

261

I prefer the feedback messages to be chatty,

not just "YES" or "NO'".

I was told my overall score on series

VERY TRUE
TRUE
FALSE
VERY FALSE

TOO OFTEN

TOO INFREQUENTLY

of questions:

My typing is too slow for this method.

I would prefer a noise;ess, swift, visual
display to a typewriter, even though I

would not get a hard copy.

This method of teaching would be better if

two people sat at one terminal.
The response from the system was

The subject content of the lessons was

The number of worked examples wés

I did not have sufficient time each day.

Three days is too short for such a course.

This method of teaching would be fine for one

or two hours per week.

This method of teaching would be better for
end of year revision rather than original

course work.

Would you like to be able to ask the

typewriter questions?

ABOUT THE RIGHT FREQUENCY

VERY TRUE
TRUE
FALSE
VERY FALSE

VERY TRUE
TRUE
FALSE
VERY FALSE

VERY TRUE
TRUE

FALSE
VERY FALSE

T00 SIOW
OQK.

TO00 MUCH

INSUFFICIENT
ABOUT RIGHT

T00 FEW
TOO MANY

ABOUT RIGHT

VERY TRUE
TRUE
FALSE
VERY FALSE

VERY TRUE
TRUE
FALSE
VERY FALSE

VERY TRUE
TRUE

FALSE
VERY FALSE

VERY TRUE
TRUE

FALSE
VERY FALSE

YES
NO

=N O DA auwas W

oMo

nNEO0OO

20N OO PMHUVWO

OWN -

o O

20WuUno O awuw oCoFrmnN W Oowu

o3 =2\ a0 W00 2NN O WM MOWUWMO O

Oaprmn (oo RIVAN,) FaN WKL

O\ -

o

28.

29.

PRE

PRE

PRE

PRE

Group C only

Four questions in any examples class was

I prefer to be taught in a definite sequence

of topics (like a lesson) rather than decide

what I do next (in an examples session).

In the examples classes, I liked the idea

of requesting that help which I wanted,

not what the computer thought I wanted.

Response matrices for comparison questions.

TOO MANY
TO0 FEV
ABOUT RIGHT

VERY TRUE
TRUE
FALSE
VERY FALSE

VERY TRUE
TRUE
FALSE
VERY FALSE

~WWO WO F

oownp

(i) It is a decided nuisance having to wait for the course material to

be typed out in front of me.

B
NT T F VF

VT

T

F o1 9

VF

c total
vP_T F_VF VT T F__VF POST
1 1

o1 L 5 2

1 1

(ii) - Listening to a typewriter for an hour or so would get/got on my

v o F vF

nervese.
. T F_VF
Vi
T 1
F 2 1
VF 11

2
2 2
1

Y YO
W

(iii) Any method/this method of teaching is better than lecturing.

hr © F_vVF
VT

'1‘ 2
Fl1oo1 4
vF| 4

VO T F VF Vi T F VF FOST
_ 2

1 2 1 2 2 2 (1 absten-
2 1 2 sion).

(iv) I learn/learned more from practical classes than from lectures.

e ¢ F VP

VT
T 2 2
F 11
VF

VI T F VF VI T F VF POST
2 & 4 6 (1 absten-
1 1 sion).

(v) My typing is too slow for this method.

PRE

PRE

PRE

PRE

263

SRS

B C total
Vi T F VR v o ¥ VF lve 7 F VF
11 1 1 2
1 3 3 2 4 5

(vi) I would prefer a noiseless, swift, visual display to a

VT

T

typewriter, even though I would not get a hard'copy.

F _VF vi T F

5773

VF

"1
3 2 3
1

1

2

VT

T

F

1
6
1

(vii) This method of teaching would be better if two people sat

at one terminal.

Ve

VF

VI T F VF VE__ T F__VF
YT :
T{ 1 2 1 : 3
F 1 1 2
VF 1 1

wwn i

1

2

(viii) I (would) prefer to be taught in a definite sequence of

topics rather than decide what I do next (group C only).

c
VI_T F_VF FOST
VI 1
T 3 01
F 11
VF|

POST

POST

TOST

264

APPENDIX D.

Part of a NUTS session which contains some

source code in the author language from the course.

265

cat
PROGRANMS
LESSONS
PiLCO RELEASED
PiLC1 RELEASED
PiLC2 RELEASED
PILC3 RELEASED
PiLCY RELEASED
PILCS RELEASED
PILCG RELEASED
PILCY? RELEASED

RESPONSE FILES

PILC#n

END OF 'CAT'
»

1ist,pil1e3(2820,3590)

2820
2830
2340
2850
2860
2870
2830
2890
2900
2910
2920
2330
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080

CURRENT LISTING
Q13)TYPE('L OF (S3+4S4+S5) = ?'5)
#CA0=<10>
N=0
RESP
N=N+]
IF(#CAQ)JUMPY>131
IF(FPERF(14NS))JUMP> 132 .
1F.(CNOT> #PERF(8NS)) JUMPY133
TYPE(') ASSUME THEN IT 1S NOT Sk BUT S5 YOU HAVEM''T GOT HOLD OF PROPEPLY YET'1)
LOADI>Q13
JUMP>Q8
133)TYPE("WRONG AGAIN, HERE IS THE ANSWER:'1l)
TYPE('L OF (534S44S5)wlie244=10,"1)
TYPE('NOY YOU SHOULD KNOW WHAT S3, S4 AND SS ARE EXACTLY.'1)
JuMpP>Qls
131)T$PE('EXCELLENT. YOU OBVIOUSLY KNOW ABOUT S3, S4 AND S5 EXACTLY.'l)
JUMPYQ1S
132)T$PE('N0, BUT NEVER WORRY!! YOU CAN COME BACK TO THIS ONE, How ABOUT:'1
Q14)TYPE('SL = ?2'5)
#CAO=] llccu]
#CAl1="CC'
#CA2= tuny K
N=0
RESP
it) P>141
I1F(#CA0)JUMP)> .
IF(#CALSAND>CNOTY>#CA2)BACK('ENTER YOUR RESPONSE AGAIN, BUT USE DELIMITERS,'l1)

266

(€.°S 21$ (TI~- S 40 V)=S 13525 24% TI=(l)V HO4:N OL I=) ¥0d=,)3dAl

(€. °1uD43028V,=S 135=,)3dAL

3snvd

(T.:3AVH 3N 0S "3NO SOV ,)3dAL

(T,019837 INIQEND IHL S1 N JUIHM ,,SUILIVUVHI N L1SV1 JHl,, SV 3IWVS 3HL SI,)3dAL
(T4 edILIVUVHI LSUIF FHL SONIW 373SL),, OL ONIYULS V DNIONA3Y °LU¥VH 4, 11dy4a)3dAL
(T1,103410N} NV 40 NOILJONUOULND 3IHL IN3AIYd OL QIONAOUYLINI 38 AVW ,,40d,,,)3dAl
(T,0N0J3S V ‘AN3W3LVLS ,,404,, SIHL J0 TOYLNOD 3HL Y3ANN G3A3S0 38 01,)3dAl
(1,3AVH Sd31S K108 SV “U3IAIMON °LNINILVLS ,,404,, V S1S3IDONS SIHL °S3L1L,)3dAL
(Saf U3A390 HOVI 34V € B T SdILS “03S1TV3IY L3N0C ON JAVH 1IN NOA SV,)3dAL

3asnvd

(T,°03LNIdd 34V S ANV ¥ 40 S3NTVA Tvhild 3kl *%,)3dAL

(T,°d31oVdVHI LSUId IHL ONIAOWIY AD 3IZIS NI A3INCIG SIS *€£,)3dAL

(%, "AVYdY 3hil,)3dAL

(Toll LOILISOd LLWVIVA 1X3N 3HL OLNI G30V1d SIS 40 IN3:373 1S¥id 3HL °2,)3dAL
(%, (°03SN 39 A19VE0Ud 1S0:,)3dAL

(N1,01001 , ,UNVWIA,, ‘3300« 123dIANL 3SN OL SNI10D 3u3M 3IM 41) *3NIVA V 01,)3dAL
(Taooed3See ATIUTH SI UASSY TTIA 3M SIHL *S Y04 3NTVA V WIVLISO 1SN 3N °T,)3dAl
(S, *NOILNT0S 3HL 01 Sd34S JISVE © UV 3Y3iil,)3dAl

: 3Isnvd

(T,°S Ni;)3ddAL

JUNTULS SNINIVIEY 3L YNIAVIT ‘AT3ALL03dSIY(N)IV ® (SIVI(TIVI(TIV OLhl,)IdAL
seidbl B0V JWV S 30 SU3LIVAVHI % 1SUld 3HL VL 0L A3YINU3Y FuV 311 *h,)3dAL
(S, LSV3a1 LV S| LLUN3T 3SOHM ‘S ‘ONIYLS V N3AIY 3dV 3N 3S0ddNS ‘ATLSHIH,)AL
318nVvd

(S, °S3Vd1VX3 UINYOM € LV MO0 SN 137 MOK,)3dAL(SS

(T,i1i1107 YNOA S,,LVhL “0009,)3aAL(IST

ss<dinge

A,H-.WDLF S YINSNVY IFHL LVHL O0S ud828V,=SS+,Vyu CRY :OmU&(.-u:Om:#.ﬁm-vme_>.P
(L2438 ¢ INOVEC(OVHF<YOD0VI#)ICLOND) S

(Tydu 4430dLyy 30 AINO WVD YIMSHY 3IHL §1i0 IW0D,)IJALC(OVMECUODOVI#) CLOND Y
TSTLAANP(OVI#) 1

(T,iiS43LIWITIC YUNIELS 1NOHLIA LINS HIVLY YINSNV, INOVACTIVM) I

dS3Y

Aonua=TVN#

23SV, =0VIis

JIANUL, =0VD#

(S4é = SS+,Vy 39% 4ICu+TS,)3dAL(STU

Thteding

(1,°0009 AT100,)3dAL(TINT

’ cTudlinge

(T, hLlii ALIND 13310 SNIAVE. 343N NOA NOILS3NL LVHL A¥L 8 NOVE 09 MOk,)3dAL(ZNI
(T uddu=udutudu=,)3dAL

(T,15 30 dILIVUVHI LSV IHL+yIu=%S ‘0701 N3I38 LSNPL JAVH NOA LVHM WO4d,)3dAL
(T,eN0A d13H *udnu=ud8y 248 I= (£S 2% £) 40 dILIVUVHI LSHIZ 3HL,)NIVE(Z<UIdNIAI
(T,Adl3d N3HL 89S 30 *hd30 LV X007 &é,0926=€S LVHL Y39HIWIY NOA)NIVE(TCVIDN) AL

(1
(1t

0TsE
0TS¢
00S¢
064¢<
08ne
0L%¢
09n¢
oshe
CHhe
0gHe
0Zng
0Thg
0ung
06¢g
68¢¢
0LES
09¢¢
05¢g
ocg
ogeeg
6ces
0TS
oLEs
({41
082¢
o0Lce
c92Z¢
0sZ¢
once
0¢l¢
0zece
01¢C¢
SuZe
002¢
S6T¢
0CT¢
081¢
0LTS
091¢
05T¢
o81¢
0<1¢
0C1¢
0T1¢
COoT¢
060¢%

267

3530 TYPE('=TYPE A,S.'3)
3540 TYPE('A(1) = MA"'N)
3550 TYPE('A(2) = "B"'4)
3560 TYPE('A(3) = "C"'W)
3570 TYPE('A(L) = "D"'4)
3580 TYPE('S = “EFG"'H)
3590 TYPE(' '1)

END OF '415T"

*

course,plilc
ENTER DIGIT TO DENOTE WHICH RESPONSE FILE TO USE
0 .

YOUR STARTING POSITION WILL BE LESSON 0 SEGMENT &
IF YOU WISH TO CONTINUE FROM THERE JUST PRESS RETURN
OTHERWISE ENTER 'LESSON NO.,SEG, NO.' TO RESTART

3,1

ENTER '7END' IF YOU WISH TO FINISH NOW AT THIS PAUSE, OR OTHERWISE
11T 'RETURN AS USUAL.
H

ONE OF THE MORE POWERFUL FEATURES IN *PIL' 1S THE HANDLING OF CHARAC-
TER STRINGS. A CHARACTER STRING 1S ANY SEQUENCE OF CHARACTERS (INCLUD=
ING A NULL SEQUENCE). A CHARACTER STRING CONSTAHT IS ANY STRING ENCLOS-
ED IN DOUBLE QUOTATION MARKS (").
=SET A="A STRING OF CHARACTERS".
=sSET NULL="",

ANY LEGITIMATE INPUT CHARACTERS MAY BE INCLUDED IN A STRING, EXCEPT
FOR ("), WHICH MAY ACT ONLY AS A DELIMITER IN A CHARACTER STRING
CONSTANT AND 1S NOT PART OF THE STRING, AN UPPER LIMIT OF 255 CHARACT-
ERS IN A SINGLE STRING IS IMPOSED,

STRING COMPARISON,

ANY STRING MAY BE COMPARED WITH ANY OTHER STRING, USING ANY OF THE
DEFINED RELATIONAL OPERATORS. STRINGS ARE COMPARED LEFT TO RIGHT, IF
STRINGS ARE OF AN UNEQUAL LENGTH, THE SHORTER STRING IS TREATED AS THO
IT WERE PADDED AT THE RIGHT END WITH BLANKS FOP COMPAR|SON, :

THE FOLLOWING COLLATING SEQUENCE 1S THE BASIS FOP COMPARISON OF
STRINGS:
(BLANK) <PUNCTUATION<a,bh,..,2<A,8,..2€0,1,..,9
E.GI
=]F "X<"Y",TYPE "YES".
YES
=|F-"ABCD"="ABCD ",TYPE "BLANKS IGNORED",
CLANKS IGNORED ’

5end
|

268

APPENDIX E.

Part of a student session from the course.

269

ENTER "?END' IF YOU WISH TO FINISH NOW AT THIS PAUSE, OR OTHERWISE
HIT 'RETURN AS USUAL.

ONE OF THE MORE POWERFUL FEATURES IN 'PIL' 1S THE HANDLING OF CHARAC-
TER STRINGS. A CHARACTER STRING IS ANY SEQUENCE OF CHARACTERS (INCLUD-
ING A NULL SEQUENCE). A CHARACTER STRING CONSTANT IS ANY STRING ENCLOS-
ED IN DOUBLE QUOTATION MARKS ("), '
=SET A="A STRING OF CHARACTERS",
sSET NULLs""™,

ANY LEGITIMATE INPUT CHARACTERS MAY BE INCLUDED IN A STRING, EXCEPT
FOR ("), WHICH MAY ACT ONLY AS A DELIMITER IN A CHARACTER STRING
CONSTANT AND IS NOT PART OF THE STRING. AN UPPER LIMIT OF 255 CHARACT-
ERS IN A SINGLE STRING IS IMPOSED,

STRING COMPARISON.

ANY STRING MAY BE COMPARED WITH ANY OTHER STRING, USING ANY OF THE
DEFINED RELATIONAL OPERATORS. STRINGS ARE COMPARED LEFT TO RIGHT. IF
STRINGS ARE OF AN UNEQUAL LENGTH, THE SHORTER STRING 1S TREATED AS THO
IT WERE PADDED AT THE RIGHT END WITH BLANKS FOR COMPARISON,

THE FOLLOWING COLLATING SEQUENCE IS THE BASIS FOR COMPARISON OF
STR|ggt;NK)<PUNCTUATION<a,b,...z(A,B,..l<0,1,..,9
“wlF "X¢UYM, TYPE MYES™.
< 1F "ABCD"="ABCD M, TYPE "BLANKS 1GNORED",
BLANKS 1GNORED

HOWEVER, IF YOU REMEMBER, ‘'a,b,..,z' ARE NOT AVAILABLE TO YOU IN
TH!S COURSE. IF YOU TYPE THEM, THEY ARE AUTOMATICALLY CONVERTED TO
'A,B,C,...,2" RESPECTIVELY.

CONTIT 1S ASSUMED THAT BLANK IS THE LOWEST CHARACTER THAT A STRING WILL
AlIN.

IN THE FOLLOWING BOOLEAN EXPRESSIONS WHICH INVOLVE STRING COMPARISON
» ENTER 'T' OR 'F' DEPENDING ON WHETHER YOU THINK THE VALUE OF THE
EXPRESSION IS TRUE OR FALSE.

"GREATER"<¢"GREATEST"

t :
GOOD, AN EASY ONE TO BEGIN WITH.
" OAPL975" $GT M"APL974" $AND "A21X" = "A21x

270

no ldeal)}
ENTER 'T' QR 'f°',
t

THIS IS MORE TRICKY. IN AN ATTEMPT TO FOOL YOU, THE FIRST STRING BEGINS

WITH A BLANK WHILE THE SECOND ONE DOES NOT. HENCE THE FIRST CONDITION

IS FALSE, THUS, AS THE RESULTS ARE TO BE 'ANDED', IT DOES NOT MATTER

WHAT THE SECOND CONDITION TURNS OUT TO BE. AS 1T HAPPENS, TRAILING

BLANKS ARE IGNORED SO IT IS TRUE, BUT THE WHOLE EXPRESSION IS FALSE.
""1000">"9gg"

YES, THE LEADING CHARACTER TELLS ALL!!
YORKS." $GE "YORKSHIRE"

PERFECT-A GOOD WAY TO FINISH OFF A SEQUENCE OF QUESTIONS.
STRING OPERATIONS & EUNCTIONS

'HERE 1S A TABLE OF STRING OPERATORS AND FUNCTIONS AVAILABLE TO YOU
IN 'PIL'. AS WITH THE ARITHMETRIC FUNCTIONS THERE ARE LONG AND SHORT
FORMS TO SOME OF THESE.

OPERATOR MEAN I NG
SHORT LONG
+ CONCATERNATION
" STRING DELIMITER
L OF THE LENGTH OF LENGTH OF A CHARACTER STRING

N $LC A THE LAST N CHARACTERS OF A DECONCATERNAT ION

N $FC A THE FIRST N CHARACTERS OF A DECONCATERNATION
THE VALUE OF EVALUATE CONTENTS AS A 'PIL' EXPRESSION
THE BCD VALUE OF CONVERTS RADIX OF ALL OPERANDS TO STRING

TWO STRINGS MAY BE CONCATERNATED, 1.E. THE SECOND JOINED TO THE END
OF THE FIRST, THE '+' (PLUS) OPERATOR PERFORMS TH!S TASK, PROVIDED
THAT BOTH OPERANDS ARE OF STRING MODE. THE LENGTH DF THE CONCATERNATION
RESULT IS THE SUM OF THE LENGTHS OF THE 2 OPERANDS, TO ILLUSTRATE:
aSET X="1234"
=SET Y="567890"
»SET ZeX+Y+"ABC"
=sTYPE Z,THE LENGTH OF Z.
Z="1234567890A8C"
THE LENGTH OF Z = 13.0

YOU WILL HAVE NOTICED THE INTRODUCTION OF TME LENGTH FUNCTION.
TO DETERMINE THE LENGTH OF A STRING, 'THE LENGTH OF' (OR 'L OF')
FUNCTION IS USED. ITS VALUE, A NUMERIC, 1S THE COUNT OF THE -
CHARACTERS CONTAINED IN THE GIVEN STRING. IT WILL ALWAYS BE AN INTEGER
IN THE RANGE 0 TO 255,

=TYPE THE LENGTH OF " ,L OF ("AB"+"8C"),

THE LENGTH OF "" = 0,0 ’

L OF ("AB"+"BC") = 4.0

STRING SUBTRACTION IS NOT WELL DEFINED, AND 1S THEREFORE NOT
ALLOWED. IT IS USEFUL, HOWEVER, EITHER TO REMOVE OR EXAMINE SOME
PORTION OF A LONG STRING.

271

NAHEEO OBTAIN SUCH SUBSTRINGS FROM STRINGS, 'PIL' PROVIDES 2 FUNCTIONS
THE FIRST N CHARACTERS OF S
THE LAST N CHARACTERS OF S

WHERE N IS ANY ARITHMETIC EXPRESSION AND S 1S A STRING.

z IHE ABBREVIATIONS FOR THESE FUNCTIONS ARE, RESPECTIVELY,
S
N $LC s ’
TO GET THE FIRST OR LAST CHARACTER OF A STRING, S, ONE MAY URlTE 1 FOR
N IN THE ABOVE OR USE THE NAMES
THE FIRST CHARACTER OF S
THE LAST CHARACTER OF S

EACH FUNCTION 1S SELF-EXPLANATORY. THE NUMBER SPECIFIED MUST BE
NON-NEGATIVE, AND NOT GREATER THAN THE LENGTH OF THE STRING TO BE
OPERATED ON,

E.G. 3 $FC "ABCDEFG" = "ABC"
2 $LC "12345" = "ys5"

COMBINATIONS OF °'THE FIRST' AND 'THE LAST' ALLOW EXAMINATION AT ANY
POINT WITHIN A STRING:
'?ET XaTHE FIRST CHARACTER OF THE LAST 3 CHARACTERS OF "ABCDEFG".
=TYPE X.
X .E"é"

GIVEN THE FOLLOWING SEQUENCE OF 'PIL' INSTRUCTIONS:
=SET S1="ABC",
sSET S2="BCDEF".
=SET S3=2 $LC S1 + (L OF S1 -1) $FC S2.
=SET Shk=]1 $FC 3 $LC S3 + THE LAST CHARACTER OF S1.
=sSET S5=THE FIRST 1 CHARACTERS OF S2 + 1 $FC & SLC S2 +
((L OF S2)=(L OF S1)) ¢Fr S3
=SET M=L OF S2 + L OF S5.
aSET N=L OF ((L OF S3) $FC S2).
=SET Bl=S3=S5,
=SET B2=S3+S4<¢S2+"BC".
ENTER THE VALUE OF THE FOLLOWING EXPRESSIONS (DON'T FORGET TO ENTER
THE DELIMITERS OF A STRING WHEN THE ANSWER 1S A STRING!!I!
YOU NEEDN'T THINK TOO LONG OVER THESE QUESTIONS-YOU WILL
GET HELP 1F YOU SIMPLY HIT 'RETURN',
§$3 = 7
abbe
(L OF S1-1) 1S SIMPLY (3-1)=2. NOW TRY AGAIN,
bebe
TRY RE-ENTERING YOUR ANSWER WITH STRING DELIM.S
llbcbcll
CORRECT. S3="BCBC",
Bl = ?
help??
B1 IS A LOGICAL,YOU KNOWi! 1Y
NEVER MIND ABOUT THAT QUESTION-WE'LL COME BACK TO IT. TRY THIS
ONE FIRST.
55 = 7
"bebb"

272

NO. L OF 52=5 & L OF S1=3 SO THAT (5-3) $FC S3="BC". NOW TRY,.
"bCCb“
ﬁg AGAIN. 1 $FC & $LC S2 =1 $FC "CDEF"="C",TRY AGAIN, S5 = ?
ccc!
ﬁ:ltL NO!! THE FIRST 1 CHARACTERS OF S$2 ="B", NOW, SURELY!!
C C
THAT'S THE ONE!!
NOW,B¥HAT ABOUT THE QUESTION YOU WERE HAVING TROUBLE WITH!!
= ?
true
GOOD, YOU O0BVIOUSLY KNOW THAT S$5="BCBC", T00.
THE SQUARE ROOT OF (M#M+9sN#w2) = ?
don't know
NO, SSRRY. 0.K., TRY THIS EASIER QUESTION FIRST BEFORE YOU TRY AGAIN,
. ?
b

QUITE CORRECT. NOW BACK TO THE SQUARE ROOT QUESTION.,
5 THE SQUARE ROOT OF (M#M+9eNee2) = ?

Igu NOW KNOW WHAT N IS 4 & Ms5+4=9, SO, ANSWER = ?

GOOD, YOU OBVIOUSLY KNOW THAT M=9 AND Ns=i,
Bl & $NOT B2 = ?

true

GOOD. YOU'RE DEAD RIGHT THAT B2 IS FALSE.

. L OF (S3+S44S5) = ?

EXCELLENT. YOU OBVIOUSLY KNOW ABOUT S3, S4 AND S5 EXACTLY.
S1¢"BC" $GE "AM4S5 = ?

false

S1+"BC"="ABCBC" AND "A"+S5="ABCBC" SO THAT THE ANSWER 1S TRUE.
NOW LET US LOOK AT 3 WORKED EXAMPLES.

FIRSTLY, SUPPOSE WE ARE GIVEN A STRING, S, WHOSE LENGTH 1S AT LEAST
4. WE ARE REQUIRED TO TAKE THE FIRST 4 CHARACTERS OF S AND PLACE THEM

:zTg A(1),A(2),A(3) & A(4),RESPECTIVELY, LEAVING THE REMAINING STRING

THERE ARE 4 BASIC STEPS TO THE SOLUTION:

1. WE MUST OBTAIN A VALUE FOR S. THIS WE WILL ASSUME IS MERELY ‘'SET'
TO A VALUE, (IF WE WERE GOING TO USE INDIRECT MODE, 'DEMAND' WOULD
MOST PROBABLY BE USED.)

2. THE FIRST ELEMENT OF S IS PLACED INTO THE NEXT VACANT POSITION IN
THE ARRAY,

3. S IS REDUCED IN SIZE BY REMOVING THE FIRST CHARACTER.

4. THE FINAL VALUES OF A AND S ARE PRINTED,

273

AS YOU WILL HAVE NO DOUBT REALISED, STEPS 2 & 3 ARE EACH OBEYED 4
TIMES. THIS SUGGESTS A 'FOR' STATEMENT. HOWEVER, AS BOTH STEPS HAVE
TO BE OBEYED UNDER THE CONTROL OF THIS 'FOR' STATEMENT, A SECOND
"FOR' MAY BE INTRODUCED TO PREVENT THE INTRODUCTION OF AN INDIRECT
'PIL' PART. REDUCING A STRING TO 'ITSELF MINUS THE FIRST CHARACTER

IS THE SAME AS 'THE LAST N CHARACTERS' WHERE N 1S THE CURRENT LENGTH
MINUS ONE, SO WE HAVE:

=SET S="ABCDEFG".

=FOR =1 TO 4:FOR A(1)=1 $FC S:SET S=(L OF S -1) $LC S.
=TYPE A,S, .

A(l) = nan

A(Z) a Ngn

A(}) s Wpw

A(4) = wpu

S = “EFG"

NOW FOR OUR SECOND WORKED EXAMPLE.
HERE IT tS;:

READ IN A CHARACTER STRING AND PRINT IT IN REVERSE ORDER.

HERE AGAIN THE PROBLEM CAN BE BROKEN DOWN INTO & STAGES.

2. THE REVERSE STRING, R, SAY, IS SET TO THE NULL STRING.

3. WORKING FROM BACK TO FRONT THROUGH S, ONE CHARACTER AT A TIME IS
ADDED TO R. | ,

4. R IS PRINTED OUT.

$

STAGE 1 1S EASILY PERFORMED USING A ‘DEMAND' INSTRUCTION. THE NULL
STRING 1S SIMPLY 2 CONSECUTIVE DELIMITERS. STAGE 3 MUST BE CARRIED OUT
THE SAME NUMBER OF TIMES AS THE LENGTH OF S, THIS SUGGESTS A 'FOR'
STATEMENT 'TO L OF S'., TO PICK UP THE CHARACTER TO ADD TO R, 'THE
FIRST CHARACTER OF THE LAST | CHARACTERS OF S' IS USED, ASSUMING THAT
| IS THE 'FOR' VARIABLE. :

s1.,1 DEMAND S.
«1.2 SET Ra"",)
=1.3 FOR iI=]1 TQ L OF S:SET R=R+1 $FC | $LC S,
=1.4 TYPE R, :
=D0 PART 1.
S s
“QWERT"
R = "“TREWQ"
EASY, ISN'T ITII1Y

AND SO TO OUR LAST WORKED EXAMPLE IN THESE 3. '
BUT FIRST LET ME EXPLAIN ONE SMALL 'PIL' FUNCTION YOU NEED TO KNOW
FOR THIS EXAMPLE. '

274

IT IS THE 'SWAP' STATEMENT, WHICH INTERCHANGES THE VALUES AND MODES
OF 2 VARIABLES.

=sSET A=3,

=SET B=1<¢2,

=SWAP A,B,

=TYPE A,B.

A = TRUE

8B =3

THIS AFFECTS A & B IN THE SAME WAY (BUT MORE EFFICIENTLY) AS THE
SEQUENCE:; :

=sSET TEMP=A,

=SET A=B,

=SET B=TEMP,

NOW TO THE EXAMPLE:
IF THE VECTOR WORDS(!) FOR 1=1,2,...N, CONTAINS A SET OF N STRINGS,
WRITE A PROGRAM TO PLACE THESE STRINGS INTO ALPHABETIC ORDER IN WORDS.

THE METHOD TO USE FOR THIS ONE MAY BE 'THE OLD WIFE'S SORT'.
THE FIRST ALPHABETICAL WORD IS FOUND IN THE ARRAY THEN SWAPPED WITH THE
FIRST ELEMENT. THEN THE NEXT ALPHABETICAL WORD IS FOUND AND SWAPPED
WITH THE SECOND WORD. AND SO ON.

=8.1 FOR 1=1 TO N-1:D0 PART 9.
=9.1 SET J=|, .
=9,2 FOR Ksf+]l TO N:IF WORDS (J)>WORDS(K),SET J=K.
=9,3 SWAP WORDS(!),WORDS(J).
WHICH, WITH A TEST RUN, MAY GIVE:
=SET WORDS(1)="DOG".
=SET WORDS(2)="CAT".
=SET WORDS(3)s="360/67".
=SET WORDS(4)="CAMEL".
=00 PART 8.
=TYPE WORDS.
WORDS(1) = "CAMEL"
WORDS(2) = "CAT"
WORDS(3) = "DOG"
WORDS(4) = "360/67"

AND THERE WE ARE!l

THERE ARE SOME ADDITIONAL STRING FUNCTIONS TO °‘PIL'.
THE MOST UNUSUAL 1S 'THE VALUE' FUNCTION,

1T 1S DEFINED AS FOLLOWS: IF THE MODE OF THE OPERAND 1S STRING, THIS
STRING 1S EVALUATED AS A 'PIL' EXPRESSION, IF THE MODE 1S NOT STRING,
THE RESULT IS THE SAME AS THE OPERAND, ONE USE FOR THI1S FUNCTION IS
CONVERTING A STRING CONTAINING NUMERIC DIGITS TO INTERNAL NOTATION,

275

E.G,
=SET A=3,
=SET B8=S5,
=SET Cs"A+Besa2",
=TYPE THE VALUE OF C.
THE VALUE OF C = 13,0
=TYPE THE VALUE OF ""12345",
THE VALUE OF "12345" = 12345.0

'THE BCD VALUE' FUNCTION ALLOWS CONVERSION IN THE OTHER DIRECTION.
IF_ANY OPERAND IS NUMERIC, THE RESULT WILL BE A STRING OF DIGITS
IDENTICAL TO THE WAY THE NUMBER WOULD LOOX IF TYPED OUT WITH A LENGTH
OF 14k, IF THE OPERAND IS STRING. THE 'BCD VALUE' IS IDENTICAL TO THE
OPERAND. IF THE OPERAND IS BOOLEAN, THE 'B8CD VALUE' WILL BE EITHER
"TRUE" OR “FALSE".

E.G.
sSET As=3,
=TYPE THE BCD VALUE OF (A#A),THE BCD VALUE OF (A>b).
THE BCD VALUE OF (AwA) = " 9 0
THE BCD VALUE OF (A>4) = "FALSE"
THE FORMAT OF THE RESULT OF THE VALUE 1S ALWAYS THE SAME AS THAT
GENERATED BY 'TYPE'.

GIVEN THE INSTRUCTIONS:
=SET A=10.
=SET B=0,
=SET C=y,
=SET D="A«SQRT OF Ce5",
=SET E="B $LE 0 $AND AXC".
ENTER THE VALUES OF THE FOLLOWING:
THE VALUE OF C=2?
ll'.o
COME ALONG!! 1T'S MUCH EASIER THAN IT LOOKS. TRY AGAIN,
i

GOOD. FOR A NUMERIC, THE VALUE 1S ITSELF.
25 THE VALUE OF D = ?

QUITE CORRECT. 1T'S EASY, REALLY, SO LONG AS YOU KNOW HOW TO

EVALUATE EXPRESSIONS.
THE VALUE OF E = 7

true

JOLLY GOOD, THE ANSWER IS A STRAIGHTFORWARD BOOLEAN.
THE BCD VALUE OF (A+COS OF B) = ?

10

ﬁOR A START, THE ANSWER SHOULD BE A STRING!! TRY AGAIN,

10.0

A*COS OF B -10'1-10. THE BCD VALUE 1S THUS "™ 10.0 ",
HERE 1S AN EXAMPLE ON THE USE OF 'THE VALUE OF °'.

READ IN A CHARACTER STRING, S, WHERE THE FIRST TWO CHARACTERS REPRESENT
A DECIMAL INTEGER, 1,SAY, WHILE THE THIRD AND FOURTH CHARACTERS ALSO
REPRESENT A DECIMAL INTEGER, J,SAY. PRINT OUT THE SUB3ITRING, R, OF
LENGTH J BEGINNING AT THE | TH POSITION OF THE STRING READ IN,

E.G. "OBOLABCDEFGHIJK" GIVES "DEFG".

276

THE POINTS TO REMEMBER HERE ARE:

1. | WILL BE THE VALUE OF THE FIRST 2 CHARACTERS OF S.

2. J WILL BE THE VALUE OF THE LAST 2 CHARACTERS OF THE FIRST &
CHARACTERS OF S.

3. THE SUBSTRING WILL BE THE LAST J CHARACTERS OF THE FIRST (1+J-1)
CHARACTERS OF S.

=1.1 DEMAND §S.

=1.2 SET 1=THE VALUE OF 2 $FC S.
=1,3 SET J=THE VALUE OF 2 $LC & S$FC sS.
=1.4 SET R=yg $LC (I+J-1) $FC S.
=1.5 TYPE R,

=00 PART 1.

S =

"0804ABCDEFGH ! JK"

R = "“DEFG"

QUITE STRAIGHTFORWARD, DON'T YOU THINK!I!Y
ENOUGH OF STRINGS. NOW LET US LOOK AT SOME MORE INPUT/OUTPUT,

EXTENDED CONSOLE L/Q
THERE IS A METHOD BY WHICH THE USER MAY CONTROL THE FORMAT OF AN OUTPUT
0? éNPUT LINE, ALLOWING SPECIFICATION OF ANY NUMBER OF ITEMS ON A
SINGLE LINE.

THE PERTINENT STATEMENTS ARE:
TYPE IN FORM N,LIST.
DEMAND IN FORM N,LIST.
WHERE LIST IS THE SAME AS FOR THE NORMAL 'TYPE' AND 'DEMAND'
STATEMENTS, AND N 1S ONE OF THREE ELEMENTS AS FOLLOWS:

1. A STRING CONSTANT (LITERAL) TO BE USED AS A 'FORM',

2. AN ARITHMETIC EXPRESSION USED TO REFERENCE A 'FORM' ALREADY
ODEFINED.

3. A VARIABLE WHOSE CONTENT 1S A STRING TO BE USED AS A 'FORM',

THUS, THE FOLLOWING ARE EQUIVALENT:
=TYPE IN FOR! "####",LIST, (1,ABOVE)
OR
=FORM 1,
1A
=TYPE IN FORM 1,LIST. (2,ABOVE)
OR
=SET Xa"repsy,
=TYPE IN FORM X,LIST, (3,ABOVE)

277

4 NG, EITHER
AS CAN BE SEEN, A 'FORM' MAY BE DEFINED AS A NORMAL STRING,

IN A VARIABLE OR |§ THE 'TYPE' OR 'DEMAND' STATEMENT, OR BY THE

'FORM' STATEMENT. THE FORM STATEMENT HAS THE FORMAT:

=FORM N,
WHERE N IS AN INTEGER FROM 1 TO 4 DIGITS LONG.

THE NEXT INPUT LINE AFTER THE 'FORM'
STATEMENT IS TAKEN AS THE FORM lT?ELF; FORMS MAY BE DEFINED IN
DIRECT MODE ONLY, SINCE THE 'FORM
STATEMENT MAY OCéUR IN DIRECT MODE ONLY. NOTE THAT A TERMINAL PERIOD
IS NOT REQUIRED FOR A FORM,

-

STUDY THE FOLLOWING STATEMENTS:
sSET Is=2,
=SET J=3,
=SET K=1,
=FORM 4,
ufd
=FORM 7.
11X,
sSET X="##s",
=SET Y='"94és",
=SET Z="4#",

ARE THE FOLLOWING 2 STATEMENTS EQUIVALENT? ENTER 'YES' OR 'NO',
=TYPE IN FORM |eJ+K=Je(1=-K~1),LIST,
=TYPE IN FORM Z+"#",LIST.

yes
GOOD. WOULD YOU LIKE TO SAY WHAT THE FORM 1S?

e
YES, '##¢',FORM 7, 1S CORRECT.
ARE THESE 2 EQUIVALENT? AGAIN ENTER 'YES' OR 'NO'.

=TYPE IN FORM X,LIST.

=TYPE IN FORM (J $FC (L OF Z+1) $LC Y),LIST.
no
NO, THEY'RE THE SAME ONCE AGAIN,
THE FORMER IS FORM X, WHICH IS '#4¢8',
AND THE LATTER IS FORM (3 $FC (2+1) SLC "##44" w 3 $FC 3 SLC "#e s
s"444", YOU SHOULD BE WITH THIS NOW!!
0K. ONE RIGHT, ONE WRONG., LET'S FINISH OFF WITH A WINNER!!
HOW ABOUT THIS PAIR?

=TYPE IN FORM (L OF X +K),LIST,

=TYPE IN FORM THE VALUE OF "L OF X + L OF Y",LIST,
ARE THEY EQUIVALENT? ENTER 'YES' OR 'NO'.

no
SPOT ON. THE FIRST ONE GIVES THE FORM '##' BUT THE SECOND ONE
GIVES ‘'##¢°',

BEFORE WE CONTINUE TO DISCUSS THE DIFFERENT TYPES OF FORM, LET
ME REMIND YOU TO TAKE PARTICULAR CARE WITH THE ENTRY OF A
MEANINGFUL *_" AND A MEANINGFUL '!' TO THIS TERMINAL.
IT IS MENTIONED IN YOUR NOTES.

A FORM SPECIFIES THE FORMAT OF THE LINE TO BE READ OR PRINTED. THE
FORI ITSELF 1S A STRING OF CHARACTERS. HERE ARE THE MEANINGS OF SOME

OF THESE.)

_HNUMERIC
1. STANDARD NUMERIC FIELD.

278

A STANDARD NUMERIC FIELD IS REPRESENTED BY A SERIES OF UNDERLINE
CHARACTERS AND AN OPTIONAL DECIMAL POINT,

EACH UNDERLINE INDICATES A POSSIBLE DIGIT POSITION, LIMITED BY THE
NUMBER OF ALLOWABLE SIGNIFICANT DIGITS IN A 'PIL' NUMBER . AT LEAST
ONE HIGH ORDER POSITION SHOULD BE SPECIFIED IN ORDER TO ACCOMODATE A
POSSIBLE MINUS SIGN,
E.G. (THE 'TYPE FORM' STATEMENT USED HERE CAN BE USED EITHER TO
EXAMINE A FORM FOR ERRORS, OR TO TYPE OUT A HEADER LINE
ENTERED AS A FORM. NO IDENTIFICATION IS TYPED WITH THE FORM.)
=FORM 3.
sy 1.1
=TYPE FORM 3.

-TYPE IN FORM 3,1.2376.
1.237
NOT 1CE THAT ADDITIONAL HIGH ORDER POSITIONS ARE LEFT BLANK, WHILE THE
NUMBER 1S TRUNCATED(NQY ROUNDED)AFTER THE NUMBER OF ALLOWABLE
DIGITS TO THE RIGHT OF THE DECIMAL POINT,

HOW WOULD THE NUMBER '.06789' APPEAR IF TYPED IN THE ABOVE FORM?
.067
VERY NEARLY. WHY A SPACE BEFORE THE DECIMAL POINT?? TRY AGAIN.
0.067
EXCELLENT. EXACTLY RIGHT.
4 JOW TRY THE NUMHER "21.1' IN THE SAME FORM.
bl Y 0
PERFECT. RIGHT ALL THE WAY!!
BOTH RIGHT-YOU UNDERSTAND THAT FORM OK.
2. SCIENTIFIC NOTATION.
THIS MAY BE REQUESTED IN A SPECIAL "FORM' SPECIFICATION.
E.G.
=FORM 2.
=TYPE FORM 2.
«TYPE IN FORM 2,-.123456.
-1.234E-01

AS YOU WILL NOTICE, SCIENTIFIC NOTATION GIVES THE GREATEST NUMBER OF
SIGNIFICANT FIGURES POSSIBLE FOR THE NUMBER OF PERIODS WE ALLOTTED,

AT LEAST 7 CONSECUTIVE PERIODS ARE REQUIRED FOR 1 SIGNIFICANT DIGIT
OF OUTPUT (USING SCIENTIFIC NOTATION), EACH ADDITIONAL PERIOD ALLOWING
ONE MORE DIGIT OF SIGNIFICANCE, UP TO THE LIMITATION OF 'PIL' NUMBERS
ANY NUMBER CAN BE TYPED OUT SUCCESSFULLY IN THIS FORM,

279

—

+3.141593e+00
GIVEN THE FORM "..evecesess.' HOW WOULD THE NUMBER '3.141593'
APPEAR IF TYPED IN THIS FORM?
+3.141593e400
WHEN POSITIVE, A BLANK APPEARS INSTEAD OF '+',

12 PERIODS, LESS 7 FOR SIGNS,EXPONENT ETC. LEAVES 5,NOT 6, FOR
THE RHS!|

TRY AGAIN,

3.14159e+00
EXCELLENT, YOU'VE GOT IT EXACTLY RIGHT,

WHAT ABOUT THE NUMBER '=-12345.67' IN THIS SAME FORM?

1.23457e+04
YOU'VE CORRECTLY GIVEN ONLY 5 PLACES,BUT ROUNDED,NOT TRUNCATED
PLEASE TRY AGAIN.
1.23456e+04
NO. THE ANSWER 1S: '-1.23456E+04'.
HAVING GOT THE LAST ONE RIGHT, YOU SHOULD HAVE HAD THIS ONE, TOO!!
THE 'FLOATING POINT' IDEA ISN'T TOO DIFFICULT, REALLY.

NUMBERS WHICH ARE TOO LARGE FOR STANDARD NUMERIC FORMS WILL GENERATE
A DIAGNOSTIC MESSAGE. SUCH NUMBERS MAY BE TYPED IN SCIENTIFIC NOTATION
OR TYPED IN THE FOLLOWING SPECIAL NOTATION,
=FORM 6.
o N N AR AR R R R R RR

-TYPE FORM 6.
—_—llt!

THE FORM IS A STANDARD NUMERIC FORM FOLLOWED BY & (BUT TO YOU, REALLY
8, REMEMBER?) EXCLAMATION MARKS. THE FORM WILL TYPE OUT STANDARD NUMERIC
WHEN THE NUMBER 1S WITHIN RANGE OF THE SPECIFICATION, BUT WILL SWITCH
TO SCALED NOTATION WHEN THE NUMBER 1S TOO LARGE OR TOO SMALL. AS WITH
SCIENTIFIC NOTATION, ALL NUMBERS CAN BE TYPED OUT IN THIS FORM,

CONSIDER THE FOLLOWING FORM:
=FORM 23,
=) Gt
=TYPE FORM 23,

—_—t .11
-TYPE IN FORM 23 3.14159,1327.6.
3.141 132, 765001

YOU WILL NOTICE THAT 4 SPACES SEPERATE THE 2 NUMBERS AS AN EXPONENT WAS
NOT REQUIRED FOR THE FIRST ONE.
ALPHABETIC INFORMATION.

THE CHARACTER '#' INDICATES ONE POSITION OF ALPHABETIC INFORMATION,
OPERANDS IN DOUBLE QUOTES, STRING VARIABLES, OR BOOLEAN EXPRESSIONS
WILL TYPE IN THIS FORM,

280

E.G.

=FORM 1o.

=tt | _|_ 440d

=TYPE FORM 10,
o e

=TYPE IN FORM 10,"X",10,"STRING",
X 10 STRI

AS CAN BE SEEN IN THE ABOVE EXAMPLE, THERE 1S A SPACE AFTER THE FIRST
ALPHABETIC FIELD AND A SPACE AFTER THE NUMERIC FIELD. IN FACT, ANY
CHARACTERS ARE ALLOWED IN A FORM, THEY WILL BE OUTPUT WHEN THE FORM IS
USED IN A '"TYPE' STATEMENT.

E.G.
=FORM 9,
=Xw) 0 1 ys=t_1_0_.1_1_
=TYPE FORM 9.
x- Y-
=TYPE IN FORM 9,X,Y.
X=537 Y= 49,83

NOW LET US RETURN TO THE 'TYPE IN FORM N,LIST.' STATEMENT,
SHOULD THE LIST CONTAIN MORE ITEMS THAN THE FORM ALLOWS, THE FORM WILL
BE RESCANNED FROM THE BEGINNING UNTIL ALL ITEMS IN THE LIST HAVE BEEN
TYPED, E.G,
=FORM 8.
=} _1_ 11
=TYPE FORM 8.

=TYPE IN FORM 8,1,J,K. (WHERE 1=9,J=10,K=11)
e

CONSIDER THE FOLLOWING SEQUENCE OF 'PIL' STATEMENTS:
-FORM 326.
si 4 _ 1 1 !
-TYPE FORM 326

=FOR I=1 TO 3: FOR J=1 TO 3:SET A(l,J)=s1«10+J.
=TYPE IN FORM 326,A.

WHAT WILL THE NEXT LINE (AN OUTPUT LINE) OF THIS SEQUENCE BE?

11 12 13
GOOD. THE REST SHOULD BE A CAKE-WALK!

WELL, THEN,GIVE NE THE NEXT QUTPUT LINE,
21 22 23

281

YES-YOU'VE GOT IT RIGHT!!

AND FINALLY, WHAT 1S THE LAST LINE RESULTING FROM THE 'TYPE'
STATEMENT? .

31 32 33
CORRECT. JUST THE WAY TO FINISH A SEQUENCE.

WE HAVE PREVIOUSLY MENTIONED THE STATEMENT 'DEMAND IN FORM N,LIST.'
HOWEVER, THE FOLLOWING NOTES AND RESTRICTIONS APPLY:

.

1. NUMERIC FORM FIELDS MERELY INDICATE THAT NUMERIC INPUT 1S EXPECTED
AND NO ALTIGNMENT OF INPUT TO DECIMAL POINTS 1S NECESSARY, AND NO
SCALING IS PERFORMED. '

2. THE CHARACTER "™ (DOUBLE QUOTE) IS NOT AN ACCEPTABLE INPUT CHARACTER
IN AN ALPHABETIC FORM FIELD.

3. THE FORM FIELDS DRIVING THE INPUT LINE MUST BE COMPLETELY SATISFIED,
IT IS AN ERROR IF A 'DEMAND IN FORM' STATEMENT WITH & INPUT PARAMS.

[?OUPLED WITH A FORM WITH & FIELDS, RECEIVES ONLY 3 INPUT ITEMS ON A
NE.

. 7

AND FINALLY..0es.
EXTENDED 1/0 LISTED FEATURES.
THERE IS A WAY BY WHICH A 'FOR' CAN OPERATE WITHIN BOTH 'DEMAND'
QNg YTYPE' STATEMENTS IN THE STANDARD 1/0 LISTS.
=1.8 TYPE (FOR I=1 TO 5: A(I),8(1)).
=1.9 DEMAND (FOR I=1 TO S: A(l)).

THIS EXTENSION IS MOST USEFUL IN CONJUNCTION WITH USER DIRECTED INPUT
AND OUTPUT, AS IT ALLOWS SPECIFICATION OF SEVERAL ITEMS IN AN ARRAY
WITHOUT LISTING THEM INDIVIDUALLY. THE STANDARD RULES FOR 'FQR' APPLY
+INCLUDING NESTING.

CONSIDER THIS EXAMPLE:
=FOR I=1 TO S:FOR J=1 TO 5:SET A(l1,J)=l+y,
=TYPE (FOR 1=1 TO 5: (FOR J=1 TO 5:A(1,J))).
A(1,1) = 1,0
A(1,2) = 2,0

A(5,4) = 20.0

A(5,5) = 25.0
RESULTS IN ALL ELEMENTS FOR A(1,1),...,A(5,5) BEING TYPED. THE
PARENTHESES MUST BE EVENLY MATCHED(SAME NUMBER OF LEFT ONES AS RIGHT
ONES) AND THOSE AROUND THE 'FOR' ARE REQUIRED.

282

WELL, THAT CONCLUDES YOUR 'PIL' COURSE USING METHODS OF 'COMPUTER
ASSISTED INSTRUCTION'. 1 ONLY HOPE THAT YOU ENJOYED THE EXPERIENCE
AND,NOT LEAST OF ALL,LEARNED SOME 'PIL'.

HOW FOR YOUR DEMONSTRATION CLASS.

AND SO TO YOUR THIRD EXAMPLES CLASS! | HOPE YOU'RE USING THE
REQUESTS TO YOUR FULL ADVANTAGE.

1'VE JUST HAD A THOUGHT! YOU HAVEN'T HAD AN EXAMPLE USING ARRAYS
YET = SO LET'S KICK OFF WITH ONE.

YOU ARE GIVEN.A SET OF DATA WHICH CONSISTS OF A SERIES OF AGES
IN THE RANGE 0-99 TERMINATED BY A NUMBER GREATER THAN 100. WRITE A
PROGRAM TO COUNT AND OUTPUT THE NUMBER OF AGES IN THE RANGES 0-19,20-39
+40-59,60-79 AND 80-99 USING AN ARRAY, COUNT, OF 5 ELEMENTS FOR THE
5 COUNTERS. '

NOTE THAT THERE 1S A SIMPLE WAY TO DETERMINE FROM THE VALUE OF A
NUMBER THE RANGE TO WHICH 1T BELONGS.

FOR YOUR DATA USE : 29,58,87,16,45,74,3,32,61,90,19,48,999.

'NFOYODR REQUEST MAY BE ONE OF THE FOLLOWING :

PIL
HELP
ANS
ans
YOU HAVEN'T ACCESSED 'PIL' YET SO HOW CAN YOU ATTEMPT AN ANSWER!!
YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
INFO
PIL
HELP
ANS
info
THE PROBLEM MAY BE DIVIDED AS FOLLOWS :
1. INITIALISE THE ARRAY TO BE USED AS THE COUNTER,
2. READ IN AN AGE AND DECIDE fF IT 1S A TRUE AGE,
3¢« IF IT IS NECESSARY, INCREMENT THE CORRESPONDING COUNTER.
&, :RINT OUT THE VALUES OF THE COUNTERS IF A TERMINATING AGE HAS BEEN
EACHED,

INFOYOUR REQUEST MAY BE ONE OF THE FOLLOWING :
PIL

HELP

ANS

pik

INVALID REQUEST. PLEASE RE-~ENTER.

pil
'PIL' 1S NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER.
PIL(1:01) Ready:
=]1.1 for I=0 to k:set count(1)=0,
=1.2 demand age,
=1,3 If age>100, go to step 1.9
=-mts
INE YOUR REQUEST MAY BE ONE OF THE FOQLLOWING
NFO
PIL
HELP
ANS

283

help
YOU MAY NOW REQUEST :

?NglVISlON NUMBER TOGETHER WITH EITHER 'L' OR 'P',

0
BACK
3 .
§0 TYPE GIVEN WITH DIVISION 3 . PLEASE RE-ENTER REQUEST.

]
'PIL' MAKES THIS DIVISION OF THE PROBLEM VERY EASY. FIRSTLY, YOU
ARE ALLOWED A SUBSCRIPT WHOSE VALUE IS 0, SECONDLY, A SUBSCRIPT WHICH
HAS A FRACTION VALUE 1S TRUNCATED TO FIND OUT WHICH ELEMENT IS TO BE
ACCESSED. TOGETHER WITH THE GIVEN NOTE, DO YOU NOW KNOW 'THE SIMPLE
WAY'?

YOU MAY NOW REQUEST :
? 2|v15|ou NUMBER TOGETHER WITH EITHER 'L' OR 'P',
NFO
BACK
3p
IN THE 'SET' INSTRUCTION WHICH INCREASES THE APPROPRIATE COUNTER
BY 1, WOULD YOU AGREE THAT THE APPROPRIATE SUBSCRIPT IS (AGE/20)??

YOU MAY NOW REQUEST :
?N2$V|S'ON NUMBER TOGETHER WITH EITHER 'L' OR 'P'.
BACK
back
YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
INFO
PIL
HELP
ANS

pi

'PIL' 1S NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER,
stype part 1.

1.1 - FOR I=0 TO 4:SET COUNT(1)=0,
v 1.2 DEMAND AGE.
1.3 IF AGE>100, GO TO STEP 1.9

=1.4 set count(age/20)=count{age/20)+1,
=1.5 to step 1,2
=1.9 type count.
=do part 1.

AGE =

=29

AGE =

=58

AGE =

=87

AGE =

=16

AGE =

1}

AGE =

=74

284

AGE =
=3

AGE =
=32

AGE =
=61

AGE =

=90

AGE =

=19

AGE =

=48

AGE =

=999

ERROR AT STEP 1.3: DIRECT COMMAND ONLY
=1.3 If age>100, to step 1.9

sgo.
COUNT(0) = 3,0
COUNT(1) = 2.0
COUNT(2) = 3,0
COUNT(3) = 2,0
COUNT(4) = 2.0
amts
YOUR REQUEST MAY BE ONE OF THE FOLLOWING :

INFO

PIL

HELP

ANS

ans

IN YOU ANSWER ENTER THE VALUES YOU GOT FOR THE COUNTERS IN
§S§ENDING ORDER OF RANGE, PLEASE.

322
EXCELLENT., PERFECTLY CORRECT!!

YOU MAY NOW REQUEST :
SOLN
NEXT
next
A CUSTOMER'S CREDIT NUMBER 1S A STRING OF 8 DECIMAL DIGITS, S.
A NINTH DIGIT, ADDED AT THE RIGHT HAND END TO PREVENT FRAUD, IS
OBTAINED BY FIRST ADDING THE SUM OF THE SQUARES OF THE ODD DIGITS TO
THE SUM OF THE CUBES OF THE .EVEN DIGITS, THE LAST DIGIT IN THIS SUM IS
THE CHECK DIGIT. WRITE A PROGRAM TO READ IN S AND OUTPUT THE VALUE OF
ITS CHECK DIGIT, '
FOR YOUR DATA USE S = "82790677"

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
INFO
PIL
HELP
ANS
help
YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L®' OR 'P!',
INFO
BACK
Info

285

THE PROBLENM MAY BE DIVIDED AS FOLLOWS :
1. INITIALISE THE SUM AND READ IN S.
2. PERFORM THE SUM ON THE 0ODD DIGITS.
3. PERFORM THE SUM ON THE EVEN DIGITS.
b. WORK OUT AND PRINT OUT THE LAST DIGIT IN THE SUM.

YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'P'.
INFO
BACK.
21
WE NEED TO LOOK AT THE ODD DIGITS OF S,1.E. DIGITS IN POSITIONS 1,3,
5 & 7. THAT SOUNDS LIKE A 'FOR' STATEMENT! AS FOR THE SUM; EACH TIME
WE ADD THE SQUARE OF THE VALUE OF THE LAST DIGIT OF THE FIRST | DIGITS,
WHERE | IS 1,3,5 OR 7. GET IT?

YOU MAY NOW REQUEST :

A DIVISION NUMBER WITH EITHER 'L' OR 'P',

INFO

gACK

p
THE 'FOR' STATEMENT WILL NATURALLY BE 'BY 2:'. AS FOR THE OBJECT
STATEMENT, THE EXPRESSION TO BE ADDED TO THE OLD SUM USES THE STRING
FUNCTIONS: "THE VALUE OF ','M $LC STRING' & 'N $FC STRING'

IN THAT ORDER.

YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'P',
INFO
BACK
p3
THE 'FOR' STATEMENT WILL OF COURSE BE 'BY 2:'. AS FOR THE
OBJECT STATEMENT, THE EXPRESSION TO BE ADDED TO THE OLD SUM USES THE
STRING FUNCTIONS 'THE VALUE OF ','M $LC STRING' & 'N $FC STRING'
IN THAT ORDER,

YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'P',
INFO
BACK

14

WE NEED THE LAST DIGIT OF THIS SUM WHICH IS AN INTEGER. THAT'S IT!
WHY DON'T WE TAKE THE FRACTION PART OF A TENTH OF THE SUM THEN
MULTIPLY IT BY 107

YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'P',
INFO
BACK

286

back
FOYOUR REQUEST MAY BE ONE OF THE FOLLOWING :

PIL
HELP
ANS

pll

'PIL* 1S NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER.

PIL(C 1:01) Ready:
=l.1 set sum=0.._
=1.2 demand s.
=1.3 for i=s1 to 7 by 2:set sum=sum*(the value of (1 $lc | $fc s))ws2,
=l.4 for 1=2 by
to 8 by 2:set sum=sum+(the value of (1 $1c | $fc s))we3,

=1.5 set x=fp of sum/10+10.
=1,6 set_

LINE DELETED
=1.6 type x.
=do part 1
="82790677"
Xs= 0,0 .
smts
YOUR REQUEST MAY BE ONE OF THE FOLLOWING :

INFO

PIL

HELP

ANS

ans

IN YOUR ANSWER PLEASE ENTER THE CHECK DIGIT,

0

INCORRECT,
AS THAT WAS YOUR FIRST ATTEMPT | SUGGEST THAT YOU RETURN TO REQUEST
MODE AND TYPE 'HELP'.

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
INFO
PIL
HELP
ANS
help
YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'p',
INFO
BACK
p5
IsVALID REQUEST. PLEASE RE~-ENTER,
p
HEARD OF THE ARITHMETIC FUNCTION 'FP OF '?7

YOU MAY NOW REQUEST :
A DIVISION NUMBER WITH EITHER 'L' OR 'p',
INFO
BACK
back

287

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
INFO
PIL
HELP
ANS

pil
'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER.
=]l,.5 set x=fp of (sum/10+10).
-go part 1.
="82790677"
X= 0,0
=1,5 set x=fp of (sum/10)+10.
-go part 1.
="82790677"
X = 8,0
amts
YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
0

PIL
HELP

ANS

ans

IN YOUR ANSWER PLEASE ENTER THE CHECK DIGIT.

EXCELLENT. PERFECTLY CORRECT!!

YOU MAY NOW REQUEST :
SOLN ' '
NEXT
next
WRITE A PROGRAM TO READ IN A CHARACTER STRING, S, AND PRINT OUT

THE NUMBER OF LETTERS, L, AND THE NUMBER OF DIGITS, D, CONTAINED IN
THE STRING.

FOR YOUR DATA USE S="X?P37BG#+PIP8P772+Q=-X3%Xl, 7"

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
INFO
PIL
HELP
ANS
info

THE PROBLEM MAY BE DIVIDED AS FOLLOWS :
1. INITIALISE THE COUNTERS AND READ IN S.
2. SET UP A SUITABLE LOOP.
3. INCREMENT THE COUNTERS ACCORDING TO EACH CHARACTER.
4. PRINT OUT THE RESULTS.

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :

INFO
PIL
HELP
ANS
pll
'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER,
PIL(1:01) Ready:

288

.101 set]-0
=1.2 set d=0
=1.3 demand s.
=1.4 set len=) of s.
=1.5 for I=1 to len: do part 2.
=2.1 set r=1 $1c | $fc s.
2.2 if r $ge "0",set d=d+1l;set l=1+1,
=do part 1.
[o

o =B
="x?p37bg**p9p8p77+q-xl, 7"
=type 1,d.

L= 16,0

D= 7,0
=mts

YOUR REQUEST {MAY BE ONE OF THE FOLLOWING :

INFO

PIL

HELP

ANS

ans

IN YOUR ANSWER PLEASE ENTER THE NUMBER OF LETTERS AND THE NUMBER
OF DIGITS IN THAT ORDER.

16 7

INCORRECT.

AS THAT WAS YOUR FIRST ATTEMPT | SUGGEST THAT YOU RETURN TO REQUEST
MODE AND TYPE 'HELP',

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
FO -

PIL

HELP

ANS

i

° 'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER "MTS' TO THE INTERPRETER.
=do part 1,
="'x?p37bge*pIp8p72+q-x3exl, 7"
=type 1,d.

L= 18.0

D= 8,0
smts

YOUR REQUEST MAY BL ONE OF THE FOLLOWING :

INFO

PIL

HELP

ANS

ans

IN YOUR ANSWER PLEASE ENTER THE NUMBER OF LETTERS AMND THE NUMBER
OF DIGITS IN THAT ORDER.

18 8

SORRY, BUT THAT IS THE WRONG ANSVER.

YOU MAY REQUEST ONE OF :

BACK

EXPL

expl

289

EXPLANATION.

THE STRING 1S READ IN AND L & D SET TO 0. THE LENGTH OF THE INPUT
STRING IS FOUND AS IT 1S THIS NUMBER OF CHARACTERS WE WILL BE COMPARING
IN THE PROBLEM, A LOOP 1S THEREFORE SET UP USING A 'FOR' STATEMENT

WITH THE LENGTH OF S AS THE LIMIT. THE OBJECT STATEMENT OF THIS 'FOR'
IS BEST A 'DO PART N.' INSTRUCTION, NOT ONLY FOR CLARITY BUT ALSO FOR

A SLIGHT SAVING OF WORK. AS WE MAKE 2 SETS OF COMPARISONS ON THE
ISOLATED CHARACTER, IT IS PERHAPS BEST TO ASSIGN THIS CHARACTER TO A
STRING VARIABLE R HAVING WORKED 1T OUT ONCE ONLY, TO WORK IT OUT, THE
YLAST CHARACTER OF THE FIRST | CHARACTERS OF ' IS USED. THE

COMPARISONS ARE AS FOLLOWS: FOR DIGITS, IF R IS GREATER THAN OR EQUAL
TO "0", D IS INCREMENTED; FOR LETTERS, IF R 1S GREATER THAN OR EQUAL TO
"A" AND LESS THAN OR EQUAL TO "Z", L 1S INCREMENTED. ON COMPLETION OF
THE LOOP, L AND D ARE OUTPUT.

SPECIMEN PROGRAM.

=3.1 DEMAND S.

=3.2 SET LENGTH=L OF S.

=3.3 SET L=0.

=3.4 SET D=0,

=3.5 FOR I=1 TO LENGTH: DO PART &,

=3.6 TYPE L,D.

=4.1 SET R=1l $LC | $FC S.

=4.2 IF R $GE "O",SET D=D+1.

=4,3 IF R $GE "A"™ $AND R $LE "2",SET LsL+1,
FOR S="X?P37BGe+P9P8P77+Q-X4.7", L=10 AND D=8,

USING THE PROGRAM YOU ALREADY HAVE FOR THE SUMMATION OF THE G.P.:
2 N-1
A L4 AR '] AR 'ooooolAR
AMEND IT TO GIVE OUT THE VALUES OF :
A) THE N TH, TERM IN SCIENTIFIC NOTATION WITH 5 PLACES OF DECIMALS.
B) THE SUM IN STANDARD NOTATION WITH 3 PLACES OF DECIMALS.,
FOR YOUR DATA USE A=12, R=0.5 AND N=20.

INFOYOUR REQUEST MAY BE ONE OF THE FOLLOWING :

PIL
HELP
ANS
info

THE PROBLEM MAY BE DIVIDED AS FOLLOUS :
1. A '"FORNM' FOR THE N TH. TERM,
2. A 'FORH' FOR THE SUM.

290

YOUR REQUEST MAY BE ONE OF THE FOLLOUWING :

INFO

PIL

HELP

ANS

N

g 'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE
SIMPLY ENTER 'MTS' TO THE INTERPRETER.

PIL(C 1:01) Ready:
=form 1,

=form 2.
s 0L
=]1,1 demand a,r,n.
=1.2 set term=a,
=1.3 set sum=a,
=1.4 for i=1 to n-1:do part 2.
=1.5 type in form 1,term.
=1,.6 type in form 2,sum.
=2.]1 set termsterm+r.
=2.2 set sum=sum+term.
=do part 1.

A s
=12

R =
=0,5

N =
=20

2.2888E-05

23.999
amts

F YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
0o

PIL
HELP
ANS
help
YOU MAY NOW REQUEST:
A DIVISION NUMBER TOGETHER WITH EITHER 'L' OR 'pt,
INFO
BACK
lp :
3?&;5 SIMPLY, SCIENTIFIC MOTATION USES 1 PERIOD PER CHARACTER OF

YOU HMAY NOW REQUEST:
A DIVISION NUMBER TOGETHER WITH EITHER 'L' OR 'P'.
INFO
BACK
11
?0R7§ PLACES OF DECIMALS, SCIENTIFIC NOTATION NEEDS A WIDTH OF
5¢7).

YOU MAY NOW REQUEST:
A DIVISION NUMBER TOGETHER WITH E!THER ‘L' OR 'P',
JNFO
BACK
back

291

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :
INFO
PIL
HELP .
ANS

pll
'PIL' IS NOW PLACED AT YOUR DISPOSAL. TO RETURN TO REQUEST MODE

SIMPLY ENTER 'MTS' T0 THE INTERPRETER.

stype form 1.

formi. """

-...........0

=type forml, foem 2.

Eh? FORMI =?
=type form 1,form 2.

=do part 1.

A= .
=12

R =
=0,5

N =
=20

2.28881E-05

23.999
smts

INFOYOUR REQUEST MAY BE ONE OF THE FOLLOWING :

PIL

HELP

ANS

ans

IN YOUR ANSWER, PLEASE ENTER YOUR VALUES FOR THE N TH. TERM AND THE
SUM IN THAT ORDER. BE SURE TO ENTER THEM IN THE EXACT FORMAT OF YOUR
OUTPUT.

2.2888e-05,23,999

INCORRECT.

AS THAT WAS YOUR FIRST ATTEMPT | SUGGEST THAT YOU RETURN TO REQUEST
MODE AND TYPE 'HELP',

YOUR REQUEST MAY BE ONE OF THE FOLLOWING :

INFO

PIL
HELP
ANS
ans

IN YOUR ANSWER, PLEASE ENTER YOUR VALUES FOR THE N TH., TERM AND THE
SUM IN THAT ORDER. BE SURE TO ENTER THEM IN THE EXACT FORMAT OF YOUR
OUTPUT.

2.28881e-05,23.999

292

d43d0

*SNIW 8£°8TTI=NOISS3IS SIHL °SY¥H 86°T =3WILl V101
{IMON ,11d, 1N0OGV 11V MONM NOA 3dOH | ‘3S¥N0I 40 ’aNY

*3S73 ONIHLON 41 OHNILSIYILNI LSVIT LV YILNAWOI 3HL NO S3ISSVII S3IT1dWVX3
dNOA GNNO4 NOA LVHL 3d4OH | i31VW ‘107 1VISY3AOYd ¥Y3IA S, L1VHL

NOA ANVHL

440N9 1S 0L 3YVvd3Idd 3ISV3IT1d 0S NMOGLAHS Ol SILINANIW N3L

‘HWYIL+WNS=WNS LIS T°9=
‘dsWy3ILl=WY3l L3S 1°9=
*WNS‘Z WY04 NI 3dAl
*WY3IL’T WY0d4 NI 3dAL
*9 1yvd 0Q:TI-N O1L TI=i ¥oOd
*v=4INS 13S
‘V=WY3al 13S
"N‘Y‘V ONVW3Q

(Yo
®
]

et N M LN
e o o o

NN NN
nwunounn

N I
*¢ Wy0od

‘T W40d=

*? Wd0d4 3d

>
ome ==
nnnu

*HWYYO0UYd NIWIIJ3dS
ujos
1X3N

N10S
: 153ND3Y¥ MON AVY NOA

i 11039400 A11034¥3d °LN3T130X3

APPENDIX F.

The student performance information corresponding to that session.

294

S

-4

Q.

L 7Y)

[~

[=]

w

[

<

a. =

(]

- =
= = o
< o +
= - < w
=2 .4 b4 -]

[*Y] e . wn

Q D - o <

- (3] o. - . M

-] -l < = (]

o -] w (= .

k-4 L4 x a w = (o]

.. (1] (1) LL] .0 (1] (1]
MQMNNC‘N&D@:N@GOHNO.DNHNﬂ\mw#m:l\@mmHﬁmﬂ'\NOHathac\
zF'ClnFCNHlDP'FON&DNN(DF‘JN-?NF‘N"\M"\F(NNN\HV’\F’!NNmH'ﬁH@F‘NHF‘N
[

O 000 OO0 OO0 © O0CO0D COOOO0OODOCOCOOO0O ©O0O0OO0
(-] [N -] oo OO0 0Q o [~ R~ N =N] OO0 O00O0OO00O0O0DOO 000 O
O OO0 OO0 OCOO0COD © OO0 O0OoOPOOOO0O0O0OO0OO0O0O ©OO0OO0
(=] OO [~] cooooco (=] 0COoO0Oo [-N-N-N- NNy N = =~ [-R~N -]
o [-N -N-J oo [-K-N-N-N-] (=] (- X -NNo] 0O0O000O0O0O0OO0OO0DOODOO OO0O0O
© 000 OO0 COCOOO0 © 0000 0000000000000 O 0000
© OO0 00O COO0COOD © OO0 OCO0OOODOO0O0O0O0O0OO0 OCOOo
Q 000 00O OO0 © OO0OO0OOo °°°°°°°°°F‘T°F‘F‘° [-X-N -2
]
' ' J | [}]
| L [] []
m © OO0 ©O0O ©OO0O0O0D © 0000 0000000000 O0O0O0O0O0 0000
:30 OO0 ©OO0 OCCOO © OO0 COO000OOOOOOOOO0OO OO00e
30 COO0 OO0 OO O OO0 O0O0OOOOOONOOOO 0000
8<° OO0 OO OO0 © 0000 000000000000 O 00OO
H':EO OO0 00 O0O0O0O0O O OO0 000D OODOOOODOO0OO ©COOO
‘O OO0 OO0 O0OO0D O 0000 0000000 OOOOOOO oo
;<° (- NN -] !-.'H-O N © 0000 COoOOHMOOOOOOOOOE OoOo™
]
I.IZJUO COQ ried TTTF‘O © OO0 OO0O0OHNHOHNMOOOOOOOO OQOT
-]
G et et e et e S et et e e e e
w '] LI A |] [} " ' 1]]
(%]
-
[1- -4
=3
8=<=<<<D<<D<<<<<3<D<<<<D<<<<<<<<<<<<<<<:<<<<
[2
W<
-l
-4
o
NN PNV OONOINEONNONNFHMINWONEAINOFHNSINRNOONOO NN
3 vt rMrdrdrdrtrdrdri NN NNNNNNN MMM M N
2
(=4

MMMMMMMMMMMNMAMNMNAANMMAMMTI NN MMM N NS S SS SN N SO

CURRENT POSITION;

LESSON

39

1-1-1-1 0 0 000 000000000000

3
.

19:P 1}

295

(=4

7

:16

..
DO FIININNRONINMANNMNIOIIOMONMMNONNIINOS
(ol [a k] (o] - L] -t O

AN N-A-F-X-X-J¥_-N-X-N-N_N-N-N-N_—¥-N-]
- X-N-N-N_ ¥ YN ¥ NN _N_J_N_N_¥_N§_]
AN XXX -N-¥_X-¥-¥_N-N_-N_N-N-¥_-N_}
AR N N-N_X-N-X-¥_¥ N -N-N-N_¥_-N_]
CO0COODOOO0OOOOODOOO
XN - NN F-X-Y- YN ¥ - N-¥_¥-Y-¥-)
A=A g NN X-N-J-N Y ¥ ¥ N-N_N_W-¥-¥-1
SRR N NN Y N ¥ ¥.-§ W N _¥_¥_¥_¥-3
A=A N-X-N-N-N-F- N Y N N Y- N ¥-¥-Y-¥-
CO00CODOO0O0OODOOODOCOO
COHrrrMOCCOOHrHHMHOO
COMHMHNHMNOOCOOOHMMMFMEMMHOO
OOririrdriOO0O0O0Oririrri«~O0O
T D O 4 4 e 4
o © O ot
Ot ot et o e o
LR PR T EEE LI

OO0 O0COO0OO0O0OOO0
CO0CO0ODOODOOOO
[~ X-N-N_N-N-N-N. NN
COODOROOOOOO
COCOoOO0OOO0OO0O
- E-N-N-N-N_N-X-¥_N-]
[-A-N-X-N-N-N-N.-N-N-N-]
cCooocoococcoeo
- X-N-N-N-N-F_¥-N_N-N-
cCcocococooc
OrMmMmOoOOoOOOOoO0OQ
Or-rmocoOoO0OOOOO
°F’4F‘F‘"°°°°°°°
QQQéOQOOOﬁQ
OﬁﬂTOOOOOOO
OSSN
i nl kR - Yo T]
7A++Aécﬁééé

[}
F‘°°°HV‘4"‘F‘I“F‘I‘"
] " L] "t

<O T L L L L L L LD L L <l < el of < L

et eI M NI N
[X Ko] -

Lalal ol aX a¥ o)
NONONONNN

i NN
o~ NN

L]

—

.
N MWLYo N
~
oo ooo
oo oo
oo 0o
(=N —4 0.00
(== o0
oo coo
oo oo
oo oo
(- X =] o000
co oo
[~ oo
o0 ooce
oo o000
[N -] [-X-X-]
Qo o000
[~} 000
[oKl Qv
'!‘F‘ OF"‘H
et ek
T

DD L

ﬁr‘:NﬁHH-"-—!HQMF‘F‘
M

VULLVLVVWVLLYLVLLOLLLVLVLLVLVLLVOULLULOLLULULLLLOLYLIVLVLDLWYL OV

o
o
o
.
"
o~
-
723
=3
]
w
[
0
[
o~
.
o~
.
FOVINOONLNY
= N
COoO0CO0O0O0 o000
cooocoo0o (- XN -]
(-N-N-X-N-N-J [-X-X-]
X -N-Y-N-N_-J - Y- X
OO0 0O0 [~ X - N~
[-N-R-J—N-N-] [—X -]
CoOo0LO0OD Oo0o
oo O00O0
[-X-X-T-N-N-) [-X--N-4
[-X-X-¥-X-N-] (- XN
OMMHHMOO o000
LI |
Crirdir- OO [-N-N~]
UL
Qe OO °°°U;
[]
OO0 X -X_2
[}] -
~X-N-Y-X-Y-NN X3 3
COO00O0O0O 5062
—HOO® v ~“~OoOO™
] .
et et = -‘ooé
UL |
X kalnkakal ﬁc::‘O
(]]] -
HOOOHM ey
] 11 1 (7]
w
[%]
-
(%]
<
NE L L L =X & & &
.
(%]
4
=
o
LA el PPN
X 4 > =

SOOIV LDVVLVLVLY

TOTAL TIME=

