
U lJVERSITY OF
[EWCASTLE

University of Newcastle upon Tyne

School of Computing Science

Scalable Internet Auctions

Ph.D. Thesis

By:

Mohammad-Reza Khayyambashi

In Partial Fulfil!llent of the Requirements

for Degree of

Doctor of Philosophy

March 2006

NEWCASTLE UNIVERSITY LIBRARY
...... ' ~ , ~ .. _" w,. 'm 'O" ," .,,' .".

204 26851 7
••• v_ " •.................../1 " " ..

. ~n~..c2:6T'S L.732.20

BLANK PAGE
IN

ORIGINAL

Dedicated to :

" My father and my mother "

iii

Acknowledgements

I would like to express my sincere gratitude to those who have contributed in various ways to

the completion of this thesis.

First and foremost, I greatly thank my supervisor, Professor Santosh K. Shrivastava. His

guidance and academic contributions throughout this work have been invaluable. The

enthusiasm and encouragement Professor Shrivastava consistently showed throughout my

PhD studies have been essential for the completion of the thesis.

Many thanks go to Dr. Graham Morgan for teaching me about NewTop and related materials

as well as his valuable comments. My thanks are also due to Dr. Paul Ezhilchelvan for the

discussions relating to Internet Auction, which are included in this thesis.

I would also like to thank the members of Distributed Systems group, head of school, Dr.

John Lloyd, and all the staff members of the school particularly Shierly Craig, the librarian

who was a great help specially with the references.

Furthermore, I would like to express my deep heartfelt appreciation to my dear wife, Azam,

for her sacrifice, courage and support especially on those lonely and hardship periods; to my

lovely daughters, Maedeh and Zahra, for their understanding of the nature of my work, for

being supportive and all the joy and sorrow that they shared with me.

I would take this opportunity to thank my parents, sister and brothers for their continued

support and encouragement during my life.

Finally, the financial support in the form of a scholarship from the Iranian Ministry of

Science, Research and Technology and Isfahan University is gratefully acknowledged.

iv

Abstract

Current Internet based auction services rely, in general, on a centralised auction

server; applications with large and geographically dispersed bidder client bases are

thus supported in a centralised manner. Such an approach is fundamentally restrictive

as too many users can overload the server, making the whole auction process

unresponsive. Further, such an architecture can be vulnerable to server's failures, if

not equipped with sufficient redundancy. In addition, bidders who are closer to the

server are likely to have relatively faster access to the server than remote bidders,

thereby gaining an unfair advantage.

To overcome these shortcomings, this thesis investigates ways of enabling

widely distributed, arbitrarily large number of auction servers to cooperate in

conducting an auction. Allowing a bidder to register with anyone of the auction

servers and place bids there, coupled with periodic exchange of auction information

between servers forms the basis of the solution investigated to achieve scalability,

responsiveness and fairness. Scalability and responsiveness are achieved since the

total load is shared amongst many bidder servers; fairness is achieved since bidders

are able to register with their local servers.

The thesis presents the design and implementation of an hierarchically

structured distributed Internet auction system. Protocols for inter-server cooperation

are presented. Each server may be replicated locally to mask node failures.

Performance evaluations of centralised and distributed configurations are performed

to show the advantages of the distributed configuration over the centralised one.

v

Table of Contents

Acknowledgements

Abstract

List of Tables

IV

V

ix

1 Introduction

1.1 Overview 1

1.2 Thesis Structure 2

2 Background and Related work

2.1 Introduction 6

2.2 Type of Auction 9

2.3 Characteristics of Different type of Auction 13

2.4 Complete Auction Process 14

2.5 Significant of Auctions 15

2.6 Problem with Auctions 16

2.7 Internet Auctions 17

2.7.1 Existing Internet Auctions 19

2.7.2 Advantage of Internet Auctions 20

2.7.3 Problem with Internet Auctions 21

2.7.4 Other consideration relating to Internet Auctions 23

2.8 Auction Requirements : '" 24

2.9 Related work 25

2.10 Conclusions 28

3 Middleware Environments and Group Communication

3.1 Middleware 30

3.1.1 Properties of Middleware 31

3.1.2 The Proxy/Stub Method 32

3.1.3 Distributed Objects 32

vi

I

3.2 Object - Oriented Middleware Technologies 33

3.2.1 Java - RMI 33

3.2.2 DCOM 34

3.2.3 CORBA 34

3.3 OMG and CORBA 36

3.3.1 ORB 36

3.3.2 CORBA Interface Architecture 37

3.3.3 Object Services 39

3.4 Fault Tolerance and Reliability Issues .40

3.4.1 Atomic Transaction 40

3.5 Group Communication .42

3.5.1 Properties of a Group Communication Service .43

3.5.2 The Multicast Mechanism .43

3.5.3 Message Ordering .44

3.5.4 Group Membership .47

3.5.5 Highly Available Services .48

3.6 Reliability / Translation - Based Reliability and Comparison 52

3.7 Conclusions 54

4 Centralised and Distributed System Architecture for Internet Auction

4.1 Auction House Architecture 56

4.2 Basic Auction Unit 57

4.2.1 Clients' Procedure .. 59

4.2.2 Servers' Procedure 60

4.2.3 Basic Auction Unit Connection 62

4.3 Pure Hierarchical Architecture 64

4.4 Implementation Framework 68

4.4.1 Bidder Servers '" '" 71

4.4.4.1 Bidder Servers' Procedure 71

4.4.1.2 Forwarding / Disseminating time 72

vii

4.4.2 Main Auction Server. 76

4.4.2.1 Main Auction Server's Procedure 77
I

4.5 Reliability and Fault Tolerance 78

4.5.1 Replication - Based Reliability 80

4.5.2 Implementation and Reliability Issues 82

4.5.2.1 Fault Tolerance Bidder Servers' Procedure 87

4.5.2.1.1 Bidder Servers' Procedure 88

4.6 Conclusions 90

5 Implementation and Performance of Distributed Auction System

5.1 Implementation of Distributed Auction System 91

5.1.1 Auction Object. 92

5.1.2 Reliability Object.. 92

5.1.3 Distributed Object. 94

5.1.4 Group Communication Object 96

5.2 The NewTop Group Communication Service 97

5.2.1 Management Service 99

5.2.2 Invocation / Multicast Service 100

5.2.3 Group Membership Service 102

5.3 Performance Evaluation of Distributed Auction System 103

5.3.1 Centralised Server, Non-replicated Auction Object. 104

5.3.2 Distributed Bidder Servers, Non-replicated Auction

object. 106

5.3.3 Replicated Auction Objects (Centralised and

Distributed Approaches) 108

5.3.4 Conclusions 109

6 Conclusions

6.1 Thesis Summary 110

6.2 Future Work 112

Bibliography

Bibliography 113

viii

List of Tables

Table 2-1 13

Table 5-1 108

Table 5-2 108

ix

Introduction - Chapter I

Chapter 1

Introduction

1-1 Overview

Advances in information and communication technology have triggered a massive

influx of Electronic Commerce transactions, which represent one of the fastest

growing business segments that has ever existed, due to its convenience, absence of

space and time limitations, limitless choice of goods and services, ability to compare

prices and goods between various e-commerce providers, and round the clock online

shopping. (It is estimated that 63% of the online population will engage in Electronic

Commerce activities by 2006. Furthermore, it is perceived that the total value of

Electronic Commerce transactions around the world reached around $3.8 trillion in

2003, over $9 trillion in 2005, and around 18% of global sales in 2006)

[http://www.crime-research.orglarticles/Wahabl].

The Internet and World Wide Web have emerged as a valuable networked

information source that is increasingly being used for commerce. In recent years a

number of auction services have been made available over the Internet (e.g.,

}Yww.ebay.com, www.antiquorum.com, www.artnet.com, to name a few). A common

feature of these services is the considerable amount of time they require to complete

the auctioning process. Typically, a user of these services can submit a bid and, only

afte,r an amount of time that can range from hours to days, that user knows whether

her/his bid has been accepted [Amoroso'03].

The Internet auction incorporates most of the features of the traditional auction, while

it also adds features necessary for its new media. Due to the geographically dispersed

nature and the shear number of the auctions relatively anonymous participants, some

method of bidder and seller reputation has to be established. The majority of Internet

auctions now incorporate some method whereby a bidder or seller's peers can give

1

http://www.antiquorum.com,
http://www.artnet.com,

Introduction - Chapter I

him/her a rating and write comments on their behaviour and trustworthiness. Other

bidders can then use these rating and comments as a guide to who they are dealing

with.

We are concerned with a particular class of Internet-based, server-centered
I

applications whose user domains are typically large, geographically distributed, and

perhaps expanding. Examples of such applications are on-line auctions, Internet

gaming, etc. On-line auctions are continually expanding into diverse products ranging

from second-hand goods to airline tickets and financial products. The well-known

Internet auction provider, eBay [http://www.ebay.com] has recently entered into the

real-estate markets. The size and the nature of the user domain becomes obvious when

we observe that eBay runs up to 2 million auctions at any given time, and its systems

typically interact simultaneously with millions of Internet based customers from all

over the world. Internet games not only are becoming increasingly popular but are

such that the more the number of players participates in a game, the more interesting

the game becomes for every player. So, in Internet gaming, systems are required to

deal with a large number of users whose requests (for example to move or shoot an

object) must be processed in an ordered manner and the effect displayed in a timely

manner.

Current Internet-based auction services rely, in general, on a centralised auction

server; it means the applications with large and geographically dispersed bidder client

bases are currently supported in a centralised manner; bidder client requests (over the

Internet) to systems located in a central place for processing. Such an approach is

fundamentally restrictive as too many users can overload the server, making the

whole auction process unresponsive. Internet auction service requires meeting

scalability, responsiveness, fairness and data integrity. In the other words, a

centralised auction server architectures can not deal adequately with issue of service

availability and scalability. Typically, such an architecture can be vulnerable to

server's failures, if not equipped with sufficient redundancy. Furthermore, server's

overloading may occur, if an arbitrary large number of users concurrently access the

service and a customer (a local bidder client) who is close to a central bidder server

can have faster bidder server access than a remote bidder client, and thus may have an

unfair advantage over the latter.

2

Introduction - Chapter I

Therefore the ways of enabling widely distributed arbitrary large number of auction

servers to cooperate in conducting an auction have been investigated. Allowing a user

to place a bid at anyone of the bidder servers is our solution to achieve scalability and

responsiveness, since the total load is shared amongst many bidder servers which has

been distributed in our auction system.

1-2 Contributions of the thesis

In this thesis we will develop a novel hierarchical architecture for distributed Internet

auction system. Hierarchical architecture and Tree-based recursive design approach is

shown as a very attractive way to meet Internet auction's scalability and

responsiveness requirements. Fairness is preserved using distributed auction servers.

Data integrity is attained by atomic interactions between the bidder client and the

bidder server and by preserving replicated data mutually consistent.

This thesis studies the types of auctions, existing problems in centralised Internet

auctions and architecture of centralised and distributed Internet auctions. It also

introduces replication of bidder servers using group communication to achieve the

reliability and fault tolerance in centralised and distributed system architecture for

Internet auctions. Furthermore, the new algorithms and protocols which have been

supported by hierarchical architecture are also presented.

The thesis is structured in six chapters. The details of each chapter will be described

in next section.

1-2 Thesis structure

The thesis is organised as following:

Chapter 2: Background and Related Work. This chapter covers the background of

Electronic commerce, auction in general and then on Internet auction in particular.

The discussion of different types of traditional auctions, their important and the

problem they face is followed by a look at existing Internet auction and their

3

Introduction - Chapter I

problems and then Internet auction requirement will also be described. The chapter

will be ended by related work.

Chapter 3: Middleware Environments and Group Communication. In this

chapter description of the Middleware technologies and the mechanism that required
I

to provide replicated servers and group communication service will be covered.

Chapter 4: Centralised and Distributed System Architecture for Internet

Auction. This chapter demonstrates auction house architecture, basic auction units

and their connection, hierarchical architecture and Tree-based recursive design

approach as a well-known method to achieve Internet auction's scalability. This

chapter also describes replicated bidder servers to attain reliability and fault tolerance

in distributed system architecture for Internet auction followed by discussion of

algorithms and protocols for bidder client and bidder servers in both non-fault

tolerance and fault tolerance models.

Chapter 5: Implementation and Performance of Distributed Auction System. In

this chapter implementation of the distributed system architecture for Internet auction

and performance results obtained from experiments are presented. The results

compare the performance of replicated and non-replicated auction bidder servers for

both centralised and distributed bidder servers approaches.

Chapter 6: Conclusions. The chapter concludes the overall thesis and

implementations of its finding. It summarises the performance and briefly discusses

the contribution of this thesis and suggests future work.

4

Background and Related work - Chapter 2

Chapter 2

Background and Related work

In this chapter information is presented on Electronic Commerce, Auctions in general

and then on Internet Auctions in particular. A discussion of different types of

traditional auctions, their importance and the problem they face is followed by a look

at existing Internet auction and their problems and then internet auction requirement

and related work will be discussed.

2-1 Introduction

Electronic Commerce on the Internet has become one of the major issues In

computing in the last few years. The development of the World-Wi de-Web

technology and its related browsers has transferred the idea of commerce, trading,

marketing and auction on electronic media into a reality. The vast opportunities

presented by Electronic Commerce can be easily gauged by the amount of serious

interest shown by the business sector and by researchers in the field of computing.

In the business sector the numbers of Internet Service Providers have increased

dramatically, responding to the ever greater number of people wishing to "connect to

the net". The term network computer has been coined to capture the duality of the

nature of personal computers today, namely as a desktop computer and as a gateway

to the world of the Internet.

As electronic commerce becomes a major activity on the Internet (and other

interconnected networks), user will demand other related services to be delivered

through and by the Internet [Hardjono'96].

Contemporary with the growth of Electronic Commerce, at the same time, the use of

Electronic Marketplace and Electronic Auction also has made its appearance.

5

Background and Related work - Chapter 2

Electronic Marketplaces have become increasingly popular alternatives to traditional

forms of commerce. This increase in popularity has led many to predict that one

effect will be to lower the market price of goods. Buyers in market inter mediated

transactions have to bear search costs to obtain information about the prices and

product offerings of sellers. High search costs of buyers enable sellers to maintain
/

prices substantially above their marginal costs and results in allocational

inefficiencies in market transactions. Electronic market systems can reduce the search

costs that buyer must incur to acquire information about seller prices and product

offerings, thus enabling buyers to locate suppliers that better match their needs. The

lowered search costs allow buyers to look at more product offerings and make it

difficult for sellers to sustain high prices. The reduced price hypothesis predicts that

buyers will enjoy lower prices products as a result of the increased competition

among sellers in electronic marketplaces [Geun Lee'98].

Auctions and bidding have established methods of commerce for generations. These

methods deal with products and services for which the conventional marketing

channels are ineffective or inefficient. They can expedite the disposal of items that

need liquidation or quick sale, they offer trading opportunities for both buyers and

sellers which are not available in the conventional channels, and they assure prudent

execution of contracts.

The Internet provides an infrastructure for executing auction and bids much cheaper,

with many more involved sellers and buyers. Individual consumers and corporations

alike can participate in this rapidly growing and very convenient form of electronic

commerce.

Traditional auctions have several limitations and deficiencies. For example, they

generally last only a few minutes for each item sold. This rapid process may give

buyers little time to make a decision, so they decide not to bid, therefore sellers may

not get the highest possible price, and bidders may not get what they really want or

they pay too much. Also, in many cases, the bidders do not have much time to

examine the goods. Since bidders must usually come to the auction site, many

potential bidders are excluded. Similarly, it may be complicated for sellers to move

6

Background and Related work - Chapter 2

goods to the auction site. Commissions are fairly high, since a place needs to be

rented, the auction needs to be advertised, and the auctioneer and other employees

need to be paid. Electronic auctioning removes these deficiencies.

Electronic auctions have been in existence for several years. Notable are the
I

auctioning of pigs in Taiwan and Singapore and the auctioning of flowers in Holland

which was computerized in 1995 [Turban], but these were done on local area

networks. Auctions on the Internet started in 1995. They are similar to offline auction,

except for the fact that they are done on a computer. Host sites on the Internet act like

a broker, they offer service for sellers to post their goods for sale and allow buyers to

bid on those items. Most auctions open with a starting bid, which is the lowest price

the seller is willing to accept. Detailed information on every item for sale is available

online. For high value items, additional information may be obtained via e-mail.

Bidders look at the descriptions and then start the bidding by sending an e-mail or

filling out an election form. The bidding, which may last for a few days, are shown on

a page at the host's Website, updated continually to show the current highest bids.

Name of bidders are kept coded to maintain privacy [Turban].

Many sites have certain etiquette rules that must be adhered to in order to conduct fair

business. For instance, Haggle Online, which allows private individuals to put up

their merchandise for sale, has a page dedicated to inform their users of these rules.

As with many other auction sites, Haggle Online offers a place where" honest, well-

meaning individuals can offer their stuff for sale to other honest, well-meaning

individuals." The emphasis on honesty is important. If misrepresentation is made, one

may sue the auctioneers as well, even though the auctioneers make it clear that they

are not responsible for presentations made on the Website. The auctioning companies

see the use of their services as an ideal channel for selling people's goods and warrant

off any "spammers," con-artist. Since it is in the best interest of the well-meaning

Users of these sites to have a clean and efficient system, the companies make it the

users' job to maintain an honest and orderly auction site [Turban].

Since their first appearance in 1995, online auctions have increasingly gained

momentum and accelerated the pace of Business-to-Consumer (B2C) and Consumer-

to-Consumer (C2C) e-commerce. In the autumn of 1998, 142 auction websites, 90

7

Background and Related work - Chapter 2

percent of which conducted B2C transactions, generated almost $100 million of trade

each month. However, as e-commerce lacks face-to-face interaction and transactions

are concluded online there exists a margin of risk with respect to security of payment,

data protection, and transaction fraud. According to a very recent survey conducted

by Euro barometer, the prime reason stated by consumers for not trusting the Internet
/

for trading purposes was security of payment, where virtually 73% of European

consumers who have not used e-commerce gave this reason. Delivery issues were

also a great concern, where 37% indicated that this is the main reason for their

mistrust of e-commerce. Similarly, 36% their lack of trust was based on their worries

of getting a warranty or refund [http://www.crime-research.orgiarticleslWahab1].

2-2 Type of Auctions

The major commonly used auction types are the Increasing-price auction (open-cry

auction), Sealed bid auction (single and multiple rounds) and Decreasing-price

auction (Dutch auctions.). The details of each auction are as follows:

* Increasing-price auction [Harkavy'98], called an 'English Auction' or 'Open-Cry

Auction'. In this type of auction, a good or commodity is offered at increasing price.

It may initially be offered at K tokens; at successive points of time i it is bid at K+i*/1

tokens (/1 may be function of previous bids and other factors). At each unit of time,

one or more parties can bid for the item. At the end of the auction, the highest bidder

takes the item; he pays the price he bids. This is the sort of auction found at Sotheby's

and Christie's[Harkavy'98]. In the other word, the auctioneer and the participants

gather in the same location, physical or virtual[Kumar'98], at the pre-specified time

and the auctioneer starts the auction by setting an asking price for an item on sale, and

requests bids from the floor. Periodically, the auctioneer resets that asking price to the

value of the highest bid received from the floor, and starts a new auction round. Thus,

the auctioning of each item may take one or multiple rounds[Panzieri'99]. This type

of auction has many disadvantages: the time necessary to conduct the auction is

potentially proportional to the price at which the item is sold; the communication

costs may grow super-linearly in the ultimate price at which the item is sold (since at

lower prices, multiple bidders may simultaneously bid for an item); moreover, this

type of auction leaks an enormous amount of information-a careful observer will be

able to deduce information about the price that each party is willing to pay for the

8

Background and Related work - Chapter 2

auctioned good. However, the auction does have a very desirable feature: in economic

terms, it allocates the good to the bidder with the highest valuation, since the bidder

with the highest valuation will be willing to outbid all other bidders[Harkavy'98].

* Sealed-bid auction [Harkavy'98]. In this type of auction, each party sends a Sealed

bid to an auctioneer who opens all bids. The auctioneer determines the higher bid and

sells the item to that bidder for the bidding price. In fact, buyers are required to

submit their bids by a specified deadline. The auctioneer keeps the bid information

secret until the deadline, at which time the bids are evaluated and the winners are

declared. This type of auction can be executed in a single round or in multiple rounds

of communication between the bidders and the auctioneers [Panzieri'99]. In a single

round Sealed-bid auction, the bidders register their bids with the auctioneer by a

specified deadline. Bids are kept secret by the auctioneer until that deadline expires.

Then, the auctioneer evaluates the received bids and declares the winning bid,

terminating the auction. As a result, single round Sealed-bid auctions lack the

competitive atmosphere (bidding frenzy) of increasing -price auction which

encourages the bidders to outbid their rivals[Kumar'98]. This type of auction has

some disadvantages as well, first, the auctioneer will know the exact price that each

party is willing to pay, and second, it does not support optimal distribution of

goods[Harkavy'98]. Multiple rounds Sealed-bid auction, rectify this situation and

there is a deadline for each round of bids, and at that deadline either the auction is

closed or the bids from the current round are publicized and a fresh round of bids is

solicited by some new deadline. In other words, in this type of Sealed-bid auction

goods are auctioned through multiple rounds of bids. A deadline is associated with

each round of bids; when that deadline expires, either the auction terminates, and the

winni'ng bid is declared, or the bids from the current round are made public, and a

new round, and its deadline, are advertised.

In a Sealed-bid auction, participants will have beliefs about what others will bid. If a

Participant believes that they will have the highest bid, and the second highest bid

will be substantially beneath that, then they have an incentive to lower their bid. In

this type of auction, the winning bid is not necessarily the highest submitted bid;

rather, the criterion with which a winning bid is selected can very depending on the

9

Background and Related work - Chapter 2

item being auctioned. For example, if the item is a contract for services, the winning

bid is likely to be the lowest submitted bid[Panzieri'99].

* Decreasing-price auction, called Dutch auction[Harkavy'98]. This type of auction

is similar to the English auction in that bidding price varies over time; however, in

this case, the price decrease and time i is K-i*~. Dutch auctions are used to sell

perishable goods, such as vegetables or airplane seats. Auctioneer starts with a very

high asking price[Kumar'98]. Then he gradually decreases his asking price until

buyers emerge with bids specifying how many items they will purchase at the current

asking price. The time period during which the auctioneer maintains the price of a lot

unchanged can be very short; as the goods being sold are perishable goods, the sale of

a lot can not last more than a few seconds [Panzieri'99]. This type of auction has the

advantage of preserving maximum privacy, no information is revealed except the

winning bid and bidder; however like the increasing-price auction, it may be time

consuming, and like the Sealed-bid auction, it is not economically efficient

[Harkavy'98].

* Second-price auction, called Vickery auction [Harkavy'98]. This type of auction

works like a Sealed-bid auction, in that all bids are sealed and sent to an auctioneer.

Like a Sealed-bid auction, the highest bidder wins. But the price the winner pays is

the price that the second highest bidder has bid. There are Discriminative auctions,

also known Yankee auction [Kumar'98]. In this auction, the winner pay that bid and

in the non Discriminative auction people with winning bids pay the price paid by the

winning bidder with lowest bid.

Whe~ auctioning multiple homogenous products in this type of auction, the highest

bidders are chosen in the same manner as in its first-price counterpart. However, all

the bidders pay the same price, equal to the second highest bid.

It may, at first, seem as if this type of auction is unattractive to the seller of a good. It

gives the impression of providing the same bidder with the good but at a lower price.

Vickery found that this is not the case. In fact, the bidders, on realising that the price

10

Background and Related work - Chapter 2

they would pay, if successful, relies solely on the decisions of the other bidders,

adjust their bids upwards. This results in the price outcome of the second-price,

Sealed bid auction being the same as that of the near-optimally-efficient English

auction, in theory.

* Double Auction , although not classified as one of the major four auction types,

which have already been explained, the double auction has been the principal trading

format in U.S. financial institutions for over a hundred years.

In this auction both sellers and buyers submit bids which are then ranked highest to

lowest to generate demand and supply profiles. From the profiles, the maximum

quantity exchanged can be determined by matching selling offers (starting with lowest

price and moving up) with demand bids (starting with highest price and moving

down). This format allows buyers to make offers and sellers to accept those offers at

any particular moment. It can be confusing to think about the double auction in light

of overlapping buy and sell orders. A good way to avoid this confusion is to

understand that at one single instant of time, they do not overlap.

The origins of the double auction are not well known, but it is recognized that this

form of auction has roots that go back to ancient Egypt and Mesopotamia. Almost

certainly the double auction stems from "haggling" in which buyer and seller each

suggest prices[Friedman'91].

Much later (in the last quarter of the nineteenth century) when the telegraph and

telephone were invented, traders in the stock market could speak directly to interested

outside investors. This was viewed at the time not only as a novelty but also as

something of a threat. The computer revolution of the twentieth and twenty-first

centuries portend far greater shifts as agents and financial markets become

automated[Friedman '91].

A "continuous double auction" is one in which many individual transactions are

carried on at a single moment and trading does not stop as each auction is concluded.

The pit of the Chicago Commodities market is an example of a continuous double

auction and the New York Stock Exchange is another. In those institutions a specialist

matches bids and asking prices to find matches.

11

Background and Related work - Chapter 2

One interesting variation is the Double Dutch auction. Work on this is being done at

the University of Arizona [Rassenti'92].

It works like this: A buyer price clock starts ticking at a very high price and continues

downward. At some point the buyer stops the clock and bids on the unit at a price

favourable to him. At this point a seller clock starts upward from a very low price and

continues to ascend until stopped by a seller who then offers a unit at that price. Then

the buyer clock resumes in a downward direction. The trading period is over when the

two prices cross, and at that point all purchases are made at the crossover point.

Double auction has many variants and is evolving rapidly. Economists believe that the

double auction will have many applications as auctions become computerized.

Each of these auction methods has precision variation such as [Kumar'98]:

- Anonymity, i.e., what information is revealed during the auction and after the

auction closes.

- Rules for ending increasing-price auctions and decreasing-price auctions.

- Restrictions on bid amount, in all auctions the seller can specify the minimum

starting bid.

In the survey of the auctions , from 142 sites of auctions , 121 used English

increasing- price auctions, 21 used Sealed bid auction , 3 used Dutch decreasing-

price auctions, and 4 were continues-trading double auctions. 6 of the sites had more

than one auction type, which explains why the sum adds to more than 142. For

example, the Auction Nation site gave sellers a choice between running an ascending-

bid auction or a "silent" (or Sealed-bid) auction where the high bid is not made

public until the closing time. The English auction type is even more domination than

it first appears in the raw statistics. Of the 8 sites with a dollar volume of at least

$1,000,000 per month, all use an English type [Lucking-Reiley'99,].

12

Background and Related work - Chapter 2

2-3 Characteristics of Different types of Auctions

Table 2-1 shows the details of characteristics of different types of auctions which

have been explained [http://www.agorics.comlLibrary/Auctions/auction5.html].

Characteristics of Different Types of Auctions

I Type Rules

Seller announces reserve price or some

English Auction or Open-Cry low opening bid. Bidding increases
progressively until demand falls.Auction (Increasing-price Winning bidder pays highestauction) valuation. Bidder may re-assess
evaluation during auction.

Sealed Bid (First-price) Known Bids submitted in written form with noas discriminatory auction when knowledge of bids of others. Winnermultiple items are being pays the exact amount he bids.auctions.

Seller announces very high opening
Dutch Auction (Decreasing- bid. Bid is lowered progressively until
price auction demand rises to match supply.

Vickrey auction or Second- Bids submitted in written form with noPrice Sealed Bid. Known as knowledge of the bids of others.uniform-price auction when Winner pays the second-highestmultiple items are being amount bid.
auctioned.

Table 2-1

2-4 Complete Auction Process

Thes'e following items are necessary for complete auction process [Kumar'98] :

1- Scheduling and advertising: To attract potential buyers, items of the same category

should be auctioned together at a regular schedule. Popular auctions can be mixed

with less popular ones to force people to be present in the less popular auction. Items

to be auctioned in upcoming auctions are advertised, and potential buyers are notified

in this step.

13

Background and Related work - Chapter 2

2- Initial buyer and seller registration: This step deals with the issues relating to

authentication of trading parties, exchange of cryptography keys and perhaps certain

of a profile for each trader that reflects his interest in products of different kinds and

possibly his authorized spending limits.

3- Setting up a particular auction event: This step deals with describing the item

being sold or acquired and setting up the rules of the auction. The auction rules

explain the type of auction being conducted, parameters negotiated, starting date and

time of the auction, auction closing rules, etc.

4- Bidding: The bidding step handles the collection of bids from the buyers and

implements the bid control rules of the auction and for increasing-price auctions

notifies the participants when new high bids are submitted.

5- Evaluation of bids and closing the auction: This step implements the auction

closing rules and notifies the winners and losers of the auction.

6- Trade settlement: This final step handles the payment of the seller, the transfer of

goods to the buyer, and if the seller is not the auctioneer, payment of fees to the

auctioneer and other agents.

2·5 Significance of Auctions

The Significance of auctions is their ability to lessen information asymmetries in a

market. A seller will almost always have more information on the quality of a good

they intend to sell than the potential buyers of that good. However, it is also common

that the seller has very little information on the potential buyers' valuations of that
I

good. An auction is suited to this type of situation where the seller can put the good

for auction and gain additional information on buyers' valuations.

Another importance of auctions is a highly efficient method of resolving the supply

and demand pulls on a market. Auctions in general are "efficient in the sense that an

auction usually ensures that resources accrue to those who value them most highly

and ensures also that sellers receive the collective assessment of that value.". In

14

Background and Related work - Chapter 2

addition to this, certain types of auction, namely the English, Sealed bid and first bid

auctions, are considered to be Pareto-optimal.

2·6 Problems with Auctions

Auctions are not, however, without their problems. One of these problems, relating

solely to the buyer, is termed 'winner's curse'. Since the value of the item is

unknown, the winners can bid more than the value and thereby lose money. The

winner's curse occurs if the winners of auction systematically bid above the actual

value of the objects and thereby systematically incur losses [Lind'91] .This

phenomenon can occur in any auction type since all it takes is an over-estimation of

the value of a good.

A supply-side problem that exists in auctions is one of collusion between bidders.

Collusion occurs when rings of bidders get together and organise not to outbid each

other. One member of the ring will be designated as the 'winner' of the good

[Robinson'85]. This member will be the member who actually bids to win the good at

auction. When the auction is over and the ring has successfully won purchased the

good, it is auctioned off between the members of the ring. The benefit of collusion is a

lower price for the good [Robinson'85]. Collusive rings of bidders do, however, have

a difficult time enforcing congruent behaviour from its members. In many auctions,

there is a definite incentive for ring members to renege on the agreement for personal

gain ['96]. It is considered that this problem for collusive rings can be used to

discourage their presence in certain types of auction.

Different auction types are believed to have different susceptibilities to collusion.

Looking at the four main types of auction outlined by Vickrey [Vickery'61], the

fOllowing collusion ordering is thought to exist ['96]:

1) Increasing-price auction (English Auction)

2) Sealed-bid auction, Second-Price, (Vicker)

3) Sealed-bid auction, First-Price

4) Decreasing-price auction (Dutch Auction)

15

Background and Related work - Chapter 2

The English auction is the most predisposed of the above auctions to collusion. There

is no real incentive for the member of the ring to cheat on their agreement. If they

attempted to outbid the ring, it would be clear for all to see. With the two Sealed bid

auctions collusion is less likely. If these auctions are conducted over a single round

then a ring member can cheat and not be detected until after the auction has

completed, if at all. The Dutch auction is considered the most collusion-proof auction

form. Although this auction uses an open format, the cheating member can still

benefit from going behind the back of his fellow ring members. When the cheating

member makes his bid, the auction will finish and it will be too late for the remainder

of the ring to take any action. However, when collusive rings are expected to last for

several auctions, the openness of the Dutch auction becomes a sufficient deterrent to

the would-be cheater.

There are several methods, in addition to the use of Sealed bid auctions that can be

used to deter the formation of collusive rings of bidders. If the auction house keeps

the information on the winning bidder secret, this reintroduces the ability for the

cheating ring member to renege on the collusive agreement without being detected

[Ferbo'96].

If sellers and auction houses use the reserve price on auctions in aggressive manner,

they can reduce the expected gains that a collusive ring can expect to make. This will

be reducing the likelihood of the formulation of such a collusive ring [Ferbo'96].

Auctions containing small, frequently auctioned volumes of goods are more likely to

attract collusion. These types of auctions provide the ability for rings to rotate the

designated winner, so that all in the ring get a fair share of the profits. By packaging

these' small volumes of goods into one lot at a single auction, the chance of

encountering collusion is reduced. It should be noted that although these small

auctions are more favourable to collusive rings, collusion does exist in the bigger

auctions [Ferbo'96].

16

Background and Related work - Chapter 2

2-7 Internet Auctions

An Internet auction simply takes the traditional auction formats and applies them to a

communication medium which gives them a wider ranging audience and makes them

more efficient. By placing an auction on the Internet, competition can be seen to

increase not only among buyers, but also within the market for auction services. Many

companies have moved into the market for auction services, seeing the excessive

revenues and success reaped by the unquestioned market leader, eBay,

www.eBay.com.This competition means that very few Internet auctions charge a

commission on transactions negotiated on their web site. Those Internet auctions that

do charge a commission ask for a minimal value when compared with the traditional

auction houses, and it is likely to only to apply to one of the participants [Dawe'OO].

The Internet auction incorporates most of the features of the traditional auction, while

it also adds features necessary for its new media. Due to the geographically dispersed

nature and the shear number of the auctions relatively anonymous participants, some

method of bidder and seller reputation had to be established. The majority of Internet

auctions now incorporate some method whereby a bidder or seller's peers can give

him/her a rating and write comments on their behaviour and trustworthiness. Other

bidders can then use these rating and comments as a guide to who they are dealing

with.

One of the major advantages of Internet auctions is the audience that they reach. With

such a great number of people possibly wanting to view the auction, it was necessary

to increase the time that auctions ran from the model of the traditional auction house.

Internet auctions tend to run for several days. This gives all potential participants

sufficient time to realise that the auction exists and for rounds of bids and counter-

bids to be placed. However, due to the increase in the time frame, it is not feasible for

a person to observe the entire auction. While it is possible for users to check back at

regular intervals to keep abreast of the auction's progress, it can be inconvenient. As a

solution to this, many Internet auctions provide a service for automated bidding. With

an automated bidding service, the bidder generally provides details of the maximum

bid he is willing to place for an item and the automated bidder will constantly outbid

any other bidders, up to the pre-specified maximum bid.

17

http://www.eBay.com.This

Background and Related work - Chapter 2

2·7·1 Existing Internet Auctions

In recent years a number of auction services have been made available over the

Internet (e.g., www.ebay.com, www.antiquorum.com, www.artneLcom, to name a

few).

One of the market leader in Internet auctions is eBay, www.eBay.com. who started

the US arm of their company in 1995 and since then have expanded their operation to

the UK and Europe. It is estimated that "users of eBay place roughly 1,000 bids a

minute on more than 4.5 million items for sale at anyone time" [Broughton'OO]. It is

also believed that 1 in every 20 packages currently sent between private individuals in

the US is a purchase from eBay [Grossman'99]. It is this sort of popularity that led to

eBay winning the Cool Site of the Year Award for Cool Shopping in 1999.

At the beginning of the year 2000, eBay had a registered user base of 10 million

people. Taking this into account, and the fact that they charge a fee for their auction

services, it is not surprising that eBay is one of the few Internet ventures to actually

tum a profit [Kaufman'99].

In both the US and European markets, there is no shortage of competitors for eBay.

Since its conception 5 years ago, many other companies have emerged wishing to

follow in the footsteps of eBay. While this competition is welcomed by consumers,

the major Internet auction companies are reluctant to relinquish their strangle hold on

the market. However, since the success of an Internet auction venture is directly
,

related to its user base, FairMarket, a US auction software company, plans to threaten

the market by combining the user base of multiple sites. FairMarket works by

allowing items listed on one auction site to be viewed and bid for on other sites.

FairMarket has already got one hundred sites included in their auction venture, some

of which are big names such as Excite and MSN, and already claim to be the third

most popular Internet auction in the US.

18

http://www.ebay.com,
http://www.antiquorum.com,
http://www.artneLcom,
http://www.eBay.com.

Background and Related work - Chapter 2

Internet auctions can be characterized further as follows [Amoroso'03].

• Firstly, in order to enable the largest possible number of participants to take

part in an auction, the starting time of that auction is to be announced in ample

advance. In an Internet auction, this announcement can be easily disseminated

all over the planet. This announcement may well include the deadline by

which bids are to be delivered to the auctioneer. This deadline may coincide

with the end of the first auction round (e.g., in an open-cry auction), or with

the end of the auction itself (e.g., in a single-round sealed bid auction).

• Secondly, depending on the auction type, the auction announcement may

include the asking price for each of the various items that will be sold by

auction.

• Thirdly, participants can join a real auction already in progress; in an Internet

auction, this entails that those participants are to be made aware of the current

auction state, in order to be enabled to take part to that auction.

• Fourthly, each type of auction is characterized by both a specific time duration

of the rounds in which the auction is structured, and a particular evolution of

the selling prices of the items on sale by auction. For example, the time

duration of a round in an open-cry Internet-based auction can be set to a few

minutes (e.g., 2 to 3 minutes), and the price of the item increases as the

auction progresses. In contrast, a round in a Dutch auction can last a few (e.g.,

10 to 20) seconds, and the item asking price tends to diminish as rounds

progress. Finally, a round in a multiple round sealed-bid auction can last a few

days, and the asking price of the item at auction mayor may not vary

depending on the specific auction policy.

19

Background and Related work - Chapter 2

2-7-2 Advantages of Internet Auctions

Internet auctions have several advantages over traditional auctions, as well as other

forms of online trading. The increased market size and economical pricing of Internet

auction services have already been mentioned. In addition to these, there is no need

for the buyer or seller to be physically present at an Internet auction. This can save

them both a lot of effort if an auction is being run on the other side of the world. It can

also save the seller expense that would be needed to transport their product to the

auction house.

Businesses find Internet auctions extremely useful for clearing out excess stock.

Whether this stock comes from a failed order, modernisation or un purchased goods

from a sale, using an auction allows the company to extract a price for the goods from

the market. The relative anonymity of Internet auctions allows companies to hide the

fact that they are clearing stock. The large potential market provides those companies

with specialised equipment with a greater chance of receiving somewhere close to its

market value by finding people who can use it [Deutsch'98].

2-7-3 Problems with Internet Auctions

As might be expected, Internet auctions are not without their problems. One of the

major problems they face is that of fraud. Internet auctions are now thought to be the

most common Internet con [Schwartz'98]. The US Federal Trade Commission has

seen an increase to 10,000, from 107 in 1997, in the number of complaints about
,

Internet auction fraud [Clausing'OO].

The fraud can take on a number of forms. One of the more popular forms is referred

to as shill bidding, or show-bidding. This is when a seller makes bids for his own

Product, making the price increase and the good look as though it is highly sought

after. This practice is also present in traditional auctions, although in the brick-and-

20

Background and Related work - Chapter 2

mortar institutions the ability to see the other bidders makes this practice easier to

detect [Schwartz'98].

The peer feedback mechanisms used by many of the modem Internet auction houses
I

have also been used in a fraudulent manner. Users get friends, or may even do it

themselves, to post favourable reviews and feedback about them. This gives other

users a false sense of the reputability of the fraudster. This can greatly affect a user's

decisions, and can lead them into a fraudster's con [Knight'OO].

The form of fraud that causes the most concern among bidders is non-delivery of

goods. On the completion of an auction, the seller is provided with the winning

bidder's contact details, and the winning bidder gets the seller's contact details. It is

often left up to the two parties to complete the transaction. The usual manner in which

this takes place is for the winning bidder to send the money to the seller, and on

receipt of the money, the seller sends the goods. However, once the seller has the

money, he/she may not always send the goods. It is for this reason that several

Internet auctions also recommend the use of Escrow services. These services provide

a safe way for the exchange of goods for money. The winning bidder sends the money

to a third party (the Escrow service), who informs the seller that they have the money.

The seller then sends the goods to the winning bidder, who informs the third party of

the receipt and acceptability of the goods. On receiving this confirmation, the third

party sends the money to the seller. The only drawback with this service is that a

charge is made for it. If the value of the purchase is not very large, then the charge for

the Escrow service may seem worthwhile. Even if the goods do make it to the

winning bidder, there is no assurance that they will be as described [Schwartz'98].

The media that Internet auctions work with can also create problems. In June 1999,

eBay faced possibly its toughest problem yet. A series of problem with its server

resulted in sporadic crashes, leaving its auctions inaccessible. The peak of these

crashes came with a 22-hour period of downtime. The reasons for these outages

ranged from problems with hardware to database corruptions [Wice'99]. While eBay

21

Background and Related work - Chapter 2

claim that excessive traffic played no part in the failures, it can be seen that issues of

scalability exist in the context of Internet auctions.

Leaving bidding until the last minutes of the bidding phase of an Internet auction is
I

becoming a more and more popular way to approach the trading mechanism. By

leaving bidding to the final few minutes, there is less time for a rival to bid to make a

counter-bid. This can clearly be seen to be harmful to the efficiency of the auction, as

sales will occur at reduced prices due to a lack of competition. The scope for last-

minute bidding arises from the fixed auction deadlines that many Internet auctions use.

The final problem of Internet auctions is excessive bidding. During the rounds of

bidding, many bidders can get carried away with the enjoyment of auction trading, so

much so that they end up winning the good at a price considerably greater than the

value of the good. Stories abound of bidders bidding excessive amounts for goods

such as a $100 gift certificate [McGrane'OO]. This problem effects the efficiency of

an Internet auction. The good may not be going to the person who values it most

highly, as the person may not have an accurate perception of their own valuation due

to, what can be considered, a form of 'auction fever'. A solution to this problem was

implemented by German company 12Snap. After several weeks of excessive prices

winning the auctions, the company established price ceilings to stop bidding getting

out of hand ['99].

2·'·4 Other considerations relating to Internet Auctions

The process of an Internet auction is very similar to traditional auction. There are

registration, initialisation, bidding, closing and transaction phases involved. However,

some of the time frames of these phases are different in an Internet auction. Auctions

on the Internet are usually not held for multiple lots, as they are in traditional auctions.

Individual auctions are set up for each lot on the Internet. For this reason, the bidding

phase is extended to allow potential bidders to see that the item is up for auction and

to submit a bid. The time taken to register a seller is greatly reduced. The seller needs

22

Background and Related work - Chapter 2

only to fill out a form outlining the features of the auction they wish to create for

their good [Dawe'OO].

More technical aspects must also be addressed. As the Internet auction will serve
)

many different users with differing needs, it is important that any Internet auction

provide a variety of auction market types. This gives the seller the ability to use the

efficient type for their good.

2·8 Auction Requirements

Auctions involve competitive bidding among buyers and sellers of goods, and their

provisioning places new demands from the underlying distributed computing

infrastructure.

Each auction needs the following requirements:

Data integrity: It must be guaranteed that the customer (virtual) shopping basket will

not 'lose' purchased items. Data integrity must therefore be met as a requirement of

auction service, in order to preserve data consistency in the face of concurrent

accesses and occasional system failures. Data integrity is achieved by ensuring atomic

interactions between a bidder and a server and by keeping replicated data mutually

consistent. Moreover, security mechanisms, based on cryptographic methods and

audit trails are required to resolve any disputes and reduce the possibility of

misbehaviour (e.g. a customer disclaiming an order, a shop keeper collecting payment

for articles in the catalogue that are not available for delivery).

Scalability: An auction service needs to be scalable, i.e., capable of providing its end

Users with "satisfactory" Quality of Service (QoS), regardless of the number of those

users and their geographical distance. We therefore investigate ways of enabling

Widely distributed, arbitrarily large number of auction servers "to cooperate in

conducting an auction. Scalable auction can allow interactions among a very large

number of customers and suppliers of goods.

23

Background and Related work - Chapter 2

Responsiveness: Responsiveness requirement, i.e. a service must be timely and

available (availability and timeliness) under specified load and failure hypothesis is

motivated by the observation that a service that exhibit poor responsiveness is

virtually equivalent to an unavailable service. Thus, within the electronic commerce

business loss for its provider.

The goals of responsiveness and scalability are achieved by replicating the

auction/bidding service across a number of these auction servers. Allowing users to

place a bid at any of the servers in our principal way of achieving scalability and

responsiveness, as the total load is shared amongst many users, and users can interest

with servers 'closest' to them (advance forms of load balancing strategy are also

possible).

Fairness: Fundamental fairness property of an auction must be preserved: all

participant bidders in the auction must have an equally fair chance for submitting a

successful bid, and that all participant sellers must have an equally fair chance for

selling their items (all buyers must be granted an equal opportunity to buy the goods

offered by a seller). Achieving fairness of auctions conducted over the Internet using

a single auction server is a challenging problem as it is [Peng'98; Wurman'Ol], since

differing message transmission delays experienced by bidders can clearly

compromise an auction's fairness. Achieving fairness of an auction conducted over a

group of auction servers makes the problem even harder, but this problem must be

solved in order to obtain scalability without sacrificing responsiveness.

2·9 Related work

As it has already been mentioned , the first popular auction service was eBay,

established in September 1995 [Baldwin'99]. The fast growing popularity of eBay

pointed out that the main advantage of on-line auctions was the broad base of possible

clients they may reach [Wrigley'97]. However, on-line auctions showed some

shortcoming, such as the possibility of frauds, and the problem of maintaining the

anonymity of the parties [Amoroso'03].

24

Background and Related work - Chapter 2

In the literature, few papers propose distributed architectures for auction systems. An

early distributed e-commerce system was Enchere [Banatre'So] that, in 1986,

implemented a prototype of an agricultural marketing system consisting of a loose

network of autonomous workstations communicating via message exchange. The

auction model was the Dutch auction, due to the perishability of the goods on sale.

Ench 'ere supports disjoints groups of sellers and buyers connected via a network;

auctions in each group can proceed in parallel to the ones in the other groups.

An interesting auction process model is described in [Rachlecvsky-Reich'99]. The

global market is subdivided in several markets, and the seller starts an auction of its

item in the local market. If the seller does not receive bids better than the asking price,

it starts new parallel auctions in selected remote markets. The seller continues the

starting of new auctions until she/he receives a satisfactory bid; in the case of multiple

winning bids, coming from different markets, the seller applies a conflict resolving

technique to assign the item. In this model several auctions can be performed in

parallel in order to sell the same item, allowing the system to be naturally scalable

with respect to both the number of clients and servers. Moreover, a crash of a server

during the evolvement of an auction does not affect the evolution of the whole auction;

rather, it simply results in the casting away of the local market, relative to the crashed

server. The principal shortcomings of this model are that, firstly, it lacks the idea of a

global single auction; hence, an auction starts with a local portion of the total possible

bidders, and gradually increases them by reaching new markets. Secondly, this model

does not guarantee that an item be sold at the best possible price, as the final selling

price for an item is the one that meets the seller expectancy. Thirdly, this model is

suitable for English auctions, only. In Dutch and Sealed bid auctions the timing is an

important constraint, which contrasts with the idea of gradual additions of remote

auctions' [Amoroso'03].

Several works, such as [Franklin'66; Harkavy'98], deal with Sealed-bid auctions.

Those are long standing auctions; the main focus of the systems that implement them

is on the security, validity and secrecy of the bids, rather than responsiveness.

It is argued in [Huhns'99] that, in the near future, the on-line auctions market will be

dominated by agents that will bid on behalf of human users. This scenario might lead

25

Background and Related work - Chapter 2

to a new form of price definition completely different from human experience.

Several papers propose agents as an emerging technology to implement auctions over

the Internet; e.g., [Collins'Ol] [Mullen'98] [Sandholm'OO]. The principal idea of agent

based auctions is that an agent, acting on behalf of a user, may search the Internet for

the required goods, and buy them to the "best" price, as defined by that user. The

agents auction follows the usual rules; the agents may implement sophisticated

bidding policies in order to get a good at the best possible price. In [Greenwald'Ol;

Team'Ol]the authors describe a competition among agents in order to test both a

feasible framework for agent based trade, and trading strategies. In these papers, the

competition is principally focussed on strategy issues, and the competition framework

is centralized.

A completely different approach to e-commerce is discussed in [Yuan'98] where the

parties of a bargain are allowed to negotiate by means of an Internet application,

called CBSS, that provides them with several interaction services, such as

videoconferencing, whiteboard, document sharing. This system is aimed to replacing

a face-to-face negotiation between parties.

Regarding [Feldman'OO], electronic marketplaces introduce notable technical

challenges, and stimulate new forms of trading. Interesting analyses of the dynamics

of prices of goods in electronic marketplaces, and a comparison with the traditional

marketplaces, can be found in [Geun Lee'98; Wurman'Ol] , [Samret'OO].

The "real-time" aspect of a distributed architecture for auctions over the Internet

represents a challenging problem due to the best effort nature of the communication

network [Wellman'98; Fay-Wolfe'OO] . Some authors propose a centralized real-time

protocol 'for a client-server auction architecture based on Java applets [Peng'98]. This

solution requires strict clock synchronization between the server and the applets

running on the clients computers, a fair multicast from the server to the applets, and

timely processing and delivery. The system performs periodic updates of the state of

the auction, during which the client cannot put bids. The architecture proposed in

[Peng'98] is poorly scalable, owing to the strict centralization of the server. In the

already cited paper [Maxemchuk'Ol] , the authors discuss a system to support the

stock exchange market. The main focus of that system is on the total ordering of the

26

Background and Related work - Chapter 2

bids, trust and responsiveness. The authors propose a twofold hierarchical architecture

in order to obtain both acceptable performances and scalability. This architecture has

different goals than ours, and the solutions it deploys are not well suited in our context.

Finally, [Lin'03] investigates issues of design of small-scale auction applications,

based on wireless, ad-hoc networks.

Current Internet-based auction services rely, in general, on a centralised auction

server. Such an approach is fundamentally restrictive as too many users can overload

the server, making the whole auction process unresponsive., As it has already been

mentioned, we require the properties of scalability, responsiveness, fairness and data

integrity to be met in an auction. In addition, the centralised auction server

architectures exhibit a number of limitations, including the followings:

Firstly, a centralized architecture cannot deal adequately with issues of service

availability and scalability which have already been explained as requirements of the

auction. Typically, such an architecture can be vulnerable to server's failures, if not

equipped with sufficient redundancy; in addition, server's overloading may occur, if

an arbitrary large number of users concurrently access the service. The increasing

number of customers of Internet based auction services suggests that both these issues

are crucial in the design of those services.

In particular, as pointed out in [Panzieri'99], service availability is required as a

frequently unavailable service may discourage users from using it, and results in a

business loss for its provider. The service scalability is necessary as an auction

service is expected to provide all its users with an equally satisfactory (and fair)

service, regardless of the number of those users and their geographical location.

Secondly, an Internet-based auction service must be accessible to users that are

distributed, at least in principle, on an international, possibly planetary, scale; thus,

that service may have to deal with different national selling rules that pertain to

individual countries. As pointed out in [Ezhilchelvan'Ol], within this scenario a

centralized architecture may tum out to be inadequate, as a great deal of complexity

may have be incorporated in the centralized auction server, in order to deal with those

different selling rules.

27

Background and Related work - Chapter 2

It should be mentioned that the additional crucial requirements including, security,

privacy and anonymity are also to be met in internet-base auction services.

2-10 Conclusions

E-commerce is increasingly expanding its share of the world trade, and is becoming a

global phenomenon that is not affected by physical or territorial barriers. However,

the lack of face-to-face interaction in conducting e-commerce acts as a barrier to trust

and confidence, especially for consumers who may be dealing with total strangers

thousands of miles away. The relative risks associated with e-commerce are further

aggravated in online Internet auctions.

Internet and World Wide Web have emerged as a valuable networked information

source that is increasingly being used for commerce. A particular class of Internet

based server-centred application whose user domains are typically large,

geographically distributed, and perhaps expanding. Examples of these applications are

on-line Internet auctions, Internet gaming, etc. On-line Internet auctions are

continually expanding into diverse products ranging from second-hand goods to

airline tickets and financial products [Ezhi1chelvan'Ol].

An auction service is required to be scalable, i.e., capable of providing its end user

with "satisfactory" Quality of Service (QoS), regarding of the number of those users

and their geographical distance. It should therefore develop novel ways of enabling

widely distributed, arbitrary large number of auction servers to cooperate in

conducting an auction. However, the fundamental fairness property of an auction

must be 'preserved: all participant bidders in the auction must have an equally fair

chance for submitting a successful bid, and that all participant sellers must have an

equally fair chance for selling their items. Achieving fairness of auctions conducted

OVer the Internet using a single auction server is a challenging problem as it is

[Kumar'98; Wellman'98], since differing message transmission delays experienced by

bidders can clearly compromise an auction's fairness. Achieving fairness of an

auction conducted over a group of auction servers makes the problem even harder, but

28

Background and Related work - Chapter 2

this problem must be solved in order to obtain scalability without sacrificing

responsi veness.

Currently available internet based auction services, which are rapidly diversifying into

various products, such as eBay [http://www:eBay.com] and so ori, essentially rely on

a central auction server. As the market and internet trading grow, existing central

internet auction server and such an approach is fundamentally restrictive as too many

users can overload the server, making the whole auction process unresponsive.

The goals of responsive and scalability are achieved by replicating the

auction/bidding service across a number of auction servers. Therefore allowing users

to place a bid at any of the servers is principal method of achieving scalability and

responsiveness, (total load is shared amongst many servers and users can interact with

servers 'closest' to them). Data integrity is also achieved by ensuring atomic

interactions between a bidder and a server and by keeping replicated data mutually

consistent.

In this regard, to achieve distributed auction systems from existing central auction

systems, the Middleware technologies and group communications as a requirement

tools, for our novel architecture and its implementation, will be described in next

chapters.

29

Middleware Environments and Group Communication - Chapter 3

Chapter3

Regarding what has been discussed in chapter 2 and also the necessary tools to

implement distributed auction system which-will be described in next chapters, in the

following chapter the relevant issues related to the provision of an object group

communication service for use in Middleware environments are described. A

description of the Middleware technologies and the mechanisms that may be required

to provide a group communication service which will be used in our structure in next

chapters are also explained.

3-1 Middleware

A middleware service is a general-purpose service that sits between platforms and

applications (see Figure 3.1). These services shield the application developer from

platform specific type services. The term platform, indicate low level services and

processing elements defined by processor architecture, an operating system's

application programming interface (API) and communication primitives (such as

sockets for inter-process communication). This section defines Middleware

technologies via the properties they seek to exhibit and describes the mechanisms that

are common in the enabling of such technologies. A middleware service is defined by

the APIs and protocols it supports. It may have multiple implementations that

conform to its interface and protocol specifications.

APIs

Middleware
(Distributed System Services)

I J
Platform Interface Platform Interface

Platform
. os
. Hardware

Platform
. os
. Hardware

Figure 3.1

30

Middleware Environments and Group Communication - Chapter 3

Like many high-level system concepts, middleware is hard to define in a technically

precise way. However, middleware components have several properties that, taken

together, usually make clear that the component is not an application or platform-

specific service: They are generic across applications and industries, they run on

multiple platforms, they are distributed, and they support standard interfaces and

protocols.

3.1.1 Properties of Middleware

As explained in section 3.1, Middleware is commonly understood to mean the layer

that sits between applications and operating systems; its function is to ease the

development of distributed applications. The Middleware is characterized by four

properties which are shown in below:

- Platform independence - Implementations should be available over a number of

different operating systems and hardware configurations. The types of available

platforms should not hinder an application developers use of a Middleware.

- Distribution - Capable of providing support for services that are not restricted,

geographically, to a single location.

- Provision of standard interfaces and protocols - Irrelevant of implementation

environment, protocols used by Middleware and interfaces to the Middleware remain

the same. As networked systems tend to be heterogeneous in nature, propriety service

APIs may be present on a per-platform basis. A developer that becomes proficient on

one platform may not be able to easily transfer his/her skills to another type of

platform: To avoid this, a Middleware technology should seek to provide an API that

does not deviate, irrespective of which platforms it resides.

- Generic - Meets a wide variety of application requirements across many industries.

The client/server model is commonly used in Middleware in an attempt to satisfy

properties of distribution and generic. This is because clients and servers are suitable

units for distribution (second property) and have been used to build a wide variety of

31

MiddLeware Environments and Group Communication - Chapter 3

application types (forth property). In the client/server model a server satisfies the

service requirements of one or more clients. A service is defined by an interface. This

interface indicates to a client the manner of interaction a client must assume to gain

service from a server. Interaction is realized by a client issuing requests via a suitable

message passing protocol and the server replying to client request via the same

protocol. Achieving platform independence and distribution properties have proven

more difficult. This is due to the variety of low level services and the large number of

different organizations involved in the development of such services. Organizations

have to cooperate to formulate and agree on industrial standards and adhere to them

to ensure that programming APIs and protocols remain consistent over various

platforms, irrelevant of the vendor supporting the Middleware implementation. This

section continues with a description of a method commonly used to implement the

client/server model in Middleware.

3.1.2 The Proxy/Stub Method

This method is used to enable a remote procedure call (RPC). In essence, a proxy

resides in the same address space as a client and presents the client with an interface

to a service. This interface is presented in a manner that would suggest to the client

that this service is no different than any other service located within its own address

space. However, requests directed at the proxy interface are then forwarded, by the

proxy, across process boundaries, and more usually a network, to the actual service

implementation. At the service side a stub, located in the same address space as the

server, is responsible for receiving these requests and then forwarding them to the

service implementation, receiving any replies, and then returning these replies to the

proxy. Replies received by the proxy are then returned to the client.

3.1.3 Distributed Objects

There are three dominant types of Middleware that provide an object-oriented

approach to distributed application development:

• Sun Microsystems' Java with Remote Method Invocation (Java-RMI) [Sun

Microsystems'97]

• Microsoft's Distributed Component Object Model (DCOM) [Brown'96]

32

Middleware Environments and Group Communication - Chapter 3

• The Object Management Group's Common Object Request Broker Architecture

(CORBA) [The Object Management Group'95]

To ease the production of proxies and stubs for use within distributed applications,

Java RMI, DCOM and CORBA provide:

• A language for defining an interface of a service.

• Some mechanism for automating stub/proxy generation from an interface definition.

• A method, appropriate to the target languages of the client and server, for

integrating proxies and stubs into client and server code.

More details description of Java-RMI, DCOM and CORBA follow in next section.

3.2 Object-Oriented Middleware Technologies

The purpose of this section is to describe Java-RMI, DCOM and CORBA. Due to the

substantial subject areas each of these may cover, a simplified view of the processes

required to produce proxy/stub code and the enabling of inter-object communication

via this code is described.

3.2.1 Java-RMI

The Java programming language enables application developers to write object-

oriented programs that may be executed on a variety of platforms without alteration.

This is achieved via an environment that provides a consistent API within which a

Java program may execute. This environment is termed the Java virtual machine

(JVM).

Once written and compiled, Java code will work wherever a JVM exists. However, it

Was not until 1997 that support was added to the Java language that enabled objects in

different address spaces to communicate using the proxy/stub mechanism. This

support took the form of the Java Remote Method Invocation (Java-RMI).

Java-RMI is designed to work when clients and servers are implemented in Java.

There is no support for clients and servers if they are implemented in other

programming languages.

33

Middleware Environments and Group Communication - Chapter 3

3.2.2DCOM

DCOM (Microsoft's Distributed Component Object Model), previously known as

Network OLE (Object Linking and Embedding), is an extension of the COM

(Component Object Model) designed to network applications. The underlying

objective of COM is to permit the independent development of software components

that can intercommunicate, regardless of language or function. The unit of

distribution in the DCOM environment is commonly termed a component.

A component exports one or more interfaces that defines its functionality. Interfaces

may be constructed in an object-oriented fashion, allowing application developers to

make use of polymorphism and inheritance. A component consists of an array of

function pointers, each pointer indicates the physical address of a method supported

by the interface. By placing components into a Dynamic Link Library (DLL)

applications may link to (bring into their own address space) components at run time

that are implemented in arbitrary languages. This increases code reuse and allows

components to be distributed amongst applications.

Extending COM to DCOM required the introduction of an Interface Definition

Language (IDL) that aided the production of proxies and stubs for use by clients and

servers respectively. The IDL used by DCOM is based on the IDL standard specified

by the Open Software Foundation (OSF) for use with its Distributed Computing

Environment (DCE) [Rosenberry'92].

3.2.3 CORBA

The Object Management Group's (OMO) Common Object Request Broker

Architecture (CORBA) is a widely accepted standard for Middleware. Over 700

companies endorse the standard with implementations of the standard existing on

most operation systems.

Objects may interact irrespective of the languages used for their implementation;

service providers may be implemented in language A whereas clients of such a

service may be implemented in language B. This interoperability is achieved by

34

Middleware Environments and Group Communication - Chapter 3

ensuring all service providers specify the services they provide VIa a standard

language (IDL). Unlike DCOM, the IDL language used by CORBA resembles a more

traditional object-oriented language. CORBA and DCOM approach the issue of

separating implementation from interface in the same manner; via an IDL.

To produce the appropriate proxy/stub code required to enable clients and servers to

interact, an IDL interface is passed through a parser (supplied by a vendor). The

language of the code produced depends on the parser. Most parsers accommodate

C++ or Java. The proxy/stub code produced implement a layer of abstraction known

as the Object Request Broker (ORB) within the CORBA environment. To ensure

cross compatibility over different platforms between IDL and target languages the

CORBA standard specifies mappings from IDL data types to data types found in

various languages. A simplified view of the production of a (possibly) remote service

is thus:

1. Specify a service using a CORBA IDL

2. Create Proxy and stub code - Pass the interface through a parser supplied by a

vendor.

3. Implement the service - The object that implements the service is written in the

same language as the proxy/stub code. Most parsers present developers with "ready to

use" skeleton code suitable for implementing the service.

4. Write a server program to support the service - The server program creates an

instance of the object that implements the service and activates the required

mechanisms within the CORBA environment to ensure communications between the

service and clients may occur.

5. Publicize server to clients - A mechanism is required to enable clients to retrieve a

reference to the service. This may be done via the "Naming Service" (a service where

clients can request services by a well known name and retrieve appropriate service

references). Alternatively, service references may be cast into the form of a string and

passed to a client by other methods.

35

Middleware Environments and Group Communication - Chapter 3

6. Create client - A client is created with the appropriate proxy code included in the

client source code.

7. Enable client/server interaction - Clients retrieve the object reference of a desired

service (either via the naming service or by other means). Once a reference is

retrieved communications between client and server may commence.

3.3 OMG and CORBA

The OMG , which has been explained, developed a conceptual model, known as the

core object model, and a reference architecture, termed the Object Management

Architecture (OMA). The OMA consists of four components: Object Request Broker

(ORB), Object Services (OS), Common Facilities (CF), and Application Objects

(AO). CF relate to object services that aim to satisfy quite specific application

requirements (e.g., e-commerce, database management systems) and AO relate

directly to applications.

3.3.10RB

The core of the OMA is the ORB. The ORB is a communication bus for objects. The

ORB architecture specifies an IDL for defining objects and a protocol, Internet Inter-

ORB Protocol (HOP), for enabling inter-object communications. HOP is a protocol

that specifies how detailed information representing a CORBA request is laid out on a

network transport service. HOP ensures multi-vendor interoperability between ORB

implementations. Any functional enhancements to the ORB are achieved via object

services. 'This ensures that applications will work on any ORB, irrelevant of the

vendor supplying the ORB.

The IDL is simply a declarative language that supports no scope for programming

implementation details. This is left to a programming language of the developer's

choice. IDL is network neutral and operating system neutral, thus preventing

developers from introducing platform dependent mechanisms into a service's IDL

definition.

36

Middleware Environments and Group Communication - Chapter 3

An Interoperable Object reference (lOR) is used to uniquely identify objects in

CORBA. An lOR is a sequence of object-specific protocol profiles, plus a type

identifier. The lOR is not intended to be visible to application programmers.

Programmers are presented with a suitable 'structure available in the programming

language of their choice to represent an lOR.

The IDL allows an object reference to be passed as a parameter in a function call.

This is the mechanism that enables the distribution of object references between

objects. In addition to this mechanism, a developer may derive a string representation

of an lOR and derive an lOR from a string representation. This is useful for passing

object references by other methods.

3.3.2 CORBA Interface Architecture

The CORBA specification defines a number of interfaces to allow clients and servers

to participate in inter-object communication. These interfaces are described in

following section:

• IDL Proxy - The IDL Proxy (sometimes termed IDL stub) presents an interface

derived from an IDL definition of a service and are linked into the client program.

• IDL Stub - The IDL Stub (sometimes termed IDL skeleton) is simply the server side

counterpart of the IDL proxy.

• Dynamic Interfaces - Statically including proxy/stub code derived from an IDL into

client and server programs to enable inter-object communication satisfies the

communication requirements for many applications. However, there are instances

when this is not adequate. The static mechanism assumes clients are aware of servers

and that servers are aware of the way they must satisfy client requests at compile

time. This may restrict the wayan application may evolve; allowing existing clients

to use new services which are introduced during the lifetime of an application

becomes difficult. To overcome this problem dynamic interfaces are supported by the

CORBA standard.

37

Middleware Environments and Group Communication - Chapter 3

- Dynamic Invocation Interface (DII) - Enables the specifying and building' of

requests at run time, rather than calling linked-in proxy code. Operations

supported by the DII include: create_request, invoke, send, get_response.

Invocations made by the static and dynamic methods are indistinguishable by

the server object. ,/

- Dynamic Skeleton Interface (DSI) - The server side analogue to the client

side DII. The DSI inspects the parameters of an incoming request to determine

a target object and method. This interface allows a service to assume the role

of another service.

• ORB Interface - Enables direct access of the ORB by clients and servers.

• Basic Object Adapter Interface - The server program that supports the objects that

implement services (defined by IDLs) is aided by the Basic Object Adapter (BOA).

The server program registers objects ready for use with the BOA. Once this has

occurred the BOA manages requests on behalf of the server's objects. Due to the fact

that interaction occurs directly between an application and an ORB (and the

possibility of an application to be programmed in anyone of many languages),

defining this interaction was left to vendors. This has resulted in the presentation of

these mechanisms in a number of different ways, making it difficult to port code from

one vendor's ORB to another. To overcome this, the next release of the CORBA

specification identifies a Portable Object Adapter (POA) that seeks to standardize

direct application to ORB communications. Figure 3.2 indicates how the interfaces of

an ORB are integrated and which interfaces interact with clients and which interact

with servers.

ORB

Figure 3.2

38

Middleware Environments and Group Communication - Chapter 3

3.3.3. Object Services

Following are brief descriptions of object services which are in common use:

• Naming Service - Supports name-to-object association. A hierarchical naming

structure has been adopted. This allows clients to retrieve the lOR of an object using a

reasonable name. The mechanism that enables a client to gain the lOR of the naming

service is left to the ORB vendor.

• Event Service - De-couples the communication between objects. Objects may

assume the roles of supplier or consumer. The service defines two approaches for

initiating event communication: the push model and the pull model. A supplier uses

the push model to transfer event data to consumers. Consumers use the pull model to

request event data from a supplier. The event channel is simply an intervening object

that allows multiple suppliers to communicate with multiple consumers

simultaneously in an asynchronous manner.

• Lifecycle service - Represents a framework for creating, deleting, copying and

moving objects. The creation facility is most commonly available in CORBA

applications. As there is no existence of a basic creation facility in CORBA IDL

factory objects are used to create instances of particular types of objects. There is no

standard interface for a factory object, an application developer is to develop their

own in a manner they see as appropriate. Usually, for each type of object there is a

factory object.

• Persistence Service - Provides common interfaces to the mechanisms used for

retaining "andmanaging the persistent state of.objects in a data store in an independent

manner.

• Transaction service - Ensures that a computation of one or more operations on one

or more objects provides properties of atomicity, consistency, isolation and durability

(ACID properties).

39

Middleware Environments and Group Communication - Chapter 3

3-4 Fault Tolerance and Reliability Issues

The CORBA standard incorporates support for reliability through the following two

distinct mechanisms: Replication (using the Fault Tolerant CORBA standard) and

Transactions (using the CORBA Object Transaction Service). Transactions represent

a roll-back reliability mechanism, and handle a fault by reverting to the last

committed state, and by discarding operations that were in progress at the time of the

fault. Replication represents a roll-forward reliability mechanism, and handles a fault

by re-playing any operations that were in progress at another operational replica of the

crashed server [Felber'02].

Object transaction service forms a part of the rich suite of services (such as Naming,

Events, Notification, etc.) that CORBA incorporates, and that vendors provide, in

order to free CORBA programmers from having to write such commonly-used

functionality themselves.

Object transaction service essentially specifies interfaces for synchronizing a

transaction across the elements of a distributed client-server application. A transaction

satisfies the four so-called ACID properties: Atomicity, i.e., transactions executes

completely or not at all; Consistency, i.e., transactions are a correct transformation of

state; Isolation, i.e., even though transactions execute concurrently, it appears for each

transaction, T, that other transactions execute either before T, or after T, but not both;

and Durability, i.e., modifications performed by completed transactions survive

failures. The details of ACID properties are described in next section.

3·4·1 Atbmic Transaction

An atomic transaction guarantees that, despite failures, either all of the work

conducted within its scope will be performed or it will all be undone. Atomic

transactions have the well known ACID properties of Atomicity, Consistency,

Isolation and Durability.

40

Middleware Environments and Group Communication - Chapter 3

Atomicity property ensures that a computation will either be terminated normally

(committed), producing the intended results (that is, intended state changes to the

objects involved) or aborted producing no results (no state changes to the objects).

This atomicity property may be obtained by the appropriate use of backward error

recovery, which can be invoked whenever a failure occurs that can not be masked.

Typical failures causing a computation to be aborted include node crashes and

communication failures such as the continued loss of messages (transaction executes

completely or not at all)

Consistency property takes the system from one consistent state to another consistent

state. It is assumed that, in the absence of failures and concurrency, the invocation of

an operation produces consistent (class specific) state changes to the object.

Transactions then ensure that only consistent state changes to objects take place

despite concurrent access and any failures.

A transaction is isolated from other transactions, in the sense that each transaction

behaves as if it were operating alone with all resources to itself. In particular, each

transaction will "see" only consistent data in the underlying data sources

[Welkum'02].

The consistency property goes hand in hand with the isolation property that ensures

freedom from interference: each transaction accesses shared objects without

interfering with other transactions. In other words, the effect of concurrently

executing transactions can be shown to be equivalent to some serial order of

execution. Some form of concurrency control policy, such as that enforced by two-

phase locking [Bernstein'87], is required to ensure isolation and consistency

properties of transactions.

In durability property, when the application program is notified that a transaction has

been successfully completed (when the Commit transaction call is successfully

returned) all updates that the transaction has made in the underlying data servers are

guaranteed to survive subsequent software or hardware failure [Welkum'02]. In the

other words, it is reasonable to assume that once a transaction terminates normally,

the results produced are not destroyed by subsequent node crashes. This is ensured by

41

Middleware Environments and Group Communication - Chapter 3

the durability property, which requires that any committed state changes (i.e., new

states of objects modified in the transaction) are recorded on stable (crash-proof)

storage. Thus, update of committed transactions are durable (until another transaction

later modifies the same data items) in that they persist even across failures of the

affected data server(s) [Welkum'02]. A (two phase) commit protocol is required

during the termination of a transaction to ensure that either all the objects updated

within the transaction have their new states recorded on stable storage, or, if the

transaction aborts, no updates get recorded. Atomic transactions can also be nested;

the effects of a nested transaction are provisional upon the commit/abort of the

outermost (top-level) atomic transaction.

3-5 Group Communication

Group communication is a powerful abstraction that can be used whenever groups of

distributed processes cooperate for the execution of a given task such as committing a

distributed data base transaction, or to achieve fault-tolerance or better performance

(by replication). In group communication, processes usually communicate in a group

basis where a message is sent to a group of processes, rather than just to one process,

which is the case in point-to-point communication. With a group is usually associated

a name to which application processes will refer, making transparent the location of

the distributed processes forming the group. Due to the uncertainties inherent to

distributed systems (emerging from communication or process failures), group

communication protocols have to face situations where, for instance, a sender process

fails when a multicast is underway or where messages arrive in an inconsistent order

at different destination processes. On the other hand, distributed applications usually

require that processes forming a group "see" events such as processes failures and

message delivery in a mutually consistent way. For example, active replication (will

be explain later in this chapter) requires that messages are delivered in the same order

at all replicas and that failures are handled in a mutual consistent manner among

operational replicas.

Further complications will arise when groups overlap (i.e. a process is allowed to

belong to distinct groups). Messages exchanged by distributed processes can be

partially ordered according to their causal origin.

42

Middleware Environments and Group Communication - Chapter 3

3·5·1 Properties of a Group Communication Service

The term "group communications" infers the collaboration of entities/objects to

perform tasks via messages directed at multiple recipients (group of entities/objects),

rather than at a singleton. This type of message passing, one-to-many, is commonly

termed a multicast.

In addition to providing a multicast mechanism systems that depend on group

communications may also require quite sophisticated protocols to manage message

delivery. For example, messages to be delivered at each member of a group in the

same order. Furthermore, groups may be dynamic; members may leave and join a

group during the lifetime of a group. To enable a multicast to be directed at actual

members of a group (not including departed members), a mechanism is required

which ensures that all members of a group have a mutually consistent view of group

membership. A mechanism of this type is usually called a group membership service.

To summarize; A service that provides developers with mechanisms that support the

integration of group communications into a distributed system should consist of the

following:

• A multicast mechanism.

• Protocols for managing message delivery, with certain ordering and reliability

properties.

• A group membership service.

3·5·2 The Multicast Mechanism

To allow a multicast communication each individual member of a group must realise

the group membership. This is achieved by allowing each member to maintain a

group view. By maintaining a group view a member may identify the addresses of

each group member to which messages may be sent. Each entry in a group view

should be an addressable location suitable for enabling the sending of messages to

each group member. When a member wishes to multicast a message, the message is

sent to every member that appears in the group view.

43

Middleware Environments and Group Communication - Chapter 3

A desirable property of a multicast mechanism is that a given multicast be reliable

(failure atomic): if a member crashes while multicasting a message, either all or none

of the functioning members deliver the message. Consider the interaction of a client

and an active replica group.

Multicasts that are not failure atomic may cause problems in maintaining consistency

of state between the individual replicas; one replica fails to receive a state-modifying

client request but continues to receive and respond to other client requests.

It is sometimes desirable for entities to simultaneously participate in multiple groups.

This is certainly true of video conferencing, where users may participate in more than

one conference at a time. When an entity belongs to multiple groups a group view for

each group must be maintained by the entity. This will enable multicasts to be

directed to specific groups.

3·5·3 Messages Ordering

When dealing with a single entity events occur sequentially, each event resulting

from some action carried out by the entity. These events are naturally ordered by the

sequence in which they happen. A system model may be based on a group of these

single entities. Each entity has the ability to send and receive messages to and from

other members of the group. The ordering of events in a group is based on two

assumptions:

1. The sending of a message m occurs before the receiving of m.

2. If two events occur at the same member then they retain their natural ordering in

relation to each other.

A partial ordering of events for distributed systems has been established based on

message passing and the above two assumptions. The notion of "happens before" (_.)

is used to indicate partial ordering. The following ordering properties may be derived

from previous observations:

44

Middleware Environments and Group Communication - Chapter 3

• If the event X occurs before the event Yat the same member then X ---+ Y.

• If the event A is the sending of a message m, and the event B is the receiving of the

message m then A ---+B.

• If C ---+D and D ---+E, then C ---+E.

It is possible to state that if A ---+B then A may have caused B. When no causal

relationship exists between two events then the ordering between them is arbitrary

and two such events may be considered concurrent.

A protocol that introduces ordering highlights a difference between the receiving of a

message and the delivery of a message:

• A sends the message m, B recei ves message m, B deli vers m.

Only after a message is delivered may it be accepted by a member for processing.

When ordering is relevant a protocol may block the delivery of a message until such a

time when ordering requirements are fulfilled. Under certain circumstances a message

may never be delivered and so discarded by an order preserving protocol. Following

are more detailed descriptions relating to different types of ordering that are common

in the support of group communications:

• Causal Ordering

The rules regarding the causal ordering of deliverable messages by a protocol may be

derived from the assumption made about causal ordering in an event driven system.

As a protocol may concern itself only with the sending and delivery of messages to

retain causality it is necessary block the delivery of a message m until all messages

that may have caused m have been delivered.

To illustrate the need of causal order preserving delivery, consider for example, a

computer based conferencing application where users may simultaneously participate

in different conversations (or groups). Suppose a given multi-group user generates a

message m' in a group B as a consequence of a message m delivered to the same user

in group A. Other multi-group users participating simultaneously in groups A and B,

45

Middleware Environments and Group Communication - Chapter 3

would then require that m' be delivered only after m has been delivered (otherwise, m'

may make no sense). Since message m potentially caused message m', we say that

they are causally related. For correct delivery of messages m and m', a protocol is

required which delivers messages respecting their causal origin or in causal order.

"

• Total Ordering

There are situations in group communications where the delivery of messages to each

member should occur in the same order (and preserve causality). Protocols that

achieve this are known as total order protocols. Protocols that enforce total ordered

message delivery must block the delivery of a message until all members of a group

mutually agree on the order in which such a message is to be delivered. Total

ordering that lacks causal preserving qualities is commonly termed identical ordering

[Macedo'95].

There are two distinct types of protocol for achieving total ordering:

• Asymmetric - A single member of the group is responsible for determining the order

of delivery.

• Symmetric - All members of the group share the responsibility for determining

ordering.

In an asymmetric protocol the member responsible for ordering is commonly termed

the sequencer. Each member of a group may unicast the message they wished

distributed throughout the membership of the group to the sequencer. The sequencer

is respon'sible for multicasting such messages to all members of the group. In a

symmetric protocol, members simply multicast their messages to the whole

membership of the group.

The asymmetric protocol tends to favor groups that only have a subset of the

membership regularly multicasting. Such scenarios arise when clients request a

service from a group (as in highly available applications). In a symmetric protocol,

ensuring client requests may be suitably ordered for delivery requires all members to

46

Middleware Environments and Group Communication - Chapter 3

participate in a message passing round. This message passing round has td be

prompted (on the receiving of a client request) and such message passing may solely

exist to order client requests (no computational value to the application). However, if

an asymmetric protocol is used members receive client requests already totally

ordered and may be deli vered without the need for further message passing. When all

members frequently multicast in a group the symmetric protocol is favored. Such

scenarios arise in Groupware applications. In Groupware applications members wish

to share information (such as a video image in teleconferencing). Members tend to

multicast in an asynchronous fashion (do not wait for reply). As every member

frequently multicasts, message passing rounds will be completed. There is no need to

prompt message passing solely for the purpose of message ordering. Furthermore, the

redirection of messages through a sequencer (as in the asymmetric approach) adds

unnecessary message latency in Groupware applications.

3·5·4 Group Membership

It is necessary for all members of a group to have a mutually consistent view of the

membership of the group (group views of individual members of a group remain

mutually consistent). When members do not agree on group membership actions

within a group may lead to inconsistencies between the functionality of the group and

the group's expected behavior as identified in a specification. For example, consider a

simple system that consists of a group of three members (A, B, and C) that service

client requests. The group's specification is identified by the following five points:

1. Band C are backup members for A (the primary member).

2. Only the primary member may service client requests.

3. When A fails B should become the primary ..

4. When A and B fail C should become the primary.

5. There should always be one, and only one, primary in operation at anyone period

in time.

An inability to satisfactorily determine mutually consistent group views for each

member may result in either one of the following faulty scenarios:

47

Middleware Environments and Group Communication - Chapter 3

• No primary exists - Assume A fails. However, B does not register this and 'still

includes A in its group view. B fails to take up the responsibility of becoming the

primary, and as C does not assume B to have failed does not take on the role of

primary.
,I

• Multiple primaries exist - Assume C incorrectly suspects A and B to have failed,

reducing its group view to only include itself. This may result in two primaries, A and

C.

As groups are dynamic (members may join or leave a group), a mechanism that

enables some form of consensus on group membership is necessary. The difficulties

encountered when determining group membership is referred to as the Group

Membership Problem (GMP), sometimes referred to as the consensus problem.

To aid in solving GMP a failure detection mechanism is required to indicate the event

of member failure to non-faulty members. This will then enable non-faulty members

to install a new group view, excluding any failed members. To enable failure

detection it is first necessary to establish the correctness of a member.

3·5·5 Highly Available Services

The group communication paradigm allows the provision of high availably through

replication in a straightforward way by gathering a set of replicas into a single group.

A common method used to increase the availability of a service is to replicate the

service over nodes in a network. A service that is replicated is commonly termed a

replica group. The aim of a replica group is to allow the failure of a number nodes,

parts of the network, or a number of objects, that provide the service to be tolerated

before the service becomes unavailable. There are two main techniques available for

providing service replication. Active and passive (primary-backup) replication, in a

brief definition, passive replication of process is based on one process acting as a

leader and updating other process after every operation has been informed. When the

leader dies, one of the processes take over. However active replication is when all

processes provide service in steps and they are up-to-date with its operation, so a

48

Middleware Environments and Group Communication - Chapter 3

failing leader process does not need to send its own state to other processes. The

details of these two techniques are as the following:

* Active / Passive (Primary-backup) Replication
,/

In active replication client requests are directed at each replica. Each replica then

attempts to process the request and may reply to client requests. The active replication

of an object requires two conditions to be met:

i. Agreement - All the non-faulty replicas of an object receive identical input

messages.

ii. Order - All the non-faulty replicas process messages in an identical order.

Therefore, if all the non-faulty replicas have identical initial states then identical

output messages in an identical order will be produced by them (assuming that an

action performed by an object on a selected message is deterministic). To ensure the

message ordering requirement is satisfied suitable protocols must be available that

can provide guaranteed identical ordered message delivery within the replica group.

When member failures occur clients of an active replica group may not suffer from

gaps in service. The only time an actively replicated group cannot service requests is

when all replicas have failed, or the replica group is unreachable by a client due to

network failures.

Detecting member failures is required to satisfy the agreement condition. Inconsistent

views of "group membership may lead to the. failure of client requests reaching non-

faulty replicas and/or the inclusion by some members of faulty members in their

group views.

Passive replication requires only one member of the replica group, the primary

(sometimes referred to as the coordinator), to receive, process, and reply to client

requests. To ensure that members of the replica group stay mutually consistent the

49

Middleware Environments and Group Communication - Chapter 3

primary must send a checkpoint of its state to the passive group members, usually

when the state of the primary has changed.

In the event of the primary failing the remaining members use a protocol to elect a

new primary, which then takes over the duties of the failed primary.

As opposed to active replication, it is not necessary for computations performed by

the replicated objects to be deterministic: state is imposed upon the passive members

of the group by the primary guaranteeing that all members of the group will remain

mutually consistent.

According to the concept of replications which have been described, the following

contest will be raised:

With active replication, all of the replicas of the object play the same role: every

active replica receives each request, processes it, updates its state, and sends a

response back to the client. Because the client's invocations are always sent to, and

processed by, every server replica, the failure of any of the server replicas can be

made transparent to the client. With passive (primary-backup) replication, one of the

server replicas is designated as the primary, while all the other entire replicas serve as

backups. A client typically sends its request only to the primary, which executes the

request, updates it own state, updates the states of the backups, and sends the response

to the client. The periodic state updates from the primary to the backups serve to

synchronize the states of all of the server replicas at specific points in their execution.

Replication implements roll-forward recovery mechanisms that promote liveness by

continuing processing where it had been left at the time of the failure. In active

replication, in the event of a fault (one of. the active replicas crashes), the other

replicas continue processing the current request, regardless, thereby implicitly

implementing a roll-forward mechanism. In passive (primary-backup) replication, in

the event of a fault (the primary replica crashes), one of the backup replicas takes over

as the new primary and re-processes any requests that the previous primary was

performing before it failed. If a backup replica crashes, then, there is no loss in

processing. Thus, the roll-forward mechanism is explicitly implemented in the re-

election of a new primary replica, and the re-processing of requests by the new

50

Middleware Environments and Group Communication - Chapter 3

primary. Consistency is maintained for both active and primary-backup replication by

guaranteeing that partial request execution will not harm since the request will be

eventually completed (by "rolling forward").

An example of a bank account service 'made highly available via replication

(active / passive) may be used to demonstrate the benefit a group communications

service may bring to a fault tolerant application:

Copies of a bank account B reside at three of a bank's branches. This degree of

replication allows routine audit checks of an account to be carried out at a branch

(making the inspected account unavailable for a short time) while still allowing

access to the other two copies of the account. The account is accessible via an

Automatic Teller Machine (ATM). Each branch has an ATM (Ai, A2 and A3). Each

copy of the bank account should present the same balance whenever queried via an

ATM. When a transaction is requested at an ATM, information relating to the

transaction request are formulated into a single message and sent to all copies of the

bank account. Each account then acts on the request and replies with a suitable

answer. The requesting ATM takes the first answer only and discards the rest.

Whenever an account balance falls below zero, bank charges are incurred.

Let us concentrate on the functioning of a single account held jointly by a husband

and wife. The husband deposits $50 (generating a message Mi) at Ai and then

withdraws $20 (generating a message M2), again via Ai. We may identify Ml and

M2 as being causally related and expect Ml to be received by all copies of the

account before M2 is received. If this is not so, then some accounts may actually

become overdrawn (there will be a time when some accounts would show a balance

of $20) causing bank charges to be incurred. ,

We now extend our example and assume the wife is requesting a withdrawal of $20

(M3) at A2 at the same time the husband is at Ai. As there is no causal relationship

between M3 and the other two messages (Mi and M2) M3 may be received at any

time by the replica accounts. If M3 arrives before Ml then bank charges will be

incurred, if M3 arrives after Ml bank charges will not be incurred. Therefore, we

have a scenario, where some accounts may incur charges while others do not.

51

Middleware Environments and Group Communication - Chapter 3

To overcome this inconsistency, we must ensure that messages arrive at the same

order at each account. This type of ordering is commonly termed total ordering

(identical ordering while preserving causality).

In the same manner as our previous groupware example identified the three

requirements that a group communication service aims to satisfy, so the observation

is repeated for the highly available account example (for the sake of completeness

passive replication is also mentioned):

• An ATM is required to send a single copy of a message to multiple bank accounts:

A multicast mechanism is required to allow an ATM to send a single message to all

bank accounts simultaneously.

• Prevent the balance of the replica accounts from deviating, the consequences of

which could result in users been presented with bank charges: Protocols that preserve

the total (while still preserving causal) ordering of messages are required.

• Allowing the audit of a replica account without inhibiting the operation of the other

accounts: A group membership service may identify when an audit is taking place

(remove replica) or when an audit is completed (add replica) during the lifetime of a

group. In passive replication there is still a need to determine if a member has

failed/departed to ensure suitable passive members exist or a failed primary may be

replaced.

3-6 Replication / Transaction - Based Reliability and Comparison

A widely used computational model for constructing fault-tolerant distributed

applications employs atomic transactions for controlling operations on persistent

objects. There has been considerable work on data replication techniques for

increasing the availability of persistent data is manipulated under the control of

transactions. Process group with ordered group communications has also emerged as a

model for building available distributed applications. High service availability can be

52

Middleware Environments and Group Communication - Chapter 3

achieved by replicating the service state on multiple processes managed by a group

communication infrastructure. These two models are often seen as rivals [Little'99].

Replication is intended at protecting computational resources through the use of

redundancy: if a processor fails, then another processor can take over the processing

of the failed processor.

Regarding the two best-known replication styles (active and passive) a replicated

object is often represented by an object group, with the replicas of the object forming

the members of the group. The object group membership may be static or dynamic.

Static membership implies that the number, and the identity, of the replicas do not

change over the lifetime of the replicated object; on the other hand, dynamic

replication allows replicas to be added or removed at run-time.

Unlike replication, transaction processing systems essentially aim at protecting data.

then a failure occurs in the context of a transaction, the objects involved in the

transaction are reverted to their state just prior to the beginning of the transaction. All

of the state updates and all of the processing that occurred during the transaction are

discarded, often with no trace left in the system. Some systems support nested

transactions, where a new (child) transaction can be initiated within the scope of an

existing (parent) transaction. If the nested (child) transaction fails, the enclosing

(parent) transaction needs not automatically roll back; the application can attempt to

correct the problem, and subsequently retry the nested transaction. However, if the

enclosing transaction encounters a fault, then all the nested transactions roll back,

along with the enclosing transaction.

Transactions use roll-back recovery mechanisms that guarantee consistency by

undoing partial request processing. Data is protected from the undesirable side-effects

of failures, but computational resources may become unavailable for arbitrary

durations. Transactions are thus an effective mechanism for preserving consistency,

but not for achieving high availability, as they sometimes trade liveness for safety.

With roll-forward reliability strategies, invocations are traditionally sent using reliable

multicast (also known as reliable group communication), so that all of the replicas of

53

Middleware Environments and Group Communication - Chapter 3

an object receive every request. This is evident in an active replication configuration,

where a client does not need to re-issue the request if one of the active server replicas

fails (in fact, the client is typically not even aware of this failure). In a primary-

backup setting, when the primary has finished processing a request, it multicasts both

the response and a state update to the backups before returning the response to the

client. The state update allows the backups to synchronize their state with that of the

primary. The response is also cached by the backups for retrieval, should the primary

fail. If the primary fails, then a backup assumes the role of the new primary

transparently. If the primary fails before returning a response to the client, the client

will re-issue the request to one of the backups (now the new primary); if the new

primary has a cached response and the last state update of the old primary, it can

readily return a response; if it doesn't have the cached response, it will re-process the

request.

3·7 Conclusions

This chapter concentrated on a number of existing Middleware technologies for

enabling distributed application development in an object-oriented style. The three

most popular Middleware technologies (Java-RMI, DCOM, CORBA) were briefly

described, followed by a more in-depth description of CORBA. The lack of support

for object groups in the CORBA (and also Java-RMI and DCOM) standard was

highlighted, followed by descriptions of two types of applications (highly available,

Groupware) that may benefit from such support. Services (multicast, message

ordering, atomic message delivery, membership) that enable group communications

were then described in more detail followed by the three methods (integration,

interception, service) that may be used to incorporate such services into CORBA and

at the end of the chapter, the comparison of replication and transaction has been

described.

As can be seen from this chapter, group communications for Middleware

environments has resulted in a number of services that enable an application

developer to make use of group communication protocols in their applications.

54

Middleware Environments and Group Communication - Chapter 3

The centralised and distributed system architecture for Internet auction will be

described in chapter 4. Regarding the tools which have been explained in this chapter,

the implementing of the centralised and distributed auction system will be discussed

and used in chapter 5.
,/

55

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

Chapter4

"

4·1 Auction House Architecture

Auction house is where buyer and seller should go in order to contact an auction as

well as to running the auction, it is also responsible for setting up and guaranteeing

various contract that are used to create and manage the auction, ensuring that bidders

have sufficient credit limits, enough points if it is necessary regarding sellers' request,

certifying that the seller is authorised to sell the item, buyer and seller have not been

previously barred from bidding and selling and guaranteeing specific quality of

service contracts. The auction house paradigm transfers relatively easily from the

physical to the electronic world, and represents a "concrete" entity that users can

reason about. From the outside, the auction house essentially represents a "black box";

internally, however, the contracts it enforces, such as security, authentication, and

bidder/seller anonymity, help to provide the assurances traders (buyers and sellers)

expect from their real-world equivalents. If the auction house allows agents to

participate in auctions on behalf of bidders then it will be necessary to ensure that a

security sand-box exists for them to reside within.

An auction house may be composed of many physically remote auction rooms that

co-operate to provide the abstraction of single centralised auction house , also an

auction room itself may be (recursively) composed of several auction rooms and so

on; auction rooms will be taken here as indivisible atomic units within an auction

house. Regarding the auction rules, the auction room may be owned by different

organisations, who have agreed to work together towards the sale of a particular item.

Each auction room has an auctioneer who collects bids submitted in each auction

room and determines whether the bidding should continue or be terminated and the

auctioneer of one of the rooms is designed as the head or root auctioneer. The root

56

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

auctioneer will determine the auction rules and disseminate them at the start Of an

auction to the entire house and the seller has the item and the right to sell it.

Regarding the auction rules permitting the seller either can actively participate in the

auction and modify the ask depending on the demand perceived or asking reserve

price which should be met by bidder. We suppose the seller and root auctioneer are in

the same auction room.

The bidder in an auction room, which place their bids with auctioneer, is allowed to

place a bid that is larger than the current highest bid and the seller is also allowed to

have a reserve price to sell. How bid placement happens will depend upon the type of

auction (e.g. sealed-bid auction versus open-cry) . A bidder may be required by the

auction room to provide proof that he has the required credit limit or enough positive

points from previous trading in the auction. Each auction room is free to impose its

own constraints on buyer and sellers who use it . Therefore, for example, one auction

house may require all bidders to be known, whereas another may allow certain (or

all) bidders to remain anonymous. Flexibility in the auction contracts that are imposed

by auction rooms may be the deciding factor in how a bidder (and seller) choose an

auction room for conducting his trade.

4·2 Basic Auction Unit

For the sake of simplicity, we assume that there is just one seller and single indivisible

item is being sold. Assume initially that auction house has only one auction room with

whom the seller and the bidders are registered. We select an auction model that treats

sellers and buyers symmetrically. This symmetry enable a computational node to play

at one level of the tree the role of a seller by dealing with a group of potential buyer as

well as td play the role of a potential buyer at the next higher level (this aspect will be

discussed later). When a round initiate, the seller quoting an ask price and bidders are

invited to place the bid that exceed the quoted ask. (Both seller and buyer should

already been registered in the auction house). A bid once placed, can not be

withdrawn. A bidder's offer is made known to all other bidders who are encouraged

to out-bid that offer before the expiry of a publicly-announced deadline which is

determined. The new bid should be greater than the current highest bid and should be

placed before the deadline is expired. The seller is aware of every bid placed and

57

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

hence of the bidding pattern. There is a restriction that the seller can not decrease his

ask during the round, and just seller can have a reserve price when the round has been

initiated . Decreasing the ask would mean the current round being abandoned and a

fresh round initiated. A bargain round terminates once the seller has quoted his final

and after every bidder has been given sufficient time to outbid the highest bid. The

highest bid at the end of the round, which is called the final bid, if it is less than the

final ask which is requested, the seller can either initiate a new bargain round

probably quoting a smaller initiate ask or give up the trade. If the final bid is larger

than the final ask, the trade is consummated and if two or more bidders had placed the

same final bid, then a single bidder among these finalists is selected through a draw

that is statistically fair.

The single room auction model can be realised with the help of two types of nodes. A

bidder server (BS) and bidder client(s) (BC); bidder server is representing an

auction room and bidder client is operating as a potential buyer (figure 4-1).

!!BC6

!!BC5

!!BC4

Figure 4·1

The group comprising a bidder server (BS) and the bidders client (BC) registered

with BS, will be called a Basic Auction Unit (figure 4-2). Before taking part in the

trade, each bidder BC must register with the bidder server, and this process deals with

58

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

issues relating to bidder/server authentication, exchange of cryptography keys,

authorisation on the bidder's spending limits etc.

BSi

Figure 4-2

A bidder is required to register with any of the bidder servers whose auctioneer is

responsible for taking the registered bidders' bids and for providing up-to-date state

information about the auction process (such as the highest placed so far, latest ask

price, deadline for receiving bids, etc.).

When applying the conventional auction, the clients and the servers act as shown in

figures 4-3 and 4-4.

The following operations will be provided by bidder server (BSi) in the future figures:

(BSi. get_bid_val(value) : Bidder Client sends a request to Bidder Server for getting value of

particular item.

(BSi' submit_bid(value) : Bidder Client submits a bid to the in Bidder Server

4-2-1 Clients' Procedure:

Figure 4-3 shows the procedure of the conventional clients.

while (auction_held) II Whenever auction is being held and clients attend in auction
(
set_timeout;
BSi. get_bid_val(max_val); II Client sends request to bidder server (BSi)

and blocks (waiting for results)

< on_lime_out : abort the action>; II Time_out has happened (connection
failed or bidder server problem) in both cases

Client's request has not been succeeded,
, display appropriate message on client's screen,

exit from procedure and should try later

bid_val = clientdetermine_bid_val (max_val) ;
set_timeout;

II Client determines new bidval

59

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

BSi. submit_bid(bid_val); II Client sends new bid value to bidder sever (BSi) to submit the
bid_val

display (result); II Display response from bidder server (BSi),' " Accepted" or" Rejected"

< on_time_out: abort the action> ; II Timeout has happened so Client's new bid value has
not been accepted, exit from procedure and should

,; . try later

} II End of "while (auction_held) "

Figure 4·3

Client repeats the following processes while the corresponding auction is held. First,

an optional timeout should be set to trigger at the particular time, and client requests

a maximal value information from the bidder server and receive it in appropriate time

(otherwise client's request has been aborted). Maximal value (max_val in figure 4-3)

is obtained from the bidder server and according to the obtained maximal value, the

client determines bidding value (bid_val in figure 4-3). After that, the client set

timeout and sends the determined bid to the bidder server, and an result ("Accepted"

or "Rejected" , see figure 4-4) is obtained from bidder sever (within timeout). If

action_result is true , bidding process has been done successfully (confirmation

message will be sent to client through displaying on bidder client's screen).

Otherwise client needs to repeat submitting the bid. (Client biding will be aborted if

time out has happened).

4·2·2 Servers' Procedure:

The bidder server sets an initial value (in it_val) and result message as a global

boolean variable. The bidder server repeats the following process (figure 4-4) while

the corresponding auction is held.

1/ Initialization

val = init_val;
action_result:String ;

while (auction_held)
(
II Bidder server replies, whenever receives message from clients
get_operation _request (); II Bidder server receives a message from client
case request_type of :

get_bid_val (max_val) ; II Bidder server has been asked by client for existing
max_val

60

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

{
return (max_val) ; II Bidder server replies existing max_value to corresponding client
}

submit bid (bid_val) ;
(
bid_val = clientbid(bid_val) ;
if (bid_val> val)

{
val = bid_val;

II Bidder server receives new bid value from client

II bid value from client

II Bidder server updates current value with new
bid_val which has been received from client if it is higher

than the current bid_val
action ; result = " Accepted" ;
return (action _result); II Client's bidding has been submitted by bidder server

and sends " Accepted" to the corresponding client
} II End of " if(bid_val > val) "

else
{

action_ result = " Rejected ";
return (action_ result); II Client's bidding has not been accepted due to new

bid_val was not higher than current bid val ,
therefore " Rejected " will be returned to the corresponding client

}
other;

{
ignore the message;

II The receiving message is not about existing max_val nor new bid_val

II Ignoring the message if bidder server receives
messages neither about existing max_val nor new bid_val

}

} II End of " while (auction_held) "

Figure 4·4

First, if a request for the maximal value information comes from a client, the bidder

server returns the current value to the client, (max_val). If bidder server receives a

submission bid message , a bidding value (bid_val) is obtained and compared with

the current value information. If the bidding value is higher than the current one, the

out of bid message is sent to the client whose bid is now out of bid (most of the

auction servers provide automated "outbid notification" email messages to let bidders

know instantly when they are no longer the high bidder in an auction) and the current

one is updated and the " Accepted " messa~e is returned to the client through the

action_result; otherwise, the server returns" Rejected" message to the corresponding

client. If bidder server's receiving message is not about existing max_valor new

bid value, therefore ignoring the message.

61

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

4·2·3 Basic Auction Unit Connection

Basic auction units can be connected to each other, if they are close, through their

respected bidder server directly. In this case, the normal local area network would be

fine to communicate between bidder servers {BS) and for bidder client (Be) to take part

in an auction through bidder clients (BC). Figure 4-5 shows the detail.

..........--1.~Local Are Network

BS;

Figure 4·5

We now extend the above model to a distributed auction model to support a large

number of bidders, geographically wide apart, to take part in an auction. A lot of

methods are existing to connect basic auction units to each other. We regard the

distributed auction system to be made up of many servers connected to each other via

the privately-owned, high-bandwidth network or through the Internet. Each basic

auction unit connect together as depict in figures 4-6 and 4-7.

In figure 4-6, three different groups of basic auction units, are connected together

through the privately-owned high band network. As shown in this figure, if we

increase the number of basic auction units, it will cause the main problem to connect

all bidder server (and bidder client as well). together through the basic auction unit,

and as a result, achieving scalability will be difficult and probably impossible. In

addition as this choice will need more connect and communication, so as a result will

cause more cost.

Basically, the auction should be scalable so to resolve above problem, basic auction

units communicate to each other through the Internet (See figure 4-7). In this regard,

62

Centralised and Distributed System Architecture for Internet Auction - Chapter 4

achieving scalability and responsiveness will be possible if suitable structure is

considered.

~~~~.'l!
~ ,

~ ,
~ ,,

JI ~ NETWORK ',,-....-------~

~ Bidder Client

4.Bi~der Server

Figure 4-6

63



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

Figure 4-7

The combination of figure 4-6 and 4-7, depict in figure 4-8 .As this figure shows,

basic auction units are connected together through the privately-owned high band

network and build the cluster of auction. These clusters of auction are communicated

to each other through the Internet.

Figure 4-8

4-3 Pure Hierarchical Architecture

It is wellknown that a multilevel and tree based architecture is a good preparation for

scalability requirements. Therefore developing a system; which allows a user to bid at

any logically nearest server (latency time), is our principal way of achieving

scalability as the total load is shared amongst many servers. It means interaction

among a very large number of customers and supplier of goods, regardless of the

number of those users and their geographical location. This requires the service to

satisfy users requirements in the presence of large number of buyers and sellers.

64



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

The structured is arranged in a tree, rooted on main auction server. This structure is

made up of several levels of basic auction units connected to each other via the

internet /intranet or privately-owned, high-bandwidth network. Figure 4-9 shows

basic auction units arranged in multilevel (as, a tree), with the root-being main auction

server (MAS). In this regards, basic auction units can be combined hierarchically to

support a finitely large number of bidders, geographically wide apart, to take in an

auction.

Recall that basic auction units can directly communicate with each other as has been

shown in figure 4-5 and 4-6 and this tree structure is a logical one imposed in an

attempt to make the inter- basic auction units communication scalable; also, that each

basic auction units caters for a local set of clients and has its own (local) bidders

registered directly with it.

Level n+l

Leveln

Level n-l

Level3

Level2 •

Levell
BAUS BAU. BAU? BAUs BAU9 BAUIO BAUJ/ BAlJl2

Figure 4-9

65



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

Main auction server (MAS), which is allocated in the root if auction servers are

organised as a hierarchical architecture and use tree structure to connect together, is

playing the role of the seller, and also is at the top-most level of the tree. A basic

auction unit is termed the parent of all those basic auction unit that are directly

connected to it and are one level below; thelower level basic auction unit are termed

the child basic auction unit of the parent. A basic auction unit that has no child is

called a leaf basic auction unit. We do not require the tree to be a balanced one

(though such a tree would improve the communication efficiency) or a binary one as

shown in the figure. What we do require is that the root bidder server be connected to

every other bidder server either directly or via sequencing parent basic auction unit

and that every non-root basic auction unit have only one parent.

Refereeing hierarchical architecture and tree structure, which has been described, and

regarding fundamental fairness property of scalable auction to capable of providing its

end user with satisfactory Quality of Service (QoS), regardless of the number of those

users and their geographical distance, we therefore investigate ways of enabling

widely distributed, arbitrary large number of auction servers to cooperate in

conducting an auction. In this regard, disseminating latest updated information, which

are called episode messages (will be referred to later), will be necessary. Therefore

servers are partitioned into Multicast groups, to communicate together in order to

disseminate information to each other and as a result users will be allowed to bid at

anyone of the auction bidder servers. In this way scalability and fairness properties of

an auction will be preserved.

A group consist of one parent and all its children are in the multicast group. As shows

in figure,4-9 BAU's will be divided into numbers of multicast groups: e.g. {BAUI and

BAU2 in level 1 ith BAUI in level 2}, { BAU3 and BAU4 in level 1 with BAu2,in level 2}, { BAUI

and aa«, in level 2 with BAulin level 3}and ... { BAulandBAu2 in level n-l with BAulin

level n}. Within a multicast group, servers know each other's -identifier and

periodically multicast the latest auction information it has received so far to every

other server in the respected group. These multicast messages are called episode

messages, as their contents are used by each server to form the history of client

requests accepted (so far) in the global system. The episode messages generated by a

66



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

given server obey the following rule: every local client request accepted is referred to

in one of the episode messages, and no two-episode messages refer to the same client

request. This is necessary to ensure that the global history constructed by each server

represents any given bid exactly once.
,/

Every BAU is in at least one group and a parent server, except the root (BAulin level n

in figure 4-9) is present in two groups. For a parent server (e.g. BAulin level 2), the

group that contains its children is called its down-tree group and denoted as Od; e.g.,

Od of BAUI in level 2 is { BAUI and BAU2 in levelland BAUI in level 2} or Od of BAU2 in

level 2 is {BAu"andBAu. in levelland BAu2in level 2}. ( Alternatively for a non-root

server, the group that contains its parent is called its up-tree group and denoted as Gu;

e.g. Gu of of BAUI in level 1 is { BAUI and BAU2 in levelland BAUI in level 2} or Gu of

BAUI in level 2 is {BAUI and BAU2 in level 2 and BAUI in level 3 }).

Partitioning the servers into multicast groups based on a tree structure facilitates

dissemination of episode messages, which has already been explained in above, in the

following recursive manner. A non-root parent server periodically (in appropriate

time, e.g. whenever receives new bid) aggregates its own episode message with

messages received from its children during the past period and forwards (possibly

multicasts regarding the architecture) the aggregated episode message in its Ou, Thus,

in its up-tree group, it represents the bids received by every server of the sub-tree

rooted on itself. The downward propagation of episode messages also works in the

same way but in the downward direction: each non-root parent server periodically (in

appropriate time which will be defined by the main auction server with considering

bidder servers' conditions in each level of hierarchy architecture which will be

explained in figure 4-13) aggregates its own episode message with the messages

received from the parent of its Ou during the past period, and multicasts the

aggregated episode message in its Od; the root server periodically multicasts only its

own episode message in its Od. Recall that the formation and aggregation of episode

messages are done in such a way that any given client request (sent to any server in

the global system) is represented exactly once in the global history computed by every

server.

67



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

In this hierarchy architecture that has been introduced, scalability, which is necessary

for auction, will be met.

4-4 Implementation Framework

To explain our implementation clearly, we simplify the figure 4-9 to figure 4-10.

Figure 4-10

In figure 4-10, seven BAUs are arranged in a tree, with the root being server BAU7

which connect toMAS with which the seller is assumed to be registered.

The main idea for processing the request in any of the bidder servers is that the client

will send its requests through bidder clients to its local server (bidder server in the

BAU) for processing. Bidder servers periodically report the requests they have

received so far to every upward bidder servers that are directly connected to them in

the tree structure in the distributed auction server.

The seven bidder servers in the BAUs in figure 4-10 can be configured into three

multicast groups as shown in figure 4-11. In this figure three multicast groups has

been shown: Gl:{ BS}, BS5, BS2} , G2:{ BS5, BS6, BS7}, G3:{ BS6, BS3, BS4}. The

details of how multicast episode messages between the groups and report the

messages to bidder servers, will describe later as shown in figure 4-11.

68



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

Figure 4·11

As the figure 4-11 shows, every bidder server is in at least one group and the parent

server, except the root bidder server (BS7 ), is present in two groups.

Regarding down-tree group (Gd) partitioning the servers into multicast groups based

on tree structure facilitates dissemination of episode messages in the following

recursive manner. A non-root parent bidder server periodically aggregates its own

episode message with the messages received from other members of its G, during the

past period, and multicasts the aggregated episode message in its Gd (e.g. BS 5 to BS 1

and BS 2 as Gd of BS 5 is Gl which include BS5, BS 1, BS 2 ); the root bidder server

periodically multicasts only its own episode message in its Gd (BS 7 to BS 5 and BS 6).

The upward propagation of episode messages also works almost in the same way but

in the upward direction. A non-root parent server periodically aggregates its own

episode message with messages received from its children during the past period, and

forwards the aggregated episode message in its parent ( e.g. BS 1 and BS 2 to BS 5 and

BS5 to BS 7 , also the same scenario exists for BS 3 and BS 4 to BS 6 and BS6 to BS 7).

Thus, in its up-tree group, it represents the bids received by every bidder server of the

sub-tree rooted on itself. The details of algorithm for multicasting in down tree group

as well as forwarding in its parents will be explained in figure 4-14.

The server at level n+ 1 is designed as the head or main auction server (MAS in figure

4-9) which is playing the role of the seller and has the responsibility of determining

the auction rule, disseminating latest episode messages to other bidder servers through

down-tree group which are connected together based on tree structure, selecting

winner and so on regarding the bids and other information it has received. In fact,

parent of each bidder server acts as the head bidder server for its child bidder servers

(e.g. BS 5 head bidder server for BS 1 and BS 2, also BS 6 head bidder server for BS 3

69



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

and BS 4 ) while the bidder server which is allocated in level n+ 1 in the root of the tree

is designed as the head or main auction server in distributed auction system.

Therefore, episode messages normally move upward to the main auction server and

move downward from main auction server to the all bidder servers and as a result, the

bidders who registered with each of the bidder servers can be informed by the results

of their bid and then bidder has been given sufficient time to outbid the highest bid in

the auction.

Figure 4-12 shows the details of a sample of connection between bidder clients and

bidder servers in BAUl, BAU2 andBAUs as has been shown in Gl in figure 4-11.

BAU s

BS ..

Figure 4·12

The procedure of bidder clients is the same as procedure of clients which has been

explained in figure 4-3. The only difference between the conventional clients in figure

4-3 and bidder clients in figure 4-12 is that each bidder client sends the determined

bid to the Client'sSelection_BidderServer which is allocated in the nearest location to

client or client might wish to send its bid to the specific bidder server which is placed

in the whole distributed auction system.

The procedure of bidder servers and how the necessary aggregate information IS

passing between BAUs will be described in the next section.

70



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

4-4-1 Bidder Servers

There are four tasks which are executing concurrently in each bidder server as shown

in figure 4-13 . Task 1 and Task 2 handle messages from bidder clients and other

bidder servers respectively, Task 3 handle messages to BS;'s parent bidder server and

Task 4 handle messages to BSi'S child bidder servers. (Task 4 will not be executed

for bidder servers in levell, see figure 4-9, since there is no child bidder server in this

level. Also, Task 3 will not be executed for the main auction server since there is no

parent bidder server for this sever).

Task3 Task2
( Forwarding new bids to BSI's Parent Bidder Server) (Submitting latest bid value from other Bidder

Servers)

Task 1
( Clients' request from Bidder Clients,
either for existing maximum value of
particular item or submitting new bid
to Bidder Server)

Task4
( Disseminating latest bid value to BSI's Child Bidder
Servers)

Figure 4-13

Suppose bidder client ( BCI) sends a bid ( say m] ) to the bidder server ( BS5) ( see

figure 4-12). The following procedure will be held in bidder servers (e.g. BS3) :

4-4-1-1 Bidder Servers' Procedure
"

II Initialization

val = in it_val;
action_result:String;

II As long as auction is running, the following procedure which is includes " 4 .. concurrent tasks will
be held on the Auction Bidder Servers:
while (auction_held)

{

cobegin 1* Start of Task 1*1

71



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

1* Task 1 "Executed by the Bidder Servers, whenever they get request euher for existing
max-valor submission new bid value

II Bidder Server replies, whenever it receives message from clients

/I Executing" Servers' Procedure" in figure 4-4 ;

coend 1* End of Task 1 *1 ,/

cobegin 1* Start of Task 2 *1

1* Task 2 "Executed by the Bidder Servers, whenever they receive submit message from
other bidder servers, either us parent or children *1

get_operation_request ();
case request_type of :

// Bidder server receives a message

submu_bid(bid_val) ;
(

// Receives submit message from other bidder server

bid_val =BidderServer (bid_val) ;
if(bid_val> val)

{
val = bid_val;

// Bid value from bidder server

// Auction Bidder Server updates current value with new
bid_val if it is higher than the current bid_val

} // End of " if(bid_val > val) "
action_result = " Accepted" ;
return (action_result); // New bidding has been accepted (Auction Bidder

Server sends" Accepted" to the corresponding sender)
} // End of "submit_bid(bid_val)"

other; // The receiving message is not about submitting bid value
{
ignore the message;// Ignoring the message

}
coend; 1* End of Task 2 *1

cobegin 1* Start of Task 3 *1

1* Task 3 " Executed by the Bidder Server as long as parent bidder servers are existing in
order to forward new bid to the next parent bidder servers *1

while (Parent_BidderServer) // While parent bidder servers are existing and time is
appropriate, forwarding the new value of items to the

parent bidder server will be done
(
• if( Time_to_Forwarding)

{
II Time is appropriate for forwarding

do // Repeating following statement till getting" Accepted" message
{
ChildBidderServerSend_bid (ParentBSj• submu_bid(newbid_val));
}

while( action_result ==" Accepted" ) ; // End of do ... while;
Forwarding child bidder server's bid
value has been accepted by Parent
auction bidder server therefore
Task 3 is completed

} // End of" if ( Time_to_Forwarding) r
} // End of "while (Parent_BidderServer) "

72



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

coend; /* End of Task 3

cobegin /* Start of Task 4 */
/* Task 4: Executed by the Bidder Server, while auction is running and time is appropriate

to disseminate */
while ( Gd_Bidder Server) II As long as there are down- group bidder severs and time

is appropriate to disseminate to these bidder servers, sending
the latest max value of item to the down- group bidder servers

will be continued

(
if t Time to Disseminate)
{

II Time is appropriate for disseminating

do II Repeating following statement till getting" Accepted" message
{
ParentBidderServerSend_bid (ChildBSj• submit_bid(latestbid_val»;
}

while( action_result ==" Accepted" ); II End of do ... while;
Parent's dissemination of latest
bid value has been accepted by
child auction bidder server
therefore Task 4 is completed

} II End of "if ( Time_to_Disseminate) )"
} II End of "while ( Gd_Bidder Server) "

coend; /* End of Task 4 */

} II End of " while (auction_held) "

Figure 4·14

As figure 4-14 shows the bidder server sets initialisation of values and executes four

tasks concurrently which are shown by task 1 to task 4 while the corresponding

auction is held.

Task 1 shows the action of bidder servers whenever they get a request from clients. If

a request for the maximum value information or submission new bid value comes

from a cljent, the server returns the current value (for the maximum value information)

or "Accepted" / "Rejected" message ( for submission a new bid value)to corresponding

client. Task 2 shows if the server receives a submission bid (from parent or child

bidder servers), a bidding value ( bid_val) will be obtained and compared with the

current value information which has been updated in the whole system through task 4.

If the bidding value ( bid_val) is higher than the current one, the out of bid message

will be sent to the client whose bid is now out of bid only if the client has been

registered by this bidder server and the current one will be updated and

73



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

"Accepted" message will be send to the corresponding server through the

action _result.

Task 3 will be executed as long as there are parent bidder servers in the system ,and

time is appropriate (which will be explained later) in order to forward new bid value

to the next parent bidder server. This process will be continued until

"Accepted" message being received ( after repeating this task). It means

corresponding parent bidder server sends the updated bidding value of each item to its

parents in order to update the information (e.g. higher bid, etc) in all bidder servers till

the main auction server receives them.

Task 4 illustrates the action of bidder servers while disseminating latest updated

information to others. In this regards, bidder servers will periodically disseminate the

max value of each item only when the time is appropriate for disseminating (will be

explained later) and also the bidder server is not in level 1 ( see figure 4-9) of the tree

structure. Itmeans that the dissemination of max_value will be held to Child_Bidder

Server till a "Accepted" message will be obtained, while a bidder server is existed in

down tree group.

Time for forwarding new bid value to parent bidder servers (task 3) and

disseminating of latest updated information to child bidder servers ( task 4) could be

defined in several methods. These times are very important and depend on several

parameters (e.g. type of auction, hierarchical architecture of bidder servers, how they

are connected together and so on ) which will be explained in next section.

4·4·1·2 Forwarding I Disseminating time

The time for forwarding new bid value from the bidder servers to their parent and

disseminating of the latest updated information from parent bidder servers to their

children could be defined as the following methods:

The first method is called round-base method. In this method main auction server

initiates an auction round, including start and terminate time for the bargain auction in

auction rounds. Then informs each bidder server and so bidders are invited to place

bids to bidder servers through the bidder clients.

74



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

Each bidder server therefore starts the auction round; regarding the base round which

has been defined by the main auction server, and continues this round till termination

time will be met. During the auction round in each bidder server, the highest bid is

known to other bidders who have registered with this bidder server and as a result

there is opportunity for the bidders to place the highest bid in this bidder server.

Termination time is the appropriate time for forwarding and disseminating to and

from parents. For instance, if we suppose t, is the starting time of the auction and ti+1

is the terminating time, so bidders could place the bid during the ( t,+ LI ) and ( ti+1-

LI ), which has been called Auction Round and forwarding / disseminating will be

done during the (ti - LI) and (t,+ LI) or (t t-t> LI ) and (t i+1 + LI )in this auction round (LI

is clock delay).

Time

Auction Round

ti I
I

ti + L1
I
I

t t-t : L1... ..
Forwarding / Disseminating time

... ...
Forwarding / Disseminating time

Figure 4·15

This method can probably tempt the bidders to place their bids in the last minute of

the round (ti- LI) in their bidder servers,so that their bids are less likely to be known

to others before the terminating time and therefore less likely to be out-bid in this

round. Such last minute bidding can lead to winner's curse in this round of auction as

the winner regrets that he/she placed a far higher bid only because he had no sure way

of guessing the bidding intentions of his/her competitors due to the scope for last-

minute placement of bids.

In second method, bidder servers define their forwarding time independently as main

auction server initiates an auction round, excluding start and terminate forwarding

time for each bidder server. In this method, each bidder server, or at most the bidder

servers which has been allocated in the same level in our architecture (figures 4-9 and

10) have same forwarding time. It means when bidder server receives the new bid

75



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

value and waits to receive other possible new bid values from another bidder client or

its child, forwards the maximum new bid value of item to its parent bidder server (the

appropriate waiting time depends on the bidder clients and servers' specifications and

their communication which could be different in each BAU's in the system) .

Main auction server disseminates the latest updated information to child bidder

servers ( Task 4) in a particular time and this process will be continued from each

bidder server to its children. Bidder server's dissemination time could be synchronies

for all bidder servers which are allocated in the same level. So the dissemination time

of BAUI and BAU2 in level n-1 would be the same, BAUI to BAU6 in level 2 have the

same dissemination time and so other BAUs in other levels (levels which are shown

in figure 4-10) .

4-4-2 Main Auction Server

The procedure for main auction server which is allocated in the root of tree structure

(see figure 4-10) and is shown in figure 4-16 is depicted in figure 4-17.
MAS

Figure 4-16

76



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

4-4-2-1 Main Auction Server's Procedure

II Initialization
val = init_val;
result_msg: Boolean;

IIAs long as the auction is running ,
(MAS)
while (auction_held)

{

the following procedure will be held on the main auction server

1* Execute Task 1 of figure 4-14 *1

1* Execute Task 2 of figure 4-14 *1

1* Execute Task 4 of figure 4-14 *1

} II End of" while (auction_held) "

Figure 4-17

Regarding figure 4-16, the main auction server sets an initialisation value (init_val ),

for each item as receives the bid from the bidder servers that has been allocated in

down level of main auction server ( BS7 in figure 4-16) and executes task 1, 2 and 4

concurrently which has been explained in figure 4-14 . The dissemination time has

also explained in forwarding and disseminating time in above.

77



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

4-5 Reliability and Fault Tolerance

The basic auction unit which has been described in section 4-2 and figure 4-2, has

three subsystems: bidder server (BS .), bidder client (BC/) and the communication

network that interconnects bidder server to bidder clients. A bidder server (and bidder

client) can fail, usually in various ways, and must be built reliably using internal

redundancy so that a service remains available. Using well-known redundancy

management techniques, reliable server can be built and we achieve the goal of

reliability and fault tolerant by replicating the bidder server. We would adopt a

replication strategy to build reliable servers, as it would enable a replicated server BS;

to provide fast responses in the absence of fault. Figure 4-18 shows the details of

replicated bidder servers in basic auction unit if we suppose there are n replica servers

exist for BSj, which are gathering in specified group and are connected with se. The
details of the established connection between BC, and BS ", inside the group will be

described later.

BCI BC2 BC.. BC. BC;

c::> Gj: Group consists of Bidder Servers

Figure 4-18

The communication network between bidder clients and bidder servers is not owned

or maintained by the auction service provider, this "should be built reliable" approach

does not work for the network, especially in the case of the Internet. The internet

generally provides a reliable communication (in the sense that what is sent is received,

perhaps after a few retries), so the asynchronous network assumption will be met if BSj

in BAUj and BSj in BAUj are correct (see figure 4-12), a message sent by one to the other

is eventually delivered. In fact this assumption requires that communication path

between any BS in two BAU if broken, be eventually restored. This enable the bidder

78



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

server communication to be reliable but not synchronous, a bound on how' long

messages can take to reach the destination can not be known with certainty.

A process can fail in many ways, and there are two extreme fault models: Byzantine

model, that is a faulty processor, can fail in 'arbitrary ways and Crash model, which is

a faulty processor, fails only by stopping to function. We assume the second fault

model in our system.

In reality Client/Server or Communication Network can fail. We therefore need to

deploy redundancy to cope with failure. We will consider two approaches of

incorporate redundancy:

Approach 1 - Redundancy internal to servers

Approach 2 - Redundancy external to servers

In the first approach, we assume there are more than one server exist for every BSi

server in the BAUi in our architecture which are gathering together in one group (BS,'S

Group) . Figure 4-19 shows the internal structure of each bidder server (e.g. BSi) .

BSi'S Group

Figure 4-19

A replica auction server group can present. each component, which is a number of

replicas grouped together that cooperate to provide the same service. The replication

protocol must mask failures which occur so that the replicated service can continue to

function. Objects with high reliability requirement are replicated (forming an object

group) on several nodes, employing some suitable replication protocol to ensure

replica consistency. There are basically two classes of replications, passive replication

and active replication. In active replication every functioning member of the replica

group must receive, process, and reply to other level of replica group. In passive

79



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

replication requires only one member of replica group, called primary, must receive,

process and reply to other level of replica group. In this approach we have highest

redundancy in the system as each server consists of a set of servers.

Second approach for increasing the availability of service is through multicast

messages to other existing bidder servers (BS) in other BAU as back up in the

distributed auction systems. So instead of a set of servers and using replication

method inside the BSi which explain in the first approach and named redundancy

internal to servers, bidder server multicast to other existing bidder servers by

themselves. It means that every bidder server which receive messages will multicast

them to other bidder servers which will determine by the protocol and in this regards,

we can consider this approach as a redundancy external to servers.

The first approach has higher redundancy in the system in comparison to the second

approach. However, as the replica is internal in this approach, its architecture

therefore is very closed to the non-fault tolerance model and as a result the main

up/down protocols and procedures have not been effected.

We will discuses and implement this approach in next sections.

4-5-1 Replication - Based Reliability

A widely used computational model for constructing fault-tolerant distributed

applications employs atomic transactions for controlling operations on persistent

objects. In order to increase the availability of persistent data which is manipulated

under the; control of transactions there has been considerable work on data replication

techniques. Process group with ordered group communications has also emerged as a

model for building available distributed applications. High service availability can be

achieved by replicating the service state on multiple processes managed by a group

communication infrastructure. These two models are often seen as rivals [Little'99]

.Our distributed auction will be implemented with replicated and process group.

80



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

Replication is intended at protecting computational resources through the use of

redundancy: if a processor fails, then another processor can take over the processing

of the failed processor.

Regarding the two best-known replication' styles (active and passive) a replicated

object is often represented by an object group, with the replicas of the object forming

the members of the group. The object group membership may be static or dynamic.

Static membership implies that the number, and the identity, of the replicas do not

change over the lifetime of the replicated object; on the other hand, dynamic

replication allows replicas to be added or removed at run-time.

With active replication, all of the replicas of the object play the same role: every

active replica receives each request, processes it, updates its state, and sends a

response back to the client. Because the client's invocations are always sent to, and

processed by, every server replica, the failure of any of the server replicas can be

made transparent to the client. With primary-backup replication, one of the server

replicas is designated as the primary, while all the other entire replicas server as

backups. A client typically sends its request only to the primary, which executes the

request, updates it own state, updates the states of the backups, and sends the response

to the client. The periodic state updates from the primary to the backups serve to

synchronize the states of all of the server replicas at specific points in their execution.

Replication implements roll-forward recovery mechanisms that promote liveness by

continuing processing where it had been left at the time of the failure. In active

replication, in the event of a fault (one of the active replicas crashes), the other

replicas continue processing the current request, regardless, thereby implicitly

implementing a roll-forward mechanism. In primary-backup replication, in the event

of a fault (the primary replica crashes), one. of the backup replicas takes over as the

new primary and re-processes any requests that the previous primary was performing

before it failed. If a backup replica crashes, then, there is no loss in processing. Thus,

the roll-forward mechanism is explicitly implemented in the re-election of a new

primary replica, and the re-processing of requests by the new primary. Consistency is

maintained for both active and primary-backup replication by guaranteeing that partial

request execution will not harm since the request will be eventually completed (by

"rolling forward").

81



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

With roll-forward reliability strategies, invocations are traditionally sent using reliable

multicast (also known as reliable group communication), so that all of the replicas of

an object receive every request. This is evident in an active replication configuration,

where a client does not need to re-issue the request if one of the active server replicas

fails (in fact, the client is typically not even aware of this failure). In a primary-

backup setting, when the primary has finished processing a request, it multicasts both

the response and a state update to the backups before returning the response to the

client. The state update allows the backups to synchronize their state with that of the

primary. The response is also cached by the backups for retrieval, should the primary

fail. If the primary fails, then a backup assumes the role of the new primary

transparently. If the primary fails before returning a response to the client, the client

will re-issue the request to one of the backups (now the new primary); if the new

primary has a cached response and the last state update of the old primary, it can

readily return a response; if it doesn't have the cached response, it will re-process the

request.

4.5.2 Implementation and Reliability Issues

A group is defined as a collection of distributed auction server in which a member

server can communicate with other members by multicasting to the full membership

of the group (the property of atomic has been considered).

An additional property of interest is guaranteeing total order: all the functioning

members are delivered messages in identical order. Clearly, these properties are ideal

for replicated server in distributed auction architecture: each server manages a copy of

data, and given atomic delivery and order, it is easy to ensure that copies of data do

not diverge.

A multicast made by a server can be interrupted due the crash of that process; this can

result in some connected servers not receiving the message. Server crashes should

ideally be handled by a fault tolerant protocol in the following manner: when a server

does crash, all functioning servers must promptly observe that crash event and agree

on the order of that event relative to other events in the system. In an asynchronous

82



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

environment this is impossible to achieve: when servers are prone to failures, it is

impossible to guarantee that all non-faulty servers will reach agreement in finite time

[Fischer'85]. This impossibility stems from the inability of a server to distinguish slow

servers from crashed ones. Asynchronous protocols can circumvent this impossibility

result by permitting servers to suspect server crashes and to reach agreement only

among those servers which they do not suspect to have crashed.

A server group therefore needs the services of a membership service that executes an

agreement protocol to ensure that functioning servers within any given group will

have identical views about the membership. The membership service also ensures that

the sequence of views installed by any two functioning member servers of a group

that do not suspect each other are identical.

In the simplified model, which is shown in figure 4-10, seven BAUs are arranged in a

tree, with the root being server BAU7 that connect to MAS with which the seller is

assumed to be registered. We could adopt a passive replication strategy to built

reliable servers, as it would enable a replicated bidder server BSj to provide fast

responses in the absence of faults. Figure 4-20 shows the completed details of internal

structure of BSjin figure 4-19, if we suppose there are n replica server for BSj , so in

this scenario , the bidder server can provide services despite at most ( n-I ) replica

crashes.

BSi:

Figure 4·20

In passive replication, only the highest ranked replica, which called the primary (BSi 1

in figure 4-20), processes, and responds to the requests; for every received request, it

multicasts to other replicas the state changes effected and any response produced due

to processing of the request. If the primary crashes, the highest ranked among the non-

crashed replicas becomes the new primary and continues with the processing of

83



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

incoming requests (according the group membership service which will be explained

later, the BCi'S request will be sent to the properly server). In this regard, in passive

replication, while every replica may receive the inputs, only the primary sends the

server output to other servers. We would describe how the (passively replicated)

servers exchange episode messages. Regarding figures 4-19 and 4-20, we will

consider a single multicast group also assume that each bidder server in this example,

is internally replicated and BS/ is the primary of ss,' (j=1 to n) . The details of

internal structure of bidder servers are shown in figure 4-21 (for simplicity in this

figure, we assume that n = 2 , and in this case, at most one replica can crash within

each BSi).

BSs

o Bidder Server Group

m.. Bidder Server

m" Replica Bidder Server

Figure 4·21

We use group management technique to facilitate the servers to exchange messages

and cooperate with each other. Two basic services are assumed: reliable multicast and

group membership, which many of the existing group management middleware

system can readily provide.

84



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

An implementation of passive replication is done using the following services within

Si , a reliable FIFO multicast service which ensures that if the primary crashes during

a multicast, either all functioning replicas (only one replica in here) or none of them

receives that multicast, and a group membership service which promptly informs the

functioning replicas of suspected replica crashes and the order in which these crashes

must be viewed with respect to message delivery order. This property of

synchronising crash notifications with message delivery order is known as view or

virtual synchrony. These services facilitate prompt selection of a new primary after

the existing one crashed, and guarantees that the survivors are in agreement on the last

multicast the old primary made before it crashed so that the transfer of the processing

role from the old to the new primary remains correct.

Regarding to partitioning (not disjointing) the servers into multicast groups based on a

tree structure facilitates dissemination of episode messages; a group consists of one

parent and its children. These multicast messages which are called episode messages,

as their contents are used by each bidder server to form the history of client requests

accepted (so far) in the global system. Within a multicast group, bidder server knows

each other's identifier and periodically multicast the episode message. We describe

how the passively replicated servers exchange episode messages. We will consider

multicast groups and assume that each server BSi is internally duplicated (n = 2) and

BSiJ is the primary of BSi. The seven bidder servers in the BAUs in figure 4-21 can be

configured into three multicast groups ('Gl:{ BS/, BS5,J , BS/} , G2:{ BS/, BSi, BS/ },

G3:{ BS/, BS/, BS/} ) which containing only the bidder server primaries. The

configuration is identical to that shown in figure 4-11, if we replace BSj with BS/ and

the direction of multicasting the episode messaging is from up to down (from parent

to children in each group). The details of bidder servers' procedure to implement fault

tolerance model and reliability issues regarding server replicated will be described in

section 4-5-2-1.

Figure 4-22 shows bidder server group ( GBSi ) , inside of each replica bidder server

group and communication between the primary bidder server for incomingloutcoming

request to/from GBSi, if we suppose BS/ is primary of BS/ and BS/ is a replica of BS/

85



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

(j=1 to n). The reliable FIFO multicast and group membership services will still be

considered in GBs i.

To/From c.

GBSi

To/From G«

S. BS/ Primary Bidder Server

4 BS/ Replica Bidder Server

Figure 4-22

According the bidder server group (GBSi) and down/up -tree group (Od and Ou ),

figures 4-11 and 4-22, a non-root parent bidder server periodically aggregates its own

episode message with the messages received from other members of its G, during the

past period, and multicasts the aggregated episode message in its Od ,which contains

groups of bidder servers ( each group includes primary and at lease one replica

server), e.g. BS5 to GBS1and GBS2 as Odof BS5 is G1 which include BS5 , BS1, BS2 ;

the root bidder server periodically multicasts only its own episode message in its Od

(BS7 to GBs5 and GBs6 ) and etc. The upward propagation of episode messages also

works almost in the same way but in the upward direction and forwards episode

messages to its parent bidder server instead of multicasting them, which has been

done in downward propagation in Ou. So a non-root parent server periodically

aggregates its own episode message with messages received from its children during

the past period, and forwards the aggregated episode message in its parent :e.g. BS1

and BS2 to GBs5 and BS5 to GBS7 , also the same scenario exists for BS3 and BS4 to

GBS6 and BS6 to GBS7. Thus, in its up-tree group, it represents the bids received by

every bidder server of the sub-tree rooted on itself. It worth to mention that, each

86



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

bidder server consists of one group in which there are primary and replica bidder

servers.

The details of bidder servers' procedure to implement fault tolerance model and

reliability issues regarding server replicatedwill be described in next section.

4-5-2-1 Fault Tolerance Bidder Servers' Procedure

The main idea for processing the request in any of the bidder servers is that the client

will send its requests, either for existing maximum value or new bid value, through

bidder clients to its local server (bidder server in the BAU) for processing. Bidder

servers process the request, sending back the maximum value or updated new bid

value, and replicate to their replica bidder server and periodically forward the latest

bid that they have received to their parent bidder server. The same scenario will be

done for disseminating the latest updated information to other down ward bidder

servers when the time is appropriate for disseminating, through a group consists of

one parent and its children ( Gi in figure 4-11). Then these bidder servers will

replicate this information to their replica bidder server.

The procedure of bidder servers to implement of fault tolerance model and reliability

issues described in figure 4-23. There are still 4 tasks which executing concurrently in

each bidder server as shown and explained in figure 4-13.

Since the replica is internal (approach 1 in section 4-5), all the up/down main

protocols and procedures have not been effected and the same as figure 4-14 that has

been explained when fault tolerance is not being supported , however the new

operation will be provided by bidder server (RBS;): This operation will be executed

whenever bidder server receives new bid value from clientlbidder servers and this

value is higher than existing value, so bidder server update the current value with new

bid value and will submit its to replica bidder server(s) :

87



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

(RBSj• submit_bid(value)) : IIBidder Server submits a bid value to its Replica Bidder Server

(Each bidder server is internally replicated and BSi1 is the primary of BS/ )

The other operations are the same as operations which explained in figures 4-3 and 4-

4).

For clarifying of RBS;'s operation , the bidder servers procedure in fault tolerance

model (Approach 1 - Redundancy internal to servers) will be shown in figure 4-23.

4-5-2-1-1 Bidder Servers' Procedure
II Initialization

val = init_val;
action_result:String;

II As long as auction is running, the following procedure which is includes 4 concurrent tasks will be
held on the Auction Bidder Servers:
while (auction_held)

{

cobegin 1* Start of Task 1 *1

1* Task 1 : Executed by the Bidder Servers, whenever they get request either for existing
max-valor submission new bid value II Bidder Server replies, whenever it

receives message from clients

II Bidder server replies, whenever receives message from clients
get_operation_request (); IIBidder server receives a message from client
case request type of :

get_bid_val ( max_val) ; II Bidder server has been asked by client for existing
max_val

{
return (max_val); IIBidder server replies existing max_value to corresponding

client
}

submit_bid ( bid_val)
(

IIBidder server receives new bid value from client

bid_val = clientbid(bid_val) ;
if (bid_val> val)

(
val = bid_val;

II bid value from client

. IIBidder server updates current value with new
bid_val which has been received from client if it is higher

than the current bid val

RBSj• submit_bid(val); IIBidder Server submit the bide val) to Replicated
Bidder Server ( each bidder server is internally duplicated
and BS/ is the primary of BS/ )

action_ result = " Accepted" ;
return (action_result); II Client's bidding has been submitted by bidder server

and sends " Accepted" to the corresponding client
} /I End of " if(bid_val > val) "

else

88



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

{
action_ result = " Rejected ";
return (action_ result); II Client's bidding has not been accepted due to new

bid_val was not higher than current bid_val,
therefore " Rejected" will be returned to the corresponding client

}
other;

{
II The receiving message is not about existing max_val nor new bid_val

ignore the message; II Ignoring the message if bidder server receives
messages neither about existing max_val nor new bid_val

}

coend 1* End of Task 1*1

cobegin 1* Start of Task 2 *1

1* Task 2 : Executed by the Bidder Servers, whenever they receive submit message from
other bidder servers, either its parent or children *1

get_operation_request ();
case request_type of :

II Bidder server receives a message

submit_bid(bid_val) ;
{

II Receives submit message from other bidder server

bid_val = BidderServer (bid_val) ;
if (bid_val> val)
(
val = bid_val;

II Bid value from bidder server

II Auction Bidder Server updates current value with new
bid_val if it is higher than the current bid_val

RBSj• submit_bid(val); II Bidder Server submit the bide val) to Replicated
Bidder Server ( each bidder server is internally

duplicated and BS/ is the primary of BS/ )

} II End of " if(bid_val > val) "
action_result = " Accepted" ;
return (action_result); II New bidding has been accepted (Auction Bidder

Server sends" Accepted" to the corresponding sender)
} II End of "submit_bid(bid_val}"

other; II The receiving message is not about submitting bid value
{
ignore the message;11 Ignoring the message

}
coend; 1* End of Task 2 *1

cobegin 1* Start of Task 3 *1

1* Task 3 : Executed by the Bidder Server as long as parent bidder servers are existing in
order to forward new bid to the next parent bidder servers */

/I Executing Task 3 in "Bidder Servers' procedure" in figure 4-14

coend; 1* End of Task 3

cobegin 1* Start of Task 4 *1

89



Centralised and Distributed System Architecture for Internet Auction - Chapter 4

/* Task 4: Executed by the Bidder Server, while auction is running and time is appropriate
to disseminate */

/I Executing Task 4 in "Bidder Servers' procedure" in figure 4-14

coend; /* End of Task 4 */

} II End of " while (auction_held) "

Figure 4·23

4·6 Conclusions

In this chapter we have described the Internet auction service requirements and

structure of existing Internet auction systems which is based on centralised auction

bidder servers.

Hierarchical architecture and Tree-based recursive design approach is known to be

one of the best methods to achieve Internet auction's scalability and responsiveness

requirements. The architecture of centralised and distributed Internet auction has been

presented and the replicated bidder servers has also been introduced in order to

achieve the reliability and fault tolerance in centralised and distributed system

architecture for Internet auctions.

Furthermore, the new algorithms and protocols which have been supported by

centralised and distributed system architecture for Internet auction have been

presented.

According to this architecture, implementation of the distributed system architecture

for Internet Auctions will be shown and performance results obtained from

experiments are presented in next chapter.

90



Implementation and Performance of Distributed Auction System - Chapter 5

ChapterS
,/

In this chapter implementation of the distributed system architecture for Internet

Auctions described in chapter 4 and performance results obtained from experiments

are presented. Firstly the details of implementation will be discussed, including

NewTOP reliable group communication system as a tool used in our implementation

and finally performance results will be presented.

5·1 Implementation of Distributed Auction System

As explained in chapter 4 and regarding the Bidder Servers' procedures which have

been discussed in 4-4-2-1 and 4-5-2-1 (in non fault tolerance and fault tolerance

models) the auction system is structured as a number of basic auction units (BAUj)

that may be geographically separated over the Internet. A single bidder server (BSj)

and a number of bidder clients (BCj) represent each basic auction units (BAUj); bidder

servers (BSj) are structured hierarchically (chapter 4, section 4-3), with bidder clients

(BCj) placing bids and/or advertising items for sale via their local bidder server (BSj).

Bidder servers (BSj) are semi passively replicated (in fault tolerant model, see chapter

4 , section 4-5-2) , locally, to improve reliability within a single basic auction units

(BAUD·

Each bidder server (BSi) consists of four basic types of component: Auction object,

Reliability object, Distribution object and Group communication and each component

is implemented as a CORBA object.

91



Implementation and Performance of Distributed Auction System - Chapter 5

The details of these four components are as follows and the relation of them will also

be shown in next sections:

5·1·1 Auction Object
"

The auction object implements the auction logic of the system via a number of

services:

• Seller - Allows the registration of seller details within the Bidding service.

Contact details of a seller to enable buyers to trade with sellers are a minimum

requirement and are managed by the seller service.

• Buyer - Allows the registration of buyer details within the auction service. As

with the seller service, the primary purpose of the buyer service is to provide

sellers with the relevant details of a buyer to enable trading between buyer and

seller.

• Product - A product is made available to buyers by sellers via the product

service. All the information required by buyers to enable an auction of a

product is supplied by the product service (e.g., selling price, product

description).

• Trader - Manages the bidding process. Buyers may place bids and

buyers/sellers may enquire about the bidding status of products (if the auction

in use allows this). The trader service also enforces the appropriate style of

auction (e.g., English auction ,Dutch auction ).

5·1·2 Reliability Object

Reliabili'ty objects enable the basic auction unit to tolerate servers' crash. Each

auction object replica is provided with a reliability object. A reliability object

provides two basic functions: accepts requests from bidder clients ~nd implements

semi passive replication [D'efago'98] policy (chapter 4, section 4-5-2). Figure 5-1

describes the handling of a bidder client request; MJ is the initial bidder client request.

On receiving M], RJ multicasts this request (M2) to other reliability objects (two in the

diagram) and forwards MJ to its own auction object (M3). On receiving M2, R2

92



Implementation and Performance of Distributed Auction System - Chapter 5

forwards M2 (M4) to A2. As this is a semi passive replication scheme, only replies

from Al are returned to the bidder client via the reliability object of RI and replies

from A2 through the reliability object of R2 are ignored (see procedures 4-2-1 and 4-5-

2-1-1 in chapter 4 ).

r----------~-------------------
Bidder Client's Respond ( BCi)

Bidder Client's Request ( BCi) MJ

Basic Auction

Unit (BAUj) ------------------------------

Figure 5·1 Reliability Objects in a Basic Auction Unit

The summary of the above actions are as follows:

1· [Bidder Client's Request to RI (Say MI) J
2· [RI Multicast MI to RI and R2 (Say M2) J and [ RI forward MI to AI (Say MJ) J

II The two above operations ( in step 2 ) will be accomplished in parallel

3- [R2 forward M2 to A2 (Say M4) J
4- [ Reply from AI to RI (Say Ms) J and [ Reply from A2 to R2 (Say M6 ) J

II The two above operations ( in step 4 ) could be accomplished in parallel

5- [ Reply from R2 to RI (Say M7) J
6- [Reply from RI to Bidder Client's (Say Ma) J

According the figure 5-1, the Reliability Object (Ri) may be co-located in the same.
addressable space as an Auction Object (Ai); RI and Al or R2 and A2, or may be in a

different addressable space. In the latter case, the reliability object and its associated

auction object may fail independently of each other ( R, and Ai ). In this scenario,

when an auction object fails (AI) the reliability object (RI) instantiates a new auction

object, gaining state for the new replica from existing replicas (A2) (via other

reliability objects (R2»' When a reliability object fails (RI), a correctly functioning

93



Implementation and Performance of Distributed Auction System - Chapter 5

reliability object (R2) instantiates a replacement and associate this new reliability

object with the existing auction object (AI).

The failure of the semi passive reliability object R2 will require RI to buffer all bidder

client requests ( BCi )until a new version' of R2 is instantiated, after which, such

requests may be forwarded to R2. The failure of RI will result in R2 assuming the role

of primary. R2 will buffer all bidder client requests until a replacement for RI can be

instantiated, forwarding such requests when the replacement for RI is available.

5-1-3 Distribution Object

According hierarchical architecture and its implementation (sections 4-3 and 4-4 in

chapter 4), each auction object is assigned a distribution object in our implementation.

The distribution object is responsible for imposing the hierarchical structure of the

global auction system and managing the distribution of episode messages throughout

this structure (chapter 4, section 4-4-1-2 and procedures in sections 4-4-1-1 and 4-5-

2-1-1).

94



Implementation and Performance of Distributed Auction System - Chapter 5

(Level i+l ) 1-- - - --- -- - - - --- - --
I

Bidder Client 0 0
Request ( BCt) Ri Ai

(k=i+/) )10 q 01
I 1 _

r-----------------------------------------------

Basic Auction
Unit (BAUl)
(Level i+l)

Bidder Client __ ~_\

Request ( BC i ) MJ

Basic Auction V
Unit ( BAU i) ,I
( Level i) ",

I,
I
I
\
\,,......
I , ...

( Level i -1) I ..., ... ... _
:I:-I-AD-l~--OR-I,-J --OA-"'J--I- - - .---------':~-~~-... ';;;_ . _. 1-2 9, 21 ~.::~~Lr2--(i2l
ilooollOOOI 10001
I

Basic Auction Unit (BAU j, 1) Basic Auction Unit ( BAU s,2) Basic Auction Unit (BAU j,«}

]=i -1

Figure 5-2 Distribution, Reliability and Auction Objects in the Basic Auction

Units

When auction objects are replicated, the distribution object (DD is placed between

bidder clients (BCi) and a reliability object (Ri) (see figure 5-2). The distribution

object (DJ) accepts bidder client requests (MJ) and forwards them to its local

reliability object (M2 to RJ). The system administrator may determine the frequency a

distribution object forward (child bidder server to its parent) and multicast episode

messages (parent to their child bidder servers); i.e. from DJ to D, and Dj,m (m=I to n)

say MJJ and MJ2 respectively. Episode messages received by a distribution object

95



Implementation and Performance of Distributed Auction System - Chapter 5

(apart from its own) are disassembled into the original bidder client requests; each

request is forwarded to the local reliability object (as M2).

The detail actions of basic auction units which are shown in figure 5-2 are as
"follows:

1· [Bidder Client's Request to DI ( Say MI) J
2· [DI forward MI to RI (Say Mz) J
3· [RI Multicast Mz to RI and s, (Say MJ) 1 and [ RI forward MJ to Al (Say M4) J

II The two above operations ( in step 3 ) will be accomplished in parallel.

4- [Rz forward MJ to Az (Say Ms) 1
5· [Reply from Al to RI (Say M6) J and [ Reply from A2 to Rz (Say M7) 1

II The two above operations ( in step 5 ) could be accomplished in parallel.

6· [Reply from Rz to RI (Say Ms) J
7· [Reply from RI to DI (Say M9) J
8. [Reply from DI to Bidder Client's (Say Mw) J

II The following two operations ( Forwarding the new bid value of items to bidder server's parent

and I or Disseminating latest bid value to bidder server's children) will be done whenever time is

appropriate for disseminating ( by normal forwarding from bidder server to its parent bidder server

and I or multicasting from bidder server to its children bidder servers respectively," see figure 4-/3

( Task 3 and Task 4) and procedure in figure 4-14 in chapter 4 ).

[ DI forward too, ( Forwarding from Child to Parent (Say Mu) to (BAUJ) 1
[ DI multicast to Dj,m(m=1 to n)( Multicastingfrom Parent to its Children (Say M12) to (BAUj,m

(m=I to n) J

The distribution object of the semi passive replica (D2) does not receive any bidder

client requests nor does it send or receive episode messages. When the primary replica

fails D2 assumes responsibilities of DJ.

5-1-4 Group Communication Object

The group communication requirements of the reliability objects in our

implementation are satisfied by the Newtop service (a CORBA service) [Morgan'99].

The Newtop service is a distributed service and achieves distribution with the aid of

the Newtop Service Object (NSO). Each group member (reliability object or

distribution object) is allocated an NSO. Group related communications required by a

member are handled by its NSO .

96



Implementation and Performance of Distributed Auction System - Chapter 5

The Newtop service consists of three services implemented by corresponding objects

within the NSOs: membership, invocation/multicast, and group management, also the

management service provides members with create, delete and leave group operations

and the invocation/multicast service provides four group invocation operations (wait

for responses from all, from majority, from one and an asynchronous, no wait

invocation). The membership service maintains the membership information and

ensures that this information is mutually consistent at each member. This is achieved

with the help of a failure suspector that initiates membership agreement as soon as a

member is suspected to have failed.

The details of the NewTop group communication services, structure including its

components will be described in the next section.

5·2 The NewTOP Group Communication Service

The Newcastle Total Order Protocol (NewTOP) is a CORBA compliant, crash-

tolerant, partition able middleware system. The system implementation is centred on a

CORBA node called the NewTOP Service Object (NSO). NSO is the pinnacle of the

design of NewTOP in that is does total order, multi casts, inter group communication.

There is one NSO for each group member. When application processes want to form

a group with a common goal and to avail themselves of group communication

services to this end, each process is allocated an NSO as shown in Figure 5.3. An

application process A, acts as a 'client' to its NSO in obtaining group communication

services from the latter. The communication between client Ai and its NSO, and the

communication between NSO's themselves are handled by an ORB [Mpoeleng'05].

An NSO and its application 'client' need not reside on the same host, for the reasons

that NSO is a CORBA object and the communication between an NSO and its client

is handled by the ORB (location independence); however, for performance reasons,

they are normally hosted by the same node. Further, NewTOP requires an client A, to

be member of a group in which client A, intends to multicast and permits client A, to

be a member of more than one group at the same time. Being a partitionable system,

it does not however support merging of partitioned sub-groups.

97



Implementation and Performance of Distributed Auction System - Chapter 5

NewTop Service

~---------------------------
.. ... Message governed by NewTop protocols

Application dependent message

Figure 5-3: Clients of the NewTop service and associated NSO

An NSO comprises of two subsystems: Invocation service and Group Communication

(GC) service (Figure 5.4). The former allows the application to specify the type of

NewTOP service needed and marshals a multicast message accordingly. The latter

implements protocols to provide a variety of services: symmetric total order,

asymmetric total order, reliable multicast, simple (unreliable) multicast and

(partition able) group membership.

When client A, multi casts a message to the group, the message is marshaled into a

generic CORBA type any by the Invocation service and the relevant protocol of the

group communication service is invoked to deliver the message. At the delivery end,

the reverse happens. The Invocation service at a destination end unmarshals the

delivered message (of type any) and delivers it to the client application

Aj[Mpoeleng'OS] .

l Client I Application Layer

r---------------{------------
IGroup Management Ser.vicel

!
lIn vocation / Multicast Service I
I

l Membership Service J
NSO : Newtop Service Object

Figure 5-4 : The NewTop Services: Access and Structure

98



Implementation and Performance of Distributed Auction System - Chapter 5

The management service provides clients with create, delete and leave group

operations. The invocation/multicast service provides four group invocation

operations (wait for responses from all, from majority, from one and an

asynchronous, no wait invocation). The membership service maintains the

membership information and ensures that 'this information is mutually consistent at

each member. This is achieved with the help of a failure suspector that initiates

membership agreement as soon as a member is suspected to have failed. The client

can obtain the current membership information by invoking 'groupDetails' operation.

Figure 5.5 summarizes the main operations provided by an NSO [Morgan'99].

NSO

createGroup
deJeteGroup
JeaveGroup

invoke WaitFor AIIO
invoke WaitForMajorityO
invoke WaitForFirstO
invoke WaitForNoneO

groupDetailsO

Figure 5-5 : Summery of NSO operation

A more details of each service are as follow.

5-2-1 Management Service

The management service manages the creation of new groups, the deletion of existing

groups, and the change of membership for existing groups.

Creating a group - The creation of a group is initiated by a client of the NewTOP

service; it is assumed that the relevant NSOs have already been created. The client is

required to give the group an identifier that can aid the client and the NewTOP

service in differentiating between groups. This identifier should be unique and

consists of a string of ASCII characters. The client is also required to supply an initial

member list containing the IORs of the NSOs. The objects identified by the list are

considered group members at the start of a group's life.

99



Implementation and Performance of Distributed Auction System - Chapter 5

Ordering - A client may specify what ordering guarantees are required for enabling

message delivery (total, causal, arbitrary) and what style of ordering protocol is to be

used (asymmetric or symmetric) within a group.

Type - A group may be designated as lively or event driven. In an event driven group

the timesilence mechanism (used for detecting member failure and to advance

message delivery) is only active in the presence of computational messages derived

from a client. In a lively group the timesilence mechanism is active all of the time.

Deleting a group - A client may specify, at any time, that a group is to be deleted.

The deletion of a group does not result in the deletion of the individual group

members, but only of the abstract group entity. When a group has been marked for

deletion all group members are told by the management service to voluntarily leave

the group. The group membership service may, due to members leaving and/or

members failing, indicate to the management service that the membership of a group

has reduced to a singleton. This results in the management service deleting this group.

Leaving a group - At any time during the lifetime of a group a member may request

to leave the group.

The underlying protocols do not support an explicit join facility. Since members are

permitted to belong to several groups a similar effect can be obtained by members

forming a new group and exiting the previous group. Joining a group in this manner

results in the identifier of the group changing after each join is accomplished. As the

joining of a group may result in computations that are application dependent ( e.g.,

state transfer in replica groups), it is left to the application developer to decide how

best to tackle any inconvenience associated with changing group identifiers.

5·2·2 Invocation I Multicast Service

The Invocation/multicast service manages all aspects of messages related to the

delivery of client requests to object groups and server replies to clients.

100



Implementation and Performance of Distributed Auction System - Chapter 5

Invocation - A client may issue a request in asynchronous or synchronous styles.

Server replies - A client issuing a synchronous request may dictate the number of

server replies to wait for (all, majority or one) and how these replies are handled by

an NSO in the event of failure within the server group.

Protocols - The invocation/multicast service provides the protocols for guaranteeing

the ordering (total, causal or arbitrary) and delivery atomicity (with respect to group

view updates) of messages.

The NewTOP service relies on the message passing capabilities of the ORB for

enabling multicast communication between group members. Since, at present, ORBs

only provide one to one communication, multicasting has been implemented by

making invocations in tum to all the members. CORBA supports synchronous and

asynchronous RPC. The asynchronous style RPC is termed oneway and allows an

RPC to be sent while enabling the calling client to continue execution (no blocking of

client). However, the CORBA specification indicates that a oneway RPC does not

need to be attempted by an ORB. Some ORBs do implement oneway, some do not.

For this reason, synchronous RPC has been chosen for use in the NewTOP Service.

Multiple threads of execution are used to obtain parallelism and prevent client

blocking[Morgan '99].

Figure 5-6 : Massage interactions in a group multicast

101



Implementation and Performance of Distributed Auction System - Chapter 5

The principal message exchanges involved in making a group invocation are now

explained. Assume a group of n identical objects and objectl wants to make a

synchronous group invocation on some operation of the objects; this invocation will

have to be made via the group service. Figure 5-6 shows two of these objects and

their respective NSOs. The client of the N'ewTOP service making the invocation is

required to marshall the invocation request, consisting of the name of the function and

associated parameter list, into a single structure and send it to its NSO. Message 1

(ml for short) is such a message; m2 is its reception. As a result, NSO] sends

NewTOP specific messages to other NSOs; in figure 5.6, m3 is such a message and

m4 is its reception at NSOn• NSOn responds by composing and sending the appropriate

invocation message, mS, to its target object (objectn); m6 is its reception at objects.

The response from object; (m7) is received by NSOn (m8); NSOn then sends NewTOP

specific message (m9), it is received at NSO] (mlO), from here mll and ml2 indicate

the final journey back to the invoker. An NSO (such as NSOn) that is receiving an

invocation on behalf of its target object must be able to compose the type specific

invocation on the fly; this is made possible by making use of the Dynamic Invocation

Interface (DU) feature of the ORB (in the figure 5.4, the invocation represented by

the message pair mS, m8 uses DU).

5·2·3 Group Membership Service

The group membership service maintains a mutually consistent view of a group

membership for each member of a group.

Detecting member failure - The NewTOP service may suspect member failures with

the aid of a timeout based failure suspicion protocol and/or exceptions thrown by the

underlying ORB when attempting an RPC. Suspecting a member of failure results in

the execution of the membership agreement protocol; the suspected member will be

removed from the group or will remain in the group with all suspicions removed.

Whatever the outcome of the protocol, group members will retain mutually consistent

views of the group membership.

102



Implementation and Performance of Distributed Auction System - Chapter 5

Single group membership - When membership of a group falls to singleton the group

is marked for deletion, the management service is informed and all information

relating to the group is removed.
,I

Changes in group membership are reported to the invocation/multicast service to

enable pending messages to be appropriately managed (i.e., delivered or disregarded).

The group membership service also provides clients with a mechanism that enables

clients to gain current group views of any group which the client is a

member[Morgan '99].

5-3 Performance Evaluation of Distributed Auction System

To demonstrate the effectiveness of distributed auction system, we present

performance figures related to a restricted implementation of the hierarchical

architecture; only a single bidder server group is implemented, releasing the need for

a root node. We experiment with centralized auction server and distributed two-server

auction systems (both replicated and non-replicated versions considered). We measure

the time it takes for a bid to be registered at all auction objects in the system from the

moment a bid is sent by a client. These measurements should not be treated as

'absolute' figures, but rather as an aid to compare the effectiveness of our distributed

over a centralized in auction system architecture. For a fair comparison, all

experiments were conducted overnight during which load fluctuations over the

Internet were small. Four different types of experiment were carried out:

(i) Centralised Bidder Server Non-Replicated Auction Object,

(ii) . Distributed Bidder Servers (two) Non-Replicated Auction Object,

(iii) Centralised Bidder Server and Replicated Auction Object,

(iv) Distributed Bidder Servers (two) and Replicated Auction Object.

Bidder Clients (BC;) were configured to issue bids as frequently as possible; as soon

as a reply is received another bid is issued. Bidder Client (BC;) numbers were

increased gradually from 100 to 200 in increments of 10. At each of these increments,

103



Implementation and Performance of Distributed Auction System - Chapter 5

registering 100 bids for each bidder client (BC) in all auction objects is timed, and the

average is taken.

Communications between bidder clients and bidder servers were enabled via the

Internet. Pentium Linux machines were used as hosts for bidder clients and bidder

servers. Replicated bidder servers (when used) where is located on different machines

on the same LAN. All objects of a single bidder server were compiled into the same

addressable space (e.g., D1, R1, A1 in figure 5-2).

The implementation language used was Java and the ORB used was ORBacus 4.0b3

[http://www.orbacus.comlproducts/orbacus.html]. Bidder clients and bidder servers

were located at Newcastle (England) and Bologna (Italy). Bidder clients were always

equally distributed between England and Italy. (That is, when we say the number of

clients is 100, it is 50 in England and 50 in Italy.) In the single bidder server cases,

only the Newcastle bidder server is operational which is accessed by both Italian and

English bidder clients.

5-3-1 Centralised Server, Non-replicated Auction Object

To enable comparative analysis of the performance figures, the CORBA RPC time of

a bidder client in Italy communicating with a bidder server (without distribution or

reliability objects) in Newcastle was 94 ms (and approximately the same for bidder

client in Newcastle and bidder server in Bologna), the equivalent CORBA RPC

between a single bidder client and a local bidder server (e.g., communicating over the

same LAN) was approximately 6-7 ms for both Newcastle and Bologna.

The first experiment (Graph 1) to be made is the time for a bid sent from a local

bidder client (Newcastle) to register in the auction object is far lower than the time

taken to register a bid sent from a distant bidder client (Bologna).

104



Implementation and Performance of Distributed Auction System - Chapter 5

12000
en
§. 10000
"0:c 8000
1"11....
.l!! 6000en.0,
Cl) 4000....
0-Cl) 2000E
i= • • • • • • • • • • •0

_ Newcastle client

_ Bologna client

100 110 120 130 140 150 160 170 180 190 200
Number of clients

Graph 1: Registering a bid - Single Non-Replicated Bidder Server

( in Newcastle)

This is expected, as the latency between the bidder server and the distant bidder

clients is approximately 15 times larger than the latency between the bidder server

and local bidder clients. Both, local and distant bidder clients take longer to place bids

when bidder client numbers are increasing (shown by the upward slope in graph 1);

doubling the number of bidder clients doubles the time taken for bids to be registered.

This indicates that the bidder server may be overloaded, and this assumption appears

to be confirmed by the slightly decreasing slope in graph 2 (throughput: bids per

second).

105



Implementation and Performance of Distributed Auction System - Chapter 5

,I

:c 200
5 180
~ 150 ... • .---. • • • • •
a; 140
~ 120
:E 100
S- 80'Sc. 50s:
Cl 40
j
0 20.t:
I- 0

100 110 120 130 140 150 150 170 180 190 200
Number of clients

Graph 2: Throughput - Single Non-Replicated Server

( in Newcastle)

5-3-2 Distributed Bidder Servers, Non-replicated Auction object

Graphs 3 and 4 present the measurements when two bidder servers are present, each

serving local bidder clients (Newcastle & Bologna). Due to the latency between these

two distributed bidder servers, the time taken to register a bid at both bidder servers is

approximately 3 times slower than a bidder client registering a bid at its local bidder

server (comparing graph 1 with graph 3; 336ms in first and l006ms in second

experiment, both for 100 bidder clients in Newcastle bidder server). However, in this

scenario there are no distant bidder clients. Therefore, no bidder client suffers the

extremes of poor performance witnessed when only a single bidder server is present

(distant bidder clients 15 times slower than local bidder clients) as shown in graph 1.

106



Implementation and Performance of Distributed Auction System - Chapter 5

1600
en 1400
E ....~~~~.-_..~~~ ~~,-- ••~ 1200 , ' ,.::: , _.,_..
:1000" -

'* 800
.~ 600
$3
Q) 400
Ei= 200

O+-~--~~--~-,--~-,--~-,--,-~

-+- Newcastle client

_ Bologna client

100 110 120 130 140 150 160 170 180 190 200
Number of clients

Graph 3 - Registering a bid -Distributed Non-Replicated Bidder Server

(in Newcastle & Bologna)

Another experiment of interest is the degree of the slope of graph 3 compared to that

of graph 1. Graph 1 shows a much steeper slope (for both Newcastle and Bologna

bidder clients) compared to graph 3. When two bidder servers are present, increasing

the number of bidder clients does not have the same adverse effect on time taken to

register a bid as when only a single bidder server is present. In graph 4, the slope is

still increasing when bidder client numbers are increased, indicating that the bidder

server is not yet overloaded (as is the case when only a single bidder server exists -

shown in graph 2).

100 110 120 130 140 150 160 170 180 190 200

Number of clients

Graph 4 : Throughput - Distributed Non-Replicated Bidder Serve

( in Newcastle & Bologna)

107



Implementation and Performance of Distributed Auction System - Chapter 5

5-3-3 Replicated Auction Objects (Centralised and Distributed Approaches)

Tables 5-1 and 5-2 present the measurements for all experiments. These

measurements indicate that the cost of semi passive replication is low. Replacing a

non-replicated bidder server with a semi passively replicated bidder server increases

the time taken to register a bid by approximately 1 - 5% for local bidder clients and

less than 1% for distant bidder clients. This can be explained by the manner in which

messages are processed by the primary. With reference to figure 5-1, the multicast to

the replica group (M2) of the original bid (M,) is accomplished in parallel with the

forwarding of MJ to the auction object (M3). Thus, the overhead of semi passive

replication is the processing of MJ by the reliability object and the time taken for M3

to be received and processed by the auction object. As the reliability and auction

objects are compiled into the same addressable space, the cost of sending M3 is very

low.

Number of Bidder
Clients 100 110 120 130 140 150 160 170 180 190 200

Non- Newcastle
Replicated Bidder client 336 362 397 445 460 512 541 565 603 622 655

Bologna Bidder
client 4776 5261 5734 6225 6685 7173 7635 8126 8610 9073 9556
Newcastle

Replicated Bidder client 341 377 413 443 471 504 566 581 619 664 689
Bologna Bidder
client 4778 5263 5740 6230 6693 7172 7666 8127 8626 9085 9593

Table 5-1. Performance of Replicated and Non-Replicated Auction Objects

for Centralized approach

Number of Bidder
Clients 100 110 120 130 140 150 160 170 180 190 200

Non- Newcastle
Replicated Bidder Client 1006 1027 l088 1143 1144 1188 1208 1254 1266 1328 1349

Bologna Bidder
Client 1015 1051 1061 1138 1146 1194 1211 1223 1285 1346 1336
Newcastle

Replicated Bidder Client 1027 1059 1102 1155 1168 1230 1219 1261 1314 1349 1365
Bologna Bidder
Client 1049 1099 1121 1161 1209 1238 1250 1305 1340 1398 1427

Table 5-2. Performance of Replicated and Non-Replicated Auction Objects

for Distributed approach

108



Implementation and Performance of Distributed Auction System - Chapter 5

5-3-4 Conclusions

In this chapter we have described a hierarchic architecture to enable Internet-based

applications to satisfy the reliability requirements of a large number of geographically

dispersed bidder clients. We have demonstrated the effectiveness of our architecture

by implementing, and gaining performance measurements from, a distributed auction

system.

According the graphs number 1 to 4 and tables 5-1 and 5-2, the performance

measurements presented indicate that our solution achieves scalability, as the total

load is shared amongst many bidder servers (comparing figure 2 and figure 4).

Furthermore, by presenting bidder clients with local bidder servers we ensure that

bidder server access times are similar for all bidder clients, irrelevant of geographic

location. This removes the unfair advantage that clients close to a bidder server can

have over remote bidder clients in a centralised approach.

109



Conclusions - Chapter 6

Chapter6

Conclusions

This chapter summarises the material that has been covered in the thesis and gives an

indication of the possible areas of future research.

6.1 Thesis Summary

Auctions involve competitive bidding among buyers and sellers of goods, and their

provisioning places new demands from the underlying distributed computing

infrastructure. The main objective of this research was the development of distributed

systems architecture for dependable Internet based services for online competitive

bidding and meeting the Internet auction's requirements. However, the types of

bidding models which can be supported over distributed auction services was very

much an open issue.

The main contribution has been the development of a hierarchic auction architecture

that can scale arbitrary. In addition we have investigated various system architecture

issues for ensuring dependability.

Current Internet-based auction services rely, in general, on a centralised auction

server; it means the applications with large and geographically dispersed bidder client

bases are currently supported in a centralised manner; bidder client requests (over the

Internet) to systems located in a central place for processing. Such an approach is

fundamentally restrictive as too many users can overload the server, making the

whole auction process unresponsive. In addition, with a large number of

geographically dispersed bidder clients, a centralised auction is not scalable.

110



Conclusions - Chapter 6

Internet auction service requires meeting scalability, responsiveness, fairness and data

integrity. A centralised auction server architecture can not deal adequately with issue

of service availability and scalability. Typically, such an architecture can be

vulnerable to server's failures, if not equipped with sufficient redundancy.

Furthermore, server's overloading may occur, if an arbitrary large number of users

concurrently access the service and a customer (a local bidder client) who is close to a

central bidder server can have faster bidder server access than a remote bidder client,

and thus may have an unfair advantage over the latter.

Therefore the ways of enabling widely distributed arbitrary large number of auction

servers to cooperate in conducting an auction were investigated. The goals of

responsiveness and scalability are achieved by replicating the auctionlbidding service

across a number of these auction bidder servers. Allowing a user to place a bid at any

one of the bidder servers was our solution to achieve scalability and responsiveness,

since the total load was shared amongst many bidder servers which has been

distributed in our auction system, and users can interact with bidder server 'closest'

to them. New algorithms and protocols based on hierarchical architecture and Tree-

based recursive design were presented.

We described a hierarchic architecture to enable Internet-based applications to satisfy

the Quality of Service (QoS) and reliability requirements of a large number of

geographically dispersed bidder clients. The bidder clients and bidder servers

procedures in both non-replicated and replicated were explained and the effectiveness

of our architecture was demonstrated by implementing, and gaining performance

measurements from a distributed auction system.

The implementation framework addresses the important Issues: "Building a

reliable/available bidder server through process replication"

The performance measurements presented in this thesis indicate that our solution

achieves scalability, as the total load is shared amongst many bidder servers.

Furthermore, by presenting bidder clients with local bidder servers we ensure that

bidder server access times are similar for all bidder clients, irrelevant of geographic

111



Conclusions - Chapter 6

location. This removes the unfair advantage that bidder clients close to a bidder server

have over remote bidder clients in a centralised approach.

6·2 Future Work

The hierarchic architecture explained and developed in this thesis is very attractive for

conducting auctions on a global scale, as it enables a federation of basic auction units

to co-operate. We evaluated this architecture for supporting English auctions. This

work can be extended to support distributed auction system for various other types of

auction which are popular on the Internet. It would also be interesting to investigate if

the idea presented here can be applied to other application areas such as Multiplayer

Online Games.

The measured performances in chapter 5, confirm that auction's scalability

requirement is achieved. We presented performances figures related to a restricted

implementation of the hierarchical architecture by only a single bidder server group

and experimented with centralized auction server and distributed two-bidder servers

auction system ( in Newcastle and Bologna) in both replicated and non-replicated

version to consider reliability and fault tolerance in centralised and distributed system

architecture for Internet auctions. Since auction's requirements are achieved in this

architecture, so increasing the bidder servers in large and geographically dispersed

basic auction units is likely to be needed in the real distributed auction system.

The number of bidder clients was increased gradually from 100 to 200 in

increments of 10 and were always equally distributed between two different bidder

servers. These initialisations could be changed and increased to more bidder clients

and bidder servers and not equally distributed for implementing the real hierarchical

architecture in distributed auction system in the real Internet auction world.

Further work can be carried out on the above suggestions. Furthermore,

changing the Middleware technology, CORBA platform to EJB, Enterprise JavaBeans,

or Microsoft.Net , in order to develop implementation and performance results could

also be considered as future works.

112



Bibliography

Bibliography

['96] Going ... Going ... Gone! : A Survey of Auction Types, 1996 available at: accessed:

['99] Online Bargain Hunting: The world wide shopping mall. Time Magazine Europe, 1999.

[Amoroso'03] Amoroso, A. and Panzieri, F. A' Scalable Architecture for Responsive Auction

Services Over the Internet, 2003.

[Baldwin'99] Baldwin, R. "On-line Auctions: Just Another Fad?" IEEE Multimedia 6(3): 12-13,

1999.

[Banatre'Sti] Banatre, J-P., Ban'atre, M., Lapalme, G. and Ployette, F. "The Design and Building

of Enech 'ere, a Distributed Electronic Marketing System." Communication of the ACM 29(1):

19-29, 1986.

[Bernstein'87] Bernstein, P.A. Concurrency Control and Recovery in Database Systems, Addison-

Wesley, 1987.

[Broughton'OO] Broughton. Devious sellers make a killing in net auction. Telegraph, 2000.

[Brown'96] Brown, N. Distributed Component Object Model Protocol- DCOM/I.O, 1996.

[Clausing'OO] Clausing, Jeri. Government fights spread of online auction fraud. The New York

Times, 2000.

[Collins'Gl ] Collins, J., Corey, B., Ghini, M. and Mobasher, B. Decision Processes in Agent-

Based Automated Contracting. IEEE Internet Computing: 61-72, 200 1.

[D'efago'98] D'efago, Xavier., Schiper, Andre. and Sergent, Nicole. Semi-Passive Replication.

Seventeenth IEEE Symposium on R-eliable Distributed Systems, 1998, IEEE Computer

Society.

[Dawe'oo]

[Deutsch'98]

Dawe, L. Hammer out a deal at an online auction. Times, 2000.

Deutsch, . and Claudia, H. Businesses explore online auction for equipment parts.

The New York Times, 1998.

[Ezhilchelvan'OI] Ezhilchelvan, P.D., Khayyambashi, M.R., Morgan, G. and Palmer, D. Measuring the

Cost of Scalability and Reliability for Internet-Based. Server-Centered Applications. 6th IEEE

International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2001),

Rome, Italy, 2001, IEEE Computer Society Press 2001.

[Ezhilchelvan'Gl ] Ezhilchelvan, P.D. and Morgan, G. A Dependable Distributed Auction System:

Architecture and an Implementation Framework. 5th International Symposium on

113



Bibliography

Autonomous Decentralized Systems (lSADS 2001), Dallas, Texas, USA, 2001, JEEE

Computer Society Press 2001.

[Fay-Wolfe'OO] Fay-Wolfe, V., DiPippo, L. c., Cooper, G., Johnston, R, Kortmann, P. and

Thuraisingham, B. "Real-Time Corba." IEEE trans. on Parallel and Distributed Systems

11(10): 1073-1089,2000.

[Felber'02] Felber, P. and Narasimhan, P. Reconciling Replication and Transactions for the

End-to-End Reliability of CORBA Applications. Distributed Objects And Applications 2002,

UC Irvine, 2002.

[Feldman'OO]

[Ferbo'96]

[Fischer'85]

Feldman, S. "Electronic Marketplaces." IEEE Internet Computing: 93-95,2000.

Ferbo, . Leture Notes: Auctions, 1996 available at: accessed:

Fischer, MJ. , Lynch, N.A. and Paterson, M.S. "Impossibility of Distributed

Consensus with onefaulty Process." Journal of the ACM Vol. 32, No.2: 374-382, 1985.

[Franklin'66] Franklin, M.K. and Reiter, M.K. "The Design and Implementation of a Secure

Auction Service." IEEE Trans. on Software Engineering 22(5): 302-312,1966.

[Friedman'91] Friedman, D. and Rust, J. The Double Auction Market: Institutions. Theories. and

Evidence Proceedings of the Workshop on Double Auction Markets, Department of

Economics, Vanderbilt University, Nashvil, TN 37235, 1991.

[Geun Lee'98] Geun Lee, H. "Do Electronic Marketplaces Lower the Price of Goods?" Comm. of

the ACM 41(1): 73-80, 1998.

[Greenwald'OI] Greenwald, A. and Stone, P. Autonomous Bidding Agents in the Trading Agent

Competition. IEEE Internet Computing: 52-60, 200 1.

[Grossman'99] Grossman, Lev. And to think that I saw it on eBay. Time Digital, 1999.

[Hardjono'96] Hardjono, T. and Seberry, J. Strongboxes for Electronic Commerce. 2rd USENIX

Workshop on Electronic Commerce Proceedings, 1996.

[Harkavy'98] Harkavy, M. ,Tyger, J.D. and Kikuchi, H. Electronic Auction with Private Bids. 3rd

USENIX Workshop on Electronic Commerce Proceedings, 1998.

[http://www.agorics.com/Library/Auctions/auction5.html]

http://www.agorics.com/Library/Auctions/auction5.htm]. available at: accessed:

[http://www.crime-research.org/artic]es/W ahab 1]

available at: accessed:

http://www.crime-research.orglarticleslW ahab 1,

114

http://www.crime-research.orglarticleslW


Bibliography

[http://www.orbacus.com/products/orbacus.html] http://www.orbacus.com/products/orbacus.html.

available at: http://www.orbaclls.com/products/orbacus.html accessed:

[Huhns'99] Huhns, N., Michael, . and Vidal, Jose. On-line Auctions. IEEE Internet Computing:

103-105, 1999.

[Kaufman'99] "Kaufman, Leslie. and Harmon, Amy. Buyers flock to online auction. The New York

Times, 1999.

[Knight'OO] Knight, Jenny. Buyers beware on the Internet. Telegraph, 2000.

[Kumar'98] Kumar, M. and Feldman, S.J. Internet Auctions. 3rd USENIX Workshop on

Electronic Commerce Proceedings, Boston (MA)" 1998, IEEE.

[Lin'03] Lin, N. and Shrivastava, S.K. System Support for Small-scale Auctions. Med-Hoc Net 2003

Workshop, Mahdia, Tunisia, 2003.

[Lind'91] Lind, Barry., Plott, . and Charles, R. "The Winner's Curse: Experiments with Buyers

and with Sellers." American Economics Review 81(1): 335-346, 1991.

[Little'99] Little, M.C. and Shrivastava, S.K. "Integrating Group Communication with

Transactions for Implementing Persistent Replicated Objects." Advances in Distributed

Systems, 1752: 238-253, 1999.

[Lucking-Reiley'99,] Lucking-Reiley, D. Auction on the Internet: What's being auctioned, and

how?, Department of Economics, Vanderbilt University, Nashvil., 1999,.

[Macedo'95] Macedo, RJ.A. Fault-Tolerant Group Communication Protocols For Asynchronous

Systems. School of Computing Science,. Newcastle upon Tyne, University of Newcastle upon

Tyne, 1995.

[Maxemchuk'Ol ] Maxemchuk, N. F. and Shur, D. H. "An Internet Multicast System for the Stock

Market." ACM Trans. on Compo Sys. 19(3): 384-412,2001.

[McGrane'OO] McGrane, Sally. Auction creep into all kinds of sites. The New York Time, 2000.

[Morgan'99] Morgan, G. A Middleware Service for Fault-Tolerant Group Communications.

School of Computing Science. Newcastle upon Tyne, University of Newcastle upon Tyne,

1999.

[Morgan'99] Morgan, G., Shrivastava, S.K., Ezhilchelvan, P.D. and Little, M.C. "Design and

Implementation of a CORBA Fault-tolerant Object Group Service." Distributed Applications

and Interoperable Systems: 361-374, 1999.

115

http://www.orbacus.com/products/orbacus.html.
http://www.orbaclls.com/products/orbacus.html


Bibliography

[Mpoeleng'05] Mpoeleng, D. From Crash Tolerance to Byzantine Tolerance: Fail Signaling

Dependable Distributed Systems. School of Computing Science. Newcastle upon Tyne,

University of Newcastle upon Tyne, 2005.

[Mullen'98] Mullen, T. and Wellman, M.P. The Auction Manager: market Middleware for

Large-Scale Electronic Commerce. 3rd USE'NIX Workshop on Electr~nic Commerce, Boston

(MA),1998.

[Panzieri '99] Panzieri, F. and Shrivastava, S.K. On the Provision of Replicated Internet Auction

Services. In Proceedings of the 1999 IEEE Workshop on Electronic Commerce (WELCOM

'99), part of the 18th IEEE Symposium on Reliable Distributed Systems (SRDS '99)" 1999.

[Peng'98] Peng, C. , Pulido, I.M., Lin, K.J. and Blough, D. The Design of an Internet-based

Real Time Auction System. 1st IEEE Workshop on Dependable and Real-Time E-Commerce

Systems, Denver (CO), 1998.

[Rachlecvsky-Reich'99] Rachlecvsky-Reich, B., Ben-Shaul, I., Chan, N.T., La, A. and Poggio, T.

"GEM: A Global Electronic Market System." Information Systems 24(6): 495-518,1999.

[Rassenti '92] Rassenti, K. A. and Smith, V. L. "Designing Auction Institutions: Is Double-Dutch

the Best?"", 1992.

[Robinson'85] Robinson, Marc S. "Collusion and the Choice of Auction." RAND Iurnal of

Economics 16(1): 141-145, 1985.

[Rosenberry'92] Rosenberry, W. Undrestanding DCE. OFC Distributed Computing Environment,

Addision Wesley, 1992.

[Samret'OO] Samret, N., Liao, R. R.-F., Campbell, A. T. and Lazar, A. A. "Pricing Provision and

Peering: Dynamic Markets for Differentiated Internet Services and Implications for Network

Interconnections." IEEE I. on Select. Areas in Comm. 18(12): 499-513, 2000.

[Sandholm'OO] Sandholm, T. and Huai, Q. Nomad: Mobile Agent System for an Internet-based

Auction House. IEEE Internet Computing: 80-86,2000.

[Schwartz'98]

1998.

Schwartz, Evan I. At online auctions, goods and raw, deals. The New York Times,

[Sun Microsystems'97] Sun Microsystems. Java Remote Method Invocation Specification. IDK 1.1,

1997.

116



Bibliography

[Team'Ol] Team, TAC. Design the Market Game for a TRading Agent Competition. IEEE

Internet Computing: 43-51, 2001.

[The Object Management Group'95] The Object Management Group. The Common Object

Request Broker Architecture and Specification, 1995.

[Turban]Turban, Efraim. "Auction and Bidding on the Internet: An assessment, International Journal

of Electronic Markets." Vol. 7 No.4.

[Vickery'61 ] Vickery, David. "Counter Speculation, Auction, and Competetive Sealed Tenders."

Journal of Finance: 9-37,1961.

[Welkum'02] Welkum, G. and Vossen, G. Transactional information Systems, Morgan Kaufman,

2002.

[Wellman'98] Wellman, M.P. and Wurman, P.R. Real Time Issues for Internet Auctions. First

IEEE Work. on Dependable and Real-Time E-Commerce Systems (DARE-98), Denver (CO),

1998.

[Wice'99]

[Wrigley'97]

Wice, Nathaniel. ebay keeps crashing. Time Digital, 1999.

Wrigley, C. "Design Criteria for Electronic Market Servers." EM-Electronic

Markets,7(4): 12-16,1997.

[Wurman'Ol] Wurman, P.R. Dynamic Pricing in the Virtual Market. IEEE Internet Computing: 36-

42,2001.

[Yuan'98] Yuan, Y. , Rose, J.B. and Archer, N. "A Web-Based Negotiation Support System."

EM - Electronic Markets 8(3): 13-7, 1998.

117


