

An investigation of ageing-related genomic effects of resveratrol

Fatema Suliman Alatawi

Thesis submitted for the degree of Doctor of Philosophy

Institute for Cell and Molecular Biosciences,

Newcastle University, UK

September 2012

Declaration

I certify that this thesis is my own work, except where stated, and has not been previously submitted for a degree or any other qualification at this or any other university.

Fatema Suliman Alatawi

September 2012

Acknowledgment

First I would like to thank Newcastle University for giving me the chance to continue my PhD which is an important turning point in my life.

I am most grateful to the members of the Institute for cell and molecular biosciences for their support throughout my studies.

I am deeply indebted to Prof. Dianne Ford, my supervisor, for her help, day-to-day monitoring of my progress, her great assistance, valuable discussion and technical advice.

I also thank Prof. John Edward Hesketh, my co-supervisor, for his helpful advice and comments.

I wish to express my great thanks to Dr. Luisa Wakeling and Dr. John Tyson for their support and their great assistance in helping me in the lab work.

I also would like to thank Dan Swan at The Bioinformatics Support Unit for his help in the microarray data analysis.

I wish to thank Chris Blackwell who has made his support available in lab training of some techniques.

I cannot find words to express my gratitude to Dr. Khalid Al-Ankary (The Minister of Higher Education) Dr. Abdullah Al-Buqumi, Abdullatif Al-Faris, and Abdullah Al-Rashid for their endless support.

I owe my deepest gratitude to Prof. Osama Tayeb, Prof. Mohamed Fatani, Prof. Abdullah BaFail and Dr. Aabd Al-Sahali for their assistance.

I owe sincere and earnest thankfulness to the Saudi Cultural Bureau staff especially Dr. Mohamad Al-Ahmadi for all the support and advice that have been given.

I'm grateful to the Saudi student club in Newcastle for all their help and support especially Abed Alatawai, Hanan Alatawai, and Ali Asiri.

I am heartily thankful to my family for their love, patience and for being there when needed.

I would like to give my special thanks to Najla Alburae, for her assistance and great help in difficult times.

I want to thank my colleagues in the lab for their help, support and providing a friendly working atmosphere.

Abstract

Dietary restriction (DR) increases lifespan robustly in diverse species. Effects of the dietary polyphenol resveratrol consistent with delayed ageing and/or extension of lifespan have been reported. The involvement in the longevity response to DR of the protein Sirt1, which may be activated by resveratrol and deacetylates a range of cellular substrates that includes histone proteins, identifies epigenetic processes as a pathway that may mediate effects of both DR and dietary resveratrol in delaying ageing and/or extending lifespan.

Based on a preliminary observation, the hypothesis underlying the study is that some of the beneficial effects of resveratrol on lifespan/aging are mediated through effects on histone expression that oppose changes observed in ageing. A secondary hypothesis, based on a degree of structural similarity between resveratrol and 17β -oestradiol, was that epigenetic effects of resveratrol are mediated through the estrogen receptor (ER).

The effect of resveratrol on histone protein expression was investigated in human intestinal Caco-2 cells and human MCF-7 breast cancer cells. Histone H2a, H2b, H3 and H4 expression was decreased in response to resveratrol treatment in both cell lines. In support of our hypothesis that resveratrol affects ageing through reversing ageing-associated changes in histone proteins, higher levels of H2A, H2B, and H4 expression were detected by western blotting in the small intestine of old (38 months) mice than in younger (12 months) mice. To investigate possible consequences of effects of resveratrol, including effects resulting from altered histone expression, we studied the effect of resveratrol on global gene expression in Caco-2 and MCF-7 cells to address several objectives including: (1) investigating if resveratrol has an effect similar to that of DR at the level of gene expression; (2) identifying if genes or pathways affected by resveratrol were also affected by manipulation of the expression level of Sirt1. For both cell types, the number of genes in the intersection between those affected by resveratrol and a compiled list of genes reported in other studies to respond to DR was greater than expected by chance, supporting the view that responses to resveratrol and to dietary restriction have some commonality and that resveratrol may mimic some effects of dietary restriction. We also found that there was very little overlap between genes affected by resveratrol treatment and by knockdown of Sirtl expression in Caco-2 cells, which adds to accumulating evidence that resveratrol does not act through effects on Sirt1.

To investigate if effects of resveratrol - in particular the reduction in histone protein expression - are mediated through the estrogen receptor (ER), Caco-2 and MCF-7 cells were treated with resveratrol in the presence or absence of the ER antagonist fulvestrant, then total cell lysate was analysed by western blotting. The reduction in histone protein (H2a, H2b, H3 and H4) expression was attenuated by fulvestrant, indicating that resveratrol reduced histone expression via an ER-dependent mechanism. For further investigation of effects of resveratrol on histone expression, Caco-2 cells were transfected with a promoter reporter construct comprising the histone H3 promoter upstream of the β galactosidase reporter gene, and the effect on reporter gene expression of treatment with resveratrol in the presence and absence of the fulvestrant was measured. Resveratrol reduced reporter gene expression and this effect was attenuated by fulvestrant, demonstrating that resveratrol acts to reduce histone H3 expression at the level of transcription through an ER-mediated mechanism. To investigate if the response to resveratrol treatment is through interaction with estrogen response elements (EREs) in the histone H3 promoter we replaced three potential EREs within the histone H3 promoter region included in the promoter-reporter construct with random sequence. Caco-2 cells were then transfected with either original or mutated promoter-reporter construct and treated with resveratrol or the endogenous ER ligand 17- β estradiol in the presence and absence of fulvestrant. Resveratrol and 17- β estradiol both reduced reporter gene expression from both promoter reporter constructs and in all cases responses were attenuated by fulvestrant, indicating that effects of neither compound, although mediated through the ER, are on the specific sequences region we identified and replaced.

In conclusion, these data indicate that resveratrol reduces histone expression in both intestinal and breast cancer cells through an ER-mediated mechanism acting at the level of transcription and that this effect may oppose an accumulation of histone proteins (observed in mouse small intestine) that accompanies ageing. With respect to effects on gene expression, resveratrol was found to mimic some effects of dietary restriction but appeared to act through a mechanism independent of Sirt1.

Abbreviations

A260	Absorbance reading at 260nm
ac	Acetylation
Acetyl-CoA	Acetyl-coenzyme A
ar	Ribosylation
bp	Base pair
BSA	Bovine serum albumin
BSA	Bovine serum albumin
Caco-2	Colonic adenocarcinoma
cDNA	copy DNA
DMEM	Dulbecco`s modified Eagle medium
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DR	Dietary restriction
E2	estrogen
EDTA	Ethylenediaminetetraacetic acid
ER	Estrogen receptor
ERE	Estrogen response element
ERα	Estrogen receptor alpha
ERβ	Estrogen receptor beta
FCS	Foetal calf serum

FOXO	Forkhead transcription factor
GSH	Tripeptide glutathione
Н	Histone
H_2O_2	Hydrogen peroxide
HDAC	Histone deacetylase enzyme
HO.	Hydroxyl radical
IGF	Insulin like growth factor
IMEM	Improved minimal essential medium
ISS	Insulin/insulin-like growth factor signalling
K	Lysine
LDL	Low density lipoprotein
LSD1	Lysine specific demethylase 1
me	Methylation
NAD	Nicotinamide adenine dinucleotide
NEAA	Nonessential amino acids
O_2^-	superoxide
PARP	Poly-ADP ribose polymers
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PFP	Percentage of false positives
PGC-1a	PPAR-gamma coactivator 1 alpha
ph	Phosphorylation
PVDF	Polyvinylidene difluoride

R	Arginine
RNA	Ribonucleic acid
S	Serine
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SEM	Standard error of the mean
SIR	Silent information regulator
SOD	Superoxide dismutase
Т	Threonine
ub	Ubiquitination
UV	Ultraviolet
αERKO	Estrogen receptor alpha knockout mice
αβERKO	Estrogen receptor alpha and beta knockout mice
βERKO	Estrogen receptor beta knockout mice

Contents

Abstract	Ι
Abbreviations	II
Contents	V
List of figures	XI
List of tables	XIV
1 Introduction	1
1.1 Resveratrol	1
1.1.1 Sources of resveratrol	2
1.1.2 The structure of resveratrol	2
1.1.3 Resveratrol bioavailability and metabolism	5
1.1.4 Resveratrol toxicity	6
1.1.5 Biological effects of resveratrol	7
1.1.5.1 Resveratrol as an antioxidant	8
1.1.5.2 Resveratrol as a phytoestrogen	9
1.1.5.3 Resveratrol and age-related diseases	12
1.1.5.3.1 Resveratrol as an anti-cancer factor	12
1.1.5.3.2 Resveratrol as an anti-cardiovascular disease factor	15
1.1.5.4 Resveratrol and longevity	16
1.2 Estrogen receptors	17
1.2.1 Estrogen receptor structure	18
1.2.2 Tissue distribution of estrogen receptor	19
1.2.3 Estrogen receptor activation and action	19

1.2.3.1 Genomic pathway	20
1.2.3.2 Nongenomic pathway	20
1.2.4 Estrogen receptors and reproduction	20
1.2.5 Estrogen receptors and ageing	21
1.2.6 Estrogen receptors and obesity	22
1.2.7 Estrogen receptors and cancer	23
1.3 Chromatin and histone proteins	23
1.3.1 Histone protein features	25
1.3.1.1 Histone genes	25
1.3.1.2 Regulation of histone gene expression	26
1.3.2 Histone modification	27
1.3.2.1 Histone acetylation	28
1.3.2.2 Histone methylation	29
1.3.2.3 Histone phosphorylation	31
1.3.2.4 Histone ubiquitinylation	32
1.3.2.5 Histone SUMOylation	33
1.3.2.6 Histone ADP- ribosylation	34
1.3.3 Epigenetic modification	36
1.4 Sirtuins, focusing on Sirt1	38
1.4.1 Sirt1 and insulin/ IGF signalling	39
1.4.2 Sirt1 and dietary restriction (DR)	40
1.5 Hypothesis	43
1.6 Objectives of the study	44
Materials and Methods	45

2

2.1	1 Cell culture		45
	2.1.1	Growth and maintenance of cells	45
	2.1.2	Cell counting	46
	2.1.3	Cell treatment	46
	2.1.4	Preparation of cell lysate	47
	2.1.5	Determination of protein concentration	47
2.2	Extra	ction of histone proteins from mouse intestine	47
2.3	Huma	an colonic tissue samples	48
2.4	West	ern blot analysis	48
	2.4.1	Antibodies	48
	2.4.2	Protein sample preparation	49
	2.4.3	Gel preparation	49
	2.4.4	SDS polyacrylamide gel electrophoresis and transfer of protein to	
		a solid support membrane	49
	2.4.5	Probing membrane with antibodies and signal detection	50
	2.4.6	Probing membranes with antibody to a reference protein	50
	2.4.7	Colloidal blue staining of protein gels	51
	2.4.8	Band quantification by densitometry	51
	2.4.9	Data analysis	51
2.5	RNA r	nicroarray and bioinformatics analysis	52
	2.5.1	RNA extraction and purification	52
	2.5.2	Determination of RNA concentration and purity	53
	2.5.3	Determination of RNA stability using the Agilent 2100 bioanalyser	53
	2.5.4	Gene expression profiling	54

2.5.5 Analysis of microarray data	54
2.5.6 Gene identifier conversion	54
2.5.7 Gene list intersections	55
2.5.8 Statistical analysis of gene list intersections	55
2.6 Gene expression analysis	56
2.6.1 Design of PCR primers	56
2.6.2 RNA extraction	56
2.6.3 Determination of RNA concentration and purity	56
2.6.4 DNase treatment of RNA	56
2.6.5 Reverse transcription	57
2.6.6 Polymerase chain reaction (PCR)	57
2.6.7 Agarose gel electrophoresis	58
2.7 Generation and manipulation of DNA plasmid constructs	59
2.7.1 Determination of gene promoter sequence	59
2.7.2 Polymerase chain reaction (PCR)	59
2.7.3 Cloning of PCR products into pBlue-TOPO	60
2.7.4 Plasmid DNA preparation	60
2.7.5 Digestion of plasmid DNA with restriction endonucleases	60
2.7.6 DNA sequencing	61
2.8 Mutagenesis of promoter-reporter plasmid constructs	61
2.9 Transient transfection of mammalian cells	62
2.10 Reporter gene assays	63
2.10.1 Preparation of whole cell lysate	63
2.10.2 Determination of protein concentration	63

		2.10.3 β-galactosidase reporter assays	63
		2.10.4 Data analysis	64
	2.11	Antibodies and Oligonucleotide	65
3	The ef	fect of resveratrol on histone expression	67
	3.1	Introduction	67
	3.2	Effect of resveratrol on histone expression in Caco-2 and MCF-7 cell lines	69
	3.3	The effect of age on histone expression	72
	3.3.1	The effect of age on histone expression in mouse intestine	72
	3.3.2	The effect of age on histone expression in human intestine	74
	3.4	Discussion	76
4	Globa	l effects of resveratrol on gene expression	80
	4.1	Introduction	80
	4.2	The effect of resveratrol on global gene expression in Caco-2 and MCF-7	
		cell lines	81
	4.3	The intersections between lists of genes responding to dietary restriction	
		(DR) and genes affected by resveratrol treatment	93
	4.4	The intersections between lists of genes affected by resveratrol treatment	
		and genes affected by Sirt1 knockdown	96
	4.5	Occurrence of the ERE in the promoter region of genes affected by	
		resveratrol	96
	4.6 D	iscussion	99
5	The m	echanism of action of resveratrol	105
	5.1	Introduction	105
	5.2	Effect of resveratrol on histone expression in cells with different ER status	

		in the presence and absence of the ER antagonist fulvestrant	105
	5.2.1	Confirmation of the ER status of Caco-2 and MCF-7cells	106
	5.2.2	Effects of resveratrol in the presence and absence of fulvestrant on histone	
		protein expression on Caco-2 and MCF-7 cells	107
	5.3	The effect of resveratrol and ER antagonist fulvestrant on the activity of a	
		histone H3 promoter-reporter construct in Caco-2 cells	110
	5.4	Investigation of the role of EREs in resveratrol-mediated effects on	
		histone H3 gene transcription	115
	5.5	The effect of $17-\beta$ estradiol and the ER antagonist fulvestrant on the	
		activity of a histone H3 promoter-reporter construct in Caco-2 cells	123
	5.6	Discussion	126
6	Discu	ssion and conclusion	131
Re	ference	s	137
Appendix A: Genes affected by resveratrol treatment in Caco-2 cells		174	
Appendix B: Genes affected by resveratrol treatment in MCF-7 cells		186	
Ap	pendix	C: Genes affected by Sirt1 knokdown in Caco-2 cells	194
Appendix D: Genes affected by dietary restriction		197	
Appendix E: genes converted into ensemble identifier in Caco-2 and MCF-7 cells 2			213

List of figures

Figure 1.1	The photo- isomerisation of trans- resveratrol into cis-	
	resveratrol	3
Figure 1.2	Chemical structures of selected phytoestrogens and 17ßestradol	11
Figure 1.3	Estrogen receptor structure	19
Figure 1.4	Chromatin structure	24
Figure 1.5	Histone modifications	35
Figure 1.6	DNA methylation mechanism	37
Figure 1.7	The enzymatic activities of sirturins	42
Figure 1.8	Diagrammatic representation of the hypothesis.	43
Figure 3.1	The effect of resveratrol (+) on histone 4 (H4) acetylation and	
	H4 expression in the Caco-2 cell line	68
Figure 3.2	The effect of resveratrol (REV) on the level of histone	
	expression in the MCF-7 cell line	70
Figure 3.3	The effect of resveratrol (REV) on the level of histone	
	expression in the Caco-2 cell line	71
Figure 3.4	The effect of age on histone expression in mouse intestine	73
Figure 3.5	The effect of age on histone expression in human colon	
	biopsies	75
Figure 4.1	The effect of resveratrol (REV) on histone protein expression in	
	Caco-2 and MCF-7 cells	83
Figure 4.2	Analysis of RNA integrity using the Agilent 2100 bioanalyser	85
Figure 4.3	Intersections between lists of genes affected by resveratrol	

	treatment in Caco-2 and MCF-7 cell lines and genes responding	
	to dietary restriction (DR)	94
Figure 4.4	Intersections between lists of genes affected by resveratrol	
	treatment in Caco-2 and MCF-7 cell lines and genes affected by	
	knockdown of Sirt1 expression in Caco-2 cells	97
Figure 5.1	The expression of estrogen receptors $ER\alpha$ and $ER\beta$ in MCF-7	
	and Caco-2 cell lines	106
Figure 5.2	The effect of resveratrol on histone expression in MCF-7 cells	
	in the presence and absence of an ER antagonist	108
Figure 5.3	The effect of resveratrol on histone expression in Caco-2 cell	
	line in the presence and absence of an ER antagonist	109
Figure 5.4	The histone H3 promoter region sequence and related primers.	111
Figure 5.5	Agarose gel electrophoresis of human histone H3 promoter	
	PCR products	112
Figure 5.6	Alignment of sequence data generated from the histone H3	
	promoter-reporter construct (bottom line, lower case) with the	
	required sequence	113
Figure 5.7	The effect of resveratrol and the ER antagonist fulvestrant on	
	the activity of a histone H3 promoter-reporter construct in	
	Caco-2 cells	114
Figure 5.8	The histone H3 promoter region sequence and related primers	
	used to introduce mutations at sites with ERE consensus	
	sequences	117
Figure 5.9	Agarose gel electrophoresis of PCR products at stages in the	

	procedure used to obtain a histone H3 promoter-reporter	
	incorporating with mutations at three identified sites with ERE	
	consensus sequence	118
Figure 5.10	Agarose gel electrophoresis of restriction digest by HindiIII of	
	recombinant plasmids to screen for those containing the H3	
	promoter sequence	120
Figure 5.11	Alignment of sequence data generated from the histone H3	
	promoter-reporter construct in which ERE sequences were	
	mutated (bottom line, lower case) with the required sequence	121
Figure 5.12	The effect of resveratrol and the ER antagonist fulvestrant on	
	the activity of an H3 promoter-reporter construct in which three	
	identified ERE sequences were mutated in Caco-2 cells	122
Figure 5.13	The effect of 17- β estradiol, resveratrol and the ER antagonist	
	fulvestrant on the activity of a histone H3 promoter-reporter	
	construct in Caco-2 cells	124
Figure 5.14	The effect of $17-\beta$ estradiol, resveratrol and ER antagonist	
	fulvestrant on the activity of an H3 promoter-reporter construct	
	in which three identified ERE sequences were mutated in Caco-	
	2 cells	125

List of table

Table 1.1	The concentration of resveratrol in natural foods	4
Table1.2	List of sirtuin genes that expressed in several species, their	
	localisation in intracellular and their enzyme activities	41
Table 2.1	Antibodies	65
Table 2.2	Oligonucleotide	65
Table 4.1	Genes upregulated in the Caco-2 cell line after treatment with	
	resveratrol	86
Table 4.2	Genes down regulated in the Caco-2 cell line after treatment	
	with resveratrol	87
Table 4.3	Pathways affected by resveratrol treatment in the Caco-2 cell	
	line	89
Table 4.4	Genes upregulated in the MCF-7 cell line after treatment with	
	resveratrol	90
Table 4.5	Genes downregulated in the MCF-7 cell line after treatment	
	with resveratrol	91
Table 4.6	Pathways affected by resveratrol treatment in the MCF-7 cell	
	line	92
Table 4.7	List of genes affected resveratrol treatment and DR in Caco-2	
	and MCF-7 cell lines	95
Table 4.8	Genes affected by knockdown of Sirt1 expression and	
	resveratrol treatment in Caco-2 and MCF-7 cell lines	98

1. Introduction

The thesis is concerned with the activity of the compound resveratrol, particularly with respect to its potential epigenetic effects relating to its ability mimic aspects of the beneficial effect of dietary restriction on lifespan. The properties of resveratrol will be considered in detail then the concept of longevity in response to dietary restriction will be introduced and a summary of epigenetic modification will be presented before outlining the specific aims of the thesis.

1.1 Resveratrol

Resveratrol (trans 3, 5, 4-trihydroxy-stilbene), a polyphenol that is present in red grapes and their product red wine, has been demonstrated to have a wide variety of potential health benefits. Several studies have documented its role as an antiinflammatory (Gentilli et al., 2001, Donnelly et al., 2004), anti-coaggulative (Pace-Aseiak, 1995, Kirk et al., 2000) and anti-oxidative (Miller et al., 1995, de la Lastra and Villegas, 2007) agent. As an anti-cancer agent, resveratrol has been shown to inhibit tumour cell proliferation during three stages of cancer: initiation, promotion and progression. Moreover, it appears to induce the apoptotic death pathway in several types of tumour (Chang et al., 2000; Fulda and Debatin, 2004, Rayalam et al., 2008). Recently, resveratrol has received particular interest as a result of its ability to promote longevity in mammals and in lower organisms, which may be by stimulating the NAD (+) dependent deacytlases Sirt1 and Sir2 respectively, although this view is the subject of recent vigorous challenge (Pacholec et al., 2010). These proteins deacetylate a large number of substrates including histones, and have an important role in the regulation of gene expression, fatty acid metabolism (Picard et al., 2005) cell cycle progression, and lifespan extension (Cohen et al., 2004).

The mechanisms by which resveratrol induces these biological effects are not understood fully. Resveratrol has a structure similar to that of known phytoestrogens so may mediate some of its action through its interaction with estrogen receptors ER α and/or ER β . Some studies have reported that resveratrol may act as an ER agonist in the MCF-7 breast cancer cell line (Gehm *et al.*, 1997; Gehm *et al.*, 2004). In contrast, other studies documented apparent ER antagonist action in the same cell line (Kim *et al.*, 2004).

1.1.1 Sources of resveratrol

The main dietary sources of resveratrol include fruits (e.g grapes, lingberry, cranberry, jackfruit) and also peanuts. In the plant, resveratrol is also synthesised in flowers and leaves (e.g in gentum, scots pine, spruce, and butterfly orchid tree). The activity of stilbene synthase, the enzyme responsible for resveratrol synthesis, can be induced within few hours` of exposure to ultraviolet (UV) radiation, mold invasion, injury or fungal infection, with the intensity and/or duration of the challenge being related to the concentration of resveratrol in the plant (Fremont, 2000). Resveratrol occurs in different types of wine at concentrations dependent on the time of fermentation (Siemann and Creasey, 1992). Table 1.1 summarises the concentration of resveratrol found in some food sources (Mukherjee *et al.*, 2010).

1.1.2 The structure of resveratrol

Structurally, resveratrol consists of two aromatic rings connected by a styrene double bond. There are two isomers of resveratrol: *cis* and *trans*, and the *trans* isomer appears to have greater biological activity than the *cis* form (Basly *et al.*, 2000). The

trans isomer is pH and light sensitive (Trela *et al.*, 1996), and can photo-isomerise to the *cis*-form when exposed to UV (Figure 1.1) (Soleas *et al.*, 1997).

Figure 1.1: The photo- isomerisation of trans- resveratrol into cis- resveratrol

Table 1.1: The concentration of resveratrol in natural foods. Adapted from(Mukherjee et al., 2010). The data were collected from different studies, thusdifferent units of concentration are stated.

Source	Resveratrol concentration	
100% Natural peanut butter	~0.65 µg/g	
Bilberries	~16 ng/g	
Blueberries	~32 ng/g	
Boiled peanuts	~5.1 µg/g	
Cranberry raw juice	~0.2 mg/L	
Dry grape skin	~24.06 µg/g	
Grapes	0.16–3.54 μg/g	
Peanut butter	0.3–1.4 µg/g	
Peanuts	0.02–1.92 µg/g	
Pistachios	0.09–1.67 μg/g	
Ports and sherries	<0.1 mg/L	
Ref grape juice	~0.50 mg/L	
Red wines	0.1–14.3 mg/L	
Roasted peanuts	~0.055 µg/g	
White grape juice	~0.05 mg/L	
White wines	<0.1–2.1 mg/L	

1.1.3 Resveratrol bioavailability and metabolism

Several studies, *in vivo* as well as *in vitro*, report that resveratrol is absorbed rapidly and metabolised by the small intestine. *In vitro*, Kaldas and colleagues (2002) measured the transport and metabolism of 5-40 μ M resveratrol by the human intestinal Caco-2 epithelial cell line, cultured in transwells. They documented that, for all concentrations of resveratrol, transcellular absorption occurred and this absorption appeared to be concentration-dependent. Furthermore, the metabolism of resveratrol was investigated by incubating a high concentration (100 μ M) of resveratrol with Caco-2 cells for 6 hours. Under these conditions resveratrol was converted into two types of conjugates: a glucuronidated conjugate (*trans*-resveratrol-3-O-glucuronide) and a sulphated conjugate (*trans*-resveratrol-3-sulfate). Under conditions where resveratrol was at physiological concentrations, sulphate conjugation was greater than glucuronidation. On the other hand, at higher concentrations of resveratrol glucuronidation became more predominant.

In studies *in vivo*, the highest plasma concentration of resveratrol metabolites [sulphate (13 μ M); and glucuronide (5 μ M)] was recorded in the first 15 minutes after oral administration of resveratrol (20 mg/kg of body weight) to mice. In contrast, only traces of free resveratrol were detected (Yu *et al.*, 2002). These results indicate that the bioavailability of free resveratrol in plasma is very low and approximates zero soon after ingestion.

In studies in humans, the highest concentration of resveratrol metabolites $(2\mu M)$ was detected within 60 minutes after oral administration of resveratrol at 25 mg to six healthy men and woman. In contrast, only traces of free resveratrol were observed indicating rapid metabolism and clearance (Waller *et al*, 2004). In a second study, oral

administration of 25 mg resveratrol per 70 kg of body weight in different foods to 12 healthy men resulted in the highest plasma concentration of resveratrol and metabolites being observed 30 minutes after administration (Goldberg *et al.*, 2003). In another study, the bioavailability of resveratrol in wine appeared not to differ when it was consumed on an empty stomach or with a meal, challenging the idea that food matrix influences resveratrol bioavailability (Vitaglione *et al.*, 2005).

Contrasting with intestinal absorption, buccal delivery was reported as a route through which free resveratrol was bioavailable. When 1mg/ml of resveratrol in 50 ml solution was held in the mouth, a peak of unconjugated resveratrol (37 ng/ml) was detected after two minutes (Asensi *et al.*, 2002).

The transport of resveratrol across the small intestinal epithelium is probably through a passive diffusion mechanism (Li *et al*, 2003). In contrast, the uptake of resveratrol in hepatic cells results from the contribution of two mechanisms, a passive diffusion mechanism and a carrier-mediated pathway (Lancon *et al*, 2004). The main pathway of resveratrol excretion is through urine (Boocock *et al.*, 2007).

1.1.4 Resveratrol toxicity

There is little information about resveratrol toxicity and its target organs. To date, a small number of studies have investigated the potential toxic effects of resveratrol in animals. Juan *et al.* (2002) documented that oral administration of resveratrol at 20 mg/kg of body weight to rats for 28 days resulted in no toxic effects except limited changes in serum liver enzymes. Furthermore, a single dose of 2000 mg/kg of body weight of resveratrol did not induce any signs of toxicity in the rat.

In a second study in rats, oral administration of resveratrol at 300, 1000, and 3000 mg/kg of body weight for 28 days resulted in signs of toxicity at 3000mg/kg only. These effects included reduced food consumption and loss of body weight, along with increased kidney weight and signs of nephrotoxicity including elevated serum blood urea nitrogen and creatinine concentrations, and changes in gross renal pathology. Early death was recorded in two male rats on day 24. In these two rats, microscopic investigation of the kidneys identified lesions that were the probable cause of early death. On the other hand, administration of 1000 or 300 mg/kg of resveratrol did not result in nephrotoxic symptoms. These finding identify the kidney as a target organ for toxicity caused by resveratrol at high doses (Crowell *et al.*, 2004).

1.1.5 Biological effects of resveratrol

Resveratrol is a plant antibiotic produced in large quantities in various plants in response to stress, injury or pathyogenic infection. Thus, resveratrol has an important role in the plant's defence system, mainly against fungi (Jeandet *et al.*, 1995; Zhan *et al.*, 2010). Traditionally, roots of *polygonum cuspdatum*, the richest sources of resveratrol, have been used in traditional Asian medicine to treat a wide range of diseases, including fungal infection, skin inflammation, and disease of the liver, heart, and blood vessels (Arichi *et al.*, 1982).

Numerous studies have reported resveratrol as being protective against cardiovascular disease, having anti-oxidant functions (Miller *et al.*, 1995; de Lastra and Villegas, 2007), anti-inflammatory action (Gentilli *et al.*, 2001), reducing blood-glucose, having estrogenic action (Deng *et al.*, 2008), and protecting against cancer (Shankar *et al.*, 2011).

The mechanisms by which resveratrol induces these biological effects are still unclear. A possible mechanism is that the pharmacological actions of resveratrol may result from its effect as antioxidant and/or its estrogenic properties (Gehm *et al.*, 1997, Runqing and Ginette, 1999). The potential roles of resveratrol as antioxidant factor and its property as phytoestrogen are discussed in section 1.1.5.1 and section 1.1.5.2 respectively.

1.1.5.1 Resveratrol as an antioxidant

As a consequence of metabolism in normal living cells, free radical molecules with unpaired electrons are formed. These compounds are considered to be highly reactive molecules that induce considerable damage to cell contents such as DNA and membranes (proteins and lipids). Furthermore, the presence of free radicals can generate highly reactive molecules known as reactive oxygen intermediates (ROI). These compounds contain an oxygen atom and include superoxide (O_2^{-}), the hydroxyl radical (OH·) and hydrogen peroxide (H_2O_2) (Pervaiz, 2003). Under normal physiological conditions, excessive accumulation of ROI is controlled by the cellular antioxidant defence system. This system comprises several enzymes including catalase and superoxide dismutase (SOD), along with the tripeptide glutathione (GSH) (Pervaiz, 2003; Vermerris, 2006).

A defect in the ability of cells to control the production of ROI results in their excessive accumulation, a state that leads to oxidative stress. Exposure of macromolecules such as lipids, proteins, and nucleic acids to ROI result in their deleterious oxidation. For example, the oxidative modification of low density lipoproteins (LDL) is associated with increased the incidence of cardiovascular diseases such as atherosclerosis. The oxidized form of LDL attaches strongly to a non-regulated scavenger receptor system causing LDL to accumulate excessively in monocytic subendothelial cells (Pervaiz, 2003).

In laboratory studies, antioxidant action of resveratrol has been reported in various pathways. Firstly, resveratrol inhibited oxidation of polyunsaturated fatty acids found in LDL. This inhibitory effect results from the ability of resveratrol to prevent coppercatalyzed oxidation (LDL has a high affinity for copper) (Frémont *et al.*, 1999). Secondly, resveratrol has been reported to inhibit the membrane lipid peroxidation by reducing the toxicity of the ROI in living cells. In *in vitro*, administration of resveratrol to rat adrenal pheochromocytoma cells (PC12) which had been exposed to ethanol-induced oxidation, resulted in protection against cell death (Sun *et al.*, 1997; Chan and Chang, 2006). This effect results from the ability of resveratrol has been shown to have an inhibitory effect on oxidised lipoproteins. Furthermore, resveratrol has been shown to (Draczynska-Lusiak *et al.*, 1998; Zhang *et al.*, 2010).

1.1.5.2 Resveratrol as a phytoestrogen

Phytoestrogens are "nonsteroidal compounds of plant origin that can bind to estrogen receptors as agonists and consequently mimic biological actions of endogeneous estrogens" (Grynkiewicz and Opolski, 2005). These compounds have a chemical structure similar to 17β -estradiol (Kuiper *et al.*, 1997), and have an ability to bind to estrogen receptors (ER) to induce estrogenic and/or antiestrogenic effects (Gehm *et al*, 1997, Bowers *et al*, 2000). Although the affinities of these compounds for the ER are at least 1000-10,000 times lower than estradiol, they are unquestionably able to induce endocrine effects. For example, phytoestrogens have been reported to have

beneficial effects on the cardiovascular system, relieve menopausal symptoms, and decrease the risk of breast cancer and osteoporosis. Furthermore, phytoestrogens have been reported to decrease cholesterol levels without inducing hypertriglyceridemia. These data indicate that phytoestrogens, including resveratrol, may be an alternative hormone therapy for postmenopausal women (Wuttke *et al*, 2003, Beck *et al*, 2005).

Resveratrol has been reported to bind to ER α and ER β , with high affinity to ER β (Bowers *et al.*, 2000). Resveratrol has been shown to have a mixture of agonist and antagonist effects at ERs. For example, resveratrol has been shown to have agonist activity when it binds with ER α . In *in vivo* studies, resveratrol treatment of strokeprone spontaneously hypertensive rats demonstrated an estrogen-like effect, resulting in endothelium-dependent vascular relaxation induced by acetylcholine, and protection from a reduction in strength of the femoral bone caused by ovariectomy (Bhat *et al.*, 2001). However, in this study it was not possible to dissociate effects mediated through ER α with those mediated through ER β . Furthermore, treatment of MCF-7 cells with resveratrol stimulated gene expression and promoted cell proliferation (Gehm *et al.*, 1997; Gehm *et al.*, 2004) in a manner similar to estrogen. In contrast, an antagonist effect that contrasts with the response to estrogen has been observed. For example, Kim *et al.* (2004) reported that treatment of the MCF-7 cell line with resveratrol resulted in inhibition of cell growth.

Figure 1.2: Chemical structures of selected phytoestrogens and 17 β estradol. Adapted from (Rice and Whitehead, 2006)

1.1.5.3 Resveratrol and age-related diseases

Several studies have demonstrated that resveratrol may be able to play a role in reducing the incidence of age-related disease such as cardiovascular disease (Petrovski and Gurusemy, 2011) and cancer (Sun et al., 2006, Raylam *et al.*, 2008; Dhar *et al.*, 2011), as well as Alzheimer disease (Karuppagounder, 2008; Vingtdeux *et al.*, 2008). The potential roles of resveratrol in delaying common age-related diseases are discussed in the following sections.

1.1.5.3.1 Resveratrol as an anti-cancer factor

Carcinogenesis is a process that involves unlimited growth of the cells such that the tumour expands locally by invasion and spreads systemically by metastasis. The carcinogenesis process consists of three different phases: initiation, promotion and progression. The first phase, initiation, involves a mutation of DNA in normal cells. Mutations may be induced by exposure to procarcinogenic agents such as polycyclic aromatic hydrocarbone (PAH), or nitrosamines (Grynkiewicz and Opolski, 2005). The second stage is promotion, which results from expression of the mutated DNA. Proliferation of the initiated cell results, followed by further progression through the carcinogenesis pathway. The third phase is advancement and invasion. This stage is associated with the growth of the initiated cells into a biologically malignant tissue. True cancer develops in this stage, when a portion of the tumour cells is transformed into malignant forms. In this case chemopreventive intervention is ineffective due to the advanced state of the tumour. In the final stage of invasion, tumour cells can invade the other tissues that are distant from their original site to start new clones of growth (Grynkiewicz and Opolski, 2005).

Resveratrol, as anti-cancer agent, has been shown to inhibit tumour cell proliferation during all three stages of cancer- initiation, promotion and progression- in several types of tumour including breast cancer, prostate cancer (Fang *et al.*, 2012), colon cancer and pancreatic cancer (Shanker *et al.*, 2011). Studies *in vivo* using animal models, recorded that the oral administration of resveratrol inhibited the development of different types of tumours including espophageal cancer (Li *et al.*, 2002), intestinal cancer (Tessitone *et al.*, 2000) and breast cancer (Bhat *et al.*, 2001; Banerjee *et al.*, 2002). Furthermore, oral administration of resveratrol has been reported to protect against colon cancer in rats exposed to carcinogenic compounds such as 1,2dimethylhydrazine (Sengottuvelan *et al.*, 2006 a; Sengottuvelan *et al.*, 2006 b).

There are several mechanisms by which resveratrol may suppress the cancer process. For example, resveratrol may suppress the initiation stage of tumorigenesis by inhibiting the phase I cytochrome P450 enzymes such as CYP1A1, CYP1B1, which are overexpressed in various human tumours including breast cancer, lung, liver and colon cancer (Chang *et al.*, 2000; Chan and Delucchi, 2000). Oxidation by these enzymes involves either unmasking or adding a polar group such as hydroxyl (-OH), amino (-NH2) or sulphydryl (-SH) to promote degradation and elimination of xenobiotics (pro-carcinogens and drugs) by making them water-soluble (Sheweita and Tilmisany, 2003; Jancova *et al.*, 2010).

Moreover, resveratrol can stimulate phase II drug metabolising enzymes such as glutathione S-transferase, UDP-glucuronosyl transferase, and menadione oxido-reductase, which have a fundamental role in reducing DNA damage (Savouret and Quesne, 2002). Conjugation by these phase-II enzymes with large polar groups such

as glucuronide, glutathione or sulphate plays a critical role in increasing solubility and clearance (Sheweita and Tilmisany, 2003; Jancova *et al.*, 2010).

Depending on the relative carcinogenicity of the parent molecule and metabolite, phase- I and II enzyme action may either be beneficial or detrimental with respect to cancers-protection, hence inhibition by resveratrol may equally be of benefit or harm. Effective action of these enzymes may have a protective effect as a result of catalysing the conversion of carcinogenic xenobiotics compounds to less active and/or more rapidly eliminated metabolites (Sheweita and Tilmisany, 2003). However, other actions of these enzyme families can convert pro-carcinogens to carcinogens, thus the interactions are complex.

A third mechanism through which resveratrol can be chemopreventive is by stimulation of DNA repair systems. Excessive exposure to UV irradiation and xenobiotics is associated with DNA damage. Failure of cellular system to repair this damage leads to carcinogenesis. For protecting cellular DNA against the effects of mutational damage, several genes such as p53 survey the genome for damage and / or to repair this damage.

P53, a tumor suppressor protein, has many biological functions including cell-cycle regulation, DNA damage repair, induction of apoptosis, development, differentiation, and cellular senescence (Bai and Zhu, 2006). As a tumor suppressor, p53 is essential in protecting DNA against mutagenic damage in addition to its role in preventing inappropriate cell growth. DNA damage has been reported to activate p53 through a mechanism depending on phosphorylation at Ser 15 (She *et al.*, 2001). This activation of p53 promotes the transcriptional activity of several genes involved in the DNA repair system and induces cell cycle arrest in the G1, G2 and S phases to provide

additional time for the cell to repair DNA damage (Bai and Zhu, 2006; She *et al.*, 2001). Mutation or loss function of the p53 gene has been shown to increased susceptibility to cancer by 50% (Olivier *et al.*, 2010).

Resveratrol is able to stimulate DNA repair by increasing the activity of p53 in various cell lines. Resveratrol also inhibits tumour promotion by modulation of the cell cycle and by the induction of apoptosis (Benitez *et al.*, 2006). Resveratrol may also induce apoptosis by activating MAP kinases such as ERKs and p38 kinase, which play essential roles in stimulating p53 phosphorylation at Ser 15 (She *et al.*, 2001).

1.1.5.3.2 Resveratrol as an anti-cardiovascular disease factor

The protective role of resveratrol against coronary disease appears to result from several features of its activity. Firstly, resveratrol has been documented to reduce the production of nitric oxide (NO) from vascular endothelium, which is involved in the inflammatory responses (Tsai *et al.*, 1999, Donnelly *et al.*, 2004). Increased levels of NO can induce vascular damage, which is increased by development of atheromatous plaques (Orsini *et al.*, 1997). Secondly, a potential effect of resveratrol is to inhibit oxidation of LDL, which plays a critical role in atherosclerosis (Fan *et al.*, 2008). Thirdly, resveratrol has been shown to inhibit platelet aggregation, a critical factor associated with atherosclerosis process (Olas *et al.*, 2001, Fraczek *et al.*, 2012). This process of thrombus formation is induced when platelets attach to the endothelial surface of blood vessels. This aggregation of platelets sets into motion the process of vascular occlusion. A dose-dependent decline in platelet aggregation has been

against coronary artery disease. This effect has been associated with the ability of resveratrol to suppress eicosanoid synthesis (Fremont, 2000, Stocco *et al.*, 2012).

1.1.5.4 Resveratrol and longevity

Dietary restriction is known to delay the aging process in short- lived organisms including yeast, flies, worms and mice. Ongoing studies in primates, including humans, are indicating that dietary restriction induces metabolic and physiological changes consistent with longevity in these longer-lived organisms also (Messaoudi et al, 2006). A possible mechanism through which dietary restriction may enhance longevity - additional to protection against specific age-related diseases- includes reduced generation of free radical molecules by mitochondria that cause oxidative damage of macromolecules (protein, lipid, and DNA). Moreover, dietary restriction (DR) has been reported to improve body energy efficiency by inducing the biogenesis of mitochondria that produce fewer free radical molecules and consume less oxygen (Civitarese et al., 2007). In vivo, DR has been demonstrated to increase the size of the T-cell population, which has an important role in protecting against infection and cancer, in both mice and rhesus monkeys (Messaoudi et al, 2006). In rhesus monkeys, DR delayed the incidence of age-related diseases, decreased body weight, improved immune functions, decreased the level of lipid in blood, and reduced blood pressure, but an effect to prolong life was not observed (Mattison et al., 2003, Mattison et al., 2012)

Resveratrol has been reported to mimic to DR and extend lifespan in diverse species (Howitz *et al.*, 2003; Wood *et al*, 2004; Baur *et al.*, 2006) through mechanisms that

may be dependent on activation of Sirt1 (Baur et al., 2006). A further overview of Sirt1 function and its possible role in the response to DR is provided in section 1.4. In lower organisms, such as the yeast Saccharomyces cerevisiae, resveratrol significantly increased life span through a mechanism dependent on Sirt1 (Howitz et al., 2003). Resveratrol was also reported to promote extended lifespan in worms, fruit flies (Wood et al., 2004; Bass et al., 2007) and vertebrate fish (Valenzano et al., 2006) by similar mechanisms. In mammals, resveratrol mimics effects of dietary restriction in improving health. Effects of resveratrol consistent with lifespan extension include reduced insulin-like growth factor-1 (IGF-I) levels, increased insulin sensitivity, increased mitochondrial number, and improved motor function. In mice, resveratrol was reported to oppose the effects of a high-fat diet (Baur et al., 2006; Lagouge et al., 2006; Brasnyo et al., 2011) and long term consumption of low doses (4.9 mg/kg/day) induced expression of genes in brain, skeletal muscle and heart in pattern similar to DR (Barger et al, 2008a; Barger et al, 2008b). For example, uncoupling protein 3 (upc3) increased in response to DR (2.8 fold, P=0.01) and resveratrol (2 fold, P=0.018) treatment. Chromodomain-helicase-DNA-binding protein 1 (CHD1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A) were also increased with both DR and resveratrol treatment. Sirt5 was significantly decreased in response to DR and resveratrol treatment (Barger et al, 2008a; Barger et al, 2008b).

1.2 Estrogen receptors

Estrogen receptors are ligand-activated transcription factors belong to the large superfamily of receptors known as nuclear receptors located inside the target cells of estrogen action. There are two functional forms of estrogen receptors, ER α and ER β , which are encoded by different genes located on separate chromosomes. The ER α

gene (*ESR1*) is located on chromosome 6q25.1, whereas the ER β gene (*ESR2*) is located on chromosome 14q23.2 (Li, 2003). These receptors mediate the biological functions of the hormone 17- β estradiol. Although ER α and ER β bind with high affinity to the same ligand, they respond differently and induce opposite effects (Dahlman-Wright, 2006).

1.2.1 Estrogen receptor structure

Estrogen receptors are composed of six structural domains designed A through to F. The amino- terminal region, composing domain A and B, includes the transactivation region, known as activation function 1 (AF-1). This region is able to enhance transcription regulatory activity of the receptor in the absence of bound hormone (Felig *et al.*, 1995; Kong et al., 2003; Kumar, 2011). Also, the A/B domain contains a coregulator region, which allows coactivators and corepressors to bind and modulate the transcriptional activity of the ER. The DNA-binding domain, comprising to C region, has two zinc finger motifs that play an essential role to recognize and bind to specific sequences known as estrogen response elements (EREs) within the promoter of the target gene. The ER dimerization and hinge region, the D domain, is required for ER dimerization and also for binding to the ERE of the target gene. The E domain is the hormone binding domain and has a binding cavity for estrogen and is also binding site for agonist/antagonist compounds. The C-terminal domain – the F domain- also contains a transcriptional activation domain known as activation function 2 (AF-2), which is a ligand-dependent region (Kumar, 2011).

Structurally, ER α and ER β show a considerable homology in the DNA-binding domain (96%) and dimerization /ligand-binding domain (60%) but the A/B domain

and dimerization and hinge (D) domain are not well conserved between ER α and ER β (Figure 1.3) (Kumar, 2011).

Figure 1.3: Estrogen receptor structure. Estrogen receptors are composed of six structural domains: A and B domain, DNA binding domain (C), hinge domain (D), ligand binding domain (E), and F domain. ER α and ER β are homologous in the DNA-binding domain (96%) and ligand-binding domain (60%). Adapted from Akingbemi et al., 2005)

1.2.2 Tissue distribution of estrogen receptor

Estrogen receptors are expressed in many tissues. ER α and ER β have been detected in breast and ovarian tissues, heart, bone, urogenital tract and the hypothalamus (Yaghmaie *et al.*, 2005). The liver and the epithelium of the reproductive duct in male were reported to express ER α exclusion (Gustafsson, 1999, Hess, 2003). In contrast, only ER β was detected in the gastrointestinal tract (Langen *et al.*, 2011).

1.2.3 Estrogen receptor activation and action

Estrogen is a hydrophobic compound that is able to diffuse through the phospholipid membrane of the cell to bind and to activate intracellular ER. Two major mechanisms have been described to explain the action of the ligand-ER complex: the classic
pathway, known as the genomic pathway, and the nongenomic pathway (Kong *et al.*, 2003).

1.2.3.1 Genomic pathway

The genomic pathway, also known as the classical pathway, involves the direct binding of estrogen with the ER located in the cytoplasm. This binding can release the ER from heat shock proteins (HSPs). Subsequently, the ER-ligand complex migrates from the cytoplasm into the nucleus where homodimers form, then bind to the estrogen response element (ERE) in the DNA to activate gene transcription (Bjornstrom and Sjoberg, 2005; Mason *et al.*, 2010). Activation of this pathway involves interaction of ER-ligand complex with other transcription factors including nuclear factor-KappB 1 (NF-KappaB1), activator protein 1, and specific protein 1 (Sp-1) to influence gene transcription (Levin, 2005).

1.2.3.2 Nongenomic pathway

In addition to the ERs located in the nucleus and cytoplasm, it has been reported that some are associated with cell surface membrane and are rapidly activated by binding to estrogen. This binding stimulates various intracellular signaling cascades to recruit second messengers including physphatidylinosinol-3 kinase (PI3K) and mitogenactivated protein kinase (MAPKs), which regulate transcription of specific genes (Bjornstrom *et al.*, 2005).

1.2.4 Estrogen receptors and reproduction

Estrogen receptor knockout (KO) mice have revealed functions of the estrogen receptors. Estrogen receptor α knockout mice (α ERKO), estrogen receptor β

knockout mice (β ERKO) and estrogen receptors α and β knockout mice (α β ERKO) reveal further roles of the specific estrogen receptors (α and β). Uses of α ERKO mice demonstrated the role of $ER\alpha$ in sexual maturation and fertility. For example, female aERKO mice have estrogen insensitivity associated with defects in the reproductive tract, including hypergonadism and haemorrhagic (blood-filled) ovarian cysts, plus abnormality in pubertal mammary gland development. Males develop phenotypes including testicular degeneration, lack of spermatogenesis and inactive sperm. Consequently, both sexes of these mice are sterile and show severe defects in sexual behaviour (Emmen and Korach, 2003; Hewitt and Korach, 2003). With respect to reproductive function, lack of ER β has much more minor consequences, β ERKO female mice have compromised fertility, a reduction in the corpora lutea associated with defective follicle development and ovulation. Interestingly, these mice show normal reproductive behaviour, a normal response to the estrogen and normal mammary gland development. No effect was observed on the fertility and sexual behaviour of male mice (Korach, 1994). Taken together, these studies suggest that the action of ER α and ER β are independent and gender- specific.

1.2.5 Estrogen receptors and ageing

Various lines of evidence point towards a decline in ER expression with ageing, with ageing-related phenotypic consequences. For example, a study in humans using retinal tissue extracted from three females at 35, 49 and 74 years indicated that the expression of estrogen receptor ER α reduced with age, suggesting that alterations in estrogen receptor expression may be involved in pathologies associated with age, such as reduction of visual function, cataract, glaucoma, and dry eye (Ogueta *et al.*, 1999).

In female rats, the number of cells expressing estrogen receptor ER β in the brain nuclei (AVPV region) dramatically decreased in old animals (24-26 months) compared with young animals (3-4 months), whereas an age-related increase in the number of cells expressing ER α was observed. The AVPV region plays an important role in reproductive physiology and behaviour, suggesting the importance of ER β signalling in mediating reproductive behaviour (Chakraborty *et al.*, 2003). In a study with the aim to investigate the effect of age on estrogen receptor expression and whether or not this effect was opposed in response to DR, male rats (at 2-18 months old) were subjected to DR and estrogen receptor expression was measured in the testicular tissues. An age-related reduction in ER α and ER β was observed, which may explain the functional deficit of the testicular cells observed with age. In contrast, ER expression was maintained at higher levels under conditions of DR, indicative of a protective effect (Hamden *et al.*, 2008).

1.2.6 Estrogen receptors and obesity

A growing body of evidence using estrogen receptor knockout (KO) mouse models indicates that estrogen receptors may be involved in the regulation of fat deposition. Heine *et al* (2000) reported that knockout of ER α in mice was associated with different phenotypes including obesity, insulin resistance, increased plasma leptin and decreased plasma adiponectin associated with a reduction in energy expenditure. Recently, further study using ER α KO mice provided evidence for a contribution of ER α to the regulation of fat deposition and insulin resistance (Manrique *et al.*, 2012).

1.2.7 Estrogen receptors and cancer

Several studies have demonstrated that changes in estrogen receptor expression can be associated with cancer development in different tissues including breast (Dotzlaw *et al.*, 1999), ovarian (Rutherford *et al.*, 2000), and colon (Foley *et al.*, 2000) tissues.

In ER-positive cancer such as breast cancer, overexpression of estrogen receptor ER α and reduced expression of ER β has been reported, suggesting that the ratio of ER α : ER β may determine the susceptibility of the tissue to tumorgensis (Roodi *et al.*, 1995; Leygue et al., 1998; Iwao *et al.*, 2000).

Estrogen receptors have been identified as a target for cancer treatment using endocrine therapy, selective estrogen receptor modulators (SERMS) compounds with the ability to bind and to modulate estrogen receptor activity. These compounds include tamoxifen, which acts as an ER antagonist in breast cancer (Osborne, 1998, Sestak and Cuzick, 2012) and fulverstrant, which acts as a potential antagonist and promotes estrogen receptor degradation (Wakeling *et al.*, 2000, Buzdar, 2008; Larsen *et al.*, 2012).

1.3 Chromatin and histone proteins

In the nucleus of eukaryotic cells, DNA is packed as chromatin, consisting of repeated nucleosome unites. Typically, a nuclosome consists of genomic DNA (147 base pairs) wrapped around an octomer of the core histone proteins H2A, H2B, H3, and H4 (Figure 1.4) (Luger *et al.*, 1997, Izzo and Schneider, 2011). Chromatin exists in two major forms heterochromatin, which is transcriptionally silent, and euchromatin, which is transcriptionally active (Grewal and Moazed, 2003).

Figure 1.4: Chromatin structure. Adapted from (Sparmann and Lohuizen, 2006). In the nucleus of eukaryotic cells, DNA is wrapped around an octomer of the core histone proteins H2A, H2B, H3 and H4 to form a nuclosome. Repeated nucleosome unites are packed to form chromatin. Chromatin is then folded to form chromosomes.

1.3.1 Histone protein features

There are two types of histone proteins- core histone proteins- including H2A, H2B, H3 and H4, and a linker histone known as H1. These proteins are rich in the positively charged amino acids which bind tightly to the negative charge of DNA. Each of core histone proteins has a flexible N-terminal tail extending outward. In addition, histones H2A and H2B have a C-terminal tail that also extends outward from the nucleosome (Izzo and Schneider, 2011).

1.3.1.1 Histone genes

Several subtypes of each histone protein are encoded by different genes. These genes are divided, based on their expression, into three major groups: (1) replication-dependent histone genes, whose expression is tightly coupled with the S-phase of the cell cycle. In total, 58 histone genes have been identified as replication-dependent histone genes. These genes lack introns and encode an mRNA that lacks a poly (A) tail. (2) Replication- independent histone genes, which encode replacement histones. These variant histone proteins are synthesized from polyadenylated mRNAs that are expressed throughout the cell cycle and in non-dividing differentiated cells. (3) Genes expressed in specific tissues such as H1t and H3t genes, which are expressed in testicular tissues (Albig *et al.*, 1997; Marzluff *et al.*, 2002).

Approximately 80% of the histone genes are clustered on the short arm of chromosome 6 (6p21.3-22). Several genes encoding core histone proteins (H2a, H2b, H3 and H4) are clustered on long arm of chromosome 1 (1q21) (Albig *et al.*, 1997; Marzluff *et al.*, 2002).

1.3.1.2 Regulation of histone gene expression

The replication-dependent histone mRNAs are tightly cell-cycle regulated and their expression is dependent on the process of DNA replication. Three major pathways have been reported to regulate the levels of histone mRNAs synthesis during the cell cycle. The first pathway regulates histone mRNA transcription at G1/S phase transition. Histone gene transcription increases three to five fold during G1/S phase transition and then decreased to baseline level at the end of S phase (Marzluff and Duronio, 2002). The two remaining pathways regulate histone mRNA production at a posttranscriptional level. The first pathway of posttranscriptional regulation occurs in the cytoplasm to govern the half-life of histone mRNAs through their degradation when DNA synthesis is inhibited. For example, the half-life of histone mRNAs in Sphase dropped from 30-60 minutes to 10-15 minutes when chromosome replication is blocked with inhibitors of DNA chain elongation (Marzluff and Duronio, 2002; Gunjan et al., 2005). The second pathway of posttranscriptional regulation occurs in the nucleus to produce mature histone mRNA. Since histone genes lack introns, the formation of mature histone mRNA requires only one RNA- processing reaction, which involves an endonucleolytic cleavage to form the 3` end of the mRNA. This reaction is directed by a purine-rich sequence, termed the histone downstearm element, that is complementary to the 5[°] end of U7 snRNA. Additionally, the 3[°] end of the histone mRNA tail contains a stem-loop that interacts with a specific protein termed the stem-loop binding protein (SLBP). This protein participates in many steps of histone mRNA metabolism in both the nucleus and cytoplasm. SLBP remains associated with mature histone mRNA to form a complex to protect histone mRNA from degradation during S-phase. At the end of S-phase, the histone mRNA-SLBP

complex disassociates, allowing rapid degradation of both histone mRNA and SLBP (Marzluff and Duronio, 2002; Gunjan *et al.*, 2005).

Histone protein synthesis and DNA replication are considered to be interdependent process. For example, DNA replication is affected by the rate of histone protein synthesis. Overexpression of the HIRA protein, which represses transcription of all the replication-dependent histone genes, arrests cells in S-phase (Marzluff and Duronio, 2002; Gunjan *et al.*, 2005).

1.3.2 Histone modification

The core histone proteins and their tails (N-terminal and C-terminal) undergo a variety of post-translational modifications such as acetylation (ac) of lysine residues, methylation (me) of lysine and arginine residues, phosphorylation (ph) of serine, threonine and tyrosine (Y) residues, mono-ubiquitination (ub) of lysine residues, SUMOylation of lysine residues, and ADP-ribosylation (ar) of lysine residues (reviewed in Perterson, 2004). These modifications are highly specific, occurring in specific amino residues within specific histone proteins (Bartova *et al.*, 2008; Izzo and Schneider, 2011) and mostly occurring in amino terminal tails (Figure 1.5). Among these modifications of histone, histone acetylation is a highly dynamic process. Histone H3 and histone H4 proteins in particular are subject to extensive modifications (Cosgrove *et al.*, 2004).

Histone modifications play fundamental roles in gene expression, DNA repair, apoptosis, DNA replication and chromosome condensation (Cheung *et al.*, 2000). In

addition, histone acetylation and histone methylation are involved in epigenetic regulation of chromatin (Bartova *et al.*, 2009).

1.3.2.1 Histone acetylation

Histone acetylation is a highly dynamic process involving the addition of acetyl groups to lysine amino groups on the N-terminal tails of the core histones. This reaction is catalysed by histone acetyltransferases (HATs) and requires acetyl coenzyme A (acetyl co-A) as an acetyl group donor. Different lysine (K) residues are known to be targets for acetylation within histones. These sites are H3K9, H3K14, H3K18, H3K23, and H3K27 at histone H3 and H4K5, H4K8, H4K12, H4K16 at histone H4. In addition, H2AK5 at histone H2A and H2BK5, H2BK12, H2BK15 and H2BK20 at histone H2B are recognised to be acetylation sites (Bartova *et al.*, 2008). The hyperacetylation of lysine residues is associated with activation of gene expression by neutralising the positively charged lysine residues in the histone tails, which decreases their affinity for DNA. This process influences nuclosome unfolding and thereby facilities binding of transcription factors to the promoter of the target gene (Jacobson *et al.*, 2000).

Histone acetylation is a reversible process in which the acetyl group is removed from acetylated lysine residues by histone deacetylase enzymes (HDACs). These enzymes are subgroubed into three classes. Class I histone deacetylase enzymes comprise small proteins (377-488aa) and include HDAC-1, HDAC-2, HDAC-3 and HDAC-8 (Bjerling *et al.*, 2002). Class II HADCs are larger proteins (669-1215aa) and include HDAC-4, HDAC-5, HDAC-6, HDAC-7 and HDAC-9 (Fischle *et al.*, 2002). Class III HADCs are NAD-dependent proteins, and include the mammalian sirtuin (Sirt1-7)

family, and its homolog Sirt2 in yeast (Delage and Dashwood, 2008). Class I and class II histone deacetylases require zinc as a co-factor (Hernick and Fierke, 2005). Class III HADCs require one molecule of NAD+ for each acetyl group removed from the target protein (Blander and Guarenet, 2004). Generally, histone deacetylation has been associated with transcriptional repression.

Links between histone acetylation and ageing have been reported. For example there was a significant decrease in the level of histone H3 acetylation at K9 in liver in old (30 months) rats compared with young (15 months) rats (Kawakami *et al.*, 2009). Two possible mechanisms were suggested to explain this reduction of histone acetylation with age: (1) upregulation of Sirt 1, which catalyses the deacetylation of histone proteins and downregulates on of histone acetyltransferase with age, and (2) a histone turnover, where acetylated histone is replaced by newly synthesize protein (Kawakami *et al.*, 2009).

In contrast, a study in yeast reported an increase in the level of histone 4 acetylation (H4K16ac). This increase in histone acetylation was associated with a progressive decrease in the level of the Sir2 deacetylase protein with age (Dang *et al.*, 2009).

1.3.2.2 Histone methylation

Lysine, arginine, and histidine residues in the histone proteins can be substrates for methylation (Kouzarides, 2007). Lysine residues can be monomethylated, dimethylated or trimethylated (Sims *et al.*, 2003) with specific targets being H3K4, H3K9, H3K27, H3K36, H3K79 and H4K20 (Garcia *et al.*, 2004). Lysine methylation of histone proteins is site and state-specific and is catalyzed by lysine methyltransferases (KMT) (Dillon *et al.*, 2005). This process is reversed by histone

demethylase enzymes such as lysine specific demethylase 1 (LSD1), which is specific for mono-methylated and di-methylated residues (Shi *et al.*, 2004).

Arginine (R) residues can be mono-methylated or di-methylated. The reaction is catalysed by enzymes of the protein arginine methyl transferase family (PRMT). The reverse reaction is catalysed by peptidylarginine deiminase 4 (PAD4) (Cuthbert *et al.*, 2004; Wang *et al.*, 2004). Three sites are known to be targets for arginine methylation in histone H3 (R2, R17, and R26) whereas one site (R3) in H4 has been reported to be methylated (Izzo and Schneider, 2011).

Histone methylation plays essential role in the regulation of many biological processes such as, development, differentiation, cell-cycle, and DNA damage. The functions of histone methylation depend mainly on the methylation status and the genomic location. For example, For example, H3K9 methylation is associated with heterocromatin formation and euchromatic gene silencing, whereas, H3K27 methylation plays an essential role in HOX genes suppression and in X chromosome inactivation and imprinting during development (Greer and Shi, 2012).

Alteration in the methylation of specific histones has been reported to be associated with disease and ageing (Greer and Shi, 2012). Histone methyltransferase (EZH2), which catalyzes the trimethylation of histone 3 on lysine 27 (H3K27me3), is upregulated in different types of cancer such as breast cancer, prostate cancer, and lymphoma (review in Greer and Shi, 2012). The resulting effect to reduce H3K27me3 may be in part, associated with the cancer process.

In rat liver, the level of trimethylation of histone H4 at lysine 20 (H4K20me3) was seen to increase with age (Sarg *et al.*, 2002).

Histone methylation may be linked also to lifespan. Knockdown of the ASH-2 and WDR-5, members of an H3K4 trimethylation (H3K4me3) complex, or the regulator protein SET-2 extends lifespan of worms. All these proteins catalyse H3K4 trimethylation in both the developing and the adult germline in the worm. In line with this finding, overexpression of RBR-2, the H3K4me3 demethylase in the worm, extends lifespan, whereas knockdown of RBR-2 reverses this effect (Greer *et al.*, 2010).

1.3.2.3 Histone phosphorylation

All histone proteins are subject to phosphorylation at serine (S), threonine (T) and tyrosine (Y) residues. This modification is catalyzed by several distinct kinases, and is also dependent on phosphatise activity (Singh and Gunjan, 2011). Histone phosphorylation has important roles in regulating gene expression, chromatin condensation, the DNA damage response and apoptosis (Nowak and Corces, 2004). For example, phosphorylation of H2AX at S139 is rapidly increased in response to DNA damage causing activation of DNA repair genes and a delay of the cell cycle. Defects in H2AX phosphorylation have been associated with cancers (Singh and Gunjan, 2011).

Phosphorylation of H3 at S10 (H3S10) has been reported to promote gene activity through cross-talk with other histone modifications. For example, H3S10 phosphorylation can supporting an active transcriptional state by stimulating acetylation of histone H3K14, inhibiting acetylation of histone H3K9, and modulating methylation of histone H3K9. Furthermore, phosphorylation of H3T11 activates transcription by enhancing demethylation of H3K9. Phosphorylation of H3S10 along with H3T45 and H2BS14 is implicated in apoptosis (Cohen *et al.*, 2011).

There is very limited published data on the effect of age on histone phosphorylation, however the link was studied in the rat liver. This study reported an increase in H3 phosphorylation at S10 in 30 month-old rats compared with 15 month-old animals (Kawakami *et al.*, 2009).

1.3.2.4 Histone ubiquitinylation

Ubiquitin is a small protein that can be covalently attached to specific lysine residues in proteins including the histone proteins (Peterson and Laniel, 2004). Ubiquitination occurs on specific lysine residues in the C-terminal region of histone H2A and histone H2B (Sun and Allis, 2002). A single molecule of ubiquitin is covalently attached to both H2A at Lys 119 (ubH2A) and H2B at Lys 120 (ubH2B) (Cao and Yan, 2012).

The monoubiquitination of H2A and H2B has been reported to alter chromatin dynamics and regulate gene expression. H2A ubiquitination is associated with gene silencing, whereas ubiquitination of H2B is associated with active transcription (Cao and Yan, 2012). Crosstalk between H2B ubiquitination and histone H3 methylation has been reported. H2B ubiquitination is required for H3K4 and H3K79 methylation. This histone crosstalk seems to function unidirectionally. Mutations affecting H2B ubiquitination, reduced level of H3 methylation. In contrast, mutation of the H3 methylation sites or methyltransferases has no effect on H2B ubiquitination (He and Lehming, 2003).

Similar to H2B, crosstalk between H2Aub and histone H3K4 methylation has been observed. For example, H2Aub inhibits MLL3, which mediates di- and trimethylation of histone H3 at Lys-4 causing transcriptional repression (Nakagawa *et al.*, 2008).

A link between histone ubiquitination and ageing was observed in mouse brain where the level of histone ubiquitination was increased by 30% in old mice compared with young animals (Morimoto *et al.*, 1993).

1.3.2.5 Histone SUMOylation

SUMO is a small ubiquitin-related modifier that can be attached covalently to histone proteins at specific lysine residues and is associated with transcriptional repression of the associated region of the genome (Shiio and Eisenman, 2003). Several sites are recognised to be targets for SUMOylation including K6 and K7 in H2B, K126 in H2A, K16/17 in H2B and all five lysines in the N terminal region of H4. This modification is catalysed by dedicated E1 activating (SAE1/SAE2) and E2 conjugating (UBC9) enzymes to form a peptide bond between the C-terminus of SUMO and the amino group of the target lysine (Iñiguez-Lluhí, 2006).

In addition to direct effects of SUMOylation on histone proteins, chromatin structure is affected indirectly through effects on histone-modifying enzymes. For example, SUMOylation reduces the activity of histone deacetylases. Additionally, the activity of histone demethylase LSD1, which catalyses removal of methyl groups from monoor di-methylated histone H3 at lysine 4 (H3K4), is repressed by SUMO. Loss of SUMOylation thus promotes transcriptional repression by stimulating both histone acetylation and histone demethylation (Iñiguez-Lluhí, 2006; Ouyang and Gill, 2009).

SUMO plays critical role in the regulation many biological processes such as cell cycle progression, genomic stability, and transcription by modifying various enzymes

and cofactors that are important for regulated gene expression, as well as coordinating chromatin structure and histone modifications (Ouyang and Gill, 2009).

1.3.2.6 Histone ADP- ribosylation

This modification involves the addition of (anionic) ADP ribose polymers to histone proteins by the action of PARPs (poly-ADP ribose polymers), predominating at lysine residues in the tails of histone H4 (K13), H2B (K30), H3 (K27 and K37) and H4 (K16). These modifications take place during or after histone synthesis. ADP-ribosylation has important roles in various biological processes such as DNA repair, cell cycle regulation replication or transcription (Hottiger, 2011). The recognized sites of ADP-ribosylation are also targets for other histone modifications, such as acetylation, methylation, and phosphorlation, thus ADP-ribosylation may interact with these other histone modifications. For example, acetylation of H4 at K16 inhibits ADP-ribosylation of H4. Furthermore, ADP-ribosylation of histones reduces their phosphorylation and prevents demethylation of H3K4me3 (Messner and Hottiger, 2011).

Figure 1.5: Histone modifications. Adapted from (Rodriguez-Paredes and Esteller, 2011). The core histone proteins (H2A, H2B, H3 and H4) and their tails (N-terminal and C-terminal) are subjected to a variety of post-translational modifications such as acetylation (Ac) of lysine residues, methylation (Me) of lysine and arginine residues, phosphorylation (P) of serine, threonine and tyrosine residues, and mono-ubiquitination (Ub) of lysine residues. SUMOylation of lysine residues, and ADP-ribosylation of lysine residues (not show) are additional modifications.

1.3.3 Epigenetic modification

Epigenetic modification is a heritable change in gene expression that results from molecular mechanisms that are not mediated through changes in the DNA sequence. In some cases, epigenetic modifications are inherited across generations (Cheung and Lau, 2009). Two major components of epigenetic modification are histone/chromatin modifications and DNA methylation (Kimura *et al.*, 2005, Bartova *et al.*, 2009). Histone modifications and DNA methylation play a key role in controlling differentiation during embryonic development, inactivation of the X chromosome in the female, genomic imprinting and in DNA repair and DNA double strand break (DSB) repair systems (Richardson, 2002, Celeste *et al.*, 2003).

Histone acetylation, which is catalyzed by histone acetyl transferases, results in a more open euchromatin configuration, which leads to activation of associated loci. This activation of euchromatin can be suppressed by histone deacetylases enzymes, which catalyse the histone deacetylation reaction. In contrast, histone methylation inactivates heterochromatin by providing a binding site for the chromodomain-containing heterochromatin protein 1, which leads to transcriptional repression (Eberharter and Becker, 2002; Bartova *et al.*, 2009).

A second major mechanism associated with epigenetic modification is DNA methylation. DNA methylation is a biological process that involves the addition of a methyl group at the fifth carbon position at cytosine residues in DNA by DNA methyltransferase enzymes (Figure 1.6) (Richardson, 2002).

There is a cyclical relationship between DNA methylation and histone modifications. DNA methylation affects histone modification through the recruitment of proteins including histone deacetylases. Histone acetylation and methylation can, in turn, influence DNA methylation (Cheung and Lau, 2009). DNA methylation levels can be altered, therefore, by changes in expression or acting of DNA methyltransferase enzymes or as a result of changes in histone acetylation status.

Figure 1.6: DNA methylation mechanism. Adapted from (Chen and Riggs, 2011)

1.4 Sirtuins, focusing on Sirt1

Silent information regulator (SIR) enzymes comprise a large family of proteins referred as sirtuins, which are expressed widely in various species from yeast to mammals (Baur *et al.*, 2012). The first sirtuin gene, Sirt2, was identified in *Saccharomyces cerevisiae* by Klar and colleagues (1979). Later on, Sirt2 homologues were identified in fruit flies, worms, bacteria, plants and mammals (Table 1.2). Sirtuins are NAD⁺- dependent histone deacetylases and categorized as class III histone deacetylase (Figure 1.7) (Salminen *et al*, 2009).

In mammals, seven sirtuins (SIRT1-7) have been identified and roles in the regulation of metabolism, growth (McBurney *et al.*, 2003) and inflammation (Pfluger, 2008), as well as a role in lifespan extension, have been described. Among the sirtuins, Sirt1 has been studied extensively and appears to deacetylate a large number of cellular substrates (Baur et al., 2012).

In lower organisms, Sirt2 has been reported to regulate lifespan. For instance, overexpression of Sirt2 was observed to increase lifespan in yeast (Kaeberlein *et al.*, 1999), worms (Tissenbaum and Guarente, 2001), and fruit flies (Rogina and Helfand, 2004). In contrast, deletion of Sirt2 in yeast resulted in reduction in lifespan (Kaeberlein *et al.*, 1999).

In mammals, Sirt1 plays an essential role in regulation wide range of cellular process such as transcriptional regulation, apoptosis, stress responses, and longevity by deacetylation of multiple proteins such as p53, p73, Ku70, and forkhead transcription factors (FOXOs). For example, Sirt1 has been reported to suppress the apoptosis pathway by deacetylation the tumour suppressor p53 at multiple lysine residues. Moreover, Sirt1 has been reported to deacetylate and repress FOXO protein which leads to reduction of cellular stress (Brunet *et al.*, 2004; Motta *et al.*, 2004). Sirt1 has also been reported to induce apoptosis, increase expression of DNA repair and cell cycle checkpoint genes, and to protect pancreatic β -cells against cytotoxicity induced by glucose (Kitamura *et al.*, 2005, Banks *et al.*, 2008; review in Kelly, 2010).

It is believed that Sirt1 may promote longevity and protect from age- related diseases by regulating metabolism and endocrine pathways (Brooks *et al.*, 2009). Mice with Sirt1 overexpressed at low levels were protected from diabetes and hepaticlipid damage resulting from a high fat diet (Bordone *et al*, 2007; Banks *et al.*, 2008). Mice lacking Sirt1 (Sirt1-null mice) have been shown to have a metabolic dysfunction compared with wild-type mice (Boily *et al.*, 2008). Furthermore, heart-specific overexpression of Sirt1 in mice enhanced resistance to oxidative stress and slowed the heart-ageing process (Alcendor *et al*, 2007).

1.4.1 Sirt1 and insulin/ IGF signalling

The insulin/insulin-like growth factor 1 signalling (IIS) pathway has been reported to modulate lifespan in different species (Rinco *et al.*, 2004; Rinco *et al.*, 2005). A single gene mutation in the insulin like growth factor (IGF) signalling pathway has been reported to extend lifespan in various species including worms (Kenyon *et al.*, 1993), flies (Clancy *et al.*, 2001), and mice (Al-Regaiey *et al.*, 2003). In worms, mutants in this gene Daf2 (homologous to insulin receptor in mammals) had increased lifespan. In flies, lack of insulin receptor substrate CHICO (Clancy *et al.*, 2001) or insulin receptor IR (Tatar *et al.*, 2001) were shown to increase lifespan. Flies

homozygous for CHICO mutations had lifespan increased by 48% compared with an increase of 36% in heterozygotes.

In a mouse model, Holzenberger *et al* (2003) reported that heterozygous IGF-1 knockout resulted in extended lifespan in compared with wild type mice. The same finding has been reported for adipose-specific homozygous IGF-1 knockout mice (Blüher *et al.*, 2003).

1.4.2 Sirt1 and dietary restriction (DR)

Dietary restriction (DR), reduction of food intake below *ad libitum* without malnutrition, has been reported to promote longevity in diverse species from yeast to mammals (McCay *et al.*, 1935; Walker *et al.*, 2005) through a mechanism proposed by some researchers to be dependent on Sirt1 in mammals and on its homologue Sir2 in yeast (Cantó and Auwerx, 2009). In mammals, a growing body of evidence supports the view that Sirt1 is involved in mediating the effect of DR on lifespan extension. Firstly, levels of Sirt1 have been documented to increase in mammal tissue in response to DR (Brunet et al., 2004; Nisoli *et al.*, 2005; Barger *et al.*, 2008; Kanfi *et al.*, 2008). Secondly, mice lacking Sirt1 (Sirt1-null mice) showed a metabolism dysfunction and did not respond to DR compared with wild-type mice (Boily *et al.*, 2008). Additionally, the physical activity of these mice was decreased in response to DR (Chen *et al.*, 2005a). In contrast, whole-body overexpression of Sirt1 induced effects similar to the DR in mice, including reduced body weight and enhanced glucose homeostasis. In addition, there was a reduction in the level of insulin, glucose and cholesterol in pattern similar to those were subjected to DR (Bordone *et al.*, 2007).

Table1.2: List of sirtuin genes expressed in several species, their intracellular localisation and their enzyme activities. Adapted from (Dong and Zou, 2010). The identified sirtuins genes for each organism are listed and, where known, sub-cellular location and activity is stated. ART= ADP-ribosyltransferase.

Organism	Gene	Sub-cellular localization	Enzymatic activity
S. cerevisiae	Sir2	Nucleus	Deacetylase/ART
	Hst1	Nucleus	Deacetylase
	Hst2	Cytoplasm	Deacetylase
	Hst3	Nucleus	Unknown
	Hst4	Nucleus	Unknown
C. elegans	Sir-2.1	Nucleus	Deacetylase
	Sir-2.2	Unknown	Unknown
	Sir-2.3	Unknown	Unknown
	Sir-2.4	Unknown	Unknown
D. melanogaster	dSir2	Nucleus	Deacetylase
	dSirt2	Unknown	Deacetylase
	dSirt4	Unknown	Unknown
	dSirt6	Unknown	Unknown
	dSirt7	Unknown	Unknown
Mammals	SIRT1	Nucleus	Deacetylase
	SIRT2	Cytoplasm	Deacetylase/ART
	SIRT3	Mitochondria	Deacetylase/ART
	SIRT4	Mitochondria	ART
	SIRT5	Mitochondria	Unknown
	SIRT6	Nucleus	Deacetylase/ART
	SIRT7	Nucleus	Unknown

Figure 1.7: The enzymatic activities of sirturins. Sirtuin act as deacetylase (a) and or ADP ribosyltransferase (b) enzymes and regulate the activities of target proteins. Adapted from (Dong and Zou, 2010).

1.5 Hypothesis

The hypothesis underlying the study was that some of the beneficial effects of resveratrol on lifespan/aging are mediated through effects on histone expression that oppose changes observed in ageing, and that these actions of resveratrol influence the expression of genes that affect the ageing process. A second hypothesis was that these effects of resveratrol are mediated through ER α and/or ER β .

Figure 1.8: Diagrammatic representation of the hypothesis. It is hypothesised that histone (H2A, H2B, H3 and H4) expression may increase with age and the beneficial effects of resveratrol on lifespan/longevity are mediated through this effect on histone protein expression.

1.6 Objectives of the study

The specific objectives of the study were:

- 1. To examine the effect of resveratrol on histone expression.
- 2. To investigate the effect of age on histone expression.
- 3. To identify specific genes and pathways affected by resveratrol treatment.
- 4. To study whether the estrogen receptors are essential for resveratrol to affect histone expression.

2 Materials and Methods

Reagents and chemicals were purchased from Sigma (Poole, Dorset, UK) unless otherwise stated.

All solutions and plastic consumables were sterilised by autoclaving at high pressure and temperature. Sterile MilliQ water was used and was generated by deionisation using a Millipore filtration unit (Millipore, Massachusetts, USA)

2.1 Cell culture

Tissue culture was carried out in a class II laminar flow hood using aseptic techniques. All culture medium and supplements were obtained sterile (Gibco BRL, UK) unless otherwise stated. Cells were grown as monolayer cultures in sterile 75 cm² flasks (Greiner Bio-one, Gloucestershire, UK) and were incubated at 37 °C in a 5% CO_2 atmosphere.

2.1.1 Growth and maintenance of cells

Human breast cancer MCF-7 cells (passage number 72-89) were grown in improved minimal essential medium (IMEM) containing Glutamax plus 4.5 g/L glucose, supplemented with 10% (v/v) foetal calf serum (FCS), 10000 IU/ml penicillin, 10000 μ g/ml streptomycin, 1% (v/v) nonessential amino acids (NEAA), and 1% (v/v) sodium pyruvate. Caco-2 human colonic adenocarcinoma cells (passage number 21-28) were grown in Dulbecco`s modified Eagle`s medium (DMEM) containing Glutamax plus 4.5 g/L glucose, supplemented with 10% (v/v) FCS, 1% (v/v) NEAA, and 0.06 % (v/v) gentamycin.

Cells were routinely subcultured when 90% confluent by removing the medium, washing with 15 ml sterile phosphate buffered saline (PBS), followed by adding 2 ml trypsin, and incubation for 5 minutes at 37°C. After incubation, cells were resuspended in 10 ml of medium and transferred to 25 ml universal tubes and centrifuged for 5 minutes at 1500 rpm. The supernatant fluid was removed and cell pellets were resuspended in 10 ml of normal growth medium. One milliter of the resuspended cells was transferred to a new 75 cm² flask and 15 ml of the medium was added and cells were incubated at 37 °C in 5% CO₂ in air.

2.1.2 Cell counting

Fifteen microlitres of cell suspension were mixed with equal volume of trypan blue dye solution. The trypan blue cell suspension was pipetted onto a haemocytometer and the viable cell numbers per ml calculated using the following formula:

Number of cells per ml = 2 (average number of viable cells in 16 squares) X 10000

2.1.3 Cell treatment

Resveratrol (trans-isomer), supplied in a powder form, was dissolved in DMSO (100 mM stock solution) and added to phenol red- free culture medium to reach a final concentration of 10 μ M resveratrol. Caco-2 cells were seeded in 6 well culture plates at a density of $3x10^5$ cells/well. After 24 hours incubation in growth medium, cells were treated with either 0.01% DMSO (vehicle control) or 10 μ M resveratrol for 48 hours in the presence or absence of the ER antagonist Fulvestrant (0.1 μ M). Treated or untreated cells were then processed to extract total cell protein. MCF-7 cells were treated with resveratrol following the same procedure.

2.1.4 Preparation of cell lysate

Cells (Caco-2, MCF-7) were washed with phosphate buffered saline (PBS). PBS containing 1x protease inhibitor cocktail (Roche) was added just before lysis. Cells were scraped from the plastic, transferred into 1.5 ml microcentrifuge tubes and centrifuged at 13000 rpm for 15 minutes at 4 °C. The pellets were resuspended in 50µl of resuspension buffer (100 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA and 1x protease inhibitor cocktail).

2.1.5 Determination of protein concentration

Protein concentrations were determined using the Nanodrop spectophotometer (Thermo, USA). Typically, 1µl of each sample was applied directly onto the nanodrop lower optical surface. Protein concentration was calculated by nanodrop software. MilliQ water was used as a blank.

2.2 Extraction of histone proteins from mouse intestine

Histone extraction was carried out according to a published procedure (Jeong, 2004, Druesne, 2004). Briefly, small pieces of small intestine from young and old female mice (12 months and 38 months) were homogenized in cold-ice 1x PBS, and centrifuged at 12,000 g for 10 minutes. Subsequently, pellets were resuspened in hypotonic buffer (1.5 mM MgCl₂, 10 mM HEPES, 0.5 mM dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride, 10 mM KCl) and kept on ice for 10 minutes. The suspension was then sonicated for 15 minutes. After sonication, suspensions were centrifuged at 3300 g for 15 minutes and the cytoplasmic fractions were discarded. The pellets were resuspended in 0.2 M H₂SO₄ and kept overnight at 4 °C. The suspensions were then centrifuged at 10000 g for 15 minutes. Histone proteins were

precipitated using 1 ml acetone and incubating overnight at -20 °C. Acetone was removed after centrifuging at 10000 g for 15 minutes at 4 °C and the pellets were neutralized in 10 μ l NaOH 2M and 40 μ l MilliQ water. Protein concentrations were measured using the Nanodrop as described in section 2.1.5.

2.3 Human colonic tissue samples

Human samples used were kind gift from Professor John Mathers (Institute for Aging and Health, Newcastle University, UK). Total protein samples were extracted from human colon biopsies of eleven males (at 21, 23, 33, 43, 64, 66, 73, 74, 77 or 82 years old). Human samples were homogenised in a total volume of 40 µl buffer prepared by mixing 20 µl of lysis buffer (100 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA and 1x protease inhibitor cocktail) with 20 µl of gel loading buffer (1 M Tris-HC pH6.8, 50% glycerol, 12.5 % SDS, 0.1 % bromophenol blue, 1 M dithiottheitol (DTT) and 5 % βmercaptoethanol). Cell lysis was achieved through the SDS content (6.25%) in the combined buffer. Samples were then denatured at 95 °C for 5 minutes, and then resolved by SDS-PAGE as described in section 2.4.4.

2.4 Western blot analysis

2.4.1 Antibodies

Primary antibodies, obtained from rabbit, were diluted in 1x PBS, 5% (w/v) non fat milk powder and 0.05 % (v/v) Tween-20 as follows: anti-H2A (1:250), anti-H2B (1:250), anti-H3 (1:1000), anti-H4 (1:250) and anti-alpha tubulin (1:250). Secondary antibody, anti rabbit IgG peroxidase conjugate, was diluted (1:3000) in 1x PBS, 5% (w/v) non fat milk powder and 0.05% (v/v) Tween-20 (Table 2.1).

2.4.2 Protein sample preparation

Protein samples were mixed with 5x protein loading buffer [1 M Tris-HC pH6.8, 50% glycerol, 12.5% SDS, 0.1% bromophenol blue, 1M dithiothreitol (DTT) and 5% β -mercaptoethanol]. Proteins were then denatured at 95 °C for 5 minutes. The samples were briefly centrifuged at room temperature to collect the mixture at the bottom of the microfuge tube.

2.4.3 Gel preparation

Separating gel was prepared using 2.19 ml of 40 % bis acrylamide (37.5:1), 2.8 ml of 2.5x separating gel buffer [1.875 M Tris-HCl pH 8.9, 0.25 % SDS], 6 μ l of TEMED, 65 μ l of 10 % ammonium persulfate (APS) in a total volume of 5.45 ml. A 10 % stacking gel was prepared using the following reagents: 0.25 ml of 40 % bis acrylamide (37.5:1), 0.4 ml of 5x stacking buffer [0.3 M Tris-HCl pH 6.7, 0.5% SDS], 2.5 μ l TEMED, 18 μ l of 10 % APS in a total volume of 2.175 ml.

2.4.4 SDS polyacrylamide gel electrophoresis and transfer of protein to a solid support membrane

Proteins were subject to SDS polyacrylamide gel electrophoresis (SDS-PAGE). Five micrograms of protein was loaded in each lane of a 12.5 % polyacrylamide gel (section 2.4.3). Gels were run at 80V for 2 hours in 1x protein electrophoresis running buffer [made up as 5x/L: 60.6 g Tris Base, 144.1 g glycine, 5 g SDS]. ColorBrust electrophoresis marker (M.W 8000-220,000, Sigma) was used as a molecular weight standard. Following electrophoresis, proteins were transferred to activated PVDF membranes using a semi dry blotter at 15V for 50 minutes. The PVDF membranes were activated by incubating in methanol for 30 seconds, washing in milliQ water for

2 minutes and soaking in membrane transfer buffer (80 % 1x protein electrophoresis buffer, 20% methanol) for 10 minutes at room temperature. After protein transfer, the PVDF membranes were incubated in blocking solution [1x PBS, 5 % (w/v) non fat milk powder, 0.05 % (v/v) Tween-20] overnight on a rocking platform at 4 °C.

2.4.5 Probing membrane with antibodies and signal detection

Following overnight blocking, PVDF membranes were stained with primary antibodies (anti-H2A, anti-H2B, anti-H3, or anti-H4) for 1 hour at room temperature on a rocking platform. Membranes were then washed 4 times, for 10 minutes each, in membrane wash solution [1x PBS, 0.05 % (v/v) Tween-20]. Subsequently, the membranes were incubated with secondary antibody (section 2.4.1) for 1 hour at room temperature on a rocking platform. Membranes were washed 5 times, for 10 minutes each, in membrane wash solution. Protein-antibody complexes were detected using the Enhanced Chemiluminescence System (ECL, Amersham, UK). Briefly, membranes were incubated with a 40:1 mixture of solutions A and B respectively. Then the excess liquid was removed using thick blotting paper (Whatman), and the membranes were wrapped in acetate membrane, placed in an X-ray film cassette and overlaid with high performance chemiluminescence film. Exposed film was developed using an automated developer/ fixer.

2.4.6 Probing membranes with antibody to a reference protein

To assess protein loading and transfer efficiency, membrane blots were probed for α tubulin as a reference. Typically, membranes were incubated with a primary antibody immunoreactive against α -tubulin for an hour at a room temperature on a rocking platform. Membranes were then washed 4 times, for 10 minutes each, in membrane wash solution (section 2.4.5). Membranes were then incubated with secondary antibody (section 2.4.1) for an hour at room temperature on a rocking platform, followed by washing 5 times, for 10 minutes each, in membrane wash solution. Protein-antibody complexes were detected using ECL as described in section 2.4.5.

2.4.7 Colloidal blue staining of protein gels

Colloidal blue stain was used to assess protein loading when a house keeping antibody could not be used. The colloidal blue stain was prepared following the manufacturer's instructions (Invitrogen, UK). Briefly, stain was made up of 55 % deionised water, 20 % methanol, 5 % stain B and 20 % stain A. Protein samples were resolved by SDS-PAGE, run at 80V for 2 hours in 1x protein electrophoresis running buffer. Gels were then incubated in colloidal blue stain overnight on a rocking platform at room temperature. Subsequently, gels were destained in distilled water for 2 hours on a rocking platform at room temperature. Gels were examined on a light transilluminator and images were recorded using Uvitec gel documentation with UVIband software (UVtech, Cambridge, UK).

2.4.8 Band quantification by densitometry

The intensities of protein bands were measured using densitometry software [UVItec (UVIband software), UK)] on a gel documentation system [UVItec (Model (BTS-26M), UK)].

2.4.9 Data analysis

All data were statistically analysed using a commercially available software package (InStat, Graphpad Software, USA). Differences between groups were detected by one way ANOVA followed by Dunnett's post test, unless otherwise indicated in the text or figure legends. Results are expressed as mean \pm standard error of the mean (SEM) for all experiments. Data were taken to differ significantly only at a *p* value of 0.05 or less.

2.5 RNA microarray and bioinformatics analysis

2.5.1 RNA extraction and purification

Human intestinal Caco-2 cells or human MCF-7 breast cancer cells were treated with resveratrol (10 µM) for 48 hours (section 2.1.3). Total RNA was extracted using TRIzol Reagent according to the manufacturer's instructions (PureLink®RNA Mini Kit, Invitrogen). One millilitre of Trizol was added to each well and the cell lysate was passed several times through a pipette tip before transferring into a microfuge tube. After incubation at room temperature for 5 minutes, 200µl chloroform was added. The tube was shakenvigorously by hand for 15 seconds and incubated at room temperature for 2-3 minutes and centrifuged at 12,000xg for 15 minutes at 4 °C. Four hundred microlitres of the colourless, upper phase containing the RNA was transferred to a fresh RNase-free tube. Equal volume of 70% ethanol was added and mixed well by vortexing. Up to 700 µl of samples were transferred to a spin cartridge with a collection tube and centrifuged at 12,000xg for 15 seconds at room temperature. The flow-through was discarded and the spin cartridge was reinserted into the same collection tube. 700 µl wash buffer 1 was added to the spin cartridge and centrifuged at 12,000xg for 15 seconds at room temperature. The flow-through and the collection tube were discarded and the spin cartridge was inserted into a new collection tube. Five hundred microlitres wash buffer II with ethanol was added to the spin cartridge and centrifuged at 12,000xg for 15 seconds at room temperature.

The flow-through was discarded and the spin cartridge was reinserted into the same collection tube and centrifuged at 12,000xg for 1 minute at room temperature to dry the membrane with bound RNA. The collection tube was discarded and the spin cartridge was inserted into a recovery tube. Thirty microlitres of RNase-free water was added to the centre of the spin cartridge, incubated at room temperature for 1 minute followed by centrifuging at 12,000xg for 1 minute at room temperature. The flow-through containing RNA was stored in -80 °C until used.

2.5.2 Determination of RNA concentration and purity

RNA concentration was measured using the Nanodrop spectophotometer (Thermo, USA). Briefly, 1µl of each sample was applied directly onto the nanodrop lower optical surface. RNA concentration was automatically measured by nanodrop software. RNA free water was used as a blank.

To assess RNA purity, the ratios of A260/A280 and A260/A230 were analysed by Nanodrop. Basically, RNA with an A260/A280 \geq 2.0 and an A260/A230 \geq 1.8 was considered as a highly intact RNA.

2.5.3 Determination of RNA stability using the Agilent 2100 bioanalyser

RNA integrity was measured using the Agilent 2100 Bioanalyzer (RIN=10). Agilent RNA 6000 Nanochips were loaded with RNA using the RNA 6000 Nano assay kit (Agilent Technologies, workingham, UK) following the manufacturer's instructions.

A RIN (RNA integrity number) is generated by an algorithm as a measure of the degradation of RNA molecules. The value of a RIN ranges from 1 (totally degraded RNA) to 10 (totally intact RNA). For downstream applications RINs above a threshold of 7 are considered acceptable.

2.5.4 Gene expression profiling

Global gene expression profiles were determined by hybridization to the whole genome Illumina HumanHT-12v3 single colour beadchip microarray. Two biological replicates for each cell line (Caco-2 and MCF-7) and each condition (control or resveratrol treated) were hybridised separately to arrays. Sample processing and hybridisation was carried out by Arrayexpression (Leiden, the Netherlands). Ingenuity Pathway Analysis (IPA) was used to identify the pathways affected by resveratrol treatment.

2.5.5 Analysis of microarray data

Microarray data were imported to GeneSpring GX 11 (Agilent) for visualisation. Hierarchical clustering analysis was used to measure the relative similarity among biological replicates. Probes with an Illumina detection p value >0.6 in all samples in replicate groups were considered as expressed. Rank products (Rank Prod) analysis was used to identify differential expression between groups as probes with a percentage of false positives (PFP) of <0.05 over 100 permutations of the class labels with a resulting fold change of >1.5.

2.5.6 Gene identifier conversion

To compare data generated by microarray analysis of RNA extracted from Caco-2 and MCF-7 cell lines and data compiled from published studies in mice, all gene identifiers were converted to the equivalent Ensembl identifier, using the Ensemble Biomart Gene Conversion Tool at www.ensembl.org/biomart.

2.5.7 Gene list intersections

Gene lists converted into Ensembl identifiers (section 2.5.8) were compared and duplicates identified using the Advanced Filter> Unique Records option in Excel (Microsoft).

2.5.8 Statistical analysis of gene list intersections

To determine whether the number of genes shaved between different lists was greater or fewer than expected of independent groups by chance, the representation factor was calculated by applying the following equation:

X/[(nD)/N]

where X was the number of genes common between groups, n was the number of genes in one list, D the number of genes in the other list and N the total number of genes. A representation factor of >1 indicated a larger intersections than would be expected from two unrelated independent groups.

The cumulative hypergeometric probability was calculated by applying the following equation:

$$h(\geq X; N, n, D) = [_DC_X] [_{N-D}C_{n-X}] / [_NC_n]$$

where *N* is the total number of genes, *n* is the number of genes in one list, *D* is the number of genes in the other list, *X* is the number of genes common between groups, and $_DC_X$ is the number of combinations of *D* event, taken *X* at a time. The StatTrek hypergeometric calculator tool at http://stattrek.com was used to calculate cumulative hypergeometric probability.
2.6 Gene expression analysis

2.6.1 Design of PCR primers

Gene or cDNA sequences were identified using tools available through NCBI http://www.ncbi.nlm.nih.gov/. Oligonucleotide primers were designed using PrimerQuestSM (http://eu.idtdna.com/Scitools/Applications/Primerquest/Default.aspx). Primers were between 18 and 24 bases in length with a melting temperature greater than 55 °C and GC content 50-60%. To improve efficiency of binding to the DNA template, oligonuclotides contained a G or C residue at the 3` end. Primers were synthesised by MWG Biotech Ltd., UK.

2.6.2 RNA extraction

Total RNA was extracted from Caco-2 and MCF-7 cells using TRIzol reagent, according to the manufacturer's instructions (Invitrogen).

2.6.3 Determination of RNA concentration and purity

RNA concentration and purity were measured using the Nanodrop spectophotometer (Thermo, USA).

2.6.4 DNase treatment of RNA

RNA samples were routinely subjected to DNase treatment to remove any DNA contamination. Each reaction mixture contained 4.5 μ g of RNA, 4.5 U DNase (Roche) and 2 μ l of 10x DNase buffer (Roche). RNase free water was added to reach a final volume 20 μ l. The reaction was incubated at 37 °C for 30 minutes, then 4 μ l of stop solution (EDTA, 20 mM, PH 8.0) was added. The samples were incubated at 65 °C

for 10 minutes then the RNA was placed on ice if required for use immediately or stored at -80 $^{\circ}$ C.

2.6.5 Reverse transcription

Five microlitres (approximately $2\mu g$) of RNA were reverse transcribed to complementary DNA (cDNA). The reverse transcription reaction consisted of two steps. In the first step, 5 µl of RNA (2 µg), 1 µl random primers, 0.4 µl dNTP (100 mM) and sterile MilliQ water were mixed to total volume of 13 µl. This mixture was incubated at 65 °C for 5 minutes and then transferred to ice. The second step consisted of the addition 4 µl of 5x First Strand Buffer (250 mM Tris-HCl), 1µl 0.1 M DTT, 1µl RNase inhibitor (40 u/µl) and 1 µl Superscript reverse transcriptase (SSIII, Invitrogen) (200 u/µl). To act as a negative control a second reverse transcriptive reaction was carried out omitting the SSIII enzyme. These mixtures were incubated at 25 °C for 5 minutes, 50 °C for 45 minutes and the reaction was held at 4 °C.

2.6.6 Polymerase chain reaction (PCR)

PCR reactions were performed using the following: 0.15 μ l of 5 u/ μ l Taq DNA polymerase (Bioline), 1x Thermostart H-buffer (MgCl₂ free), 1.2 μ l of 25 mM MgCl₂, 0.3 μ l of 25 mM dNTPS, 2 μ l of 5 μ M sense primer and 2 μ l of 5 μ M antisense primer made up to final volume of 20 μ l with MilliQ water and including 1 μ l of reverse transcription-generated cDNA.

Thermal cycling for reactions to ER α and ER β was as follows:

Thermal cycling for amplification of GAPDH, a reference gene, was as follows:

All primers are listed in Table 2.2 A. After PCR, the products were analysed by agarose gel electrophoresis.

2.6.7 Agarose gel electrophoresis

For DNA analysis, agarose gels were prepared by boiling 1% agarose in 1x TBE buffer (made up as 10x: 108g/l Tris base, 55 g/l boric acid, 40 ml 0.5 M EDTA; pH 8.0). Two microlitres of ethidium bromide (10 mg/ml) was added to the cooled gel solution before pouring into the gel apparatus. Five microlitres of PCR products were mixed with 2 μ l 5x gel loading buffer (50 mM Tris-HCl pH 8, 5 mM EDTA, 20 % glycerol and 0.1 % Bromophenol Blue) and loaded onto agarose gels. DNA ladder-I

(Bioline) was used as a molecular weight standard. The gel was run for 30 minutes at 70V. DNA was visualised on a UV transilluminator and images were recorded using Uvitec gel documentation with UVIband software (UVtech, Cambridge, UK).

2.7 Generation and manipulation of DNA plasmid constructs

2.7.1 Determination of gene promoter sequence

The sequence of the promoter region of the histone H3 gene was retrieved in FASTA format using the Gene2promoter software (Genomatrix, Germany). To ensure the promoter lay upstream of the transcription start site (TSS), the promoter sequence was aligned against the transcript.

2.7.2 Polymerase chain reaction (PCR)

PCR reactions were performed as described in section 2.6.6. Thermal cycling for amplification of the histone H3 promoter was as follows:

95 °C for 15 minutes (hot start)
35 cycles
$$\begin{cases}
95 °C for 30 seconds denaturation \\
60 °C for 30 seconds annealing \\
72 °C for 90 elongation \\
72 °C for 2 minutes final elongation \\
4 °C hold
\end{cases}$$

After PCR, the products were analysed by agarose gel electrophoresis as described in section 2.6.7. All primers are listed in Table 2.2 B

2.7.3 Cloning of PCR products into pBlue-TOPO

PCR products were cloned into the pBlueTOPO vector (Invitrogen, UK) according to the manufacturer's protocol. Briefly, 4μ l of PCR product were mixed with 1 μ l salt solution and 1 μ l vector. The ligation reaction was incubated for 5 minutes at room temperature, and then 2 μ l of this reaction was added to chemically competent OneShot TOP *E.coli* cells, which were then incubated on ice for 30 minutes, then heat-shocked at 42 °C for 30s, before adding 250 μ l SOC media. Cells were incubated with shaking for 1 hour at 37 °C. The transformed cells were grown overnight at 37 °C on Luria Bertani (LB)-agar plates (1% peptone, 1% NaCl, 0.5% yeast extract, 15 g/L agar) containing 50 μ g/ml ampicillin.

2.7.4 Plasmid DNA preparation

Single bacterial colonies were cultured in 5 ml LB-broth (1% peptone, 1% NaCl, 0.5% yeast extract) containing 50 µg/ml ampicillin at 37 °C with shaking overnight. Plasmid DNA was extracted using the Eppendrof Miniprep Kit (Qigaen) according to the manufacturer's protocol. To extract plasmid DNA in large quantities, an endotoxin-free maxiprep kit (Qiagen) was used according to the manufacturer's instructions.

2.7.5 Digestion of plasmid DNA with restriction endonucleases

To determine if plasmid DNA contained the correct insert, digestion with *Hind* III was used. The reaction was prepared by adding 5 U *Hind* III to 1x reaction buffer in a final volume of 20 μ l. The reaction was then incubated at 37 °C for 1-2 hours. The digestion products were detected by agarose gel electrophorsis as described in section 2.6.7.

2.7.6 DNA sequencing

Plasmids were sequenced by MWG Biotech.

2.8 Mutagenesis of promoter-reporter plasmid constructs

Estrogen response elements (ERE) identified within the histone H3 promoter sequence included in the promoter reporter construct were mutated using a PCR-based method. Primers were designed to introduce mutations into three sites at which consensus ERE sequences were present within the histone H3 promoter region in the construct using PCR with the wild-type promoter-reporter construct as the template. PCR product including mutated regions was then subcloned into the pBlue TOPO vector (Invitrogen) as described in section 2.7.4.

The procedure involved introducing each mutation sequentially in three PCR reactions, the products of which were joined also by PCR. To avoid reamplifying the wild-type promoter sequence from contaminating wild-type plasmid in the final step, random primer sequences were introduced at the 5` and 3` ends of the required product, and primers matching these sequences were used for the final amplification. In the first PCR reaction the 5` region of the promoter including one of the EREs was generated and the ERE was replaced with random sequence. In the second reaction, the middle region of the promoter including the second ERE was generated and the ERE was replaced with random sequence. These two products were then joined in a third PCR reaction. In a fourth PCR reaction the 3` region of the promoter including the third ERE was generated and the ERE was replaced with random sequence. The products of the third and fourth PCR reaction were then joined using the unique outer

primers (to the random sequence). All PCR reactions were carried out using the following thermal cycling parameters:

The successful mutation of the three EREs in the histone H3 promoter sequence was confirmed by sequencing (MWG Biotech). All primers are listed in Table 2.2 C

2.9 Transient transfection of mammalian cells

For transfection, Caco-2 cells were seeded into 6-well plates at a density 3.5×10^5 cells/well and incubated for 24 hours at 37 °C. After 24 hours incubation, cells were transfected using GeneJammer tansfection reagent (Stratagene Europe, Netherlands). For each well, a 100 µl volume of transfection mixture was prepared by adding 4.5 µl GenJammer to 1.75 µg plasmid DNA in serum and antibiotic-free medium. Cells were supplemented with 900 µl growth medium and transfection mixture was added in dropwise manner. Then, cells were incubated for 4 hours at 37 °C prior to the addition of 1ml of complete medium. Cells were incubated for a further 24 hours. Transfected cells were subjected to treatment with resveratrol as described in section 2.1.3.

2.10 Reporter gene assays

2.10.1 Preparation of whole cell lysate

Cells in 6-well plates were washed with 1 ml ice-cold PBS per well, followed by addition 100 μ l of lysis buffer (0.25 M Tris (pH7.4), 0.25 % (v/v) Nonident P40, 2.5 mM EDTA). Cells were then frozen at -20 °C for 30 minutes. After 30 minutes, cells were thawed at room temperature. Cells in each well were harvested using a sterile cell scraper, transferred to 1.5 ml microcentrifuge tubes and centrifuged at 13,000 g for 5 minutes at 4 °C. The supernatant fluids were transferred to new tubes.

2.10.2 Determination of protein concentration

The bradford assay was used to measured protein concentration of cell lysates using a 96 well plate. A standard curve was generated by preparation of 0, 20, 40, 60, 80, 100 μ M solution of bovine serum albumin (BSA) in a final volume 50 μ l. Bradford reagent (Biorad, UK) was diluted (1:5), and 200 μ l of the reagent was added to 50 μ l of diluted cell lysates (1:50) or BSA standard. Standards were prepared and measured in triplicate and samples in duplicate. Absorbance was measured at 595 nm using a plate-reader (Thermo Labsystems Multiskan Ascent). Protein concentrations of samples were measured from the standard curve.

2.10.3 β-galactosidase reporter assays

Reporter assays were carried out by adding 20 μ l of cell lysate to 130 μ l of 1.2 mg/ml chlorophenol red- β -D-galactopyranoside (CPRG) in buffer containing 25 mM MOPS, 100 mM NaCl, 10 mM MgCl2, at pH 7.5 and incubating at 37 °C. When a red colour was observed, the reaction was stopped by the addition of 80 μ l 0.5 M Na₂CO₃.

Absorbance was measured at 650 nm on a plate-reader (Thermo Labsystems Multiskan Ascent).

2.10.4 Data analysis

The activity of β -galactosidase was measured as nanomoles of chlorophenol red formed per minute per mg of total protein. All data were statistically analysed using a commercially available software package (InStat, Graphpad Software, USA). Differences between groups were detected by one way ANOVA followed by Dunnett's post test. Results are expressed as mean ±standard error of the mean (SEM) for all experiments. Significance was taken as a *p* value of 0.05 or less.

2.11 Antibodies and Oligonucleotide

Table 2.1: Antibodies

A

Primary antibodies	Symbol	Source	Dilution
Anti- histone 2A	H2A	Abcam	1:250
Anti- histone 2B	H2B	Abcam	1:250
Anti- histone 3	Н3	Sigma	1:1000
Anti- histone 4	H4	Abcam	1:250
Anti-alpha tubulin		Sigma	1:250

B

Secondary antibody	Source	Dilution	
Anti-rabbit IgG peroxidase conjugate	Sigma	1:3000	

Table 2.2: Oligonucleotide

A

Target and	Primer sequences $(5 \rightarrow 3)$	Product
Genbank accession no.	-	size (bp)
ERα	GGATACGAAAAGACCGAAGAG	
NM 000125	GTCTGGTAGGATCATACTCGG	236 bp
ERβ	TAGTGGTCCATCGCCAGTTATCAC	
NM 001437	GCACTTCTCTGTCTCCGCACAA	438 bp
GAPDH	TGAAGGTCGGAGTCAACGGATTTG	
NM 002046	CATGTAAACCATGTAGTTGAGGTC	170 bp

Target and Genbank accession no.	Product	Primer sequences	Product size (bp)
Histone 3 (H3m)	H3For	GTGGGAGAAGTGCCATGCAGCAC	862 bp
M26150	H3Rev	CTTGCCTGCAGAGACGTCTGTG	

C: The primers were used to generate the histone H3 promoter-reporter construct contained with mutations introduced at three identified sites with ERE consensus sequence. The unique primer sequences are in lower case, the mutated sequence is highlighted in red.

Product	Primer sequences $(5 \rightarrow 3)$
H3unq1	tattaccgacgcccggcggc
H3unq2	aaagtgaatggcgtgtgggc
H3Fwdunq1	tattaccgacgcccggcggcGTGGGAGAAGTGCCATGCAGCAC
H3Revunq2	aaagtgaatggcgtgtgggcCTTCCTGCAGAGACGTCTGTG
H3MutFor1	GGAAGTGTTAAAACCCGCA <mark>TCAAA</mark> CACACAAGTTTGAATATG
H3MutRev1	CATATTCAAACTTGTGTGTTTGATGCGGGTTTTAACACTTCC
H3MutFor2	CTAAGAGCATTTTTCTAATATAGAACACTTCTTATGCGACACCC
H3MutRev2	GGGTGTCGCATAAGAAGTGTTCTATATTAGAAAAATGCTCTTAG
H3MutFor3	
H3MutRev3	GCAGATTAAGAGAGGCTCCGTGGTATTACCGTAGCTACTCTGACG

3 The effect of resveratrol on histone expression

3.1 Introduction

Resveratrol, a phytoalexin natural product, is produced in several plants to protect against infection by bacteria or fungi (Fremont, 2000). The presence of resveratrol in red wine attracted the attention of scientists as a possible explanation for the phenomenon known as the "French paradox", which is a term used to describe the relatively low rates of cardiovascular disease and obesity among the French population despite their high fat diet and regular consumption of red wine (Renaud and de Lorgeril, 1992). Several studies have further reported potential biological benefits of resveratrol as a factor in the aetiologies of diseases including cardiovascular disease (Wang *et al.*, 2012), cancer (Sun *et al.*, 2008), and diabetes (Palsamy and Subramanian, 2008). Additionally, resveratrol has been reported to promote longevity/lifespan in various species from yeast to mouse (Howitz *et al.*, 2003; Cohen *et al.*, 2004; Borra *et al.*, 2005), potentially through stimulating the NAD⁺-dependent deacetylases enzymes, Sirt2 and Sir1, respectively (Howitz *et al.*, 2003; Cohen *et al.*, 2004). These enzymes deacetylate a large number of proteins and regulate many critical cellular processes including transcription, metabolism, DNA repair, and stress resistance (review in Kelly, 2010).

The mechanism by which resveratrol induces these biological effects is not completely understood. This study aimed to investigate the mechanism by which resveratrol influences longevity/lifespan. The ability of resveratrol to stimulate the histone deacetylase Sirt1 raises the question as to whether resveratrol promotes longevity through its effects on histone acetylation. To answer this question previous work in the laboratory investigated the effect of resveratrol on histone acetylation. Caco-2 cells were treated with 10 μ M resveratrol for 48 hours, then semi-purified histone proteins were analysed by western blotting using an

antibody specific for histone 4 (H4) acetylated at Lys16 or using an antibody immunoreactive against H4 irrespective of acetylation status. As shown in figure 3.1 both anti-H4 antibodies revealed a marked reduction in the H4 signal after treatment of Caco-2 cells with resveratrol indicating that resveratrol treatment reduced H4 protein expression, rather than affecting acetylation status (L Wakeling and D Ford, personal communication).

Based on this finding, it was proposed that the ability of resveratrol in promoting longevity may be mediated through effects on histone expression. Therefore, the effect of resveratrol (at a physiological concentration at 10 μ M) on histone expression was investigated using two different cell lines: Caco-2 (human intestinal) and MCF-7 (human breast cancer).

Figure 3.1: The effect of resveratrol (+) on histone 4 (H4) acetylation and H4 expression in the Caco-2 cell line. H4 acetylation and H4 expression were detected by western blot analysis using an antibody specific for H4 acetylated at Lys16 or using antibody immunoreactive against H4 irrespective of acetylation status. (A) Western blot using an antibody with reacting against H4 acetylated at Lys16. A notable decreased in histone H4 acetylation in the cells treated with resveratrol is evident. (B) Western blot using antibody immunoreactive against H4 irrespective of acetylation status. There is a marked reduction in total H4 expression in treated cells with resveratrol (L Wakeling and D Ford, personal communication).

3.2 Effect of resveratrol on histone expression in Caco-2 and MCF-7 cell lines

The current study investigated the hypothesis that some of the beneficial effects of resveratrol on lifespan/aging are mediated through effects on histone expression that oppose changes observed in ageing. A further suggestion, although not addressed through the work presented in this chapter, is that these epigenetic actions of resveratrol influence the expression of genes that affect the ageing process.

For this purpose, two different cell lines were used to determine whether or not the response to resveratrol observed previously was cell line specific and to indicate if estrogen receptor (ER) status was a determinant of responsiveness. The MCF-7 (ER α -positive, ER β -positive) and Caco-2 (ER β -positive) cell lines were treated with either 0.01% DMSO (vehicle control) or 10 μ M resveratrol (in 0.01% DMSO) for 48 hours. Total cell lysate was then analysed by western blotting using antihistone antibodies immunoreactive against H2A, H2B, H3, and H4. To ensure equal amounts of protein were loaded, the same membrane was probed with an antibody immunoreactive against α -tubulin. Quantitative data were derived by densitometric quantification of band intensities. Densitometric analysis of the protein bands in relation to α -tubulin indicated that expression of histone H2A, H2B, H3, and H4 was decreased significantly in cells treated with resveratrol (Figure 3.2-3.3).

Figure 3.2: The effect of resveratrol (REV) on the level of histone expression in the MCF-7 cell line. (A) Western blot analysis using anti-histone antibodies for histone H2A, H2B, H3, and H4. Typical data are shown. (B) Results of densitometric analysis of western blots detecting expression of histone proteins. Data are shown as mean \pm standard errors (SEM) (n=9, based on four experiments), *P <0.05, **P<0.01, ***P<0.001. The expression of histone H2A, H2B, H3, and H4 were significantly decreased in cells treated with resveratrol.

Figure 3.3: The effect of resveratrol (REV) on the level of histone expression in the Caco-2 cell line. (A) Western blot analysis using anti-histone antibodies for histone H2A, H2B, H3, and H4. Typical data are shown. (B) Results of densitometric analysis of western blots detecting expression of histone protein. Data are shown as mean \pm standard errors (SEM) (n=9, based on four experiments), **P <0.01, ***P<0.001. The expression of histone H2A, H2B, H3, H2B, H3, and H4 were significantly decreased in treated cells with resveratrol.

3.3 The effect of age on histone expression

Based on the observations that resveratrol reduced histone protein expression (H2A, H2B, H3, and H4) in cultured human (Caco-2 and MCF-7) cells, this study investigated if this reduction in histone expression could play a role in the regulation of lifespan/longevity by determining if histone expression changed with age. It was hypothesised that the ageing process may be associated with an increase in histone expression and that a reversal of this process may underline some of the apparent anti-ageing effects of resveratrol.

3.3.1 The effect of age on histone expression in mouse intestine

To investigate the effect of age on the level of histone expression, small intestinal tissues from young and old female mice (at 12 months or 38 months) were studied. Histone extraction was conducted using the low concentration acid extraction procedure, followed by western blot analysis using anti-histone antibodies for H2A, H2B, H3, and H4. Colloidal blue staining of protein preparations resolved by SDS PAGE on gels run in parallel to those used for western blotting was used to ensure equal loading of protein samples and to normalise protein concentrations.

Figure 3.4 shows histone expression in these young and old mice. The results of densitometric analysis of the protein bands show that histone H2A, H2B, and histone H4 were significantly increased in old mice (38 months) compared with younger mice (12 months). In contrast, histone H3 did not show a significant change in level of expression.

Figure 3.4: The effect of age on histone expression in mouse intestine. Histones were detected by western blot analysis using anti-histone antibodies for H2A, H2B, H3, and H4. (A) Densitometric analysis of western blot data shown as mean \pm standard errors (SEM) (n=3), *P <0.05, **P<0.01. Data are pooled from one analysis for each of H2A and H2B, three analyses for H3 and five analyses for H4 and are expressed normalised to the histone signal intensity for the young mice. Histone H2A, H2B, and H4 were significantly increased in old mice (38 months) compared with younger mice (12 months). Histone H3 did not show a significant change in level of expression. (B) Colloidal blue staining of a parallel gel was used to ensure equal loading of protein samples. Sizes of molecular weight markers running in parallel (left hand lane, as labelled) are indicated.

3.3.2 The effect of age on histone expression in human intestine

To determine if the observation that histone expression increased with age in mouse intestine extended to humans, the effect of age on the level of histone expression in human subjects was investigated. Total protein was extracted from human colon biopsies of eleven males (at 21, 23, 33, 43, 64, 66, 73, 74, 77 or 82 years old). Western blot analysis was carried out using anti-histone antibodies for H2A, H2B, H3, and H4. Numerical data were derived by denstiometric quantification of band intensities. Blots were probed also with anti α -tubulin antibody and data expressed as a ratio of intensities of the two signals.

Figure 3.5 shows the level of histone expression measured in the colon biopsies of these young and old males. There was no apparent affect of age on the level of histone expression (H2A, H2B, H3, and H4) among these human subjects.

3.4 Discussion

Histone proteins are essential proteins that are involved in DNA packing into nucleosomes. There are two types of histone proteins, core histone proteins including H2A, H2B, H3 and H4, and a linker histone known as H1. Each of the core histone proteins has a flexible N-terminal tail extending outward. In addition, histones H2A and H2B have a C-terminal tail that also extends outward from the nucleosome (Jenuwein *et al.*, 2001, cited in Bilsland, 2005).

The core histone proteins and their tails (N-terminal and C-terminal) undergo a variety of post-translational modifications, together comprising what is known as the "histone code". These modifications include acetylation, ubiquitination, methylation and phosphorylation (Jenuwein *et al.*, 2001, citied in Bilsland, 2005). These modifications of histone proteins play a fundamental role in the regulation of gene expression.

Recently, histone methylation/ acetylation has attracted increased attention as a result of findings that indicate role in regulating lifespan in different species. For example, mutations in members of the histone H3 methyltransferases have been documented to extend life span in the worm (Greer *et al.*, 2010; Maures *et al.*, 2011). Furthermore, stimulation of Sirt1 and Sirt2 histone deacetelyeses, by resveratrol or dietary restriction, has been reported to promote longevity in different species (Howitz *et al.*, 2003).

Studies in the laboratory, designed with the intention of investigating if resveratrol affects histone acetylation, indicated, unexpectedly, an effect on the expression level (rather than acetylation status) of histone proteins in the human intestinal Caco-2 cell line (L Wakeling and D Ford, personal communication).

The current study investigated the hypothesis that some of the beneficial effects of resveratrol on lifespan/aging are mediated through effects on histone expression. Further work would then investigate if these epigenetic actions of resveratrol influence the expression of genes that affect the ageing process. Towards this goal, the effect of resveratrol on the level of expression of histone proteins was investigated in two human cell lines. Caco-2 and MCF-7 cell lines were treated with resveratrol for 48 hours. Then western blot analysis using antihistone antibodies was conducted. The results showed that histone H2A, H2B, H3 and H4 expression was decreased in response to resveratrol treatment in both cell lines (P<0.05). Whereas both cell lines are reported to express $ER\beta$, the Caco-2 cell line is reported to lack expression of $ER\alpha$. The observations therefore indicate that if the observed effect of resveratrol is mediated through the ER then $ER\beta$ is functional in this regard. Further studies, presented in Chapter 5, investigated specifically the role of the ER in mediating effects of resveratrol on histone expression.

The concentration of resveratrol used in the current study (10 μ M) is in line with concentrations considered achievable physiologically, for example through the consumption of resveratrol-rich foods (Mukherjee *et al.*, 2010). The observation may thus indicate an effect of resveratrol that could be achieved *in vivo*; however confirmation using either an animal model or, preferably, an intervention study in human participants is necessary to confirm such an effect. Studies *in vivo* would take into account the fact that resveratrol undergoes extensive metabolism, with glucuronide and sulphate conjugate being the prominent metabolite observed following ingestion (Yu *et al.*, 2002). Resveratrol glucuronide and sulphate conjugates are also major circulating metabolites observed in human subjects after oral ingestion of resveratrol (Goldberg *et al.*, 2003). Metabolism of resveratrol to dihdroresveratrol-glucuronides is also observed as reported in (Rotches-Ribalta *et al.*, 2012).

Other confirmatory research could include treatment of cells *in vitro* with metabolites of resveratrol to determine if these compounds have similar effects as the parent molecule on histone expression.

The impact, if any, of a reduction in histone expression on lifespan is still unclear but conceivable mechanisms through which effects may be mediated included effects on gene expression. To seek supporting data that resveratrol may promote lifespan through its effect on histone protein expression, further investigation focused on how histone expression changed with age.

There is little information about the effect of age on histone expression. To date, a small number of studies have reported a change in histone expression and/or chromatin configuration with age. For example, Chaturvedi *et al* (1985) reported that chromatin becomes more compact with age in the rat brain, and it has been observed that ageing in yeast is associated with a reduction in histone expression (Feser *et al.*, 2010).

The data presented here indicate that changes in histone expression are associated with age in mice. The expression levels of histone H2A, H2B and H4 were increased significantly in the intestine of old mice (at 38 months old) compared with young mice (at 12 months old). In contrast, no significant difference in the level of histone H3 expression between the two groups was detected, but a trend towards the same response as observed for the other histone proteins may indicate a need to analyse additional samples to detect an effect that reaches statistical significance. The mechanism underlying the influence of ageing on histone expression is still unclear. Similarly, the consequences of the observed reduction in histone expression are unknown but given that tight association of DNA with histones is a repressive

configuration, an expected effect may be reduced expression of genes associated with affected histones. Speculatively, such gene repression may lead to progressive ageing, age-related diseases such as cancer and, ultimately, death (Burzynski, 2003).

In contrast to the observations made in mouse intestine, Feser and colleagues (2010) reported a reduction in H3 and H4 expression with age in yeast. The possible explanation for the discordant observations may relate to the difference between unicellular yeast and mouse tissues.

In contrast to the observations made in mice, no age-associated difference in histone expression in the intestine of human subjects was detected.

The lack of consistency between the two sets of data-based on samples from mice and humans may be due to a number of different factors such as a difference between species, a difference between the small intestine (mice) and colon (humans) and a greater interindividual variability in human samples, invoking the need to analyse a larger number of individuals to observe differences.

Since histone proteins were extracted from gut samples comprising the full thickness, cells in the sample would be from the mucosa, submucosa, muscularis, and serosa. The cell population would thus be heterogeneous and include absorptive cells, goblet cells, stem cells, enteroendocrine cells, and Paneth cells. (Treuting *et al.*, 2012). Levels of histone proteins detected would thus have reflected the levels of expression in these different cell types, and it is possible that the relative proportions of these cells differed with tissue age. An additional confounding factor may have been stage of cell cycle. During the cell cycle, histone mRNAs accumulate at the maximal levels during S phase. As cells exit S phase, the level of histone mRNAs decrease rapidly (Marzluff and Duronio, 2002). Thus, the histone protein quantity extracted would differ according to the proportion of cells at different stages in the cell cycle.

4 Global effects of resveratrol on gene expression

4.1 Introduction

Dietary restriction (DR), reduction of food intake below *ad libitum* without malnutrition, has been reported to promote longevity in diverse species from yeast to mammals (McCay *et al.*, 1935; Walker *et al.*, 2005). There is evidence that the mechanism is dependent on *Sirt1* in mammals and on its homologue *Sir2* in yeast, but this view has been to subject of vigorous challenge, based to a large degree on inconsistent observations made in yeast and flies (Burnett *et al.*, 2011). Evidence for the involvement of Sirt1 in mediating the effect of DR on lifespan extension in mammals includes that levels of Sirt1 have been documented to increase in some mammalian tissues in response to DR (Cohen *et al.*, 2004; Nisoli *et al.*, 2005), and that mice lacking *Sirt1* (*Sirt1*-null mice) do not response to DR (Boily *et al.*, 2008).

While there are potential benefits of DR, the challenges associated with this practice in humans has driven attempts to identify natural or artificial compounds with ability to mimic the effect of DR. Resveratrol has been reported to mimic to DR and extend lifespan in diverse species (Howitz *et al.*, 2003; Wood *et al*, 2004; Baur *et al.*, 2006). Furthermore, resveratrol has been reported to promote longevity of mice under conditions of a high fat diet and to oppose the physiological effects of high caloric intake in manner similar to DR (Baur *et al.*, 2006). The mechanisms by which resveratrol mimics DR and influences lifespan are not completely understood. Opinions about the mechanism of action through which resveratrol has effects relevant to ageing/ or lifespan are at variance. Some investigators have a view that the mechanism is through activation of Sirt1 (Baur *et al.*, 2006), but others challenge this opinion (Pacholec *et al.*, 2010).

To begin to address the controversy around the possible role of Sirt1 in mediating effects of resveratrol that may mimic DR, the response of Caco-2 and MCF-7 cells to resveratrol was determined at the level of the transcriptiome with the aim of identifying if genes or pathways affected were also affected by manipulation of the expression level of *Sirt1*, for which a comparative data set was available from Caco-2 cells. These data were derived through previous work in the laboratory (LJ Ions and D Ford, personal communication). The extent to which genes affected by resveratrol intersected with a list of genes reported to be affected by dietary restriction (derived through previous *in silico* work in the laboratory; LJ Ions and D Ford, personal communication) was also determined.

4.2 The effect of resveratrol on global gene expression in Caco-2 and MCF-7 cell lines

Since reduced histone protein expression in response to resveratrol in Caco-2 and MCF-7 cells had been previously observed, it was important to conduct this transcriptiome analysis on cells where the same response was confirmed, reasoning that many effects on gene expression resulting from treatment with resveratrol could be a consequence of these changes in histone protein expression. After treatment of cells with 10 μ M resveratrol for 48 hours, the usual response to resveratrol (reduction in histone protein expression) was confirmed. Total cell lysate from control and treated cells was analysed by western blotting using antihistone antibodies immunoreactive against H2A, H2B, H3 and H4. As shown in (Figure 4.1) histone H2A, H2B, H3 and H4 expression was decreased in response to resveratrol treatment in both cell lines.

RNA was extracted from Caco-2 and MCF-7 cells treated in parallel with 10 μ M resveratrol for 48 hours. RNA concentration, purity and integrity were measured using the NanoDrop spectrophotometer and the Bioanalyzer (Figure 4.2). Global gene expression profiles were determined by hybridization of RNA to the whole genome Illumina HumanHT-12v3 single colour beadchip microarray. Two biological replicates for each cell line (Caco-2 and MCF-7) and each condition (control or resveratrol treated) were hybridised separately to arrays. Sample processing and hybridisation was carried out by Arrayexpress (Leiden, the Netherlands).

Changes in gene expression were considered significant at p < 0.05 with a fold change ≥ 1.2 . The 1.2 fold "cut off" was selected empirically based on the numbers of genes showing changes of particular magnitudes. Cut off values in microarray experiments are typically guided by characteristics of individual datasets in this way (McCarthy and Smyth, 2009; Bjornsdottir *et al.*, 2011). A relatively low threshold such as this is generally applied in studies looking at effects of dietary components on gene expression, where effects tend to be modest, and other studies have applied the same (Bjornsdottir *et al.*, 2011) or similar (1.3fold) (Huggins *et al.*, 2008) cut off values.

Tables 4.1 and 4.2 list the changes in gene expression in the Caco-2 cell line in response to resveratrol treatment. Tables 4.4 and 4.5 list the genes affected by resveratrol treatment in MCF-7 cells.

The pathways affected by resveratrol treatment were analysed using Ingenuity Pathway Analysis (IPA). The major pathways that were significantly affected by resveratrol treatment in Caco-2 and MCF-7 are presented in Table 4.3 and Table 4.6 respectively.

Resveratrol affected several metabolic pathways in the Caco-2 cell line. These pathways included propanoate metabolism, pyruvate metabolism and synthesis and degradation of ketone bodies. Estrogen receptor signalling and glucocorticoid receptor signalling pathways were also significantly affected by resveratrol treatment.

In the MCF-7 cell line, resveratrol affected several immune system pathways including: CTLA4 Signalling in Cytotoxic T Lymphocytes, PKC0 Signalling in T Lymphocytes, Calcium-induced T Lymphocyte Apoptosis, and Role of NFAT in Regulation of the Immune Response.

83

Figure 4.1: The effect of resveratrol (REV) on histone protein expression in Caco-2 and MCF-7 cells. (A) Results of densitometric analysis of western blots detecting expression of histone proteins in Caco-2 cells are shown as mean with standard errors (n=3) *P < 0.05, **P < 0.01. The expression of histone H2A, H2B, H3 and H4 were significantly decreased in cells treated with REV. (B) Results of densitometric analysis of western blots detecting expression of histone proteins in MCF-7 cells are shown as mean with standard errors (n=3) *P < 0.05. The expression of histone H2A, H2B, H3 and H4 were significantly decreased in cells treated with REV. (B) Results of densitometric analysis of western blots detecting expression of histone proteins in MCF-7 cells are shown as mean with standard errors (n=3) *P < 0.05. The expression of histone H2A, H2B, H3 and H4 were significantly decreased in cells treated with REV. Sample western blots are shown under each panel.

Figure 4.2: Analysis of RNA integrity using the Agilent 2100 bioanalyser. (A) Gel-like image generated from bioanalyser electropherogram output of the analysis of RNA samples of the control (control) and treated with resveratrol (REV) extracted from Caco-2 and MCF-7cells. (B) Typical bioanalyser electropherogram output from the control (number1) of Caco-2 cell line. RNA integrity number (RIN) above the threshold of 7 was required for downstream application.

Gene symbol	Description	Fold change
ALDH1A1	Aldehyde dehydrogenase 1 family, member A1	1.26
APCDD1	Adenomatosis polyposis coli down-regulated 1	1.20
AQR	Aquarius homolog (mouse)	1.22
ATP10A	ATPase, class V, type 10A	1.25
BAT3	HLA-B-associated transcript 3	1.21
BOLA3	BolA homolog 3	1.22
CCNF	Cyclin F	1.32
DGCR11	DiGeorge syndrome critical region gene 11	1.20
FKBP5	FK506 binding protein 5	1.20
IGSF3	Immunoglobulin superfamily member 3	1.20
MIR586	MicroRNA 586	1.26
NAT5	n-terminal acetyltransferase b complex catalytic subunit nat5	1.20
NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 10	1.20
PIGO	Phosphatidylinositol glycan anchor biosynthesis, class O	1.30
RPS27	Ribosomal protein S27 pseudogene	1.26
SCO2	SCO cytochrome oxidase deficient homolog 2 (yeast)	1.23
SNRPF	Small nuclear ribonucleoprotein polypeptide F	1.25
UTP14A	UTP14, U3 small nucleolar ribonucleoprotein, homolog A (yeast)	1.26

Table 4.1: Genes upregulated in the Caco-2 cell line after treatment with resveratrol

Gene symbol	Description	Fold change
AADACL4	Arylacetamide deacetylase-like 4	1.28
AKR1D1	Aldo-keto reductase family 1, member D1 (delta 4-3-ketosteroid-	1.21
	5-beta-reductase)	
АМН	Anti-Mullerian hormone	1.20
AOF2	Amine oxidase (flavin containing) domain 2	1.25
ARID4B	AT rich interactive domain 4B (RBP1-like)	1.22
ARL3	ADP-ribosylation factor-like 3	1.21
ATF4	Activating transcription factor 4	1.21
ATP2B4	ATPase, Ca++ transporting, plasma membrane 4	1.22
BAZ1A	Bromodomain adjacent to zinc finger domain, 1A	1.20
C1GALT1C1	C1GALT1-specific chaperone 1	1.22
CBS	Cystathionine-beta-synthase	1.34
CCNC	Cyclin C	1.24
CCT3	Chaperonin containing TCP1, subunit 3 (gamma)	1.29
CD55	CD55 molecule, decay accelerating factor for complement	1.52
	(Cromer blood group)	
CGA	Glycoprotein hormones, alpha polypeptide	1.42
CNOT8	CCR4-NOT transcription complex, subunit 8	1.25
CREB1	cAMP responsive element binding protein 1	1.26
CSNK1D	Casein kinase 1, delta	1.24
DDX51	DEAD (Asp-Glu-Ala-Asp) box polypeptide 51	1.31
DENND1A	DENN/MADD domain containing 1A	1.24
DKFZP761E198	DKFZp761E198 protein	1.20
DKK3	Dickkopf homolog 3 (Xenopus laevis)	1.25
FLJ44124	Uncharacterized LOC641737	1.36
FOSB	Fosfomycin resistance protein FosB	1.20
FZD2	Frizzled homolog 2 (Drosophila)	1.25
GADD45G	Growth arrest and DNA-damage-inducible, gamma	1.30
HBP1	HMG-box transcription factor 1	1.22
HSPB1	Heat shock 27kDa protein 1	1.22
IFT172	Intraflagellar transport 172 homolog (Chlamydomonas)	1.21
KLF10	Kruppel-like factor 10	1.22
KLF4	Kruppel-like factor 4 (gut)	1.26
LGSN	Lengsin, lens protein with glutamine synthetase domain	1.20
MAK10	MAK10 homolog, amino-acid N-acetyltransferase subunit, (S.	1.30
	cerevisiae)	
MCM8	Minichromosome maintenance complex component 8	1.42
MED1	Mediator complex subunit 1	1.20
MIR197	MicroRNA 197	1.24
NFAT5	Nuclear factor of activated T-cells 5, tonicity-responsive	1.30
NHLRC3	NHL repeat containing 3	1.25
NIPSNAP1	Nipsnap homolog 1 (C. elegans)	1.25

 Table 4.2: Genes down regulated in the Caco-2 cell line after treatment with resveratrol

Continued

Gene symbol	Description	Fold change
OVOL1	OVO homolog-like 1 (Drosophila)	1.31
OXR1	Oxidation resistance 1	1.26
PAPOLA	Poly(A) polymerase alpha	1.26
PCSK5	Proprotein convertase subtilisin/kexin type 5	1.21
PCYOX1	Prenylcysteine oxidase 1	1.20
PINK1	PTEN induced putative kinase 1	1.23
RPS6KA3	Ribosomal protein S6 kinase, 90kDa, polypeptide 3	1.35
SAMD4B	Sterile alpha motif domain containing 4B	1.27
SCGN	Secretagogin, EF-hand calcium binding protein	1.28
SCML1	Sex comb on midleg-like 1 (Drosophila)	1.27
SCYL1	SCY1-like 1 (S. cerevisiae)	1.20
SKA2	Spindle and kinetochore associated complex subunit 2	1.40
SLC22A18AS	Solute carrier family 22 (organic cation transporter), member 18	1.26
	antisenseBottom of Form	
	Top of Form	
SLC39A7	Solute carrier family 39 (zinc transporter), member 7	1.26
STXBP6	Syntaxin binding protein 6 (amisyn)	1.20
TINAGL1	Tubulointerstitial nephritis antigen-like 1	1.22
TP53INP1	Tumor protein p53 inducible nuclear protein 1	1.20
UBXN6	UBX domain protein 6	1.20
UCHL1	Ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)	1.21
ZNF607	Zinc finger protein 607	1.21
ZSWIM4	Zinc finger, SWIM-type containing 4	1.22

Table 4.3: Pathways affected by resveratrol treatment in the Caco-2 cell line

Ingenuity Canonical Pathways	-log(p-value)	Genes
Propanoate Metabolism	3.07E00	ALDH1A1, ACAT2, PCCA, ACAT1, ACACA, LDHA
p53 Signaling	3E00	SCO2, TP53INP1, JMY, GADD45G, MED1, CSNK1D, PML
Pyruvate Metabolism	2.66E00	ALDH1A1, ACAT2, PCK2, ACAT1, ACACA, LDHA
Melanocyte Development and Pigmentation Signaling	2.53E00	RPS6KB1, MITF, CREB1, ADCY1, RPS6KA3, ATF4
Hypoxia Signaling in the Cardiovascular System	2.26E00	CREB1, CSNK1D, ATF4, UBE2J1, LDHA
Glucocorticoid Receptor Signaling	1.86E00	TGFBR2, NFAT5, TAF5, PCK2, MED1, CREB1, NCOR2, NFATC4, FKBP5, SMARCA4
Circadian Rhythm Signaling	1.82E00	CREB1, CSNK1D, ATF4
Cleavage and Polyadenylation of Pre- mRNA	1.77E00	PAPOLA, CSTF3
Synthesis and Degradation of Ketone Bodies	1.77E00	ACAT2, ACAT1
ERK5 Signaling	1.68E00	RPS6KB1, CREB1, RPS6KA3, ATF4
Estrogen Receptor Signaling	1.68E00	TAF5, CCNC, PCK2, MED1, NCOR2, SMARCA4
Valine, Leucine and Isoleucine Degradation	1.53E00	ALDH1A1, ACAT2, PCCA, ACAT1
FLT3 Signaling in Hematopoietic Progenitor Cells	1.47E00	RPS6KB1, CREB1, RPS6KA3, ATF4
Role of IL-17F in Allergic Inflammatory Airway Diseases	1.44E00	CREB1, RPS6KA3, ATF4
VDR/RXR Activation	1.37E00	CCNC, MED1, NCOR2, KLF4

Gene symbol	Description	Fold change
CD79A	CD79a molecule, immunoglobulin-associated alpha	1.20
DBN1	Drebrin 1	1.23
GRINA	Glutamate receptor, ionotropic, N-methyl D-aspartate- associated protein 1 (glutamate binding)	1.22
GSTTP2	Glutathione S-transferase theta pseudogene 2	1.35
IMPDH2	IMP (inosine 5'-monophosphate) dehydrogenase 2	1.20
MIR1974	MicroRNA 1974	1.30
NUCB1	CG32190 gene product from transcript CG32190-RA	1.21
OAZ2	Ornithine decarboxylase antizyme 2	1.22
PGM5	Phosphoglucomutase-like protein 5	1.44
SS18L1	Synovial sarcoma translocation gene on chromosome 18-like 1	1.21
STXBP2	Syntaxin binding protein 2	1.20
ZNF334	Zinc finger protein 334	1.22
ZNF773	Zinc finger protein 773	1.22

Table 4.4: Genes upregulated in the MCF-7 cell line after treatment with resveratrol

<i>Table 4.5:</i>	Genes down	regulated	in the MCF-7	cell line aft	ter treatment w	ith resveratrol
		0				

Gene symbol	Description	Fold change
ANKRD32	Ankyrin repeat domain 32	1.20
ASB7	Ankyrin repeat and SOCS box containing 7	1.20
C6orf148	KH homology domain containing 1	1.24
DCDC2B	Doublecortin domain containing 2B	1.21
GRN	Granulin	1.39
HMG20A	High mobility group 20A	1.23
IFI6	Interferon, alpha-inducible protein 6	1.40
INSIG1	Insulin induced gene 1	1.21
KANK2	KN motif and ankyrin repeat domains 2	1.24
KIF23	Kinesin family member 23	1.21
LOC441131	Actin related protein 2/3 complex, subunit 3 pseudogene 5	1.24
LOC647349	AP-3 complex subunit sigma-1-like	1.22
MRPS16	Mitochondrial ribosomal protein S16	1.24
NUDT9	Nudix (nucleoside diphosphate linked moiety X)-type motif 9	1.23
PCGF3	Polycomb group ring finger 3	1.20
RABIF	RAB interacting factor	1.23
RAD51C	RAD51 homolog C (S. cerevisiae)	1.22
UBIAD1	UbiA prenyltransferase domain containing 1	1.20
ZNRD1	Zinc ribbon domain containing 1	1.23
Ingenuity Canonical Pathways	-log(p-value)	Genes
--	---------------	---
B Cell Development	2.2E00	HLA-DQB1, HLA-DRB5, CD79A
Role of NFAT in Regulation of the Immune Response	2.01E00	HLA-DQB1, GNB1, NRAS, LAT, HLA-DRB5, CD79A
Ephrin Receptor Signaling	2.01E00	PTK2, GNB1, NRAS, EPHA1, EFNA3, GRINA
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis	1.89E00	HLA-DQB1, TNFSF11, HLA-DRB5, CD79A
Virus Entry via Endocytic Pathways	1.82E00	AP1G2, NRAS, PRKCD, TFRC
CTLA4 Signaling in Cytotoxic T Lymphocytes	1.79E00	HLA-DQB1, AP1G2, LAT, HLA-DRB5
One Carbon Pool by Folate	1.62E00	SHMT1, GART
Calcium-induced T Lymphocyte Apoptosis	1.56E00	HLA-DQB1, PRKCD, HLA- DRB5
PKC0 Signaling in T Lymphocytes	1.48E00	HLA-DQB1, NRAS, LAT, HLA-DRB5
IL-15 Production	1.46E00	PTK2, PTK7
IL-4 Signaling	1.46E00	HLA-DQB1, NRAS, HLA- DRB5
Macropinocytosis Signaling	1.46E00	NRAS, RAB5A, PRKCD
Glycine, Serine and Threonine Metabolism	1.37E00	TDH, SHMT1, SMOX

4.3 The intersections between lists of genes responding to dietary restriction (DR) and genes affected by resveratrol treatment

To investigate if resveratrol has effects similar to dietary restriction (DR), the intersections between the lists of genes affected by resveratrol treatment determined in the current investigation and a list of genes that respond to DR was identified. For this analysis the list of genes affected by dietary restriction was compiled from published studies in mice (LJ Ions and D Ford, personal communication). The representation factor (RF) and cumulative hypergeometric probability were calculated. A representation factor >1 indicates a greater overlap than expected between two independent groups, and hypergeometric probability indicates if any over-representation is statistically significant.

As shown in Figure 4.3, 51 genes were significantly changed in their expression in response to both DR and resveratrol treatment in the Caco-2 cell line (Table 4.7B). Out of these genes, ten genes were associated with pathways that significantly changed in response to resveratrol treatment. These genes are *ACAT*1, *ACAT*2, *ALDH1A*1, *ATF*4, *CSNK1D*, *FKBP*5, *GADD*45G, *KLF*4, *LDHA*, and *SMARCA*4.

In the MCF-7 cell line, 30 genes responded to both DR and resveratrol treatment (Table 4.7A). Seven of these genes were associated with pathways that significantly changed in response to resveratrol treatment. These genes are *AP1G2*, *CD79A*, *GRINA*, *NRAS*, *PRKCD*, *SHMT*1, and *TFRC*.

Importantly, both overlaps were greater than expected by chance (RF>1 and P<0.05).

Figure 4.3: Intersections between lists of genes affected by resveratrol treatment in Caco-2 and MCF-7 cell lines and genes responding to dietary restriction (DR), based on a list compiled from published studies in mice.

(A) Genes affected by resveratrol treatment and DR in MCF-7 cells (n=30)				
ENSMUSG0000003379	Cd79a	ENSMUSG0000029198	Grpel1	
ENSMUSG0000018882	Mrpl45	ENSMUSG0000030824	Nucb1	
ENSMUSG0000019889	Ptprk	ENSMUSG0000034308	Sdr42e1	
ENSMUSG0000020241	Col6a2	ENSMUSG0000034708	Grn	
ENSMUSG0000020534	Shmt1	ENSMUSG0000038145	Snrk	
ENSMUSG0000021203	Otub2	ENSMUSG0000038582	Pptc7	
ENSMUSG0000021286	Zfyve21	ENSMUSG0000039114	Nrn1	
ENSMUSG0000021948	Prkcd	ENSMUSG0000040701	Ap1g2	
ENSMUSG0000022464	Slc38a4	ENSMUSG0000049470	Aff4	
ENSMUSG0000022564	Grina	ENSMUSG0000053916	Nanp	
ENSMUSG0000022797	Tfrc	ENSMUSG0000055053	Nfic	
ENSMUSG0000024145	Pigf	ENSMUSG0000056917	Sipa1	
ENSMUSG0000026203	Dnajb2	ENSMUSG0000059208	Hnrnpm	
ENSMUSG0000027852	Nras	ENSMUSG0000060126	Tpt1	
ENSMUSG0000029064	Gnb1	ENSMUSG0000031438	Rnf128	
(B) Genes affected by resveratrol tr	eatment and DR in Caco-2 cells (n=	=51)		
ENSMUSG0000001416	Cct3	ENSMUSG0000028454	Pigo	
ENSMUSG0000002910	Arrdc2	ENSMUSG0000028776	Tinagl1	
ENSMUSG0000002996	Hbp1	ENSMUSG0000028967	Errfi1	
ENSMUSG0000003032	Klf4	ENSMUSG0000029068	Ccnl2	
ENSMUSG0000003545	Fosb	ENSMUSG0000030337	Vamp1	
ENSMUSG0000018736	Ndel1	ENSMUSG0000030772	Dkk3	
ENSMUSG0000018900	Slc22a5	ENSMUSG0000032041	Tirap	
ENSMUSG0000020260	Pofut2	ENSMUSG0000032047	Acat1	
ENSMUSG0000020262	Adarb1	ENSMUSG0000032187	Smarca4	
ENSMUSG0000021453	Gadd45g	ENSMUSG0000034285	Nipsnap1	
ENSMUSG0000022037	Clu	ENSMUSG0000034584	Exph5	
ENSMUSG0000022415	Syngr1	ENSMUSG0000035248	Zcchc6	
ENSMUSG0000022957	Itsn1	ENSMUSG0000037465	Klf10	
ENSMUSG0000023075	Akirin1	ENSMUSG0000037601	Nme1	
ENSMUSG0000023832	Acat2	ENSMUSG0000038641	Akr1d1	
ENSMUSG0000024039	Cbs	ENSMUSG00000041058	Wwp1	
ENSMUSG0000024222	Fkbp5	ENSMUSG00000042406	Atf4	
ENSMUSG0000024487	Yipf5	ENSMUSG00000045160	Bola3	
ENSMUSG0000024713	Pcsk5	ENSMUSG00000045954	Sdpr	
ENSMUSG0000025035	Arl3	ENSMUSG00000050213	Snip1	
ENSMUSG0000025129	Ppp1r27	ENSMUSG00000053279	Aldh1a1	
ENSMUSG00000025162	Csnk1d	ENSMUSG00000055491	Pprc1	
ENSMUSG0000025395	Prim1	ENSMUSG0000063229	Ldha	
ENSMUSG0000026730	Pter	ENSMUSG0000066026	Dhrs3	
ENSMUSG0000027803	Wwtr1	ENSMUSG0000072082	Ccnf	
ENSMUSG0000031438	Rnf128			

4.4 The intersections between lists of genes affected by resveratrol treatment and genes affected by Sirt1 knockdown

Towards addressing the question of whether or not resveratrol acts through *Sirt*1, the intersections between lists of genes affected by resveratrol treatment as identified in the current analysis and genes affected by knockdown of *Sirt*1 expression was identified. For this analysis a list of genes affected by *Sirt*1 knockdown in Caco-2 cells derived through previous research in the laboratory was used (LJ Ions and D Ford, personal communication).

As shown in Figure 4.4, only one gene was changed in its expression in response to both knockdown of *Sirt*1 expression and resveratrol treatment in the Caco-2 cell line (Table 4.8B). In the MCF-7 cell line, two genes responded to resveratrol treatment that also appeared on the list of genes that were affected by *Sirt*1 knockdown in Caco-2 cells (Table 4.8A). There was a remarkable distinction between the genes that responded to resveratrol treatment and to *Sirt*1 knockdown in the Caco-2 cell line. As expected, since genes that responded to resveratrol treatment in the Caco-2 and MCF-7 cell lines tended also to be distinct, there was also little overlap between the list of genes that responded to resveratrol treatment in the MCF-7 cell line and to *Sirt*1 knockdown in Caco-2 cells.

4.5 Occurrence of the ERE in the promoter region of genes affected by resveratrol

Given that resveratrol has structural similarity to estrogen, promoter regions of the genes affected by resveratrol treatment in both cell lines were searched for occurrences of the estrogen-response element (ERE) consensus sequence using Genomatix software. Of the 448 genes affected by resveratrol treatment in Caco-2 cells, the ERE was identified in only 9 genes. These genes are: *NFATC4*, *NME1*, *NRG1*, *CCNC*, *MED1*, *NCOR2*, *PCK2*, *SMARCA4* and *TAF5*. Thus, the analysis indicated either that there was no enrichment of genes likely to

respond to estrogen among those responsive to resveratrol or that genes that are estrogen responsive have binding sites for the ligand ER complex that differ from the sequence(s) used for this search.

Figure 4.4: Intersections between lists of genes affected by resveratrol treatment in Caco-2 and MCF-7 cell lines and genes affected by knockdown of Sirt1 expression in Caco-2 cells.

Table 4.8: Genes affected by knockdown of Sirt1 expression and resveratrol treatment inCaco-2 and MCF-7 cell lines

(A) Genes affected by resveratrol treatment and Sirt1 knockdown in MCF-7 cells

Gene symbol	Description
RPS29	Ribosomal protein S29
TPT1	Tumor protein, translationally-controlled 1

(B) Genes affected by resveratrol treatment and Sirt1 knockdown in Caco-2 cells

Gene symbol	Description
IPO11	Importin 11

4.6 Discussion

Dietary restriction (DR) and resveratrol have been reported to promote longevity in diverse species from yeast to mammal through a mechanism that may be dependent on Sirt1 in mammals and on its homologue Sir2 in yeast.

In the work presented in this chapter, we investigated if resveratrol (at a concentration that is achievable physiologically) has a similar effect to that of DR or to that of manipulating Sirt1 expression at the level of gene expression in a human epithelial cell line model. Microarray analysis was carried out on RNA extracted from Caco-2 or MCF-7 cell lines treated with 10 μ M resveratrol for 48 hours. The intersections between the derived list of genes affected by resveratrol treatment in both cell lines and an available list of genes responsive to DR were identified. The finding that both overlaps were greater than expected by chance lends support to the view that responses to resveratrol and to dietary restriction have some commonality and that resveratrol may mimic some effects of dietary restriction.

Towards investigating if resveratrol exerts its effects through Sirt1, the intersections between the lists of genes affected by resveratrol treatment and an available list achieved by knockdown of *Sirt1* expression in Caco-2 cells was identified. The finding that there was very little overlap between genes affected by resveratrol treatment and by knockdown of *Sirt1* expression adds to accumulating evidence that, contrary to previous opinion, resveratrol, at the concentration used in these experiments, does not act through effects on Sirt1. This view is supported by *in vivo* evidence based on a rodent model (Barger *et al.*, 2008a). In contrast, incubation of exogenous Sirt1 with human hyperacetylated histones caused a deacetylation at H4K16 and H3K9 (Vaquero *et al.*, 2004). Moreover, resveratrol treatment of a *Sirt1*^{-/-} mouse myoblast cell line failed to induce the deacetylation of the Sirt1 substrate PGC-1 α observed in wild-type myoblasts (Lagouge *et al.*, 2006), suggesting that the resveratrol effect is mediated through Sirt1. Recently, Park and colleagues (2012) reported that the activation of Sirt1 by resveratrol appears to be indirect, through cAMP-mediated activation AMP-activated protein kinase (AMPK). Resveratrol-activated AMPK may increase the level of NAD⁺ in the cell and thereby activate Sirt1 (Um *et al.*, 2010).

We observed a remarkable lack of commonality between lists of genes and between the pathways affected by resveratrol in Caco-2 (intestinal) and MCF-7 (breast cancer) cell lines. This observation is concordant with effects reported in vivo, indicating tissue-specific actions of resveratrol including actions on Sirt1. For example, Sirt1 expression was regulated differently by resveratrol in different tissues of resveratrol-treated mice. The expression of Sirt1 was downregulated in the heart but upregulated in the muscle, and did not change in the brain (Barger et al., 2008b). Dose dependency is also a factor that should be considered. For instance, mice treated with high dose of resveratrol (22.4 mg/kg of body weight) showed enhanced longevity and also effects suggesting a role for Sirt1 (Baur et al., 2006). In contrast, a low dose of resveratrol (4.9 mg/kg of body weight) showed no effect on lifespan in mice and no effect on Sirt1 expression (Barger et al., 2008a). However, direct comparison between these two studies is not possible because the background diet differed substantially; mice in the study by Baur and colleges received a high fat diet. Dietary levels of resveratrol that may be effective thus remain undefined. The concentration of resveratrol used in the current study (10 µM) is considered to be physiologically achievable through normal consumption of resveratrol-rich foods, but our cell culture models do not necessary reflect exposure of tissues in vivo to effects of dietary resveratrol, given that the compound undergoes substantial metabolism to glucuronide and sulphate conjugates (Goldberg et al., 2003; Rotches-Ribalta et al., 2012). The Caco-2 (intestinal) model may reflect more accurately effects of dietary resveratrol given that the metabolites are exposed to the parent compound. For both cell lines,

it would be of interest to measure the level of metabolism of resveratrol that occurs under our treatment conditions.

These data show that resveratrol affected several metabolic pathways in the Caco-2 cell line including propanoate metabolism, pyruvate metabolism and synthesis and degradation of ketone bodies. A possible explanation for these observations is that, as an intestinal cell line, Caco-2 represents the tissue that first encounters absorbed dietary metabolic substrates, so perhaps these pathways are particularly susceptible to perturbation. On the other hand, immune system pathways were the principal target of resveratrol in the breast cancer MCF-7 cell line. These pathways included calcium-induced T lymphocyte apoptosis, and role of NFAT in regulation of the immune response. The immune system has a contributory effect in early-stage breast cancer (Mouawad et al., 2011), perhaps reflecting that these pathways are particularly prone to perturbation in breast cancer cells and thus providing a possible explanation for the observed effects of resveratrol. This apparent tissue-specific response to resveratrol is also apparent from the microarray data on an individual gene level. For example, amyolid precursor protein (APP) gene was upregulated in Caco-2 cells but downregulated in MCF-7 cells. This gene is of particular interest in the context of ageing. The APP gene is located on chromosome 21 (21q^{21.2}) and expressed in different tissues with the highest expression in neuronal cells in the central nervous system (CNS) (Zhang et al., 2011). The functions of APP protein not fully understood, but a role in regulation of neuron growth and survival seems evident (Turner et al., 2003; Priller et al., 2006). The APP protein is the precursor molecule of beta-amyloid (A β), which is involved in the formation of amyloid plaques in the brain of Alzheimer disease patients. Mutation of the APP gene has been reported to increase the risk of early-onset of Alzheimer disease (Goate et al., 1991). APP --- mice showed features of ageing and neurodegenerative disease Furthermore.

including loss of body mass and weakness with reduced expression of synaptic markers associated with learning deficit and losses of memory (Prille *et al.*, 2006).

Some key genes - *FOXO1*, *PGC-1* α and *IGF-1*- that have been linked with ageing and particularly with a modulating effect of DR and/ or Sirt1- were absent from the lists of genes found to be affected by resveratrol in Caco2 and MCF-7 cells (Baur *et al.*, 2006). In contrast, these genes have been reported to be affected in different tissues including heart, liver, brain and skeletal muscle extracted from mice treated with resveratrol.

A possible explanation for these discordant observations is the apparent tissue/ cell specificity of resveratrol action at the level of gene expression, as indicated by the very different response we observed in Caco-2 compared with MCF-7 cells. Microarray data on gene responses to resveratrol in intestinal and breast tissues derived from mice treated with resveratrol would allow this idea to be tested, but appear unavailable at present in published resources.

Further analysis of the transcriptionic data involved investigating if the estrogen-response element (ERE) occurred at a higher frequency than expected by chance in genes regulated by resveratrol. The search for occurrences of the ERE consensus sequence in the promoter regions of the genes affected by resveratrol treatment in both cell lines was carried out using Genomatix software. The analysis indicated that genes including the ERE were not enriched within the population of genes that responded to resveratrol treatment in either cell line. This finding may indicate that resveratrol affects gene expression, generally, through a mechanism independent of direct binding of a resveratrol-ER complex to the ERE. Alternatively, an interpretation of the results could be that many of the genes do respond through binding of a resveratrol-ER complex to sequences in the promoter regions that act as EREs, but that the criteria we used to define EREs were inappropriate for the detection of these sequences. A study that investigated the occurrence of the ERE in genes that responded to 17- β estradiol found that the ERE sequence was present in only a fraction (Bourdeau *et al.*, 2004). Indeed, there are numerous instances cited in the literature where genes without sequences that conform to the ERE consensus respond to ligands of the ER in the conventional manner, so it is difficult to define elements in gene promoter regions that function as ER-ligand binding sites. Should our analysis have shown enrichment for genes including the consensus ERE among those that responded to resveratrol then this would be evidence that supports the idea that some effects of resveratrol are ER-mediated. The negative results we obtained, however, are not sufficient to allow us to conclude that resveratrol actions on gene expression are generally independent of the ER. Further research on this topic is thus required. In chapter 5 of this thesis a direct approach to investigate if effects of resveratrol on histone H3 expression are ER-mediated is presented and further discussion around the general topic is included.

Further analysis of microarray data revealed that resveratrol action may be mediated through a non-genomic pathway of estrogen action. Two major signalling proteins have been reported to be involved in the activation of intracellular signaling cascades by estrogen through nongenomic pathway: physphatidylinosinol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPKs) (Suzuki *et al.*, 2008; Watson *et al.*, 2009). The microarray data revealed that resveratrol had an effect on extracellular-signal-regulated kinase 5 (ERK5) signalling in Caco-2 cells. ERK5 is a member of the MAPK family and plays an essential role in the regulation of cell proliferation, differentiation, and in cardiovascular development (Nishimoto and Nishida, 2006). The absence of this effect of resveratrol on the ERK5 pathway in MCF-7 cells provides further evidence of the tissue specific effect of resveratrol. Further research is required to uncover the role of non-genomic signalling cascades in the mechanism of action of resveratrol.

Confirmation of the results of RNA microarray analysis using real time PCR is a standard step to validate these data. There was insufficient time to carry out this validation as a component of the research present in this thesis, but other researchers in the laboratory are currently confirming responses to resveratrol in MCF-7 and Caco-2 cells of genes identified by the microarray analyses presented. These data will be presented to validate the microarray studies in any published work that arises.

5 The mechanism of action of resveratrol

5.1 Introduction

Resveratrol has a structure similar that of known phytoestrogens so may mediate some of its action through its interaction with estrogen receptors ER α and/or ER β . Some studies have reported that resveratrol may act as an ER agonist in the MCF-7 breast cancer cell line (Gehm *et al.*, 1997; Gehm *et al.*, 2004). In contrast, other studies documented apparent ER antagonist action in the same cell line (Kim *et al.*, 2004).

The work presented in this chapter aimed to investigate the mechanism through which resveratrol reduces histone protein expression and whether this effect is mediated through estrogen receptor. The hypothesis, based on the structural similarity between resveratrol and 17β -estradiol, was that effects of resveratrol on histone expression may be mediated through the estrogen receptor (ER).

5.2 Effect of resveratrol on histone expression in cells with different ER status in the presence and absence of the ER antagonist fulvestrant

As presented in chapter 3, resveratrol reduced histone protein expression in Caco-2 and MCF-7 cells. The work presented in this chapter was aimed to determine whether or not this response was related to the expression of estrogen receptors (ER), which may be a mechanism through which effects of resveratrol are mediated. For this purpose two different cell lines which differ in their estrogen receptor expression: MCF-7 (ER α -positive, ER β -positive) and Caco-2 (ER β -positive) were used.

5.2.1 Confirmation of the ER status of Caco-2 and MCF-7cells

To confirm the ER status of Caco-2 and MCF-7 cells, RNA was extracted from the cells then cDNA reversed transcribed from RNA was amplified using specific primers to ER α and ER β (primer sequences are presented in table 2.2 A). Figure 5.1 presents the PCR products obtained. Products appeared to be of the predicted size for both ER α (236 bp) and ER β (438 bp). The band derived using the ER α primers was confirmed as ER α by sequencing. Sequencing of the ER β product was unsuccessful, thus its identity was not confirmed. ER α expression was detected only in the MCF-7 cell line. In the Caco-2 cell line no expression of ER α was detected. In contrast, ER β expression was detected in both cell lines.

Figure 5.1: The expression of estrogen receptors ERa and ER β in MCF-7 and Caco-2 cell lines. (A) RT-PCR using primers for ERa. ERa expression was observed in the MCF-7 cell line. In contrast, no expression of ERa was detected in Caco-2 cell line. (B) RT-PCR using primers for ER β . ER β expression was observed in both cell lines. When reverse transcriptase was omitted from all reactions no products were observed (data not shown).

5.2.2 Effects of resveratrol in the presence and absence of fulvestrant on histone protein expression on Caco-2 and MCF-7 cells

MCF-7 and Caco-2 cells were treated with either 0.01% DMSO (vehicle control) or 10 μ M resveratrol (in 0.01% DMSO) for 48 hours in the presence or absence of the ER antagonist fulvestrant (0.1 μ M). Total cell lysate was analysed by western blotting using antihistone antibodies immunoreactive against H2A, H2B, H3 and H4. To ensure equal amounts of protein were loaded, the same membrane blot was probed with an antibody immunoreactive against α -tubulin. Quantitative data were derived by denstiometric quantification of band intensities in relation to α -tubulin.

Visual inspection of the data shown in Figure 5.2A and Figure 5.3A indicates that treatment of MCF-7 and Caco-2 cells with resveratrol resulted in a decrease in histone H2A, H2B, H3 and H4 expression. Densitometric analysis of the protein bands in relation to α -tubulin indicated that expression of histone H2A, H2B, H3 and histone H4 was decreased significantly in cells treated with resveratrol. In both cell lines (Caco-2 and MCF-7), the effect of resveratrol on histone expressions was reversed in the presence of ER antagonist, fulvestrant, consistent with the action of resveratrol to reduce histone expression being an ER- mediated response (Figure 5.2B and 5.3B).

Figure 5.2: The effect of resveratrol on histone expression in MCF-7 cells in the presence and absence of an ER antagonist. (A) Western blot analysis of histone H2A, H2B, H3 and H4. Typical data are shown. (B) Results of densitometric analysis of western blots detecting expression of histone proteins. Data are shown as mean \pm standard error (SEM) (n=6, based on three experiments), *P <0.05, **P<0.01, ***P<0.001 by one way ANOVA followed by Dunnett's post test. The expression of histone H2A, H2B, H3 and H4 were significantly decreased in cells treated with resveratrol (REV). In contrast, there was no significant change in histone H2A, H2B, H3 and H4 expression in the treated cells with REV in the presence of the ER antagonist fulvestrant (FULV).

(B)

Figure 5.3: The effect of resveratrol on histone expression in Caco-2 cell line in the presence and absence of an ER antagonist. (A) Western blot analysis of histone H2A, H2B, H3 and H4. Typical data are shown. (B) Results of densitometric analysis of western blots detecting expression of histone proteins. Data are shown as mean \pm standard error (SEM) (n=6, based on three experiments), *P <0.05, **P<0.01, ***P<0.001 by one way ANOVA followed by Dunnett's post test. The expression of histone H2A, H2B, H3 and H4 were significantly decreased in cells treated with resveratrol (REV), whereas there was no significant change in histone H2A, H2B, H3 and H4 expression in the cells treated with REV in the presence of ER antagonist fulvestrant (FULV).

(B)

5.3 The effect of resveratrol and ER antagonist fulvestrant on the activity of a histone H3 promoter-reporter construct in Caco-2 cells

For further investigation of the mechanism through which resveratrol acts to reduce histone expression, a promoter-reporter construct comprising the histone H3 promoter upstream of the β -galactosidase reporter gene in the vector pBlue TOPO (Invitrogen) was generated. Primers (see table 2.2 B) were designed to amplify 826 bp region of the histone H3 promoter using PCR (Figure 5.4). PCR products (Figure 5.5) were then subcloned directly into the pBlue TOPO vector (Invitrogen). Transformed *E.coli* colonies containing insert in the vector were detected by restriction digest using *Hind* III (Figure 5.5). The insert in the plasmid generated was sequenced (MWG Biotech) to confirm identity to the required sequence (Figure 5.6).

Caco-2 cells were transfected transiently with the H3 promoter-reporter construct. After transfection (24 hours later), cells were treated with 10 μ M resveratrol in the presence or absence of the ER antagonist fulvestrant (0.1 μ M) for 48 hours. The activity of the histone H3 promoter-reporter construct was determined by measuring the expression of β -galactosidase.

As shown in the Figure 5.7 resveratrol reduced reporter gene expression and this effect was attenuated by fulvestrant, demonstrating that resveratrol acts to reduce histone H3 expression at the level of transcription through an ER-mediated mechanism. In contrast, cells treated with fulvestrant were associated with an increase in histone H3 expression. A possible explanation of this finding is the ability of fulvestrant to promote the degradation and clearance of ERs, resulting in reduced availability of ERs to bind with phenolic compounds that may present in the medium and the serum used in cell treatments.

Accession number: M26150

TTTTGCCTAATATTCAGGCGGTGCTGCTGCCTAAGAAAACTGAGAGCCATCATAAGGCCAAGGGAAAGTG AAGAGTTAACGCTTCATGCACTGCTGTTTTTCTGTCAGCAGACAAAATCAGCCTAACAGCAAAGGCTCTT TTCAGAGCCACCTACGACTTCCATTAAATGAGCTGTTGTGCTTTTGGATTATGCCGCCCATAAAGATGTTT TTGAGGTGTTTTTAATGGCTTTGAGTGTGGCACTTTTAGTAATTTGTCCTGCAGAAATTAGATCCATAGA AACCTCAGGAATTCTAGGTATGTGGGAGAAGTGCCATGCAGCACAAAACATGTTTACAGGGGTGATTCGC TATCTTGAATGGAAGTGTTAAAAACCCGCATGCCCCACACAAGTTTGAATATGTCATACCATTTGCTGTAG GAGCTTTTTTCCAGTTTGGGGATGTTTTGCTTTGGTTTTGGGGTGGAGTCTCCCTCTCGCCCAAGCTGCAG TGCAGCGGCGTGATAACAGCTCACTGTAACCTCGAACTCGGGCTCAAGCGATCCTCTTGACAGCCTTCTG AGTAGCTGGGATTACAGGCGAGAGCCGCCACGCCCGGCTAAGAGCATTTTTCTAATTGCCCACACTTCTT ATGCGACACCCAGAAAAATACAATTTTAAATAAAGCGCATATGCAAATTTCCCTAATCGTCTCCAATATT CTCTGATTTCTTTTTTATATTTTAACTAGAAACAATTGGAGGTTTCCGCGTTGCTTTGTGTGGGTTGTAAA TTTTAAGACTTCAGGAAACTTTTCCAGTACAAGACTTGTCCACAGTGGATATAGCAGCTAAGGGGTTAAC AAAATGACGTCAGAGTAGCTACGGTAATGGGCAGGAGCCTCTCTTAATCTGCAACCAGGCACAGAGATGG ACCAATCCAAGAAGGGCGCGGGGGATTTTTGAATTTTCTTGGGTCCAATAGTTGGTGGTCTGACTCTATAA CTCGTACTAAACAGACAGCTCGGAAATCCACCGGCGGTAAAGCGCCACGCAAGCAGCTGGCTACCAAGGC TGCTCGCAAGAGCGCCGGCCGCCGGCGGCGGCGTGAAAAAGCCTCACCGTTACCGCCCGGGCACTGTGGCT CTGCGCGAGATCCGCCGCTACCAAAAGTCGACCGAGTTGCTGATTCGGAAGCTGCCGTTCCAGCGCCTGG TGCGAGAAATCGCCCAAGACTTCAAGACCGATCTTCGCTTCCAGAGCTCTGCGGTGATGGCGCTGCAGGA ACTATTATGCCCAAAGACATCCAGCTCGCCGCCGCATTCGCGGAGAAAGAGCGTAAATGTAAAGTCACT TAATTTTTTGTTGTCTTAACAGAACAAATTTCTAAGGACCCCCCGGAAAGCATTAGACTATGGTCTTAA AGTTGATTAACAGAAATAACGGTTTGGTCAGTCTTGCAGTGTAGGTTATTTCTGACCTTATTAAGGTGCT ATTTGGAGAGAAGCTGTGTAAGTCCACTATCATTCAGGCCTCTAGCTTGCTATGATTAGCATTTGTTTAA ACAACTTTGTAAGAGTAAGGGAAAAATCTGGTAAGTAGTTAACTGGCGCTTACTAGGCATTTTTGCAAAG CTTTGAAAAGATTAGAAAATTGTGTCTTGCGAGTTCCAGTG

Figure 5.4: The histone H3 promoter region sequence and related primers. The promoter sequence was taken from the human genome sequence. Primers (underlined) were designed for amplification by PCR of an 826 bp region of the histone H3 promoter sequence to generate a PCR product to sub-clone into the pBlue-TOPO reporter vector.

Figure 5.5: (A) Agarose gel electrophoresis of human histone H3 promoter PCR products. cDNA reverse transcribed from Caco-2 RNA was amplified using specific primers to produce an 826 bp product comprising the H3 promoter sequence. (B) Agarose gel electrophoresis of restriction digest by HindiIII of recombinant plasmids to screen for those containing the H3 promoter sequence. A DNA molecular weight marker (Hyperladder I) was run in the lane marked (HL1) sizes are indicated. (C) Diagrammatic representations of insertion of the histone H3 promoter sequence into the vector pBlue TOPO to generate the H3 promoter-reporter construct.

301	TGTGGGAGAAGTGCCATGCAGCACAAAACATGTTTACAGGGGTGATTCGCGTTAAGTTTC	360
58	tgtgggagaagtgccatgcagcacaaaacatgtttacaggggtgattcgcgttaagtttc	117
361	ACACAGCAGCTACTACATTTTAGAGGAAGGAAATTATACCCATGAGTGCATTCCTAAC	420
118	acacacagcagttactacattttagaggaaggaaattatacccatgagtgcattcctaac	177
421	TATCTTGAATGGAAGTGTTAAAACCCGCATGCCCCACACAAGTTTGAATATGTCATACCA	480
178	tatcttgaatggaagtgttaaaacccgcatgccccacacaagtttgaatatgtcatacca	237
481	TTTGCTGTAGCAATTAATGGCATACACAATTGAGAGCACACACA	540
238	tttgctgtagcaattaatggcatacacaattgagagcacacaca	297
541	GAGTATGTATTTCCCAAAATGAGCTTTTTTCCAGTTTGGGGATGTTTTGCTTTGGTTTTGG	600
298	gagtatgtatttcccaaaatgagcttttttccagtttggggatgttttgctttgttttg	357
601	GGTGGAGTCTCCCTCTCGCCCAAGCTGCAGTGCAGCGCGTGATAACAGCTCACTGTAAC	660
358	gatggagteteeetetegeecaagetgeagtgeageggegtgataacageteaetgtaac	417
661	CTCGAACTCGGGCTCAAGCGATCCTCTTGACAGCCTTCTGAGTAGCTGGGATTACAGGCG	720
418	${\tt ctcgaactcgggctcaagcgatcctcttgacagccttctgagtagctgggattacaggcg}$	477
721	AGAGCCGCCACGCCCGGCTAAGAGCATTTTTCTAATTGCCCACACTTCTTATGCGACACC	780
478	agagccgccacgcccggctaagagcatttttctaattgcccacacttcttatgcgacacc	537
781	CAGAAAAATACAATTTTAAATAAAGCGCATATGCAAATTTCCCTAATCGTCTCCAATATT	840
538	cagaaaaatacaattttaaataaagcgcatatgcaaatttccctaatcgtctccaatatt	597
841	CTCTGATTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	900
598	${\tt ctctgatttctttttatattttaactagaaacaattggaggtttccgcgttgctttgtg$	657
901	TGGTTGTAAATTTTAAGACTTCAGGAAACTTTTCCAGTACAAGACTTGTCCACAGTGGAT	960
658	tggttgtaaattttaagacttcaggaaacttttccagtacaagacttgtccacagtggat	717
961	ATAGCAGCTAAGGGGTTAACAAAATGACGTCAGAGTAGCTACGGTAATGGGCAGGAGCCT	1020
718	atagcagctaaggggttaacaaaatgacgtcagagtagctacggtaatgggcaggagcct	777
1021	CTCTTAATCTGCAACCAGGCACAGAGATGGACCAATCCAAGAAGGGCGCGGGGATTTTTG	1080
778	ctcttaatctgcaaccaggcacagagttggaccaatccaagaagggcgcggggattttg	837
1081	AATTTTCTTGGGTCCAATAGTTGGTGGTCTGACTCTATAAAGAAGAAGAGTAGCTCTTTCCT	1140
838	aattttcttgggtccaatagttggtggtctgactctataaaagaagagtagctctttcct	897
1141	TTCCTC CACAGACGTCTCTGCAGGCAAG 1168	
898	ttcctc <mark>cacagacgtctctgcaggcaag</mark> 925	

Figure 5.6: Alignment of sequence data generated from the histone H3 promoterreporter construct (bottom line, lower case) with the required sequence.

Figure 5.7: The effect of resveratrol and the ER antagonist fulvestrant on the activity of a histone H3 promoter-reporter construct in Caco-2 cells. Caco-2 cells were transfected with a promoter-reporter construct comprising either the histone H3 promoter or with a corresponding negative control construct (negative control), without a promoter sequence insert. After transfection (24 hours later), cells were treated with resveratrol (RSV; 10 μ M) in the presence and absence of fulvestrant (FULV; 0.1 μ M) for 48 hours. Control cells (Control) were treated with DMSO vehicle only. Data are shown as mean \pm standard error (SEM) (n=9, based on four experiments), **P<0.01, ***P<0.001 by one way ANOVA followed by Dunnett's post test. The expression of the reporter gene was decreased significantly in response to the REV treatment and this effect was attenuated by fulvestrant.

5.4 Investigation of the role of EREs in resveratrol-mediated effects on histoneH3 gene transcription

Estrogen binds ER receptors then regulates the transcription of estrogen-responsive genes by either binding to specific sequences (estrogen response elements) within gene promoter regions, or by binding to other DNA-bound transcription factors, such as SP1, AP1 or NF-kappaB (Sun, 1998).

To address the potential role of EREs in mediating the effect of resveratrol on histone H3 gene expression, EREs identified within the histone H3 promoter sequence included in the promoter reporter construct were mutated using a PCR-based method. The primers were designed to introduce mutations into three sites at which consensus ERE sequences were present within the histone H3 promoter region in the construct using PCR (Figure 5.8). The PCR product including the mutated sites was subcloned into the pBlue TOPO vector (Invitrogen). Presence of insert in the vector from colonise of transformed *E.coli* was detected by digestion with *Hind* III then analysis by agarose gel electrophoresis (Figure 5.9 and 5.10). The successful mutation of the three EREs in the histone H3 promoter sequence was confirmed by sequencing (MWG Biotech) (Figure 5.11). All primers are listed in table (2.2 C).

Caco-2 cells were transfected transiently with either the histone H3 promoter reporter construct or with the equivalent construct containing the introduced mutations at the EREs. After transfection (24 hours later), cells were treated with 10 μ M resveratrol in the presence or absence of the ER antagonist fulvestrant (0.1 μ M) for 48 hours. The activity of the reporter gene (β -galactosidase) was then measured in cell lysates.

The activity of both the H3 promoter- reporter construct and of the equivalent construct containing mutations to the EREs was decreased significantly in response to the resveratrol treatment and this effect was attenuated by fulvestrant in both cases (Figure 5.12). The results therefore indicated that resveratrol reduced histone H3 expression at the level of transcription through the ER but through a mechanism independent of the EREs identified in the region of promoter sequence included in the promoter reporter construct.

Accession number: M26150

TTTTGCCTAATATTCAGGCGGTGCTGCTGCCTAAGAAAACTGAGAGCCATCATAAGGCCAAGGGAAAGTG AAGAGTTAACGCTTCATGCACTGCTGTTTTTCTGTCAGCAGACAAAATCAGCCTAACAGCAAAGGCTCTT TTCAGAGCCACCTACGACTTCCATTAAATGAGCTGTTGTGCTTTTGGATTATGCCGCCCATAAAGATGTTT TTGAGGTGTTTTTAATGGCTTTGAGTGTGGCACTTTTAGTAATTTGTCCTGCAGAAATTAGATCCATAGA AACCTCAGGAATTCTAGGTATGTGGGAGAAGTGCCATGCAGCACAAAACATGTTTACAGGGGTGATTCGC TATCTTGAAT**GGAAGTGTTAAAAACCCGCATGCCCCACACAAGTTTGAATATG**TCATACCATTTGCTGTAG GAGCTTTTTTCCAGTTTGGGGATGTTTTGCTTTGGTTTTGGGGTGGAGTCTCCCTCTCGCCCAAGCTGCAG TGCAGCGGCGTGATAACAGCTCACTGTAACCTCGAACTCGGGCTCAAGCGATCCTCTTGACAGCCTTCTG AGTAGCTGGGATTACAGGCGAGAGCCGCCACGCCCGG**CTAAGAGCATTTTTCTAATTGCCCACACTTCTT ATGCGACACCC**AGAAAAATACAATTTTAAATAAAGCGCATATGCAAATTTCCCTAATCGTCTCCAATATT TTTTAAGACTTCAGGAAACTTTTCCAGTACAAGACTTGTCCACAGTGGATATAGCAGCTAAGGGGTTAAC AAAATGACGTCAGAGTAGCTACGGTAATGGGCAGGAGCCTCTCTTAATCTGCAACCAGGCACAGAGATGG ACCAATCCAAGAAGGGCGCGGGGGATTTTTGAATTTTCTTGGGTCCAATAGTTGGTGGTCTGACTC**TATAA** AAGAAGAGTAGCTCTTTCCTTTCCTCCCCCCCACAGACGTCTCTGCAGGCAAGCTTTTCTGTGGTTTTGCCATGG CTCGTACTAAACAGACAGCTCGGAAATCCACCGGCGGTAAAGCGCCACGCAAGCAGCTGGCTACCAAGGC TGCTCGCAAGAGCGCCGCCGGCTACCGGCGGCGTGAAAAAGCCTCACCGTTACCGCCCGGGCACTGTGGCT CTGCGCGAGATCCGCCGCTACCAAAAGTCGACCGAGTTGCTGATTCGGAAGCTGCCGTTCCAGCGCCTGG TGCGAGAAATCGCCCAAGACTTCAAGACCGATCTTCGCTTCCAGAGCTCTGCGGTGATGGCGCTGCAGGA ACTATTATGCCCAAAGACATCCAGCTCGCCGCCGCATTCGCGGAGAAAGAGCGTAAATGTAAAGTCACT TAATTTTTTGTTGTCTTAACAGAACAAATTTCTAAGGACCCCCCGGAAAGCATTAGACTATGGTCTTAA AGTTGATTAACAGAAATAACGGTTTGGTCAGTCTTGCAGTGTAGGTTATTTCTGACCTTATTAAGGTGCT ATTTGGAGAGAAGCTGTGTAAGTCCACTATCATTCAGGCCTCTAGCTTGCTATGATTAGCATTTGTTTAA ACAACTTTGTAAGAGTAAGGGAAAAATCTGGTAAGTAGTTAACTGGCGCTTACTAGGCATTTTTGCAAAG CTTTGAAAAGATTAGAAAATTGTGTCTTGCGAGTTCCAGTG

Figure 5.8: The histone H3 promoter region sequence and related primers used to introduce mutations at sites with ERE consensus sequences. The primers which introduce mutations at the ERE sites are underlined and in bold. The 5 bp sequences highlighted in blue are the ERE sequences to be mutated.

Figure 5.9: Agarose gel electrophoresis of PCR products at stages in the procedure used to obtain a histone H3 promoter-reporter incorporating with mutations at three identified sites with ERE consensus sequence. In the first PCR reaction the 5` region of the promoter including one of the EREs was generated and the ERE was replaced with random sequences. In the second reaction, the middle region of the promoter including the second ERE was generated and the ERE was replaced with random sequence. These two products were then joined in a third PCR reaction. In a fourth PCR reaction the 3` region of the promoter including the third ERE was generated and the ERE was replaced with random sequence. The products of the third and fourth PCR reaction were then joined using the unique outer primers (to the random sequence). A DNA molecular weight marker (Hyperladder I) was run in the lane marked (HL1).

Figure 5.10: Agarose gel electrophoresis of restriction digest by Hind III of recombinant plasmids to screen for those containing the H3 promoter sequence. A DNA molecular weight marker (Hyperladder I) was run in the lane marked (HL1).

37 867	GTGGGAGAAGTGCCATGCAGCACAAAACATGTTTACAGGGGTGATTCGCGTTAAGTTTCA	96 808
97	CACACAGCAGTTACTACATTTTAGAGGAAGGAAATTATACCCATGAGTGCATTCCTAACT	156
807	cacacagcagttactacattttagaggaaggaaattatacccatgagtgcattcctaact	748
157	atcttgaatggaagtgttaaaacccgca tcaaa cacaaagtttgaatatgtcataccat	216
747	atcttgaatggaagtgttaaaacccgcat gccc cacacaagtttgaatatgtcataccat	688
217	TTGCTGTAGCAATTAATGGCATACACAATTGAGAGCACACACA	276
687	ttgctgtagcaattaatggcatacacaattgagagcacacaca	628
277	AGTATGTATTTCCCAAAATGAGCTTTTTTCCAGTTTGGGGATGTTTTGCTTTGTTTTGGG	336
627	agtatgtatttcccaaaatgagcttttttccagtttggggatgttttgctttgttttgg	568
337	ATGGAGTCTCCCTCTCGCCCAAGCTGCAGTGCAGCGGCGTGATAACAGCTCACTGTAACC	396
567	gtggagtctccctctcgcccaagctgcagtgcagcggcgtgataacagctcactgtaacc	508
397	TCGAACTCGGGCTCAAGCGATCCTCTTGACAGCCTTCTGAGTAGCTGGGATTACAGGCGA	456
507	tcgaactcgggctcaagcgatcctcttgacagccttctgagtagctgggattacaggcga	448
457	GAGCCGCCACGCCCGGCTAAGAGCATTTTTCTAATATCAGAACACTTCTTATGCGACACC	515
447	gagccgccacgcccggctaagagcatttttctaat- tgccc acacttcttatgcgacacc	389
516	CAGAAAAATACAATTTTAAATAAAGCGCATATGCAAATTTCCCTAATCGTCTCCAATATT	575
388	${\tt cagaaaaatacaattttaaataaagcgcatatgcaaatttccctaatcgtctccaatatt}$	329
576	CTCTGATTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	635
328	ctctgatttctttttatattttaactagaaacaattggaggtttccgcgttgctttgtg	269
636	TGGTTGTAAATTTTAAGACTTCAGGAAACTTTTCCAGTACAAGACTTGTCCACAGTGGAT	695
268	tggttgtaaattttaagacttcaggaaacttttccagtacaagacttgtccacagtggat	209
696	ATAGCAGCTAAGGGGTTAACAAAATGACGTCAGAGTAGCTACGGTAAT <mark>ACCAC</mark> GGAGCC	754
208	$\tt atagcagctaaggggttaacaaaatgacgtcagagtagctacggtaat \tt gggca \tt ggggcc$	150
755	TCTCTTAATCTGCAACCAGGCACAGAGTTGGACCAATCCAAGAAGGGCGCGGGGATTTTT	814
149	tctcttaatctgcaaccaggcacagagatggaccaatccaagaagggcgcggggattttt	90
815	GAATTTTCTTGGGTCCAATAGTTGGTGGTCTGACTCTATAAAAGAAGAGTAGCTCTTTCC	874
89	gaattttcttgggtccaatagttggtggtctgactctataaaagaagagtagctctttcc	30
875	TTTCCTCCACAGACGTCTCTGCAGG-AAG 902	
29	tttcctccacagacgtctctgcaggcaag 1	

Figure 5.11: Alignment of sequence data generated from the histone H3 promoterreporter construct in which ERE sequences were mutated (bottom line, lower case) with the required sequence. The 5 bp sequence highlighted in blue are the ERE sequences to be mutated.

Figure 5.12: The effect of resveratrol and the ER antagonist fulvestrant on the activity of an H3 promoter-reporter construct in which three identified ERE sequences were mutated in Caco-2 cells. Caco-2 cells were transfected with a promoter-reporter construct including either (A) the histone H3 promoter or (B) an equivalent construction in which three ERE sequences were replaced with random sequence. After transfection (24 hours later), cells were treated with resveratrol (RSV; 10 μ M) in the presence and absence of fulvestrant (FULV; 0.1 μ M) for 48 hours. Control cells (Control) were treated with DMSO vehicle only. Data are shown as mean \pm standard error (SEM) (n=9, based on four experiments), **P<0.01, ***P<0.001 by one way ANOVA followed by Dunnett's post test. There was a reduction in the expression of the reporter gene in response to the resveratrol (REV) treatment and this effect was attenuated by fulvestrant. There was no difference in the response of the two different constructs tested.

5.5 The effect of $17-\beta$ estradiol and the ER antagonist fulvestrant on the activity of a histone H3 promoter-reporter construct in Caco-2 cells

The observed ability of resveratrol to downregulate transcription from the histone H3 promoter through the ER (attenuated by the ER antagonist fulvestrant) but through a mechanism independent of ERE sequences identified within the promoter raises the key question as to whether 17- β estradiol influences the histone H3 promoter in the same way. The effect of 17- β estradiol (at a physiological concentration of 10 nM) on the activity of both the histone H3 promoter-reporter construct and the equivalent construct in which ERE sequences were mutated in Caco-2 cells in the presence and absence of the ER antagonist fulvestrant was therefore measured.

Caco-2 cells were transfected transiently with one of the two promoter-reporter construct to be tested. After transfection (24 hours later), cells were treated with resveratrol (10 μ M or 200 μ M) or 17- β estradiol (10 nM) in the presence or absence of the ER antagonist fulvestrant (0.1 μ M) for 48 hours. The activity of reporter gene (β -galactosidase) was measured.

As shown in Figures 5.13 and 5.14 both 17- β estradiol and resveratrol (at physiological concentration (10 μ M) or pharmacological concentration (200 μ M)) reduced the activity of the histone H3 promoter irrespective of whether the identified ERE sequences were intact or had been replaced with random sequence and this effect was attenuated by fulvestrant. These data demonstrated that 17- β estradiol modifies histone H3 expression through the ER but, like resveratrol, this action is not dependent on the ERE sequences that identified.

Figure 5.13: The effect of 17- β estradiol, resveratrol and the ER antagonist fulvestrant on the activity of a histone H3 promoter-reporter construct in Caco-2 cells. Caco-2 cells were transfected with a promoter-reporter construct comprising a region of the histone H3 promoter. After transfection (24 hours later), the cells were treated with resveratrol (RSV; 10 μ M, 200 μ M) or 17- β estradiol (E2; 10 nM) in the presence or absence of fulvestrant (FULV; 0.1 μ M) for 48 hours. Control cells (Control) were treated with DMSO vehicle only. Data are shown as mean ± standard error (SEM) (n=9, based on three experiments), **P<0.01, ***P<0.001 by one way ANOVA followed by Dunnett's post test. Both 17- β estradiol and resveratol reduced the activity of the histone H3 promoter and this effect was attenuated by fulvestrant.

Figure 5.14: The effect of 17- β estradiol, resveratrol and ER antagonist fulvestrant on the activity of an H3 promoter-reporter construct in which three identified ERE sequences were mutated in Caco-2 cells. Caco-2 cells were transfected with a promoter-reporter construct comprising a region of the histone H3 promoter in which ERE sequences was mutated. After transfection (24 hours later), the cells were treated with resveratrol (RSV; 10 μ M, 200 μ M) or 17- β estradiol (E2; 10 nM) in the presence or absence of fulvestrant (FULV; 0.1 μ M) for 48 hours. Control cells (Control) were treated with DMSO vehicle only. Data are shown as mean \pm standard error (SEM) (n=9, based on three experiments), **P<0.01, ***P<0.001 by one way ANOVA followed by Dunnett's post test. Both 17- β estradiol and resveratol reduced the activity of the histone H3 promoter in which ERE sequences were mutated and this effect was attenuated by fulvestrant.

5.6 Discussion

The estrogen receptor is a nuclear hormone receptor. There are two known estrogen receptor subtypes, ER α and ER β , each encoded by different genes. These genes are located on chromosome 6q25 and chromosome 14q23-24.1 respectively (Li, 2003). These receptors mediate the biological functions of the estrogen hormone. Although ER α and ER β bind with high affinity to the same ligand, they respond differently and induce opposite effects (Dahlman-Wright, 2006). Transcription of estrogen-responsive genes is affected by the estrogen-receptor complex through either binding to specific sequences, known as estrogen response elements, or by binding to other DNA-bound transcription factors, such as SP1, AP1 or NF-kappaB (Sun, 1998).

Resveratrol is a natural product that belongs to a large group compounds often referred to as phytoestrogens. These compounds have a chemical structure similar to 17β estradiol (Kuiper *et al*, 1997), and have an ability to bind to estrogen receptors to produce effects that mimic biological actions of estrogen (Grynkiewicz and Opolski, 2005).

The work presented in this chapter investigated the hypothesis that effects of resveratrol - in particular the reduction that was observed in histone protein expressionare mediated through the estrogen receptor (ER). These effects of resveratrol to reduce histone expression could potentially be mediated through either ER α , ER β or both. Thus, the ER status of the cell lines used in this study was confirmed by RT-PCR. In accordance with published information, the data confirmed that MCF-7 cells but not Caco-2 cells express ER α . Since both cell lines showed reduced histone expression in response to resveratrol, this finding indicates that the response to resveratrol is not ER α -dependent. On the other hand, expression of ER β was detected in both cell lines, so it is possible that the response to resveratrol is mediated through ER β . To investigate if resveratrol reduces histone expression through ERs, Caco-2 (ER β positive) and MCF-7 (ER α and ER β - positive) cell lines were treated with resveratrol in the presence and absence of the ER antagonist fulvestrant, and then western blot analysis using antihistone antibodies was conducted. The results show that histone H2A, H2B, H3 and H4 expression was decreased in response to resveratrol treatment in both cell lines (statistically significant). It was observed blockade of the effect of resveratrol to reduce histone expression in both cell lines by fulvestrant, consistent with resveratrol acting through the ER to bring about this downstream response. The fact that these responses were observed in the Caco-2 cell line, which lacks ER α , indicates that the responses are mediated through ER β . This view is recently supported by *in vitro* evidence on mammal cell lines including MRC5 and SHSY5Y (Robb and Stuart, 2011).

To investigate the mechanism of action of resveratrol further it was investigated if action to reduce histone expression was at the level of histone gene transcription. To achieve this goal, a reporter gene assay was used. Caco-2 cells were transfected with a histone H3 promoter reporter construct and treated with resveratrol (10 μ M, 24 hours) in the presence and absence of fulvestrant. The data indicated that the ER-mediated mechanism through which resveratrol caused a downregulation in histone H3 expression was to affect histone gene transcription. Since additional potential mechanisms – such as effects on histone mRNA stability and translation and on histone protein turnover were not explored- it cannot be concluded that transcriptional actions account entirely for the observed reduction in histone expression and further studies are warranted.
The experiments were extended to investigate if the response to resveratrol treatment was through interaction with estrogen response elements (EREs). Three potential EREs were identified within the histone H3 promoter region included in the promoterreporter construct and replaced with random sequence. Caco-2 cells were transfected with this construct and treated with resveratrol. Also the effects of the endogeneous ER ligand $17-\beta$ estradiol on both the original and mutated promoter-reporter constructs were tested. Both compounds gave the same response profile: both reduced reporter gene expression from both promoter reporter constructs. These observations indicate that effects of neither compound, although mediated through the ER, are on the specific sequences region we identified and replaced. It is likely that a ligand-ER complex binds to other sequences in the promoter region that act as EREs and that we failed to identify. Additional modifications to the promoter-reporter construct may reveal these sequences. Although effects of the endogenous ligand $17-\beta$ estradiol could be mimicked in this experiment by resveratrol, the data are insufficient to allow us to determine if resveratrol acts primary as an ER-agonist (that activates transcription of EREs) or ER-antagonist (that inhibit agonist-induced transcriptional). Complex agonist/antagonist/partial agonist effects of dietary phytoestrogens, in particular isoflavones, have been reported. The concentration of resveratrol that was used (10 μ M) is far in excess of that $17-\beta$ estradiol (10 nM) so further work is needed to examine in detail dose-response profiles and competition between resveratrol and $17-\beta$ estradiol for ER binding and downstream effects.

The ability of resveratrol to interact with the ER indicates the potential for resveratrol to be used in protection against a range of diseases associated with reduced secretion of estrogen hormone, including osteoporosis and alleviation of menopausal symptoms. Such actions have been attributed to the partial ER-agonistic actions of other dietary phytoestrogens - notably the isoflavones – but the potential for resveratrol to act in a similar way remains relatively unexplored. Similarly, the implications of the finding that resveratrol acts through EREs should be explored with respect to potential and reported effects of resveratrol to protect against hormone-dependent cancer, including breast cancer (Garvin *et al.*, 2005; De Amicis *et al.*, 2011), prostate cancer (Fang *et al.*, 2001), and colon cancer (Tessitore *et al.*, 2000).

In ER-positive cancer such as breast cancer, which has an overexpression of ER α (Dotzlaw *et al.*, 1999; Speirs *et al.*, 1999), resveratrol has been seen to inhibit growth of cancer cells (Garvin *et al.*, 2005; Amicis *et al.*, 2011) through a mechanism that may be dependent on downregulation of ER α expression (Amicis *et al.*, 2011), suggesting that resveratrol may be considered as a natural selective estrogen receptor modulator (SERM). This view may explain the reduction incidence of breast cancer in Asian women where the consumption of phytoestrogens is high (Messina *et al.*, 1994). However, factors including ethnicity, inherited mutations in genes such as *BRCA1* and *BRCA2* also affect the incidence of breast cancer (Petrucelli *et al.*, 2011), and different distributions within populations could be a factor that confounds apparent links with diet.

Although the estrogenic/antiestrogenic effects of resveratrol may have many biological benefits, no data are available on its interaction with endogenous estrogen during embryonic development and early childhood. Resveratrol has a structure similar to diethylstilbestrol (DES), a potent synthetic estrogen used widely to protect pregnancies from abortion. This medicine has been reported to increase the incidence of undescended testes and abnormalities in urogenital tract in male newborns of mothers were administrated DES during early pregnancy (Gill *et al.*, 1976). This phenotype may be associated with reduced fertility and increased the risk of tumour in the

testicular germ cell in later life (Pettersson *et al.*, 2007). This view is supported by observation based on mice injected with DES between 9 to16 days of gestation, which induced features such as intra-abdominal testes (the testes are located inside the abdominal cavity), infertility, and urogenital tract abnormalities in male offspring (Greco *et al.*, 1993). Based on these observations and the similarity in the structure between resveratrol and DES, consideration should be given to resveratrol as a potential endocrine disruptor and clinical investigation of its side-effects during pregnancy and neonatal life may be warranted. For this purpose, further research using a rodent model is encouraged to examine effects of resveratrol including dosage and exposure time on the fetal development.

A further related area for research would be the role – if any- of reduced levels of histone expression (downstream of interaction with the ER) on health and disease risk. Other ER-mediated actions of resveratrol are likely to be components of the biological action of the compound.

The finding that the effects of resveratrol on histone protein expression are ERmediated actions may be relevant to the well – studied and highly topical actions of resveratrol to protect against phenotypes associated with ageing and against other ageing-relating diseases, but the links require extensive further investigation. For example, differential effects in tissues of different ER expression profile, sex-specific effects and modifying actions of other ER agonists or antagonist *in vivo* could all be explored to begin to address this point.

Further studies *in vivo* are required to understand the impact of resveratrol on general health and on ageing and on ageing-related diseases and whether such effects mimic and/or antagonise estrogen actions.

6 Discussion and conclusion

Resveratrol has attracted particular interest as a result of reports that it can delay features of the ageing process and/or for extend lifespan in different species in a manner that mimics DR (Howitz *et al.*, 2003; Wood *et al*, 2004; Baur *et al.*, 2006). The mechanisms by which resveratrol brings about these effects are not fully understood, and are a subject of controversy.

This study aimed to investigate mechanisms through which resveratrol may have biological activity of benefit during the ageing process. The initial hypothesis was that some of the beneficial effects of resveratrol on lifespan/aging are mediated through effects on histone expression that oppose changes observed in ageing. To investigate this hypothesis human epithelial cell line models (Caco-2 and MCF-7 cells) were used.

Initially, it was investigated the effect of resveratrol, at a concentration achievable physiologically (10 μ M), on the level of histone proteins in Caco-2 and MCF-7 cells. The results showed that histone protein (H2A, H2B, H3 and H4) expression was decreased in response to resveratrol treatment in both cell lines. To seek further evidence to support the hypothesis that resveratrol regulates lifespan/longevity by its effect on histone expression, it was essential to investigate how histone expression changes with age. Based on the findings concerning the ability of resveratrol to reduce histone expression, it was reasoned that the response could potentially counteract/ oppose feature of ageing if the ageing process were associated with an increase in histone expression. This idea was explored using small intestinal tissue from young and old female mice. A notable increase in histone expression (particularly H2A, H2B and H4) was observed in the tissue from the older mice, consistent with resveratrol having an effect that opposes changes observed during ageing. To extend the observations made in mice to humans, the effect of age on histone protein expression in the

intestine of human subjects was examined. No age-associated differences in histone expression in human subjects were observed. The fact that a difference was observed in mice but not in human subjects may be due to a number of different factors including: a difference between species, a difference between small intestine (mice) and colon (humans), and greater inter-individual variability in human samples, which were very limited in number. Samples from a larger number of individuals and extracted from specific layers of intestine/ colon, such as the mucosal layer, should be analysed to draw a more robust conclusion.

The mechanism underlying the influence of ageing on histone expression is still unclear. There is very little information in the literature about the effect of age on the level of histone expression in mammals or on functional consequences of reduced levels of histone expression. It is therefore difficult to predict the impact of this change in histone expression on the ageing process. The close relationship between histone association or modification and expression of genes encoded by the associated DNA makes it likely that there will be profound effects on gene expression

This work studied the effect of resveratrol at the level of transcriptiome, to address several objectives including: (1) investigating if resveratrol has an effect similar to that of DR at the level of gene expression; (2) identifying if genes or pathways affected by resveratrol were also affected by manipulation of the expression level of *Sirt1*, since Sirt1 has been implicated as factor that can modify the ageing process; (3) examining if resveratrol influenced the expression of genes/pathways related to the ageing process. These objectives were addressed using micro-array based technology, as described in Chapter 4. Genes within the intersection of those found to be affected by resveratrol treatment in Caco-2 and MCF-7 cell lines and a compiled list of genes responsive to DR were identified. The number of genes in the intersection for both cell types was greater than expected by chance, supporting to the view

that resveratrol may mimic some effects of DR. In contrast, the intersections between the lists of genes affected by resveratrol treatment in both cell lines and a list of genes affected by knockdown of *SIRT1* expression in Caco-2 cells were very small. This finding indicted that resveratrol does not act through effects on Sirt1. This view is supported by previous research in *vivo* based on a mouse model (Barger *et al.*, 2008a), but others challenge this opinion (Baur *et al.*, 2006; Park *et al.*, 2012).

To address the third objective, we focused on FOXO1, IGF-1 and PGC-1a, which all appear to be linked closely with determining lifespan and/ or modifying the ageing process, particularly in response to DR (Baur *et al.*, 2006). The microarray data revealed no apparent effect of resveratrol on these genes in either cell line. These findings are at variance with other microarray analyses based on mouse models (Baur et al., 2006; Barger et al., 2008a). Several factors may explain these differences, including the fact that the published in vivo analyses are based on organs such as heart, liver, brain and muscle, rather than intestine or breast epithelium as represented by the cell lines studied in this work. Tissue-specific actions of resveratrol are indicated by the current study, in the lack of commonalty between genes and the pathways affected by resveratrol in Caco-2 (intestinal) and MCF-7 (breast cancer) cell lines, and has also been highlighted previously on the basis of in vivo studies (Barger et al., 2008b). A second factor that may account for differences is the dose-dependent action of resveratrol, as reported in in vivo studies (Barger et al., 2008a, Barger et al., 2008b, Pearson et al., 2008). In these experiments, a low concentration of resveratrol that can be achievable physiologically through the diet (10 μ M) was used. Higher doses of resveratrol may be necessary to elicit effects on these genes. A further consideration is that resveratrol is rapidly metabolised to metabolites including glucuronide and sulphate conjugates (Goldberg et al., 2003; Rotches-Ribalta et al., 2012). It is largely unknown to what extent the activities of resveratrol and its major metabolites differ so it is possible that many of the gene responses observed *in vivo* are to metabolites of resveratrol rather than to the parent compound itself, which we assume to be the form to which our cell lines were exposed predominantly (unless substantial metabolism occurred under our tissue culture conditions). Many other differences/limitations associated with use of cell culture models may lead to results from *in vivo* studies differing from our own observations.

Since resveratrol has structural similarly to 17- β estradiol, we also analysed the microarray data to investigate if the estrogen-response element (ERE) occurred at a higher frequency than expected by chance in genes regulated by resveratrol. The analysis indicated that genes including the ERE were not enriched within the population of genes that responded to resveratrol treatment in either cell line. This finding may indicate that resveratrol affects gene expression, generally, through a mechanism independent of direct binding of a resveratrol-ER complex to the ERE. Alternatively, an interpretation of the results could be that many of the genes do respond through binding of a resveratrol-ER complex to sequences in the promoter regions that act as EREs, but that the criteria we used to define EREs were inappropriate for the detection of these sequences. A study that investigated the occurrence of the ERE in genes that responded to 17- β estradiol found that the ERE sequence was present in only a fraction (Bourdeau *et al.*, 2004). Thus, the negative results we obtained are not sufficient to allow us to conclude that resveratrol actions on gene expression are generally independent of the ER.

To investigate further if effects of resveratrol - in particular the reduction in histone protein expression - are mediated through the ER, two different cell lines - Caco-2 and MCF-7 - were used. Firstly, the ER status of the cell lines used in this study was confirmed by RT-PCR.

The data confirmed that MCF-7 cells but not Caco-2 cells express ER α whereas expression of ER β was detected in both cell lines. Both cell lines were treated with resveratrol in the presence and absence of the ER antagonist fulvestrant. The results showed that the effect of resveratrol to reduce histone expression (H2A, H2B, H3 and H4) was reversed by fulvestrant, suggesting that resveratrol acts through the ER to elicit this downstream response. The fact that these responses were observed in the Caco-2 cell line, which lacks ER α , indicates that the responses are mediated through ER β , consistent with other work in cell lines (Robb and Stuart, 2011). It was not possible to rule out that the response could also be mediated by ER α ; to draw such a conclusion a cell line that expresses only ER α would be required.

Next, it was investigated if the reduction in histone protein expression in response to resveratrol treatment was at the level of histone gene transcription using reporter a gene assay (described in Chapter 5). Caco-2 cells were transfected with a histone H3 promoter reporter construct and treated with resveratrol (10 μ M, 24 hours) in the presence and absence of fulvestrant. The data indicated that the ER-mediated mechanism through which resveratrol caused a downregulation in histone H3 expression was to affect histone gene transcription. The experiments were extended to investigate if the response to resveratrol treatment is through interaction with EREs. First, three potential EREs within the histone H3 promoter region included in the promoter-reporter construct were replaced with random sequence. Caco-2 cells were then transfected with either the original or mutated promoter-reporter construct and treated with resveratrol or the endogenous ER ligand 17- β estradiol. The results showed that both compounds reduced reporter gene expression from both promoter reporter constructs. These observations indicate that effects of neither compound, although mediated through the ER, are through the specific sequences we identified and replaced. It is likely that a ligand-ER complex binds to other sequences in the promoter region that act as

EREs and that we failed to identify. Although effects of the endogenous ligand $17-\beta$ estradiol could be mimicked in this experiment by resveratrol, these data are insufficient to allow us to determine if resveratrol acts primarily as an ER-agonist or ER-antagonist.

The finding that the effects of resveratrol on histone protein expression are ER-mediated actions has important implications for the use of resveratrol as a natural hormone-replacement therapy, for example to protect against osteoporosis (Rayalam *et al.*, 2011) and to alleviate of menopausal symptoms (Zern *et al.*, 2005). On the other hand, caution must be applied, as resveratrol may interact with endogenous estrogen during embryonic development and early childhood. Further study using a rodent model to examine the effect of resveratrol, including dosage and exposure time, on fetal development could be valuable in this regard.

In conclusion, the data indicate that resveratrol reduces histone expression in both Caco-2 and MCF-7 cells through an ER-mediated mechanism acting at the level of transcription and that this effect may oppose an accumulation of histone proteins (observed in mouse small intestine) that accompanies ageing. Microarray data indicated that resveratrol at a concentration achievable through diet has an effect similar to DR with respect to many of the genes regulated, but (in these experiments) excluding some key genes with well-established roles in the ageing process and/or in promoting longevity in response to DR. Effects on gene expression were cell line-specific and distinct from effects of Sirt1 manipulation.

References:

Akingbemi, B.T. (2005) 'Estrogen regulation of testicular function', *Reprod Biol Endocrinol*, 3, p. 51.

Albig, W., P. Kioschis, et al. (1997). "Human histone gene organization: nonregular arrangement within a large cluster." Genomics 40(2): 314-322.

Al-Regaiey, K.A., Masternak, M.M., Bonkowski, M., Sun, L. and Bartke, A. (2005) 'Longlived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor i/insulin signaling and caloric restriction', *Endocrinology*, 146(2), pp. 851-60.

Alcendor, R.R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., Tian, B., Wagner, T., Vatner, S.F. and Sadoshima, J. (2007) 'Sirt1 regulates aging and resistance to oxidative stress in the heart', *Circ Res*, 100(10), pp. 1512-21.

Arichi, H., Kimura, Y., Okuda, H., Baba, K., Kozawa, M. and Arichi, S. (1982) 'Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism', *Chem Pharm Bull (Tokyo)*, 30(5), pp. 1766-70.

Armstrong, L., Lako, M., Dean, W. and Stojkovic, M. (2006) 'Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer', *Stem Cells*, 24(4), pp. 805-14.

Asensi, M., Medina, I., Ortega, A., Carretero, J., Bano, M.C., Obrador, E. and Estrela, J.M. (2002) 'Inhibition of cancer growth by resveratrol is related to its low bioavailability', *Free Radic Biol Med*, 33(3), pp. 387-98.

Athar, M., Back, J.H., Tang, X., Kim, K.H., Kopelovich, L., Bickers, D.R. and Kim, A.L. (2007) 'Resveratrol: a review of preclinical studies for human cancer prevention', *Toxicol Appl Pharmacol*, 224(3), pp. 274-83.

Banerjee, S., Bueso-Ramos, C. and Aggarwal, B.B. (2002) 'Suppression of 7,12dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9', *Cancer Res*, 62(17), pp. 4945-54.

Banks, A.S., Kon, N., Knight, C., Matsumoto, M., Gutierrez-Juarez, R., Rossetti, L., Gu, W. and Accili, D. (2008) 'SirT1 gain of function increases energy efficiency and prevents diabetes in mice', *Cell Metab*, 8(4), pp. 333-41.

Barger, J.L., Kayo, T., Pugh, T.D., Prolla, T.A. and Weindruch, R. (2008a) 'Short-term consumption of a resveratrol-containing nutraceutical mixture mimics gene expression of long-term caloric restriction in mouse heart', *Experimental Gerontology*, 43(9), pp. 859-866.

Barger, J.L., Kayo, T., Vann, J.M., Arias, E.B., Wang, J., Hacker, T.A., Wang, Y., Raederstorff, D., Morrow, J.D., Leeuwenburgh, C., Allison, D.B., Saupe, K.W., Cartee, G.D., Weindruch, R. and Prolla, T.A. (2008b) 'A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice', *PLoS One*, 3(6), p. e2264.

Bartke, A., Wright, J.C., Mattison, J.A., Ingram, D.K., Miller, R.A. and Roth, G.S. (2001) 'Extending the lifespan of long-lived mice', *Nature*, 414(6862), p. 412.

Bartova, E., Krejci, J., Harnicarova, A., Galiova, G. and Kozubek, S. (2008) 'Histone modifications and nuclear architecture: a review', *J Histochem Cytochem*, 56(8), pp. 711-21.

Basly, J.P., Marre-Fournier, F., Le Bail, J.C., Habrioux, G. and Chulia, A.J. (2000) 'Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol', *Life Sci*, 66(9), pp. 769-77.

Bass, T.M., Weinkove, D., Houthoofd, K., Gems, D. and Partridge, L. (2007) 'Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans', *Mech Ageing Dev*, 128(10), pp. 546-52.

Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Le Couteur, D., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R. and Sinclair, D.A. (2006) 'Resveratrol improves health and survival of mice on a high-calorie diet', *Nature*, 444(7117), pp. 337-342.

Baur, J.A., Ungvari, Z., Minor, R.K., Le Couteur, D.G. and de Cabo, R. (2012) 'Are sirtuins viable targets for improving healthspan and lifespan?', *Nat Rev Drug Discov*, 11(6), pp. 443-61.

Beck, V., Rohr, U. and Jungbauer, A. (2005) 'Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy?', *J Steroid Biochem Mol Biol*, 94(5), pp. 499-518.

Benitez, D.A., Pozo-Guisado, E., Alvarez-Barrientos, A., Fernandez-Salguero, P.M. and Castellon, E.A. (2007) 'Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines', *J Androl*, 28(2), pp. 282-93.

Bhat, K.P., Lantvit, D., Christov, K., Mehta, R.G., Moon, R.C. and Pezzuto, J.M. (2001) 'Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models', *Cancer Res*, 61(20), pp. 7456-63.

Bilsland, E. and Downs, J.A. (2005) 'Tails of histones in DNA double-strand break repair', *Mutagenesis*, 20(3), pp. 153-63.

Bishop, N.A. and Guarente, L. (2007) 'Genetic links between diet and lifespan: shared mechanisms from yeast to humans', *Nat Rev Genet*, 8(11), pp. 835-44.

Bjornstrom, L. and Sjoberg, M. (2005) 'Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes', *Mol Endocrinol*, 19(4), pp. 833-42.

Bjornsdottir, U.S., Holgate, S.T., Reddy, P.S., Hill, A.A., McKee, C.M., Csimma, C.I., Weaver, A.A., Legault, H.M., Small, C.G., Ramsey, R.C., Ellis, D.K., Burke, C.M., Thompson, P.J., Howarth, P.H., Wardlaw, A.J., Bardin, P.G., Bernstein, D.I., Irving, L.B.,

Chupp, G.L., Bensch, G.W., Stahlman, J.E., Karetzky, M., Baker, J.W., Miller, R.L., Goodman, B.H., Raible, D.G., Goldman, S.J., Miller, D.K., Ryan, J.L., Dorner, A.J., Immermann, F.W. and O'Toole, M. (2011) 'Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood', PLoS One, 6(7), p. e21902.

Boily, G., Seifert, E.L., Bevilacqua, L., He, X.H., Sabourin, G., Estey, C., Moffat, C., Crawford, S., Saliba, S., Jardine, K., Xuan, J., Evans, M., Harper, M.E. and McBurney, M.W. (2008) 'SirT1 regulates energy metabolism and response to caloric restriction in mice', *PLoS One*, 3(3), p. e1759.

Boocock, D.J., Faust, G.E., Patel, K.R., Schinas, A.M., Brown, V.A., Ducharme, M.P., Booth, T.D., Crowell, J.A., Perloff, M., Gescher, A.J., Steward, W.P. and Brenner, D.E. (2007) 'Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent', *Cancer Epidemiol Biomarkers Prev*, 16(6), pp. 1246-52.

Bordone, L., Cohen, D., Robinson, A., Motta, M.C., van Veen, E., Czopik, A., Steele, A.D., Crowe, H., Marmor, S., Luo, J., Gu, W. and Guarente, L. (2007) 'SIRT1 transgenic mice show phenotypes resembling calorie restriction', *Aging Cell*, 6(6), pp. 759-67.

Borra, M.T., Smith, B.C. and Denu, J.M. (2005) 'Mechanism of Human SIRT1 Activation by Resveratrol', *Journal of Biological Chemistry*, 280(17), pp. 17187-17195.

Bourdeau, V., Deschenes, J., Metivier, R., Nagai, Y., Nguyen, D., Bretschneider, N., Gannon, F., White, J.H. and Mader, S. (2004) 'Genome-wide identification of high-affinity estrogen response elements in human and mouse', *Mol Endocrinol*, 18(6), pp. 1411-27.

Bowers, J.L., Tyulmenkov, V.V., Jernigan, S.C. and Klinge, C.M. (2000) 'Resveratrol Acts as a Mixed Agonist/Antagonist for Estrogen Receptors {alpha} and {beta}', *Endocrinology*, 141(10), pp. 3657-3667.

Brooks, C.L. and Gu, W. (2009) 'How does SIRT1 affect metabolism, senescence and cancer?', *Nat Rev Cancer*, 9(2), pp. 123-8.

Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W. and Greenberg, M.E. (2004) 'Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase', *Science*, 303(5666), pp. 2011-5.

Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvari, M., Piper, M.D., Hoddinott,
M., Sutphin, G.L., Leko, V., McElwee, J.J., Vazquez-Manrique, R.P., Orfila, A.M.,
Ackerman, D., Au, C., Vinti, G., Riesen, M., Howard, K., Neri, C., Bedalov, A., Kaeberlein,
M., Soti, C., Partridge, L. and Gems, D. (2011) 'Absence of effects of Sir2 overexpression on
lifespan in C. elegans and Drosophila', *Nature*, 477(7365), pp. 482-5.

Burzynski, S.R. (2003) 'Gene silencing - a new theory of aging', *Medical Hypotheses*, 60(4), pp. 578-583.

Buzdar, A.U. (2008) 'Fulvestrant--a novel estrogen receptor antagonist for the treatment of advanced breast cancer', *Drugs Today (Barc)*, 44(9), pp. 679-92.

Canto, C. and Auwerx, J. (2011) 'Interference between PARPs and SIRT1: a novel approach to healthy ageing?', *Aging (Albany NY)*, 3(5), pp. 543-7.

Cantó, C. and Auwerx, J. (2009) 'Caloricrestriction, SIRT1 and longevity', *Trends in Endocrinology & Metabolism*, 20(9), pp. 325-331.

Celeste, A., Fernandez-Capetillo, O., Kruhlak, M.J., Pilch, D.R., Staudt, D.W., Lee, A., Bonner, R.F., Bonner, W.M. and Nussenzweig, A. (2003) 'Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks', *Nat Cell Biol*, 5(7), pp. 675-9.

Cao, J. and Q. Yan (2012). "Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer." Front Oncol 2: 26.

Chakraborty, T.R., Ng, L. and Gore, A.C. (2003) 'Age-related changes in estrogen receptor beta in rat hypothalamus: a quantitative analysis', *Endocrinology*, 144(9), pp. 4164-71.

Chan, W.H. and Chang, Y.J. (2006) 'Dosage effects of resveratrol on ethanol-induced cell death in the human K562 cell line', *Toxicol Lett*, 161(1), pp. 1-9.

Chan, W.K. and Delucchi, A.B. (2000) 'Resveratrol, a red wine constituent, is a mechanismbased inactivator of cytochrome P450 3A4', *Life Sci*, 67(25), pp. 3103-12. Chang, T.K., Lee, W.B. and Ko, H.H. (2000) 'Trans-resveratrol modulates the catalytic activity and mRNA expression of the procarcinogen-activating human cytochrome P450 1B1', *Can J Physiol Pharmacol*, 78(11), pp. 874-81.

Chaturvedi, M.M. and Kanungo, M.S. (1985) 'Analysis of conformation and function of the chromatin of the brain of young and old rats', *Molecular Biology Reports*, 10(4), pp. 215-219.

Chen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W. and Guarente, L. (2008) 'Tissue-specific regulation of SIRT1 by calorie restriction', *Genes Dev*, 22(13), pp. 1753-7.

Chen, D., Steele, A.D., Lindquist, S. and Guarente, L. (2005) 'Increase in activity during calorie restriction requires Sirt1', *Science*, 310(5754), p. 1641.

Chen, Z.X. and Riggs, A.D. (2011) 'DNA methylation and demethylation in mammals', *J Biol Chem*, 286(21), pp. 18347-53.

Cheung, K.L., Owers, R. and Robertson, J.F. (2006) 'Endocrine response after prior treatment with fulvestrant in postmenopausal women with advanced breast cancer: experience from a single centre', *Endocr Relat Cancer*, 13(1), pp. 251-5.

Cheung, P. and Lau, P. (2005) 'Epigenetic regulation by histone methylation and histone variants', *Mol Endocrinol*, 19(3), pp. 563-73.

Cimino, S., Sortino, G., Favilla, V., Castelli, T., Madonia, M., Sansalone, S., Russo, G.I. and Morgia, G. (2012) 'Polyphenols: key issues involved in chemoprevention of prostate cancer', *Oxid Med Cell Longev*, 2012, p. 632959.

Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J. and Partridge, L. (2001) 'Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein', *Science*, 292(5514), pp. 104-6.

Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R. and Sinclair, D.A. (2004) 'Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase', *Science*, 305(5682), pp. 390-2.

Cohen, I., E. Poreba, et al. (2011). "Histone modifiers in cancer: friends or foes?" Genes Cancer 2(6): 631-647.

Cosgrove, M.S., Boeke, J.D. and Wolberger, C. (2004) 'Regulated nucleosome mobility and the histone code', *Nat Struct Mol Biol*, 11(11), pp. 1037-43.

Crowell, J.A., Korytko, P.J., Morrissey, R.L., Booth, T.D. and Levine, B.S. (2004) 'Resveratrol-associated renal toxicity', *Toxicol Sci*, 82(2), pp. 614-9.

Cuzick, J., DeCensi, A., Arun, B., Brown, P.H., Castiglione, M., Dunn, B., Forbes, J.F., Glaus, A., Howell, A., von Minckwitz, G., Vogel, V. and Zwierzina, H. (2011) 'Preventive therapy for breast cancer: a consensus statement', *Lancet Oncol*, 12(5), pp. 496-503.

Dahlman-Wright, K., Cavailles, V., Fuqua, S.A., Jordan, V.C., Katzenellenbogen, J.A., Korach, K.S., Maggi, A., Muramatsu, M., Parker, M.G. and Gustafsson, J.A. (2006) 'International Union of Pharmacology. LXIV. Estrogen receptors', *Pharmacol Rev*, 58(4), pp. 773-81.

Dang, W., Steffen, K.K., Perry, R., Dorsey, J.A., Johnson, F.B., Shilatifard, A., Kaeberlein, M., Kennedy, B.K. and Berger, S.L. (2009) 'Histone H4 lysine 16 acetylation regulates cellular lifespan', *Nature*, 459(7248), pp. 802-807.

De Amicis, F., Giordano, F., Vivacqua, A., Pellegrino, M., Panno, M.L., Tramontano, D., Fuqua, S.A. and Ando, S. (2011) 'Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor alpha gene expression via p38MAPK/CK2 signaling in human breast cancer cells', *FASEB J*, 25(10), pp. 3695-707.

de la Lastra, C.A. and Villegas, I. (2005) 'Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications', *Mol Nutr Food Res*, 49(5), pp. 405-30.

de la Lastra, C.A. and Villegas, I. (2007) 'Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications', *Biochem Soc Trans*, 35(Pt 5), pp. 1156-60.

de Magalhaes, J.P. (2004) 'From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing', *Exp Cell Res*, 300(1), pp. 1-10.

Delage, B. and Dashwood, R.H. (2008) 'Dietary manipulation of histone structure and function', *Annu Rev Nutr*, 28, pp. 347-66.

Deng, J.Y., Hsieh, P.S., Huang, J.P., Lu, L.S. and Hung, L.M. (2008) 'Activation of estrogen receptor is crucial for resveratrol-stimulating muscular glucose uptake via both insulindependent and -independent pathways', *Diabetes*, 57(7), pp. 1814-23.

Dhar, S., Hicks, C. and Levenson, A.S. (2011) 'Resveratrol and prostate cancer: promising role for microRNAs', *Mol Nutr Food Res*, 55(8), pp. 1219-29.

Di Vito, M., De Santis, E., Perrone, G.A., Mari, E., Giordano, M.C., De Antoni, E., Coppola, L., Fadda, G., Tafani, M., Carpi, A. and Russo, M.A. (2011) 'Overexpression of estrogen receptor-alpha in human papillary thyroid carcinomas studied by laser- capture microdissection and molecular biology', *Cancer Sci*, 102(10), pp. 1921-7.

Donnelly, L.E., Newton, R., Kennedy, G.E., Fenwick, P.S., Leung, R.H., Ito, K., Russell, R.E. and Barnes, P.J. (2004) 'Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms', *Am J Physiol Lung Cell Mol Physiol*, 287(4), pp. L774-83.

Dong, Y. and Zou, S. (2010) 'Sirtuins and Aging ', in Tollefsbol, T.O. (ed.) Epigenetics of Aging. USA: Springer, pp. 51-75.

Dotzlaw, H., Leygue, E., Watson, P.H. and Murphy, L.C. (1999) 'Estrogen receptor-beta messenger RNA expression in human breast tumor biopsies: relationship to steroid receptor status and regulation by progestins', *Cancer Res*, 59(3), pp. 529-32.

Draczynska-Lusiak, B., A. Doung, et al. (1998). "Oxidized lipoproteins may play a role in neuronal cell death in Alzheimer disease." Mol Chem Neuropathol 33(2): 139-148.

Druesne, N., Pagniez, A., Mayeur, C., Thomas, M., Cherbuy, C., Duee, P.H., Martel, P. and Chaumontet, C. (2004) 'Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines', *Carcinogenesis*, 25(7), pp. 1227-36.

Eberharter, A. and Becker, P.B. (2002) 'Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics', *EMBO Rep*, 3(3), pp. 224-9.

Emmen, J.M. and Korach, K.S. (2003) 'Estrogen receptor knockout mice: phenotypes in the female reproductive tract', *Gynecol Endocrinol*, 17(2), pp. 169-76.

Fan, E., Zhang, L., Jiang, S. and Bai, Y. (2008) 'Beneficial effects of resveratrol on atherosclerosis', *J Med Food*, 11(4), pp. 610-4.

Fang, Y., DeMarco, V.G. and Nicholl, M.B. (2012) 'Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis', *Cancer Sci*, 103(6), pp. 1090-8.

Faraone-Mennella, M.R. (2005) 'Chromatin architecture and functions: the role(s) of poly(ADP-RIBOSE) polymerase and poly(ADPribosyl)ation of nuclear proteins', *Biochem Cell Biol*, 83(3), pp. 396-404.

Feser, J., Truong, D., Das, C., Carson, J.J., Kieft, J., Harkness, T. and Tyler, J.K. (2010) 'Elevated histone expression promotes life span extension', *Mol Cell*, 39(5), pp. 724-35. Foley, E.F., Jazaeri, A.A., Shupnik, M.A., Jazaeri, O. and Rice, L.W. (2000) 'Selective loss of estrogen receptor beta in malignant human colon', *Cancer Res*, 60(2), pp. 245-8.

Ford, D., Ions, L.J., Alatawi, F. and Wakeling, L.A. (2011) 'The potential role of epigenetic responses to diet in ageing', *Proc Nutr Soc*, 70(3), pp. 374-84.

Fraczek, M., Szumilo, J., Podlodowska, J. and Burdan, F. (2012) '[Resveratrol--phytophenol with wide activity]', *Pol Merkur Lekarski*, 32(188), pp. 143-6.

Fremont, L. (2000) 'Biological effects of resveratrol', Life Sci, 66(8), pp. 663-73.

Fremont, L., Belguendouz, L. and Delpal, S. (1999) 'Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids', *Life Sci*, 64(26), pp. 2511-21.

Fulda, S. and Debatin, K.M. (2004) 'Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol', *Oncogene*, 23(40), pp. 6702-11.

Garvin, S., Ollinger, K. and Dabrosin, C. (2006) 'Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo', *Cancer Lett*, 231(1), pp. 113-22.

Gehm, B.D., Levenson, A.S., Liu, H., Lee, E.J., Amundsen, B.M., Cushman, M., Jordan, V.C. and Jameson, J.L. (2004) 'Estrogenic effects of resveratrol in breast cancer cells expressing mutant and wild-type estrogen receptors: role of AF-1 and AF-2', *J Steroid Biochem Mol Biol*, 88(3), pp. 223-34.

Gehm, B.D., McAndrews, J.M., Chien, P.-Y. and Jameson, J.L. (1997) 'Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor', *Proceedings of the National Academy of Sciences of the United States of America*, 94(25), pp. 14138-14143.

Gentilli, M., Mazoit, J.X., Bouaziz, H., Fletcher, D., Casper, R.F., Benhamou, D. and Savouret, J.F. (2001) 'Resveratrol decreases hyperalgesia induced by carrageenan in the rat hind paw', *Life Sci*, 68(11), pp. 1317-21.

Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L. and et al. (1991) 'Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease', *Nature*, 349(6311), pp. 704-6.

Goldberg, D.M., Yan, J. and Soleas, G.J. (2003) 'Absorption of three wine-related polyphenols in three different matrices by healthy subjects', *Clin Biochem*, 36(1), pp. 79-87.

Greco, T.L., Duello, T.M. and Gorski, J. (1993) 'Estrogen receptors, estradiol, and diethylstilbestrol in early development: the mouse as a model for the study of estrogen receptors and estrogen sensitivity in embryonic development of male and female reproductive tracts', *Endocr Rev*, 14(1), pp. 59-71.

Greer, E.L., Maures, T.J., Hauswirth, A.G., Green, E.M., Leeman, D.S., Maro, G.S., Han, S., Banko, M.R., Gozani, O. and Brunet, A. (2010) 'Members of the H3K4 trimethylation

complex regulate lifespan in a germline-dependent manner in C. elegans', *Nature*, 466(7304), pp. 383-7.

Greer, E. L. and Y. Shi (2012). "Histone methylation: a dynamic mark in health, disease and inheritance." Nat Rev Genet 13(5): 343-357.

Grewal, S.I. and Moazed, D. (2003) 'Heterochromatin and epigenetic control of gene expression', *Science*, 301(5634), pp. 798-802.

Grynkiewicz, G. and Opolski, A. (2005) 'Phytoestrogens and Their Effects on Cancer', in Baer-Dubowska, W., Bartoszek, A. and Malejka-Giganti, D. (eds.) Carcinogenic and Anticarcinogenic Food Components (Chemical & Functional Properties of Food Components) CRC Press

Guarente, L. (2008) 'Mitochondria--a nexus for aging, calorie restriction, and sirtuins?', *Cell*, 132(2), pp. 171-6.

Gunjan, A., J. Paik, et al. (2005). "Regulation of histone synthesis and nucleosome assembly." Biochimie 87(7): 625-635.

Gustafsson, J.A. (1999) 'Estrogen receptor beta--a new dimension in estrogen mechanism of action', *J Endocrinol*, 163(3), pp. 379-83.

Hall, J.M., Couse, J.F. and Korach, K.S. (2001) 'The multifaceted mechanisms of estradiol and estrogen receptor signaling', *J Biol Chem*, 276(40), pp. 36869-72.

151

Hamden, K., Silandre, D., Delalande, C., El Feki, A. and Carreau, S. (2008) 'Age-related decrease in aromatase and estrogen receptor (ERalpha and ERbeta) expression in rat testes: protective effect of low caloric diets', *Asian J Androl*, 10(2), pp. 177-87.

HARMAN, D. 'The aging process ', *Proceedings of the National Academy of Sciences of the United States of America* 78(11), pp. 7124-7128,.

He, H. and N. Lehming (2003). "Global effects of histone modifications." Brief Funct Genomic Proteomic 2(3): 234-243.

Heilbronn, L.K. and Ravussin, E. (2003) 'Calorie restriction and aging: review of the literature and implications for studies in humans', *Am J Clin Nutr*, 78(3), pp. 361-9.

Herranz, D. and Serrano, M. (2010) 'SIRT1: recent lessons from mouse models', *Nat Rev Cancer*, 10(12), pp. 819-23.

Hess, R.A. (2003) 'Estrogen in the adult male reproductive tract: a review', *Reprod Biol Endocrinol*, 1, p. 52.

Hewitt, S.C. and Korach, K.S. (2003) 'Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues', *Reproduction*, 125(2), pp. 143-9.

Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P.C., Cervera, P. and Le Bouc, Y. (2003) 'IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice', *Nature*, 421(6919), pp. 182-7.

Hottiger, M. O. (2011). "ADP-ribosylation of histones by ARTD1: an additional module of the histone code?" FEBS Lett 585(11): 1595-1599.

Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.-L., Scherer, B. and Sinclair, D.A. (2003a) 'Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan', *Nature*, 425(6954), pp. 191-196.

Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., Scherer, B. and Sinclair, D.A. (2003b) 'Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan', *Nature*, 425(6954), pp. 191-6.

Huggins, C.E., Domenighetti, A.A., Ritchie, M.E., Khalil, N., Favaloro, J.M., Proietto, J., Smyth, G.K., Pepe, S. and Delbridge, L.M. (2008) 'Functional and metabolic remodelling in GLUT4-deficient hearts confers hyper-responsiveness to substrate intervention', J Mol Cell Cardiol, 44(2), pp. 270-80.

Ingram, D.K., Zhu, M., Mamczarz, J., Zou, S., Lane, M.A., Roth, G.S. and deCabo, R. (2006) 'Calorie restriction mimetics: an emerging research field', *Aging Cell*, 5(2), pp. 97-108.

Iniguez-Lluhi, J. A. (2006). "For a healthy histone code, a little SUMO in the tail keeps the acetyl away." ACS Chem Biol 1(4): 204-206.

Iwao, K., Miyoshi, Y., Ooka, M., Ishikawa, O., Ohigashi, H., Kasugai, T., Egawa, C. and Noguchi, S. (2001) 'Quantitative analysis of estrogen receptor-alpha and -beta messenger RNA expression in human pancreatic cancers by real-time polymerase chain reaction', *Cancer Lett*, 170(1), pp. 91-7.

Izzo, A. and Schneider, R. (2010) 'Chatting histone modifications in mammals', *Brief Funct Genomics*, 9(5-6), pp. 429-43.

Jacobson, R.H., Ladurner, A.G., King, D.S. and Tjian, R. (2000) 'Structure and function of a human TAFII250 double bromodomain module', *Science*, 288(5470), pp. 1422-5.

Jancova, P., P. Anzenbacher, et al. (2010). "Phase II drug metabolizing enzymes." Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154(2): 103-116.

Jenuwein, T. and Allis, C.D. (2001) 'Translating the histone code', *Science*, 293(5532), pp. 1074-80.

Jeong, J., Adamson, L.K., Greenhalgh, D.G. and Cho, K. (2004) 'Injury-associated differential regulation of histone expression and modification in the thymus of mice', *Exp Biol Med (Maywood)*, 229(4), pp. 327-34.

Jiang, H., Zhang, L., Kuo, J., Kuo, K., Gautam, S.C., Groc, L., Rodriguez, A.I., Koubi, D., Hunter, T.J., Corcoran, G.B., Seidman, M.D. and Levine, R.A. (2005) 'Resveratrol-induced apoptotic death in human U251 glioma cells', *Mol Cancer Ther*, 4(4), pp. 554-61. Juan, M.E., Vinardell, M.P. and Planas, J.M. (2002) 'The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful', *J Nutr*, 132(2), pp. 257-60.

Kaeberlein, M., McVey, M. and Guarente, L. (1999) 'The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms', *Genes Dev*, 13(19), pp. 2570-80.

Kaldas, M.I., Walle, U.K. and Walle, T. (2003) 'Resveratrol transport and metabolism by human intestinal Caco-2 cells', *J Pharm Pharmacol*, 55(3), pp. 307-12.

Karuppagounder, S.S., Pinto, J.T., Xu, H., Chen, H.L., Beal, M.F. and Gibson, G.E. (2009) 'Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease', *Neurochem Int*, 54(2), pp. 111-8.

Kawakami, K., A. Nakamura, et al. (2009). "Age-related difference of site-specific histone modifications in rat liver." Biogerontology 10(4): 415-421.

Kelly, G.S. (2010) 'A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2', *Altern Med Rev*, 15(4), pp. 313-28.

Kenyon, C. (2005) 'The plasticity of aging: insights from long-lived mutants', *Cell*, 120(4), pp. 449-60.

Kenyon, C., Chang, J., Gensch, E., Rudner, A. and Tabtiang, R. (1993) 'A C. elegans mutant that lives twice as long as wild type', *Nature*, 366(6454), pp. 461-4.

Kim, Y.A., Choi, B.T., Lee, Y.T., Park, D.I., Rhee, S.H., Park, K.Y. and Choi, Y.H. (2004) 'Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF-7 cells', *Oncol Rep*, 11(2), pp. 441-6.

Kimura, A., Matsubara, K. and Horikoshi, M. (2005) 'A decade of histone acetylation: marking eukaryotic chromosomes with specific codes', *J Biochem*, 138(6), pp. 647-62.

Kirk, R.I., Deitch, J.A., Wu, J.M. and Lerea, K.M. (2000) 'Resveratrol decreases early signaling events in washed platelets but has little effect on platelet in whole blood', *Blood Cells Mol Dis*, 26(2), pp. 144-50.

Kitamura, Y.I., Kitamura, T., Kruse, J.P., Raum, J.C., Stein, R., Gu, W. and Accili, D. (2005) 'FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction', *Cell Metab*, 2(3), pp. 153-63.

Kong, E.H., Pike, A.C. and Hubbard, R.E. (2003) 'Structure and mechanism of the oestrogen receptor', *Biochem Soc Trans*, 31(Pt 1), pp. 56-9.

Korach, K.S. (1994) 'Insights from the study of animals lacking functional estrogen receptor', *Science*, 266(5190), pp. 1524-7.

Kowalczyk, M.C., Kowalczyk, P., Tolstykh, O., Hanausek, M., Walaszek, Z. and Slaga, T.J. (2010) 'Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR mice', *Cancer Prev Res (Phila)*, 3(2), pp. 170-8.

Kuiper, G.G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S. and Gustafsson, J.A. (1997) 'Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta', *Endocrinology*, 138(3), pp. 863-70.

Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B. and Gustafsson, J.A. (1998) 'Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta', *Endocrinology*, 139(10), pp. 4252-63.

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P. and Auwerx, J. (2006) 'Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1[alpha]', *Cell*, 127(6), pp. 1109-1122.

Lancon, A., Delmas, D., Osman, H., Thenot, J.P., Jannin, B. and Latruffe, N. (2004) 'Human hepatic cell uptake of resveratrol: involvement of both passive diffusion and carrier-mediated process', *Biochem Biophys Res Commun*, 316(4), pp. 1132-7.

Larsen, M.S., Yde, C.W., Christensen, I.J. and Lykkesfeldt, A.E. (2012) 'Carboplatin treatment of antiestrogen-resistant breast cancer cells', *Int J Oncol*.

Lee, C.K., Klopp, R.G., Weindruch, R. and Prolla, T.A. (1999) 'Gene expression profile of aging and its retardation by caloric restriction', *Science*, 285(5432), pp. 1390-3.

Lee, H.S., Ha, A.W. and Kim, W.K. (2012) 'Effect of resveratrol on the metastasis of 4T1 mouse breast cancer cells in vitro and in vivo', *Nutr Res Pract*, 6(4), pp. 294-300.

Levin, E.R. (2005) 'Integration of the extranuclear and nuclear actions of estrogen', *Mol Endocrinol*, 19(8), pp. 1951-9.

Leygue, E., Dotzlaw, H., Watson, P.H. and Murphy, L.C. (1998) 'Altered estrogen receptor alpha and beta messenger RNA expression during human breast tumorigenesis', *Cancer Res*, 58(15), pp. 3197-201.

Li, Y., Shin, Y.G., Yu, C., Kosmeder, J.W., Hirschelman, W.H., Pezzuto, J.M. and van Breemen, R.B. (2003) 'Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: application to resveratrol absorption and metabolism', *Comb Chem High Throughput Screen*, 6(8), pp. 757-67.

Looijer-van Langen, M., Hotte, N., Dieleman, L.A., Albert, E., Mulder, C. and Madsen, K.L. (2011) 'Estrogen receptor-beta signaling modulates epithelial barrier function', *Am J Physiol Gastrointest Liver Physiol*, 300(4), pp. G621-6.

Lubahn, D.B., Moyer, J.S., Golding, T.S., Couse, J.F., Korach, K.S. and Smithies, O. (1993) 'Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene', *Proc Natl Acad Sci U S A*, 90(23), pp. 11162-6.

Mango, S.E. (2011) 'Ageing: generations of longevity', Nature, 479(7373), pp. 302-3.

Manrique, C., Lastra, G., Habibi, J., Mugerfeld, I., Garro, M. and Sowers, J.R. (2012) 'Loss of Estrogen Receptor alpha Signaling Leads to Insulin Resistance and Obesity in Young and Adult Female Mice', *Cardiorenal Med*, 2(3), pp. 200-210.

Marzluff, W. F. and R. J. Duronio (2002). "Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences." Curr Opin Cell Biol 14(6): 692-699.

Marzluff, W. F., P. Gongidi, et al. (2002). "The human and mouse replication-dependent histone genes." Genomics 80(5): 487-498.

Mason, C.E., Shu, F.J., Wang, C., Session, R.M., Kallen, R.G., Sidell, N., Yu, T., Liu, M.H., Cheung, E. and Kallen, C.B. (2010) 'Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements', *Nucleic Acids Res*, 38(7), pp. 2355-68.

Mattison, J.A., Lane, M.A., Roth, G.S. and Ingram, D.K. (2003) 'Calorie restriction in rhesus monkeys', *Exp Gerontol*, 38(1-2), pp. 35-46.

Mattison, J.A., Roth, G.S., Beasley, T.M., Tilmont, E.M., Handy, A.M., Herbert, R.L., Longo, D.L., Allison, D.B., Young, J.E., Bryant, M., Barnard, D., Ward, W.F., Qi, W., Ingram, D.K. and de Cabo, R. (2012) 'Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study', *Nature*, 489(7415), pp. 318-21.

Maures, T.J., Greer, E.L., Hauswirth, A.G. and Brunet, A. (2011) 'The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner', *Aging Cell*, 10(6), pp. 980-90.

McCarthy, D.J. and Smyth, G.K. (2009) 'Testing significance relative to a fold-change threshold is a TREAT', Bioinformatics, 25(6), pp. 765-71.

McCay, C.M., Crowell, M.F. and Maynard, L.A. (1989) 'The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935', *Nutrition*, 5(3), pp. 155-71; discussion 172.

Messaoudi, I., Warner, J., Fischer, M., Park, B., Hill, B., Mattison, J., Lane, M.A., Roth, G.S., Ingram, D.K., Picker, L.J., Douek, D.C., Mori, M. and Nikolich-Zugich, J. (2006) 'Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates', *Proc Natl Acad Sci U S A*, 103(51), pp. 19448-53.

Messina, M.J., Persky, V., Setchell, K.D. and Barnes, S. (1994) 'Soy intake and cancer risk: a review of the in vitro and in vivo data', *Nutr Cancer*, 21(2), pp. 113-31.

Messner, S. and M. O. Hottiger (2011). "Histone ADP-ribosylation in DNA repair, replication and transcription." Trends Cell Biol 21(9): 534-542.

Miller, N.J. and Rice-Evans, C.A. (1995) 'Antioxidant activity of resveratrol in red wine', *Clin Chem*, 41(12 Pt 1), p. 1789.

Morimoto, S., S. Komatsu, et al. (1993). "Age-related change in the amount of ubiquitinated histones in the mouse brain." Arch Gerontol Geriatr 16(3): 217-224.

Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M. and Guarente, L. (2004) 'Mammalian SIRT1 represses forkhead transcription factors', *Cell*, 116(4), pp. 551-63.

Mouawad, R., Spano, J.P. and Khayat, D. (2011) 'Lymphocyte infiltration in breast cancer: a key prognostic factor that should not be ignored', *J Clin Oncol*, 29(15), pp. 1935-6.

Mukherjee, S., Dudley, J.I. and Das, D.K. (2010) 'Dose-dependency of resveratrol in providing health benefits', *Dose Response*, 8(4), pp. 478-500.

Nakagawa, T., T. Kajitani, et al. (2008). "Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation." Genes Dev 22(1): 37-49.

Nowak, S.J. and Corces, V.G. (2004) 'Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation', *Trends Genet*, 20(4), pp. 214-20.

Nishimoto, S. and E. Nishida (2006). "MAPK signalling: ERK5 versus ERK1/2." EMBO Rep 7(8): 782-786.

Nowak, S. J. and V. G. Corces (2004). "Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation." Trends Genet 20(4): 214-220.

O'Lone, R., Frith, M.C., Karlsson, E.K. and Hansen, U. (2004) 'Genomic targets of nuclear estrogen receptors', *Mol Endocrinol*, 18(8), pp. 1859-75.

Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., Wright, S.M., Mills, K.D., Bonni, A., Yankner, B.A., Scully, R., Prolla, T.A., Alt, F.W. and Sinclair, D.A. (2008) 'SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging', *Cell*, 135(5), pp. 907-18.

Ogueta, S.B., Schwartz, S.D., Yamashita, C.K. and Farber, D.B. (1999) 'Estrogen receptor in the human eye: influence of gender and age on gene expression', *Invest Ophthalmol Vis Sci*, 40(9), pp. 1906-11.

Olas, B., Wachowicz, B., Szewczuk, J., Saluk-Juszczak, J. and Kaca, W. (2001) 'The effect of resveratrol on the platelet secretory process induced by endotoxin and thrombin', *Microbios*, 105(410), pp. 7-13.

Olivier, M., M. Hollstein, et al. (2010). "TP53 mutations in human cancers: origins, consequences, and clinical use." Cold Spring Harb Perspect Biol 2(1): a001008.

Orsini, F., Pelizzoni, F., Verotta, L., Aburjai, T. and Rogers, C.B. (1997) 'Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O-beta-D-glucopyranoside and related compounds', *J Nat Prod*, 60(11), pp. 1082-7.

Ouyang, J. and G. Gill (2009). "SUMO engages multiple corepressors to regulate chromatin structure and transcription." Epigenetics 4(7): 440-444.

Pace-Asciak, C.R., Hahn, S., Diamandis, E.P., Soleas, G. and Goldberg, D.M. (1995) 'The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease', *Clin Chim Acta*, 235(2), pp. 207-19.

Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., Qiu, X., Stockman, B., Thanabal, V., Varghese, A., Ward, J., Withka, J. and Ahn, K. (2010) 'SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1', *J Biol Chem*, 285(11), pp. 8340-51.

Palsamy, P. and S. Subramanian (2009). "Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats." Chem Biol Interact 179(2-3): 356-362.

Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., Kim, M.K., Beaven, M.A., Burgin, A.B., Manganiello, V. and Chung, J.H. (2012) 'Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases', *Cell*, 148(3), pp. 421-33.
Pearson, K.J., Baur, J.A., Lewis, K.N., Peshkin, L., Price, N.L., Labinskyy, N., Swindell,
W.R., Kamara, D., Minor, R.K., Perez, E., Jamieson, H.A., Zhang, Y., Dunn, S.R., Sharma,
K., Pleshko, N., Woollett, L.A., Csiszar, A., Ikeno, Y., Le Couteur, D., Elliott, P.J., Becker,
K.G., Navas, P., Ingram, D.K., Wolf, N.S., Ungvari, Z., Sinclair, D.A. and de Cabo, R.
(2008) 'Resveratrol delays age-related deterioration and mimics transcriptional aspects of
dietary restriction without extending life span', *Cell Metab*, 8(2), pp. 157-68.

Pervaiz, S. (2003) 'Resveratrol: from grapevines to mammalian biology', *FASEB J*, 17(14), pp. 1975-85.

Petrovski, G., Gurusamy, N. and Das, D.K. (2011) 'Resveratrol in cardiovascular health and disease', *Ann N Y Acad Sci*, 1215, pp. 22-33.

Petrucelli, N., M. B. Daly, et al. (1993). BRCA1 and BRCA2 Hereditary Breast and Ovarian Cancer. GeneReviews. R. A. Pagon, T. D. Bird, C. R. Dolan, K. Stephens and M. P. Adam. Seattle WA, University of Washington, Seattle.

Pfluger, P.T., Herranz, D., Velasco-Miguel, S., Serrano, M. and Tschop, M.H. (2008) 'Sirt1 protects against high-fat diet-induced metabolic damage', *Proc Natl Acad Sci U S A*, 105(28), pp. 9793-8.

Pijl, H. (2012) 'Longevity. The allostatic load of dietary restriction', *Physiol Behav*, 106(1), pp. 51-7.

Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H.A. and Herms, J. (2006) 'Synapse formation and function is modulated by the amyloid precursor protein', *J Neurosci*, 26(27), pp. 7212-21.

Pruitt, K., Zinn, R.L., Ohm, J.E., McGarvey, K.M., Kang, S.H., Watkins, D.N., Herman, J.G. and Baylin, S.B. (2006) 'Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation', *PLoS Genet*, 2(3), p. e40.

Rayalam, S., Della-Fera, M.A. and Baile, C.A. (2011) 'Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis', *Mol Nutr Food Res*, 55(8), pp. 1177-85.

Rayalam, S., Yang, J.Y., Ambati, S., Della-Fera, M.A. and Baile, C.A. (2008) 'Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes', *Phytother Res*, 22(10), pp. 1367-71.

Renaud, S. and M. de Lorgeril (1992). "Wine, alcohol, platelets, and the French paradox for coronary heart disease." Lancet 339(8808): 1523-1526.

Rice, S. and Whitehead, S.A. (2006) 'Phytoestrogens and breast cancer--promoters or protectors?', *Endocr Relat Cancer*, 13(4), pp. 995-1015.

Richardson, B. (2003) 'Impact of aging on DNA methylation', *Ageing Res Rev*, 2(3), pp. 245-61. Rincon, M., Muzumdar, R., Atzmon, G. and Barzilai, N. (2004) 'The paradox of the insulin/IGF-1 signaling pathway in longevity', *Mech Ageing Dev*, 125(6), pp. 397-403.

Rincon, M., Rudin, E. and Barzilai, N. (2005) 'The insulin/IGF-1 signaling in mammals and its relevance to human longevity', *Exp Gerontol*, 40(11), pp. 873-7.

Robb, E.L. and Stuart, J.A. (2011) 'Resveratrol interacts with estrogen receptor-beta to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase', *Free Radic Biol Med*, 50(7), pp. 821-31.

Rodriguez-Paredes, M. and Esteller, M. (2011) 'Cancer epigenetics reaches mainstream oncology', *Nat Med*, 17(3), pp. 330-9.

Rogina, B. and Helfand, S.L. (2004) 'Sir2 mediates longevity in the fly through a pathway related to calorie restriction', *Proc Natl Acad Sci U S A*, 101(45), pp. 15998-6003.

Roodi, N., Bailey, L.R., Kao, W.Y., Verrier, C.S., Yee, C.J., Dupont, W.D. and Parl, F.F. (1995) 'Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer', *J Natl Cancer Inst*, 87(6), pp. 446-51.

Rotches-Ribalta, M., Andres-Lacueva, C., Estruch, R., Escribano, E. and Urpi-Sarda, M. (2012) 'Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets', *Pharmacol Res*.

Runqing, L. and Ginette, S. (1999) 'Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells', *Journal of Cellular Physiology*, 179(3), pp. 297-304.

Rutherford, T., Brown, W.D., Sapi, E., Aschkenazi, S., Munoz, A. and Mor, G. (2000) 'Absence of estrogen receptor-beta expression in metastatic ovarian cancer', *Obstet Gynecol*, 96(3), pp. 417-21.

Salminen, A. and Kaarniranta, K. (2009) 'SIRT1: regulation of longevity via autophagy', *Cell Signal*, 21(9), pp. 1356-60.

Sarg, B., E. Koutzamani, et al. (2002). "Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging." J Biol Chem 277(42): 39195-39201.

Savouret, J.F. and Quesne, M. (2002) 'Resveratrol and cancer: a review', *Biomed Pharmacother*, 56(2), pp. 84-7.

Selman, C., Kerrison, N.D., Cooray, A., Piper, M.D.W., Lingard, S.J., Barton, R.H., Schuster, E.F., Blanc, E., Gems, D., Nicholson, J.K., Thornton, J.M., Partridge, L. and Withers, D.J. (2006) 'Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice', *Physiological Genomics*, 27(3), pp. 187-200.

Sengottuvelan, M. and Nalini, N. (2006) 'Dietary supplementation of resveratrol suppresses colonic tumour incidence in 1,2-dimethylhydrazine-treated rats by modulating biotransforming enzymes and aberrant crypt foci development', *Br J Nutr*, 96(1), pp. 145-53.

Sengottuvelan, M., Senthilkumar, R. and Nalini, N. (2006) 'Modulatory influence of dietary resveratrol during different phases of 1,2-dimethylhydrazine induced mucosal lipid-peroxidation, antioxidant status and aberrant crypt foci development in rat colon carcinogenesis', *Biochim Biophys Acta*, 1760(8), pp. 1175-83.

Shankar, S., Nall, D., Tang, S.N., Meeker, D., Passarini, J., Sharma, J. and Srivastava, R.K. (2011) 'Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition', *PLoS One*, 6(1), p. e16530.

She, Q. B., A. M. Bode, et al. (2001). "Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase." Cancer Res 61(4): 1604-1610.

Sheweita, S. A. and A. K. Tilmisany (2003). "Cancer and phase II drug-metabolizing enzymes." Curr Drug Metab 4(1): 45-58.

Shiio, Y. and Eisenman, R.N. (2003) 'Histone sumoylation is associated with transcriptional repression', *Proc Natl Acad Sci U S A*, 100(23), pp. 13225-30.

Singh, R. K. and A. Gunjan (2011). "Histone tyrosine phosphorylation comes of age." Epigenetics 6(2): 153-160.

Soleas, G.J., Diamandis, E.P. and Goldberg, D.M. (1997) 'Resveratrol: a molecule whose time has come? And gone?', *Clin Biochem*, 30(2), pp. 91-113.

Sparmann, A. and van Lohuizen, M. (2006) 'Polycomb silencers control cell fate, development and cancer', *Nat Rev Cancer*, 6(11), pp. 846-56.

Stanislaw, R.B. (2005) 'Aging: gene silencing or gene activation?', *Medical hypotheses*, 64(1), pp. 201-208.

Stocco, B., Toledo, K., Salvador, M., Paulo, M., Koyama, N. and Torqueti Toloi, M.R. (2012) 'Dose-dependent effect of resveratrol on bladder cancer cells: chemoprevention and oxidative stress', *Maturitas*, 72(1), pp. 72-8.

Sun, W., Wang, W., Kim, J., Keng, P., Yang, S., Zhang, H., Liu, C., Okunieff, P. and Zhang, L. (2008) 'Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment', *Adv Exp Med Biol*, 614, pp. 179-86.

Suzuki, T., H. P. Yu, et al. (2008). "Mitogen activated protein kinase (MAPK) mediates nongenomic pathway of estrogen on T cell cytokine production following trauma-hemorrhage." Cytokine 42(1): 32-38.

Tang, K., Zhan, J.C., Yang, H.R. and Huang, W.D. (2010) 'Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings', *J Plant Physiol*, 167(2), pp. 95-102.

Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M. and Garofalo, R.S. (2001) 'A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function', *Science*, 292(5514), pp. 107-10.

Tessitore, L., Davit, A., Sarotto, I. and Caderni, G. (2000) 'Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression', *Carcinogenesis*, 21(8), pp. 1619-22.

Tissenbaum, H.A. and Guarente, L. (2001) 'Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans', *Nature*, 410(6825), pp. 227-30.

Trela, B.C. and Waterhouse, A.L. (1996) 'Resveratrol: Isomeric Molar Absorptivities and Stability', *J. Agric. Food Chem.*, 44(5), pp. 1253–1257.

Tsai, S.H., Lin-Shiau, S.Y. and Lin, J.K. (1999) 'Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol', *Br J Pharmacol*, 126(3), pp. 673-80.

Turner, P.R., O'Connor, K., Tate, W.P. and Abraham, W.C. (2003) 'Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory', *Prog Neurobiol*, 70(1), pp. 1-32.

Um, J.H., Park, S.J., Kang, H., Yang, S., Foretz, M., McBurney, M.W., Kim, M.K., Viollet, B. and Chung, J.H. (2010) 'AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol', *Diabetes*, 59(3), pp. 554-63.

Ungvari, Z., Parrado-Fernandez, C., Csiszar, A. and de Cabo, R. (2008) 'Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging', *Circ Res*, 102(5), pp. 519-28.

Valenzano, D.R., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L. and Cellerino, A. (2006) 'Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate', *Curr Biol*, 16(3), pp. 296-300.

Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. (2004) 'Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin', *Mol Cell*, 16(1), pp. 93-105.

Vergote, I., Robertson, J.F., Kleeberg, U., Burton, G., Osborne, C.K. and Mauriac, L. (2003) 'Postmenopausal women who progress on fulvestrant ('Faslodex') remain sensitive to further endocrine therapy', *Breast Cancer Res Treat*, 79(2), pp. 207-11.

Vermerris, W. and Nicholson, R. (2006) *Phenolic Compound Biochemistry* 1 edition edn. USA: Springer.

Vingtdeux, V., Dreses-Werringloer, U., Zhao, H., Davies, P. and Marambaud, P. (2008) 'Therapeutic potential of resveratrol in Alzheimer's disease', *BMC Neurosci*, 9 Suppl 2, p. S6.

Vitaglione, P., Sforza, S., Galaverna, G., Ghidini, C., Caporaso, N., Vescovi, P.P., Fogliano,
V. and Marchelli, R. (2005) 'Bioavailability of trans-resveratrol from red wine in humans', *Mol Nutr Food Res*, 49(5), pp. 495-504.

Walker, V.R. and Korach, K.S. (2004) 'Estrogen receptor knockout mice as a model for endocrine research', *ILAR J*, 45(4), pp. 455-61.

Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E., Jr. and Walle, U.K. (2004) 'High absorption but very low bioavailability of oral resveratrol in humans', *Drug Metab Dispos*, 32(12), pp. 1377-82.

Wang, E. (1999) 'Age-dependent atrophy and microgravity travel: what do they have in common?', *FASEB J*, 13 Suppl, pp. S167-74.

Wang, H., Y. J. Yang, et al. (2012). "Resveratrol in cardiovascular disease: what is known from current research?" Heart Fail Rev 17(3): 437-448.

Watson, C. S., Y. J. Jeng, et al. (2010). "Nongenomic signaling pathways of estrogen toxicity." Toxicol Sci 115(1): 1-11.

Windahl, S.H., Hollberg, K., Vidal, O., Gustafsson, J.A., Ohlsson, C. and Andersson, G. (2001) 'Female estrogen receptor beta-/- mice are partially protected against age-related trabecular bone loss', *J Bone Miner Res*, 16(8), pp. 1388-98.

Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M. and Sinclair, D. (2004) 'Sirtuin activators mimic caloric restriction and delay ageing in metazoans', *Nature*, 430(7000), pp. 686-9.

Wuttke, W., Jarry, H., Westphalen, S., Christoffel, V. and Seidlova-Wuttke, D. (2002) 'Phytoestrogens for hormone replacement therapy?', *J Steroid Biochem Mol Biol*, 83(1-5), pp. 133-47. Yu, C., Shin, Y.G., Chow, A., Li, Y., Kosmeder, J.W., Lee, Y.S., Hirschelman, W.H., Pezzuto, J.M., Mehta, R.G. and van Breemen, R.B. (2002) 'Human, rat, and mouse metabolism of resveratrol', *Pharm Res*, 19(12), pp. 1907-14.

Zhang, F., J. S. Shi, et al. (2010). "Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions." Mol Pharmacol 78(3): 466-477.

Zern, T.L., Wood, R.J., Greene, C., West, K.L., Liu, Y., Aggarwal, D., Shachter, N.S. and Fernandez, M.L. (2005) 'Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress', *J Nutr*, 135(8), pp. 1911-7.

Zhang, Q.X., Borg, A., Wolf, D.M., Oesterreich, S. and Fuqua, S.A. (1997) 'An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer', *Cancer Res*, 57(7), pp. 1244-9.

Zhang, Y.W., Thompson, R., Zhang, H. and Xu, H. (2011) 'APP processing in Alzheimer's disease', *Mol Brain*, 4, p. 3.

ProbeID	p-value	Regulation	Symbol	Chromosome	GI	ILMN_Gene
7160239	3.24E-04	up	FOSB	chr19	5803016	FOSB
6200390	2.15E-04	down	PRIM1	chr12	41349493	PRIM1
5550242	0.00822	up		chr17	561211	HS.554608
2900674	6.27E-10	down	IGSF3	chr1	55953132	IGSF3
3840632	0.001924	up	ACSM3	chr16	47458816	ACSM3
3180168	7.75E-04	down	LOC646764	chr19	89052462	LOC646764
4390661	0.009971	up	DDX51	chr12	37059776	DDX51
5360491	0.00533	down		chr10	27878712	HS.61151
4250181	9.36E-04	down	EXOC5	chr14	82546833	EXOC5
6650176	1.08E-05	up	TRMT11	chr6	94420682	TRMT11
6130382	4.56E-06	up	PTER	chr10	47933342	PTER
4760079	1.73E-04	up	ADARB1	chr21	75709170	ADARB1
1010367	0.016954	up	CSTF3	chr11	75709188	CSTF3
10161	0.002524	down	MOBKL2A	chr19	40018625	MOBKL2A
4120504	0.008054	down	LOC643834	chr11	89033999	LOC643834
130673	5.45E-10	down	NHP2	chr5	53729323	NHP2
1300519	0.003014	up	ZNF597	chr16	22748966	ZNF597
1570414	5.45E-06	down	NAT5	chr20	89993684	NAT5
4760630	0.002505	up	RAB11FIP2	chr10	7662393	RAB11FIP2
4150709	7.13E-04	up	LOC651774		89062149	LOC651774
7320437	2.41E-07	up	DSCR3	chr21	5174424	DSCR3
5340315	0.001115	down	DEFB32	chr20	46409557	DEFB32
5340382	0.001197	down	BAT3	chr6	18375631	BAT3
2190470	0.012785	up	KLF10	chr8	5032176	KLF10
3400379	1.89E-04	up	STXBP6	chr14	46048194	STXBP6
20435	0.00931	down	LOC729279		169213739	LOC729279
20010	4.14E-06	up	CARS	chr11	62240993	CARS
2510689	6.72E-04	up	ROGDI	chr16	13375778	ROGDI
1450026	0.006174	down	LOC389101		113415004	LOC389101
1430487	5.14E-09	up	MGP	chr12	49574513	MGP
5130414	1.17E-06	down	C9orf23	chr9	22325369	C9ORF23
4250093	0.001689	up	LCA5	chr6	32171218	LCA5
2230743	0.015216	down	LOC649578		89026013	LOC649578
160639	1.86E-08	up	EBAG9	chr8	37694064	EBAG9
3800753	6.50E-06	down	CDCA7L	chr7	31542536	CDCA7L
2970605	0.009297	up	LOC100132098	chr19	169213500	LOC100132098
1570221	0.007926	up	C5orf34	chr5	38348407	C5ORF34
4150204	9.58E-04	up	PRRX2	chr9	38505203	PRRX2
3190195	1.50E-04	down	LOC646609	chr9	89029207	LOC646609
6290114	0.012692	down	SDPR	chr2	66346738	SDPR
5340324	0.006735	up	FUT7	chr9	56090657	FUT7
4850470	2.95E-07	down	ITSN1	chr21	47717122	ITSN1
3360553	0.011777	up	RP5-1022P6.2	chr20	153218549	RP5-1022P6.2

С	ontinued						
2100519	0.006668	down	IPP	chr1		5174472	IPP
6250450	0.003379	down	LOC400558			169209573	LOC400558
1850041	3.62E-04	down	DPM2		chr9	24497593	DPM2
6560672	3.00E-04	down	HNRPR		chr1	14141188	HNRPR
6960241	0.011511	up	PSAPL1		chr4	145977197	PSAPL1
5420731	3.36E-04	down	CNKSR3		chr6	74316005	CNKSR3
4070632	0.012494	down			chr3	14292080	HS.563147
150180	0.013242	down	MMP10		chr11	4505204	MMP10
2070392	0.005635	down	SLFN12		chr17	31542644	SLFN12
1300402	0.008527	up	TRMT2A		chr22	51173877	TRMT2A
7200601	4.32E-11	up	MUC1		chr1	113206023	MUC1
5260296	0.012736	ир	LOC100128905		chr2	169163414	LOC100128905
5050047	0.001716	down	KIAA1967		chr8	40548406	KIAA1967
6840673	0.012241	down	LOC100133288		chr8	169172702	LOC100133288
520678	0.008923	ир	CD53		chr1	91106722	CD53
7570338	0.005277	down	LOC728138		chr16	169209809	LOC728138
4010187	4.58E-07	up	UGCGL2		chr13	11386200	UGCGL2
6520661	1.78E-11	down	C9orf46		chr9	142352128	C9ORF46
5390288	5.03E-04	up	C1GALT1C1		chrX	58532583	C1GALT1C1
3780148	1.03E-06	up	C7orf26 chr7		21362069	C7ORF26	
1940050	0.00225	down	LOC388720		113412527	LOC388720	
7650192	5.02E-09	ир	LOC651102		89057454	LOC651102	
940288	2.37E-07	ир	BAZ1A		chr14	32967604	BAZ1A
5420687	2.92E-05	up	DACT2			141801653	DACT2
610082	0.011357	ир	SKA2		chr17	154689645	SKA2
540193	1.05E-04	down	TMEM50A		chr1	20357549	TMEM50A
520189	1.63E-06	up	HYOU1		chr11	13699861	HYOU1
940497	0.005605	down	GRK7		chr3	51896040	GRK7
3310047	0.009964	down	PKD1P1			239745438	PKD1P1
1940463	0.014108	down	LOC729156		chr7	157671954	LOC729156
6370273	9.28E-07	ир	CTPS		chr1	4503132	CTPS
6550594	5.86E-04	down	LOC391157		chr1	113411635	LOC391157
2190414	1.40E-09	ир	ACACA		chr17	38679966	ACACA
6180487	1.15E-06	down	FOXRED2		chr22	34303916	FOXRED2
2710438	0.001457	up	LOC728711			169168299	LOC728711
4640500	9.73E-12	ир	UCHL1		chr4	34147658	UCHL1
610427	1.38E-04	ир	KLF8		chrX	89111942	KLF8
3460537	0.001275	down	LOC100132488			169162132	LOC100132488
2900255	1.48E-05	up	ZBTB45		chr19	21314759	ZBTB45
1580220	0.003519	up	LOC649466			88945886	LOC649466
1740291	9.39E-05	down	TMSB15A		chrX	72255577	TMSB15A
4810497	2.27E-05	down	DMKN		chr19	78486557	DMKN
2600309	2.63E-06	up	AADACL4		chr1	61966716	AADACL4
5720541	0.004956	ир	LOC100128485			169206193	LOC100128485

Co	ontinued					
510725	3.95E-04	down	NDUFA10	chr2	33519462	NDUFA10
430333	6.65E-09	up	NLRX1	chr11	25777609	NLRX1
7650286	1.52E-07	up	EXPH5	chr11	21359817	EXPH5
6550274	8.64E-06	down	LOC649679		88981262	LOC649679
2630133	0.009462	up	LOC729389		169213728	LOC729389
10433	0.005649	up	ITGA10	chr1	38569397	ITGA10
430192	9.25E-05	down	PDSS1	chr10	50659085	PDSS1
7040670	3.12E-08	down	DHRS3	chr1	62988332	DHRS3
4260138	0.017142	down	LOC654116		89034481	LOC654116
7210546	0.001736	up	BHLHB9	chrX	39930462	BHLHB9
3120521	5.54E-04	up	NFATC4	chr14	37595561	NFATC4
4060754	0.001138	up	ZNF552	chr19	99028877	ZNF552
6270131	0.016389	down	LOC100129141	chr2	169163171	LOC100129141
5570747	0.017686	up	C21orf49	chr21	219277614	C210RF49
6280189	0.005298	up	HPS4	chr22	23110969	HPS4
3890167	0.003908	down	SLC39A3	chr19	47080101	SLC39A3
6510220	0.008568	down	LOC650407		88999379	LOC650407
6290021	9.03E-07	down	PSMD7	chr16	34335279	PSMD7
6250154	9.23E-04	ир	LZTFL1	chr3	56676319	LZTFL1
2810767	0.010155	ир	EBI3	chr19	14577916	EBI3
870669	9.66E-06	ир	LRRC56	chr11	142363978	LRRC56
5490347	0.009744	ир	CCNL2	chr1	24475708	CCNL2
2490259	0.0022	ир	PINK1	chr1	112382374	PINK1
510451	0.01591	ир	TIRAP	chr11	89111123	TIRAP
2350730	2.98E-08	ир	CGA	chr6	10800407	CGA
7380338	5.78E-05	ир	UST	chr6	5032218	UST
3120136	2.21E-04	ир	NFAT5	chr16	27886525	NFAT5
4050228	0.00411	ир	MEX3A	chr1	147902745	MEX3A
5360202	5.61E-04	ир	MRFAP1L1	chr4	44921607	MRFAP1L1
4290358	0.003442	down	CCT7	chr2	58331184	CCT7
520497	0.00382	ир	LOC729786	chr15	113425046	LOC729786
7150196	0.001204	ир	TMEM87A	chr15	31377764	TMEM87A
3170184	1.50E-10	down	RPL36AL	chr14	34335143	RPL36AL
380762	4.70E-04	down	LOC646300		113415240	LOC646300
3940632	0.007287	down	C8orf79	chr8	153251912	C8ORF79
7570754	0.016603	ир		chr13	8905106	HS.539599
1820682	0.013799	down	RNASEL	chr1	30795246	RNASEL
5340528	0.008648	down		chr16	1108803	HS.557218
6580184	0.006146	down	SERHL		113429616	SERHL
1110730	0.001148	up	WWTR1	chr3	34147583	WWTR1
4920286	0.003392	up	C15orf44		113425683	C15ORF44
780762	8.60E-06	up	CSNK1D	chr17	20544143	CSNK1D
540639	0.002492	up	MIR197		262206094	MIR197
1580301	0.008457	down	ATP10A	chr15	157649070	ATP10A

6650639	0.003236	ир	VAMP1	chr12	40549445	VAMP1
6520576	3.90E-06	down	BOLA3	chr2	78486585	BOLA3
5570114	5.24E-09	ир	GADD45G	chr9	9790905	GADD45G
5490139	6.13E-05	ир	HSPA13	chr21	48928055	HSPA13
2850364	2.95E-04	ир	KIAA1333	chr14	33620748	KIAA1333
2490128	0.017746	ир	SIK2	chr11	38569459	SIK2
2650682	0.001963	down	RBMX2	chrX	7706315	RBMX2
460170	1.02E-05	down	LOC728368	chr11	169202179	LOC728368
4390646	1.94E-09	ир	ZHX2	chr8	63079684	ZHX2
1170528	0.012861	down	FANCB	chrX	66528784	FANCB
2230201	0.015463	ир	TARBP1	chr1	110825987	TARBP1
6130138	7.47E-06	down	POLR3C	chr1	141801742	POLR3C
2900184	0.016813	ир	LOC653163	chr9	89030014	LOC653163
4860358	1.34E-04	down	VBP1	chrX	66346740	VBP1
1710139	0.008976	down	LOC642362	chr11	89034189	LOC642362
3520438	0.006134	down	ARAP2	chr4	21264591	ARAP2
2140288	2.71E-04	down	FLJ22662	chr12	55743115	FLJ22662
3140639	0.007504	down	LOC133874	chr5	113416861	LOC133874
1940167	1.24E-04	ир	PDPR		113426487	PDPR
7330364	0.002109	down	LOC647065	chr2	113413275	LOC647065
1940576	1.64E-12	ир	RPS6KB1	chr17	55925648	RPS6KB1
1230047	7.05E-04	ир	CBS	chr21	4557414	CBS
840349	1.36E-04	ир	OVOL1	chr11	38570157	OVOL1
4060131	0.005606	ир	C3orf58	chr3	34222231	C3ORF58
110523	0.006601	down		chr3	10302685	HS.188979
780598	8.67E-05	ир	TBK1	chr12	19743810	TBK1
4860500	0.001974	down	LOC652968	chr22	83415180	LOC652968
3440672	0.001161	ир	KIAA0261	chr10	42734324	KIAA0261
7160612	7.51E-06	ир	USP36	chr17	35250685	USP36
2000128	1.57E-04	ир	C4BPA	chr1	62912459	C4BPA
7550707	2.93E-05	ир	ING3	chr7	38201654	ING3
460021	0.002601	ир	SLC39A7	chr6	117553618	SLC39A7
2120082	0.005283	down	LOC651302		113417962	LOC651302
2900193	0.012448	up	TAF5	chr10	50363367	TAF5
2690270	6.61E-04	up	SNIP1	chr1	21314719	SNIP1
1780446	6.89E-05	ир	PCK2	chr14	66346720	PCK2
1070280	0.005095	up		chr21	6711912	HS.542575
5570669	0.009916	up	POFUT1	chr20	27436890	POFUT1
2070477	0.006292	down	C12orf71	chr12	122937208	C12ORF71
510358	0.008557	down	LOC651952		89067026	LOC651952
7100639	4.06E-10	up	ERRFI1	chr1	21314673	ERRFI1
2970397	7.76E-07	down	ZNF296	chr19	21687251	ZNF296
3310451	0.014032	down	PIGO	chr9	38045916	PIGO
4220246	6.63E-05	up	CCL20	chr2	4759075	CCL20

				1		
1780482	7.56E-05	ир	CACHD1	chr1	110578648	CACHD1
2120689	1.84E-04	ир	UBXN6	chr19	13376853	UBXN6
5390451	3.64E-10	ир	DKK3	chr11	66346687	DKK3
270019	1.46E-04	ир	GOSR1	chr17	55774986	GOSR1
5090424	2.29E-04	down	RPS27	chr1	68160923	RPS27
2140239	1.47E-11	down	CMTM7	chr3	31657098	CMTM7
5670296	1.67E-04	up	UBTF	chr17	115529450	UBTF
2640341	7.98E-06	down	FKBP5	chr6	17149847	FKBP5
4830433	0.005753	up	LARP6	chr15	37537709	LARP6
3780156	0.002557	up	AMH	chr19	6138973	AMH
1450634	2.89E-08	up	TINAGL1	chr1	11545917	TINAGL1
5310379	0.004393	up	TMEM115	chr3	40795669	TMEM115
1430152	2.15E-05	up	SCML1	chrX	82830431	SCML1
7570142	0.011886	down	DGCR11	chr22	205830444	DGCR11
6130343	0.010677	up	MIR557		262205768	MIR557
1010674	4.01E-04	up	LOC400352		169208770	LOC400352
2000615	0.011791	down	WWP1	chr8	33946331	WWP1
5900593	3.04E-04	up	ТНТРА	chr14	54607163	ТНТРА
160072	0.011453	up			10373073	HS.574023
2970402	4.92E-04	up	TUBGCP6	chr22	56788363	TUBGCP6
1070471	0.008473	down	CLU	chr8	42740906	CLU
2490168	1.67E-08	up	MAGEH1	chrX	18105051	MAGEH1
5490131	1.92E-04	up	NIPSNAP1	chr22	4505398	NIPSNAP1
6510403	6.56E-05	up	LGSN	chr6	7705581	LGSN
4050056	7.47E-07	down	TBC1D16	chr17	33563375	TBC1D16
4570730	0.01199	down	LOC652797		89064519	LOC652797
1740343	1.56E-08	up	PCSK5	chr9	20336245	PCSK5
2630554	0.007179	up	JMY	chr5	94721314	JMY
6420674	5.18E-09	down	LOC647954		113417184	LOC647954
3780382	0.005964	up	DKFZp761E198	chr11	149999370	DKFZP761E198
3120681	0.001755	up	AFM	chr4	27754774	AFM
1850437	3.71E-04	up	UBR5	chr8	41352716	UBR5
870402	9.00E-04	up	MAGI1	chr3	74272283	MAGI1
1450241	2.57E-07	up	CLEC4GP1	chr19	89886424	CLEC4GP1
5220528	0.006098	down	LOC646627	chr1	88943942	LOC646627
1570685	0.003351	up	KIAA0415	chr7	82546846	KIAA0415
6960445	0.013041	down	LOC653104	chr8	89028013	LOC653104
5270446	0.013446	down	RBM41	chrX	38454187	RBM41
2030672	0.006982	up	LOC158160	chr10	72534773	LOC158160
6290463	0.004669	up	FALZ	chr17	38788259	FALZ
4880021	0.003245	down	RBM12	chr20	<u>33469952</u>	RBM12
2810138	0.008587	up	PMEPA1	chr20	40317614	PMEPA1
4060598	0.01285	down		chr17	2140439	HS.98815
5290037	0.001491	down	HEATR2	chr7	31377743	HEATR2

4570672	0.014288	ир	TEKT2	chr1	16507949	TEKT2
630474	6.62E-09	down	ZP3	chr7	38327648	ZP3
830274	0.002439	ир	CD55	chr1	40788009	CD55
580433	7.00E-04	ир	DENND1A	chr9	55749778	DENND1A
3990278	1.10E-05	up	SCGN	chr6	59814903	SCGN
4830747	8.60E-05	up	ERI3	chr1	74136558	ERI3
7380504	0.003195	up	ZNF607	chr19	47271463	ZNF607
430450	0.010878	down	LOC649891		89042418	LOC649891
3130541	0.013872	down	CCNF	chr16	4502620	CCNF
6270468	0.014574	down	LOC643000	chrX	89060141	LOC643000
2690603	0.008168	up	RNF5	chr6	34305290	RNF5
6420743	1.26E-04	up	DYSFIP1	chr17	116235449	DYSFIP1
7000332	4.58E-07	up	CCDC126	chr7	93277090	CCDC126
3830577	0.001709	down	LOC100133478		169215724	LOC100133478
5420538	1.79E-05	up	TP53INP1	chr8	20127661	TP53INP1
270170	1.38E-05	up	GLYATL2	chr11	31542212	GLYATL2
5340615	0.008778	down	TRPV4	chr12	22547179	TRPV4
3130438	0.010258	up	LOC100133167	chr22	169215504	LOC100133167
2690639	0.013847	down	AQR	chr15	58374127	AQR
540609	0.00115	down	LOC653746	chr8	89028158	LOC653746
3930577	0.001781	up	HMGN2	chr1	148922918	HMGN2
4180243	0.006362	down	YIPF5	chr5	68226421	YIPF5
4120192	0.010301	up	CES3	chr16	38455414	CES3
5670095	1.10E-09	down	ZNF239	chr10	149999359	ZNF239
290242	0.004851	down	POTEC	chr18	212549545	POTEC
4730309	9.02E-08	up	PCCA	chr13	65506441	PCCA
6220037	1.42E-04	up	UTP23	chr8	14150117	UTP23
2030537	0.014889	up		chr5	3430558	HS.543983
4120671	2.38E-04	down	SSBP3	chr1	58218978	SSBP3
4120750	1.36E-07	down	OBFC1	chr10	34147613	OBFC1
110056	1.67E-04	ир	NRP2	chr2	41872561	NRP2
4180180	0.014362	up	LOC100133950		169160865	LOC100133950
6770639	1.38E-04	up	NDEL1	chr17	71284428	NDEL1
1740753	1.36E-05	down	CBWD3	chr9	148727350	CBWD3
7210594	1.79E-07	ир	ZNF650	chr2	40255162	ZNF650
4810064	3.43E-04	up	LOC730041		169218223	LOC730041
3140110	1.05E-06	down	C18orf10	chr18	68534956	C18ORF10
3400400	0.002126	down	LOC100131660		169204872	LOC100131660
6900154	0.006386	up	ZNF704	chr8	76253909	ZNF704
6110561	0.006359	down	MRPS27	chr5	16950608	MRPS27
6980746	0.00417	down	SSX3	chrX	28559008	SSX3
1980706	0.005878	down	ATP6V0D2	chr8	22749164	ATP6V0D2
6650747	1.66E-07	up	ZNF641	chr12	22748700	ZNF641
5820091	4.38E-04	up	LOC650612		88947033	LOC650612

Continued 4070059 0.00693 down LOC729197 chr15 113425458 LOC729197 4860196 0.014239 FLJ44124 chr7 89886184 FLJ44124 up 7050180 2.73E-08 SLC22A5 chr5 24497491 SLC22A5 up KIAA0430 KIAA0430 7000142 3.50E-06 chr16 85797659 up 3610424 0.006239 up TRIM67 chr1 134288905 TRIM67 5900270 0.005496 FOXD4L4 76880471 FOXD4L4 chr9 up 670403 3.23E-06 down **B4GALNT4** chr11 40789264 B4GALNT4 down 630059 0.010897 LOC648167 89038845 LOC648167 6220451 1.14E-06 down SLC25A4 chr4 55749576 SLC25A4 3130220 4.35E-04 **TMEM158** chr3 116805333 **TMEM158** up chr12 1940026 0.008344 down LOC642797 89035773 LOC642797 0.012951 LOC100133444 169217923 LOC100133444 270670 down 1170072 1.70E-06 up **ZSWIM4** chr19 65301125 ZSWIM4 20553 1.06E-05 C10RF124 down C1orf124 chr1 58331106 0.014606 MUTYH 115298649 MUTYH 5670037 down chr1 3780497 0.009768 down LOC100129465 169190996 LOC100129465 chr10 3460309 6.01E-08 up ATF4 chr22 33469975 ATF4 730725 9.82E-06 up AOF2 chr1 58761545 AOF2 3360377 2.84E-06 down UTP14A chrX 21361347 UTP14A 6980369 0.001303 down chr2 27878421 HS.131259 1470521 1.55E-05 NR2C1 chr12 73808083 NR2C1 up 1580093 0.001128 SCYL1 chr11 115430240 SCYL1 up 540390 1.19E-04 ALPK1 chr4 21361968 ALPK1 up 7330446 0.001311 up LOC729764 chr5 113416915 LOC729764 0.002569 STARD8 2100521 up STARD8 chrX 31543658 2810739 0.016226 PDE4B chr1 82799483 PDE4B up 89029227 3390392 0.006185 SUGT1P SUGT1P up 3840193 3.50E-06 **KIAA0649** chr9 45387957 **KIAA0649** up 2470603 3.09E-07 ARID4B chr1 118136292 ARID4B up 6450402 0.003296 LOC643699 chr15 113425118 LOC643699 up 5260343 7.67E-04 SCG5 4506916 SCG5 up chr15 IFT172 130070 0.001371 up chr2 46358427 **IFT172** 2260133 0.006305 **RPS6KA3** chrX 56243494 **RPS6KA3** up 6.26E-08 7200608 up HSPB1 chr7 4996892 HSPB1 5570315 1.15E-04 **C2ORF58** C2orf58 chr2 27734974 up 610592 5.63E-06 ADCY1 chr7 31083192 ADCY1 up 9.94E-09 PRPF4 34222192 PRPF4 6100441 down chr9 7400402 0.003026 HIST1H4D chr6 21071023 HIST1H4D up 6760026 0.002391 up LRRC57 chr15 23397553 LRRC57 4.39E-09 4280739 down APCDD1 chr18 30387616 APCDD1 2260070 5.54E-06 up MTERF chr7 68448540 **MTERF** 4730019 0.015204 31317225 EFNB1 chrX EFNB1 up 650301 1.72E-04 **SNRPF** 83776586 **SNRPF** down chr12

chr18

113427693

LOC388458

LOC388458

1740091

0.001627

down

6040148	0.016378	down	PML		89039091	PML
1170468	0.008586	up	UBE2MP1	chr16	84872128	UBE2MP1
4180255	0.005662	down	C1QTNF9B	chr13	56847615	C1QTNF9B
1070019	0.001327	up	FBXO17	chr19	22325386	FBXO17
1980202	0.002838	up	CAPRIN2	chr12	50428932	CAPRIN2
7610050	8.10E-04	up	ABCC5	chr3	66529092	ABCC5
2750139	1.47E-06	down	RNF216L	chr7	190194405	RNF216L
4280327	7.74E-04	up	C2orf82	chr2	46047466	C2ORF82
4860553	1.67E-05	down	INTS12	chr4	21361850	INTS12
5220014	0.00341	up	LOC96610	chr22	18426889	LOC96610
3890397	1.61E-06	down	C14orf112	chr14	142349815	C14ORF112
2070605	0.001837	down	ACAT1	chr11	31563501	ACAT1
1710332	0.003893	down	FAHD1	chr16	66348061	FAHD1
6940619	0.001528	up	Sep-02	chr2	56549635	Sep-02
5360402	0.013099	up	RTEL1	chr20	30089967	RTEL1
5810121	0.004301	down	LOC652786		89064437	LOC652786
2650161	0.015031	down	LOC644986	chr8	89028116	LOC644986
2490452	9.26E-07	up	GAA	chr17	119393890	GAA
2600487	0.008811	down		chr13	24724856	HS.550139
1340358	0.014793	up	CREB1	chr2	22219459	CREB1
6270347	1.55E-09	up	TRAK1	chr3	111074531	TRAK1
5690692	0.006578	up		chr20	6398275	HS.542384
5550553	0.008251	up	DHRS13	chr17	146231949	DHRS13
1090132	0.001036	up	PARP10		113420558	PARP10
1820504	1.92E-08	down	NME1	chr17	38045911	NME1
3710598	0.004219	up	PSTK	chr10	23503260	PSTK
7560019	0.003415	down	MIR15A		262205622	MIR15A
6550026	1.65E-06	up	TICAM2	chr5	48675828	TICAM2
6860300	1.21E-04	up	SMARCA4	chr19	21071055	SMARCA4
5670475	8.81E-04	down	GCHFR	chr15	6382072	GCHFR
4560202	0.003465	up	AAA1	chr7	46402501	AAA1
5340053	3.07E-06	up	MAK10	chr9	39725954	MAK10
4200270	0.010042	up	TMUB2	chr17	115527089	TMUB2
7000609	1.41E-06	up	ARRDC2	chr19	18373304	ARRDC2
7150671	0.004794	up	ARL3	chr10	38569402	ARL3
5260132	9.23E-04	up	LOC100190938	chr17	213385284	LOC100190938
870475	1.27E-08	up	SYCP2	chr20	38373672	SYCP2
290296	6.35E-06	up	FAM113A	chr20	21362095	FAM113A
7610431	0.001262	down	FLJ40330	chr2	113413041	FLJ40330
7100300	0.003488	up	ZNF200	chr16	37675269	ZNF200
3990465	1.22E-06	down	FASTKD3	chr5	40068496	FASTKD3
7160730	0.010109	up	NCRNA00120	chr6	84872053	NCRNA00120
7510537	0.00104	down	SCO2	chr22	4826991	SCO2
6020482	5.45E-11	up	KHDRBS3	chr8	5730072	KHDRBS3

2020070	0.045025			- la 7	24526202	110 400707
38300/0	0.015925	up	DOCALTC	CHT7	34526302	H2.193/6/
2310477	0.011417	down	B3GALI6	CNT1	116268096	B3GALI6
6840100	1.07E-04	down			/001021	
4780193	0.012002	down	POFUIZ	cnr21	116/34661	
6380047	0.00327	down	MIR586	1.11	262205906	MIR586
6480682	0.012575	up	FSHB	chr11	66528900	FSHB
2970296	8.89E-10	down	ALG8	chr11	91984777	ALG8
2070470	7.56E-04	up	C1orf21	chr1	58761542	C1ORF21
3610427	0.002925	up	LOC100128098	chr10	169191377	LOC100128098
3390093	1.13E-05	down	BOLA3	chr2	78486577	BOLA3
2690040	0.01101	down	ABHD12B	chr14	32451491	ABHD12B
1770630	3.86E-05	down	ALOX12P2	chr17	117940057	ALOX12P2
6130088	0.00251	ир	MED1	chr17	154813205	MED1
510044	4.09E-06	ир	KLF4	chr9	34916057	KLF4
7160167	9.10E-04	down	ALKBH1	chr14	87298839	ALKBH1
6290717	5.48E-04	down	DMRTA1	chr9	46195736	DMRTA1
6510598	1.35E-06	ир	NHLRC3	chr13	62821784	NHLRC3
5340327	2.39E-04	ир	EIF4ENIF1	chr22	10947034	EIF4ENIF1
5270747	3.41E-09	up	HSDL1	chr16	24432036	HSDL1
6650438	2.02E-05	up	SYNGR1	chr22	39777617	SYNGR1
2100224	3.99E-05	up	RHBDD3	chr22	11072100	RHBDD3
5310161	0.005654	up	MTHFD2L	chr4	62243411	MTHFD2L
5720180	1.10E-06	up	FZD2	chr17	5922012	FZD2
110026	0.015352	down	LOC286239		89030280	LOC286239
2650021	6.15E-05	up	NRP2	chr2	41872543	NRP2
1570382	9.93E-04	up	ADAMTS9	chr3	33624895	ADAMTS9
6940719	1.14E-05	up	PAPOLA	chr14	47834324	PAPOLA
620433	0.011961	down	C1orf122	chr1	38348207	C10RF122
1190674	2.69E-04	down	C19orf69	chr19	19447367 <mark>2</mark>	C19ORF69
6060458	3.22E-05	up	GFRA3	chr5	45593145	GFRA3
2450020	6.61E-04	up	SNORD56	chr20	84872023	SNORD56
5270209	0.007488	up		chr12	27830880	HS.436006
4040674	0.008165	up	UGT1A4	chr2	45827763	UGT1A4
1070050	0.002206	up	C9orf126	chr9	27735124	C9ORF126
7160100	0.004027	ир	PPRC1	chr10	40807451	PPRC1
1260544	3.15E-05	ир	AKIRIN1	chr1	13375790	AKIRIN1
6100010	7.63E-04	up	THEM4	chr1	76159292	THEM4
6510754	6.11E-12	down	ALDH1A1	chr9	25777722	ALDH1A1
1410519	0.003505	up		chr2	2185354	HS.66072
4060095	0.01236	down	CD84	chr1	4502686	CD84
830446	7.86E-04	down	RUNDC1	chr17	27436874	RUNDC1
4920014	0.001667	up	GIF	chr11	32189397	GIF
270630	0.006462	ap	LOC642213		89038794	LOC642213
2760113	0.005586	un	RANBP6	chr9	52486449	RANRP6
2710711	0.0000000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				

6770202	1.49E-06	ир	IPO11	chr5	39725949	IPO11
4730427	0.014516	down	MYLC2PL	chr7	40286635	MYLC2PL
780170	0.013616	ир	LOC100128505	1	169177891	LOC100128505
3310487	0.011462	ир	RPL18A	chr19	15431299	RPL18A
5390041	4.41E-07	ир	TRIM3	chr11	32454738	TRIM3
1990692	0.00753	down	LOC100131895		169202635	LOC100131895
3120520	1.07E-07	down	GABARAPL2	chr16	27374999	GABARAPL2
730291	6.76E-06	ир	OXR1	chr8	63055068	OXR1
5860347	0.002367	ир	AKR1D1	chr7	66348134	AKR1D1
5290075	0.002583	down	GAS5	chr1	88943597	GAS5
4230653	1.68E-06	ир	CCNC	chr6	61676090	CCNC
5570678	3.47E-09	down	RPS27L	chr15	76563938	RPS27L
2340441	5.18E-05	ир	SLC22A18AS	chr11	6005877	SLC22A18AS
5490376	3.71E-05	down	NCOR2	chr12	116256452	NCOR2
840392	0.00106	ир	PCYOX1	chr2	33620750	PCYOX1
5890735	0.004648	down	SMURF2	chr17	56550041	SMURF2
3870408	0.001584	ир	DUSP18	chr22	51093844	DUSP18
50373	0.008038	ир	РКРЗ		89034409	РКРЗ
2060703	0.007976	down	LOC643304	chr12	89035736	LOC643304
2900270	0.005195	ир	LOC729090	chr5	169167519	LOC729090
1570056	2.68E-08	ир	MYO5A	chr15	115511013	MYO5A
3420544	0.005806	down	LOC653584	chr3	88965597	LOC653584
1230746	1.69E-07	ир	ZCCHC6	chr9	58331271	ZCCHC6
4640484	2.71E-05	ир	CNOT8	chr5	31542314	CNOT8
4590608	1.53E-04	down	POLD3	chr11	38492355	POLD3
5270717	0.002061	ир	ССТ3	chr1	58761483	CCT3
6380112	0.006262	ир	GRAMD4	chr22	67782363	GRAMD4
2760070	0.00274	down	FLJ36492	chr17	50979285	FLJ36492
1980138	7.77E-05	down	MRRF	chr9	40317613	MRRF
4830551	0.009629	ир	HDX	chrX	142357374	HDX
4280209	0.013667	ир	LOC442546	chr7	169170379	LOC442546
4290196	0.009606	ир	SCRIB	chr8	115527071	SCRIB
4050242	0.009557	down	LOC642356	chr8	89028010	LOC642356
150181	0.012188	down	RUVBL1		88971019	RUVBL1
3850687	7.83E-04	up	FICD	chr12	42794619	FICD
7330753	1.20E-07	down	ACAT2	chr6	148539871	ACAT2
770326	7.56E-06	down	LDHA	chr11	207028493	LDHA
1050112	0.013148	down	LOC643879	chr2	88953376	LOC643879
3710253	1.96E-07	up	CAPN12	chr19	46852396	CAPN12
6040307	0.014748	up	MORN3	chr12	50355989	MORN3
2510088	0.012578	up	GPR64	chrX	119943128	GPR64
5670411	0.00747	down		chr2	80804776	HS.580480
2810437	0.001525	down	LOC648834		89035927	LOC648834
7650441	1.51E-07	down	FGFBP1	chr4	49574208	FGFBP1

-1.166888		LOC646198	646198	chrX	89059491	LOC646198
1.105352		KIAA1571	57683		113414229	KIAA1571
-1.1341	Hs.578698			chr16	28444660	HS.578698
1.038292		CCDC18	343099	chr1	62243483	CCDC18
1.104407		TBC1D2	55357	chr9	62198224	TBC1D2
-1.108194		EPHA1	2041	chr7	56119206	EPHA1
-1.10814		HS6ST2	90161	chrX	116295255	HS6ST2
1.100031		YARS	8565	chr1	38202242	YARS
1.046394		RNF128	79589	chrX	37588872	RNF128
-1.187303		DCDC2B	149069	chr1	150456470	DCDC2B
1.16733		LOC652627	652627		169218179	LOC652627
-1.128098	Hs.98466			chr16	15939282	HS.98466
1.12353	Hs.187293			chrX	11593467	HS.187293
1.171721		MSX2	4488	chr5	84452153	MSX2
1.087886		LOC650851	650851		89042527	LOC650851
1.109211		ZC3H12A	80149	chr1	13376631	ZC3H12A
1.087393		LOC401357	401357	chr7	61966820	LOC401357
-1.094295		LOC641846	641846		89027586	LOC641846
1.084805		LOC728728	728728	chr1	169162773	LOC728728
1.091768		LOC100134420	100134420		169168352	LOC100134420
-1.157601		EGFLAM	133584	chr5	33469934	EGFLAM
1.130594		C2orf42	54980	chr2	8923527	C2ORF42
-1.101714		RBMY1E	378950	chrY	56090526	RBMY1E
-1.236282		LOC647012	647012	chr2	113413206	LOC647012
1.10317		LOC642325	642325	chr15	113425388	LOC642325
-1.097124		LOC644749	644749	chrX	89060510	LOC644749
-1.101309		LOC387703	387703	chr10	169188349	LOC387703
-1.133106		LOC100131774	100131774		169169846	LOC100131774
-1.08602		LOC649060	649060		89037132	LOC649060
-1.078223		ZNF713	349075	chr7	33438599	ZNF713
1.174702		ZNF658	26149	chr9	55769536	ZNF658
-1.09019		MITF	4286	chr3	38156696	MITF
1.066027		APP	351	chr21	41406053	APP
-1.072007		SPP2	6694	chr2	54262133	SPP2
-1.160614		SBDSP	155370	chr7	38348442	SBDSP
1.135423		FLJ13224	79857	chr12	113423275	FLJ13224
1.223264		ATP2B4	493	chr1	48255958	ATP2B4
-1.095717		LOC392335	392335	chr9	169177392	LOC392335
1.082646		SNX32	254122	chr11	72534837	SNX32
-1.127806	Hs.211182			chr9	27837068	HS.211182
-1.059878		LOC100129055	100129055	chr10	214831164	LOC100129055

3060008	5.18E-04	up	C2CD4B	chr15	157278360	C2CD4B
6560091	1.70E-11	down	TGFBR2	chr3	133908632	TGFBR2
1780156	4.54E-04	up	SAMD4B	chr19	55742694	SAMD4B
2370017	0.010312	up	MCM8	chr20	33469925	MCM8
7550192	2.06E-11	up	SLC16A10	chr6	45433547	SLC16A10
5080020	0.007012	up	UBE2J1	chr6	37577121	UBE2J1
2100450	0.010103	down	LOC653651	chr10	89031348	LOC653651
3780270	0.001178	up	HBP1	chr7	47834345	HBP1
6270307	2.61E-06	down	LOC644934	chr15	113425249	LOC644934
6400711	4.21E-04	up	ZNF573	chr19	40789269	ZNF573

ProbeID	Regulation	Fold change	Unigene_ID	Symbol	Entrez_Gene_ID	Accession
6380242	down	-1.101846		TNFSF11	8600	NM_033012.2
2810327	up	1.1271994		GIT2	9815	NM_014776.2
5360398	down	-1.161789		ERI1	90459	NM_153332.3
2690528	up	1.1861886		SHMT1	6470	NM_004169.3
110427	up	1.1791819		TCEA1	6917	NM_201437.1
6200615	down	-1.138269		SAPS2	9701	XM_942540.1
3420279	up	1.091244	Hs.427229			AI820955
2940435	down	-1.173766		TFRC	7037	NM_003234.1
3360592	up	1.1556085		LOC388925	388925	XR_016133.2
4390703	up	1.1696571		PTPN1	5770	NM_002827.2
7610403	up	1.1212988		HAO1	54363	NM_017545.2
4260382	down	-1.166522		LOC651609	651609	XM_940790.1
2630619	down	-1.198774		RNF20	56254	NM_019592.5
4590026	down	-1.208029		IMPDH2	3615	NM_000884.2
6520026	down	-1.211906		NUCB1	4924	NM_006184.3
3840372	down	-1.152212		LOC440225	440225	XR_042392.1
2570091	down	-1.144436		PHF19	26147	NM_015651.1
4260291	down	-1.141839		BEND4	389206	NM_207406.2
620136	up	1.1948407		LILRA5	353514	NM_181879.1
2510324	up	1.1385332		NUDT2	318	NM_147173.1
1660403	down	-1.095697		FLJ41327	401045	NM_207485.1
130554	up	1.0999346		MIR620	693205	NR_030351.1
3800487	up	1.1551031		ZNFX1	57169	NM_021035.2
4540682	down	-1.146227		PALM	5064	NM_002579.2
940754	down	-1.097704		TMEM183A	92703	NM_138391.4
110121	up	1.200783		UBIAD1	29914	NM_013319.1
3870184	up	1.2462937		LOC441131	441131	XR_038026.1
7000719	down	-1.132033		LOC650254	650254	XM_499385.2
5310086	down	-1.132955		ZBED3	84327	NM_032367.2
3870747	down	-1.164346		LOC645478	645478	XM_932922.2
50470	down	-1.154932		PM20D2	135293	NM_001010853.1
3850398	up	1.1297903		STX2	2054	NM_194356.1
5720053	up	1.1915785		KRTHB6	3892	NM_002284.2
6560445	up	1.1450862		DNAJA3	9093	NM_005147.3
130725	up	1.068769		VWDE	221806	NM_001135924.1
6290037	up	1.0788046		LOC100130938	100130938	XM_001720237.1
3870671	up	1.1964148		SUPT7L	9913	NM_014860.1
2350373	up	1.176096		C1orf9	51430	NM_014283.2
6770192	up	1.1502244		LOC100134584	100134584	XM_001725215.1
2480259	down	-1.085064		FLJ37201	283011	XR_000539.1
2600608	down	-1.199936		LOC652436	652436	XM_941879.1
6280201	down	-1.15571		PTPRK	5796	NM_002844.2
2810181	up	1.1928123		LOC645663	645663	XM_933036.1

Appendix B: Genes affected by resveratrol treatment in MCF-7 cell line

6650026	up	1.138121		ASTE1	28990	NM_014065.2
3060278	up	1.165285		MGC15763	92106	NM_138381.1
3170632	down	-1.090755		LOC100132373	100132373	XR_038782.1
1740674	down	-1.173845		TRAPPC3	27095	NM_014408.3
6980368	down	-1.13592		LOC100131335	100131335	XM_001718069.1
2140152	down	-1.088221	Hs.130639			BX109627
240152	up	1.1372197		MGC57346	401884	XM_377476.4
2570189	up	1.1536074		NTF4	4909	NM_006179.4
240484	up	1.0792688		ZNF182	7569	NM_001007088.1
240392	down	-1.076115	Hs.202577			AK091904
3290025	up	1.1511773		LOC730074	730074	XM_001713717.1
460259	up	1.1365315		LAT	27040	NM_001014987.1
6380747	up	1.2090231		ANKRD32	84250	NM_032290.2
6370315	up	1.143988		HLA-DRB5	3127	NM_002125.3
990671	down	-1.139834		TMEM150C	441027	NM_001080506.1
4120278	up	1.2168293		KIF23	9493	NM_004856.4
1170437	up	1.185572		FAM115C	285966	NM_001130026.1
3360139	up	1.1297554		NUDCD1	84955	NM_032869.2
6980707	down	-1.101264	Hs.566307			AW296281
3940136	down	-1.190212		NUDT15	55270	NM_018283.1
4070064	down	-1.227426		LOC100133017	100133017	XM_001725861.1
990711	up	1.0892527		FAM45A	404636	NM_207009.2
6980097	up	1.1785063		NANP	140838	NM_152667.1
6840315	down	-1.164836		LOC644968	644968	XM_928045.1
1030022	ир	1.0780691		PDCD11	22984	NM_014976.1
5220445	up	1.158647		QKI	9444	NM_006775.1
4890112	ир	1.2324053		ZNRD1	30834	NM_014596.4
3890215	ир	1.2472177		KIAA0258	9827	XM_941746.1
3460762	ир	1.0891758		LOC653441	653441	XM_934161.1
4390014	up	1.1294407		C1orf58	148362	NM_144695.2
4120451	down	-1.172609		LOC654032	654032	XM_939494.1
7330750	up	1.0786141		ZNF491	126069	NM_152356.3
4250091	down	-1.160961	Hs.543683			AI494041
2100050	ир	1.1440773		IGHMBP2	3508	NM_002180.2
4010195	ир	1.125784		COL6A2	1292	NM_058175.2
730259	down	-1.141625		CACNA1H	8912	NM_001005407.1
160343	up	1.1662397		ALDH4A1	8659	NM_003748.2
2680044	up	1.0811857		RAB27A	5873	NM_183236.1
6270754	up	1.14812		LHX3	8022	NM_014564.2
6220246	down	-1.111788		LOC647726	647726	XM_936788.1
4230356	up	1.1693654		C17orf56	146705	NM_144679.1
6250553	down	-1.156608		ITFG3	83986	NM_032039.1
270068	up	1.0794486		SMOX	54498	NM_175842.1
4850538	up	1.1937208		ΡΑΟΧ	196743	NM_207128.1

510274	up	1.1062914		LOC401010	401010	NR_002826.1
6180600	up	1.1627448		NLRP7	199713	NM_139176.2
6510437	up	1.172108		HNRNPM	4670	NM_005968.3
6250180	up	1.2303317		HMG20A	10363	NM_018200.2
580670	up	1.1504056		CCM2	83605	NM_031443.3
5670594	up	1.1357732		NMB	4828	NM_021077.3
940148	down	-1.168866		ABTB2	25841	NM_145804.1
1470181	down	-1.203757		KIAA1712	80817	NM_030633.1
3830678	down	-1.06753		CD207	50489	NM_015717.2
5560273	down	-1.081719		BTBD9	114781	NM_052893.1
6020280	up	1.1831449		NRAS	4893	NM_002524.2
2630370	up	1.1182835		MAD1L1	8379	NM_001013836.1
6020612	down	-1.140802		FOXN2	3344	NM_002158.3
670367	up	1.1702397		RAB5A	5868	NM_004162.3
4260075	up	1.1414013		LSM3	27258	NM_014463.1
4570735	down	-1.141777		ARG99	83857	NM_031920.2
1820739	down	-1.128086		CCRK	23552	NM_012119.3
6270619	up	1.1851883		ZNF689	115509	NM_138447.1
2970100	up	1.2290854		LOC652773	652773	XM_942415.1
70070	down	-1.223366		GRINA	2907	NM_000837.1
2360446	up	1.1962687		OSBPL3	26031	NM_145321.1
4640706	down	-1.199041	Hs.579522			CR744191
						•
7210465	down	-1.087286	Hs.543364			Al392610
7210465 4640722	down down	-1.087286 -1.108859	Hs.543364	LOC653581	653581	Al392610 XM_932712.1
7210465 4640722 1940082	down down up	-1.087286 -1.108859 1.1404402	Hs.543364 Hs.40289	LOC653581	653581	AI392610 XM_932712.1 BX538337
7210465 4640722 1940082 3610594	down down up up	-1.087286 -1.108859 1.1404402 1.0752829	Hs.543364 Hs.40289	LOC653581 LOC401602	653581 401602	Al392610 XM_932712.1 BX538337 XR_038621.1
7210465 4640722 1940082 3610594 6200215	down down up up up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117	Hs.543364 Hs.40289	LOC653581 LOC401602 TTC13	653581 401602 79573	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2
7210465 4640722 1940082 3610594 6200215 1990687	down down up up up up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662	Hs.543364 Hs.40289	LOC653581 LOC401602 TTC13 LOC285307	653581 401602 79573 285307	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2
7210465 4640722 1940082 3610594 6200215 1990687 3130445	down down up up up up up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307	653581 401602 79573 285307	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739	down down up up up up up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1	653581 401602 79573 285307 9338	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072	down down up up up up up up up down	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494	653581 401602 79573 285307 9338 9813	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719	down down up up up up up up down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45	653581 401602 79573 285307 9338 9813 84311	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_032351.3
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112	down down up up up up up up down up down	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150	653581 401602 79573 285307 9338 9813 84311 644150	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_032351.3 XM_933686.1
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026	down down up up up up up up down up down down	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088 -1.232799	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2	653581 401602 79573 285307 285307 9338 9813 84311 644150 6813	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026 6220048	down down up up up up up up down up down down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088 -1.232799 1.118372	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC392501	653581 401602 79573 285307 9338 9813 84311 644150 6813 392501	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026 6220048 3610019	down down up up up up up up down down down up down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC392501 DSEL	653581 401602 79573 285307 285307 9338 9813 84311 644150 6813 392501 92126	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026 6960026 6220048 3610019	down down up up up up up up up up down up down up down down down up down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024 -1.146197	Hs.543364 Hs.40289 Hs.536451	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC392501 DSEL HLA-DQB1	653581 401602 79573 285307 285307 9338 9813 84311 644150 6813 392501 92126 3119	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2 NM_032160.2
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026 6220048 3610019 7160474 1820154	down down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024 -1.146197 1.1883807	Hs.543364 Hs.40289 Hs.536451 Hs.536451 Hs.334093	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC392501 DSEL HLA-DQB1	653581 401602 79573 285307 9338 9813 84311 644150 6813 392501 92126 3119	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2 NM_032160.2 BG184196
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 3710719 3830112 6960026 6220048 3610019 1820154 1820154	down down up up up up up up up up up down down down down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024 -1.146197 1.1883807 -1.1561	Hs.543364 Hs.40289 Hs.536451 Hs.536451 Hs.334093	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC392501 DSEL HLA-DQB1	653581 401602 79573 285307 9338 9813 84311 644150 6813 392501 92126 3119 92126 3119	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2 NM_032160.2 NM_002123.2 BG184196 XM_945086.1
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3830112 3710719 3830112 6960026 6220048 3610019 7160474 1820154 1820154	down down up up up up up up up up up down down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024 -1.146197 1.1883807 -1.1561 -1.163429	Hs.543364 Hs.40289 Hs.536451 Hs.536451 Hs.334093	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC392501 DSEL HLA-DQB1 LOC651991 DNAJB2	653581 401602 79573 285307 9338 9813 84311 644150 6813 392501 92126 3119 92126 3119	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2 NM_032160.2 NM_002123.2 BG184196 XM_945086.1 NM_006736.5
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026 6220048 3610019 3610019 3610019 3630474 3610019 3610019 3610019 3610019 3610019 3610019 3610019 3610019 3610019	down down up up up up up up up up down down down down up down down down down down down down down	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024 -1.146197 1.1883807 -1.1561 -1.1561 -1.163429 -1.112728	Hs.543364 Hs.40289 Hs.536451 Hs.536451 Hs.334093	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC644150 STXBP2 LOC392501 DSEL HLA-DQB1 LOC651991 DNAJB2 LOC647042	653581 401602 79573 285307 9338 9813 84311 644150 6813 392501 92126 3119 92126 3119	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2 NM_032160.2 NM_032160.2 NM_032160.2 NM_002123.2 BG184196 XM_945086.1 NM_006736.5 XM_294765.7
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026 6220048 3610019 7160474 1820154 5360463 2810746 3290671 4290270	down down up up up up up up up up down down up down up down down up down up down up down up down up down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024 -1.146197 1.1883807 -1.1561 -1.163429 -1.112728 1.1540604	Hs.543364 Hs.40289 Hs.536451 Hs.536451 Hs.334093	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC644150 STXBP2 LOC392501 DSEL HLA-DQB1 LOC651991 DNAJB2 LOC647042 LOC647042 LOC645445	653581 401602 79573 285307 9338 9813 84311 644150 6813 392501 92126 3119 651991 3300 647042 645445	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2 NM_032160.2 NM_002123.2 BG184196 XM_945086.1 NM_006736.5 XM_294765.7 XM_294765.7
7210465 4640722 1940082 3610594 6200215 1990687 3130445 3830739 1090072 3710719 3830112 6960026 6220048 3610019 3610019 3630474 1820154 5360463 2810746 3290671 730605	down down up up up up up up up up down down down down down up down down up down up	-1.087286 -1.108859 1.1404402 1.0752829 1.1300117 1.1811662 1.1414944 1.1539812 -1.10742 1.1377243 -1.10742 1.1377243 -1.130088 -1.232799 1.118372 -1.101024 -1.146197 1.1883807 -1.1561 -1.1561 -1.1561 -1.1561 -1.1561 -1.1561 1.1540604 1.1977056	Hs.543364 Hs.40289 Hs.536451 Hs.536451 Hs.334093	LOC653581 LOC401602 TTC13 LOC285307 TCEAL1 KIAA0494 MRPL45 LOC644150 STXBP2 LOC644150 STXBP2 LOC651991 DSEL HLA-DQB1 LOC651991 DNAJB2 LOC645042 LOC645445 MRPS22	653581 401602 79573 285307 285307 9338 9813 84311 644150 6813 392501 92126 3119 92126 3119 651991 3300 647042 645445 56945	AI392610 XM_932712.1 BX538337 XR_038621.1 NM_024525.2 XM_211837.2 BX105743 NM_001006640.1 NM_014774.1 NM_014774.1 NM_032351.3 XM_933686.1 NM_006949.1 XR_016267.2 NM_032160.2 NM_032160.2 NM_032160.2 NM_02123.2 BG184196 XM_945086.1 NM_006736.5 XM_294765.7 XM_932902.1 NM_020191.2

1090753	down	-1.358616		OAZ2	4947	NM_002537.2
4150392	up	1.1726096		NR6A1	2649	NM_001489.3
7050010	up	1.1139034		BNC2	54796	NM_017637.5
4210408	down	-1.150428		GPR157	80045	NM_024980.4
270341	up	1.2323076		NUDT9	53343	NM_198038.1
5960162	down	-1.15478		ATP6V1G3	127124	NM_133262.2
4670020	up	1.1310441		NIPA2	81614	NM_030922.5
2360189	up	1.1435916		AFF4	27125	NM_014423.3
4610411	ир	1.1183329		MTERFD1	51001	NM_015942.3
7320717	up	1.1143837		GALNT4	8693	NM_003774.3
4290041	down	-1.090744	Hs.146614			DB032405
3930228	down	-1.101705		LOC730274	730274	XM_001125976.1
4810372	down	-1.094232	Hs.87066			BF448257
5080561	down	-1.156813		BARD1	580	NM_000465.1
7150326	ир	1.0703942		ZNF253	56242	NM_021047.2
1690647	down	-1.194795		WASF1	8936	NM_001024936.1
2140082	down	-1.169753		PALMD	54873	NM_017734.3
2680750	down	-1.114575		PTK2	5747	NM_153831.2
6620669	down	-1.114098		C3orf23	285343	NM_173826.3
3830072	up	1.0999687		HIF3A	64344	NM_022462.3
2230343	up	1.23422		RABIF	5877	NM_002871.3
50176	up	1.0749401		TMEM16B	57101	NM_020373.1
1010246	up	1.4021088		IFI6	2537	NM_022872.2
2510463	up	1.1417383		METTL13	51603	NM_001007239.1
7160523	down	-1.165254		LOC650439	650439	XM_944199.1
5700484	down	-1.08405		RHBG	57127	NM_020407.2
2140370	up	1.0898942		RPS29	6235	NM_001030001.1
1850184	up	1.1209373		PMS2CL	441194	NR_002217.1
1660341	down	-1.191054		FLJ39632	642477	XR_015133.1
5810068	down	-1.112694		SIPA1	6494	NM_006747.2
3190592	up	1.173245		KIAA1644	85352	XM_936510.2
780204	down	-1.170127		ZNF669	79862	NM_024804.1
3310039	down	-1.135884		KIAA0754	643314	NM_015038.1
1450408	up	1.161646		SIX1	6495	NM_005982.2
1780440	up	1.067443		CD79A	973	NM_001783.3
6760008	down	-1.211301		DBN1	1627	NM_004395.2
4830706	down	-1.130678	Hs.561633			BM674971
1570300	up	1.1124007		SPATA13	221178	NM_153023.1
5690400	down	-1.30657		GSTTP2	653399	NR_003082.1
5720474	up	1.1827844		TMCO6	55374	NM_018502.3
6510661	down	-1.221892		SS18L1	26039	NM_198935.1
20056	up	1.0747428		TPT1	7178	NM_003295.1
1230382	down	-1.129323		LOC644285	644285	XM_929631.1
2900129	up	1.1805732		FTO	79068	NM_001080432.1

4060035	up	1.1900021		WDR20	91833	NM_181308.1
2340193	down	-1.165052		KRT80	144501	NM_182507.2
5420475	down	-1.127245		LOC100128056	100128056	XM_001722552.1
6520440	down	-1.149656		KIF1A	547	NM_004321.4
2060400	up	1.1352553		NKTR	4820	NM_001012651.1
510112	up	1.1547036		PTAFR	5724	NM_000952.3
1470170	up	1.1055858		C18orf8	29919	NM_013326.3
1820187	down	-1.11035		TMX3	54495	NM_019022.3
630524	up	1.1387056		PCTK2	5128	NM_002595.2
2260349	down	-1.447008		MIR1974	100302207	NR_031738.1
4560110	up	1.1937718		ARMET	7873	NM_006010.2
2260181	down	-1.173932		SLC38A4	55089	NM_018018.2
290154	down	-1.123759		LOC127406	127406	XM_497679.2
7320291	up	1.1901416		IQCK	124152	NM_153208.1
770717	up	1.0971276		LOC646079	646079	XM_929039.2
4150291	up	1.1540513		LOC643466	643466	XM_926789.1
780435	down	-1.180221		LSAMP	4045	NM_002338.2
1850348	up	1.1251006		ERCC4	2072	NM_005236.1
2190156	up	1.200798		ASB7	140460	NM_198243.1
4010386	up	1.127643		PGBD1	84547	NM_032507.2
2060095	up	1.1251669		SNRK	54861	NM_017719.3
5960438	down	-1.164907		MASP1	5648	NM_139125.2
450021	up	1.1029086		LOC338797	338797	NM_001025466.1
4120187	down	-1.084005		EFNA3	1944	NM_004952.3
5690017	down	-1.086775		LOC100132288	100132288	NM_001033515.1
6660736	up	1.1210369	Hs.577713			BI830379
1980424	up	1.2212617		LOC647349	647349	XR_019572.1
160364	down	-1.165164		ZNF282	8427	NM_003575.2
2810487	up	1.1136636		OTUB2	78990	NM_023112.2
990719	down	-1.171091	Hs.579530			CD522953
1580731	up	1.1475848		LOC441896	441896	XR_038885.1
7320246	up	1.0889354		HEMGN	55363	NM_197978.1
5890491	down	-1.133837	Hs.542687			AK125234
1580079	up	1.153013		LOC648665	648665	XR_042292.1
4150673	down	-1.093552		LOC646617	646617	XM_929557.1
20239	down	-1.153654		REPS2	9185	NM_004726.2
380594	up	1.1134462		ZFYVE21	79038	NM_024071.2
6110768	down	-1.229162		ZNF334	55713	NM_199441.1
7400468	down	-1.147194		AP1G2	8906	NM_003917.2
6020504	down	-1.141693		DSCR5	51227	NM_153681.1
4390326	up	1.1470286		SDR42E1	93517	NM_145168.2
4830653	down	-1.122231	Hs.551358			BF057027
5260100	down	-1.109773		LOC100128548	100128548	XR_037705.1
4490358	up	1.175183		KIF12	113220	NM_138424.1

3780435	up	1.1220481		GART	2618	NM_175085.1
6400088	up	1.2453427		C6orf148	80759	NM_030568.2
4230626	down	-1.185336		PRKCD	5580	NM_006254.3
7050138	up	1.1063979		RQCD1	9125	NM_005444.1
4480112	down	-1.201179		PGM5	5239	NM_021965.3
2030253	up	1.1219461		THSD1P	374500	NR_002816.1
630332	down	-1.205303		ZNF773	374928	NM_198542.1
4920768	up	1.1533679		LOC647691	647691	XM_936748.1
2710114	down	-1.142388		GNB1	2782	NM_002074.2
2570300	up	1.1195511		IFI44	10561	NM_006417.3
4280292	up	1.1600114		RNF126	55658	NM_194460.1
4120523	up	1.1541446		LOC100131673	100131673	XM_001724387.1
1470397	down	-1.164193		C8orf33	65265	NM_023080.1
540301	down	-1.160606		WHSC1	7468	NM_133330.1
6400646	up	1.1914828		CCDC85B	11007	NM_006848.2
3450020	up	1.1057111		PTK7	5754	NM_152882.2
4250497	down	-1.167817		ABCC13	150000	NM_138726.2
3840593	up	1.116043		SP110	3431	NM_004510.2
290372	down	-1.271676	Hs.125395			BX110351
4490156	down	-1.14282		LOC390367	390367	XM_374352.3
4480091	up	1.1935943		ASB9	140462	NM_024087.1
5050403	up	1.0921485		TDH	157739	NR_001578.1
6940524	down	-1.130081		EXD1	161829	NM_152596.2
5890768	down	-1.118049		NFIC	4782	NM_005597.2
1400037	down	-1.143737		OXCT2	64064	NM_022120.1
4920364	up	1.1595012		LOC728654	728654	XM_001128037.1
360192	up	1.2140545		INSIG1	3638	NM_198336.1
6280577	down	-1.183386		LOC284620	284620	XR_039089.1
7610129	ир	1.1245514		RAD51C	5889	NM_058216.1
160424	down	-1.12283		SCARNA6	677772	NR_003006.1
1980039	up	1.1396345		NEIL3	55247	NM_018248.1
5260477	down	-1.204522		LOC100133163	100133163	XM_001726385.1
1510468	up	1.1456934		GRPEL1	80273	NM_025196.2
2450338	up	1.1336782		TUSC1	286319	NM_001004125.2
1980563	down	-1.165844		FANCA	2175	NM_001018112.1
1450072	up	1.1505334		PIGF	5281	NM_002643.3
6180088	up	1.1098685		ATP6V0E2	155066	NM_145230.2
730035	up	1.1653159		RAP1GDS1	5910	NM_021159.3
2070386	down	-1.122579		GABRA5	2558	NM_000810.2
4260066	down	-1.17216		LOC646111	646111	XM_929073.1
4830577	up	1.241573		MRPS16	51021	NM_016065.3
5910215	up	1.2241374		RAD51C	5889	NM_002876.2
2000291	up	1.2037286		PCGF3	10336	NM_006315.4
1780035	down	-1.170406		SNORD19	692089	NR_003047.1

150386	up	1.0920098		LOC642624	642624	XM_926095.1
2120717	down	-1.121327		BMP10	27302	NM_014482.1
2900246	up	1.1266797		TRIOBP	11078	NM_138632.2
1090546	up	1.1745024		РРТС7	160760	NM_139283.1
4860747	up	1.0886035		LOC654342	654342	XM_946374.1
4390195	up	1.1022699		HMGN1	3150	NM_004965.6
2230204	up	1.1496263		OAS2	4939	NM_001032731.1
1470176	up	1.1264374		SYT17	51760	NM_016524.2
6620315	down	-1.132426		COQ6	51004	NM_182476.1
2370301	down	-1.161003		PELI3	246330	NM_145065.1
3800692	up	1.2002835		LOC652683	652683	XM_942283.2
2230059	up	1.1651405		NAT12	122830	NM_001011713.1
770040	up	1.1363423		CBWD7	728013	XM_001717050.1
7510170	down	-1.273866		CD79A	973	NM_021601.3
1110280	down	-1.167376		MAP6	4135	NM_207577.1
1260056	down	-1.127988		LOC643265	643265	XM_926627.1
4730634	up	1.1757776		SLC31A2	1318	NM_001860.2
7330114	up	1.1184865		ZNF366	167465	NM_152625.1
160162	down	-1.156233		LOC652721	652721	XM_942346.2
1820717	down	-1.146642		LOC100129767	100129767	XR_039365.1
2320603	down	-1.199532		FLJ40113	374650	NR_003246.1
3130300	up	1.1497453		NRN1	51299	NM_016588.2
7210209	up	1.0830995		CENTD2	116985	NM_001040118.1
5720086	down	-1.125677	Hs.137466			AL137470
4250184	down	-1.091055		LOC653184	653184	XM_927570.1
6840184	up	1.3923239		GRN	2896	NM_002087.2
5560398	up	1.1731099		DEGS1	8560	NM_003676.2
3120400	up	1.2459776		KANK2	25959	NM_015493.4
2230113	up	1.1942986		TANK	10010	NM_004180.2

down	-1.13842		LOC646198	646198	89059491	LOC646198
up	1.115448		KIAA1571	57683	113414229	KIAA1571
up	1.129676	Hs.578698			28444660	HS.578698
down	-1.051351		CCDC18	343099	62243483	CCDC18
down	-1.096435		TBC1D2	55357	62198224	TBC1D2
down	-1.12665		EPHA1	2041	56119206	EPHA1
down	-1.09942		HS6ST2	90161	116295255	HS6ST2
up	1.068824		YARS	8565	38202242	YARS
down	-1.063068		RNF128	79589	37588872	RNF128
up	1.215158		DCDC2B	149069	150456470	DCDC2B
up	1.171807		LOC652627	652627	169218179	LOC652627
up	1.129679	Hs.98466			15939282	HS.98466
up	1.156498	Hs.187293			11593467	HS.187293
up	1.119788		MSX2	4488	84452153	MSX2
up	1.082557		LOC650851	650851	89042527	LOC650851
up	1.099799		ZC3H12A	80149	13376631	ZC3H12A
down	-1.08052		LOC401357	401357	61966820	LOC401357
down	-1.068555		LOC641846	641846	89027586	LOC641846
down	-1.118542		LOC728728	728728	169162773	LOC728728
up	1.080354		LOC100134420	100134420	169168352	LOC100134420
down	-1.173822		EGFLAM	133584	33469934	EGFLAM
up	1.101918		C2orf42	54980	8923527	C2ORF42
down	-1.120504		RBMY1E	378950	56090526	RBMY1E
up	1.21002		LOC647012	647012	113413206	LOC647012
down	-1.104548		LOC642325	642325	113425388	LOC642325
up	1.073368		LOC644749	644749	89060510	LOC644749
down	-1.17688		LOC387703	387703	169188349	LOC387703
down	-1.10599		LOC100131774	100131774	169169846	LOC100131774
down	-1.075613		LOC649060	649060	89037132	LOC649060
up	1.082465		ZNF713	349075	33438599	ZNF713
up	1.123446		ZNF658	26149	55769536	ZNF658
up	1.092025		MITF	4286	38156696	MITF
down	-1.121361		APP	351	41406053	APP
down	-1.073675		SPP2	6694	54262133	SPP2
up	1.171518		SBDSP	155370	38348442	SBDSP
down	-1.143442		FLJ13224	79857	113423275	FLJ13224
up	1.161505		ATP2B4	493	48255958	ATP2B4
down	-1.065657		LOC392335	392335	169177392	LOC392335
up	1.081459		SNX32	254122	72534837	SNX32
down	-1.136309	Hs.211182			27837068	HS.211182
up	1.064002		LOC100129055	100129055	214831164	LOC100129055

ProbeID	Regulation	Symbol	Entrez_Gene_ID
3930132	up	TUBA3D	113457
5960328	down	LOC644844	644844
150706	up	UGP2	7360
5560747	up	LOC100133803	100133803
770743	down	MIR1978	100302173
10176	up	TAF15	8148
7320722	up	LOC727984	727984
5260035	down	LGALS14	56891
2690561	up	RPLP1	6176
70286	up	LOC441743	441743
6840072	down	PTEN	5728
2760564	up	LOC389322	389322
620047	up	BNIP3L	665
5290220	up	LOC100129599	100129599
1660477	down	CALM1	801
5860689	down	PRODH	5625
830593	up	VIM	7431
7050019	up	VIM	7431
6650603	up	LOC100131905	100131905
7040286	down	ACSL5	51703
5360156	down	IFITM1	8519
3310050	down	GNRH2	2797
780309	down	CIDEC	63924
4880678	down	GNRH2	2797
7100424	down	N-PAC	84656
4570044	up	ODAM	54959
4150014	down	CEACAM1	634
5700753	down	CEACAM1	634
4050070	up	UBE2E1	7324
3060408	up	LOC645231	645231
5960324	up	ARL6IP1	23204
3060477	down	RPL8	6132
3930370	up	LOC100131672	100131672
6960411	down	RCN2	5955
730626	down	LOC285074	285074
2810093	down	LOC285074	285074
2030736	down	SEPHS2	22928
3140521	down	SCARNA14	692149
2190128	down	RAB32	10981
2060674	up	CA2	760
870630	up	CA2	760
240576	down	C5orf28	64417
4670487	down	SIVA	10572
4260397	up	LOC727821	727821
5340129	down	AKR1C2	1646
5490341	up	CLEC2D	29121
290600	ир	ZNF738	148203
6250408	up	RPL12P6	440176
5090278	down	GPX2	2877
5360347	down	NQO1	1728

650519	down	TMBIM6	7009
270609	up	ANXA2P1	303
4640445	up	AIDA	64853
4480128	up	LOC100134273	100134273
990768	down	OAS3	4940
1980176	down	LOC644799	644799
520240	up	SERPINI1	5274
4070037	down	TMED10	10972
6450524	up	LOC653737	653737
3780056	down	GGCT	79017
7400377	down	CEACAM6	4680
3890541	down	ITGA2	3673
2760452	down	RPS29	6235
6370703	down	UGT1A6	54578
2230008	up	FGG	2266
2100196	down	ISG15	9636
5670497	down	LOC644363	644363
6840014	up	TULP3	7289
5130255	up	FGA	2243
2850703	up	FGA	2243
4860463	up	TAF15	8148
4260338	up	LOC647307	647307
6200068	up	CYP51A1	1595
160615	up	GGH	8836
5260176	down	GSTA1	2938
1090561	down	GSTA1	2938
7210259	down	ANAPC1	64682
830039	down	ERGIC1	57222
6290537	up	HRSP12	10247
1660181	down	LOC440145	440145
6520273	up	LOC646527	646527
130228	down	HDHD1A	8226
1690066	down	MX1	4599
3450735	down	UGT1A6	54578
4200152	down	IFRD2	7866
6860593	down		
6760017	up	YY1	7528
5260047	up	FABP5	2171
650685	up	LOC390735	390735
2750670	down	SCARNA18	677765
2340577	down	AQP10	89872
2070437	up	LOC653631	653631
6620368	down	NAT13	80218
4210041	down	UQCRQ	27089
830682	up	LOC387934	387934
3290435	down	TFDP1	7027
6370538	down	WBSCR22	114049
6960735	up	UQCRH	7388
1340192	down	REEP1	65055
1260129	down	TMED10P	286102
3990170	down	IFI27	3429

Continued				
3140202	down	MYPOP	339344	
2750088	up	LOC730996	730996	
2970577	up	LOC730996	730996	
2120021	up	COL3A1	1281	
5820601	down	CCND1	595	
780041	down	LAMP2	3920	
3120743	down	LAMP2	3920	
4640086	down	FOXQ1	94234	
3400215	down	B3GNT1	11041	
3170594	down	MAL2	114569	
2000148	down	IFIT1	3434	
3940358	down	OSBPL8	114882	
6770202	down	IPO11	51194	
4010086	down	OKL38	29948	
2060280	up	LOC646966	646966	
3180025	up	FGG	2266	
1470435	up	LOC642738	642738	
6250672	up	CCNO	10309	
5360307	up	LOC644937	644937	
1260341	down	IL13RA1	3597	
1710142	up	RGS4	5999	
7400072	up	FGA	2243	
4900343	down	MORF4L1	10933	
7000224	down	SIRT1	23411	
1240440	down	TXNIP	10628	
840554	down	RYBP	23429	
620615	down	NDUFA7	4701	
4070075	up	OSTCL	202459	
1820253	down	PRKRIR	5612	
2360594	down	TPT1	7178	
4220259	up	CTSZ	1522	
110181	up	KIAA1199	57214	

Appendix D: Genes affected by dietary restriction

ENSMUSG0000000001	ENSMUSG0000006574	ENSMUSG0000019969
ENSMUSG0000000056	ENSMUSG0000006599	ENSMUSG0000019970
ENSMUSG0000000078	ENSMUSG0000006611	ENSMUSG0000019977
ENSMUSG000000088	ENSMUSG0000006641	ENSMUSG0000019979
ENSMUSG0000000168	ENSMUSG0000006676	ENSMUSG0000019997
ENSMUSG0000000171	ENSMUSG0000006715	ENSMUSG0000020010
ENSMUSG0000000184	ENSMUSG0000006728	ENSMUSG0000020017
ENSMUSG0000000194	ENSMUSG0000006740	ENSMUSG0000020027
ENSMUSG0000000275	ENSMUSG0000006782	ENSMUSG0000020029
ENSMUSG000000278	ENSMUSG0000006932	ENSMUSG0000020023
ENSMUSG000000296	ENSMUSG0000007476	ENSMUSG0000020038
ENSMUSG000000303	ENSMUSG0000007564	ENSMUSG0000020044
ENSMUSC0000000326	ENSMUSC0000007613	ENSMUSC0000020044
ENSMUSC000000320	ENSMUSC0000007617	ENSMUSC0000020040
ENSMUSC0000000374	ENSMUSC0000007617	ENSMUSC0000020031
	ENSMUSC0000007650	
	ENSMUSC0000007639	
	ENSMUSG0000007739	
	ENSMUSG0000007815	
		ENSMUSG0000020091
ENSMUSG0000000562	ENSMUSG0000008090	ENSMUSG0000020097
ENSMUSG0000000581	ENSMUSG0000008301	ENSMUSG0000020098
ENSMUSG0000000594	ENSMUSG0000008348	ENSMUSG0000020102
ENSMUSG000000686	ENSMUSG0000008398	ENSMUSG0000020108
ENSMUSG0000000708	ENSMUSG0000008976	ENSMUSG0000020114
ENSMUSG0000000711	ENSMUSG0000009013	ENSMUSG0000020122
ENSMUSG0000000751	ENSMUSG0000009079	ENSMUSG0000020123
ENSMUSG0000000753	ENSMUSG0000009097	ENSMUSG0000020130
ENSMUSG0000000787	ENSMUSG0000009112	ENSMUSG0000020131
ENSMUSG0000000792	ENSMUSG0000009378	ENSMUSG0000020149
ENSMUSG0000000817	ENSMUSG0000009549	ENSMUSG0000020163
ENSMUSG0000000826	ENSMUSG0000009575	ENSMUSG0000020173
ENSMUSG0000000861	ENSMUSG0000009646	ENSMUSG0000020176
ENSMUSG0000000876	ENSMUSG0000009739	ENSMUSG0000020182
ENSMUSG0000000901	ENSMUSG0000009828	ENSMUSG0000020190
ENSMUSG0000001014	ENSMUSG0000009927	ENSMUSG0000020205
ENSMUSG0000001016	ENSMUSG0000010097	ENSMUSG0000020211
ENSMUSG0000001029	ENSMUSG0000010358	ENSMUSG0000020241
ENSMUSG0000001095	ENSMUSG0000010376	ENSMUSG0000020250
ENSMUSG0000001119	ENSMUSG0000010435	ENSMUSG0000020260
ENSMUSG0000001123	ENSMUSG0000010517	ENSMUSG0000020262
ENSMUSG0000001128	ENSMUSG0000010660	ENSMUSG0000020265
ENSMUSG0000001131	ENSMUSG0000010830	ENSMUSG0000020271
ENSMUSG0000001225	ENSMUSG0000011148	ENSMUSG0000020277
ENSMUSG0000001240	ENSMUSG0000011179	ENSMUSG0000020288
ENSMUSG0000001247	ENSMUSG0000011257	ENSMUSG0000020290
ENSMUSG0000001249	ENSMUSG0000011305	ENSMUSG0000020300
ENSMUSG0000001270	ENSMUSG0000011958	ENSMUSG0000020309
ENSMUSG0000001323	ENSMUSG0000012123	ENSMUSG0000020330
ENSMUSG0000001366	ENSMUSG0000012422	ENSMUSG0000020361
ENSMUSG0000001403	ENSMUSG0000012443	ENSMUSG0000020380
ENSMUSG0000001416	ENSMUSG0000012705	ENSMUSG0000020381
ENSMUSG0000001435	ENSMUSG0000012848	ENSMUSG0000020385
ENSMUSG0000001467	ENSMUSG0000013275	ENSMUSG0000020400
ENSMUSG0000001472	ENSMUSG0000013593	ENSMUSG0000020402

ENSMUSG0000001506	ENSMUSG0000013663	ENSMUSG0000020405
ENSMUSG0000001517	ENSMUSG0000013698	ENSMUSG0000020427
ENSMUSG0000001524	ENSMUSG0000013822	ENSMUSG0000020432
ENSMUSG0000001525	ENSMUSG0000013973	ENSMUSG0000020458
ENSMUSG0000001542	ENSMUSG0000014077	ENSMUSG0000020459
ENSMUSG0000001576	ENSMUSG0000014177	ENSMUSG0000020463
ENSMUSG0000001604	ENSMUSG0000014195	ENSMUSG0000020484
ENSMUSG0000001627	ENSMUSG00000014226	ENSMUSG0000020486
ENSMUSG0000001663	ENSMUSG0000014313	ENSMUSG0000020514
ENSMUSG0000001670	ENSMUSG0000014503	ENSMUSG0000020534
ENSMUSG0000001729	ENSMUSG0000014542	ENSMUSG0000020538
ENSMUSG0000001774	ENSMUSG0000014551	ENSMUSG0000020541
ENSMUSG0000001794	ENSMUSG0000014599	ENSMUSG0000020570
ENSMUSG0000001829	ENSMUSG0000014606	ENSMUSG0000020571
ENSMUSG0000001891	ENSMUSG0000014725	ENSMUSG0000020572
ENSMUSG0000001930	ENSMUSG0000014748	ENSMUSG0000020585
ENSMUSG0000001942	ENSMUSG0000014771	ENSMUSG0000020591
ENSMUSG0000001962	ENSMUSG0000014773	ENSMUSG0000020593
ENSMUSG0000002017	ENSMUSG0000014859	ENSMUSG0000020599
ENSMUSG0000002011	ENSMUSG0000014905	ENSMUSG0000020609
ENSMUSC000002031	ENSMUSC0000014956	ENSMUSC0000020610
ENSMUSC000002052	ENSMUSC0000015002	ENSMUSC0000020010
ENSMUSC000002033	ENSMUSC0000015002	ENSMUSC0000020011
ENSMUSG0000002129	ENSMUSC0000015083	ENSMUSC0000020014
	ENSMUSC0000015083	ENSMUSC0000020629
	ENSMUSC0000015112	ENSMUSC0000020641
	ENSMUSG0000015143	ENSMUSG0000020644
	ENSMUSG0000015217	
	ENSMUSG0000015243	
	ENSMUSG0000015289	ENSMUSG0000020664
	ENSMUSG0000015290	ENSMUSG0000020661
	ENSMUSG00000015291	ENSMUSG0000020715
	ENSMUSG0000015312	ENSMUSG0000020719
	ENSMUSG0000015357	ENSMUSG0000020733
	ENSMUSG0000015363	ENSMUSG0000020766
ENSMUSG0000002550	ENSMUSG0000015437	ENSMUSG0000020775
ENSMUSG0000002580	ENSMUSG00000015522	ENSMUSG0000020787
ENSMUSG0000002603	ENSMUSG00000015568	ENSMUSG0000020790
ENSMUSG0000002661	ENSMUSG0000015647	ENSMUSG0000020831
ENSMUSG0000002733	ENSMUSG0000015653	ENSMUSG0000020846
ENSMUSG0000002741	ENSMUSG0000015745	ENSMUSG0000020849
ENSMUSG0000002831	ENSMUSG0000015749	ENSMUSG0000020873
ENSMUSG0000002845	ENSMUSG00000015750	ENSMUSG0000020889
ENSMUSG0000002885	ENSMUSG00000015804	ENSMUSG0000020893
ENSMUSG0000002910	ENSMUSG00000015846	ENSMUSG0000020897
ENSMUSG0000002944	ENSMUSG00000015852	ENSMUSG0000020900
ENSMUSG0000002948	ENSMUSG00000015932	ENSMUSG0000020902
ENSMUSG0000002949	ENSMUSG00000015947	ENSMUSG0000020914
ENSMUSG0000002957	ENSMUSG00000015970	ENSMUSG0000020917
ENSMUSG0000002963	ENSMUSG0000016087	ENSMUSG0000020918
ENSMUSG0000002996	ENSMUSG0000016150	ENSMUSG0000020926
ENSMUSG0000003032	ENSMUSG0000016194	ENSMUSG0000020950
ENSMUSG0000003099	ENSMUSG0000016256	ENSMUSG0000020954
ENSMUSG0000003123	ENSMUSG0000016257	ENSMUSG0000020962
ENSMUSG0000003135	ENSMUSG0000016308	ENSMUSG0000020986
ENSMUSG0000003153	ENSMUSG0000016319	ENSMUSG0000020994

ENSMUSG0000003161	ENSMUSG0000016534	ENSMUSG0000021000
ENSMUSG0000003228	ENSMUSG0000016541	ENSMUSG0000021012
ENSMUSG0000003299	ENSMUSG0000016626	ENSMUSG0000021025
ENSMUSG0000003379	ENSMUSG0000017119	ENSMUSG0000021037
ENSMUSG0000003380	ENSMUSG0000017188	ENSMUSG0000021051
ENSMUSG0000003402	ENSMUSG0000017264	ENSMUSG0000021054
ENSMUSG0000003426	ENSMUSG0000017428	ENSMUSG0000021065
ENSMUSG0000003477	ENSMUSG0000017493	ENSMUSG0000021069
ENSMUSG0000003526	ENSMUSG0000017588	ENSMUSG0000021072
ENSMUSG0000003528	ENSMUSG0000017652	ENSMUSG0000021096
ENSMUSG0000003531	ENSMUSG0000017686	ENSMUSG0000021114
ENSMUSG0000003534	ENSMUSG0000017707	ENSMUSG0000021127
ENSMUSG0000003541	ENSMUSG0000017716	ENSMUSG0000021135
ENSMUSG0000003545	ENSMUSG0000017737	ENSMUSG0000021149
ENSMUSG0000003617	ENSMUSG0000017754	ENSMUSG0000021178
ENSMUSG0000003721	ENSMUSG0000017756	ENSMUSG0000021185
ENSMUSG0000003759	ENSMUSG0000017950	ENSMUSG0000021196
ENSMUSG0000003779	ENSMUSG0000017969	ENSMUSG0000021200
ENSMUSG0000003813	ENSMUSG0000018001	ENSMUSG0000021203
ENSMUSG0000003814	ENSMUSG0000018102	ENSMUSG0000021214
ENSMUSG0000003923	ENSMUSG0000018167	ENSMUSG0000021218
ENSMUSG0000003948	ENSMUSG0000018287	ENSMUSG0000021226
ENSMUSG0000003949	ENSMUSG0000018334	ENSMUSG0000021228
ENSMUSG0000004035	ENSMUSG0000018339	ENSMUSG0000021236
ENSMUSG0000004038	ENSMUSG0000018340	ENSMUSG0000021238
ENSMUSG0000004070	ENSMUSG0000018362	ENSMUSG0000021242
ENSMUSG0000004071	ENSMUSG0000018379	ENSMUSG0000021248
ENSMUSG0000004098	ENSMUSG0000018395	ENSMUSG0000021253
ENSMUSG0000004127	ENSMUSG0000018401	ENSMUSG0000021265
ENSMUSG0000004221	ENSMUSG0000018417	ENSMUSG0000021270
ENSMUSG0000004264	ENSMUSG0000018428	ENSMUSG0000021273
ENSMUSG0000004285	ENSMUSG0000018442	ENSMUSG0000021277
ENSMUSG0000004319	ENSMUSG0000018446	ENSMUSG0000021281
ENSMUSG0000004347	ENSMUSG0000018459	ENSMUSG0000021282
ENSMUSG0000004446	ENSMUSG0000018470	ENSMUSG0000021286
ENSMUSG0000004460	ENSMUSG0000018548	ENSMUSG0000021288
ENSMUSG0000004558	ENSMUSG0000018566	ENSMUSG0000021322
ENSMUSG0000004610	ENSMUSG0000018567	ENSMUSG0000021327
ENSMUSG0000004633	ENSMUSG0000018585	ENSMUSG0000021338
ENSMUSG0000004667	ENSMUSG0000018593	ENSMUSG0000021340
ENSMUSG0000004798	ENSMUSG0000018604	ENSMUSG0000021360
ENSMUSG0000004846	ENSMUSG0000018669	ENSMUSG0000021361
ENSMUSG0000004891	ENSMUSG0000018736	ENSMUSG0000021364
ENSMUSG0000004931	ENSMUSG0000018752	ENSMUSG0000021365
ENSMUSG0000004980	ENSMUSG0000018796	ENSMUSG0000021368
ENSMUSG0000005089	ENSMUSG0000018819	ENSMUSG0000021376
ENSMUSG0000005161	ENSMUSG0000018821	ENSMUSG0000021390
ENSMUSG0000005220	ENSMUSG0000018846	ENSMUSG0000021411
ENSMUSG0000005251	ENSMUSG0000018882	ENSMUSG0000021417
ENSMUSG0000005268	ENSMUSG0000018900	ENSMUSG0000021427
ENSMUSG0000005312	ENSMUSG0000018906	ENSMUSG0000021453
ENSMUSG0000005320	ENSMUSG0000018907	ENSMUSG0000021456
ENSMUSG0000005355	ENSMUSG0000018930	ENSMUSG0000021477
ENSMUSG0000005362	ENSMUSG0000018965	ENSMUSG0000021493
ENSMUSG0000005373	ENSMUSG0000018995	ENSMUSG0000021495
ENSMUSG0000005374	ENSMUSG0000019039	ENSMUSG0000021500
-------------------	-------------------	-------------------
ENSMUSG0000005410	ENSMUSG0000019054	ENSMUSG0000021518
ENSMUSG0000005447	ENSMUSG0000019066	ENSMUSG0000021520
ENSMUSG0000005481	ENSMUSG0000019122	ENSMUSG0000021537
ENSMUSG0000005483	ENSMUSG0000019132	ENSMUSG0000021549
ENSMUSG0000005514	ENSMUSG0000019179	ENSMUSG0000021556
ENSMUSG0000005610	ENSMUSG0000019189	ENSMUSG0000021576
ENSMUSG0000005615	ENSMUSG0000019232	ENSMUSG0000021577
ENSMUSG0000005683	ENSMUSG0000019256	ENSMUSG0000021583
ENSMUSG0000005800	ENSMUSG0000019278	ENSMUSG0000021585
ENSMUSG0000005803	ENSMUSG0000019302	ENSMUSG0000021587
ENSMUSG0000005836	ENSMUSG0000019433	ENSMUSG0000021591
ENSMUSG0000005871	ENSMUSG0000019471	ENSMUSG0000021594
ENSMUSG0000005873	ENSMUSG0000019478	ENSMUSG0000021595
ENSMUSG0000005892	ENSMUSG0000019494	ENSMUSG0000021607
ENSMUSG0000005973	ENSMUSG0000019558	ENSMUSG0000021620
ENSMUSG0000006024	ENSMUSG0000019577	ENSMUSG0000021660
ENSMUSG0000006057	ENSMUSG0000019579	ENSMUSG0000021662
ENSMUSG0000006205	ENSMUSG0000019590	ENSMUSG0000021670
ENSMUSG0000006299	ENSMUSG0000019774	ENSMUSG0000021676
ENSMUSG0000006301	ENSMUSG0000019791	ENSMUSG0000021706
ENSMUSG0000006315	ENSMUSG0000019794	ENSMUSG0000021707
ENSMUSG0000006335	ENSMUSG0000019802	ENSMUSG0000021709
ENSMUSG0000006356	ENSMUSG0000019804	ENSMUSG0000021710
ENSMUSG0000006369	ENSMUSG0000019820	ENSMUSG0000021737
ENSMUSG0000006390	ENSMUSG0000019849	ENSMUSG0000021745
ENSMUSG0000006392	ENSMUSG0000019851	ENSMUSG0000021748
ENSMUSG0000006442	ENSMUSG0000019857	ENSMUSG0000021750
ENSMUSG0000006458	ENSMUSG0000019873	ENSMUSG0000021751
ENSMUSG0000006494	ENSMUSG0000019889	ENSMUSG0000021756
ENSMUSG0000006517	ENSMUSG0000019916	ENSMUSG0000021764
ENSMUSG0000006529	ENSMUSG0000019923	ENSMUSG0000021775
ENSMUSG0000036368	ENSMUSG0000019942	ENSMUSG0000021794
ENSMUSG0000036371	ENSMUSG0000019948	ENSMUSG0000021822
ENSMUSG0000036427	ENSMUSG0000019960	ENSMUSG0000021823
ENSMUSG0000036432	ENSMUSG0000019961	ENSMUSG0000021830
ENSMUSG0000036478	ENSMUSG0000019966	ENSMUSG0000021832
ENSMUSG0000036503	ENSMUSG0000037062	ENSMUSG0000037608
ENSMUSG0000036570	ENSMUSG0000037071	ENSMUSG0000037652
ENSMUSG0000036580	ENSMUSG0000037095	ENSMUSG0000037664
ENSMUSG0000036585	ENSMUSG0000037119	ENSMUSG0000037674
ENSMUSG0000036591	ENSMUSG0000037149	ENSMUSG0000037697
ENSMUSG0000036594	ENSMUSG0000037161	ENSMUSG0000037706
ENSMUSG0000036606	ENSMUSG0000037166	ENSMUSG0000037710
ENSMUSG0000036620	ENSMUSG0000037172	ENSMUSG0000037712
ENSMUSG0000036639	ENSMUSG0000037197	ENSMUSG0000037722
ENSMUSG0000036667	ENSMUSG0000037206	ENSMUSG0000037736
ENSMUSG0000036751	ENSMUSG0000037235	ENSMUSG0000037780
ENSMUSG0000036752	ENSMUSG0000037236	ENSMUSG0000037798
ENSMUSG0000036769	ENSMUSG0000037242	ENSMUSG0000037808
ENSMUSG0000036775	ENSMUSG0000037260	ENSMUSG0000037818
ENSMUSG0000036777	ENSMUSG0000037266	ENSMUSG0000037820
ENSMUSG0000036825	ENSMUSG0000037278	ENSMUSG0000037847
ENSMUSG0000036833	ENSMUSG0000037326	ENSMUSG0000037852
ENSMUSG0000036840	ENSMUSG0000037348	ENSMUSG0000037894

ENSMUSG0000036867	ENSMUSG0000037362	ENSMUSG0000037916
ENSMUSG0000036875	ENSMUSG0000037370	ENSMUSG0000037921
ENSMUSG0000036879	ENSMUSG0000037379	ENSMUSG0000037926
ENSMUSG0000036887	ENSMUSG0000037393	ENSMUSG0000037933
ENSMUSG0000036896	ENSMUSG0000037419	ENSMUSG0000037935
ENSMUSG0000036905	ENSMUSG0000037440	ENSMUSG0000037936
ENSMUSG0000036918	ENSMUSG0000037465	ENSMUSG0000037960
ENSMUSG0000036932	ENSMUSG0000037493	ENSMUSG0000037962
ENSMUSG0000036957	ENSMUSG0000037514	ENSMUSG0000037984
ENSMUSG0000036990	ENSMUSG0000037573	ENSMUSG0000037989
ENSMUSG0000037003	ENSMUSG0000037580	ENSMUSG0000038068
ENSMUSG0000037017	ENSMUSG0000037581	ENSMUSG0000038086
ENSMUSG0000037025	ENSMUSG0000037601	ENSMUSG0000038092
ENSMUSG0000041815	ENSMUSG0000042797	ENSMUSG0000044749
ENSMUSG0000041827	ENSMUSG0000042826	ENSMUSG0000044783
ENSMUSG0000041836	ENSMUSG0000042834	ENSMUSG0000044813
ENSMUSG0000041957	ENSMUSG0000042978	ENSMUSG00000044864
ENSMUSG0000041959	ENSMUSG0000043013	ENSMUSG00000044876
ENSMUSG0000041975	ENSMUSG0000043068	ENSMUSG0000044894
ENSMUSG0000041984	ENSMUSG0000043122	ENSMUSG00000044986
ENSMUSG0000042032	ENSMUSG0000043207	ENSMUSG0000045038
ENSMUSG0000042043	ENSMUSG0000043259	ENSMUSG0000045160
ENSMUSG0000042118	ENSMUSG0000043300	ENSMUSG0000045193
ENSMUSG0000042195	ENSMUSG0000043613	ENSMUSG0000045211
ENSMUSG0000042198	ENSMUSG0000043668	ENSMUSG0000045382
ENSMUSG0000042213	ENSMUSG0000043681	ENSMUSG0000045438
		ENSMUSG0000045455 ENSMU
ENSMUSG0000042246	ENSMUSG0000043760	SG0000048007
ENSMUSG0000042248	ENSMUSG0000043909	ENSMUSG0000045471
ENSMUSG0000042275	ENSMUSG0000043962	ENSMUSG0000045534
ENSMUSG0000042279	ENSMUSG00000044018	ENSMUSG0000045569
ENSMUSG0000042289	ENSMUSG0000044026	ENSMUSG0000045658
ENSMUSG0000042323	ENSMUSG00000044037	ENSMUSG0000045664
ENSMUSG0000042363	ENSMUSG00000044167	ENSMUSG0000045730
ENSMUSG0000042396	ENSMUSG0000044221	ENSMUSG0000045868
ENSMUSG0000042406	ENSMUSG00000044258	ENSMUSG0000045917
ENSMUSG0000042451	ENSMUSG00000044309	ENSMUSG0000045954
ENSMUSG00000042506	ENSMUSG00000044320	ENSMUSG0000045962
ENSMUSG00000042510	ENSMUSG0000044338	ENSMUSG0000045969
ENSMUSG0000042520	ENSMUSG00000044350	ENSMUSG0000045973
ENSMUSG0000042622	ENSMUSG00000044393	ENSMUSG0000045983
ENSMUSG0000042650	ENSMUSG0000044461	ENSMUSG0000046027
ENSMUSG0000042682	ENSMUSG00000044573	ENSMUSG0000046032
ENSMUSG0000042712	ENSMUSG00000044600	ENSMUSG00000046062
ENSMUSG0000042747	ENSMUSG0000044674	ENSMUSG0000046093
ENSMUSG00000055717	ENSMUSG00000055782	ENSMUSG00000055866
ENSMUSG00000055737	ENSMUSG00000055835	ENSMUSG00000055912
ENSMUSG00000056116	ENSMUSG0000057228	ENSMUSG00000058793
ENSMUSG0000056201	ENSMUSG0000057230	ENSMUSG0000058794
ENSMUSG00000056211	ENSMUSG0000057322	ENSMUSG00000058799
ENSMUSG0000056228	ENSMUSG0000057367	ENSMUSG0000059005
ENSMUSG0000056313	ENSMUSG0000057409	ENSMUSG0000059039
		ENSMUSG00000059040 ENSMU
ENSMUSG0000056426	ENSMUSG0000057457	SG0000063524
ENSMUSG0000056429	ENSMUSG0000057722	ENSMUSG0000059060
ENSMUSG0000056501	ENSMUSG0000057738	ENSMUSG0000059070

ENSMUSG0000056515	ENSMUSG0000057789	ENSMUSG0000059201
ENSMUSG0000056537	ENSMUSG0000057880	ENSMUSG0000059208
ENSMUSG0000056553	ENSMUSG0000057933	ENSMUSG0000059218
ENSMUSG0000056612	ENSMUSG0000058153	ENSMUSG0000059263
ENSMUSG0000056666	ENSMUSG0000058207	ENSMUSG0000059434
ENSMUSG0000056708	ENSMUSG0000058230	ENSMUSG0000059436
ENSMUSG0000056749	ENSMUSG0000058297	ENSMUSG0000059447
ENSMUSG0000056917	ENSMUSG0000058454	ENSMUSG0000059518
ENSMUSG0000056973	ENSMUSG0000058488	ENSMUSG0000059734
ENSMUSG0000056999	ENSMUSG0000058523	ENSMUSG0000059796
ENSMUSG0000057074	ENSMUSG0000058672	ENSMUSG0000059811
ENSMUSG0000057113	ENSMUSG0000058706	ENSMUSG0000059824
ENSMUSG0000057193	ENSMUSG0000058729	ENSMUSG0000059895
ENSMUSG0000073489	ENSMUSG0000074207	ENSMUSG0000074698
ENSMUSG0000073676	ENSMUSG0000074264	ENSMUSG0000074743
ENSMUSG0000073832 ENSMU		
SG0000073839	ENSMUSG0000074340	ENSMUSG0000075273
ENSMUSG0000073838	ENSMUSG0000074604	ENSMUSG0000075602
ENSMUSG0000073888	ENSMUSG0000074656	ENSMUSG0000075705
ENSMUSG0000073987	ENSMUSG0000074682	ENSMUSG0000076431
ENSMUSG0000021871	ENSMUSG0000024143	ENSMUSG0000026150
ENSMUSG0000021877	ENSMUSG0000024145	ENSMUSG0000026179
ENSMUSG0000021884	ENSMUSG0000024150	ENSMUSG0000026185
ENSMUSG0000021892	ENSMUSG0000024164	ENSMUSG0000026201
ENSMUSG0000021903	ENSMUSG0000024190	ENSMUSG0000026202
ENSMUSG0000021910	ENSMUSG0000024194	ENSMUSG0000026203
ENSMUSG0000021929	ENSMUSG0000024208	ENSMUSG0000026205
ENSMUSG0000021930	ENSMUSG0000024212	ENSMUSG0000026223
ENSMUSG0000021938	ENSMUSG0000024222	ENSMUSG0000026229
ENSMUSG0000021939	ENSMUSG0000024231	ENSMUSG0000026234
ENSMUSG0000021944	ENSMUSG0000024236	ENSMUSG0000026245
ENSMUSG0000021945	ENSMUSG0000024241	ENSMUSG0000026248
ENSMUSG0000021947	ENSMUSG0000024245	ENSMUSG0000026255
ENSMUSG0000021948	ENSMUSG0000024247	ENSMUSG0000026259
ENSMUSG0000021950	ENSMUSG0000024254	ENSMUSG0000026272
ENSMUSG0000021951	ENSMUSG0000024269	ENSMUSG0000026275
ENSMUSG0000021957	ENSMUSG0000024271	ENSMUSG0000026278
ENSMUSG0000021969	ENSMUSG0000024277	ENSMUSG0000026285
ENSMUSG0000021987	ENSMUSG0000024283	ENSMUSG0000026289
ENSMUSG0000021994	ENSMUSG0000024292	ENSMUSG0000026308
ENSMUSG0000021998	ENSMUSG0000024298	ENSMUSG0000026317
ENSMUSG0000022003	ENSMUSG0000024304	ENSMUSG0000026319
ENSMUSG0000022010	ENSMUSG0000024308	ENSMUSG0000026353
ENSMUSG0000022013	ENSMUSG0000024331	ENSMUSG0000026360
ENSMUSG0000022018	ENSMUSG0000024337	ENSMUSG0000026361
ENSMUSG0000022033	ENSMUSG0000024346	ENSMUSG0000026365
ENSMUSG0000022034	ENSMUSG0000024354	ENSMUSG0000026368
ENSMUSG0000022037	ENSMUSG0000024359	ENSMUSG0000026380
ENSMUSG0000022040	ENSMUSG0000024360	ENSMUSG0000026385
ENSMUSG0000022048	ENSMUSG0000024372	ENSMUSG0000026390
ENSMUSG0000022051	ENSMUSG0000024386	ENSMUSG0000026393
ENSMUSG0000022053	ENSMUSG0000024392	ENSMUSG0000026405
ENSMUSG0000022056	ENSMUSG0000024404	ENSMUSG0000026407
ENSMUSG0000022090	ENSMUSG0000024413	ENSMUSG0000026409
ENSMUSG0000022096	ENSMUSG0000024424	ENSMUSG0000026421

ENSMUSG0000022098	ENSMUSG0000024425	ENSMUSG0000026434
ENSMUSG0000022102	ENSMUSG0000024426	ENSMUSG0000026437
ENSMUSG0000022119	ENSMUSG0000024431	ENSMUSG0000026456
ENSMUSG0000022125	ENSMUSG0000024448	ENSMUSG0000026473
ENSMUSG0000022129	ENSMUSG0000024487	ENSMUSG0000026475
ENSMUSG0000022149	ENSMUSG0000024498	ENSMUSG0000026489
ENSMUSG0000022151	ENSMUSG0000024507	ENSMUSG0000026492
ENSMUSG0000022181	ENSMUSG0000024526	ENSMUSG0000026496
ENSMUSG0000022186	ENSMUSG0000024538	ENSMUSG0000026509
ENSMUSG0000022193	ENSMUSG0000024580	ENSMUSG0000026526
ENSMUSG0000022194	ENSMUSG0000024587	ENSMUSG0000026531
ENSMUSG0000022198	ENSMUSG0000024588	ENSMUSG0000026535
ENSMUSG0000022200	ENSMUSG0000024589	ENSMUSG0000026554
ENSMUSG0000022215	ENSMUSG0000024590	ENSMUSG0000026568
ENSMUSG0000022219	ENSMUSG0000024597	ENSMUSG0000026576
ENSMUSG0000022225	ENSMUSG0000024601	ENSMUSG0000026586
ENSMUSG0000022241	ENSMUSG0000024610	ENSMUSG0000026605
ENSMUSG0000022246	ENSMUSG0000024617	ENSMUSG0000026608
ENSMUSG0000022247	ENSMUSG0000024644	ENSMUSG0000026617
ENSMUSG0000022253	ENSMUSG0000024660	ENSMUSG0000026622
ENSMUSG0000022257	ENSMUSG0000024665	ENSMUSG0000026623
ENSMUSG0000022261	ENSMUSG0000024695	ENSMUSG0000026628
ENSMUSG0000022265	ENSMUSG0000024713	ENSMUSG0000026638
ENSMUSG0000022270	ENSMUSG0000024727	ENSMUSG0000026639
ENSMUSG0000022299	ENSMUSG0000024747	ENSMUSG0000026640
ENSMUSG0000022314	ENSMUSG0000024750	ENSMUSG0000026655
ENSMUSG0000022322	ENSMUSG0000024778	ENSMUSG0000026659
ENSMUSG0000022323	ENSMUSG0000024782	ENSMUSG0000026663
ENSMUSG0000022336	ENSMUSG0000024805	ENSMUSG0000026669
ENSMUSG0000022338	ENSMUSG0000024807	ENSMUSG0000026670
ENSMUSG0000022353	ENSMUSG0000024827	ENSMUSG0000026687
ENSMUSG0000022358	ENSMUSG0000024835	ENSMUSG0000026691
ENSMUSG0000022370	ENSMUSG0000024847	ENSMUSG0000026696
ENSMUSG0000022370	ENSMUSG0000024856	ENSMUSG0000026721
ENSMUSG0000022389	ENSMUSG0000024892	ENSMUSG0000026726
ENSMUSG0000022403	ENSMUSC0000024896	ENSMUSC0000026728
ENSMUSC0000022403	ENSMUSC0000024899	ENSMUSC0000020720
ENSMUSC0000022413	ENSMUSC0000024099	ENSMUSC0000020730
ENSMUSC0000022419	ENSMUSC0000024900	ENSMUSC0000020743
ENSMUSC0000022420	ENSMUSC0000024902	ENSMUSC0000020751
ENSMUSC0000022423	ENSMUSC0000024921	ENSMUSC0000020733
ENSMUSC0000022427	ENSMUSC0000024924	ENSMUSC0000020775
ENSMUSC0000022433	ENSMUSC0000024940	ENSMUSC0000020775
ENSMUSG0000022437	ENSMUSC0000024942	ENSMUSC0000020781
ENSMUSC0000022440	ENSMUSC0000024955	ENSMUSC0000020790
ENSMUSG0000022442	ENSMUSC0000024939	ENSMUSC0000026814
ENSW03G0000022443	ENSMUSC0000024975	ENSMUSC0000026822
	ENSMUSC0000024961	
	ENSMUSC0000024985	
	ENSWUSG0000024980	
	ENSWUSG0000024991	
	ENSINDSG0000024997	
	ENSIVIUSG0000025004	
EINSIVIUSGUUUUUU22508	ENSIVIUSGUUUUUU25006	EIN9INID900000070900

ENSMUSG0000022512	ENSMUSG0000025016	ENSMUSG0000026870
ENSMUSG0000022514	ENSMUSG0000025035	ENSMUSG0000026874
ENSMUSG0000022528	ENSMUSG0000025037	ENSMUSG0000026879
ENSMUSG0000022548	ENSMUSG0000025059	ENSMUSG0000026896
ENSMUSG0000022550	ENSMUSG0000025068	ENSMUSG0000026914
ENSMUSG0000022555	ENSMUSG0000025075	ENSMUSG0000026922
ENSMUSG0000022556	ENSMUSG0000025076	ENSMUSG0000026924
ENSMUSG0000022564	ENSMUSG0000025077	ENSMUSG0000026942
ENSMUSG0000022565	ENSMUSG0000025078	ENSMUSG0000026961
ENSMUSG0000022579	ENSMUSG0000025085	ENSMUSG0000026966
ENSMUSG0000022587	ENSMUSG0000025089	ENSMUSG0000026986
ENSMUSG0000022594	ENSMUSG0000025129	ENSMUSG0000026988
ENSMUSG0000022602	ENSMUSG0000025138	ENSMUSG0000026991
ENSMUSG0000022615	ENSMUSG0000025139	ENSMUSG0000027016
ENSMUSG0000022622	ENSMUSG0000025150	ENSMUSG0000027048
ENSMUSG0000022634	ENSMUSG0000025153	ENSMUSG0000027067
ENSMUSG0000022656	ENSMUSG0000025162	ENSMUSG0000027075
ENSMUSG0000022664	ENSMUSG0000025165	ENSMUSG0000027088
ENSMUSG0000022672	ENSMUSG0000025170	ENSMUSG0000027099
ENSMUSG0000022673	ENSMUSG0000025176	ENSMUSG0000027104
ENSMUSG0000022686	ENSMUSG0000025178	ENSMUSG0000027108
ENSMUSG0000022708	ENSMUSG0000025190	ENSMUSG0000027111
ENSMUSG0000022742	ENSMUSG0000025194	ENSMUSG0000027133
ENSMUSG0000022747	ENSMUSG0000025199	ENSMUSG0000027164
ENSMUSG0000022752	ENSMUSG0000025203	ENSMUSG0000027170
ENSMUSG0000022757	ENSMUSG0000025204	ENSMUSG0000027177
ENSMUSG0000022769	ENSMUSG0000025207	ENSMUSG0000027180
ENSMUSG0000022771	ENSMUSG0000025217	ENSMUSG0000027184
ENSMUSG0000022773	ENSMUSG0000025220	ENSMUSG0000027195
ENSMUSG0000022774	ENSMUSG0000025221	ENSMUSG0000027199
ENSMUSG0000022791	ENSMUSG0000025225	ENSMUSG0000027204
ENSMUSG0000022797	ENSMUSG0000025227	ENSMUSG0000027206
ENSMUSG0000022809	ENSMUSG0000025260	ENSMUSG0000027210
ENSMUSG0000022814	ENSMUSG0000025270	ENSMUSG0000027223
ENSMUSG0000022816	ENSMUSG0000025271	ENSMUSG0000027227
ENSMUSG0000022817	ENSMUSG0000025272	ENSMUSG0000027238
ENSMUSG0000022843	ENSMUSG0000025277	ENSMUSG0000027248
ENSMUSG0000022853	ENSMUSG0000025283	ENSMUSG0000027253
ENSMUSG0000022863	ENSMUSG0000025323	ENSMUSG0000027274
ENSMUSG0000022878	ENSMUSG0000025337	ENSMUSG0000027282
ENSMUSG0000022884	ENSMUSG0000025353	ENSMUSG0000027288
ENSMUSG0000022895	ENSMUSG0000025357	ENSMUSG0000027296
ENSMUSG0000022899	ENSMUSG0000025364	ENSMUSG0000027315
ENSMUSG0000022906	ENSMUSG0000025372	ENSMUSG0000027326
ENSMUSG0000022948	ENSMUSG0000025395	ENSMUSG0000027349
ENSMUSG0000022951	ENSMUSG0000025401	ENSMUSG0000027358
ENSMUSG0000022956	ENSMUSG0000025402	ENSMUSG0000027365
ENSMUSG0000022957	ENSMUSG0000025405	ENSMUSG0000027367
ENSMUSG0000022961	ENSMUSG0000025408	ENSMUSG0000027371
ENSMUSG0000022972	ENSMUSG0000025428	ENSMUSG0000027378
ENSMUSG0000022992	ENSMUSG0000025477	ENSMUSG0000027379
ENSMUSG0000022994	ENSMUSG0000025479	ENSMUSG0000027381
ENSMUSG0000022995	ENSMUSG0000025486	ENSMUSG0000027386
ENSMUSG0000023004	ENSMUSG0000025487	ENSMUSG0000027397
ENSMUSG0000023015	ENSMUSG0000025488	ENSMUSG0000027405

ENSMUSG0000023018	ENSMUSG0000025492	ENSMUSG0000027408
ENSMUSG0000023022	ENSMUSG0000025497	ENSMUSG0000027422
ENSMUSG0000023031	ENSMUSG0000025503	ENSMUSG0000027423
ENSMUSG0000023034	ENSMUSG0000025504	ENSMUSG0000027429
ENSMUSG0000023043	ENSMUSG0000025510	ENSMUSG0000027452
ENSMUSG0000023044	ENSMUSG0000025511	ENSMUSG0000027465
ENSMUSG0000023045	ENSMUSG0000025532	ENSMUSG0000027469
ENSMUSG0000023046	ENSMUSG0000025533	ENSMUSG0000027472
ENSMUSG0000023048	ENSMUSG0000025544	ENSMUSG0000027479
ENSMUSG0000023067	ENSMUSG0000025586	ENSMUSG0000027485
ENSMUSG0000023073	ENSMUSG0000025646	ENSMUSG0000027490
ENSMUSG0000023075	ENSMUSG0000025651	ENSMUSG0000027496
ENSMUSG0000023087	ENSMUSG0000025702	ENSMUSG0000027499
ENSMUSG0000023092	ENSMUSG0000025728	ENSMUSG0000027531
ENSMUSG0000023122	ENSMUSG0000025731	ENSMUSG0000027533
ENSMUSG0000023132	ENSMUSG0000025732	ENSMUSG0000027551
ENSMUSG0000023150	ENSMUSG0000025743	ENSMUSG0000027552
ENSMUSG0000023224	ENSMUSG0000025757	ENSMUSG0000027559
ENSMUSG0000023243	ENSMUSG0000025780	ENSMUSG0000027562
ENSMUSG0000023272	ENSMUSG0000025781	ENSMUSG0000027566
ENSMUSG0000023307	ENSMUSG0000025791	ENSMUSG0000027580
ENSMUSG0000023452	ENSMUSC0000025809	ENSMUSC0000027597
ENSMUSG0000023791	ENSMUSG0000025812	ENSMUSG0000027599
ENSMUSC0000023791	ENSMUSC0000025823	ENSMUSC0000027533
ENSMUSC0000023829	ENSMUSC0000025858	ENSMUSC0000027601
ENSMUSC0000023822	ENSMUSC0000025860	ENSMUSC0000027613
ENSMUSG0000023846	ENSMUSG0000025862	ENSW03G0000027613
ENSMUSC0000023040	ENSMUSC0000025887	ENSMUSC0000027620
ENSMUSC0000023905	ENSMUSC0000025887	ENSMUSC0000027657
ENSMUSC0000023935	ENSMUSC0000025888	ENSMUSC0000027668
ENSNUSC0000023944	ENSMUSC0000025903	ENSMUSC0000027608
ENSWUSC0000023951	ENSMUSC0000025907	ENSMUSG0000027673
ENSWUSC0000023905	ENSI/05G0000025921	ENSWUSC0000027690
ENSWUSC0000023907	ENSMUSC0000025954	ENSMUSC0000027698
ENSWUSC0000024002	ENSMUSC0000025950	ENSMUSG0000027699
	ENSMUSG0000025964	ENSMUSG0000027706
	ENSMUSG0000025968	ENSMUSG0000027715
	ENSMUSG0000025981	ENSMUSG0000027746
	ENSMUSG0000025982	ENSMUSG00000027763
	ENSMUSG0000025991	
		ENSMUSG0000027782
	ENSMUSG0000026004	ENSMUSG0000027792
ENSMUSG0000024070	ENSMUSG0000026012	ENSMUSG00000027801
ENSMUSG0000024072	ENSMUSG0000026024	ENSMUSG00000027803
ENSMUSG0000024073	ENSMUSG0000026028	ENSMUSG0000027805
ENSMUSG0000024085	ENSMUSG0000026029	ENSMUSG0000027810
ENSMUSG0000024087	ENSMUSG00000026031	ENSMUSG0000027822
ENSMUSG0000024097	ENSMUSG0000026042	ENSMUSG0000027834
ENSMUSG0000024104	ENSMUSG0000026043	ENSMUSG0000027835
ENSMUSG0000024107	ENSMUSG0000026047	ENSMUSG0000027852
ENSMUSG0000024121	ENSMUSG0000026062	ENSMUSG0000027869
ENSMUSG0000024124	ENSMUSG0000026064	ENSMUSG0000027870
ENSMUSG0000024131	ENSMUSG0000026070	ENSMUSG0000027879
ENSMUSG0000024132	ENSMUSG0000026072	ENSMUSG0000027884
ENSMUSG0000024134	ENSMUSG0000026077	ENSMUSG0000027900
ENSMUSG00000024140	ENSMUSG0000026090	ENSMUSG0000027944

ENSMUSG0000026109	ENSMUSG0000026104	ENSMUSG0000027947
ENSMUSG0000038143	ENSMUSG0000038776	ENSMUSG0000039361
ENSMUSG0000038145	ENSMUSG0000038805	ENSMUSG0000039375
ENSMUSG0000038250	ENSMUSG0000038845	ENSMUSG0000039382
ENSMUSG0000038252	ENSMUSG0000038848	ENSMUSG0000039384
ENSMUSG0000038312	ENSMUSG0000038859	ENSMUSG0000039405
ENSMUSG0000038332	ENSMUSG0000038871	ENSMUSG0000039410
ENSMUSG0000038344	ENSMUSG0000038884	ENSMUSG0000039456
ENSMUSG0000038366	ENSMUSG0000038893	ENSMUSG0000039461
ENSMUSG0000038374	ENSMUSG0000038965	ENSMUSG0000039474
ENSMUSG0000038375	ENSMUSG0000039062	ENSMUSG0000039485
ENSMUSG0000038393	ENSMUSG0000039068	ENSMUSG0000039519
ENSMUSG0000038418	ENSMUSG0000039089	ENSMUSG0000039601
ENSMUSG0000038422	ENSMUSG0000039096	ENSMUSG0000039615
ENSMUSG0000038503	ENSMUSG0000039109	ENSMUSG0000039620
ENSMUSG0000038526	ENSMUSG0000039114	ENSMUSG0000039629
ENSMUSG0000038539	ENSMUSG0000039145	ENSMUSG0000039630
ENSMUSG0000038569	ENSMUSG0000039157	ENSMUSG0000039640
ENSMUSG0000038582	ENSMUSG0000039159	ENSMUSG0000039648
ENSMUSG0000038599	ENSMUSG0000039195	ENSMUSG0000039671
ENSMUSG0000038619	ENSMUSG0000039197	ENSMUSG0000039682
ENSMUSG0000038641	ENSMUSG0000039217	ENSMUSG0000039798
ENSMUSG0000038642	ENSMUSG0000039218	ENSMUSG0000039831
ENSMUSG0000038650	ENSMUSG0000039221	ENSMUSG0000039840
ENSMUSG0000038671	ENSMUSG0000039233	ENSMUSG0000039899
ENSMUSG0000038695	ENSMUSG0000039239	ENSMUSG0000039910
ENSMUSG0000038700	ENSMUSG0000039242	ENSMUSG0000039914
ENSMUSG0000038712	ENSMUSG0000039246	ENSMUSG0000039952
ENSMUSG0000038717	ENSMUSG0000039275	ENSMUSG0000039956
ENSMUSG0000038718	ENSMUSG0000039304	ENSMUSG0000039960
ENSMUSG0000038745	ENSMUSG0000039316	ENSMUSG0000039982
ENSMUSG0000038754	ENSMUSG0000039323	ENSMUSG0000039989
ENSMUSG0000046160	ENSMUSG0000047843	ENSMUSG0000049404
ENSMUSG0000046179	ENSMUSG0000047866	ENSMUSG0000049470
ENSMUSG0000046230	ENSMUSG0000047879	ENSMUSG0000049511
ENSMUSG0000046324	ENSMUSG0000047921	ENSMUSG0000049580
ENSMUSG0000046447	ENSMUSG0000047945	ENSMUSG0000049588
ENSMUSG0000046470	ENSMUSG0000047963	ENSMUSG0000049647
ENSMUSG0000046519	ENSMUSG0000048126	ENSMUSG0000049723
ENSMUSG0000046546	ENSMUSG0000048138	ENSMUSG0000049775
ENSMUSG0000046562	ENSMUSG0000048285	ENSMUSG0000049892
ENSMUSG0000046668	ENSMUSG0000048307	ENSMUSG0000049932
ENSMUSG0000046718	ENSMUSG0000048332	ENSMUSG0000050017
ENSMUSG0000046722	ENSMUSG0000048376	ENSMUSG0000050043
ENSMUSG0000046818	ENSMUSG0000048482	ENSMUSG0000050069
ENSMUSG0000046876	ENSMUSG0000048490	ENSMUSG0000050071
ENSMUSG0000046879	ENSMUSG0000048537	ENSMUSG0000050103
ENSMUSG0000047067	ENSMUSG0000048546	ENSMUSG0000050213
ENSMUSG0000047112	ENSMUSG0000048572	ENSMUSG0000050234
ENSMUSG0000047139	ENSMUSG0000048578	ENSMUSG0000050295
ENSMUSG0000047155	ENSMUSG0000048703	ENSMUSG0000050370
ENSMUSG0000047230	ENSMUSG0000048756	ENSMUSG0000050423
ENSMUSG0000047250	ENSMUSG0000048769	ENSMUSG0000050440
ENSMUSG0000047363	ENSMUSG0000048772	ENSMUSG0000050445
ENSMUSG0000047368	ENSMUSG0000048782	ENSMUSG0000050520

ENSMUSG0000047514	ENSMUSG00000048834	ENSMUSG0000050541
ENSMUSG0000047554	ENSMUSG00000048856	ENSMUSG0000050565
ENSMUSG0000047617	ENSMUSG00000048905	ENSMUSG0000050612
ENSMUSG0000047638	ENSMUSG0000048910	ENSMUSG0000050627
ENSMUSG0000047714	ENSMUSG0000048911	ENSMUSG0000050737
ENSMUSG0000047731	ENSMUSG0000049044	ENSMUSG0000050761
ENSMUSG0000047797	ENSMUSG0000049354	ENSMUSG0000050912
ENSMUSG0000047822	ENSMUSG0000049387	ENSMUSG0000050953
ENSMUSG0000055923	ENSMUSG00000056050	ENSMUSG0000056071
ENSMUSG0000055980	ENSMUSG0000056054	ENSMUSG0000056091
ENSMUSG0000059908	ENSMUSG0000061393	ENSMUSG0000062908
ENSMUSG0000060002	ENSMUSG0000061540	ENSMUSG0000062929
ENSMUSG0000060126	ENSMUSG0000061780	ENSMUSG0000062937
ENSMUSG0000060261	ENSMUSG0000061877	ENSMUSG0000062960
ENSMUSG0000060376	ENSMUSG0000061906	ENSMUSG0000063015
ENSMUSG0000060548	ENSMUSG0000061911	ENSMUSG0000063077
ENSMUSG0000060560	ENSMUSG0000061947	ENSMUSG0000063229
ENSMUSG0000060586	ENSMUSG0000061959	ENSMUSG0000063273
ENSMUSG0000060657	ENSMUSG0000061981	ENSMUSG0000063275
ENSMUSG0000000033	ENSMUSG0000062014	ENSMUSG0000063354
ENSMUSC0000000739	ENSMUSC0000062352	ENSMUSC0000063406
ENSMUSC0000000733	ENSMUSC0000062380	ENSMUSC0000003400
ENSMUSC00000000007	ENSMUSC0000062397	ENSMUSC0000003413
ENSMUSG0000000002	ENSMUSC0000062410	ENSMUSC0000003322
	ENSMUSC0000002410	
	ENSMUSC0000002313	
	ENSMUSG0000062563	
	ENSMUSG0000062604	ENSMUSG00000053694
	ENSMUSG0000062783	ENSMUSG0000003713
	ENSMUSG0000062797	ENSMUSG0000003727
	ENSMUSG0000062901	ENSMUSG0000063931
ENSMUSG0000076441	ENSMUSG00000078453	
ENSMUSG0000076615	ENSMUSG00000078566	ENSMUSG00000079316
ENSMUSG0000076722	ENSMUSG00000078652	ENSMUSG00000079363
ENSMUSG0000078302	ENSMUSG00000078922	ENSMUSG00000079488
ENSMUSG0000078429	ENSMUSG00000079017	ENSMUSG00000079523
ENSMUSG0000078440	ENSMUSG00000079057	
ENSMUSG0000027952	ENSMUSG00000030042	ENSMUSG00000032079
ENSMUSG0000027954	ENSMUSG0000030057	ENSMUSG0000032085
ENSMUSG0000027962	ENSMUSG00000030062	ENSMUSG0000032092
ENSMUSG0000027968	ENSMUSG0000030077	ENSMUSG0000032094
ENSMUSG0000027978	ENSMUSG0000030087	ENSMUSG00000032114
ENSMUSG0000027993	ENSMUSG0000030088	ENSMUSG0000032116
ENSMUSG0000027997	ENSMUSG0000030089	ENSMUSG0000032121
ENSMUSG0000027999	ENSMUSG0000030094	ENSMUSG0000032171
ENSMUSG0000028005	ENSMUSG0000030096	ENSMUSG0000032174
ENSMUSG0000028011	ENSMUSG0000030101	ENSMUSG0000032187
ENSMUSG0000028024	ENSMUSG0000030103	ENSMUSG0000032193
ENSMUSG0000028029	ENSMUSG0000030104	ENSMUSG0000032207
ENSMUSG0000028032	ENSMUSG0000030105	ENSMUSG0000032216
ENSMUSG0000028034	ENSMUSG0000030107	ENSMUSG0000032228
ENSMUSG0000028035	ENSMUSG0000030108	ENSMUSG0000032238
ENSMUSG0000028044	ENSMUSG0000030109	ENSMUSG0000032243
ENSMUSG0000028049	ENSMUSG0000030110	ENSMUSG0000032249
ENSMUSG0000028053	ENSMUSG0000030127	ENSMUSG0000032271

ENSMUSG0000028070	ENSMUSG0000030131	ENSMUSG0000032279
ENSMUSG0000028088	ENSMUSG0000030137	ENSMUSG0000032290
ENSMUSG0000028098	ENSMUSG0000030138	ENSMUSG0000032294
ENSMUSG0000028104	ENSMUSG0000030161	ENSMUSG0000032320
ENSMUSG0000028107	ENSMUSG0000030162	ENSMUSG0000032323
ENSMUSG0000028124	ENSMUSG0000030168	ENSMUSG0000032328
ENSMUSG0000028127	ENSMUSG0000030208	ENSMUSG0000032330
ENSMUSG0000028128	ENSMUSG0000030214	ENSMUSG0000032336
ENSMUSG0000028132	ENSMUSG0000030220	ENSMUSG0000032348
ENSMUSG0000028150	ENSMUSG0000030232	ENSMUSG0000032349
ENSMUSG0000028161	ENSMUSG0000030236	ENSMUSG0000032353
ENSMUSG0000028163	ENSMUSG0000030237	ENSMUSG0000032359
ENSMUSG0000028182	ENSMUSG0000030244	ENSMUSG0000032366
ENSMUSG0000028187	ENSMUSG0000030257	ENSMUSG0000032372
ENSMUSG0000028191	ENSMUSG0000030268	ENSMUSG0000032376
ENSMUSG0000028195	ENSMUSG0000030278	ENSMUSG0000032380
ENSMUSG0000028199	ENSMUSG0000030291	ENSMUSG0000032381
ENSMUSG0000028211	ENSMUSG0000030337	ENSMUSG0000032402
ENSMUSG0000028248	ENSMUSG0000030339	ENSMUSG0000032411
ENSMUSG0000028251	ENSMUSG0000030341	ENSMUSG0000032418
ENSMUSC0000028255	ENSMUSC0000030352	ENSMUSC0000032410
ENSMUSC0000028261	ENSMUSC0000030357	ENSMUSC0000032431
ENSMUSC0000028270	ENSMUSC0000030364	ENSMUSC0000032434
ENSMUSC0000020270	ENSMUSC0000030304	ENSMUSC0000032437
ENSINGSG0000028273	ENSMUSC0000030403	ENSMUSC0000032449
	ENSMUSG0000030421	ENSMUSG0000032460
	ENSMUSG0000030470	ENSMUSG00000032492
	ENSMUSG0000030483	ENSMUSG00000032504
	ENSMUSG00000030495	
		ENSMUSG00000032555
		ENSMUSG00000032557
		ENSMUSG00000032558
ENSMUSG0000028405	ENSMUSG0000030551	
ENSMUSG0000028410	ENSMUSG0000030555	ENSMUSG00000032580
ENSMUSG0000028420	ENSMUSG0000030556	ENSMUSG0000032602
ENSMUSG0000028426	ENSMUSG0000030579	ENSMUSG00000032698
ENSMUSG0000028454	ENSMUSG0000030590	ENSMUSG0000032705
ENSMUSG0000028464	ENSMUSG0000030629	ENSMUSG0000032725
ENSMUSG0000028470	ENSMUSG0000030643	ENSMUSG0000032740
ENSMUSG0000028479	ENSMUSG0000030647	ENSMUSG0000032757
ENSMUSG0000028480	ENSMUSG0000030653	ENSMUSG0000032763
ENSMUSG0000028494	ENSMUSG0000030674	ENSMUSG0000032766
ENSMUSG0000028496	ENSMUSG0000030677	ENSMUSG0000032777
ENSMUSG0000028527	ENSMUSG0000030680	ENSMUSG0000032786
ENSMUSG0000028530	ENSMUSG0000030703	ENSMUSG0000032816
ENSMUSG0000028536	ENSMUSG0000030711	ENSMUSG0000032827
ENSMUSG0000028556	ENSMUSG0000030733	ENSMUSG0000032860
ENSMUSG0000028584	ENSMUSG0000030737	ENSMUSG0000032902
ENSMUSG0000028599	ENSMUSG0000030738	ENSMUSG0000032942
ENSMUSG0000028607	ENSMUSG0000030741	ENSMUSG0000032946
ENSMUSG0000028612	ENSMUSG0000030747	ENSMUSG0000032966
ENSMUSG0000028639	ENSMUSG0000030761	ENSMUSG0000032978
ENSMUSG0000028646	ENSMUSG0000030762	ENSMUSG0000033022
ENSMUSG0000028655	ENSMUSG0000030772	ENSMUSG0000033024
ENSMUSG0000028671	ENSMUSG0000030779	ENSMUSG0000033059
ENSMUSG0000028676	ENSMUSG0000030789	ENSMUSG0000033060

ENSMUSG0000028680	ENSMUSG0000030800	ENSMUSG0000033065
ENSMUSG0000028691	ENSMUSG0000030805	ENSMUSG0000033096
ENSMUSG0000028706	ENSMUSG0000030824	ENSMUSG0000033105
ENSMUSG0000028713	ENSMUSG0000030842	ENSMUSG0000033107
ENSMUSG0000028715	ENSMUSG0000030846	ENSMUSG0000033161
ENSMUSG0000028757	ENSMUSG0000030852	ENSMUSG0000033174
ENSMUSG0000028776	ENSMUSG0000030862	ENSMUSG0000033186
ENSMUSG0000028788	ENSMUSG0000030867	ENSMUSG0000033187
ENSMUSG0000028792	ENSMUSG0000030869	ENSMUSG0000033228
ENSMUSG0000028820	ENSMUSG0000030870	ENSMUSG0000033294
ENSMUSG0000028832	ENSMUSG0000030880	ENSMUSG0000033295
ENSMUSG0000028851	ENSMUSG0000030895	ENSMUSG0000033308
ENSMUSG0000028862	ENSMUSG0000030905	ENSMUSG0000033318
ENSMUSG0000028869	ENSMUSG0000030909	ENSMUSG0000033355
ENSMUSG0000028883	ENSMUSG0000030963	ENSMUSG0000033379
ENSMUSG0000028894	ENSMUSG0000030967	ENSMUSG0000033400
ENSMUSG0000028902	ENSMUSG0000030978	ENSMUSG0000033416
ENSMUSG0000028914	ENSMUSG0000030990	ENSMUSG0000033436
ENSMUSG0000028919	ENSMUSG0000030994	ENSMUSG0000033446
ENSMUSG0000028931	ENSMUSG0000031007	ENSMUSG0000033491
ENSMUSG0000028937	ENSMUSG0000031010	ENSMUSG0000033499
ENSMUSG0000028954	ENSMUSG0000031016	ENSMUSG0000033538
ENSMUSG0000028955	ENSMUSG0000031024	ENSMUSG0000033540
ENSMUSG0000028957	ENSMUSG0000031065	ENSMUSG0000033545
ENSMUSG0000028959	ENSMUSG0000031068	ENSMUSG0000033610
ENSMUSG0000028967	ENSMUSG0000031077	ENSMUSG0000033629
ENSMUSG0000028969	ENSMUSG0000031078	ENSMUSG0000033658
ENSMUSG0000028970	ENSMUSG0000031095	ENSMUSG0000033715
ENSMUSG0000028971	ENSMUSG0000031119	ENSMUSG0000033730
ENSMUSG0000028974	ENSMUSG0000031134	ENSMUSG0000033735
ENSMUSG0000028976	ENSMUSG0000031149	ENSMUSG0000033770
ENSMUSG0000028980	ENSMUSG0000031154	ENSMUSG0000033863
ENSMUSG0000028982	ENSMUSG0000031157	ENSMUSG0000033880
ENSMUSG0000028991	ENSMUSG0000031167	ENSMUSG0000033917
ENSMUSG0000028998	ENSMUSG0000031168	ENSMUSG0000033940
ENSMUSG0000029009	ENSMUSG0000031209	ENSMUSG0000033965
ENSMUSG0000029019	ENSMUSG0000031229	ENSMUSG0000033985
ENSMUSG0000029030	ENSMUSG0000031246	ENSMUSG0000034022
ENSMUSG0000029050	ENSMUSG0000031250	ENSMUSG0000034024
ENSMUSG0000029059	ENSMUSG0000031274	ENSMUSG0000034039
ENSMUSG0000029064	ENSMUSG0000031297	ENSMUSG0000034120
ENSMUSG0000029068	ENSMUSG0000031299	ENSMUSG0000034157
ENSMUSG0000029084	ENSMUSG0000031311	ENSMUSG0000034161
ENSMUSG0000029103	ENSMUSG0000031349	ENSMUSG0000034163
ENSMUSG0000029106	ENSMUSG0000031357	ENSMUSG0000034220
ENSMUSG0000029108	ENSMUSG0000031360	ENSMUSG0000034254
ENSMUSG0000029110	ENSMUSG0000031370	ENSMUSG0000034265
ENSMUSG0000029111	ENSMUSG0000031382	ENSMUSG0000034278
ENSMUSG0000029131	ENSMUSG0000031386	ENSMUSG0000034285
ENSMUSG0000029136	ENSMUSG0000031302	ENSMUSG0000034308
ENSMUSG0000023130	ENSMUSC0000031392	ENSMUSG0000034311
ENSMUSG0000029145	ENSMUSC0000031399	ENSMUSG0000034317
ENSMUSC0000029147	ENSMUSC0000031422	ENSMUSC0000034349
ENSMUSG0000029107	ENSMUSG0000031423	ENSMUSC0000034343
ENSMUSC0000029109	ENSMUSC0000031431	ENSMUSC0000034355
LINGINGGG0000023173	LINGING GUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	LINOW00000000004400

ENSMUSG0000029176	ENSMUSG0000031441	ENSMUSG0000034438
ENSMUSG0000029177	ENSMUSG0000031442	ENSMUSG0000034459
ENSMUSG0000029178	ENSMUSG0000031446	ENSMUSG0000034484
ENSMUSG0000029188	ENSMUSG0000031453	ENSMUSG0000034486
ENSMUSG0000029191	ENSMUSG0000031458	ENSMUSG0000034528
ENSMUSG0000029198	ENSMUSG0000031461	ENSMUSG0000034563
ENSMUSG0000029217	ENSMUSG0000031482	ENSMUSG0000034566
ENSMUSG0000029229	ENSMUSG0000031489	ENSMUSG0000034570
ENSMUSG0000029231	ENSMUSG0000031490	ENSMUSG0000034579
ENSMUSG0000029234	ENSMUSG0000031502	ENSMUSG0000034584
ENSMUSG0000029238	ENSMUSG0000031520	ENSMUSG0000034614
ENSMUSG0000029247	ENSMUSG0000031529	ENSMUSG0000034620
ENSMUSG0000029249	ENSMUSG0000031536	ENSMUSG0000034647
ENSMUSG0000029253	ENSMUSG0000031537	ENSMUSG0000034648
ENSMUSG0000029267	ENSMUSG0000031538	ENSMUSG0000034659
ENSMUSG0000029269	ENSMUSG0000031543	ENSMUSG0000034663
ENSMUSG0000029270	ENSMUSG0000031553	ENSMUSG0000034667
ENSMUSG0000029273	ENSMUSG0000031555	ENSMUSG0000034681
ENSMUSG0000029275	ENSMUSG0000031561	ENSMUSG0000034707
ENSMUSG0000029283	ENSMUSG0000031568	ENSMUSG0000034708
ENSMUSG0000029287	ENSMUSG0000031578	ENSMUSG0000034724
ENSMUSG0000029304	ENSMUSG0000031584	ENSMUSG0000034744
ENSMUSG0000029314	ENSMUSG0000031586	ENSMUSG0000034785
ENSMUSG0000029321	ENSMUSG0000031591	ENSMUSG0000034801
ENSMUSG0000029328	ENSMUSG0000031596	ENSMUSG0000034868
ENSMUSG0000029330	ENSMUSG0000031613	ENSMUSG0000034875
ENSMUSG0000029359	ENSMUSG0000031628	ENSMUSG0000034880
ENSMUSG0000029380	ENSMUSG0000031654	ENSMUSG0000034903
ENSMUSG0000029385	ENSMUSG0000031660	ENSMUSG0000034906
ENSMUSG0000029390	ENSMUSG0000031673	ENSMUSG0000034917
ENSMUSG0000029405	ENSMUSG0000031696	ENSMUSG0000034928
ENSMUSG0000029426	ENSMUSG0000031700	ENSMUSG0000034932
ENSMUSG0000029430	ENSMUSG0000031701	ENSMUSG0000034936
ENSMUSG0000029440	ENSMUSG0000031714	ENSMUSG0000034981
ENSMUSG0000029452	ENSMUSG0000031725	ENSMUSG0000034993
ENSMUSG0000029455	ENSMUSG0000031731	ENSMUSG0000034994
ENSMUSG0000029467	ENSMUSG0000031734	ENSMUSG0000035000
ENSMUSG0000029513	ENSMUSG0000031762	ENSMUSG0000035104
ENSMUSG0000029538	ENSMUSG0000031765	ENSMUSG0000035105
ENSMUSG0000029545	ENSMUSG0000031767	ENSMUSG0000035133
ENSMUSG0000029550	ENSMUSG0000031770	ENSMUSG0000035150
ENSMUSG0000029571	ENSMUSG0000031774	ENSMUSG0000035212
ENSMUSG0000029575	ENSMUSG0000031778	ENSMUSG0000035237
ENSMUSG0000029580	ENSMUSG0000031782	ENSMUSG0000035248
ENSMUSG0000029581	ENSMUSG0000031790	ENSMUSG0000035268
ENSMUSG0000029597	ENSMUSG0000031799	ENSMUSG0000035351
ENSMUSG0000029608	ENSMUSG0000031808	ENSMUSG0000035372
ENSMUSG0000029616	ENSMUSG0000031811	ENSMUSG0000035373
ENSMUSG0000029617	ENSMUSG0000031819	ENSMUSG0000035376
ENSMUSG0000029629	ENSMUSG0000031838	ENSMUSG0000035383
ENSMUSG0000029630	ENSMUSG0000031840	ENSMUSG0000035385
ENSMUSG0000029635	ENSMUSG0000031844	ENSMUSG0000035443
ENSMUSG0000029650	ENSMUSG0000031851	ENSMUSG0000035451
ENSMUSG0000029651	ENSMUSG0000031858	ENSMUSG0000035458
ENSMUSG0000029656	ENSMUSG0000031880	ENSMUSG0000035469

ENSMUSG0000029657	ENSMUSG0000031884	ENSMUSG0000035473
ENSMUSG0000029661	ENSMUSG0000031891	ENSMUSG0000035493
ENSMUSG0000029664	ENSMUSG0000031921	ENSMUSG0000035505
ENSMUSG0000029669	ENSMUSG0000031924	ENSMUSG0000035530
ENSMUSG0000029710	ENSMUSG0000031930	ENSMUSG0000035547
ENSMUSG0000029718	ENSMUSG0000031960	ENSMUSG0000035561
ENSMUSG0000029720	ENSMUSG0000031967	ENSMUSG0000035585
ENSMUSG0000029723	ENSMUSG0000031970	ENSMUSG0000035637
ENSMUSG0000029727	ENSMUSG0000031980	ENSMUSG0000035649
ENSMUSG0000029730	ENSMUSG0000031987	ENSMUSG0000035683
ENSMUSG0000029763	ENSMUSG0000031996	ENSMUSG0000035686
ENSMUSG0000029771	ENSMUSG0000031997	ENSMUSG0000035692
ENSMUSG0000029772	ENSMUSG0000032000	ENSMUSG0000035769
ENSMUSG0000029781	ENSMUSG0000032010	ENSMUSG0000035828
ENSMUSG0000029802	ENSMUSG0000032018	ENSMUSG0000035878
ENSMUSG0000029833	ENSMUSG0000032026	ENSMUSG0000035896
ENSMUSG0000029836IENSMU		
SG00000059647	ENSMUSG0000032035	ENSMUSG0000035901
ENSMUSG0000029840	ENSMUSG0000032038	ENSMUSG0000035992
ENSMUSG0000029922	ENSMUSG0000032041	ENSMUSG0000036019
ENSMUSG0000029999	ENSMUSG0000032047	ENSMUSG0000036053
ENSMUSG0000030008	ENSMUSG0000032051	ENSMUSG0000036073
ENSMUSG0000036292	ENSMUSG0000032060	ENSMUSG0000036078
ENSMUSG0000036295	ENSMUSG0000032066	ENSMUSG0000036083
ENSMUSG0000036309	ENSMUSG0000032067	ENSMUSG0000036110
ENSMUSG0000036241	ENSMUSG0000032076	ENSMUSG0000036120
ENSMUSG0000036199	ENSMUSG0000036144	ENSMUSG0000036123
ENSMUSG0000036216	ENSMUSG0000036181	ENSMUSG0000039994
ENSMUSG0000040006	ENSMUSG0000040562	ENSMUSG0000041020
ENSMUSG0000040010	ENSMUSG0000040565	ENSMUSG0000041028
ENSMUSG0000040093	ENSMUSG0000040584	ENSMUSG0000041058
ENSMUSG0000040127	ENSMUSG0000040600	ENSMUSG0000041119
ENSMUSC0000040127	ENSMUSC00000040652	ENSMUSG0000041132
ENSMUSC0000040130	ENSMUSC0000040052	ENSMUSC0000041132
ENSMUSC0000040170	ENSMUSC0000040059	ENSMUSC0000041220
ENSMUSC0000040101	ENSMUSC0000040666	ENSMUSC0000041261
ENSMUSC0000040204	ENSMUSC0000040694	ENSMUSC0000041203
ENSMUSC0000040213	ENSMUSC0000040094	ENSMUSC0000041333
ENSMUSC0000040242	ENSMUSC0000040701	ENSMUSC0000041378
ENSMUSG0000040249	ENSMUSG0000040708	ENSMUSG0000041390
ENSMUSG0000040282	ENSMUSC0000040715	ENSMUSC0000041417
ENSMUSC0000040323	ENSMUSC0000040740	ENSMUSC0000041420
ENSMUSC0000040413	ENSMUSC0000040739	ENSW03G0000041451
ENSMUSC0000040413	ENSMUSC0000040843	ENSMUSC0000041439
	ENSMUSG0000040837	
	ENSMUSG0000040891	
ENSMUSG0000040479	ENSMUSG0000040935	ENSMUSG0000041540
	ENSIVIUSG00000040963	
		ENSIVUSGUUUUUU415/1
		ENSIVUSGUUUUUU41625
ENSMUSG0000041733	ENSMUSG0000041773	ENSMUSG0000041638
ENSMUSG0000051113		
ENSMUSG0000051236	ENSMUSG0000052974	ENSMUSG0000053935
ENSMUSG0000051314	ENSMUSG0000052997	ENSMUSG0000054072

ENSMUSG0000051391	ENSMUSG0000053044	ENSMUSG0000054128
ENSMUSG0000051469	ENSMUSG0000053093	ENSMUSG0000054206
ENSMUSG0000051483	ENSMUSG0000053113	ENSMUSG0000054280
ENSMUSG0000051592	ENSMUSG0000053175	ENSMUSG0000054309
ENSMUSG0000051671	ENSMUSG0000053205	ENSMUSG0000054364
ENSMUSG0000051768	ENSMUSG0000053279	ENSMUSG0000054422
ENSMUSG0000051802	ENSMUSG0000053289	ENSMUSG0000054435
ENSMUSG0000051817	ENSMUSG0000053302	ENSMUSG0000054545
ENSMUSG0000051864	ENSMUSG0000053303	ENSMUSG0000054619
ENSMUSG0000051910	ENSMUSG0000053317	ENSMUSG0000054717
ENSMUSG0000052040	ENSMUSG0000053329	ENSMUSG0000054757
ENSMUSG00000052102	ENSMUSG0000053460	ENSMUSG0000054889
ENSMUSG0000052117	ENSMUSG0000053477	ENSMUSG0000054942
ENSMUSG0000052146	ENSMUSG0000053483	ENSMUSG00000055053
ENSMUSG0000052151	ENSMUSG0000053510	ENSMUSG00000055065
ENSMUSG0000052160	ENSMUSG0000053559	ENSMUSG00000055116
ENSMUSG0000052293	ENSMUSG0000053581	ENSMUSG00000055128
ENSMUSG0000052392	ENSMUSG0000053600	ENSMUSG00000055148
ENSMUSG0000052516	ENSMUSG0000053644	ENSMUSG00000055172
ENSMUSG0000052520	ENSMUSG0000053654	ENSMUSG00000055296
ENSMUSG0000052566	ENSMUSG0000053768	ENSMUSG00000055301
ENSMUSG0000052593	ENSMUSG0000053799	ENSMUSG00000055401
ENSMUSG0000052684	ENSMUSG0000053819	ENSMUSG00000055436
ENSMUSG0000052712	ENSMUSG0000053846	ENSMUSG00000055491
ENSMUSG0000052751	ENSMUSG0000053862	ENSMUSG00000055531
ENSMUSG0000052798	ENSMUSG0000053870	ENSMUSG00000055612
ENSMUSG0000052819	ENSMUSG0000053898	ENSMUSG0000055675
ENSMUSG0000052833	ENSMUSG0000053916	ENSMUSG00000055692
ENSMUSG0000064023	ENSMUSG0000067847	ENSMUSG0000069919
ENSMUSG0000064145	ENSMUSG0000067889	ENSMUSG0000069922
ENSMUSG0000064215	ENSMUSG0000068086	ENSMUSG0000070436
ENSMUSG0000064225	ENSMUSG0000068205	ENSMUSG0000070561
ENSMUSG0000064254	ENSMUSG0000068220	ENSMUSG0000070702
ENSMUSG0000064294	ENSMUSG0000068328	ENSMUSG0000070730
ENSMUSG0000064326	ENSMUSG0000068329	ENSMUSG0000070953
ENSMUSG0000066026	ENSMUSG0000068335	ENSMUSG0000071177
ENSMUSG0000066036	ENSMUSG0000068391	ENSMUSG0000071369
ENSMUSG0000066072	ENSMUSG0000068614	ENSMUSG00000071650
ENSMUSG0000066149	ENSMUSG0000068742	ENSMUSG0000071655
ENSMUSG0000066232	ENSMUSG0000068874	ENSMUSG00000071713
ENSMUSG0000066324	ENSMUSG0000069020	ENSMUSG0000072082
ENSMUSG0000066516	ENSMUSG0000069089	ENSMUSG0000072235
ENSMUSG0000066637	ENSMUSG0000069456	ENSMUSG0000072620
ENSMUSG0000066860	ENSMUSG0000069515	ENSMUSG00000072849
ENSMUSG0000067279	ENSMUSG0000069601	ENSMUSG0000072949
ENSMUSG0000067283	ENSMUSG0000069662	ENSMUSG0000073057
ENSMUSG0000067338	ENSMUSG0000069668	ENSMUSG00000073126
ENSMUSG0000067653	ENSMUSG0000069743	ENSMUSG0000073418
ENSMUSG0000067713	ENSMUSG0000069899	ENSMUSG0000073421

Appendix E: genes converted into ensemble identifier in Caco-2 and MCF-7 cells

I. genes converted into ensemble identifier in Caco-2 cells

ENSMUSG0000001056	ENSMUSG0000032041
ENSMUSG0000001416	ENSMUSG0000032047
ENSMUSG0000002910	ENSMUSG0000032109
ENSMUSG0000002996	ENSMUSG0000032115
ENSMUSG0000003032	ENSMUSG0000032187
ENSMUSG0000003038	ENSMUSG0000032258
ENSMUSG0000003206	ENSMUSG0000032440
ENSMUSG0000003348	ENSMUSG00000032536
ENSMUSG0000003545	ENSMUSG00000032932
ENSMUSG0000003847	ENSMUSG00000033423
ENSMUSG0000004948	ENSMUSG00000033624
ENSMUSG0000005897	ENSMUSG00000033808
ENSMUSG0000010045	ENSMUSG00000033909
ENSMUSG0000010392	ENSMUSG00000034175
ENSMUSG0000010755	ENSMUSG00000034189
ENSMUSG0000014158	ENSMUSG00000034285
ENSMUSG0000015202	ENSMUSG00000034551
ENSMUSG0000015478	ENSMUSG00000034584
ENSMUSG0000018160	ENSMUSG00000034593
ENSMUSG0000018363	ENSMUSG00000034757
ENSMUSG0000018736	ENSMUSG00000034839
ENSMUSG0000018900	ENSMUSG00000035007
ENSMUSG0000019792	ENSMUSG00000035021
ENSMUSG0000019838	ENSMUSG00000035248
ENSMUSG0000020018	ENSMUSG00000035262
ENSMUSG0000020115	ENSMUSG00000035392
ENSMUSG0000020260	ENSMUSG00000035671
ENSMUSG0000020262	ENSMUSG00000035704
ENSMUSG0000020431	ENSMUSG00000035900
ENSMUSG0000020454	ENSMUSG00000036587
ENSMUSG0000020515	ENSMUSG00000036781
ENSMUSG0000020516	ENSMUSG00000036986
ENSMUSG0000020532	ENSMUSG00000036989
ENSMUSG0000020834	ENSMUSG00000037112
ENSMUSG0000020923	ENSMUSG00000037465
ENSMUSG0000021111	ENSMUSG0000037487
ENSMUSG0000021175	ENSMUSG00000037513
ENSMUSG0000021337	ENSMUSG0000037601
ENSMUSG0000021453	ENSMUSG00000037773
ENSMUSG0000021690	ENSMUSG00000037999
ENSMUSG0000022037	ENSMUSG00000038147
ENSMUSG0000022307	ENSMUSG0000038400
ENSMUSG0000022313	ENSMUSG0000038564
ENSMUSG0000022332	ENSMUSG0000038637
ENSMUSG0000022339	ENSMUSG0000038641
ENSMUSG00000022415	ENSMUSG00000038685
ENSMUSG0000022540	ENSMUSG0000039067
ENSMUSG00000022568	ENSMUSG00000039219
ENSMUSG0000022721	ENSMUSG00000039476
ENSMUSG0000022822	ENSMUSG0000039976

ENSMUSG0000022898	ENSMUSG0000040383
ENSMUSG0000022957	ENSMUSG0000040429
ENSMUSG0000023075	ENSMUSG0000040618
ENSMUSG0000023236	ENSMUSG0000040747
ENSMUSG0000023832	ENSMUSG00000041058
ENSMUSG0000024039	ENSMUSG0000041632
ENSMUSG0000024222	ENSMUSG0000041649
ENSMUSG0000024327	ENSMUSG0000041650
ENSMUSG0000024366	ENSMUSG0000042035
ENSMUSG0000024487	ENSMUSG0000042328
ENSMUSG0000024682	ENSMUSG0000042406
ENSMUSG0000024713	ENSMUSG0000042590
ENSMUSG0000024922	ENSMUSG0000042694
ENSMUSG0000024941	ENSMUSG0000042784
ENSMUSG0000025035	ENSMUSG0000042997
ENSMUSG0000025049	ENSMUSG0000043430
ENSMUSG0000025129	ENSMUSG0000043753
ENSMUSG0000025162	ENSMUSG0000045095
ENSMUSG0000025245	ENSMUSG00000045160
ENSMUSG0000025324	ENSMUSG00000045316
ENSMUSG0000025395	ENSMUSG0000045691
ENSMUSG0000025579	ENSMUSG00000045954
ENSMUSG0000025958	ENSMUSG0000046020
ENSMUSG0000025969	ENSMUSG0000046314
ENSMUSG0000026166	ENSMUSG0000046814
ENSMUSG0000026260	ENSMUSG0000046822
ENSMUSG0000026399	ENSMUSG00000047205
ENSMUSG0000026730	ENSMUSG0000047562
ENSMUSG0000026810	ENSMUSG00000047712
ENSMUSG0000027120	ENSMUSG0000047757
ENSMUSG0000027176	ENSMUSG0000048373
ENSMUSG0000027353	ENSMUSG0000048826
ENSMUSG0000027803	ENSMUSG0000048970
ENSMUSG0000028016	ENSMUSG00000050213
ENSMUSG0000028099	ENSMUSG00000050217
ENSMUSG0000028238	ENSMUSG00000050288
ENSMUSG0000028252	ENSMUSG0000050786
ENSMUSG0000028277	ENSMUSG0000050796
ENSMUSG0000028298	ENSMUSG0000051786
ENSMUSG0000028454	ENSMUSG00000053279
ENSMUSG0000028525	ENSMUSG00000053334
ENSMUSG0000028532	ENSMUSG00000054065
ENSMUSG0000028633	ENSMUSG0000054083
ENSMUSG0000028687	ENSMUSG0000054871
ENSMUSG0000028756	ENSMUSG00000055125
ENSMUSG0000028776	ENSMUSG0000055491
ENSMUSG0000028822	ENSMUSG00000055629
ENSMUSG0000028967	ENSMUSG0000056130
ENSMUSG0000029068	ENSMUSG0000058586
ENSMUSG0000029369	ENSMUSG0000060445
ENSMUSG0000029477	ENSMUSG0000060726
ENSMUSG0000029478	ENSMUSG0000060962

ENSMUSG0000029504	ENSMUSG0000061244
ENSMUSG0000029670	ENSMUSG0000061482
ENSMUSG0000029998	ENSMUSG0000061887
ENSMUSG0000030007	ENSMUSG0000063229
ENSMUSG0000030079	ENSMUSG0000063268
ENSMUSG0000030218	ENSMUSG0000063785
ENSMUSG0000030309	ENSMUSG0000066026
ENSMUSG0000030337	ENSMUSG0000066148
ENSMUSG0000030598	ENSMUSG0000066800
ENSMUSG0000030726	ENSMUSG00000071757
ENSMUSG0000030772	ENSMUSG00000071847
ENSMUSG0000030935	ENSMUSG00000072082
ENSMUSG0000031107	ENSMUSG00000072964
ENSMUSG0000031197	ENSMUSG00000074909
ENSMUSG0000031216	ENSMUSG0000021469
ENSMUSG0000031217	ENSMUSG0000022892
ENSMUSG0000031298	ENSMUSG0000026295
ENSMUSG0000031309	ENSMUSG0000026463
ENSMUSG0000031433	ENSMUSG0000028811
ENSMUSG0000031633	ENSMUSG0000029859
ENSMUSG0000031950	ENSMUSG0000031438
ENSMUSG0000042961	ENSMUSG00000035158
ENSMUSG0000056531	ENSMUSG00000039813
ENSMUSG0000062184	ENSMUSG0000042677

ENSMUSG0000000378	ENSMUSG0000038633
ENSMUSG0000001417	ENSMUSG0000038702
ENSMUSG0000003379	ENSMUSG0000038736
ENSMUSG0000004069	ENSMUSG0000039086
ENSMUSG0000004328	ENSMUSG0000039114
ENSMUSG0000004626	ENSMUSG0000039347
ENSMUSG0000006850	ENSMUSG0000039396
ENSMUSG0000007646	ENSMUSG0000039501
ENSMUSG0000014602	ENSMUSG00000040681
ENSMUSG0000017831	ENSMUSG00000040701
ENSMUSG0000018882	ENSMUSG00000040855
ENSMUSG0000019831	ENSMUSG00000041731
ENSMUSG0000019889	ENSMUSG00000041890
ENSMUSG0000020241	ENSMUSG00000041995
ENSMUSG0000020534	ENSMUSG00000042229
ENSMUSG0000021203	ENSMUSG00000042305
ENSMUSG0000021235	ENSMUSG00000045294
ENSMUSG0000021286	ENSMUSG00000047719
ENSMUSG0000021519	ENSMUSG00000047875
ENSMUSG0000021597	ENSMUSG00000048647
ENSMUSG0000021948	ENSMUSG00000049470
ENSMUSG0000021953	ENSMUSG00000049536
ENSMUSG0000022015	ENSMUSG00000049960
ENSMUSG0000022464	ENSMUSG00000050640
ENSMUSG0000022545	ENSMUSG00000051367
ENSMUSG0000022564	ENSMUSG00000053916
ENSMUSG0000022607	ENSMUSG00000054000
ENSMUSG0000022797	ENSMUSG00000055053
ENSMUSG0000022887	ENSMUSG00000055078
ENSMUSG0000022962	ENSMUSG00000056529
ENSMUSG0000023972	ENSMUSG0000056917
ENSMUSG0000024112	ENSMUSG00000057406
ENSMUSG0000024145	ENSMUSG00000058420
ENSMUSG0000024187	ENSMUSG00000059208
ENSMUSG0000024614	ENSMUSG0000060126
ENSMUSG0000024831	ENSMUSG0000061080
ENSMUSG0000024901	ENSMUSG0000062867
ENSMUSG0000024993	ENSMUSG0000063972
ENSMUSG0000025047	ENSMUSG0000064289
ENSMUSG0000025723	ENSMUSG0000066152
ENSMUSG0000026174	ENSMUSG00000070034
ENSMUSG0000026196	ENSMUSG0000021469
ENSMUSG0000026203	ENSMUSG0000022892
ENSMUSG0000026394	ENSMUSG0000026295
ENSMUSG0000026694	ENSMUSG0000026463
ENSMUSG0000026873	ENSMUSG0000028811
ENSMUSG0000026934	ENSMUSG0000029859
ENSMUSG0000027261	ENSMUSG0000031438
ENSMUSG0000027333	ENSMUSG00000035158
ENSMUSG0000027852	ENSMUSG00000039813

II. genes converted into ensemble identifier in MCF-7 cells

ENSMUSG0000028037	ENSMUSG0000042677
ENSMUSG0000028039	ENSMUSG00000042961
ENSMUSG0000028149	ENSMUSG0000056531
ENSMUSG0000028309	ENSMUSG0000062184
ENSMUSG0000028332	ENSMUSG0000032724
ENSMUSG0000028443	ENSMUSG0000032815
ENSMUSG0000028487	ENSMUSG0000033088
ENSMUSG0000028847	ENSMUSG0000033377
ENSMUSG0000029064	ENSMUSG0000033405
ENSMUSG0000029198	ENSMUSG0000033623
ENSMUSG0000029310	ENSMUSG0000033813
ENSMUSG0000029428	ENSMUSG0000034192
ENSMUSG0000029554	ENSMUSG0000034308
ENSMUSG0000029822	ENSMUSG0000034675
ENSMUSG0000029851	ENSMUSG0000034708
ENSMUSG0000030046	ENSMUSG0000034783
ENSMUSG0000030452	ENSMUSG0000034998
ENSMUSG0000030509	ENSMUSG00000035890
ENSMUSG0000030742	ENSMUSG0000036315
ENSMUSG0000030824	ENSMUSG00000037185
ENSMUSG0000031384	ENSMUSG00000038145
ENSMUSG0000031527	ENSMUSG00000038582
ENSMUSG0000032194	ENSMUSG0000032459
ENSMUSG0000032202	ENSMUSG00000032525
ENSMUSG0000032254	ENSMUSG00000032567
ENSMUSG0000032329	ENSMUSG0000032690