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ABSTRACT 

Recently, iterative learning control (ILC) has been used in the run-to-run control of batch 

processes to directly update the control trajectory. The basic idea of ILC is to update the 

control trajectory for a new batch run using the information from previous batch runs so 

that the output trajectory converges asymptotically to the desired reference trajectory. 

The control policy updating is calculated using linearised models around the nominal 

reference process input and output trajectories. The linearised models are typically 

identified using multiple linear regression (MLR), partial least squares (PLS) regression, 

or principal component regression (PCR). ILC has been shown to be a promising method 

to address model-plant mismatches and unknown disturbances. This work presents 

several improvements of batch to batch ILC strategy with applications to a simulated 

fed-batch fermentation process. In order to enhance the reliability of ILC, model 

prediction confidence is incorporated in the ILC optimization objective function. As a 

result of the incorporation, wide model prediction confidence bounds are penalized in 

order to avoid unreliable control policy updating. This method has been proven to be 

very effective for selected model prediction confidence bounds penalty factors. In the 

attempt to further improve the performance of ILC, averaged reference trajectories and 

sliding window techniques were introduced. To reduce the influence of measurement 

noise, control policy is updated on the average input and output trajectories of the past a 

few batches instead of just the immediate previous batch. The linearised models are re-

identified using a sliding window of past batches in that the earliest batch is removed 

with the newest batch added to the model identification data set. The effects of various 

parameters were investigated for MLR, PCR and PLS method. The technique 

significantly improves the control performance. In model based ILC the weighting 

matrices, Q and R, in the objective function have a significant impact on the control 

performance. Therefore, in the quest to exploit the potential of objective function, 

adaptive weighting parameters were attempted to study the performance of batch to batch 

ILC with updated models. Significant improvements in the stability of the performance 

for all the three methods were noticed. All the three techniques suggested have 

established improvements either in stability, reliability and/or convergence speed. To 

further investigate the versatility of ILC, the above mentioned techniques were combined 

and the results are discussed in this thesis.  

 

 

 

 

 

 



iii 

 

ACKNOWLEDGEMENTS 
 

I would like to thank the following: 

My supervisors, Dr. Jie Zhang, Prof. Julian Morris and Prof. Mohd. Azlan Hussain for the 

advice and guidance throughout the preparation of this thesis. My special thanks to Dr Jie 

Zhang who has been guiding me since day one and having weekly meetings to guide me 

throughout the PhD study. He has been very understanding of my circumstances and patiently 

motivated me to complete my work. 

 

My sponsors, Ministry of Higher Education Malaysia (MOHE) and University Malaya (UM) 

for providing me sufficient financial support. 

 

My CPACT colleagues, Dr.Shallon, Dr.Jeong Jin, Dr.Yusri, Dr.Gang, Carlo and Dr.Cheng 

for constantly guiding me throughout my work. They have been a joy to work with. Special 

thanks to Shallon for helping me on the matlab codings in my first year. 

 

My family, Mr. Jewaratnam, Mrs. Anjale, Jai Sri Shahila, Jaiswar and Dr.Jaiganth, for 

providing moral support throughout the course of my studies. Special thanks to my mother, 

Mrs Anjale Jewaratnam, for being my strength. 

 

My friends back in Malaysia, Komathi D., Dr.Vasanthi S. and Parthiban R. for their constant 

support. My friends and housemates in Newcastle for being my moral support while making 

my stay in Newcastle meaningful. Special thanks to Shengnan Yu, Aishath, Misgun, Khar 

Mun Looi, Low Hock Soon, Dr.Cumanan K. and Arun  George K. 

 

The admin and IT support staffs of CEAM who has been very helpful and efficient in 

providing support as and when it was needed. Special thanks to Justine, Vince and Daniel.  

 

Finally, to all the research and postgraduate students, past and present, of the School of 

Chemical Engineering and Advanced Materials, for making my period spent here an 

enjoyable one. 

 

                  Jegalakshimi Jewaratnam , 12-12-12. 



iv 

 

ABSTRACT 

ACKNOWLEDGEMENTS 

CHAPTER 1: INTRODUCTION 

1.1 Introduction         1 

1.2 Motivation         2 

1.3 Aims and objectives        3 

1.4 Contributions         4 

1.5 Publications         5 

1.6 Thesis layout         6 

CHAPTER 2:  LITERATURE REVIEW 

2.1 Introduction                   8 

2.2       Fermentation control  10 

2.3 Fed-batch fermentation control and optimization    13 

2.3.1 Overview        13 

2.3.2 Fed-batch fermentation system      14 

 2.3.3 Batch to batch control and optimization    16 

2.4 Iterative Learning Control (ILC)      18 

 2.4.1 ILC versus conventional feedback control    20 

 2.4.2 Basic ILC algorithm       22 

2.4.3 PID (Proportional plus Integral and Derivative) controller  

versus ILC        24 

2.4.4 PID (Proportional plus Integral and Derivative) controller  

assisted ILC        24 

2.4.5 ILC versus other learning controllers     25 

2.4.6  Advantages of ILC       26 

2.4.7 Limitations of ILC       27 

 2.4.8    Desirable performance criterion for ILC    28 

2.5 Batch to batch model predictive iterative learning control   29 

2.6 Product quality control and optimization      30 



v 

 

2.7       Introduction of MLR, PCR and PLS       32 

 2.7.1 Multiple linear regressions      32 

 2.7.2 Principal component regression      32 

 2.7.3 Partial least squares        34 

2.8 Theory of batch to batch iterative learning control    35 

       2.8.1     Nonlinear representation of batch processes    35 

     2.8.2 Linearisation of nonlinear batch process model   36 

           2.8.3 Linear time varying pertubation variables and model  37 

           2.8.4 Batch to batch iterative learning control    38 

2.9 Summary         42 

 

CHAPTER 3: SIMULATION OF A FED-BATCH FERMENTATION PROCESS 

3.1 Introduction          43 

3.2 An overview of Baker’s yeast fermentation     44 

3.3 Baker’s yeast fed-batch fermentation process model    46 

 3.3.1 Cell kinetic model       46 

3.3.2 Dynamic reactor model      47 

 

3.4  Baker’s yeast fed-batch fermentation process simulation   48 

3.5 Fermentation simulation validation with literature    50 

3.6 Summary         52 

 

CHAPTER 4: BATCH TO BATCH ITERATIVE LEARNING CONTROL USING 

UPDATED LINEARISED MODEL  

4.1 Introduction         53 

4.2 Development of linearised models      55 

4.3 Selection of weighting matrices, Q and R      57 

4.4  ILC performance on the simulated fed-batch fermentation process  60 

 4.4.1 ILC using multiple linear regression model    61 

 4.4.2 ILC using partial least squares model     63 

 4.4.3 ILC using principal component regression model   64 



vi 

 

  

4.4.4 Comparison of Case 2 performance for ILC using MLR,  

PLS and PCR models       65 

4.5 Feed rate profiles for batch to batch ILC with updated linearised models  66 

 4.5.1 Control profile under ILC with multiple linear regression model 66 

 4.5.2 Control profile under ILC with partial least squares model  67 

 4.5.3 Control profile under ILC with principal component regression  

model         68 

4.6 Summary 1          69 

4.7 Alterations in batch to batch updated model ILC simulation testing  

conditions          70 

4.8 New set of historical batches       72 

4.9 Selection of Q and R value for new set of historical batches   73 

4.10 Results for Case studies 1, 2 and 3 with new set of historical batches 74 

4.11 Feed rates for Case 2 with new set of historical batches    78 

4.12 Summary 2         80 

 

CHAPTER 5: RELIABLE BATCH TO BATCH ITERATIVE LEARNING 

CONTROL OF A FED-BATCH FERMENTATION PROCESS 

5.1 Introduction          81 

5.2 Confidence intervals for multiple linear regression model predictions 82 

5.3 Incorporation of model prediction confidence bounds to enforce reliability 83 

5.3.1 Reliable ILC with multiple linear regression models   83 

5.3.2 Reliable ILC with principal component regression models  85 

5.3.3 Reliable ILC with partial least squares models   86 

5.4 Results and Discussion       86 

5.4.1 Results for ILC with multiple linear regressions model  86 

5.4.2 Results for ILC with principal component regression model  95 

5.4.3  Results for ILC with partial least squares model   101 



vii 

 

5.5 Conclusions         106 

CHAPTER 6: ITERATIVE LEARNING CONTROL WITH UPDATED 

LINEARISED MODELS FROM A SLIDING WINDOW OF HISORICAL 

BATCHES AND MEAN NOMINAL TRAJECTORIES 

6.1 Introduction         107 

6.2  Model updating using sliding window approach     109 

6.3 Batch to batch ILC with updated models and moving window of  

historical batches        111 

6.3.1 ILC using models identified from sliding window and MLR 112 

 6.3.2  ILC using models identified from sliding window and PCR  113 

 6.3.3 ILC using models identified from sliding window and PLS  115 

 6.3.4 Summary        116 

6.4 Batch to batch updated model using averaged nominal trajectory with  

growing historical batches       117 

 6.4.1 Performance of ILC using MLR model    118 

 6.4.2 Performance of ILC using PCR model    119 

 6.4.3 Performance of ILC using PLS model    120 

 6.4.4 Summary        121 

6.5 Reliable ILC using MLR models with averaged nominal trajectories and   

sliding window approach        121 

 6.5.1 The case with M=20 and λ= 3     122 

6.6 Conclusions         123 

CHAPTER 7: ILC WITH ADAPTIVE WEIGHTING PARAMETERS IN THE OBJECTIVE 

FUNCTION 

7.1 Introduction         125 

7.2 The proposed method        128 



viii 

 

7.3 Continuously decreasing Q/R ratio      130  

7.3.1 ILC using MLR models with R0=0.0001I    130 

 7.3.2 ILC using MLR models with R0=0.00001I    131 

 7.3.3 ILC using PCR models with R0=0.0001I    132 

 7.3.4 ILC using PCR models with R0=0.00001I    134 

 7.3.5 ILC using PLS models with R0=0.0001I    136 

 7.3.6 ILC using PLS models with R0=0.00001I    137 

7.4 Adaptive Q/R ratio for pre-defined error limit    138 

7.4.1 ILC using MLR models with R0=0.0001I    139 

 7.4.2 ILC using MLR models with R0=0.00001I    140 

 7.4.3 ILC using PCR models with R0=0.0001I    141 

 7.4.4 ILC using PCR models with R0=0.00001I    143 

 7.4.5 ILC using PLS models with R0=0.0001I    144 

 

7.5 Reliable ILC with adaptive Q and R ratio     146 

 7.5.1 Reliable ILC using MLR models with adaptive Q and R ratio 146 

 7.5.2 Reliable ILC using PCR models with adaptive Q and R ratio 147 

 7.5.3 Reliable ILC using PLS models with adaptive Q and R ratio 148 

7.6 Conclusions         149 

CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORKS  

8.1 Conclusions         150 

8.2  Suggestions for future works       152 

REFERENCES         154 

 

 



ix 

 

LIST OF FIGURES 

Figure 2.1: Sample feed rate profile       14 

Figure 2.2: A standard iterative learning control scheme    19 

Figure 2.3: Conventional feedback control system     20 

Figure 2.4: ILC versus conventional feedback control system   21 

Figure 2.5: Performance comparison of ILC, PID and hybrid approaches  25 

Figure 2.6: Description of PLS       34 

Figure 3.1: Profiles of feed flow rate and volume for all cases              49 

Figure 3.2: Glucose, Oxygen, Ethanol and Biomass concentration produced  

in the process simulation       51 

Figure 4.1: Comparison of different R values     58 

Figure 4.2: Batch to batch ILC using MLR model     61 

Figure 4.3: Batch to batch ILC using PLS model     63 

Figure 4.4: Batch to batch ILC using PCR model     64 

Figure 4.5: Comparison of the control strategies based on MLR, PLS and  

PCR models for Case 2 (updating Gs, Ys and Us)   65 

Figure 4.6: Feed rate profile for batch to batch ILC using MLR model in Case 2 66 

Figure 4.7: Feed rate profile for batch to batch ILC using PLS model in Case 2 67 

Figure 4.8: Feed rate profile for batch to batch ILC using PCR model in Case 2 68 

Figure 4.9: Historical batches for the new simulation condition   72 

Figure 4.10: Comparison of different R values for new historical batches  73 

Figure 4.11: End-batch biomass concentration for Case 1: fixed Gs, Ys & Us 75 

Figure 4.12: End-batch biomass concentration for Case 2: updated Gs, Ys & Us 75 



x 

 

 

Figure 4.13: End-batch biomass concentration for Case 3: updated Gs, Fixed  

                     Ys & Us         76 

Figure 4.14: Feed rate profile for Case 2 with MLR model    78 

Figure 4.15: Feed rate profile for Case 2 with PLS model    78 

Figure 4.16: Feed rate profile for Case 2 with PCR model    79 

Figure 5.1: End-batch biomass concentration for ILC with MLR when λ is  

0.1, 0.2, 0.3, 0.4 and 0.5.       87 

Figure 5.2 (a): End-batch biomass concentration for ILC with MLR for λ  

                        between 1  and 5.       89 

Figure 5.2 (b): End-batch biomass concentration for ILC with MLR for    

between 1 and  5 in the presence of disturbance.   89 

Figure 5.3 (a): End-batch biomass concentrations for ILC with MLR for λ  

between5.5 and 10       91 

Figure 5.3 (b): End-batch biomass concentration for ILC with MLR for λ  

between 5.5 and 10 in the presence of disturbance   91 

Figure 5.4: End-batch biomass concentrations for ILC with MLR when  

λ is 11, 15, 25 and 50.       93 

Figure 5.5:  End-batch biomass concentration for ILC with MLR when 

 λ is 0.1, 3, 3.5, 4, 5 and 10.      94 

Figure 5.6: End-batch biomass concentration for ILC with PCR when  

λ is 0.1, 0.2, 0.3, 0.4 and 0.5      95 

Figure 5.7: End-batch biomass concentration for ILC with PCR when  

λ is 0.6, 0.7, 0.8 and 0.9.       96 

Figure 5.8: End-batch biomass concentrations for ILC with PCR when 

 λ is 1, 2, 3 and 3.5.       97 

Figure 5.9: End-batch biomass concentrations for ILC with PCR when 

 λ is 4, 5, 6 and 7.        98 



xi 

 

 

Figure 5.10: End-batch biomass concentration for ILC with PCR when  

λ is 8, 9 and   10.       99 

Figure 5.11: End-batch biomass concentrations for ILC with PCR model when  

λ is 0.9, 3.5, 6.0 and 10.       100 

Figure 5.12: End-batch biomass concentrations for ILC with PLS model when  

λ is 0.1, 0.2, 0.3, 0.4 and 0.5.      101 

Figure 5.13: End-batch biomass concentrations for ILC with PLS model when  

λ is 0.6, 0.7, 0.8, 0.9 and 1.0.      102 

Figure 5.14: End-batch biomass concentrations for ILC with PLS model when  

λ is 1, 2, 3, 4 and 5.       103 

Figure 5.15: End-batch biomass concentrations for ILC with PLS model when  

λ is 6, 7, 8, 9 and 10.       103 

Figure 5.16: End-batch biomass concentrations for ILC with PLS model when  

λ is 0.01, 0.02, 0.03, 0.04, and 0.05.     104 

Figure 5.17: End-batch biomass concentrations for ILC with PLS model when  

λ is 0.06, 0.07, 0.08, 0.09 and 0.1     104 

Figure 5.18: End-batch biomass concentration for ILC with PLS model  

comparing λ values 0.05 and 0.1     105 

Figure 6.1: Model updating using a sliding window approach    109 

Figure 6.2: End of batch biomass concentration under ILC with batch-wise  

updated MLR models using a sliding window approach   112 

Figure 6.3: End of batch biomass concentration under ILC with batch-wise  

updated  PCR models using a sliding window approach   113 

Figure 6.4: End of batch biomass concentration under ILC with batch-wise  

updated  PLS models using a sliding window approach   115 

Figure 6.5: Performance of ILC using PLS and PCR models with and without 

 sliding window approach       117 



xii 

 

 

Figure 6.6: Batch to batch control performance using MLR models with  

averaged nominal trajectories (A=2 to 5)     118 

Figure 6.7: Batch to batch control performance using PCR models with  

averaged nominal trajectories (A=2 to 5)     119 

Figure 6.8: Batch to batch control performance using PLS models with  

averaged nominal trajectories (A=2 to 5)    120 

Figure 6.9: ILC control performance with M=20, λ= 3, and various values of A 122 

Figure 7.1:  ILC performance with continuously decreasing Q/R ratio for ρ  

between 0.5 and 0.9 using MLR models with R0=0.0001I  130 

Figure 7.2:  ILC performance with continuously decreasing Q/R ratio for ρ  

between 0.5 and 0.9 using MLR models with R0=0.00001I  131 

Figure 7.3:  ILC performance with continuously decreasing Q/R ratio for ρ   

between 0.7 and 0.9 using PCR models with R0=0.0001I   132 

Figure 7.4:  ILC performance with continuously decreasing Q/R ratio for ρ  

between 0.99 and 0.95 using PCR models with R0=0.0001   133 

Figure 7.5:  ILC performance with continuously decreasing Q/R ratio for ρ  

between 0.6 and 0.9 using PCR models with R0=0.00001I  134 

Figure 7.6:  ILC performance with continuously decreasing Q/R ratio for ρ  

between 0.8 and 0.9 (a) and between 0.95 and 0.99 (b) using PLS  

models with R0=0.0001I       136 

Figure 7.7:  ILC performance with continuously decreasing Q/R ratio for ρ  

between 0.60 and 0.90 using PLS models with R0=0.00001I   137 



xiii 

 

Figure 7.8:  ILC performance with error dependant adaptive Q/R ratio for ρ  

between 0.7 and 0.9 using MLR models with R0=0.0001I  139  

Figure 7.9:  ILC performance with error dependant adaptive Q/R ratio for ρ  

Between 0.5 and 0.9 using MLR models with R0=0.00001  140  

Figure 7.10:  ILC performance with error dependant adaptive Q/R ratio for ρ  

between 0.6 and 0.95 using PCR models with R0=0.0001I  141  

Figure 7.11:  ILC performance with error dependant adaptive Q/R ratio for ρ  

between 0.4 and 0.7 using PCR models with R0=0.00001I  143  

Figure 7.12:  ILC performance with error dependant adaptive Q/R ratio for ρ  

between 0.50 and 0.90 using PLS models with R0=0.0001I  144  

Figure 7.13: Performance of reliable ILC with adaptive Q and R ratio using  

MLR models        146 

Figure 7.14: Performance of reliable ILC with adaptive Q and R ratio using  

PCR models        147 

Figure 7.15: Performance of reliable ILC with adaptive Q and R ratio using  

PLS models        148 

 

 

 

 

 

 

 

 



xiv 

 

LIST OF TABLES 

Table 3.1: Parameters used in cell kinetics and reactor dynamic model  48 

Table 5.1: Selected end-batch biomass concentrations (g/l) for MLR for λ 

 between 0.1 and 0.5.       87 

Table 5.2: End-batch biomass concentrations (g/l) for ILC with MLR for λ  

 between 1 and 5.        89 

Table 5.3: Selected end-batch biomass concentrations (g/l) for ILC with MLR  

 for λ between 5.5 and 10.       91 

Table 5.4: Selected batches end-batch biomass concentrations (g/l) for λ is  

11, 15, 25, 50 and 100       93 

Table 5.5: End-batch biomass concentrations (g/l) for ILC with PCR when λ is      

between 0.1 and 0.9       96 

Table 5.6: End-batch biomass concentrations (g/l) for ILC with PCR for λ  

 between 1and 10        97 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

LIST OF NOMENCLATURE  

       ethanol concentration (gL
-1

) 

Ceo    initial ethanol concentration
 

       oxygen concentration (gL
-1

) 

  
      interface concentration of oxygen (gL

-1
) 

Coo     initial oxygen concentration 

       substrate (glucose) concentration (gL
-1

) 

Cso    initial substrate concentration
 

       biomass concentration (gL
-1

) 

Cxo    initial biomass concentration 

C2H6O           ethanol 

C6H12O6                      sucrose 

CHHXOOXNNX              molecular formula of yeast biomass 

CO2   carbon dioxide 

F       feed flow rate (Lh
-1

) 

Fo     initial feed  

Gs    linearised model 

h    data record interval 

H2O    water  

HX, OX, NX   elemental analyses of biomass 

                                      saturation constant for ethanol (gL
-1

) 

       inhibition constant (gL
-1

) 

kLao    total volumetric oxygen transfer coefficient (h
-1

) 

      saturation constant for oxygen (gL
-1

) 

       saturation constant for substrate (glucose) (gL
-1

) 



xvi 

 

NH3                             ammonia 

O2    oxygen 

          maximum specific ethanol consumption rate (gg
-1

h
-1

) 

         ethanol oxidation rate  

Qe, pr   specific ethanol production rate (gg
-1

h
-1

) 

      glucose consumption rate for maintenance energy (gg
-1

h
-1

) 

          maximum specific oxygen consumption rate (gg
-1

h
-1

) 

          maximum specific substrate consumption rate (gg
-1

h
-1

) 

Q and R   weighting matrices for objective function 

RQ    respiratory quotient 

      substrate concentration of feed (gL
-1

) 

t     time (h) 

td     time delay (h) 

tf      total fermentation time 

Us     nominal substrate feed profile 

V      volume (L) 

Vfer      fermentor volume 

Vo     initial reactor volume 

   ⁄    yield of carbon dioxide on ethanol (gg
-1

) 

   ⁄
      yield of carbon dioxide on substrate oxidative metabolism (gg

-1
) 

   ⁄
       yield of carbon dioxide on substrate reductive metabolism (gg

-1
) 

   ⁄     yield of ethanol on oxygen (gg
-1

) 

   ⁄    yield of ethanol on substrate (gg
-1

) 

   ⁄     yield of oxygen on substrate (gg
-1

) 

Ys     nominal biomass output  



xvii 

 

   ⁄     yield of biomass on ethanol (gg
-1

) 

   ⁄
     biomass yield on substrate in oxidative metabolism (gg

-1
) 

   ⁄
       biomass yield on substrate in reductive metabolism (gg

-1
) 

 

Italic fonts 

       error from previous run 

k    batch numbers 

L      ILC learning gain 

t     time for kth batch run 

      control input of the previous batch 

        control input for the current batch 

X    biomass 

      desired output trajectory 

       previous batch output 

 

Greek Fonts 

α    time constant 

λ    weighting parameter for model prediction confidence bounds 

µ       specific growth rate (h
-1

) 

        critical specific growth rate (h
-1

) 

ρ    weighted parameter 

 

 

 

 

 

 



xviii 

 

LIST OF ACRONYMS 

CCL   current cycle learning  

ILC   iterative learning control 

MLR   multiple linear regression 

MPC   model predictive control 

MPCB   model prediction confidence bounds 

ODE    ordinary differential equation 

PCCL   previous and current cycle learning 

PCL   previous cycle learning  

PCR    principal component regression 

PID   proportional–integral–derivative 

PLC    programmable logic controllers 

PLS    partial least square 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1: INTRODUCTION 

1.1  Introduction   

Fermentation applications stretch to wide industrial sectors. Beginning with mere 

domestic household practice, mainly for producing bread and wine in much earlier days, 

today fermentation have gained wide acceptance in industries such as pharmaceutical, 

food, household products, textiles, agriculture, chemicals, environment and medicine. 

Fermentation aim to operate by manipulating and controlling cell lines to produce 

maximum product yield with best possible quality, at lowest variability, reasonable 

productivity cost and in the most simple and efficient way. These processes are carried 

out in either batch, fed-batch or continuous reactors depending on the demand and 

production cost of the product. Typically batch or fed batch operations are used as a scale 

up process from the successful laboratory experiment procedures. A classic feature of 

batch processes such as fermentation is that the same process unit is used in the 

manufacturing of different products and each product is of relatively small amount and 

high value added. 

The optimal operation of batch processes is very important in the face of 

increasing competition and stringent regulations on product quality and waste disposal. 

Optimal control can be used to improve the profit of batch process manufacturing 

(Bonvin and Srinivasan, 2003). In classic batch process operation, a fixed recipe is 

applied to the batch process with a PID controller to control reactor temperature (Lee et 

al., 1999). Based on the feedback and visual inspection on the reactor content, the recipe 

is adjusted manually. A knowledgeable operator is needed to adjust the control 

parameters based on intuition and heuristics. At this point, negligence of the operator is a 

feared risk. Despite that, after long period of continuous iterative amendments, an 

improved but not optimal product quality is obtained. It is notable that such improvement 

is possible because the batch operation is repetitive in nature (Lee and Lee, 2003). In this 

practice, repeatedly occurring measured error from batch to batch can be addressed. 

However, many other unknown parametric and process disturbances that occur cannot be 

apprehended via this method. There are sophisticated optimal control algorithms that can 

be used but are not favoured in the industry due to setting up cost and complexity. An 

effective yet simple automated process control and optimization algorithm is necessary 

(Alford, 2006). 
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Based on the current industrial practice, the iterative improvement has been 

identified to have similarity with the iterative learning control (ILC) which has been 

successfully used in the robotic industry for over 30 years (Bristow et al., 2006). In 

recent years, ILC have been applied in the run-to-run control of batch processes to 

directly update input trajectory (Zhang et al., 2008). The basic idea of ILC is to update 

the control trajectory for a new batch run using the information from previous batch runs 

so that the output trajectory converges asymptotically to the desired reference trajectory. 

Refinement of control signals based on ILC can significantly enhance the performance of 

tracking control systems (Xiong and Zhang, 2003). ILC does not involve very complex 

process modelling and is rather a simple control system.  

1.2  Motivation 

 Although ILC has been actively studied for batch process control, there are 

several practical issues that have not been solved. Firstly, ILC is derived based on linear 

models, but most batch processes are typically highly nonlinear. Efficient representation 

of a highly nonlinear batch process by a linearised model is a challenging problem. 

Secondly, the practical difficulties faced by the industrial implementation of optimal 

control strategy include the unavoidable model plant mismatches and the presence of 

unknown disturbances (Xiong and Zhang, 2005a). Linearising around the nominal 

control trajectory is the common approach used in batch process ILC. This is acceptable 

when batch to batch variations are not significant. When significant difference in batch 

initial condition exist, then the batch to batch variations can be very large and linearising 

around a fixed nominal control trajectory can introduce significant errors. In such 

conditions, it would be desirable to incrementally update the linearised model as the 

batch to batch operation progresses. In a recent development, batch to batch ILC based 

on linearized perturbation model identified using multiple linear regressions (MLR) is 

reported by Xiong and Zhang (2003). In that work, the perturbation model is obtained 

using deviations of process input and output from their nominal trajectories and is 

updated after every batch by using the immediate previous batch as the nominal batch. 

This way, the unexpected process and parametric disturbances is expected to be captured 

and removed to render a more precise model prediction.  
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1.3  Aims and Objectives 

The aims of the study are  

 to investigate an ILC strategy for a fed-batch fermentation process to address 

model-plant mismatches 

 to investigate the performance of different linearised models used in the batch to 

batch iterative learning control strategy  

 to improve the performance of simple iterative learning control method  

In order to cope with model plant mismatches, the batch wise linearised model will be re-

identified after each batch run. Multiple linear regressions (MLR), partial least squares 

(PLS) regression and principal component regression (PCR) is used in identifying the 

model parameters. A reliable ILC techniques incorporating model prediction confidence 

is developed. Model prediction confidence bounds are incorporated into the optimization 

objective function and a reliable ILC law is developed and analyzed. Batch to batch 

control techniques capable of coping with significant batch to batch initial condition 

variations is developed.  The developed techniques are tested on a simulated fed-batch 

fermentation process.  

The objectives of the study, which have been discussed above, are listed below: 

1. To identify batch wise linearised models for highly non-linear fed-batch fermentation 

processes from process operational data and develop batch to batch iterative learning 

control based on the identified models. The model parameters will be generated using 

linear regressions, which includes multiple linear regression (MLR), partial least 

square (PLS) and principal component regression (PCR). 

2. To develop reliable batch to batch iterative learning control algorithm incorporating 

model predictive confidence that addresses significant parametric and process 

uncertainty.  

3. To develop a simplified and efficient batch to batch ILC by using sliding window of 

process data in identifying the process model. The process model developed from 

smaller amount of most recent process data should be able to capture the relevant 

dynamics of the original systems at a particular process environment to improve and 

sustain optimal productivity.  
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4. To investigate, compare and further improve the performance of MLR, PCR and PLS 

model based ILC algorithms.  

5. To exploit the ILC algorithm to improve batch to batch updated linearised model 

based ILC method performance. The suggested techniques should improve the 

convergence rate and stability of the process system.  

 

1.4      Contributions 

 This thesis investigates an ILC strategy for a fed-batch fermentation process 

using linearised models identified from process operational data. The control policy 

updating is calculated using a model linearised around a reference batch. In order to cope 

with process variations and disturbances, the reference batch can be taken as the 

immediate previous batch. In such a way, the model is a batch wise linearised model and 

is updated after each batch. The newly obtained process operation data after each batch is 

added to the historical data base and an updated linearised model is re-identified. In order 

to overcome the colinearity among the predictor variables, this study proposes that the 

linearised model can be identified using principal component regression (PCR) and 

partial least squares (PLS). The linearised model using multiple linear regressions (MLR) 

is also studied and the performances for all the regression models were evaluated. 

 

   As many batch processes are highly nonlinear, the batch-wise linearised model 

may only be valid over a small operating range. Thus control actions from the ILC 

strategy may not be reliable if the mismatch between the linearised model and the plant 

becomes large. In order to overcome this problem, a reliable model based ILC strategy is 

proposed in this work. Model prediction confidence bound for future predictions can be 

obtained from historical process operation data used for model identification. The model 

prediction confidence bound is incorporated into the model based ILC optimisation 

objective function and wide model prediction confidence bounds are penalised.  

In order for the updated model to capture the process behaviour in the face of 

process variations, a new technique using a moving window of the historical batches to 

update batch-wise linearised models is developed in this work. The historical batches 

were updated after every batch run but using only the M recent number of batches. In 

other words, after every run the “oldest” batch is forgotten and the new batch is included 

into the sliding “window” of historical batches. 
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In some cases the stability of the control system is affected in the presence of 

disturbance. In order to have more control on the future control input, slight adjustment 

is made to the learning rate of the system. Instead of using a constant weighting ratio, an 

adaptive weightings ratio method is introduced to the optimization objective function. 

This method is meant to adjust the control input of future batch in accordance to the error 

magnitude.  

 In accordance to the repetitive nature of fed-batch fermentation processes, ILC 

applied to these processes is meant to improve the control action progressively and 

iteratively. The existing feed-back controllers only account for within batch input actions 

based on batch run time dimension. In general, ILC works on 2 dimensions, which is both 

intra and inter-batch. Since there are a lot of controllers already in existence and used in 

manufacturing processes, it not may not be necessary to make a total change on the current 

control system. A controller that adds to the performance of the existing system will be more 

desirable because it is economical and easier to be implemented. The basic objective of this 

work is to improve on the existing control systems. The feed-forward action of this proposed 

ILC will give the input for batch to batch control actions to improve and sustain product 

yield, which is in addition to the existing time-dimensional control system. 
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1.6  Thesis Layout 

  The thesis is structured as follows. Chapter 2 provides a literature review of 

batch to batch iterative learning control of a fed batch fermentation process.  An 

introduction to fed batch fermentation and iterative learning control concept are 

presented.  Then, a review on the past works on batch to batch iterative learning control 

method is presented. Finally, the mathematical representation of the control method and 

regression models used in this work is laid out. Chapter 3 presents the dynamic and 

kinetic models of Baker’s yeast fed-batch fermentation process. The models were coded 

in MATLAB and the simulation results were verified with reference paper. The 

simulation assumptions were also outlined. The simulation of this process is used as a 
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case study in the research. In Chapter 4, the parameter selection outcome for the 

simulation work is presented. The outcome of batch to batch ILC control with updated 

linearised models applied in Baker’s yeast fed-batch fermentation simulations is 

presented and discussed.  Following that, in Chapter 5, the development of reliable batch 

to batch ILC method is illustrated. The improvement by incorporating model prediction 

confidence bounds into MLR, PLS and PCR models were recorded and analysed. 

Chapter 6 points out the possibility of using reduced number of historical batches to 

develop the linearised process model for batch to batch ILC. The predefined number of 

batches is updated after every batch run to represent the current system condition. This 

technique proves to further improve the stability and convergence of batch to batch 

updated model ILC performance.  Chapter 7 is on a study about feasible manipulation of 

the weighting parameters ratio in the objective function to improve the control 

performance in the presence of error.  The adaptive weighting ratio method gave more 

control to the system and enhances system stability. Finally, Chapter 8 concludes the 

whole report and provides some suggestions for future works. 
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CHAPTER 2:  LITERATURE REVIEW 

2.1  Introduction            

 Bioprocess is used in wide spectrum of production line these days such as to 

produce biofuels, renewable chemicals, biotechnology, aquaculture, poultry production, 

pharmaceuticals, enzymes and food processing. Bioprocesses literally use living cells to 

produce desired products. There are different dynamics involved in the production 

systems. The types of bioprocess dynamics include fermentations, anaerobic digestions, 

biomass cultivations, animal and fish production systems, and targeted substance 

extractions from biological materials. One of the popular bioprocess mechanisms is 

fermentation. Depending on the characteristics of the fermentation and its goals, 

fermentations are carried out in batch, fed-batch or continuous process. Fed-batch reactor 

is a more attractive choice in fermentation to produce high cell density than batch 

fermenter (Lee et al., 1999; Ashoori et al., 2009). About 50% of the fermentation 

processes are carried out in fed-batch mode (Givens, 2009) and therefore, this work is 

focused on fed-batch fermentation.  

 Fed-batch reactors can be easily modified for changing product specifications 

where one vessel can be used for several products and can be used to produce in small 

volumes (Morris and Zhang, 2009). Therefore, fed-batch bioreactors are usually used in 

bioprocesses involving agile manufacturing of high value added products such as 

specialty polymers (Zhang, 2005), pharmaceuticals (Hong et al., 2011), fine chemicals, 

and bio-products (Bonvin 1998; Zhang, 2005). Agile manufacturing in this context is 

referred to the biochemical processes developed to respond quickly to evolving customer 

needs and market changes while still controlling costs and rendering quality. Product 

quality is an important specification for fermentation production line. To date, there are 

no sensors to directly measure product quality for fermentation yields (Muske et al., 

2004). 

 In a complete fed-batch bioreactor setup in industry today, there are a few 

sensors used to control the fermentation environment that gives indirect measurements of 

the product quality. In the current industrial practice, samples are withdrawn at 

predetermined time intervals and at the end of a batch. The samples are tested in a lab 

and the performance of the reactor at the sampling time is evaluated. This creates a lag 

time to determine the process performance. Based on the lab results, the feed rate for the 
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new batch run is calculated offline using a mathematical model that is deemed best 

representing a particular fermentation process. The offline calculated control policy may 

not be optimal when used on the real process mainly because the mathematical models 

used in the calculation may not wholly represent the real plant. Therefore, there exist 

model-plant mismatches. In addition to that, presence of unknown disturbances is 

literally unavoidable and unpredictable for fed-batch fermentation process. These 

uncertainties cannot be anticipated and therefore, cannot be addressed in the offline 

calculations. Furthermore, there is high possibility that variation in the initialization 

parameter such as due to reactor fouling or raw material specification variation could 

occur in a batch run. The initialization parameter uncertainties may vary from one batch 

to another batch which makes offline calculation not fit to account for these unexpected 

disturbances (Xiong and Zhang, 2003; Lei et al., 2001). Inefficiency of offline calculated 

control policy is an issue in current fed-batch fermentation control and optimization.  

 The other issue in current fed-batch fermentation control and optimization in 

the industry is dependency on human operators to monitor and optimize on-line batch 

performance manually. The offline calculated control policy is introduced to the next 

batch run. The new control trajectory will be periodically monitored by plant personnel 

based on the available records of sensor readings. Experienced personnel are needed to 

make the necessary amendments in heuristic manner in the event there is a deviation 

from the control policy trajectory (Yuzgec et al., 2009). No mechanisms are 100% 

efficient and so are human. There could be human error or carelessness where important 

changes could be missed and cause wastage due to faulty production. Besides that, the 

experienced personnel may leave the company for a better job. Then, the company has to 

spend some time and money to train new personnel and risk losing them too.  

 Both these issues call for the need of an advanced control system which will 

either replace the present control system or act as a supervisory control system for the 

existing control systems. The advanced control system should be able to automatically 

calculate the control policy for the next batch based on the immediate previous batch 

performance and self-learn the system to improve product quality performance from one 

batch to another. There are two ways this can be done (Camacho et al., 2007). One way 

is to combine the fundamental process knowledge with data-based models to 

complement the inefficiency of the mechanistic model (Lee et al., 1999; Ng and Hussain, 

2004; Rotem et al., 2000). The other method is to completely depend on the input and 
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output data and developing a process model by exploiting the available data (Camacho et 

al., 2007; Alford, 2006; Cueli and Bordons, 2008). The data-based model is becoming 

more and more favourable these days due to the transformation of the bioprocess 

industry into agile manufacturing environment. Furthermore, the repetitive nature of 

batch process serves as an advantage for application of data-based model (Vlassides et 

al., 2001). A collection of input and output data from repeated batch trials is expected to 

have some sort of correlation. This correlation can be exploited to   to develop an 

intelligent and efficient control method for fed-batch fermentation systems. One of the 

popular data-based control methods is iterative learning control (ILC) (Lee and Lee, 

2003; Gao et al., 2001; Mezghani et al., 2001; Fu and Barford, 1992).  ILC is literally the 

best choice of control method when it comes to control of repetitive system. Therefore, 

ILC is the most appropriate choice of control technique for fed-batch fermentation 

system due to its repetitive nature.  

    The chapter is organised as follows. Section 2.2 gives a brief history of control and 

optimization for fermentation process. Control methods used in the past and present is briefly 

discussed. Section 2.3 presents an overview of the fed batch fermentation control and 

optimization. The fed- batch fermentation system operation is explained. Then, current issues 

with batch to batch control and optimization are discussed. Section 2.4 presents a complete 

introduction to iterative learning control. Section 2.5 presents the issues pertaining batch to 

batch model predictive iterative learning control.  Section 2.6 presents issues on fed batch 

fermentation product quality control and optimization. Section 2.7 present the mathematical 

representation of the batch to batch iterative learning control. Finally, Section 2.8 concludes 

the chapter. 

 

2.2       Fermentation control  

The history of fermentation control and optimization started way back in 1940’s 

during the first industrial production of antibiotics (Beyeler et al., 2000). Beyeler et al. 

(2000) has given an interesting chronological account on the development of automated 

control system from 1940’s to the 21
st
 century. It started off with proportional–integral–

derivative (PID) controllers and then programmable logic controllers (PLC) and then 

picked up swiftly with the advancement of computers in the 1970’s. The current interest 

in advance control has been there for the last 25 years. In theory, automation is only 

possible if the process behaviour is known and predictable at any time. 
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In the past till the early 1980’s, researchers were focused in developing 

comprehensive mathematical models to understand, control and optimize a bioprocess. 

The accuracy of the models is determined by the model parameters. Model parameters 

are determined through considerable amount of experiments. The more complex a 

system is, more parameters are required and therefore more experiments will have to be 

conducted. Ideally, with a comprehensive and accurate mathematical model of a 

particular bioprocess, the operation parameters can be varied to obtain optimal biomass 

growth and/or product formation (Muske et al., 2004). It is as easy as that only and only 

if such mathematical models are present or easily attainable. Unfortunately, in reality 

obtaining an accurate and comprehensive mechanistic model requires extensive amount 

of time, effort and resources. In the ever changing market environment, the product 

demands and recipes change quite drastically. The time to market literally decides the 

competency and sustainability of the industrial players. In addition to that, bio-products 

are usually high value added and only produced in small amounts. Some products are 

produced only when there is a current need, in other words custom made orders. 

Therefore, developing a mechanistic model that covers all the possible processing 

condition is very laborious and less attractive because it is resource consuming 

(Vlassides et al., 2001; Xiong and Zhang, 2005b). 

In the urge to better understand the cell mechanisms, various studies have been 

conducted to develop on-line sensors and chemical analysers. These are used to estimate 

different phases and aspects of the bioprocess to supply data to better understand the 

insights of the processes which are then expected to aid in the bioprocess control and 

optimization. It is understood that process control and optimization is specific for a 

particular process and vessel. It is therefore important to identify process-specific cell 

stress factors, to understand the physiological responses to the vessel specific physical 

conditions. The mutual influences and interactions of the various physical and 

physiological parameters have to be analysed in detail. Thanks to the advanced 

development of genome sequencing, now it is possible to sequence almost any organisms 

of industrial interest rapidly (Wang et al., 2009). Wang et al. (2009) have given an 

account of recent development in the industrial bioprocess control and optimization in 

the context of system biotechnology emphasizing on strain developments to understand 

the microbial cell technology. Although knowledge about biological reactions has 

increased immensely during the last decades, whether the advanced technologies will 
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allow accurate prediction or interpretation of the complex behaviour of biological 

systems completely is still uncertain. With its huge variability, a biological process is not 

completely predictable. The on-line measurements do not contribute much to overcome 

this lack of knowledge as there are still only a few exceptions known where biological 

quantities such as biomass, products, intermediates or substrate can be measured on-line 

in an industrial environment (Beyeler et al., 2000). Till today, reliable and economical 

on-line measure of key parameters such as product concentration, quality and feed 

surplus in the reactor is almost nil (Muske et al., 2004; Karakuzu et al., 2006; Renard and 

Wouver, 2008).  

A large amount of process data are collected in bioprocess operations with the aid 

of the existing sensors and analysers and stored for almost no apparent use of it. These 

data remain underutilised in most of the bioprocess industries due to inability to capture 

and apply the knowledge represented by the data (Vlassides et al., 2001; Schugerl, 2001; 

Karakuzu et. al., 2006). The problem is not actually collecting more data but to 

effectively extract the knowledge in the already present database (Alford, 2006). Since 

the reactions at each phase in the process are interconnected, the collected data on the 

various parameters will exhibit exploitable correlation (Cueli and Bordons, 2008). Due to 

the repetitive nature of the biological process, the variation in the good and bad 

production condition of the past runs can be analysed and used to optimize future 

production (Vlassides et al., 2001).  

In the recent advanced control method development, intelligent controllers can be 

used to do pattern recognition based on the collection of data from past batch runs 

without any information on the real process system. Empirical models can be identified 

from the correlated data and used in the development of intelligent controllers. The 

empirical model based intelligent controllers are becoming popular simply because it is 

much easier and faster to be developed. In addition to that, data based models portray 

promising potential (Chachuat, 2007) to be used in fed batch fermentation process 

control.  
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2.3  Fed-batch fermentation control and optimization 

2.3.1 Overview 

 In the past, batch process control and optimization was mainly based on 

mechanistic models (Zhang, 2005). Mechanistic models are difficult and time consuming 

to develop. Therefore, mechanistic model based optimal control methods have become 

less attractive in the agile manufacturing environment. To overcome this problem, data 

based control models have become a popular choice of control method. Neural networks 

(Xiong et al.,2008; Zhang, 2008b;Tian et al.,2002) and fuzzy logic (Caramihai and 

Severin, 2009) have been reigning as a widely accepted data based control method. 

Neural networks are capable of approximating non-linear functions appreciably and have 

been used in batch process control and optimization. Neural networks are able to predict 

one-step-ahead or multi-step-ahead prediction are relative easy to build models (Zhang, 

2005). The accuracy and robustness of neural network are depending on the quantity of 

training data and training method. Ideally, large training data will give a more accurate 

and robust neural network model. The issue with quality measurement is limited number 

of data available because it is dependent on sampling time and lab analysis. Therefore, it 

is not as abundant as the sensor measurement data collection. Therefore, modification 

has to be made to neural network to cope with insufficient data which makes it 

complicated again.  

 Fed-batch fermentation control and optimization is a challenging task mainly 

because batch processes are highly non-linear and operates in transient state (Zhang, 

2005). The prime objective of fed-batch process is to produce maximum product with 

high quality in a safe and economical process operation. The product quality during a 

batch run is estimated via indirect measurements such as pH and temperature. The actual 

product quality data is obtained from lab analysis from the sample taken at the end of a 

batch run (Srinivasan et al., 2002). The challenge in control and optimization of fed-

batch fermentation is to provide an accurate, long range prediction model to predict 

product quality at the end of a batch run (Zhang, 2005). These complexities in fed-batch 

fermentations call for an advanced supervisory control system (Bonvin, 1998). 
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2.3.2 Fed-batch fermentation system  

 Fermentation is usually carried out in a batch or fed-batch mode mainly 

because fermentation is a highly nonlinear process. Since there is no steady state for 

fermentation, continuous batch process mode is less attractive. Typical batch 

fermentation is equivalent to a cake making process, where a lump sum of substrate 

needed for the total microorganism growth is fed at once at the beginning of the process. 

The fermentation process then runs for a fixed period of time until the whole substrate is 

used up for maximum growth for the allocated reactor size. Then, the biomass is 

harvested. Following that, the batch reactor is cleaned and sterilised for a fresh new start. 

The new batch starts with the exact same initial parameters and reactor condition. The 

process repeats until the quantity is achieved.  

 Fed-batch is an evolution from a batch system. The fed-batch fermenter only 

differs in the feeding technique compared to the batch system. Instead of feeding all the 

substrate at once, it is divided into a few intervals. For example as shown in Figure 2.1, if 

the fermentation run time is 100hrs, the feeding can be divided into 5 intervals and the 

feeding rates can be increased or decreased at every interval in accordance to the process 

need.  

 

 

 

 

 

Figure 2.1: Sample feed rate profile 

 In a typical fed-batch fermentation process, the bioreactor starts with initial 

volume (V0), biomass concentration (X0) and substrate concentration (S0). The 

substrate/feed is added over the finite reaction time or till the desired reactor volume is 

reached. Then, the reaction is allowed to proceed and complete at final reaction time, tf. 

After the reaction is completed, the reactor is drained and cleaned for use in the next run 

(Shukla and Pushpavanam, 1998). This is slightly different in a sequencing batch reactor 
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where the reactor is drained till it reaches V0. In this case, the final condition of the first 

run is the initial condition of the second run. 

 Ideally, the objective of using fed-batch in fermentation process is to feed the 

substrate at the same rate that the organism utilizes it. In other words, the feeding should 

be optimized in accordance to the process performance. This explains why fed-batch is 

more attractive choice in fermentation to produce high cell density. Unfortunately, this 

objective is difficult to achieve. Although every single repeat runs start with the exact 

same initial parameters, somehow the results are always different. It is desirable that the 

outcome varies in an acceptable range assuring consistency to a high percentage. 

However, it is often the case that something goes awfully wrong in the system and could 

not be detected till it is too late to make any changes to save it. Eventually, at end of the 

fermentation run time, it is realised that the product is out of specifications and had to be 

discarded. That accounts for a significant waste of resources.  This could be largely due 

to the fact that bioprocesses involve living organisms, which means expression of the 

microbial activities can be very complex and unpredictable. This forms the challenge in 

control and optimization of fed-batch fermentation process. Provided that the growth 

medium is in optimal condition, it is essential that the input is controlled and optimized 

effectively to ensure desired productivity (Jiang et al., 2012).  

 Fermentation biochemical pathways are usually characterised by substrate 

inhibition and/or product inhibition. The system controlling factors could be feed rates, 

product formation rate, surrounding parameters such as pH and temperature or process 

run times. In the past, motive of control and optimization in fed-batch fermentation were 

primarily on maximizing the biomass and/or product quantity (Shukla and Pushpavanam, 

1998). In the recent developments, despite quantity, quality is also of importance (Xiong 

and Zhang, 2003; Flores-Cerrillo and MacGregor, 2005;Wang and Srinivasan, 2009; 

Reiss et al., 2010). A very common approach for control and optimization of fed-batch 

fermentation is to optimize the feed rate (Shukla and Pushpavanam, 1998). Optimal 

feeding policies are often affected by batch run time which is often directly related to 

biomass concentration (Weigand, 1981), cell growth profile (San and Stephanopoulos, 

1986) and initial bioreactor input conditions (Cazzador, 1988). There are several types of 

feeding policies in a fed-batch reactor. They are: 
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i) Pulse feed: In this case the feed flow rate can be large and added to the reactor at 

various discrete instants. This feed profile raises the reactor volume through 

different stages. The concern to this type of reactor is how much to feed, which 

time to feed, how much time for each feeding and how much reactor volume 

change. 

 

ii) Continuous feeding for a finite time: In this feeding, the feeding starts at t=0 and 

continues till t=tf but the feeding rate will be changing at designated sub-intervals. 

At certain sub-intervals it could be zero if necessary. The sub-intervals could be 

equally or unequally divided (Shukla and Pushpavanam, 1998). 

2.3.3 Batch to batch control and optimization 

 Batch-to-batch or run-to-run optimization refers to the manipulation of the 

repetitive nature of batch processes, whereby the previous batch information can be used 

to improve the process recipe in order to stay closer to the desired output target for the 

future batches iteratively (Lee et al., 1999; Campbell et al., 2002; Xiong and Zhang, 

2005a). The idea of batch to batch control existed as a solution for issues related to the 

absence of equilibrium. In such cases, optimization works are performed around a 

trajectory from previous and current batch to improve the successive batches (Srinivasan 

and Bonvin, 2007). The key to the successful batch to batch optimization is in 

determining which and how information could be extracted from previous batches and 

use it to improve the next batch (Bonvin, 1998; Srinivasan et al., 2001). Srinivasan et al. 

(2002) pointed out that batch to batch optimization is appropriate to be used when off-

line product quality measurements are available. The study by Srinivasan et al. (2002) 

suggests that a relationship between the product quality measurements and key process 

variables can be developed to generate a batch to batch optimization strategy. For 

fermentation processes, feed rate is the main reactant and usually the deciding factor of 

the end-batch quality. Therefore, a relationship between product quality and feed rate can 

be developed. The feed rate can be used as control signals. The idea is to manipulate the 

feed rate effectively to achieve maximum end-batch desired product characteristics 

(Xiong et al., 2009).  

 Srinivasan et al. (2001) reported that batch to batch optimization method will 

result in improved yield as the batches progresses. However, batch to batch control is 
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only efficient in controlling future batch runs thus has no control on the current batch run 

(Xiong et al., 2005). The batch to batch control only acts on repetitive disturbances and is 

not efficient for non-repetitive error (Srinivasan and Bonvin, 2007). In the event the 

disturbances randomly changes from one batch to another, batch to batch control would 

become incompetent and may amplify the repercussion of the disturbances (Lee et al., 

2002). Therefore, previous studies have concluded that batch to batch control approach 

without integration of within batch feed-back is susceptible to perturbation thus slower in 

convergence (Bien and Xu, 1998; Tousain et al., 2001). 

 Xiong et al. (2005) conducted a study on integrated strategy by combining 

batch to batch ILC control and on-line control within current batch using shrinking 

horizon model predictive control. The idea is that the on-line control would immediately 

respond to disturbances within batch while the batch-to-batch ILC would correct 

deviation of the end-point from the desired output trajectory which is left uncorrected by 

the on-line controller. It was interesting to note that the on-line batch control was 

established in a similar formulation to the batch-to-batch control. The on-line predictive 

control was updated to the future control profile which was already calculated by the 

batch-to-batch ILC formulation. To be precise, the necessary deviation was added to the 

future interval control policy calculated using batch to batch control. There was no 

redundancy in directly calculating the future control action using on-line control. The 

integrated control strategy does complement each other (Lee and Lee, 2003; Flores-

Cerillo and MacGregor, 2003). It eliminates disturbance in the batch process faster 

compared to the simple batch to batch ILC control strategy (Xiong et al., 2005). 

 Though the integrated control strategy does have its advantage in terms of rapid 

disturbance elimination, the system also has its drawback. If the predictive errors 

calculated from the batch-to-batch controller are not added to the predictive model within 

a batch, on-line control calculation ends up ‘undoing’ the correction made by the batch-

to-batch controller (Lee et al., 2002). It is essential to ensure that the on-line control 

method is reliable and so is able to amend the future control policy while the batch is 

progressing (Lee and Lee, 2003). It is certainly possible but tedious. 

 It is true that in an end-point batch to batch control system, there is no 

information of the within batch quality evolution. If the desired quality trajectory is 

known and product quality at an intermediate phase may have significant impact on the 

final product quality, then it is absolutely necessary to have within batch control to 
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closely track the desired quality trajectory. It is also essential if the particular batch 

process shows signs of varying, frequent disturbances that significantly affects the end-

batch product quality. Otherwise, the within batch control may not be necessary.  

 Unless the disturbance elimination that enhances product quality within lesser 

amount of batches by using integrated control strategy contributes significantly in terms 

of overall operation cost, a simple near optimal control system is still a favourable 

option. In this agile manufacturing era, expensive and complex control strategies are 

becoming less favourable. It is deemed not necessary to closely track the desired 

trajectory if it does not have significant contribution to the cost effectiveness of the 

overall process/plant operation. A simple and reliable control system that achieves 

optimal product quality is more favourable when efficient cost operation and resource 

management are essential.  

 There are two types of batch to batch dynamic system controller design: the 

first one is to deal with the regulation problem and the second one is to deal with 

trajectory tracking problem. In the former problem, the controller is designed to 

manipulate the input variable to attain desired output even in the presence of unknown 

disturbances. As for the latter problem, the controller is designed to closely track desired 

trajectory to attain desired results (Bouakrif, 2010). Various studies have been done to 

design controllers to address these issues separately or simultaneously using single 

method or combined method. Some of the controllers used for trajectory tracking are 

proportional-integral-derivative (PID), adaptive control and fuzzy control. In a batch 

process, both the regulation and tracking trajectory problems can arise within a batch and 

in a batch-to-batch control (Bouakrif, 2010).  

2.4  Iterative Learning Control  

 Iterative learning control (ILC) as the name suggest, is a self-tuning learning 

control technique.  ILC is a favourable control technique for repetitive control systems. It 

is designed to exploit repetitiveness and enhance performance pattern via trial and error 

method (Verwoerd, 2005). Repetitive control systems do the same action over and over 

again. These systems usually have a finite run time and are expected to begin each trial 

with exact same initial conditions. When a system is repeated several times, a set of 

correlated and exploitable historical data is accumulated. Using the information from the 

repeated runs, ILC is designed to improve the control performance iteratively by 

gradually reducing the control error with increasing trial numbers. 
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A standard iterative learning control scheme is represented in Figure 2.2 below. 

 

Figure 2.2: A standard iterative learning control scheme (Moore,2006) 

 In Figure 2.2, assuming an ILC scheme for a simple repetitive dynamic system, 

the input and output variables are defined as uk and yk respectively. The desired reference 

trajectory is defined as yd .The control policy for the new trial (next batch) is defined as 

uk+1. The control objective of ILC is to eventually find a control input, uk that produces 

the corresponding output, yk that tracks the desired trajectory, yd as closely as possible 

(Owens and Daley, 2008). A precise tracking is expected as the trial number reaches 

infinity. Therefore, an asymptotic convergence is desired for an ILC system. As such, 

ILC simply means updating the control trajectory for the next batch using information 

from the immediate previous batch to produce an output trajectory that converges 

asymptotically to the desired reference trajectory (Zhang et al., 2008; Xiong and Zhang, 

2003). 

 As seen in Figure 2.2, there are a few memory boxes which defines the distinct 

characteristics of the ILC. In an ILC scheme, both the input and output data of the 

previous trials are stored in a memory. The information in the memory database, in other 

words, the historical batch data and its deviation from the desired output trajectory, are 

exploited by the learning controller to develop a new control policy for the next batch 

run. The new control policy is then stored into the memory database and the cycle 

repeats. The learning of the controller takes place via the memory. The memory base 

learning allows flexibility to understand and upgrade the performance of a system more 

effectively. 

 The ILC can do both previous and current trial learning. The ILC learning 

scheme can be generally categorized as previous cycle learning (PCL), current cycle 
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learning (CCL) and combination of both previous and current cycle learning (PCCL) (Xu 

et al., 2004). An in depth analysis and comparison of these schemes was done by Xu et 

al. (2004). The author concluded that PCCL provides better performance compared to the 

PCL and CCL. Definitely more updated information will provide better understanding of 

the system hence allow better control of the system.  

2.4.1 ILC versus conventional feedback control 

 Learning about ILC and its memory based learning characteristics; it would be 

interesting to note how ILC differs from the conventional feedback control system. The 

conventional feedback control system has been there in the industrial application for a 

very long time. However, the performance of the system was very limited and significant 

manual adjustment was still necessary to achieve satisfactory performances which in 

many cases are not optimal. The limitation caused by the need for a priori knowledge of 

the control system inhibits competitive controller design hence the average performance 

(Verwoerd, 2005). This calls for advanced control systems such as ILC. 

 

Figure 2.3: Conventional feedback control system (Moore, 2006) 

 Figure 2.3 shows a general conventional feedback control system. As seen in 

Figure 2.3, the input to the system to be controlled is adjusted based on the output 

deviation error from the reference trajectory. There is no memory based learning 

involved in this system. The reference point is fixed throughout the batch run and is 

changed manually as and when it is necessary. The reference point is expected to be 

tracked as accurately as possible. The reference trajectory is the exact expected outcome 

for that particular batch run. In the ILC, the desired trajectory is set higher than that 

could be achieved by the present batch run. The ILC control system is expected to 

achieve the desired trajectory iteratively while learning the system to be controlled. This 

way optimal performance can be obtained after several iterations in the ILC while in the 

conventional feedback control system the outcome is the same after every trial. There 

will be no improvement from trial to trial. Manual adjustment is needed at the reference 
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trajectory if further improvement is seen feasible in the conventional feedback system. 

That involves offline calculations and heuristic knowledge of experienced operator. It is 

evident that the memory based learning characteristics of ILC overcomes the shortage of 

conventional feedback system. The ILC is able to self-learn the system and achieve 

desirable process control and optimization iteratively and automatically. 

The other advantage of ILC is that it can work in two dimensions which are trial 

to trial in the batch direction (k) and/or from a step to step in a trial in the time (t) 

direction (Gao et al., 2001). The conventional feed-back system only works in time (t) 

dimension. This characteristic defines the calculation method for future input in each of 

the system. 

 

Figure 2.4: ILC versus conventional feedback control system (Moore, 2006) 

A clear difference is shown in Figure 2.4 as to how future input is calculated between 

ILC and conventional feedback control system. For conventional feedback control 

system in time dimension, the error in previous time interval is used to correct the next 

time interval control action. The changes are meant to reduce deviation from the fixed 

reference trajectory for that particular batch. There is no progression from batch to batch.  

As for ILC, both the previous batch input and error is used to develop a control policy for 
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the next batch run. In addition to that, ILC is also able to use information from the 

current cycle and past cycle to improve performance of the current trial. That way, a 

memory based learning that allows progressive improvement is made feasible.  

2.4.2 Basic ILC algorithm 

 The history of ILC concept is traced back to the two popular publications by 

Uchiyama (1978) and Arimoto et al. (1984). Since the publication by Uchiyama (1978) 

is in Japanese, the publication by Arimoto et al. (1984) was initially recognised as the 

starting point of ILC when initial researches were conducted in US and Europe. The 

interpretations of ILC technique by Arimoto et al. (1984) was easily understood and 

widely accepted by the research community. Arimoto et al. (1984) pointed out that 

information from previous consecutive trials in a repetitive system can be used to 

develop a new input for the current repetition. Using simple ILC algorithm Arimoto et al. 

(1984) demonstrated that as the iteration reaches infinity, the ILC will learn the system 

and the tracking error will eventually become zero resulting in perfect tracking (Owens 

and Daley, 2008).  

A typical ILC algorithm has the form :  

)()()(1 tLetutu kkk   

                  

The ILC algorithm works on a standard assumptions which are: 

 The system dynamics is stable 

 The system returns to the same initial conditions at the start of each trial 

 Each trial has the same length 

 From the algorithm above it is to be noted that in ILC, the new control policy, 

     is the sum of previous batch control policy,    and learning from previous batch, 

   . The ILC algorithm is very simple yet highly potential. The convergence of ILC 

algorithm can be obtained and its proof can directly be derived from the convergence 

theorems in literature (Dinh Van et al., 2012; Xiong et al., 2005; Xu and Tan, 2003). 

  ILC is expected to learn from the repeated run of the control system and how 

the learning takes places is what matters in an ILC algorithm. The learning takes place 

via the error term,    . The vast numbers of ILC algorithms are developed from different 
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ways of using the information in the error term. The error,    is simply the deviation of 

the previous output,    from the desired trajectory,   . The learning gain, L plays a vital 

role in learning the system and determining the control action for the current batch. In 

orientating the basic ILC algorithm, the task is to identify an algorithm which generates a 

control input that progressively improves the product quality of the following batches 

(Gao et al., 2001).  

 The initial ILC controllers were the P-type ILC (Arimoto et al., 1985) and D-

type ILC (Arimoto et al., 1984). Both the P-type and D-type ILC algorithms have the 

same outlook as the equation presented above. The difference is on how the error term is 

used in the algorithm. In the D-type ILC the error is the derivative while in the P-type 

ILC the error is simply used with the proportional gain. The P-type is preferred to the D-

type due to potential small noise signal amplification though differentiation which may 

eventually affect the control system stability (Cai, 2009; Xu and Tan, 2003).  

 Following the initial P-type and D-type ILC algorithms more studies were done 

in this area to further improve the algorithm (Wang, 2000; Saab, 2003; Cai, 2009). The 

other combinations of the P, I and D terms were studied and its impact on the ILC 

algorithm has been evaluated. There are P-type ILC (Wang, 2000; Moore, 2001; Moore 

et al.,2002; Saab, 2003; Ratcliffe et al., 2005), D-type ILC (Wang, 2000; Saab, 2003),  

PI-type ILC (Astrom et al.,1998; Chen and Moore, 2002), PD-type ILC (Chen and 

Hwang, 2006; Baolin et al., 2006) and PID-type ILC (Park et al., 1999; Ji and Luo, 2005; 

Chien, 2006) algorithms studied on various aspects such as monotonic convergence, 

robustness, trajectory tracking and applications. Each of these combined techniques has 

its own advantages and disadvantages. Regardless of those, the interesting part of these 

combinations would be to understand how each of the proportional (P), integral (I) and 

derivative (D) affects the ILC algorithm.  The P-component contributes to the stability 

hence ensuring monotonic convergence,  the I-component rejects the effect of non-zero 

initial error thus increasing the convergence rate while the D-term reduces the effect of 

input disturbances (Madady, 2008). The merits of each of the PID terms makes it a 

popular choice for the ILC algorithm. 
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2.4.3 PID (Proportional plus Integral and Derivative) controller versus ILC 

 ILC can be used to directly update the input policy (Amann et al., 1996; Xiong 

et al., 2005) by replacing the current PID controller. The issue with PID controllers is 

that its constant coefficients do not allow implementation of adaptive behaviour to the 

controlled system. Therefore, the controller is only able to track the desired trajectory to 

a moderate degree of accuracy and the tracking results are the same for each repetition. 

The ILC works on the trial dependent update law which allows adaptive behaviour 

(Verwoerd, 2005). ILC mimics human learning process and therefore works iteratively to 

progressively improve control accuracy.  

2.4.4 PID (Proportional plus Integral and Derivative) controller assisted ILC 

   ILC can also be used as a supervisory control scheme (Riad et al., 2009). At 

present, the PID controllers are widely used in industrial applications. The PID 

controllers are very popular simply because it has simple structure, robust and effective 

in tracking a fixed reference trajectory. Therefore, rather than uprooting the whole 

present control scheme, it would be economical to enhance it. ILC can complement the 

existing control scheme. ILC ideally functions as a feed-forward compensator for open 

loop control systems (Gao et al., 2001). In such systems the feed-forward action is 

magnified to enhance convergence without compensating closed loop stability. ILC can 

be incorporated either in serial arrangement or parallel arrangement. The serial 

arrangement could lead to increment in noise. The parallel arrangement is preferred 

because the ILC controller could act independently in the event of unexpected 

disturbances in the system dynamic which may affect the system stability (Cai, 2009). 
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 Figure 2.5: Performance comparison of ILC, PID and hybrid approaches (Cai, 2009) 

  Figure 2.5 clearly exhibits the performance of ILC, PID and PID assisted ILC 

(hybrid) control scheme. The red line representing PID controller in Figure 2.5 shows 

that the tracking error is the same for every trial. There is no improvement in trial to trial 

when using PID controller alone. The blue line representing ILC controller shows that 

the tracking error reduced as the trial number increases. The green line representing the 

PID assisted ILC (hybrid) controller, the trial to trial error reduction is even better for 

many cases.  As to what extent the hybrid controller performs better than the ILC control 

depends on the system which is being controlled. It is important to note that towards a 

bigger trial number, the difference in the tracking error of the ILC and hybrid controller 

becomes smaller. 

2.4.5 ILC versus other learning controllers 

 Learning controllers are intelligent controllers that are developed to emulate 

human learning behaviour to a certain extent. All the learning controllers vary on the 

basis of how the information from a control system is extracted, represented, stored and 

updated to enhance control performance (Verwoerd, 2005). ILC is one of the learning 

controllers. There are other popular learning controllers that are widely used in the 

industry and research arena other than ILC. They are adaptive controllers, neural 

networks and repetitive controllers (Cai, 2009). ILC portrays significant difference from 

these controllers which makes it unique for application in repetitive systems. For 

instance, the adaptive controller does not use the repetitive information while ILC works 

entirely based on stored repetitive information. The adaptive controller design modifies 

the control law of a controller to adapt to the changes in the system while the ILC only 
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modify the control input signals. The neural network modifies controller parameters and 

calls for large network modifications. Therefore, extensive training data is required and 

relatively fast convergence is difficult making it less attractive for real-time process 

because it takes longer to calculate. The ILC is attractive due to its simplicity and 

potential effectiveness. The repetitive control (RC) has a very similar concept to ILC. 

The difference is that the initial condition is set back to the same value for every repeat 

in ILC whereas in the RC the initial condition continues from the final condition of the 

previous run. The RC is used for continuous system while ILC for discontinuous system. 

Therefore, ILC is applicable to fed-batch process while RC is used in continuous batch 

process (Bristow et al., 2006; Tan et al., 2009; Cai, 2009). In summary, the distinct 

difference between these controllers and ILC is that these controllers assume adjacent 

control tasks to be related while ILC assumes identical control task trial after trial (Cai, 

2009).  

2.4.6 Advantages of ILC 

 Iterative learning control is an attractive choice of control method for a system 

that repeats with the exact same initial conditions and runs for a finite period of time. 

ILC is designed to use previous information to improve the system performance 

iteratively. This method works in such a way that the tracking error (between the output 

and specified desired reference trajectory) or the state error (between real state and the 

reference model state) is sequentially reduced to zero from run-to-run (Bouakrif, 2010). 

 The most distinct advantageous characteristic of ILC is its capability to capture 

previous trials information and exploit every possibility to incorporate the information 

into present trial control input. ILC has a very simple structure that works on a batch 

domain, time domain or both. It is open-loop on the time domain and closed loop on the 

iteration domain (Cai, 2009). Its memory based learning records the necessary 

information on either or both the domains which will then be synthesized into current 

batch control policy.  

 There are two main ILC algorithm types. One of them is algorithms with no 

knowledge of the system and works based on tracking error vector. The other is the 

model based algorithms where a mathematical representation of the plant in incorporated 

into the algorithm (Cia, 2009). In other words, ILC can work on systems with minimal 

information. ILC is capable of desired output trajectory tracking without any prior 
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knowledge of the system state. ILC design can be model independent with limited offline 

measurement requirement (Waissman et al., 2002). Since ILC uses information from 

previous executions in order to improve tracking performance from trial to trial, it does 

not require any on-line measurement or on-line sensor. However, it is important that the 

control task which is the desired output trajectory is the same for all the trials.  

 It is interesting to note that ILC can also steer a system with uncertainties to 

follow a reference model which is independent of the real system, which means neither 

the parameters nor the structure of both the systems have to be same (Bouakrif, 2010). 

Bouakrif (2010) has proven that the real state system is convergent to the reference 

model state in the presence of disturbances to achieve desired performance. The 

reference model state used in the study has different structure and parameter compared to 

the real system state. 

2.4.7 Limitations of ILC 

 There are a few limitations to ILC. ILC assumes reset to the same initial 

conditions for every repeat. Perfect reset trial after trial is not always feasible. However, 

learning could still take place for perturbed initial conditions. Hence, control 

performance can still be improved (Verwoerd, 2005). 

 Any dynamic systems are prone to have uncertainties. Significant and 

uncontrolled uncertainties will lead to unsatisfactory performance. It is important that a 

controller is able to suppress or possibly eliminate the uncertainties in the system to 

render stable and optimal performance. The uncertainties can be classified as repeatable 

and non-repeatable. Repeatable uncertainties are invariant over iterations and can easily 

be detected. ILC works very well with continuous disturbance from trial to trial. Non-

repeatable uncertainties are variants over iterations which are difficult to detect and 

nature of the disturbance maybe unknown (Bouakrif, 2010). The performance of ILC can 

be affected for non-repetitive uncertainties depending on the type and magnitude of the 

disturbance.  

 ILC applied on iteration axis, will improve the batch to batch performance but 

the within batch performance may have been neglected. There is often trade-off between 

trial to trial error reduction and within trial performance. 
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 ILC uses pattern recognition technique to learn the system to be controlled. 

Therefore the learning of the controller is limited to the stored knowledge. The quantity 

and particularly quality of the stored information will affect the controller performance. 

2.4.8     Desirable performance criterion for ILC 

 The objective of ILC is to achieve asymptotic convergence. An asymptotic 

convergence is when the solution is not achieved but a result parallel to desired trajectory 

is attained and sustained. An asymptotic convergence is a very desirable performance of 

an optimization algorithm in global convergence (Chachuat, 2007). Asymptotic stability 

of the closed-loop system is guaranteed over the whole finite time intervals when the 

iteration number tends to infinity (Bouakrif F., 2010).  

 Performance of an ILC algorithm is evaluated based on its convergence speed, 

minimum tracking error and long-term stability. Convergence speed is a measure of how 

fast a desired trajectory is reached without compensating the stability of the system.  It is 

important that the model is stable for both the time and batch dimensions. The stability of 

time direction is usual and simple. In a batch-to-batch optimization ILC, stability of k
th 

batch is influenced by the convergence rate. For a little known plant/process model, fast 

convergence is less robust while slow convergence is more robust (Amann et al., 1996). 

Previous studies in this area proved that an ILC algorithm based on optimisation 

principles ensures stability, convergence and robustness (Amann et al., 1996; Gao  et al., 

2001).  

 A quadratic cost objective function has to be solved to minimize tracking error 

whilst optimizing control policy to attain desired output trajectory.  The cost function 

simply represents identifying optimal control policy change for (k+1)
th

 batch by reducing 

tracking error and without deviating too much from the previous control input to ensure 

stability and robustness (Amann et al., 1996). It is also a major concern in the real 

industry to minimize the number of batches needed to achieve desired target in order to 

optimize effective production. 
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2.5   Batch to batch model predictive iterative learning control 

 Initially, the ILC algorithm was used as an open-loop feed-forward controller 

but it was insufficient to handle disturbances on-line and slow to converge (Bien and Xu, 

1998; Cueli and Bordon, 2008; Lee et al., 1999).  Combination of the feedback control to 

the feed-forward based ILC is reported to exhibit exponential convergence by Amann et 

al. (1996). A combination of the batch to batch control into ILC can address both 

repetitive and non-repetitive disturbances (Cueli and Bordons, 2008). In the batch to 

batch iterative learning control approach, the input trajectory is updated directly by the 

feedback control after every batch (Xiong and Zhang, 2003). 

 It is essential that development of a batch to batch ILC should also take into 

consideration that it does not respond to the random noise within a batch and produce 

variances in the final output. In order to tackle this problem, application of model 

predictive control (MPC) is advantageous because of its ability to differentiate between 

process and state noise which is a lacking criteria in a batch to batch controller 

(Campbell et al., 2002). MPC is the most popular linear method and is widely accepted 

in the industry (Ashoori et al., 2009). Having known that the process variables in a batch 

process will possess highly non-linear changes throughout the operation, the 

conventional MPC is expected to suffer severe tracking errors issue (Morari and Lee, 

1999; Ashoori et al., 2009). Xiong and Zhang (2003) expressed that tuning a system 

using iterative learning control (ILC) will enhance the performance of tracking control 

system.   

 In a few studies, a combination of ILC and MPC was suggested expecting 

combined benefit of these methods (Lee et al., 2000; Srinivasan et al., 2002; Chen and 

Fang, 2004; Cueli and Bordons, 2008). However, it was reported that combined 

application of ILC control and MPC causes conflicting effect. MPC will refute the 

control action of ILC due to discrepancy in the prediction of the two. This issue calls for 

integration of ILC and MPC (Srinivasan and Bonvin, 2007; Lee and Lee, 2003). Built in 

controllers into the system is expected to be more efficient and simpler in comparison to 

designing feedback controller separately (Lee et al., 1999). Lee and Lee (2003) studied 

on the integration and noted that MPC imparts on-line corrective action while ILC focus 

on refining disturbances to achieve desired end product. They also added that MPC deals 

with real-time feedback and ILC have large robustness margin. 
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 Xiong and Zhang (2003) worked on the batch to batch linearized perturbation 

model iterative learning control method. In order to tackle process nonlinearities they 

have worked on the perturbation variables than the measured process variables 

themselves. In their work, the perturbation model is updated after every batch by using 

the immediate previous batch as the nominal batch. This way, the unexpected process 

and parametric disturbances is expected to be captured and removed to render a more 

precise model prediction. This method is expected to address process nonlinearities, 

repetitive disturbances, non-repetitive disturbances, random noise in the batch, model-

plant mismatches and reference and set point trajectory tracking issue. It seems to be the 

potential solution for the issues in bioprocess control and optimization. This area of study 

is still in infancy and can be fine-tuned to be an efficient and widespread bioprocess 

control and optimization algorithm. In this work, the prospective of batch to batch 

perturbation model iterative learning control optimization method in fermentation 

process is studied. 

2.6  Product quality control and optimization  

  Bioprocess monitoring, control and optimization are important in order to attain 

and sustain product quality (Neeleman, 2002; Johnson, 1987). The quality of the product 

is adversely affected by the presence of by-product. Bonvin (1998) mentioned that 

product quality does not mean highest possible purity but lowest possible variation 

amongst optimal purity as well as negligible or zero by-product production. Product 

variation has direct effect on the marketability, customer acceptance and production cost. 

This is indeed a critical requirement in the pharmaceutical industry because it determines 

the exact dosage needed to be delivered to a patient’s health requirement. 

Simultaneously, production cost and waste generation has to be controlled to ensure 

economical and sustainable production (Zhang et al., 2008; Bonvin, 1998; Muske et al., 

2004; Sendin et al., 2006). 

 It is understood that the most accurate long range predictions of product quality 

variables can be obtained with the presence of a comprehensive mechanistic model of the 

process (Muske et al., 2004) but it is expensive and time-consuming. On-line robust 

quality measurement sensors are almost nil for industrial use today. In the industry, the 

final product quality is controlled through measurable variables such as pH, temperature 

and feed rate. The optimal trajectory of the measured variable is set and every batch run 
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for the same process follows the similar fixed pattern (Xiong and Zhang, 2003). This 

strategy fails when process disturbance in non-measured variables such as feedback 

condition, raw material properties, impurities and catalyst activities is present and affects 

the product quality (Lee et al., 1999).  This means a consistent input trajectory will not 

ensure product quality especially when unknown disturbances are present. This setback 

brings about the idea to update the input trajectory after every run and re-optimize to 

achieve desired product quality iteratively (Xiong and Zhang, 2003).  

 It is important to take note that, measured variables alone cannot determine a 

product quality. It is of best interest to directly optimize product quality trajectory (Lee et 

al., 1999). In practice today, quality measure is done in offline analysis. Samples are 

collected at few intervals during the batch run and at the end of a batch and analysis is 

done offline (Srinivasan et al., 2002). Providing a reference trajectory for product quality 

for a whole batch is reasonably tough because the values may vary in a wide range 

throughout a batch process. Therefore, batch to batch control can be used to improve 

product quality by developing a reference trajectory based on the final product quality 

value of immediate previous batch (Xiong and Zhang, 2005a).  

  Gao et al. (2001) reviewed that by adding weighting matrices, Q and R to the 

objective function, process disturbances and possible differences in the process initial 

values can be apprehended. The Q and R ratio and not the real values influence the 

elimination of disturbances and ability to track back the desired trajectory. The 

improvised objective function and linearised perturbation model batch to batch iterative 

learning control have been used in the study. This method is expected to address process 

nonlinearities, repetitive disturbances, non-repetitive disturbances, random noise in the 

batch, model-plant mismatches and reference and set point trajectory tracking issue. 

 Models used in ILC can be obtained using multivariate analysis techniques or 

regression models such as PLS and PCA (Bonvin, 1998; Wang and Srinivasan, 2009). 

Zhang (2008a) added that PLS and PCA and its variants have been delivering robust 

empirical models for data with high colinearity and dimensionality. Multiple linear 

regression (MLR) is widely accepted as linear regression relating predictor variable and 

response variable for steady state processes. However, this method fails in the presence 

of high degree of correlation among variables. In such situation, latent variable methods 

need to be used. 
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2.7 Introduction of MLR, PCR and PLS  

A brief introduction of MLR, PCR and PLS is presented in this section. Details about PLS 

and PCR can be found in (Geladi and Kowalski, 1986).  

2.7.1 Multiple linear regressions  

Considering the following linear model 

 y = x11 + x22 + … + xnn                        (2.1) 

where y is the model output, x1 to xn are model inputs, and 1 to n is model parameters. 

Given a set of input and output data, X and Y, the model parameters can be obtained from 

MLR as 

 YXXXθ
TT 1)(ˆ                         (2.2) 

where 
T

n )ˆˆˆ(ˆ
21  θ  is a vector of the estimates of model parameters.  

In many batch processes, the control policies are typically determined to optimise the product 

quality at the end of a batch. Therefore, the control actions during different stages of a batch 

are usually correlated. In such cases, appropriate linearised model may not be obtained from 

MLR. When the model input variables are correlated, Eq. (2.2) gives unreliable estimates 

since (X
T
X)

-1
 is close to singular.  To overcome the colinearity in the regression variables, 

PCR or PLS can be used to obtain the linearised models (Geladi and Kowalski, 1986).  

2.7.2 Principal component regression  

As for PCR method, the matrix X is decomposed into the sum of a series of rank one matrix 

through principal component decomposition. 

  
T
NN

TT
ptptptX  ...2211                       (2.3) 

In the above equation, ti and pi are the i
th

 score vector and loading vector respectively. Both 

the score vectors and loading vectors are orthogonal and of unit length. The loading vector p1 

defines the direction of the greatest variability. The score vector t1, also known as the first 

principal component, represents the projection of each column of X onto p1. The first 

principal component is thus the linear combination of the columns in X explaining the 

greatest amount of variability (t1=Xp1). The second principal component is the linear 

combination of the columns in X explaining the next greatest amount of variability (t2=Xp2) 

subject to the condition that it is orthogonal to the first principal component. Principal 

components are arranged in decreasing order of variability explained. Since the columns in X 



33 

 

are highly correlated, the first few principal components can explain the majority of data 

variability in X.  

EptEPTX  
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kk

1

                   (2.4) 

where Tk = [t1 t2 ... tk],  Pk = [p1 p2 ... pk],  k represents the number of principal components 

to retain, and E is a matrix of residuals of unfitted variation.  

If the first k principal components can adequately represent the original data set X, then 

regression can be performed on the first k principal components. The model output is 

obtained as a linear combination of the first k principal components of X as 

 wXPwTY kk ˆ                      (2.5)  

where w is a vector of model parameters in terms of principal components. 

The least squares estimation of w is: 
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The model parameters calculated through PCR is then 

 wPθ k  YXPXPXPP
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1)(        (2.7)  

Eq. 2.7 is equivalent to Eq. 2.2.  
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2.7.3 Partial least squares  

 

Figure 2.6: Description of PLS (Hong, 2011) 

Referring to Figure 2.6, PLS projects the X and Y matrices to a subset of latent variables, t 

and u, respectively. 

   ∑     
  

                          (2.8)  

   ∑     
  

                                                              (2.9)  

E and F are residual matrices of unfitted variation. If sufficient eigenvectors (large k) are 

used, then both E and F can be made zero. The objective is to fit a linear relationship between 

X and Y by performing least square regression between each pair of corresponding t and u 

latent vectors while making‖ ‖ as small as possible. 

  ̂                       j=1,2,…k                                        (2.10)  

where    is the coefficient from the inner linear regression between the j
th

 latent variables  

          which is 

   (  
   )

  
  
                                                              (2.11)            

Eq. 2.11 is equivalent to Eq. 2.2 and Eq. 2.7. PLS provides a bilinear decomposition of the X 

and Y matrices into a number of rank-one matrices. The decomposition can be defined as the 

product between each pair of input scores vector, t, and predicted output scores vector,   ̂, 

and a set of corresponding input and output loading vectors p and q.  
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The number of principal components, k, to be retained in the model for both PLS and 

PCR is usually determined through cross-validation (Wold, 1978).  The data set for building a 

model is partitioned into a training data set and a testing data set. The PCR or PLS models 

with different number of principal components are developed on the training data and then 

tested on the testing data. The model with the smallest testing errors is then selected. 

 

2.8  Theory of batch to batch iterative learning control 

2.8.1       Nonlinear representation of batch processes 

               The model based ILC developed by Xiong and Zhang (2003) is reviewed here. 

Consider batch processes where the batch run length (tf) is fixed and consists of N sampling 

intervals (i.e. N=tf/h, with h being the sampling time). Product quality variables (outputs), 

yR
n 

(n1), can be obtained off-line by analysing the samples taken during the batch run and 

the manipulated variable, uR
m
, can be measured at each sampling time on-line. The product 

quality and control trajectories are defined, respectively, as 

Yk= [yk
T
(1), yk

T
(2),…, yk

T
(N)]

T
       (2.12) 

Uk= [uk(0), uk(1),…,uk(N-1)]
T
                                                    (2.13) 

where the subscript k denotes the batch index. The desired reference trajectories of product 

quality are defined as 

Yd=[yd
T
(1), yd

T
(2),…, yd

T
(N)]

T
                                                   (2.14) 

A batch operation is typically modelled with a dynamic model, but it would be convenient to 

consider a static function relating the control sequence to the product quality sequences over 

the whole batch duration (Lee et al., 1999). Due to the causality, the product quality variables 

at time t, yk(t), is a non-linear function of all control actions up to time t,  

Uk(t) =[uk(0), uk(1),…,uk(t-1)]
T
, i.e. 

yk(t)=ft(Uk(t)) + vk(t),     t=1, 2, ..., N,      yk(0)=y0                (2.15) 

where ft() represents the non-linear function between Uk(t) and yk(t) and vk(t) is the 

measurement noise at time t. Eq. (2.15) can be rewritten in matrix form as  

Yk = F(Uk) + vk                                                                         (2.16) 

where F() represents the non-linear static functions between Uk(t) and yk(t) at different 

sampling times and vk=[vk
T
(0), vk

T
(1),…, vk

T
(N-1)]

T
 is a vector of measurement noises 
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2.8.2 Linearisation of nonlinear batch process model 

 

In batch processes, linearization is done around nominal process operation trajectory 

because unlike continuous process, there is no steady state. The nominal trajectory can be the 

mean of all the previous control trajectories and its corresponding outputs or the immediate 

previous batch control trajectory and its corresponding output. Both these nominal 

trajectories have been tested in this study to understand the effect of it in achieving desired 

output. The nominal trajectories can also be a fixed best performing batch data. This too has 

been tested but found to be not very promising for a batch to batch process control and 

optimization  

 Let the nominal trajectory and its corresponding yield to be Ys and Us. The subscript s 

denotes nominal batch. Linearising the non-linear batch process model described by Eq. 

(2.16) with respect to    around the nominal trajectories (Us, Ys), the following can be 

obtained. 

vwUU
U

UF
YY

U





 )(

)(
ss

s

                             (2.17)  

where w= [w (1), w (2)… w (N)]
 T

 is a sequence of model errors due to the linearisation  and 

v represents the effects of noise and unmeasured disturbances. The linearised model is 

defined as Gs and it represents the equation below. 

s

s

UU

UF
G






)(
                                                                          (2.18) 

The structure of Gs is restricted to the following lower-block-triangular form due to the 

causality. 
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2.8.3  Linear time varying pertubation variables and model 

 

In batch process operation, linearisation of the changes in variables, also termed as 

pertubation variables, is preferred in comparison to the actual variable values. The reason is 

by using pertubation variables, significant batch to batch process nonlinearities are eliminated 

resulting in a more accurate linear models for control purpose. The pertubation variables can 

be obtained by either substracting a preset nominal trajectories (Xiong and Zhang, 2003) 

from the available batch data or substraction between two adjacent batches (Vilas et al., 

2004). The substraction of two adjacent batches is not favoured because the difference could 

be small and the developed model may not be accurate. The sustraction from the preset 

nominal trajectory is preferred in this work. The nominal trajectories can be a mean of all the 

historical batch data or the best performing batch data amongst all the historical batches and 

fixed for all the batch runs. In a batch to batch process control, the historical data pool is 

enriched after every batch run. This gives a freedom to reidentify the nominal trajectories for 

the betterment of the process control. Therefore the nominal trajectory can be 

a) mean of all historical batches; the mean value can be reidentified after every batch run 

using a new set of batch data 

b) best batch data, reidentified after every batch run from the growing historical batch 

number 

c) immediate previous batch data, updated after every batch run 

The mean trajectory method may not represent the current batch environment. The 

mean can be affected by other lower or much better performing batches and so the control 

policy may not be suitable for the current process condition. The best data as reference 

trajectory, may not allow development of control policy for current batch 

performance/condition, because the control policy will be developed based on the best 

performance and not based on the possibly affected batch performance.Therefore, in this 

work, the pertubation variables are obtained by substracting the immediate previous batch 

data from the historical batches. This way the most recent batch environment e.g presence of 

unknown disturbances, one-off disturbances can be represented and necessary control action 

for that condition can be developed for improvement of the following batch. 
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The pertubation variables of the control and product quality variables are defined, 

respectively as  

 ̅                                                                       (2.20) 

 

 ̅                        (2.21) 

 

Subsequently, the linearised perturbation variable obtained from Eq.2.17 is 

 ̅      ̅                       (2.22) 

 

where   is defined as the model disturbance sequence 

                                  (2.23) 

 

and is supposed to be bounded by a small positive constant    as shown below 

 

| |                                 (2.24) 

 

The Gs here is considered a linear time varying (LTV) perturbation model because it varies 

with Us, which usually varies from batch to batch. The linearised perturbation model can be 

identified from historical process operation data using MLR, PLS and PCR (Xiong and 

Zhang, 2003). To address the process deviation, the linearised model can be re-identified 

after each batch with data from the most recent batch added to the historical process data. 

Furthermore, the control trajectory and quality variable trajectory from the most recent batch 

can be used as the nominal trajectories.  

2.8.4  Batch to batch iterative learning control 

 As batch process dynamics are non-linear and the perturbation model is linearised 

around the nominal operation trajectories of a batch process, offsets always occur due to 

modelling errors and unmeasured disturbances. The perturbation model predictions of the 

current batch run can be corrected by adding model prediction residuals of previous batch 

runs (Xiond and Zhang, 2003).  

The prediction of perturbation model is defined as       

ksk UGY ˆˆ
            (2.25) 

and the absolute model prediction is defined as       

kssksk UGYYYY ˆˆˆ           (2.26) 
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After completion of the k
th

 batch run, prediction errors between off-line measured or analysed 

product qualities and their model predictions can be calculated as 

kkkkk YYYY
ˆˆε          (2.27) 

Based on the prediction errors of the k
th

 batch run, the modified prediction of perturbation 

model in the (k+1)
th

 batch run is obtained as      

kkk εˆ~
11   YY         (2.28) 

The absolute modified model prediction is defined as 

kkskkk εˆεˆ~
111   YYYY       (2.29) 

The modified prediction error is defined as 

11111

~~
ε~   kkkkk YYYY       (2.30) 

From the definitions in Eq(2.27) and Eq(2.28),  

kkk εεε~ 11           (2.31) 

Assuming that the prediction error of the perturbation model is bounded by a certain small 

positive constant Bm such that 

mk B|ε|                     (2.32) 

The prediction error bound Bm is a measure to represent the deviation of kŶ from kY or kŶ from

kY . The higher the value of Bm is, the poorer the identified model is. The modified prediction 

error is bounded by 2Bm as follows 

|ε~| k < |ε| k + |ε| 1k < 2Bm                               (2.33) 

The tracking errors of process and perturbation model are respectively defined as 

kdkdk YYYYe                    (2.34) 

kdkdk YYYYe
ˆˆˆ                      (2.35) 

where dY is the deviated desired trajectory and defined as     

dY =Yd -Ys                               (2.36) 

The tracking errors of modified prediction of perturbation model is defined as 
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kdkdk YYYYe
~~~                    (2.37) 

From the definitions in Eq(2.27), Eq(2.34) and Eq(2.37), the following relationship among 

these three tracking errors can be obtained 

kkk ee  ˆε                                    (2.38) 

1
ˆ~

 kkk εee                                   (2.39) 

From Eq(2.35) and Eq(2.25), an iterative relationship for kê along the batch index k can be 

obtained as 

11
ˆˆˆ

  kskk UGee                                   (2.40) 

where 1kU  is defined as   

kkk UUU   11                       (2.41) 

From the definition of perturbation variables, we can have 

kkkkk UUUUU   111                                (2.42) 

Substitute Eq(2.38) and Eq(2.40) to Eq(2.39), we have  

111
ˆ)ˆ(ˆ~

  kskkkkk UGeeeee                      (2.43) 

On the other hand, Eq(2.38) can be rewritten as  

kkk εˆ  ee                    (2.44) 

From Eq(2.44) and Eq(2.40), an iterative relationship for ek along the batch index k can also 

be obtained as 

111 ε~ˆ
  kkskk UGee                  (2.45) 

Given the error transition model in the form of Eq(2.43) and Eq(2.45), the objective of ILC is 

to design a learning algorithm to manipulate the control policy so that the product qualities 

follow the specific desired reference trajectories. It is required that the learning algorithm has 

the following property (Lee et al., 2000) 

22
minlim

QUQ
ee 


k

k
                 (2.46) 
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By the certainty-equivalence principle
 
(Lee and Lee, 1997), lets consider solving the 

following quadratic objective function based on the modified prediction errors upon the 

completion of the k
th

 batch run to update the input trajectory for the (k+1)
th

 batch run 

]~~[
2

1
min 11111

1

 


k
T
kk

T
kk

k

J URUeQe
U




               (2.47) 

where Q and R are positive definitive matrices (Xiong and Zhang, 2003). Note that the 

objective function, Eq(2.47), has a penalty term on the input change 1 kU  between two 

adjacent batch runs, the algorithm has an integral action with respect to the batch index k 

(Lee et al., 2000). The weighting matrices Q and R should be selected carefully. The ratio of 

Q and R affect the optimal performance of the process and not the real values. The Q and R 

ratio influence the elimination of disturbances and ability to track back the desired trajectory 

(Gao et al., 2001). The weighting matrix Q is related to the final product quality variables 

while R is related to the control actions. A larger weight of R on the input change will lead to 

more conservative adjustments and slower convergence. Slow processes should use small R 

values while highly correlated output errors should be using larger R values (Campbell et al., 

2002).  There are also other variants of the objective function. For example, the weighting 

matrices Q and R may be set as Q = diag{Q(1), Q(2), …, Q(N)}, R = diag{R(0), R(1), …, 

R(N-1)}, where Q(i) and R(j) increase with respect to the time intervals t in proportion to its 

effect of the final product quality. For the sake of simplicity, Q and R are selected in this 

study as Q=qIN and R=rIN.  

By finding the partial derivative of the quadratic objective function Eq(2.47) with 

respect to the input change 1 kU  and through straightforward manipulation, the following 

ILC law can be obtained 

kk eKU ˆ
1            (2.48) 

where K̂ is defined as the learning rate 

QGRGQGK
T
ss

T
s

ˆ]ˆˆ[ˆ 1         (2.49) 

From Eq(2.42) and Eq(2.48), the ILC law for the control trajectory can be written as 

kkk eKUU ˆ
1           (2.50)
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2.9 Summary 

Developing an efficient control and optimization method for industrial fermentation is 

deemed complex due to unavailability of accurate process models, non-linearity of the 

bioprocess and fed-batch operation, lack of accurate on-line sensors of important parameters 

due to the microorganism sensitivity, difficulty in predicting and controlling the internal 

environment of the living cell and the reactor and slow process response. It is arguable that 

data based empirical models are not as reliable as the mechanistic models due to the absence 

of insight details of the processes. However, in practice most batch processes are meant for 

small quantity manufacturing and the product recipe keeps changing. Therefore, time and 

cost consuming investment on detailed mechanistic model for every product process is not 

necessary. A reliable representation of a system based on the available data is sufficient. It is 

also essential that the control algorithm should be kept simple and widespread in application. 

Iterative learning control has been identified to be the most appropriate control method for 

fed-batch fermentation system. Batch to batch iterative learning control with updated process 

model is expected to improve product quality prediction for fed-batch fermentation process 

system. 
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CHAPTER 3: SIMULATION OF A FED-BATCH FERMENTATION 

PROCESS 

3.1  Introduction  

 In the context of this study, the scope of fermentation is restricted to 

transformations of substances by microorganisms or cells in submersed cultures on an 

industrial scale to achieve one or more of the following goals: 1) degradation of complex 

substances into simple components, 2) synthesis of substances which may be 

accumulated in the microorganisms or excreted to the medium, 3) production of biomass 

from some nutrients. Usually the processes run in a kind of bioreactor to guarantee 

somewhat homogeneous conditions and to perform mass transfer of gaseous components 

creating the necessary turbulence for the reaction to take place. Fed-batch fermentation is 

a popular choice for amino acid, penicillin, cell mass and enzyme production. The input 

flow rate can be manipulated at predefined interval to maximise desired production 

(Hong, 1986).  

In this study, a simulated industrial Baker’s yeast fermentation process (Yuzgec 

et al., 2009) is used as a case study for the batch to batch ILC using updated linearised 

model. Since the mechanism of this fermentation process has been studied extensively, it 

can be securely used to simulate fermentation process to study the effectiveness of the 

proposed control methods. In most of the studies related fed-batch fermentation control, 

pilot/lab scale simulation work is used. In this work, simulation of the industrial scale 

fed-batch fermentation process is used to understand the impact of ILC for mass 

production. In developing the fermentation process model, both cell kinetic model and 

reactor dynamic model were considered and combined. In this chapter the reproduced 

simulation results were verified with the original work and then, appropriate simulation 

conditions were set.  

The chapter is organised as follows. In Section 3.2, an overview of Baker’s yeast 

fermentation system is briefly discussed. The biological pathways involved in the 

Baker’s yeast cultivation that influenced the cell models are presented. A brief 

justification to use fed-batch reactor for this simulation and the expected outcome of the 

simulation is discussed. In Section 3.3, the cell kinetic and reactor dynamic mathematical 

models are presented and defined. Section 3.4 outlines the simulation conditions for 

Baker’s yeast fed-batch fermentation that will be used for this study. The initial 
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conditions are spelled out. Section 3.5 presents the simulation verification results. The 

simulation results were verified with the results in the reference paper to ensure accurate 

simulation coding. Finally, Section 3.6 summarises the chapter. 

3.2  An overview of Baker’s yeast fermentation  

  A concise background of the industrial baker’s yeast fermentation is presented 

here. Baker’s yeast is cultivated from the strain of Saccharomyces cerevisiae. The 

specialty of this strain is that it can ferment or respire depending on the culture condition. 

Assuming that the nitrogen and other necessary supplements and growth conditions are 

adequate, in the presence of oxygen and limited glucose, Saccharomyces cerevisiaes 

actively respire and produce baker’s yeast biomass. This is referred as the oxidative 

pathway and the process is called glycolysis pathway. When the cells are actively 

growing, oxygen is fast used up by the cells.  There is a possibility of oxygen deficiency 

to occur due to lagged oxygen transfer. At that point of anaerobic condition, glucose is 

fermented into ethanol and carbon dioxide. This is known as reductive pathway. When 

oxygen level increases again, ethanol will be converted into biomass. This is known as 

oxido-reductive pathway. This conversion takes place only when glucose flux is below 

maximum metabolic rate of yeast cells (George et al., 1998; Rieger et al., 1983; 

Sonnleitner and Kappeli, 1985). 

The overall growth reaction is given below (Rieger et al., 1983; Sonnleitner and Kappeli, 

1985): 

C6H12O6 + aNX [NH3] +bO2  yCHHXOOXNNX + zC2H6O + cH2O + dCO2  (3.1) 

  Ethanol production can also happen in the presence of abundant of oxygen if 

there are high concentrations of glucose present (Daramola and Zamparaka, 2008). In 

surplus glucose feed, the biomass production capacity becomes saturated. Then, the 

remaining glucose is consumed by the ethanol producing mechanism in the microbes. In 

this case both biomass and ethanol will be produced simultaneously (Sonnleitner and 

Kappeli, 1985; George et al., 1998). The ethanol fermentation is not favoured in the 

industrial baker’s yeast biomass production because it reduces the biomass yield on the 

glucose feedstock. Although the ethanol will eventually be converted to biomass, 

previous literature calculation revealed that the total biomass yield is reduced when 

carbon combustion takes place via ethanol formation (Verduyn et al., 1991; George et 
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al., 1998; Rieger et al., 1983). The elemental composition of ethanol-grown biomass is 

also found to be different than the glucose-grown ones (Sonnleitner and Kappeli, 1985). 

However, the composition of glucose-grown biomass is not affected by the presence of 

ethanol. Therefore, the objective of baker’s yeast cultivation is to maximize biomass 

production through oxidative pathway and eliminate or reduce ethanol formation (Berber 

et al., 1998; Yuzgec et al., 2009; Pertev et al., 1997; Karakuzu et al., 2006). Previous 

studies have revealed that biomass growth is closely dependant on glucose and oxygen 

feed rate (Bajpai and Reuss, 1980; Zhang, 2008a; Pertev et al., 1997). Provided that 

ample oxygen is supplied, the focus will be to manipulate feed profile to attain desired 

growth rate.  

In industries, fed-batch reactors are used so that the glucose feeding rate can be 

controlled. Fed-batch is commonly used in a wide range of fermentation industry 

especially for manufacturing high value added products (Lee and Lee, 2003; Karakuzuku 

et al., 2006; Gosling, 2003). Fed-batch operation is the one with varying feed rate, fed at 

preset intervals according to the process phases and the yield is removed at the end of the 

cycle. Varying feeding rates at pre-specified intervals seem to enhance the productivity 

of microbial cells via metabolic control. The feed rate and feed intervals may be based on 

a pre-programmed trajectory or determined using a feedback controller. As to whether 

the desired results are achieved, it depends on the model used to generate the feeding 

profile (Daramola and Zamparaka, 2008; George et al., 1998).  

In baker’s yeast production, both the product quality and quantity are important 

measures for optimal production. The quantity is measured via biomass produced per 

litre of substrate. The quality of the yeast produced is measured in a number of ways 

such as colour, consistency, smell and shelf-life. The most important quality criteria is 

the gassing power, in other words, the ability of yeast to raise a dough by producing 

carbon dioxide (George et al.,1998). The on-line product quantity measurement can be 

measured via optical sensors (Salgado et al., 2001). There are almost no sensors or 

devices that can directly measure the online quality of fermentation yields. The intention 

of batch to batch iterative learning control is to predict and improve product quality, but 

since there is no lab data available, this work is carried out by improving product 

quantity via computer simulation. 
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3.3  Baker’s yeast fed-batch fermentation process model 

  In developing the fermentation process model, both cell model and reactor 

model were considered and combined. The cell kinetic model was based on the well 

documented Monod Kinetics investigation by Sonnleitner and Kappeli (1985). The 

hypothesis assumes that excessive glucose and limited oxygen will result in ethanol 

fermentation. Karakuzu et al. (2006), added additional terms, (   
  

  ⁄ ), to the glucose 

uptake rate and 
  

     
 ,to the oxidation capacity in the cell kinetic model. They took into 

consideration the possible co-consumption of oxygen for ethanol metabolism and the 

delay in the glucose uptake rate caused by change in metabolism during biomass 

production from ethanol. The improved version with additional terms mentioned above 

by Karakuzu et al. (2006) is used in this work and presented a below. The same process 

models were used by Yuzgec et al. (2009) as case study in his work. Therefore, model 

equations were adapted from Yuzgec et al. (2009). 

3.3.1 Cell kinetic model 

The cell kinetic model is given as follows. 
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3.3.2 Dynamic reactor model 

 

The dynamic reactor model is based on material balances and represented by the 

following ordinary differential equations. 
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Assumptions made for the above mentioned process model are: 

1) The process only involves liquid phase. The gas phase and microorganism were not 

considered. 

2) The reactor content were homogenous in axial and radial direction 

3) Energy balance is expected to be under control with effective temperature control. 

The optimal temperature for yeast to ferment sugar is 32°C. In warmer temperature 

(45°C) the yeast cells will die. Therefore, it is of primary concern to have an effective 

temperature control (Daramola and Zamparaka, 2008). 

The model parameters are listed in Table 3.1. 

Table 3.1: Parameters used in cell kinetics and reactor dynamic model (Yuzgec et al., 

2009) 

Parameter Unit Value Parameter Unit Value 

   gL
-1 

0.1    ⁄  gg
−1

 0.645 

   gL
-1

 9.6 x 10
-5        gg

−1
 h

−1
 0.238 

   gL
-1

 3.5        gg
−1

 h
−1

 0.255 

   gL
-1

 0.612        gg
−1

 h
−1

 2.943 

   ⁄
   gg

-1 
0.585   

 g g
−1

 h
−1

 0.03 

   ⁄
    gg

-1 
0.05  

  
 h

−1
 0.21 

   ⁄  gg
-1 

0.3857    g L
−1

 325 

   ⁄  gg
-1 

1.1236   
  g L

−1
 0.006 

   ⁄  gg
-1

 0.4859    m
2
 12.56 

   ⁄  gg
-1

 0.7187 td h 2 

   ⁄
   gg

−1
 0.5744 klao h

-1 
700 

   ⁄
    gg

−1
 0.462 

 

3.4  Baker’s yeast fed-batch fermentation process simulation 

 Both the cell kinetic model and dynamic reactor model was coded using Matlab 

version 7.1.  The differential equations were solved using ODE45 function in MATLAB. As 

recommended in the MATLAB manual, ODE45 is the best function to apply as a first try for 

most problems. In the event that ODE45 encounters problems, other ODE functions in 

MATLAB can be attempted. In this study, ODE45 was able to solve the equations 

satisfactorily.  

 

The simulated process operation conditions were set as follow: 
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Initial reactor volume, Vo: 0.05 m
3
 

Fermentor volume, Vfer : 100 m
3
 

Total fermentation time, tf : 16.5 h 

Data record interval, h: 0.001 h (3.6s) 

Initial substrate concentration, Cso: 7.0 gL
-1 

Initial biomass concentration, Cxo: 15.0 gL
-1 

Initial oxygen concentration, Coo: 0.006 gL
-1 

Initial ethanol concentration, Ceo: 0.0 gL
-1 

In this study, the batch duration is divided into 10 equal stages and the feed rate is kept 

constant within each stage. The initial feed was estimated from that reported by Yuzgec et al. 

(2009) as shown in Figure 3.1.  

The feed rate in Figure 3.1 is based on the equation below:      

      
                (3.19) 

Figure 3.1 shows that when t=0, Fo=500 L/h. The constant, α, is fixed at 0.052. 

 

Figure 3.1: Profiles of feed flow rate and volume for all cases (Yuzgec et al., 2009) 

The initial feed rate derived and used in this study is  

Feed rate = [544.8; 593.6; 646.8; 704.; 767.9; 836.7; 911.6; 993.3; 1082.3; 1179.2]. 

The corresponding biomass concentration at the end of the batch was obtained from 

simulation and is 46.1827 g/L. 

In this study, fed-batch reactor is used to feed molasses at an incremental rate at 

specified time interval to suppress metabolite repression of microbes due to excessive 

sugar concentration (Karakuzuku et al., 2006). The feed rate was also controlled in such 

a way that the average biomass growth rate is always close to the critical growth rate. 
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This is because oxygen deficiency may occur due to increased yeast growth which will 

then favour ethanol production. Therefore, growth rate should be limited to suppress the 

ethanol fermentative metabolism. In addition to that, the feed rate generated should also 

guarantee that the total biomass volume at the end of the batch run should be lower than 

the reactor volume. In a fed-batch, feedstock is fed at pre-specified intervals without any 

withdrawals. Therefore, care must be taken to avoid overflow (Daramola and 

Zamparaka, 2008; Yuzgec et al., 2009). In this study the reactor volumes is 100 m
3
and 

the final biomass solution is kept well below it. 

The initial conditions in case 1 of (Yuzgec et al., 2009), which is biomass 

concentration at 15g/L and glucose concentration at 7g/L, is selected as the initial 

condition in this work. The choice was made because the case using these concentrations 

produces highest biomass concentration amongst the four tested cases as can be found in 

(Yuzgec et al., 2009). It is perceived to be an optimal ratio of biomass and glucose for 

initial condition to maximise biomass production and minimise ethanol production 

(Yuzgec et al., 2009).  

The initial control profile for this work is obtained via approximation of feed 

profile in Figure 3.1. The initial control profile is simulated to obtain the first batch 

output data. This initial control profile is then used as the base feedrate to generate more 

data to be used as historical batches for ILC application. The development of the ILC 

algorithm parameters using the data from this simulation results is discussed in chapter 4. 

 

3.5  Fermentation simulation validation with literature 

 The simulation programme was run to reproduce the results obtained by 

Yuzgec et al. (2009). There were four cases with different initial values studied by 

Yuzgec et al. (2009). The results were replicated for all the four cases to verify the 

simulation. The yeast fermentation simulation has successfully reproduced the results in 

Yuzgec et al. (2009) for all the four cases. The result for case one with the initial 

concentrations as stated in Section 3.3 is presented here. Figure 3.2(a) is the result 

presented by Yuzgec et al. (2009) and Figure 3.2(b) is the results produced in this work. 

There are no numerical values presented in the reference paper. Hence, the results in 

Figure 3.2(b) are compared approximately at the starting point, end point and 

performance pattern to match the graphical results in Figure 3.2(a). The final 

concentrations and changes in the concentration during the run seem to match with 
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Figure 3.2(a) reliably.  The slight difference in the oxygen plot is due to the 

approximation of the continuous feeding profile in Yuzgec et al. (2009) by a piecewise 

constant feeding profile. The process simulation also produced the same results as those 

given by Yuzgec et al. (2009) for all the other three cases. 

 

(a) Extracted from (Yuzgec et al., 2009) 

 

b) Results produced in this work 

Figure 3.2: Glucose, Oxygen, Ethanol and Biomass concentration produced in the 

process simulation 
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3.6  Summary 

 

 In summary, the details of the Baker’s yeast fed-batch fermentation dynamics 

and simulation conditions have been clearly defined. The parameter values for the 

system model have been identified. The cell kinetics and reactor dynamics were 

successfully coded in Matlab to reproduce the results as in the reference paper. The 

reproducibility of the results using the mathematical coding proves that the simulation is 

reliable and can be safely used as case study throughout this work. 
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CHAPTER 4: BATCH TO BATCH ITERATIVE LEARNING 

CONTROL USING UPDATED LINEARISED MODEL 

4.1  Introduction 

 Fed-batch fermentation control and optimization simply involves controlling 

the feed rate to achieve desired product quality and/or quantity. There is high demand for 

optimal control policy design these days especially for production with stringent product 

quality requirement (Huang et al., 2010). Although the task is to control only one 

parameter, which is the feed rate and this sounds like a simple control problem, 

identifying optimal feed rate has been a reasonably difficult task due to its non-linear 

system dynamic (Xiong et al., 2008). The optimization can be made feasible by 

identifying a reliable dynamic process model that can assist long range model prediction 

(Huang et al., 2010). 

 In recent years, empirical models developed from process input and output data 

alone is gaining attention due to its simplicity in development. The empirical models can 

be used to develop a simple model that closely represents the system to be controlled by 

finding a relationship between the input data and output data. One of the ways to develop 

empirical models is by using regression principles. Simple linear regression such as 

multiple linear regressions (MLR), principle component regression (PCR) and partial 

least squares (PLS) can be used to identify an appropriate system dynamic model. The 

regression model based ILC is gradually becoming an area of interest due to its potential. 

The ILC with PLS model have been reported in a few papers but work on ILC with PCR 

and MLR is rare. The PLS is designed to arrest high colinearity issue. Though PLS is a 

more advanced regression method, it would be interesting and academically beneficial to 

investigate the performance of PCR and MLR model based ILC on fed-batch 

fermentation process. It would be interesting to compare the performance of three 

models on fed batch fermentation process.  

 In a basic ILC algorithm, there are only three elements used to construct the 

current batch control policy. They are the previous batch control policy, previous batch 

output deviation from the desired trajectory and iterative learning rate. The first two 

parameters can be directly obtained from the previous batch data but the learning rate has 

to be developed from the previous batches information. The information contained in the 

learning rate plays an important role on the performance of the current batch. The 
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identified process models come into use in constructing the iterative learning law. The 

learning rate carries information on the system model and magnitude of control action to 

develop an optimized control policy. The optimal control policy is expected to render a 

stable and converging performance. In order to obtain an optimal control policy, optimal 

ILC technique is used in this work. Optimal ILC is one of the popular methods used in 

designing iterative learning law. In optimal ILC, a quadratic objective function is solved 

to construct the learning rate. The quadratic objective function optimizes the changes in 

control policy in accordance to the system error without affecting the system stability. 

The system stability is maintained by carefully selecting the weighting parameter, Q and 

R used in the quadratic objective function (Eq.2.47). The ratio of Q and R dominates the 

magnitude of changes in the control policy for the controlled batch. The optimal ratio 

ensures that there is no sudden hikes or drops in the control policy that will affect the 

stability of the batch performance. 

 The major twist here is that ILC is a linear controller and the regression models 

are linear models too. Fed-batch reactors are highly non-linear and operate in transient 

states. Due to absence of steady states, standard linear optimal control techniques that 

could be successfully used for continuous process cannot be used directly for fed-batch 

fermentation system. The repetitive nature of fed-batch fermentation allows information 

from previous batch to be used to improve current batch performance iteratively. The 

input and output data a system to be controlled can be linearised around a selected 

nominal trajectory. That way the ILC method using regression models can be applied. In 

addition to that, process non-linearities could be eliminated through linearisation. 

 In order to improve the batch performance iteratively, batch to batch ILC using 

updated linearised models is suggested in this chapter. Batch to batch optimization serves 

as a solution for systems like fed-batch fermentation where there is no steady state. The 

previous batch data can be used as the nominal trajectory to improve the current batch 

performance. By updating the batch-wise updated linearised model batch after batch, 

more recent system conditions can be captured hence optimal control policy for the 

current batch can be identified. The proposed method is expected to address model-plant 

mismatch and fed-batch fermentation nonlinearities issues. The ILC techniques should 

track the desired trajectory asymptotically within ten batches. A steady and converging 

performance is desired for this control method. The batch to batch updated linearised 



55 

 

model ILC method proposed in this work has been applied to a computer simulated fed-

batch fermentation process. The details of the simulation can be found in Chapter 3. 

 This chapter consists of results for two different sets of historical batch data. 

The first part of the chapter from Sections 4.2 to 4.6 is a preliminary run details and 

results with first selection of simulation testing conditions. The second part of the 

chapter, from Sections 4.7 to 4.12, is the results for modification of the first part details. 

The second part conditions will be used for the rest of the work in this study. The chapter 

is organised as follows. Section 4.2 describes the development of linearised models using 

the first set of historical batches. In section 4.3, the Q and R values for the first set of 

historical batches is identified for all the three linearised models. Section 4.4 presents the 

results of batch to batch ILC using updated linearised model using MLR, PLS and PCR 

regression methods. The convergence of biomass concentration for updated and non-

updated models was investigated. In Section 4.5, the feed rate profile of the batch to 

batch updated models based ILC is presented. Section 4.6 summarises the performance 

of the proposed method for the initial set of simulation testing conditions. Section 4.7 

outlines the necessary amendment needed on the simulation testing conditions to better 

suit the requirements of this study. Section 4.8 describes the development of new set of 

historical batches and the respective linearised model.  In Section 4.9, the Q and R values 

were selected again. Section 4.10 presents the results for batch to batch ILC using 

updated and non-updated models and nominal trajectories. The performances of the 

regression models; MLR, PCR and PLS for the new set of data were investigated for 

three different ILC conditions. The conditions are outlined as Case 1, 2 and 3 in the 

section. Section 4.11 presents the feed rate profile for updated model and nominal 

trajectory case study. Finally, section 4.12 summarises the performances of the proposed 

control method for the new set of historical batches. 

4.2  Development of linearised models 

 A set of historical batch data containing input and output information, is needed 

to generate an ILC model. Since there are 10 piecewise constant inputs for every batch, 

there has to be more than 10 historical batches in order to identify the model. More 

historical batch data will give more information about the system. Therefore, initially, 40 

historical batches were generated from the initial feed rate presented in chapter 3, section 

3.4. The initial feed rate is used as the nominal control profile to develop the required 

historical batches by adding random variations to it. The random variations follow 
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normal distribution with zero mean and standard deviation of 50.  The linearised model 

is developed based on the equations presented in Chapter 2, Section 2.8. There are slight 

changes in the equations in Section 2.8.1. 

  In this study, the idea is to generate a batch to batch control. Therefore, intra 

batch condition is not considered. The focus will be on the inter batch performance. The 

historical batch data is in batch dimension rather than time dimension. Therefore, 

Equations 2.12-2.14 are reproduced as below: 

Y = [y (i)]
T
 =[y(1), y(2),…, y (M)]

T
      (4.1) 

U = [u(i)]
T
 = [u(1), u(2),…,u(M)]

T
                                  (4.2)  

with i=1,2…M 

where  

M is the number of historical batches used in the study.  

Y is the end-batch biomass concentration produced after every batch run. There is only 

one yield data for each batch run.  The end-batch biomass concentration is the controlled 

variable.  

U is the glucose feed rate profile for all the historical batches. The feed rate is the 

manipulated variable. 

u(i) =  [ui(1),ui(2),ui(3),ui(4),ui(5),ui(6),ui(7),ui(8),ui(9),ui(10)]
T
 represents  10 feed rates for each 

batch feed profile. Each of the 10 feed rates is introduced at intervals of 1.65hours for 

16.5 hours. 

Since there is only one yield value for every batch, the desired product trajectory is also 

one value. In this study, it is set that  

Yd= 74 g/L                                                                      (4.3) 

For M number of batches, the non-linear function in Eq.2.16 will remain as 

Y= F(U) + v                                                                    (4.4) 

where F() represents the non-linear static functions between U and Y and v=[v(1), 

v(2),…,v(M)]
T
 is a vector of measurement noises for M batches.  

 Once the 40 historical batches were obtained, the nominal control profile, Us 

and nominal yield, Ys were selected, either by calculating the mean of the 40 batches 

data or by using the 40
th

 batch data. Then the perturbation variables data were generated 

by subtracting Us and Ys from the original historical batches of input and output data 
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respectively. The non-linear batch process model in Eq(4.4) is linearised as per Eq(2.17). 

Multiple linear regressions (MLR), partial least square (PLS) or principal component 

regression (PCR) has been used to estimate the linearised model parameters. The details 

on how to estimate each of the regression models can be found in Chapter 2, Section 2.7.  

PLS and PCR functions in Matlab 7.1 were used for this purpose. The developed model 

is of the following form:  

Y= θ1u1 + θ2u2 + … + θ10u10        (4.5) 

where Y is the perturbation variable for end batch biomass concentration and u1 to u10 

are the perturbation variables for the substrate feed rates at 10 intervals during a batch. 

The developed linearised models were used in calculating updated control policies for 

batch to batch ILC method as per equations in Section 2.8.4. 

 

4.3  Selection of weighting matrices Q and R  

 Weighting matrices, Q and R, are used to balance between convergence speed 

and robustness respectively. The ratio of Q and R determines the relative weighting 

between the two terms in the objective function as in Eq(2.47). As observed in Eq(2.47), 

the Q value affects the tracking error reduction while R value limits the control changes. 

Bigger ratio tends to give faster tracking, but could also lead to oscillation. In this case 

study, Q=q is a scalar, R is considered as a diagonal matrix R=rI10, q ≥ 0 and r > 0 

are real scalars, and I10 is a 10×10 identity matrix. In this study, Q was fixed at 1 and the 

R values were varied to find a value that gives fast convergence without compromising 

the stability. 

  The MLR model was first used to determine the choices of R values which 

affect the ILC performance. The R values tested were 0.1, 0.01, 0.001, 0.0001 and 

0.00001. The biomass yield is expected to increase from 45.66g/L (40
th

 historical batch 

run yield) to 74g/L which is the desired yield. The R value was determined by the 

trajectory tracking capability of ILC. The R values of 0.1 and 0.01 generated very small 

increments on the input predictions which resulted in very slow convergence of output. 

The values of 0.001, 0.0001 and 0.00001 exhibited better convergence within ten batch 

runs than 0.1 and 0.01. Therefore, these three values were tested for PLS and PCR 

method as well to determine the R value for each of the regression method. The best 

value will be the one that exhibits fastest and stable convergence towards desired 

trajectory.  
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Figure 4.1: Comparison of different R values 

Figure 4.1 exhibits the effect of three different R values, 0.001, 0.0001 and 

0.00001, on ILC performance with the three regression models. The responses are shown 
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for 10 tested batch runs. Figure 4.1(a) displays the outcome for batch to batch control 

based on the MLR model. The output with R=0.001I shows steady increments towards 

the desired output, Yd=74g/L. However, the response is very slow. Therefore, it is not 

favoured in this work.  

  Besides stability, convergence speed is also important in selecting R value. The 

response with R=0.0001I shows significant leap at the first four batches and kept 

increasing steadily towards desired value till the 10
th

 batch. This R value is preferred 

because it converges to the desired point steadily within only ten batches. As for the 

response with R=0.00001I, the output accelerated towards desired value till the 4
th

 batch 

and then decelerated to 20g/L biomass yield in the following batches. This occurrence 

may be attributed to the high prediction of feed rate with R=0.00001I which resulted in 

excessive glucose in the reactor. The glucose surplus causes detrimental effect to the 

microbial growth and affects the biomass concentration.  

 In Figure 4.1 (b) the response with R=0.001I increases steadily but very slowly 

towards the desired output value. The response with R=0.00001I reached the desired 

value within 2 batches but the controlled variable is fluctuating. It is not suitable due to 

instability. The response with R=0.0001I, leaped significantly for the first 4 batches. 

Following that, the response increased steadily towards the desired value. The 10
th

 batch 

achieved 74.3g/l biomass concentration. It is clear that the response with R=0.0001I 

displays stable and desirable results. Therefore, R=0.0001I is selected for ILC with the 

PLS model. 

 Since R value of 0.001 exhibits very slow response for ILC with both MLR and 

PLS models, it was omitted in the testing for ILC with PCR model. Only 0.0001 and 

0.00001 were used and the result is presented in Figure 4.1 (c). The response using 

R=0.0001 in Figure 4.1(c) exhibits fast and stable convergence to the desired 

value. The 10
th

 batch produced 73.3g/L biomass and the desired value is 74g/L. The 

response with R=0.00001I, shows increasing output from the 1
st
 to 3

rd
 batch and then 

fluctuates till the 10
th

 batch. In the PCR model too, R=0.0001I is preferred. 

 In summary, Figure 4.1 reveals that R value of 0.0001 exhibits steadfast 

converging responses towards desired trajectory within 10 batches for all the three 

regression methods. Therefore, the weighting matrices Q and R are fixed at 1 and 0.0001 

respectively for the simulation study. 
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4.4  ILC performance on the simulated fed-batch fermentation process 

 The results of batch to batch ILC based on MLR, PLS and PCR models with 

and without disturbance are presented in this section. A total of 30 test batches were run 

for each linear regression model and each case study. The first 20 batches were simulated 

to test convergence and stability at a condition without any disturbances. At the 21
st
 

batch, a parametric disturbance was introduced. The initial substrate concentration, So, 

which was 325g/l under normal condition, was changed to 305g/l. It was then changed 

back to 325g/L for the 22
nd

 to 30
th

 batch. The disturbance was introduced to study the 

ability of the control method to handle the disturbance effect and track back to the 

desired trajectory. The disturbance was a non-repetitive one. 

  Figures 4.2, 4.3 and 4.4 show the simulation results for three different case 

studies used to investigate the performance of batch to batch ILC method. The 40
th

 

historical batch is referred as 0
th

 batch in these plots. It is used as the reference batch. 

The three cases which were investigated are referred to as Case 1, Case 2 and Case 3. 

Each case condition is explained below:  

Case 1: Constant Gs, Ys and Us 

The model parameter, Gs was generated from 40 historical batches. Us in the mean feed 

rate and Ys is the mean biomass yield of the 40 historical batches. The three variables 

were kept constant for all future batches. 

Case 2: Updating Gs, Ys and Us 

In this case, for the first test batch run, the Gs value was calculated from the 40 historical 

batches. The Us and Ys are the 40
th

 batch feed rate and yield respectively. After the first 

simulation, the feed rate and its corresponding yield were added into the 40 historical 

batches and a new Gs was generated from the total of 41 batches. The Us and Ys for the 

new batch are the 41
st
 batch feed rate and yield respectively. The cycle repeats for the 

next batch. The Gs, Ys and Us was updated after every batch run.  

Case 3: Updating Gs (with constant Ys and Us) 

As for Case 3, the Gs value was updated after every batch as mentioned in Case 2 

descriptions. The Ys and Us value was the mean of 40 historical batch and remains the 

same for all the future batch runs.  
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4.4.1 ILC using multiple linear regression models 

  Case 1 has been used as a reference in this study. It exhibits responses when 

ILC is used with no batch to batch model and nominal batch updating. As observed in 

Figure 4.2 below, the output of Case 1 increased steadily for the first 10 batches and 

almost attained the desired value. However, the responses were not maintained for the 

following batches. After the 10
th

 batch, the biomass yield deteriorated. This is the effect 

of glucose surplus. Berber et al. (1998) noted that the improvement between every batch 

is very large in the beginning and then gradually slows down as it reaches desired result. 

For large improvements, more glucose feed is needed. The feed rate should be increased 

at a higher proportion from one batch to another. When the biomass increment rate 

reduces as it reaches and maintains asymptotical to the desired trajectory, the feed rates 

increment should also be adjusted accordingly to evade glucose surplus which has 

detrimental effect on biomass growth. The feed rates may have to be maintained at an 

optimal profile with no further increments when necessary. In Case 1, there is no batch to 

batch model updating after every batch run. Consequently, the feed rates calculated may 

not be optimal when the process operating condition differs from that in the nominal 

reference batch. In the first ten batches, the constant high dosage of glucose was needed 

to increase the yield rate. In the following ten batches, as the growth rates slowed down 

but the substrate increment rate was constant, the yeast cells becomes suffocated due to 

substrate surplus. 

 

Figure 4.2: Batch to batch ILC using MLR model 
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  Cases 2 and 3 were studied to understand the effect of updating model 

parameter, Gs, and nominal trajectories, Ys and Us. In Figure 4.2, the responses for 

Cases 2 and 3 have increased asymptotically to the desired value, 74g/L, at similar rate 

for the first 20 batches which was conducted to analyse convergence speed and stability. 

In the first ten runs, the yields have reached close to the desired value, with the 10
th

 batch 

at 73g/l. In the following 10 batches, the simulation outputs steadfastly, increased 

asymptotically towards the desired product value with the 20
th

 batch is about 73.95g/l. 

This result proves that iterative leaning control with batch wise updated models is 

efficient in achieving and maintaining optimal results under normal operating conditions 

with no disturbances. There is no significant difference in responses for updated and 

constant nominal variables. When disturbance was introduced at the 21
st
 batch, the 

output in both Cases 2 and 3 became unstable and exhibited fluctuating pattern. Case 3 

with constant nominal reference trajectories, showed decreasing response pattern and 

was not competent to attain the desired trajectory. As for Case 2, there is some increasing 

response towards desired trajectory during batches 25 to 29. It can be deduced that, in the 

presence of disturbance, updated nominal variables and model parameter exert a positive 

impact in tracking the reference trajectory in comparison to the constant nominal 

reference trajectories and updated model parameters. However, iterative learning control 

with batch wise updated models using MLR did not exhibit desired trajectory tracking 

characteristic. This can be attributed to the fact that MLR is not able to handle the 

colinearity among the control actions at different stages of a batch. The MLR model is 

inappropriate for correlated control actions. 
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4.4.2 ILC using partial least squares model 

 

Figure 4.3: Batch to batch ILC using PLS model 

Figure 4.3 exhibits the biomass produced at three tested cases for batch to batch 

control based on the PLS models. The responses in Case 1 exhibit positive increment till 

the 9
th

 batch. The 10
th

 batch onwards the response fluctuated and eventually decreased to 

below 20g/L. This is expected to happen since there is no batch to batch model updating 

to update the control policy changes necessary to cater to asymptotic performance. 

Constant increment rate on the control policy causes substrate surplus and adversely 

affects the end-batch biomass concentration. Both Cases 2 and 3 in Figure 4.3 

demonstrated steady increase towards desired value at similar rate for the first 20 

batches. When disturbance was introduced at batch 21, there was a slight decrease in the 

biomass value for both Cases 2 and 3 in comparison to batch 20. After the 21
st
 batch, the 

responses of Case 2 and 3 changed. The response for Case 2 fluctuated for few batches 

before increasing towards the desired value gradually. The output value at the 30
th

 batch 

is 73.3g/L. In contrast, the response for Case 3, declined appreciably to below 20g/L. 

These results indicate that the control with batch wise updated model and nominal 

reference trajectories is able to handle disturbances and track the reference trajectory 

steadily whereas the only updating model method is insufficient to do so. It is observed 

that PLS method can be used efficiently to develop model parameters for batch to batch 

model updated ILC method.  
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4.4.3 ILC using principal component regression model 

 

Figure 4.4: Batch to batch ILC using PCR model 

  In Figure 4.4, the response for all the three cases increased towards the desired 

value in the first ten batch runs. As expected, the biomass concentrations in Case 1 

declined continuously for the following ten batches to below 20g/L. Meanwhile, the 

responses for Cases 2 and 3 increased asymptotically to the desired value in the next ten 

batches. When disturbance was introduced at batch 21, the outputs for Cases 2 and 3 

reduced to about 70g/L. Following that, the response for Case 2 rose above the desired 

value to 74.85g/L and then gradually decreased asymptotical to the desired output 

trajectory. The control performance appears to be very satisfactory because it did not 

show large sway from the previous batches after the disturbance and it portrayed a stable 

trajectory. This is the outcome of control aimed to be achieved for the batch to batch 

process control and optimization. As for Case 3, after disturbance was introduced, the 

response generally fluctuates between 40g/L to 100g/L. The control with updating model 

parameter, Gs, alone becomes unstable when disturbance is introduced.  
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4.4.4 Comparison of Case 2 performance for ILC using MLR, PLS and PCR 

models 

 

Figure 4.5: Comparison of the control strategies based on MLR, PLS and PCR models 

for Case 2 (updating Gs, Ys and Us) 

  With reference to Figures 4.2, 4.3 and 4.4, it is evident that batch to batch 

updating of Gs, Us and Ys (Case 2) leads to the best control performance in the presence 

of disturbance. The responses in Case 2 for ILC with the three models are displayed in 

Figure 4.5 for comparison purpose. As seen in Figure 4.5, the PCR model seem to 

exhibit very satisfying results. The PLS came second due to slight fluctuation after the 

disturbance was introduced. The MLR response is unstable and appeared not feasible to 

be used in batch to batch control with the presence of disturbances. Both the PCR and 

PLS method with updating model, nominal feed and nominal output can be used in the 

batch to batch process control and optimization with the presence of parametric 

disturbances. The difference in the results for PCR and PLS is due to the difference in 

the method used to develop process model as discussed in Chapter 2. The response 

pattern of Case 2 is further explained by the change in the feed rate profiles in the next 

section. 
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4.5  Feed rate profiles for batch to batch ILC with updated linearised models  

  The feed rate profile plays an important role in the process control and 

optimization to produce optimal output. In this section, the change in the feed rate 

trajectory for MLR, PLS and PCR method in the case of updating model, nominal output 

and nominal feed rate, Case 2, is displayed and analysed. 

4.5.1 Control profile under ILC with multiple linear regression model 

  Figure 4.6 (a) shows that, in the first 40 historical batch run, the feed rate 

profile follow a pre-set incremental exponential profile. With the introduction of ILC 

with linearised model from MLR, the feed rate profile has been changed to a significant 

pattern to suit the process need. Furthermore, the feed rates have been increasing 

gradually to attain optimal feed rate profile to achieve desirable biomass concentration.  

 

Figure 4.6: Feed rate profile for batch to batch ILC using MLR model in Case 2 
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not stable. This result further proves the fact that MLR method is not compatible to be 

used in the batch to batch bioprocess control with the presence of disturbances. 

4.5.2 Control profile under ILC with partial least squares model 

 

Figure 4.7: Feed rate profile for batch to batch ILC using PLS model in Case 2 

 With reference to Figure 4.7 (a), the first 40 historical batches exhibited an 

exponential feed rate profile. When the control model was introduced, the feed rate 
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following 10 batches without disturbance, where the aim is to sustain an asymptotic 

growth, the feed rate profiles were maintained at an optimal setting. This pattern explains 

the increase in the output towards the desired value and then it grows asymptotically to 

the desired trajectory as shown in Figure 4.5 for PLS response. In Figure 4.7 (b), the feed 

rate pattern remains and all except one batch shows increasing profile. The one odd 

pattern is the feed rate for the batch immediately after disturbance was introduced. This 

explains the fluctuating output in Figure 4.5 for few batches after batch 21. Apart from 
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that, the other profiles show a steady improvement in the feed rate in order to attain 

desired biomass output. 

4.5.3 Control profile under ILC with principal component regression model 

 

 Figure 4.8: Feed rate profile for batch to batch ILC using PCR model in Case 2 

  As seen in Figure 4.8 (a), the historical batches are plain positive exponential 

feed rate profile.  When the PCR linearised model was used, the feed rate profile pattern 

changed. The feed rate also increased for several batches and then maintained at certain 

range when the output increases asymptotical to the desired value. After disturbance was 

introduced, the feed rate profile is as shown in Figure 4.8 (b). The feed rate profile of the 

ten last batches seemed like one thick line, which means the differences between the feed 

rates for each batch is very small. This outcome goes to prove that the disturbance did 

not cause a significant alteration in the feed rate generation. The control model has been 

able to react to the disturbance to make necessary corrections in the feed rate to suppress 

possible huge changes in the output. The feed rate patterns seem steady and smooth and 

most preferred in the study. 
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4.6  Summary 1 

 In summary, using the above mentioned set of historical batches and simulation 

conditions, a preliminary idea on the performance of batch to batch ILC in Baker’s yeast 

fed-batch fermentation is obtained. The non-updated model and nominal trajectories as in 

Case 1 for MLR, PCR and PLS is able to track the desired trajectory within the first ten 

batches. However, in the following ten batches, all the three regression models failed to 

asymptotically track the desired trajectory. In ILC, long range asymptotic tracking of 

desired trajectory is a desired performance pattern. For Case 3, with updated model and 

constant nominal trajectories, all the three models achieved desired trajectory within ten 

batches and then maintained asymptotic tracking for the following ten batches. The 

performance for batches without disturbance for Case 3 was very satisfactory. However, 

in the presence of non-repetitive disturbance, updated model alone was not sufficient to 

manage the effect of disturbance and sustain the controller performance. The MLR and 

PCR model sufferred high instability in the control performance though the biomass 

concentration was always above 40g/L. For PLS model, there were slight instability in 

the first few batches, and then the biomass concentration steadily reduced to almost 

20g/L in the follwing batches.  

 The batch to batch updated model and nominal trajectories, which is Case 2, 

delivered favorable results for PLS and PCR model in the presence of non-repetitive 

disturbance. It is interesting to note that a simple batch to batch ILC with updated PCR 

or PLS models and nominal trajectories is capable of handling a non-repetitive 

disturbance without causing high instability in the batch to batch performance. After a 

few batches with fluctuating performance, both the batch to batch system were tracking 

back towards desired trajectory. However, it takes about 10 batches for the performance 

trajectory to recover. If in case there were more non-repetitive disturbances present 

within the 10 batches, the performance of the proposed batch to batch updated ILC 

model is doubtable. The MLR model was clearly not fit for this application in the 

presence of disturbance. There were high instability in the performance pattern. 

 The preliminary simulation run results presented above have brought about the 

neccessity to make several amendments to the simulation testing conditions to better suit 

the requirements of this study. The necessary amendments made and the results of the 

new conditions are presented in the sections below.  
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4.7  Alterations in batch to batch updated model ILC simulation testing 

conditions  

The results from application of batch to batch iterative learning control on baker’s 

yeast fermentation process discussed in the previous sections brought about the idea for 

experimentation and alteration of quantity of historical batches, number of trial batches, 

historical batch range and number of batches with disturbances.  

It is suggested in the literature that the historical batches data should be more than 

the number of input variable. However, how many batches are sufficient is not known. 

Therefore, apart from 40 batches, 20, 30 and 50 historical batches were used in the batch 

to batch ILC control to investigate the effect of historical batches. It was identified that 

20 historical batches were sufficient to deliver desired performance for this case study. 

The next issue with historical batches is the range of the data. The output range in 

the case above is between 45 to 50 g/l. In the real fermentation process, the historical 

data may have wider range. The small range of data may not represent the real 

fermentation process data variation. In addition to that, the small range may not ensure 

that the same performance can be obtained in the presence of bigger data range. 

Therefore, the historical batch data range was widened for the biomass concentration to 

fall between 40 to 60 g/l. 

Then, the number of trials needed to test the control method has to be reduced. 

There is no need for 30 batches of test runs. In the results above, it is notice that for both, 

with and without disturbance, the effectiveness of the control method can be measured 

within 10 batches. Therefore, 10 batch runs with disturbances and 10 batch runs without 

disturbance would be enough. For every techniques introduced a total of 20 batch runs 

will be tested, with and without disturbances. 

The next query that rose from the previous results is regarding disturbances. The 

objective was to preserve the final biomass concentration, as nearly as possible to its 

ideal final value, even if the process input was subjected to changes. There are two types 

of disturbance that can be introduced in this case. It can be the initial conditions (Yuzgec 

e t al, 2009) or the initial biomass concentration. The main process input is the initial 

biomass concentration which has an ideal initial value that may change according to 

chemical laboratory quality assurance procedures (Riad et al., 2009). Considering the 

two, the disturbance in the initial biomass concentration was used since it could be the 
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most likely parameter that could affect the product quality. In addition to that, this is a 

non-measured parameter and so could be one of the possible unknown disturbances. 

Therefore, the initial biomass concentration disturbance is retained as source of 

disturbance for this work.  

Settled with the type of disturbance, the next issue is the number of batches with 

disturbance has to be determined. In the previous results, the disturbance was only 

introduced for one batch which was batch 21. The proposed batch to batch updated ILC 

model technique did work on the non-repetitive disturbance moderately well. However, 

to be more realistic, the disturbance may be present more often than once in 30 batches. 

In the real plants, more often than not, there will be continuous disturbances present in a 

batch to batch operation (Gao et al., 2001). Furthermore, a simple ILC algorithm is 

known to work very well with continuous disturbance rather than a non-repetitive 

disturbance. Since the objective of this study is to enhance the basic ILC algorithm to 

improve batch to batch performance, it would be better to demonstrate the efficiency of 

the proposed techniques with continuous disturbances. Therefore, to evaluate the 

robustness of the proposed control techniques in this study, the same disturbance, which 

initial biomass concentration will be introduced continuously for 10 batches for the rest 

of the simulation works.  

These relevant changes were applied to the simulation and its performance was 

evaluated. All the other simulation conditions were retained.  
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4.8  New set of historical batches 

 

Figure 4.9: Historical batches for the new simulation condition 

A new set of historical batches were generated as seen in Figure 4.9. Twenty 

historical batches were generated by adding random variations to the initial control 

profile presented above. The added random variations follow normal distribution with 

zero mean and standard deviation of 50 to 100.  The end-batch biomass concentrations 

ranged between 40 and 60 g/l. 
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4.9  Selection of Q and R value for new set of historical batches 

 

(a) ILC with MLR model 

 

(b) ILC with PLS model 

 

(c) ILC with PCR model 

Figure 4.10: Comparison of different R values for new historical batches 
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 The Q value has been set as 1, just the same as for the previous historical data. 

The R values were decided again for the new batch of historical data. The same set of R 

values, which are 0.001, 0.0001 and 0.00001 were compared to identify the most 

favourable value. Referring to Figure 4.10 (a), (b) and (c), it is notable that the 

performance patterns for R=0.00001I are unstable for all the three regression models. 

Meanwhile, the performance when R=0.001I is steady but very slow for the three 

models. The performance with R=0.0001 is the best for all the three models. There is 

steady and faster convergence rate. Therefore, the R value was fixed at R=0.0001I. 

4.10 Results for Case studies 1, 2 and 3 with new set of historical batches 

 Batch-to-batch iterative learning control based on the three types of models 

(MLR, PCR, and PLS) were tested and compared for the following three different cases: 

Case 1: Constant Gs, Ys and Us 

Case 2: Updated Gs, Ys and Us 

Case 3: Updated Gs, fixed Ys and Us 

Each of the cases was run for 20 batches to investigate the control performance. The 

desired final bio-mass concentration value was set at 74g/L. The first 10 batches were 

run without any disturbance to test convergence and stability. Then, a continuous 

parametric disturbance was introduced from batch 11 to batch 20. The disturbance is the 

initial substrate concentration, S0, which was changed to 305g/l from its nominal value of 

325g/l. The disturbance was introduced to study on the ability of the control method to 

handle the disturbance effect and track desired trajectory within 10 batches.  

 For updated model runs, the data from the 20
th

 batch were selected as nominal 

feed rate, Us, and nominal yield, Ys. Then, perturbation variables, U and Y were 

generated. These variables were used to develop model parameters using MLR, PLS or 

PCR. After the first simulation, the feed rate and its corresponding yield were added into 

the 20 historical batches and a new model parameter was generated from the total of 21 

batches. The Us and Ys for the new batch are the 21
st
 batch feed rate and yield, 

respectively. The cycle repeats for the next batch. The model parameter, nominal feed 

rate and nominal yield were updated after every batch.  
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  Figure 4.11: End-batch biomass concentration for Case 1: fixed Gs, Ys & Us 

 Figure 4.11 shows the control performance for MLR, PCR and PLS model for 

Case 1 with the new historical batch. It can be seen from Figure 4.11 that batch to batch 

control with fixed model and fixed reference trajectories does not perform for both, with 

and without disturbance. The end-batch biomass output is far away from the desired 

output which is 74 g/L. This is due to the fact that the fixed nominal model becomes 

invalid when the operation trajectories shift away from the nominal trajectories. 

 

  Figure 4.12: End-batch biomass concentration for Case 2: updated Gs, Ys & Us 
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 In contrary to Case 1, the control performance for Case 2 with all the three 

regression models gives positive results for both, with and without disturbances as seen 

in Figure 4.12. The MLR model in Case 2 exhibits slightly unstable performance for all 

the 20 batches. This could be due to that the MLR model is not appropriate due to the 

correlations among the control actions during different batch stages. As for PLS model, 

the performance is improving steadily without disturbance but a little unsteady in the 

presence of unknown disturbances. However, the end-batch biomass value is the highest 

for PLS model. The PCR model showcases steadily improving results for all the 20 

batches. It is notable that with updated linearised models and reference trajectories, 

batch-to-batch control using PCR model or PLS model gives satisfactory performance 

when unknown disturbances are present. This significant improvement over batch to 

batch control using MLR model is due to that the PCR and PLS models are more 

appropriate for correlated control actions. 

 

 Figure 4.13: End-batch biomass concentration for Case 3: updated Gs, Fixed Ys & Us 

 The control performance for Case 3 with all the three regression models gives 
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MLR model was unstable for all the 10 batches. This could be due to that the MLR 

model is not appropriate due to the correlations among the control actions during 

different batch stages. The PCR model showcases steadily improving results for the first 

5 batches with disturbance but then fluctuates for the balance 5 batches and so is not a 

favourable performance pattern. As for PLS model, the performance is a little unsteady 

in the presence of unknown disturbances. However, the end-batch biomass value is the 

highest for PLS model. The results show that updating the nominal trajectories does not 

impact the performance when there is no disturbance, but it certainly does have a 

positive impact in the presence of disturbances. 
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4.11 Feed rates for Case 2 with new set of historical batches 

 

Figure 4.14: Feed rate profile for Case 2 with MLR model 

  

 Figure 4.15: Feed rate profile for Case 2 with PLS model 
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  Figure 4.16: Feed rate profile for Case 2 with PCR model 

  Referring to Figures 4.14, 4.15 and 4.16, the feed rate profiles explain the 

biomass concentration plots in Case 2 for the three different models as shown in Figure 

4.12. In the absence of disturbance, both the PLS and PCR models as seen in Figures 

4.15 and 4.16, were gradually and stably increasing towards an optimal feed rate. That is 

seen as the steady increment in biomass concentration as in Figure 4.12. The MLR model 

in Figure 4.12 was a little unsteady and that is reflected in the feed rate profile. The feed 

rate profile in Figure 4.14 varied significantly for a few batches till the most appropriate 

ones are identified towards the end of the first ten batches. In the presence of 

disturbance, the PCR model exhibit steadily converging biomass concentration as shown 

in Figure 4.12. It can be seen in Figure 4.16, in the plot with disturbance, the feed rate 

profile has reached an optimal pattern and is not perturbed much by the disturbance, 

hence the steady performance. Both MLR and PLS models feed rates in the presence of 

disturbance are slightly perturbed as seen in Figures 4.14 and 4.15 respectively, which 

results in slightly unstable results in Figure 4.12 for batches with disturbance. The feed 

rate profiles are certainly modified by the batch to batch ILC method to cater to the 

process condition. The end batch biomass concentration performances are clearly 

reflected in the feed rate profile pattern. 
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4.12  Summary 2 

  In this work, R value has been selected as 0.0001 for all the three regression 

methods because it produces steady responses that converge to the desired trajectory 

within ten test batch runs. The Q was set to 1. Then, performance of MLR, PLS and PCR 

at three different cases were investigated. In contrast to the initial set of historical batches 

performance for Case 1, the batch to batch ILC using constant model and mean nominal 

trajectory of the new set of historical batches was not able to track the desired trajectory 

within the first ten batches. The biomass concentration dropped to 20g/L within the ten 

batches. Batch to batch ILC was not even able to track the desired trajectory when the 

historical batches were of wider range than the initial set of data. In Case 3, all the three 

models potrayed steadily converging biomass concentration for the first ten batches with 

PCR leading in performance following by PLS and then MLR. In the presence of 

continuous disturbance, all the three models exhibited fluctuation patterns.  

 Case 2 with batch to batch ILC using updated model and nominal reference 

trajectories produced steadfast asymptotical convergence for the first 10 batches without 

disturbance for PLS and PCR models. The MLR model plot portrayed slower 

convergence compared to the other two models with some instability. In the presence of 

disturbance, all the three models plot exhibit batch to batch improvement with slight 

instability. The PLS model exhibited highest biomass concentration for all the 10 batches 

with disturbances followed by PCR and then MLR model. These results shows that 

further enhancement can be done to the proposed method to further improve the batch to 

batch performance. 
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CHAPTER 5: RELIABLE BATCH TO BATCH ITERATIVE LEARNING 

CONTROL OF A FED-BATCH FERMENTATION PROCESS 

 

5.1 Introduction 

 

Utilising the repetitive nature of batch or fed-batch processes, fermentation operation 

recipes can be modified from batch to batch through iterative learning control (ILC) in order 

to overcome the detrimental effect of model-plant mismatches and unknown disturbances. As 

many batch processes are highly nonlinear, the batch-wise linearised model may only be 

valid over a small operating range. Thus control actions from the ILC strategy may not be 

reliable if the mismatch between the linearised model and the plant becomes large. In order to 

overcome this problem, a reliable model based ILC strategy is proposed in this chapter.  

Model prediction confidence bounds give an indication of the reliability of the 

associated model prediction. The calculation of model prediction confidence bounds is 

dependent on the data distribution of the process data used for modelling. An accurate 

confidence bound can be obtained if there is sufficient knowledge of the data distribution. In 

a complex system like fed batch fermentation, exact data distribution is difficult to be 

ascertained. Confidence bounds can be identified by assuming a distribution pattern or 

population density based approach. Assumption based confidence bounds calculation 

methods may not accurately define the confidence region of a complex system (Martin and 

Morris, 1996).  Therefore, confidence bounds developed from the natural process data 

distribution is expected to give a more realistic and reliable prediction value.  

Model prediction confidence bounds for expected response can be obtained from 

historical process operation data used for model identification. The model prediction 

confidence bound is incorporated into the model based ILC optimisation objective function 

and control policies leading to wide model prediction confidence bounds are penalised. The 

question is how often the bounds should be re-identified. In a complex, dynamic system, the 

physical and physiological condition may be changing over time. In order to cope with 

process nonlinearities, the batch-wise linearised model is re-identified after each batch run 

with the immediate previous batch as the reference batch. Similarly, the confidence bound is 

re-identified after batch run by including the immediate previous batch to update changes. 

Introduction of weighted parameter to the model prediction confidence bounds renders 

certain control on how the confidence bounds affects the objective function.  
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Zhang (2004) presents a study on reliable neural network based optimisation control 

strategy on batch polymerization process. Bootstrap aggregated network is used to calculate 

the model prediction confidence bound which is then incorporated into objective function. 

The term λ
T
σe was incorporated into objective function where σe is a vector of standard 

prediction errors while λ is a vector of weightings for σe. This term is meant to penalise wide 

model prediction confidence bounds to render a more reliable control policy. As the 

weighting of the standard prediction error increases, the confidence bounds become narrower 

and the actual final product quality was closer to the defined constraints. The individual 

network predictions were less diverse indicating improved reliability. When the weighting 

increases the reduction in standard prediction error becomes less significant. This work 

adopts the same philosophy to ILC where model prediction confidence bounds are 

incorporated into the ILC optimisation objective function.  The proposed method is applied to 

a simulated fed-batch fermentation process and the results demonstrate that the proposed 

reliable ILC strategy is very effective.  

The chapter is organised as follows: Section 5.2 presents a bit of theory on confidence 

interval and its relation to model prediction confidence bounds for predicted response. 

Section 5.3 presents the development of reliable ILC with MLR, PCR and PLS models. 

Section 5.4 presents the results and discussion for the proposed method. Finally, Section 5.5 

concludes the chapter. 

 

5.2 Confidence intervals for multiple linear regression model predictions 

Considering the following multiple input single output (MISO) linear model 

 y = u11 + u22 + … + unn                        (5.1) 

where y is the model output, u1 to un are model inputs, and 1 to n are model parameters. For 

a set of pre-processed input and output data, X and Y, the model parameters can be obtained 

from least square estimator as 

                        (5.2) 

Since   ̂ are unbiased estimators of  θ, 

   ̂= u1̂1 + u2̂2 + … + un̂n         (5.3) 

The expected model response is 

E[y] = u11 + u22 + … + unn         (5.4) 

Let input, u= (u1  u2  u3 …un)
T
, then 

YXXXθ
TT 1)(ˆ 
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   ̂= u
T̂          (5.5) 

E[  ̂]=u
T
E[̂ = u

T=E[y]        (5.6) 

Var[  ̂]=u
T
Var[̂  =σ2

 u
T
 (X

T
X)

-1
u       (5.7) 

The variances of the ̂  are obtained using the (X
T
X)

-1 
matrix.  

The normal distribution of the predicted responses are defined as 

 ̂    [      [ ̂           (5.8)   

 ̂    [                        (5.9) 

From Eq.5.9, the model prediction confidence bound for predicted response is proportional to 

normal prediction variance. The variance-covariance matrix of the estimated regression 

coefficients is obtained as follows:  

          (5.10) 

where C is a symmetric matrix whose diagonal elements, Cjj, represent the variance of the 

estimated j
th

 regression coefficient, ̂jj. The off-diagonal elements, Cij, represent the 

covariance between the i
th

 and j
th

 estimated regression coefficients, ̂i and̂j . The value of 

is obtained using the error mean square, MSE. The positive square root of Cjj represents the 

estimated standard deviation of the j
th

 regression coefficient, ̂j , and is called the estimated 

standard error of ̂j. 

5.3 Incorporation of model prediction confidence bounds to enforce reliability 

5.3.1 Reliable ILC with multiple linear regression models 

 The linearised model can be identified from historical process operation data 

using MLR (Xiong and Zhang, 2003). Let X and Y be the deviations from the reference 

trajectories of historical data in the manipulated variables and product quality variables 

respectively, then 

 Y = GsX           (5.11) 

and the linearised model Gs can be obtained through MLR as 

Gs = (X
T
X)

-1
X

T
Y         (5.12) 

Model predictions for the k
th

 batch can be calculated as 

ksk UGY ˆ                                (5.13)           

   



84 

 

The model prediction confidence interval is proportional to variance of model 

predictions (Gunst and Mason, 1980), k

TT

k UXXU  12 )( , where σ
2
 is the model 

prediction error variance. A narrower confidence bounds indicate a more reliable model 

prediction. 

In the batch to batch ILC law as presented in (Xiong and Zhang, 2003), the following 

quadratic objective function was solved upon the completion of the kth batch run to identify 

the necessary changes needed to update the input trajectory for the (k+1)
th

 batch run. 
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          (5.14) 

In order to enhance the reliability of batch-to-batch ILC, model prediction confidence bounds 

penalty term is incorporated in the ILC optimisation objective function as shown below 
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     (5.15) 

where ek+1 = Yd - Yk is the tracking error for the (k+1)th batch, Q and R are positive 

definitive matrices, and λ is a weighting parameter to penalise wide model prediction 

confidence bounds.  

 

Note that the objective function, Eq.(5.15), has two penalty terms, one on the input 

change 1 kU =(Uk+1-Uk) between two adjacent batch runs and the other on model 

prediction reliability. The two penalty terms can be combined and the objective function 

can be re-written as 
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      (5.16) 

As the calculated control action are the increments between the (k+1)th and the kth 

batches, the ILC algorithm has an integral action with respect to the batch index k (Xiong 

and Zhang, 2003). Large values of λ will prevent the control actions going to regions 

where the model predictions are not confident making the ILC strategy reliable.  

By finding the partial derivative of the quadratic objective function Eq(5.16) with 

respect to the input change 1 kU  and through straightforward manipulation, the following 

ILC law is obtained 

kk eKU ˆ
1            (5.17)  
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where K̂ is defined as the learning rate 

 QGXXRGQGK
T

s

T

s

T

s
ˆ]ˆˆ[ˆ 1                  (5.18) 

   = tracking error of the process and pertubation model  

The ILC law for the control trajectory of batch k+1 can also be written as 

kkk eKUU ˆ
1                               (5.19) 

Part of the penalty term, which is (X
T
X),

 
is re-identified after every batch run. The immediate 

previous batch data is added into the historical batch data pool, linearised and (X
T
X)

 
is 

calculated using all of the historical batches. The pool of historical keeps growing with the 

batch trials. The weighting parameter, λ, is a scalar. It. was determined by trial and error. The 

performance of batch to batch control using the modified objective function for varying λ 

value is discussed in this chapter.  

 

5.3.2 Reliable ILC with principal component regression models 

As for PCR method, the matrix X is decomposed into the sum of a series of rank one 

matrix through principal component decomposition. 

 
T
NN

TT
ptptptX  ...2211                                  (5.20) 

where ti and pi are the i
th

 score vector and loading vector respectively. The model output is 

obtained as a linear combination of the first k principal components of X as 
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where w is a vector of model parameters in terms of principal components. The least squares 

estimation of w is: 
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The model parameters calculated through PCR is then 
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Therefore the modified objective function is 
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5.3.3 Reliable ILC with partial least squares models 

PLS projects the X and Y matrices to a subset of latent variables, t and u, respectively. 

   ∑     
  

                          (5.25)  

   ∑     
  

                                                              (5.26)  

The linear relationship between X and Y is obtained by performing least square 

regression between each pair of corresponding t and u latent vectors while making‖ ‖ as 

small as possible. 

  ̂                       j=1,2,…k                                        (5.27)  

where    is the coefficient from the inner linear regression between the j
th

 latent variables  

          which is 
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Eq. 5.28 is equivalent to Eq. 5.12 and Eq. 5.22. The modified objective function for PLS 

is  
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5.4  Results and Discussion 

 There were 20 historical batches used in this work. Batch 0 in all the graphs is 

the 20
th

 historical batch used in the study. Batches 1 to 10 are batch trials without 

disturbance for which the objective is to attain desired biomass production, Yd= 74g/L. 

At batch 11, a disturbance was introduced in that the initial substrate concentration was 

changed to 305g/l from its nominal value of 325g/l. The following 10 batches, which are 

batches 11 to 20 were introduced to the disturbance and the end-batch biomass 

production performance were analysed.  The graph with λ=0 refers to performance of 

batch to batch ILC with the non-modified objective function that was presented in 

Chapter 4, Figure 4.12. 

5.4.1 Results for ILC with multiple linear regressions model 

 As shown in Chapter 4, Figure 4.12, batch to batch ILC using updated MLR 

models with λ=0, which corresponds to the ILC strategy in (Xiong and Zhang, 2003), can 

improve process operation from batch to batch. However, the performance patterns can 

be further improved with λ>0. Several penalty parameters, λ, values ranging from 0 to 
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100 were tried to evaluate its impact on ILC performance. The final biomass output 

pattern when λ is 0.001 and 0.01 with and without disturbance had very small difference 

compared to when λ=0 but there were slight increment in biomass concentrations in 

every batch when λ was increased from 0.001 to 0.01. This initial trial gives an 

indication that bigger λvalue will give better performance. Therefore, more trials were 

done with λvalue bigger than 0.01 and the results are presented below.         

Table 5.1: Selected end-batch biomass concentrations (g/l) for MLR for λ between 0.1 

and 0.5. 

  

 

 

 

 

Figure 5.1: End-batch biomass concentration for ILC with MLR when λ is 0.1, 0.2, 0.3, 

0.4 and 0.5. 

Referring to Figure 5.1, it is noticeable that there is mixed performance pattern 

with different λ values. Clearly, λ=0.1 exhibit contrasting performance pattern 

compared to the rest of the λ values. The end-batch biomass concentration for every test 

batch when λ=0.1, increased steadily with and without disturbance. For the first 4 

batches, the convergence were slowest compared to the other λ values but from the 5
th

 

batch to the 20
th

 batch, steady and fastest converging biomass concentration were 
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0 0.1 0.2 0.3 0.4 0.5 
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10 71.8 72.4 72.0 71.8 71.8 71.8 

11 68.5 68.7 68.5 68.3 68.3 68.3 

20 69.4 69.8 69.6 69.4 69.5 69.4 
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observed. The biomass concentrations for λ=0.2, 0.3, 0.4 and 0.5 have similar 

performance pattern with and without disturbance. Though there is slight improvement in 

the stability of the performance pattern for these values compared to λ=0, the increment 

in biomass concentration is less significant especially for batches with disturbances. The 

batches without disturbance increased significantly for the first 4 batches, and then the 

following 6 batches did not differ much from λ=0. Referring to Table 5.1, the final 

biomass concentrations of 10
th

 batch for λ=0.3, 0.4 and 0.5 are similar to λ=0, which is 

71.8g/l. There were slight increments for λ=0.2 and λ=0.1 which are 72g/l and 72.4 g/l 

respectively. For batch 20, there were small increment for λ=0.1, 0.2 and 0.4 which is 

69.8g/l, 69.6g/l and 69.5 respectively compared to 69.4g/l for λ=0, 0.3 and 0.5. Overall, 

λ=0.1 has more steady and faster converging performance comparing to the performance 

of λ=0. Since the increments were small, bigger λ values were attempted. 
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Table 5.2: End-batch biomass concentrations (g/l) for ILC with MLR for λ between 1 

and 5. 

Batch 

number 

λ 

0 1 2 3 3.5 4 4.5 5 

0 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8 

1 63.1 64.1 64.3 64.3 64.4 64.4 64.4 64.4 

10 71.8 71.8 72.2 72.7 72.8 72.9 73.0 73.0 

11 68.5 68.3 68.6 69.2 69.3 69.4 69.5 69.6 

20 69.4 69.3 69.1 69.9 71.3 71.2 71.1 70.7 

 

 

Figure 5.2 (a): End-batch biomass concentration for ILC with MLR for λ between 1 and 

5. 

 

Figure 5.2 (b): End-batch biomass concentration for ILC with MLR for λ between 1 and 

5 in the presence of disturbance. 
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Referring to Figure 5.2(a), for the first 10 batches with no disturbance, the 

increment of λ from 1 to 5 show noticeable batch to batch improvement in end-batch 

biomass concentration compared to the case when λ=0. As seen in Table 5.2, the biomass 

concentration at the 10
th

 batch increased from 71.8g/l to 73 g/l with increasing λ values. 

For λ=1, the biomass concentration improved steadily for the first 3 batches and then 

matched the results for λ=0 for the rest of the 7 batches without disturbance. Therefore, 

the end of batch biomass concentration at the 10
th

 batch is similar to that when λ=0. For 

the cases when λ values are from 3 to 5, the increments in the end of batch biomass 

concentration with increasing λ values were small. As seen in Table 5.2, the increments 

were only 0.1g/l for the 10
th

 batch. The plot for λ=2 showed an intermediate 

performance.  

In the presence of disturbances, the end batch biomass concentration increased 

for most of the batches with increasing λ values but the stability of the performance were 

affected for λ values between 3.5 and 5. A closer look at the batches with disturbance in 

Figure 5.2 (b) shows a clearer picture of the batch to batch performance for the studied λ 

values. For λ=1 and 2, although the end of batch biomass concentration revealed 

increasing pattern, most of the end-batch concentrations were slightly below that of λ=0.  

The biomass concentration increased noticeably for λ values between 3 and 5.  It is clear 

that λ=3 shows steady but slow improvement. Meanwhile the cases with λ=3.5, 4, and 

4.5 exhibit fluctuating but improving performance. For λ=5, the end-batch biomass 

concentration were the highest for batches 11 to 17 despite slight fluctuation, but the 

yield dipped a little from batch 18 to batch 20. Referring to Table 5.2, the end of batch 

biomass concentration at the 20
th

 batch for λ= 5 is 70.7 g/l and those for λ= 3.5, 4 and 4.5 

were about 71g/l. Overall, in this set of λ values 3.5 and 4 are favourable. The value λ= 5 

would be a better choice if the performance can be improved for a steadier performance. 

Further increments in λ value were introduced to study more performance pattern and 

identify a suitable λ value for this case 
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Table 5.3: Selected end-batch biomass concentrations (g/l) for ILC with MLR for λ 

between 5.5 and 10. 

Batch 

number 

λ 

0 5.5 6 7 8 9 10 

0 59.8 59.8 59.8 59.8 59.8 59.8 59.8 

1 63.1 64.4 64.5 64.5 64.5 64.5 64.5 

10 71.8 73.0 73.1 73.1 73.2 73.2 73.2 

11 68.5 69.6 69.6 69.7 69.7 69.7 69.7 

20 69.4 70.6 70.5 70.3 70.4 70.7 70.8 

 

 

Figure 5.3 (a): End-batch biomass concentrations for ILC with MLR for λ between5.5 

and 10 

 

Figure 5.3 (b): End-batch biomass concentration for ILC with MLR for λ between 5.5 

and 10 in the presence of disturbance 
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Increments in λ values from 5.5 to 10 with and without disturbances show similar 

performance pattern as seen in Figure 5.3(a). It can be seen in Table 5.3 that for the 

selected batches, the end-batch biomass concentrations did not differ much. The yield 

before disturbance did not have much variation amongst λ values from 5.5 to 10 for the 

first 2 batches but it is noticeable that from the 3
rd

 batch onwards there is increment in 

end of batch biomass concentration with increasing λ values. There were steady and 

converging improvements in the biomass concentration without disturbance. There were 

significant improvements in biomass concentration with and without disturbances 

compared to the case with λ=0. 

Referring to Figure 5.3(b), when disturbances were introduced, the improvement 

in final biomass concentration decreased when λ is from 5.5 to 7. At λ=9 and 10, the 

final biomass concentrations were similar to that when λ=5 but with more fluctuating 

pattern. In general, from λ=4.5 onwards, increment in the final biomass concentration 

show similar performance pattern for batches with disturbance. The pattern is like a 

dumb bell shape, where there is increment initially, reaches a peak and then decrease 

towards the end. In this set of λ values, λ=10 is the most acceptable performance pattern 

because the corresponding final biomass concentrations are the highest for almost all the 

trial batches. The fluctuations were small and could be improved further. 
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Table 5.4: Selected batches end-batch biomass concentrations (g/l) for λ is 11, 15, 25, 50 

and 100 

Batch 

number 

λ 

0 11 15 25 50 100 

0 59.8 59.8 59.8 59.8 59.8 59.8 

1 63.1 64.5 64.5 64.5 64.5 64.5 

10 71.8 73.2 73.2 73.2 73.2 73.2 

11 68.5 69.7 69.8 69.7 69.7 69.7 

20 69.4 70.6 70.2 69.8 65.1 67.9 

 

 

Figure 5.4: End-batch biomass concentrations for ILC with MLR when λ is 11, 15, 25 

and 50. 

Since λ=10 exhibits a high final biomass concentration, bigger λ values were 

attempted to observe if there will be improvement in both final biomass concentration 

and performance pattern. From Figure 5.4 it is evident that the performance pattern 

remains similar but the biomass production decreases as the λ value increases.  The dumb 

bell pattern continued to grow wider as the λ value increases. Table 5.4 shows that final 

biomass concentration for the 1
st
, 10

th
 and 11

th
 batches are similar to the ones when λ is 

10 (Table 5.3) and the yield at 20
th

 batch is between 65.1g/l to 70.6g/l, which are lower 

than 70.8g/l, which is the 20
th

 batch yield for λ=10. Therefore, λ value above 10 does not 

seem to be desirable. 
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Figure 5.5:  End-batch biomass concentration for ILC with MLR when λ is 0.1, 3, 3.5, 4, 

5 and 10. 

From all the λ values tested for ILC with MLR model, the selected values which 

gave favourable results are gathered and presented in Figure 5.5. Each plot exhibits 

steady increasing biomass value with and without disturbance as λ value increases. There 

is a mixture of performance pattern. Figure 5.5 shows that much improved control 

performance is obtained when λ takes the values of 3.5, 4, 5 or 10. The performances for 

the cases with λ=0.1 and 3 are very stable but slow improvement and low final biomass 

concentration. As for the one with λ=10, the results seem to fluctuate and drop but the 

final biomass concentration from batch 12 to batch 17 are the highest amongst all others 

and as for batches 18 to 21, biomass production is still higher than the cases when λ =0.1 

and 3. Figure 5.5 show that the proposed reliable ILC strategy can increase the final 

biomass concentration from the initial value of 60 g/l to around 73 g/l after 10 batches. 

Due to the presence of unknown disturbance from batch 11, the final biomass 

concentration dropped at the 11
th

 batch. However, it was increased from batch to batch 

under ILC using the modified objective function in the following ten batches.  

In summary, incorporation of model prediction confidence bounds in the ILC 

objective function definitely improves the ILC performance with MLR model when 

compared with the base ILC in Chapter 4. In fact, the results are as good as the ones by 

the ILC with PCR model without the addition of the parameter as shown. The 

incorporation of the model prediction confidence bounds improves the model prediction 

reliability by further narrowing the confidence bounds. Therefore, reliable control results 
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can be obtained. The results show that reliable ILC can effectively overcome the 

detrimental effect of model plant mismatches and unknown disturbances.   

5.4.2 Results for ILC with principal component regression model 

  Batch to batch control with λ=0 exhibits steady and converging final biomass 

concentration. The final biomass concentration at the 10
th

 batch is 73.1g/l. However, 

there was slight instability in the performance pattern, in the presence of disturbance. By 

incorporating the model prediction confidence bounds, a more stable and reliable 

improvement in the  final biomass concentration especially in the presence of disturbance 

is expected. 

 

Figure 5.6: End-batch biomass concentration for ILC with PCR when λ is 0.1, 0.2, 0.3, 

0.4 and 0.5 

  In contrast to the ILC with MLR performance pattern for these λ values, the 

PCR method shows significant improvement as seen in Figure 5.6. For the first 10 

batches without disturbance, all the λ values exhibit steadily increasing performance 

towards desired value of 74g/l. The plot with λ=0.3 show slightly higher end-batch 

biomass concentration for every batch  without disturbance in compariosn with the case 

when λ=0. Incorporation of model prediction confidence bounds has better impact on the 

performance in the presence of disturbance. The plots for all the λ values shown in 

Figure 5.6 except λ=0.2 show converging performance patterns with slight unsteadiness. 
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The performance patterns are certainly better than the case when λ=0 in the presence of 

disturbances. The plot with λ=0.2 has similar pattern as λ=0 but the biomass 

concentrations for all batches except batch 20 are much higher. Of all the discussed 

values in this plot, λ=0.3 exhibits steady and fast converging performance pattern with 

and without disturbance. More λ values were tested and the performance pattern were 

analysed. 

Table 5.5: End-batch biomass concentrations (g/l) for ILC with PCR when λ is between 

0.1 and 0.9 

Batch λ=0 λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 

1 64.6 64.6 64.6 64.5 64.5 64.5 64.1 64.6 64.6 64.4 

10 73.1 73.0 73.2 73.2 73.1 73.0 73.0 73.0 73.1 73.3 

11 69.6 69.6 69.7 69.7 69.6 69.6 69.6 69.5 69.6 69.6 

20 70.5 71.7 71.3 71.9 72.2 72.0 71.4 72.0 71.6 72.9 

 

 

Figure 5.7: End-batch biomass concentration for ILC with PCR when λ is 0.6, 0.7, 0.8 

and 0.9. 

  Referring to Figure 5.7, in this set of λ values, the end-batch biomass 

concentrations did not differ much in the first 10 batches where there is no disturbance. 

As seen in Table 5.5, the end batch biomass concentrations at the 10
th

 batch for the tested 

λ values are about 73g/l. The biomass concentration for λ=0.9 is the highest, which is 

73.3g/l. In the presence of disturbance, the end-batch concentrations improved from 

batch to batch for all the λ values and had much steadier improving trend compared to 

the case when λ=0. Clearly λ=0.9 exhibits impressively steady and converging 
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performance with and without disturbance compared to all the other λ values and λ=0. 

Refering to Table 5.5, it is to be noted that the final biomass concentration at the 20
th

 

batch for λ=0.9 is the highest, which is 72.9 g/l amongst all the tested λ values. It is 

almost 73 g/l, which means even in the presence of continuous disturbance, the system is 

able to track to the desired trajectory within 10 batches. The final biomass concentration 

at the 20
th

 batch is almost as good as the 10
th

 batch, which was without disturbance. A 

few other λ values were tested to study the performance pattern. 

Table 5.6: End-batch biomass concentrations (g/l) for ILC with PCR for λ between1& 10 

Batch λ=0 λ=1 λ=2 λ=3 λ=3.5 λ=4 λ=5 λ=6 λ=7 λ=8 λ=9 λ=10 

1 64.6 64.6 64.6 64.6 64.6 64.6 64.6 64.6 64.6 64.6 64.6 64.6 

10 73.1 73.1 73.1 73.2 73.2 73.2 73.2 73.3 73.2 73.2 73.2 73.2 

11 69.6 69.6 69.7 69.7 69.7 69.7 69.7 69.7 69.7 69.7 69.7 69.7 

20 70.5 72.1 71.9 71.5 72.1 72 72 72.4 71.6 72 72 72.1 

 

 

              Figure 5.8: End-batch biomass concentrations for ILC with PCR when λ is 1, 2, 

3 and 3.5. 

With reference to Figure 5.8, increasing λ values to 1, 2, 3 and 3.5 did not differ 

much in the first ten batches without disturbances in comparison to λ=0. All the plots 

increased steadily and was converging towards the desired trajectory. Table 5.6 shows 

that, at the 10
th

 batch, the end-batch biomass concentrations are the same or differs by 0.1 

g/l for λ=1,2,3 or 3.5 when compared to λ=0. It is noticeable that the variation in plots 

with bigger  λ values are smaller compared to the smaller λ values discussed in previous 
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figures. This is because as the system reaches close to the desired trajectory, the Q and R 

ratio has less influence in the increment of the process yield.  There is notable 

improvement in the batches with presence of disturbance for these λ values. Though 

there are slight instability either in the first few batches or towards the end of the 10 

batches with disturbance, the final biomass concentrations are converging toards the 

desired value. Amongst these weighting parameter values, λ=3.5 exhibits the most 

favourable control performance. Under this weighting parameter value, the end batch 

concentrations were converging fast and steady with and without disturbance. 

 

Figure 5.9: End-batch biomass concentrations for ILC with PCR when λ is 4, 5, 6 and 7. 

With reference to Figure 5.9, increasing λ values to 4, 5, 6 and 7 produced 

improved biomass concentrations in the first ten batches without disturbances in 

comparison to λ=0. All the final biomass concentrations increase steadily and are 

converging towards the desired value. The end-batch biomass concentrations for all the 

first 10 batches of these λ values are higher than that of the λ=0 case. However, Table 5.6 

shows at the 10
th

 batch, the end-batch biomass concentrations only differs by 0.1 g/l for 

λ=4, 5 and 7 and by 0.2g/l for λ=6 when compared to λ=0. The variation in final biomass 

concentrations with these  λ values are even smaller compared to those discussed in 

Figure 5.8. There is significant improvement in the batches with presence of disturbance 

for these λ values. The instability has been reduced compared to that shown in Figure 5.8 

and all the end batch concentrations are higher than that of the λ=0 case.  In general, the 

final biomass concentrations are converging steadily towards the desired value for the 10 
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batches with disturbance. Amongst these values, λ=6 exhibits the most favourable 

performance. The end batch concentrations converge fast and steady with and without 

disturbance. 

 

Figure 5.10: End-batch biomass concentration for ILC with PCR when λ is 8, 9 and 10. 

Referring to Figure 5.10, further increment on λ values to 8, 9 and 10 exhibits 

improved biomass concentration for most of the first ten batches without disturbances 

compared to λ=0 plot. All the final biomass concentrations increase steadily and 

converge towards the desired value. The end-batch biomass concentrations for all the 

first 10 batches of these λ values are higher or similar to that of the λ=0 case. In the 

presence of disturbance, the plots are unstable but converging towards the desired 

trajectory for the 10 batches with disturbance. Amongst these values, λ=10 exhibits 

acceptable performance pattern. The end batch concentrations converges fast but with 

slight oscilations with disturbance. Since the performance pattern deteriorates with 

increasing λ values in PCR, bigger  values were not attempted. Furthermore, since in the 

ILC with MLR cases, λ > 10 did not reveal imroving results, those values were not 

attempted for ILC with PCR model. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
58

60

62

64

66

68

70

72

74

Batch Number

E
n

d
-
b

a
t
c
h

 
B

i
o

m
a
s
s
 
C

o
n

c
e
n

t
r
a
t
i
o

n
 
(
g

/
L

)

 

 

PCR =0

PCR =8

PCR =9

PCR =10

without disturbance with disturbance



100 

 

 

Figure 5.11: End-batch biomass concentrations for ILC with PCR model when λ is 0.9, 

3.5, 6.0 and 10. 

About 4 selected λ values from the figures above were collected and plotted for 

comparison in Figure 5.11. All the selected λ values revealed steadily converging results. 

There is no significant variation in the batches without disturbance. For the 10 batches 

with disturbances there are slight variations. The plot with λ=0.9 has the most steady and 

converging performance followed by λ=3.5 and 6 with more or less similar performance 

pattern. The plot with λ=10 has the slowest convergence rate amongst the compared λ 

values. It is noticed that smaller λ value is needed for PCR method to improve the model 

reliability. 

In summary, incorporation of model prediction confidence bounds in the ILC 

objective function significantly improves the ILC performance, especially in the 

presence of disturbance. It is notable that with increasing λ values, the variations in the 

control performances are narrowed. Increment of λ>0.9 does not increase the final 

biomass concentrations. This is possibly because as the final biomass concentration gets 

closer to the desired value, smaller Q and R ratio is needed to maintain the performance. 

It comes to a point where changes in the Q and R ratio become insignificant in improving 

the performance pattern. The incorporation of the parameter in PCR model improves the 

model prediction reliability by further narrowing the confidence bounds. Therefore, 

higher biomass concentrations can be obtained. The results show that reliable ILC can 
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effectively overcome the detrimental effect of model plant mismatches and unknown 

disturbances.   

5.4.3  Results for ILC with partial least squares model 

 

Figure 5.12: End-batch biomass concentrations for ILC with PLS model when λ is 0.1, 

0.2, 0.3, 0.4 and 0.5. 

With reference to Figure 5.12, incorporation of model prediction confidence 

bounds with λ values between 0.1 and 0.5 exhibit varying performance pattern. The plot 

for λ=0.5 shows the least biomass concentrations in most of the batches with and without 

disturbances. The plot for λ=0.2, shows very good convergence and stability for batches 

without disturbance but in the presence of disturbance the convergence rate mellowed 

down with slight instability towards the end of 20 batch trials. The plots of λ= 0.3 and 

0.4 has similar performance pattern to λ=0. For batches without disturbance, the end-

batch biomass concentrations were lower compared to the case when λ=0. For batches 

with disturbance, the biomass concentrations from batch to batch converge towards 

desired value with acceptable stability. The plot for λ=0.1 exhibit the most favourable 

performance for batches with disturbance. There is steady convergence compared to λ=0 

except for slight drop at 20
th

 batch which is still higher than that from λ=0. For batches 

without disturbances, the performance pattern and biomass concentrations for all the 10 

batches are similar to that of the case when λ=0. 
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Figure 5.13: End-batch biomass concentrations for ILC with PLS model when λ is 0.6, 

0.7, 0.8, 0.9 and 1.0. 

 Further increments in λ values, decreased the biomass concentrations for batches 

without disturbance as seen in Figure 5.13. In the presence of disturbance the 

performance stability and concentrations improved for most of the batches. This 

performance pattern certainly demonstrates that incorporation of model prediction 

confidence bounds improves reliability and stability in the presence of disturbance. 
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Figure 5.14: End-batch biomass concentrations for ILC with PLS model when λ is 1, 2, 

3, 4 and 5. 

 

Figure 5.15: End-batch biomass concentrations for ILC with PLS model when λ is 6, 7, 

8, 9 and 10. 

Referring to Figures 5.14 and 5.15, it is clear that the convergence rate decreases 

with increasing λ value between 1 and 10. Though some of the λ values improved the 

stability of the control performance, due to slower convergence these values are not 

preferred. 
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Figure 5.16: End-batch biomass concentrations for ILC with PLS model when λ is 0.01, 

0.02, 0.03, 0.04, and 0.05. 

 Since λ values between 0.1 and 10 did not give satisfactory results, smaller values 

were tried to study the performance. It is possible that as the regression method becomes 

more complex, smaller modification is required to assert positive impact on the 

performance pattern.  As seen in Figure 5.16, λ=0.05 reveals steady and reliable 

convergence for these tested λ values. The rest of the values performed reasonably well 

with and without disturbance but with slight instability and some with smaller 

convergence rate. 

 

Figure 5.17: End-batch biomass concentrations for ILC with PLS model when λ is 0.06, 

0.07, 0.08, 0.09 and 0.1 
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 Referring to Figure 5.17, further increment in λ values between 0.06 and 0.1 

exhibited favourable performance for batches without disturbance. In the presence of 

disturbance, most of the λ values had similar performance pattern to the case of λ=0.  

The plot for λ=0.08 revealed increasing biomass concentrations for almost all the batches 

with disturbance. There were slight fluctuations in the beginning but towards the end 

steadier performance was obtained. The performance when λ=0.1 is more favourable 

because the biomass concentrations are the highest for all the 10 batches with 

disturbance compared to the cases with other λ values except batch 20 which is slightly 

lower than λ=0.08. 

 

Figure 5.18: End-batch biomass concentration for ILC with PLS model comparing λ 

values 0.05 and 0.1 

In Figure 5.18, 2 of the most favourable λ values were selected to be compared. 

The plot with λ=0.05 exhibits a more steady and reliable performance without 

disturbance. In the presence of disturbance the convergence improved from batch to 

batch with slight instability in the beginning. The plot with λ=0.1 exhibits very similar 

pattern to that with λ=0 but in the presence of disturbance, there are more steady and 

converging biomass concentrations from batch to batch for 8 batches with disturbance. 

The last 2 batches were dropping in performance. For batch to batch improvement, 

λ=0.05 will be more appropriate to apprehend model plant mismatches and unknown 

disturbances. The slight instability has to be addressed. In summary, incorporation of 
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model prediction confidence bounds to PLS model improve the reliability but with slight 

stability. Smaller λ value is required for PLS method. 

5.5  Conclusions 

 The effect of incorporation of model prediction confidence bounds into the 

objective function were studied in this chapter. Various λ values were introduced to 

evaluate the improvement in ILC with MLR, PCR and PLS models. The additional 

parameter shows significant improvement in ILC with MLR models. The ILC with MLR 

models did not exhibit good results with no modification in the objective function. With 

the addition of model prediction confidence bounds parameter, the method tends to 

reveal desirable results. The results are as good as the ones with PCR when λ=0. As for 

PCR and PLS, the modified objective function tends to produce significant improvement 

for batches with disturbance. The batch to batch performances are more stable and 

reliable when there were disturbances. Amongst the tested λ values, some performed 

well without disturbance and the performance deteriorates in the presence of disturbance 

and vice versa. The most effective λ values for ILC with MLR, PCR and PLS for batches 

with and without disturbance were identified.  
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CHAPTER 6: ITERATIVE LEARNING CONTROL WITH 

UPDATED LINEARISED MODELS FROM A SLIDING WINDOW 

OF HISORICAL BATCHES AND MEAN NOMINAL 

TRAJECTORIES 

6.1  Introduction 

    In Chapters 4 and 5, batch-to-batch control study using linearised models from 

updated historical batches was discussed. The number of historical batches used to develop a 

current batch process model keeps building up after every batch run. In other words, after 

every batch run, the obtained data is added into the pile of historical batches. Then all 

previous batches are used to identify a new process model which is used to generate a new 

control policy for the current batch. The cycle repeats and the process model is developed 

using both old and new batch data.  

 The linearised process model development plays an important role in an ILC control 

method. It defines the learning rate which then influences the generation of the control policy 

to enhance convergence of a particular process. Since the linearised model development is 

solely dependent on the available historical batches, a question arises as to how many batches 

are really needed for a model development in an ILC control method. The perception is 

smaller number of control intervals uses smaller number of historical data to develop 

corresponding process model (Vilas et al., 2004). It is a norm to use historical batches more 

than the batch intervals to develop a reliable process model (Lee et al., 1999). Vilas et al. 

(2004) has studied on manipulating number of control intervals in a batch with growing 

number of historical data. In the presence of limited number of historical batches, the number 

of intervals in the current batch run is reduced in accordance to the historical batches 

available. For instance, the study started with 2 control intervals because there were only 2 

historical batches available to develop the process model. The process model in Vilas et al., 

2004 was developed from perturbation variables. The difference of input and output variables 

in two adjacent batches were used as the input and output data. After every batch run, the 

latest data is added into the historical batches pool. As the sample size increases after every 

batch run, the control intervals size was increased by one. Increased number of control 

intervals improves control performance due to increased degree of freedom in the control 

actions. After 9 batch runs, the desired control intervals of 10 is achieved. The following 

batch runs were run with 10 control intervals. At this juncture onwards, all the existing 

batches were used to identify the process model. It is a common approach to have 10 batch 
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intervals and more than 10 historical batches (normally about 30) to develop a process model 

(Lee et al., 1999). 

 As for batch to batch updated linearised process model, a hypothesis was formed that 

it is possible that fewer numbers of the most recent historical batches is sufficient to improve 

batch to batch control performance. Not necessarily all the historical batches need to be used 

to develop the linearised model. A selected number of historical batches may be sufficient. In 

order for the updated model to capture the process behavior in the face of process variations, 

a new technique using a moving window of the historical batches to update batch-wise 

linearised models is developed in this chapter. The historical batches were updated after 

every batch run but only the M recent number of batches was kept. In other words, after every 

run the “oldest” batch is forgotten and the new batch is included into the sliding “window” of 

historical batches. In addition to that, identifying nominal process variable trajectories is 

essential for real-time process control and monitoring application (Dadebo and McCauley, 

1995). Therefore, selecting an appropriate reference trajectory is important in non-linear 

process optimizing control.  In this chapter, a method of ILC with updated linearised model 

and updated nominal trajectories is proposed. The updated nominal trajectories are obtained 

by averaging trajectories from the immediate previous A batches and the updated linearised 

model is identified using a sliding window of the M immediate previous historical batches.  

The proposed strategies were applied to a simulated fed-batch fermentation process. The 

updated process models were developed using MLR, PLS and PCR. Different window sizes 

and averaged reference trajectories were studied and the performances were evaluated. The 

results show that the proposed strategy can enhance the control performance.  

         The chapter is organized as follows. Section 6.2 describes the linearised model 

updating strategy using sliding window approach. There were two moving windows in the 

method: one is the window of historical batches and the other is the window of nominal 

trajectory. Section 6.3 presents the results for batch to batch ILC with updated linearised 

models using historical batch moving window approach. In this section the window for 

nominal trajectories were fixed as the immediate previous batch data. The method was 

applied to MLR, PLS and PCR models. Section 6.4 presents the results for averaged nominal 

trajectories without sliding window approach for historical batches. The sliding window was 

only used for the averaged trajectory identification. A number of selected latest historical 

batches were averaged to identify the nominal trajectory. Section 6.5 illustrates the outcome 

of reliable batch to batch ILC using linearised MLR model with sliding window approach. 

Section 6.6 concludes the chapter. 
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6.2  Model updating using sliding window approach 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Model updating using a sliding window approach  

In the sliding ‘window’ historical batches method, a fixed window of historical 

batches (M) for model generation is assigned as shown in Figure 6.1. In the figure, k 

represents the batch index (and the number of batches) in the original historical batches while 

k + 1 and k+2 represents the first and second batches, respectively, appended to the original 

historical batches. From the k historical batches, M number of batches is selected to develop 
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the linearised model. After the first run with ILC method using sliding window approach, data 

from batch k+1 is added into the historical batch database. To develop the control policy for 

the next batch, the sliding window, M, moves down including the latest previous batch, the 

(k+1)th batch, and the process repeats for the next batch run. After every batch run, the 

‘oldest’ batch is forgotten and M number of batches including the immediate previous batch is 

used as historical batches. As a result, the ‘window’ keeps sliding forward with fixed number 

of batches adopting new batch runs data and dropping the older ones. The advantage is the 

updating historical batch data components provide a more up-to-date condition of the process. 

Therefore, sustaining steady improvements and achieving highest possible yield is made 

feasible.  

There are two windows in the diagram. One is the historical batch window, M and the other is 

the updated nominal trajectory window, A. As seen in Figure 6.1, A, represents the number of 

batches used in calculating the average nominal trajectory.  The window for A also slides 

down as the batch run progresses.  The reference trajectory is either the latest batch (A=1) or 

the average of the latest A number of batches in the moving window of historical batches. 

Using average trajectories could remove the influence of measurement noise and random 

disturbance on the nominal trajectories.  

Let M be the size of a sliding window of the past batches and use the immediate previous 

batch, the (k-1)
th

 batch, as the nominal batch (i.e. A=1), then the deviations of the process 

input and output trajectories from their nominal trajectories in the sliding window can be 

represented as: 
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The updated model parameters can be obtained using MLR, PCR or PLS. If correlations exist 

among the control actions at different stages of a batch, then PLS and PCR will give robust 

and reliable estimation of the model parameters.  
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6.3  Batch to batch ILC with updated models and moving window of historical 

batches 

       Further improvement from the results in Chapter 4, Figure 4.12, was done for PCR 

and PLS model using a sliding window of M historical batches to develop process models. 

As this section only investigates the effect of sliding window sizes, the number of 

batches for calculating the average nominal trajectories is fixed to 1 (A=1). In other 

words, the nominal trajectory for every batch run is the data from immediate previous 

batch. The window for A moves one batch down after every trial.  

      As for the M, after each batch run, the new batch data is added into the window of 

historical batches. The oldest batch in the window is removed. The idea is to use latest 

information to update the model and calculate the control policy for the current batch. 

Three sliding window sizes of 10, 15 and 20 historical batches were studied and the 

results are presented. The historical batches window size, M must be at least 10 because 

there are 10 piecewise-constant input control policy used in this fed-batch fermentation 

process. Other window sizes up to 50 were tried before these three were selected to be 

discussed. Window sizes 25, 30, 35, 40, 45 and 50 did not exhibit any better results 

compared to the results using window size of 20.  

      The batch to batch updated model using sliding window approach was mainly 

devised for PCR and PLS regression models. This is due to the fact that these regression 

methods are more advanced and possibly able to capture the necessary information using 

fewer but recent batch data.  The MLR model always requires bigger number of batch 

data. The best method would be to use as many historical batch data as possible to obtain 

a reliable prediction. However, in curiosity to investigate the respond of MLR method 

for the suggested method, the results using MLR model for the chosen window sizes is 

also presented in this section. Some interesting results were obtained. 
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6.3.1 ILC using models identified from sliding window and MLR 

 

Figure 6.2: End of batch biomass concentration under ILC with batch-wise updated  

MLR models using a sliding window approach 

Figure 6.2 exhibits the end batch biomass concentration for fed batch 

fermentation using batch to batch updated linearised MLR model using sliding window 

approach. Performances of different window sizes (M) were compared with the one 

without using sliding window which was presented in Chapter 4 (Figure 4.12). It is clearly 

noticeable that for the three different window sizes, varying performances are portrayed. 

None are better than the one without sliding window plot but certainly there is an 

improving pattern from M=10 to M=15 and then to M=20. The plot of M=20 gives very 

similar readings for almost all the tested batches for both with and without disturbances 

when compared to the plot without sliding window. The 20
th

 batch biomass concentration 

is 69.37 g/l for the plot without sliding window application and 69.38 g/l for plot with 

M=20. The 10
th

 batch biomass concentration of the former plot is 71.85 g/l and the latter 

is 71.64 g/l. It is interesting to note that 20, recently updated historical batches are 

sufficient to produce a result equivalent to increasing historical batch numbers, which was 

between 20 to 40 batches altogether. For window size of 15, the performance pattern 

without disturbance is similar to plot of M=20 but with much lower convergence rate. In 

the presence of disturbance, there were fluctuating increments from batch to batch and the 

convergence rate was still less. The performance pattern of window size 10 was a little 

interesting. In the first 7 batches without disturbances, the batch to batch biomass 

increment was very small. The sliding window approach did not have much influence on 
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the biomass concentration improvement. However, there were significant improvements 

in biomass concentrations from 8
th

 to 10
th

 batch though the performance were lesser in 

comparison to M=15 and M=20. In the presence of disturbance, the biomass 

concentrations were steadily converging from batch to batch and the 20
th

 batch finished 

better than all the other plots used for comparison. It can be deduced from the 

performance plot that, for M=10, when 70% and above of the batches are recent batch 

data with improving pattern, the sliding window approach is able to improve the batch to 

batch performance steadily for both with and without disturbances. 

6.3.2 ILC using models identified from sliding window and PCR 

 

Figure 6.3: End of batch biomass concentration under ILC with batch-wise updated PCR 

models using a sliding window approach 

 

        Figure 6.3 shows that all three windows sizes exhibit improving results with 

varying stability before and after the disturbance was introduced. Performances of 

different window sizes (M) were compared with the one without using sliding window 

which was presented in Chapter 4 (Figure 4.12). From batch 1 to batch 10, when there is 

no disturbance, all the three window sizes showed satisfactory convergence rate and 

stability. Within the ten batches, the performances for M=20 and M=10 are very similar 

to that of ILC with PCR model without sliding window which is the desired performance 

pattern. The performance of M=15 is slightly lesser in the first 5 batches but then 

matched the ILC without window performance curve in the following 5 batches. The 

biomass concentrations for the 10th batch for window sizes 20, 15 and 10 are 73.18g/L, 
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73.12 g/L and 73.32 g/L respectively. Since, even without sliding window, the ILC with 

PCR model revealed very satisfactory performance pattern for batches with no 

disturbance, there is not much room for further improvements with the introduction of 

sliding window technique.  

       As for batches with disturbance, the unstable performance of batch-to-batch 

control without sliding window provided the possibility for further improvement. The 

effectiveness of the sliding window technique is noticed from batches 11 to 20. ILC with 

the entire three window sizes exhibit improving convergence rate and stability when 

disturbance is introduced in comparison to the performance of ILC with PCR models 

identified from the entire historical batches. For window size 20, the biomass 

concentrations were fluctuating though the trend was improving from batch to batch. The 

biomass concentrations in the last 4 batches were still higher than that without using 

sliding window.  The batch to batch control performance for M=15 shows satisfactory 

convergence and stability from batches 11 to 17 but failed to sustain the good 

performance in the following three batches. However, the end batch biomass 

concentrations for all the ten batches were still higher than that without using sliding 

window. Performance trend of window size 10 in the presence of disturbance is as good 

as the ones without disturbance. The convergence rate and stability is very satisfactory. 

There is distinct improvement in the batch to batch control by using window size 10 

when compared to that without using sliding window. The performance of batch-to-batch 

ILC improves with reducing window size. The final biomass concentrations for the 20
th

 

batch for window sizes 20, 15 and 10 are 71.88g/L, 72.20 g/L and 72.76 g/L 

respectively. As for ILC without sliding window, the final biomass concentration at the 

20
th

 batch is 70.53g/L. The PCR model was able to attain final output (20
th

 batch) almost 

as good as without disturbance (10
th

 batch, 73.13 g/L) within 10 batches. Amongst the 

three window sizes, window size of 10 gave the most stable and fastest converging 

performance. It is shown in the results that PCR method does not need a growing number 

of historical batches to develop a reliable model. An updated historical batch data with 

window size equal to the number of control policies used in the fed-batch fermentation 

process is able to generate optimal process model by using the PCR method. 
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6.3.3  ILC using models identified from sliding window and PLS 

 

Figure 6.4: End of batch biomass concentration under ILC with batch-wise updated  

PLS models using a sliding window approach 

 

Figure 6.4 shows that all three windows sizes exhibit improving results with 

varying stability before and after the disturbance was introduced. Performances of 

different window sizes (M) were compared with the one without using sliding window 

which was presented in Chapter 4 (Figure 4.12). The end batch biomass concentration 

without sliding window is 72.78g/L at the 10
th

 batch and 71.11 at the 20
th

 batch.  For 

window size of 20, the convergence rate and stability were better and satisfactory when 

there is no disturbance. The 10
th

 batch final biomass concentration is 73.0 g/l. In the 

presence of disturbance, the results for window size 20 fluctuated. The biomass 

concentrations for most of the batches were lower than the concentrations for ILC without 

using a sliding window.  The 20
th

 batch end-point biomass concentration was 70.76 g/l. 

As for window size of 15, the biomass concentrations were lesser for most of the batches 

with no disturbances but in the presence of disturbance, the convergence rate were 

improving steadily from batch 11 to batch 15. From batch 16 to batch 20 slight 

fluctuations were noticed though the biomass concentrations were higher than the plot 

with no window. The biomass concentration for the 10
th

 batch is 72.33 g/l and 20
th

 batch 

is 71.67 g/l.  For window size of 10, the performance with no disturbance is as good as 
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window size of 20, in fact the best amongst the three windows. The 10
th

 batch biomass 

concentration is 73.25 g/l. For batch 12 and 13 the biomass yield was lesser than that 

under ILC without using sliding window, but in the following 7 batches the performance 

improved steadily. The convergence rate was very satisfactory. The PLS model was able 

to attain final output almost as good as without disturbance within 10 batches which is 

73.05 g/l. Amongst the three window sizes, window size of 10 gave the most stable and 

fastest converging performance. It is shown in the results that PLS method does not need 

a growing number of historical batches to develop a reliable model. An updated historical 

batch data with window size equal to the number of control policies used in the fed-batch 

fermentation process is able to generate optimal process model by using the PLS method. 

6.3.4 Summary 

  In summary, application results show that ILC based on batch-wise updated 

model using a sliding window of recent historical batches improves the control 

performance with and without disturbance for ILC using PLS or PCR models. It is shown 

that model updating using PCR or PLS does not need large window size in providing 

enhanced control performance. As for ILC with MLR model, a similar performance to 

batch to batch updated linearised ILC without window size can be achieved using a 

reasonable window size. It is not necessary to use all the available or growing number of 

historical batches to achieve the similar performance. This approach reduces the data 

handling load.  The PCR and PLS being able to address the colinearity issue need fewer 

historical batches compared to the MLR method. In addition to that, further improved 

steady and stable performance is achieved for PCR and PLS models in comparison to the 

results discussed in Chapter 4, Figure 4.12 (Case 2 results) for batch to batch updated 

linearised model without sliding window approach as seen in Figure 6.5 below. 
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Figure 6.5: Performance of ILC using PLS and PCR models with and without sliding 

window approach  

  The impact of sliding window approach is more evident for batch to batch ILC 

with disturbance as can be seen from Figure 6.5. In the presence of disturbance there is 

significant batch to batch improvement in biomass concentrations for plots using sliding 

window approach than the ones without it. The batch to batch ILC with PCR model 

exhibits better performance compared to that with PLS model in the presence of 

disturbance in the sliding window approach. When, there is no diturbance, both control 

methods give similar stability and convergence towards desired trajectory. 

 

6.4  Batch to batch updated model using averaged nominal trajectory with 

growing historical batches. 

In this section, the effect of using average nominal trajectories (obtained from A 

number of batches) is studied. The number of historical batches kept increasing and is 

updated after every batch run. In other word, no sliding window was used for historical 

batches. The nominal trajectories were set to be the average of the latest 5, 4, 3 or 2 

historical batches data. The number of batches to be averaged, A, is kept at 5 or below so 

that the variations among these batches will be kept small, as the purpose of using 

average nominal trajectories is mainly to eliminated the influence of measurement noise 

and random process variations.  
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The improvement on the product concentration of the simulated fed batch 

fermentation process is evaluated. The final product concentration for batch to batch 

updated model using ILC control method presented in Chapter 4, Figure 4.12 (case 2 

plots) is also plotted to compare the performance of the averaged nominal trajectories 

approach. The plot is labelled as PCR Case 2, PLS Case 2 or MLR Case 2. For these 

plots the A=1, which means the immediate previous batch data is used as the nominal 

trajectories and the historical batch data was updated after every batch run and kept 

increasing. 

6.4.1 Performance of ILC using MLR model 

 

Figure 6.6: Batch to batch control performance using MLR models with averaged 

nominal trajectories (A=2 to 5) 

With reference to Figure 6.6, for plots with nominal trajectories averaged from 

A= 2, 3 and 4 latest batches, the final product concentrations are certainly improved for 

most of the tested batches compared to the MLR Case 2 performance plot. However, the 

results are significantly unstable with and without disturbances as the averaged batch 

numbers, A, increases. This is possibly because the MLR model is not able to handle the 

noise accumulation from the averaged batches. The MLR model did not correspond well 

to the averaged nominal trajectory approach. 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
58

60

62

64

66

68

70

72

74

Batch number

E
nd

-b
at

ch
 b

io
m

as
s 

co
nc

en
tra

tio
n 

(g
/l)

 

 

MLR Case 2

A=2

A=3

A=4

A=5



119 

 

6.4.2 Performance of ILC using PCR model 

 

Figure 6.7: Batch to batch control performance using PCR models with averaged 

nominal trajectories (A=2 to 5)  

With reference to Figure 6.7, the averaged nominal trajectories improve batch to 

batch performance for most of the tested batches. The PCR Case 2 plot is used as 

comparison to evaluate improvement in the batch to batch ILC with updated PCR model 

when using averaged nominal trajectories. When there is no disturbance, the batch to 

batch performance pattern for A=2 to 5 is has either slightly improved or very close to 

PCR Case 2. The batch to batch improvement was stable for all the tested A values for 

trials without disturbance. In the presence of disturbance, though there are slight 

fluctuations, overall there have been improvement from batch to batch for A=2, 3, 4, and 

5. This could be because the average of A=2 to 5 historical batches is close to the true 

nominal trajectories as the influence of measurement noise is reduced. Except for A=4, 

the rest of the plots (A= 2, 3 and 5) exhibits higher biomass concentration for all the 

batches with disturbance in comparison to PCR Case 2 plot. It is notable that averaged 

nominal trajectory can be used to improve batch to batch updated model ILC 

performance but the instability has to be addressed. The moving window method with 

latest batch as nominal trajectory as discussed in Section 6.3.2 has a better performance 

than the averaged trajectory approach for PCR model. 
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6.4.3 Performance of ILC using PLS model 

 

Figure 6.8: Batch to batch control performance using PLS models with averaged nominal 

trajectories (A=2 to 5)  

With reference to Figure 6.8, it is noted that batch to batch updated models using 

averaged historical batches to calculate nominal trajectories reveals interesting results 

with PLS model. The PLS Case 2 result is used for comparison purpose. Overall, the 

performance patterns for averaged nominal trajectories are more stable and faster 

converging towards desired trajectory compared to the PLS Case 2 plot. There were 

significant batch to batch biomass concentration improvement for A = 2 to 5 for trials 

without disturbance compared to the PLS Case 2 plot. In the presence of disturbance, the 

plot for A=3 and 5 deliver a steadily improving batch to batch performance. The plot for 

A=3 shows slight drop in the 20
th

 batch but still higher than 20
th

 batch in PCR Case 2 

plot. The plots for A=2 and A=4 were little unstable in the presence of disturbance but 

still produced batch to batch performance better the PCR Case 2 plot. The performance 

for A=3 and A=5 was better than the A=2 and A=4 ones. 

Although the batch to batch increment is not as much as the moving windows 

approach as discussed in Section 6.3.3, the stability of the trend is worthy a compliment. 

The graph suggests that averaging latest 3 or 5 batches enhances stability of the control 

method. 
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6.4.4 Summary 

  In summary, averaging nominal trajectories for PCR and PLS have an impact 

on improving the stability of the performance compared to the batch to batch updated 

linearised model as discussed in Chapter 4, Figure 4.12 (Case 2 plots). However, the 

results were not better than the sliding window historical batch approach as discussed in 

Section 6.3. Therefore, the sliding window approach with latest batch as the nominal 

trajectory is sufficient to enact positive impact for PCR and PLS model based batch to 

batch ILC. As for MLR, the averaged trajectory approach did improve the biomass 

concentration for almost all the batches using ILC compared to the non-averaged batch 

to batch updated trajectory method but portrayed unsatisfactory steadiness in batch to 

batch performance. The results are certainly better than the sliding window approach in 

terms of end batch biomass concentration. The unsteadiness suggests that further 

improvements on the MLR model for averaged trajectory approach may present 

favourable results. 

6.5  Reliable ILC using MLR models with averaged nominal trajectories and 

sliding window approach  

In order to further exploit the potential of averaged trajectory approach on the 

MLR model as discussed in Section 6.4.1, an interesting technique combination approach 

was attempted. A reliable ILC method through incorporation of model prediction 

confidence bounds (MPCB) into iterative law development using MLR model rendered 

significantly improved stability and convergence rate as discussed in Chapter 5, Figure 

5.5. Average nominal trajectories are incorporated into the reliable ILC method. These 

techniques were tested using sliding window size, M=20 instead of using growing 

number of historical batches. This is because as seen in Figure 6.4, the sliding window 

size, M=20 gives very similar performance to the batch to batch updated model ILC 

without sliding window approach. The combination approach was tested for λ value 3. 
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6.5.1 The case with M=20 and λ= 3 

 

Figure 6.9: ILC control performance with M=20, λ= 3, and various values of A 

Figure 6.9 exhibits the results for averaged reference trajectory, A=1, 2, 3 and 4 

for sliding window M=20 with incorporation of model prediction confidence bounds and 

the penalty parameter is λ=3.  Performance of the combination approach is compared 

with results from Chapter 4, Figure 4.12 and Chapter 5, Figure 5.5. The plot for MLR 

case 2 is without sliding window and MPCB approach as that was presented in Chapter 4 

while the plot with λ=3 is from Chapter 5 with only MPCB technique applied and 

without sliding window approach. 

It is evident that all the batches with combined approach exhibits better stability 

and convergence rate, with and without disturbance, compared to MLR Case 2. The plots 

stability of the batch to batch ILC with sliding window historical batches and averaged 

reference trajectory has improved significantly with the incorporation of model 

prediction confidence bounds. When compared to Figure 6.8, the improvement on both 

stability and steady convergence towards desired trajectory in Figure 6.9 is very evident. 

 Figure 6.9 shows that with increasing number of batches to be averaged, A, from 1 to 

3, the batch to batch stability and convergence rates were increasing with and without 

disturbance. The plot for A=4 achieved the asymptotic trajectory to the desired trajectory 

within 5 batches without disturbance and was the best performing curve amongst the rest 

of the plots. In the presence of disturbance, the batch to batch biomass concentration for 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
58

60

62

64

66

68

70

72

74

Batch number

E
n
d
-b

a
tc

h
 b

io
m

a
s
s
 c

o
n
c
e
n
tr

a
ti
o
n
 (

g
/l
)

 

 

MLR Case 2

=3

=3 M=20 A=1

=3 M=20 A=2

=3 M=20 A=3

=3 M=20 A=4



123 

 

A=4 decreased for all the 10 batch runs. Although the performance pattern deteriorated, 

the end-batch biomass concentrations for all the 10 batches were higher than MLR Case 

2 plot. 

The plot for A=1, M=20 and λ=3 exhibits better performance in terms of stability 

and batch to batch improvement compared to the MLR Case 2 plot. However, the plot 

for λ=3 has even better performance pattern than the two plots mentioned above. The 

plot for A=2, M=20 and λ=3 exhibits much higher batch to batch biomass concentrations 

than the plot for λ=3 though there were slight instability in the performance pattern. 

   The most favourable performance pattern is represented by plot A=3, M=20 and λ=3. 

It is the most optimal performing plot amongst all the compared simulation plots. For 

both with and without disturbance, the convergence rate was high and steadily 

increasing. When there was no disturbance, the simulation results attained asymptotic 

performance trajectory to the desired trajectory within 10 batches. In the presence of 

disturbance, there was slow but steady improvement in the results.  

It can be concluded from Figure 6.9 that, in contrary to result in Figure 6.8, 

incorporation of model prediction confidence bounds into sliding window and averaged 

trajectory approach for MLR model have significantly improved the stability and 

convergence rate from batch to batch for all the 20 batches. Model prediction confidence 

bounds narrows the prediction bounds and improves the performance stability. An 

average of the latest 3 batches and historical batch sliding window size of 20 can be used 

as the reference trajectory to obtain better performance pattern.  

6.6  Conclusions 

 In this chapter, model updating using a sliding window of historical batch is 

suggested. The method was applied to batch to batch updated model ILC fed batch 

fermentation simulation. The latest historical batch was used as reference trajectories. 

The proposed method proved efficient in reducing data load and capturing up-to-date 

information to improve process performance for all the three process model developing 

methods, which are MLR, PCR and PLS.  A window size of only 10 latest batches is 

sufficient for PLS and PCR models based batch to batch updated linearised model ILC to 

produce steadily converging performance pattern with higher biomass concentrations 

than the Case 2 plots in Figure 4.12. The 10 batches are necessary possibly because there 
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are 10 control policy intervals for the tested fed-batch simulation. The results suggest 

that possibly historical batch numbers equivalent to control policy intervals is sufficient 

to improve batch to batch control performance provided the historical is updated after 

batch run. As for MLR model, 20 updated historical batch data is sufficient to produce 

results resembling the MLR Case 2 results.  

 Following that, averaged reference trajectory approach was attempted with 

firstly, growing historical batches and then with the selected sliding window sizes for 

each of the regression models. For PCR and PLS models, both the approach did not 

improve the results any better than the sliding window size 10 with latest batch as the 

reference batch. For MLR model, the plots were highly unstable but the end batch 

biomass concentrations were higher than the MLR Case 2 plot. That brought about the 

idea to incorporate MPCB into the sliding window and averaged trajectory approach to 

exploit the possibility in improving the stability and end-batch concentration. The 

combined method approach certainly improved the results for MLR models. There was 

significant advancement in the stability and convergence towards desired trajectory for 

MLR model plots.  

  The sliding windows approach with window size 10 batches with latest batch as 

reference trajectory works very well with PCR and PLS models. The combined control 

method with A=3, M=20 and incorporation of model prediction confidence bounds 

significantly enhances the results for MLR model based batch to batch ILC. 
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CHAPTER 7: ILC WITH ADAPTIVE WEIGHTING PARAMETERS IN THE 

OBJECTIVE FUNCTION 

 

7.1  Introduction 

 In this chapter a study on iterative learning control with adaptive weighting 

parameters in the objective function is presented. This method requires clever solution of 

the linear quadratic optimisation problem to improve convergence speed and ensuring 

stability. Attempts to achieve very fast convergence typically cause instability and vice-

versa. Both this control criteria is determined by minimization/maximization a quadratic 

objective function. In a discrete control system, stability is typically related to 

convergence rate. 

A typical quadratic objection function is as given below: 
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          (7.1) 

The first term in the cost criterion is the variance and the second one is the input change 

need to minimize the system variance while improving the system convergence.  In ILC 

based on linear quadratic optimal control, the weighting matrices Q and R are important 

design parameters (Amann et al., 1996). The weighting matrices Q and R are used to 

maintain an optimal ratio between control policy change and error minimization. 

Convergence rate depends on the ratio of the weighting parameters in the quadratic 

objective function. It is essential that the control policy does not deviate too much from 

that of the previous batch (the k
th

 batch) whilst reducing tracking error in order to 

maintain stability (Amann et al., 1996). In this study, optimisation based on linearised 

models is used to calculate the control policy for the new batch. As for the batch-to-batch 

control policy, the control policy for every successive batch should be reducing the 

tracking error in product quality. 

In Chapters 4, 5 and 6, the Q and R ratio in quadratic objective function were 

kept constant for all the batch runs with ILC. The weighting parameters used are Q is 1 

and R is 0.0001. There have been significant improvements in batch to batch product 

concentrations when different techniques were introduced. However, there were some 

performance patterns that revealed high biomass concentration for the first few batches 

and then deteriorated for the rest of the batches forming a dumbbell curve as seen in 
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Chapter 5, Figure 5.5 for λ=10. In Chapter 4, Figure 4.12(b), the batch to batch product 

improvement for Q=1 and R=0.00001I exhibited very good convergence rate for the first 

four batches and then deteriorated for the following batches. If only these performances 

can be sustained or further improved, the desired trajectory can be achieved 

asymptotically much faster within smaller number of batches. Bearing this in mind, an 

idea to adjust the Q and R ratio from batch to batch was developed. Instead of using 

fixed Q and R ratio, an adaptive ratio may improve the convergence rate without 

compensating the system stability. The question here is as to how to systematically adjust 

the Q and R ratio from batch to batch. 

   It is known that ratio of Q and R in the objective function determines the 

convergence rate of biomass concentration towards desired trajectory. For batch-to-batch 

ILC, stability is closely related to convergence. A converging performances means the 

system is steadily improving from batch to batch. Having a control over the convergence 

speed of the system to be controlled will be beneficial. Amann et al. (1996) developed a 

strategy to control the convergence speed by manipulating the weighting parameters, Q 

and R in the objective function to achieve desired convergence rate. An optimization 

principle using Ricatti feedback in combination with conventional feed-forward ILC was 

introduced. A performance criterion which evaluates both current run feed-back 

mechanism and feed-forward of previous trial data was developed to be used to tune the 

quadratic objective function. 

    Amann et al. (1996) suggested that R0 is fixed and then it is defined by the 

objective function through R=ρR0.  The weighting parameter R is determined 

automatically. The scalar, ρ is a variable. The ρ is derived from equation σ
2
= σo

2
/ρ where 

σ is the smallest singular value of gain (G) and σo is the smallest singular value 

corresponding to R0. The smaller the ρ is, the faster the convergence will be. Hence, the 

parameter ρ can be used to control the convergence rate of a controlled system. The 

study was tested on linear, continuous steady state. The proposed method improved 

convergence rate for tracking error and input sequence trajectory. It was used for time-

variant dimension within a trial. The detailed study revealed that determination of control 

policy in the same manner for batch-to-batch control was not delivering similar 

performance.  
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   The advantage of the automated Q and R ratio used in constructing control 

policy is that we have control over convergence speed. Drawback is the magnitude of 

feed-forward is highly dependent on the state variance. Therefore, in worst case scenario, 

a sudden hike in input control policy may exist. The author did not consider the non-

linear case, presence of any kind of disturbances and robustness of the study. Complete 

automated ratio tuning may not deliver stable performance for non-linear systems, in the 

presence of disturbance and/or model-plant mismatches. 

   Gao et al. (2001) diversified from Amann et al. (1996) by applying Q and R 

ratio modulating idea to general batch process. This study was done on a non-linear 

actuator process. Finite time interval is present and not automatically decided. In Amann 

et al., 1996 the batch run time is decided upon attainment of the desired performance 

which is decided by the automated Q and R ratio tuning. The effect of initialization error 

and unknown disturbance were taken into consideration in the work by Gao et al., 2001. 

The work presented by Gao et al. (2001) was on exponentially reducing the Q and R 

ratio, trial after trial. The ratio of Q and R was first fixed and then it was reduced trial 

after trial in the order of 0.6
k-1

. In this work ρ was the fixed Q and R ratio, which is 0.6. 

The ρ is to approach zero with increasing cycle number, k.  The experimental results 

without the proposed method demonstrated that accumulation of initialization error and 

unknown disturbances causes instability in constant Q and R ratio. The exponentially 

reducing ρ after every batch run exhibits desirable convergence whilst minimizing 

tracking error and suppressing unknown disturbances and initialization errors.  

   This work is an adaptation of the works presented by Amann et al. (1996) and 

Gao et al. (2001). Both the introduction of ρ and systematically reducing Q and R ratio 

has been incorporated into this study. Fermentation process involves life mechanism and 

so it may not be that easy to automate the magnitude of feed rate. It is important that feed 

does not sway too high compared to previous feed rate to prevent cell damage. A more 

controlled adaptive Q and R ratio scheme is introduced in this chapter. The simulation 

results are discussed for PCR, PLS and MLR updated models for batch to batch iterative 

learning control. 

  This chapter is organised as follows. Section 7.2 presents the details of the 

proposed method for this chapter. Two methods are proposed in this section. One is the 

continuously reducing Q and R ratio from trial to trial and the other is error adaptive Q 
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and R ratio. Section 7.3 presents the results for batch to batch continuously decreasing Q 

and R ratio for batch to batch ILC with updated linearised MLR, PCR and PLS models. 

Two different R0 values were tested for this method. Section 7.4 presents the results for 

error adaptive Q and R ratio applied in batch to batch ILC with updated linearised MLR, 

PCR and PLS models. This method was also tested with 2 different R0 values. Section 

7.5 presents the results for combination of model prediction confidence bounds (the 

method proposed in Chapter 5) and continuously decreasing Q and R ratio technique. 

The combined method was applied to MLR, PCR and PLS models. Section 7.6 

concludes the chapter. 

7.2  The proposed method 

 There is no proper guidance on the selection of Q and R. It is the ratio of Q and 

R rather than the absolute value of these weighting matrices that matters in determining 

the convergence speed. Large ratio leads to unstable system due to insensitivity of the 

systems variance. A strong feed-forward action tends to accumulate process uncertainties 

causing strong fluctuation in control policy. Very small ratio causes slow convergence 

and is undesirable (Gao et al., 2001).  

 Multi-objective optimisation problem does not have a straight forward solution 

(Tousain et al, 2001). Identification of Q and R can be made simpler by fixing the Q to 

Q=1 and then identifying the appropriate R to achieve desired convergence rate as well 

as minimize tracking error, ensuring stability and robustness by eliminating the effect of 

disturbances (Rogers, 2008; Tousain et al, 2001). R can be used to tune the performance 

of the learning controller (Phan, 1998; Tousain et al, 2001). Therefore, Q is usually fixed 

as 1 and R is identified by trial and error as discussed in Chapter 4. In Chapter 4, the R 

value was selected firstly based on the stability of the control system and then the 

convergence rate was considered. The R value selected for study in the previous chapters 

is the one with convergence rate compensated for stability. Actually, much smaller R 

value produced higher convergence rate and desired trajectory is attainable within 3 to 4 

batch runs without disturbances. However, the constant high feed-forward signal did not 

provide a stable outcome to sustain the good performance.  

 When there is no disturbance, a constant and big ratio gives very good 

convergence rate. When there are disturbances, the ratio should be smaller to ensure 

stability. In addition to that, when the desired trajectory is almost achieved, there is no 
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need to improve the feed so much and so reduced ratio would be good enough. 

Therefore, the ratio adapting to the error is suggested. It does not have to be reducing all 

the way through for all the batches as suggested by Gao et al. (2001). When there is 

disturbance, the ratio just has to be smaller and reducing till a second stable platform is 

found. When it is stable, the smaller ratio can be made constant. It is necessary that 

varying weighting schemes are applied to cater to practical application possibilities (Gao 

et al., 2001).  

 In this study, the initial Q and R values were fixed as Q0=1 and R0=0.0001I or 

R0=0.00001I. The value R=0.0001I has been used throughout the study and so it will be 

used as R0 for this technique. The R value of 0.00001I was dismissed in Chapter 4 due to 

instability in performance. It will be interesting to evaluate the performance of this value 

with the adaptive technique. The other R0 value that was tested for the proposed method 

is 0.00001I. The Q and R ratio is then reduced in accordance to a pre-specified weighted 

parameter, ρ, exponentially. The ρ is decided on trial and error basis. The adaptive 

method was tried in two ways to evaluate the simulation performances. The ratio was 

reduced either based on error or with increasing batch numbers. The methods used are 

further explained below. 

Firstly, the ratio was reduced with batch index. The ratio is defined as, 

Ratio = (Q0/R0) ×ρ
 (k-1) 

The second method is reducing the ratio with error, whereby when yd - yk < 3g/l, the ratio 

will reduce as per definition below. A minimum ratio is set to prevent a reduction to zero 

ratios. 

Ratio = max ((Q0/R0)×ρ
 (k-1)

, 3000) 

When yd-yk > 3g/l, the ratio becomes constant as; Ratio = (Q0/R0), to produce bigger 

feed-forward control policy.  

The proposed method was applied to the batch to batch ILC with updated 

linearised models and nominal trajectories technique. It is the Case 2 results discussed in 

Chapter 4, Figure 4.12. The simulation results for the proposed method are presented in 

the sections below.  
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7.3  Continuously decreasing Q/R ratio  

 In this section, batch wise continuously reducing Q and R ratio method is 

applied to batch to batch ILC with updated linearised MLR, PCR and PLS models. Two 

R0 values were tested for each model. The values are R0=0.0001I and R0=0.00001I. The 

scalar ρ used to modulate the Q/R ratio was varied between 0 and 1 for each of the 

models. The ρ values that give presentable results are presented in this section. 

7.3.1 ILC using MLR models with R0=0.0001I 

 

Figure 7.1:  ILC performance with continuously decreasing Q/R ratio for ρ between 0.5 

and 0.9 using MLR models with R0=0.0001I 

 

Figure 7.1 shows results for continuously decreasing Q/R ratio for ρ between 0.9 

and 0.5 using MLR model with R0=0.0001I. It is clear that this technique is not 

improving the convergence rate any better than the reference plot from Chapter 4, 

labelled as MLR Case 2 in Figure 7.1.  Though the stability improved, the convergence 

rate decreased with decreasing ρ values. 
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7.3.2 ILC using MLR models with R0=0.00001I 

 

Figure 7.2:  ILC performance with continuously decreasing Q/R ratio for ρ between 0.5 

and 0.9 using MLR models with R0=0.00001I 

 

  In Figure 7.2, the continuously decreasing Q and R ratio was applied to MLR 

model with R0=0.00001I. The convergence rate certainly increased for most of the 

batches without disturbance for all the ρ values but batch to batch improvement is not 

consistent. For trials with disturbance, the batch to batch improvement is slow. The 

control performances for ρ values of 0.9, 0.8 and 0.7 were better than the reference 

performance. Overall, the continuously decreasing Q and R ratio technique did not have 

very favourable impact for MLR model. In the event if the best performing ρ value is to 

be picked, then ρ = 0.9 gives better convergence rate for batches with and without 

disturbances compared to the reference performance although the performance is a little 

inconsistent. 
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7.3.3 ILC using PCR models with R0=0.0001I 

 

Figure 7.3:  ILC performance with continuously decreasing Q/R ratio for ρ between 0.7 

and 0.9 using PCR models with R0=0.0001I  

Figure 7.3 shows results for continuously decreasing Q/R ratio for R0=0.0001I 

applied to a batch to batch ILC updated linearised model and nominal trajectories. The 

results were compared to the PCR results in Chapter 4, Figure 4.12 which was without 

the Q0/R0 modulation. A few ρ values were tried on the simulation. It is evident in the 

plot that the suggested method for ρ values 0.9, 0.85, 0.8 and 0.7 does not improve the 

convergence rate compared to the plot without the technique application. The 

convergence rate decreases with decreasing ρ values. However, it is noticeable that the 

stability of the control system in the presence of disturbance is well improved. It is noted 

that the performance with R=0.0001I without decreasing ratio gives much better 

convergence rate but with slight instability in the presence of disturbance.  To improve 

the instability, ρ values in between 0.9 and 1 were attempted. The values between 0.99 

and 0.95 have portrayed some improving results. The control performances are presented 

in Figure 7.4.  
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Figure 7.4:  ILC performance with continuously decreasing Q/R ratio for ρ between 0.99 

and 0.95 using PCR models with R0=0.0001I 

In Figure 7.4, despite results for ρ values between 0.95 and 0.99, the performance 

plots for ρ = 0.9 from Figure 7.3 and PCR Case 2 from Figure 4.12 are shown for 

comparison purpose. All the ρ values presented in Figure 7.4 show higher final biomass 

concentration compared to the case of ρ = 0.9. In the following discussion, the 

performance pattern of the ρ values between 0.95 and 0.99 will be compared to the PCR 

Case 2 performance, referred to as the reference performance in the following discussion.  

From Figure 7.4, it can be noted that for ρ = 0.95, 0.97 and 0.98 there were steady 

increment in convergence rate from trials to trials for both with and without disturbance 

conditions. For trials without disturbance, the biomass concentrations for all the 10 

batches for ρ = 0.95, 0.97 and 0.98 were very close to one another and also to the 

reference performance. The improvement is very significant in the presence of 

disturbance. Both the stability and convergence rate is improved in the presence of 

disturbance with the continuously decreasing ratio technique. The ρ values of 0.98 and 

0.97 show improvement in biomass concentration for all the batches with disturbance in 

comparison to the reference performance. The control performance for ρ = 0.95 exhibits 

slightly lesser biomass concentrations for the first 5 batches with disturbance compared 

to the reference performance. In the following 5 batches, the trials to trial production 

increased steady, way better than the reference performance. Decreasing the Q and R 
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ratio continuously, trial after trial in the presence of disturbance, does exhibit favourable 

results. The performance for the case of ρ=0.97 portrays best performance pattern for 

with and without disturbance in comparison to the other ρ values in Figure 7.4.  As for ρ 

= 0.96, though the biomass concentrations were improving from trial to trial for all the 

20 batches, there were slight instability and lesser convergence rate in comparison to ρ = 

0.95, 0.97 and 0.98. The performance pattern for ρ = 0.99 was promising for batches 

without disturbances but did not sustain the performance for batches with disturbances, 

the biomass concentrations were achieving similar value as that of the ρ=0.9 case. 

7.3.4 ILC using PCR models with R0=0.00001I 

 

Figure 7.5:  ILC performance with continuously decreasing Q/R ratio for ρ between 0.6 

and 0.9 using PCR models with R0=0.00001I 

In Figure 7.5, the continuously decreasing Q and R ratio was applied with 

R0=0.00001I.  In Chapter 4, Figure 4.10 (c) shows the performance for R=0.00001I 

portrayed highly unstable performance. It is possibly due to high feed-forward input 

which is not necessary for the system. The technique was applied with varying ρ values 

with R0=0.00001I and Q0=1. The performances were compared to the case of R=0.0001I 

without decreasing ratio (reference performance). It is evident that without disturbance; 

all the ρ values exhibited very fast converging results compared to the reference 

performance. The cases with ρ=0.85 and 0.9 exhibit most desirable results. The desired 
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trajectory was asymptotically attained within 5 batches and the performance were 

gradually improved and maintained close to the desired trajectory for the following 5 

batches. In the presence of disturbance, there were varying performance patterns among 

the ρ values. The convergence rates were improving with increasing ρ values. All the ρ 

values portrayed desirable stability except for ρ = 0.9. Both ρ = 0.85 and 0.9 exhibit 

highest biomass concentrations for trials with disturbances amongst the tested ρ values. 

The performance pattern for ρ=0.85 is the most favourable based on the stability and the 

convergence rate. The method to decrease Q and R ratio greatly improves the simulation 

results even for smaller R value. 
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7.3.5 ILC using PLS models with R0=0.0001I 

 

(a) 

 

(b) 

Figure 7.6:  ILC performance with continuously decreasing Q/R ratio for ρ between 0.8 

and 0.9 (a) and between 0.95 and 0.99 (b) using PLS models with R0=0.0001I 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
58

60

62

64

66

68

70

72

74

Batch

E
n

d
-b

at
ch

 B
io

m
as

s 
C

o
n

ce
n

tr
at

io
n

 (
g

/l
)

 

 

PLS Case 2 

=0.90

=0.85

=0.80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
58

60

62

64

66

68

70

72

74

Batch

E
nd

-b
at

ch
 b

io
m

as
s 

co
nc

en
tr

at
io

n 
(g

/L
)

 

 

PLS Case 2 

=0.99

=0.98

=0.97

=0.96

=0.95



137 

 

Figure 7.6(a) shows results for continuously decreasing Q and R ratio for ρ 

between 0.8 and 0.9 using PLS model. The performance for PLS Case 2 without 

decreasing Q and R ratio, as adapted from Chapter 4, Figure 4.12, is used as the 

reference performance to evaluate the performance of different ρ values. It is noted that 

the convergence rate decreases from ρ=0.9 to ρ=0.8. Though the control performance is 

improving steadily from batch to batch, higher convergence rate is desired. Following 

that in Figure 7.6(b), ρ values ranging between 0.95 and 0.99 were attempted.  It is 

interesting to note that there are favourable improvements in the performance pattern. 

The first ten batches without disturbance for all the tested ρ values improved from trial to 

trial but the convergence rate did not differ much as compared to the reference 

performance. There were slight increments from the reference performance in every 

batch trial without disturbance. The convergence rate increased steadily with increasing ρ 

values. For trials with disturbance, the batch to batch biomass concentrations were 

improving steadily and converging towards the desired trajectory. The stability of the 

tested cases is certainly improved compared to the reference performance. The 

convergence rate increases with increasing ρ values. Among the considered ρ values, the 

best performing ρ value is 0.99. 

 

7.3.6 ILC using PLS models with R0=0.00001I 

 
Figure 7.7:  ILC performance with continuously decreasing Q/R ratio for ρ between 0.60 

and 0.90 using PLS models with R0=0.00001I  
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With reference to Figure 7.7, it is noticeable that R0=0.00001I can be used for the 

batch to batch ILC control with the continuously decreasing Q and R ratio technique. 

This was not possible with just batch to batch ILC as discussed in Chapter 4. The 

convergence rates for batches with and without disturbances increases with increasing ρ 

values. The first ten trials meant for tracking desired trajectory, achieved asymptotic 

performance within 6 batches. The stability of all the ρ values was favourable. The best 

performing was for ρ=0.90. As for batches with disturbances, there were varying 

convergence rate and system stability. The convergence rate decreased with decreasing ρ 

values. The stability of the system deteriorated with increasing ρ values. The plots for 

ρ=0.90, 0.85 and 0.80 portray higher convergence rate than the reference plot but the 

performance stability is a little inconsistent. 

7.4  Adaptive Q/R ratio for pre-defined error limit 

 In this slightly modified method than the continuously decreasing ratio 

discussed in Section 7.3, the Q0 and R0 ratio remains constant when the error is bigger 

than 3g/l. For any batches when the output error is 3g/l or less, the ratio will start 

decreasing from batch to batch till a minimum ratio of 3000 is reached. In the presence 

of disturbance, when the error becomes bigger than 3g/L, the ratio goes back to the 

constant Q0/R0 whereby Q0=1 and R0=0.0001I. The plots with different ρ values are 

compared to the batch to batch ILC updated model plots for MLR, PCR and PLS from 

Chapter 4, Figure 4.12. These plots are referred to as reference plot in the respective 

graphs.  
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7.4.1 ILC using MLR models with R0=0.0001I

 

(a) 

 

(b) 

Figure 7.8:  ILC performance with error dependant adaptive Q/R ratio for ρ between 0.7 

and 0.9 using MLR models with R0=0.0001I 
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In Figure 7.8, the adaptive Q and R ratio method is applied to MLR model with 

R0=0.0001I. As seen in both Figure 7.8(a) and (b), this method does not improve the 

batch to batch performance. This is because yd - yk is more than 3 for most of the batches 

and so the adaptive method is not used for most of the batches. 

 

7.4.2 ILC using MLR models with R0=0.00001I 

 

 Figure 7.9:  ILC performance with error dependant adaptive Q/R ratio for ρ between 0.5 

and 0.9 using MLR models with R0=0.00001I 
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7.4.3 ILC using PCR models with R0=0.0001I 

 

(a) 

 

(b) 

Figure 7.10:  ILC performance with error dependant adaptive Q/R ratio for ρ between 0.6 

and 0.95 using PCR models with R0=0.0001I 
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seen for trials with disturbance. In Figure 7.10 (a), the performance for ρ=0.60 exhibits 

better convergence and stability compared to the other ρ values in the presence of 

disturbance. For batches without disturbances, most of the batches revealed lesser 

biomass concentration compared to the reference plot. Therefore, bigger ρ values were 

attempted and presented in Figure 7.10 (b). In Figure 7.10(b), for the first ten trials 

without disturbance, the performances for ρ=0.85 and 0.90 reveal similar results to the 

reference performance except for the last three batches, there were slight decrease in the 

concentration. In the presence of disturbance, both these control performances were 

improving steadily from batch to batch and produced higher biomass concentration for 

most of the batches compared to the reference performance. In this case, both ρ=0.85 and 

0.90 exhibit favourable performance pattern. The plot for ρ=0.85 exhibits higher biomass 

concentrations for most of the batches compared to the case of ρ=0.90 in the presence of 

disturbance. In contrast to the continuously decreasing Q and R ratio discussed above, 

smaller ratio is needed to achieve similar performance pattern with the error dependent 

adaptive Q and R ratio.  
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7.4.4 ILC using PCR models with R0=0.00001I

 

(a) 

 

(b) 

Figure 7.11:  ILC performance with error dependant adaptive Q/R ratio for ρ between 0.4 

and 0.7 using PCR models with R0=0.00001I 

In Figure 7.11, the adaptive Q and R ratio is applied for R0=0.00001I using PCR 

model. As seen in Figure 7.11(a), the adaptive method exhibits favourable results for 

trials without disturbance. In the presence of disturbance, high instability is portrayed 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
58

60

62

64

66

68

70

72

74

Batch

En
d-

ba
tc

h 
B

io
m

as
s 

C
on

ce
nt

ra
tio

n 
(g

/l)

 

 

PCR Case 2 R=0.00001

=0.7

=0.65

=0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
58

60

62

64

66

68

70

72

74

Batch

E
nd

-b
at

ch
 B

io
m

as
s 

co
nc

en
tr

at
io

n 
(g

/l)

 

 

PCR Case 2 

=0.55

=0.50

=0.45

=0.40



144 

 

although most of the batches have higher biomass concentrations compared to the 

reference plot. Figure 7.11 (b) shows that for ρ = 0.40, 0.45, 0.50 and 0.55, there were 

stable batch to batch increment for trials with and without disturbance. The biomass 

concentrations did not differ much between the plots. Though the biomass concentrations 

for all the tested batches were higher than the reference plot, the convergence rate could 

have been better.  

7.4.5 ILC using PLS models with R0=0.0001I 

 
      (a) 

 

(b) 

Figure 7.12:  ILC performance with error dependant adaptive Q/R ratio for ρ between 

0.50 and 0.90 using PLS models with R0=0.0001I 
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In Figure 7.12 (a) and (b), the performance of PLS model using adaptive Q and R 

ratio with varying ρ value is presented. It is evident that for all the presented ρ values, 

there is steady batch to batch improvement for trials with and without disturbance. With 

reference to Figure 7.12 (a), the control performance for ρ=0.85 and 0.80 show steady 

and improved convergence rate for batch to batch trials for runs with and without 

disturbances compared to the reference plot. The performance for ρ=0.90 revealed slight 

improvement for most of the batches without disturbance and significant improvement 

from 4
th

 trial on wards for trials with disturbance compared to the reference performance. 

All the three tested cases in Figure 7.12 (a) give favourable performance pattern. There is 

notable improvement in the stability and convergence rate in these plots. In comparison 

to Figure 7.6, the adaptive method seems to reveal better results with lower Q and R ratio 

with the PLS model. In Figure 7.12 (b), smaller ρ values were attempted. The plots for ρ 

between 0.50 and 0.75 revealed similar performance to one and another. The biomass 

concentrations were improved for most of the tested batches. The stability of the control 

system is also improved for trials with disturbance. However, the plots for ρ values in 

Figure 7.12 (a) are more favourable simply because the batch to batch improvements are 

better. The adaptive method did not work well with the R0=0.00001I especially in the 

presence of disturbance, most probably due to very high feed-forward control policy. 
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7.5  Reliable ILC with adaptive Q and R ratio 

 In this section, the continuosly decreasing Q and R ratio technique is combined 

with the reliable ILC method through incoporating model prediction confidence bounds 

for MLR, PLS and PCR models. For all the three models, the performance of reliable 

ILC is compared to the combined technique. 

7.5.1  Reliable ILC using MLR models with adaptive Q and R ratio 

 
Figure 7.13: Performance of reliable ILC with adaptive Q and R ratio using MLR models 

   As discussed in the previous section, the continuously decreasing Q and R ratio 

improves the system stability rather than the convergence rate. In Figure 7.13, the 

performance or reliable ILC is compared with that of the combined technique. For 

batches without disturbance, the stability and convergences rates did not differ much for 

the two methods. For batches with disturbance, the combined technique has improved the 

stability and batch to batch concentration for the last 5 trials. Smaller Q and R ratio 

contributed to the noticed improvement. 
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7.5.2  Reliable ILC using PCR models with adaptive Q and R ratio 

. 

Figure 7.14: Performance of reliable ILC with adaptive Q and R ratio using PCR models 

As for reliable ILC using PCR models in Figure 7.14, the performance of reliable 

ILC is in favourable performance pattern except for very slight instability for few 

batches with disturbance. The combined technique improves that small bit of instability. 

The convergence rate for both the plots for the entire 20 batch does not differ much. 
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7.5.3 Reliable ILC using PLS models with adaptive Q and R ratio 

 

Figure 7.15: Performance of reliable ILC with adaptive Q and R ratio using PLS models 
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batches for the combined technique. In the presence of disturbance, the slight instability 
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disturbance for PLS model. 
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7.6  Conclusions 

 In this chapter, adaptive Q and R ratio technique was attempted and the results 

were discussed. It is evident that in most of the cases this technique improves the 

stability of the batch to batch control but does not always improve the biomass 

concentrations compared to the reference plot. There were two different techniques 

attempted and applied to ILC with PCR, PLS and MLR models. The MLR model was 

not suitable for this technique. There were no improvements in results noticed. Both the 

PCR and PLS models exhibited improving results in terms of convergence rate and 

stability, for both the techniques. For R0=0.0001I, there were significant improvement in 

the stability and convergence rate for trials with disturbance.  The adaptive Q and R ratio 

enables smaller R value to start off with, which is R0=0.00001I. The adaptive Q and R 

ratio gives more control over the batch to batch performance resulting in certain 

limitation to the performance pattern. The results for continuously reducing Q and R 

ratio are more varied in performance. The adaptive ratio method used smaller ρ values 

compared to the continuously reducing method. 

The continuously reducing ratio technique was combined to the reliable ILC 

method incorporating model prediction confidence bounds with the intention to improve 

the system stability and possibly the convergence rate. As expected, the stability is 

improved for all the three tested models, MLR, PLS and PCR. 
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CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORKS 
 

8.1  Conclusions 

 Fed-batch fermentation has been vital and present for many years in the 

industry. Even then, the development of advanced control and optimization in this area is 

still lagging compared to the continuous systems. This is mainly due to its non-linear and 

complex nature. At present, control policy to obtain desired product quality in a fed-batch 

process is calculated offline. Due to model-plant mismatches and the presence of 

unknown disturbances, off-line calculated control policy may not be optimal when 

implemented to the real process. The repetitive nature of batch process allows 

information from the previous batches being used in modifying the control policy of the 

next batch in the framework of iterative learning control.  Iterative learning control (ILC) 

exploits every possibility to incorporate past control information, in particular the past 

tracking error and control input signals, into the construction of the present control action 

through memory based learning. It forms the feed-forward part of the current control 

action to complement the existing control methods. In this work, implementation and 

improvement of batch to batch iterative learning control into fed-batch fermentation are 

studied. 

A batch to batch iterative learning control strategy based on incrementally 

updated linearised model has been implemented on a simulated fed-batch fermentation 

process in this study. The linearised models were developed using multiple linear 

regressions (MLR), principle component regression (PCR) and partial least squares 

(PLS). The proposed strategy could overcome the detrimental effects of model-plant 

mismatches and unknown disturbances by incrementally updating the control policy 

using information from the previous batches. Control policy updating is calculated using 

a linearised model identified from process operation data. In order to tackle the nonlinear 

behaviour of fermentation processes, the linearised model is updated from batch to batch 

and the immediate previous batch is used as the reference batch. In the effort to address 

the colinearity among the control actions during different batch stages, the linearised 

models are identified using PCR and PLS.  

The initial work carried out in this study suggests that both PCR and PLS 

regression methods can be used to develop batch-wise linearised models for batch to 
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batch iterative learning control. It also reveals that updating of the model parameter, Gs 

and nominal reference variables, Ys and Us, is necessary to steadily track desired 

trajectory in the presence of disturbance. Model updating using PCR and PLS leads to 

better control performance than model updating using MLR. Comparing batch to batch 

control strategies based on the PLS and PCR models, the one based on the PCR model is 

preferred due to its feed rate stability and enhanced productivity rate under disturbance.  

Following that, a reliable batch to batch iterative learning control strategy based 

on incrementally updated linearised model is discussed. Model prediction confidence is 

incorporated in the ILC optimisation objective function to penalise wide model prediction 

confidence bounds. Application results on a simulated fed-batch fermentation process 

demonstrate that the proposed technique is very effective. The performance of reliable 

ILC with MLR model is significantly improved. The reliable ILC with MLR model 

revealed desirable tracking ability and produced favourable result in the presence of 

continuous disturbance.  Reliable ILC with PCR and PLS models also show improved 

performance. 

A sliding window historical batches approach was integrated with the batch to 

batch ILC with updated linearised models. This method suggests that for PLS and PCR, 

the number of historical batches equal to the number of feed intervals is sufficient to 

develop a process model. In order to capture the recent process environment, the 

historical batches should be updated after every batch run. The optimal window size for 

MLR is 20 and for PCR and PLS is 10. The MLR model with sliding window size 20 

gave very resembling results to ILC with batch to batch updated models and without 

sliding window approach. There was no further increment in the end product 

concentration but it suggest that 20 historical batches updated after every batch run is 

enough to produce same results as the non-moving window approach for MLR model. 

Incorporation of model prediction confidence bounds into MLR model with sliding 

window and averaged reference trajectory revealed significantly improved performance 

pattern.  

  Then, a strategy to modulate the Q and R ratio in the objective function was 

proposed. An adaptive weighted parameter was added to the Q and R ratio. The ratio was 

either adapted to the increasing batch numbers or error magnitude. For the continuously 

decreasing ratio for all the 20 batches, impressive results were attained for PLS and PCR 

models. There were improvement in the stability and batch to batch end product 

concentration for both these models. ILC with MLR model did not respond well to this 
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strategy. For the error adaptive method, there were also improvements in the batch to 

batch biomass concentration and system stability for PCR and PLS models.  

The reliable ILC using batch-wise adaptive ratio gives improving results for using 

MLR models. Incorporation of model prediction confidence bounds (MPCB) increased 

the batch to batch biomass concentrations with and without disturbance and so improves 

the stability of the system. For ILC with PLS and PCR models, there were small 

improvement in the performance stability of the system. The incorporation of MPCB 

improves the reliability of ILC with all the three models. 

8.2  Suggestions for future works 

 The presence of non-repetitive disturbances is unavoidable in a fermentation 

system. Batch to batch control is efficient in controlling future batch runs but has no 

control on the current batch run. In the event the disturbances randomly changes from one 

batch to another, batch to batch ILC would become incompetent and may amplify the 

repercussion of the disturbances. It would be interesting to study the integration of the 

proposed methods to within batch ILC with updated model. ILC is unique because it can 

be used for both within batch and batch to batch trials. The integration strategy could be a 

more robust and reliable control method.  

 On the other hand, the batch to batch ILC is mainly aimed at complementing the 

present PID control system in the industry. A simulation study on applying the proposed 

method as supervisory control system to a PID control system may be the next step 

ahead. This way the proposed method can be tuned to be used for present industrial 

application.  

 Convergence is closely related to economical production. In the industry, 

producing desired product specification within minimal trial to maximize product over 

cost yield and reaching the market soonest possible is highly desirable. In addition to that, 

with the rapidly changing consumer requirement on product specifications, it is vital that 

a control method is capable of rapid convergence while minimizing the effect of possible 

errors such as model-plant mismatches, repetitive and non-repetitive disturbances and/or 

initialization error. The ideal solution would be to attain the desired results on the very 

first trial. At the moment this ideal solution is not yet possible. Attaining the desired 

results in lowest possible batch trials is highly desirable in the industry especially for 

scale up plants.  
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For batch to batch ILC between 10 and 20 batch data is needed to develop a 

process model. In agile manufacturing environment, the process changes in short period 

of time. Product development has to be done in a very short period of time. In addition to 

that, the trial runs may be costly and so very few data is available. There could be just 2 

or less than 5 batches data available. It is essential to develop a strategy on how batch to 

batch ILC proposed in this work can be used for limited batch data.  

Performance assessment of the models used in batch to batch ILC with updated 

linearised model method should be done. The correlation between the model updates and 

corresponding input prediction has to be accessed to further investigate the efficiency of 

the proposed techniques. The developed control policy should be tested for reliability and 

stability. Then, the model-plant mismatch elimination competence could be analysed. 

Once a robust and reliable ILC method is identified, it could be applied in the real-time 

industrial plant and its competency should be analysed. 
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