

Efficient and Scalable Replication

 of Services over

Wide-Area Networks

Thesis by

Abdallah Abouzamazem

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

University of Newcastle upon Tyne

Newcastle upon Tyne, UK

Submitted 9
th

 March 2012

 - ii -

 - iii -

Abstract

 Service replication ensures reliability and availability, but accomplishing it

requires solving the total-order problem of guaranteeing that all replicas receive

service requests in the same order. The problem, however, cannot be solved for a

specific combination of three factors, namely, when (i) the message transmission

delays cannot be reliably bounded, as often the case over wide-area networks such as

the Internet, (ii) replicas can fail, e.g., by crashing, the very events that have to be

tolerated through replication, and finally (iii) the solution has to be deterministic as

distributed algorithms generally are. Therefore, total-order protocols are developed by

avoiding one or more of these three factors by resorting to realistic assumptions based

on system contexts. Nevertheless, they tend to be complex in structure and impose

time overhead with potentials to slow down the performance of replicated services

themselves.

This thesis work develops an efficient total-order protocol by leveraging the

emergence of cluster computing. It assumes that a server replica is not a stand-alone

computer but is a part of a cluster from which it can enlist the cooperation of some of

its peers for solving the total-order problem locally. The local solution is then

globalised with replicas spread over a wide-area network. This two-staged solution is

highly scalable and is experimentally demonstrated to have a smaller performance

overhead than a single-stage solution applied directly over a wide-area network. The

local solution is derived from an existing, multi-coordinator protocol, Mencius, which

is known to have the best performance. Through a careful analysis, the derivation

modifies some aspects of Mencius for further performance improvements while

retaining the best aspects.

 - iv -

Contents

Abstract ii

Contents iii

List of Notations and Abbreviations vi

Figures viii

Tables x

1 Introduction 1

1.1 System Contexts for Solving Total Order Problem…………….………………3

 1.1.1 Failure context………………………………………………...……………3

 1.1.2 Network Context……………………………………………...……………4

 1.1.3 The Replicated System…….……………………………………………….5

 1.2 System General Assumption……………………………………………………6

 1.2.1 CAP Theorem………………………………………………………………6

 1.2.2 Consistency vs. Latency……………………………………………………7

1.3 Motivation and Challenges..………………………………………….………...7

1.4 Approaches………………………………………………………..……………9

1.5 Contribution………………………………..……………………………….....11

 1.6 Thesis structure…………………………………..…………………...….……13

2 Related Work 14

 2.1 Introduction………………………………………………………………........14

 2.2 Consensus………………………………………………………………...........15

 2.3 Fail-Signal………………………………………………………………..........16

 2.4 Randomized Approach…………………………………………………...……18

 2.5 Deterministic approaches………………………………………………...……19

 2.5.1 Chandra and Toueg protocol [CT] ………………………………………..19

 2.5.2 Paxos algorithm…………………………………………………………....22

 2.5.2.1 Paxos: no failure case………………………………………...……...…24

 2.5.2.2 Paxos: with Fail Detector case…………………………………….…...26

 2.5.2.3 Paxos for Total Order problem…………………………………..….…29

 2.5.2.4 Normal operation in failure-free situation ACK is sent to leader only...30

 2.5.2.5 Normal operation in failure-free situation ACK is sent to all……..…...31

 2.5.2.6 Total Order Protocol with leader change………………………...….…32

 2.6 Deriving Mencius…………………………………………………………...…35

 - v -

 2.6.1 Single leader bottleneck…………………………………………………...36

 2.6.2 Simple Consensus…………………………………………………………37

 2.6.2.1 Assumptions and requirements………………………………….….....39

 2.6.2.2 Messages sent by server and their actions……………………..….…..39

 2.6.2.3 Simple consensus with no crash………………………………..….….40

 2.6.2.4 Simple consensus with REVOKE……………………………..…….....41

 2.7 Mencius…………………………………………………………………….….43

 2.7.1 Choosing parameters………………………………………………………51

 2.7.2 Revocation in Mencius…………………………………………………….52

 2.8 summary……………………………………………………………………….54

3 Performance Assessment of Mencius 56

 3.1 Introduction……………………………………………………………………56

 3.2 Criticism of revocation in Mencius……………………………………………57

 3.3 Assumption and principles…………………………………………………….59

 3.4 Protocol description……………………………………………………………61

 3.5 Summary………………………………………………………………...…….69

4 Protocol [Mencius]
N
 71

 4.1 Introduction……………………………………………………………………71

 4.2 Two Level Mencius……………………………………………………………73

 4.3 Assumption……………………………………………….……………………75

 4.4 Principles………………………………………………………………………75

 4.5 Protocol design …………………………………..……………………………79

 4.5.1 Normal work of [Mencius]
N-1

…………………………………………......80

 4.5.2 Site Speaker change in [Mencius]
N
………………………………………..81

 4.5.3 Installing a new Site Speaker……………………………………………...82

 4.5.3.1 Enforcing a new Site Speaker…………………………………………82

 4.5.3.2 Asking for a Site Speaker replacement………………………………..84

 4.5.3.3 How a new Site Speaker starts its job? ………………………….……85

 4.6 Site Speaker Algorithm..………………………………………………………86

 4.7 Summary………………………………………………………………………87

5 Experiments and results 88

 5.1 Introduction……………………………………………………….……...……88

 5.2 Experiment’s environment ……………………………………….………...…88

 5.2.1 Link time delay and bandwidth…………………………….………..…….89

 - vi -

 5.2.2 Request arrival time interval………………………..……………………..90

 5.2.3 Number of requests………………………………………………………..90

 5.3 Experimental settings…………….……………………………………...…….90

 5.3.1 Number of experiments…………………………………………………....90

 5.3.2 Message length………………………………………………………….…91

 5.3.3 Clients engineering……………………………………………….…….….91

 5.4 Evaluation for large requests…………………………………………………..92

5.4.1 Throughput………………………………………………………………...92

5.4.2 Latency…………………………………………………………………….96

5.4.3 GAIN summary………………………………..………………………….103

 5.5 Batching short messages……………………………………...……………...105

5.5.1. Throughput………………………………………………………….…...105

5.5.2 Throughput Summary……………………………………………….…...105

5.5.3 Latency………………………………………………………….………..106

5.5.4 Latency summary………………………………………………………...106

5.6 Bandwidth consumption of WAN…………………………………………...108

5.6.1 Bandwidth consumption in failure-free situation………………………...108

5.6.2 Bandwidth consumption under failure…………………………………...108

5.7 Removing client blocking……………………………………………………109

5.8 Performance Assessment of Revised Mencius………………..……………..109

5.8.1 Throughput……………………………………………………………….110

5.8.2 Latency…………………………………………………………………...111

5.9 Summary……………………………………………………………………..112

6 Summary and conclusion 115

 6.1 Summary……………………………………………………………………..115

 6.2 Conclusion……………………………………………………………………120

 6.3 Future work…………………………………………………………………..122

Appendix A 124

 A.1 Evaluation for short messages……………………………...………………..124

 A.1.1 Throughput…………………………………………………...……………124

 A.1.2 Latency…………………………………………………………………….128

 A.1.3 Performance Assessment of Revised Mencius…………………………….132

References 134

 - vii -

List of Notations and Abbreviations

n number of nodes in the replicated system

f fault-tolerance degree (maximum number of failures) of the

replicated system

φ degree of replicas within fail-signal process

FSi i
th

 Fail-Signal node of the replicated system

ni i
th

 node of the replicated system

pi i
th

 process hosted on Ni (executing protocol)

q One of the i
th

 processes

m message used for communication between two processes

rnd# proposal round number for Paxos

rnd [q] the highest-numbered round in which process q has participated in

classic Paxos.

vrnd [q] the highest-numbered round in which process q has ACK an order in

classic Paxos.

vval [q] the value process q has accepted in round vrnd [q] in classic Paxos.

lrnd [l] the highest-numbered round that process l has started in classic Paxos

lval [l] the value process l has proposed for round lrnd [l] in classic Paxos.

PREPARE a message sent by the leader to acceptors in phase 1 in classic Paxos

 and Mencius.

PROPOSE a message sent by the leader to acceptors in phase 2 in classic Paxos

 and Mencius.

 ACCEPT a message sent by the leader to acceptors in classic Paxos.

SUCCEED a message sent by the leader to acceptors in classic Paxos.

ACK a message sent by the acceptors to leader in classic Paxos and .

NACK a message sent by the acceptors to leader.

LEARN a message sent by the leader to all in Mencius.

BFT Byzantine Fault-Tolerant order protocol.

vi value chosen by process pi

l leader process

r, r’ round number

IPi is the index or sequence number of server Pi for the next simple

 - viii -

 consensus instance.

IFS is the index or sequence number of FS node for the next consensus

 instance.

Π set of all processes or FS nodes

⊥ bottom value used in Randomized protocols

esti the estimated value of a process

vali a value picked by a process from a list of values

◊S simple of Failure detector oracle in Chandra and Toueg algorithm

CPj is the smallest instance that was not learned by Pi and has been

coordinated by Pj

β defines the interval of instances that should be revoked in advance

NRM the number of real messages

NSM the number of skip messages

seq request sequence number

req client request

◊S, Ω, ◊P failure detector classes

α a constant representing the accelerator outstanding messages

τ a time constant for the accelerator to show that messages cannot be

 deferred for more than some time τ

S
SI

 si
th

 site of the replicated system

SI site index number

ISI Instance site index number

AI request arrival time intervals

CAP (C) Consistency, (A) Availability, and network (P) Partitions

 - ix -

Figures

Figure 1.1: The Replicated System

Figure 1.2: Mencius

Figure 2.1: Network context of FS

Figure 2.2: The two states of FS process

Figure 2.3: Single leader system

Figure 2.4: Client/Server role

Figure 2.5: Paxos protocol executed in rounds

Figure 2.6: Classic Paxos

Figure 2.7: Paxos with three phases

Figure 2.8: Paxos used to solve Total Order

Figure 2.9: Paxos used to solve Total Order

Figure 2.10: Paxos used to solve Total Order

Figure 2.11: Deriving Mencius

Figure 2.12: Network context of Mencius

Figure 2.13: Instances of Paxos

Figure 2.14: Instances of Simple Consensus

Figure 2.15: Committing instances in the right order

Figure 2.16: Simple consensus

Figure 2.17: Servers suggesting with identical speed

Figure 2.18: Servers suggesting with different speed

Figure 2.19: Servers applying rule2

Figure 2.20: P0 revokes P2

Figure 2.21: P2 crashes after learning 5 and only makes P0 learn

Figure 2.22: Suspected server tries again

Figure 2.23: No need for skip message

Figure 2.24: Sequence instances from P0 only

Figure 2.25: (a) P0 revokes P2 using Instance 9, (b) the outcome of revocation is

learning instance 2 by P0.

Figure 3.1: Mencius with three phases

Figure 3.2: revocation overhead

Figure 3.3: (a) each server runs its own Paxos instances, (b) each server learns and

commits all instances in sequence.

 - x -

Figure 3.4: (a) server P2 has got no requests to coordinate, (b) each server learns all

instances and commit them.

Figure 3.5: (a) servers P1 and P2 idles, (b) server P0 learns everything instantly (c) P1

learns from P0 and its own skips only, (d) P2 learns from P0 and its own

skips only, (e) accelerators are triggered and both P1 and P2 learns and

commits everything.

Figure 3.6: (a) P0 revokes P2 using its own Instance 9, (b) after revocation each

 correct server will be able to commit any outstanding messages.

Figure 3.7: (a) P0 revokes P2 using its own Instance 9, (b) P0 learns 2 and 5, then

aborts revocation.

Figure 3.8: P1 revokes P4 using Instance 15

Figure 4.1: Network context of Mencius

Figure 4.2: Network context

Figure 4.3: Site structure representing local Mencius

Figure 4.4: [Mencius]
N
 as a multi-leader protocol

Figure 4.5: Converting streams from local Mencius to global Mencius

Figure 4.6: forming global commit stream

Figure 4.7: [Mencius]
N

and its level of abstraction

Figure 5.1: Experiment 1; time delay of LAN, no DummyNet

Figure 5.2: Experiment 2; one-way delay of 25ms.

Figure 5.3: Experiment 3; one-way delay of 50ms.

Figure 5.4: Experiment 4; one-way delay of 100ms.

Figure 5.5: Experiment 5; different one-way time delays.

Figure 5.6: Experiment 1; time delay of LAN, no DummyNet.

Figure 5.7: Experiment 2; one-way delay of 25ms.

Figure 5.8: Experiment 3; one-way delay of 50ms.

Figure 5.9: Experiment 4; one-way delay of 100ms.

Figure 5.10: Experiment 5; different one-way time delays.

Figure 7.1 Ordering requests

Figure 7.2 Decision states

Figure 7.3 Protocol general view

Figure 7.4 CInitiate

Figure 7.5 CReceive

Figure 7.6 Pseudo-Code for CExecute

 - xi -

Figure 7.7 Ordering requests

Figure 7.8 Throughput

Figure 7.9 Max-latency

Figure 7.10 Min-latency

Figure 7.11 Comparison of round numbers

Figure 7.12 Percentage of round numbers

Figure 7.13 Round numbers probability

Figure A.1: Experiment 1; time delay of LAN, no DummyNet.

Figure A.2: Experiment 2; one-way delay of 25ms.

Figure A.3: Experiment 3; one-way delay of 50ms.

Figure A.4: Experiment 4; one-way delay of 100ms.

Figure A.5: Experiment 5; different one-way time delays.

Figure A.6: Experiment 1; time delay of LAN, no DummyNet.

Figure A.7: Experiment 2; one-way delay of 25ms.

Figure A.8: Experiment 3; one-way delay of 50ms

Figure A.9: Experiment 4; one-way delay of 100ms.

Figure A.10: Experiment 5; different one-way time delays.

Figure A.11: One-way delay of 100ms.

Figure A.12: One-way delay of 100ms.

 - xii -

Tables

Table 2.1: Comparing message naming in each phase

Table 2.2: Idle servers problem

Table 5.1: throughput [Mencius]
N

Table 5.2: throughput Mencius

Table 5.3: throughput [Mencius]
N
-25

Table 5.4: throughput Mencius-25

Table 5.5: throughput [Mencius]
N
-50

Table 5.6: throughput Mencius -50

Table 5.7: throughput [Mencius]
N
-100

Table 5.8: throughput Mencius-100

Table 5.9: throughput [Mencius]
N
-D

Table 5.10: throughput Mencius–D

Table 5.11: latency [Mencius]
N

Table 5.12: latency Mencius

Table 5.13: latency [Mencius]
N
 25

Table 5.14: latency Mencius 25

Table 5.15: latency [Mencius]
N
 50

Table 5.16: latency Mencius 50

Table 5.17: latency [Mencius]
N
 100

Table 5.18: latency Mencius 100

Table 5.19: latency [Mencius]
N
 D

Table 5.20: latency Mencius D

Table 5.21 Throughput Gain

Table 5.22 Max-Latency Gain

Table 5.23 Min-Latency Gain

Table 5.24 Throughput Gain

Table 5.25 Max-Latency Gain

Table 5.26 Min-Latency Gain

Table 5.27 throughput Gain

Table 5.28 Max-Latency Gain

Table 5.29 Min-Latency Gain

 - xiii -

Table A.1: throughput [Mencius]
N

Table A.2: throughput Mencius

Table A.3: throughput [Mencius]
N
 -25

Table A.4: throughput Mencius -25

Table A.5: throughput [Mencius]
N
 –50

Table A.6: throughput Mencius –50

Table A.7: throughput [Mencius]
N
 –100

Table A.8: throughput Mencius –100

Table A.9: throughput [Mencius]
N
-D

Table A.10: throughput Mencius-D

Table A.11: latency [Mencius]
N

Table A.12: latency Mencius

Table A.13: latency [Mencius]
N
 25

Table A.14: latency Mencius 25

Table A.15: latency [Mencius]
N

50

Table A.16: latency Mencius 50

Table A.17: latency [Mencius]
N

 100

Table A.18: latency Mencius 100

Table A.19: latency [Mencius]
N

D

Table A.20: latency Mencius D

Table A.21: throughput Mencius

Table A.22: throughput revised Mencius

Table A.23: latency of Mencius

Table A.24: latency of revised Mencius

 - - 1

Chapter 1

Introduction

 Use of computers has become pervasive: from complicated space systems,

medical instruments and military equipment to home appliances such as coffee

makers and washing machines. With the advent of computer networks and the

Internet, our lives are transformed and even influenced by our digital technology.

Education systems, media, communication and business are now totally reliant on the

computer and, in turn, are shaped by this technology in ways that we are only

beginning to understand. We arrived at a point where we are attached and completely

dependent on this machine.

 Computer applications can be divided into two groups: non-critical

applications verse critical applications. The disruption of any non-critical application

has limited adverse effect and presents no danger to the health, safety, or security of

individuals, and results no damage to the environment, or significant property

damage. Nevertheless, for critical applications, the disruption and failure of such

systems is expected to have a serious adverse effect, which could result in loss of life,

or damage of property and the environment. Therefore, critical applications must

guarantee dependability, which depends on the following factors: [KV93] reliability,

availability, safety, and security.

- Reliability: the system can run continuously without failure.

- Availability: always ready to provide its services.

- Safety: nothing catastrophic happens, when the system temporarily fails to operate

correctly.

- Security: confidentiality, intrusion tolerance

 In areas where availability and reliability are the primary requirements of

complex processing, the use of a single computer constitutes a single point of failure,

due to hardware and software failure. There is an urgent need to overcome the

problems due to single points of failure and this thesis will focus on the provision of

uninterrupted computer service provisioning by reducing the reliance on single

computing machine and by resorting to replication. Replicating service on multiple

 - - 2

servers that fail independently increases level of fault-tolerance and availability

[SCH90]. Usually, replicas of a single server are executed on separate computers of a

distributed system. The isolation of processors physically and electrically in a

distributed system ensures that server failures are independent. Further, special

protocols are employed to coordinate the interaction of clients with these replicas. A

well-understood notion of client-replicas interaction is known as Client-Server

paradigm. Client generates a request asking for a service, while server processes the

request and sends back the response(s).

 In order to achieve a higher degree of fault-tolerance and availability in

distributed systems, two forms of computer redundancy have been proposed in the

literature: first is called primary backup (or passive) replication [BMST93, BM92],

and the second called state machine replication (or active) replication [GS97, SCH93,

DGG05].

 In primary backup approach one server is designated as the primary and others

as backups. Only primary server is in charge of processing clients’ requests. After

processing a request, the primary server updates the state on the other (backup)

servers and sends back the response to the client. If the primary crashes, one of the

backups takes over, taking care to preserve the continuity in service state.

According to the way the primary responds to the client, we could have blocking or

non-blocking primary-backup replication [BM92]. In the blocking primary-backup

set-up, the primary sends its response to all backup servers and waits for an

acknowledgement from all of them, during that time the client is blocked, this is

considered as a potential performance problem; in the non-blocking set-up, the

primary sends its response to the client without waiting for the acknowledgement

from backups. This approach, be it blocking or non-blocking, is suited only to tolerate

crash failures.

 The state machine replication approach [SCH93] is more robust and can tolerate

failures of types more serious than simple crashing. Here, the service is replicated on

multiple servers and the responses produced by these servers are subjected to a

majority vote. Thus, the incorrect or absent responses from failed servers are masked

by the responses produced by the correct ones. This approach imposes two

requirements. First, a service must be built as a deterministic state machine so that

correct servers respond identically for the same request. Thus, the first requirement is

concerned with the implementation of service software. The second requirement, on

 - - 3

the other hand, is concerned with replication management and can be stated as

follows. At any timing instance t, let the sequences of requests processed by any two

correct replicas until t be seq1 and seq2; for all t, either seq1 seq2 or seq2 seq1. In

other words, if a correct replica processes any request req as the i
th

 request if and only

if any other correct replica processes req as the i
th

request. This second requirement

will ensure that correct replicas produce identical responses for each request. Meeting

this important requirement is generally referred to as the Total Order Problem

[UHS+04, LAM01].

This work will propose and evaluate solutions to solve the total order problem in the

context of wide area networks. These solutions can be used for implementing state

machine replication which, by its masking potentials, can assure un-interrupted

service provisioning when failures do occur. In the literature, such solutions are

called atomic broadcast protocols (see [CT96]) but this report would generically refer

to them as total-order protocols.

1.1 System Contexts for Solving Total Order Problem

1.1.1 Failure context

 Components in a replicated system are prone to failures; components are classified

into servers (or computers) and the network that connects the servers to each other. A

component fails when it does not meet its specification. We assume that the network

failures are masked through traditional means such as error detection and packet re-

transmissions and that the specification of a network does not impose timing

constraints for message delivery (more details in the next sub-section). Server failures

can be classified into several schemas; the following are the two main models:

1- Crash failure: a server fails only by crashing, i.e., by halting, after which no

output is generated by the server. Before crashing, it works correctly and generates its

outputs according to its specification.

2- Byzantine failure [PSL80, LSP82]: this model of failure is the most serious

one; in such environment a server may produce arbitrary response at arbitrary times.

A server could generate an output it should never have generated, which cannot be

detected as being incorrect.

We will not consider Byzantine failure model, this work will be focusing on crash

failure model. This means that the responses produced by the replica servers need not

 - - 4

be voted on, but simply be subjected to identifying and discarding the duplicate

responses.

1.1.2 Network Context

 A distributed system consists of a finite number of servers interconnected

through a communication network. The underling network that connects the servers

can be either a synchronous network or an asynchronous network. In a synchronous

network, there is a known, fixed upper bound on the time required for a message to be

sent from one server to another and a known fixed upper bound on the relative speeds

of different servers. In an asynchronous network there are finite bounds on

communication delays but these bounds cannot be known.

 The attraction and the interest of the asynchronous model come from its

practicability. Such systems are characterized by public, wide-area networks, such as

the Internet, and also by the local-area networks subject to unpredictable loads, such

as those within clusters and data centres. The unpredictability of message transfer

delays and process scheduling delays in those systems makes the asynchronous model

a very general one.

Throughout this work, we will be assuming an asynchronous network. Within the

class of asynchronous networks, we will distinguish between the local-area networks

used within clusters and the wide-area networks (such the public networks) used to

interconnect computers that are geographically wide apart. This distinction is

motivated by the fact that message delays on wide-area networks can be considerably

longer, possibly several orders of magnitude larger, than those on the local-area

networks. A literature review of time delays for both networks found the following:

1. For WAN delays, Mencius [MJM08] assumes that one-way link delay of

WAN is 25ms, 50ms, and 100ms. In the following paper [JS08], it is assumed

that the RTT link delay of WAN is 100ms or 200ms. The average one-way link

delays of WAN taken from a real experiment [CR+09] are found to be 110ms

between Newcastle and Frankfurt, 533ms between Newcastle and Moscow, and

577ms between Newcastle and Los Angeles.

2. For LAN delays, our experimental measurements indicated a one-way link

delay of LAN of approximately 3ms. In the following paper [MF09], it is

assumed that the one-way link delay is 2ms.

 - - 5

 Hence, any performance-oriented design of distributed protocols must attempt to

limit the use of wide-area networks to be as minimum possible.

1.1.3 The Replicated System

 The system is made up of several sites connected by a WAN, e.g., the Internet.

Each site is a cluster of computers connected by multiple LANs. A given service is

replicated in N sites, N ≥ 2. Within each cluster site, the service is replicated on

multiple computers which are called servers. The number of server replicas within a

site must ideally be an odd number n that is larger than one, so that total ordering

within that site can be done despite the crashing of a minority of these servers. A

client can send its request over the internet to any one of the servers in any of these N

sites. Typically, a client’s request would be routed to the closest cluster site.

 Note that the ideal requirement of n servers per site may be difficult to meet, if

several services are to be replicated within a site. A way-out would be to actually

replicate a service only on n’, 1 ≤ n’ < n, servers and use (n-n’) proxy servers. The

latter receive clients’ requests for the service and cooperate with actual servers in

ordering the requests, but do not process the ordered requests; instead, they receive

the responses from the actual servers within the site and forward to the clients that

submitted the requests to them. When n’ < n/2, all actual servers within a site can

crash; in that case, the proxies in that site need to receive the responses from actual

server replicas in remote site or at least one of them should become an actual server.

Throughout this report, we will assume n’=n=3 and N=3 and these numbers are

chosen for easy comparison of performance with other related works in the literature.

 In Figure 1.1 a replicated system that has 3 sites (N = 3) is presented. Within each

site, the actual service is replicated on 2 servers (n’ = 2) plus one proxy, which makes

n = 3.

 - - 6

Cluster site 1 Cluster site 3Cluster site 2

.
WAN WAN

 n’ = 2 n = 3 n’ = 2 n = 3 n’ = 2 n = 3

Figure 1.1. The Replicated System

1.2 System General Assumption

1.2.1 CAP Theorem

 CAP (Consistency, Availability, and Partition) theorem [BRE12] has three

properties: (1) state consistency (C), (2) availability (A), and (3) tolerance to network

partitions (P) (asynchronous delays). CAP theorem states that distributed systems can

preserve at most two of the three properties. Therefore, designers can choose the

following desirable properties: only CA systems (consistent and highly available, but

not partition-tolerant), CP systems (consistent and partition-tolerant, but not highly

available), and AP (highly available and partition-tolerant, but not consistent) are

possible.

 So generally, in wide-area network, network partitions cannot be forfeit and a hard

choice between consistency and availability remains. In line with CAP theorem in our

thesis work, consistency and availability are preserved, however, network partitions

(intolerant to network partitions) are forfeit. This is because consistency and

availability can only be preserved when communication is possible. Thus, this implies

that we assume there is no bound on wide-area network communication time delays.

 - - 7

1.2.2 Consistency vs. Latency

 There is a tradeoff between consistency and latency [ABA12]. Choosing

availability (small latency) over consistency in building a highly available system

increases the complexity of distributed systems. State inconsistency demands higher

level of design complexity in application development. Programmers must know

when to use fast/inconsistent accesses versus slow/consistent accesses. The

implication of the former approach might require the programmers to define the

conflict resolution rules that meet the application’s needs. To achieve small latency

we have to sacrifice consistency, otherwise, preserving consistency forces us to pay

the price in terms of large latency.

 In this thesis work we present a protocol that solves Total-Order problem, securing

high performance and correctness. This protocol guarantees consistency, while

attempting to minimise latency.

1.3 Motivation and Challenges

 The ever-increasing number of Internet-based e-commerce activities, the advent

of clusters and Clouds, and the need for reliable and available services make the

replicated system set-up presented earlier a practical and scalable one.

Note that the need for reliability and service availability has long been recognised and

the service replication methods and the total order problem have also been well

studied. In fact, as early as in 1978 Lamport [Time, clocks, ordering.. CACM]

presented a solution for total order in a non-fault-tolerant environment. That solution

itself required a quadratic message complexity and several fault-tolerant total-order

protocols that followed are quite complex in structure and cannot avoid imposing a

significant performance overhead.

What is new now is the volume of e-commerce activities involving client-server

paradigm, the pattern of user access and the size of the client base; all of these

emerging factors lead to the additional need for scalable performance of replicated

services. The replicated system proposed in sub-section 1.1.3 is inherently a scalable

one: N can be arbitrarily large and n’ and n can be arbitrarily small (with the limit

being 1 and 3 respectively). Such a system would be useless if the total-order protocol

used were to impose a considerable overhead and thereby the overall client response

time were to significantly slow down, even if processing an ordered request is to take

 - - 8

an insignificant amount of time. The challenge therefore is to develop a scalable and

low-overhead protocol. This thesis work comprehensively and demonstrably

addresses this challenge.

Understanding the causes of complexity and overhead associated with fault-tolerant

total-ordering is best done by considering an equivalent, but widely analysed, problem

of distributed consensus. Total-ordering and consensus are equivalent in the sense that

a solution to one can be tailored as a solution for other; similarly, if one is not

solvable in a given context, the other one also cannot be solved in that context

[CT96].

The problem of consensus can be stated [FLP85] as follows. In a system of several

failure-prone and distributed processes, each process has its own initial value;

processes communicate with each other and reach an agreement on a common value

subject to three conditions: (i) any two processes that decide must decide on the same

value (agreement) (ii) the value decided must be any one of the initial values

(validity) and all correct processes must decide at some point in time (termination).

Note that the total-ordering problem can also be equivalently stated: in a system of

several failure-prone and distributed server replicas, each replica has its own initial

preference for an order number indicating the order in which a request or a set of

requests is to be processed; replicas communicate with each other and reach an

agreement on a common processing order number, subject to three conditions: (i) any

two replicas that decide must decide on the same order number (agreement) (ii) the

order number decided must be any one of the initial preferences (validity) and all

correct replicas must decide at some point in time (termination).

A major source of complexity and overhead associated with solving the

consensus/total-order problem is due to the need to circumvent the FLP [FLP85]

impossibility result: a deterministic protocol cannot be developed for an asynchronous

network environment even if a single process can crash. This impossibility comes

about because a slow process cannot be distinguished with total certainty from a

crashed one when a bound on message transmission delays cannot be reliably

established.

 - - 9

1.4 Approaches

 Circumventing the FLP impossibility has been an active research area in past two

decades. The most common approaches that have been proposed can be categorized

into four types; multi-ordering protocols, deterministic protocols, randomised

protocols and fail-signal protocols.

 Randomized protocols [EMR01, MNC+06] are a family of protocols where FLP

result is avoided by providing a probabilistic solution. Participants go over rounds of

communication and make random choices on their estimate of decision values. The

protocol progresses in such a way that eventually an identical value is decided. These

protocols guarantee termination only in probabilistic terms which tend to 1 as elapsed

time approaches infinity. This type of protocol is a non-leader protocol (where all

nodes have the same quality, the same responsibility and have no use of unreliable

Failure Detectors. Such protocols eliminate the need for detection and recovery from

crash which is not an easy task because of the mistakes that can be produced by

FD’s.); however, the main disadvantage of this type of protocol is that the number of

messages needed for termination is unknown, and the time needed to arrive to a

decision my approaches infinity.

 The second is called Fail-Signal protocol. Fail-Signal [BES+96, IE06] protocol is

the third in the family of inherently redundant processes; namely, fail-stop and fail-

silent processes, all of these three protocols are constructed in a similar way. FS is a

protocol whose termination guarantee is not dependant on any systemic/network

conditions and the performance is only affected by existing communication delays

and real failures. Fail-Signal process circumvents the impossibility by making the

failing process announce its imminent failure and stop working after failing. The main

advantage of this type of protocols is the use of perfect failure detector. However, the

main disadvantage of this approach is that each FS node consists of at least two

machines connected by a synchronous network. This will result in a higher level of

message complexity because all constituents of FS node will generate their own

messages. For example, if FS node has two machines, then 2 identical proposals will

be sent out to all correct FS nodes. Two identical ack messages will be sent out to the

other FS node and 2 identical Learn messages will be sent out to all correct FS nodes

(message redundancy). Another disadvantage is the high latency that results from

waiting for the response from all processes.

 - - 10

 The third type is called Deterministic protocols are built on the concept of

Unreliable Failure Detector [CT91, CT96, CHT96]. Each process accesses Failure-

Detector oracle, which provides a list of processes suspected to be crashed. The

weakest form of Failure-Detector is denoted by ◊S, which allows it to solve

consensus. This type of FD has the following properties: (1) any crashed process is

eventually suspected (completeness), (2) there is a time after which correct processes

are not suspected (eventual weak accuracy). This category of protocols tends to be

coordinator-based. A specific process is given the role of coordination of the

execution of the protocol, when it is crashed then the protocol chooses another

process to play this role. Chandra Toueg [CT91] is considered to be the pioneer in this

group. Paxos [LAM98] is well known protocol, which considered as one of

deterministic approaches as well. Comparing to the other two categories, deterministic

approach is characterized with lower latency and lower level of message complexity

as well.

 The last type is multi-ordering protocols. We consider Mencius [MJM08] as a

novel and a new protocol belongs to this group. Mencius is a replicated state machine

built on the abstraction of Paxos, it runs concurrent instances of Paxos. Mencius as a

multi-ordering protocol tackles the issue of single leader bottleneck inherited from

Paxos. Paxos suffers from some drawbacks in terms of communication pattern, CPU

processing capacity, and latency of learning the outcome. By tackling the problem of

single leader, the throughput is increased under high client load and latency is lowered

under low client load.

 Investigating Mencius over wide-area network will be the main theme of this work.

In its published version, Mencius assumes n’=n=1 and N is some odd number that is

larger than 1. Figure 1.2 depicts an example of Mencius system that has N = 3, and

n’=n=1.

Cluster site 1 Cluster site 3Cluster site 2

.
WAN WAN

 n = 1 n’ = 1 n = 1 n’ = 1 n = 1 n’ = 1

Figure 1.2 Mencius

 - - 11

 This thesis work both qualitatively and experimentally establishes that Mencius

can only offer sluggish performance when replicas are deployed across wide-area

networks. We analyse its design aspects and propose a new variant which is shown to

offer much better performance.

1.5 Contributions

 Mencius [MJM08] was built over wide-area network and developed to tackle

issues raised by single leader as in Paxos [LAM01]. In addressing these issues, it was

able to achieve its objectives. Even with these achievements, we find that Mencius

itself has its own issues that need to be addressed. Mencius has several problems that

can substantially degrade its performance. These are revocation overhead, latency,

false suspicion, crash, and bandwidth consumption of wide-area network.

 We found out that the design of Mencius over wide-area network is the main

source of all these problems. These problems are attributed to two issues: first, each

site in Mencius has one server only. Second, Failure Detector reliability goes down on

wide-area network. In order to overcome these problems, we decided to develop a

new multi-ordering protocol called [Mencius]
N
. The new proposed multi-ordering

protocol will be a form of multi-cooperative Mencius.

 In order to overcome the aforementioned problems, we decided to implement

Mencius over a local-area network and build our protocol [Mencius]
N
 on top of it. It is

then distributed over wide-area network. Our solution will be presented in chapter 3

and chapter 4.

 In chapter 3, we tackle the issue of revocation overhead in Mencius which is

needed in case of false suspicion or crash.

 In chapter 4, we present our second part of this work. The idea was to move the

implementation of Mencius from a wide-area network to a local-area network instead.

It is known that local-area network has higher band width, lower message delay time,

lower latency, and lower rate of false suspicion occurrence compared to wide-area

network.

Tackling these issues will produce a new protocol that has the following

contributions:

 - - 12

1.5.1 False suspicion:

By moving the implementation of Mencius from wide-area network to a local-

area network, the occurrence of false suspicion will be reduced.

1.5.2 Latency:

Our proposed solution will reduce the latency of client requests. This will be

achieved by eliminating the execution of Paxos protocol over wide-area

network.

1.5.3 Bandwidth consumption:

Reducing the number of exchanged messages over wide-area network between

sites to finalize each instance. Unlike Mencius [MJM08], only one message is

needed to report the outcome for each instance.

1.5.4 Threshold of saturation:

As each site consists of n nodes (n = 2f + 1), there is the capability to cope

with a higher rate of requests.

1.5.5 Removing client blocking:

Unlike Mencius, each site is built of n nodes (n = 2f + 1), hence, as long as

the majority is correct, no client will be ever blocked and that site will be able

to order requests received from its group of clients.

These contributions lead to the following conclusions, which can be summarized on

the following points:

1- Distributed application services that need to solve Total Order problem over

local-area network are advised to use either Mencius or revised Mencius, as these

two protocols tend to perform better than [Mencius]
N

 over a local-area network.

2- However, for distributed application services that need to solve Total Order

problem over a wide-area network, it is preferable to use [Mencius]
N
, which is

proved through the course of this thesis that [Mencius]
N
 has better performance

than Mencius.

3- It is possible to exploit message size in order to increase performance in

[Mencius]
N
. There is, however, a trade-off between throughput and latency in

relation to message size. With a low request rate, it is suggested that single

messages (no batching) is used. This produces better latency. However, if a high

 - - 13

request rate is used, users should resort to batching multiple messages in a single

message in order to obtain better throughput.

1.6 Thesis structure

The structure of this work will be as follows:

 Chapter 2 presents in detail the different approaches used to solve consensus.

We will start by describing Fail-Signal approach [IE06], and randomized approach

[EMR01]. Next, we will move to talk about deterministic approach, starting with

Chandra and Toueg protocol [CHT96, CT96, CT91], then we will focus on Paxos and

Mencius. Most of this chapter will be dedicated to the latter ones, as they form the

foundation of our protocol.

 Chapter 3 analyses Mencius, in particular, their claim that false suspicion and

crash rarely occur. We believe that cases of false suspicion and crash occur frequently

and the cost of revocation is very high. To minimize that cost, we made certain

changes to Mencius protocol. Our modification is: we will revoke a whole range using

one instance.

 Chapter 4 presents our solution that fulfils the contributions mentioned above:

[Mencius]
N

protocol built on top of Mencius. Basically, this protocol deals with crash

failure model and adopts the same assumption adopted by Mencius which says that

false suspicion and crash occurs rarely. The main concept of our new protocol is built

on two levels: first, each site has n nodes (n = 2f + 1). Second, the number of

messages needed to finish each instance that is exchanged between sites over wide-

area network will be reduced from 3 messages to only 1 message.

 Chapter 5 presents our experiments and their results. Data measurements that are

collected from our experiments will be used to analyse and compare the performance

of both protocols. We will evaluate both of them according to their throughput and

latency.

 Chapter 6 presents the summary of this work, our conclusion and future work

that could be carried out to continue in-depth research into the area of Multi-Ordering

protocols.

 - - 14

Chapter 2

Related Work

2.1 Introduction

 A common approach to achieve fault tolerance is to resort to state machine

replication [GS97, DGG05, SCH93]. Commonly, the structure of client and server is

used to design distributed systems. Normally, a service is implemented on one server

and the client invokes the service by sending requests to that server. Using one server

is the simplest way to provide the service; however, the level of fault tolerance is zero

and unfortunately not acceptable. The provision of the service is available only as

long as that server is functioning. In order to increase the availability, the service is

replicated on more than one server built on separate physical processors that can fail

independently. The method used to build such a system is state machine replication.

 The most difficult challenge facing state machine replication is to keep all copies

of the service in agreement and consistent. This is called consensus. Because of FLP

[FLP85] impossibility result, consensus is not solvable by a deterministic algorithm in

an asynchronous environment even if a single process crashes, because in such

circumstances, we cannot distinguish between a slow process and a crashed one.

Classic Paxos is one of these protocols that circumvents FLP and solves consensus

when time restrictions are assumed remain valid for a sufficiently long time.

 In the following sections we start by defining consensus and then present the

four approaches used to circumvent FLP and solve consensus. The four approaches

rely on what is called oracle component associated with each process. To solve the

agreement problem, this component is acquired by each process to help in making a

choice to reach agreement. There are three different oracles: First, perfect Oracle

adopted by Fail-Signal [IE06] approach, its name indicating that this Oracle makes

no mistakes. Secondly, Random-Oracle [EMR01], and Suspector-Oracle [DSU04].

This brief survey will be started by presenting Fail-Signal approach, randomized

approach, then deterministic approach. In the last one, we will start by presenting

Chandra Toueg protocol [CHT96, CT96, CT91] followed by classical Paxos. As our

new protocol [Mencius]
N

is built on top of Mencius, and Mencius is built on top of

Paxos, there is then a necessity to go into deep detail to describe Paxos. At the end of

 - - 15

this chapter, we will talk in detail about Mencius as well. Because the last two

protocols form the foundation for our protocol, so the following lines will introduce

both of them.

 Paxos or classical Paxos is a protocol that executes infinite number of rounds. If

in a round number k = i, a value v is chosen, then the protocol will guarantee

consistency in a way that the same value v will be chosen in any round number j > i.

Next we will consider Paxos in an environment where Fail Detector FD-Oracle Ω

[CHT96] associated with each process to decide whether the local process should act

as a leader or not, bearing in mind that FD-Oracle Ω is unreliable and can make a

mistake. Then we will present a version of Paxos used to solve the Total Order

problem. As one form of consensus, we will describe the work of the protocol where

a group of clients sends requests, the leader will be responsible for ordering these

requests, after arriving at an agreement with the majority of the processes that request

will be decided.

 At this point, we will introduce Mencius which will tackle some issues raised by

the single leader, starting by explaining simple consensus protocol [MJM08], in

which replicas take turns in proposing values (in contrast to Paxos, only the leader can

propose values), In simple consensus, only one special replica (coordinator), can

propose any command; the others can only propose a special command no-op. At the

end of this chapter Mencius protocol [MJM08] will be presented, which runs

concurrent instances of simple consensus. But first we will state consensus.

2.2 Consensus

 We assume that a distributed system consists of finite set of n processes, and for

achieving consensus (or Total Order)no more than f processes can fail by crashing at

any time, where f ≤ (n-1)/2. Crash failure model means that a process either functions

according to its specification or halts when it is crashed. Processes communicate by

sending messages through an asynchronous network, where there are neither bounds

on message delays nor on process speeds. The consensus problem is defined on a set

of {p1,p2,…,pn} processes participating in proposing and choosing a value. Each

process pi proposes a value vi, and only a single value of the proposed ones can be

chosen by all correct processes, not less than f+1. Protocols that solve consensus

should guarantee:

 - - 16

(i) Validity or nontriviality (Integrity): only one of the proposed values can

be chosen.

(ii) Termination: every correct process must decide.

(iii) Uniform Agreement: No two processes (correct or faulty) decide

differently.

The uniform agreement does require even the faulty processes to decide identically

with the correct ones, which is harder to achieve [CS00].

 Safety will be ensured by (i) and (iii) properties: the state of all processes will be

consistent. The second property ensures liveness, that the service processes continue

execution and keep producing outputs. It is important to notice that, unlike agreement,

uniform agreement is harder to achieve [CS00], as it is required that even the faulty

process must not decide differently than the correct ones.

Note: whenever f is mentioned in this work it refers to the level of redundancy

required for achieving consensus (or Total Order).

2.3 Fail-signal

 The system is modelled as n FS nodes interconnected by a wide-area network

figure 2.1. The FS node can be found in one of two states, as shown in figure 2.2, and

the transition from one state to another can occur at arbitrary instants of time. The FS

process behaviour in each of the states however is well defined and is explained in

detail below.

WAN

LAN1 LAN2 LAN n

client1 client2 client3 client1 client2 client3 client1 client2 client3

Leader1 Leader nLeader2

Site 1/ FS 1

Follower 1 Follower 2 Follower n

server1 server2 server2 server2server1 server1

Site n/ FS nSite 2/ FS 2 . . .

WAN

Figure 2.1: Network context of FS

 - - 17

 Working State: The Process is working correctly and free of faults, then all

expected outputs are produced and each output produced is correct and sent to all

relevant destinations. The FS process operates as per the specification of the

program executed by its constituent process replicas, assuming that FS process at

initialization found in this working state.

 Signalled State: The Process has halted at this terminal state; it emits only fail-

signal to any destination to which an output is due; the fail-signal is uniquely

attributable to the Process and cannot be undetectable forged by another Process.

Each FS node has two servers (φ+1), φ = 1, one called Leader and the other called

Follower, and a group of clients. All these run on separate processors and

communicate through a local-area network. FS nodes communicate with each other

through wide-area network to implement a replicated state machine. Clients access the

service by sending requests to their local servers via local-area communication. One

of the FS nodes will act as a coordinator and the others will be considered as non-

coordinators.

 A Fail-Signal process should be implemented using (φ+1), φ ≥ 1, replica

processes that are fail-independent, hosted on distinct nodes connected using a

synchronous network. These replica processes (φ+1) are referred to as Fail-Signal

(FS) node. Only one of these replicas can fail by crash at any time.

signallingWorking

Figure 2.2: The two states of FS process

The mechanisms for constructing an FS process have been fully detailed in [BES+96,

IE06]. The following will be a brief presentation of Fail-Signal model as detailed in

 - - 18

[IE06] with two states only. The FS process can be found in one of two states, as

shown in Figure 2.2, and the transition from one state to another can occur at arbitrary

instants of time.

 One replica of FS node is called Leader and the other one is called Follower. The

central idea is that both processes of FS node are engaged in active replication; they

compare the outcome at each step of the execution of the protocol and relative

timeliness of the counterpart. If both processes are correct and working according to

their specification, then there is an agreement and the results are produced within

timeliness. If one of the replicas is not correct (not working according to its

specification), then a special signal pre-prepared sent out to all correct FS nodes

informing them about the failure, and the protocol halts by transiting from Working

state to Signalling state. Every FS node keeps a list of all crashed FS nodes that have

already announced their failure.

 The execution of the protocol starts by sending a proposal from the coordinator

to all correct FS nodes. All correct FS nodes will respond by sending ACK message.

Then the coordinator after receiving ACK from all correct FS nodes will send learn

message to all correct FS nodes. It is worth to mention here that, there is a redundancy

of messages produced and sent out by both constituent of each FS node. One of the

main disadvantages of this protocol is its high level of message complexity.

2.4 Randomized Approach

 The main concept of this approach relies on abandoning deterministic guaranty

and providing a probabilistic solution to consensus. Hence the number of steps or

messages needed to arrive at a decision is unknown. The protocol will decide a value

with probability 1 when time t approaches infinity. In such a protocol, each process is

accompanied with a component called R-Oracle, that generates a random value x є {1,

. . . , n} when queried by the associated process.

 Generally speaking, the protocol executes according to the following steps

[EMR01]: the protocol goes through a number of rounds, each has two phases. In the

first phase, process pi proposes its value vi to all other processes. This process has a

variable that represents its estimate value esti, initially equal to vi. In this phase, each

process will be waiting to receive from the majority their values, so each process will

maintain a list of initial values received from other processes vali {1:n}. If all the

 - - 19

values received correspond to one value v, then esti will be updated to v, otherwise

esti updated to ⊥. In the second phase, process pi multicast its updated estimate

value esti to all other processes. The action taken by each process will be carried out

according to the values received from the majority in the second phase:

- If all messages from the majority correspondence to value v ≠ ⊥, then esti =

v, and decide v.

- If at least one message is v ≠ ⊥,then esti = v and go to the next round.

- If all messages are ⊥, pickup randomly one value from vali {1:n} and set esti

to that value and go to the next round.

 By executing consecutive rounds of the protocol, the variable esti will be updated

to one of the values vali {1:n} proposed by one of the processes. This guaranties

safety. The decision taken by all processes will converge to a single value which

guaranty liveness. This type of protocol is a non-leader protocol; however, the main

disadvantage of this protocol is that the number of message needed for termination is

unknown.

 There are a number of works that tolerate crash failure [BEN83, EMR01,

CMS89], and others that deal with Byzantine ones [CD89, AH90, FM97, KS01]. As

our work is concerned with deterministic approach, we will go no further in exploring

randomized approach. We refer interested readers to an extensive survey of this

approach on [ASP03].

2.5 Deterministic approaches

 As our work is based on the deterministic approach, in this section we will start

by investigating Chandra and Toueg protocol [CT91, CT96], then we will go deeper

in exploring Paxos [LAM01, LAMO6], which forms the underlying protocol used by

Mencius.

2.5.1 Chandra and Toueg protocol [CT]

 The work presented by Chandra and Toueg [CT91, CT96] introduced the

concept of Failure Detectors to tolerate crash failures. A Failure Detector is a

component associated with each process. When queried, it provides information about

the state (crashed or not) of other processes. There are several classes of failure

detectors [CHT96]. One can recall that because of [FLP06], it is impossible to

 - - 20

correctly decide the state of other processes, whether they are alive or already

crashed. In this work [CT96] they presented a range of failure detectors which can be

classified according to two completeness (being correct) properties and four accuracy

(being wrong) properties:

Completeness

We consider two types of completeness properties:

 Strong completeness: Eventually every process that crashes is permanently

suspected by every correct process.

 Weak completeness: Eventually every process that crashes is permanently

suspected by some correct process.

 However, completeness by itself is not a useful property: a failure detector may

trivially satisfy this property by always suspecting all the processes in the system. To

preclude such behaviour, a failure detector must also satisfy an accuracy requirement

that restricts the mistakes that a failure detector can make. Sections 3.2 and 3.3

consider accuracy and eventual accuracy, respectively.

 Accuracy

We define two types of accuracy properties:

 Strong accuracy: Correct processes are never suspected.

Since it is difficult (if not impossible) to achieve strong accuracy, we also

define:

 Weak accuracy: Some correct process is never suspected.

The following three classes of failure detectors are defined:

 P, the set of Perfect Failure Detectors that satisfy the strong completeness and

the strong accuracy properties.

 S, the set of Strong Failure Detectors that satisfy the strong completeness and

the weak accuracy properties,

 W, the set of Weak Failure Detectors that satisfy the weak completeness and

the weak accuracy properties.

Note that P ⊂ S ⊂ W [CT91].

 - - 21

Even weak failure detectors guarantee that there is at least one correct process that is

never suspected. Since this type of accuracy may be difficult to achieve, we consider

weaker forms of accuracy in the following section.

Eventual Accuracy

The following types of failure detectors are considered that may suspect every process

at one time or another. Informally, we only require that some accuracy property is

eventually satisfied. We consider the following two types of eventual accuracy.

Eventual strong accuracy: There is a time after which correct processes are not

suspected.

Eventual weak accuracy: There is a time after which some correct process is not

suspected.

Each one of the three types of failure detectors that we defined in the previous section,

we can replace the accuracy requirement with the corresponding eventual accuracy

requirement. This results in the following three classes of failure detectors:

 ◊P, the set of Eventually Perfect Failure Detectors that satisfy the strong

completeness and the eventual strong accuracy properties.

 ◊S, the set of Eventually Strong Failure Detectors that satisfy the strong

completeness and the eventual weak accuracy properties.

 ◊W, the set of Eventually Weak Failure Detectors that satisfy the weak

completeness and the eventual weak accuracy properties.

Clearly, ◊P ⊂ ◊S ⊂ ◊W, and P ⊂◊P, S ⊂◊S, W ⊂ ◊W [CT91].

In [CHT96] they defined a new failure detector, denoted Ω, that is at least as strong as

W. They then show that any failure detector D that can be used to solve Consensus is

at least as strong as Ω. Thus, D is at least as strong as W. The output of the failure

detector module of Ω at a process p is a single process, q, that p currently considers to

be correct; we say that p trusts q. In this case we say that all failure detectors satisfy

the following property:

 - - 22

There is a time after which all the correct processes always trust the same correct

process:

As with W, the output of the failure detector module of Ω at a process p may change

with time, that is, p may trust different processes at different times. Furthermore, at

any given time t, processes p and q may trust different processes.

2.5.2 Paxos algorithm

 Paxos is a single leader protocol [BOI01], figure 2.3 shows network context of

Paxos. The leader is the coordinator of the protocol and will be in charge of choosing

the value. Paxos will be executed by n processes; one process will be elected as the

leader and the others as non-leaders participating in the execution of the protocol.

The leader will play a central role in taking the decision, and communication will be

directed to the leader.

Server1 Server2 Server3

WAN WAN

LAN1 LAN2 LAN3

client1 client2 client3 client1 client2 client3 client1 client2 client3

Leader

. . .

Figure 2.3: Single leader system

Paxos distinguishes three different roles played by each process, a single process can

play more than one role: proposer is the process that propose a value that could be

decided, acceptor is one of the processes that participate in taking decision, learner is

the process that get informed about the decision which has been chosen. So we will

 - - 23

restrict ourselves to the use of these three terms (proposer, learner, and acceptor) to

reference any process or server when describing Paxos.

 In a Client / Server system, a client might play the roles of proposer and learner,

and server might play the roles of acceptor and learner. All the acceptors participate

in executing the protocol so long as they are correct, one of the acceptors play a

distinguished role, which is called leader. Assuming that each server has a group of

clients, and each client proposes its value to its server. If that server is not the leader,

then the value will be forwarded to the leader, which will execute the protocol to

choose a value with the participation of other correct acceptors, which should be ≥

f+1. The chosen value will be sent to the learners. f+1 forms the majority of

acceptors including the leader himself, this condition will guaranty consistency

within all servers, because any two majorities will have at least one acceptor in

common.

Acceptor n Learner n

server1

server2

server n

Client/Learner

server1

server2

server n

client/proposerclient/proposer
Acceptor 1 Learner 1

Learner 2Acceptor 2

Acceptor n

Acceptor 2

Acceptor 1

 Example 1 Example 2

Figure 2.4 Client/Server role

Figure 2.4 presents two examples that depict the role that can be played by both the

server and the client. These usually depend on the application. Example 1 shows

servers playing the role of acceptors and learners. Servers take the decision and send

the result to the clients. In our implementation in this work, we will be following the

version presented in example 1, which is more useful in Total Order. Example 2

 - - 24

presents another aspect where servers act as acceptors and clients as learners. In this

example, clients will participate in executing Paxos and will take the decision when

they receive messages from the majority of the acceptors.

2.5.2.1 Paxos: no failure case

 Here we present classical Paxos protocol [LAM06]. The protocol executes

infinite number of rounds, and if in a round number k = i a value v is chosen, then the

protocol will guarantee consistency in a way that the same value v will be chosen in

any round number j > i. Each round with a single leader that coordinates the

execution of the protocol figure 2.5. One of the acceptors will play the role of the

leader. Symbol l denotes the leader and symbol q denotes one of the ordinary

acceptors.

round 1 round 2 round i

Leader of round 2Leader of round 1 Leader of round i

t

Figure 2.5 Paxos protocol executed in rounds

The following variables are maintained by acceptor q:

Acceptor variables :

rnd[q] = 0 : the highest-numbered round in which q has participated.

vrnd[q] = 0 : the highest-numbered round in which q has ACK an order.

vval[q] : the value that q has accepted in round vrnd[q].

The following variables are maintained by leader l:

Leader variables:

lrnd[l] : the highest-numbered round that l has started.

 - - 25

lval[l] : the value that l has proposed for round lrnd[l].

Messages used:

PREPARE, ACCEPT , SUCCEED - sent from leader to acceptors.

ACK, SUCCEED – sent from acceptors to leader or to all.

Figure 2.6 shows that the protocol executed in two phases. In phase one, the leader

collects the values from the correct acceptors, by sending prepare message and

receiving ACK from the majority. In phase two, the leader will choose a value, this

value will be the leaders value if no value was chosen before. Otherwise, the value

with the highest round number reported by at least one of the acceptors will be

chosen, then the decision will made and disseminated to all learners. The following

will be the description of the two phases.

1
1

1
1

2
2

n
n

1
1

prepare
prepare accept

n
n

2
2

1
1 1

1

n
n

succeedack

2
2

phase 1
phase 1

phase 2
phase 2

phase 1a
phase 1a

phase 1b
phase 1b

phase 2a
phase 2a

phase 2b
phase 2b

Figure 2.6: Classic Paxos

Phase 1

(a) - If lrnd[l] < i , then a new round i is started, leader sets lrnd[l] to i , setting

lval[l] to none, and sending PREPARE(lrnd[l] , lval[l]) message to all acceptors

asking them to participate in this round.

(b) - Acceptors will acknowledge PREPARE message if lrnd[l] > rnd[q], by setting

rnd[q] = lrnd[l], then sending back ACK(rnd[q], vrnd[q], vval[q]) the

 - - 26

acknowledgement message will be sent back to the leader. However, if lrnd [l] ≤

rnd[q], the message is ignored.

Phase 2

(a) - the leader waits to receive ACK(rnd[q], vrnd[q], vval[q]) message from the

majority, if lrnd[l] = i and lval[l] = none, then leader has not begun a higher round,

and has not performed phase 2a for this round. A value will be picked according to

the following (1) if no acceptor has voted before, then leader picks any value v, (2)

otherwise, pick value v of the highest round vrnd[q]. Leader sets lval[l] = v, and

sends to all acceptors ACCEPT(lval[l] , lrnd [l]) message to invite them to vote.

(b) - the acceptor receives ACCEPT(lval[l] , lrnd [l]) message from the leader, so if

lrnd[l] ≥ rnd[q] and vrnd[q] ≠ lrnd [l] the acceptor sets vval[q] = lval[l], vrnd[q]

= lrnd [l], and rnd [q] = lrnd [l], and a SUCCEED message sent to all. However if

lrnd [l] < rnd [q] or vrnd [q] = lrnd [l] ignore the message.

2.5.2.2 Paxos: with Fail Detector case

Fail Detector requirements

 Here we are considering Paxos in an environment where the leader may crash,

and there is a need for leader change. FD-Oracle Ω associated with each process will

decide whether the local process should act as a new leader or not, bearing in mind

that FD-Oracle Ω is unreliable and can make mistake [CHT96]. This model of fail

detector Ω guarantees that there is a time after which only one process is correct and

not suspected by the other correct processes (Eventual Leader). Ω is used to elect a

new leader when the current leader is suspected to be crashed. If a process considers

itself a leader, then it will start a new round which should be higher than any previous

round. If majority agrees to participate in this round, then a value can be decided. In

some cases several processes may consider themselves leaders, but each will use a

different round, the protocol guarantee progress until only one process with the

highest round gets the majority and arrives to a decision and finally elected to be the

new leader, so long as the majority working properly liveness is achieved. However;

safety is ensured even when the election fails.

 - - 27

Presentation

 The protocol as presented in figure 2.7 introduces a new message NACK

[UHS+04] sent from acceptors to leader informing it that the round number should be

higher than any round number received before from other leaders. The protocol is

executed in three phases. In phase one, the leader collects the values from the correct

acceptors, by sending prepare message tagged with the highest round number. The

correct acceptors will respond by sending ACK, in case the message they have

received was tagged with the highest round number. In phase two, if the leader

receives a single NACK, then it will abort this round and will try again with a higher

round number. On the other hand, if it receives ACK from the majority of the

acceptors, a value will be chosen, this value will be the leader’s value if no value

was chosen before. Otherwise, the value with the highest round number reported by at

least one of the acceptors will be chosen. In the third phase the decision will be made

and disseminated to all learners. The condition for the protocol to make the transition

from one phase to the next one is to receive the majority of ACK and no NACK. The

following will be the description of the three phases.

Phase 1

(a) - If lrnd[l] < i , then a new round i is started, leader sets lrnd[l] to i , setting

lval[l] to none, and sending PREPARE(lrnd[l] , lval[l]) message to all acceptors

asking them to participate in this round, this message will be resent continuously until

ACK message is eventually received from the majority, or even one NACK is

received.

(b) - Acceptors will acknowledge PREPARE message if lrnd[l] > rnd [q], by setting

rnd [q] = lrnd [l], then sending back ACK(rnd [q], vrnd [q], vval [q]) the

acknowledgement message will be resent continuously until the leader eventually

receives it. However, if lrnd [l] ≤ rnd [q], negative acknowledgement NACK is sent.

This is the case when we have more than one leader.

Phase 2

(a) - the leader waits to receive ACK(rnd[q], vrnd[q], vval[q]) message from

the majority, if lrnd[l] = i and lval[l] = none, then leader has not begun a higher

round, and has not performed phase 2a for this round. A value will be picked

according to the following (1) if no acceptor has voted before, then leader picks any

 - - 28

value v, (2) otherwise, pick the value v of the highest round vrnd[q]. Leader sets

lval[l] = v, and sends to all acceptors ACCEPT(lval[l] , lrnd[l]) message to invite

them to vote. However, if a single NACK message is received then the leader aborts

this round and tries later with higher proposal number.

(b) - the acceptor receives ACCEPT(lval[l] , lrnd[l]) message from the leader, so

if lrnd[l] ≥ rnd[q] and vrnd[q] ≠ lrnd[l] the acceptor sets vrnd[q] = lval[l] and

rnd[q] = lrnd[l], then sending back ACK(rnd[q]) message, which will be resent

continuously until the leader eventually receives it. However, if lrnd[l] ≤ rnd[q],

negative acknowledgement NACK is sent. This is the case when we have more than

one leader.

Phase 3

(a) - the leader waits to receive ACK(rnd[q]) message from the majority, if lrnd[l] = i,

then the leader sends SUCCEED message to all. However, if a single NACK message

is received then the leader aborts this round and tries later with higher proposal

number.

(b) - the acceptor receives SUCCEED message from the leader, will decide.

1
1

2
2

n
n

prepare
prepare accept

n
n

2
2

n
n

ack/nackack/nack succeed

2
2

1
1

1
1

1
1

1
1

1
1

phase 1
phase 1 phase 2

phase 2
phase 3

phase 3

Majority of ACK and

no NACK

Majority of ACK and

no NACK
Majority of ACK and

no NACK

Majority of ACK and

no NACK

Figure 2.7: Paxos with three phases

 - - 29

2.5.2.3 Paxos for Total Order problem

 Paxos protocol is used to solve Total Order problem as a form of consensus as

presented in [UHS+04, LAM01]. [FLP85, DDS87] Show that Total Order can be

transformed into consensus, and vice versa. Hence, the impossibility result holds for

both problems. Therefore; any protocol solves Total Order problem must satisfy the

following properties:

(i) Termination – If a correct process delivers m, then all correct processes

 eventually deliver m.

(ii) Integrity – For any message m, every correct process delivers m at most

once and only if m was broadcasted by some process.

(iii) Total Order– If two processes (correct or faulty) p1 and p2 deliver

messages m1 and m2 then p1 delivers m1 before m2, iff p2 delivers m1

before m2.

 The protocol will be defined according to the following context: a set of all

processes Π = {p1,p2, . . . ,pn} participating in Total Order protocol, where the total

number of processes n ≥ 2f+1. Each process consists of a learner that represents the

service and an acceptor that represents the ordering protocol. The ordering processes

acceptors execute a protocol that ensures the above three Total Order broadcast

properties. On receiving every new request from a client, acceptors communicate

with each other to assign a unique and identical order number. Hence, all correct

acceptors forward all clients’ requests in identical order to the corresponding learners

for execution. This leads to identical result generation at various replicas.

 At this stage we will focus on a failure-free run, with fixed leader and no crash.

Paxos protocol Total Order problem in two phases. First phase used for choosing the

value, while the second phase used to commit the value. In case of Total Order

problem on a failure-free run the first phase will be replaced by the client sending a

request to the leader. In such case there is no need to implement the first phase which

used to collect values from all correct acceptors to check whether they have

participated in taken some decision in different rounds. Here we will present two

versions of Total Order protocol. In the first version acceptors will send

acknowledgement to the leader only after receiving accept message from the leader,

then there is a need for a third phase as in figure 2.7, in which the leader will inform

 - - 30

all acceptors about his decision, where in the second version after receiving accept

message from the leader acknowledgement is sent by the acceptor to the leader as

well as to all acceptors, following from that each acceptor will be able to decide on

its own after receiving ACK from the majority, in this case there is no need for the

third phase.

 Paxos can be implemented using either 2-phase protocol (Classic Paxos), as

presented in section 2.5.2.5 and figure 2.9 or 3-phase protocol, as the one presented in

section 2.5.2.4 and figure 2.9. Even though the latter has more phases than the former,

the message complexity in the 2-phase version is {3(n-1)+n
2
} which is higher than the

3-phase {5(n-1)}.

2.5.2.4 Normal operation in failure-free situation ACK is sent to the

leader only

 Using client/ Server context, and assuming that the leader is not going to crash.

We have one leader which will not be changed during the course of protocol

execution. The client sends a request to the leader, then the leader with the

participation of other correct acceptors execute the ordering protocol according to the

following steps:

(a) - After receiving a request from the client, leader gives an order number to this

request sends ACCEPT message for this order to all acceptors, this order number

should be higher than all previous order numbers ACCEPT(Oi , rnd#).

(b) – Following the receipt of ACCEPT(Oi , rnd#) message, acceptors acknowledge

that by sending ACK(Oi , rnd#) message to the leader

(c) – As soon as the leader receives ACK(Oi , rnd#) from the majority of the

acceptors, it will respond by sending SUCCEED message to all acceptors.

(d) – Acceptors after receiving SUCCEED message from the leader will decide.

 - - 31

Figure 2.8 shows the above mentioned steps, this figure is similar to the one depicted

in figure 2.7, except that in the first phase of figure 2.8 the client sends a request to

the leader, instead of leader sending PREPARE to acceptors to choose the value.

1
1

C
C

1
1

2
2

n
n

request accept

1
1

ack

1
1

2
2

n
n

succeed

phase 1
phase 1

phase 2
phase 2

phase 2a
phase 2a

phase 2b
phase 2b

phase 3
phase 3

Figure 2.8: Paxos used to solve Total Order

2.5.2.5 Normal operation in failure-free situation ACK is sent to all

(a) - After receiving a request from the client, leader gives an order number to this

request sends ACCEPT message for this order to all acceptors, this order number

should be higher than all previous order numbers ACCEPT(Oi , rnd#).

(b) – Following the receipt of ACCEPT(Oi , rnd#) message, acceptors acknowledge

that by sending ACK(Oi , rnd#) message to the leader and all acceptors.

(c) – If the leader and acceptors receive ACK(Oi , rnd#) from the majority of the

acceptors, they will decide on their own.

Figure 2.9 shows the above mentioned steps, this figure similar to the one depicted in

figure 2.6, except that in the first phase of figure 2.9 the client sends a request to the

leader, instead of leader sending PREPARE to acceptors to choose the value.

 - - 32

accept succeed

phase 1
phase 1

phase 2
phase 2

phase 2a
phase 2a

phase 2b
phase 2b

1
1

1
1

1
1

2
2

2
2

n
n

n
n

C
C

request
client

 Figure 2.9: Paxos used to solve Total Order

2.5.2.6 Total Order Protocol with leader change

 The execution of the protocol explained here will follow the example of Paxos

presented at section 2.5.2.2 and figure 2.7. In case of crash or suspicion of failure of

the existing leader one of the correct acceptors will be selected by its Ω to play the

role of the new leader. The following steps explain the process of leader change:

Phase 1

(a) – when the new leader gets selected by its Ω, it will start executing first phase as

shown in figure 2.10. The new leader needs to learn the history of other acceptors

(order numbers that were decided). The PREPARE message will be tagged with a

proposal number rnd# that is higher than any proposal number received from any

predecessor leader, in addition to that it will carry a list of all missing/undecided

orders. The purpose of this PREPARE message is to seek the highest proposal number

less than rnd# for each of these order numbers that has been accepted by any

acceptor.

 - - 33

(b) – An acceptor responds to PREPARE message by sending either ACK or NACK to

the new leader. An acceptor will send NACK in case there are any order numbers

with higher proposal number than rnd#. In this scenario NACK message could be

made to carry the proposal number higher than rnd# corresponding to each order

number for which an accept message was sent. This will guide the new leader which

can attempt again with a new large enough proposal number. On the other hand; if the

rnd# is higher than any proposal number seen by this acceptor, ACK message sent

back to the new leader, and it must contain all order numbers and their corresponding

requests for those reported missing/undecided by the new leader in PREPARE

message if any was accepted locally.

Phase 2

(a) – after receiving ACK responses from the majority, the new leader will start

executing phase two. It will send ACCEPT message carrying all order numbers up to

the highest one reported. For unreported requests no-op will be sent to fill in the gap.

If NACK was received the new leader aborts this round and tries later with a higher

proposal number higher rnd#.

(b) – Following the receipt of ACCEPT(Oi , rnd#) message, acceptors acknowledge

that by sending ACK(Oi , rnd#) message to the leader, if they have not

acknowledged PREPARE message with a higher proposal number rnd#, otherwise

NACK message will be sent back to the leader. In case of a single leader, this is

always will result in sending back ACK(Oi , rnd#) message.

Phase 3

(c) – If the leader receive ACK(Oi , rnd#) from the majority of the acceptors, it will

decide and send it to all correct acceptors. However, if the leader receives even a

single NACK message, it will retry later by sending a new proposal with higher

proposal number.

 - - 34

1
1

2
2

n
n

prepare
prepare accept

n
n

2
2

n
n

ack/nackack/nack succeed

2
2

1
1

1
1

1
1

1
1

1
1

phase 1
phase 1 phase 2

phase 2
phase 3

phase 3

Majority of ACK and

no NACK

Majority of ACK and

no NACK
Majority of ACK and

no NACK

Majority of ACK and

no NACK

Figure 2.10: Paxos used to solve Total Order

An Example of Leader change

 An example quoted from [LAM01] to elaborate on leader change. Suppose that a

new leader has been selected by Ω. Say the new leader knows about order

assignments 1-134, 138 and 139. It will execute part 2 for orders 135-137 and all

orders above 139 to find out if these are accepted by any process. It can use a single

sufficiently higher proposal number rnd#_1 from its pool to construct a prepare

message for all these missing orders as mentioned in (a) of Part 2 above. Suppose it

received ACKs from at least a majority of processes containing requests with order

numbers 135 and 140 only. Since at least a majority has not accepted orders 136, 137

and higher than 140, these orders could not have been decided. To fill in the gaps, the

new leader proposes 136 and 137 to be assigned to no-op requests. Hence the new

leader can start executing part 1 of the protocol for every new request with 141 to be

the first proposed order number.

Another possibility is that the new leader receives a NACK containing a proposal

number rnd#′, rnd#′ > rnd#_1. This implies that the sender process has accepted at

least one of these missing orders for rnd#′. Therefore, the new leader chooses a

proposal number rnd#_2 from its pool such that rnd#_2 > rnd#′ and restarts execution

of part 2.

 - - 35

2.6 Deriving Mencius

 We dedicated the previous sections of this chapter to define Paxos, but the rest of

this chapter will concentrate on how Mencius was derived gradually. The authors of

paper [MJM08], introduced the concept of simple consensus, which was built based

on Paxos. Then they construct an intermediate protocol P, which runs an unbounded

sequence of simple consensus. Protocol P was described using four rules, and finally

by adding three optimizations and one accelerator they derived Mencius, figure 2.11.

The benefit of gradual development of Mencius is that, they showed that simple

consensus is correct, so Mencius is correct as well.

Classic

Paxos

Paxos

consensus

with Ω

Total Order Paxos Simple consensus

Mencius

Figure 2.11: Deriving Mencius

 Mencius is a replicated state machine that runs concurrent instances of simple

consensus. The system has n sites (n=2f+1) interconnected by a wide-area network

figure 2.12. Each site has a server and a group of clients. These run on separate

processors and communicate through a local-area network. Servers communicate with

each other through the wide-area network to implement a replicated state machine

with 1-copy serializability consistency. Clients access the service by sending requests

to their local server via local-area communication. We consider each site as a leader

that orders requests received from the group of clients connected to it through local

area network, so we have n leaders. When a server crashes, no request issued from its

local area network will be ordered. Anyone of the correct servers can replace the

crashed one to fill in the gap by producing no-op message.

 - - 36

 The approach that will be taken in presenting Mencius in the following sections

is that, we will highlight the bottleneck of single leader, because single leader

problem is focal point that Mencius tackled. Next we will explore simple consensus,

then we will move straightaway to present Mencius itself omitting protocol P.

Server0 Server1 Server n

WAN

LAN0 LAN1 LAN n

client1 client2 client3 client1 client2 client3 client1 client2 client3

P0/Leader0 P1/Leader1 Pn/Leader n. . .

WAN

Figure 2.12: Network context of Mencius

2.6.1 Single leader bottleneck

 Paxos is a single leader protocol like other single leader protocols suffers from

some drawbacks in terms of communication pattern, CPU processing capacity, and

latency of learning the outcome. Addressing these drawbacks Mencius succeeded in

achieving high throughput under high client load and low latency under low client

load. These problems will be highlighted, and the following sections will explain how

Mencius addresses them.

 Clients on the same site as the leader enjoys low latency (clients connected to

server1) figure 2.3, because the outcome will be learned in two communication steps

or messages (propose, accept). First step, proposing the request to other servers

(acceptors). Second step, receiving accept message from majority, then the outcome

is ready for the clients of the leader’s site. However; clients on other sites have higher

 - - 37

latency, because they will suffer four communication steps or messages (forward,

propose, accept, succeed). First step, one of the acceptors forwards client’s request to

the leader. Second step, proposing the request to other servers (acceptors). Third step,

receiving accept message from majority. The forth step, sending learn to all learners

informing them about the outcome.

 The second problem is the communication pattern, all messages will be

propagated to the leader, while the channels between non-leader are idle, which will

not utilize the available bandwidth of the whole system. This problem compounds

when the system is network-bound, which means message size large enough to cause

the channels to saturate before the CPU reach its limit. Therefore; shorter messages

increase network bandwidth available to send more requests. The throughput of a

network-bound system will be judged by how efficiently the message size is chosen.

 The last one, the leader processes more messages then other replicas, because all

requests are forwarded to the leader from other acceptors, especially when the system

is CPU-bound. When the messages are of small size the number of requests received

by the leader is increased and the leader’s CPU is fully utilized, while the other

replica are not, consequently, the total system processing power will never be utilized.

CPU-bound system put more demand on the CPU processing power to cope with the

high number of requests received. The throughput of a CPU-bound system will be

judged by the CPU power capacity.

2.6.2 Simple Consensus

 To derive multi ordering protocol Mencius [MJM08], simple consensus was built

on top of classic Paxos, the concept behind that is in Paxos only the leader is allowed

to propose values figure 2.13.

Values that can be proposed by simple consensus are restricted to two values only,

either a value representing a client request or no-op. No-op is a value that makes no

change to the state of the system, hence no response will be generated by the receivers

of this value.

 - - 38

Phase Classic Paxos

2-phase

Paxos with

3-phase

Simple

consensus
Phase 1a

Prepare,

From leader to all

Prepare,

From leader to all

Prepare,

From coordinator to all

Phase 1b

Ack,

From each to leader

Ack,

From each to

leader

Ack,

From each to

coordinator

Phase 2a

Accept,

From leader to all

Accept,

From leader to all

Propose, (suggest or

no-op)

From coordinator to all

Phase 2b

Succeed,

From each to all

Ack,

From each to

leader

Accept,

From each to

coordinator

Phase 3

No Succeed,

From leader to all

Learn,

From coordinator to all

Table 2.1: Comparing message naming in each phase

acceptor P1

Leader P0

coordinates

instances 0,1,2,..

su
g
g
e
st a

cc
e
p
t learn

 acceptor P2

Paxos instances 0

su
g
g
e
st a

c
c
e
p
t

le
a
rn

P0 P0

learn

le
a
rn

s
u
g
g
e
s
t

s
u
g
g
e
s
t a

c
c
e
p
t

a
c
c
e
p
t

t

su
g
g
e
st

a
cc

e
p
t

le
a
rn

P0

le
a
rn

s
u
g
g
e
s
t

a
c
c
e
p
t

phase 2 phase 3

Paxos instances 1

phase 2 phase 3

Paxos instances 2

phase 2 phase 3

Figure 2.13: Instances of Paxos

P1 Coordinates

instances 1,4,7,..

P0 coordinates

instances 0,3,6,..

su
g
g
e
st a

c
c
e
p
t

learn

P2 Coordinates

instances 2,5,8,..

su
g
g
e
st

a
c
c
e
p
t

le
ar

n

P1 P2

le
a
rn

le
a
rn

learn

le
a
rn

s
u
g
g
e
s
t

s
u
g
g
e
s
t

s
u
g
g
e
s
t

s
u
g
g
e
s
t

a
c
c
e
p
t

a
c
c
e
p
t

a
c
c
e
p
t

t

skip

s
k
ip

P1 learns

no-op

P2 learns

no-op

P0P0

a
c
c
e
p
t

Paxos

instances 0
Paxos

instances 1

Paxos

instances 2

instances

3

phase 2 phase 2 phase 2 phase 3phase 3phase 3

Figure 2.14: Instances of Simple Consensus

 - - 39

 In simple consensus servers take turns in proposing values figure 2.14, only one

special server (coordinator), can propose any value (including no-op); while the

others can only propose no-op. The benefit of using Paxos to implement simple

consensus is that, Paxos is proved to be correct and guarantee safety and liveness,

following from that simple consensus is correct. The terms used in this context will be

different than the one used with Paxos. Acceptor and Leader will be replaced by

server and coordinator respectively. Up to the end of this chapter we will reference

each server that has turn to coordinate an instance i, as the coordinator of that

instance and others as servers.

2.6.2.1 Assumptions and requirements

 In addition to the original assumptions made about Paxos (crash model and

Failure detector) the following one will be added: the underlying network connecting

servers will be based on asynchronous FIFO communication channels. Since TCP is

the underlying transport protocol, we assume messages between two correct servers

are eventually delivered, and delivered in order.

 Every server is the coordinator of an unbounded number of instances, for every

server p there is a bounded number of instances assigned to other servers between

consecutive instances that p coordinates.

cn+p to server p, where c∈ N0 and P∈ {0, . . . , n−1}.

For a system that has 3 servers n = 3.

 “ P0 = 0, 3, 6, . .”

 “ P1 = 1, 4, 7, . . .”

 “ P2 = 2, 5, 8, . . .”

2.6.2.2 Messages sent by server and their actions

 According to Table 2.1 messages used with simple consensus that might have

different meaning or action are the following:

1. PREPARE: When the coordinator has been suspected to be failed, some server

will arise eventually as the new leader and revoke the right of the suspected

coordinator to propose a value. This is accomplished by finishing simple

consensus instance on behalf of the suspected coordinator. As in Paxos the new

 - - 40

leader will execute first phase to learn if a value may have been chosen for some

round r’ > r , then this value will be proposed in phase 2. Otherwise, no-op will

be proposed in phase 2. This operation is called REVOKE.

2. PROPOSE: When the coordinator needs to suggest a request v, then the payload

of PROPOSE message is v in round r, this message will be called SUGGEST. On

the other hand, when the coordinator wants to skip its turn, it sends PROPOSE

messages with a payload of no-op in round r, this message will be called SKIP.

3. ACCEPT is used as a response for PROPOSE instead of ACK.

4. LEARN message is used instead of SUCCEED, to inform correct servers about

the outcome of the consensus instance.

2.6.2.3 Simple consensus with no crash

 Assuming that all servers have received requests ≠ no-op from their clients, they

will start suggesting them. According to simple consensus coordinator P0 has the turn

to coordinate instance 0 by suggesting a request, while the other two servers P1 and P2

wait for the outcome of that instance. After learning the outcome P1 will take the next

move to be the coordinator of instance 1, and server P0 and P2 will be waiting for the

outcome of that instance. When that instance concludes P2 takes its turn to coordinate

instance 2, and this instance will be accomplished in the same way as the others. This

will continue as long as the servers have requests to suggest. In case a server has the

turn to coordinate an instance with no request available to suggest, then it sends SKIP

(no-op), which has no effect on the system state and will be learned immediately.

 The importance of SKIP is that, it will release other servers from waiting for their

turn which may take a very long time. Each server has the turn to coordinate an

instance i figure 2.14, either suggests a request or SKIP its turn in case no request is

available.

 It is worth at this point to differentiate between learning a value and committing

a value in the light of simple consensus protocol.

 The output of simple consensus protocol sent to the application service using learn

message. Each server will produce its own instances independently, which may result

 - - 41

in delivering different instances from different servers in random order. However; the

application service guaranty that those message will be committed (consumed) in the

right order figure 2.15, which might lead to some delay in committing instances.

Ins4, ins3, ins2, ins1, ins0 ins3, ins4, ins1, ins2, ins0

application service input

queue

Random order of learn

messages produced by

consensus protocol

Committing will be carried

out according to normal

sequence of messages

Figure 2.15: Committing instances in the right order

In case the application service did not learne instance i-1, but has already learned

instance k, where k ≥ i. then instance k cannot be committed till all instances < k

should be received.

 The description given above emphasizes that as long as there is no crash, the

ordering process proceeds smoothly. When sending learn message to the application

service, it is assumed that everything is in order, and even though the instances are not

delivered in sequence, sooner or later the other instances will be learned. But the

difficult issue is how does the system respond to a crash? With crash, some instances

will not be produced as long as the crash is there. Missing instances which should

have been produced by the crashed server will prevent the system from making any

progress. This is the reason behind differentiating between learning and committing.

To overcome this problem we resort to REVOKE operation, which will be explained

next.

2.6.2.4 Simple consensus with REVOKE

 After describing how simple consensus behaves in a no crash environment, we

will now focus our attention on how this protocol will react in circumstances when

 - - 42

one coordinator crashes. We have already mentioned that if a server has the turn to

coordinate an instance i, it must do so by either suggesting a request or skipping its

turn. This gives a chance for other servers to commit what they have already learned

without being blocked for a long time. The new scenario is what is the consequence if

a coordinator crashes? We assume that P2 crashes (figure 2.16), and no suggest, or no

SKIP will be produced any more by that server. The application service of the other

two servers P0 and P1 will not be able to commit any new instances as long as P2

crashed, which may go for ever. To solve this dilemma, one of servers P0 or P1 must

raise up and coordinate instances on behalf of P2. In our example server P0 will

replace P2 in coordinating instance 2. P0 will send PREPARE to all correct servers to

check whether a value has been suggested or not, when the majority respond by

sending ACK with no value the new coordinator will send no-op for this instance 2.

Now all correct servers will learn no-op for this instance.

 The protocol will go back to normal work as it was described early. If the same

server P2 still crashed, then for the next instance 5 that it should have been

coordinated, will be revoked in the same way either by P0 or P1. This is how crash

problem is overcome in simple consensus.

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..
su

g
g
e
st

ac
ce

pt
learn

P2 Coordinates

instances 2,5,8,..

instances 0 instances 1

sk
ip

skip

X

 P0 propose v P0 learn v

P1 skips

P0 learns

 no-op

P2 learn no-op

 P0 revokes

 P2

p
re

p

p
re

p

le
a
rn

a
c
c
e
p
ts

u
g
g
e
s
t

a
c
k

ac
ce

pt

learn

p
ro

p

p
ro

p

P0 proposes (on

behalf of P2) no-op
P0 learns

 no-op

instances 2

Figure 2.16: Simple consensus

 - - 43

2.7 Mencius

 As we mentioned early that Mencius will be derived in terms of the following:

 four rules,

 three optimizations,

 and one accelerator.

 Each server will run two services or processes. One service or process executes

Mencius consensus protocol, while the other one executes the application service

itself.

 Mencius is a multi-ordering protocol, each server orders requests independently

with the help of other servers, but committing these orders require tight coordination

from other servers. This is inherited from the nature of Mencius where the sequence

of consensus protocol instances is partitioned among the servers. The sequence is

generated on the global level, which make servers tightly connected when it comes to

committing the requests. The following sections will illustrate how this issue was

tackled.

Rule1. Each server p maintains its index number Ip, for a system that has three

servers P0, P1, and P2 then IP0 = 0,3,6,… ; IP1 = 1,4,7,… ; and IP2 = 2,5,8,…,a server p

suggests the client’s request to consensus instance Ip and updates Ip to the next

instance. If the speed of suggesting values of all servers is at the same rate, then rule 1

is sufficient for good performance. Figure 2.17 reflects the ideal system, all servers

working with the same speed.

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..
t

ins 0

ins 1

ins 2

ins 3

ins 4

ins 5

ins 6

ins 7

ins 11

ins 9

ins 10

ins 12

ins 13

ins 14

Sequence of instances = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14

ins 8

Figure 2.17: Servers suggesting with identical speed

 - - 44

Mencius is a consensus protocol that executes concurrent instances of simple

consensus, so every server will be able to work separately and suggest requests

according to the speed of its clients, and as soon as it receives the response from the

majority, then the outcome of this instance can be learned and committed by all

correct servers, regardless of the speed of other servers. However; the problem we are

concerned about is that, if the application service did not receive instance i-1, but has

already received instance k, where k ≥ i. then instance k cannot be committed till all

instances < k should be received. Performance of the system is influenced by the

speed of servers. The application service will commit requests according to the

slowest server, which substantially degrades performance.

 Figure 2.18 reflects the situation when servers working with different speeds.

Servers P0 and P1 have the same speed and faster than server P2. Instances 0,1,2,3,4

will be committed in sequence without any delay, but instance 6, and 7 have to wait

for 5, and instance 9 and 10 also has to wait for 8. The system given here will commit

instances according to the speed of server P2. The next rule will address this point.

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..

Slower one t

ins 0

ins 1

ins 2

ins 3

ins 4

ins 6

ins 7

ins 9

ins 10

ins 12

ins 13

Sequence of instances = 0,1,2,3,4,6,7,5,9,10,12,13,8

ins 5
ins 8

Figure 2.18: Servers suggesting with different speed

Rule2. When server p receives a SUGGEST for instance i and i > Ip, p updates Ip

such that Ip’ =min{k : p coordinates instance k∧k >i}, before accepting the value and

sending back an ACCEPT. p also executes skip action for all instances in range [Ip,

 - - 45

Ip’) that p coordinates. The solution proposed here produces no outstanding messages

by fast servers, because the slow ones will skip their turn. However the problem of

crashed server is not solvable by this rule. We stated before that the underlying

network connecting servers implements asynchronous FIFO communication channel

using TCP as the underlying transport protocol, that implies if server p has sent

SUGGEST for instance i, then by the time all correct servers receive instance i, either

they have already received all instances < i, or they are slow, and they would skip

their turn.

 Figure 2.19 depicts how the index of instances is adapted to the speed of servers.

Server P2 after receiving instance 6 will skip 5 and the next instance that will be

produced is 8. Servers P0 and P1 will commit 6 and 7 without waiting for 5, which

was skipped. Next server P2 after receiving instance 12 will skip 11 and the next

instance that will be produced is 14. Servers P0 and P1 will commit 12 and 13 without

waiting for 11, which was skipped as well. In this way the problem of different speeds

is mitigated.

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..

Slower one t

ins 0

ins 1

ins 2

ins 3

ins 4

ins 6

ins 7

ins 9

ins 10

ins 12

ins 13

Sequence of instances =

0,1,2,3,4,S5,6,7,8,9,10,S11,12,13,14

ins 8 ins 14

IP2 = 5 IP2 = 8 IP2 = 11 IP2 = 14

skip5

skip5

skip11

skip11

Figure 2.19: Servers applying rule2

Rule3. We assume that server p has been suspected by another server q to be failed,

and let us consider that CP is the smallest instance that was not learned by q and

 - - 46

should have been coordinated by p. Therefore, p will be revoked by q for all instances

that p coordinates in the range [CP, Iq].

 Figure 2.20 shows how server P0 revokes P2 for instances (11,14,17,20) that P2

coordinates, bigger than instances 8 (the last instance received from P2) and smaller

than instance 21 produced by P0, where CP2 = 11 and Ip = 21. so servers P0 and P1

will be able to commit all instances from 11 up to 19. However; if server P2 will

continue crashed then one of servers P0 or P1 will raise again as the coordinator that

will revoke P2. Revocation will continue as long as P2 crashed.

 The number of times a crashed server is revoked affected by the range [CP2, Ipo].

If this range has one message then revocation needs to be carried on for each instance

of simple consensus. Due to the use of all phases of the protocol we have more

latency and message complexity, to reduce the extra cost generated by revocation we

have to increase this range.

P1 Coordinates

instances 1,4,7,..

 P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..

t

ins 0

ins 1

ins 2

ins 3

ins 4

ins 6

ins 10

ins 9

ins 13

ins 12

ins 19

ins 15 ins 18

Sequence of instances =

0,1,2,3,4,5,6,7,8,9,10,12,13,15,16,18,19

ins 7 ins 16

X

Revoke(11,14,17,20)

ins 5 ins 8

Figure 2.20: P0 revokes P2

Figure 2.21 exemplifies a system of 3 servers P0, P1, and P2. P2 learns instance 5 and

sends it to P0 only then crashes, so P1 did not know about instance 5. P0 raise up to

revoke P2 and starts to proposes on its behalf. In this example P0 revokes P2 for 8 by

sending PREPARE, as P1 does not know about 5 asks for it, P0 sends learn 5 to P1 and

continues with revocation. Then P0 proposes no-op for 8 after ack from the majority,

after being accepted by the majority learn will be sent. This example is equivalent to

 - - 47

the one explained at section 2.5.2.6, Total Order Protocol with leader change, Figure

2.10.

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..

t

ins 2

ins 3

ins 4

X

RevP2(8)

ins 5

ins 0

0,1,2

0,1,2

 0,1,2

ins 1

3,4

3,4,5

3,4
ack(8) acce

Pro(no-op8) Lea(no-op8)

X

5

Lea(5)

ask(5)

Figure 2.21: P2 crashes after learning 5 and only makes P0 learn

Any correct server suggesting v for instance i, a server p upon receiving v will update

its Ip > i. According to rule 2 no outstanding messages, for all instances smaller than

i that correct server p coordinate, it will either suggest v or skip and all correct servers

will learn the outcome. However; according to rule 3 for all instance smaller than i

that faulty server coordinate, will be eventually revoked by a correct server and other

correct servers will learn the outcome. Thus, v for instance i will be committed.

Unfortunately false suspicion, which is inherited from FD characteristics is not

tackled in this point, but will be dealt with in the following rule.

Rule4. If a value v ≠ no-op was suggested by server p, but p learns that no-op was

chosen for that instance, then p will suggest v again for a new instance j > i. If server

p correct and not permanently suspected, it will succeed to suggest v again, server p

will use a new index Ip according to Rule 2.

Figure 2.22 shows that P2 was suspected by P0 and revoked for instances 5, 8, 11 and

14. P2 did not succeed to finish instance 5, but according rule 2 P2 will learn that no-

op has already been chosen for instances 5, 8, 11, and 14 so it will try again using

instance 17.

 - - 48

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..

t

ins 0

ins 1

ins 2

ins 3

ins 4

ins 6

ins 10

ins 9

ins 13

ins 12

Sequence of instances = 0,1,2,3,4,6,7,9,10,12,13,

ins 7

Revoke(5,8,11,14)

ins 5 ins 17

No one will respond for 5,

but P2 will learn that no-op

has already been chosen for

instances 5, 8, 11, and 14 so

it will try again using

instance 17.

Figure 2.22: Suspected server tries again

 Ω failure detector has been shown to be the weakest failure detector. This model

of Ω guarantees that there is a time after which only one process is correct and not

suspected by the other correct processes, but some correct processes may be

permanently suspected. A stronger failure detector must be used to eliminate that

permanently false suspicion, which is called ◊P. By the definition of ◊P, there exist a

time t after which process p will not be suspected. The need for a stronger failure

detector is necessary because leader change in Paxos might result of permanently

false suspicion. The newly elected leader will fully replace the old leader.

Nevertheless, this is not the case with Mencius; leader change in Mencius should be

temporary, which takes place at revocation time only. If a leader was falsely

suspected by failure detector and revoked then this leader must be able to come back

as a leader and removed false suspicion.

Following these four rules the protocol is correct, but in order to increase efficiency

some optimizations must be introduced.

Optimization 1

 No SKIP message will be explicitly sent separately from server q to server p.

Alternatively, server q sends ACCEPT as a response for SUGGEST received from p,

 - - 49

implies that future suggest message sent by q to p for any client request will have

instance number higher than i.

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..

t

ins 0 ins 3 ins 6 ins 9

suggest 0

suggest 3

suggest 6ac
ce

pt
ac

ce
pt

ac
ce

pt

ac
ce

pt

ac
ce

pt

ac
ce

pt

this accept implies that

next instance generated

by P1 will be 4, 1 is

skipped

this accept implies that

next instance generated

by P2 will be 5, 2 is

skipped

Figure 2.23: No need for skip message

This mechanism can also be applied between server q and other server r. Server q

piggyback SKIP messages on future SUGGEST instead of ACCEPT.

 Figure 2.23 reflects the behaviour of both servers P1 and P2 according to

optimization 1. Server P1 by sending ACCEPT as a response for SUGGEST 3 will

promise P0 that next instance coordinated by P1 will be higher than 3, which is 4.

 The same applies for P2, which will promise P0 that next instance coordinated by

P2 will be higher than 3, which is 5. This optimization eliminates the need for SKIP

message.

Optimization 2

 No SKIP message will be sent immediately between server q and r. Alternatively,

q waits for future SUGGEST from r, indicating that future suggest message for any

client request will have instance number higher than i. Optimization 1 and 2 implies

that no SKIP message that will be sent explicitly. Optimization 2 is different of

optimization 1 and it is needed in case of two idle servers.

 - - 50

 The implementation of optimization 2 creates a problem between two idle

servers. Figure 2.24 shows that in case we have only one server P0 suggesting values

and the other two P1 and P2 are idle, consequently P0 will learn SKIP message

propagated to him from both according to optimization 1, and it will never be

blocked, as there is no communication going on between server P1 and P2, they will

learn nothing from each other, which will create a gap, and as a result of that they will

be blocked as long as they are idle. We use a simple accelerator rule to limit the

number of outstanding SKIP messages before P1 and P2 start to catch up.

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,.. suggest

a
cc

e
p
t le

a
rn

P2 Coordinates

instances 2,5,8,..

instances 0

su
g
g
e
st

a
cc

e
p
t

le
a
rn

instances 3

P0 P0

le
a
rn

le
a
rn

s
u
g
g
e
s
t

s
u
g
g
e
s
t a

c
c
e
p
t

a
c
c
e
p
t

t

Figure 2.24: Sequence instances from P0 only

Table 2.2 can be explained as following:

Row 1: 3 servers P0, P1 and P2. P0 suggesting values and the other two P1 and P2 are

idle.

Row 2: P0 suggests value for v0, which is learned by P1 and P2

Row 5: P0 suggests value for v3, P1 learns it and skips 1, which will be learned by P0

only, and P2 learns it as well and skips 2, which will be learned by P0 only.

Row 3: P0 and P1 learn skip 1, but not P2

Row 4: P0 and P2 learn skip 2, but not P0

This explains how the problem between two idle servers builds up.

 - - 51

 Table 2.2: idle servers problem

Accelerator 1

 The propagation of SKIP message between two idle servers occurs when the total

number of outstanding SKIP messages is larger than some constant α, or the messages

have been postponed for more than some time τ. The use of SKIP message will have

negligible side effect on the message complexity of Mencius, as it is used

infrequently, message complexity for Mencius is 3(n-1).

Optimization 3

We assume that server p has suspected server q to be failed, and let us consider that

CP0 is the smallest instance that was not learned by p and has been coordinated by q.

For some constant β, q will be revoked by p for all instances that q coordinates in the

range [Cq, IP + 2β] if CP0 < IP + β. β represents the number of instances that will be

revoked in advance by server p , those instances will be greater than IP. Comparing

the implementation of rule 3 with optimization 3 shows that, optimization 3 will

reduce the number of times needed to revoke a suspected server.

2.7.1 Choosing parameters

 Accelerator 1 and optimization 3 requires the use of three parameters τ, α, and β.

The value of these parameters should be engineered very carefully.

 The value of τ should be large enough, which makes the cost of SKIP messages

acceptable. But, a larger τ, results in a commit delay for requests received by idle P1

and P2 from P0. Luckily, when idle, the clients connected to P1 and P2 do not send

1 P0 P1 P2

2 0 0 0

3 1 skip 1 skip X

4 2 skip X 2 skip

5 3 3 3

6 4 skip 4 skip X

7 5 skip X 5 skip

 - - 52

any requests, so from a client’s point of view the extra delay has little impact. For

example, in a system with 50 ms one-way link delay, we can set τ to the one-way

delay. This is a good value because:

(1) With τ = 50 ms, Accelerator 1 generates at most 20 SKIP messages per second, if

α is large enough. The CPU processing power and network bandwidth needed to

process and transmit these messages are negligible.

(2) The extra delay of at most 50 ms added to the propagation of the SKIP messages,

which could be attributed to packet loss or network delivery variance.

If τ has been chosen large enough, then constant α is used to limit the number of

outstanding SKIP messages before P1 and P2 start to catch up. To reduce the overhead

of sending α SKIP messages by factor of α, then all α SKIP messages are combined

into one SKIP message. For example, if we set α to 100, this reduces the cost of SKIP

message by 99%.

β defines an interval of instances: if a server q is crashed and Ip is the index of a non-

faulty server p, then in steady state all instances coordinated by q and in the range [Ip,

Ip + k] for some k : β ≤ k ≤ 2β are revoked. In order to reduce the impact of servers’

inactivity we choose a large β to guarantee that while crashed other servers will not

slow down, this also reduces the number of times when the crashed server will be

revoked.

2.7.2 Revocation in Mencius

In Mencius revocation will have the following assumption:

1. More than one revocation can take place at the same time for a different

number of servers.

2. Any server can be revoked by one server only [LAM01, MJM08].

 In this section we will explain revocation in Mencius. Revocation is an operation

carried by some correct servers to coordinate on behalf of the suspected server. This

means that all instances that should have been coordinated by the suspected server are

replaced with no_op. This operation helps correct servers to commit all outstanding

 - - 53

messages that have already been learned. We have to stress that a learned instance i

will not be committed until all instances less than i are learned and committed.

 Figure 2.25(a) shows revocation in a system that consists of three servers. P0

suspects P2 and starts revocation from the smallest instance 2 that is not learned by P0

and should have been coordinated by P2. In order for correct servers to commit values

learned for instances larger than 2, P0 will revoke all instances in range [2, 9+2*5)

that should be coordinated by P2 (the range is calculated according to Rule 4 and

P1
Coordinates

instances

1,4,7,..

P0

Coordinates

instances

0,3,6,..

P2

Coordinates

instances

 2,5,8,.. t

t

Lea

0
Lea

1

Lea

3

Lea

4

Lea

6For each

server P after

revocation

(a)

(b)

Lea

0

Lea

0

Lea

0

Lea

1

Lea

1

Lea

1

Lea

3

Lea

3

Lea

3

Lea

4

Lea

4

Lea

4

Inst 9

Revoke

2,5,…,17
Lea

6

Lea

6

Lea

6

Lea

7

Lea

7

Lea

7

Lea

5

Lea

5

Lea

5

Revoke

2

Revoke

17

Figure 2.25: (a) P0 revokes P2 using Instance 9, (b) the

outcome of revocation is learning instance 2 by P0

Optimization 3 assuming that β = 5), P0 will revoke instance 2, 5, up to 17 using its

own instance 9 as a round number, and 3 phase protocol. Revocation is carried out

instance by instance, so P0 will start revoking instance 2 using 9 a round number, then

after finishing this instance will increase its round number to 12 to revoke instance 3,

and so on up to instance 17.

 The outcome of each instance depends on the state of the majority that will

participate in that instance. If all of this majority report to P0 in phase 1 that no value

was chosen, then, in phase 2, P0 will propose no_op for that instance, this is the case

with revocation of instance 2. But in case of revocation instance 5, in phase 1 some

 - - 54

server reported to P0 that it has already accepted or learned this instance, so the

outcome was learning 5. This process continues up to instance 17

2.8 Summary

We started this chapter by exploring the three approaches designed to circumvent the

impossibility result [FLP85]. The following a few lines we will try to give a brief

summary about each one of them:

- Fail Signal, this approach has an advantage of perfect Failure Detector that makes

no mistake. Nevertheless, it has higher cost regarding the number of physical

machines (each node must have at least 2 machines) and also has higher message

complexity. There are two factors that increase message complexity: (1) leader

usually waits to receive responses from all correct FS nodes (not the majority), (2)

there is redundancy in message generation by FS node constitutes. For example if

FS node consists of 2 machines, then this FS node will generate two messages

from each type. The redundant message will be considered as duplicate and

discarded by the recipient.

- Randomized approach, it is a decentralized protocol that has no leader. The main

disadvantage of this protocol is that the number of rounds and messages needed to

arrive to a decision is unknown.

- Deterministic approach, in this approach we explored two protocols. We

investigated Chandra and Toueg protocol [CT91, CT96], and Paxos [LAM01,

LAMO6]. These are the two well-known asynchronous deterministic protocols

designed to circumvent FLP impossibility result [FLP85].

 We used a study that analyzes their performance to help us deciding which one of

them will be the most suitable to use as underlying protocol for [Mencius]
N
. This

study is carried out in [UHS+04] which titled “Performance Comparison of a Rotating

Coordinator and a Leader Based Consensus Algorithm”. In this study, they arrived to

the following conclusion “We evaluate the steady state latency in (1) runs with neither

crashes nor suspicions, (2) runs with crashes and (3) runs with no crashes in which

 - - 55

correct processes are wrongly suspected to have crashed, as well as the transient

latency after (4) one crash and (5) multiple correlated crashes.

 The results. Our main finding is that, although the two algorithms have

comparable performance in scenarios (1), (2) and (4), the Paxos algorithm performs

significantly better in scenarios 3 and 5”. This clearly shows why Paxos was chosen

as underlying protocol in Mencius and [Mencius]
N
.

 - - 56

Chapter 3

Performance Assessment of Mencius

3.1 Introduction

 Having studied and analyzed Mencius thoroughly in the previous chapter, we

here expand on certain concerns about Mencius performance. We decided in this

chapter to assess Mencius regarding its performance in relation to the assumption of

the occurrences of false suspicion. In Mencius, they assume that false suspicions

rarely occur in practice. In contrast to Mencius, we consider in this chapter that false

suspicions can occur frequently. The result of the new consideration will be reflected

in an increase of revocation overhead in the system. The problem is two fold; first is

revocation overhead, and second is the frequency of false suspicion occurrence. The

latter will be dealt with in chapter 4, while the first will be dealt with in this chapter.

1
1

2
2

n
n

prepare
prepare propose

n
n

2
2

n
n

acceptack learn

2
2

1
1

1
1

1
1

1
1

1
1

phase 1
phase 1 phase 2

phase 2
phase 3

phase 3

Majority of ack
Majority of ack

Majority of accept
Majority of accept

Figure 3.1: Mencius with three phases

As described in the previous chapter, Paxos can be implemented using either 2-phase

(Classic Paxos) or 3-phase. Even though the latter has more phases than the former,

 - - 57

but message complexity in 2-phase version is {3(n-1)+n
2
} which is higher than the 3-

phase {5(n-1)}. Because of that advantage of message complexity Mencius

implementation uses 3-phase version of Paxos. The protocol will go through all those

phases when there is a suspicion of failure or crash, however; when there is no

suspicion of failure or crash, the protocol will execute the last 2 two phases only.

Figure 3.1 gives an illustration about the 3-phase and their distinct message names. In

the following sections more details will be presented about the function of each

message.

3.2 Criticism of revocation in Mencius

In our analysis of revocation we will assume that Pi suspects Pj

Very important notations:

 IPi: is the index or sequence number of server Pi for the next simple consensus

instance.

 CPj : is the smallest instance that was not learned by Pi and should have been

coordinated by Pj

 β : defines the interval of instances that should be revoked in advance

 In this section we will analyze revocation as implemented in Mencius, trying to

highlight its drawbacks and side effects on the whole system. All instances in the

range [CPj, IPi + 2β] that should have been coordinated by the suspected server are

revoked one by one by the revoker using the full protocol (3 phases), and also it has to

propose its own requests if there is any (using 2 phases) as well, so the revoker will be

over loaded during that period and slows down. In brief, as the revoker has to do two

jobs at the same time, there is an increase in the demand for more CPU processing

power. Revocation will produce unbalanced CPU utilization; the CPU of the revoker

will be fully utilized, while the other correct servers are not. In higher rates of

requests, the system suffers higher latency and lower threshold of saturation.

 Revocation overhead is now analysed as shown in figure 3.2, in which we assume

P2 crashed and P0 revokes it. Figures used in this example are quoted from the

experiment carried out in [MJM08]: constant β = 100,000 which represents the

number of instances that should be revoked in advance, and FD timeout is set to 5

seconds starting from the moment the TCP connection is detected to be lost. Mencius

 - - 58

was capable of executing 3000 operation per sec (ops) for each server using 2 phase

protocol. From all those figures we can calculate the total number of instances that

should be coordinated by the revoker on behalf of the suspect server using 3 phase

protocol [(3000 * 5sec) + (2 * 100,000)/3servers) ≈ 81,666 op], as the revoker uses 3

phases will be able to produce less than 3000 ops. In addition to that the revoker must

coordinate its own requests if it has any using 2 phase protocol [(2 *

100,000)/3servers) ≈ 66,666 op]. This illustrates the overhead that should be done by

the revoker in case revocation is carried out one by one; the revocation method was

described in chapter 2 section 2.7.3.

P1

 P0

P2

t

Each server generates 3000 inst/s

instances to revoke in advance β =

100,000

X

5 seconds

15000 instances are

generated by P0 in

FD = 5s

15000 instances are

generated by P1 in

FD = 5s

15000 instances are

missing from P2 in

FD = 5s

2β = 200,000

45000 instances should have

been generated by 3 servers

instances that should be revoked are

(45000+200000)/3 ≈ 81666 instance

CP2

IP0

Figure 3.2: revocation overhead

 Before presenting our solution, we will mention some facts about Mencius which

will help in understanding our solution. FIFO implies that if server q coordinates

instance j and i, where j < i, then all correct servers accept and learn j before i, and

instances will be committed in sequence as well. So learning a value by itself does not

mean that the value will be committed immediately, however; the system must

 - - 59

guarantee that those values will be committed in the right order, which might lead to

some delay in committing instances. In case the system did not learn instance i-1, but

has already learned instance k, where k ≥ i. then instance k cannot be committed till

all instances < k are learnt.

 Mencius distinguishes two types of messages (suggest = request and skip =

no_op) which can be proposed using 2-phase protocol and 3-phase protocol as well.

In this chapter we show our concern regarding revocation in Mencius. During

revocation process some server raises up to revoke a suspected server, the revoker

tries to revoke a whole range of instances that should have been coordinated by the

suspected server. Our solution says that the moment the new coordinator succeed in

getting the majority of acceptors on no-op value then the whole range will be

implicitly revoked as well. So there is no need to go in revocation one by one as the

majority will promise not to accept any instance that could be proposed by the

original coordinator in this range. The new modified version of Mencius addresses the

problem of the high probability of crash and false suspicion that might be triggered

more frequently by the FD.

3.3 Assumption and principles

Rule1. Each server p maintains its index number Ip, for a system that has three

servers P0, P1, and P2 then IP0 = 0,3,6,… ; IP1 = 1,4,7,… ; and IP2 = 2,5,8,…, a server

p suggests the client’s request to consensus instance Ip and updates Ip to the next

instance. If the speed of suggesting values of all servers is at the same rate, then rule 1

is sufficient for good performance. Figure 2.17 reflects the ideal system, all servers

working with the same speed.

Rule2. When server p receives a SUGGEST from q for instance i and i > Ip, p updates

Ip such that Ip’ =min{k : p coordinates instance k∧k >i}, before accepting the value

and sending back an ACCEPT. p also executes skip action for all instances in range

[Ip, Ip’] that p coordinates. The solution proposed here produces no outstanding

messages by fast servers, because the slow ones will skip their turn. However the

problem of crashed server is not solvable by this rule.

 - - 60

Rule 3- We assume that Pi suspects that Pj has failed, and let CPj be the smallest

instance that should have been coordinated by Pj and not learned by Pi. Pi revokes Pj

for all instances in the range [CPj, Ipi) that Pj coordinate. Revocation is carried out for

instance CPj only unlike Mencius (Mencius revokes all instance in that range one by

one), there are only two possible outcomes of this revocation:

1- if phase 1 show no value was chosen then it will propose no_op in phase 2 for

the whole range.

2- Otherwise, it proposes the possible consensus outcome by phase 2.

If case 1 was the outcome of revocation then all instances k ≥ CPj and k < Ipi will be

revoked automatically using only one Paxos instance and all of them will have no-op

value.

Rule4. If a value v ≠ no-op was suggested by server p for some instance i, but p learns

that no-op was chosen for instance i, then p will suggest v again for a new instance j

> i. If server p is correct and not permanently suspected, it will succeed to suggest v

again; server p will use a new index Ip according to Rule 2.

Optimization 1

 This point will be explained according to the following system context; 3 servers

p, q, and r. Server p is active while the other two servers q and r are idles.

 No SKIP message will be explicitly sent separately from servers q and r to server

p. Instead, servers q and r send ACCEPT as a response for SUGGEST received from

p for instance i, implies that future SUGGEST message sent by q and r to p will have

instance number higher than i.

 In addition, this mechanism can also be applied between server q and the other

server r. Server q piggybacks SKIP messages on any future SUGGEST sent to r.

Optimization 2

 This point will be explained according to the following system context; 3 servers

p, q, and r. Server p is active while the other two servers q and r are idle.

 No SKIP message will be sent immediately between server q and r. Instead server

q waits for future SUGGEST from r for instance i, indicating that future SUGGEST

 - - 61

message generated by q will have instance number higher than i. Optimization 1 and 2

implies that no SKIP message that will be sent explicitly.

Accelerator 1

 The propagation of SKIP message between two idle servers occurs when the total

number of outstanding SKIP messages is larger than some constant α, or the messages

have been postponed for more than some time τ. The use of SKIP message will have

negligible side effect on the message complexity of Mencius, as it is used

infrequently, message complexity for Mencius is 3(n-1).

Optimization 3

We assume that server q has suspected server p to be failed, and let us consider that

CP0 is the smallest instance that was not learned by p and has been coordinated by q.

For some constant β, q will be revoked by p for all instances that q coordinates in the

range [Cq, IP + 2β] if CP0 < IP + β. β represents the number of instances that will be

revoked in advance by server p, those instances will be greater than IP. Comparing to

the implementation of rule 3 with optimization 3 shows that, optimization 3 will

reduce the number of times needed to revoke a suspected server.

3.4 Protocol description

 Our multi ordering protocol as a modified version of Mencius and will be

explained for three different cases. Every case will give a thorough explanation and

will elaborate on different aspects of the modified protocol. As the operational

environment changes with passage of time, as in t1 the state of the system is different

from that in t2, and in order to cover all states we will put some assumption that

should be followed in every case. We may assume that in t1 the system has no crash

and no false suspicion but there is no guaranty that this will continue for ever, so the

system in t2 may have different operational conditions. First we will start by applying

the strongest assumptions about the system, and then we will remove those

assumptions gradually to get to the weakest one.

 - - 62

Case 1- Assumptions:

1. We assume that all servers working correctly according to their specification,

and that no crash and no false suspicion occur that is, FD makes no mistakes.

2. All servers propose requests in the same speed.

Each server coordinates its own requests using a Paxos instance for each request

applying its own index numbers Ipi as a consensus number, server Pi suggests the

received request using its current Ipi, and updates Ipi to indicate the next instance it

will coordinate, so every time a unique index number is used which will not collide

with other servers index numbers as shown in figure 3.3(a). The outcome of each

Paxos instance will be handed to all servers as learned message, individual servers

receives learned message from different servers and commit them in a sequential

order as shown in figure 3.3(b).

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

instances 2,5,8,..

t

ins 0

ins 1

ins 3

ins 4

ins 6

ins 10

ins 9

ins 7

t

Lea

0

Lea

1

Lea

2

Lea

3

Lea

4

Lea

5

Lea

6

Lea

7
For each server

P learns all

(a)

(b)

ins 2 ins 5 ins 8 ins 11

Figure 3.3: (a) each server runs its own Paxos instances,

(b) each server learns and commits all instances in sequence

Case 2- Assumptions:

1. We assume that all servers working correctly and no false suspicion as

well (FD makes no mistakes).

2. Servers work with different speeds.

 - - 63

The speed of each server depends on client’s requests, so when the client needs no

service, then no requests will be handed to their server, figure 3.4(a) shows that server

P2 has nothing to coordinate which explains the gap shown in figure 3.4(b). All three

servers will learn instance 0,1, ,3,4, ,6,7,…., but not 2, 5 and so on, they will be able

to commit instance 0, and 1 only, but instance 3, and 4 will be blocked till server P2

coordinate instance 2, and instance 6, and 7 will be blocked till server P2 coordinates

instance 5 as well. In order to prevent the system of being blocked for a long period of

time we resort to SKIP message with a no_op value sent by the slow server to speed

up the system, as was explained at Optimization 1. According to optimization 1 when

P2 receives suggest from P0 for instance 3 or suggest from P1 for instance 4 will

respond by sending accept which will imply that P2 is skipping 2,

P1 Coordinates

instances 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

skips 2,5,8,..
t

ins 0

ins 1

ins 3

ins 4

ins 6

ins 7

ins 9

ins 10

ins 12

ins 13

Sequence of instances =

0,1,S2,3,4,S5,6,7,S8,9,10,S11,12,13,

skip2 skip11skip5 skip8

t

Lea

0

Lea

1

Lea

3

Lea

4

Lea

6
For each

server P

(a)

(b)

Skip

5

Skip

 2

Lea

7

Skip

8

Lea

9

Lea

10

Figure 3.4: (a) server P2 has got no requests to coordinate,

(b) each server learns all instances and commit them

 - - 64

Figure 3.5(a) shows how accelerator is used to remove any outstanding messages

between two idle servers. We set α = 4, and, for simplicity, we are not using any

timers.

1- After receiving instance 3 from P0, P1 sends skip 1 to P0 and starts counting

outstanding messages towards idle P2. After receiving instance 3 from P0, P2

sends skip 2 to P0 and starts counting outstanding messages towards idle P1.

2- After receiving instance 6 from P0, P1 sends skip 4 to P0 and continues

counting outstanding messages towards idle P2. After receiving instance 6

from P0, P2 sends skip 5 to P0 and continues counting outstanding messages

towards idle P1.

3- After receiving instance 9 from P0, P1 sends skip 7 to P0 and continues

counting outstanding messages towards idle P2. After receiving instance 6

from P0, P2 sends skip 8 to P0 and continues counting outstanding messages

towards idle P1.

4- This is going to be the last one as we set α = 4. After receiving instance 12

from P0, P1 sends skip 10 to P0 and continues counting outstanding messages

towards idle P2. After receiving instance 12 from P0, P2 sends skip 11 to P0

and continues counting outstanding messages towards idle P1.

5- Accelerators of both idle servers P1 and P2 will be triggered figure 3.5e. P2 will

send skip(2,5,8,11) to P1, and P1 will send skip(1,4,7,10) to P2. this move will

remove any outstanding messages for both of them, and they will be able to

commit everything.

 - - 65

 P1 Coordinates

skips 1,4,7,..

P0 Coordinates

instances 0,3,6,..

P2 Coordinates

skips 2,5,8,..
t

ins 0 ins 3 ins 6 ins 9 ins 12

Sequence of instances =

0,S1,S2,3,S4,S5,6,S7,S8,9,S10,S11,12,

skip2 skip11skip5 skip8

t

Lea

0

Skip

 1

Lea

3

Skip

 4

Lea

6
Server P0

before using

accelerator

(a)

Skip

5

Skip

 2

Skip

 7

Skip

8

Lea

9

Skip

 10

skip1 skip4 skip7

skip10

t

Lea

0

Lea

3

Lea

6Server P2 before

using accelerator

Skip

5

Skip

 2

Skip

8

Lea

9

Accelerator

sends

Skip2,5,8,11

t

Lea

0

Lea

3

Lea

6
Server P1 before

using accelerator

(c)

Skip

4

Skip

 1
Skip

7

Lea

9

(b)

(d)

Lea

12

Lea

12

Skip

10

Skip

11

t

Lea

0

Skip

 1

Lea

3

Skip

 4

Lea

6Server P1 and P2

after using

accelerator

Skip

5

Skip

 2

Skip

 7

Skip

8

Lea

9

Skip

 10

(e)

Accelerator

sends

Skip1,4,7,10

Figure 3.5: (a) servers P1 and P2 idles, (b) server P0 learns everything instantly

(c) P1 learns from P0 and its own skips only, (d) P2 learns from P0 and its own

skips only, (e) accelerators are triggered and both P1 and P2 learns and

commits everything

 - - 66

Case 3- Assumptions:

1. We assume that some server can crash or could be falsely suspected (FD

makes mistakes).

2. Servers work with different speeds.

 Revocation is a process carried out by some server on behalf of the suspected

one. This means that all instances that should have been coordinated by the suspected

server are replaced with no_op. This operation helps correct servers to commit all

outstanding messages that have already been learnt. We have to stress that a learned

instance i will not be committed until all instances less than i are learned and

committed. The system state will only change the moment a message is committed,

but not learned only. This fact was the foundation on which we build our revocation

system.

 Figure 3.6(a) shows revocation in a system that consists of three servers. P0

suspects P2 and starts revocation from the smallest instance 2 that is not learned by P0

and should have been coordinated by P2. In order for correct servers to commit

learned values for instances larger than 2, P0 will revoke all instances in range

P1
Coordinates

instances

1,4,7,..

P0

Coordinates

instances

0,3,6,..

P2

Coordinates

instances

 2,5,8,.. t

t

Lea

0
Lea

1

Lea

3

Lea

4

Lea

6server P0 and

P1 after

revocation

(a)

(b)

Lea

0

Lea

0

Lea

1

Lea

1

Lea

3

Lea

3

Lea

4

Lea

4

Inst 9

Revoke

2,5,…,17
Lea

6

Lea

6

Lea

7

Lea

7

Revoke

2

Revoke

17

Revoke

2

Figure 3.6: (a) P0 revokes P2 using its own Instance 9, (b) after revocation

 each correct server will be able to commit any outstanding messages.

 - - 67

[Cp2, IP0 + 2β] that should have been coordinated by P2 (the range is calculated

according to Rule 4 and Optimization 1 assuming that β = 5, Cp2 = 2, IP0 = 9), so the

range will be [2, 9+2*5). P0 will revoke P2’s instances 2, 5, up to 17 using its own

instance 9 as a round number and 3-phase protocol. The outcome of this depends on

the state of the majority that will participate in this instance. If all of this majority

report to P0 in phase 1 that no value was proposed or learnt, then, in phase 2, P0 will

succeed in revoking the whole range as shown in figure 3.6(b) using 9 as a round

number, following this revocation all outstanding message will be committed.

 In some circumstances as depicted in figure 3.7(a) some servers (for example P1)

learnt instance 5 and 2 from P2, however; P0 did not receive anything from P2. In such

situation P0 tries to revoke P2 using its own instance 9 as a round number. P0 will

revoke a range [2, 9+2*5) starting from instance 2, which represents the smallest

instance that was not learnt by P0. As one of the majority that participated with P2 for

instance 5 (for example P1) will NACK (2,5) in phase 1 to P0, then, P0 learns these two

instances and aborts this round. Figure 3.7(b) shows that both P0 and P1 will be able to

commit any outstanding values.

P1
Coordinates

instances

1,4,7,..

P0

Coordinates

instances

0,3,6,..

P2

Coordinates

instances

 2,5,8,.. t

t

Lea

0
Lea

1

Lea

3

Lea

4

Lea

6server P0 and

P1 after

revocation

(a)

(b)

Lea

0

Lea

0

Lea

1

Lea

1

Lea

3

Lea

3

Lea

4

Lea

4

Inst 9

Revoke

2,5,…,17
Lea

6

Lea

6

Lea

7

Lea

7

skip

2

Revoke

17

Lea

5
Skip

2

Skip

2

Lea

5

Lea

5

Figure 3.7: (a) P0 revokes P2 using its own Instance 9,

(b) P0 learns 2 and 5, then aborts revocation

 - - 68

Figure 3.8 shows 5 server system (P0, P1, P2, P3, and P4), only server P0 is active while

all other 4 servers are idle. P0 learns everything from himself and from the other 4

correct servers. P1, P2, P3, and P4 each one of these servers will learn values produced

by P0 and also will learn its own implicit skip only. For example P1 will learn 0, 5 and

10 from P0 and its own skips 1 and 6. Another example P2 will learn 0, 5 and 10 from

P0 and its own skips 2 and 7, and so on for the other two servers.

 P1 suspects P4 and tries to revoke all P4’s instances in the range [4, 15+2*10), that

is, it revokes 4, 9 . . . 34 of P4, where β = 10, Cp4 = 4, and IP0 = 15. P0 knows the state

of all servers in the system, and also each one of the other four servers knows about

its state and P0’s state. We assume that P2 and P3 participate with P1 in revoking P4, P1

sends PREPARE to them informing them that it is going to revoke P4 from instance 4

up to 34. As P2 and P3 know nothing about P4 acknowledging P1. In phase 2 P1 will

propose no-op for the whole range [4 . . . 34]. These 3 servers P1, P2, and P3 will learn

no-op for the whole range, but not P0 and P4, because they did not take part in that

revocation. The system state about P4 will be as following:

1. P0 learns skip 4 and skip 9

2. P1 learns skip 4 up to skip 34

3. P2 learns skip 4 up to skip 34

4. P3 learns skip 4 up to skip 34

5. P4 learns skip 4 and skip 9

If P4 attempts to propose any SUGGEST for instance 14, it will learn about the

revocation from 4 up to 34. As it waits for a majority of ACCEPT. Any majority

should include at least one of P1, P2, or P3. Then P4 will abort this round and tries

again using round number higher than 34 which is 39. When P4 succeeds in

SUGGESTing 39 that implies, it has already skipped 14, 19, 24, and 29. That makes

the system consistent, because all servers learnt no-op for that range.

 - - 69

P1
Coordinates

instances

1,6,11,..

P0

Coordinates

instances

0,5,10,..

P2

Coordinates

instances

 2,7,12,..
t

Lea

0

Lea

5

Inst 15 to

revoke P4
4,9,…,34

Skip

1

Skip

2

Lea

5

t

Skip

3

Lea

5

t

Skip

4

Lea

5

P3

Coordinates

instances

 3,8,13,..

P4

Coordinates

instances

 4,9,14,..

Lea

10
Skip

1

Skip

2

Skip

3

Skip

4

Skip

6

Skip

7

Skip

8

Skip

9

Lea

5

Lea

0

Lea

0

Lea

0

Lea

0

Lea

10

Lea

10

Lea

10

Lea

10

Skip

6

Skip

7

Skip

8

Skip

9

Implicit skip after

accepting 5

Figure 3.8: P1 revokes P4 using Instance 15

3.5 Summary

 In this chapter we presented a revised version of Mencius built on a different

fundamental assumption. This assumption says that false suspicion and crash occur

frequently which is contrary to the Mencius assumption. Revocation overhead in

Mencius is acceptable as long as false suspicion and crash occur rarely. We believe

that if there is an increase in false suspicion and crash cases which occur more

repeatedly, then it is reasonable to re-address the issues of revocation. As was

explained in more detail through the course of this chapter, revocation can be

achieved by using only one instance of Paxos to revoke a whole range.

 The new mechanism of revocation reduces its overhead to the minimum. The

revoker runs only one instance of Paxos to revoke the whole range of instances that

should have been generated by the suspected or crashed server. When the revoker

 - - 70

finishes this instance goes back to its normal job. This will make the revoker and the

other correct servers work with the same processing capacity.

 - - 71

Chapter 4

Protocol [Mencius]
N

4.1 Introduction

 Mencius in failure-free situation outperforms Classic Paxos. By having multiple

leaders, the throughput is increased under high client load and latency is lowered

under low client load. However; the implementation of Mencius over wide-area

network has several disadvantages and these disadvantages can substantially degrade

Mencius performance. The wide-area network characterized with high latency, small

bandwidth and the latency can have high variance. Using Mencius over wide-area

network will be incurred with many problems such as false suspicion, latency, and

bandwidth consumption of wide-area network. Mencius could have another problem

which is node crash. Because each site in Mencius consists of one server, the crash of

that server means all clients connected to it are blocked.

The following will be a brief illustration of the aforementioned problems. The first

three points are related to the implementation of Mencius over wide-area network

while the last one is related to the level of redundancy at site level (one server/site):

1. Latency: All instances in Mencius are executed using Paxos protocol, so each

instance will be executed across wide-area network using 3 or 5 messages. The

latency that incurs client requests depends on delays of wide-area network.

2. False Suspicion: The implementation of Mencius over wide-area network

increases the chances of false suspicion occurrence in the system. Wide-area

network as an asynchronous model characterized with unknown bounds on

message delay and unpredictable workload. These attributes increase Fail

Detector unreliability, which leads to an increase of its mistakes [FLP85].

Consequently, false suspicion results in poor performance as stated in rule 4 and

optimization 3 [MJM08].

3. Bandwidth consumption: the problem of Mencius regarding this issue is that to

finalize each request, Mencius will run an instance of Paxos either of 3 or 5

messages. The correct server will go through instances of Paxos that has 3

messages (propose, accept, and learn) when it is in a process of proposing its own

 - - 72

requests. While the revoker will go through instances of Paxos that has 5

messages (prepare, ack, propose, accept, and learn) when it is in a process of

revocation. In our proposed work, both of theses case will be reduced to one

message only.

4. Crash: Site crash in Mencius will block all clients connected to that site within

its local-area network. In figure 4.1 If P0 crashes, then any one of the correct

servers P1 or P2 can replace it to fill in the gap by producing no-op messages. The

crash is therefore partially solved, by allowing clients connected to the correct

servers to make progress and therefore commit what they learn. However,

requests issued by clients connected to the crashed server will be blocked as long

as crash conditions exist. To compound the crash problem, scaling in the

hardware integration process now increases reliability challenges [EZH08,

BAU05] to modern systems making crash an inevitable problem.

Server0 Server1 Server n

WAN

LAN0 LAN1 LAN n

client1 client2 client3 client1 client2 client3 client1 client2 client3

P0/Leader0 P1/Leader1 Pn/Leader n. . .

WAN

Figure 4.1: Network context of Mencius

 This chapter will focus on the following problems: latency, unreliable Fail

Detector, crash, and bandwidth consumption. Are there any ways in which these

issues can be tackled? Our proposal is to build multiple-cooperative Mencius as a

two-layer system. One layer consists of local Mencius and the second layer forms

global Mencius. The underlying network connecting servers of each local Mencius

 - - 73

system will be based on asynchronous local-area network. However, the underlying

network connecting global Mencius systems will be based on asynchronous wide-area

network. Both of these systems exchange messages.

4.2 Two Level Mencius

 Figure 4.2 represents a system that consists of two replicas or two levels: global

replica and local replica. Global replica exists on a level of sites N, where N ≥ 2. They

communicate through an asynchronous network (WAN) to implement a replicated

state machine. Each site (S
SI

) represents one Mencius system, creating [Mencius]
N

systems.

client1 client2 Client k

Site N-1 / SN-1

LAN N-1

client1 client2 Client k

Site 0/ S0

client1 client2 Client k

Site 1 / S1

LAN 1LAN 0

WAN

Server 1Server 1Server 1 Server 2 Server 2 Server 2Server n Server n Server n

. . .

WAN

Figure 4.2: Network context

 Local replica (site) on the level of servers, each local replica consists of n servers,

forming a local Mencius system. Each site has also a number of clients which

communicate with local servers. The underlying network connecting servers

implements the FIFO communication channel, since TCP is used as the underlying

transport protocol. This implies that messages between two correct servers are

eventually delivered and delivered in order.

 Each site should be implemented using n≥2f+1, where f ≥ 1, replica processes

that are fail-independent, hosted on distinct nodes (machines) connected using local

area network. These replica processes are referred to as servers (s). At most f of these

replicas can fail by crash at any time. Figure 4.3 details one of these sites. Servers

 - - 74

communicate through a fast and reliable network to facilitate the work of replicas and

to increase the reliability of FD and reduce its mistakes

 Sites are always found in working state as long as the majority are correct. Crash

within each site is transparent and not exposed to the outside world. Working State

means that the site is working correctly and is free of faults. All expected outputs are

produced and each output is correct and sent to all relevant destinations. Site operates

as per the specification of the program executed by that site, assuming each site at

initialization is found in this working state. As each site forms a local Mencius

system, server crash is dealt with in terms of revocation, which was described in detail

in the previous chapter.

client1 client2 Client k

Site

Server nServer 2Server 1

LAN

Figure 4.3: Site structure

representing local Mencius

 [Mencius]
N

is a multi-leader state machine replication protocol that derives from

Mencius. We consider each site as a leader that coordinates its own instances (figure

4.4.) Each site is equivalent to one Mencius that orders requests received from its own

group of clients to generate its Local Commit Stream. This stream is then converted

to Global Commit Stream on a global level.

 - - 75

client1 client2 Client k

Leader N-1/Site N-1

LAN N-1

client1 client2 Client k

Leader 0/Site 0

client1 client2 Client k

Leader 1/Site 1

LAN 1LAN 0

WAN

Server 1Server 1Server 1 Server 2 Server 2 Server 2Server n Server n Server n

. . .

WAN

Mencius 1 Mencius 2 Mencius 3

Figure 4.4: [Mencius]
N
 as a multi-leader protocol

4.3 Assumption

We make the following assumptions about [Mencius]
N
:

 For each site, at most f servers can fail by crash at any time.

 Failure detector oracle: [Mencius]
N
 requires ◊P [MJM08], a class of failure

detectors that eventually guarantees all faulty servers and only faulty servers

are suspected. The implementation of local replica of Mencius over local-area

network facilitates its work and increases the reliability of its Fail Detector,

which will result in decreasing FD mistakes.

4.4 Principles

 In order to reduce redundancy, the implementation of Mencius within each site

will adopt the same assumptions and principles mentioned in chapter 3. Every site is

the coordinator of an unbounded number of instances (system of numbering instances

is inherited from Mencius). For every site, there is a specific number of instances

assigned to other sites between consecutive instances that site coordinates. Each site

will produce its own local commit stream. That stream then will be transferred by

each server to a Global Commit stream. Each site, S
SI

, maintains its site index number,

ISI. The number of sites N could be any number ≥ 1, but for convenience in this work

we assume a system that has three sites (iN+SI to site S
SI

, where i∈ N0 and

 - - 76

SI(site index) ∈ {0, . . . , N−1}, for N = 3) S
0
, S

1
, and S

2
then IS0 =0,3,6,…; IS1

=1,4,7,…; and IS2 = 2,5,8,….

 Figure 4.5 shows how local streams are formed then converted to a global one. It

is a fact that all servers in a site will produce the same local stream and also will be

able to map it to global stream.

s00

s10

s20

s01

s11

s21

s02

s12

s22

S0

 S1

S2

0, 3, 6, 9, ...

2, 5, 8, 11, ...

1, 4, 7, 10, ...

2, 5, 8, 11, ...

1, 4, 7, 10, ...

0, 3, 6, 9, ...

2, 5, 8, 11, ...

1, 4, 7, 10, ...

0, 3, 6, 9, ...

Individual streams of

each server in each

site

Merging 3 servers streams

at local Mencius in each

site

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

Producing a new

stream for each site

0, 3, 6, 9, ...

0, 3, 6, 9, ...

0, 3, 6, 9, ...

1, 4, 7, 10, ...

1, 4, 7, 10, ...

1, 4, 7, 10, ...

2, 5, 8, 11, ...

2, 5, 8, 11, ...

2, 5, 8, 11, ...

Merging 3 sites streams at

global Mencius

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

No committing takes place

here

but committing takes place

here

Figure 4.5: Converting streams from local Mencius

to global Mencius

 - - 77

Figure 4.6 explains the steps of forming global commit streams:

Step 1- each site will form its local stream.

Step 2- each site will convert its local stream to produce its part of the global commit

stream, using the following equation iN+SI.

Step 3- each site will merge its global stream with the ones received from the rest of

sites to produce global commit stream.

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Site 0 local stream, SI=0,

N=3

Site 1 local stream, SI=1

N=3

Site 2 local stream, SI=2

N=3

i i i

iN + SI iN + SI iN + SI

Step 1 -

Step 2–

each site

converts its local

streams to global

Step 3 –

merging 3 streams

to produce global

commit stream

...

...

...

...

...

...

...

...

 Figure 4.6: forming global commit stream

 We can set a general formula that can be used to calculate a global index number

for any server at any site as follows:

(N * sij) + S
SI

+ (c * n * N)

Where:

N : the number of sites

n : the number of servers

 - - 78

c instance number , c∈ N0

sij server, where sij ∈ {0, . . . , n−1}.

S
SI

 site, where S
SI ∈ {0, . . . , N−1}.

 [Mencius]
N

protocol is built on top of the abstraction of Mencius. Some of the

issues that may encounter Mencius can also encounter [Mencius]
N
. It is known that

the problem of idle server that faces Mencius (which was solved by sending skip

message either explicitly or implicitly by the idle server), could also face [Mencius]
N
,

where a whole site might go idle. This can happen when all servers in a site go idle

(no requests are received from all the clients connected to that site), which causes that

site to go idle as well. All other sites will not be able to commit any learned messages

as long as there are any idle sites. Solving this problem means that the idle site must

be induced to generate learn messages with no_op (skip) values. We find that there is

a necessity to set new Rules to accommodate the changes needed by [Mencius]
N

protocol to address the aforementioned problem.

Rule 1a- Each site S
SI

 maintains its own global index number ISI, site S
SI

 suggests the

client’s request to consensus global instance ISI and updates ISI to the next global

instance. Each request will be mapped to its global instance number.

Rule 2a – Each server si maintains its next global instance ISI. Upon receiving a learn

message from another site S
SI, server si compares its own ISI with the other ISI of the

received learn message. If the received one is greater than ISI of the local server , then

SKIP message will be sent locally for that instance and updates its ISI (global) index

to the next instance. The solution provided here indicates that the slow sites will be

forced to speed up and follow the site with the highest rate of requests.

 - - 79

4.5 Protocol design

 Figure 4.7 shows that [Mencius]
N
 protocol is based on the abstraction of Mencius,

and Mencius is based on the abstraction of Paxos. This reflects the behaviour of the

new protocol.

[Mencius]
N

[Mencius]
N

Mencius

Paxos

Figure 4.7: [Mencius]
N

and its level of abstraction

 [Mencius]
N

consists of N sites, each site has n servers that are publicly ranked.

Let this ranking be s1, s2,…, s2f+1 and be known to all set of servers. All servers

within a site are normal servers (they just execute local Mencius) except one

distinguished server, which is called Site Speaker. This Site Speaker has two extra

jobs: first, to transfer local streams of instances to a global one and second, to

communicate with other sites. This is what differentiates site Mencius in [Mencius]
N

system from the Mencius. If the Site Speaker crashes, another server takes the

position as a new Site Speaker. The following are some facts about Site Speaker:

1- At initialisation stage addresses of all servers from each site must be registered

with all other sites.

2- At initialization time, the server with the highest rank s1 will be the Site

Speaker at all sites

 - - 80

3- Each server registers the name of the local Site Speaker and also the ones from

other sites as well.

4- Communication between different sites goes through Site Speakers only.

5- Site Speakers just send and receive to/from other Site Speakers.

 All sites are executing Mencius in the background, which we call local Mencius.

Two aspects of Mencius are important to our protocol. The first one is the stream of

instances produced by each Mencius and how that stream is merged with other

streams to form what we called global stream or [Mencius]
N

stream. The second one

is how a crashed or suspected Site Speaker is replaced.

 The abstraction of Mencius is broken down into two different abstractions: the

abstraction of Mencius stream and the abstraction of replacing a suspected or crashed

server which is inherited from Paxos. Mencius solves the problem of replacing a

suspected or crashed server in terms of revocation only, as all servers are equal and

doing the same job. However, this is not the case in [Mencius]
N
 because servers in

each site are divided into two groups, according to their function. One group consists

of one server which is called Site Speaker. The second group consists of the rest of the

servers which is called the normal group. Suspicion of failure or crash in the normal

group is treated in terms of revocation, exactly as in Mencius, which guaranties that

local Mencius can make progress. Nevertheless, suspicion of failure or crash of the

Site Speaker should be solved in two directions: one direction is revocation as the

other group, and the second direction is to replace the Site Speaker.

 Suspicion of failure or crash of the Site Speaker affects [Mencius]
N
, as this

distinct server plays a crucial role in the execution of the protocol. [Mencius]
N
 relies

on

Site Speakers communication to make progress. The replacement of Site Speaker

will ensure that [Mencius]
N

can make progress as well. The following two sections

will illustrate first the normal work of the protocol and second how the protocol will

behave in case of Site Speaker crash or false suspicion.

4.5.1 Normal work of [Mencius]
N

 The normal execution of the protocol goes through two stages; the first stage is at

local level and the second one is at global level.

 - - 81

 The first stage of the protocol takes place within a site, which we call local

Mencius. Local Mencius runs normally as described in the previous chapter. Every

server generates its own stream, then all streams are collected and merged together to

produce local stream or site stream. Local Mencius site stream instances will be

reported to other sites in the correct order.

 In the second stage, or at the level of global Mencius, sites communicate with each

other through a Site Speaker. It is known that the current Site Speaker might crash at

any arbitrary time while it is reporting its local stream. This may create a problem for

the new Site Speaker when it takes over as a new Site Speaker. The problem created

for the new Site Speaker is that, from which point it must start reporting local learned

messages to other sites. So to facilitate the replacement of the current Site Speaker

with a new one we need to state how it is going to report local learned messages to

other sites. We will suggest two ways to be adopted to address this issue.

 First, as the current Site Speaker reports learned messages to other sites, it will

also divide the local stream to a number of ranges. For example, every range consists

of 20 messages and as soon as the current Site Speaker completes reporting the last

message of that range to other sites, it will send a special message to all local servers

informing them that this range was sent successfully to other sites. Every time a range

is completed, it will be reported to local servers, range by range, as long as the current

Site Speaker is alive.

 The other way to address this issue is that the current Site Speaker will report

learned messages to other sites without using any ranges.

 This is how the protocol executes when Site Speakers are not falsely suspected or

crashed. However, false suspicion or crash of the distinguished server can happen in

any arbitrary time and will be explained in the next section.

4.5.2 Site Speaker change in [Mencius]
N

 Communication between sites takes place between Site Speakers only which

might become a single point of failure. The simple solution is to allow all servers

from one site to send learn message to all servers from other sites. This redundancy

will surely overcome the problem of Site Speaker, however, this solution will

overwhelm the network with redundant messages which, in turn, will increase

message complexity. Every site will receive n
2

 copies of the same message.

 - - 82

 We propose the following solution to overcome these problems. At the initial

stage, addresses of all servers from each site are registered with other sites. Site

Speaker from each site is known to other sites as the server with the highest rank, and

also known to local servers as well. Site Speakers will exchange learnt messages,

which means communication is 1 to 1. As soon as Site Speaker receives a learnt

message, then that message will be multi-casted to all servers within its own site,

1 to n.

 While a Site Speaker tries to send a learnt message to another Site Speaker, it

detects the loss of TCP connection. It will then continuously try to send that message

to its destination. If there is a temporary drop in the connection, messages will not

reach the destination until a connection is eventually restored, unless the destination

Site Speaker has crashed. In that scenario, a new Site Speaker will be selected, to

which all communication is redirected. In the following section we will explain in

detail how a new Site Speaker is selected and then installed.

4.5.3 Installing a new Site Speaker

 Site Speaker has a special role to play in [Mencius]
N
 protocol, which makes it a

cornerstone in the building of the protocol. Generally speaking, Site Speaker is a

normal server that has more jobs to do than other servers. This server is prone to

crash, false suspicion or overload of work. With those problems facing the Site

Speaker, the system must be provided with the right mechanism to replace the current

Site Speaker. Those problems can be classified according to the reaction taken by the

system into two groups: one group consisting of crash and false suspicion, the second

group consisting of overload. When the current Site Speaker suffers from crash or

false suspicion, then the system will enforce a new Site Speaker which means the

correct servers will force the existing Site Speaker to retire. Nevertheless, when the

current Site Speaker is overloaded, it then asks for a replacement. This is done for the

sake of load distribution balance. Both cases will be explained in more detail in the

following sections.

4.5.3.1 Enforcing a new Site Speaker

 All s servers (s1, s2,…, s2f+1) are publicly ranked, and defined therefore by the

sequence in which they are to be the Site Speaker. Let this ranking be s1, s2,…, s2f+1

 - - 83

and be known to all set of servers. At initialization time server s1 will be the Site

Speaker at all sites and as soon as s1 is crashed and successfully revoked, then s2 will

take over as the new Site Speaker. If s2 was also crashed, then s3 will be the new Site

Speaker and so on.

 All servers in a site register the current Site Speaker. When that Site Speaker

crashes or is suspected of being failed, some server will eventually revoking it. The

majority of servers will participate in that revocation and notice that some servers

succeeded in that revocation. The next server in ranking will eventually learn that the

current Site Speaker has been successfully revoked and it will install itself as a new

Site Speaker. Let us assume si is the current Site Speaker and was successfully

revoked. If si+1 is correct, it will eventually learn the outcome of this revocation and

take over as a new Site Speaker. Selecting a new Site Speaker will adopt the same

mechanism of Chandra and Toueg protocol, where the choice of a new leader (Site

Speaker) is based on the rotating coordinator paradigm. Failure detector oracle ◊S

provides its process with a list of suspected processes that have crashed; the choice of

the new leader (Site Speaker) is done in a round-robin fashion.

 The current Site Speaker might be suspected or crash at any time while it is

doing the job of reporting learnt messages to other sites. However, the server that will

take over as a new Site Speaker will not be able to decide from which learnt message

it must report to other sites. There are two ways to solve this problem that was

proposed at section 4.5.1.

 If we adopt the first solution in which the current Site Speaker divide the local

stream to a number of ranges, then when another server takes over as a new Site

Speaker, it will pack all learn messages (starting from the first message that comes

after the last range up to the last learn message before crash or suspicion) into one

message and send it to all other sites. This might cause a message to be sent more than

once (by the old and the new Site Speaker), however, this will be discovered by other

sites and considered as a duplication, hence discarded. However; if we adopt the

second solution then, as soon as the old Site Speaker is replaced by another server, the

new Site Speaker starts reporting learnt messages (starting from the last learnt

message before crash or suspicion) to all other sites. When the receiving site finds out

that there are some missing messages, it will then ask the new Site Speaker about the

learn messages not yet received.

 - - 84

 Correct servers eventually learn about the replacement of the existing Site

Speaker and also know that the next server in ranking (if it is correct) will be the new

Site Speaker. Any change in the Site Speaker must be registered by the correct

servers. This update of the state of the system is necessary because false suspicion and

crash are inevitable actions that can happen to any server including the Site Speaker at

any arbitrary time. All servers in a site must have full information about the state of

the system in order to be ready to act as a Site Speaker if necessary.

 False suspicion is inherited from unreliable failure detectors, so if the old Site

Speaker was falsely suspected or recovers from a crash and learns that some other

server is acting as a Site Speaker, it will then retire from acting as a Site Speaker and

join the group to continue the normal job as an ordinary server.

4.5.3.2 Asking for a Site Speaker replacement

 In addition to executing local Mencius (coordinating its client requests), Site

Speaker has to send local site stream to all other sites, receive streams from other sites

and multicast them to local servers. This reflects the fact that network traffic from or

to the Site Speaker is much higher than its counterparts in the site. The problem is

compounded if it has active clients. In such circumstances, much of the bandwidth

will be consumed by the Site Speaker which produces unbalanced communication

pattern.

 The second issue is that as Site Speaker receives higher number of messages,

there is a higher demand for processing power than other servers. Even though

messages are not really processed, receiving and sending messages continues to

consume processing power.

 In trying to get a more balanced communication pattern and better CPU system

utilization, the current Site Speaker will seek the server with the lowest load and hand

to it the Site Speaker responsibility.

 Every correct server has to participate in executing local Mencius to coordinate

its own requests. The load of ordering requests for each server depends on the number

of requests received in a certain period of time in relation to other servers in the same

site. Servers with very active clients will propose real messages, others with idle

clients will generate skip only, and a third group, with a moderate load, will produce

both. Individual streams from each server will be received by all correct servers in

 - - 85

that site. This will enable the Site Speaker to calculate the load distribution of each

server. That can be achieved by counting the number of real messages (NRM) and

skip messages (NSM) received at a certain period of time (from t1 to t2) from all

correct servers, then subtracting both values (NRM – NSM). The results from all

servers tells the Site Speaker which server has the highest load and which one has the

lowest load.

The Site Speaker periodically will make these calculations and analyze the collected

data. The servers with positive results means that more real proposals than skip

messages are produced. Zero means the same number of real proposals and skip

messages are generated, and servers with negative results mean that they have

inactive clients.

 The Site Speaker will choose the server with the smallest negative number and

asks it to be the new Site Speaker. The procedure of this replacement goes through the

following steps:

1. First; the current Site Speaker finds out the server with smallest negative

number

2. It sends a special proposal with no_op value and the ID of the target server

3. If targeted server is correct eventually will receive that message and respond

with accept message.

4. The original Site Speaker waits to receive accept message from the majority.

5. The Site Speaker after receiving from the majority generate learn message to

inform the whole group about the handing over of the responsibility of Site

Speaker to a new server.

When the local load is evenly distributed or the current Site Speaker has low load,

then there is no need for any change and the current Site Speaker will continue

functioning as a Site Speaker.

4.5.3.3 How a new Site Speaker starts its job?

 As soon as some server successfully installs itself as the new Site Speaker, it

starts communication with other sites by multicasting learn messages to all servers, 1

to n, which will inform all servers at other sites about Site Speaker change. The

 - - 86

process of multicasting 1 to n will continue until the new Site Speaker receives learn

message from other Site Speakers. It will then switch from 1 to n communication to 1

to 1. The main reason for 1 to n communication, started by the new Site Speaker, is to

eliminate the deadlock that might be created by the crash of more than one Site

Speaker at the same time. To explain this problem, let us assume that s11 is the current

Site Speaker of site S
1
 and s12 is also the current Site Speaker of site S

2
, both of them

crashed at the same time. Let us assume that s2 was selected as a new Site Speaker of

both sites. Each s2 knows in advance that s1 is still the Site Speaker and has no

knowledge about the crash at the other site. If both s2 use 1 to 1 communication, then

each one will try to send learn messages to s1 at the other site, which will create a

deadlock as both s1 already crashed and was replaced by s2. To avoid such situation

we resorted to 1 to n communication as a starting point, which will introduce the new

Site Speaker to all servers at all sites.

4.6 Site Speaker Algorithm

 When the current Site Speaker crashes some correct server will discover that by its

FD. Failure detector oracle provides its process with a list of suspected processes that

have crashed; the choice of the new leader (Site Speaker) is done in a round-robin

fashion. All servers are publicly ranked and defined therefore by the sequence in

which they are to be the Site Speaker. The new Site Speaker should takeover

according to the following steps:

1- The next server in ranking will eventually learn that the current Site Speaker has

been crashed and installs itself as a new Site Speaker.

2- It starts reporting learnt messages (starting from the last learnt message before

crash or suspicion) to all other sites.

3- The new Site Speaker starts communication with other sites by multicasting learn

messages to all servers, 1 to n. The process of multicasting 1 to n continues until

the new Site Speaker receives learn message from other Site Speakers, then it

switches from 1 to n communication to 1 to 1.

4- If the receiving site finds out that there are some missing messages, then it asks

the new Site Speaker about the learn messages that are not received yet.

 - - 87

4.7 Summary

 This chapter presented the design and the implementation details of [Mencius]
N

protocol. The concept of structuring and designing the protocol as a multi-cooperative

Mencius produced a crash-tolerant protocol. Paxos is used as the core protocol to

solve Total Order problem as one form of agreement problem. The execution of

consensus protocol was kept as an internal issue within each site.

 This novel idea of building the new protocol on two levels created an

environment from which the traffic of exchanged messages on wide-area network was

reduced. The correctness of the new protocol derived from the correctness of Paxos

and Mencius as well, with the safety and liveness requirements both being preserved.

The benefit of reducing the traffic of exchanged messages for each instance on wide-

area network and restricting it to only one message has many advantages. Firstly, this

led to reduction of bandwidth consumption. Secondly, latency of committing requests

was decreased as well.

 There are other benefits achieved from this novel idea of building the system

of multiple standalone Mencius’. Firstly, no more clients are blocked and secondly,

the threshold of saturation is increased.

 - - 88

Chapter 5

Experiments and Results

5.1 Introduction

 The objective of this work is to design and present a protocol that has a better

performance than Mencius over WAN. It requires the recognition of the challenges

faced by Mencius and the costs required to achieve the improvements we proposed.

This chapter is dedicated to comparing the performance of our protocol [Mencius]
N

with Mencius and to present the reader with our findings that are extracted from the

data collected from the experiments.

 The stage of evaluating and analysing the performance of both protocols has gone

through an extensive testing period. This included the establishment of a series of

comprehensive experiments designed to evaluate quantitative system performance in

a wide range of parameters. In this chapter the reader is first presented with the

environment of the experiment and its settings and then second, shown the evaluation

of this work through the results. Finally, the chapter concludes with a summary.

5.2 Experimental Environment

 The purpose of these experiments is to compare the performance of our protocol

[Mencius]
N

with Mencius. Both protocols are implemented in Java and are evaluated

on a single network cluster that provides enough machines to test the two protocols.

Each machine is a 1.86 GHz Intel Core (TM) 2 PC with 2.0 GB memory running

Fedora 12. In Mencius we use 3 machines, each of which represents one site. In

[Mencius]
N

, N=3, 9 machines are used, each group of 3 machines representing one

site. TCP is used as the transport protocol.

 In local-area networks, machines are automatically and periodically synchronized.

This aims to guarantee that they have minimal time drift. Time drift is measured

before and after carrying out any experiment, in order to guarantee that all the

machines have almost the same time clock.

 For measurement purposes (Note: this is not a design requirement), Each

experiment run consists of three parameters: link time delay, request arrival time

interval, and number of requests generated by each client during each run.

 - - 89

5.2.1 Link time delay and bandwidth

 In order to emulate wide-area network, a virtual link is created between each two

sites using DummyNet [Riz97, CR09]. DummyNet is a tool used to enforce different

time delays and bandwidth [MJM08, MF09, JS08, CR+09]. The link bandwidth

values used are 10 Mbps and 20 Mbps. As the two link bandwidths produce similar

results, we present only 10 Mbps in this work.

With regards to link time delay, three different classes are used:

Class I – In this class we carry out the experiment without using DummyNet. In this

case, time delays of the virtual link are dictated by the local-area network, which are

measured and found to be approximately 3ms.

Class II – In this class we use DummyNet to time delays for all three links. We

experiment with one-way fixed-delay settings of 25 ms, 50 ms, and 100 ms for each

experiment.

Class III – In this class we use Mixed-delay settings which are taken from a real

experiment [CR+09]. This experiment investigates how Internet delays vary in the

context of assessing timeliness of Web Services from a user’s perspective. To provide

a comprehensive assessment, the experiment uses five clients deployed in different

places over the Internet: Frankfurt (Germany), Moscow (Russia), Los Angeles (USA)

and two clients in Simferopol (Ukraine), all using different Internet service providers.

The experiment reports the response time between Newcastle and these five clients.

Our intention is to use these traces as a time delay for each message sent out between

sites. Because of the limitations of DummyNet, which only gives the capability of

enforcing one time delay for each or all links but not time delay for individual

messages, a different approach is required. It is decided to use three different time

delays, each link with its own delay.

We take average response time of three cities (Frankfurt, Moscow, and Los Angeles)

with Newcastle. From that we calculate one-way time delay of each city.

Time delay of 110 ms between Newcastle and Frankfurt is chosen as one-way time

delay for the first link. Time delay of 533 ms between Newcastle and Moscow is used

 - - 90

as one-way time delay for the second link. For the third link, a time delay of 577 ms

between Newcastle and Los Angeles is used as one-way time delay.

5.2.2 Request arrival time interval

 In the experiments, different arrival time intervals (AI) between requests are used.

Arrival time interval values are chosen from uniform distribution (20ms, 38ms, 75ms,

150ms, 1000ms and 10000ms). Other experimental results, using AI values < 20ms,

are reported in one section, but not reported in others, as latency has significantly

increased for both protocols.

5.2.3 Number of requests

 We carried out our experiments using 30000 requests per client for the following

arrival time interval values 20ms, 38ms, 75ms, 150ms, 1000ms. For the 10000ms

arrival time interval, 10000 requests per client is used.

5.3 Experimental settings

 In order to compare Mencius with [Mencius]
N

, we design each protocol with two

layers. The higher layer represents the service provided while the lower layer

represents the ordering protocol. We use a simple service that assigns an order to each

request received from the clients. Our design and implementation mainly focuses on

ordering protocol. Committing order is represented by storing requests into a file. The

log file is used to verify that all servers learn and commit the same client request in

the same sequence which shows that sites are in consistent state.

5.3.1 Number of experiments

 The number experiments (for each run) that we carry out for all time intervals are

≥ 5, except for 10000ms, in which we carry 3 experiments only. The results reported

in our thesis represent the average of all these experiments. All the experiments are

run over week ends because The University’s internal network activity is minimal at

this time.

 - - 91

5.3.2 Message length

 Original message length is 72 bytes; these bytes represent different parts of the

message, such as client ID, message sequence, server ID, etc. An extra payload of

1388 bytes is added to get the size of TCP data to 1460 bytes. The main reason for not

using more than 1460 bytes is to prevent segmentation at the Transport Layer. The

wisdom behind the use of a long message is to prevent the system adding any time

delay by Nagle’s algorithm [NAG84]. Long message is used in section 5.4.1 for

throughput analysis and in section 5.4.2 for latency analysis.

 Message length is used for optimizing the protocol. We exploit the short size of the

request which is 72 bytes by batching multiple requests into a single message. The

usage of batching short messages and their evaluation is found in section 5.6.

5.3.3 Clients engineering

 In Mencius, each site consists of one server and each server is associated with its

own client. However, in [Mencius]
N
, each site consists of 3 servers and each server is

associated with its own client. This results in 3 clients for one site. Instead of using

separate physical machines for each client, the client is built inside each server

instead. This solution is chosen to reduce the number of machines needed to test both

protocols, especially with [Mencius]
N

.

In order to get the same rate of requests from each site for both protocols, the

following assumptions are made:

1. In Mencius, each client connects to one site generating 30000 requests.

2. In [Mencius]
N
, three clients connect to one site generating 30000 requests,

which means each client generates 10000 requests only.

The above assumptions imply that both protocols are tested under the same load and

the same circumstances.

 We start by analysing the throughputs of both protocols using different time

intervals between requests and different time delays of our virtual link that represents

a wide-area network. The latency of committing requests under different settings as

mentioned earlier is then evaluated. Next, the effect of optimization that can be

introduced to the protocol to enhance performance is evaluated. Finally, revocation

and comparison between Mencius and revised version of Mencius is evaluated, which

is presented in chapter 3.

 - - 92

5.4 Evaluation for large requests

5.4.1 Throughput

 To measure throughput, Long Message is used and five sets of experiments, each

one having a number of runs, are conducted. These experiments differ on the time

delay of the virtual link. Each run has its own time interval between requests

generated by clients. The following time interval values are chosen from uniform

distribution (20ms, 38ms, 75ms, 150ms, 1000ms and 10000ms). The result of all

experiments were tabulated and graphed. Experiment results for throughput are

presented in Tables 5.1 to 5.10 and Figure 5.1 to Figure 5.5. The results indicate

clearly that the time delay of the virtual link has no effect on throughput and all

experiments produce almost the same throughput.

 Results indicate that protocol [Mencius]
N

 has higher threshold of saturation over

Mencius. This is apparent when the time intervals between consecutive requests are

decreased. To elaborate on this point, at a rate of 1000ms/site, the throughput of both

protocols was 3 requests per second. As an example, results are presented in Table 5.1

and Table 5.2, and Figure 5.1, those two tables and one figure are representing LAN

time delays.

[Mencius]
N

Arrival Intervals
ms Throughput

20 140

38 76

75 39

150 20

1000 3

10000 0.3

 Table 5.1: throughput Table 5.2: throughput

 [Mencius]
N

 Mencius

Mencius

Arrival Intervals
ms Throughput

20 124

38 71

75 38

150 19

1000 3

10000 0.3

 - - 93

Figure 5.1: Experiment 1; time delay of LAN, no DummyNet.

At a rate of 150ms/site, the throughput of both protocols is approximately 20 requests

per second. However, at rate of 38ms/site, some important differences are observed.

Here, the throughput of protocol [Mencius]
N

 is 76 requests and for Mencius, 71. By

decreasing the time interval and reducing it to 20ms/site, the throughput of protocol

[Mencius]
N

 is 139 requests and for Mencius, 124. This indicates a clear difference

between the two protocols.

 At lower rates of request, both protocols produce the same throughput. However,

with a higher rate of request, significant differences in the throughput of both

protocols are observed.

 This can be attributed to a higher number of nodes at each site for our protocol

[Mencius]
N
. Each site consists of 3 nodes, which increases their ability to cope with a

higher rate of request, but having one node at each site for Mencius limits it to coping

with a higher rate of requests. We can conclude that increasing the number of

machines in the new protocol translates to a higher processing power in comparison to

one machine in Mencius. Results for other link time delays are shown in Table 5.3 to

Table 5.10 and Figure 5.2 to Figure 5.5.

 - - 94

[Mencius]
N

 -25

Arrival Intervals
ms Throughput

20 139

38 76

75 39

150 20

1000 3

10000 0.3
 Table 5.3: throughput Table 5.4: throughput

 [Mencius]
N

-25 Mencius-25

Figure 5.2: Experiment 2; one-way delay of 25ms.

[Mencius]
N

 -50

Arrival Intervals
ms Throughput

20 139

38 76

75 39

150 20

1000 3

10000 0.3

 Table 5.5: throughput Table 5.6: throughput

 [Mencius]
N
-50 Mencius -50

Mencius -25

Arrival Intervals
ms Throughput

20 124

38 71

75 38

150 19

1000 3

10000 0.3

Mencius -50

Arrival Intervals
ms Throughput

20 124

38 71

75 38

150 19

1000 3

10000 0.3

 - - 95

Figure 5.3: Experiment 3; one-way delay of 50ms.

[Mencius]
N

 -100

Arrival Intervals
ms Throughput

20 138

38 75

75 39

150 20

1000 3

10000 0.3

 Table 5.7: throughput Table 5.8: throughput

 [Mencius]
N
-100 Mencius-100

Figure 5.4: Experiment 4; one-way delay of 100ms.

Mencius -100

Arrival Intervals
ms Throughput

20 124

38 71

75 38

150 19

1000 3

10000 0.3

 - - 96

 Table 5.9: throughput Table 5.10: throughput

 [Mencius]
N
-D Mencius–D

Figure 5.5: Experiment 5; Different one-way time delays.

5.4.2 Latency

 The same results of the experiments that are used to measure throughput are also

used to measure latency. The same settings, the same number of experiments and the

same number of runs are used. Each experiment is distinguished with its own time

delay of the virtual link that represents wide-area network. In the first experiment, the

time delay of the virtual link is inherited from local-area network delays, so there is

Mencius -D

Arrival Intervals
ms Throughput

20 120

38 70

75 37

150 19

1000 3

10000 0.3

[Mencius]
N

 -D

Arrival Intervals
ms Throughput

20 138

38 76

75 39

150 20

1000 3

10000 0.3

 - - 97

no use of DummyNet. The other four experiments are distinguished with different

time delays. The results of all experiments are presented in the form of tables and

charts, with each experimental result presented in two tables and one chart.

 Unlike throughput, the time delay of the virtual link has a significant effect on

latency. The experiment is divided into two groups; one set of experiments belonging

to the first group and the other four sets of experiments belonging to the second

group. The set of experiments characterized with link time delay inherited from local-

area network are placed into the first group and the other four experiments with delay

enforced by DummyNet are placed into the second group.

 Two latency values, max-Latency and min-Latency, are distinguished. Max-

Latency is the time elapsed starting from the time a request received by a server to the

time that request is committed by the last server in the system. Min-Latency is the

time elapsed starting from the time a request is received by a server to the time that

request is committed by the first server in the system.

 We start by explaining latency in relation to the first group. The results of our

first set of experiments belonging to the first group are presented in Table 5.11, Table

5.12 and Figure 5.6. The time delay of the virtual link in this experiment is inherited

from local-area network delay. Mencius has lower latency (both max-Latency and

min-Latency) compared to [Mencius]
N
.

 Protocol [Mencius]
N

suffers higher latency because its execution goes through

two levels. Within each site, Mencius at a local level was executed within each site.

At the global level, the Site Speaker exchanges global stream with other Site

Speakers. This reflects that the Site Speaker consumes more processing time and an

extra message is needed to report the outcome of local level of the protocol to the

global level of the protocol for each instance. As an example, for the time interval of

20ms/site, the max-Latency of protocol [Mencius]
N

 is approximately 70 ms compared

to 53 ms for Mencius. For min-Latency of protocol [Mencius]
N
, the latency is

approximately 62 ms compared to 48 ms for Mencius. From a latency perspective in

such circumstances, Mencius has better performance than [Mencius]
N

.

 - - 98

[Mencius]
N

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 69.89 62.07

38 68.67 62.54

75 69.06 61.39

150 66.22 61.59

1000 66.71 54.33

10000 68.19 55.58

 Table 5.11: latency [Mencius]
N

Table 5.12: latency Mencius

Figure 5.6: Experiment 1; time delay of LAN, no DummyNet.

 Now we are trying to investigate and analyse Latency in relation to the second

group of our experiments. Four sets of experiments are included in the second group

with time delay of the virtual link in this group enforced by DummyNet tool. The

results of these experiments are shown in Table 5.13 to Table 5.20 and Figure 5.7 to

Figure 5.10.

 We start with the first set of experiments in the second group. This set has 25ms

link time delay. Table 5.13 shows the results of six experiments for [Mencius]
N

protocol and Table 5.14 shows the results of another six experiments for Mencius

protocol. As the delay of the virtual link is increased to 25ms in this set of

experiments, results show that Mencius suffers from higher latency than [Mencius]
N
.

This is because in Mencius, all messages needed to execute instances of Paxos must

Mencius

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 53.03 47.7

38 56.04 51.76

75 56.48 52.94

150 52.36 44.17

1000 53.62 33.98

10000 58.31 32.96

 - - 99

travel between sites over wide-area network, with each message will incurring an

extra delay time. Nevertheless, in [Mencius]
N

, instances of Paxos are executed over

local-area network and the delay time of local-area network is not changed. The Site

Speaker needs to inform other sites about the outcome of each local instance so only

this message suffers the delay of 25ms. For each instance in Mencius, at least 3

messages suffer extra delay, while in [Mencius]
N
, only one message suffers from that

delay. This explains why [Mencius]
N

has lower latency compared to Mencius. Figure

5.7 reflects the difference between both protocols.

[Mencius]
N

 -25

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 98.4 71.7

38 96.8 67.2

75 96.2 65.8

150 94.9 65.1

1000 84.3 60.8

10000 82.9 49.2

 Table 5.13: latency [Mencius]
N
 25 Table 5.14: latency Mencius 25

Figure 5.7: Experiment 2; one-way delay of 25ms.

Mencius -25

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 120.86 96.79

38 120 98.69

75 131.79 98.46

150 125.4 97.79

1000 97.53 70.23

10000 92.95 61.85

 - - 100

 In the second and third set of experiments, the delay time of the virtual link is

increased to 50ms and 100ms. The results of these two experiments are found on

Tables 5.15 to Table 5.18. From these two sets of tables, one can observe that the

difference between the latency of both protocols is increased. It is understood that the

higher the delay time of the virtual link, the better performance received from

[Mencius]
N

regarding latency. Figure 5.8 and Figure 5.9 reflect these differences

clearly.

[Mencius]
N

 -50

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 119.86 97.49

38 116 91.43

75 117.7 91.74

150 108.05 85.14

1000 106.96 85.24

10000 107.47 81.7

 Table 5.15: latency [Mencius]
N

 50 Table 5.16: latency Mencius 50

Figure 5.8: Experiment 3; one-way delay of 50ms

Mencius -50

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 192.36 168.36

38 197.3 160.6

75 207.23 165.39

150 202.63 165.17

1000 172.86 124.17

10000 182.2 130.26

 - - 101

[Mencius]
N

 -100

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 187.7 156.4

38 177.8 140.7

75 173.9 132.7

150 174 130.6

1000 171 127.3

10000 168.6 125.7

Table 5.17: latency [Mencius]
N

 100 Table 5.18: latency Mencius 100

Figure 5.9: Experiment 4; one-way delay of 100ms.

 In the last set of experiments carried out to measure latency, three different time

delays (which are found in Class III at section 5.2.1) of the virtual link that represents

wide-area network, are used. The results of these experiments can be found in Table

5.19 and Table 5.20.

 As the values of delay times in class III are significantly higher than class II,

which in turn produces a distinct difference between the latency of both protocols.

From Figure 5.10, it can be seen that at a low request rate, the difference in latency

between the two protocols is around 600ms. However, at higher rates of requests

latency difference approaches seconds. These results emphasize that the higher the

delay time of the virtual link, the better performance is received from [Mencius]
N

regarding latency.

Mencius -100

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 397.71 301.77

38 394.58 347.64

75 393.13 311.7

150 379.39 294.96

1000 327.05 245.53

10000 318.99 256.89

 - - 102

[Mencius]
N

 -D

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 1614 1012

38 1412 874

75 1210 781

150 1036 641

1000 820 376

10000 925 374

 Table 5.19: latency [Mencius]
N

 D Table 5.20: latency Mencius D

Figure 5.10: Experiment 5; random one-way time delays.

 Presenting the results in the form of tables and figures demonstrates the

improvement of [Mencius]
N

 protocol. However, by presenting performance in terms

of GAIN, results can be compared more accurately and with improved precision.

GAIN can be calculated by subtracting any Mencius value from the corresponding

[Mencius]
N

value. This result is then divided by Mencius value and multiplied by 100.

The result is the percentage GAIN.

GAIN definition:

 GAIN = [Mencius]
N

value - Mencius value x 100

 Mencius value

Mencius -D

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

20 2697 2191

38 2429 2050

75 2060 1660

150 1870 1550

1000 1569 1065

10000 1400 1038

 - - 103

Example, values taken from Table 5.19 and Table 5.20:

 GAIN Max-latency = 1614 – 2697 x 100 = - 40%

 2697

 From this point on results are presented using the GAIN term. The remaining tables

and figures can be found in appendix B at the end of this thesis.

5.4.3 GAIN summary

 The following three tables summarize the conclusion regarding throughput and

latency. Table 5.21 shows throughput gain. At arrival interval (AI) of 1000ms and

10000ms, the GAIN is zero. At AI of 150ms, the GAIN is 5% and reaches 12.5% at AI

of 20ms.

Table 5.22 shows max-latency GAIN while Table 5.23 shows min-latency gain. In

both of these tables, the GAIN of the experiments under Class I is in favour of

Mencius but as soon as an increase in virtual link time delay is introduced (Class II

and Class III), we noticed that the GAIN in both forms of latency is reversed and

becomes in favour of [Mencius]
N
.

AI/ms Class I

%

Class II % Class III

% 25ms 50ms 100ms

20 13 12 12 11 15

38 7 7 7 6 9

75 3 3 3 3 5

150 5 5 5 5 5

1000 0 0 0 0 0

10000 0 0 0 0 0

Table 5.21 Throughput GAIN

 - - 104

AI/ms Class I

%

Class II % Class III

% 25ms 50ms 100ms

20 32 -19 -38 -53 -40

38 23 -19 -41 -55 -42

75 22 -27 -43 -56 -41

150 26 -24 -47 -54 -45

1000 24 -14 -38 -48 -48

10000 17 -11 -41 -47 -34

Table 5.22 Max-Latency GAIN

AI/ms Class I

%

Class II % Class III

% 25ms 50ms 100ms

20 30 -26 -42 -48 -54

38 21 -32 -43 -60 -57

75 16 -33 -45 -57 -53

150 39 -33 -48 -56 -59

1000 60 -13 -31 -48 -65

10000 69 -20 -37 -51 -64

Table 5.23 Min-Latency GAIN

 - - 105

5.5 Batching short messages

 In order to improve performance, an optimisation to the protocol is suggested in

order to find an approach that increases throughput. The idea is to exploit the short

size of the request of 72 bytes by batching multiple requests into a single message.

Having adopted this approach improves throughput of both protocols but at the

expense of latency, which unfortunately increased. The technique applied is to batch a

number of requests arriving within a certain period of time to get around size

limitations of TCP data which is 1460 bytes.

5.5.1. Throughput

 Five sets of experiments are conducted to evaluate throughput. These sets of

experiments differ in the time delay of the virtual link. Each experiment has its own

time interval between requests generated by clients. The following are the time

interval values chosen from uniform distribution (5ms, 20ms, 38ms, 75ms, 150ms).

Different arrival time intervals are chosen to the ones used in section 5.4 because

there is no sense in applying batches of messages with requests arriving within a

second or seconds, such as 1000ms or 10000ms. The results of all experiments are

presented in a form of tables and charts which are found in appendix B.

 By introducing this technique, the threshold of saturation and throughput

improved as well. As explained in section 5.4, the time delay of the virtual link has no

effect on throughput. The following four experiments, 20ms, 38ms, 75ms and 150ms

produce almost the same throughput as that generated by experiments conducted in

section 5.4. By reducing the arrival time interval to 5ms, a difference between the two

protocols regarding throughput is observed. Mencius produces an average of 329

requests per second while [Mencius]
N

produces an average of 439 requests per

second. The threshold of saturation increases compared to the usage of a single long

message and the throughput of [Mencius]
N

improved by around of 33% over Mencius.

More details about results regarding throughput can be found in Table A.1 to Table

A.10 and in Figure A.1 to Figure A.5 in appendix B at the end of this thesis.

5.5.2 Throughput Summary

 Table 5.24 summarizes the GAIN regarding throughput. At AI of 150ms the GAIN

is 5%. At AI of 5ms the GAIN reaches an average of around 33%.

 - - 106

AI/ms Class I

%

Class II % Class III

% 25ms 50ms 100ms

5 40 28 41 30 28

20 13 12 13 11 11

38 7 6 7 6 4

75 3 3 3 3 3

150 5 5 5 5 5

Table 5.24 Throughput GAIN

5.5.3 Latency

 The implementation of the new technique (batching multiple messages together)

enables a better performance regarding threshold of saturation and throughput.

Nevertheless, latency increases for both protocols. This can be attributed to the time

required to receive a number of messages and the time required to batch them together

into a single message. Not surprisingly, despite the increase in latency, it is found that

the higher time delays of the virtual link, protocol [Mencius]
N
 still has lower latency

compared to Mencius. More details about latency results can be found in Table A.11

to Table A.20 and in Figure A.6 to Figure A.10 in appendix A at the end of this thesis.

5.5.4 Latency summary

 The following two tables summarize the conclusions regarding latency. Table 5.25

shows max-latency gain, while Table 5.26 shows min-latency gain. Even though, the

difference is not as clear as that in section 5.4.2, lower latency for [Mencius]
N
 is

achieved.

 - - 107

AI/ms Class I

%

Class II % Class III

% 25ms 50ms 100ms

5 -1 -6 -12 -23 -19

20 1 -7 -11 -19 -14

38 1 -12 -7 -27 -22

75 -1 -14 -8 -25 -24

150 4 -16 -6 -26 -27

Table 5.25 Max-Latency GAIN

AI/ms Class I

%

Class II % Class III

% 25ms 50ms 100ms

5 -3 -14 -18 -22 -32

20 4 -16 -20 -26 -38

38 8 -17 -12 -23 -38

75 0 -16 -9 -27 -47

150 4 -3 -3 -29 -40

Table 5.26 Min-Latency GAIN

 - - 108

5.6 Bandwidth consumption of WAN

 In this section, we will show that protocol [Mencius]
N

has lower bandwidth

consumption than Mencius. Protocol [Mencius]
N

reduces the number of exchanged

messages over wide-area network between sites to finalize each instance. This

approach is behind the reduction in bandwidth consumption by [Mencius]
N
.

 This section is explained in two sections: first, this is issue is explained in failure-

free situation and second, under failure when there is a need for revocation.

5.6.1 Bandwidth consumption in failure-free situation

 In using Mencius on a system of three sites to generate three consecutive orders,

each site needs to run one instance of Paxos. Paxos instance in failure-free situation

uses three types of messages (SUGGEST, ACCEPT, and LEARN). The total number

of messages exchanged over wide-area network needed to generate three consecutive

orders is 9 messages. Nevertheless, using protocol [Mencius]
N
,

the total number of

messages exchanged over wide-area network needed to report three consecutive

orders is 3 messages only. It is known that in protocol [Mencius]
N
, Paxos is executed

on local level, but at global level, only LEARN message is sent to inform other sites

about the outcome of each instance. Protocol [Mencius]
N

consumes 3/9 of the

bandwidth that is consumed by Mencius.

5.6.2 Bandwidth consumption under failure

 It is assumed that Mencius has three sites and one of them crashes. One of the

other two correct sites starts revocation. In this case, 2 instances will execute Paxos in

failure-free situation which will use three messages (SUGGEST, ACCEPT, and

LEARN) and the third instance will go through revocation will be executing instance

of Paxos with five messages (PREPARE, ACK, SUGGEST, ACCEPT, and LEARN).

The total number of messages exchanged over wide-area network needed to generate

three consecutive orders is 6 + 5 = 11 messages. Again using protocol [Mencius]
N
,

the total number of messages exchanged over wide-area network needed to report

three consecutive orders is 3 only. Protocol [Mencius]
N

consumes 3/11 of the

bandwidth that is consumed by Mencius. What is presented here regarding Mencius is

the best scenario in case of failure, which means one site crashes and only another

correct one succeed in revoking it. Nevertheless, there are cases in which more than

 - - 109

one correct server competes to revoke the crashed one, which means more messages

are needed in revocation. The number of messages may go to infinity.

 Bandwidth consumption is improved in protocol [Mencius]
N
 compared to

Mencius to 1/3 in failure-free situation, 1/3.67 under failure and only one correct

server succeed in revoking the crashed one, or even 1/ ∞ when there is a competition

for revocation.

5.7 Removing client blocking

 Mencius suffers from client blocking, which means that clients do not make

progress while their server is crashed. Our protocol overcomes this issue by providing

each site with more machines. Unlike Mencius, in protocol [Mencius]
N
, the service

on each site is replicated, each site with 3 nodes. Hence, as long as the majority is

correct in each site, the clients will never be blocked. This will guarantee that clients

connected to that site will be served, progress is made and the site will be able to

order requests received from its group of clients.

5.8 Performance Assessment of Revised Mencius

 In chapter 3 of this thesis, we presented another version of multi-ordering protocol

synonym to Mencius which is called Revised Mencius. In that chapter, the issue of

revocation is addressed and a new version of Mencius that reduces the overhead of

revocation is presented. The main point of concern, instead of revoking instance by

instance, a whole range using one instance only is revoked. The design is built on this

concept and in the following sections, results are presented.

 In failure-free situations, both Mencius and our revised version have almost the

same performance regarding latency and throughput. In our experiments, failure-free

situation is omitted and performance analysis is focused on comparing both protocols

during revocation process only.

 A number of experiments to compare both versions regarding their performance

in case of revocation are run. The comparison is carried out using a three sites system;

one site is forced to be faulty and one of the other two correct sites starts revocation.

The results of the experiments are divided into two sets, each having two tables and

one graph. One set represents throughput and the other set represents latency. These

 - - 110

results could be found in Table B.21 to Table B.24 and in Figures B.11 and Figure

B.12 in appendix B at the end of this thesis.

 5.8.1 Throughput

 To compare throughput, Long Message is used which has already been defined. A

number of experiments that has 100ms time delay of the virtual link enforced by

DummyNet is used. Each experiment has its own time interval between requests

generated by clients. The following are the time interval values chosen from uniform

distribution (10ms, 20ms, 38ms, 75ms, 150ms, 1000ms and 10000ms).

 Testing both protocols under low rate of requests such as 75ms, 150ms, 1000ms

and 10000ms shows no difference regarding throughput. Under these rates there is no

demand for processing power, thus underutilizing the processing capacity of the

CPU’s of the correct servers.

 On the other hand, when rates are increased to 38ms, 20ms and 10ms, significant

differences in performance are observed, especially with 10ms. The concept of

revocation in Mencius is different to the one in the revised version of Mencius, which

is believed to be the reason behind the production of different throughput for both

protocols.

 In Mencius, with the increase of load, there is more demand for processing power

especially on the side of the server responsible for revocation. This is because in

addition to ordering its own proposals, it is in charge of generating and ordering

proposals on behalf of the suspected or crashed server. More processing power is

needed from the revoker, which reduces its throughput. While in the revised version

of Mencius during revocation, both correct servers suggest their own proposals only,

as revocation of the whole range is carried out using one instance only. In such case,

both correct servers have enough processing capacity which enables them to cope

with higher loads. The summary of the results are shown in Table 5.27.

AI ms 10 20 38 75 150 1000 10000

Class II

100ms

24 14 7 0 0 0 0

Table 5.27 throughput Gain

 - - 111

5.8.2 Latency

 Theoretically, it can be calculated that the latency of both protocols are as

follows: latency for Mencius for three consecutive instances is the total of two

instances of three messages and one instance of five messages

(300+300+500=1100/3=367ms). Latency for revised version of Mencius is the total of

two instances of three messages only (300+300=600/2=300ms). To evaluate latency,

two latency values, max-Latency and min-Latency which have already been defined,

are distinguished.

 We find that the difference between the two protocols under low load is around

60ms, which is close to the value calculated above, indicates that revised version of

Mencius has better performance. This difference, however, goes up as the load is

increased. For example, at the highest load, the difference is around 100ms, again in

favour of the revised version of Mencius.

 A significant benefit is gained from the modification applied to revocation. In

revised versions of Mencius, the revoker uses one instance only to revoke a whole

range. After that, it will continue its normal job in ordering its own proposals. This

will make the revoker and the other correct servers work with the same processing

capacity. From a latency perspective in such circumstances, revised version of

Mencius has better performance than Mencius. The summary of results is shown in

Table 5.28 and Table 5.29.

AI ms 10 20 38 75 150 1000 10000

Class II

100ms

-20 -18 -16 -16 -16 -16 -16

Table 5.28 Max-Latency GAIN

 - - 112

AI ms 10 20 38 75 150 1000 10000

Class II

100ms

-23 -18 -16 -19 -19 -20 -19

Table 5.29 Min-Latency GAIN

5.9 Summary

 A significant benefit of building the new protocol on top of Mencius abstraction

and Paxos abstraction is that the solution ensures liveness and safety. In addition, it

was proven that the objectives of the new protocol presented in this thesis are

fulfilled. The concept of using Mencius on local-area network provides us with great

benefits regarding client progress, bandwidth consumption and latency.

 Clients make progress as long as the majority of servers are correct at site level

and bandwidth consumption is reduced to at least 1/3 of Mencius. Latency is reduced

especially when the time delay of the virtual link goes up. Threshold of saturation is

also higher.

 The results of the experiments revealed that there is a trade-off between

throughput and latency in relation to message size. If the size of our request is short,

then the following is suggested: when the request rate is low, single messages (no

batching) is used. This produces better latency. However, if the rate is high, users

should resort to batching multiple messages in a single message in order to get better

throughput.

 Mencius was not compared with [Mencius]
N

 regarding revocation. It is known

that revocation is an execution of instance of Paxos and in the new protocol at global

level, instances of Paxos are not executed, meaning revocation does not exist at global

level. This explains why such a comparison was not carried out. Although a

comparison between Mencius and revised version of Mencius is made, the structure of

revised version of Mencius is found in chapter 3 and the results of comparison can be

found in section 5.9 of this chapter.

 - - 113

 The main conclusions: It is advised that those who want to solve Total Order

problem over local-area network use either Mencius or revised Mencius, as these two

protocols overweight [Mencius]
N
. However, for those who want to solve it over wide-

area network, its preferable to use [Mencius]
N
, which is proven throughout the course

of this thesis to have higher performance.

 - - 114

Chapter 6

Summary and conclusion

 This thesis introduced a new class of High-Performance Multi-Ordering Protocol
that optimally uses Mencius protocol on top of Paxos to circumvent the FLP

impossibility. It presents the design and the analysis of our protocol [Mencius]
N
.

 In chapter 3, an alternative protocol to Mencius was introduced which has the same

system context regarding the number of servers and sites but has a different set of

assumptions. The revised version of Mencius in chapter 3 criticises Mencius from

revocation perspective under a new assumption. In the second part of this work, we

presented our main protocol [Mencius]
N
 that tackles many issues raised by Mencius.

 The performance of our proposed protocol [Mencius]
N
 was extensively

examined and compared to the Mencius in various settings. The results received from

this are encouraging. We will summarize the work presented in our thesis and present

directions for future work.

6.1 Summary

 Total Order problem is a well-known issue at the core of building dependable

distributed systems. Particularly in state machine replication technique, where replicas

need to agree on various issues such as order of client request execution, group

membership, transaction commitment, etc., reaching consensus is fundamental to

solve any of these agreement problems. At the same time, it has been proven that

finding a deterministic solution cannot be guaranteed in asynchronous network setups

where replicas are fault-prone. Circumventing FLP impossibility has been an active

research area in past two decades. The most common approaches that have been

proposed can be categorized into four types; randomised protocols, fail-signal

protocols, deterministic protocols, and multi-ordering protocols.

 Randomized protocols [EMR01, MNC+06] are a family of protocols where FLP

result is avoided by providing a probabilistic solution. Participants go over rounds of

communication and make random choices on their estimate of decision values. The

protocol progresses in such a way that eventually an identical value is decided. These

protocols guarantee termination only in probabilistic terms which tends to 1 as

 - - 115

elapsed time approaches infinity. This type of protocol is a non-leader protocol;

however, the main disadvantage of this protocol is that the number of messages

needed for termination is unknown and the time needed to arrive at a decision may

approach infinity.

 The next one is called Fail-Signal protocol. Fail-Signal [BES+96, IE06] protocol

is the third in the family of inherently redundant processes; namely, fail-stop and fail-

silent processes and is constructed in a similar way. FS is a protocol whose

termination guarantee is not dependant on any systemic/network conditions and the

performance is only affected by existing communication delays and real failures. Fail-

Signal process circumvents the impossibility by making the failing process announce

its imminent failure and stop working after failing. The main advantage of this type of

protocol is the use of perfect failure detector. However, the main disadvantages of this

approach is that each FS node consists of at least two machines connected by a

synchronous network. This will result in a higher level of message complexity

because all constituents of FS node will generate their own messages. For example, if

FS node has two machines, then 2 identical proposals will be sent out to all correct FS

nodes. Two identical ack messages will be sent out to the other FS node and 2

identical Learn messages will be sent out to all correct FS nodes (message

redundancy). Another disadvantage is the high latency that results from waiting for

the response from all processes.

 The third type, Deterministic protocols, is built on the concept of Unreliable

Failure Detector [CT91, CT96, CHT96]. Each process accesses Failure-Detector

oracle, which provides a list of processes suspected to be crashed. The weakest form

of Failure-Detector is denoted by ◊S, which allows it to solve consensus. This type of

FD has the following properties: (1) any crashed process is eventually suspected

(completeness), (2) there is a time after which correct processes are not suspected

(eventual weak accuracy). This category of protocols tends to be coordinator-based. A

specific process is given the role of coordination of the execution of the protocol.

When it is crashed, the protocol then chooses another process to play this role. Paxos

[LAM98] and Chandra Toueg [CT91] are considered to be the pioneers in this group

of protocols. Compared to the other two categories, deterministic approach is

characterized by its lower latency and lower level of message complexity as well.

 The last type is multi-ordering protocols. We consider Mencius [MJM08] as a

novel and new protocol belonging to this group. Mencius is a replicated state machine

 - - 116

built on the abstraction of Paxos which runs concurrent instances of Paxos. Mencius

as a multi-ordering protocol tackles the issue of single leader bottleneck inherited

from Paxos. Paxos suffers from some drawbacks in terms of communication pattern,

CPU processing capacity, and latency of learning the outcome. By tackling the

problem of single leader, the throughput is increased under high client load and

latency is lowered under low client load

 The protocol presented in this thesis belongs to the last group. It is built on top

of Mencius [MJM08] which, in turn, is built on top of Paxos protocol [LAM01,

LAMO6]. Paxos forms the underlying protocol and the core protocol used to

circumvent FLP impossibility. This work consists of two parts. In chapter 3, the first

part is presented in which the issue of revocation in Mencius is addressed. The

construction of Mencius, in particular, is based on a claim which says false suspicion

and crash rarely occur. This work proposes that cases of false suspicion and crash

occur frequently and the cost of revocation is very high. To minimize that cost, certain

changes to Mencius protocol were made. The main modification is that a whole range

using one instance is revoked, instead of being revoked one by one.

 The new revised version of Mencius presented in chapter 3 addresses the problem

of the high probability of crash and false suspicion that might trigger more frequent

FD. The structure followed in presenting the revised version of Mencius is the same

as the one adopted in Mencius. The assumptions and principles are explained in terms

of rules and optimizations; the main differences between the two protocols lay in how

revocation is carried out. In the revised Mencius, as soon as one server starts to revoke

a suspected server, it will try to revoke all instances in a certain range. The process of

revocation will start from the smallest instance that should have been coordinated by

the suspected server. If the revocation of that instance was successful, then the whole

range will be revoked automatically; otherwise the revoker will receive at least one

NACK which means revocation will be aborted. We proved that the correctness of the

new version is inherited from the old version of Mencius. All properties of consensus

protocol are fulfilled, hence safety and liveness are ensured.

 In the forth chapter of the thesis, the main work is presented where a new

protocol, called [Mencius]
N
, is proposed. The challenges of the new protocol are how

to address issues such as latency, throughput, threshold of saturation, client blocking

and bandwidth consumption. The aim of the work is to develop a protocol that fulfils

the objectives by reducing latency to client requests, increasing threshold of

 - - 117

saturation, guaranteeing that clients make progress even in case of crash and lastly,

reducing bandwidth consumption.

 The proposed solution is to build multiple cooperative Mencius’ as a two-layer

system. One layer consists of local Mencius and the second layer forms global multi-

ordering protocol. The underlying network connecting servers of each local Mencius

system will be based on FIFO communication channels (LAN), however, the

underlying network connecting global Mencius systems will be based on

asynchronous communication channels (WAN). The new system consists of two

replicas, global replica and local replica. Global replica exists on a level of sites

implementing a replicated state machine. Each site represents one abstraction of

Mencius, N sites (where N ≥ 2) creating [Mencius]
N
. Local replica (site) is on the

level of servers where each local replica consists of n servers (n = 2f + 1), thus

forming a local Mencius.

 We consider each site as a coordinator on a global level, ordering requests

received from its own group of clients. Each site has one distinguished server which

will be in charge of talking to other sites. This server is called Site Speaker.

Communication between sites only takes place between Site Speakers, so Site Speaker

is a normal server that has more jobs to do than other servers in the system.

 Each site using its own local Mencius will produce a local stream of instances.

Streams produced locally will be exchanged by Site Speakers and merged by all

servers to form global stream or [Mencius]
N

stream.

 The replacement of crashed or suspected Site Speaker server in [Mencius]
N
 servers

in each site are divided into two groups according to their function. One group

consists of one server which is called Site Speaker. The second group consists of the

remainder of the servers which are called the normal group. Suspicion of failure or

crash in the normal group is treated in terms of revocation only, exactly as in

Mencius. This process guarantees that local Mencius can make progress.

Nevertheless, suspicion of failure or crash of the Site Speaker should be solved in two

directions: one direction is revocation as the other group, and the second direction is

to replace the Site Speaker. Protocol [Mencius]
N
 relies on

Site Speakers

communication to make progress. This server is prone to crash, false suspicion or

overload of work. These problems can be classified according to the reaction taken

by the system into two groups: one group consisting of crash and false suspicion, the

second group consisting of overload. When the current Site Speaker suffers from

 - - 118

crash or false suspicion, then the system will enforce a new Site Speaker, which

means the correct servers will choose a new Site Speaker to replace the current one.

Nevertheless, when the current Site Speaker is overloaded, it then asks for a

replacement. This is done for the sake of load distribution balance.

 All servers are publicly ranked and therefore defined by the sequence in which

they are to be the Site Speaker. At initialization time, server s1 will be the Site Speaker

at all sites and as soon as s1 is suspected or crashed, then the next server in ranking

will take over as the new Site Speaker. This choice is based on rotating coordinator

paradigm in a round-robin fashion.

 The other method of replacing the Site Speaker is done for the sake of load

distribution balance. In addition to coordinating its client requests, Site Speaker has to

send local site stream to all other sites, receive streams from other sites and multicast

them to local servers. This reflects the fact that network traffic from or to the Site

Speaker is much higher than its counterparts in the site. The second issue is that as

Site Speaker receives higher number of messages, there is a higher demand for

processing power than other servers. In trying to get a more balanced communication

pattern and better CPU system utilization, the current Site Speaker will seek the server

with the lowest load and hand to it the Site Speaker responsibility. Individual streams

from each server will be received by all correct servers in that site. This will enable

the Site Speaker to calculate the load distribution of each server and find out which

server has the highest load and which one has the lowest load. The Site Speaker will

choose the server with the lowest load and ask it to be the new Site Speaker.

 As soon as some server successfully installs itself as the new Site Speaker, it

starts communication with other sites by multicasting learn messages to all servers, 1

to n, which will inform all servers at other sites about Site Speaker change. The

process of multicasting 1 to n will continue until the new Site Speaker receives learn

message from other Site Speakers. It will then switch from 1 to n communication to 1

to 1. The main reason for 1 to n communication, started by the new Site Speaker, is to

eliminate the deadlock that might be created by the crash of more than one Site

Speaker at the same time.

 Finally Chapter 5 is dedicated to the results of our experiments and their analysis.

It can be proved that the objectives of the new protocol presented in this thesis are

fulfilled.

 - - 119

6.2 Conclusion

 We developed a protocol belonging to a family of Crash fault-tolerant order

protocols by exploiting Mencius abstraction. Only crash model failure is investigated

within this thesis. We are able to achieve our objectives by building our protocol on

the concept of multiple cooperative Mencius’. Clients make progress as long as the

majority of servers are correct at site level and bandwidth consumption is reduced to

at least 1/3 of Mencius. Latency is reduced especially when the time delay of the

virtual link went up. The threshold of saturation is also higher. These benefits come at

a cost of extra machines at each site. In Mencius, each site has one machine while in

[Mencius]
N
,

the minimum number of machines at each site is n machines (n=2f + 1).

The cost is not considered very high as hardware prices are going down.

 Our main conclusions can be summarized on the following points:

According to the environment and network topology one can make a trade-off

between Mencius and [Mencius]
N
, we can consider the following scenarios:

1- All sites without any cluster, assuming that all sites connected through WAN.

The implementation of Mencius or [Mencius]
N

in such an environment depends

on the number of sites:

 If the number of sites n < 6 we can use only Mencius. Because in case of n =

5 we cannot form [Mencius]
N
 of N = 2.

 However, if the number of sites n ≥ 6 we can use both protocols. For example

if n = 9 it is preferable to use [Mencius]
N

rather than Mencius to solve Total

Order problem. In such case both protocols have the following facts:

(1) The implementation of Mencius will produce a majority of 5 which

will increase latency. However for [Mencius]
N

the majority at local

level is not changed.

(2) In Mencius the number of messages needed to finalize each instance is

3(n-1) = 24 msg, however for [Mencius]
N

the maximum number of

messages needed to finalize each instance is 6 msg at local level plus 6

msg at global level which will produce a total of 12 msg.

for solving Total Order problem over wide-area network, it is preferable to use

[Mencius]
N
, because it has higher performance.

 - - 120

2- All sites or servers are kept within one cluster, in such scenario our advice is to

use either Mencius or revised Mencius to solve Total Order problem over local-

area network, as these two protocols overweight [Mencius]
N
.

3- Some sites without any cluster, this type of scenario is not investigated in this

work. Also in this case we can conclude as in point 1 the redundancy level makes

the difference:

 If the number of sites n < 6 we can use only Mencius. Because in case of n =

5 we cannot form [Mencius]
N
 of N = 2.

 However, if the number of sites n ≥ 6 both protocols can be used. From our

experience we can say that protocols will suffer from higher latency, this

comes as a result of implementing some nodes over wide area network.

Nevertheless to find out exactly which protocol to use in such scenario we

need to make more experiments.

4- Exploiting message size to increase performance in [Mencius]
N
, we find that

there is a trade-off between throughput and latency in relation to message size. If

the size of the request is short, then the following is suggested: when the request

rate is low, single messages (no batching) is used. This produces better latency.

However, if the rate is high, users should resort to batching multiple messages in

a single message in order to get better throughput.

The major drawback of [Mencius]
N
 is its high level of redundancy in comparison

with Mencius. For example, in this work, the level of redundancy was three times

higher. Each machine in Mencius is equivalent to three machines in [Mencius]
N
. This

negative aspect can be exploited and transferred to a positive one. This can be

achieved by deploying different distributed application services on [Mencius]
N
. For

example, in this work, three different services can be deployed. The suggested

solution to the problem of high level of redundancy in terms of extra hardware will

reduce its cost.

 In the following scenario of three distributed application services needing to be

deployed on wide-area network, there are two choices in solving this problem:

1- Either three independent Mencius; each having three servers are used, which

forms a total of nine machines.

 - - 121

2- Or, we resort to [Mencius]
3
, each site having three machines forming a total of

nine machines as well.

The above mentioned scenario illustrates that the cost of hardware in both cases is the

same, but using Mencius implies the inheritance of all the flaws of the system as well.

However, using [Mencius]
N
 avoids these problems as proven during the course of

this work.

6.3 Future work

 Through the course of this thesis, we find that Total-Order problem is solved over

local-area network. In line with that, our future work will concentrate on improving

the performance of that part of the protocol executed over local-area network. We

suggest two future works:

6.3.1

 First, Revised Mencius can be improved by introducing two modifications:

1. Implementing Mencius on local area network using UDP protocol over IP

multicast services instead of TCP protocol.

2. We suggest fourth optimization to replace the accelerator. This point will be

explained according to the following system context; 3 servers p, q, and r. Server p is

active while the other two servers q and r are idles. No SKIP message will be

explicitly sent separately between idle servers (no accelerator), such as q and r in our

scenario. Servers q and r send ACCEPT as a response for SUGGEST received from p

for instance i, implies that they are SKIPing their turn. Server p piggybacks SKIP

messages received from q and r on LEARN for instance i. After receiving LEARN

message for instance i, server q will learn about server r status and vice versa.

 Using the aforementioned optimization will eliminate the need of accelerator and

the blocking of the two idle servers will be removed. As the waiting time for the

accelerator to be triggered is eliminated, overall Mencius latency will benefit.

6.3.2

 For a second future work, we propose a Multi-Ordering Protocol based on

Randomized Consensus Protocol. Randomized protocols are non-leader protocols; all

 - - 122

nodes in such protocols have the same quality and the same responsibility and have no

use of unreliable Failure Detectors. One of the features of such protocols is that all

communications in such protocol goes from 1 to n, so we propose here to implement

Randomized Multi-Ordering Protocol on local-area network using UDP protocol over

IP multicast services as the underlying protocol instead of TCP protocol. This will

reduce the number of times needed by the application layer to send each message to

all nodes. Only one action taken by IP multicast services to deliver each message to

all nodes registered with that group. This protocol will be implemented on local-area

network to solve Total Order problem. Finally, performance comparison will be

carried out between Randomized protocol with Mencius protocol. This comparison

will reveal the potential of Randomized protocol and give us a clear view about

Randomized protocol as a Multi-ordering protocol used to solve Total Order problem

over local-area network.

 - - 123

Appendix A

A.1 Evaluation for short messages

A.1.1 Throughput

[Mencius]
N

Arrival
Intervals/ms Throughput

5 465

20 140

38 76

75 39

150 20

 Table A.1: throughput Table A.2: throughput

 [Mencius]
N

 Mencius

Figure A.1: Experiment 1; time delay of LAN, no DummyNet.

[Mencius]
N

 -25

Arrival
Intervals/ms Throughput

5 425

20 139

38 75

75 39

150 20

 Table A.3: throughput Table A.4: throughput

 [Mencius]
N

 -25 Mencius -25

Mencius

Arrival
Intervals/ms Throughput

5 333

20 124

38 71

75 38

150 19

Mencius -25

Arrival
Intervals/ms Throughput

5 332

20 124

38 71

75 38

150 19

 - - 124

Figure A.2: Experiment 2; one-way delay of 25ms.

[Mencius]
N

 -50

Arrival
Intervals/ms throughput

5 465

20 140

38 76

75 39

150 20

 Table A.5: throughput Table A.6: throughput

 [Mencius]
N

 –50 Mencius –50

Figure A.3: Experiment 3; one-way delay of 50ms.

Mencius -50

Arrival
Intervals/ms throughput

5 329

20 124

38 71

75 38

150 19

 - - 125

[Mencius]
N

 -100

Arrival
Intervals/ms Throughput

5 430

20 138

38 75

75 39

150 20

 Table A.7: throughput Table A.8: throughput

 [Mencius]
N

 –100 Mencius –100

Figure A.4: Experiment 4; one-way delay of 100ms.

[Mencius]
N

 -D

Arrival
Intervals/ms Throughput

5 411

20 135

38 74

75 39

150 20

 Table A.9: throughput Table A.10: throughput

 [Mencius]
N

-D Mencius-D

Mencius -100

Arrival
Intervals/ms Throughput

5 331

20 124

38 71

75 38

150 19

Mencius -D

Arrival
Intervals/ms Throughput

5 321

20 122

38 71

75 38

150 19

 - - 126

Figure A.5: Experiment 5; random one-way time delays.

 - - 127

A.1.2 Latency

[Mencius]
N

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 406.44 309.78

20 414.56 302.1

38 412.68 310.77

75 413.22 317.8

150 422.1 311.97

 Table A.11: latency [Mencius]
N

 Table A.12: latency Mencius

Figure A.6: Experiment 1; time delay of LAN, no DummyNet.

[Mencius]
N

 -25

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 418.5 314.4

20 416.6 315

38 414 313.5

75 410.9 314.8

150 404.4 309.9

 Table A.13: latency [Mencius]
N

 D25 Table A.14: latency Mencius D25

Mencius

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 412.4 320.56

20 410.64 290.1

38 409.9 287.35

75 416.23 318.27

150 407 298.89

Mencius -25

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 444.5 366.39

20 450 374.3

38 468.3 378

75 479.53 375.76

150 480.23 319.15

 - - 128

Figure A.7: Experiment 2; one-way delay of 25ms.

[Mencius]
N

 -50

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 426.36 343.8

20 441.8 320.6

38 449.5 337.9

75 459.7 339.1

150 480.1 360.2

 Table A.15: latency [Mencius]
N

-50

Table A.16: latency Mencius-50

Figure A.8: Experiment 3; one-way delay of 50ms

Mencius -50

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 490.16 416.9

20 498.06 402.38

38 485.4 384.45

75 500 371.4

150 509.07 373.14

 - - 129

[Mencius]
N

 -100

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 496.6 391.8

20 481.3 382.6

38 481.9 395.7

75 488.2 403.5

150 494.7 398

 Table A.17: latency [Mencius]
N

 100 Table A.18: latency Mencius 100

Figure A.9: Experiment 4; one-way delay of 100ms.

[Mencius]
N

 -D

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 1946 1203

20 1884 1089

38 1703 1059

75 1638 928

150 1506 998

 Table A.19: latency [Mencius]
N

D

Table A.20: latency Mencius D

Mencius -100

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 641.27 504.8

20 597.37 514.59

38 661.64 515.94

75 651.83 549.54

150 668.83 560.76

Mencius -D

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

5 2415 1781

20 2190 1748

38 2177 1697

75 2153 1738

150 2071 1667

 - - 130

Figure A.10: Experiment 5; random one-way time delays.

 - - 131

A.1.3 Performance Assessment of Revised Mencius

Mencius-100

Arrival Intervals/ms Throughput

10 155

20 85

38 45

75 26

150 13

1000 2

10000 0.2

 Table A.21: throughput Table A.22: throughput

 Mencius revised Mencius

Figure A.11: One-way delay of 100ms.

Mencius-100

Arrival
Intervals/ms

max-
Latency/ms

min-
Latency/ms

10 510.71 451.77

20 478.41 391.47

38 465.28 408.34

75 462.83 379.4

150 439.1 357.66

1000 395.75 314.23

10000 385.69 322.59

 Table A.23: latency Table A.24: latency

 of Mencius of revised Mencius

Revised Mencius-100

Arrival Intervals/ms Throughput

10 192

20 97

38 48

75 26

150 13

1000 2

10000 0.2

Revised Mencius-100
Arrival

Intervals/ms
max-
Latency/ms

min-
Latency/ms

10 407.21 348.27

20 392.21 321.37

38 390.52 342.34

75 388.13 306.7

150 370.39 290.96

1000 331.05 252.53

10000 324.99 262.89

 - - 132

Figure A.12: One-way delay of 100ms.

 - - 133

References

[ABA12] Daniel J. Abadi, “Consistency Tradeoffs in Modern Distributed Database

System Design”. Computer: Innovative Technology for Computer Professionals,

IEEE Computer Society, pages 37-42, February 2012.

[AE11] K. Alekeish and P. Ezhilchelvan, “Consensus in Sparse, Mobile Ad-hoc

Networks,” May 2011.

[AH90] J. Aspnes and M. Herlihy. “Fast Randomized Consensus Using Shared

Memory”, Journal of Algorithms, vol. 11, no. 3, pp. 441-460, 1990.

[ASP03] J. Aspnes, “Randomized Protocols for Asynchronous Consensus”,

Distributed Computing, vol. 16, no. 2-3:165-175, September 2003.

[BAU05] Baumann, R., “Soft Errors in Advanced Computer Systems”, IEEE Design

and Test of Computers, pp. 258-266, May-June 2005.

[BEN83] M. Ben-Or. “Another advantage of free choice: completely asynchronous

agreement protocols”. In Proceedings of 2nd ACM Symposium on Principles of

Distributed Computing, pp. 27-30, 1983.

[BES+96] F.V. Brasileiro, P.D. Ezhilchelvan, and S.K. Shrivastava, N.A. Speirs, S.

Tao, “Implementing Fail-Silent Nodes for Distributed Systems”, IEEE Transactions

on Computers, 45(11): pp 1226-1238, 1996.

[BM92] N. Budhijara, K. Marzullo “Tradeoffs in Implementing Primary-Backup

Protocols”, Technical Report TR 92-1307, Department of Computer Science, Cornell

University, 1992.

[BMST93] N. Budhijara, K. Marzullo, F. Schneider, and S. Toueg “The Primary

Backup approach”, In S. Mullender, (ed.), Distributed Systems, pp. 199-216.

Wokingham: Addison-Wesly, 2
nd

 ed., 1993.

 - - 134

[BOI01] R. Boichat. “Reliable and Total Order Broadcast in the Crash Recovery

Model”. PhD thesis, ´Ecole Polytechnique Federale Lausanne, Switzerland, Nov.

2001.

[BRE12] E. Brewer, “CAP Twelve Years Later: How the “Rules” Have Changed”.

Computer: Innovative Technology for Computer Professionals, IEEE Computer

Society, pages 23-29, February 2012.

[CD89] B. Chor, and C. Dwork, “Randomization in Byzantine agreement”. Advan.

Comput. Res. 5, 443-497, 1989

[CHT96] T. Chandra, V. Hadzilacos, and S. Toueg. “The weakest failure detector for

solving consensus”. Journal of the ACM, 43(4):685–722, 1996.

[CMS89] M. Chor, M. Merritt, and D.B. Shmoys, “Simple Constant-Time Consensus

Protocols in Realistic Failure Models”, Journal of the ACM, 36(3): 591–614, 1989.

[CR09] M. Carbone, L. Rizzo, Dummynet Revisited. Department of Information

Engineering, Pisa University. November 2009.

[CR+09] Y. Chen
1
, A.Romanovsky

2
, (A. Gorbenko, V. Kharchenko, S. Mamutov,

O. Tarasyuk)
3
. “Benchmarking Dependability of a System Biology Application”.

1

Institute for Ageing and Health
2

School of Computing Science Newcastle

University Newcastle-upon-Tyne, UK.
3
Department of Computer Systems and

Networks National Aerospace University Kharkiv, Ukraine.

[CS00] B. Charron-Bost, A. Schiper, “Uniform Consensus is Harder Than Consensus

(extended abstract)”, Technical Report LSR-REPORT-2000-014, Ecole

Polytechnique Federale de Lausanne, Switzerland, 2000.

[CT91] T.D. Chandra and S. Toueg, “Unreliable failure detectors for asynchronous

systems (Preliminary version)”. In Proceedings of the tenth annual ACM symposium

 - - 135

on Principles of distributed computing, pp. 325 – 340, Montreal, Quebec, Canada,

1991.

 [CT96] T. Chandra and S. Toueg. “Unreliable failure detectors for reliable distributed

systems”. Journal of the ACM, 43(2):225–267, Mar. 1996.

[DDS87] D. Dolev, C. Dwork and L. Stockmeyer, “On the minimal synchrony needed

for distributed consensus”, Journal of the ACM, 34(1): pp. 77-97, Jan 1987.

[DGG05] A. Doudou, B. Garbinato, and R. Guerraoui, “Tolerating Arbitrary Failures

with State Machine Replication”, In Dependable Computing Systems, John Wiley &

Sons, Inc, 2005.

[DSU04] X. Defago, A. Schiper and P. Urban, “Total order broadcast and multicast

algorithms: Taxonomy and survey”, ACM Computing Survey, 36(4); 372–421, 2004.

[EMR01] P D Ezhilchelvan, A Mostefaoui, and M Raynal, "Randomized Multivalued

Consensus", In Proceedings of the Fourth International IEEE Symposium on Object

oriented Real-time Computing (ISORC), pp. 195-201, Magdeburg, Germany, May

2001.

[EZH08] Ezhilchelvan Paul, “Responsive Fault-Tolerant Computing in the era of

Terascale Integration – State of Art Report” School of Computing Science, Newcastle

University, Newcastle upon Tyne, UK. 2008.

[FLP85] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of Distributed

Consensus with one faulty Process”, Journal of the ACM, 32(2): 374-382, April 1985.

[FM97] Pesech Feldman and Silvio Micali. “An optimal probabilistic protocol for

synchronous Byzantine agreement”. SIAM Journal on Computing, 26(4):873-933,

August 1997.

 - - 136

[GS97] R. Guerraoui and A. Schiper. “Software-based replication for fault tolerance”,

IEEE Computer, 30(4), pp. 68–74, April 1997.

[IE06] Q. Inayat and P.D. Ezhilchelvan, “A Performance Study on the Signal-On-Fail

Approach to Imposing Total Order in the Streets of Byzantium”, In Proceedings of

the 2006 International Conference on Dependable Systems and Networks, pp. 578-

587, Philadelphia, PA, USA, 25-28 June 2006.

[JS08] Habibullah Jamal, Kiran Sultan:, “Performance Analysis of TCP Congestion

Control Algorithms”. INTERNATIONAL JOURNAL OF COMPUTERS AND

COMMUNICATIONS Issue 1, Volume 2, 2008

[KS01] K. Kursawe and V. Shoup, “Optimistic asynchronous atomic broadcast."

Cryptology ePrint Archive, Report 2001/022, Mar. 2001

[KV93] H. Kopetz, and P. Verissimo, “Real Time and Dependability Concepts.”In

Mullender, S. (ed.), Distributed Systems, pp. 411-446. Wokingham : Addison-

Wesley, 2
nd

 ed., 1993.

[LAM01] L. Lamport “Paxos Made Simple”, ACM SIGACT News (Distributed

Computing Column), 32, 4: 18-25, December 2001.

[LAM06] L. Lamport, “Fast Paxos”, Distributed Computing, 19(2): 79-103. October

2006.

[LAM98] Leslie Lamport, “The part-time parliament”, ACM Transactions on

Computer Systems, 16(2):133–169, May 1998.

[LSP82] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem”,

ACM Transactions on Programming Languages and Systems, 4(3): 382-401, July

1982.

 - - 137

[MF09] Mohammed. F. Ababneh, “Average Delay in TCP Networks”. American

Journal of Scientific Research ISSN 1450-223X Issue 2 (2009), pp.5-9. Information

Department, Prince Abdullah Ben Ghazi Faculty of Science and ITAl-Balqa' Applied

University Assalt-Jordan.

[MJM08] Y. Mao, F. Junqueira, and K. Marzullo. “Mencius: Building efficient

replicated state machines for WANs”. Technical Report CS2008-0930, Dept. of

Computer Science and Engineering, UC San Diego, 2008.

[MNC+06] H. Moniz, N. F. Neves, M.l Correia and P. Veríssimo, “Randomized

Intrusion-Tolerant Asynchronous Services”, Proceedings of the International

Conference on Dependable Systems and Networks (DSN), Philadelphia, USA, pages

568-577, June 2006.

[NAG84] J. Nagle. RFC 896: “Congestion control in IP/TCP internetworks”. Jan.

1984.

[PSL80] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the

Presence of Faults.” J. ACM, vol. 27 no. 2, pp.228-234, Apr. 1980.

[RIZ97] L. Rizzo. “Dummynet: a simple approach to the evaluation of network

protocols”. SIGCOMM Comput. Commun. Rev., 27(1):31– 41, 1997.

[SCH84] F. Schneider, "Byzantine Generals in Action: Implementing Fail-Stop

Processors", ACM Transactions on Computer Systems, Vol. 2(2), pp. 145-154, May

1984.

[SCH90] F. Schneider. “Implementing fault-tolerant services using the state machine

approach:” A tutorial. ACM Computing Surveys, pages 299–319, Dec. 1990.

[SCH93] F. B. Schneider. “Replication management using the state-machine

approach”. In Distributed Systems (edited by S. Mullender), ACM Press, pp. 169–

197, 1993

 - - 138

[UHS+04] P. Urbán, N. Hayashibara, A. Schiper and T. Katayama “Performance

Comparison of a Rotating Coordinator and a Leader Based Consensus Algorithm”, In

Proceedings of the 23rd Symposium on Reliable Distributed Systems (SRDS’04), pp.

4-17, Ishikawa, Japan, October 2004.

