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Abstract 

      Service replication ensures reliability and availability, but accomplishing it 

requires solving the total-order problem of guaranteeing that all replicas receive 

service requests in the same order. The problem, however, cannot be solved for a 

specific combination of three factors, namely, when (i) the message transmission 

delays cannot be reliably bounded, as often the case over wide-area networks such as 

the Internet, (ii) replicas can fail, e.g., by crashing, the very events that have to be 

tolerated through replication, and finally (iii) the solution has to be deterministic as 

distributed algorithms generally are. Therefore, total-order protocols are developed by 

avoiding one or more of these three factors by resorting to realistic assumptions based 

on system contexts. Nevertheless, they tend to be complex in structure and impose 

time overhead with potentials to slow down the performance of replicated services 

themselves. 

 

This thesis work develops an efficient total-order protocol by leveraging the 

emergence of cluster computing. It assumes that a server replica is not a stand-alone 

computer but is a part of a cluster from which it can enlist the cooperation of some of 

its peers for solving the total-order problem locally. The local solution is then 

globalised with replicas spread over a wide-area network. This two-staged solution is 

highly scalable and is experimentally demonstrated to have a smaller performance 

overhead than a single-stage solution applied directly over a wide-area network. The 

local solution is derived from an existing, multi-coordinator protocol, Mencius, which 

is known to have the best performance. Through a careful analysis, the derivation 

modifies some aspects of Mencius for further performance improvements while 

retaining the best aspects. 
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Chapter 1 

Introduction 

 

      Use of computers has become pervasive: from complicated space systems, 

medical instruments and military equipment to home appliances such as coffee 

makers and washing machines.  With the advent of computer networks and the 

Internet, our lives are transformed and even influenced by our digital technology. 

Education systems, media, communication and business are now totally reliant on the 

computer and, in turn, are shaped by this technology in ways that we are only 

beginning to understand.  We arrived at a point where we are attached and completely 

dependent on this machine.  

           Computer applications can be divided into two groups: non-critical 

applications verse critical applications. The disruption of any non-critical application 

has limited adverse effect and presents no danger to the health, safety, or security of 

individuals, and results no damage to the environment, or significant property 

damage. Nevertheless, for critical applications, the disruption and failure of such 

systems is expected to have a serious adverse effect, which could result in loss of life, 

or damage of property and the environment. Therefore, critical applications must 

guarantee dependability, which depends on the following factors: [KV93] reliability, 

availability, safety, and security. 

- Reliability: the system can run continuously without failure. 

- Availability: always ready to provide its services. 

- Safety: nothing catastrophic happens, when the system temporarily fails to operate 

correctly.  

- Security: confidentiality, intrusion tolerance 

 

       In areas where availability and reliability are the primary requirements of 

complex processing, the use of a single computer constitutes a single point of failure, 

due to hardware and software failure. There is an urgent need to overcome the 

problems due to single points of failure and this thesis will focus on the provision of 

uninterrupted computer service provisioning by reducing the reliance on single 

computing machine and by resorting to replication. Replicating service on multiple 
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servers that fail independently increases level of fault-tolerance and availability 

[SCH90].  Usually, replicas of a single server are executed on separate computers of a 

distributed system. The isolation of processors physically and electrically in a 

distributed system ensures that server failures are independent. Further, special 

protocols are employed to coordinate the interaction of clients with these replicas. A 

well-understood notion of client-replicas interaction is known as Client-Server 

paradigm. Client generates a request asking for a service, while server processes the 

request and sends back the response(s). 

         In order to achieve a higher degree of fault-tolerance and availability in 

distributed systems, two forms of computer redundancy have been proposed in the 

literature: first is called primary backup (or passive) replication [BMST93, BM92], 

and the second called state machine replication (or active) replication [GS97, SCH93, 

DGG05].  

          In primary backup approach one server is designated as the primary and others 

as backups. Only primary server is in charge of processing clients’ requests. After 

processing a request, the primary server updates the state on the other (backup) 

servers and sends back the response to the client. If the primary crashes, one of the 

backups takes over, taking care to preserve the continuity in service state.  

According to the way the primary responds to the client, we could have blocking or 

non-blocking primary-backup replication [BM92]. In the blocking primary-backup 

set-up, the primary sends its response to all backup servers and waits for an 

acknowledgement from all of them, during that time  the client is blocked, this is 

considered as a potential performance problem; in the non-blocking set-up, the 

primary sends its response to the client without waiting for the acknowledgement 

from backups. This approach, be it blocking or non-blocking, is suited only to tolerate 

crash failures.  

         The state machine replication approach [SCH93] is more robust and can tolerate 

failures of types more serious than simple crashing. Here, the service is replicated on 

multiple servers and the responses produced by these servers are subjected to a 

majority vote. Thus, the incorrect or absent responses from failed servers are masked 

by the responses produced by the correct ones. This approach imposes two 

requirements. First, a service must be built as a deterministic state machine so that 

correct servers respond identically for the same request. Thus, the first requirement is 

concerned with the implementation of service software. The second requirement, on 
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the other hand, is concerned with replication management and can be stated as 

follows. At any timing instance t, let the sequences of requests processed by any two 

correct replicas until t be seq1 and seq2; for all t, either seq1  seq2 or seq2  seq1. In 

other words, if a correct replica processes any request req as the i
th

 request if and only 

if any other correct replica processes req as the i
th 

request. This second requirement 

will ensure that correct replicas produce identical responses for each request.  Meeting 

this important requirement is generally referred to as the Total Order Problem 

[UHS+04, LAM01].  

This work will propose and evaluate solutions to solve the total order problem in the 

context of wide area networks.  These solutions can be used for implementing state 

machine replication which, by its masking potentials, can assure un-interrupted 

service provisioning when failures do occur.  In the literature, such solutions are 

called atomic broadcast protocols (see [CT96]) but this report would generically refer 

to them as total-order protocols.  

 

1.1 System Contexts for Solving Total Order Problem 

1.1.1 Failure context  

    Components in a replicated system are prone to failures; components are classified 

into servers (or computers) and the network that connects the servers to each other. A 

component fails when it does not meet its specification.  We assume that the network 

failures are masked through traditional means such as error detection and packet re-

transmissions and that the specification of a network does not impose timing 

constraints for message delivery (more details in the next sub-section). Server failures 

can be classified into several schemas; the following are the two main models: 

1- Crash failure: a server fails only by crashing, i.e., by halting, after which no 

output is generated by the server. Before crashing, it works correctly and generates its 

outputs according to its specification. 

2- Byzantine failure [PSL80, LSP82]: this model of failure is the most serious 

one; in such environment a server may produce arbitrary response at arbitrary times. 

A server could generate an output it should never have generated, which cannot be 

detected as being incorrect.  

We will not consider Byzantine failure model, this work will be focusing on crash 

failure model. This means that the responses produced by the replica servers need not 
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be voted on, but simply be subjected to identifying and discarding the duplicate 

responses.  

 

1.1.2 Network Context  

          A distributed system consists of a finite number of servers interconnected 

through a communication network. The underling network that connects the servers 

can be either a synchronous network or an asynchronous network. In a synchronous 

network, there is a known, fixed upper bound on the time required for a message to be 

sent from one server to another and a known fixed upper bound on the relative speeds 

of different servers. In an asynchronous network there are finite bounds on 

communication delays but these bounds cannot be known.  

       The attraction and the interest of the asynchronous model come from its 

practicability. Such systems are characterized by public, wide-area networks, such as 

the Internet, and also by the local-area networks subject to unpredictable loads, such 

as those within clusters and data centres. The unpredictability of message transfer 

delays and process scheduling delays in those systems makes the asynchronous model 

a very general one. 

Throughout this work, we will be assuming an asynchronous network. Within the 

class of asynchronous networks, we will distinguish between the local-area networks 

used within clusters and the wide-area networks (such the public networks) used to 

interconnect computers that are geographically wide apart. This distinction is 

motivated by the fact that message delays on wide-area networks can be considerably 

longer, possibly several orders of magnitude larger, than those on the local-area 

networks. A literature review of time delays for both networks found the following: 

1.         For WAN delays, Mencius [MJM08] assumes that one-way link delay of 

WAN is 25ms, 50ms, and 100ms. In the following paper [JS08], it is assumed 

that the RTT link delay of WAN is 100ms or 200ms. The average one-way link 

delays of WAN taken from a real experiment [CR+09] are found to be 110ms 

between Newcastle and Frankfurt, 533ms between Newcastle and Moscow, and 

577ms between Newcastle and Los Angeles.  

2.      For LAN delays, our experimental measurements indicated a one-way link 

delay of LAN of approximately 3ms. In the following paper [MF09], it is 

assumed that the one-way link delay is 2ms.   
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    Hence, any performance-oriented design of distributed protocols must attempt to 

limit the use of wide-area networks to be as minimum possible.  

 

1.1.3 The Replicated System  

     The system is made up of several sites connected by a WAN, e.g., the Internet. 

Each site is a cluster of computers connected by multiple LANs. A given service is 

replicated in N sites, N ≥ 2. Within each cluster site, the service is replicated on 

multiple computers which are called servers. The number of server replicas within a 

site must ideally be an odd number n that is larger than one, so that total ordering 

within that site can be done despite the crashing of a minority of these servers. A 

client can send its request over the internet to any one of the servers in any of these N 

sites. Typically, a client’s request would be routed to the closest cluster site.   

      Note that the ideal requirement of n servers per site may be difficult to meet, if 

several services are to be replicated within a site. A way-out would be to actually 

replicate a service only on n’, 1 ≤ n’ < n, servers and use (n-n’) proxy servers. The 

latter receive clients’ requests for the service and cooperate with actual servers in 

ordering the requests, but do not process the ordered requests; instead, they receive 

the responses from the actual servers within the site and forward to the clients that 

submitted the requests to them. When n’ < n/2, all actual servers within a site can 

crash; in that case, the proxies in that site need to receive the responses from actual 

server replicas in remote site or at least one of them should become an actual server. 

Throughout this report, we will assume n’=n=3 and N=3 and these numbers are 

chosen for easy comparison of performance with other related works in the literature. 

 

      In Figure 1.1 a replicated system that has 3 sites (N = 3) is presented. Within each 

site, the actual service is replicated on 2 servers (n’ = 2) plus one proxy, which makes 

n = 3. 
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Cluster site 1 Cluster site 3Cluster site 2

. . . . . .
WAN WAN

 n’ = 2        n = 3  n’ = 2        n = 3  n’ = 2        n = 3

 

 

Figure 1.1. The Replicated System 

 

 

1.2   System General Assumption 

1.2.1 CAP Theorem  

    CAP (Consistency, Availability, and Partition) theorem [BRE12] has three 

properties: (1) state consistency (C), (2) availability (A), and (3) tolerance to network 

partitions (P) (asynchronous delays). CAP theorem states that distributed systems can 

preserve at most two of the three properties. Therefore, designers can choose the 

following desirable properties: only CA systems (consistent and highly available, but 

not partition-tolerant), CP systems (consistent and partition-tolerant, but not highly 

available), and AP (highly available and partition-tolerant, but not consistent) are 

possible. 

      So generally, in wide-area network, network partitions cannot be forfeit and a hard 

choice between consistency and availability remains. In line with CAP theorem in our 

thesis work, consistency and availability are preserved, however, network partitions 

(intolerant to network partitions) are forfeit. This is because consistency and 

availability can only be preserved when communication is possible. Thus, this implies 

that we assume there is no bound on wide-area network communication time delays. 
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1.2.2 Consistency vs. Latency  

     There is a tradeoff between consistency and latency [ABA12]. Choosing 

availability (small latency) over consistency in building a highly available system 

increases the complexity of distributed systems. State inconsistency demands higher 

level of design complexity in application development. Programmers must know 

when to use fast/inconsistent accesses versus slow/consistent accesses. The 

implication of the former approach might require the programmers to define the 

conflict resolution rules that meet the application’s needs. To achieve small latency 

we have to sacrifice consistency, otherwise, preserving consistency forces us to pay 

the price in terms of large latency.  

     In this thesis work we present a protocol that solves Total-Order problem, securing 

high performance and correctness. This protocol guarantees consistency, while 

attempting to minimise latency. 

 

1.3 Motivation and Challenges  

        The ever-increasing number of Internet-based e-commerce activities, the advent 

of clusters and Clouds, and the need for reliable and available services make the 

replicated system set-up presented earlier a practical and scalable one. 

Note that the need for reliability and service availability has long been recognised and 

the service replication methods and the total order problem have also been well 

studied. In fact, as early as in 1978 Lamport [Time, clocks, ordering.. CACM] 

presented a solution for total order in a non-fault-tolerant environment. That solution 

itself required a quadratic message complexity and several fault-tolerant total-order 

protocols that followed are quite complex in structure and cannot avoid imposing a 

significant performance overhead.    

What is new now is the volume of e-commerce activities involving client-server 

paradigm, the pattern of user access and the size of the client base; all of these 

emerging factors lead to the additional need for scalable performance of replicated 

services. The replicated system proposed in sub-section 1.1.3 is inherently a scalable 

one: N can be arbitrarily large and n’ and n can be arbitrarily small (with the limit 

being 1 and 3 respectively). Such a system would be useless if the total-order protocol 

used were to impose a considerable overhead and thereby the overall client response 

time were to significantly slow down, even if processing an ordered request is to take 



 -  -     8 

an insignificant amount of time.  The challenge therefore is to develop a scalable and 

low-overhead protocol. This thesis work comprehensively and demonstrably 

addresses this challenge. 

Understanding the causes of complexity and overhead associated with fault-tolerant 

total-ordering is best done by considering an equivalent, but widely analysed, problem 

of distributed consensus. Total-ordering and consensus are equivalent in the sense that 

a solution to one can be tailored as a solution for other; similarly, if one is not 

solvable in a given context, the other one also cannot be solved in that context 

[CT96].   

The problem of consensus can be stated [FLP85] as follows. In a system of several 

failure-prone and distributed processes, each process has its own initial value; 

processes communicate with each other and reach an agreement on a common value 

subject to three conditions: (i) any two processes that decide must decide on the same 

value (agreement) (ii) the value decided must be any one of the initial values 

(validity) and all correct processes must decide at some point in time (termination). 

Note that the total-ordering problem can also be equivalently stated: in a system of 

several failure-prone and distributed server replicas, each replica has its own initial 

preference for an order number indicating the order in which a request or a set of 

requests is to be processed; replicas communicate with each other and reach an 

agreement on a common processing order number, subject to three conditions: (i) any 

two replicas that decide must decide on the same order number (agreement) (ii) the 

order number decided must be any one of the initial preferences (validity) and all 

correct replicas must decide at some point in time (termination). 

A major source of complexity and overhead associated with solving the 

consensus/total-order problem is due to the need to circumvent the FLP [FLP85] 

impossibility result: a deterministic protocol cannot be developed for an asynchronous 

network environment even if a single process can crash.  This impossibility comes 

about because a slow process cannot be distinguished with total certainty from a 

crashed one when a bound on message transmission delays cannot be reliably 

established. 
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1.4 Approaches  

        Circumventing the FLP impossibility has been an active research area in past two 

decades. The most common approaches that have been proposed can be categorized 

into four types; multi-ordering protocols, deterministic protocols, randomised 

protocols and fail-signal protocols.  

      Randomized protocols [EMR01, MNC+06] are a family of protocols where FLP 

result is avoided by providing a probabilistic solution. Participants go over rounds of 

communication and make random choices on their estimate of decision values. The 

protocol progresses in such a way that eventually an identical value is decided. These 

protocols guarantee termination only in probabilistic terms which tend to 1 as elapsed 

time approaches infinity. This type of protocol is a non-leader protocol (where all 

nodes have the same quality, the same responsibility and have no use of unreliable 

Failure Detectors. Such protocols eliminate the need for detection and recovery from 

crash which is not an easy task because of the mistakes that can be produced by 

FD’s.); however, the main disadvantage of this type of protocol is that the number of 

messages needed for termination is unknown, and the time needed to arrive to a 

decision my approaches infinity. 

       The second is called Fail-Signal protocol. Fail-Signal [BES+96, IE06] protocol is 

the third in the family of inherently redundant processes; namely, fail-stop and fail-

silent processes, all of these three protocols are constructed in a similar way. FS is a 

protocol whose termination guarantee is not dependant on any systemic/network 

conditions and the performance is only affected by existing communication delays 

and real failures. Fail-Signal process circumvents the impossibility by making the 

failing process announce its imminent failure and stop working after failing. The main 

advantage of this type of protocols is the use of perfect failure detector. However, the 

main disadvantage of this approach is that each FS node consists of at least two 

machines connected by a synchronous network. This will result in a higher level of 

message complexity because all constituents of FS node will generate their own 

messages. For example, if FS node has two machines, then 2 identical proposals will 

be sent out to all correct FS nodes. Two identical ack messages will be sent out to the 

other FS node and 2 identical Learn messages will be sent out to all correct FS nodes 

(message redundancy). Another disadvantage is the high latency that results from 

waiting for the response from all processes.  
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       The third type is called Deterministic protocols are built on the concept of 

Unreliable Failure Detector [CT91, CT96, CHT96]. Each process accesses Failure-

Detector oracle, which provides a list of processes suspected to be crashed. The 

weakest form of Failure-Detector is denoted by ◊S, which allows it to solve 

consensus. This type of FD has the following properties: (1) any crashed process is 

eventually suspected (completeness), (2) there is a time after which correct processes 

are not suspected (eventual weak accuracy). This category of protocols tends to be 

coordinator-based. A specific process is given the role of coordination of the 

execution of the protocol, when it is crashed then the protocol chooses another 

process to play this role. Chandra Toueg [CT91] is considered to be the pioneer in this 

group. Paxos [LAM98] is well known protocol, which considered as one of 

deterministic approaches as well. Comparing to the other two categories, deterministic 

approach is characterized with lower latency and lower level of message complexity 

as well.  

      The last type is multi-ordering protocols. We consider Mencius [MJM08] as a 

novel and a new protocol belongs to this group. Mencius is a replicated state machine 

built on the abstraction of Paxos, it runs concurrent instances of Paxos. Mencius as a 

multi-ordering protocol tackles the issue of single leader bottleneck inherited from 

Paxos.  Paxos suffers from some drawbacks in terms of communication pattern, CPU 

processing capacity, and latency of learning the outcome. By tackling the problem of 

single leader, the throughput is increased under high client load and latency is lowered 

under low client load. 

    Investigating Mencius over wide-area network will be the main theme of this work. 

In its published version, Mencius assumes n’=n=1 and N is some odd number that is 

larger than 1. Figure 1.2 depicts an example of Mencius system that has N = 3, and 

n’=n=1.   

 

Cluster site 1 Cluster site 3Cluster site 2

. . . . . .
WAN WAN

      n  = 1   n’ = 1   n  = 1     n’ = 1     n  = 1    n’ = 1

 

Figure 1.2 Mencius 
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      This thesis work both qualitatively and experimentally establishes that Mencius 

can only offer sluggish performance when replicas are deployed across wide-area 

networks. We analyse its design aspects and propose a new variant which is shown to 

offer much better performance.   

 

1.5 Contributions  

       Mencius [MJM08] was built over wide-area network and developed to tackle 

issues raised by single leader as in Paxos [LAM01]. In addressing these issues, it was 

able to achieve its objectives. Even with these achievements, we find that Mencius 

itself has its own issues that need to be addressed. Mencius has several problems that 

can substantially degrade its performance. These are revocation overhead, latency, 

false suspicion, crash, and bandwidth consumption of wide-area network. 

       We found out that the design of Mencius over wide-area network is the main 

source of all these problems. These problems are attributed to two issues: first, each 

site in Mencius has one server only. Second, Failure Detector reliability goes down on 

wide-area network. In order to overcome these problems, we decided to develop a 

new multi-ordering protocol called [Mencius]
N
. The new proposed multi-ordering 

protocol will be a form of multi-cooperative Mencius. 

       In order to overcome the aforementioned problems, we decided to implement 

Mencius over a local-area network and build our protocol [Mencius]
N
 on top of it. It is 

then distributed over wide-area network. Our solution will be presented in chapter 3 

and chapter 4.  

       In chapter 3, we tackle the issue of revocation overhead in Mencius which is 

needed in case of false suspicion or crash.  

       In chapter 4, we present our second part of this work.  The idea was to move the 

implementation of Mencius from a wide-area network to a local-area network instead. 

It is known that local-area network has higher band width, lower message delay time, 

lower latency, and lower rate of false suspicion occurrence compared to wide-area 

network.  

 

Tackling these issues will produce a new protocol that has the following 

contributions:  
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1.5.1 False suspicion: 

By moving the implementation of Mencius from wide-area network to a local-

area network, the occurrence of false suspicion will be reduced.   

1.5.2 Latency:  

Our proposed solution will reduce the latency of client requests. This will be 

achieved by eliminating the execution of Paxos protocol over wide-area 

network.   

1.5.3 Bandwidth consumption: 

Reducing the number of exchanged messages over wide-area network between 

sites to finalize each instance. Unlike Mencius [MJM08], only one message is 

needed to report the outcome for each instance. 

1.5.4 Threshold of saturation: 

As each site consists of n nodes (n = 2f + 1), there is  the capability to cope 

with a higher rate of requests. 

1.5.5 Removing client blocking: 

Unlike Mencius, each site is built of n nodes ( n = 2f + 1), hence, as long as 

the majority is correct, no client will be ever blocked and that site will be able 

to order requests received from its group of clients.  

 

These contributions lead to the following conclusions, which can be summarized on 

the following points: 

 

1- Distributed application services that need to solve Total Order problem over 

local-area network are advised to use either Mencius or revised Mencius, as these 

two protocols tend to perform better than [Mencius]
N 

 over a local-area network.    

2- However, for distributed application services that need to solve Total Order 

problem over a wide-area network, it is preferable to use [Mencius]
N
, which is 

proved through the course of this thesis that [Mencius]
N
 has better performance 

than Mencius.   

3- It is possible to exploit message size in order to increase performance in 

[Mencius]
N
. There is, however, a trade-off between throughput and latency in 

relation to message size. With a low request rate, it is suggested that single 

messages (no batching) is used. This produces better latency. However, if a high 
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request rate is used, users should resort to batching multiple messages in a single 

message in order to obtain better throughput. 

 

1.6 Thesis structure  

The structure of this work will be as follows: 

         Chapter 2 presents in detail the different approaches used to solve consensus. 

We will start by describing Fail-Signal approach [IE06], and randomized approach 

[EMR01]. Next, we will move to talk about deterministic approach, starting with 

Chandra and Toueg protocol [CHT96, CT96, CT91], then we will focus on Paxos and 

Mencius. Most of this chapter will be dedicated to the latter ones, as they form the 

foundation of our protocol.  

       Chapter 3 analyses Mencius, in particular, their claim that false suspicion and 

crash rarely occur. We believe that cases of false suspicion and crash occur frequently 

and the cost of revocation is very high. To minimize that cost, we made certain 

changes to Mencius protocol. Our modification is: we will revoke a whole range using 

one instance.  

        Chapter 4 presents our solution that fulfils the contributions mentioned above: 

[Mencius]
N 

protocol built on top of Mencius. Basically, this protocol deals with crash 

failure model and adopts the same assumption adopted by Mencius which says that 

false suspicion and crash occurs rarely.  The main concept of our new protocol is built 

on two levels: first, each site has n nodes (n = 2f + 1). Second, the number of 

messages needed to finish each instance that is exchanged between sites over wide-

area network will be reduced from 3 messages to only 1 message. 

        Chapter 5 presents our experiments and their results. Data measurements that are 

collected from our experiments will be used to analyse and compare the performance 

of both protocols. We will evaluate both of them according to their throughput and 

latency.  

        Chapter 6 presents the summary of this work, our conclusion and future work 

that could be carried out to continue in-depth research into the area of Multi-Ordering 

protocols.  
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Chapter 2 

Related Work 

 

2.1 Introduction  

      A common approach to achieve fault tolerance is to resort to state machine 

replication [GS97, DGG05, SCH93]. Commonly, the structure of client and server is 

used to design distributed systems.  Normally, a service is implemented on one server 

and the client invokes the service by sending requests to that server. Using one server 

is the simplest way to provide the service; however, the level of fault tolerance is zero 

and unfortunately not acceptable. The provision of the service is available only as 

long as that server is functioning.  In order to increase the availability, the service is 

replicated on more than one server built on separate physical processors that can fail 

independently. The method used to build such a system is state machine replication. 

     The most difficult challenge facing state machine replication is to keep all copies 

of the service in agreement and consistent. This is called consensus. Because of FLP 

[FLP85] impossibility result, consensus is not solvable by a deterministic algorithm in 

an asynchronous environment even if a single process crashes, because in such 

circumstances, we cannot distinguish between a slow process and a crashed one. 

Classic Paxos is one of these protocols that circumvents FLP and solves consensus 

when time restrictions are assumed remain valid for a sufficiently long time.  

         In the following sections we start by defining consensus and then present the 

four approaches used to circumvent FLP and solve consensus. The four approaches 

rely on what is called oracle component associated with each process. To solve the 

agreement problem, this component is acquired by each process to help in making a 

choice to reach agreement. There are three different oracles: First, perfect Oracle 

adopted by Fail-Signal [IE06] approach, its name indicating that this Oracle makes 

no mistakes. Secondly, Random-Oracle [EMR01], and Suspector-Oracle [DSU04]. 

This brief survey will be started by presenting Fail-Signal approach, randomized 

approach, then deterministic approach. In the last one, we will start by presenting 

Chandra Toueg protocol [CHT96, CT96, CT91] followed by classical Paxos. As our 

new protocol [Mencius]
N 

is built on top of Mencius, and Mencius is built on top of 

Paxos, there is then a necessity to go into deep detail to describe Paxos. At the end of 
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this chapter, we will talk in detail about Mencius as well. Because the last two 

protocols form the foundation for our protocol, so the following lines will introduce 

both of them. 

         Paxos or classical Paxos is a protocol that executes infinite number of rounds. If 

in a round number k = i, a value v is chosen, then the protocol will guarantee 

consistency in a way that the same value v will be chosen in any round number j > i.  

Next we will consider Paxos in an environment where Fail Detector FD-Oracle Ω 

[CHT96] associated with each process to decide whether the local process should act 

as a leader or not, bearing in mind that FD-Oracle Ω is unreliable and can make a 

mistake. Then we will present a version of Paxos used to solve the Total Order 

problem.  As one form of consensus, we will describe the work of the protocol where 

a group of clients sends requests, the leader will be responsible for ordering these 

requests, after arriving at an agreement with the majority of the processes that request 

will be decided.  

      At this point, we will introduce Mencius which will tackle some issues raised by 

the single leader, starting by explaining simple consensus protocol [MJM08], in 

which replicas take turns in proposing values (in contrast to Paxos, only the leader can 

propose values), In simple consensus, only one special replica (coordinator), can 

propose any command; the others can only propose a special command no-op. At the 

end of this chapter Mencius protocol [MJM08] will be presented, which runs 

concurrent instances of simple consensus. But first we will state consensus. 

 

2.2 Consensus  

       We assume that a distributed system consists of finite set of n processes, and for 

achieving consensus (or Total Order)no more than  f  processes can fail by crashing at 

any time, where f ≤ (n-1)/2. Crash failure model means that a process either functions 

according to its specification or halts when it is crashed. Processes communicate by 

sending messages through an asynchronous network, where there are neither bounds 

on message delays nor on process speeds. The consensus problem is defined on a set 

of {p1,p2,…,pn} processes participating in proposing and choosing a value. Each 

process pi proposes a value vi, and only a single value of the proposed ones can be 

chosen by all correct processes, not less than  f+1. Protocols that solve consensus 

should guarantee: 
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(i) Validity or nontriviality (Integrity): only one of the proposed values can 

be chosen. 

(ii) Termination: every correct process must decide. 

(iii) Uniform Agreement: No two processes (correct or faulty) decide 

differently. 

The uniform agreement does require even the faulty processes to decide identically 

with the correct ones, which is harder to achieve [CS00].  

        Safety will be ensured by (i) and (iii) properties: the state of all processes will be 

consistent. The second property ensures liveness, that the service processes continue 

execution and keep producing outputs. It is important to notice that, unlike agreement, 

uniform agreement is harder to achieve [CS00], as it is required that even the faulty 

process must not decide differently than the correct ones. 

Note: whenever f is mentioned in this work it refers to the level of redundancy 

required for achieving consensus (or Total Order). 

 

2.3 Fail-signal  

         The system is modelled as n FS nodes interconnected by a wide-area network 

figure 2.1. The FS node can be found in one of two states, as shown in figure 2.2, and 

the transition from one state to another can occur at arbitrary instants of time. The FS 

process behaviour in each of the states however is well defined and is explained in 

detail below. 

 

 

WAN

LAN1 LAN2 LAN n

client1 client2 client3 client1 client2 client3 client1 client2 client3

Leader1 Leader nLeader2

Site 1/ FS 1

Follower 1 Follower 2 Follower n

server1 server2 server2 server2server1 server1

Site n/ FS nSite 2/ FS 2 . . .

WAN

 

 

Figure 2.1: Network context of FS 
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 Working State: The Process is working correctly and free of faults, then all 

expected outputs are produced and each output produced is correct and sent to all 

relevant destinations. The FS process operates as per the specification of the 

program executed by its constituent process replicas, assuming that FS process at 

initialization found in this working state.  

 

 Signalled State: The Process has halted at this terminal state; it emits only fail-

signal to any destination to which an output is due; the fail-signal is uniquely 

attributable to the Process and cannot be undetectable forged by another Process. 

 

Each FS node has two servers (φ+1), φ = 1, one called Leader and the other called 

Follower, and a group of clients. All these run on separate processors and 

communicate through a local-area network. FS nodes communicate with each other 

through wide-area network to implement a replicated state machine. Clients access the 

service by sending requests to their local servers via local-area communication. One 

of the FS nodes will act as a coordinator and the others will be considered as non-

coordinators.  

      A Fail-Signal process should be implemented using (φ+1), φ ≥ 1, replica 

processes that are fail-independent, hosted on distinct nodes connected using a 

synchronous network. These replica processes (φ+1) are referred to as Fail-Signal 

(FS) node. Only one of these replicas can fail by crash at any time. 

 

 

 

signallingWorking

 

 

Figure 2.2: The two states of FS process 

 

 

The mechanisms for constructing an FS process have been fully detailed in [BES+96, 

IE06]. The following will be a brief presentation of Fail-Signal model as detailed in 
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[IE06] with two states only.  The FS process can be found in one of two states, as 

shown in Figure 2.2, and the transition from one state to another can occur at arbitrary 

instants of time.  

       One replica of FS node is called Leader and the other one is called Follower. The 

central idea is that both processes of FS node are engaged in active replication; they 

compare the outcome at each step of the execution of the protocol and relative 

timeliness of the counterpart. If both processes are correct and working according to 

their specification, then there is an agreement and the results are produced within 

timeliness. If one of the replicas is not correct (not working according to its 

specification), then a special signal pre-prepared  sent out to all correct FS nodes 

informing them about the failure, and the protocol halts by transiting from Working 

state to Signalling state.  Every FS node keeps a list of all crashed FS nodes that have 

already announced their failure.  

        The execution of the protocol starts by sending a proposal from the coordinator 

to all correct FS nodes. All correct FS nodes will respond by sending ACK message. 

Then the coordinator after receiving ACK from all correct FS nodes will send learn 

message to all correct FS nodes. It is worth to mention here that, there is a redundancy 

of messages produced and sent out by both constituent of each FS node. One of the 

main disadvantages of this protocol is its high level of message complexity.  

 

2.4 Randomized Approach  

       The main concept of this approach relies on abandoning deterministic guaranty 

and providing a probabilistic solution to consensus. Hence the number of steps or 

messages needed to arrive at a decision is unknown. The protocol will decide a value 

with probability 1 when time t approaches infinity. In such a protocol, each process is 

accompanied with a component called R-Oracle, that generates a random value x є {1, 

. . . , n} when queried by the associated process. 

      Generally speaking, the protocol executes according to the following steps 

[EMR01]: the protocol goes through a number of rounds, each has two phases. In the 

first phase, process pi proposes its value vi  to all other processes. This process has a  

variable that represents its estimate value esti,  initially equal to vi. In this phase, each 

process will be waiting to receive from the majority their values, so each process will 

maintain a list of initial values received from other processes vali {1:n}. If all the 
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values received correspond to one value v, then  esti will be updated to v, otherwise  

esti updated to ⊥. In the second phase, process pi multicast its updated estimate 

value esti to all other processes. The action taken by each process will be carried out 

according to the values received from the majority in the second phase: 

- If all messages from the majority correspondence to value v ≠ ⊥, then esti  = 

v, and decide v. 

- If at least one message is v ≠ ⊥,then esti  = v and go to the next round. 

- If all messages are ⊥, pickup randomly one value from vali {1:n} and set esti  

to that value and go to the next round. 

       By executing consecutive rounds of the protocol, the variable esti will be updated 

to one of the values vali {1:n} proposed by one of the processes. This guaranties 

safety. The decision taken by all processes will converge to a single value which 

guaranty liveness. This type of protocol is a non-leader protocol; however, the main 

disadvantage of this protocol is that the number of message needed for termination is 

unknown. 

       There are a number of works that tolerate crash failure [BEN83, EMR01, 

CMS89], and others that deal with Byzantine ones [CD89, AH90, FM97, KS01]. As 

our work is concerned with deterministic approach, we will go no further in exploring 

randomized approach. We refer interested readers to an extensive survey of this 

approach on [ASP03].   

 

2.5 Deterministic approaches  

       As our work is based on the deterministic approach, in this section we will start 

by investigating Chandra and Toueg protocol [CT91, CT96], then we will go deeper 

in exploring Paxos [LAM01, LAMO6], which forms the underlying protocol used by 

Mencius. 

  

2.5.1 Chandra and Toueg protocol [CT]  

        The work presented by Chandra and Toueg [CT91, CT96] introduced the 

concept of Failure Detectors to tolerate crash failures. A Failure Detector is a 

component associated with each process. When queried, it provides information about 

the state (crashed or not) of other processes.  There are several classes of failure 

detectors [CHT96]. One can recall that because of [FLP06], it is impossible to 
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correctly decide the state of other processes, whether they are alive or already 

crashed. In this work [CT96] they presented a range of failure detectors which can be 

classified according to two completeness (being correct) properties and four accuracy 

(being wrong) properties:   

       

Completeness 

We consider two types of completeness properties:  

 Strong completeness: Eventually every process that crashes is permanently 

suspected by every correct process. 

 Weak completeness: Eventually every process that crashes is permanently 

suspected by some correct process.  

 

   However, completeness by itself is not a useful property: a failure detector may 

trivially satisfy this property by always suspecting all the processes in the system. To 

preclude such behaviour, a failure detector must also satisfy an accuracy requirement 

that restricts the mistakes that a failure detector can make. Sections 3.2 and 3.3 

consider accuracy and eventual accuracy, respectively. 

 

 Accuracy 

We define two types of accuracy properties: 

 Strong accuracy: Correct processes are never suspected.  

Since it is difficult (if not impossible) to achieve strong accuracy, we also 

define: 

 Weak accuracy: Some correct process is never suspected. 

 

The following three classes of failure detectors are defined: 

 P, the set of Perfect Failure Detectors that satisfy the strong completeness and 

the strong accuracy properties. 

 S, the set of Strong Failure Detectors that satisfy the strong completeness and 

the weak accuracy properties, 

 W, the set of Weak Failure Detectors that satisfy the weak completeness and 

the weak accuracy properties. 

Note that  P  ⊂  S  ⊂  W  [CT91].  
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Even weak failure detectors guarantee that there is at least one correct process that is 

never suspected. Since this type of accuracy may be difficult to achieve, we consider 

weaker forms of accuracy in the following section. 

 

Eventual Accuracy 

The following types of failure detectors are considered that may suspect every process 

at one time or another. Informally, we only require that some accuracy property is 

eventually satisfied. We consider the following two types of eventual accuracy. 

Eventual strong accuracy: There is a time after which correct processes are not 

suspected. 

Eventual weak accuracy: There is a time after which some correct process is not 

suspected.  

 

Each one of the three types of failure detectors that we defined in the previous section, 

we can replace the accuracy requirement with the corresponding eventual accuracy 

requirement. This results in the following three classes of failure detectors: 

 

 ◊P, the set of Eventually Perfect Failure Detectors that satisfy the strong 

completeness and the eventual strong accuracy properties. 

 ◊S, the set of Eventually Strong Failure Detectors that satisfy the strong 

completeness and the eventual weak accuracy properties. 

 ◊W, the set of Eventually Weak Failure Detectors that satisfy the weak 

completeness and the eventual weak accuracy properties. 

 

Clearly,  ◊P  ⊂ ◊S  ⊂ ◊W,  and  P  ⊂◊P,  S  ⊂◊S, W  ⊂ ◊W  [CT91]. 

 

In [CHT96] they defined a new failure detector, denoted Ω, that is at least as strong as 

W. They then show that any failure detector D that can be used to solve Consensus is 

at least as strong as Ω. Thus, D is at least as strong as W. The output of the failure 

detector module of Ω at a process p is a single process, q, that p currently considers to 

be correct; we say that p trusts q. In this case we say that all failure detectors satisfy 

the following property: 
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There is a time after which all the correct processes always trust the same correct 

process: 

As with W, the output of the failure detector module of Ω at a process p may change 

with time, that is, p may trust different processes at different times. Furthermore, at 

any given time t, processes p and q may trust different processes. 

 

 

2.5.2 Paxos algorithm  

     Paxos is a single leader protocol [BOI01], figure 2.3 shows network context of 

Paxos. The leader is the coordinator of the protocol and will be in charge of choosing 

the value. Paxos will be executed by n processes; one process will be elected as the 

leader and the others as non-leaders participating in the execution of the protocol.  

The leader will play a central role in taking the decision, and communication will be 

directed to the leader. 

 

 

Server1 Server2 Server3

WAN WAN

LAN1 LAN2 LAN3

client1 client2 client3 client1 client2 client3 client1 client2 client3

Leader

. . . 

 

 

 

Figure 2.3: Single leader system 

 

 

Paxos distinguishes three different roles played by each process, a single process can 

play more than one role: proposer is the process that propose a value that could be 

decided, acceptor is one of the processes that participate in taking decision, learner is 

the process that get informed about the decision which has been chosen. So we will 
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restrict ourselves to the use of these three terms (proposer, learner, and acceptor) to 

reference any process or server when describing Paxos.  

        In a Client / Server system, a client might play the roles of proposer and learner, 

and server might play the roles of acceptor and learner. All the acceptors participate 

in executing the protocol so long as they are correct, one of the acceptors play a 

distinguished role, which is called leader. Assuming that each server has a group of 

clients, and each client proposes its value to its server. If that server is not the leader, 

then the value will be forwarded to the leader, which will execute the protocol to 

choose a value with the participation of other correct acceptors, which should be ≥  

f+1. The chosen value will be sent to the learners.  f+1 forms the majority of 

acceptors including the leader himself, this condition will guaranty consistency 

within all servers, because any two majorities will have at least one acceptor in 

common.  
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                           Example 1                                                               Example 2 

 

Figure 2.4 Client/Server role 

 

 

Figure 2.4 presents two examples that depict the role that can be played by both the 

server and the client.  These usually depend on the application. Example 1 shows 

servers playing the role of acceptors and learners. Servers take the decision and send 

the result to the clients. In our implementation in this work, we will be following the 

version presented in example 1, which is more useful in Total Order.  Example 2 
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presents another aspect where servers act as acceptors and clients as learners.  In this 

example, clients will participate in executing Paxos and will take the decision when 

they receive messages from the majority of the acceptors.  

 

2.5.2.1  Paxos: no failure case  

       Here we present classical Paxos protocol [LAM06]. The protocol executes 

infinite number of rounds, and if in a round number k = i  a value v is chosen, then the 

protocol will guarantee consistency in a way that the same value v will be chosen in 

any round number j > i. Each round with a single leader that coordinates the 

execution of the protocol figure 2.5. One of the acceptors will play the role of the 

leader. Symbol l denotes the leader and symbol q denotes one of the ordinary 

acceptors.  

 

 

 

 

round 1 round 2 round i

Leader of round 2Leader of round 1 Leader of round i

t
 

 

Figure 2.5 Paxos protocol executed in rounds 

 

 

 

The following variables are maintained by acceptor q: 

Acceptor variables : 

rnd[q] = 0 : the highest-numbered round in which q has participated. 

vrnd[q] = 0 : the highest-numbered round in which q has ACK an order. 

vval[q] : the value that q has accepted in round vrnd[q]. 

 

The following variables are maintained by leader l: 

Leader variables: 

lrnd[l] : the highest-numbered round that l has started. 
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lval[l] : the value that l has proposed for round lrnd[l]. 

Messages used: 

PREPARE, ACCEPT , SUCCEED - sent from leader to acceptors. 

ACK, SUCCEED – sent from acceptors to leader or to all. 

 

Figure 2.6 shows that the protocol executed in two phases. In phase one, the leader 

collects the values from the correct acceptors, by sending prepare message and  

receiving ACK from the majority. In phase two, the leader will choose a value, this 

value will be the leaders value if no value was chosen before. Otherwise, the value 

with the highest round number reported by at least one of the acceptors will be 

chosen, then the decision will made and disseminated to all learners. The following 

will be the description of the two phases. 
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Figure 2.6: Classic Paxos 

 

 

 

Phase 1 

(a) - If lrnd[l] < i , then a new round i is started,  leader sets  lrnd[l] to i , setting 

lval[l] to none, and sending PREPARE(lrnd[l] , lval[l] ) message to all acceptors 

asking them to participate in this round. 

 

(b) - Acceptors will acknowledge  PREPARE message if lrnd[l] > rnd[q],  by setting 

rnd[q] = lrnd[l], then sending back ACK(rnd[q], vrnd[q], vval[q]) the 
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acknowledgement message will be sent back to the leader.  However,  if  lrnd [l] ≤  

rnd[q], the message is ignored.  

 

Phase 2 

(a) - the leader waits to receive ACK( rnd[q], vrnd[q],  vval[q]  ) message from the 

majority, if lrnd[l] = i and lval[l] = none, then leader has not begun a higher round, 

and has not performed phase 2a for this round. A value will be picked according to 

the following (1) if no acceptor has voted before, then leader picks any value v, (2) 

otherwise, pick value v of the highest round vrnd[q]. Leader sets lval[l] = v, and 

sends to all acceptors ACCEPT(lval[l] , lrnd [l] ) message to invite them to vote. 

(b) - the acceptor receives ACCEPT(lval[l] , lrnd [l] ) message from the leader, so if 

lrnd[l] ≥  rnd[q] and vrnd[q] ≠  lrnd [l]  the acceptor sets vval[q] = lval[l],  vrnd[q] 

= lrnd [l],   and  rnd [q] = lrnd [l],  and a SUCCEED  message sent to all. However if 

lrnd [l] <  rnd [q] or vrnd [q] = lrnd [l]  ignore the message. 

 

 

2.5.2.2 Paxos: with Fail Detector case  

Fail Detector requirements  

        Here we are considering Paxos in an environment where the leader may crash, 

and there is a need for leader change. FD-Oracle Ω associated with each process will 

decide whether the local process should act as a new leader or not, bearing in mind 

that FD-Oracle Ω is unreliable and can make mistake [CHT96]. This model of fail 

detector Ω guarantees that there is a time after which only one process is correct and 

not suspected by the other correct processes (Eventual Leader). Ω is used to elect a 

new leader when the current leader is suspected to be crashed. If a process considers 

itself a leader, then it will start a new round which should be higher than any previous 

round. If majority agrees to participate in this round, then a value can be decided. In 

some cases several processes may consider themselves leaders, but each will use a 

different round, the protocol guarantee progress until only one process with the 

highest round gets the majority and arrives to a decision and finally elected to be the 

new leader, so long as the majority working properly liveness is achieved. However; 

safety is ensured even when the election fails.  
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Presentation 

      The protocol as presented in figure 2.7 introduces a new message NACK  

[UHS+04] sent from acceptors to leader informing it that the round number should be 

higher than any round number received before from other leaders. The protocol is 

executed in three phases. In phase one, the leader collects the values from the correct 

acceptors, by sending prepare message tagged with the highest round number. The 

correct acceptors will respond by sending ACK, in case the message they have 

received was tagged with the highest round number. In phase two, if the leader 

receives a single NACK, then it will abort this round and will try again with a higher 

round number. On the other hand, if it receives ACK from the majority of the 

acceptors,  a value will be chosen, this value will be the leader’s value if no value 

was chosen before. Otherwise, the value with the highest round number reported by at 

least one of the acceptors will be chosen. In the third phase the decision will be made 

and disseminated to all learners. The condition for the protocol to make the transition 

from one phase to the next one is to receive the majority of ACK and no NACK. The 

following will be the description of the three phases. 

 

Phase 1 

(a) - If lrnd[l] < i , then a new round i is started,  leader sets  lrnd[l] to i , setting 

lval[l] to none, and sending PREPARE(lrnd[l] , lval[l] ) message to all acceptors 

asking them to participate in this round, this message will be resent continuously until 

ACK message is eventually received from the majority, or even one NACK is 

received. 

(b) - Acceptors will acknowledge  PREPARE message if lrnd[l] > rnd [q],  by setting 

rnd [q] = lrnd [l], then sending back ACK( rnd [q], vrnd [q],  vval [q] ) the 

acknowledgement message will be resent continuously until the leader eventually 

receives it. However, if lrnd [l] ≤  rnd [q], negative acknowledgement NACK is sent. 

This is  the case when we have more than one leader.  

 

Phase 2 

(a) - the leader waits to receive ACK( rnd[q], vrnd[q],  vval[q]  ) message from 

the majority, if lrnd[l] = i and lval[l] = none, then leader has not begun a higher 

round, and has not performed phase 2a for this round. A value will be picked 

according to the following (1) if no acceptor has voted before, then leader picks any 
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value v, (2) otherwise, pick the value v of the highest round vrnd[q]. Leader sets 

lval[l] = v, and sends to all acceptors ACCEPT(lval[l] , lrnd[l] ) message to invite 

them to vote. However, if a single NACK message is received then the leader aborts 

this round and tries later with higher proposal number. 

(b) - the acceptor receives ACCEPT(lval[l] , lrnd[l] ) message from the leader, so 

if lrnd[l] ≥  rnd[q] and vrnd[q] ≠  lrnd[l]  the acceptor sets vrnd[q] = lval[l]  and 

rnd[q] = lrnd[l], then sending back ACK( rnd[q]) message, which will be resent 

continuously until the leader eventually receives it. However, if lrnd[l] ≤  rnd[q], 

negative acknowledgement NACK is sent. This is the case when we have more than 

one leader. 

  

Phase 3 

(a) - the leader waits to receive ACK(rnd[q]) message from the majority, if lrnd[l] = i, 

then the leader sends SUCCEED  message to all. However, if a single NACK message 

is received then the leader aborts this round and tries later with higher proposal 

number. 

(b) - the acceptor receives SUCCEED  message from the leader, will decide. 
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Figure 2.7: Paxos with three phases 

 

 

 

 

 

 



 -  -     29 

2.5.2.3 Paxos for Total Order problem  

         Paxos protocol is used to solve Total Order problem as a form of consensus as 

presented in [UHS+04, LAM01]. [FLP85, DDS87]  Show that Total Order can be 

transformed into consensus, and vice versa. Hence, the impossibility result holds for 

both problems. Therefore; any protocol solves Total Order problem must satisfy the 

following properties: 

 

(i) Termination – If a correct process delivers m, then all correct processes   

             eventually deliver m. 

(ii) Integrity – For any message m, every correct process delivers m at most 

once and only if m was broadcasted by some process. 

(iii) Total Order– If two processes (correct or faulty)  p1 and p2 deliver 

messages m1 and m2 then p1 delivers m1 before m2, iff  p2 delivers m1 

before m2. 

 

       The protocol will be defined according to the following context:  a set of all 

processes Π = {p1,p2, . . . ,pn} participating in Total Order protocol, where the total 

number of processes n ≥  2f+1. Each process consists of a learner that represents the 

service and an acceptor that represents the ordering protocol. The ordering processes 

acceptors execute a protocol that ensures the above three Total Order broadcast 

properties. On receiving every new request from a client, acceptors communicate 

with each other to assign a unique and identical order number. Hence, all correct 

acceptors forward all clients’ requests in identical order to the corresponding learners 

for execution. This leads to identical result generation at various replicas. 

       At this stage we will focus on a failure-free run, with fixed leader and no crash. 

Paxos protocol Total Order problem in two phases. First phase used for choosing the 

value, while the second phase used to commit the value.  In case of Total Order 

problem on a failure-free run the first phase will be replaced by the client sending a 

request to the leader. In such case there is no need to implement the first phase which 

used to collect values from all correct acceptors to check whether they have 

participated in taken some decision in different rounds. Here we will present two 

versions of Total Order protocol. In the first version acceptors will send 

acknowledgement to the leader only after receiving accept message from the leader, 

then there is a need for a third phase as in figure 2.7, in which the leader will inform 
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all acceptors about his decision, where in the second version after receiving accept 

message from the leader acknowledgement is sent by the acceptor to the leader as 

well as to all acceptors, following from that each acceptor will be able to decide on 

its own after receiving ACK from the majority, in this case there is no need for the 

third phase.  

       Paxos can be implemented using either 2-phase protocol (Classic Paxos), as 

presented in section 2.5.2.5 and figure 2.9 or 3-phase protocol, as the one presented in 

section 2.5.2.4 and figure 2.9. Even though the latter has more phases than the former, 

the message complexity in the 2-phase version is {3(n-1)+n
2
} which is higher than the 

3-phase {5(n-1)}.  

 

2.5.2.4 Normal operation in failure-free situation ACK is sent to the 

leader only  

         Using client/ Server context, and assuming that the leader is not going to crash. 

We have one leader which will not be changed during the course of protocol 

execution. The client sends a request to the leader, then the leader with the 

participation of other correct acceptors execute the ordering protocol according to the 

following steps: 

 

(a) -  After receiving a request from the client, leader gives an order number to this 

request sends ACCEPT message for this order to all acceptors, this order number 

should be higher than all previous order numbers ACCEPT( Oi , rnd# ).     

 

(b) –  Following the receipt of ACCEPT( Oi , rnd# )  message, acceptors acknowledge 

that by sending ACK( Oi , rnd# )  message to the leader  

 

(c) –  As soon as the leader receives ACK( Oi , rnd# ) from the majority of the 

acceptors, it will respond by sending SUCCEED  message to all acceptors.  

 

(d) –  Acceptors after receiving SUCCEED  message from the leader will decide. 

 



 -  -     31 

Figure 2.8 shows the above mentioned steps, this figure is similar to the one depicted 

in figure 2.7, except that in the first phase of figure 2.8 the client sends a request to 

the leader, instead of leader sending PREPARE to acceptors to choose the value.  
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Figure 2.8:  Paxos used to solve Total Order 

 

 

 

2.5.2.5 Normal operation in failure-free situation ACK is sent to all  

(a) -  After receiving a request from the client, leader gives an order number to this 

request sends ACCEPT message for this order to all acceptors, this order number 

should be higher than all previous order numbers ACCEPT(Oi , rnd# ). 

   

(b) –  Following the receipt of ACCEPT(Oi , rnd# ) message, acceptors acknowledge 

that by sending ACK( Oi , rnd# ) message to the leader and all acceptors.  

 

(c) –  If the leader and acceptors receive ACK( Oi , rnd# ) from the majority of the 

acceptors, they will decide on their own.  

Figure 2.9 shows the above mentioned steps, this figure similar to the one depicted in 

figure 2.6, except that in the first phase of figure 2.9 the client sends a request to the 

leader, instead of leader sending PREPARE to acceptors to choose the value.  



 -  -     32 

 

 

 

accept succeed

phase 1
phase 1

phase 2
phase 2

phase 2a
phase 2a

phase 2b
phase 2b

1
1

1
1

1
1

2
2

2
2

n
n

n
n

C
C

request
client

 

      

                                           Figure 2.9:  Paxos used to solve Total Order 

 

 

 

2.5.2.6 Total Order Protocol with leader change  

     The execution of the protocol explained here will follow the example of Paxos 

presented at section 2.5.2.2 and figure 2.7. In case of crash or suspicion of failure of 

the existing leader one of the correct acceptors will be selected by its Ω to play the 

role of the new leader. The following steps explain the process of leader change: 

 

Phase 1 

(a) – when the new leader gets selected by its Ω, it will start executing first phase as 

shown in figure 2.10. The new leader needs to learn the history of other acceptors 

(order numbers that were decided). The PREPARE message will be tagged with a 

proposal number rnd# that is higher than any proposal number received from any 

predecessor leader, in addition to that it will carry a list of all missing/undecided 

orders. The purpose of this PREPARE message is to seek the highest proposal number 

less than rnd# for each of these order numbers that has been accepted by any 

acceptor.   
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(b) – An acceptor responds to PREPARE message by sending either ACK or NACK to 

the new leader. An acceptor will send NACK in case there are any order numbers 

with higher proposal number than rnd#. In this scenario NACK message could be 

made to carry the proposal number higher than rnd# corresponding to each order 

number for which an accept message was sent. This will guide the new leader which 

can attempt again with a new large enough proposal number. On the other hand; if the 

rnd# is higher than any proposal number seen by this acceptor, ACK message sent 

back to the new leader, and it must contain all order numbers and their corresponding 

requests for those reported missing/undecided by the new leader in PREPARE 

message if any was accepted locally. 

 

Phase 2 

(a) – after receiving ACK responses from the majority, the new leader will start 

executing phase two. It will send ACCEPT message carrying all order numbers up to 

the highest one reported. For unreported requests no-op will be sent to fill in the gap. 

If NACK was received the new leader aborts this round and tries later with a higher 

proposal number higher rnd#.  

 

(b) –  Following the receipt of ACCEPT(Oi , rnd# ) message, acceptors acknowledge 

that by sending ACK(Oi , rnd#)  message to the leader, if they have not  

acknowledged PREPARE message with a higher proposal number rnd#, otherwise 

NACK message will be sent back to the leader. In case of a single leader, this is 

always will result in sending back  ACK(Oi , rnd# ) message. 

 

Phase 3 

(c) –  If the leader receive ACK(Oi , rnd# ) from the majority of the acceptors, it will 

decide and send it to all correct acceptors. However, if the leader receives even a 

single NACK message, it will retry later by sending a new proposal with higher 

proposal number.                   

 

 

 

 



 -  -     34 

 

           

1
1

2
2

n
n

prepare
prepare accept

n
n

2
2

n
n

ack/nackack/nack succeed

2
2

1
1

1
1

1
1

1
1

1
1

phase 1
phase 1 phase 2

phase 2
phase 3

phase 3

Majority of ACK and 

no NACK

Majority of ACK and 

no NACK
Majority of ACK and 

no NACK

Majority of ACK and 

no NACK

 

                                           

Figure 2.10:  Paxos used to solve Total Order 

  

 

An Example of Leader change 

     An example quoted from [LAM01] to elaborate on leader change. Suppose that a 

new leader has been selected by Ω. Say the new leader knows about order 

assignments 1-134, 138 and 139. It will execute part 2 for orders 135-137 and all 

orders above 139 to find out if these are accepted by any process. It can use a single 

sufficiently higher proposal number rnd#_1 from its pool to construct a prepare 

message for all these missing orders as mentioned in (a) of Part 2 above. Suppose it 

received ACKs from at least a majority of processes containing requests with order 

numbers 135 and 140 only. Since at least a majority has not accepted orders 136, 137 

and higher than 140, these orders could not have been decided. To fill in the gaps, the 

new leader proposes 136 and 137 to be assigned to no-op requests. Hence the new 

leader can start executing part 1 of the protocol for every new request with 141 to be 

the first proposed order number. 

Another possibility is that the new leader receives a NACK containing a proposal 

number rnd#′, rnd#′ > rnd#_1. This implies that the sender process has accepted at 

least one of these missing orders for rnd#′. Therefore, the new leader chooses a 

proposal number rnd#_2 from its pool such that rnd#_2 > rnd#′ and restarts execution 

of part 2. 
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2.6 Deriving Mencius 

      We dedicated the previous sections of this chapter to define Paxos, but the rest of 

this chapter will concentrate on how Mencius was derived gradually. The authors of 

paper [MJM08], introduced the concept of simple consensus, which was built based 

on Paxos. Then they construct an intermediate protocol P, which runs an unbounded 

sequence of simple consensus. Protocol P was described using four rules, and finally 

by adding three optimizations and one accelerator they derived Mencius, figure 2.11. 

The benefit of gradual development of Mencius is that, they showed that simple 

consensus is correct, so Mencius is correct as well.   
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Figure 2.11: Deriving Mencius 

 

 

 

       Mencius is a replicated state machine that runs concurrent instances of simple 

consensus. The system has n sites (n=2f+1) interconnected by a wide-area network 

figure 2.12. Each site has a server and a group of clients. These run on separate 

processors and communicate through a local-area network. Servers communicate with 

each other through the wide-area network to implement a replicated state machine 

with 1-copy serializability consistency. Clients access the service by sending requests 

to their local server via local-area communication. We consider each site as a leader 

that orders requests received from the group of clients connected to it through local 

area network, so we have n leaders. When a server crashes, no request issued from its 

local area network will be ordered. Anyone of the correct servers can replace the 

crashed one to fill in the gap by producing no-op message. 
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        The approach that will be taken in presenting Mencius in the following sections 

is that, we will highlight the bottleneck of single leader, because single leader 

problem is focal point that Mencius tackled. Next we will explore simple consensus, 

then we will move straightaway to present Mencius itself omitting protocol P.  
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Figure 2.12: Network context of Mencius 

 

 

 

 

2.6.1 Single leader bottleneck  

         Paxos is a single leader protocol like other single leader protocols suffers from 

some drawbacks in terms of communication pattern, CPU processing capacity, and 

latency of learning the outcome. Addressing these drawbacks Mencius succeeded in 

achieving high throughput under high client load and low latency under low client 

load. These problems will be highlighted, and the following sections will explain how 

Mencius addresses them. 

       Clients on the same site as the leader enjoys low latency (clients connected to 

server1) figure 2.3, because the outcome will be learned in two communication steps 

or messages (propose, accept). First step, proposing the request to other servers 

(acceptors). Second step, receiving accept message from majority, then the outcome 

is ready for the clients of the leader’s site. However; clients on other sites have higher 
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latency, because they will suffer four communication steps or messages (forward, 

propose, accept, succeed). First step, one of the acceptors forwards client’s request to 

the leader. Second step, proposing the request to other servers (acceptors). Third step, 

receiving accept message from majority. The forth step, sending learn to all learners 

informing them about the outcome.  

 

       The second problem is the communication pattern, all messages will be 

propagated to the leader, while the channels between non-leader are idle, which will 

not utilize the available bandwidth of the whole system. This problem compounds 

when the system is network-bound, which means message size large enough to cause 

the channels to saturate before the CPU reach its limit. Therefore; shorter messages 

increase network bandwidth available to send more requests. The throughput of a 

network-bound system will be judged by how efficiently the message size is chosen. 

     The last one, the leader processes more messages then other replicas, because all 

requests are forwarded to the leader from other acceptors, especially when the system 

is CPU-bound. When the messages are of small size the number of requests received 

by the leader is increased and the leader’s CPU is fully utilized, while the other 

replica are not, consequently, the total system processing power will never be utilized. 

CPU-bound system put more demand on the CPU processing power to cope with the 

high number of requests received. The throughput of a CPU-bound system will be 

judged by the CPU power capacity. 

 

2.6.2 Simple Consensus  

       To derive multi ordering protocol Mencius [MJM08], simple consensus was built 

on top of classic Paxos, the concept behind that is in Paxos only the leader is allowed 

to propose values figure 2.13.  

Values that can be proposed by simple consensus are restricted to two values only, 

either a value representing a client request or no-op. No-op is a value that makes no 

change to the state of the system, hence no response will be generated by the receivers 

of this value. 
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Phase Classic Paxos 

2-phase 

Paxos with 

3-phase 

Simple 

consensus 
Phase 1a 

 

Prepare, 

From leader to all 

Prepare, 

From leader to all 

Prepare, 

From coordinator to all 

Phase 1b 

 

Ack, 

From each to leader 

Ack, 

From each to 

leader 

Ack, 

From each to 

coordinator 

Phase 2a 

 

Accept, 

From leader to all 

Accept, 
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Table 2.1:  Comparing message naming in each phase 
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Figure 2.13: Instances of Paxos 
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Figure 2.14: Instances of Simple Consensus 
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       In simple consensus servers take turns in proposing values figure 2.14, only one 

special server (coordinator), can propose any value (including no-op); while the 

others can only propose no-op. The benefit of using Paxos to implement simple 

consensus is that, Paxos is proved to be correct and guarantee safety and liveness, 

following from that simple consensus is correct. The terms used in this context will be 

different than the one used with Paxos. Acceptor and Leader will be replaced by 

server and coordinator respectively. Up to the end of this chapter we will reference 

each server that has turn to coordinate an instance i, as the coordinator of that 

instance and others as servers.  

 

2.6.2.1 Assumptions and requirements  

       In addition to the original assumptions made about Paxos (crash model and 

Failure detector) the following one will be added: the underlying network connecting 

servers will be based on asynchronous FIFO communication channels. Since TCP is 

the underlying transport protocol, we assume messages between two correct servers 

are eventually delivered, and delivered in order. 

       Every server is the coordinator of an unbounded number of instances, for every 

server p there is a bounded number of instances assigned to other servers between 

consecutive instances that  p coordinates.   

cn+p   to  server  p,   where   c∈ N0   and   P∈ {0, . . . , n−1}.   

For a system that has 3 servers n = 3. 

     “ P0  = 0, 3, 6, . .”                       

     “ P1  = 1, 4, 7, . . .”                      

     “ P2 = 2, 5, 8, . . .” 

 

2.6.2.2 Messages sent by server and their actions  

     According to Table 2.1 messages used with simple consensus that might have 

different meaning or action are the following: 

 

1. PREPARE: When the coordinator has been suspected to be failed, some server 

will arise eventually as the new leader and revoke the right of the suspected 

coordinator to propose a value. This is accomplished by finishing simple 

consensus instance on behalf of the suspected coordinator.  As in Paxos the new 
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leader will execute first phase to learn if a value may have been chosen for some 

round r’ > r , then this value will be proposed in phase 2. Otherwise, no-op will 

be proposed in phase 2. This operation is called REVOKE. 

 

2. PROPOSE: When the coordinator needs to suggest a request v, then the payload 

of PROPOSE message is v in round r, this message will be called SUGGEST. On 

the other hand, when the coordinator wants to skip its turn, it sends PROPOSE 

messages with a payload of no-op in round r, this message will be called SKIP. 

 

3. ACCEPT is used as a response for PROPOSE instead of ACK. 

 

4. LEARN message is used instead of SUCCEED, to inform correct servers about 

the outcome of the consensus instance. 

 

 

2.6.2.3 Simple consensus with no crash  

        Assuming that all servers have received requests ≠ no-op from their clients, they 

will start suggesting them. According to simple consensus coordinator P0 has the turn 

to coordinate instance 0 by suggesting a request, while the other two servers P1 and P2 

wait for the outcome of that instance. After learning the outcome P1 will take the next 

move to be the coordinator of instance 1, and server P0 and P2 will be waiting for the 

outcome of that instance. When that instance concludes P2 takes its turn to coordinate 

instance 2, and this instance will be accomplished in the same way as the others. This 

will continue as long as the servers have requests to suggest. In case a server has the 

turn to coordinate an instance with no request available to suggest, then it sends SKIP 

(no-op), which has no effect on the system state and will be learned immediately.  

       The importance of SKIP is that, it will release other servers from waiting for their 

turn which may take a very long time. Each server has the turn to coordinate an 

instance i figure 2.14, either suggests a request or SKIP its turn in case no request is 

available. 

         It is worth at this point to differentiate between learning a value and committing 

a value in the light of simple consensus protocol.  

     The output of simple consensus protocol sent to the application service using learn 

message. Each server will produce its own instances independently, which may result 
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in delivering different instances from different servers in random order. However; the 

application service guaranty that those message will be committed (consumed) in the 

right order figure 2.15, which might lead to some delay in committing instances.   
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application service input 
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Figure 2.15: Committing instances in the right order 

 

 

In case the application service did not learne instance i-1, but has already learned 

instance k,  where k ≥ i. then instance k cannot be committed till all instances < k 

should be received. 

      The description given above emphasizes that as long as there is no crash, the 

ordering process proceeds smoothly.  When sending learn message to the application 

service, it is assumed that everything is in order, and even though the instances are not 

delivered in sequence, sooner or later the other instances will be learned.  But the 

difficult issue is how does the system respond to a crash? With crash, some instances 

will not be produced as long as the crash is there. Missing instances which should 

have been produced by the crashed server will prevent the system from making any 

progress. This is the reason behind differentiating between learning and committing. 

To overcome this problem we resort to REVOKE operation, which will be explained 

next. 

 

2.6.2.4 Simple consensus with REVOKE  

        After describing how simple consensus behaves in a no crash environment, we 

will now focus our attention on how this protocol will react in circumstances when 
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one coordinator crashes. We have already mentioned that if a server has the turn to 

coordinate an instance i, it must do so by either suggesting a request or skipping its 

turn.  This gives a chance for other servers to commit what they have already learned 

without being blocked for a long time. The new scenario is what is the consequence if 

a coordinator crashes? We assume that P2 crashes (figure 2.16), and no suggest, or no 

SKIP  will be produced any more by that server. The application service of the other 

two servers P0  and P1 will not be able to commit any new instances as long as P2 

crashed, which may go for ever. To solve this dilemma, one of servers P0 or P1 must 

raise up and coordinate instances on behalf of P2. In our example server P0 will 

replace P2 in coordinating instance 2. P0 will send PREPARE to all correct servers to 

check whether a value has been suggested or not, when the majority respond by 

sending ACK with no value the new coordinator will send no-op for this instance 2. 

Now all correct servers will learn no-op for this instance.  

        The protocol will go back to normal work as it was described early. If the same 

server P2 still crashed, then for the next instance 5 that it should have been 

coordinated, will be revoked in the same way either by P0 or P1.  This is how crash 

problem is overcome in simple consensus. 
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Figure 2.16: Simple consensus 
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2.7 Mencius 

        As we mentioned early that Mencius will be derived in terms of the following:  

 four rules,  

 three optimizations,  

 and one accelerator.  

      Each server will run two services or processes. One service or process executes 

Mencius consensus protocol, while the other one executes the application service 

itself. 

         Mencius is a multi-ordering protocol, each server orders requests independently 

with the help of other servers, but committing these orders require tight coordination 

from other servers. This is inherited from the nature of Mencius where the sequence 

of consensus protocol instances is partitioned among the servers. The sequence is 

generated on the global level, which make servers tightly connected when it comes to 

committing the requests. The following sections will illustrate how this issue was 

tackled.   

Rule1. Each server p maintains its index number Ip, for a system that has three 

servers P0, P1, and P2 then IP0 = 0,3,6,… ; IP1 = 1,4,7,… ; and IP2 = 2,5,8,…,a server p 

suggests the client’s request to consensus instance Ip and updates Ip to the next 

instance. If the speed of suggesting values of all servers is at the same rate, then rule 1 

is sufficient for good performance. Figure 2.17 reflects the ideal system, all servers 

working with the same speed. 
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Figure 2.17: Servers suggesting with identical speed 
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Mencius is a consensus protocol that executes concurrent instances of simple 

consensus, so every server will be able to work separately and suggest requests 

according to the speed of its clients, and as soon as it receives the response from the 

majority, then the outcome of this instance can be learned and committed by all 

correct servers, regardless of the speed of other servers. However; the problem we are 

concerned about is that, if the application service did not receive instance i-1, but has 

already received  instance k,  where k ≥ i. then instance k cannot be committed till all 

instances < k should be received. Performance of the system is influenced by the 

speed of servers. The application service will commit requests according to the 

slowest server, which substantially degrades performance.  

        Figure 2.18 reflects the situation when servers working with different speeds. 

Servers P0 and P1 have the same speed and faster than server P2. Instances 0,1,2,3,4 

will be committed in sequence without any delay, but instance 6, and 7 have to wait 

for 5, and instance 9 and 10 also has to wait for 8. The system given here will commit 

instances according to the speed of server P2. The next rule will address this point. 
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Figure 2.18: Servers suggesting with different speed 

 

 

Rule2. When server p receives a SUGGEST for instance i and i > Ip, p updates Ip 

such that Ip’ =min{k : p coordinates instance k∧k >i}, before accepting the value and 

sending back an ACCEPT. p also executes skip action for all instances in range [Ip, 



 -  -     45 

Ip’ ) that p coordinates. The solution proposed here produces no outstanding messages 

by fast servers, because the slow ones will skip their turn. However the problem of 

crashed server is not solvable by this rule. We stated before that the underlying 

network connecting servers implements asynchronous FIFO communication channel 

using TCP as the underlying transport protocol, that implies if server p has sent 

SUGGEST for instance i, then by the time all correct servers receive instance i, either 

they have already received all instances < i, or they are slow, and they would  skip 

their turn.  

        Figure 2.19 depicts how the index of instances is adapted to the speed of servers. 

Server P2 after receiving instance 6 will skip 5 and the next instance that will be 

produced is 8. Servers P0 and P1 will commit 6 and 7 without waiting for 5, which 

was skipped. Next server P2 after receiving instance 12 will skip 11 and the next 

instance that will be produced is 14. Servers P0 and P1 will commit 12 and 13 without 

waiting for 11, which was skipped as well. In this way the problem of different speeds 

is mitigated.  
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Figure 2.19: Servers applying rule2 

 

 

Rule3. We assume that server p  has been suspected by another server q to be failed, 

and let us consider that CP is the smallest instance that was not learned by q and 
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should have been coordinated by p. Therefore, p will be revoked by q for all instances 

that p coordinates in the range [CP, Iq]. 

         Figure 2.20 shows how server P0 revokes P2 for instances (11,14,17,20) that P2 

coordinates, bigger than instances 8 (the last instance received from P2) and smaller 

than instance 21 produced by P0, where CP2 = 11 and Ip = 21. so servers P0 and P1 

will be able to commit all instances from 11 up to 19. However; if server P2 will 

continue crashed then one of servers P0 or P1 will raise again as the coordinator that 

will revoke P2. Revocation will continue as long as P2 crashed.   

        The number of times a crashed server is revoked affected by the range [CP2, Ipo]. 

If this range has one message then revocation needs to be carried on for each instance 

of simple consensus. Due to the use of all phases of the protocol we have more 

latency and message complexity, to reduce the extra cost generated by revocation we 

have to increase this range. 
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Figure 2.20: P0 revokes P2 

 

 

Figure 2.21 exemplifies a system of 3 servers P0, P1, and P2. P2 learns instance 5 and 

sends it to P0 only then crashes, so P1 did not know about instance 5. P0 raise up to 

revoke P2 and starts to proposes on its behalf. In this example P0 revokes P2 for 8 by 

sending PREPARE, as P1 does not know about 5 asks for it, P0 sends learn 5 to P1 and 

continues with revocation. Then P0 proposes no-op for 8 after ack from the majority, 

after being accepted by the majority learn will be sent. This example is equivalent to 
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the one explained at section 2.5.2.6, Total Order Protocol with leader change, Figure 

2.10. 
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Figure 2.21: P2 crashes after learning 5 and only makes P0 learn 

 

Any correct server suggesting v for instance i, a server p upon receiving v will update 

its Ip > i. According to rule 2 no outstanding messages,  for all instances smaller than 

i that correct server p coordinate, it will either suggest v or skip and all correct servers 

will learn the outcome. However; according to rule 3 for all instance smaller than i 

that faulty server coordinate, will be eventually revoked by a correct server and other 

correct servers will learn the outcome. Thus, v for instance i will be committed. 

Unfortunately false suspicion, which is inherited from FD characteristics is not 

tackled in this point, but will be dealt with in the following rule.  

 

Rule4. If a value v ≠ no-op was suggested by server p, but p learns that no-op was 

chosen for that instance, then p will suggest v again for a new instance j  > i. If server 

p correct and not permanently suspected, it will succeed to suggest v again, server p 

will use a new index Ip according to Rule 2. 

Figure 2.22 shows that P2 was suspected by P0 and revoked for instances 5, 8, 11 and 

14. P2 did not succeed to finish instance 5, but according rule 2 P2 will learn that no-

op has already been chosen for instances 5, 8, 11, and 14 so it will try again using 

instance 17. 
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Figure 2.22: Suspected server tries again 

      Ω failure detector has been shown to be the weakest failure detector. This model 

of Ω guarantees that there is a time after which only one process is correct and not 

suspected by the other correct processes, but some correct processes may be 

permanently suspected. A stronger failure detector must be used to eliminate that 

permanently false suspicion, which is called ◊P. By the definition of ◊P, there exist a 

time t after which process p will not be suspected. The need for a stronger failure 

detector is necessary because leader change in Paxos might result of permanently 

false suspicion. The newly elected leader will fully replace the old leader. 

Nevertheless, this is not the case with Mencius; leader change in Mencius should be 

temporary, which takes place at revocation time only. If a leader was falsely 

suspected by failure detector and revoked then this leader must be able to come back 

as a leader and removed false suspicion.    

Following these four rules the protocol is correct, but in order to increase efficiency 

some optimizations must be introduced. 

 

Optimization 1 

       No SKIP message will be explicitly sent separately from server q to server p.  

Alternatively, server q sends ACCEPT as a response for SUGGEST received from p, 
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implies that future suggest message sent by q to p for any client request will have 

instance number higher than i.  
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Figure 2.23: No need for skip message 

 

 

 

This mechanism can also be applied between server q and other server r. Server q 

piggyback SKIP messages on future SUGGEST instead of  ACCEPT. 

    Figure 2.23 reflects the behaviour of both servers P1 and P2 according to 

optimization 1. Server P1 by sending ACCEPT as a response for SUGGEST 3 will 

promise P0 that next instance coordinated by P1 will be higher than 3, which is 4.  

    The same applies for P2, which will promise P0 that next instance coordinated by 

P2 will be higher than 3, which is 5.  This optimization eliminates the need for SKIP 

message. 

 

Optimization 2 

       No SKIP message will be sent immediately between server q and r. Alternatively, 

q waits for future SUGGEST from r, indicating that future suggest message for any 

client request will have instance number higher than i. Optimization 1 and 2 implies 

that no SKIP message that will be sent explicitly. Optimization 2 is different of 

optimization 1 and it is needed in case of two idle servers.  
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       The implementation of optimization 2 creates a problem between two idle 

servers. Figure 2.24 shows that in case we have only one server P0 suggesting values 

and the other two P1 and P2 are idle, consequently P0 will learn SKIP message 

propagated to him from both according to optimization 1, and it will never be 

blocked, as there is no communication going on between server P1 and P2, they will 

learn nothing from each other, which will create a gap, and as a result of that they will 

be blocked as long as they are idle.  We use a simple accelerator rule to limit the 

number of outstanding SKIP messages before P1 and P2 start to catch up.  
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Figure 2.24: Sequence instances from P0 only 

 

 

 

Table 2.2 can be explained as following:  

Row 1: 3 servers P0, P1 and P2. P0 suggesting values and the other two P1 and P2 are 

idle. 

Row 2: P0 suggests value for v0, which is learned by P1 and P2 

Row 5: P0 suggests value for v3, P1 learns it and skips 1, which will be learned by P0 

only, and P2 learns it as well and skips 2, which will be learned by P0 only.  

Row 3: P0 and P1 learn skip 1, but not P2 

Row 4: P0 and P2 learn skip 2, but not P0 

This explains how the problem between two idle servers builds up. 
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                                             Table 2.2: idle servers problem 

 

 

Accelerator 1     

 The propagation of SKIP message between two idle servers occurs when the total 

number of outstanding SKIP messages is larger than some constant α, or the messages 

have been postponed for more than some time τ. The use of SKIP message will have 

negligible side effect on the message complexity of Mencius, as it is used 

infrequently, message complexity for Mencius is 3(n-1).  

 

Optimization 3 

We assume that server p has suspected server q to be failed, and let us consider that 

CP0 is the smallest instance that was not learned by p and has been coordinated by q. 

For some constant β, q will be revoked by p for all instances that q coordinates in the 

range [Cq, IP + 2β] if CP0 < IP + β. β represents the number of instances that will be 

revoked in advance by server p , those instances will be greater than IP. Comparing 

the implementation of rule 3 with optimization 3 shows that, optimization 3 will 

reduce the number of times needed to revoke a suspected server. 

 

2.7.1 Choosing parameters  

       Accelerator 1 and optimization 3 requires the use of three parameters τ, α, and β. 

The value of these parameters should be engineered very carefully.   

      The value of τ should be large enough, which makes the cost of SKIP messages 

acceptable. But, a larger τ, results in a commit delay for requests received by idle P1 

and P2 from P0. Luckily, when idle, the clients connected to P1 and P2 do not send 

1 P0 P1 P2 

2 0 0 0 

3 1 skip 1 skip X 

4 2 skip X 2 skip 

5 3 3 3 

6 4 skip 4 skip X 

7 5 skip X 5 skip 
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any requests, so from a client’s point of view the extra delay has little impact. For 

example, in a system with 50 ms one-way link delay, we can set τ to the one-way 

delay. This is a good value because: 

 

(1) With τ = 50 ms, Accelerator 1 generates at most 20 SKIP messages per second, if 

α is large enough. The CPU processing power and network bandwidth needed to 

process and transmit these messages are negligible. 

 

(2) The extra delay of at most 50 ms added to the propagation of the SKIP messages, 

which could be attributed to packet loss or network delivery variance. 

If τ has been chosen large enough, then constant α  is used to limit the number of 

outstanding SKIP messages before P1 and P2 start to catch up. To reduce the overhead 

of sending α SKIP messages by factor of α, then all α SKIP messages are combined 

into one SKIP message. For example, if we set α to 100, this reduces the cost of SKIP 

message by 99%. 

β defines an interval of instances: if a server q is crashed and Ip is the index of a non-

faulty server p, then in steady state all instances coordinated by q and in the range [Ip, 

Ip + k] for some k : β ≤ k ≤ 2β are revoked. In order to reduce the impact of servers’ 

inactivity we choose a large β to guarantee that while crashed other servers will not 

slow down, this also reduces the number of times when the crashed server will be 

revoked. 

 

 

2.7.2 Revocation in Mencius 

In Mencius revocation will have the following assumption: 

1. More than one revocation can take place at the same time for a different 

number of servers.  

2. Any server can be revoked by one server only [LAM01, MJM08]. 

 

        In this section we will explain revocation in Mencius. Revocation is an operation 

carried by some correct servers to coordinate on behalf of the suspected server. This 

means that all instances that should have been coordinated by the suspected server are 

replaced with no_op. This operation helps correct servers to commit all outstanding 
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messages that have already been learned. We have to stress that a learned instance i 

will not be committed until all instances less than i are learned and committed.  

        Figure 2.25(a) shows revocation in a system that consists of three servers. P0 

suspects P2 and starts revocation from the smallest instance 2 that is not learned by P0 

and should have been coordinated by P2. In order for correct servers to commit values  

learned for instances larger than 2, P0 will revoke all instances in range [2, 9+2*5) 

that  should  be  coordinated  by  P2  (the  range is  calculated  according to Rule 4 and 
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Figure 2.25: (a) P0 revokes P2 using Instance 9, (b) the  

outcome of revocation is learning instance 2 by P0 

 

 

Optimization 3 assuming that  β = 5), P0 will revoke instance 2, 5, up to  17 using its 

own instance 9 as a round number, and 3 phase protocol. Revocation is carried out 

instance by instance, so P0 will start revoking instance 2 using 9 a round number, then 

after finishing this instance will increase its round number to 12 to revoke instance 3, 

and so on up to instance 17. 

    The outcome of each instance depends on the state of the majority that will 

participate in that instance. If all of this majority report to P0 in phase 1 that no value 

was chosen, then, in phase 2, P0 will propose no_op for that instance, this is the case 

with revocation of instance 2. But in case of revocation instance 5, in phase 1 some 
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server reported to P0 that it has already accepted or learned this instance, so the 

outcome was learning 5. This process continues up to instance 17  

 

2.8 Summary  

We started this chapter by exploring the three approaches designed to circumvent the 

impossibility result [FLP85]. The following a few lines we will try to give a brief 

summary about each one of them: 

 

- Fail Signal, this approach has an advantage of perfect Failure Detector that makes 

no mistake. Nevertheless, it has higher cost regarding the number of physical 

machines (each node must have at least 2 machines) and also has higher message 

complexity. There are two factors that increase message complexity: (1) leader 

usually waits to receive responses from all correct FS nodes (not the majority), (2) 

there is redundancy in message generation by FS node constitutes. For example if 

FS node consists of 2 machines, then this FS node will generate two messages 

from each type. The redundant message will be considered as duplicate and 

discarded by the recipient.  

 

- Randomized approach, it is a decentralized protocol that has no leader. The main 

disadvantage of this protocol is that the number of rounds and messages needed to 

arrive to a decision is unknown. 

 

- Deterministic approach, in this approach we explored two protocols. We 

investigated Chandra and Toueg protocol [CT91, CT96], and Paxos [LAM01, 

LAMO6]. These are the two well-known asynchronous deterministic protocols 

designed to circumvent FLP impossibility result [FLP85].  

 

    We used a study that analyzes their performance to help us deciding which one of 

them will be the most suitable to use as underlying protocol for [Mencius]
N
. This 

study is carried out in [UHS+04] which titled “Performance Comparison of a Rotating 

Coordinator and a Leader Based Consensus Algorithm”. In this study, they arrived to 

the following conclusion “We evaluate the steady state latency in (1) runs with neither 

crashes nor suspicions, (2) runs with crashes and (3) runs with no crashes in which 
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correct processes are wrongly suspected to have crashed, as well as the transient 

latency after (4) one crash and (5) multiple correlated crashes.  

     The results. Our main finding is that, although the two algorithms have 

comparable performance in scenarios (1), (2) and (4), the Paxos algorithm performs 

significantly better in scenarios 3 and 5”.  This clearly shows why Paxos was chosen 

as underlying protocol in Mencius and [Mencius]
N
. 
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Chapter 3 

Performance Assessment of Mencius 

 

3.1 Introduction  

      Having studied and analyzed Mencius thoroughly in the previous chapter, we 

here expand on certain concerns about Mencius performance. We decided in this 

chapter to assess Mencius regarding its performance in relation to the assumption of 

the occurrences of false suspicion. In Mencius, they assume that false suspicions 

rarely occur in practice. In contrast to Mencius, we consider in this chapter that false 

suspicions can occur frequently. The result of the new consideration will be reflected 

in an increase of revocation overhead in the system. The problem is two fold; first is 

revocation overhead, and second is the frequency of false suspicion occurrence. The 

latter will be dealt with in chapter 4, while the first will be dealt with in this chapter.  
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Figure 3.1: Mencius with three phases 

 

 

As described in the previous chapter, Paxos can be implemented using either 2-phase 

(Classic Paxos) or 3-phase. Even though the latter has more phases than the former, 
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but message complexity in 2-phase version is {3(n-1)+n
2
} which is higher than the 3-

phase {5(n-1)}. Because of that advantage of message complexity Mencius 

implementation uses 3-phase version of Paxos. The protocol will go through all those 

phases when there is a suspicion of failure or crash, however; when there is no 

suspicion of failure or crash, the protocol will execute the last 2 two phases only. 

Figure 3.1 gives an illustration about the 3-phase and their distinct message names. In 

the following sections more details will be presented about the function of each 

message.  

 

3.2 Criticism of revocation in Mencius  

In our analysis of revocation we will assume that Pi   suspects Pj 

Very important notations: 

 IPi: is the index or sequence number of server Pi for the next simple consensus 

instance.  

 CPj : is the smallest instance that was not learned by Pi and should have been 

coordinated by Pj  

 β : defines the interval of instances that should be revoked in advance  

 

       In this section we will analyze revocation as implemented in Mencius, trying to 

highlight its drawbacks and side effects on the whole system. All instances in the 

range [CPj, IPi + 2β] that should have been coordinated by the suspected server are 

revoked one by one by the revoker using the full protocol (3 phases), and also it has to 

propose its own requests if there is any (using 2 phases) as well, so the revoker will be 

over loaded during that period and slows down. In brief, as the revoker has to do two 

jobs at the same time, there is an increase in the demand for more CPU processing 

power. Revocation will produce unbalanced CPU utilization; the CPU of the revoker 

will be fully utilized, while the other correct servers are not. In higher rates of 

requests, the system suffers higher latency and lower threshold of saturation. 

     Revocation overhead is now analysed as shown in figure 3.2, in which we assume 

P2 crashed and P0 revokes it. Figures used in this example are quoted from the 

experiment carried out in [MJM08]: constant β = 100,000 which represents the 

number of instances that should be revoked in advance, and FD timeout is set to 5 

seconds starting from the moment the TCP connection is detected to be lost. Mencius 
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was capable of executing 3000 operation per sec (ops) for each server using 2 phase 

protocol. From all those figures we can calculate the total number of instances that 

should be coordinated by the revoker on behalf of the suspect server using 3 phase 

protocol [(3000 * 5sec) + (2 * 100,000)/3servers) ≈ 81,666 op ], as the revoker uses 3 

phases will be able to produce less than 3000 ops. In addition to that the revoker must 

coordinate its own requests if it has any using 2 phase protocol [(2 * 

100,000)/3servers) ≈ 66,666 op]. This illustrates the overhead that should be done by 

the revoker in case revocation is carried out one by one; the revocation method was 

described in chapter 2 section 2.7.3. 
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Figure 3.2: revocation overhead 

 

 

       Before presenting our solution, we will mention some facts about Mencius which 

will help in understanding our solution.  FIFO implies that if server q coordinates 

instance j and i, where j < i, then all correct servers accept and learn j before i, and 

instances will be committed in sequence as well. So learning a value by itself does not 

mean that the value will be committed immediately, however; the system must 
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guarantee that those values will be committed in the right order, which might lead to 

some delay in committing instances. In case the system did not learn instance i-1, but 

has already learned  instance k,  where k ≥ i. then instance k cannot be committed till 

all instances < k are learnt. 

       Mencius distinguishes two types of messages (suggest = request and skip = 

no_op) which can be proposed using 2-phase protocol and 3-phase protocol as well. 

In this chapter we show our concern regarding revocation in Mencius.  During 

revocation process some server raises up to revoke a suspected server, the revoker 

tries to revoke a whole range of instances that should have been coordinated by the 

suspected server. Our solution says that the moment the new coordinator succeed in 

getting the majority of acceptors on no-op value then the whole range will be 

implicitly revoked as well. So there is no need to go in revocation one by one as the 

majority will promise not to accept any instance that could be proposed by the 

original coordinator in this range. The new modified version of Mencius addresses the 

problem of the high probability of crash and false suspicion that might be triggered 

more frequently by the FD. 

 

3.3 Assumption and principles 

Rule1. Each server p maintains its index number Ip, for a system that has three 

servers P0, P1, and P2 then IP0 = 0,3,6,… ; IP1 = 1,4,7,… ; and IP2 = 2,5,8,…, a server 

p suggests the client’s request to consensus instance Ip and updates Ip to the next 

instance. If the speed of suggesting values of all servers is at the same rate, then rule 1 

is sufficient for good performance. Figure 2.17 reflects the ideal system, all servers 

working with the same speed. 

 

Rule2. When server p receives a SUGGEST from q for instance i and i > Ip, p updates 

Ip such that Ip’ =min{k : p coordinates instance k∧k >i}, before accepting the value 

and sending back an ACCEPT. p also executes skip action for all instances in range 

[Ip, Ip’] that p coordinates. The solution proposed here produces no outstanding 

messages by fast servers, because the slow ones will skip their turn. However the 

problem of crashed server is not solvable by this rule.  

 



 -  -     60 

Rule 3- We assume that Pi suspects that Pj has failed, and let CPj be the smallest 

instance that should have been coordinated by Pj and not learned by Pi. Pi revokes Pj 

for all instances in the range [CPj, Ipi) that Pj coordinate. Revocation is carried out for 

instance CPj only unlike Mencius (Mencius revokes all instance in that range one by 

one), there are only two possible outcomes of this revocation:  

1- if phase 1 show no value was chosen then it will propose no_op in phase 2 for 

the whole range.  

2- Otherwise, it proposes the possible consensus outcome by phase 2. 

If case 1 was the outcome of revocation then all instances k ≥ CPj and k < Ipi will be 

revoked automatically using only one Paxos instance and all of them will have no-op 

value. 

 

Rule4. If a value v ≠ no-op was suggested by server p for some instance i, but p learns 

that no-op was chosen for instance i, then p will suggest v again for a new instance j  

> i. If server p is correct and not permanently suspected, it will succeed to suggest v 

again; server p will use a new index Ip according to Rule 2. 

 

Optimization 1 

       This point will be explained according to the following system context; 3 servers 

p, q, and r.  Server p is active while the other two servers q and r are idles.  

       No SKIP message will be explicitly sent separately from servers q and r  to server 

p.  Instead, servers q and r send ACCEPT as a response for SUGGEST received from 

p for instance i, implies that future SUGGEST message sent by q and r  to p will have 

instance number higher than i.  

      In addition, this mechanism can also be applied between server q and the other 

server r.  Server q piggybacks SKIP messages on any future SUGGEST sent to r.  

 

Optimization 2 

       This point will be explained according to the following system context; 3 servers 

p, q, and r.  Server p is active while the other two servers q and r are idle. 

       No SKIP message will be sent immediately between server q and r. Instead server 

q waits for future SUGGEST from r for instance i, indicating that future SUGGEST 
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message generated by q will have instance number higher than i. Optimization 1 and 2 

implies that no SKIP message that will be sent explicitly.  

 

Accelerator 1     

 The propagation of SKIP message between two idle servers occurs when the total 

number of outstanding SKIP messages is larger than some constant α, or the messages 

have been postponed for more than some time τ. The use of SKIP message will have 

negligible side effect on the message complexity of Mencius, as it is used 

infrequently, message complexity for Mencius is 3(n-1).  

 

Optimization 3 

We assume that server q has suspected server p to be failed, and let us consider that 

CP0 is the smallest instance that was not learned by p and has been coordinated by q. 

For some constant β, q will be revoked by p for all instances that q coordinates in the 

range [Cq, IP + 2β] if CP0 < IP + β. β represents the number of instances that will be 

revoked in advance by server p, those instances will be greater than IP. Comparing to 

the implementation of rule 3 with optimization 3 shows that, optimization 3 will 

reduce the number of times needed to revoke a suspected server. 

 

3.4 Protocol description  

       Our multi ordering protocol as a modified version of Mencius and will be 

explained for three different cases. Every case will give a thorough explanation and 

will elaborate on different aspects of the modified protocol. As the operational 

environment changes with passage of time, as in t1 the state of the system is different 

from that in t2, and in order to cover all states we will put some assumption that 

should be followed in every case. We may assume that in t1 the system has no crash 

and no false suspicion but there is no guaranty that this will continue for ever, so the 

system in t2 may have different operational conditions. First we will start by applying 

the strongest assumptions about the system, and then we will remove those 

assumptions gradually to get to the weakest one. 
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Case 1- Assumptions: 

1. We assume that all servers working correctly according to their specification, 

and that no crash and no false suspicion occur that is, FD makes no mistakes. 

2.  All servers propose requests in the same speed.  

Each server coordinates its own requests using a Paxos instance for each request 

applying its own index numbers Ipi as a consensus number, server Pi suggests the 

received request using its current Ipi, and updates Ipi to indicate the next instance it 

will coordinate, so every time a unique index number is used which will not collide 

with other servers index numbers as shown in figure 3.3(a). The outcome of each 

Paxos instance will be handed to all servers as learned message, individual servers 

receives learned message from different servers and commit them in a sequential 

order as shown in figure 3.3(b).    
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Figure 3.3: (a) each server runs its own Paxos instances, 

(b) each server learns and commits all instances in sequence 

 

 

Case 2- Assumptions: 

1. We assume that all servers working correctly and no false suspicion as 

well (FD makes no mistakes). 

2. Servers work with different speeds.  
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The speed of each server depends on client’s requests, so when the client needs no 

service, then no requests will be handed to their server, figure 3.4(a) shows that server 

P2 has nothing to coordinate which explains the gap shown in figure 3.4(b). All three 

servers will learn instance  0,1, ,3,4, ,6,7,…., but not 2, 5 and so on, they will be able 

to commit instance 0, and 1 only, but instance 3, and 4 will be blocked till server P2 

coordinate instance 2, and instance 6, and 7 will be blocked till server P2 coordinates 

instance 5 as well. In order to prevent the system of being blocked for a long period of 

time we resort to SKIP message with a no_op value sent by the slow server to speed 

up the system, as was explained at Optimization 1. According to optimization 1 when 

P2 receives suggest from P0  for instance 3 or suggest from P1 for instance 4 will 

respond by sending accept which will imply that P2 is skipping 2,  
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Figure 3.4: (a) server P2 has got no requests to coordinate, 
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Figure 3.5(a) shows how accelerator is used to remove any outstanding messages 

between two idle servers. We set α = 4, and, for simplicity, we are not using any 

timers. 

 

1- After receiving instance 3 from P0, P1 sends skip 1 to P0 and starts counting 

outstanding messages towards idle P2. After receiving instance 3 from P0, P2 

sends skip 2 to P0 and starts counting outstanding messages towards idle P1.  

2- After receiving instance 6 from P0, P1 sends skip 4 to P0 and continues 

counting outstanding messages towards idle P2. After receiving instance 6 

from P0, P2 sends skip 5 to P0 and continues counting outstanding messages 

towards idle P1.  

 

3- After receiving instance 9 from P0, P1 sends skip 7 to P0 and continues 

counting outstanding messages towards idle P2. After receiving instance 6 

from P0, P2 sends skip 8 to P0 and continues counting outstanding messages 

towards idle P1.  

 

4- This is going to be the last one as we set α = 4. After receiving instance 12 

from P0, P1 sends skip 10 to P0 and continues counting outstanding messages 

towards idle P2. After receiving instance 12 from P0, P2 sends skip 11 to P0 

and continues counting outstanding messages towards idle P1. 

 

5- Accelerators of both idle servers P1 and P2 will be triggered figure 3.5e. P2 will 

send skip(2,5,8,11) to  P1, and P1 will send skip(1,4,7,10) to  P2. this move will 

remove any outstanding messages for both of them, and they will be able to 

commit everything. 
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Figure 3.5: (a) servers P1 and P2 idles, (b) server P0 learns everything instantly 

(c) P1 learns from P0 and its own skips only, (d) P2 learns from P0 and its own 

skips only, (e) accelerators are triggered and both P1 and P2 learns and 

commits everything 
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Case 3- Assumptions: 

1. We assume that some server can crash or could be falsely suspected (FD 

makes mistakes). 

2. Servers work with different speeds. 

        Revocation is a process carried out by some server on behalf of the suspected 

one. This means that all instances that should have been coordinated by the suspected 

server are replaced with no_op. This operation helps correct servers to commit all 

outstanding messages that have already been learnt. We have to stress that a learned 

instance i will not be committed until all instances less than i are learned and 

committed. The system state will only change the moment a message is committed, 

but not learned only. This fact was the foundation on which we build our revocation 

system.  

       Figure 3.6(a) shows revocation in a system that consists of three servers. P0 

suspects P2 and starts revocation from the smallest instance 2 that is not learned by P0 

and should have been coordinated by P2. In order for correct servers to commit 

learned values for instances larger than 2, P0 will revoke all instances in range  
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Figure 3.6: (a) P0 revokes P2 using its own Instance 9, (b) after revocation 

 each correct server will be able to commit any outstanding messages.  
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[Cp2, IP0 + 2β] that should have been coordinated by P2 (the range is calculated 

according to Rule 4 and Optimization 1 assuming that β = 5, Cp2 = 2, IP0 = 9), so the 

range will be [2, 9+2*5). P0 will revoke P2’s instances 2, 5, up to 17 using its own 

instance 9 as a round number and 3-phase protocol.  The outcome of this depends on 

the state of the majority that will participate in this instance. If all of this majority 

report to P0 in phase 1 that no value was proposed or learnt, then, in phase 2, P0 will 

succeed in revoking the whole range as shown in figure 3.6(b) using 9 as a round 

number, following this revocation all outstanding message will be committed.   

        In some circumstances as depicted in figure 3.7(a) some servers (for example P1)  

learnt instance 5 and 2 from P2, however; P0 did not receive anything from P2. In such 

situation P0 tries to revoke P2 using its own instance 9 as a round number.  P0 will 

revoke a range [2, 9+2*5) starting from instance 2, which represents the smallest 

instance that was not learnt by P0. As one of the majority that participated with P2 for 

instance 5 (for example P1) will NACK (2,5) in phase 1 to P0, then, P0 learns these two 

instances and aborts this round. Figure 3.7(b) shows that both P0 and P1 will be able to 

commit any outstanding values. 
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Figure 3.7: (a) P0 revokes P2 using its own Instance 9,  

(b) P0  learns 2 and 5, then aborts revocation 
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Figure 3.8 shows 5 server system (P0, P1, P2, P3, and P4), only server P0 is active while 

all other 4 servers are idle. P0  learns everything from himself and from the other 4 

correct servers. P1, P2, P3, and P4 each one of these servers will learn values produced 

by P0 and also will learn its own implicit skip only. For example P1 will learn 0, 5 and 

10 from P0 and its own skips 1 and 6. Another example P2 will learn 0, 5 and 10 from 

P0 and its own skips 2 and 7, and so on for the other two servers.  

 

    P1 suspects P4 and tries to revoke all P4’s instances in the range [4, 15+2*10), that 

is, it revokes 4, 9  . . . 34 of P4, where β = 10, Cp4 = 4, and IP0 = 15. P0 knows the state 

of all servers in the system, and also each one of the other four servers knows about 

its state and P0’s state. We assume that P2 and P3 participate with P1 in revoking P4, P1 

sends PREPARE to them informing them that it is going to revoke P4 from instance 4 

up to 34. As P2 and P3 know nothing about P4 acknowledging P1. In phase 2 P1 will 

propose no-op for the whole range [4 . . . 34]. These 3 servers P1, P2, and P3 will learn 

no-op for the whole range, but not P0 and P4, because they did not take part in that 

revocation. The system state about P4 will be as following: 

 

1. P0  learns skip 4 and skip 9 

2. P1  learns skip 4 up to skip 34 

3. P2 learns skip 4 up to skip 34 

4. P3 learns skip 4 up to skip 34 

5. P4  learns skip 4 and skip 9 

 

If P4 attempts to propose any SUGGEST for instance 14, it will learn about the 

revocation from 4 up to 34. As it waits for a majority of ACCEPT. Any majority 

should include at least one of P1, P2, or P3. Then P4 will abort this round and tries 

again using round number higher than 34 which is 39. When P4 succeeds in 

SUGGESTing 39 that implies, it has already skipped 14, 19, 24, and 29. That makes 

the system consistent, because all servers learnt no-op for that range.  
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Figure 3.8: P1 revokes P4 using Instance 15  

 

 

 

 

3.5 Summary 

        In this chapter we presented a revised version of Mencius built on a different 

fundamental assumption. This assumption says that false suspicion and crash occur 

frequently which is contrary to the Mencius assumption. Revocation overhead in 

Mencius is acceptable as long as false suspicion and crash occur rarely. We believe 

that if there is an increase in false suspicion and crash cases which occur more 

repeatedly, then it is reasonable to re-address the issues of revocation. As was 

explained in more detail through the course of this chapter, revocation can be 

achieved by using only one instance of Paxos to revoke a whole range.   

       The new mechanism of revocation reduces its overhead to the minimum. The 

revoker runs only one instance of Paxos to revoke the whole range of instances that 

should have been generated by the suspected or crashed server. When the revoker 
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finishes this instance goes back to its normal job.  This will make the revoker and the 

other correct servers work with the same processing capacity.  
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Chapter 4 

Protocol [Mencius]
N 

 

 

4.1 Introduction  

      Mencius in failure-free situation outperforms Classic Paxos. By having multiple 

leaders, the throughput is increased under high client load and latency is lowered 

under low client load. However; the implementation of Mencius over wide-area 

network has several disadvantages and these disadvantages can substantially degrade 

Mencius performance. The wide-area network characterized with high latency, small 

bandwidth and the latency can have high variance. Using Mencius over wide-area 

network will be incurred with many problems such as false suspicion, latency, and 

bandwidth consumption of wide-area network. Mencius could have another problem 

which is node crash. Because each site in Mencius consists of one server, the crash of 

that server means all clients connected to it are blocked.  

The following will be a brief illustration of the aforementioned problems. The first 

three points are related to the implementation of Mencius over wide-area network 

while the last one is related to the level of redundancy at site level (one server/site): 

 

1. Latency:  All instances in Mencius are executed using Paxos protocol, so each 

instance will be executed across wide-area network using 3 or 5 messages. The 

latency that incurs client requests depends on delays of wide-area network.  

2. False Suspicion: The implementation of Mencius over wide-area network 

increases the chances of false suspicion occurrence in the system. Wide-area 

network as an asynchronous model characterized with unknown bounds on 

message delay and unpredictable workload. These attributes increase Fail 

Detector unreliability, which leads to an increase of its mistakes [FLP85]. 

Consequently, false suspicion results in poor performance as stated in rule 4 and 

optimization 3 [MJM08].  

3. Bandwidth consumption: the problem of Mencius regarding this issue is that to 

finalize each request, Mencius will run an instance of Paxos either of 3 or 5 

messages. The correct server will go through instances of Paxos that has 3 

messages (propose, accept, and learn) when it is in a process of proposing its own 



 -  -     72 

requests. While the revoker will go through instances of Paxos that has 5 

messages (prepare, ack, propose, accept, and learn) when it is in a process of 

revocation. In our proposed work, both of theses case will be reduced to one 

message only.   

4. Crash:  Site crash in Mencius will block all clients connected to that site within 

its local-area network. In figure 4.1 If P0 crashes, then any one of the correct 

servers P1 or P2 can replace it to fill in the gap by producing no-op messages. The 

crash is therefore partially solved, by allowing clients connected to the correct 

servers to make progress and therefore commit what they learn. However, 

requests issued by clients connected to the crashed server will be blocked as long 

as crash conditions exist. To compound the crash problem, scaling in the 

hardware integration process now increases reliability challenges [EZH08, 

BAU05] to modern systems making crash an inevitable problem. 

 

 

Server0 Server1 Server n

WAN

LAN0 LAN1 LAN n

client1 client2 client3 client1 client2 client3 client1 client2 client3

P0/Leader0 P1/Leader1 Pn/Leader n. . .

WAN

 

 

 

Figure 4.1: Network context of Mencius 

 

 

        This chapter will focus on the following problems: latency, unreliable Fail 

Detector, crash, and bandwidth consumption. Are there any ways in which these 

issues can be tackled? Our proposal is to build multiple-cooperative Mencius as a 

two-layer system. One layer consists of local Mencius and the second layer forms 

global Mencius. The underlying network connecting servers of each local Mencius 
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system will be based on asynchronous local-area network. However, the underlying 

network connecting global Mencius systems will be based on asynchronous wide-area 

network. Both of these systems exchange messages.  

 

4.2 Two Level Mencius 

      Figure 4.2 represents a system that consists of two replicas or two levels: global 

replica and local replica. Global replica exists on a level of sites N, where N ≥ 2. They 

communicate through an asynchronous network (WAN) to implement a replicated 

state machine. Each site ( S
SI

 ) represents one Mencius system, creating [Mencius]
N
 

systems.  
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Figure 4.2: Network context  

 

 

     Local replica (site) on the level of servers, each local replica consists of n servers, 

forming a local Mencius system. Each site has also a number of clients which 

communicate with local servers. The underlying network connecting servers 

implements the FIFO communication channel, since TCP is used as the underlying 

transport protocol. This implies that messages between two correct servers are 

eventually delivered and delivered in order. 

        Each site should be implemented using n≥2f+1, where f ≥ 1, replica processes 

that are fail-independent, hosted on distinct nodes (machines) connected using local 

area network. These replica processes are referred to as servers (s). At most f of these 

replicas can fail by crash at any time. Figure 4.3 details one of these sites. Servers 
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communicate through a fast and reliable network to facilitate the work of replicas and 

to increase the reliability of FD and reduce its mistakes 

        Sites are always found in working state as long as the majority are correct. Crash 

within each site is transparent and not exposed to the outside world. Working State 

means that the site is working correctly and is free of faults. All expected outputs are 

produced and each output is correct and sent to all relevant destinations. Site operates 

as per the specification of the program executed by that site, assuming each site at 

initialization is found in this working state. As each site forms a local Mencius 

system, server crash is dealt with in terms of revocation, which was described in detail 

in the previous chapter.   

 

 

client1 client2 Client k

Site 

Server nServer 2Server 1

LAN

 

 

Figure 4.3: Site structure 

representing local Mencius 

 

 

 

       [Mencius]
N 

is a multi-leader state machine replication protocol that derives from 

Mencius. We consider each site as a leader that coordinates its own instances (figure 

4.4.) Each site is equivalent to one Mencius that orders requests received from its own 

group of clients to generate its Local Commit Stream.  This stream is then converted 

to Global Commit Stream on a global level.  
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Figure 4.4: [Mencius]
N
 as a multi-leader protocol 

 

 

4.3 Assumption  

We make the following assumptions about [Mencius]
N
: 

 For each site, at most f servers can fail by crash at any time.  

 Failure detector oracle: [Mencius]
N
 requires ◊P [MJM08], a class of failure 

detectors that eventually guarantees all faulty servers and only faulty servers 

are suspected. The implementation of local replica of Mencius over local-area 

network facilitates its work and increases the reliability of its Fail Detector, 

which will result in decreasing FD mistakes.  

 

4.4  Principles  

       In order to reduce redundancy, the implementation of Mencius within each site 

will adopt the same assumptions and principles mentioned in chapter 3. Every site is 

the coordinator of an unbounded number of instances (system of numbering instances 

is inherited from Mencius). For every site, there is a specific number of instances 

assigned to other sites between consecutive instances that site coordinates. Each site 

will produce its own local commit stream. That stream then will be transferred by 

each server to a Global Commit stream. Each site, S
SI

, maintains its site index number, 

ISI. The number of sites N could be any number ≥ 1, but for convenience in this work 

we assume a system that has three sites (iN+SI  to  site  S
SI

,   where   i∈ N0   and   
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SI(site index) ∈ {0, . . . , N−1}, for  N = 3) S
0
, S

1
, and S

2 
then  IS0 =0,3,6,…;  IS1 

=1,4,7,…; and IS2 = 2,5,8,…. 

        Figure 4.5 shows how local streams are formed then converted to a global one. It 

is a fact that all servers in a site will produce the same local stream and also will be 

able to map it to global stream. 
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Figure 4.5: Converting streams from local Mencius 

to global Mencius 
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Figure 4.6 explains the steps of forming global commit streams: 

Step 1- each site will form its local stream. 

Step 2- each site will convert its local stream to produce its part of the global commit 

stream, using the following equation iN+SI. 

Step 3- each site will merge its global stream with the ones received from the rest of 

sites to produce global commit stream. 
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 Figure 4.6: forming global commit stream 

 

 

 

    We can set a general formula that can be used to calculate a global index number 

for any server at any site as follows: 

 

( N * sij ) +  S
SI  

+  ( c *  n * N ) 

Where: 

N : the number of sites 

n  : the number of servers 
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c instance number , c∈ N0   

sij  server, where sij ∈ {0, . . . , n−1}.   

S
SI

  site, where S
SI ∈ {0, . . . , N−1}.   

 

     [Mencius]
N 

protocol is built on top of the abstraction of Mencius. Some of the 

issues that may encounter Mencius can also encounter [Mencius]
N
. It is known that 

the problem of idle server that faces Mencius (which was solved by sending skip 

message either explicitly or implicitly by the idle server), could also face [Mencius]
N
, 

where a whole site might go idle. This can happen when all servers in a site go idle 

(no requests are received from all the clients connected to that site), which causes that 

site to go idle as well. All other sites will not be able to commit any learned messages 

as long as there are any idle sites. Solving this problem means that the idle site must 

be induced to generate learn messages with no_op (skip) values. We find that there is 

a necessity to set new Rules to accommodate the changes needed by [Mencius]
N 

 

protocol to address the aforementioned problem. 

 

Rule 1a- Each site S
SI

 maintains its own global index number ISI, site S
SI

 suggests the 

client’s request to consensus global instance ISI and updates ISI to the next global 

instance. Each request will be mapped to its global instance number. 

 

Rule 2a – Each server si maintains its next global instance ISI. Upon receiving a learn 

message from another site S
SI, server si compares its own ISI with the other ISI  of the 

received learn message. If the received one is greater than ISI  of the local server ,  then 

SKIP message will be sent locally for that instance and updates its  ISI (global) index 

to the next instance. The solution provided here indicates that the slow sites will be 

forced to speed up and follow the site with the highest rate of requests. 
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4.5  Protocol design  

       Figure 4.7 shows that [Mencius]
N
 protocol is based on the abstraction of Mencius, 

and Mencius is based on the abstraction of Paxos. This reflects the behaviour of the 

new protocol.   

 

 

[Mencius]
N

[Mencius]
N

Mencius

Paxos

 

Figure 4.7: [Mencius]
N 

and its level of abstraction 

 

 

       [Mencius]
N 

consists of N sites, each site has n servers that are publicly ranked. 

Let this ranking be s1, s2,…, s2f+1  and be known to all set of servers. All servers 

within a site are normal servers (they just execute local Mencius) except one 

distinguished server, which is called Site Speaker. This Site Speaker has two extra 

jobs: first, to transfer local streams of instances to a global one and second, to 

communicate with other sites. This is what differentiates site Mencius in [Mencius]
N 

 

system  from the Mencius.  If the Site Speaker crashes, another server takes the 

position as a new Site Speaker.  The following are some facts about Site Speaker: 

 

1- At initialisation stage addresses of all servers from each site must be registered 

with all other sites. 

2- At initialization time, the server with the highest rank s1  will be the Site 

Speaker at all sites 
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3- Each server registers the name of the local Site Speaker and also the ones from 

other sites as well. 

4- Communication between different sites goes through Site Speakers only. 

5- Site Speakers just send and receive to/from other Site Speakers. 

 

       All sites are executing Mencius in the background, which we call local Mencius. 

Two aspects of Mencius are important to our protocol. The first one is the stream of 

instances produced by each Mencius and how that stream is merged with other 

streams to form what we called global stream or [Mencius]
N 

stream. The second one 

is how a crashed or suspected Site Speaker is replaced.  

       The abstraction of Mencius is broken down into two different abstractions: the 

abstraction of Mencius stream and the abstraction of replacing a suspected or crashed 

server which is inherited from Paxos. Mencius solves the problem of replacing a 

suspected or crashed server in terms of revocation only, as all servers are equal and 

doing the same job. However, this is not the case in [Mencius]
N
 because servers in 

each site are divided into two groups, according to their function. One group consists 

of one server which is called Site Speaker. The second group consists of the rest of the 

servers which is called the normal group. Suspicion of failure or crash in the normal 

group is treated in terms of revocation, exactly as in Mencius, which guaranties that 

local Mencius can make progress. Nevertheless, suspicion of failure or crash of the 

Site Speaker should be solved in two directions: one direction is revocation as the 

other group, and the second direction is to replace the Site Speaker.  

        Suspicion of failure or crash of the Site Speaker affects [Mencius]
N
, as this 

distinct server plays a crucial role in the execution of the protocol. [Mencius]
N
 relies 

on 
  
Site Speakers communication to make progress. The replacement of Site Speaker  

will ensure that [Mencius]
N 

can make progress as well. The following two sections 

will illustrate first the normal work of the protocol and second how the protocol will 

behave in case of Site Speaker crash or false suspicion. 

 

4.5.1 Normal work of [Mencius]
N 

  

    The normal execution of the protocol goes through two stages; the first stage is at 

local level and the second one is at global level.  
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     The first stage of the protocol takes place within a site, which we call local 

Mencius. Local Mencius runs normally as described in the previous chapter. Every 

server generates its own stream, then all streams are collected and merged together to 

produce local stream or site stream. Local Mencius site stream instances will be 

reported to other sites in the correct order. 

      In the second stage, or at the level of global Mencius, sites communicate with each 

other through a Site Speaker. It is known that the current Site Speaker might crash at 

any arbitrary time while it is reporting its local stream. This may create a problem for 

the new Site Speaker when it takes over as a new Site Speaker. The problem created 

for the new Site Speaker is that, from which point it must start reporting local learned 

messages to other sites. So to facilitate the replacement of the current Site Speaker 

with a new one we need to state how it is going to report local learned messages to 

other sites. We will suggest two ways to be adopted to address this issue.  

        First, as the current Site Speaker reports learned messages to other sites, it will 

also divide the local stream to a number of ranges. For example, every range consists 

of 20 messages and as soon as the current Site Speaker completes reporting the last 

message of that range to other sites, it will send a special message to all local servers 

informing them that this range was sent successfully to other sites. Every time a range 

is completed, it will be reported to local servers, range by range, as long as the current 

Site Speaker is alive.  

       The other way to address this issue is that the current Site Speaker will report 

learned messages to other sites without using any ranges. 

     This is how the protocol executes when Site Speakers are not falsely suspected or 

crashed. However, false suspicion or crash of the distinguished server can happen in 

any arbitrary time and will be explained in the next section. 

 

4.5.2 Site Speaker change in [Mencius]
N 

  

      Communication between sites takes place between Site Speakers only which 

might become a single point of failure. The simple solution is to allow all servers 

from one site to send learn message to all servers from other sites. This redundancy 

will surely overcome the problem of Site Speaker, however, this solution will 

overwhelm the network with redundant messages which, in turn, will increase 

message complexity. Every site will receive n
2 

 copies of the same message. 
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       We propose the following solution to overcome these problems. At the initial 

stage, addresses of all servers from each site are registered with other sites. Site 

Speaker from each site is known to other sites as the server with the highest rank, and 

also known to local servers as well. Site Speakers will exchange learnt messages, 

which means communication is 1 to 1. As soon as Site Speaker receives a learnt 

message, then  that  message  will  be multi-casted  to  all  servers within its own site, 

1 to n.  

       While a Site Speaker tries to send a learnt message to another Site Speaker, it 

detects the loss of TCP connection. It will then continuously try to send that message 

to its destination. If there is a temporary drop in the connection, messages will not 

reach the destination until a connection is eventually restored, unless the destination 

Site Speaker has crashed. In that scenario, a new Site Speaker will be selected, to 

which all communication is redirected. In the following section we will explain in 

detail how a new Site Speaker is selected and then installed. 

 

4.5.3 Installing a new Site Speaker  

       Site Speaker has a special role to play in [Mencius]
N
 protocol, which makes it a 

cornerstone in the building of the protocol.  Generally speaking, Site Speaker is a 

normal server that has more jobs to do than other servers. This server is prone to 

crash, false suspicion or overload of work.  With those problems facing the Site 

Speaker, the system must be provided with the right mechanism to replace the current 

Site Speaker. Those problems can be classified according to the reaction taken by the 

system into two groups: one group consisting of crash and false suspicion, the second 

group consisting of overload. When the current Site Speaker suffers from crash or 

false suspicion, then the system will enforce a new Site Speaker which means the 

correct servers will force the existing Site Speaker to retire. Nevertheless, when the 

current Site Speaker is overloaded, it then asks for a replacement. This is done for the 

sake of load distribution balance. Both cases will be explained in more detail in the 

following sections.  

 

4.5.3.1  Enforcing a new Site Speaker 

       All s servers (s1, s2,…, s2f+1 ) are publicly ranked, and defined therefore by the 

sequence in which they are to be the  Site Speaker. Let this ranking be s1, s2,…, s2f+1 
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and be known to all set of servers. At initialization time server s1  will be the Site 

Speaker at all sites and as soon as s1  is crashed and successfully revoked, then s2 will 

take over as the new Site Speaker. If s2 was also crashed, then s3 will be the new Site 

Speaker and so on. 

         All servers in a site register the current Site Speaker. When that Site Speaker 

crashes or is suspected of being failed, some server will eventually revoking it. The 

majority of servers will participate in that revocation and  notice that some servers 

succeeded in that revocation. The next server in ranking will eventually learn that the 

current Site Speaker has been successfully revoked and it will install itself as a new 

Site Speaker. Let us assume si is the current Site Speaker and was successfully 

revoked. If  si+1  is correct, it will eventually learn the outcome of this revocation and 

take over as  a new Site Speaker. Selecting a new Site Speaker will adopt the same 

mechanism of Chandra and Toueg protocol, where the choice of a new leader (Site 

Speaker) is based on the rotating coordinator paradigm. Failure detector oracle ◊S 

provides its process with a list of suspected processes that have crashed; the choice of 

the new leader (Site Speaker) is done in a round-robin fashion.    

        The current Site Speaker might be suspected or crash at any time while it is 

doing the job of reporting learnt messages to other sites. However, the server that will 

take over as a new Site Speaker will not be able to decide from which learnt message 

it must report to other sites.  There are two ways to solve this problem that was 

proposed at section 4.5.1.  

      If we adopt the first solution in which the current Site Speaker divide the local 

stream to a number of ranges, then when another server takes over as a new Site 

Speaker, it will pack all learn messages (starting from the first message that comes 

after the last range up to the last learn message before crash or suspicion) into one 

message and send it to all other sites. This might cause a message to be sent more than 

once (by the old and the new Site Speaker), however, this will be discovered by other 

sites and considered as a duplication, hence discarded. However; if we adopt the 

second solution then, as soon as the old Site Speaker is replaced by another server, the 

new Site Speaker starts reporting learnt messages (starting from the last learnt 

message before crash or suspicion) to all other sites. When the receiving site finds out 

that there are some missing messages, it will then ask the new Site Speaker about the 

learn messages not yet received.  
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         Correct servers eventually learn about the replacement of the existing Site 

Speaker and also know that the next server in ranking (if it is correct) will be the new  

Site Speaker. Any change in the Site Speaker must be registered by the correct 

servers. This update of the state of the system is necessary because false suspicion and 

crash are inevitable actions that can happen to any server including the Site Speaker at 

any arbitrary time. All servers in a site must have full information about the state of 

the system in order to be ready to act as a Site Speaker if necessary.  

         False suspicion is inherited from unreliable failure detectors, so if the old Site 

Speaker was falsely suspected or recovers from a crash and learns that some other 

server is acting as a Site Speaker, it will then retire from acting as a Site Speaker and 

join the group to continue the normal job as an ordinary server.  

 

4.5.3.2 Asking for a Site Speaker  replacement  

        In addition to executing local Mencius (coordinating its client requests), Site 

Speaker has to send local site stream to all other sites, receive streams from other sites 

and multicast them to local servers. This reflects the fact that network traffic from or 

to the Site Speaker is much higher than its counterparts in the site. The problem is 

compounded if it has active clients. In such circumstances, much of the bandwidth 

will be consumed by the Site Speaker which produces unbalanced communication 

pattern. 

       The second issue is that as Site Speaker receives higher number of messages, 

there is a higher demand for processing power than other servers. Even though 

messages are not really processed, receiving and sending messages continues to 

consume processing power.  

       In trying to get a more balanced communication pattern and better CPU system 

utilization, the current Site Speaker will seek the server with the lowest load and hand 

to it the Site Speaker responsibility. 

       Every correct server has to participate in executing local Mencius to coordinate 

its own requests. The load of ordering requests for each server depends on the number 

of requests received in a certain period of time in relation to other servers in the same 

site. Servers with very active clients will propose real messages, others with idle 

clients will generate skip only, and a third group, with a moderate load, will produce 

both.  Individual streams from each server will be received by all correct servers in 



 -  -     85 

that site. This will enable the Site Speaker to calculate the load distribution of each 

server. That can be achieved by counting the number of real messages (NRM) and 

skip messages (NSM) received at a certain period of time (from t1 to t2 ) from all 

correct servers, then subtracting both values (NRM – NSM). The results from all 

servers tells the Site Speaker which server has the highest load and which one has the 

lowest load.  

The Site Speaker periodically will make these calculations and analyze the collected 

data. The servers with positive results means that more real proposals than skip 

messages are produced. Zero means the same number of real proposals and skip 

messages are generated, and servers with negative results mean that they have 

inactive clients. 

       The Site Speaker will choose the server with the smallest negative number and 

asks it to be the new Site Speaker. The procedure of this replacement goes through the 

following steps: 

 

1. First; the current Site Speaker finds out the server with smallest negative 

number  

2. It sends a special proposal with no_op value and the ID of the target server   

3. If targeted server is correct eventually will receive that message and respond 

with accept message. 

4. The original Site Speaker waits to receive accept message from the majority. 

5. The Site Speaker after receiving from the majority generate learn message to 

inform the whole group about the handing over of the responsibility of Site 

Speaker to a new server.  

 

When the local load is evenly distributed or the current Site Speaker has low load, 

then there is no need for any change and the current Site Speaker will continue 

functioning as a Site Speaker. 

 

4.5.3.3 How a new Site Speaker starts its job?  

       As soon as some server successfully installs itself as the new Site Speaker, it 

starts communication with other sites by multicasting learn messages to all servers, 1 

to n, which will inform all servers at other sites about Site Speaker change. The 
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process of multicasting 1 to n will continue until the new Site Speaker receives learn 

message from other Site Speakers. It will then switch from 1 to n communication to 1 

to 1. The main reason for 1 to n communication, started by the new Site Speaker, is to 

eliminate the deadlock that might be created by the crash of more than one Site 

Speaker at the same time. To explain this problem, let us assume that s11  is the current 

Site Speaker of site S
1
 and s12  is also the current Site Speaker of site S

2
, both of them 

crashed at the same time. Let us assume that s2 was selected as a new Site Speaker of 

both sites. Each s2 knows in advance that s1 is still the Site Speaker and has no 

knowledge about the crash at the other site. If both s2 use 1 to 1 communication, then 

each one will try to send learn messages to s1 at the other site, which will create a 

deadlock as both s1 already crashed and was replaced by s2. To avoid such situation 

we resorted to 1 to n communication as a starting point, which will introduce the new 

Site Speaker to all servers at all sites.  

 

4.6 Site Speaker Algorithm 

     When the current Site Speaker crashes some correct server will discover that by its 

FD. Failure detector oracle provides its process with a list of suspected processes that 

have crashed; the choice of the new leader (Site Speaker) is done in a round-robin 

fashion. All servers are publicly ranked and defined therefore by the sequence in 

which they are to be the Site Speaker. The new Site Speaker should takeover 

according to the following steps: 

1- The next server in ranking will eventually learn that the current Site Speaker has 

been crashed and installs itself as a new Site Speaker.  

2- It starts reporting learnt messages (starting from the last learnt message before 

crash or suspicion) to all other sites.  

3- The new Site Speaker starts communication with other sites by multicasting learn 

messages to all servers, 1 to n. The process of multicasting 1 to n continues until 

the new Site Speaker receives learn message from other Site Speakers, then it 

switches from 1 to n communication to 1 to 1.  

4- If the receiving site finds out that there are some missing messages, then it asks 

the new Site Speaker about the learn messages that are not received yet.    
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4.7 Summary  

      This chapter presented the design and the implementation details of [Mencius]
N 

protocol. The concept of structuring and designing the protocol as a multi-cooperative 

Mencius produced a crash-tolerant protocol. Paxos is used as the core protocol to 

solve Total Order problem as one form of agreement problem. The execution of 

consensus protocol was kept as an internal issue within each site.  

       This novel idea of building the new protocol on two levels created an 

environment from which the traffic of exchanged messages on wide-area network was 

reduced. The correctness of the new protocol derived from the correctness of Paxos 

and Mencius as well, with the safety and liveness requirements both being preserved. 

The benefit of reducing the traffic of exchanged messages for each instance on wide-

area network and restricting it to only one message has many advantages. Firstly, this 

led to reduction of bandwidth consumption. Secondly, latency of committing requests 

was decreased as well.  

             There are other benefits achieved from this novel idea of building the system 

of multiple standalone Mencius’.  Firstly, no more clients are blocked and secondly, 

the threshold of saturation is increased.     
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Chapter 5 

Experiments and Results  

 

5.1 Introduction  

       The objective of this work is to design and present a protocol that has a better 

performance than Mencius over WAN. It requires the recognition of the challenges 

faced by Mencius and the costs required to achieve the improvements we proposed.  

This chapter is dedicated to comparing the performance of our protocol [Mencius]
N 

with Mencius and to present the reader with our findings that are extracted from the 

data collected from the experiments.  

     The stage of evaluating and analysing the performance of both protocols has gone 

through an extensive testing period. This included the establishment of a series of 

comprehensive experiments designed to evaluate quantitative system performance in 

a wide range of parameters. In this chapter the reader is first presented with the 

environment of the experiment and its settings and then second, shown the evaluation 

of this work through the results. Finally, the chapter concludes with a summary.  

 

5.2 Experimental Environment  

      The purpose of these experiments is to compare the performance of our protocol 

[Mencius]
N 

with Mencius. Both protocols are implemented in Java and are evaluated 

on a single network cluster that provides enough machines to test the two protocols.  

Each machine is a 1.86 GHz Intel Core (TM) 2 PC with 2.0 GB memory running 

Fedora 12. In Mencius we use 3 machines, each of which represents one site. In 

[Mencius]
N 

, N=3, 9 machines are used, each group of 3 machines representing one 

site. TCP is used as the transport protocol. 

      In local-area networks, machines are automatically and periodically synchronized. 

This aims to guarantee that they have minimal time drift. Time drift is measured 

before and after carrying out any experiment, in order to guarantee that all the 

machines have almost the same time clock.    

    For measurement purposes (Note: this is not a design requirement), Each 

experiment run consists of three parameters: link time delay, request arrival time 

interval, and number of requests generated by each client during each run.  
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5.2.1 Link time delay and bandwidth  

       In order to emulate wide-area network, a virtual link is created between each two 

sites using DummyNet [Riz97, CR09]. DummyNet is a tool used to enforce different 

time delays and bandwidth [MJM08, MF09, JS08, CR+09].  The link bandwidth 

values used are 10 Mbps and 20 Mbps. As the two link bandwidths produce similar 

results, we present only 10 Mbps in this work.  

With regards to link time delay, three different classes are used: 

 

Class I – In this class we carry out the experiment without using DummyNet. In this 

case, time delays of the virtual link are dictated by the local-area network, which are 

measured and found to be approximately 3ms.  

 

Class II – In this class we use DummyNet to time delays for all three links. We 

experiment with one-way fixed-delay settings of 25 ms, 50 ms, and 100 ms for each 

experiment. 

 

Class III – In this class we use Mixed-delay settings which are taken from a real 

experiment [CR+09]. This experiment investigates how Internet delays vary in the 

context of assessing timeliness of Web Services from a user’s perspective. To provide 

a comprehensive assessment, the experiment uses five clients deployed in different 

places over the Internet: Frankfurt (Germany), Moscow (Russia), Los Angeles (USA) 

and two clients in Simferopol (Ukraine), all using different Internet service providers. 

The experiment reports the response time between Newcastle and these five clients. 

Our intention is to use these traces as a time delay for each message sent out between 

sites. Because of the limitations of DummyNet, which only gives the capability of 

enforcing one time delay for each or all links but not time delay for individual 

messages, a different approach is required. It is decided to use three different time 

delays, each link with its own delay.  

We take average response time of three cities (Frankfurt, Moscow, and Los Angeles) 

with Newcastle. From that we calculate one-way time delay of each city. 

Time delay of 110 ms between Newcastle and Frankfurt is chosen as one-way time 

delay for the first link. Time delay of 533 ms between Newcastle and Moscow is used 
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as one-way time delay for the second link. For the third link, a time delay of 577 ms 

between Newcastle and Los Angeles is used as one-way time delay.  

 

5.2.2 Request arrival time interval  

       In the experiments, different arrival time intervals (AI) between requests are used. 

Arrival time interval values are chosen from uniform distribution (20ms, 38ms, 75ms, 

150ms, 1000ms and 10000ms). Other experimental results, using AI values < 20ms, 

are reported in one section, but not reported in others, as latency has significantly 

increased for both protocols.  

 

5.2.3 Number of requests 

      We carried out our experiments using 30000 requests per client for the following 

arrival time interval values 20ms, 38ms, 75ms, 150ms, 1000ms. For the 10000ms 

arrival time interval, 10000 requests per client is used.  

              

5.3  Experimental settings 

       In order to compare Mencius with [Mencius]
N 

, we design each protocol with two 

layers. The higher layer represents the service provided while the lower layer 

represents the ordering protocol. We use a simple service that assigns an order to each 

request received from the clients. Our design and implementation mainly focuses on 

ordering protocol. Committing order is represented by storing requests into a file. The 

log file is used to verify that all servers learn and commit the same client request in 

the same sequence which shows that sites are in consistent state.  

 

5.3.1 Number of experiments 

      The number experiments (for each run) that we carry out for all time intervals are  

≥ 5, except for 10000ms, in which we carry 3 experiments only. The results reported 

in our thesis represent the average of all these experiments. All the experiments are 

run over week ends because The University’s internal network activity is minimal at 

this time. 

 

 

 



 -  -     91 

5.3.2 Message length  

      Original message length is 72 bytes; these bytes represent different parts of the 

message, such as client ID, message sequence, server ID, etc. An extra payload of 

1388 bytes is added to get the size of TCP data to 1460 bytes. The main reason for not 

using more than 1460 bytes is to prevent segmentation at the Transport Layer. The 

wisdom behind the use of a long message is to prevent the system adding any time 

delay by Nagle’s algorithm [NAG84]. Long message is used in section 5.4.1 for 

throughput analysis and in section 5.4.2 for latency analysis.  

     Message length is used for optimizing the protocol. We exploit the short size of the 

request which is 72 bytes by batching multiple requests into a single message. The 

usage of batching short messages and their evaluation is found in section 5.6. 

 

5.3.3 Clients engineering  

     In Mencius, each site consists of one server and each server is associated with its 

own client. However, in [Mencius]
N
, each site consists of 3 servers and each server is 

associated with its own client. This results in 3 clients for one site. Instead of using 

separate physical machines for each client, the client is built inside each server 

instead. This solution is chosen to reduce the number of machines needed to test both 

protocols, especially with [Mencius]
N 

.  

In order to get the same rate of requests from each site for both protocols, the 

following assumptions are made: 

1. In Mencius, each client connects to one site generating 30000 requests. 

2. In [Mencius]
N
, three clients connect to one site generating 30000 requests, 

which means each client generates 10000 requests only. 

The above assumptions imply that both protocols are tested under the same load and 

the same circumstances. 

       We start by analysing the throughputs of both protocols using different time 

intervals between requests and different time delays of our virtual link that represents 

a wide-area network. The latency of committing requests under different settings as 

mentioned earlier is then evaluated. Next, the effect of optimization that can be 

introduced to the protocol to enhance performance is evaluated. Finally, revocation 

and comparison between Mencius and revised version of Mencius is evaluated, which 

is presented in chapter 3.  
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5.4 Evaluation for large requests  

5.4.1 Throughput  

       To measure throughput, Long Message is used and five sets of experiments, each 

one having a number of runs, are conducted. These experiments differ on the time 

delay of the virtual link. Each run has its own time interval between requests 

generated by clients. The following time interval values are chosen from uniform 

distribution (20ms, 38ms, 75ms, 150ms, 1000ms and 10000ms). The result of all 

experiments were tabulated and graphed. Experiment results for throughput are 

presented in Tables 5.1 to 5.10 and Figure 5.1 to Figure 5.5. The results indicate 

clearly that the time delay of the virtual link has no effect on throughput and all 

experiments produce almost the same throughput. 

     Results indicate that protocol [Mencius]
N 

 has higher threshold of saturation over 

Mencius. This is apparent when the time intervals between consecutive requests are 

decreased. To elaborate on this point, at a rate of 1000ms/site, the throughput of both 

protocols was 3 requests per second. As an example, results are presented in Table 5.1 

and Table 5.2, and Figure 5.1, those two tables and one figure are representing LAN 

time delays. 

 

 

[Mencius]
N

  

Arrival Intervals 
ms Throughput 

20 140 

38 76 

75 39 

150 20 

1000 3 

10000 0.3 

          Table 5.1: throughput                                                   Table 5.2: throughput  

                   [Mencius]
N

                                                                          Mencius  

 

 

 

 

Mencius  

Arrival Intervals 
ms Throughput 

20 124 

38 71 

75 38 

150 19 

1000 3 

10000 0.3 
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Figure 5.1: Experiment 1; time delay of LAN, no DummyNet. 

 

 

 

At a rate of 150ms/site, the throughput of both protocols is approximately 20 requests 

per second. However, at rate of 38ms/site, some important differences are observed. 

Here, the throughput of protocol [Mencius]
N 

 is 76 requests and for Mencius, 71. By 

decreasing the time interval and reducing it to 20ms/site, the throughput of protocol 

[Mencius]
N 

 is 139 requests and for Mencius, 124.  This indicates a clear difference 

between the two protocols.  

      At lower rates of request, both protocols produce the same throughput. However, 

with a higher rate of request, significant differences in the throughput of both 

protocols are observed.  

       This can be attributed to a higher number of nodes at each site for our protocol 

[Mencius]
N
. Each site consists of 3 nodes, which increases their ability to cope with a 

higher rate of request, but having one node at each site for Mencius limits it to coping 

with a higher rate of requests. We can conclude that increasing the number of 

machines in the new protocol translates to a higher processing power in comparison to 

one machine in Mencius. Results for other link time delays are shown in Table 5.3 to 

Table 5.10 and Figure 5.2 to Figure 5.5. 
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[Mencius]
N

 -25 

Arrival Intervals 
ms Throughput 

20 139 

38 76 

75 39 

150 20 

1000 3 

10000 0.3 
            Table 5.3: throughput                                                          Table 5.4: throughput 

                [Mencius]
N

-25                                                                      Mencius-25                            

 

 

 

Figure 5.2: Experiment 2; one-way delay of 25ms. 

 

 

 

[Mencius]
N

 -50 

Arrival Intervals 
ms Throughput 

20 139 

38 76 

75 39 

150 20 

1000 3 

10000 0.3 

       Table 5.5: throughput                                                 Table 5.6: throughput                                   

            [Mencius]
N
-50                                                                 Mencius -50 

 

 

Mencius -25 

Arrival Intervals 
ms Throughput 

20 124 

38 71 

75 38 

150 19 

1000 3 

10000 0.3 

 

Mencius -50 

Arrival Intervals 
ms Throughput 

20 124 

38 71 

75 38 

150 19 

1000 3 

10000 0.3 
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Figure 5.3: Experiment 3; one-way delay of 50ms. 

 

 

 

[Mencius]
N

 -100 

Arrival Intervals 
ms Throughput 

20 138 

38 75 

75 39 

150 20 

1000 3 

10000 0.3 

          Table 5.7: throughput                                                Table 5.8: throughput    

               [Mencius]
N
-100                                                          Mencius-100 

 

 

 

Figure 5.4: Experiment 4; one-way delay of 100ms. 

 

Mencius -100 

Arrival Intervals 
ms Throughput 

20 124 

38 71 

75 38 

150 19 

1000 3 

10000 0.3 
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          Table 5.9: throughput                                            Table 5.10: throughput                                       

                 [Mencius]
N
-D                                                              Mencius–D 

 

 

 

 

Figure 5.5: Experiment 5; Different one-way time delays. 

 

 

 

5.4.2  Latency  

      The same results of the experiments that are used to measure throughput are also 

used to measure latency. The same settings, the same number of experiments and the 

same number of runs are used. Each experiment is distinguished with its own time 

delay of the virtual link that represents wide-area network. In the first experiment, the 

time delay of the virtual link is inherited from local-area network delays, so there is 

Mencius -D 

Arrival Intervals 
ms Throughput 

20 120 

38 70 

75 37 

150 19 

1000 3 

10000 0.3 

[Mencius]
N

 -D 

Arrival Intervals 
ms Throughput 

20 138 

38 76 

75 39 

150 20 

1000 3 

10000 0.3 
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no use of DummyNet. The other four experiments are distinguished with different 

time delays. The results of all experiments are presented in the form of tables and 

charts, with each experimental result presented in two tables and one chart.  

       Unlike throughput, the time delay of the virtual link has a significant effect on 

latency.  The experiment is divided into two groups; one set of experiments belonging 

to the first group and the other four sets of experiments belonging to the second 

group. The set of experiments characterized with link time delay inherited from local-

area network are placed into the first group and the other four experiments with delay 

enforced by DummyNet are placed into the second group.  

       Two latency values, max-Latency and min-Latency, are distinguished. Max-

Latency is the time elapsed starting from the time a request received by a server to the 

time that request is committed by the last server in the system. Min-Latency is the 

time elapsed starting from the time a request is received by a server to the time that 

request is committed by the first server in the system. 

       We start by explaining latency in relation to the first group. The results of our 

first set of experiments belonging to the first group are presented in Table 5.11, Table 

5.12 and Figure 5.6. The time delay of the virtual link in this experiment is inherited 

from local-area network delay. Mencius has lower latency (both max-Latency and 

min-Latency) compared to [Mencius]
N
.  

      Protocol [Mencius]
N 

suffers higher latency  because its execution goes through 

two levels. Within each site, Mencius at a local level was executed within each site.  

At the global level, the Site Speaker exchanges global stream with other Site 

Speakers. This reflects that the Site Speaker consumes more processing time and an 

extra message is needed to report the outcome of local level of the protocol to the 

global level of the protocol for each instance. As an example, for the time interval of 

20ms/site, the max-Latency of protocol [Mencius]
N 

 is approximately 70 ms compared 

to 53 ms for Mencius. For min-Latency of protocol [Mencius]
N
, the latency is 

approximately 62 ms compared to 48 ms for Mencius. From a latency perspective in 

such circumstances, Mencius has better performance than  [Mencius]
N 

. 
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[Mencius]
N

  

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 69.89 62.07 

38 68.67 62.54 

75 69.06 61.39 

150 66.22 61.59 

1000 66.71 54.33 

10000 68.19 55.58 

        Table 5.11: latency [Mencius]
N                                           

Table 5.12: latency Mencius 

                   

 

 

Figure 5.6: Experiment 1; time delay of LAN, no DummyNet. 

 

 

       Now we are trying to investigate and analyse Latency in relation to the second 

group of our experiments. Four sets of experiments are included in the second group 

with time delay of the virtual link in this group enforced by DummyNet tool. The 

results of these experiments are shown in Table 5.13 to Table 5.20 and Figure 5.7 to 

Figure 5.10.  

        We start with the first set of experiments in the second group.  This set has 25ms 

link time delay. Table 5.13 shows the results of six experiments for [Mencius]
N
 

protocol and Table 5.14 shows the results of another six experiments for Mencius 

protocol. As the delay of the virtual link is increased to 25ms in this set of 

experiments, results show that Mencius suffers from higher latency than [Mencius]
N
. 

This is because in Mencius, all messages needed to execute instances of Paxos must 

Mencius  

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 53.03 47.7 

38 56.04 51.76 

75 56.48 52.94 

150 52.36 44.17 

1000 53.62 33.98 

10000 58.31 32.96 
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travel between sites over wide-area network, with each message will incurring an 

extra delay time. Nevertheless, in [Mencius]
N 

, instances of Paxos are executed over 

local-area network and the delay time of local-area network is not changed. The Site 

Speaker needs to inform other sites about the outcome of each local instance so only 

this message suffers the delay of 25ms. For each instance in  Mencius, at least 3 

messages suffer extra delay, while in  [Mencius]
N
, only one message suffers from that 

delay. This explains why [Mencius]
N 

has lower latency compared to Mencius. Figure 

5.7 reflects the difference between both protocols. 

 

 

[Mencius]
N

 -25 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 98.4 71.7 

38 96.8 67.2 

75 96.2 65.8 

150 94.9 65.1 

1000 84.3 60.8 

10000 82.9 49.2 

   Table 5.13: latency [Mencius]
N
 25                       Table 5.14: latency Mencius 25 

 

 

 

 

Figure 5.7: Experiment 2; one-way delay of 25ms. 

 

 

Mencius -25 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 120.86 96.79 

38 120 98.69 

75 131.79 98.46 

150 125.4 97.79 

1000 97.53 70.23 

10000 92.95 61.85 
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         In the second and third set of experiments, the delay time of the virtual link is 

increased to 50ms and 100ms. The results of these two experiments are found on 

Tables 5.15 to Table 5.18. From these two sets of tables, one can observe that the 

difference between the latency of both protocols is increased. It is understood that the 

higher the delay time of the virtual link, the better performance received from 

[Mencius]
N 

regarding latency. Figure 5.8 and Figure 5.9 reflect these differences 

clearly. 

 

 

[Mencius]
N

 -50 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 119.86 97.49 

38 116 91.43 

75 117.7 91.74 

150 108.05 85.14 

1000 106.96 85.24 

10000 107.47 81.7 

   Table 5.15: latency [Mencius]
N

  50                      Table 5.16: latency Mencius 50             

        

 

 

 

Figure 5.8: Experiment 3; one-way delay of 50ms 

 

 

 

Mencius -50 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 192.36 168.36 

38 197.3 160.6 

75 207.23 165.39 

150 202.63 165.17 

1000 172.86 124.17 

10000 182.2 130.26 
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[Mencius]
N

 -100 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 187.7 156.4 

38 177.8 140.7 

75 173.9 132.7 

150 174 130.6 

1000 171 127.3 

10000 168.6 125.7 

   

Table 5.17: latency [Mencius]
N

 100                         Table 5.18: latency Mencius 100 

                 

 

 

Figure 5.9: Experiment 4; one-way delay of 100ms. 

 

 

      In the last set of experiments carried out to measure latency, three different time 

delays (which are found in Class III at section 5.2.1) of the virtual link that represents 

wide-area network, are used. The results of these experiments can be found in Table 

5.19 and Table 5.20.  

      As the values of delay times in class III are significantly higher than class II, 

which in turn produces a distinct difference between the latency of both protocols. 

From Figure 5.10, it can be seen that at a low request rate, the difference in latency 

between the two protocols is around 600ms. However, at higher rates of requests 

latency difference approaches seconds. These results emphasize that the higher the 

delay time of the virtual link, the better performance is received from [Mencius]
N 

regarding latency. 

Mencius -100 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 397.71 301.77 

38 394.58 347.64 

75 393.13 311.7 

150 379.39 294.96 

1000 327.05 245.53 

10000 318.99 256.89 
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[Mencius]
N

 -D 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 1614 1012 

38 1412 874 

75 1210 781 

150 1036 641 

1000 820 376 

10000 925 374 

 

   Table 5.19: latency [Mencius]
N

  D                    Table 5.20: latency Mencius D 

                    

 

 

Figure 5.10: Experiment 5; random one-way time delays. 

 

 

     Presenting the results in the form of tables and figures demonstrates the 

improvement of [Mencius]
N 

 protocol. However, by presenting performance in terms 

of GAIN, results can be compared more accurately and with improved precision. 

GAIN can be calculated by subtracting any Mencius value from the corresponding 

[Mencius]
N 

value. This result is then divided by Mencius value and multiplied by 100. 

The result is the percentage GAIN. 

GAIN definition: 

 

      GAIN =    [Mencius]
N 

value  -  Mencius value  x  100 

                                        Mencius value 

Mencius -D 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

20 2697 2191 

38 2429 2050 

75 2060 1660 

150 1870 1550 

1000 1569 1065 

10000 1400 1038 
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Example, values taken from Table 5.19 and Table 5.20: 

 

 

    GAIN Max-latency = 1614 – 2697  x 100  =  - 40% 

                                    2697 

 
     From this point on results are presented using the GAIN term. The remaining tables 

and figures can be found in appendix B at the end of this thesis. 

 

5.4.3 GAIN summary  

    The following three tables summarize the conclusion regarding throughput and 

latency. Table 5.21 shows throughput gain.  At arrival interval (AI) of 1000ms and 

10000ms, the GAIN is zero. At AI of 150ms, the GAIN is 5% and reaches 12.5% at AI 

of 20ms. 

Table 5.22 shows max-latency GAIN while Table 5.23 shows min-latency gain. In 

both of these tables, the GAIN of the experiments under Class I is in favour of 

Mencius but as soon as an increase in virtual link time delay is introduced (Class II 

and Class III), we noticed that the GAIN in both forms of latency is reversed and 

becomes in favour of [Mencius]
N
. 

 

 

AI/ms Class I 

% 

Class II  % Class III 

% 25ms 50ms 100ms 

20 13 12 12 11 15 

38 7 7 7 6 9 

75 3 3 3 3 5 

150 5 5 5 5 5 

1000 0 0 0 0 0 

10000 0 0 0 0 0 

 

Table 5.21 Throughput GAIN 
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AI/ms Class I 

% 

Class II    % Class III 

% 25ms 50ms 100ms 

20 32 -19 -38 -53 -40 

38 23 -19 -41 -55 -42 

75 22 -27 -43 -56 -41 

150 26 -24 -47 -54 -45 

1000 24 -14 -38 -48 -48 

10000 17 -11 -41 -47 -34 

 

Table 5.22 Max-Latency GAIN 

 

 

AI/ms Class I 

% 

Class II    % Class III 

% 25ms 50ms 100ms 

20 30 -26 -42 -48 -54 

38 21 -32 -43 -60 -57 

75 16 -33 -45 -57 -53 

150 39 -33 -48 -56 -59 

1000 60 -13 -31 -48 -65 

10000 69 -20 -37 -51 -64 

 

Table 5.23 Min-Latency GAIN 
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5.5 Batching short messages  

      In order to improve performance, an optimisation to the protocol is suggested in 

order to find an approach that increases throughput. The idea is to exploit the short 

size of the request of 72 bytes by batching multiple requests into a single message. 

Having adopted this approach improves throughput of both protocols but at the 

expense of latency, which unfortunately increased. The technique applied is to batch a 

number of requests arriving within a certain period of time to get around size 

limitations of TCP data which is 1460 bytes. 

 

5.5.1. Throughput  

         Five sets of experiments are conducted to evaluate throughput.  These sets of 

experiments differ in the time delay of the virtual link. Each experiment has its own 

time interval between requests generated by clients. The following are the time 

interval values chosen from uniform distribution (5ms, 20ms, 38ms, 75ms, 150ms). 

Different arrival time intervals are chosen to the ones used in section 5.4 because 

there is no sense in applying batches of messages with requests arriving within a 

second or seconds, such as 1000ms or 10000ms. The results of all experiments are 

presented in a form of tables and charts which are found in appendix B. 

       By introducing this technique, the threshold of saturation and throughput 

improved as well. As explained in section 5.4, the time delay of the virtual link has no 

effect on throughput. The following four experiments, 20ms, 38ms, 75ms and 150ms 

produce almost the same throughput as that generated by experiments conducted in 

section 5.4. By reducing the arrival time interval to 5ms, a difference between the two 

protocols regarding throughput is observed. Mencius produces an average of 329 

requests per second while [Mencius]
N 

produces an average of 439 requests per 

second. The threshold of saturation increases compared to the usage of a single long 

message and the throughput of [Mencius]
N 

improved by around of 33% over Mencius. 

More details about results regarding throughput can be found in Table A.1 to Table 

A.10 and in Figure A.1 to Figure A.5 in appendix B at the end of this thesis. 

 

5.5.2 Throughput Summary  

    Table 5.24 summarizes the GAIN regarding throughput. At AI of 150ms the GAIN 

is 5%. At AI of 5ms the GAIN reaches an average of around 33%. 
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AI/ms Class I 

% 

Class II  % Class III 

% 25ms 50ms 100ms 

5 40 28 41 30 28 

20 13 12 13 11 11 

38 7 6 7 6 4 

75 3 3 3 3 3 

150 5 5 5 5 5 

 

Table 5.24 Throughput GAIN 

 

 

5.5.3 Latency  

        The implementation of the new technique (batching multiple messages together) 

enables a better performance regarding threshold of saturation and throughput. 

Nevertheless, latency increases for both protocols. This can be attributed to the time 

required to receive a number of messages and the time required to batch them together 

into a single message. Not surprisingly, despite the increase in latency, it is found that 

the higher time delays of the virtual link, protocol [Mencius]
N
  still has lower latency 

compared to Mencius. More details about latency results can be found in Table A.11 

to Table A.20 and in Figure A.6 to Figure A.10 in appendix A at the end of this thesis. 

 

5.5.4 Latency summary  

    The following two tables summarize the conclusions regarding latency. Table 5.25 

shows max-latency gain, while Table 5.26 shows min-latency gain. Even though, the 

difference is not as clear as that in section 5.4.2, lower latency for [Mencius]
N
 is 

achieved. 
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AI/ms Class I 

% 

Class II    % Class III 

% 25ms 50ms 100ms 

5 -1 -6 -12 -23 -19 

20 1 -7 -11 -19 -14 

38 1 -12 -7 -27 -22 

75 -1 -14 -8 -25 -24 

150 4 -16 -6 -26 -27 

 

Table 5.25 Max-Latency GAIN 

 

 

AI/ms Class I 

% 

Class II    % Class III 

% 25ms 50ms 100ms 

5 -3 -14 -18 -22 -32 

20 4 -16 -20 -26 -38 

38 8 -17 -12 -23 -38 

75 0 -16 -9 -27 -47 

150 4 -3 -3 -29 -40 

 

Table 5.26 Min-Latency GAIN 
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5.6 Bandwidth consumption of WAN  

      In this section, we will show that protocol [Mencius]
N 

has lower bandwidth 

consumption than Mencius. Protocol [Mencius]
N 

reduces the number of exchanged 

messages over wide-area network between sites to finalize each instance. This 

approach is behind the reduction in bandwidth consumption by [Mencius]
N
.  

     This section is explained in two sections: first, this is issue is explained in failure-

free situation and second,  under failure when there is a need for revocation.  

 

5.6.1 Bandwidth consumption in failure-free situation 

      In using Mencius on a system of three sites to generate three consecutive orders, 

each site needs to run one instance of Paxos. Paxos instance in failure-free situation 

uses three types of messages (SUGGEST, ACCEPT, and LEARN). The total number 

of messages exchanged over wide-area network needed to generate three consecutive 

orders is 9 messages. Nevertheless, using  protocol [Mencius]
N
,
 
the total number of 

messages exchanged over wide-area network needed to report  three consecutive 

orders is 3 messages only. It is known that in protocol [Mencius]
N
, Paxos is executed 

on local level, but at global level, only LEARN message is sent to inform other sites 

about the outcome of each instance.  Protocol [Mencius]
N 

consumes 3/9 of the 

bandwidth that is consumed by Mencius. 

 

5.6.2 Bandwidth consumption under failure  

       It is assumed that Mencius has three sites and one of them crashes. One of the 

other two correct sites starts revocation. In this case, 2 instances will execute Paxos in 

failure-free situation which will use three messages (SUGGEST, ACCEPT, and 

LEARN) and the third instance will go through revocation will be executing instance 

of Paxos with five messages (PREPARE, ACK, SUGGEST, ACCEPT, and LEARN). 

The total number of messages exchanged over wide-area network needed to generate 

three consecutive orders is 6 + 5 = 11 messages. Again using  protocol [Mencius]
N
,
 

the total number of messages exchanged over wide-area network needed to report 

three consecutive orders is 3 only. Protocol [Mencius]
N 

consumes 3/11 of the 

bandwidth that is consumed by Mencius. What is presented here regarding Mencius is 

the best scenario in case of failure, which means one site crashes and only another 

correct one succeed in revoking it. Nevertheless, there are cases in which more than 
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one correct server competes to revoke the crashed one, which means more messages 

are needed in revocation. The number of messages may go to infinity. 

       Bandwidth consumption is improved in protocol [Mencius]
N
 compared to 

Mencius to 1/3 in failure-free situation,  1/3.67 under failure and only one correct 

server succeed in revoking the crashed one,  or even 1/ ∞ when there is a competition 

for revocation. 

 

5.7 Removing client blocking  

     Mencius suffers from client blocking, which means that clients do not make 

progress while their server is crashed. Our protocol overcomes this issue by providing 

each site with more machines.  Unlike Mencius, in protocol [Mencius]
N
, the service 

on each site is replicated, each site with 3 nodes. Hence, as long as the majority is 

correct in each site, the clients will never be blocked. This will guarantee that clients 

connected to that site will be served, progress is made and the site will be able to 

order requests received from its group of clients.  

 

5.8 Performance Assessment of Revised Mencius                                                             

      In chapter 3 of this thesis, we presented another version of multi-ordering protocol 

synonym to Mencius which is called Revised Mencius. In that chapter, the issue of 

revocation is addressed and a new version of Mencius that reduces the overhead of 

revocation is presented. The main point of concern, instead of revoking instance by 

instance, a whole range using one instance only is revoked. The design is built on this 

concept and in the following sections, results are presented. 

         In failure-free situations, both Mencius and our revised version have almost the 

same performance regarding latency and throughput. In our experiments, failure-free 

situation is omitted and performance analysis is focused on comparing both protocols 

during revocation process only. 

       A number of experiments to compare both versions regarding their performance 

in case of revocation are run. The comparison is carried out using a three sites system; 

one site is forced to be faulty and one of the other two correct sites starts revocation. 

The results of the experiments are divided into two sets, each having two tables and 

one graph. One set represents throughput and the other set represents latency. These 
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results could be found in Table B.21 to Table B.24 and in Figures B.11 and Figure 

B.12 in appendix B at the end of this thesis.  

 

 5.8.1 Throughput  

      To compare throughput, Long Message is used which has already been defined. A 

number of experiments that has 100ms time delay of the virtual link enforced by 

DummyNet is used. Each experiment has its own time interval between requests 

generated by clients. The following are the time interval values chosen from uniform 

distribution (10ms, 20ms, 38ms, 75ms, 150ms, 1000ms and 10000ms).  

        Testing both protocols under low rate of requests such as 75ms, 150ms, 1000ms 

and 10000ms shows no difference regarding throughput. Under these rates there is no 

demand for processing power, thus underutilizing the processing capacity of the 

CPU’s of the correct servers.  

       On the other hand, when rates are increased to 38ms, 20ms and 10ms, significant 

differences in performance are observed, especially with 10ms. The concept of 

revocation in Mencius is different to the one in the revised version of Mencius, which 

is believed to be the reason behind the production of different throughput for both 

protocols.  

       In Mencius, with the increase of load, there is more demand for processing power 

especially on the side of the server responsible for revocation.  This is because in 

addition to ordering its own proposals, it is in charge of generating and ordering 

proposals on behalf of the suspected or crashed server. More processing power is 

needed from the revoker, which reduces its throughput. While in the revised version 

of Mencius during revocation, both correct servers suggest their own proposals only, 

as revocation of the whole range is carried out using one instance only.  In such case, 

both correct servers have enough processing capacity which enables them to cope 

with higher loads. The summary of the results are shown in Table 5.27. 

 

AI ms 10 20 38 75 150 1000 10000 

Class II    

100ms 

24 14 7 0 0 0 0 

Table 5.27 throughput Gain 
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5.8.2 Latency  

       Theoretically, it can be calculated that the latency of both protocols are as 

follows: latency for Mencius for three consecutive instances is the total of two 

instances of three messages and one instance of five messages 

(300+300+500=1100/3=367ms). Latency for revised version of Mencius is the total of 

two instances of three messages only (300+300=600/2=300ms). To evaluate latency, 

two latency values, max-Latency and min-Latency which have already been defined, 

are distinguished.  

      We find that the difference between the two protocols under low load is around 

60ms, which is close to the value calculated above, indicates that revised version of 

Mencius has better performance. This difference, however, goes up as the load is 

increased.  For example, at the highest load, the difference is around 100ms, again in 

favour of the revised version of Mencius.  

      A significant benefit is gained from the modification applied to revocation. In 

revised versions of Mencius, the revoker uses one instance only to revoke a whole 

range. After that, it will continue its normal job in ordering its own proposals. This 

will make the revoker and the other correct servers work with the same processing 

capacity. From a latency perspective in such circumstances, revised version of 

Mencius has better performance than Mencius. The summary of results is shown in 

Table 5.28 and Table 5.29. 

 

 

AI ms 10 20 38 75 150 1000 10000 

Class II    

100ms 

-20 -18 -16 -16 -16 -16 -16 

 

Table 5.28 Max-Latency GAIN 
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AI ms 10 20 38 75 150 1000 10000 

Class II    

100ms 

-23 -18 -16 -19 -19 -20 -19 

 

Table 5.29 Min-Latency GAIN 

 

 

5.9 Summary  

       A significant benefit of building the new protocol on top of Mencius abstraction 

and Paxos abstraction is that the solution ensures liveness and safety. In addition, it 

was proven that the objectives of the new protocol presented in this thesis are 

fulfilled. The concept of using Mencius on local-area network provides us with great 

benefits regarding client progress, bandwidth consumption and latency.  

       Clients make progress as long as the majority of servers are correct at site level 

and bandwidth consumption is reduced to at least 1/3 of Mencius. Latency is reduced 

especially when the time delay of the virtual link goes up. Threshold of saturation is 

also higher.  

       The results of the experiments revealed that there is a trade-off between 

throughput and latency in relation to message size. If the size of our request is short, 

then the following is suggested: when the request rate is low, single messages (no 

batching) is used. This produces better latency. However, if the rate is high, users 

should resort to batching multiple messages in a single message in order to get better 

throughput. 

        Mencius was not compared with [Mencius]
N 

 regarding revocation. It is known 

that revocation is an execution of instance of Paxos and in the new protocol at global 

level, instances of Paxos are not executed, meaning revocation does not exist at global 

level. This explains why such a comparison was not carried out. Although a 

comparison between Mencius and revised version of Mencius is made, the structure of 

revised version of Mencius is found in chapter 3 and the results of comparison can be 

found in section 5.9 of this chapter. 
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       The main conclusions: It is advised that those who want to solve Total Order 

problem over local-area network use either Mencius or revised Mencius, as these two 

protocols overweight [Mencius]
N
. However, for those who want to solve it over wide-

area network, its preferable to use [Mencius]
N
, which is proven throughout the course 

of this thesis to have higher performance.   
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Chapter 6  

Summary and conclusion  

 

      This thesis introduced a new class of High-Performance Multi-Ordering  Protocol 
that optimally uses Mencius protocol on top of Paxos to circumvent the FLP 

impossibility. It presents the design and the analysis of our protocol [Mencius]
N
. 

    In chapter 3, an alternative protocol to Mencius was introduced which has the same 

system context regarding the number of servers and sites but has a different set of 

assumptions.  The revised version of Mencius in chapter 3 criticises Mencius from 

revocation perspective under a new assumption. In the second part of this work, we 

presented our main protocol [Mencius]
N
 that tackles many issues raised by Mencius. 

        The performance of our proposed protocol [Mencius]
N
 was extensively 

examined and compared to the Mencius in various settings. The results received from 

this are encouraging. We will summarize the work presented in our thesis and present 

directions for future work. 

 

6.1 Summary  

      Total Order problem is a well-known issue at the core of building dependable 

distributed systems. Particularly in state machine replication technique, where replicas 

need to agree on various issues such as order of client request execution, group 

membership, transaction commitment, etc., reaching consensus is fundamental to 

solve any of these agreement problems. At the same time, it has been proven that 

finding a deterministic solution cannot be guaranteed in asynchronous network setups 

where replicas are fault-prone. Circumventing FLP impossibility has been an active 

research area in past two decades. The most common approaches that have been 

proposed can be categorized into four types; randomised protocols, fail-signal 

protocols, deterministic protocols, and multi-ordering protocols. 

      Randomized protocols [EMR01, MNC+06] are a family of protocols where FLP 

result is avoided by providing a probabilistic solution. Participants go over rounds of 

communication and make random choices on their estimate of decision values. The 

protocol progresses in such a way that eventually an identical value is decided. These 

protocols guarantee termination only in probabilistic terms which tends to 1 as 
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elapsed time approaches infinity. This type of protocol is a non-leader protocol; 

however, the main disadvantage of this protocol is that the number of messages 

needed for termination is unknown and the time needed to arrive at a decision may 

approach infinity. 

       The next one is called Fail-Signal protocol. Fail-Signal [BES+96, IE06] protocol 

is the third in the family of inherently redundant processes; namely, fail-stop and fail-

silent processes and is constructed in a similar way. FS is a protocol whose 

termination guarantee is not dependant on any systemic/network conditions and the 

performance is only affected by existing communication delays and real failures. Fail-

Signal process circumvents the impossibility by making the failing process announce 

its imminent failure and stop working after failing. The main advantage of this type of 

protocol is the use of perfect failure detector. However, the main disadvantages of this 

approach is that each FS node consists of at least two machines connected by a 

synchronous network. This will result in a higher level of message complexity 

because all constituents of FS node will generate their own messages. For example, if 

FS node has two machines, then 2 identical proposals will be sent out to all correct FS 

nodes. Two identical ack messages will be sent out to the other FS node and 2 

identical Learn messages will be sent out to all correct FS nodes (message 

redundancy). Another disadvantage is the high latency that results from waiting for 

the response from all processes. 

       The third type, Deterministic protocols, is built on the concept of Unreliable 

Failure Detector [CT91, CT96, CHT96]. Each process accesses Failure-Detector 

oracle, which provides a list of processes suspected to be crashed. The weakest form 

of Failure-Detector is denoted by ◊S, which allows it to solve consensus. This type of 

FD has the following properties: (1) any crashed process is eventually suspected 

(completeness), (2) there is a time after which correct processes are not suspected 

(eventual weak accuracy). This category of protocols tends to be coordinator-based. A 

specific process is given the role of coordination of the execution of the protocol. 

When it is crashed, the protocol then chooses another process to play this role. Paxos 

[LAM98] and Chandra Toueg [CT91] are considered to be the pioneers in this group 

of protocols. Compared to the other two categories, deterministic approach is 

characterized by its lower latency and lower level of message complexity as well. 

      The last type is multi-ordering protocols. We consider Mencius [MJM08] as a 

novel and new protocol belonging to this group. Mencius is a replicated state machine 
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built on the abstraction of Paxos which runs concurrent instances of Paxos. Mencius 

as a multi-ordering protocol tackles the issue of single leader bottleneck inherited 

from Paxos.  Paxos suffers from some drawbacks in terms of communication pattern, 

CPU processing capacity, and latency of learning the outcome. By tackling the 

problem of single leader, the throughput is increased under high client load and 

latency is lowered under low client load 

         The protocol presented in this thesis belongs to the last group. It is built on top 

of Mencius [MJM08] which, in turn, is built on top of Paxos protocol [LAM01, 

LAMO6]. Paxos forms the underlying protocol and the core protocol used to 

circumvent FLP impossibility. This work consists of two parts. In chapter 3, the first 

part is presented in which the issue of revocation in Mencius is addressed. The 

construction of Mencius, in particular, is based on a claim which says false suspicion 

and crash rarely occur. This work proposes that cases of false suspicion and crash 

occur frequently and the cost of revocation is very high. To minimize that cost, certain 

changes to Mencius protocol were made. The main modification is that a whole range 

using one instance is revoked, instead of being revoked one by one.  

      The new revised version of Mencius presented in chapter 3 addresses the problem 

of the high probability of crash and false suspicion that might trigger more frequent 

FD. The structure followed in presenting the revised version of Mencius is the same 

as the one adopted in Mencius. The assumptions and principles are explained in terms 

of rules and optimizations; the main differences between the two protocols lay in how 

revocation is carried out. In the revised Mencius, as soon as one server starts to revoke 

a suspected server, it will try to revoke all instances in a certain range.  The process of 

revocation will start from the smallest instance that should have been coordinated by 

the suspected server. If the revocation of that instance was successful, then the whole 

range will be revoked automatically; otherwise the revoker will receive at least one 

NACK which means revocation will be aborted. We proved that the correctness of the 

new version is inherited from the old version of Mencius. All properties of consensus 

protocol are fulfilled, hence safety and liveness are ensured.  

       In the forth chapter of the thesis, the main work is presented where a new 

protocol, called [Mencius]
N
, is proposed. The challenges of the new protocol are how 

to address issues such as latency, throughput, threshold of saturation, client blocking 

and bandwidth consumption. The aim of the work is to develop a protocol that fulfils 

the objectives by reducing latency to client requests, increasing threshold of 
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saturation, guaranteeing that clients make progress even in case of crash and lastly, 

reducing bandwidth consumption.  

       The proposed solution is to build multiple cooperative Mencius’ as a two-layer 

system. One layer consists of local Mencius and the second layer forms global multi-

ordering protocol. The underlying network connecting servers of each local Mencius 

system will be based on FIFO communication channels (LAN), however, the 

underlying network connecting global Mencius systems will be based on 

asynchronous communication channels (WAN). The new system consists of two 

replicas, global replica and local replica. Global replica exists on a level of sites 

implementing a replicated state machine. Each site represents one abstraction of 

Mencius, N sites (where N ≥ 2) creating [Mencius]
N
. Local replica (site) is on the 

level of servers where each local replica consists of n servers ( n = 2f + 1), thus 

forming a local Mencius.  

      We consider each site as a coordinator on a global level, ordering requests 

received from its own group of clients. Each site has one distinguished server which 

will be in charge of talking to other sites. This server is called Site Speaker.  

Communication between sites only takes place between Site Speakers, so Site Speaker 

is a normal server that has more jobs to do than other servers in the system. 

      Each site using its own local Mencius will produce a local stream of instances. 

Streams produced locally will be exchanged by Site Speakers and merged by all 

servers to form global stream or [Mencius]
N 

stream.  

    The replacement of crashed or suspected Site Speaker server in [Mencius]
N
 servers 

in each site are divided into two groups according to their function. One group 

consists of one server which is called Site Speaker. The second group consists of the 

remainder of the servers which are called the normal group. Suspicion of failure or 

crash in the normal group is treated in terms of revocation only, exactly as in 

Mencius. This process guarantees that local Mencius can make progress. 

Nevertheless, suspicion of failure or crash of the Site Speaker should be solved in two 

directions: one direction is revocation as the other group, and the second direction is 

to replace the Site Speaker. Protocol [Mencius]
N
 relies on

  
Site Speakers 

communication to make progress. This server is prone to crash, false suspicion or 

overload of work.  These problems can be classified according to the reaction taken 

by the system into two groups: one group consisting of crash and false suspicion, the 

second group consisting of overload. When the current Site Speaker suffers from 
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crash or false suspicion, then the system will enforce a new Site Speaker, which 

means the correct servers will choose a new Site Speaker to replace the current one. 

Nevertheless, when the current Site Speaker is overloaded, it then asks for a 

replacement. This is done for the sake of load distribution balance.  

       All servers are publicly ranked and therefore defined by the sequence in which 

they are to be the Site Speaker. At initialization time, server s1 will be the Site Speaker 

at all sites and as soon as s1 is suspected or crashed, then the next server in ranking 

will take over as the new Site Speaker. This choice is based on rotating coordinator 

paradigm in a round-robin fashion.  

        The other method of replacing the Site Speaker is done for the sake of load 

distribution balance. In addition to coordinating its client requests, Site Speaker has to 

send local site stream to all other sites, receive streams from other sites and multicast 

them to local servers. This reflects the fact that network traffic from or to the Site 

Speaker is much higher than its counterparts in the site. The second issue is that as 

Site Speaker receives higher number of messages, there is a higher demand for 

processing power than other servers. In trying to get a more balanced communication 

pattern and better CPU system utilization, the current Site Speaker will seek the server 

with the lowest load and hand to it the Site Speaker responsibility. Individual streams 

from each server will be received by all correct servers in that site. This will enable 

the Site Speaker to calculate the load distribution of each server and find out which 

server has the highest load and which one has the lowest load. The Site Speaker will 

choose the server with the lowest load and ask it to be the new Site Speaker. 

       As soon as some server successfully installs itself as the new Site Speaker, it 

starts communication with other sites by multicasting learn messages to all servers, 1 

to n, which will inform all servers at other sites about Site Speaker change. The 

process of multicasting 1 to n will continue until the new Site Speaker receives learn 

message from other Site Speakers. It will then switch from 1 to n communication to 1 

to 1. The main reason for 1 to n communication, started by the new Site Speaker, is to 

eliminate the deadlock that might be created by the crash of more than one Site 

Speaker at the same time.  

      Finally Chapter 5 is dedicated to the results of our experiments and their analysis. 

It can be proved that the objectives of the new protocol presented in this thesis are 

fulfilled.   
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6.2 Conclusion  

        We developed a protocol belonging to a family of Crash fault-tolerant order 

protocols by exploiting Mencius abstraction. Only crash model failure is investigated 

within this thesis. We are able to achieve our objectives by building our protocol on 

the concept of multiple cooperative Mencius’. Clients make progress as long as the 

majority of servers are correct at site level and bandwidth consumption is reduced to 

at least 1/3 of Mencius. Latency is reduced especially when the time delay of the 

virtual link went up. The threshold of saturation is also higher. These benefits come at 

a cost of extra machines at each site. In Mencius, each site has one machine while in 

[Mencius]
N
,
  
the minimum number of machines at each site is n machines ( n=2f + 1). 

The cost is not considered very high as hardware prices are going down. 

 

       Our main conclusions can be summarized on the following points: 

According to the environment and network topology one can make a trade-off 

between Mencius and [Mencius]
N
, we can consider the following scenarios: 

1- All sites without any cluster, assuming that all sites connected through WAN. 

The implementation of Mencius or [Mencius]
N 

in such an environment depends 

on the number of sites:  

 If the number of sites n < 6 we can use only Mencius. Because in case of n = 

5 we cannot form [Mencius]
N
 of  N = 2.  

 However, if the number of sites n ≥ 6 we can use both protocols. For example 

if n = 9 it is preferable to use [Mencius]
N 

rather than Mencius to solve Total 

Order problem. In such case both protocols have the following facts: 

(1) The implementation of Mencius will produce a majority of 5 which 

will increase latency. However for [Mencius]
N 

the majority at local 

level is not changed. 

(2) In Mencius the number of messages needed to finalize each instance is 

3(n-1) = 24 msg, however for [Mencius]
N 

the maximum number of 

messages needed to finalize each instance is 6 msg at local level plus 6 

msg at global level which will produce a total of 12 msg.  

for solving Total Order problem over wide-area network, it is preferable to use 

[Mencius]
N
, because it has higher performance.   
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2- All sites or servers are kept within one cluster, in such scenario our advice is to 

use either Mencius or revised Mencius to solve Total Order problem over local-

area network, as these two protocols overweight [Mencius]
N
.  

3- Some sites without any cluster, this type of scenario is not investigated in this 

work. Also in this case we can conclude as in point 1 the redundancy level makes 

the difference:  

 If the number of sites n < 6 we can use only Mencius. Because in case of n = 

5 we cannot form [Mencius]
N
 of  N = 2.  

 However, if the number of sites n ≥ 6 both protocols can be used. From our 

experience we can say that protocols will suffer from higher latency, this 

comes as a result of implementing some nodes over wide area network. 

Nevertheless to find out exactly which protocol to use in such scenario we 

need to make more experiments.   

4- Exploiting message size to increase performance in [Mencius]
N
, we find that 

there is a trade-off between throughput and latency in relation to message size. If 

the size of the request is short, then the following is suggested: when the request 

rate is low, single messages (no batching) is used. This produces better latency. 

However, if the rate is high, users should resort to batching multiple messages in 

a single message in order to get better throughput. 

 

The major drawback of [Mencius]
N
 is its high level of redundancy in comparison 

with Mencius. For example, in this work, the level of redundancy was three times 

higher. Each machine in Mencius is equivalent to three machines in [Mencius]
N
. This 

negative aspect can be exploited and transferred to a positive one. This can be 

achieved by deploying different distributed application services on [Mencius]
N
. For 

example, in this work, three different services can be deployed. The suggested 

solution to the problem of high level of redundancy in terms of extra hardware will 

reduce its cost.    

     In the following scenario of three distributed application services needing to be 

deployed on wide-area network, there are two choices in solving this problem: 

1- Either three independent Mencius; each having three servers are used, which 

forms a total of nine machines.  
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2- Or, we resort to [Mencius]
3
, each site having three machines forming a total of 

nine machines as well. 

The above mentioned scenario illustrates that the cost of hardware in both cases is the 

same, but using Mencius implies the inheritance of all the flaws of the system as well. 

However, using [Mencius]
N
 avoids these problems as proven during the course of 

this work.  

 

 

6.3 Future work  

    Through the course of this thesis, we find that Total-Order problem is solved over 

local-area network. In line with that, our future work will concentrate on improving 

the performance of that part of the protocol executed over local-area network. We 

suggest two future works:  

 

6.3.1 

     First, Revised Mencius can be improved by introducing two modifications: 

1. Implementing Mencius on local area network using UDP protocol over IP 

multicast services instead of TCP protocol.  

2. We suggest fourth optimization to replace the accelerator. This point will be 

explained according to the following system context; 3 servers p, q, and r.  Server p is 

active while the other two servers q and r are idles. No SKIP message will be 

explicitly sent separately between idle servers (no accelerator), such as q and r in our 

scenario. Servers q and r send ACCEPT as a response for SUGGEST received from p 

for instance i, implies that they are SKIPing their turn. Server p piggybacks SKIP 

messages received from q and r on LEARN for instance i. After receiving LEARN 

message for instance i, server q will learn about server r status and vice versa.  

    Using the aforementioned optimization will eliminate the need of accelerator and 

the blocking of the two idle servers will be removed. As the waiting time for the 

accelerator to be triggered is eliminated, overall Mencius latency will benefit.    

 

6.3.2 

      For a second future work, we propose a Multi-Ordering Protocol based on 

Randomized Consensus Protocol. Randomized protocols are non-leader protocols; all 
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nodes in such protocols have the same quality and the same responsibility and have no 

use of unreliable Failure Detectors. One of the features of such protocols is that all 

communications in such protocol goes from 1 to n, so we propose here to implement 

Randomized Multi-Ordering Protocol on local-area network using UDP protocol over 

IP multicast services as the underlying protocol instead of TCP protocol. This will 

reduce the number of times needed by the application layer to send each message to 

all nodes. Only one action taken by IP multicast services to deliver each message to 

all nodes registered with that group. This protocol will be implemented on local-area 

network to solve Total Order problem. Finally, performance comparison will be 

carried out between Randomized protocol with Mencius protocol. This comparison 

will reveal the potential of Randomized protocol and give us a clear view about 

Randomized protocol as a Multi-ordering protocol used to solve Total Order problem 

over local-area network. 
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Appendix A 

A.1 Evaluation for short messages 

A.1.1 Throughput     

 

[Mencius]
N

  

Arrival 
Intervals/ms Throughput 

5 465 

20 140 

38 76 

75 39 

150 20 
                                                                                                                                                                 

  Table A.1: throughput                                                        Table A.2: throughput  

             [Mencius]
N

                                                                                  Mencius  

 

Figure A.1: Experiment 1; time delay of LAN, no DummyNet. 

                                                  

[Mencius]
N

 -25 

Arrival 
Intervals/ms Throughput 

5 425 

20 139 

38 75 

75 39 

150 20 

         Table A.3: throughput                                              Table A.4: throughput  

              [Mencius]
N

 -25                                                                  Mencius -25 

 

 

Mencius  

Arrival 
Intervals/ms Throughput 

5 333 

20 124 

38 71 

75 38 

150 19 

Mencius -25 

Arrival 
Intervals/ms Throughput 

5 332 

20 124 

38 71 

75 38 

150 19 
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Figure A.2: Experiment 2; one-way delay of 25ms. 

 

 

[Mencius]
N

 -50 

Arrival 
Intervals/ms throughput 

5 465 

20 140 

38 76 

75 39 

150 20 

         Table A.5: throughput                                                  Table A.6: throughput  

                [Mencius]
N

 –50                                                                   Mencius –50 

 

 

Figure A.3: Experiment 3; one-way delay of 50ms. 

 

Mencius -50 

Arrival 
Intervals/ms throughput 

5 329 

20 124 

38 71 

75 38 

150 19 
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[Mencius]
N

 -100 

Arrival 
Intervals/ms Throughput 

5 430 

20 138 

38 75 

75 39 

150 20 

          Table A.7: throughput                                                  Table A.8: throughput  

              [Mencius]
N

 –100                                                                  Mencius –100 

 

 

Figure A.4: Experiment 4; one-way delay of 100ms. 

 

 

[Mencius]
N

 -D 

Arrival 
Intervals/ms Throughput 

5 411 

20 135 

38 74 

75 39 

150 20 

            Table A.9: throughput                                             Table A.10: throughput  

                  [Mencius]
N

-D                                                                    Mencius-D 

 

 

Mencius -100 

Arrival 
Intervals/ms Throughput 

5 331 

20 124 

38 71 

75 38 

150 19 

Mencius -D 

Arrival 
Intervals/ms Throughput 

5 321 

20 122 

38 71 

75 38 

150 19 
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Figure A.5: Experiment 5; random one-way time delays. 
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A.1.2 Latency  

 

[Mencius]
N
 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 406.44 309.78 

20 414.56 302.1 

38 412.68 310.77 

75 413.22 317.8 

150 422.1 311.97 

         Table A.11: latency [Mencius]
N

                              Table A.12: latency Mencius 

 

  

Figure A.6: Experiment 1; time delay of LAN, no DummyNet. 

 

 

[Mencius]
N

 -25 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 418.5 314.4 

20 416.6 315 

38 414 313.5 

75 410.9 314.8 

150 404.4 309.9 
       

       Table A.13: latency [Mencius]
N

 D25                    Table A.14: latency Mencius D25 

 

Mencius  

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 412.4 320.56 

20 410.64 290.1 

38 409.9 287.35 

75 416.23 318.27 

150 407 298.89 

Mencius -25 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 444.5 366.39 

20 450 374.3 

38 468.3 378 

75 479.53 375.76 

150 480.23 319.15 
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Figure A.7: Experiment 2; one-way delay of 25ms. 

 

 

[Mencius]
N

 -50 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 426.36 343.8 

20 441.8 320.6 

38 449.5 337.9 

75 459.7 339.1 

150 480.1 360.2 

     Table A.15: latency [Mencius]
N 

-50
                     

Table A.16: latency Mencius-50 

 

 

 

Figure A.8: Experiment 3; one-way delay of 50ms 

 

 

Mencius -50 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 490.16 416.9 

20 498.06 402.38 

38 485.4 384.45 

75 500 371.4 

150 509.07 373.14 
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[Mencius]
N

 -100 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 496.6 391.8 

20 481.3 382.6 

38 481.9 395.7 

75 488.2 403.5 

150 494.7 398 

    Table A.17: latency [Mencius]
N 

 100             Table A.18: latency Mencius 100 

 

 

 

 

Figure A.9: Experiment 4; one-way delay of 100ms. 

 

 

 

[Mencius]
N

 -D 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 1946 1203 

20 1884 1089 

38 1703 1059 

75 1638 928 

150 1506 998 

       Table A.19: latency [Mencius]
N  

D
                                 

Table A.20: latency Mencius D 

 

 

Mencius -100 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 641.27 504.8 

20 597.37 514.59 

38 661.64 515.94 

75 651.83 549.54 

150 668.83 560.76 

Mencius -D 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

5 2415 1781 

20 2190 1748 

38 2177 1697 

75 2153 1738 

150 2071 1667 



 -  -     130 

 

Figure A.10: Experiment 5; random one-way time delays. 
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A.1.3  Performance Assessment of Revised Mencius                                                                  

 

Mencius-100 

Arrival Intervals/ms Throughput 

10 155 

20 85 

38 45 

75 26 

150 13 

1000 2 

10000 0.2 

         Table A.21: throughput                                      Table A.22: throughput 

           Mencius                                                                   revised Mencius 

 

Figure A.11: One-way delay of 100ms. 

Mencius-100 

Arrival 
Intervals/ms 

max-
Latency/ms 

min-
Latency/ms 

10 510.71 451.77 

20 478.41 391.47 

38 465.28 408.34 

75 462.83 379.4 

150 439.1 357.66 

1000 395.75 314.23 

10000 385.69 322.59 

              Table A.23: latency                                             Table A.24: latency  

                      of Mencius                                                     of revised Mencius 

 

 

 

Revised Mencius-100 

Arrival Intervals/ms Throughput 

10 192 

20 97 

38 48 

75 26 

150 13 

1000 2 

10000 0.2 

Revised Mencius-100 
Arrival 

Intervals/ms 
max-
Latency/ms 

min-
Latency/ms 

10 407.21 348.27 

20 392.21 321.37 

38 390.52 342.34 

75 388.13 306.7 

150 370.39 290.96 

1000 331.05 252.53 

10000 324.99 262.89 
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Figure A.12: One-way delay of 100ms. 
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