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Abstract 

The hippocampus plays a pivotal role in human memory. Previous research has showed that 

the hippocampus is particularly important in providing the spatial memory representations 

necessary for flexible navigation. The present project aimed to extend this evidence base by 

investigating the contribution of the hippocampus in such environmentally grounded and 

thereby allocentric memory representations when no navigation is required.  

The Northumberland Gallery Task (NGT) was developed to separate between allocentric 

memory and its egocentric equivalent without imposing any navigational demands. The task 

was subject to extensive piloting work, which confirmed the overall reliability of the task and 

reduced the difficulty discrepancy between the allocentric and egocentric conditions. The 

role of the hippocampus in non-navigational allocentric memory was then assessed using 

functional magnetic resonance imaging (fMRI). The results revealed a differential 

hippocampal involvement when the allocentric and egocentric conditions were contrasted, 

which was characterised by a negative blood-oxygen-level-dependent (BOLD) signal in the 

allocentric condition. Although the precise neural basis for this finding could not be 

determined from the data, likely accounts were evaluated and multimodal imaging was 

recommended for future investigations.  

The demonstration of differential hippocampal engagement in the NGT indicated its potential 

value as a measure of hippocampal function in clinical populations. The hippocampus has 

been proposed to play a central part in the pathophysiology of major depressive disorder. 

Therefore, in an explorative fMRI study, hippocampal function of a small sample of 

depressed patients and matched control participants was assessed. No evidence was found in 

support of task-dependent hippocampal dysfunction in depression. Further to this, the 

consistently demonstrated reduction of hippocampal volume in depression could not be 

replicated. Specific characteristics of the patient sample may have accounted for the general 

absence of hippocampal abnormalities, which will require further study in larger samples. 
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Chapter 1 General introduction 

The representation of spatial locations in memory is a vital cognitive function that underlies 

our understanding of and subsequent behaviour in the environment that surrounds us. A 

particularly important challenge for the representation of space in the brain follows from the 

inherently relative nature of location, which necessitates a contextualisation relative to a 

spatial reference frame (Levinson, 1996; Klatzky, 1998). Ever since the discovery of 

environmentally tuned cells in the hippocampus of the freely moving rat, the hippocampus 

has been proposed to represent location relative to a spatial reference frame that is grounded 

in an absolute framework of environmental landmarks (O’Keefe & Dostrovsky, 1971; 

O’Keefe, 1978).Distinguishable from such an allocentric system, the posterior parietal lobe 

has been proposed to provide a complementary egocentric reference frame, in which 

locations are defined relative to receptor surfaces of the body (Burgess, 2008). Although a 

close interaction between the two systems is likely to underlie much of our spatial behaviour, 

the stable environmental framework provided by the hippocampal allocentric subsystem has 

been proposed to be particularly beneficial for goal-directed navigation (O'Keefe, 1978; 

Maguire et al., 1998a).  

A variety of different tasks have been used to assess the contribution of the hippocampus in 

human allocentric spatial memory. Whilst some studies have used tasks inspired by classical 

rodent paradigms, such as the Morris Water Maze (Morris, 1981; Parslow et al., 2004), 

others have developed and relied on human-specific navigation tasks to test allocentric 

spatial memory (Maguire et al., 1998a). Consistent with the importance of the allocentric 

subsystem in goal-directed navigation, such tasks have provided general support for a 

hippocampal contribution (Astur et al., 2000; Goodrich-Hunsaker et al., 2010). A more 

specific role has been postulated for the hippocampus in the cognitive processes that underlie 

the very initial stage of goal-directed navigation, including self- and target-localisation and 

route planning (Spiers and Maguire, 2006; Cornwell et al., 2008; Xu et al., 2010).  

Consequently, it can be proposed that the hippocampus provides allocentric spatial memory 

representations even when such representations do not form the basis for navigation. 

Consistent with this, hippocampal damage has been found to affect allocentric spatial 

memory in tasks that do not involve navigation (King et al., 2002; Hartley et al., 2007). 

However, there has been little evidence from neuroimaging investigations to support this 
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conclusion (Schmidt et al., 2007). Part I of the present project therefore aims to develop a 

task that can reliably distinguish allocentric memory from its egocentric equivalent both at a 

behavioural and at a neural level, without implementing any navigational demands. By the 

use of such a task in a functional neuroimaging context, the first part of the thesis aims to 

empirically test the following hypothesis:  

Hypothesis 1: The hippocampus provides allocentric memory representations, independently 

of navigational demands. 

In Chapter 2, I provide a detailed background to support the theoretical and empirical context 

of the aims of Part I of the project. After a closer definition of spatial reference frames, I 

provide an overview of current theoretical models of how locations are represented in human 

memory. It will become evident that a two-system model, comprising a transient egocentric 

system and a more enduring allocentric system, provides a good account for the empirical 

data and thereby represents a useful theoretical framework for the present project (Shelton 

and McNamara, 2001; Zhang et al., 2011).  

In the subsequent section of Chapter 2, a thorough review of the empirical evidence relating 

to the role of the hippocampus in allocentric spatial memory will aim to specify the 

circumstances under which a hippocampal contribution can be expected. An overview of the 

firing properties of place cells provides a starting point for this review, after which the 

relevant neuropsychological and neuroimaging evidence is covered. Considering the 

substantial task development component of the project, the presentation of such evidence is 

organised to emphasise the experimental paradigm used. As such, the review starts with an 

evaluation of the hippocampal contribution in human analogues of the classic Morris Water 

Maze and the Radial Arm Maze (Olton and Samuelson, 1976; Morris, 1981), after which 

focus is turned to human-specific tasks that exhibit a similar navigational element to assess 

allocentric spatial memory. In direct relevance to the above hypothesis, evidence derived 

from tasks that utilise a shift in viewpoint, as opposed to navigation, to engage the allocentric 

subsystem is subsequently reviewed. As indicated above, it will become clear that whilst 

neuropsychological evidence has provided support for a hippocampal role in such tasks, the 

corresponding neuroimaging evidence has been limited and without a definite conclusion. To 

gain further indications of the precise role of the hippocampus in allocentric spatial memory, 

the responsiveness of the hippocampus to specific environmental features is then summarised 
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(e.g. Doeller et al., 2008). In the final section of the review, I briefly comment on the role of 

the hippocampus beyond allocentric spatial memory.  

An important outcome of the review in Chapter 2 is the identification of the need to develop 

a new task. In Chapter 3, the principles of the Northumberland Gallery Task (NGT) are 

introduced in the context of previous evidence and models of spatial reference frames. The 

results derived from the task, as performed by a young sample of healthy volunteers, are 

subsequently presented and interpreted. In Chapter 4, a set of five experiments aims to 

further develop the NGT. Whilst the first three experiments focus on making the allocentric 

and egocentric conditions of the task more equivalent in terms of difficulty, Experiment 5 

and 6 focus on ensuring that the task would produce consistent results in a middle-aged 

sample and that it can be administered as a short version, which was important for the use of 

the NGT in a clinical population in Part II of the project. In Chapter 5, functional magnetic 

resonance imaging (fMRI) was used to explore the neural underpinnings of the NGT as 

performed by young participants. As such, this chapter was primarily concerned with 

explicitly testing the hypothesis of a role for the hippocampus in a viewpoint-shift task, in 

which the process of self- and target-localisation depended on the position of environmental 

landmarks. A secondary aim of this fMRI study was to investigate the role of the parieto-

medial temporal pathway, which has been proposed to underlie navigation in humans 

(Burgess, 2008; Kravitz et al., 2011), in non-navigational allocentric spatial memory. 

Therefore, a brief background of the proposed function of regions in this pathway is provided 

as part of the introduction to Chapter 5.  

In Part II of the present project, the potential use of the NGT in clinical populations as a 

measure of hippocampal function was evaluated. In particular, major depressive disorder 

(MDD) represented the population of interest following proposals that the hippocampus 

plays a pivotal role in the pathophysiology of this disorder (Sapolsky et al., 1986; Sahay and 

Hen, 2007; Palazidou, 2012). A substantial evidence base shows that patients with depression 

exhibit structural abnormalities of the hippocampus and memory impairments that can be 

considered consistent with hippocampal dysfunction (Porter et al., 2003; Hinkelmann et al., 

2009; Koolschijn et al., 2009). Despite such evidence, neuroimaging studies of hippocampal 

function in depression have been rare and have provided mixed findings (Cornwell et al., 

2008; Werner et al., 2009). To expand on such evidence, Part II of the present project 

therefore aimed to pilot the use the NGT as a measure of hippocampal function in depression. 
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Following the structural abnormalities of the hippocampus in this disorder, the following 

working hypothesis was proposed: 

Hypothesis 2: Depression is associated with functional abnormalities of the hippocampus 

In Chapter 6, a detailed background provides a context for Part II of the project. Following a 

brief introduction of MDD as a disorder, the change in hippocampal volume in depression is 

reviewed with a particular focus on its role as the disorder progresses. Subsequently, the 

occurrence of the arguably hippocampus-relevant memory deficits in depression is explored 

in a similar way, after which the handful of imaging studies that have investigated 

hippocampal function directly in depression are described. In Chapter 7, the behavioural and 

neuroimaging results derived from the NGT in a small sample of depressed patients and age- 

and sex-matched healthy controls are reported. Such results are evaluated in the context of 

additional cognitive measures included in the test protocol.  

In Chapter 8, a summary of the contributions derived from Part I and Part II of the project is 

provided. Subsequently, the more significant limitations of the project are reiterated and 

suggestions are made for future research. In the final section of Chapter 8 and the thesis as a 

whole, conclusions in regards to the role of the hippocampus in non-navigational allocentric 

short-term memory and the potential use of the NGT in clinical populations are offered.  
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Chapter 2 Background (Part I) 

2.1 Spatial reference frames 

2.1.1 Spatial reference frames defined 

Spatial reference systems can be thought of as coordinate systems that can be used to specify 

locations (Klatzky, 1998; Carlson et al., 2010). Such spatial reference systems can be 

mathematically defined based on its origin and orientation of the primary axes. In terms of 

the origin, a location can be represented in relation to the position of the observer (self-object 

vector) or in relation to the external environment (object-object vector; Figure 2-1) (Wang, 

2012). In other words, the origin is either centred on receptor surfaces of the body, such as 

the retina or the midline of the body, or, on the environment or objects within that 

environment (Burgess et al., 2002). The self-object vectors are commonly referred to as 

egocentric whilst the object-object vectors are referred to as allocentric (Wang, 2012).  A 

further distinction can be made along the dimension of the orientation of the primary axes of 

the reference frame, which will be referred to as the reference direction. The reference 

direction can be aligned with a number of different axes, including the viewpoint of the 

observer, the orientation of an external object or cardinal directions. Similarly to the origin 

dimension, the reference direction therefore also varies in terms of its dependence on the 

position of the observer. As a consequence of the combination of the origin and orientation of 

the primary axes, it is possible to have mixed reference frames. For example, a reference 

frame may have an egocentric origin but an allocentric reference direction (i.e. self-object 

vectors defined relative to a reference direction that is independent of the observer).  

       

Figure 2-1: Illustration of the origin (Ο) and axes (x,y) of a Cartesian coordinate system (left) and of the 
basic distinction between reference frames with an allocentric origin and an egocentric origin (right). 
Images on the right are from Microsoft PowerPoint for Mac Clip Art (14.2.1).  



 

 
 

7 

2.1.2 The egocentric updating model 

The topic of spatial reference frames has received considerable attention in the last decade 

and the debate concerning the existence and relative importance of different types of 

reference frames is on-going (Li et al., 2012; Wang, 2012). Different theoretical approaches 

have tended to use different research paradigms, which in turn have relied on different 

definitions and assumptions of the reference frames of interest, making an integration of the 

available evidence challenging. To aid clarity, I will therefore start by summarising the 

research paradigms used and evidence put forward in support of an earlier model, the 

egocentric updating model, which will provide a basis against which more recent models can 

be evaluated.  

Wang and Spelke (2000) proposed the egocentric updating model, in which spatial memory 

and navigation rely mainly on dynamic egocentric representations, making it distinct from 

the orientation-free and enduring cognitive maps previously proposed (Tolman, 1948). Early 

evidence for the egocentric updating model was derived from the spatial updating paradigm. 

In one such study, Simons and Wang (1998) asked participants to learn the location of five 

objects placed on a table. During a brief delay a curtain occluded the table and one of the 

objects was shifted to a different location. At test, participants had to detect this location 

change after either walking around the table or after an equivalent rotation of the table.  

Whilst viewpoint changes were found to have little effect on change-detection performance, 

an equivalent rotation of the table impaired performance. The results were interpreted as 

evidence that egocentric representations were indeed dynamically updated, but only if 

sufficient information about self-movement was available. Since such information was 

lacking in the table rotation condition, this updating mechanism was proposed to be 

unavailable.   

A later influential study by Wang and Spelke (2000) implemented a disorientation paradigm 

to further investigate the validity of the egocentric updating model. The study was based on 

the assumption that an allocentric representation, defined as being independent of observer 

position both in terms of the origin and the reference direction, should be unaffected by 

changes in observer position. In contrast, since egocentric self-object vectors were thought to 

be updated one by one as the observer moves through the environment, an accumulation of 

error was predicted for more substantial locomotion. Participants learned the locations of six 

objects randomly placed in a room by walking around. In a chamber inside of the room, 
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participants were then asked to point to the objects with their eyes open, after physically 

turning a small amount blindfolded and after being disoriented blindfolded. The pointing 

errors were separated into the errors that stemmed from a misperception of heading and 

errors that stemmed from a deterioration of the represented inter-target vectors. Critically, 

only an egocentric updating process was proposed to predict an increase of configuration 

errors as a result of observer movement. In line with this, configuration error was found to be 

greater following complete disorientation compared to a smaller turn, indicating that the 

updating process could proceed without much error for a smaller turn but not for more 

substantial locomotion. This disorientation effect remained even when participants were 

reoriented by a directional cue, which was interpreted as discounting an explanation 

involving the uncertainty of self-orientation. Interestingly, configuration error did not 

increase following disorientation when participants were asked to point to the corners of the 

room instead of the objects. Based on such evidence, Wang and Spelke (2002) suggested that 

people depend on dynamic egocentric representations for spatial memory and navigation but 

use an encapsulated geocentric module to reorient after disorientation. 

Another source of evidence put forward for the egocentric updating model was derived from 

the so-called alignment effect, which entails the finding that it takes longer to recognise a 

scene from a viewpoint that is different from the original study view (Diwadkar and 

McNamara, 1997). In a typical procedure, participants learn the location of several objects 

from a particular viewpoint and are then asked to make spatial judgments from various 

different perspectives.  In one such study, Shelton and McNamara (1997) asked participants 

to learn the locations of seven objects in a room, after which they were taken into a different 

room and tested on a computer. Participants were asked to imagine a certain heading, as 

defined by two of the object locations (e.g. “imagine that you are standing at the shoe facing 

the lamp”), and to indicate the direction of one of the remaining objects by positioning a line 

on the computer screen (judgement of relative direction). By varying the two objects that 

defined the heading direction, the imagined perspective at test could be either aligned or 

misaligned with the learning perspective. The results showed that headings aligned with the 

learning perspective resulted in smaller pointing errors compared to misaligned headings. As 

such, the alignment effect was interpreted as a reflection of a representation with an 

egocentric origin, which needed to be aligned with the test perspective by an error-prone 

updating process.   
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2.1.3 Two-system models 

The sole emphasis on egocentric representations in the egocentric updating model was 

opposed in subsequent studies. In a review, Burgess (2006) synthesised the evidence present 

at the time and by doing so re-evaluated some of the findings presented in support of the 

egocentric updating model.  Although the presence of an automatic egocentric updating 

process during self-motion was not opposed, it was highlighted that the effect of 

environmental cues could not always be discounted.  

In a revised spatial updating experiment, Burgess et al. (2004) manipulated not only the 

position of the observer around the table and the orientation of the table but also the position 

of a single external cue. To exclude the influence of any additional external cues, the room 

was completely dark except for the array of objects and the external cue, which were painted 

in fluorescent paint. It was proposed that when the table was rotated alone, both object-object 

vectors and subject-object vectors would be disrupted (automatic egocentric updating only 

occurs in the presence of self-motion information), whilst the object-object vectors would be 

maintained when the table was rotated along with the external cue. Improved performance 

was found when the vector between the external cue and the object array was maintained, 

which suggested that allocentric representations are likely to play a role alongside the 

dynamic egocentric representations suggested by Wang and Spelke (2000).  

In response to the alignment effect (Diwadkar and McNamara, 1997), Burgess (2006) 

highlighted that performance is not only improved when the heading is aligned with the 

original learning view but also when it is aligned with a salient environmental axis. Similar to 

the methodology used by Shelton and McNamara (1997), Mou and McNamara (2002) asked 

participants to make judgments of relative direction based on the memory of seven object 

locations. By organising the target objects along salient intrinsic axes, the authors were able 

to demonstrate an improved performance for imagined test headings aligned with such 

environmental axes. Consequently, it was clear that locations could be represented in respect 

to other objects (Burgess et al., 2004) and to a reference direction defined by the intrinsic 

structure of the environment (Mou and McNamara, 2002). Although Wang and Spelke 

(2000) acknowledged the influence of the surface geometry of the environment in 

disorientation, this allocentric representation was not considered to contribute directly to 

object location memory. To accommodate findings of the influence of environmental cues on 
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the organisation of object location memory, later models therefore had to incorporate parallel 

egocentric and allocentric representations. 

In the reference direction model (Shelton and McNamara, 2001; Mou and McNamara, 2002; 

Mou et al., 2004), it was proposed that whilst an egocentric subsystem is important for the 

computation and representation of the transient self-object vectors required for locomotion, 

an environmental subsystem is responsible for representing the object-object vectors of 

spatial layouts in familiar environments. An integral element of the environmental subsystem 

is that the environment is represented in terms of a reference direction or a conceptual ‘north’ 

(Shelton and McNamara, 2001). Importantly, this reference direction is assumed to be fixed 

and independent of changes of the observer position (i.e. allocentric). The reference direction 

can be selected based on a range of cues, including a salient intrinsic axis in the environment 

or an egocentric viewing perspective (McNamara et al., 2003). In this model, the reference 

direction is therefore assumed to be independent of observer position even in cases where it 

is was originally aligned with an egocentric viewing perspective. In the last study of a series 

of experiments conducted by Shelton and McNamara (2001), participants learned the 

locations of objects from three different viewpoints in counterbalanced order after which they 

were tested in a judgment of relative direction task. A random placement of objects and a 

cylindrical room ensured that the initial study view represented the only salient cue on which 

to base the reference direction. In the case of egocentric updating, the reference direction 

would be dependent on the position of the observer and so would be updated as the study 

view changed, predicting improved performance from the last study view or equal 

performance across study views. In contrast to such predictions, improved performance was 

found to be limited to the first view, indicating that once the reference direction was acquired 

at the original viewpoint it remained fixed and independent of changes in the position of the 

observer. Shelton and McNamara (2001) furthermore proposed that the reference direction 

would only change if a later study view provided a much more salient reference direction. 

In a recent development of the reference direction model, Zhang et al. (2011) proposed that 

both object-object and self-object vectors are represented with respect to a fixed allocentric 

reference direction. Following a change in observer position, the individual needs to update 

his/her orientation with respect to this reference direction in order to gain access to the 

relevant object-object and self-object vectors. In the spatial updating paradigm, there are two 

sources of information that could be used to recover the reference direction: by updating the 
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allocentric heading based on information about self-motion or by using the visual input of the 

interobject vectors in the scene. Whilst both sources of information are available when 

participants are required to walk around the table, only the latter is available in the table 

rotation condition. When Zhang et al. (2011) made the reference direction explicit in the 

array, the typical facilitative effect in the self-locomotion condition was eliminated, 

indicating that the challenge of the spatial updating paradigm was indeed the recovery of the 

reference direction. Importantly, since the reference direction was not aligned with the 

egocentric view during learning in this study, the results could not be attributed to updating 

relative to the egocentric orientation (Wang and Spelke, 2000). The allocentric updating 

model therefore not only proposes that both self-object and object-object vectors are 

represented in relation to a fixed allocentric reference direction, but also that the orientation 

of the observer is represented and updated in relation to the same reference direction. 

The allocentric updating model has recently been used to provide an explanation for the 

disorientation effect. Li et al. (2012) summarised the evidence and concluded that the 

disorientation effect was limited to situations in which participants learned an irregular layout 

from the middle of the layout. Considering that an egocentric updating process would not 

predict differences according to situation, the authors took the view of Zhang et al. (2011) 

and proposed that the challenge in the disorientation paradigm was to recover the allocentric 

reference direction. Specifically, whilst the turn condition allows for updating of the observer 

position relative to the reference direction, the disorientation condition requires a complete 

recovery of the reference direction. It was proposed that learning an irregular array from a 

central learning position would result in a reliance on self-object vectors that are represented 

relative to a fixed reference direction aligned with the original learning viewpoint. It was 

revealed that by informing participants about the learning direction after disorientation, the 

disorientation effect could be eliminated in the consequent pointing task (i.e. configuration 

error was equivalent in the disorientation and turn conditions). This was interpreted as 

indicating that disorientation did not disrupt the self-object vectors but instead interfered with 

the ability to recover the reference direction. Similar evidence has been reported for much 

briefer presentations in the spatial updating paradigm, where informing participants about the 

study view in the table rotation condition was found to eliminate the relative facilitative 

effect in the self-locomotion condition (Mou et al., 2009). In relation to the remaining 

disorientation effect when a directional cue was used in a previous study (Wang and Spelke, 
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2000), Li et al. (2012) argued that since the directional cue was unlikely to have determined 

the reference direction, using it after disorientation would not help recovery of the reference 

direction. Following this, Li et al. (2012) proposed the uncertainty hypothesis, in which the 

disorientation effect is accounted for by a greater uncertainty in identifying the fixed 

reference direction and not by disruptions in memory.  

The above models share several features with the model proposed by Waller and Hodgson 

(2006), which also made a distinction between a transient egocentric system and a more 

enduring system. In this model, it was proposed that transient egocentric representations of 

individual objects existed in parallel with an enduring representation of the array 

configuration. The former system was proposed to dominate performance when an individual 

is fully oriented in the environment and that a switch to an offline enduring system occurs 

when online information about the environment becomes unreliable. In this framework, a 

switch from the detailed but transient egocentric system to the enduring but spatially coarse 

system is considered the cause of the disorientation effect. To support their model, Waller 

and Hodgson first replicated the increase in configuration error following disorientation in 

the egocentric pointing task (Wang and Spelke, 2000) and consequently demonstrated 

reduced configuration error following disorientation in the arguably more allocentric 

judgment of relative direction task. Although the enduring system was never specified in 

terms of whether it represented object location allocentrically or egocentrically, the double 

dissociation in the two tasks was interpreted as a shift from a transient egocentric system to a 

more enduring system.  

2.1.4 Summary 

From the background provided above, it is evident that spatial reference frames play an 

invaluable role in allowing locations to be represented in memory. Although the precise 

nature of such reference frames is still being debated (Li et al., 2012; Wang, 2012), it appears 

as if a two-system model can best account for the empirical findings. The three two-system 

models described above all include a transient egocentric subsystem to support locomotion 

and a more enduring subsystem to supports goal-directed navigation (Shelton and McNamara, 

2001; Waller and Hodgson, 2006; Mou et al., 2009; Zhang et al., 2011). In the reference 

direction model and the allocetrinc updating model, the enduring subsystem is specified to 

represent locations relative to an allocentric reference direction, which is selected based on 
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the initial egocentric viewpoint if the environment does not provide a salient environmental 

axis (McNamara et al., 2003). Importantly, following the disruption caused in the 

disorientation paradigm or in the table condition of the spatial updating paradigm, the 

reference direction needs to be recovered before the represented vectors can be accessed 

(Zhang et al., 2011; Li et al., 2012). When no information about self-movement is available, 

this process will necessarily rely on the inter-object vectors of the visual scene (Zhang et al., 

2011). I will return to these theoretical principles in order to contextualise the NGT in 

Chapter 3. Such principles also provide a context to the subsequent section, which concerns 

the hippocampal contribution to allocentric spatial memory.  

2.2 Hippocampal spatial memory 

2.2.1 Introduction 

The effect of medial temporal lobe damage on memory has been known since the first report 

of patient H.M. and the anterograde amnesia that resulted from the removal of his medial 

temporal lobe as a treatment for medically intractable epilepsy (Scoville and Milner, 1957). 

H.M.’s resection included the anterior hippocampus bilaterally, the amygdala and the 

majority of the parahippocampal-entorhinal cortex, which resulted in a global inability to 

form new long-term memories whilst short-term memory, working memory, and other 

cognitive abilities such as reading and writing were spared. Consistent with the amnesic 

syndrome, H.M.’s memory impairment was also reflected in tasks of spatial memory, 

including learning a stylus maze and remembering object locations (Milner, 1965; Smith and 

Milner, 1981). In a review of 147 cases of amnesia, Spiers et al. (2001b) concluded that 

damage to the hippocampus consistently resulted in an inability to form new episodic long-

term memories with spared procedural and working memory. Although no conclusion could 

be drawn in relation to spatial memory specifically in this particular review, Kessels et al. 

(2001) concluded in a meta-analysis of 27 studies that hippocampal damage consistently 

results in significant impairment in a range of different spatial domains, including maze 

learning, object-location memory, spatial working memory and positional memory. The role 

of the hippocampus in spatial memory in healthy individuals was recently confirmed in a 

meta-analysis of 72 fMRI studies (Kim, 2011). The study concluded that the anterior 

hippocampus was consistently more active for stimuli that were subsequently remembered. 

Importantly, such subsequent memory effects in the hippocampus were strongly modulated 
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by the nature of the material, with robust effects during pictorial material encoding but 

relatively weak and left-lateralised effects during verbal encoding. Taken together, both 

neuropsychological and neuroimaging investigations appear to support the view that the 

hippocampus is critical for spatial memory.  

From the brief introduction above, it is evident that the hippocampus plays an important part 

in spatial memory. However, the important discovery of place cells in the rodent 

hippocampus (O’Keefe and Dostrovsky, 1971) allowed more specific predictions to be made 

in regards to the effect of hippocampal damage (for more detail about place cells, see section 

2.2.2.). In the influential cognitive map theory, O'Keefe (1978) proposed that hippocampal 

place cells provided the mechanism for a “locale” neural system, which organizes perceptual 

stimuli in an interconnected mental framework rather than as isolated components connected 

by pair-wise associations. In other words, the locale system was argued to consolidate and 

store allocentric representations, in which spatial vectors were represented in an absolute 

framework of spatial landmarks, independently of the orientation of the observer. In contrast, 

egocentric representations, in which spatial vectors were dependent on the orientation of the 

observer, were proposed not to require the hippocampal locale system. As such, the cognitive 

map theory predicted that the hippocampus would be particularly useful in navigation from 

novel start positions and when novel short cuts are required.  

In the following sections, evidence relevant to a hippocampal contribution to allocentric 

spatial memory will be reviewed. A closer description of the firing properties of place cells 

will provide the starting point, after which the extensive and variable evidence base of 

neuropsychological and neuroimaging investigations will be considered. As a consequence of 

the influence of the cognitive map theory, the vast majority of such investigations have 

involved an element of navigation to test the hippocampal contribution to allocentric 

representations of space. Whilst some studies have used tasks inspired by classical paradigms 

used to assess the effect of hippocampal damage in rodents (e.g. the MWM; (Morris, 1981; 

Parslow et al., 2004), others have developed and relied on human-specific navigation tasks to 

test allocentric spatial memory (Maguire et al., 1998a). In a minority of studies, which lacks 

the navigational element, memory is tested by a shift in viewpoint between presentation and 

recall, which, similarly to navigation from novel starts positions, is assumed to require an 

allocentric representation (King et al., 2002). In the following review, neuropsychological 

and neuroimaging evidence relevant for each task category will be considered in turn. In this 
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way, the rationale and design of the tasks will be emphasised, which will be important for the 

purposes of the task development component of the present project. Although it is 

acknowledged that a range of regions outside of the medial temporal lobe contribute to 

spatial memory, evidence implicating the hippocampus will be the focus of the review. 

It is important to highlight that neuropsychological and neuroimaging investigations should 

be seen as complementary techniques in the investigation of the role of the hippocampus in 

allocentric spatial memory. Although neuropsychological investigations are critical for 

determining the necessity of the hippocampus and the medial temporal lobe in spatial 

memory, such investigations come with important limitations. First, the neuropsychological 

approach assumes that the brain functions normally with the exception of the damaged region. 

Second, the nature, localisation and extent of the damage depend on whether it was produced 

by neurological disease or surgical ablation. Third, even if the damage is surgically imposed, 

it tends to vary widely between patients. As a result of such limitations, evidence from 

neuropsychological studies can be difficult to evaluate. Since neuroimaging can be applied in 

healthy individuals, such limitations can be overcome. However, it is worth emphasising that 

the correlational nature of neuroimaging means that it can only provide information about the 

involvement of a region in a particular cognitive process. In other words, an activated region 

could play a causal role or could be activated in an optional or even epiphenomenal way. 

Thus, neuropsychological and neuroimaging investigations both provide important clues to 

the role of the hippocampus in allocentric spatial memory.  

2.2.2 Place cells 

A critical evidence base for the role of the hippocampus in allocentric spatial memory comes 

from demonstrations of the firing properties of the cells in hippocampus proper and nearby 

structures. In a seminal study, O’Keefe and Dostrovsky (1971) recorded from units of 

hippocampal pyramidal cells in a freely moving rat and discovered that some cells 

demonstrated location-specific firing. The place cells fired intensely only when the rat’s head 

was is in a certain part of the environment, referred to as the place field of the cell, and 

remained virtually silent when the head was outside that field. This indicated that the cells 

fired in response to the position per se and not in response to the particular stimuli available 

from a specific viewpoint. Based on such viewpoint-independence, place cells can therefore 

be considered to represent space allocentrically, even if the location to be represented is of 
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the animal itself. Bird et al. (2012) summarised the encoded material of place cells as “a 

mental representation of where the rat thinks it is” (p. 3).  

Consistent with a representation centred on the environment, the place fields of place cells 

appear to change as a result of changes to the environment. Muller and Kubie (1987) used a 

cylindrical apparatus, which was uniform in colour except for a salient white cue card. A 

rotation of the cue card resulted in an equivalent rotation of the place fields, supporting that 

place cells represent space in relation to distal landmarks. In contrast to such distal cues, it 

has been proposed that intramaze landmarks do not exert the same control over place cell 

firing. In line with this, Cressant et al. (1997) found that objects placed within a cylinder did 

not exert control over place cell firing. However, when the same objects were placed against 

the wall, the objects showed virtually ideal control over the position of place fields.  

The importance of local cues and environmental boundaries for place cell firing has come 

under closer attention more recently (Knierim and Hamilton, 2011). Shapiro et al. (1997) 

used local and distal cues of similar salience and demonstrated that some place fields were 

controlled by the distal cues, other by the local cues, whilst others showed evidence of 

remapping. Although a greater number of the place fields were controlled by distal cues than 

by local cues, the study provided important evidence of the importance of local cues in the 

presence of a salient distal cue. Further to the influence of distal cues, boundaries appear to 

be of particular importance for place cell firing. This was demonstrated elegantly by O’Keefe 

and Burgess (1996), who showed that changing the walls of rectangular box appeared to 

cause an equivalent stretch or compression of the place fields. In summary, the firing fields 

of place cells in the hippocampus appear to be controlled by various environmental features, 

indicating an integral role of such cells in representing space in an allocentric manner 

(O'Keefe, 1978).  

An important feature of place cells is that their place fields are specific for each environment 

and remain stable across sessions separated by several days (Muller and Kubie, 1987; Muller 

et al., 1987). Such evidence indicates that the representation is recalled rather than re-created 

every time the animal encounters the environment, supporting that place cells can represent 

space in memory. In line with this, when the distal cue was removed in the study by Muller 

and Kubie (1987) the place fields were maintained, with the exception of a rotation to an 

unexpected angular position. This shows that the distal cue was represented even when it had 

been removed from the environment. O’Keefe and Speakman (1987) provided further  
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Figure 2-2: Subfields of the hippocampal complex.  CA= Cornu Ammonis ,  DG = dentate gyrus , SUB= 
subiculum, Fim=fimbria, EC = entorhinal cortex, pSUB=parasubiculum. Structural MR image from an 
adult male tested in Experiment 7. 

evidence of the mnemonic function of place cells. In this study, rats were taught to retrieve 

food in one of the arms of a 4-arm maze by referring to distal cues. Consistent with the 

findings of Muller et al. (1987), when the distal cues were removed before the rat entered the 

maze, the place fields remained the same in terms of the distance to the centre but not in 

terms of the angular position of the arms. However, when the distal cues were not removed 

until the rat had already spent some time in the maze, the place fields remained completely 

unchanged. Critically, the behavioural choice of the rat in the maze was highly correlated 

with the location of the place field. Therefore, place cells appear to support stored 

representations of the environment that not only can be recalled as a whole even if some 

elements are missing but that can be used to guide behaviour. Considering the location-

specific response pattern of place cells, they represent a prime candidate for the mechanism 

that underlies allocentric spatial representations (O'Keefe, 1978).  

Importantly, the place cells in the hippocampus receive important inputs from neighbouring 

regions. Specifically, the hippocampus proper, i.e. the Cornu Ammonis (CA) regions, is in 

close proximity to the dentate gyrus, subiculum and entorhinal cortex (Figure 2-2). The 

entorhinal cortex in particular provides a major gateway to the hippocampal formation from 

the perihinal cortex and the ventral “what” stream and from the parahippocampal cortex and 

the dorsal “where” stream, including the retrosplenial cortex and the posterior parietal cortex 

(Goodale and Milner, 1992; Suzuki and Clayton, 2000). It is therefore worth noting that 

spatially tuned cell types complementary to the place cells in the hippocampus have been 

discovered in such neighbouring regions. One example is head direction cells, which are 

found along the Papez circuit (mammillary bodies, anterior thalamus, presubiculum, 
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retrosplenial cortex, entorhinal cortex) and appear to code for the animal’s current head 

direction (Taube, 1998). These cells fire selectively when the head of the animal points in a 

certain allocentric direction, regardless of the orientation of the head relative to the body, 

providing a compass-like signal based on the integration of self-motion cues. Head direction 

cells can therefore be said to be view-specific and location-independent, which can be seen 

as complementary to the location-specific and view-independent firing of place cells. Grid 

cells can be found in the medial entorhinal cortex and in the pre- and para-subiculum and fire 

whenever the location of the animal coincides with any vertex of a regular grid, indicating an 

updating of the firing pattern in response to self-motion (Hafting et al., 2005). Place cells, 

head direction cells and grid cells are thought to be coordinated by distal cues, as evidenced 

by a coherent change of their place fields when the location of a distal cue is changed (Bird et 

al., 2012). Finally, boundary cells have been discovered in the subiculum and exhibit firing 

fields that appear to reflect the allocentric vector to a boundary (Lever et al., 2009). Border 

cells, which are found in the medial entorhinal cortex, have similar properties to the 

boundary cells but appear to only fire when the animal is close to or at the boundary (Solstad 

et al., 2008). In summary, it appears as if the place cells in the hippocampus receive inputs 

from a range of different cell types with distinct spatial tunings. Such evidence supports 

proposals that the hippocampus represents a central component in a memory system that 

allows environment-centred spatial representations to be encoded and used (Becker and 

Burgess, 2001; Byrne et al., 2007; Knierim and Hamilton, 2011).  

2.2.3 Human analogues of rodent spatial memory tasks 

2.2.3.1 Morris Water Maze 

Neuropsychological evidence 

Following early evidence of the effect of hippocampal lesions in rats on navigation ability in 

the infamous Morris Water Maze (MWM; (Morris, 1981; Eichenbaum et al., 1990)) several 

investigations have implemented human analogues of this task to assess the effect of 

temporal lobe and hippocampal damage in humans. As in the original task, Astur et al. 

(2000) asked participants to learn the location of a hidden platform relative to environmental 

landmarks over successive trials (Morris, 1981). Using desktop virtual reality, participants 

used a joystick to ‘swim’ in a circular pool to find the platform from different start positions. 
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The variation in start positions is critical for the rationale behind the MWM as such variation 

is assumed to prevent subjects from using their start position to remember the platform 

location and to instead remember it in relation to surrounding environmental landmarks (i.e. 

allocentrically). As in the original task, a fixed set of training trials were followed by a probe 

trial, in which the platform was removed without warning. In a sensory-motor control 

condition, participants had to ‘swim’ to a visible platform both in the training trials and in the 

probe trials. Ten patients with unilateral hippocampal removals (five right-sided, five left-

sided), either following a selective amygdalohippocampectomy or anterior temporal 

lobectomy (TL), were tested in the task. Relative to control participants and patients who had 

undergone surgery in areas outside the temporal lobe, both patient groups with temporal lobe 

lesions were slower to find the platform in the training trials and spent less of their swim 

distance in the correct quadrant on the probe trials. Patients showed no impairment in the 

control condition or in a complex visual memory task, which highlighted the specificity of 

the demonstrated impairment.  

In a similar study, Feigenbaum and Morris (2004) used a touch sensitive screen fitted into a 

wooden cabinet in the horizontal plane to display the virtual pool from a bird’s eye 

perspective. Sixteen left TL patients, 16 right TL patients and 16 matched control 

participants were asked to ‘swim’ with their finger until they found the hidden platform. In 

an allocentric condition, participants were instructed to move to different locations around 

the monitor between trials, simulating the different start locations in the original task. In an 

egocentric condition, start positions remained the same but the locations of the virtual objects 

surrounding the pool were changed. In a final place learning condition, both start positions 

and object locations remained the same. The results showed that only patients with right-

sided damage were impaired and only in the allocentric condition, supporting the link 

between allocentric learning and long-term memory and the integrity of the hippocampus. It 

is worth mentioning that despite the similarities with the study by Astur et al. (2000), the 

cabinet version of the MWM differs in one important aspect. Specifically, the physical 

movement around the monitor in this task could have provided sufficient self-motion 

information to update an egocentric representation of the target location (Simons and Wang, 

1998), which may have undermined the use of an allocentric representation to solve the task.  

In a more selective sample, Goodrich-Hunsaker et al. (2010) studied the performance of five 

amnesic patients with atrophy limited to the hippocampus bilaterally in a desktop virtual 



 

 
 

20 

version of the MWM. Consequently, one condition involved navigation to a hidden platform 

from four different start positions whilst another involved navigation to a visible platform. In 

an additional condition, a proximate intramaze landmark consistently indicated the location 

of the hidden platform, which changed on each trial, whilst the start position remained the 

same. Thus, a simple cue-response strategy was sufficient to solve this condition. Relative to 

control participants, patients with hippocampal atrophy were impaired only when the 

platform location had to be represented in terms of the surrounding environment. 

Furthermore, in a room reconstruction test performed immediately after the navigation task, 

patients were unable to reconstruct the basic layout of the test environment. Therefore, 

although patients were able to associate the platform location with a single ‘beacon’ 

landmark, they were unable to represent and use the layout of the environment to remember 

the platform location.  

In contrast to such consistent findings, Bohbot et al. (1998) did not find evidence for an 

effect of hippocampal damage in a human analogue of the MWM. In this version of the task, 

patients searched for a sensor, which had been hidden under the carpet, from two different 

entrances. After a 30-minute delay, patients were asked to return to the sensor from the first 

encountered entrance. Four patients with left-sided hippocampal damage and six patients 

with right-sided hippocampal damage were unimpaired in this task. However, all three 

patients with right-sided parahippocampal damage were found to be impaired, indicating that 

the parahippocampus and not the hippocampus were critical for solving the task. Compared 

to the studies by Astur et al. (2000) and Feigenbaum and Morris (2004), the limited number 

of start positions in the study by Bohbot et al. (2004) may not have been sufficient to 

encourage the use of the surrounding environment to remember the target location. Since 

memory for the sensor position was tested from the same view as it was first presented, a 

visual snapshot of the scene would have been sufficient to solve the task.  

Taken together, damage affecting the right or bilateral hippocampus appears to result in an 

inability to learn the location of a target relative to environmental landmarks in the MWM 

(Astur et al., 2000; Feigenbaum and Morris, 2004; Goodrich-Hunsaker et al., 2010). 

Conversely, the hippocampus does not appear to be necessary when a proximal landmark 

consistently indicates the target location (Goodrich-Hunsaker et al., 2010) or when a visual 

snapshot strategy is sufficient to remember the target location (Bohbot et al., 1998).    
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Neuroimaging evidence 

Following the promising results provided by the neuropsychological studies, several 

neuroimaging studies have opted for human analogues of the MWM. A great advantage of 

such studies is that they allow assessment of the contribution of the intact hippocampus in 

different phases of the MWM task, although variability between the different task versions 

used occasionally make a direct comparison difficult.  

Cornwell et al. (2008) used a magnetoencephalographic (MEG) system to measure theta 

oscillations in the hippocampus, which have been proposed to provide a critical timing 

mechanism for synaptic plasticity and thereby learning and memory (O’Keefe and Recce, 

1993). Participants performed a virtual version of the MWM, which included the typical 

hidden-platform condition but used aimless movement as a control condition. Two early 

peaks of left hippocampal and parahippocampal theta activity were observed during 

navigation trials relative to control trials, consistent with an early hippocampal involvement 

in navigation relative to environmental landmarks. Furthermore, a between-subject analysis 

of performance effects showed a robust inverse correlation between average path length and 

theta activity during the first second of navigation in the left posterior hippocampus, 

indicating a particularly rapid engagement of the hippocampus and parahippocampus in the 

best navigators.  

In the MWM task used by Shipman and Astur (2008), participants were required to search 

for a hidden platform below one out of four floating balls from different start positions. In a 

control condition, all surrounding landmarks were obscured by high stonewalls and 

participants simply navigated to a visible platform. The absence of landmarks was 

implemented in this condition to minimise the occurrence of incidental encoding. 

Furthermore, a fixation condition simply required participants to gaze at a crosshairs on the 

screen. The blocked analysis revealed that relative to the fixation condition, both hidden and 

visible trials were associated with decreased hippocampal activity in the right hemisphere, 

more so for the hidden trials. Although the direct contrast between the visible and hidden 

trials was not reported, a significant decrease in hippocampal activity was demonstrated for 

the hidden trials relative to the fixation trials. Although the interpretation of such apparent 

deactivations remains elusive (Buxton et al., 2004), this result appeared to contradict the 

recruitment of the hippocampus in the spatial condition of the MWM. However, in a post-hoc 

event-related analysis, the right hippocampus was found to be more active in the hidden 
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compared to the visible condition, which was interpreted as evidence of a specific and time 

limited role for the hippocampus in the initial phase of navigation. 

Whilst the above studies adopted the classical feature of learning the location of a hidden 

target location over successive trials through trial and error, other studies have used a visible 

target location at presentation to allow for a new target location to be presented on each trial. 

The representation of each target location therefore needs to be maintained for just a limited 

period of time. In a virtual circular arena with random patterns rendered on the walls, 

Parslow et al. (2004) used fMRI to investigate allocentric location memory. At presentation, 

participants navigated to the visible target location and, after a 30-second long unfilled delay, 

returned to the target location based on the memory acquired at presentation. In a viewpoint-

independent condition, the start position was different at presentation and test, similar to the 

hidden platform condition in the MWM. In a viewpoint-dependent condition, the arena walls 

had been rotated and participants navigated from the same start position, encouraging the use 

their own location to guide navigation. Participants were explicitly instructed to use the walls 

to remember the pole location in the former condition and to use their own location in the 

latter. Whilst no hippocampal activation was found when the viewpoint-independent and the 

viewpoint-dependent conditions were contrasted directly, increased activity was found in the 

hippocampus and parahippocampus bilaterally when the viewpoint-independent condition 

was contrasted with rest but only at encoding. No such effect was observed for the 

viewpoint-dependent condition, indicating a specific involvement of the hippocampus when 

the target had to be encoded in relation to the patterns on the walls. In a later study, Antonova 

et al. (2009) used the same task in young and older adults. No viewpoint-dependent condition 

was included in this study, however, which meant that all contrasts were between the 

viewpoint-independent condition and rest periods. At encoding, increased bilateral 

hippocampal and left parahippocampal activation was revealed in young but not in older 

adults. Similarly, at retrieval, increased activation was found in the right hippocampus and 

the left parahippocampal gyrus in young adults only.  

In the study by Baumann et al. (2010) the experimental principle was the same as in the 

above studies but instead of the traditional circular pool there were no environmental 

boundaries. In this infinite plane, participants had to remember the location of a single target 

relative to three landmarks. At encoding, participants navigated to the visible target and after 

a brief delay had to navigate to the remembered location from a different position in 75% of 
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the trials and from the same position on 25% of the trials. In the control condition, the target 

location remained visible at retrieval. Encoding of the target relative to the landmarks in the 

control condition was minimised by informing participants of what type of trial they were 

about to perform. Relative to the control condition, there was significant activation of the 

bilateral hippocampus and the right parahippocampus but only at encoding. Furthermore, 

greater activity in the right hippocampus at encoding predicted more accurate performance as 

did increased activity in the left hippocampus at retrieval.  

Rodriguez (2010) used a sparse virtual version of the MWM to investigate the use of heading 

vectors. In the encoding phase, participants navigated to a visible target location in a circular 

arena, after which a brief delay passed before participants had to navigate to the remembered 

position from novel start positions. In an allocentric condition, a red square on the wall 

represented the single available landmark.  In a cue-place condition, one out of eight wall 

cues acted as a proximate landmark by always indicating the target location. A shuffle of the 

wall cues on each trial ensured that participants were using a simple cue-place association to 

solve the task. Thus, whilst both conditions involved navigation to a remembered target 

location relative to a cue on the wall, the heading direction was directly given in the cue-

place condition but needed to be calculated in the allocentric condition. When the encoding 

and test phases were collapsed, increased activity was demonstrated in the right posterior 

hippocampus when the allocentric condition was contrasted with the cue-place condition. 

Furthermore, when the analysis was limited to the encoding phase, increased activity was 

found in the right anterior hippocampus in the cue-place condition relative to the allocentric 

condition. Such results were interpreted as an involvement of the right posterior 

hippocampus in calculating heading vectors and of the right anterior hippocampus in the 

encoding of a cue-place association.  

In summary, although all the above studies were analogues of the MWM they have been far 

from identical. Whilst some studies implicated successive learning across trials (Cornwell et 

al., 2008; Shipman and Astur, 2008) others used a new target location in every trial by 

simply making it visible at encoding (Parslow et al., 2004; Antonova et al., 2009; Baumann 

et al., 2010; Rodriguez, 2010). Furthermore, whilst two studies used a visible target condition 

as a control condition (Shipman and Astur, 2008; Baumann et al., 2010), others used rest 

periods (Parslow et al., 2004; Antonova et al., 2009), aimless navigation (Cornwell et al., 

2008) and cue-place learning (Rodriguez, 2010) as the control condition. Despite such 
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differences, all of the above studies provided at least some evidence in support of a 

hippocampal contribution in environment-centred representations in the MWM. Furthermore, 

there are indications that the hippocampus is particularly important in the initial phase of 

navigation (Cornwell et al., 2008; Shipman and Astur, 2008), suggesting a potential role in 

re-orientation and calculation of a heading vector (Rodriguez, 2010). The relative role of the 

hippocampus at encoding and retrieval in the MWM, however, is not clear from the studies 

that allowed such a comparison to be made (Parslow et al., 2004; Antonova et al., 2009; 

Baumann et al., 2010; Rodriguez, 2010). 

2.2.3.2 Radial Arm Maze 

Neuropsychological evidence 

Another task that has been used extensively in rodent research and that has been adapted to 

human participants is the Radial Arm Maze (RAM; (Olton and Samuelson, 1976)). 

Goodrich-Hunsaker and Hopkins (2010) used such a human analogue of the RAM in a 

sample of five amnesic patients with selective hippocampal atrophy. As in the rodent version 

of the task, the virtual maze consisted of a central platform with eight identical arms radiating 

outward, four of which were randomly rewarded in different trials and four of which were 

never rewarded. Through trial and error, participants learned to retrieve the reward without 

entering the non-rewarded arms or re-entering rewarded arms. Although there is no explicit 

control of strategies in a typical RAM, the identical arms of the maze are thought to 

encourage use of the surrounding distal landmarks for accurate performance. Relative to 

control participants, patients were found to spend more time on longer paths to find the 

rewards and to make significantly more errors.  

In a similar but real-life analogue of the RAM, Abrahams et al. (1997) tested 30 patients with 

temporal lobe damage as a consequence of temporal lobe epilepsy and 47 patients who had 

undergone unilateral temporal lobectomy. In this task, nine bins were arranged in a circle on 

a table to represent the arms of the maze. Once the experimenter had hid objects in four of 

the bins, patients were required to walk slowly around the table to a specified location, after 

which a simple filler task was performed for one minute. As a result of such observer 

movement between presentation and recall, the task was proposed to require patients to use 

the cues available in the surrounding room to solve the task, minimising the use of an 

egocentric memory. At test, memory for the identity of the hidden objects was tested 
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separately from the memory for the object locations. Consistent with previous studies (Smith 

and Milner, 1981), patients with right-sided temporal lobe damage demonstrated a selective 

deficit on the location memory test, independently of the cause of their damage. It is worth 

mentioning that although patients were asked to look away during the rotation around the 

table, the physical movement could have provided sufficient self-motion information to 

update the egocentric position in relation to the array. Similarly, since the filler task occurred 

after the rotation around the table, it is unlikely to have disrupted egocentric updating if it did 

occur. However, the authors argued that because of the processing demands of the task, an 

allocentric strategy would have been more efficient.  

Taken together, it appears as if selective hippocampal atrophy alone (Goodrich-Hunsaker and 

Hopkins, 2010) is sufficient to produce a similar impairment of right-sided temporal 

lobectomy in analogues of the RAM (Abrahams et al., 1997). Findings derived from human 

analogues of the RAM therefore provide further support for the necessity of the hippocampus 

when spatial learning based on environmental cues is encouraged.   

Neuroimaging evidence 

As in neuropsychological investigations, several neuroimaging studies have adopted human 

analogues of the RAM to assess spatial memory. In the study by Iaria et al. (2003), 

participants retrieved hidden objects at the end of the arms of a virtual eight-arm radial maze, 

which was surrounded by environmental landmarks. In a subsequent probe trial, in which 

participants were required to avoid re-entering previously rewarded arms, the walls were 

raised to conceal the environmental landmarks. In conjunction with verbal reports, this probe 

trial allowed the experimenters to categorise participants who exhibited worse performance 

following the removal of landmarks as using a spatial strategy whilst categorising the 

remaining participants as using a non-spatial strategy. In a control condition, the rewards in 

the arms were visible from the centre of the maze. Relative to the control condition, goal-

directed navigation resulted in increased activity in the right hippocampus but only when 

participants who had used a spatial strategy were considered separately. When all 

participants were considered, no increase in hippocampal activity could be detected. In a 

similar RAM, Bohbot et al. (2004) categorised participants as using a non-spatial strategy or 

a spatial strategy by the self-report of participants. Consistent with the findings of Iaria et al. 

(2003), the contrast revealed an increase in the right hippocampus only in participants who 
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had used a spatial strategy, indicating that topographical learning specifically involved the 

hippocampus. Interestingly, participants who initially used a spatial strategy and then shifted 

to a non-spatial strategy showed a corresponding disappearance of hippocampal activation. 

As such, it is also evident that the RAM does not explicitly ensure that a hippocampus-

dependent memory strategy is used.   

Marsh et al. (2010) similarly required participants to use surrounding landmarks when 

retrieving rewards in an eight arm radial maze but implemented a different protocol to 

control the strategies used in the task. By varying the initial viewing perspective from the 

start position at the central platform, a non-spatial strategy was arguably prevented. In the 

control condition, the surrounding landmarks were shuffled and participants were asked to 

search the arms randomly for the hidden rewards, preventing the use of environmental 

landmarks in this condition. When the conditions were contrasted, activations were found in 

the parahippocampus rather than in the hippocampus, indicating that the parahippocampal 

cortex may play a greater role in processing spatial information. Although the authors did not 

make any reference to the studies described above, it is worth noting that although the 

variation of viewpoint from the start position would have required the use of the landmarks 

for orientation, participants may have opted for a non-spatial strategy for the remainder of the 

trial. If participants used a non-spatial strategy for the majority of the trial, the lack of 

hippocampal involvement would arguably be less surprising.  

In the study by Astur et al. (2005), the importance of accounting for or controlling for the 

strategy choice of participants in the RAM was further highlighted. In this study, activity 

during the retrieval of hidden rewards and visible rewards in the maze were contrasted whilst 

no experimental control was asserted over the spatial strategies used by participants. 

Consequently, the finding of a significant hippocampal deactivation during search for the 

hidden rewards was difficult to interpret. It is also worth noting that the hippocampal clusters 

reported in this study may be more accurately referred to as originating in the 

parahippocampal gyrus.  

In summary, it appears that when a spatial strategy is ensured, the hippocampus is involved 

during spatial learning in the RAM. However, it is also evident that when no experimental 

control is asserted, participants will spontaneously adopt a strategy that may or may not 

involve the recruitment of the hippocampus. 
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2.2.4 Human-Specific Tasks 

2.2.4.1 Navigation tasks 

Neuropsychological evidence 

The evidence derived from human analogues of classic rodent spatial memory tasks has been 

complemented by evidence derived from tasks developed specifically for humans. Such tasks 

commonly involve environments typical of the world in which humans live and navigate in, 

including virtual neighbourhoods, towns and office buildings. Although there is great 

variability between task designs, neuropsychological studies have generally involved a 

training phase, in which patients learn about the environment through a first-person 

perspective, and a later test phase, which requires participants to use the acquired 

topographical knowledge to solve a task. The continuous navigation through a large-scale 

environment, which cannot be seen in its entirety from a single position, is assumed to 

encourage the formation of an allocentric representation.  

In an early study, Maguire et al. (1996a) showed video footage of navigation along two 

overlapping routes through an urban area to test the topographical memory of eleven left TL 

patients and nine right TL patients. Patients watched the footage a minimum of four times 

and were tested to criterion in a scene recognition task, after which they were tested on a 

number of different measures, including proximity judgments, route knowledge and a sketch 

map. Results showed that both patient groups were impaired on all of the tasks, except for 

proximity judgments, for which only the right TL group differed significantly from controls.  

Spiers et al. (2001a) opted for a virtual town environment, in which the topographical 

memory of a sample of 13 left TL patients and 17 right TL patients was tested. Patients first 

explored the town (15-60min), after which they were asked to navigate to ten different 

locations using the most direct route. In addition, patients’ knowledge of the environment 

was tested in a scene recognition task and a map drawing task. Right TL patients were found 

to be impaired relative to left TL patients and control participants in the navigation task and 

in the scene recognition task, whilst both patient groups were impaired in the map-drawing 

task. Interestingly, left TL patients were found to be more impaired in a context-dependent 

episodic memory task, including the retrieval of the spatial context in which a particular 

target object was received. Such evidence indicated that the left temporal lobe might be more 
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important for episodic memory of spatial context, which may explain the equivalent 

impairment in left TL and right TL groups for some topographical memory tasks.   

In a recent study, Weniger et al. (2012) investigated spatial learning in two different virtual 

environments, a park and a maze. The goal in both environments was to find a target location, 

which remained in the same position across trials, from a single start position. The critical 

difference between the two environments was that the virtual park allowed environmental 

landmarks to be used to guide performance whilst the high walls of the maze prevented this. 

44 patients with drug refractory temporal lobe epilepsy, 22 of who showed evidence of 

hippocampal sclerosis, and 42 control participants completed the study. Patients with 

hippocampal sclerosis were found to be impaired in both environments, more so in the maze 

environment, whilst patients without hippocampal sclerosis were unimpaired in both 

environments, evidencing a specific role of the hippocampus in both environments. Given its 

egocentric nature, the impairment in the maze environment was not predicted and it was 

proposed that further damage to the bilateral postcentral gyrus in the group with hippocampal 

sclerosis could have accounted for this finding. Furthermore, it is worth noting that control 

participants may have been able to use path integration to acquire some allocentric 

knowledge about the maze environment. If patients were unable to acquire such knowledge, 

an impairment would have been predicted in both environments.  

In summary, temporal lobe damage appears to have an effect on the ability to use a spatial 

representation acquired through navigation in tests of topographical knowledge (Maguire et 

al., 1996a; Spiers et al., 2001a). Similarly, damage to the hippocampus specifically appears 

to result in an inability to acquire a spatial representation from navigation in a virtual 

environment (Weniger et al., 2012).  

Neuroimaging evidence 

Human-specific tasks have arguably been used more extensively in the neuroimaging 

literature and have generally focused on encoding or retrieval of landmark-centred spatial 

information. In encoding studies, participants are scanned as they are learning about an 

environment whilst in retrieval studies extensive experience of the environment is acquired 

outside of the scanner prior to testing phase.  

In terms of encoding of allocentric representations, human analogues of classic rodent tasks 

have already provided evidence in support of a hippocampal contribution (section 2.2.3). 
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Neuroimaging studies using human-specific tasks have generally been able to extend such 

support. In an early positron emission tomography (PET) study, participants were scanned 

whilst acquiring topographical knowledge by watching video footage of navigation through 

an urban environment or whilst simply remembering events in the same environment from a 

stationary viewpoint (Maguire et al., 1996b). When the former condition was contrasted with 

the latter, activation was demonstrated in the right hippocampus and the parahippocampus 

bilaterally, indicating a role for the hippocampus in encoding. In a different study, Moffat et 

al. (2006) scanned young and older adults whilst they explored and learned the locations of 

objects and interconnecting hallways and whilst they simply followed a designated path in an 

indoor virtual environment. Participants were instructed to remember the environment in 

order to construct an accurate map and describe routes between landmarks in the subsequent 

testing session. When the two conditions were contrasted, clusters of differential activation 

were demonstrated in the right hippocampus and the parahippocampus bilaterally, but only in 

the young adults. 

Suthana et al. (2009) scanned participants whilst they passively viewed navigation to target 

locations either from a single starting point or from multiple starting points in a virtual town. 

Participants were explicitly instructed to learn a particular target location relative to the 

initial starting point in the former condition and relative to environmental landmarks in the 

latter. In a control condition, participants pressed a button each time the direction of 

navigation changed in the same environment but without the landmarks present. Whilst 

several medial temporal lobe regions, including the parahippocampal gyrus, were active in 

both encoding conditions relative to the control condition, encoding from multiple start 

positions further recruited the hippocampus. Computational unfolding allowed such 

recruitment to be specified to activity in the right posterior CA1 region, which furthermore 

was found to correlate with performance.  

Based on the evidence described above, the hippocampus appears to play an important role 

when participants encode viewpoint-independent representations of the environment through 

navigation. It is worth noting, however, that two early studies did not support a role of the 

hippocampus in spatial learning during navigation. Aguirre et al. (1996) used fMRI to 

investigate the neural underpinnings of learning the topography of a simple maze, which was 

empty from objects with the exception of objects in the cul-de-sacs. The results evidenced no 

hippocampal activation during learning or recall of the maze, whilst the parahippocampus 
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was active in both circumstances. Similarly, a PET investigation revealed parahippocampal 

activation but no hippocampal activation when participants were acquiring topographical 

knowledge through navigation in two environments, one which contained salient objects and 

textures and one that only varied geometrically (Maguire et al., 1998b). Maguire et al. (1999) 

argued that the discrepancy between such early studies could be explained by a lack of 

realism and environmental detail in the environments used. It is also possible that the lack of 

explicit instructions to encode the representation in a viewpoint-independent manner may 

account for some of the discrepant findings. Overall, the variation between studies using 

human-specific tasks and the general lack of control of learning strategies make it difficult to 

arrive at a definite conclusion. However, combined with the results derived from analogues 

of rodent spatial memory tasks, which provide better experimental control of memory 

strategies, it is reasonable to conclude that the hippocampus does contribute to encoding of 

allocentric information from navigation.  

Further to the neuroimaging studies that have investigated encoding, other studies have 

scanned participants whilst they are retrieving topographical knowledge in order to solve a 

goal-directed navigation task. In this type of study, familiarity with the test environment is 

ensured either by incidental but extensive experience with a particular environment or by an 

explicit training protocol. In an early PET study, London taxi drivers were scanned whilst 

they recalled complex routes around the city that they had been familiar with for several 

years (Maguire et al., 1997). Compared to retrieval of non-topographical information (e.g. 

the plots of familiar films), retrieval of the routes was found to increase activation in the right 

hippocampus. An interesting side to this result is that navigation expertise in taxi drivers 

appears to affect hippocampal structure, namely increase posterior hippocampal volume and 

reduce anterior hippocampal volume relative to matched control participants and bus drivers 

(Maguire et al., 2000; Maguire et al., 2006a).  

In a later study by Maguire et al. (1998a), the involvement of the right hippocampus in 

topographical retrieval was confirmed in a sample drawn from the normal population. 

Participants explored and familiarised themselves with a virtual town, after which they were 

scanned whilst they navigated to specified goals or simply followed a trail of arrows in the 

virtual town. A contrast between the two conditions revealed significant activation in the 

hippocampus bilaterally during goal-directed way finding and, additionally, activation in the 

right hippocampus was found to correlate positively with navigation accuracy. In a similar 
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study, participants were familiarised with two similar but distinct environments prior to 

scanning (Hartley et al., 2003). Participants explored the first environment freely for 15 

minutes whilst they walked back and forth a prescribed route in the second. During scanning, 

participants navigated between specified target locations in the first environment and 

followed the learned route in the second environment. In a control condition, participants 

simply followed a trail of markers. In contrast to the study by Maguire et al. (1998a), no 

hippocampal activation was found when the way-finding condition was contrasted with the 

route following or trail following conditions. However, activation in the right posterior 

hippocampus was found to correlate with performance in the way-finding condition. 

Furthermore, whilst good navigators exhibited the predicted increase in activation in the right 

hippocampus, poor navigators showed decreased hippocampal activation. Consequently, it 

was argued that between-subject variation might have explained the null finding in the 

categorical analysis. Furthermore, such between-subject variation in hippocampal 

engagement indicates that the loose experimental control may have resulted in the use of 

different strategies, some of which involved the hippocampus and some of which did not.  

In the study by Burgess et al. (2001), participants explored a virtual town until they felt 

confident that they could find their way around it (20-40min). Participants then navigated 

through and out of visually similar rooms in the virtual town, in which they received objects 

from particular characters. Scanning was performed at test when participants were cued with 

a particular place or character and asked which one of two objects that was received in that 

particular place or from that particular character. In a control condition, participants were 

asked which of the two objects was the widest. Relative to the control condition, only the 

retrieval of the spatial context of the objects resulted in increased activation of the 

parahippocampus bilaterally and the left hippocampus. Relative to the neuropsychological 

study conducted by Spiers et al. (2001a), such evidence is consistent with a role for the left 

hippocampus episodic memory of spatial context.  

In a more recent study, Xu et al. (2010) administered extensive training of a virtual office 

building prior to scanning. Participants were subsequently scanned whilst they navigated to 

target locations in three different conditions, in which the environment either stayed the same, 

all landmarks were removed or a blockade restricted direct access to the target. In a control 

condition, participants followed a line through the environment. Consistent with the study 

conducted by Maguire et al. (1998a), increased activity was found in the right posterior 
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hippocampus when normal way finding was contrasted with line following and activity in the 

right anterior hippocampus was found to correlate with performance. Furthermore, 

hippocampal activity was demonstrated when normal way finding was contrasted with 

navigation in the other two experimental conditions. Interestingly, increased activation was 

found in the anterior bilateral hippocampus when the initial and the execution phases of 

normal way finding were contrasted. Such an early recruitment of the hippocampus in goal-

directed way finding has been demonstrated in previous studies using virtual versions of 

classic spatial memory tasks (Iaria et al., 2003; Cornwell et al., 2008; Shipman and Astur, 

2008). Further support for this was found in a study of London taxi drivers (Spiers and 

Maguire, 2006). In this study, based on their pre-existing extensive knowledge of the road 

network of London, taxi drivers navigated in a virtual version of the city in response to 

‘customer’ requests. Immediately after the scan, participants watched a video of their own 

navigation and gave verbal reports of what they remembered thinking, which were then 

categorised and associated with the brain activity data. Hippocampal engagement was found 

to be brief and to only occur when the drivers were planning a route to a new destination, 

providing further support for an early engagement of the hippocampus in allocentric 

navigation.  

From the studies above, it appears as if the hippocampus is involved when participants are 

required to retrieve topographical knowledge to guide task performance. Although studies 

have not been entirely consistent in showing increased hippocampal activity in the 

categorical analysis, hippocampal involvement has nevertheless been indicated in 

participants who perform well in the task (Hartley et al., 2003). Based on findings in the 

RAM, it is clear that participants spontaneously choose to use a particular strategy when they 

learn about an environment and that this choice has direct consequences for the involvement 

of the hippocampus (Iaria et al., 2003; Bohbot et al., 2004). Thus, if memory strategies 

cannot be controlled, the recruitment of the hippocampus across participants is likely to be 

diluted. Since the studies above asserted no explicit control over strategies used during 

learning, it is difficult to determine the exact nature of the representation used to guide 

performance at retrieval. Nevertheless, the implication of the hippocampus in navigation-

based memory tasks appears to be consistent, with indications of a right lateralisation 

(Maguire et al., 1996b; Maguire et al., 1998a; Moffat et al., 2006; Suthana et al., 2009), 

which in turn appears to be distinct from an apparent left lateralisation for episodic memory 
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for spatial context (Burgess et al., 2001). Another important aspect of the studies focusing on 

retrieval of topographical knowledge is the potentially brief engagement of the hippocampus 

in the very initial phase of navigation (Spiers and Maguire, 2006; Xu et al., 2010), which is 

consistent with a pervious indications (Cornwell et al., 2008; Shipman and Astur, 2008).  

2.2.4.2 Viewpoint-shift tasks 

Neuropsychological evidence 

Another category of tasks that has been used to assess allocentric spatial memory in humans 

is what will be referred to as viewpoint-shift tasks. In this type of task, navigation is not the 

means by which the use of an allocentric representation is encouraged. Instead, such a 

representation is encouraged by a shift in viewpoint between the encoding and the recall of 

the spatial material. The rationale behind this type of task is that by making the observer-

position unstable, target locations need to be represented relative to environmental cues. 

Relative to other tasks described in this review, the design of viewpoint-shift tasks overlap 

substantially with that of the MWM, particularly versions that use a new target location on 

each trial (Parslow et al., 2004). Specifically, both tasks require participants to learn a 

location from a particular viewpoint and to remember it from a different viewpoint. In 

viewpoint-shift tasks, however, participants are not required to navigate to the target location 

at encoding or at recall. The task is therefore only suitable for humans, who can indicate their 

memory to the experimenter by other means than actual navigation behaviour (e.g. by 

pressing buttons). More importantly, the absence of navigation allows for an improved 

isolation of the cognitive processes likely to underlie the brief recruitment of the 

hippocampus in navigation-based tasks (e.g. Cornwell et al., 2008; Spiers and Maguire, 

2006). 

Holdstock et al. (2000) used a viewpoint-shift task in a single patient with selective 

hippocampal damage. The task implicated a light board, on which a single LED light was lit 

for two seconds. In the allocentric condition, the presentation of the light was followed by a 

filled delay of 5, 20 or 60 seconds. Before the end of the delay period, participants were 

asked to move around the board to a location indicated by the experimenter, whilst looking 

away.  Memory for the single location was then tested from the new location, before the next 

trial started. In the egocentric condition, the lights in the room were turned off so that the 

participant’s own location represented the only available cue. In a control condition, the 
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lights in the room were left on and no movement was required from participants, presumably 

allowing the use of environmental and self-position cues. Whilst the patient did not differ 

from control participants in the egocentric and control conditions for any of the delays, she 

was significantly impaired for the 20s and the 60s delay in the allocentric version of the task. 

Thus, even in the absence of navigation and learning over successive trials, allocentric spatial 

memory appeared to be affected by selective hippocampal damage at longer delays. However, 

it is important to emphasise that the gradual movement around the light board may have 

allowed for an updating of an egocentric representation.  

A number of insights into the effect of selective hippocampal damage in viewpoint-shift 

tasks have come from a task, which took place in a virtual courtyard (King et al., 2002). In 

this task, participants were asked to remember the locations of a number of target objects, 

which were presented sequentially over placeholders on the ground of the courtyard. After a 

five second unfilled delay, during which time the placeholders were visible, participants were 

required to distinguish the target locations from a number of foil locations from the same 

viewpoint or from a different viewpoint. An important feature of the task was that in the 

shifted-view condition, participants did not experience a gradual shift in viewpoint, but 

simply appeared in the new location. Such an immediate viewpoint-shift provides no 

information about self-motion, which greatly reduces the likelihood of a strategy of 

egocentric updating (Simons and Wang, 1998).  

The viewpoint-shift task was used to study spatial memory of patient Jon, who exhibits a 

50% bilateral reduction of the hippocampus with no other damage within the temporal lobes 

(Gadian et al., 2000), and a sample of matched control participants. Jon was found to be 

impaired in both conditions of the task. However, whilst he performed well above chance in 

the same-view trials, he performed worse for viewpoint-shifts of 55 degrees and at chance for 

viewpoint-shifts of 85 and 140 degrees. To test the specificity of Jon’s impairment in the 

shifted-view condition, another experiment was run in which Jon’s same-view performance 

was matched with that of control participants by varying the number of foils used for the two 

groups. Consequently, whilst Jon did not differ from the control groups in the same-view 

condition he showed a disproportionate impairment in the shifted-view condition, in which 

his performance was at chance for all list lengths exceeding one object. To investigate the 

processes involved in the shifted-view condition, the relationship between response times and 

different degrees of viewpoint-shift was assessed in a separate control group. The resulting 
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linear relationship indicated that a process of mental alignment was used to solve the shifted-

view condition. Although the interpretation of such an alignment effect depends on the 

favoured theoretical framework (see section 2.1), King et al. (2002) argued for an allocentric 

explanation. Specifically, as list length increased, it was proposed that compared to storing 

and manipulating self-object vectors individually, it would be more efficient to incorporate 

the target locations in a single enduring representation orientated along the study viewpoint. 

This interpretation of the alignment effect is therefore comparable to that offered by the 

reference direction model, in which locations are thought to be represented relative to a fixed 

reference direction (Shelton and McNamara, 2001). Consequently, Jon’s impairment in the 

shifted-view condition was interpreted as an inability to form or store the type of 

representation that would normally support allocentric behaviour. This conclusion was 

strengthened by Jon’s normal performance on a mental rotation task, which indicated that the 

impairment was unlikely to reflect an impairment of the manipulation process itself. 

In a separate study, Jon’s performance in the same-view condition was investigated further 

(King et al., 2004). In a variation of the same-view condition, the background scene was 

changed between two visually distinct towns between presentation and recall. Relative to the 

impairment caused by shifting the viewpoint in the previous study (King et al., 2002), the 

impairment caused by changing the background was of comparable size.  Consequently, it 

was proposed that Jon was relying on a mechanism of visual matching rather than stored 

egocentric vectors to solve the same-view condition. Based on such findings, Jon’s 

hippocampal damage appeared to have spared transient sensory-bound representations whilst 

impairing the ability to represent subject-object vectors in an enduring way. Alternatively, it 

could be proposed that Jon had difficulty representing both self-object and object-object 

relative to a stable allocentric reference direction (Zhang et al., 2011). 

In a later study, Shrager et al. (2007) provided an interesting contrast to the studies described 

above. In this study, six memory-impaired patients with bilateral lesions limited to the 

hippocampus were tested in a task that was almost identical to the task used by King et al. 

(2002). Relative to controls, patients were found to perform normally in both the same-view 

and the shifted-view conditions for short list lengths and to show the typical decline in 

performance for increasing list lengths in both conditions. The results were interpreted as 

evidence against an allocentric deficit as a result of selective hippocampal damage, which 

was in stark contrast to the disproportionate allocentric impairment previously reported (King 
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et al., 2002). However, a close examination of the exact procedures used in the two studies 

reveals an important difference, namely the nature of the viewpoint-shift. Whilst the 

viewpoint-shift in the original task was immediate and occurred out of view of participants, 

Shrager et al. (2007) used a viewpoint-shift that was gradual and visible to participants. 

Critically, the visible viewpoint-shift would have provided sufficient self-motion information 

to allow for moment-by-moment egocentric updating. Thus, only when egocentric updating 

is not a viable option does the hippocampus appear to be necessary for the retrieval of object 

locations following a viewpoint-shift.  

To summarise the results derived from the viewpoint-shift task introduced by King et al. 

(2002), patients with selective hippocampal damage appear to show impaired performance in 

the shifted-view condition but only when an egocentric updating process is not possible 

(Shrager et al., 2007). As such, whilst patients appear to be able to represent and update 

transient egocentric representations when sufficient self-motion information is available, they 

do not seem able to represent object-object vectors in a way that allows the effects of a 

viewpoint-shift to be calculated. In the context of the reference direction model, it can 

therefore be proposed that patients with hippocampal damage were unable to represent the 

targets relative to a fixed reference direction aligned with the study perspective (Shelton and 

McNamara, 2001).  

More recently, viewpoint-shift tasks have been used to investigate the contribution of the 

hippocampus over shorter delays. Hartley et al. (2007) investigated hippocampal recruitment 

in perception of and short-term memory for topographical and non-spatial information in four 

patients with focal hippocampal damage and one patient with damage extending to the right 

parahippocampus. Perception was tested in a match-to-sample task and short-term memory 

was tested in a delayed-match to sample task, in which the latter involved a delay of two 

seconds. For both the topographical and the non-spatial tasks, complex mountain 

configurations served as the stimuli. In the topographical tasks, the sample scene had to be 

matched to a target scene with the same topography seen from a different viewpoint whilst in 

the non-spatial task the sample had to be matched in accordance to the prevailing weather 

conditions. Whilst none of the patients were found to be impaired in either of the non-spatial 

tasks, all patients exhibited impaired short-term memory for the topographical information. 

Such evidence suggested that the hippocampus was necessary for allocentric topographical 

memory even at short delays. In regards to the perception of topographical layouts, three of 
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the patients were found to be impaired, which indicated a possible effect of hippocampal 

damage on viewpoint-independent perception.  

Lee et al. (2005) used an oddity paradigm to investigate the role of the hippocampus in 

viewpoint-independent perception.  In this task, participants were required to select the odd 

one out from an array of stimuli with no requirement to maintain any material in memory. In 

one of a series of experiments, the stimuli consisted of irregularly shaped virtual scenes or 

faces, seen from the same view or a different view. Four patients with focal hippocampal 

damage and three patients with more extensive medial temporal lobe damage were tested. 

Whilst both patient groups were found to be unimpaired for both types of face stimuli, they 

all showed impairment for the scene stimuli when view-independent perception was required. 

Consistent with the indications provided in the study by Hartley et al. (2007), the 

hippocampus therefore appeared to play a role in viewpoint-independent perception for 

spatial material.  

Although the controversy surrounding the role of the hippocampus in perception and working 

memory is on-going (Jeneson and Squire, 2012; Lee et al., 2012a), it appears from the 

evidence above that hippocampal damage has a detrimental effect for performance in 

viewpoint-shift tasks, regardless of whether the task implements a long delay (Holdstock et 

al., 2000; King et al., 2002), a short delay (Hartley et al., 2007) or no delay at all (Lee et al., 

2005). Consequently, it can be proposed that viewpoint-shift tasks capture the process of 

landmark-based self- and target-localisation that has previously been implicated in the initial 

phase of goal-directed navigation (Spiers and Maguire, 2006; Cornwell et al., 2008; Xu et al., 

2010).  

Neuroimaging evidence 

Compared to neuropsychological investigations, the use of viewpoint-shift tasks has been 

much more limited. To my knowledge, there has only been one neuroimaging study that has 

used a task that can be considered equivalent in design to the viewpoint-shift task introduced 

by King et al., 2002 (Schmidt et al., 2007). On the other hand, there have been a few 

neuroimaging studies investigating perspective taking (Lambrey et al., 2012), which tend to 

overlap somewhat with viewpoint-shift studies in terms of task design. In addition, there 

have been studies assessing landmark-based referencing without a memory component, in 

which viewpoint-shifts between each trial have ensured that distance judgments are made 
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relative to environmental landmarks. Therefore, before turning to the study by Schmidt et al. 

(2007), I will consider results derived from these alternative tasks. 

Committeri et al. (2004) introduced a task in which participants judged which of two target 

objects that was closer to either the observer, a reference object or to a fixed environmental 

landmark in the same environment. Despite requiring participants to reference a stable 

environmental landmark, no evidence was found of a hippocampal contribution. Although 

this can be considered contradictory to a role of the hippocampus in the allocentric reference 

frame, it should be emphasised that the task did not require any form of topographical 

learning. Furthermore, since the task only required the consideration of a single viewpoint 

per trial, it also did not require viewpoint-independent perception. Therefore, whilst the 

hippocampus appears to play a role in topographical learning (Maguire et al., 1996b) and 

potentially even viewpoint-independent perception (Lee et al., 2005), it does not appear to be 

involved when participants are required to make a simple distance judgment relative to an 

environmental landmark.  

Studies investigating perspective taking commonly involve imagining seeing an array of 

target locations from different perspective. However, since viewpoint-shifts between 

different perspectives tend to be imagined, they are likely to be both ‘visible’ and gradual in 

nature without a disorientating element. As has been highlighted previously, such a gradual 

shift in viewpoint theoretically allows for updating of the transient self-object vectors 

governed by the egocentric subsystem (Shelton and McNamara, 2001). Conversely, the 

allocentric subsystem would arguably provide a more efficient strategy following more 

substantial imagined viewpoint-shifts, supporting the consideration of perspective-taking 

studies here. In the study by Hannula and Ranganath (2008), participants viewed a three-

dimensional 3x3 grid with four objects positioned in different locations. During a 11s long 

delay, participants were instructed to form and maintain a mental image of the scene rotated 

90 degrees from the original viewpoint. At test, the scene was presented from the new 

viewpoint and participants were required to detect different changes of the object positions. 

Hippocampal activation was found to predict accuracy at encoding and test but not during the 

delay, which was interpreted as a role for the hippocampus in short-term relational memory. 

It also suggested that the actual imagination of the shift in viewpoint during the delay did not 

involve the hippocampus. In a similar task, Lambrey et al. (2012) investigated the neural 

basis of perspective taking and object rotation. Four objects were presented on a virtual table 
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situated in a room with numerous environmental cues. During the presentation phase, 

participants had to imagine a rotation of viewpoint or a rotation of the table to an extent 

specified by an arrow, after which they performed a change-detection task. The left 

hippocampus was found to be more active in the self-rotation condition compared to the table 

rotation condition at test and during the delay. Since the rotations were imagined at 

presentation, this contradicted a role for the hippocampus in the viewpoint-shift per se, 

supporting the findings of Hannula and Ranganath (2008). However, in both of the 

perspective-taking studies, a hippocampal contribution appeared to be important for 

performance in the task, which indicates that this region is indeed important for the type of 

representation that can sustain the effects of viewpoint-shifts (King et al., 2002).  

In contrast to using an imagined and pre-determined viewpoint-shift, Schmidt et al. (2007) 

implemented an instantaneous and unpredictable viewpoint-shift equivalent to that of King et 

al. (2002). In this task, a single target object was presented in a virtual roof garden, after 

which a five second delay passed before participants were required to decide whether the 

location of the target object had changed or not. Importantly, a viewpoint-shift of 0°, 45°, 90°, 

135° or 180° was implemented between encoding and recall. In a control task, participants 

indicated whether a separate object was present in the scene or not. The response time data 

showed evidence of an alignment effect, which was consistent with previous studies 

assessing the effect of viewpoint-shifts on location memory (Diwadkar and McNamara, 

1997; King et al., 2002). Similarly to the study by Hartley et al. (2003), a hippocampal 

involvement was indicated by a positive correlation between hippocampal activity and 

performance. However, when the experimental condition was simply contrasted with the 

control condition, no hippocampal activity was detected. The hippocampus was also not 

sensitive to increasing viewpoint-shifts, which supports previous indications that this region 

is not involved in the manipulation process per se (Hannula and Ranganath, 2008; Lambrey 

et al., 2012). Instead, the left lingual gyrus and parahippocampal gyrus were identified as 

regions that were sensitive to an increasing shift in viewpoint. The authors explained the lack 

of hippocampal activation in the contrast analysis by a lack of task complexity, particularly 

the use of a single target location. An alternative account is the lack of specificity of the 

control condition, which did not require any spatial material to be represented. If the aim 

were to detect neural activation that is specific to the workings of the allocentric memory 

subsystem, an ideal control condition would arguably engage the egocentric memory 
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subsystem. The importance of selecting an appropriate control condition when investigating 

hippocampal function has been emphasised previously (Stark and Squire, 2001), which 

suggests that the use of a general no-memory control condition in the study by Schmidt et al. 

(2007) may not have been sufficient. Consequently, it can be proposed that a hippocampal 

contribution would be detectable if the sensitivity of the contrast could be increased by the 

inclusion of an egocentric control condition. 

Taken together, the evidence suggests that the hippocampus is not involved when 

participants are required to simply reference an environmental landmark, at least not when 

there are no demands on memory or viewpoint-independence (Committeri et al., 2004). The 

remaining studies all appear to indicate that the hippocampus is not implicated in the process 

of imagining a viewpoint-shift per se (Hannula and Ranganath, 2008; Lambrey et al., 2012). 

However, hippocampal activation appears to support the accuracy of the allocentric memory 

representations that can sustain such imagined viewpoint-shifts (Hannula and Ranganath, 

2008). In the only viewpoint-shift task to use the typical instantaneous viewpoint-shift, 

however, the hippocampus could not be implicated in the contrast analysis (Schmidt et al., 

2007). I propose that by using a more precise control condition, which recruits the egocentric 

subsystem, the sensitivity of the contrast analysis can be increased sufficiently to implement 

the hippocampus in a viewpoint-shift task in a neuroimaging context.  

2.2.4.3 Environmental modulation of hippocampal involvement 

Whilst neuropsychological studies can only determine whether a brain region is necessary for 

a particular function, neuroimaging allows for the assessment of the relative involvement of 

the hippocampus for different kinds of material. Several recent neuroimaging studies have 

utilised this advantage to increase knowledge about what spatial features that are represented 

in the hippocampus.  

Consistent with the firing fields of place cells (Muller and Kubie, 1987), the hippocampus 

appears to be particularly sensitive to the presence of boundaries. In the study by Doeller et 

al. (2008), participants gradually learned the location of target locations relative to an 

intramaze landmark or a boundary. The more participants’ responses were influenced by the 

boundary, the more activity was found in the right posterior hippocampus. In contrast, greater 

influence of the intramaze landmarks resulted in increased activity in the dorsal striatum. 

More recently, Bird et al. (2010) asked participants to imagine standing in the midst of a 
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simple 3D scene consisting of towers and boundaries and to visualise a full rotation of their 

own viewpoint. Hippocampal activity was found to increase with increasing numbers of 

environmental boundaries, particularly for well-imagined scenes. In contrast, hippocampal 

activity did not vary with colour complexity or with the level of accuracy by which 

participants were able to match the imagined scene matched with a later screen shot.  

Lee and Rudebeck (2010) investigated the effect of spatial processing demand (2D shapes 

versus complex 3D rooms) and working memory demand (one-back versus two-back 

matching task) on hippocampal activity. Activity in the posterior hippocampus and the 

parahippocampal cortex was found to increase with increased spatial processing demand, 

irrespective of working memory load. Furthermore, within complex spatial processing, such 

activity increased further as a result of increased working memory load. This latter finding is 

consistent with the results of Axmacher et al. (2007), who showed an increase in medial 

temporal lobe activation during encoding and maintenance of multiple compared with single 

face stimuli. Taken together, it appears as if the hippocampus is sensitive to increasing 

memory load but only if the stimulus is visually complex.  

The hippocampus has also been demonstrated to be sensitive to the metric distances in an 

environment. In a spatial route planning task, Viard et al. (2011) showed a robust increase in 

anterior hippocampal activity with increasing proximity to a goal, which is consistent with its 

role in route planning (Spiers and Maguire, 2006). A similar sensitivity to metric distances 

was demonstrated when participants viewed photographs of familiar campus landmarks 

(Morgan et al., 2011). The hippocampal response to each landmark was dependent on the 

distance between that landmark and the landmark shown on the preceding trial, evidencing a 

distance-related adaptation effect in the hippocampus, in which closer landmarks are 

considered more representationally similar than more distant landmarks. Such evidence 

suggests that the hippocampus represents space in an absolute coordinate system, supporting 

its role in allocentric spatial memory.  

The above evidence demonstrates that the hippocampus is sensitive to several spatial features, 

including the presence and number of boundaries, the complexity of spatial stimuli, memory 

load and the metric distance to a goal and between familiar landmarks. Such sensitivity 

strengthens the idea that the hippocampus provides the mechanism necessary to represent 

space allocentrically. Furthermore, it could potentially provide an explanation for some of the 

discrepancies in the neuroimaging literature. For example, it supports the argument that the 



 

 
 

42 

spatial detail of the environment is important for the detection of hippocampal activity 

(Maguire et al., 1999) and that the hippocampus may become increasingly important as the 

representation of individual self-object vectors becomes inefficient for greater number of 

target locations (King et al., 2002).  

2.2.4.4 Beyond allocentric spatial memory 

It is important to state explicitly that the review above has focused solely on the role of the 

hippocampus in allocentric spatial representations and has therefore not considered any of the 

other likely functions of the hippocampus. In this section I intend to provide a brief overview 

of the role of the hippocampus beyond the specific function of supporting allocentric 

memory.  

In addition to studies linking the hippocampus to allocentric processing, several studies have 

demonstrated a role for the hippocampus in spatial and relational memory more generally. 

For example, Olson et al. (2006) demonstrated a relational memory impairment in a sample 

of nine patients with bilateral medial temporal lobe damage, four of who had damage limited 

to the hippocampus. In a 9x9 grid, participants were required to remember three sequentially 

presented objects, locations or object-location conjunctions, over an eight second delay 

period and then make a recognition judgment. It was found that whilst patients were able to 

remember objects and locations, they were impaired in the object-location conjunction 

condition. Similarly, Braun et al. (2011) found that damage to the right hippocampus resulted 

in a memory impairment for colour-location associations but not for colour-shape or colour-

letter associations after a delay of five seconds. Taken together, this evidence therefore 

highlights that the hippocampus is involved in memory for object-place relations even if they 

are not required to be represented allocentrically. Adding to this, it has been well established 

that hippocampal damage can impair performance on tasks that require participants to learn 

associations without any obvious spatial properties (Mayes et al., 2007). For example, in the 

study of Hannula et al. (2006) patients with hippocampal damage were found to be impaired 

for the memory of face-scene pairs, evidencing a general impairment to relational memory. 

As a further example, Kumaran et al. (2007) found that patients with selective hippocampal 

damage were impaired in a task of relational learning independently of whether the material 

was spatial or non-spatial. It is therefore acknowledged that the function of the hippocampus 

is likely to cover a variety of different associations, spatial and non-spatial.  
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2.2.5 Summary 

From the background provided above, it is evident that the majority of evidence derived from 

neuropsychological studies of patients with hippocampal damage and neuroimaging studies 

of healthy individuals appear to support an integral role for the hippocampus, particularly in 

the right hemisphere, in the provision of allocentric spatial memory representations (for an 

overview of studies covered, see Table 2-1). In addition, neuroimaging studies have revealed 

that the hippocampus is sensitive to a number of environmental features, which is consistent 

with the firing properties of the place cells that reside in this region. Although the vast 

majority of neuropsychological and neuroimaging evidence has been derived from tasks that 

make navigational demands, there is evidence to suggest that the hippocampus is particularly 

important for the cognitive processes that underlie the initial phase of navigation (Spiers and 

Maguire, 2006; Cornwell et al., 2008; Shipman and Astur, 2008; Xu et al., 2010). 

Consequently, it can be proposed that the hippocampus plays a role in providing the 

allocentric representations that are necessary for the initial self- and target-localisation that 

precedes actual navigation execution. Consistent with this, neuropsychological investigations 

that have used viewpoint-shift tasks have supported a role for the hippocampus in providing 

allocentric memory representations even when no navigation is required (King et al., 2002; 

Hartley et al., 2007). However, corresponding neuroimaging evidence has been limited and 

has yet to provide a convincing conclusion (Schmidt et al., 2007). 

As has been highlighted previously, the use of a general control condition in the study by 

Schmidt et al. (2007) is likely to have limited the sensitivity of the contrast analysis. An 

arguably more informative control condition has been included in a number of navigation-

based studies, in which the landmarks are made unavailable or unreliable to encourage the 

use of an egocentric reference frame (Table 2-1). In contrast, only one viewpoint-shift study 

has included an egocentric control condition to provide a comparison of the workings of the 

allocentric and egocentric subsystems (King et al., 2004). However, if this particular task 

was to be taken from a neuropsychological to a neuroimaging context, the complete change 

of the background scene in the egocentric condition could be a limiting factor. Specifically, 

since the allocentric condition does not involve an equivalent visual change, any differences 

in brain activity could be due to a more dramatic change in the visual scene in the egocentric 

condition. Therefore, the current review has also identified the need for a new task. For the 

purposes of the present project, an ideal task would include a visually similar egocentric 
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condition, in addition to a viewpoint-shift condition. Such a task would be expected to 

increase the sensitivity of a categorical contrast in a neuroimaging context, which in turn 

would provide an improved measure of the hippocampal contribution to allocentric 

representations when no navigation is required.



 
 

 
 

Table 2-1: Overview of tasks that have been used in neuropsychological and neuroimaging studies. * 
studies that have not supported a hippocampal involvement. VS=Viewpoint-Shift tasks. WMW=Morris 
Water Maze. RAM=Radial Arm Maze. 

Reference 
Task 
Type 

Navig-
ation Allocentric condition Egocentric condition 

Parslow et al. (2004) MWM Yes Novel start position Landmarks moved 
Shipman and Astur 
(2008) MWM Yes Novel start position None 
Rodriguez (2010) MWM Yes Novel start position None 
Goodrich-Hunsaker et 
al. (2010) MWM Yes Novel start position None 
Cornwell et al. (2008) MWM Yes Novel start position None 
Baumann et al. (2010) MWM Yes Novel start position None 
Astur et al. (2000) MWM Yes Novel start position None 
Antonova et al. (2009) MWM Yes Novel start position None 
Feigenbaum and Morris 
(2004) MWM Yes Gradual move to new start position Landmarks moved 
Bohbot et al. (2004)* MWM Yes Novel start position None 
Moffat et al. (2006) Other Yes Encoding by navigation None 
Maguire et al. (1998b)* Other Yes Encoding by navigation None 
Aguirre et al. (1996)* Other Yes Encoding by navigation None 
Suthana et al. (2009) Other Yes Encoding from footage of navigation None 
Maguire et al. (1996b) Other Yes Encoding from footage of navigation None 
Maguire et al. (1996a) Other Yes Encoding from footage of navigation None 
Spiers et al. (2001a) Other Yes Goal-directed navigation None 
Maguire et al. (1998a) Other Yes Goal-directed navigation None 
Hartley et al. (2003) Other Yes Goal-directed navigation None 
Spiers and Maguire 
(2006) Other Yes Goal-directed navigation None 
Xu et al. (2010) Other Yes Goal-directed navigation Landmarks removed 
Weniger et al. (2012) Other Yes Goal-directed navigation Landmarks obscured 
Marsh et al. (2010)* RAM Yes Novel start orientation None 
Iaria et al. (2003) RAM Yes None None 
Bohbot et al. (2004) RAM Yes None None 
Astur et al. (2005) RAM Yes None None 
Goodrich-Hunsaker 
and Hopkins, 2010 RAM Yes None None 
Burgess et al. (2001) Other Yes Recall of spatial context None 
Maguire et al. (1997) Other Yes Recall of complex routes None 
Abrahams et al. (1997) RAM No Gradual move to new position None 
Holdstock et al. (2000) VS No Gradual viewpoint-shift Room darkened 
Shrager et al. (2007)* VS No Gradual viewpoint-shift None 
Lee et al. (2005) VS No Instantaneous viewpoint-shift None 
Hartley et al. (2007) VS No Instantaneous viewpoint-shift None 
Schmidt et al. (2007) VS No Instantaneous viewpoint-shift None 
King et al. (2002) VS No Instantaneous viewpoint-shift None 
King et al. (2004) VS No Instantaneous viewpoint-shift Background changed 
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Chapter 3 Experiment 1: Introducing the Northumberland Gallery Task 

3.1 Introduction 

3.1.1 Principles of the NGT 

The Northumberland Gallery Task (NGT) was designed by myself, programmed by Andre 

Bester (Cognition and Communication Research Centre, Northumbria University) and 

further developed for Experiment 3 by Andreas Finkelmeyer (Institute of Neuroscience, 

Newcastle University). The NGT was developed to provide a measure of allocentric short-

term memory, without imposing any navigational demands, in a neuroimaging context. As 

was identified in section 2.2.5, an ideal task would include an instantaneous viewpoint-shift 

to assess allocentric spatial memory and also a visually comparable egocentric condition to 

allow a tight contrast between the working of an allocentric and an egocentric subsystem. 

For the purposes of Part II of the present project, it was also important that the task 

remained straightforward and without any excessive demands on executive function and 

motivation. Below, I provide a description of the theoretical principles of the NGT.  

The visual context for the NGT is a virtual cylindrical room with a number of equally 

salient landmarks on the walls. At presentation, the observer sees a single target location 

appear on the floor of the room from a peripheral viewing position (Figure 3-1). In this 

phase, the target location can be represented both in relation to the environmental 

landmarks and in relation to the observer position (Figure 3-1, top). However, during the 

subsequent delay, participants are informed about an out-of-view manipulation of either 

their own position or the position of the landmarks (Figure 3-1, middle). At test, the 

manipulation has already occurred and participants are required to distinguish the target 

location from a single foil location. The shift in viewpoint is assumed to require retrieval of 

the vectors between the target location and the surrounding environmental landmarks 

(object-object vectors), reflecting the use of a reference frame with an allocentric origin 

(Figure 3-1, bottom left). In contrast, the shift of landmark locations is assumed to instead 

encourage the retrieval of the vector between the target location and the observer position 

(self-object vector), reflecting the use of a reference frame with an egocentric origin (Figure 

3-1, bottom right). 
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Figure 3-1: Schematic of the principles of the NGT. At encoding (top), the target location can be 
represented in terms of vectors with an allocentric or egocentric origin. An out-of-view manipulation of 
the observer viewpoint or the landmarks during the delay period (middle) means that participants have 
to use the landmarks or their own position, respectively, to distinguish the target from the foil at test 
(bottom). 
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As was indicated above, the allocentric condition of the NGT can be considered to be 

equivalent to a viewpoint-shift task (King, 2002; Schmidt, 2007). It therefore shares an 

important principle with the classic MWM in that it requires participants to remember the 

target location from a position that is different from the study position (Morris, 1982). 

However, as in several other analogues of the MWM (e.g. Parslow, 2009), the NGT does 

not require participants to learn the location of a hidden target over several successive trials.  

Instead, the target location is always visible at presentation, which means that a new target 

location can be used on each trial and that each target location only has to be represented in 

memory for a short period of time. 

Importantly, the viewpoint-shift in the NGT is immediate and occurs out of view, which 

leaves no information about self-motion available for a moment-by-moment egocentric 

updating strategy. In the context of two-system models of spatial reference frames, the 

allocentric condition cannot be solved based on transient self-object vectors provided by the 

egocentric subsystem (Shelton and McNamara, 2001; Mou et al., 2009; Zhang et al., 2011). 

Instead, the allocentric condition is proposed to rely on an allocentric subsystem, in which 

the target location is represented relative to a fixed reference direction (Shelton and 

McNamara, 2001). Given the cylindrical shape of the NGT environment and the resulting 

lack of salient environmental axes, the initial study view is likely to represent the most 

dominant cue for selection of the reference direction (McNamara et al., 2003). The 

disruption caused by the viewpoint-shift can therefore be expected to require a recovery of 

such a reference direction to access the spatial vectors that are relevant to the target location. 

Importantly, in the absence of self-motion information, this recovery process will need to 

rely on the visual input of the interobject vectors in the scene (Zhang et al., 2011). 

Consequently, it can be proposed that the allocentric condition of the NGT requires 

participants to use the environmental landmarks to recover the fixed reference direction, as 

aligned with the study perspective, in order to retrieve the object-object vectors defining the 

target location. Although the allocentric updating model postulates that both self-object and 

object-object vectors can be represented relative to the reference direction (Zhang et al, 

2011), the instability of the observer position in the allocentric condition of the NGT is 

thought to favour the use of object-object vectors over self-object vectors to retrieve the 

target location.  
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Although the two-system models have been favoured over a one-system egocentric 

updating model (Wang and Spelke, 2000; Burgess, 2006), it is worth mentioning that the 

allocentric condition of the NGT does not provide an absolute distinction between the two 

models. Specifically, it is possible that an encapsulated geocentric module support the 

process of reorientation to the initial study view following the viewpoint-shift, after which 

purely egocentric self-object vectors are accessed to retrieve the target location. Since a 

reorientation to the initial study view per se would be indistinguishable from a recovery of 

an allocentric reference direction that is aligned with the very same initial study view, the 

two accounts cannot be separated in the NGT. However, both processes would necessarily 

involve an element of self-localisation based on the surrounding environment, which in turn 

would require an allocentric representation of the position of the observer at study. 

Consequently, I argue that a dynamic representation of self-object vectors, as proposed by 

the egocentric updating model, would be insufficient to support performance in the 

allocentric condition of the NGT.  Instead, as proposed above, the allocentric condition will 

be assumed to require the engagement of an allocentric subsystem. Even so, it is important 

to acknowledge that the allocentric condition will require appraisal of the NGT 

environment through egocentrically defined sensory systems (e.g. the retina, body 

orientation). Therefore, although the term allocentric is used to refer to the use of a memory 

representation that is grounded in the NGT environment, it does not imply independence 

from egocentric sensory systems.  

As an important extension of previous viewpoint-shift tasks (King et al., 2002; King et al., 

2004; Schmidt et al., 2007), the NGT also includes a visually similar egocentric condition. 

In this condition, the landmarks are shifted in an equivalent manner to the shift of 

viewpoint. As a result of such instability of environmental landmarks, participants are 

encouraged to use their own stable position to represent the target location (Parslow et al., 

2004). This is in contrast to a mere absence of a viewpoint-shift, which would allow 

participants to represent the target location both in terms of their own position and in terms 

of environmental landmarks. In the context of two-system models of spatial reference 

frames, the egocentric condition is therefore proposed to rely on the self-object vectors 

provided by the egocentric subsystem (Shelton and McNamara, 2001). The inclusion of the 

egocentric condition is particularly important in a neuroimaging context where it provides a 

tight control condition to the allocentric condition. 
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In regards to the egocentric condition of the NGT, it is important to emphasise that even 

when the positions of landmarks are shifted, alternative sources of environmental cues 

remain available. For example, the virtual room boundaries and the physical edges of the 

computer screen are not disrupted by the landmark shift and can therefore be used. 

Although this can be a limiting factor of the egocentric condition, it is worth mentioning 

that it is virtually impossible to completely eliminate the availability of environmental cues. 

For example, although the room boundaries could be removed and the edges of the screen 

could be made invisible by darkening the room, the salient axis of the direction of gravity 

would remain available as an environmental cue. In this context, it was therefore 

considered more beneficial to keep the egocentric condition visually indistinguishable from 

the allocentric condition in all phases of the task.  Therefore, the primary difference 

between the allocentric and egocentric conditions of the NGT is that performance in the 

former condition depends on the use of discrete landmarks whilst the latter does not.  

Finally, the NGT also implements a control condition, in which no manipulation occurs 

during the delay. Considering that both the observer position and the environmental 

landmarks remain stable, allocentric and egocentric subsystems are assumed to be equally 

efficient in solving this condition. Although different participants may prefer to rely on one 

system to the other (Bohbot et al., 2004), both sources of spatial cues can be used in 

parallel to solve the task in this condition.  

In summary, the primary principle of the allocentric condition of the NGT is that the 

viewpoint-shift makes the observer position unstable as a cue to location, which requires 

the target location to be retrieved from a representation that is grounded in the stable 

external environment, which would be provided by an allocentric subsystem. Conversely, 

the principle of the egocentric condition is that the manipulation of the landmark positions 

encourages the use the stable observer position to retrieve the target location, which is 

thought to result in a relative independence from the allocentric subsystem. Critically, the 

NGT also does not impose any navigational demands, which is thought to provide an 

improved isolation of the cognitive process of interest relative to navigation-based tasks.  

3.1.2 Predictions 

Based on evidence that healthy participants are able to represent a target location both 

relative to their own position and relative to environmental landmarks (Burgess, 2006), 
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above-chance performance was predicted in all conditions of the NGT. In the context of 

two-system models of spatial reference frames, the allocentric condition was expected to 

engage the allocentric subsystem to recover the reference direction established during study 

(Shelton and McNamara, 2001; Zhang et al., 2011). In addition, the allocentric condition 

was expected to require a coordination of the allocentric representation with the current 

egocentric perspective. In contrast, an egocentric subsystem was expected to be sufficient 

to solve the egocentric condition. Considering that the self-object vectors provided by the 

egocentric subsystem can be accessed directly, without a recovery of the relevant reference 

frame or any coordination processes, the egocentric condition was expected to impose a 

lesser cognitive cost compared to the allocentric condition. A further reduction of the 

cognitive cost was predicted for the control condition, in which information sources for 

both subsystems were available and stable.  

In line with the uncertainty hypothesis proposed by (Li et al., 2012), the challenge of the 

allocentric condition was expected to involve the recovery of the reference direction, which 

in the NGT would be aligned with the initial study view. As such, a greater viewpoint-shift 

was expected to result in a greater uncertainty in the identification of the reference direction, 

imposing a greater cognitive cost as the discrepancy between the study viewpoint and the 

test viewpoint increases. Consequently, an alignment effect, as reflected by increasing 

response times for greater viewpoint-shifts, was predicted in the allocentric condition of the 

NGT.  

3.2 Methodology 

3.2.1 Participants 

41 students completed the study. As part of a participation credit system, students received 

credits for completing the study, which subsequently supported their own use of the system 

for recruitment. A technical problem relating to the recording of responses meant that data 

from two participants could not be included in the analysis. Three participants had a mean 

accuracy in the control condition that were more than three times the interquartile range and 

were excluded from the analysis (see section 3.2.5). The remaining 36 participants (26 

females) had a mean age of 19.4 years (SD=1.66; range=18-26). 
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3.2.2 Apparatus and materials 

3.2.2.1 Task environment 

The Northumberland Gallery Task (NGT) was developed by Andre Bester (Cognition and 

Communication Research Centre, Northumbria University) using the game development 

tool Unity (2.6.1 for Windows; Unity Technologies). It was presented to participants on a 

standard 19 inch monitor at a screen resolution of 1024x768 pixels. Participants made their 

responses by pressing keys on the keyboard, which were colour coded in accordance to the 

response options. 

The task took place in a virtual apparatus consisting of a circular room with a diameter of 

10 arbitrary units. The room had a textured grey floor, a uniform grey ceiling and red brick 

walls. There were seven pictures frames on the walls, within which seven animal drawings 

were rendered (Figure 3-2). The animal drawings were obtained from a 2D-object databank 

of drawings of common objects (Rossion and Pourtois, 2004), which had been based on the 

original set produced by Snodgrass and Vanderwart (Snodgrass and Vanderwart, 1980). 

The selected animal drawings consisted of a fox, an owl, a bear, a dear, a rabbit, a squirrel 

and a raccoon, and were easily nameable (Rossion and Pourtois, 2004) and exhibited 

similar colouring (Figure 3-3). The picture frames were equally sized and placed at 

equidistance. The seven pictures represented the only landmarks in the environment, with 

the exception of the wall itself, and will be referred to as such. The nature and placement of 

the landmarks was important to avoid any memory bias resulting from any large differences 

in salience between different parts of the environment. Throughout the task, the room was 

viewed from a stationary peripheral position at a height consistent with the line of sight of a 

person of average height. This position will be referred to as the observer position. The 

field of view was set to 100°, which meant that between four and five landmarks were 

visible from any of the positions used in the task (Figure 3-2). 
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Figure 3-2: Screen shot of the virtual environment providing the context for the NGT.  

 

Figure 3-3: The full set of images used as landmarks in the NGT (Rossion & Pourtois, 2004).  

3.2.2.2 Training models 

To familiarise participants with the relationships between the landmarks in the NGT 

environment, a training procedure was implemented prior to the NGT itself (for more detail, 

see section 3.2.4). For this training procedure, which consisted of a study phase and a 

testing phase, two small-scale cardboard models of the virtual room were used. The first 

model was an exact replica of the virtual room and was used for the study phase (Figure 

3-4). The second model was used in the testing phase and was identical to the study model 

with the exception that the picture frames were empty. The test model was used together 

with seven cards on which each of the animals had been printed. 
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Figure 3-4: The cardboard model used for the study phase of the familiarization procedure prior to the 
NGT task. Note that the model used for the test phase was identical but with empty picture frames. 

3.2.2.3 Questionnaires 

Two questionnaires were included in the procedure of Experiment 1. The first questionnaire, 

which will be referred to as the NGT Experience Questionnaire, was developed specifically 

for use in conjunction with the NGT and acted as a measure of participants’ experience of 

the task. The questionnaire consisted of two parts, one that related to difficulty and one that 

related to memory strategies. In the first part, participants were asked if they had 

experienced any of the conditions as more difficult and, if this was the case, to specify the 

condition and to describe why they thought it was particularly difficult. In the second part, 

participants were asked to describe the strategies used in the three conditions of the NGT in 

their own words. The outcome of the questionnaires was not used in any formal analyses in 

the present project. See Appendix A for the full questionnaire.  

The second questionnaire was the Santa Barbara Sense of Direction Scale (SBSOD; 

(Hegarty et al., 2002), which was used as a self-report measure of participants’ sense of 

direction. In this questionnaire, participants rated their own abilities on navigation and way-

finding tasks. The scale consisted of 15 self-referential statements (e.g. “I very easily get 

lost in a new city”), which were rated on a 7-point Likert scale ranging from strongly 

disagree to strongly agree. The inclusion of this questionnaire was important to ensure that 
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the cognitive abilities that were measured in the NGT were relevant to real-life spatial 

behaviour. See Appendix B for the full questionnaire. 

3.2.3 Design 

As introduced in section 3.1.1, the NGT required participants to remember a single location 

and to demonstrate the accuracy of this memory by selecting the target location over a foil 

location after a short delay. All trials exhibited the same structure: a presentation phase, a 

delay phase and a response phase (Figure 3-5). There were three conditions, which differed 

in terms of the manipulation between the presentation phase and the response phase. In the 

allocentric condition, the observer position was shifted to a different peripheral position 

whilst the landmarks remained stationary. In the egocentric condition, the landmark 

positions were shifted whilst the observer position remained stationary.  The landmarks 

shift constituted a coherent rotation of the wall, with the ground remaining stationary. The 

manipulation was not visible to participants but occurred during the delay, and participants 

were informed about the type of manipulation via a one-word instruction during the delay. 

In a control condition, both the observer position and the landmark positions remained the 

same in the presentation phase and in the response phase. 

In the presentation phase of the NGT, there were four possible start positions.  The start 

positions were located at the periphery of the room, at 90° intervals, and none were 

positioned immediately in front of a landmark. The room remained empty for 0.5 second 

before a green pole appeared at a target location. Target locations were pre-generated at 

random under two restrictions. First, both the target location and the foil location had to be 

visible from all start position and from the positions resulting from the change of observer 

position in the allocentric condition. Second, the target location could not be closer to the 

wall than 1.0 unit. Seventy-two unique target locations were generated, which were 

repeated for each of the three conditions, resulting in a total of 216 trials. The pole was 

presented for 3.0 seconds, after which the delay phase started.  

The unfilled delay lasted for 4.5 seconds and consisted of a black screen with a white one-

word instruction on the upper half of the screen. The placement of the instruction was 

intentional and aimed to displace the retinal representation by forcing participants to direct 

their gaze away from the floor of the NGT environment. There were three instructions: 

“None”, “You” and “Walls”, which informed participants of the absence of manipulation 
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Figure 3-5: Overview of the sequence of events in the allocentric condition (left) and the egocentric 
condition (right) of the NGT. Note that the ‘You’ instruction informs about the shift in viewpoint whilst 
the ‘Walls’ instruction informs about a shift of the landmarks. Note also that the red response option, 
as indicated by a red arrow, represents the correct response in both example trials.  

(control condition), the manipulation of observer position along the periphery of the wall 

(allocentric condition) and the manipulation of landmark positions by a rotation of the wall 

(egocentric condition), respectively. Both manipulations occurred in clockwise and 

anticlockwise directions at magnitudes of 45°, 90° and 135°. There were an equal number 
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of trials for each rotation type, resulting in 36 trials for each rotation magnitude with 12 

trials in each direction.  

After the delay phase, the room was presented again either from the start position, as in the 

egocentric and control conditions, or from a different position, as in the allocentric 

condition. The arena remained empty for 0.5 seconds before the response options appeared, 

resulting in a total delay of 5.0 seconds. The response options constituted a red and a white 

circular mark at the floor of the arena, of which one represented the target location and one 

represented the foil location. The target location was represented by the red mark on half of 

the trials and by the white mark on half of the trials. The size of the marks was kept 

constant to prevent participants from using variability in size as a cue to location. The 

distance between the target and the foil was 1, 2 or 3 units (diameter of the arena was 10 

units), with 36 trials for each target-foil distance. The foil locations were randomly 

generated from the target locations under the same restrictions as described above. 

Participants made their responses by pressing a red key (‘z’ key) with their left hand and a 

white key (‘m’ key) with their right hand. The trial ended as soon as the participant 

responded or 4.0 seconds after the response options appeared, after which the next trial 

started immediately. The Unity software recorded the response time, defined as the time 

between the onset of the response options and the button press, and the accuracy of the 

response.  

All participants completed the same 216 trials. The trials were divided into two blocks, with 

a self-paced break in the middle. The two blocks were always completed in the same order 

but the trial order within each block was randomized for each participant. Trials were fully 

counterbalanced for manipulation magnitude (45°, 90°, 135°), manipulation direction 

(clockwise, anticlockwise), target-foil distance (1, 2, 3) and the colour of the response 

option (red, white). 

3.2.4 Procedure 

Participants were tested one by one in a dedicated testing room. After completing the 

SBSOD participants were informed that they were going to perform a location memory task 

on the computer but that they would first complete a brief training procedure. In this 

procedure, participants were first asked to study a cardboard model of the NGT 

environment for two minutes (see 3.2.2). Moving and turning the model during the study 
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phase was not encouraged nor prohibited. After the study phase, the study model was 

removed and the second model, in which the picture frames were empty, was placed in 

front of the participant. The experimenter placed one of the seven animal cards in one of 

the empty picture frames. The remaining cards were then turned face down and the 

participant had to randomly select a second card and place it in the correct picture frame, in 

relation to the first card. This was repeated seven times with each of the seven cards being 

placed by the experimenter in a fixed order. Participants were not given any feedback 

during the testing session. If participants did not make any errors, they were allowed to 

proceed to the NGT. In the case of one or more errors, the study phase was repeated. If the 

criterion was not reached by the third study phase, the experimenter allowed the participant 

to have a final look at the study model before proceeding to the NGT.  

After the training phase, participants were given close instructions about the NGT and 

watched an animation on the computer.  The animation involved a demonstration of the two 

manipulations. First, the participant viewed movement along the periphery of the wall, 

whilst being reminded about the allocentric condition. Second, the participant viewed a 

rotation of the walls, whilst being reminded about the egocentric condition. Finally, the 

participant had the opportunity to complete six practice trials. In the first three practice 

trials, the green pole remained in the room in the response phase to indicate the correct 

response option whilst the last three practice trials were identical to the actual trials. The six 

practice trials were repeated until the participant reported feeling confident about the 

instructions. 

Before commencing the actual trials, participants were encouraged to sit as close as 

possible to the computer screen and to keep their index fingers on the response buttons 

throughout the task. Participants were told to make their responses as quickly and as 

accurately as possible. They were informed that each block of the task would take 

approximately 20 minutes to complete and that there would be a break between the blocks. 

After the task had been completed, participants were asked to fill in the NGT Experience 

Questionnaire. The testing session took approximately 60 minutes to complete in total. 

3.2.5 Data analysis  

The present section relates to all behavioural analyses involving the NGT in the present and 

in upcoming experiments. Participants with a mean accuracy in the control condition that 
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was more than three times the interquartile range were excluded from all analyses. Non-

response trials were excluded from all analyses and only correct trials were used for 

analyses of response times. Significant main effects revealed by analyses of variance 

(ANOVAs) were followed up post-hoc with pairwise comparisons with Bonferroni 

correction for multiple comparisons. Significant interaction effects were followed up with 

paired and independent t-tests (two-tailed) without correction for multiple comparisons. For 

brevity, full ANOVA tables were only presented when the effects and interactions reported 

were of central importance. One-sample t-tests were used to test whether average 

performance was significantly above chance in each of the conditions. At-chance 

performance was indicated by § in figures. Relationships were tested with Pearson’s 

correlation coefficients (two-tailed). In all figures, error bars reflected the standard error of 

the mean. In all tables, significant effects were highlighted in bold and trends towards 

significant effects were highlighted in italics. A significant effect was defined as p<.05 

whilst a trend towards a significant effect was defined as .05≤p<.10 for all analyses.   

3.3 Results 

3.3.1 Main analyses 

For Experiment 1, 1.9% of the total number of trials was non-response trials, of which 68% 

were allocentric trials, 20% were egocentric trials and 12% were control trials. As 

described in the previous section, such trials were excluded from all analyses.  

A one-way ANOVA with condition (allocentric, egocentric, control) as a within-subject 

factor revealed a significant main effect of condition on accuracy (F(2,70)= 414.76, 

p=<.001; Figure 3-6) and on response times (F(2,70)= 265.54, p=<.001; Figure 3-6).  



 
 

 
 

 

Figure 3-6: Main effect of condition on accuracy and response times and outcome of pairwise 
comparisons (* p<.05; ** p<.01). 

A more detailed 2x3x3 repeated measures ANOVA followed, with condition (allocentric, 

egocentric), angle of rotation (45°, 90°, 135°) and target-foil distance (1 unit, 2 units, 3 

units) as within-subject factors (Table 3-1, Table 3-2). In addition to the already 

demonstrated effect of condition, there was a significant main effect of angle of rotation 

and target-foil distance on accuracy and response times (Figure 3-7, Figure 3-8). There 

were also several significant interaction effects. For accuracy and response times, there was 

a significant interaction between condition and angle of rotation (Figure 3-9, Figure 3-10), 

which appeared to be a reflection of a greater effect of angle of rotation in the allocentric 

relative to the egocentric condition. There was also a significant three-way interaction 

between condition, angle of rotation and target-foil-distance (Figure 3-11, Figure 3-12). For 

accuracy, the interaction between condition and target-foil distance was significant, which 

appeared to reflect a greater effect of distance in the allocentric condition (Figure 3-13). 

The interaction between rotation and target-foil distance also had a significant effect on 

accuracy (Figure 3-14), which appeared to constitute a more variable effect of rotation 

angle for target-foil distances of 1 unit. Note that the exclusion of response times for 

incorrect trials meant that one participant did not have data for all cells, which meant that 

the detailed ANOVA for response times was based on 35 instead of 36 participants.



 
 

 
 

 

Table 3-1: Repeated measures ANOVA for the effect of condition, angle of rotation and target-to-foil 
distance on accuracy. 

Source MS df  F p 

Condition 10.709 1 364.665 >.001 

error (condition) 0.029 35 

  Rotation 0.564 3 26.332 >.001 

error (rotation) 0.021 70 

  Distance 0.977 2 33.475 >.001 

error (distance) 0.029 70 

  Condition X Rotation 0.055 2 3.272 0.044 

error (condition X rotation) 0.017 70 

  Condition X Distance 0.068 2 3.457 0.037 

error (condition X distance) 0.02 70 

  Rotation X Distance 0.094 4 5.633 >.001 

error (rotation X distance 0.017 140 

  Condition X Rotation X Distance 0.041 4 2.530 0.043 

error (condition X rotation X direction) 0.016 140     

Table 3-2: Repeated measures ANOVA for the effect of condition, angle of rotation and target-to-foil 
distance on response times. 

Source MS df  F p 

Condition 1.56E+08 1 288.337 >.001 

error (condition) 539821.914 34 

  Rotation 5066898.814 2 29.031 >.001 

error (rotation) 175436.49 68 

  Distance 3206577.262 2 25.160 >.001 

error (distance) 127449.398 68 

  Condition X Rotation 2904005.717 2 19.708 >.001 

error (condition X rotation) 147350.768 68 

  Condition X Distance 101999.782 2 0.936 0.397 

error (condition X distance) 109013.026 68 

  Rotation X Distance 207321.191 4 2.257 0.066 

error (rotation X distance 91868.812 136 

  Condition X Rotation X Distance 398032.301 4 4.134 0.003 

error (condition X rotation X direction) 96280.005 136     
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Figure 3-7: Main effect of angle of rotation on accuracy and response times and outcome of pairwise 
comparisons (* p<.05; ** p<.01).  

 

Figure 3-8: Main effect of target-foil distance (units) on accuracy and response times and outcome of 
pairwise comparisons (* p<.05; ** p<.01).  
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Figure 3-9: Interaction effect between condition and angle of rotation on accuracy and outcome of 
pairwise comparisons (* p<.05; ** p<.01). Filled bars reflect the allocentric condition. Unfilled bars 
represent the egocentric condition.  

 

Figure 3-10: Interaction effect between condition and angle of rotation on response times and outcome 
of pairwise comparisons (* p<.05; ** p<.01). Filled bars represent the allocentric condition. Unfilled 
bars represent the egocentric condition.  
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Figure 3-11: Interaction effect between condition, angle of rotation and target-foil distance on accuracy 
and outcome of pairwise comparisons (* p<.05; ** p<.01). Unfilled bars represent distances of 1 unit, 
light grey bars represent distances of 2 units and dark grey bars represent distances of 3 units. § 
reflects chance performance.  
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Figure 3-12: Interaction effect between condition, angle of rotation and target-foil distance on response 
times and outcome of pairwise comparisons (* p<.05; ** p<.01). Unfilled bars represent distances of 1 
unit, light grey bars represent distances of 2 units and dark grey bars represent distances of 3 units.  
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Figure 3-13: Interaction effect between condition and target-foil distance on accuracy and outcome of 
pairwise comparisons (* p<.05; ** p<.01). Filled bars represent the allocentric condition. Unfilled bars 
represent the egocentric condition.  

 

Figure 3-14: Interaction effect between angle of rotation and target-foil distance on accuracy and 
outcome of pairwise comparisons (* p<.05; ** p<.01). Unfilled bars represent distances of 1 unit, light 
grey bars represent distances of 2 units and dark grey bars represent distances of 3 units.  
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3.3.2 Additional analyses 

3.3.2.1 Training performance 

Participants made an average of 1.5 errors (SD=2.82; range=0-15) in the training phase that 

preceded the NGT. Pearson’s correlation coefficient (two-tailed) revealed that training 

errors did not correlate with accuracy or response times in the allocentric (r(34)=.27, p=.12; 

r(34)=.01, p=.96), egocentric (r(34)=-.27, p=.12; r(34)=.06, p=.73) or control condition 

(r(34)=.01, p=.97; r(34)=.06, p=.72).  

3.3.2.2 The effect of rotation direction and start position 

The effect of rotation direction (clock-wise, anti-clock-wise) and start positions (0°, 90°, 

180°, 270°) on accuracy and response times were investigated separately from the main 

ANOVA. This was because there were no a priori predictions concerning the effect of these 

two factors and the interactions between these and the experimental variables were not of 

interest. Paired t-tests revealed that whilst the direction of the rotation (clockwise, anti-

clockwise) had no effect on accuracy (t(35)=.17, p=.85) it did have a significant effect on 

response times (t(35)=-2.66, p=.012), with longer response times for the clockwise 

rotations (M=1923.86, SD=364.08) compared to anti-clockwise rotations (M=1857.20, 

SD=361.08). One-way repeated measures ANOVAs furthermore revealed no effect of start 

position on accuracy (F(3,105)=.55, p=.65) or response times (F(3,105)=1.67, p=.18).  

3.3.2.3 Relationship with the Santa Barbara Sense of Direction Scale 

SBSOD score correlated significantly with error rates in the allocentric condition (r(34)=-

.47, p=.004; Figure 3-15) and in the egocentric condition (r(34)=-.36, p=.031; Figure 3-16) 

but not in the control condition (r(34)=-.092, p=.59). Response times correlated 

significantly with SBSOD score in the egocentric condition (r(34)=-.34, p=.044) but not in 

the allocentric condition (r(34)=-.32, p=.059)  and the control condition (r(34)=-.16, p=.35).  

3.3.2.4 Sex differences 

A 3x2 mixed ANOVA, with sex entered as a between-subject factor and condition as a 

within-subject factor, revealed a significant main effect of sex (F(1,34)=5.59, p=.024) but 

no interaction with condition (F(2,68)=.69, p=.51) on accuracy. The main effect constituted 
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Figure 3-15: Scatterplot demonstrating the relationship between accuracy in the allocentric condition 
and score on the Santa Barbara Sense of Direction scale (R2=.22). Green circles represent female 
participants. Blue circles represent male participants.  

 

Figure 3-16: Scatterplot demonstrating the relationship between accuracy in the egocentric condition 
and score on the Santa Barbara Sense of Direction scale (R2=.13). Green circles represent female 
participants. Blue circles represent male participants. 

a slightly higher error rate in females (M=.17, SD=.041) compared to males (M=.14, 

SD=.029). For response times, there was no significant main effect of sex (F(1,34)=877.46, 

p=.25) or interaction between sex and condition (F(2,68)=2.26, p=.11).  
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3.4 Discussion 

In line with the predictions, young participants produced above-chance performance in all 

conditions of the NGT, supporting that a location can be retrieved from short-term memory 

based on both environmental landmarks and observer position (Burgess, 2006). The 

allocentric condition was found to produce higher error rates and response times than the 

egocentric and control conditions, which is likely to reflect, at least in part, the additional 

cognitive cost associated with the recovery of the reference direction and the coordination 

between spatial reference systems in the allocentric condition (Zhang et al., 2011). 

Furthermore, the egocentric condition was found to produce higher error rates and longer 

response times than the control condition, evidencing the availability of two sources of 

spatial cues in the latter condition. Consistent with the alignment effect demonstrated in 

similar investigations (King et al., 2002; Schmidt et al., 2007), response times were found 

to increase with increasing viewpoint-shifts in the allocentric condition whilst there was no 

such effect of equivalent shifts of landmark positions in the egocentric condition. As was 

proposed in the introduction, this effect could be the reflection of the greater uncertainty in 

identifying the reference direction after more substantial viewpoint-shifts (Li et al., 2012).  

An alternative explanation of the alignment effect lies in the visual effect produced by 

greater viewpoint-shifts. Specifically, for larger viewpoint-shifts, landmarks that are 

relevant to a particular target location are more likely to disappear out of view. Longer 

response times may therefore be a reflection of an additional retrieval of out-of-view 

landmarks in order to access the target location. For example, if the target location was 

represented based on its vectors to landmark A and B and both landmarks disappear out of 

view following the viewpoint-shift, the participant may use a visible landmark C to first 

retrieve the positions of landmarks A and B to infer the target location. Unfortunately, it is 

not clear how this interpretation could be discounted in any paradigm implementing a 

peripheral viewpoint-shift (King et al., 2002; Schmidt et al., 2007). Importantly, although 

the ‘disappearance’ of relevant landmarks represents a valid account for the alignment 

effect, it also provides further support that environmental landmarks are indeed used to 

solve the allocentric condition.  

In contrast to the effect of viewpoint-shifts in the allocentric condition, response times were 

not affected by the extent of landmark shifts in the egocentric condition. Such a pattern of 
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results was expected since a landmark shift can and should be ignored in the egocentric 

condition whilst the extent of the viewpoint-shift has to be taken into account in the 

allocentric condition. However, the extent of the manipulation was unexpectedly found to 

affect error rates both the allocentric and the egocentric condition. Whilst the increase in 

error rates with increasing viewpoint-shifts provides further support of an alignment effect 

in the allocentric condition, it is unclear why error rates should increase with greater 

landmark shifts in the egocentric condition. One potential explanation is a distraction effect, 

by which a larger rotation of the walls may direct attention away from the target location of 

the floor. Similarly, a visual snapshot strategy in the egocentric condition may have been 

more detrimental to performance when the background scene changed more substantially. 

Another potential explanation is that the greater demand in the allocentric condition may 

have biased participants towards favouring object-object vectors at encoding, which would 

have been more detrimental to performance when landmark shifts were more substantial. 

Such a bias is unlikely to have been conscious, however, since there were no indications of 

representing object-object vectors for the egocentric condition section of the NGT 

Experience Questionnaire.  

Although the explanation for the effect of increasing landmark shifts on error rates cannot 

be determined by the data, it is worth mentioning that increasing viewpoint-shifts appeared 

to have a greater effect on error rates than increasing landmark shifts, as indicated by a 

significant interaction between condition and angle of rotation. As an example, the mean 

increase in error rate from 45° to 135° was twice as high in the allocentric condition (10%) 

compared to the egocentric condition (5%). Thus, it appears as if different factors are 

contributing to the effect on error rates in the allocentric and egocentric conditions. 

Importantly, the response time data indicates that when participants are making a correct 

response in the egocentric condition there is no effect of the extent of the landmark shift. 

Thus, whilst factors such as distraction and strategy choice may have increased the 

probability of error for more substantial manipulations in the egocentric condition, such 

factors do not appear to have an effect on response times for correct trials. This is in 

contrast to the allocentric condition, where the extent of the viewpoint-shift increases the 

probability of making an error and increases the response times in correct trials. In brief, 

the distinct pattern of results for the effect of the extent of the manipulation on performance 
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in the allocentric and egocentric condition suggests that different cognitive processes are at 

play in the two conditions. 

The main analysis also revealed the expected effect of target-foil distance on response 

times and error rates in both conditions. The finding that smaller target-foil distances posed 

a greater challenge supports that distances in the NGT environment are perceived 

appropriately and in a similar way to real-world distances. The interaction between target-

foil distances and condition indicated that target-foil distance may have had a somewhat 

greater effect in the allocentric condition. Furthermore, target-foil distance was found to 

interact with angle of rotation. It appears that this interaction is mainly driven by a more 

variable effect of angle of rotation for small target-foil distances, which may constitute a 

floor effect. Such a floor effect is supported by the at-chance performance for the largest 

rotation and the smallest target-foil distance in the allocentric condition (135°, distances of 

1 unit). The three-way interactions are difficult to interpret but at least in the case of 

response times, larger target-foil distances appear to produce a pattern of results that is 

more consistent with the expected influence of manipulation magnitude in the allocentric 

condition and its lack of influence in the egocentric condition. Although speculative, this 

could suggest that factors such as distraction may have had a greater effect when the target 

is closer to the foil in the egocentric condition.  

The additional analyses showed that training performance did not correlate with 

performance in the NGT task, suggesting that efficient learning of the environment did not 

affect later use of such environmental knowledge. However, the variability in training 

errors may not have provided sufficient sensitivity in the correlation analysis. Self-reported 

sense of direction was found to correlate with performance in both the egocentric and the 

allocentric condition. This is an important finding as it indicates that the cognitive 

processes assessed in the NGT task are likely to be relevant for everyday spatial tasks, such 

as giving directions, judging distances and finding one’s way (Hegarty et al., 2002). The 

sex difference analysis indicated a very slight male advantage in terms of error rates, which 

can be considered consistent with the general male advantage in spatial tasks (Postma et al., 

1998).  
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Chapter 4 Task Development 

4.1 Introduction 

An evident issue with the NGT as introduced in the previous chapter is that the allocentric 

condition is substantially more difficult than the egocentric condition. Such a substantial 

difference is problematic in two respects. First, although control conditions in imaging 

studies are commonly less demanding than experimental conditions, for example the visible 

compared to hidden platform condition in analogues of the MWM (Shipman and Astur, 

2008), equal performance in the contrasted conditions is undoubtedly ideal. This follows 

from the fact that when the two conditions are contrasted in a neuroimaging context, any 

differences in activity could be attributed to differences in difficulty levels. Second, in the 

case of testing in clinical populations, patients may show an impairment in the allocentric 

condition not because of the allocentric nature of the task but because the greater demand 

of this condition. Consequently, Experiments 2, 3 and 4 focused on improving performance 

in the allocentric performance. Experiments 5 and 6 subsequently focused on making the 

NGT more suitable for use in clinical populations in preparation for Part II of the project. 

As such, the NGT was used in a middle-aged sample in Experiment 5 and an abbreviated 

version of the NGT was piloted in Experiment 6.  

4.2  Experiment 2: The effect of training 

4.2.1 Introduction 

In Experiment 2, participants’ familiarity of the NGT environment was increased by the 

implementation of a more extensive training paradigm. According to classical theories of 

the development of spatial knowledge, object-to-object vectors are better represented when 

the environment has been experienced more frequently (Siegel, 1975). Similarly, in the 

reference direction model of reference frames, the familiarity of the environment is 

emphasized in relation to the recruitment of the environmental subsystem to represent 

object-object vectors (Shelton and McNamara, 2001). It is possible that the brief training 

paradigm implemented in the previous chapter did not provide participants with sufficient 

environmental knowledge to make efficient use of the landmarks in the allocentric 

condition. In the extended training paradigm of Experiment 2, knowledge of the landmarks 

in the NGT environment was acquired by exposing participants to ‘videos’ of navigation 
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from a first-person perspective. Only one landmark was visible at any one time, which 

encouraged participants to gradually build an enduring topographical representation of the 

environment over multiple training sessions. Furthermore, the navigation element provided 

participants with first-hand experience of distances in the NGT environment. Overall, the 

extended training paradigm was predicted to improve participants’ knowledge of the 

environment and thereby improve performance in the allocentric condition. 

4.2.2 Methodology 

4.2.2.1 Participants 

38 students completed the study for participation credit. Five participants were excluded 

from the analysis following failure to reach the fixed criterion for the extended training. 

One participant had a mean accuracy in the control condition that were more than three 

times the interquartile range and was therefore excluded. The remaining 32 participants (21 

females) had a mean age of 23.7 years (SD=5.73; range: 18-39). 

The results from Experiment 2 were contrasted with the results derived from the sample 

tested in Experiment 1, who completed a much more limited training paradigm (section 

3.2.1). Only one participant failed to reach the training criterion in the limited training 

paradigm. To make the two samples equivalent in terms of not including participants who 

failed to reach the criterion, this one participant was excluded, which resulted in a total 

sample size of 35 and a mean age of 19.5 (SD=1.67; range=18-26). As was indicated by the 

means, the two samples differed significantly in terms of age (t(65)=.4.15, p<.001) but not 

in terms of sex proportions (t(65)=4.15, p=.62) or self-reported sense of direction 

(t(65)=.85, p=.40). 

4.2.2.2 Apparatus and procedure 

The NGT was identical to the one described in section 3.2. The preceding training, however, 

differed. In contrast to the limited training paradigm in Experiment 1, which involved the 

use of cardboard-models, Experiment 2 implemented an extended and computerised 

training paradigm. Relative to the original training paradigm (section 3.2.2), the extended 

training paradigm constituted a similar 2-minute study phase and a subsequent test phase, 

in which participants’ memory for pairs of landmarks locations was assessed. However, the 
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nature of knowledge acquisition at study and the response mode at test differed between the 

two training versions.  

In the study phase of the extended training version, participants passively watched 

navigation from one landmark (i.e. picture frame) to another from a first-person perspective. 

Whilst watching such navigation, participants were instructed to learn the locations of all 

the landmarks for an upcoming test. When a landmark was reached, navigation stopped for 

one second. The view then gradually turned to face the centre of the arena and navigation 

continued to the next landmark. As was mentioned in the introduction, an important feature 

of the study phase was that only the picture frame that represented the current target of 

navigation depicted its animal stimulus (Figure 4-1). Consequently, participants had to 

integrate each individual landmark to form a complete representation of the NGT 

environment.  

After the study phase, participants completed a test phase, which required participants to 

actively navigate, by pressing the arrow keys on the keyboard, from one specified landmark 

to another in the arena with empty picture frames (Figure 4-2). This was repeated seven 

times in a fixed order with each of the seven animals being used as the start position. 

Relative to the limited training paradigm, the testing phase was therefore equivalent in that 

it required participants to remember the landmark locations but was different in that it 

required participants to respond by navigating to the landmark locations instead of placing 

cards in a cardboard model. As in the limited training paradigm, participants were allowed 

to proceed to the NGT as soon as they reached a criterion of zero errors in the seven test 

trials. In the case of one or more errors, the study phase was repeated, after which 

participants were given another attempt to reach the criterion in a new testing phase. After 

each testing phase, a progress bar was displayed indicating how close performance was to 

criterion level. Given the relatively high demand of the extended training paradigm, such a 

motivating factor was considered useful. A maximum of ten study sessions were completed.  
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Figure 4-1: Screen shot from the study phase of the extended training paradigm. Note that only the 
current target of navigation is visible.  

 

Figure 4-2: Screen shot from the testing phase of the extended training paradigm. The instruction 
reads: You are standing at the rabbit, walk to the deer.  
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Figure 4-3: Progress bar used to inform participants of their performance in each test phase. This is an 
example of poor test performance, which is indicated by a red light on the progress bar. The 
information message reads: It seems you need more practice. Press ENTER when you are ready.  

4.2.3 Results 

4.2.3.1 Main analysis 

For both accuracy and response times, a 2x2x3 mixed ANOVA was conducted with 

training paradigm (extended, limited) as a between-subject factor and condition (allocentric, 

egocentric) and angle of rotation (45°, 90°, 135°) as within-subject factors.  

There was no significant main effect of training paradigm on accuracy (F(1,65)=.036, 

p=.849) or response times (F(1,65)=.1.316, p=.255). There was also no significant 

interaction between training paradigm and condition for accuracy (F(1,65)<.001, p=.986) 

or response times (F(1,65)=.203, p=.654). For accuracy and response times there were also 

no interactions between training paradigm and angle of rotation (F(2,130)=.273, p=.762; 

F(2,130)=1.187, p=.309) or any three-way interactions (F(2,130)=.212, p=.809; 

F(2,130)=2.749, p=.068). The descriptive statistics for accuracy and response time clearly 

demonstrate the lack of differences between the limited and the extended training 

paradigms (Figure 4-4, Figure 4-5). Note that adding age as a covariate did not change the 

outcome of any of the analyses.  
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Figure 4-4: Descriptive statistics for accuracy in the allocentric (filled bars) and egocentric (unfilled 
bars) conditions for all angles of rotation in the NGT, as preceded by the limited training paradigm and 
the extended training paradigm.  

 

Figure 4-5: Descriptive statistics for response times in the allocentric (filled bars) and egocentric 
(unfilled bars) conditions for all angles of rotation in the NGT, as preceded by the limited training 
paradigm and the extended training paradigm.  
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4.2.3.2 Additional analysis 

Compared to the limited training paradigm, in which 97.2% of participants reached the 

criterion, only 86.5% of participants reached the criterion in the extended training paradigm. 

Participants also made significantly more errors in the extended training paradigm 

(M=16.62, SD=6.13) compared to the limited training paradigm (M=1.5, SD=2.82; 

t(68)=13.37, p<.001). Figure 4-6 demonstrates the number of participants who reached the 

criterion for each subsequent test session. Interestingly, error rates in the allocentric 

condition correlated positively with the number of sessions required to reach criterion in the 

extended training paradigm (r(30)=.49, p=.004).   

 

Figure 4-6: Number of participants reaching the criterion of no errors in each test session of the 
extended training paradigm. 

4.2.4 Discussion 

The results of Experiment 2 revealed that performance in the NGT did not change as a 

result of the extended training. A likely explanation for this null finding lies in the identical 

training criterion implemented in the limited and the extended training paradigm. 

Specifically, the training criterion of zero errors in both training paradigms meant that 

participants had complete knowledge of all landmark positions prior to completing the 

NGT. Therefore, although such knowledge was acquired gradually and from a first-person 

perspective in the extended training paradigm, this type of knowledge acquisition did not 
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appear to provide any additional environmental detail to support performance in the 

allocentric condition. One source of environmental detail that could have been emphasised 

in the extended training paradigm is the organization of environmental landmarks. However, 

given the lack of environmental axes provided by the cylindrical shape and landmark 

placements of the NGT environment, navigation from one landmark to another is unlikely 

to have provided participants with any additional information. Furthermore, the equal 

distances between landmarks are likely to have been as easily gaged from a cardboard 

model as through navigation. Thus, it appears as if the extended training paradigm did not 

provide participants with any additional information about the NGT environment. 

Nevertheless, the correlational analysis revealed that participants who reached the criterion 

early in the extended training paradigm subsequently performed better in the allocentric 

condition, which indicates that a similar cognitive process was important for the two task 

requirements. However, once participants had reached the training criterion, the mechanism 

of knowledge acquisition did not seem to have an overall effect on how efficiently this 

knowledge was later used in the allocentric condition of the NGT. 

4.3 Experiment 3: The effect of subtle environmental axes 

4.3.1 Introduction 

Experiment 3 aimed to improve performance in the allocentric condition by increasing the 

efficacy by which the reference direction could be recovered in the allocentric condition. 

As has been mentioned previously, the lack of environmental axes in the NGT environment 

means that the initial viewpoint represents the dominant cue for selection of the reference 

direction (McNamara et al., 2003). Following the instantaneous viewpoint-shift in the 

allocentric condition, this reference direction needs to be recovered based on inferences 

from the visual input of the inter-object vectors in the scene (Zhang et al., 2011).  It is 

possible that the lack of environmental axes in the NGT environment make such inter-

object vectors ambiguous and difficult to use for reference direction recovery. Experiment 

3 therefore aimed to make the reference direction more explicit by introducing subtle 

environmental axes between opposing landmarks, aligned with the study perspective. This 

manipulation was predicted to aid the recovery of the reference direction with the result of 

improved performance in the allocentric condition. In an additional effort to improve 
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performance in the allocentric condition, larger target-foil distances were used for 

Experiment 3.  

4.3.2 Methodology 

4.3.2.1 Participants 

36 students completed Experiment 3 for participation credit. One participant had a mean 

accuracy in the control condition that were more than three times the interquartile range and 

was therefore excluded. The remaining 35 participants (28 females) had a mean age of 22.8 

(SD=6.83, range=18-45; note that information about age was missing for one participant). 

This sample was compared with the sample tested in Experiment 1 (section 3.2.1; n=36). 

The sample tested for Experiment 3 was significantly older than the comparison sample 

(t(69)=2.90, p=.005; M=19.4 years, SD=1.66, range=18-26). The two samples did not differ 

in terms of sex proportion (t(69)=-.76, p=.45) or self-reported sense of direction (t(69)=1.71, 

p=.091).  

4.3.2.2 Apparatus and procedure 

A number of changes were made to the NGT itself. First, the number of landmarks was 

reduced from seven to six. Following the equidistant placement of the landmarks this 

resulted in three environmental axes being created (Figure 4-7). Second, the number of start 

positions was increased from four to six and aligned with the landmarks. Third, the 

magnitude of the viewpoint-shifts and the landmark-shifts was changed from 45°, 90° and 

135° in the original version of the task to 60°, 120° and 180° in the modified version. This 

was to maintain the alignment with the landmarks even after the viewpoint-shift in the 

modified version. To further accentuate the environmental axes, lines were rendered on the 

ceiling of the room to connect opposite landmarks (Figure 4-8). The task version used in 

Experiment 3 will be referred to as ‘modified’ whilst the task used in Experiment 1 will be 

referred to as ‘original’.  

To further maximize the chances of producing improved allocentric performance, the 

distance between the target and the foil in the recall phase was also increased. Instead of 

using distances of 1, 2 and 3 units, distances of 2, 3 and 4 units were used for the modified 

version of the NGT.  With the exception of the different number of landmarks in the 

cardboard model, Experiment 2 used the same training paradigm as the one described in 
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section 3.2.2. Prior to commencing the NGT task, participants were shown a new animation 

of the change of observer position and the wall rotation, which were presented along with 

verbal descriptions from a bird’s eye perspective (Figure 4-9).  

 

 

Figure 4-7: Visualization of the original (a) and modified (b) version of the NGT. Animals represent 
landmarks, black circles represent start positions and the dashed lines represent the subtle 
environmental axes between landmarks.  

 

Figure 4-8: Screen shot of the modified version of the NGT. Note that the environment only contains six 
landmarks and that lines in the ceiling are accentuating the axes produced between such landmarks. 
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Figure 4-9: Screen shot of animation shown to participants prior to completing the NGT. Note that the 
position of the avatar and the walls moved in the animation to demonstrate the manipulations in the 
allocentric and egocentric condition. 

4.3.3 Results 

4.3.3.1 Main analysis 

To test the effect of all task changes implemented in Experiment 3, a 2x3 mixed ANOVA, 

with task version (original, modified) as a between-subject factor and condition (allocentric, 

egocentric, control) as a within-subject factor, was conducted. There was no significant 

main effect of task version for accuracy, although there was a weak trend towards a 

significant result for response time (Table 4-1, Table 4-2, Table 4-3). For accuracy, there 

was a strong trend towards a significant interaction between condition and task version. 

Post-hoc independent tests revealed significantly lower error rates in the modified 

compared to the original version in the allocentric condition (t(69)=.-2.15, p=.035) but no 

difference in the egocentric (t(69)=.24, p=.81) and control conditions (t(69)=-1.14, p=.26). 

Table 4-1: Mixed ANOVA for the effect of condition and task version (original, modified) on accuracy. 
* when age was entered as a covariate the interaction between condition and task version remained at 
trend level (F(2,136)=2.619, p=.077).  

Source MS df  F p 
Condition 1.736 2 439.696 <.001 
Condition X Task Version 0.012 2 3.062 0.050* 
error (condition) 0.004 138 

  Task Version 0.014 1 1.621 0.207 
error (task version) 0.009 69     
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Table 4-2: Mixed ANOVA for the effect of condition and task version (original, modified) on accuracy. 
* when age was entered as a covariate the main effect of task version became non-significant 
(F(2,68)=90.595, p=.123).  

Source MS df  F p 
Condition 28515254.2 2 394.692 <.001 
Condition X Task Version 3674.512 2 0.051 0.95 
error (condition) 72246.796 138 

  Task Version 967948.373 1 1773.855 0.094* 
error (task version) 336082.289 69     

 

Table 4-3: Descriptive statistics for accuracy and response times 

Task Version Condition mean s.d. 
Original Allocentric 0.3545 0.07045 
(accuracy, error rate) Egocentric 0.0903 0.0619 

 
Control 0.0419 0.03541 

Modified Allocentric 0.3090 0.10531 
(accuracy, error rate) Egocentric 0.0953 0.10851 
  Control 0.0330 0.02987 
Original Allocentric 2463.781 452.1933 
(response time, ms) Egocentric 1496.836 380.8408 

 
Control 1261.092 229.4471 

Modified Allocentric 2318.224 483.5803 
(response time, ms) Egocentric 1378.352 512.3087 
  Control 1120.621 254.9185 

 

Improved performance in the allocentric condition of the modified version of the task could 

be due to the larger target-foil distances used in this version of the task. An additional 2x3 

ANOVA based on the target-foil distances that the two tasks had in common (i.e. target-foil 

distances of 2 and 3 units) was therefore conducted. For response times, there was no 

significant main effect of task version (F(1,69)=1.248, p=.268) and no interaction between 

task version and condition (F(2,138)=.259, p=.773). For accuracy however, there was a 

strong trend towards a significant main effect of task version, with the modified version 

producing higher error rates than the original version (Table 4-4, Table 4-5). Thus, when 

the two task versions are compared for the same target-foil distances, the modified version 

of the task appears more difficult. A likely explanation for this increase in difficulty is the 

use of larger angles of rotation in the modified version (60°, 120°, 180°) compared to the 
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original version (45°, 90°, 135°). This is evident in a qualitative comparison of accuracy 

and response times for the two task versions (Figure 4-10, Figure 4-11). What is also 

evident from this figure is that the task versions appear to have been performed similarly, 

with a similar effect of viewpoint-shifts and landmark-shifts on error rates and response 

times. This was confirmed in a subsequent analysis of accuracy and response times in the 

modified version (all target-foil distances), which revealed a significant main effect of 

condition (F(1,34)=104.309, p<.001; F(1,34)=123.436, p<.001) and the typical interaction 

between condition and angle of rotation (F(2,68)=15.626, p<.001; F(2,68)=15.126, p<.001). 

Table 4-4: Mixed ANOVA limited to target-distances of 2 and 3 units for the effect of condition and 
task version (original, modified) on accuracy.  

Source MS df  F p 
Condition 1.798 2 451.534 <.001 
Condition X Task Version 0.003 2 0.642 0.528 
error (condition) 0.004 138 

  Task Version 0.035 1 3.820 .055* 
error (task version) 0.009 69     

 

Table 4-5: Descriptive statistics for accuracy and response times based on trials with target-foil 
distances of 2 and 3 units. 

Task Version Condition mean s.d. 
Original Allocentric 0.3088 0.09649 
(accuracy, error rate) Egocentric 0.0595 0.06484 

 
Control 0.0222 0.02412 

Modified Allocentric 0.3405 0.09711 
(accuracy, error rate) Egocentric 0.0930 0.10021 
  Control 0.0340 0.0287 
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Figure 4-10: Qualitative comparison between accuracy performance resulting from different angles of 
rotation in the modified version (unfilled bars) and the original version of the task (filled bars). This 
figure was based on target-foil distances of 2 and 3 units.  

 

Figure 4-11: Qualitative comparison between response time performance resulting from different 
angles of rotation in the modified version (unfilled bars) and the original version of the task (filled bars). 
This figure was based on target-foil distances of 2 and 3 units. 
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4.3.4 Discussion 

The results of Experiment 3 revealed that the combined effect of the changes to the task had 

a beneficial effect that was limited to the allocentric condition. However, in a follow-up 

analysis, which was based on the target-foil distances that the original and modified 

versions had in common, it became evident that a more salient reference direction did not 

improve performance in any of the conditions. In contrast, there was a strong trend towards 

generally higher error rates in the modified version compared to the original version. The 

poorer performance in the modified version is likely to be accounted for by the greater 

angles of rotations used in this version. Namely, the average rotation of 120° in the 

modified version is likely to have resulted in generally higher error rates compared to the 

average rotation of 90° in the original version. It therefore appears that any potential 

beneficial effect of the increased salience of the reference direction was not sufficient to 

outweigh the negative effect of increased rotation magnitudes.  

It is possible that the presence of three environmental axes may not have accentuated the 

reference direction sufficiently. Specifically, following the viewpoint-shift in the allocentric 

condition, any of the three environmental axes could indicate the reference direction. The 

visual input from the inter-object vectors in the NGT environment may therefore not have 

provided sufficiently salient indications of the reference direction to improve performance. 

It therefore remains possible that performance could be improved if only the actual 

reference direction, as defined by the initial viewpoint, was highlighted following the 

viewpoint-shift (Mou et al., 2009). Furthermore, previous research has indicated that 

interobject vectors are specified with respect to a small number of axes, typically one or 

two (Mou and McNamara, 2002), which may have resulted in a general reluctance to use 

such axes to represent the target location.   

It can therefore be concluded that although larger target-foil distances had a beneficial 

effect in the allocentric condition, the introduction of subtle environmental axes to aid 

recovery of the reference direction did not improve allocentric performance.  
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4.4 Experiment 4: The effect of elevating the viewpoint 

4.4.1 Introduction 

Experiment 2 and Experiment 3 both failed to reduce error rates in the allocentric condition. 

Although the manipulations were relatively subtle, the complete lack of an effect indicated 

that the difficulty in the allocentric condition is not entirely due to lacking familiarity or a 

lack of environmental axes. As previously mentioned, the allocentric condition is thought 

to engage an allocentric subsystem, in which object-object vectors are represented relative 

to a fixed reference direction. If such vectors cannot be accessed reliably, the quality of the 

representations used in the allocentric condition is likely to be compromised. 

There were two features of the NGT that could be highlighted as potentially reducing the 

reliability of the object-object vectors. First, the field of view in Experiment 2 and 

Experiment 3 had been set to approximately 100° to maximize the number of landmarks 

visible. At close inspection, this makes the NGT environment appear oval with an apparent 

stretching in a direction aligned with the current viewpoint (see Figure 3-2). This type of 

distortion is referred to as a perspective projection distortion and is defined as the mismatch 

between normal vision and the emulation of normal vision by graphics or photography 

(Kelso, 2008). Critically, in the allocentric condition where a viewpoint-shift changes the 

direction of the distortion, the spatial relationships between environmental landmarks 

become unreliable. The second feature, which may affect the use of spatial relationships in 

the NGT, is that the observer is positioned at the periphery of the arena. This perspective 

makes spatial relationships in the more distant part of the arena appear very small, which 

arguably increase the ambiguity of the spatial relationships further. In Experiment 4, the 

position of the viewpoint was changed to reduce such ambiguity and to avoid the effect of 

the perspective projection distortion. As a result, improved performance in the allocentric 

condition was predicted in Experiment 4, as compared to results derived from Experiment 1. 

4.4.2 Methodology 

4.4.2.1 Participants 

33 students (31 females) with an average age of 20.7 (SD=4.72, range=18-42) completed 

Experiment 4 for participation credit. This sample was compared with the sample tested in 

Experiment 1 (section 3.2.1; n=36). The two samples differed significantly in terms of sex 
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proportion with significantly more females in the sample tested in Experiment 3 (M=0.061, 

SD=.24) than in the original version of the task (M=.28, SD=.45; t(67)=2.44, p=.017). The 

samples did not differ in terms of age (t(67)=-1.53, p=.13). 

4.4.2.2 Apparatus and procedure 

In Experiment 4, the viewpoint of the observer in the virtual arena was elevated to serve 

two purposes: first, to increase visibility of the spatial relationships in the arena and, second, 

to reduce the likelihood of a perspective projection distortion. In relation to the first 

purpose, the elevated position allowed participants an improved overview of the arena, 

which reduced the ambiguity of distances in the more distant part of the arena. 

To avoid the perspective projection distortion, the emulation of normal vision by the 

graphics in the NGT has to match that of normal vision (Kelso, 2008). This can be 

considered achieved when, 

((y/2)/s) = ((w/2)/d)) = tan(ѳ/2) 

where w is the width of the monitor, y is the width of the projection, d is the distance from 

the observer to the monitor, s is the distance from the observer to the projection and ѳ is the 

field of view angle (Figure 4-12). 

 

Figure 4-12: Schematic illustration of perspective projection.  
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In Experiment 1, a field of view of 100° was used to make four to five landmarks visible on 

a normally sized monitor (w=40cm). Based on the equation above, participants would need 

to sit very close to the monitor (d=17cm) to avoid being affected by a distortion under these 

conditions. To avoid the distortion at the normal viewing distance of 50cm, however, the 

field of view would have to be reduced to 44°. This would result in a reduction of the width 

of the projection from 1000cm in Experiment 1, which allows coverage of the full diameter 

of the virtual arena, to approximately 400cm. Consequently, the number of visible 

landmarks would be significantly reduced, which has obvious drawbacks for the visibility 

of object-object vectors in the NGT environment.  

In Experiment 4, the distance between the observer and the projection (s) was increased by 

an elevation of the virtual viewpoint. This, in combination with a reduced field of view, 

allowed for a width of projection that was comparable to Experiment 1, whilst using a more 

realistic viewing distance. More specifically, the virtual viewpoint was elevated by d1 and 

moved away from the edge of the wall by x (Figure 4-13). The new distance from the 

virtual viewpoint to the projection (d2) was calculated by Pythagoras theorem, 

d1
2+ ((s-d)+x)2 =  d2

2 

When d1=290cm, (s-d)=450cm and x=130cm, d2 comes out to be approximately 650cm. 

Consequently, at the more realistic viewing distance (d) of 25cm, the new distance between 

the (actual) observer and the projection (s) is 675cm. Using this distance and a field of view  

 

Figure 4-13: Schematic illustration of the viewpoint change implemented in Experiment 4.  
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Figure 4-14: Qualitative comparison of the perceived circularity in the original version of the NGT task 
in Experiment 1 (left) and the elevated version in Experiment 4 (right).  

of 75°, we could achieve a width of projection that is comparable to Experiment 1 

(y=1037cm). Visual inspection of the NGT environment following these changes 

demonstrates the improved perceived circularity compared to the same environment in 

Experiment 1 (Figure 4-14). 

The design of the NGT remained the same as in Experiment 1 with the exception of the 

elevated view and the use of larger target-foil distances (2, 3 and 4 units). The original 

training paradigm (section 3.2.2) and the instruction animation (section 4.3.2) were used for 

Experiment 4. 

4.4.3 Results 

4.4.3.1 Main analyses 

A 2x3 mixed ANOVA with task version (original, elevated) as a between-subject factor and 

condition (egocentric, allocentric, control) as a within-subject factor revealed a significant 

main effect of task version for both accuracy and response times (Table 4-6, Table 4-7) 

with lower error rates and shorter response times in the elevated version of the task (Table 

4-8). For accuracy, there was also a significant interaction between task version and 

condition with improved performance in the elevated version in the allocentric and control 

condition but not in the egocentric condition (Figure 4-15).  
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Table 4-6: Mixed ANOVA for the effect of condition and task version (original, elevated) on accuracy 
for all target-foil distances.  

Source MS df  F p 
Condition 1.15 2 316.094 <.001 
Condition X Task Version 0.117 2 32.091 <.001 
error (condition) 0.004 134 

  Task Version 0.181 1 639.636 <.001 
error (task version) 0.006 67     

 

Table 4-7: Mixed ANOVA for the effect of condition and task version (original, elevated) on response 
times for all target-foil distances.  

Source MS df  F p 
Condition 26850694.74 2 420.283 <.001 
Condition X Task Version 21854.02 2 0.342 0.711 
error (condition) 63887.103 134 

  Task Version 1512885.788 1 5.618 0.021 
error (task version) 269311.224 67     

 

Table 4-8: Main effect of task version on accuracy and response times for all target-foil distances. 

Task Version mean s.e. 
Original (accuracy, error rate) 0.162 0.007 
Elevated (accuracy, error rate) 0.103 0.008 
Original (response time, ms) 1740.569 49.936 
Elevated (response time, ms) 1569.427 52.157 
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Figure 4-15: Interaction effect between condition and task version on accuracy and outcome of pairwise 
comparisons (* p<.05; ** p<.01) based on all target-foil distances. Filled bars reflect the original 
version of the task. Unfilled bars represent the elevated version of the task.  

 

Improved performance in the allocentric and control conditions of the elevated version of 

the task could be due to the larger target-foil distances used in this version of the task. An 

additional 2x3 ANOVA based on trials using target-foil distances of 2 and 3 units was 

therefore conducted. For response times, there was no main effect of task version 

(F(1,67)=1.812, p=.183) or interaction between task version and condition (F(2,134)=.722, 

p=.488). For accuracy, however, there was a significant interaction between condition and 

task version with a significant improvement in performance in the allocentric condition 

(Table 4-9; Figure 4-16). Note that adding age as a covariate did not make a difference to 

the outcome in any of the analyses. 
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Table 4-9: Mixed ANOVA for the effect of condition and task version (elevated, original) on accuracy 
for target-foil distances of 2 and 3 units.  

Source MS df  F p 
Condition 1.245 2 239.295 <.001 
Condition X Task Version 0.048 2 9.218 <.001 
error (condition) 0.005 134 

  Task Version 0.002 1 0.296 0.588 
error (task version) 0.007 67     

 

 

Figure 4-16: Interaction effect between condition and task version on accuracy and outcome of pairwise 
comparisons (* p<.05; ** p<.01; † .05<p>.1) based on target-foil distances of 2 and 3 units. Unfilled 
bars represent the elevated task version. Filled bars represent the original task version. 

4.4.4 Additional analyses 

The pattern of results for the elevated version was found to be very similar to that of the 

original version used in Experiment 1. For both accuracy and response times, the typical 

main effect of condition (F(1,32)=28.708, p<.001; F(1,32)-122.717, p<.001) and 

interaction between condition and angle of rotation were therefore observed 

(F(2,64)=10.260, p<.001; F(2,64)=48.446, p<.001; Figure 4-17, Figure 4-18).  
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Figure 4-17: Interaction effect between condition and angle of rotation on accuracy and outcome of 
pairwise comparisons (* p<.05; ** p<.01). Filled bars represent the allocentric condition. Unfilled bars 
represent the egocentric condition.  

 

Figure 4-18: Interaction effect between condition and angle of rotation on response times and outcome 
of pairwise comparisons (* p<.05; ** p<.01). Filled bars represent the allocentric condition. Unfilled 
bars represent the egocentric condition.   

4.4.5 Discussion 

In Experiment 4, the virtual viewpoint in the NGT was elevated to increase the visibility of 

object-to-object relationships in the environment and to prevent the effect of the perspective 

projection distortion. When the analysis was limited to the target-foil distances that the 

elevated and the original task versions had in common (i.e. 2 and 3 units), a significant 

increase in accuracy was revealed in the allocentric condition (16.7% reduction in error 
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rates). This result provides support for the use of more precise object-object vectors in the 

allocentric condition, as a result of the combined effect of increased visibility of spatial 

relationships and reduced visual distortion in the elevated version of the task. The lack of 

an effect on error rates in the egocentric and control condition supports the assumption that 

participants do not rely heavily on such object-to-object relationships in these conditions.  

The replication of the previously demonstrated pattern of performance in the allocentric and 

egocentric condition was equally important. The alignment effect in the allocentric 

condition was replicated and the absence of an effect of landmark-shifts was furthermore 

demonstrated. It is also worth mentioning that the typical incremental increase in error rates 

for increasing viewpoint-shifts in Experiment 1 was not observed in Experiment 4, with no 

difference between 45° and 90° viewpoint-shifts in Experiment 4. Although there could be 

several explanations for this, I propose that the general improvement in performance in 

Experiment 4 resulted in that error rates became less sensitive to viewpoint-shifts. 

Importantly, however, response times still show the typical incremental effect of increasing 

viewpoint-shifts, replicating the alignment effect previously observed.   

Finally, the absolute improvement of performance in the NGT task was of interest. When 

trials for all target-foil distances were considered, the elevated version was found to 

produce shorter response times and lower error rates overall. In terms of reducing the 

discrepancy between accuracy levels in the egocentric and allocentric conditions, the 

elevated version of the task revealed an approximately 45% reduction, from a mean 

discrepancy of 0.26 in the original version in Experiment 1 to 0.14 in the elevated version 

in Experiment 4. Thus, although a significant difference between the two conditions 

remained, the discrepancy has been greatly reduced. Considering the additional requirement 

of a recovery of the reference direction in the allocentric condition, it is possible that 

performance levels cannot be entirely equalised without changing the cognitive processes 

involved. Given the time constraints of the present project, the performance levels in the 

elevated version of the NGT were therefore considered sufficient to proceed.  
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4.5 Experiment 5: The effect of age 

4.5.1 Introduction 

It important to consider the young age of the samples tested in the previous experiments, 

ranging from as low as 19.4 years in the Experiment 1 to 23.7 years in Experiment 2. Age 

is an important factor both in terms of cognitive decline and in terms of changes in brain 

structure (Gunning-Dixon and Raz, 2000). More specifically, previous research has 

demonstrated an age-related decline in experimental paradigms that requires the use of 

allocentric spatial memory (Moffat et al., 2001; Moffat et al., 2006; Antonova et al., 2009). 

In addition, the hippocampus appears to show an accelerated volume loss starting in the 

middle age, after an initial volume increase in the early 20s (Walhovd et al., 2011). It is 

therefore possible that a middle-aged sample will show worse performance in the NGT, 

particularly in the allocentric condition, which is of importance for Part II of the present 

project. Specifically, the average age of depressed samples frequently fall over the age of 

30 (Porter et al., 2003; Hinkelmann et al., 2009) and over the age of 40 (Elliott et al., 1996; 

Ravnkilde et al., 2002), which necessitates that the NGT can be used successfully in 

middle-aged samples. Experiment 5 therefore aimed to evaluate the use of the NGT in a 

sample of healthy middle-aged adults.   

4.5.2 Methodology 

4.5.2.1 Participants 

22 participants (16 females) with an age of 40 years or over were tested in Experiment 5. 

Participants were recruited mainly via a volunteer pool provided by the Institute of 

Neuroscience (http://www.ncl.ac.uk/ion/involved/volunteer/) but also via flyers and word 

of mouth. The middle-aged sample was compared to the younger sample tested in 

Experiment 4.  One participant in the generally young sample of Experiment 4 was 42 years 

old and was therefore included in the middle-aged group for all analyses. The remaining 

participants in the young sample were 25 years or younger, except for one participant who 

was 30 and was excluded for this reason. This resulted in a middle-aged sample of 23 

participants (17 females) with a mean age of 49.9 (SD=7.54, range=40-63) and a young 

sample of 31 participants (29 females) with a mean age of 19.7 (SD=2.00, range=18-25). 

Unsurprisingly, the two samples differed significantly in terms of age (t(52)=-21.29, 
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p<.001). The two groups also differed significantly in terms of sex proportion (t(52)= -2.05, 

p=.046). 

4.5.2.2 Apparatus and procedure 

The apparatus and procedure were identical to that described in Experiment 4 (see section 

4.4.2.2).  

4.5.3 Results 

A 2x3 mixed ANOVA, one for accuracy and one for response times, with age group 

(middle-age, young) as between-subject factor and condition (allocentric, egocentric, 

control) as within-subject factor was conducted to investigate general group differences in 

the NGT. For accuracy, there was no main effect of age group (F(1,52)=1.538, p=.221) or 

interaction between age group and condition (F(2,104)=1.214, p=.301). For response times, 

however, there was a trend towards a significant main effect of age group with longer 

response times in the middle-aged group, although this trend disappeared when sex 

proportion was added as a covariate (Table 4-10; Table 4-11). 

Table 4-10: Mixed ANOVA for the effect of condition and age group on response times. * when sex 
proportion was entered as a covariate the interaction between condition and task version became non-
significant (F(1,51)=2.313, p=.135). 

Source MS df  F p 
Condition 20726382.5 2 244.467 <.001 
Condition X Age Group 11688.92 2 0.138 0.871 
error (condition) 84782.001 104 

  Age Group 1136485.3 1 3.672 0.061* 
error (age group) 309509.905 52     

 

Table 4-11: Descriptive statistics for accuracy and response times in the young and middle-age samples. 

Age Group mean s.e. 

Young (accuracy, error rate) 0.103 0.01 
Middle-age (accuracy, error rate) 0.122 0.012 
Young (response time, ms) 1568.644 57.689 
Middle-age (response time, ms) 1738.028 66.975 
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An additional analysis was then conducted to explore whether the two groups differed in 

terms of the interaction effect between angle of rotation and condition.  This 2x2x3 mixed 

ANOVA implemented age group (middle-age, young) as a between-subject factor and 

condition (allocentric, egocentric) and angle of rotation (45°, 90°, 135°) as within-subject 

factors. There was no significant three-way interaction for accuracy (F(2,104)=2.143, 

p=323) or response times (F(2,104)=1.462, p=.236), indicating that the task was solved 

similarly in both age groups (Figure 4-19, Figure 4-20). As was indicated in the previous 

analysis, there was also a trending main effect of age group on response times 

(F(1,52)=3.018, p<.09). Note, however, that this trend became non-significant after 

controlling for differences in age proportion (F(1,51)=1.777, p=.188). There were no other 

significant interactions with age group. 

 

Figure 4-19: Descriptive statistics for accuracy in the allocentric condition (filled bars) and the 
egocentric condition (unfilled bars) in the young and middle-age samples. Note that pairwise 
comparisons (* p<.05; ** p<.01) correspond to the interaction between angle of rotation and condition 
within each sample.  
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Figure 4-20: Descriptive statistics for response times in the allocentric condition (filled bars) and the 
egocentric condition (unfilled bars) in the young and middle-age samples. Note that pairwise 
comparisons (* p<.05; ** p<.01) correspond to the interaction between angle of rotation and condition 
within each sample.  

4.5.4 Discussion 

Middle-aged participants were found not to differ from their younger counterparts in terms 

of accuracy in the NGT. Although the absence of a general effect of age on performance in 

the allocentric condition may appear contradicting to previous research (Moffat et al., 

2001), it is important to highlight that the average age of the middle-aged sample in 

Experiment 5 can be considered young in the context of other studies. For example, Moffat 

et al. (2001) found that adults who were older than 65 were significantly impaired in a 

virtual navigation task whilst no such impairment was demonstrated in adults between the 

ages of 45 and 65. Similarly, the average age of the older adult samples tested in the 

navigation tasks of Moffat et al. (2006) and Antonova et al. (2009) were both well above 

65. Further to this, the potentially corresponding loss of hippocampal volume has been 

suggested not to start until middle age, which arguably makes any substantial volume 

reduction unlikely before the age of 50 (Walhovd et al., 2011). Thus, the lack of an 

allocentric memory impairment in a sample with an average age of 50 years can be 

considered consistent with previous research. Thus, it can be concluded that the NGT 

produces consistent results in middle-aged healthy participants.  
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4.6 Experiment 6: The effect of abbreviating the task 

4.6.1 Introduction 

In investigations of cognition in clinical populations, a task is rarely used in isolation but as 

part of a larger battery. Therefore, it is important that each individual task is convenient to 

administer. The NGT has 216 trials, which takes approximately 30 minutes to complete. 

Including a break, the training paradigm and the instructions, the task takes up to an hour to 

administer. For Experiment 6, an item analysis was conducted to inform the selection of 

trials for a shorter version of the NGT: the Northumberland Gallery Task Revised (NGT-R). 

The NGT-R was then piloted in a sample of healthy participants as part of a larger and 

independent protocol designed and conducted by Michael Craig (MRes student at 

Newcastle University, supervised by Dr. Tom Smulders). 

The item analysis was based on the pooled sample sizes of Experiment 4 and Experiment 5, 

which constituted a total sample size of 55 participants. It was the aim of the item analysis 

to reduce the number of trials from 216 to 108. Since the target and foil locations are 

identical for the three conditions, the item analysis was based on the allocentric condition. 

From a total of eight available trials for each item type, as defined by manipulation 

magnitude and target-to-foil distance, four trials were selected for the NGT-R. This 

selection process was based on two criteria: discrimination and difficulty. Specifically, the 

correlation between the average performance produced by a specific item and the overall 

average performance produced by the relevant item type was used in an attempt to select 

the most informative trials for the NGT-R. Only when the average difficulty for a specific 

item was close to or at chance level was an item with a lower correlation selected over one 

with a higher correlation. The corresponding egocentric and control trials were then 

identified and included in the NGT-R. However, only half of the corresponding control 

trials, as determined by a random selection procedure, were included in the NGT-R. Thus, 

the NGT-R included 36 allocentric trials, 36 egocentric trials and 18 control trials.  

4.6.2 Methodology 

4.6.2.1 Participants 

49 participants (28 females) with a mean age of 29.7 years (SD=12.45, range=19-62) were 

tested in the NGT-R by Michael Craig as part of a larger test battery. Participants were 
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recruited mainly via a volunteer pool provided by the Institute of Neuroscience 

(http://www.ncl.ac.uk/ion/involved/volunteer/) but also via a participation credit system. To 

ensure that the abbreviated version produced consistent results with the original long 

version, the results of Experiment 6 (abbreviated version) were compared to performance 

of the combined sample of Experiment 4 and 5 (long version).  Importantly, the pooling of 

the samples in Experiment 4 and 5 was justified by comparable performance in the two 

samples (section 4.5.3). As a result of such pooling, the comparison sample constituted a 

sample of 55 participants (47 females) with a mean age of 32.5 (SD=15.72, range=18-62). 

The two samples did not differ in terms of age (t(102)=.98, p=.33). However, the samples 

differed significantly in terms of sex proportion (t(102)=-3.35, p<.001) with a larger 

proportion of males for the abbreviated version (M=.43, SD=.50) than for the long version 

(M=.15, SD=.36).   

For the additional analyses, the two samples were combined. The total sample consisted of 

104 participants (75 females) with a mean age of 31.2 (SD=14.27, range=18-63). This 

sample was used to assess the general outcome of the NGT and sex differences in a large 

sample. The female and male groups did not differ in terms of age (t(102)=-.63, p=.53). 

Given the distribution of age (Figure 4-21), with a minority of participants falling between 

the age of 26 and 39 (5 participants; 4.8%), the effect of age was tested by a division of 

participants into a young group of 18-25 year olds and a middle-aged group of 40-62 year-

olds. The young group consisted of 63 participants (43 females) with a mean age of 20.8 

(SD=2.13, range=18-25) and the middle-aged group consisted of 36 participants (28 

females) with a mean age of 49.4 (SD=7.20, range=40-63). Unsurprisingly, the two groups 

differed significantly in terms of age (t(97)=-29.52, p<.001). The groups also differed in 

terms of sex proportion (t(97)=1.01, p=.025) with the young group having a greater 

proportion of males (M=.32, SD=.47) than the middle-aged group (M=.22, SD=.42).  

4.6.2.2 Apparatus and procedure 

The original training paradigm (section 3.2.2) and the instruction animation ( section 4.3.2) 

were used for Experiment 6. The NGT was administered in its short version (NGT-R) with 

six practice trials preceding the task.  
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Figure 4-21: Age distribution for the combined samples of Experiment 3, 4 and 5 (n=104). 

4.6.3 Results 

4.6.3.1 Main analyses 

A 2x3 mixed ANOVA with task length (abbreviated, long) as a between-subject factor and 

condition (allocentric, egocentric, control) as a within-subject factor for accuracy and 

response times was conducted to compare performance in the NGT and the NGT-R. There 

was no main effect of task length for accuracy (F(1,102)=.831, p=.364) or response times 

(F(1,102)=1.284, p=.26). There was also no interaction between task length and condition 

for accuracy (F(2,204)=.484, p=.617) or response times (F(2,204)=.869, p=.421). The 

descriptive statistics in Table 4-12 clearly demonstrated the similar performance in the 

NGT and the NGT-R. Note that adding sex proportion as a covariate did not change the 

outcome of any of the analyses



 
 

 
 

 

Table 4-12: Descriptive statistics for the long and the abbreviated version of the NGT in the allocentric, 
egocentric and control conditions. 

Task Length Condition mean s.d. 
Long Allocentric 0.2146 0.07858 
(accuracy, error rate) Egocentric 0.0982 0.11349 

 
Control 0.0195 0.02133 

Abbreviated Allocentric 0.1923 0.09493 
(accuracy, error rate) Egocentric 0.0946 0.11866 
  Control 0.0147 0.03162 
Long Allocentric 2345.3454 428.7161 
(response time, ms) Egocentric 1442.0954 495.4216 

 
Control 1138.7304 234.0411 

Abbreviated Allocentric 2217.939 431.9325 
(response time, ms) Egocentric 1380.6995 417.0009 
  Control 1108.6994 256.2736 

 

4.6.3.2 Additional analyses 

Considering the comparable results produced by the NGT and the NGT-R, the sample 

tested in Experiment 6 was combined with the comparison sample (n=104). The large 

sample produced similar results to that demonstrated previously with a significant main 

effect of condition (F(1,103)=75.602, p<.001; F(1,103)=387.443, p<.001) and a significant 

interaction between condition and angle of rotation (F(2,206)=36.660, p<.001; 

F(2,206)=72.885, p<.001) for accuracy and response times, respectively (Figure 4-22, 

Figure 4-23).  

Sex differences were explored in a 2x3 mixed ANOVA with sex (female, male) as a 

between-subject factor and condition (allocentric, egocentric, control) as a within-subject 

factor. For accuracy and response times, there was no main effect of sex (F(1,102)=.013, 

p=910; F(1,102)=1.653, p=.201) and no interaction between sex and condition 

(F(2,204)=.320, p=.727; F(2,204)=.757, p=.470). 
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Figure 4-22: Interaction effect between condition and angle of rotation on accuracy and outcome of 
pairwise comparisons (* p<.05; ** p<.01) in the full sample (n=104). Filled bars represent the 
allocentric condition. Unfilled bars represent the egocentric condition.  

 

 

Figure 4-23: Interaction effect between condition and angle of rotation on response times and outcome 
of pairwise comparisons (* p<.05; ** p<.01) in the full sample (n=104). Filled bars represent the 
allocentric condition. Unfilled bars represent the egocentric condition. 

A 2x3 mixed ANOVA with age group (young, middle-age) as a between-subject factor and 

condition (allocentric, egocentric, control) as a within-subject factor was used to assess the 

effect of age in the combined sample. For response times, there was a significant main 

effect of age group with significantly longer response times in the middle-aged sample 

compared to the young sample (Table 4-14, Table 4-15). For accuracy, there was only a 
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weak trend towards higher error rates in the middle-aged sample (Table 4-13, Table 4-15). 

Pearson’s correlational coefficients confirmed the relationship between age and response 

times in the allocentric (r(102)=.32, p=.001), egocentric (r(102)=.27, p=.006) and control 

conditions (r(102)=.28, p=.004). In contrast, error rates correlated with age only in the 

allocentric condition (r(102)=.24, p=.013; Figure 4-24) but not in the egocentric 

(r(102)=.10, p=.30) and control conditions (r(102)=.05, p=.61). Note that adding sex 

proportion as a covariate did not make a difference to the outcome of any of the analyses.  

Table 4-13: Mixed ANOVA for the effect of condition and age group on accuracy. * when sex 
proportion was entered as a covariate the main effect of age group remained non-significant 
(F(1,96)=2.889, p=.092).  

Source MS df  F p 
Condition 0.88 2 145.128 <.001 
Condition X Age Group 0.013 2 2.210 0.112 
error (condition) 0.006 194 

  Age Group 0.028 1 2.906 0.091* 
error (age group) 0.01 97     

 

Table 4-14: Mixed ANOVA for the effect of condition and age group on response times. * when sex 
proportion was entered as a covariate the main effect of age group remained significant (F(1,96)=6.396, 
p=.013).  

Source MS df  F p 
Condition 34177090.28 2 448.294 <.001 
Condition X Age Group 113269.497 2 1.486 0.229 
error (condition) 76238.133 194 

  Age Group 2220305.547 1 6.992 0.01 
error (age group) 317537.161 97     

 

Table 4-15: Descriptive statistics of accuracy and response times in the young and the middle-aged age 
groups. 

Age Group mean s.e. 
Young (accuracy, error rate) 0.101 0.007 
Middle-age (accuracy, error rate) 0.121 0.009 
Young (response time, ms) 1539.545 40.989 
Middle-age (response time, ms) 1719.284 54.223 
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Figure 4-24: Scatterplot demonstrating the relationship between accuracy in the allocentric condition 
and age in years (R2=.059). Green circles represent male participants. Blue circles represent female 
participants.  

4.6.4 Discussion 

The NGT-R was found to produce comparable results to the full-length version of the task. 

The two tasks produced remarkably similar results, which confirmed the usefulness of the 

item analysis in selecting the trials for the abbreviated version. It is also worth mentioning 

that the NGT-R was administered in a different lab by Michael Craig who, except for a 

brief training session in the administration of the task, was entirely independent from the 

present project. Thus, it appears as if the NGT produces consistent results under a different 

set of circumstances.  

Following the absence of any differences between the abbreviated and the long version of 

the NGT, the two samples were pooled to produce a large sample of 104 healthy adults of 

mixed ages.  The pattern of results were found to be remarkably similar to that found in the 

original study of the NGT in Experiment 1 (section 4.3) with evidence of an alignment 

effect in the allocentric condition, as indicated by longer response times and higher error 

rates for increasing viewpoint-shifts. Similarly, although response times were not affected 

by increasing landmark shifts in the egocentric condition, error rates were found to increase 

as a result of such shifts. It is worth noting that when the samples of Experiments 4 and 5 

were considered separately there was no effect of increasing landmark shifts on accuracy 

(see sections 4.4.3 and 4.5.3). It therefore remains unclear what factors that contribute to 
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the potentially distracting effect of increasing landmark shifts in the egocentric condition. 

Importantly, the pooled sample of Experiment 6 showed a substantial improvement in 

accuracy in the allocentric condition compared to the original version of the task (43% 

reduction in error rates), confirming the beneficial effect of the elevated viewpoint and the 

larger target-foil already demonstrated in section 4.4.3.  

In an age comparison based on the pooled sample, the middle-aged group was found to 

produce longer response times in all conditions of the NGT. Such an effect of age was also 

supported by the correlational analyses, in which age was found to correlate inversely with 

response times in all conditions. Such a general slowing of responses is consistent with 

previous research on normal ageing (Fozard et al., 1994). In terms of accuracy, although 

there was no significant main effect of age and no interaction between age and condition, 

correlational analyses indicated that age was inversely correlated with error rates in the 

allocentric condition but not in the other conditions. This finding would be consistent with 

an age-related decline in hippocampal volume and a corresponding decline in allocentric 

memory performance (Moffat et al., 2001; Walhovd et al., 2011).  

In terms of sex differences, results derived from the pooled showed no evidence of the 

slight male advantage in overall accuracy previously demonstrated in the original version of 

the NGT in Experiment 1 (section 4.3.2.4). Although the sample sizes for the two groups 

differed in Experiment 6, there appears to be no substantial sex differences in the elevated 

version of the NGT.  

In summary, Experiment 6 demonstrated that the NGT-R produces comparable results to 

the full-length version and the combined results of Experiment 4, 5 and 6 confirmed the 

general pattern of results in the NGT in a large sample. Importantly, an effect of age on 

performance in the NGT was also identified, which will require careful consideration for 

Part II of the present project.  
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Chapter 5 Experiment 7: The neural basis of the NGT-R 

5.1 Introduction 

The NGT was developed to allow a valid investigation of role of the hippocampus in 

allocentric short-term memory when no navigation is required. Following the successful 

use of the NGT in a behavioural setting (see Chapter 3 and Chapter 4), it was integral to 

explore the neural underpinnings of the task and thereby directly test the hypothesis of a 

hippocampal contribution to the allocentric condition of the NGT. To achieve this, 

functional magnetic resonance imaging (fMRI) was used as a proxy measure of neural 

activity. This non-invasive technique has been used extensively in previous studies of 

hippocampal function (Hartley et al., 2003; Viard et al., 2011). In brief, the technique relies 

on the different magnetic properties of oxygenated and deoxygenated blood to detect local 

changes in relative blood oxygenation, which in most cases can be assumed to be 

associated with corresponding changes in neural activity (Matthews and Jezzard, 2004; 

Buxton, 2012). Relative to other neuroimaging methods, such as PET and 

electroencephalography (EEG), such blood-oxygenated-level-dependent (BOLD) fMRI 

provides a good compromise of spatial and temporal resolution whilst also allowing for 

reliable measurement of subcortical structures.  

The primary hypothesis of Experiment 7 and Part I of the project concerned the recruitment 

of the hippocampus in the allocentric condition of the NGT and has been described and 

supported in detail in Chapter 2. Importantly, however, the NGT will undoubtedly recruit 

brain regions extending well beyond the hippocampus. To arrive at some general 

predictions of what additional regions that may underpin performance in the NGT, a brief 

overview of the navigation-relevant parieto-medial temporal pathway will be provided in 

the following section. In section 5.1.2, predictions for the neural underpinnings of the NGT, 

including the precise involvement of the hippocampus, will be presented.  

5.1.1 The parieto-medial temporal pathway 

The background in Chapter 2 demonstrated that the hippocampus is critical for anchoring 

spatial memory representations in the external environment. Undoubtedly, however, the 

hippocampus does not function in vacuum but is supported by a number of regions to allow 

successful navigation. A parieto-medial temporal pathway, in which the hippocampus 
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represents the ultimate target, is thought to underlie spatial navigation in man (Burgess, 

2008; Kravitz et al., 2011). This pathway, which represents a distinct part of the 

traditionally defined ‘where’ dorsal processing stream (Goodale and Milner, 1992), extends 

medially from the posterior parietal lobe to the medial temporal lobe via the retrosplenial 

cortex (RSC). Activation of the pathways has been associated with a range of cognitive 

processes relevant to navigation, including retrieval of topographical memories (Maguire et 

al., 1997), recall of the spatial context of an event (Burgess et al., 2001), way-finding 

(Hartley et al., 2003), navigation-based spatial learning (Rodriguez, 2010) and landmark-

based referencing (Committeri et al., 2004). Thus, further to the predicted hippocampal 

involvement in the allocentric condition of the NGT, the parieto-medial temporal pathway 

can be expected to play an important role.   

Regions incorporated in the parieto-medial temporal pathway are thought to make distinct 

contributions to the mental representations underlying navigation, with the parietal lobe 

providing egocentric representations, the medial temporal lobe providing allocentric 

representations and the RSC allowing interaction between the two (Burgess, 2008). In 

support of a role of the posterior parietal cortex in egocentric representations of space, 

damage to this region has been found to result in perceptual impairments relative to 

egocentrically defined principles. For example, lesions to the posterior-inferior parietal 

cortex results in unilateral neglect, which involves a failure to explore the contralesional 

side of space in the absence of primary sensory or motor deficits (Vallar, 1998). Damage to 

the more dorsal part of the posterior parietal cortex results in optic ataxia, which is a 

disorder of visuomotor coordination characterised by impaired reaching for targets in the 

contralesional side of space (Perenin and Vighetto, 1988). The deficits associated with 

unilateral neglect and optic ataxia therefore concern the egocentrically defined principle of 

the body midsagittal plane. Further to this, neuroimaging evidence has shown increased 

posterior parietal activation when healthy participants make judgments relative to the body 

midsagittal plane (Galati et al., 2001). Importantly, the posterior parietal cortex is also 

thought to be involved in the transformation between different egocentric systems. In 

support of this, in patients with unilateral neglect, the detection rate of a visual target in the 

neglected hemifield can be improved by rotating the trunk towards that side, even when 

retinal stimulation is kept constant (Karnath et al., 1993), which indicates a breakage of the 

link between the retinotopic and body-centred egocentric coordinate systems. Thus, it 
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appears as if the posterior parietal lobe is likely to contribute to navigation by translating 

the transient sensory-centred representation of location to a more stable body-centred 

representation.  

Further down the pathway, the posterior parietal cortex links to the RSC, which is part of 

the posterior cingulate region just posterior to the splenium. The RSC has been suggested to 

be particularly important for spatial transformations between allocentric and egocentric 

reference frames in navigation (Maguire, 2001; Byrne et al., 2007; Burgess, 2008), by 

which the critical translation and coordination of an egocentric representation of the current 

position (e.g. “you are here”) to navigational goals in an allocentric representation (e.g. 

“your goal is south of X”) can occur (Epstein, 2008). In support of such a translational role, 

spatial navigation tasks, which necessarily involve a translation between the egocentric 

viewpoint and the stored allocentric representation, consistently engage the RSC (Vann et 

al., 2009). The RSC is also physiologically well positioned for such a function, just 

between the posterior parietal lobe and the medial temporal lobe. Furthermore, damage to 

this region results in a selective deficit in spatial orientation characterised by a loss of 

“heading” within the environment (Aguirre and D'Esposito, 1999). Patients with this type 

of topographical disorientation show impaired learning of new routes and appear to be 

unable to derive directional information from correctly recognised landmarks to support 

navigation in familiar environments (Maguire, 2001). Thus, RSC damage appears to impair 

the ability to coordinate the current egocentric perspective with a stored allocentric 

representation. 

In contrast to the egocentrically anchored representations of the posterior parietal cortex, 

regions in the medial temporal lobe are thought to be more concerned with representing the 

external environment (Kravitz et al., 2011). For example, the parahippocampal place area 

(PPA), which encompasses the posterior parahippocampal gyrus and adjacent regions of the 

fusiform gyrus, has been proposed to be responsible for the encoding and later recognition 

of the local scene (Epstein and Kanwisher, 1998; Epstein, 2008). Consistent with this, 

damage to the PPA results in an inability to recognise scenes as wholes whilst the ability to 

recognise individual landmarks within the same scene is preserved (Mendez and Cherrier, 

2003). In addition to being preferentially active during passive viewing of scenes compared 

to objects and faces (Epstein and Kanwisher, 1998), the PPA also shows a preference for 

scenes when the stimulus is imagined, which is likely to be useful in navigation  (O'Craven 
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and Kanwisher, 2000). Furthermore, the PPA has also been found to be sensitive to a 

change in viewpoint around a scene, indicating a role in the representation and updating of 

the relationship between the observer and the scene (Epstein et al., 2003; Schmidt et al., 

2007). Another region that has been proposed to play an important role in representing the 

external world is the lingual gyrus, which is situated just posterior to the PPA. Damage to 

this region results in a selective inability to use salient environmental features for way-

finding although the same landmarks can be correctly identified (Aguirre et al., 1998). 

Consequently, the lingual gyrus appears to represent the orientational value of landmarks 

whilst the PPA represents scenes.  

Representing the end-point of the parieto-medial temporal pathway, the hippocampus acts 

as a point of convergence for a range of navigation-relevant contributions from different 

regions. It is therefore evident that although the hippocampus is important in providing 

spatial representations in an absolute framework of landmarks (O'Keefe, 1978), the parieto-

medial temporal pathway is vital in supporting the use of such representations. Specifically, 

the posterior parietal lobe appears to be concerned with representations relative to 

egocentric coordinate systems whilst regions in the medial temporal lobe and the lingual 

gyrus appear to represent space relative to environmental features. Critically, the RSC 

appears to provide the invaluable translation between such coordinate systems. Similarly to 

the argument made in relation to hippocampal function, regions in the parieto-medial 

temporal pathway may therefore be particularly important in the cognitive processes 

preceding navigation, predicting its involvement in the NGT.  

5.1.2 Predictions 

Based on the background provided in Chapter 2 and the brief overview of the parieto-

medial temporal pathway in the previous section, specific predictions could be made in 

relation to the likely neural underpinnings of the NGT in the retrieval phase. Both the 

allocentric and egocentric conditions were assumed to require an appraisal of the scene 

through egocentrically defined sensory systems, such as the retina and the orientation of the 

head and trunk, predicting recruitment of the posterior parietal cortex in both conditions. 

Similarly, given the identical scenes used in the allocentric and egocentric conditions, scene 

perception was predicted to play an equal part in the two conditions, predicting equivalent 

PPA involvement.  
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In contrast, relative to the egocentric condition, the allocentric condition was hypothesised 

to require the recruitment of additional regions of the parieto-medial temporal pathway. 

Most importantly, the allocentric condition was hypothesised to uniquely engage the 

hippocampus. This primary hypothesis followed from the extensive review in section 2.2, 

constituting a role of the hippocampus in allocentric spatial memory, which is likely to 

support the initial self- and target-localisation that precedes actual navigation execution. 

The viewpoint-shift in the allocentric condition was hypothesised to result in reliance on an 

allocentric subsystem (Shelton and McNamara, 2001), which in turn was hypothesised to 

necessitate the recruitment of the hippocampus (O'Keefe, 1978; Maguire et al., 1998a). In 

contrast, the landmark-shift in the egocentric condition prevented the use of landmarks to 

represent the target location, predicting a relative independence from the hippocampus in 

this condition. Based on the hypothesis that the hippocampus is involved in the allocentric 

but not in the egocentric condition of the NGT, increased hippocampal activity was 

predicted in the allocentric condition relative to the egocentric condition.  

The allocentric condition of the NGT was also predicted to uniquely engage the RSC and 

the lingual gyrus. The RSC was hypothesised to be involved as a result of the necessary 

coordination of the landmark-based representation with the current egocentric perspective 

whilst the lingual gyrus was thought to provide the necessary distance and orientation 

information associated with the environmental landmarks. Importantly, the egocentric 

condition did not allow for any references to landmark positions, which predicted a lesser 

involvement of the RSC and the lingual gyrus in this condition. Consequently, for the 

contrast between the allocentric and egocentric condition, increased signal was predicted in 

the hippocampus, the RSC and the lingual gyrus. In contrast, no differential activation was 

expected in the posterior parietal cortex and the PPA in this contrast.  

Further predictions were made in relation to the extent of the viewpoint-shift in the 

allocentric condition. Based on evidence suggesting that the hippocampus is not involved in 

the calculation of the viewpoint-shift per se (Schmidt et al., 2007; Hannula and Ranganath, 

2008), the extent of the viewpoint-shift was not predicted to influence hippocampal 

activation. In contrast, the lingual gyrus was predicted to play a role in this process. This 

prediction followed from the arguably greater sense of disorientation resulting from more 

substantial viewpoint-shifts, which in turn would increase the importance of the orientation 

value of landmarks to recover the reference direction (Aguirre et al., 1998; Li et al., 2012). 
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Such a role for the lingual gyrus has also been evidenced in previous research (Schmidt et 

al., 2007). A similar sensitivity to the extent of viewpoint-shift was predicted in the PPA. 

This prediction followed from its proposed role in the updating of self-scene relationships, 

which is likely to be a more substantial process for greater viewpoint-shifts (Epstein et al., 

2003; Schmidt et al., 2007). Thus, in addition to the primary hypothesis of a hippocampal 

involvement, an effect similar to that of the behavioural alignment effect was predicted in 

the lingual gyrus and the PPA in the allocentric condition of the NGT.  

5.2 Methodology 

5.2.1 Participants 

Twenty young adults with no history of psychiatric or neurological illness were recruited. 

Participants were recruited mainly via a volunteer pool provided by the Institute of 

Neuroscience (http://www.ncl.ac.uk/ion/involved/volunteer/) but also via word of mouth. 

None of the participants were taking any medication with the exception of contraceptives. 

All participants were right-handed, as ascertained with the Edinburg Handedness Inventory 

(EHI; (Oldfield, 1971)). Two participants were excluded from the analysis; one due to 

excessive motion during scanning, and one due to difficulties seeing the stimulus display, 

which the participant only reported after the scan. The remaining sample included nine 

females and nine males with an average age of 26.6 years (SD=3.38, range=19-33). 

Females and males did not differ in terms of age (t(16)=.83, p=.42). 

To explore whether the NGT-R produced a comparable level of performance inside the 

scanner as outside, performance of the sample tested in Experiment 7 was contrasted with 

that of the sample tested in Experiment 6 (section 4.2.2.1). Although the size of the sample 

tested in Experiment 6 (n=49) was considerably larger than that tested in Experiment 7 

sample (n=18), the two sampled did not differ in terms of age (t(65)=-1.06, p=.29)  or 

gender proportion (t(65)=.51, p=.61). It should also be emphasised that the control 

condition and the precise timing of events in the NGT-R differed between Experiment 6 

and Experiment 7 (see section 5.2.2). 

5.2.2 Apparatus and procedure 

The training procedure preceding the NGT was identical to that described in Chapter 3. A 

new animation, which demonstrated the manipulations in the allocentric and egocentric 
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condition from a first-person perspective, was used to support verbal instructions of the 

task. The NGT-R was used to limit the total length of the task and therefore also time spent 

in the scanner (section 4.6). Consequently, the 36 allocentric trials and the 36 egocentric 

trials derived from the item analysis were used. However, the NGT-R task subsequently 

underwent minor changes to optimise it for the scanner.  

None of the original control trials of the NGT-R were used. Instead, 36 trials of a new 

control condition were implemented. This control condition was designed to require the 

same visuomotor response as the experimental conditions but without a memory 

component. As such, no target location appeared during the presentation phase and 

following a delay phase depicting the instruction “None”, which acted as a reminder that no 

location was to be remembered for that trial, participants were presented with the usual 

response options (Figure 5-1). However, a green pole was standing on top of one of the 

response options and participants were simply required to respond in accordance to the 

colour of that particular option. The locations for the response options were derived from 

the original control trials, which were equivalent to the allocentric and the egocentric trials. 

The new control condition, referred to as the no-memory control condition, was therefore 

identical in terms of the visual scene and the motor response required but involved no 

memory for location. To reduce visual differences between the delay phase and the 

presentation and response phases, the one-word instruction in the delay phase was overlaid 

on a scrambled image of the virtual screen in all conditions (Figure 5-1). 

Minor changes were also implemented to the timing of the NGT. The delay phase lasted for 

4.75 seconds, as opposed to 4.5 seconds, and the response options appeared 0.25 seconds 

after the onset of the response phase, as opposed to 0.5 seconds. Thus, the total duration of 

the delay phase remained 5.0 seconds. The time window for the response was reduced from 

4.0 seconds to 3.5 seconds. This limit was supported by the average response time in the 

90th percentile of the allocentric condition at the 135° rotation in the combined young and 

middle-aged samples (n=55, M=3425.2 seconds). To ensure identical task length for all 

participants, the scene of the response phase remained on the screen for the full 3.5 seconds 

independently of whether a response had been recorded within that time. With the new 

timing, each trial lasted for 11.75 seconds. There were a total of 108 trials with 36 trials in 

each condition, which resulted in 21.2 minutes of effective task time. Between each trial, a  
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Figure 5-1: Sequence of events for the no-memory control condition. Note that the same scrambled 
image was used in the delay phase of the allocentric and egocentric conditions.  

grey screen with a central white fixation cross was presented for 1.0 second. In addition to 

this, there were 36 longer fixation events, which lasted for 8.0 seconds each. Thus, the NGT 

took 28.4 minutes to complete in the scanner. The trial order was unique for each 

participant and was pseudorandom to ensure that two 8-seconds long fixation periods did 

not appear consecutively and that no more than two trials of the same condition appeared 
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consecutively. Participants were given a brief break midway through the task. After 

completing the task, participants were asked to complete the NGT Experience 

Questionnaire outside of the scanner. 

The task was projected on a screen outside of the scanner and viewed via a mirror. To 

increase the proportion of the visual field covered by the task scene, a pair of specifically 

constructed binoculars was used. As a result, the size of the projection was made more 

comparable to that of a computer screen at a normal viewing distance. Responses were 

made using a MR-safe response box, which was strapped into place along the side of 

participants, in level with their right hand. Participants were required to make all responses 

using their right hand with index finger responses corresponding to the orange response 

option and the middle finger to the white response option.  

5.2.3 Image acquisition 

MR scans were collected on a Phillips Achieva 3T MR scanner using an 8-channel SENSE 

coil. A standard T1-weighted TFE scan sequence (voxel size 0.76x0.77x0.80mm3, 225 

slices, TE=4.6ms) was used to acquire a structural scan for each participant. Two separate 

runs of functional scans were collected for the NGT using a single-shot EPI sequence 

(TE=30ms, TR=2600ms, voxel size 2.5x2.5x3.5mm3, 40 axial slices, tilted up approx. 20 

degrees from the AC-PC line), with a total of 330 volumes per run. Three dummy volumes 

at the beginning of each run were immediately discarded. Stimulus presentation started 

after a further three volumes. Between both functional runs, a spoiled gradient echo (T1-

FFE) field mapping sequence (voxel size 2x2x2mm3, TR=27ms, TE1=2.6ms, TE2=5.9ms,) 

was used to reconstruct magnetic field inhomogeneity. 

5.2.4 fMRI pre-processing and analysis 

5.2.4.1 Whole-brain analyses 

The MR data analysis was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) in 

Matlab R2010b (The MathWorks, Inc.). Standard pre-processing of functional images 

consisted of slice-time correction to the first slice, realignment and unwarping using the 

constructed fieldmap, normalization to standard anatomical space using normalization 

parameters previously estimated from the structural scans (MNI), and spatial smoothing 

with an 8 mm FWHM Gaussian smoothing kernel. The first-level model consisted of three 
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separate events per trial and condition to model the three phases of a trial: presentation, 

delay and response. Since the presentation phases for the allocentric and egocentric trials 

were indistinguishable for the participants, the onsets of the presentation phase for these 

two conditions were combined. The onsets were convolved with the canonical 

hemodynamic response function (HRF) of SPM. Motion parameters for each session were 

added to the first-level model to serve as regressors of no interest. In addition, for each of 

the three retrieval phases, response times were added to the model as parametric modulators 

of BOLD amplitude for the primary analysis. Trials in which no response was recorded 

(1.6% of trials) were allocated a fixed response time of 3.5s for the parametric modulator. 

Parameter estimates for the various predictors were then combined across both sessions and 

entered into second-level models. The primary second level analysis included the contrasts 

for the response phase of the three conditions (Allocentric, Egocentric, Control) along with 

a subject factor. A secondary analysis, which included the same subject factor, included the 

contrasts for the no-memory control condition and the combined signal of the allocentric 

and egocentric conditions for the presentation phase to contrast encoding of spatial material 

(Encoding) with the absence of such encoding (Control). Since there were no a priori 

predictions concerning brain regions involved at encoding, this analysis was conducted for 

completeness. Family-wise error correction (FWE) was used to correct p-values for 

multiple comparisons to a Type-I error probability of 0.05 with an additional cluster extent 

threshold of 10 voxels. 

5.2.4.2 Time course analysis 

To explore the time course of the BOLD signal in regions indicated as important in the 

primary whole-brain analysis, a finite-impulse response analysis was conducted. For this 

analysis, BOLD signal time-courses for the entire trial were based on additional first-level 

models using a finite-impulse basis set of order 12 for the three conditions. Here, the 

beginning of the encoding phase was used to define the onset of each trial. In contrast to the 

canonical HRF analysis described above, the allocentric and egocentric conditions were 

therefore modelled separately from encoding phase onwards (as part of the entire trial). 

Since finite-impulse response analyses make no assumptions about the haemodynamic 

response (Dale and Buckner, 1997), this analysis aimed to provide additional information 

about the BOLD response in task-relevant regions.  
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5.2.4.3 Exploratory whole-brain analysis 

The expected differences in response times in the allocentric and egocentric conditions 

required some additional considerations. Specifically, if such differences are the result of 

the distinct cognitive processes involved, adding response time as a covariate at the second 

level could be expected to result in a general loss of the effects of interest (Gilbert et al., 

2012). To explore this scenario, an exploratory whole-brain analysis was conducted, in 

which response times were added as a covariate. Relative to the primary whole-brain 

analysis, which included response times as a covariate within each condition at the first 

level and therefore accounted for trial-by-trial variation in response times (see 5.2.4.1), the 

exploratory whole-brain analysis instead accounted for variation of average response times 

between conditions and participants at the second level.  

5.2.4.4 Parametric analyses 

The effect of response times on BOLD signal was explored in two different analyses. In the 

first analysis, the effect of response times in the exploratory whole-brain analysis (see 

section 5.2.4.3) was investigated in its own right. This analysis investigated the effect of 

average response times independent of condition at the second level. In the second analysis, 

the parametric modulation of response times at a trial-by-trial basis was investigated within 

the allocentric and egocentric conditions. As such, this analysis involved an exploration of 

the parametric modulator of trial-by-trial variation of BOLD amplitude as a function of 

response time (section 5.2.4.1).  

For the parametric analysis, response times were considered a proxy of task difficulty. 

Response times were favoured over error rates as a proxy of task difficulty for several 

reasons. First, the continuous measure of response times was thought to provide a more 

sensitive measure of perceived difficulty compared to the dichotomous accuracy measure 

(i.e. correct versus incorrect). Second, when entered as a parametric modulator independent 

of condition, the greater number of error trials in the allocentric compared to the egocentric 

conditions would have biased the analysis towards the effect of error in the allocentric 

condition. Third, when entered as a parametric modulator separately for each condition, the 

generally small number of error trials in the egocentric condition would have made an 

analysis in this condition unreliable. Thus, the effect of accuracy on BOLD amplitude was 
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not included in any of the first level models. However, the effect of accuracy on 

hippocampal BOLD signal was explored in a between-subject analysis (see section 5.3.2.5).   

In an additional parametric analysis, angle of rotation and target-foil distance were added as 

parametric modulators separately for the allocentric and egocentric conditions. This 

analysis was based on a first-level model identical to that of the primary second level 

analysis with the only exception of the parametric modulators (section 5.2.4.1).   

5.2.4.5 Between-subject analyses 

Average BOLD signal for the right and left hippocampus during the response phase was 

extracted for use in between-subject analyses. The precise boundaries for the hippocampal 

region were based on clusters of differential signal identified for the contrast between the 

allocentric and egocentric conditions in the primary whole-brain analysis (see * in Table 

5-5). Relationships between performance in the egocentric and allocentric conditions and 

hippocampal BOLD signal were explored, as was the effect of sex on hippocampal BOLD 

signal.   

5.3 Results 

5.3.1 Behavioural results 

5.3.1.1 The NGT-R inside and outside of the scanner 

To allow a comparison of performance in the NGT-R inside and outside the scanner, the 

sample tested in Experiment 7 (young participants tested inside the scanned) was compared 

with the sample tested in Experiment 6 (young participants tested outside the scanner), a 

2x2x3 mixed ANOVA with task context (fMRI, behavioural) as a between-subject factor 

and condition (allocentric, egocentric) and angle of rotation (45°, 90°, 135°) as within-

subject factors was conducted. Although there was no main effect of task context on 

performance, there was a significant interaction between task context and condition for 

both accuracy and response times (Table 5-1, Table 5-2). However, post-hoc comparisons 

only revealed non-significant trends towards reduced error rates in the egocentric condition 

and increased error rates in the allocentric condition when the NGT-R was completed 

inside of the scanner as opposed to outside (Figure 5-2). Post-hoc comparisons also did not 

reveal any significant differences for response times (Figure 5-2).    
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Table 5-1: Mixed ANOVA on the effect of task context, condition and angle of rotation on accuracy.  

Source MS df  F p 
Condition 1.7 1 71.151 <.001 
Condition X Task Context 0.189 1 7.903 0.007 
error (condition) 0.024 65 

  Rotation 0.207 2 22.884 <.001 
Rotation X Task Context 0.012 2 1.342 0.265 
error (rotation) 0.009 130 

  Condition X Rotation 0.195 2 24.391 <.001 
Condition X Rotation X Task Context 0.018 2 2.310 0.103 
error (condition X rotation) 0.008 130 

  Task Context 0.002 1 0.066 0.799 
error (task context) 0.032 65     

 

Table 5-2: Mixed ANOVA on the effect of task context, condition and angle of rotation on response 
times.  

Source MS df  F p 
Condition 73584248.36 1 335.063 <.001 
Condition X Task Context 1021617.816 1 4.652 0.035 
error (condition) 219613.43 65 

  Rotation 1648955.44 2 31.245 <.001 
Rotation X Task Context 84204.867 2 1.596 0.207 
error (rotation) 52774.336 2 28.101 

 Condition X Rotation 1422832.315 2 0.444 <.001 
Condition X Rotation X Task Context 22465.916 130 

 
0.643 

error (condition X rotation) 50631.92 
   Task Context 142970.897 1 0.196 0.659 

error (task context) 728071.923 65     
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Figure 5-2: Interaction effect of task context on accuracy and response times, and outcome of pairwise 
comparisons (* p<.05; ** p<.01; † .05≤p<.10). Filled bars represent the allocentric condition. Unfilled 
bars represent the egocentric condition.  

Following the lack of a significant main effect of task context, the interactions between 

condition and angle of rotation were explored within each sample. Consistent with previous 

findings, the NGT-R revealed a significant effect of angle of rotation on both performance 

measures in the allocentric condition but not in the egocentric condition, independently of 

whether the task was completed inside or outside of the scanner (Figure 5-3, Figure 5-4). 

  

Figure 5-3: Descriptive statistics for accuracy in the allocentric condition (filled bars) and the 
egocentric condition (unfilled bars) as completed inside the fMRI scanner and behaviourally. Note that 
pairwise comparisons (* p<.05; ** p<.01) correspond to the interaction between angle of rotation and 
condition within each sample.  
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. 

 

Figure 5-4: Descriptive statistics for response times in the allocentric condition (filled bars) and the 
egocentric condition (unfilled bars) as completed inside the fMRI scanner and behaviourally. Note that 
pairwise comparisons (* p<.05; ** p<.01) correspond to the interaction between angle of rotation and 
condition within each sample.  

5.3.1.2 Performance in the no-memory control condition 

Performance in the new no-memory control condition was explored in a one-way repeated 

measures ANOVA with condition (allocentric, egocentric, no-memory) as a within-subject 

factor. The analysis revealed significant effects of condition on accuracy (F(2,34)=104.660, 

p<.001) and response times (F(2,34)=259.988, p<.001) with lower error rates and shorter 

response times in the no-memory condition compared to the allocentric and egocentric 

conditions (Figure 5-5).    
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Figure 5-5: Main effect of condition on accuracy and response times, and outcome of pairwise 
comparisons (* p<.05; ** p<.01). 

5.3.1.3 The effect of sex 

Sex differences were explored in a 2x3 mixed ANOVA with sex (female, male) as a 

between-subject factor and condition (allocentric, egocentric, no-memory control) as a 

within-subject factor. For response times, there was no significant main effect of sex 

(F(1,16)=.954, p=343) and no interaction between sex and condition (F(2,42)=.839, 

p=.441). For accuracy, however, there was a significant main effect of sex (Table 5-3), 

which was constituted by a higher error rates in females (M=.11, SE=.01) than males 

(M=.08, SE=.01). There was also a significant interaction between sex and condition (Table 

5-3), which reflected higher error rates in the female group only in the allocentric condition 

(Figure 5-6).  

Table 5-3: Mixed ANOVA on the effect of condition and sex on accuracy. 

Source MS df  F p 
Condition 0.258 2 125.541 <.001 
Condition X Sex 0.009 3 4.392 0.021 
error (condition) 0.002 32 

  Sex 0.013 1 9.248 0.008 
error (sex) 0.001 16     
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Figure 5-6: Interaction effect between sex and condition on accuracy and outcome of pairwise 
comparisons (* p<.05; ** p<.01). Light grey bars represent the allocentric condition, unfilled bars 
represent the egocentric condition and dark grey bars represent the no-memory control condition.  

5.3.2 Imaging results 

5.3.2.1 Whole brain analyses 

To investigate the brain regions involved in landmark-based retrieval, the signal acquired 

during the response phase in the allocentric condition was contrasted with the egocentric 

condition (Allocentric>Egocentric). A large network of activation was observed, consisting 

of occipital, parietal, mediotemporal, as well as frontal regions (Figure 5-7, orange clusters). 

This large cluster extended dorsally and bilaterally from the inferior occipital lobe to cover 

large parts of the inferior and superior portions of the posterior parietal lobe. The cluster 

then continued medially and inferiorly from the precuneus, via the retrosplenial cortex, 

towards the fusiform gyrus bilaterally. Large parts of the fusiform gyrus were covered, 

extending anteriorly towards the parahippocampal gyrus and posteriorly to cover the 

lingual gyrus bilaterally. Local signal peaks were observed in regions of the parieto-medial 

temporal pathway, including the posterior parietal lobe, the RSC and the lingual gyrus 

(Table 5-4). In all clusters, the allocentric condition was associated with greater signal 

above baseline than the egocentric condition. For the reverse contrast 

(Egocentric>Allocentric), clusters of differential signal were observed in frontal, parietal 

and temporal regions (Figure 5-7, blue clusters) with local signal peaks in the posterior 
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cingulate cortex, the medial superior frontal gyrus and the hippocampus (Table 5-5; Figure 

5-8). The contrast was generally characterized by the signal dropping below the baseline in 

the allocentric condition with a lesser drop or no change in the egocentric condition.  

 

 

Figure 5-7: Activation maps at retrieval for the Allocentric vs. Egocentric contrast. Activations maps 
are shown in sagittal sections on the average normalised structural image computed from the sample 
data. Regions shown in orange exhibited greater signal in the allocentric condition whilst regions shown 
in blue exhibited greater signal in the egocentric condition (p<.05, FWE, k≥10). Numbers represent 
XYZ coordinates in MNI space. 
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Figure 5-8: Activation maps demonstrating the hippocampal clusters of differential signal for the 
Egocentric>Allocentric contrast in the right (top) and left (bottom) hemisphere (p<.05, FWE, k≥10). 
Activations maps are shown in sagittal (left), coronal (middle) and axial (right) sections on the average 
normalised structural image computed from the sample data. Numbers represent XYZ coordinates in 
MNI space. 



 
 

 
 

Table 5-4: Peak activations for the whole brain analysis for the Allocentric>Egocentric contrast (p<.05, 
FWE, k≥10). Differences from baseline for the two conditions are marked as + when positive, as - when 
negative and as 0 when not significant.  

Region Local peak   Left       Right     

  
Cluster 
(voxels) t-value 

x,y,z 
Diff. 
baseline 
(allo/ego) 

Cluster 
(voxels) t-value 

x,y,z 
Diff. 
baseline 
(allo/ego) 

(MNI) (MNI) 

    
Parieto-
occipital- 
temporal 

Retrosplenial 
cortex 10830 13.48 -16,-70,10 + / + - 12.2 18,-62,16 + / + 

 Lingual gyrus - 10.48 -12,-61,0 + / + - 8.15 26,-86,-10 + / + 

 Fusiform gyrus - 6.55 -38,-44,-20 + / + - 6.74 38,-42,-22 + / + 

 
Inf. occipital 
gyrus - 7.9 -38,-76,-12 + / + - 7.16 38,-76,-12 + / + 

 Precuneus - 8.88 -4,-64,52 + / + - 9.93 12,-66,52 + / + 

 Sup. parietal lobe - 8.84 -16,-70,54 + / + - 13.24 20,-72,48 + / + 

 
Mid. temporal 
gyrus  - - + / + 41 6.49 46,-70,14 + / + 

          
Frontal Insula 197 8.93 -28,24,-2 + / + 119 6.69 32,26,-4 + / +  

 
Medial frontal 
gyrus 671 8.33 -6,10,50 + / + - 7.83 2,14,50 + / + 

 Mid. frontal gyrus 442 9.39 -24,0,52 + / + 319 7.74 34,0,50 + / + 

 Inf. frontal gyrus 64 6.85 50,32,24 + / + - - - + / + 

 Precentral gyrus 402 8.74 -38,8,30 + / + 18 6.02 46,12,30 + / + 

          
Other Brain stem 302 7.91 -4,-28,-4 + / + - - -  

 Basal ganglia 48 7.28 -12,0,-2,  + / + - - -  
  Cerebellum - - -   34 6.65 8,-72,-26 + / + 



 
 

 
 

Table 5-5: Peak activations for the whole brain analysis for the Egocentric>Allocentric contrast (p<.05, 
FWE, k≥10). Differences from baseline for the two conditions are marked as + when positive, as - when 
negative and as 0 when not significant. * clusters used for the extraction of BOLD signal for the 
between-subject analysis (see section 5.3.2.5). 

Region Local peak   Left       Right     

  
Cluster 
(voxels) t-value 

x,y,z 
Diff. 
baseline 
(allo/ego) 

Cluster 
(voxels) t-value 

x,y,z Diff. 

(MNI) (MNI) baseline 

    (allo/ego) 

Parietal  Posterior cingulate 
cortex 217 7.76 -10,-50,26 - / -  18 6.39 6,-50,24 - / - 

          
Frontal Insula 1624 9.34 -38,-10,14 0 / + 35 7.02 38,6,10 0 / + 

 Angular gyrus 11 6.86 -42,-64,28 - / - 14 6.28 52,-58,28 - / - 

 
Sup. medial frontal 
gyrus 143 6.7 -8,54,0 - / - 24 6.34 8,58,18 - / - 

 Sup. frontal gyrus 88 7.68 -14,54,24 - / - - - -  

 Precentral gyrus - - -  31 7.01 44,-20,52 - / 0 

 
Supramarginal 
gyrus 51 6.42 58,-24,22 0 / 0 - - -  

          
Temporal Temporal pole - - -  96 7.98 42,10,-34 - / - 

 
Mid. temporal 
gyrus  - - -  275 7.08 54,-38,0 - / 0 

  - - -  21 6.55 52,2,-20 - / - 

  Hippocampus 11* 6.31 -28,-14,-22 - / 0 86* 7.07 30,-16,-18 - / 0 

 

Further to the contrast between the allocentric and the egocentric condition, such 

experimental conditions were contrasted with the no-memory control condition. For the 

Egocentric>Control contrast, clusters of differential activation were limited to the parietal 

lobe, with the exception of a small cluster in the middle frontal gyrus (Table 5-6). 

Considering the relatively limited number of brain regions identified for this contrast, it 

was not surprising to observe similar clusters for the Allocentric>Control contrast 

compared to those observed in the Allocentric>Egocentric contrast. Consequently, clusters 

of differential signal were observed mainly in the occipital, the parietal and the temporal 

lobe, but also in frontal regions (Table 5-7). Similarly, the Control>Allocentric contrast 

revealed similar clusters of differential signal to the Egocentric>Allocentric contrast. One 

difference worth noting is the absence of any differential signal in the hippocampus for this 

contrast (Table 5-8). Finally, the Control>Egocentric contrast revealed clusters in frontal, 

parietal and temporal regions (Table 5-9). 

 



 

 
 

129 

Table 5-6: Peak activations for the whole-brain analysis for the Egocentric>Control (p<.05, FWE, 
k≥10). Differences from baseline for the conditions (exp, ctrl) are marked as + when positive, as - when 
negative and as 0 when not significant. 

Region Local peak   Left       Right     

  Cluster t-value 
x,y,z Diff. 

baseline  Cluster t-value 
x,y,z Diff. 

baseline  

    (voxels) MNI) (ego/ctrl) (voxels) MNI) (ego/ctrl) 

Parietal Sup. parietal lobe 146 8.49 -14, -68, 56 +/+ 237 9.8 18, -72, 52 +/+ 

 Inf. parietal lobe - - -  71 6.58 40, -40, 42 +/+ 

Frontal Mid. frontal 
gyrus - - -   10 6.35 46, 36, 20 +/0 

 

Table 5-7: Peak activations for the whole-brain analysis for the Allocentric>Control (p<.05, FWE, 
k≥10). Differences from baseline for the conditions (allo, ctrl) are marked as + when positive, as - when 
negative and as 0 when not significant. 

Region Local peak   Left       Right     

  Cluster t-value 
x,y,z Diff. 

baseline  Cluster t-value 
x,y,z Diff. 

baseline  

    (voxels) MNI) (allo/ctrl) (voxels) MNI) (allo/ctrl) 

Parietal-
occipital-
temporal 

Retrosplenial 
cortex 9468 10.33 -16,-68,12 +/+ - 11.8 20,-62,16 +/+ 

 Lingual gyus -  6.98 -22,-50,-8 +/+ - 6.63 28,-46,-8 +/+ 

 Cuneus - 8.05 -6,-74,-18 +/+ - 9.15 12,-78,36 +/+ 

 
Sup. parietal 
lobe -  13.04 -16,-70,54 +/+ - 17.23 18,-72,50 +/+ 

 
Mid. occipital 
gyrus - - -  - 8.49 36,-74,34 +/+ 

 
Sup. occipital 
gyrus - 10.67 -22,-72,34 +/+ - - -  

          
Frontal Insula 237 9.16 -28,24,-2 +/+ 267 7.85 34,24,-4 +/+ 

 
Medial frontal 
gyrus 732 8.08 0,18,50 +/+ -  - -  

 
Mid. frontal 
gyrus 1641 10.27 -38,6,28 +/+ 688 9.27 48,34,22 +/+ 

  - - -  717 10.11 26,6,54 +/0 

 
Orbitofrontal 
cortex 89 8.02 -44,50,-6 +/0 12 7.87 26,50,-14 +/0 

          
Other Cerebellum 39 8.36 -12,-54,-48 +/+ 29 7.16 12,-54,50 +/+ 

  - - -  328 7.41 6,-76,-28 +/+ 

  - - -  66 7.75 30,-64,-
32 +/+ 

  - - -  11 6.16 0,-60,-36 +/+ 

 Basal ganglia 27 6.89 -12,0,-2 +/+ 15 6.34 14,0,-4 +/+ 

 Brain stem - - -  176 6.73 4,-26,-18 +/+ 

  - - -  15 6.36 6,-18,4 +/+ 

    - - -   16 6.16 8,-40,-38 +/+ 
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Table 5-8: Peak activations for the whole-brain analysis for the Control > Allocentric (p<.05, FWE, 
k≥10). Differences from baseline for the conditions (allo, ctrl) are marked as + when positive, as - when 
negative and as 0 when not significant. 

Region Local peak   Left       Right     

  Cluster t-value 
x,y,z Diff. 

baseline  Cluster t-value 
x,y,z Diff. 

baseline  

    (voxels) MNI) (allo/ctrl) (voxels) MNI) (allo/ctrl) 

Parietal Posterior 
cingulate cortex 978 10.54 -6,-50,22 -/0 - - -  

 Angular gyrus - - -  158 8.14 52,-60,30 -/0 

          

Frontal Sup. frontal 
gyrus 1678 9.59 -14,56,18 -/0 - - -  

 Insula 485 8.05 -34,-18,20 -/+ - - -  

          
Temporal Mid. temporal 

gyrus - - -  679 8.75 46,-26,-4 -/+ 

  - - -  305 8.64 44,10,-34 -/0 

    465 10.56 -42,-64,28 -/- - - -  
 

Table 5-9: Peak activations for the whole-brain analysis for the Control > Egocentric (p<.05, FWE, 
k≥10). Differences from baseline for the conditions (ego, ctrl) are marked as + when positive, as - when 
negative and as 0 when not significant. 

Region Local peak   Left       Right     

  Cluster t-value 
x,y,z Diff. 

baseline  Cluster t-value 
x,y,z Diff. 

baseline  

    (voxels) MNI) (ego/ctrl) (voxels) MNI) (ego/ctrl) 

Parietal Posterior 
cingulate cortex - - -  33 5.77 -6,-68,34 0/+ 

 Precuneus - - -  57 5.86 -2,-68,34 0/0 

          
Frontal Medial frontal 

gyrus - - -  47 6.6 6,56,22 -/0 

          
Temporal Angular gyrus 39 6.87 -42,-64,28 -/- - - -  

          

Occipital Mid. occipital 
gyrus 26 7.24 -28,-96,6  +/+ 85 7.58 32,-92,4  +/+ 

 



 
 

 
 

For the analysis of the presentation phase, the signal associated with the allocentric and 

egocentric conditions at encoding were collapsed and contrasted with the no-memory 

condition (Encoding>Control). Clusters were observed in the occipital lobe, extending to 

cover large parts of the fusiform gyrus and a smaller part of the right parahippocampal 

gyrus, in inferior and superior parts of the parietal lobe and in frontal regions (Figure 5-9, 

orange clusters; Table 5-10). For the reverse contrast (Control>Encoding), only two small 

clusters of differential signal were observed (Figure 5-9, blue clusters; Table 5-11). 

 

Figure 5-9: Activation maps at presentation for the Encoding vs. Control contrast. Activations maps 
are shown in sagittal sections on the average normalised structural image computed from the sample 
data. Regions shown in orange exhibited greater signal in the allocentric condition whilst regions shown 
in blue exhibited greater signal in the egocentric condition (p<.05, FWE, k≥10). Numbers represent X 
coordinates in MNI space. 
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Table 5-10: Peak activations for the whole-brain analysis for the Encoding > Control contrast (p<.05, 
FWE, k≥10). Differences from baseline for the conditions (enc,ctrl) are marked as + when positive, as - 
when negative and as 0 when not significant. 

Region Local peak   Left       Right     

  
Cluster 

t-value 
x,y,z Diff. 

baseline 
(enc/ctrl) 

Cluster 
t-value 

x,y,z Diff. 
baseline 
(enc/ctrl) (voxels) (MNI) (voxels) (MNI) 

Parietal Sup. parietal lobe 1635 13.94 -30,-46,42 + / 0 169 9.72 42,-40,48 + / 0 

  - - -  534 10.91 18,-66,54 + / + 

 Angular gyrus - - -  65 8.64 32,-54,42 + / + 

          
Occipital-
temporal 

Mid. occipital 
gyrus - - -  1727 12.94 24,-88,8 + / + 

 Inf. occipital gyrus 1904 14.71 -38,-78,-4 + / + - - -  

 Fusiform gyrus   -36,-50,-18 +/+   38,-52,-16 +/+ 

 
Parahippocampal 
gyrus - - -    34,-42,-14 +/+ 

 Cuneus 27 8.75 -10,-94,16 + / + - - -  

          
Frontal Inf. frontal gyrus 385 11.42 -38,6,26 +/ 0 - - -  

 Mid. fontal gyrus 127 9.57 -22,4,48 + / 0 - - -  

  55 9.22 -46,2,48 + / + - - -  

  - - -  48 9.61 28,8,56 + / 0 

 
Medial frontal 
gyrus 199 9.88 -6,10,50 + / 0 - - -  

Other Putamen 75 9.06 -14,10,4 + / 0 - - -   

 

Table 5-11: Peak activations for the whole-brain analysis for the Control > Encoding contrast (p<.05, 
FWE, k≥10). Differences from baseline for the conditions (enc,ctrl) are marked as + when positive, as - 
when negative and as 0 when not significant. 

Region Local peak        

  
Cluster 

t-value 
x,y,z Diff. 

baseline 
(enc/ctrl) (voxels) (MNI) 

Frontal L. Medial frontal gyrus 47 8.3 0, 62, 16 - / 0 

Other L. Sub-gyral temporal 32 8.95 -30, -54, 
2 - / 0 
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5.3.2.2 Time-course analysis 

Time course analyses were performed in voxels of local peak activation in the superior 

parietal lobe, retrosplenial cortex, hippocampus and posterior cingulate cortex (Figure 5-10). 

Given the typical time course of the canonical HRF implemented in SPM, signal related to 

the encoding phase should peak around 5 seconds after trial onset, signal related to the 

delay phase should peak between 8 and 13 seconds after trial onset, and signal related to the 

recall phase should peak around 13 to 15 seconds after trial onset. In the early part of the 

time series (0-10 seconds), BOLD signal changes in the allocentric and egocentric 

conditions appeared similar in all depicted regions, reflecting the necessarily identical 

encoding process for the two conditions. Later in the time series (13-16 seconds), however, 

the change in BOLD signal in the allocentric condition was observed to be more substantial 

compared to the egocentric condition, which was reflected in the greater increase above the 

fixation baseline in the superior parietal lobe and the RSC and a greater drop below the 

same baseline in the posterior cingulate cortex and the hippocampus. In this part of the time 

series, as opposed to mirroring the BOLD signal change of the allocentric condition, the 

signal change associated with the egocentric condition was observed to converge towards 

that of the no-memory control condition.  Across the time series, the no-memory control 

condition consistently produced a BOLD signal closer to the baseline compared to the 

experimental conditions. It was also noted that whilst two peaks in signal change could be 

observed in the superior parietal lobe and the retrosplenial cortex, only one peak was 

observed in the hippocampus and posterior cingulate cortex. 
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Figure 5-10: Plots of BOLD signal time course changes in the superior parietal lobe (20,-72,48), RSC 
(18,-62,16), hippocampus (30,-16,-18) and the posterior cingulate cortex (-10,-50,26). Time course are 
shown in sagittal sections on the average normalised structural image computed from the sample data 
(activation maps: p<.05, FWE, k≥10). The baseline signal was the signal measured during the fixation 
trials. The voxels selected for analysis were the ones with peak differences in the contrast between the 
allocentric and egocentric conditions (see Table 5-4, Table 5-5). Signal changes in the allocentric 
condition (blue, solid), egocentric condition (green, dashed) and no-memory control condition (red, 
dotted) were modelled from the onset of the trial. 
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5.3.2.3 Exploratory whole brain analysis 

To explore the effect of the longer response times produced in the allocentric condition 

relative to the egocentric condition, response time was added as a covariate of no interest at 

the second level. As would be expected if such differences in response times were closely 

related to cognitive processes, there was a general and substantial loss of effects compared 

to when response times were allowed to vary. No effects involving the allocentric condition 

survived the significance threshold in this analysis, although some of the effects previously 

seen for the Egocentric vs. Control contrast remained (Table 5-12). When the response time 

regressor was explored in its own right, no significant relationships with BOLD signal 

emerged in any regions.  

Table 5-12: Peak activations for the exploratory whole-brain analysis (response time entered as a 
covariate) when contrasting all three conditions in the response phase (p<.05, FWE, k≥10). Differences 
from baseline for the conditions (ego, ctrl) are marked as + when positive, as - when negative and as 0 
when not significant. 

Contrast Local peak   Left       Right     

  
Cluster t-

value 
x,y,z Diff. 

baseline 
(ego/Ctrl) 

Cluster 
t-value 

x,y,z Diff. 
baseline 
(ego/Ctrl) (voxels) (MNI) (voxels) (MNI) 

Ego>Ctrl Sup. parietal lobe 87 8.04 -16,-70,54 +/+ 178 9.25 18,-72,52 +/+ 

          
Ctrl>Ego Mid. Occipital gyrus 104 7.38 -36,-90,2 +/+ 135 8.48 30,-88,-6 +/+ 

  Precuneus 14 6.65 -2,-68,34  0/0         

 

5.3.2.4 Parametric analyses 

When response times were added as a parametric modulator separately for the allocentric 

and egocentric conditions at the first level, signal in the right lingual gyrus and right cuneus 

showed a positive correlation with response times in the allocentric condition, whilst no 

regions showed a negative correlation (Table 5-13). It is also worth noting that response 

times were unrelated to BOLD signal in the hippocampus. In the egocentric condition, the 

left medial frontal gyrus was found to correlate positively with response times.   

In a separate parametric analysis, signal in the left lingual gyrus and the left cuneus was 

found to show a positive correlation with angle of rotation in the allocentric condition 

(Table 5-14). No significant correlations were found for angle of rotation in the egocentric 

condition. Furthermore, no correlations were found between target-foil distance and BOLD 

signal in any region for the allocentric and egocentric condition.  
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Table 5-13: Results of the parametric analysis of response time (p<.05, FWE, k≥10). 

Condition Correlation Region Cluster 
t-value 

x,y,z 

      (voxels) MNI) 

Allocentric Positive R. lingual gyrus 50 5.45 18,-60,2 

  R. cuneus 11 8.49 6,-80,34 

Egocentric Positive L. med. frontal gyrus 26 8.95 -6,12,52 

 

Table 5-14: Results of the parametric analysis of angle of rotation (p<.05, FWE, k≥10). 

Condition Correlation Region Cluster 
t-value 

x,y,z 

      (voxels) MNI) 

Allocentric Positive L. cuneus 44 9.79 -4,-74,16 

    L. lingual gyrus 26 9.54 -20,-64,-4 

 

5.3.2.5 Between-subject performance analysis 

Hippocampal BOLD signal in the right and left hemisphere was extracted for each person 

based on the hippocampal clusters revealed in the Egocentric>Allocentric contrast in the 

whole-brain analysis (Table 5-15). Pearson’s correlation coefficients revealed no significant 

correlations between hippocampal BOLD signal and performance in the allocentric and 

egocentric conditions in either of the hemispheres.  

Table 5-15: Pearson’s correlation coefficients for correlations between performance (accuracy, 
response time) and hippocampal BOLD signal (* p<.05; ** p<.01). Note that response time averages 
were based on both correct and incorrect trials. 

   
Accuracy (error rate) Response time (ms) 

 
    Allocentric Egocentric Allocentric Egocentric 

B
O

L
D

 si
gn

al
 

Allocentric R. hippocampus 0.191 0.009 -0.188 -0.113 

 
L. hippocampus -0.074 0.189 0.004 0.168 

Egocentric R. hippocampus 0.064 -0.144 0.076 -.050 
  L. hippocampus 0.233 -0.03 -0.069 -0.030 

 

Following the demonstrated sex differences in NGT-R performance (section 5.3.1.3), it was 

interesting to explore sex differences in hippocampal BOLD signal. Given the different 

sizes of the hippocampal clusters in the right and left hemisphere, a 2x2 mixed ANOVA, 

with sex (female, male) as a between-subject factor and condition (allocentric, egocentric) 

as a within-subject factor, was conducted separately for the right and left hippocampi. As 

was already evident in the whole-brain analysis, there was a significant main effect of 
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condition on hippocampal BOLD signal in both hemispheres, with a greater negative 

BOLD signal in the allocentric condition compared to the egocentric condition (Table 5-16, 

Table 5-17). For the right hippocampus, but not the left, there was a significant main effect 

of sex, which constituted a greater negative BOLD signal in the male group compared to 

the female group (Table 5-16, Table 5-17, Figure 5-11).  

Table 5-16: Mixed ANOVA on the effect on condition and sex  on BOLD signal extracted from the right 
hippocampus.  

Source MS df  F p 
Condition 91.575 1 53.157 <.001 
Condition X Sex 2.618 1 1.520 0.235 
error (condition) 1.723 16 

  Sex 9.172 1 5.717 0.029 
error (sex) 1.604 16     

  

Table 5-17: Mixed ANOVA on the effect on condition and sex on BOLD signal extracted from the left 
hippocampus.  

Source MS df  F p 
Condition 81.473 1 54.384 <.001 
Condition X Sex 0.323 1 0.215 0.649 
error (condition) 0.1498 16 

  Sex 4.558 1 2.626 0.125 
error (sex) 1.736 16     

 

 

Figure 5-11: Main effect of sex on BOLD signal extracted from the right hippocampus.   
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5.4 Discussion 

The aim of Experiment 7 was to investigate the neural underpinnings of the NGT. As such, 

the primary hypothesis concerned a hippocampal contribution in the allocentric condition, 

which was assumed to involve the use of an environment-centred representation to reorient 

and identify the target. Further to this, secondary hypotheses were proposed in relation to 

the involvement of additional regions in the parieto-medial temporal pathway, namely the 

RSC and the lingual gyrus, in the allocentric condition. Finally, the PPA and the lingual 

gyrus were proposed to be sensitive to increasing viewpoint-shifts, as a potential neural 

basis of the alignment effect in the allocentric condition. Results relevant to each prediction 

will be discussed in turn (sections 5.4.1, 5.4.2 and 5.4.3). Following this, performance-

related effects will be discussed (section 5.4.4) and the behavioural results and the general 

administration of the NGT-R inside the scanner will be commented on (section 5.4.5).  

5.4.1 The hippocampus and allocentric spatial memory 

The prediction stemming from the primary hypothesis concerned increased hippocampal 

activation in the allocentric condition relative to the egocentric condition. In stark contrast 

to this prediction, the bilateral hippocampus showed a greater signal in the egocentric 

condition compared to the allocentric condition. Relative to the fixation baseline, however, 

this effect was characterised by a lack of signal change in the egocentric condition and a 

significant signal drop in the allocentric condition. Thus, the hippocampus appears to be 

uniquely engaged in the allocentric condition in the NGT even though this engagement was 

characterised by a negative BOLD signal.  

Although contradictory to the prediction of an increased BOLD signal in the allocentric 

condition, it is important to emphasise that a negative BOLD response in the hippocampus 

is not an uncommon finding. Such a response has been associated with virtual versions of 

traditional spatial memory tasks, including the Morris Water Maze (Shipman and Astur, 

2008) and the Radial Arm Maze (Astur et al., 2005), as well as with increasing goal 

distance in a route-planning task (Viard et al., 2011), autobiographical spatial judgments of 

long-term memories (Rekkas et al., 2005) and detection of location changes following an 

imagined shift in viewpoint (Lambrey et al., 2012). Such reports of negative hippocampal 

BOLD responses in spatially demanding and arguably hippocampus-relevant task 
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conditions not only indicate the reliability of the finding in Experiment 7 but also highlight 

the need for an interpretation.  

Whilst the positive BOLD response has been consistently related to increased neural 

activity (Logothetis et al., 2001), the mechanisms underlying the negative BOLD response 

are much less clear (Hayes and Huxtable, 2012). Three theoretical accounts are generally 

offered: a) the negative deflection could be the result of vascular steal by which oxygenated 

blood is diverted away from less active areas to more active areas, b) of an active neural 

suppression in the region, or c) of a contradictory increase in neural activity without a 

corresponding boost in blood flow (Wade, 2002). Whilst the vascular steal account is 

unlikely considering the small changes in cerebral blood flow accompanying cognition and 

the substantial hemodynamic reserve of the brain (Gusnard et al., 2001), the two latter 

accounts are relevant in the present context. These two accounts of the negative BOLD 

signal will be discussed and evaluated in turn, after which I will propose an interpretation 

of the differential hippocampal BOLD signal in the allocentric condition.  

5.4.1.1 Suppression of hippocampal activity 

It is possible that the allocentric condition of the NGT, contrary to the prediction, is 

associated with a suppression of hippocampal activity. Previous research has demonstrated 

that task-specific factors such as memory load and spatial complexity can have an effect on 

whether hippocampal BOLD signal fall above or below a fixation baseline. In regards to 

memory load, Axmacher et al. (2007) showed that maintenance of a single item in memory 

resulted in a negative BOLD signal in the hippocampus whilst maintenance of four items 

resulted in a positive BOLD signal. Similarly, but in relation to spatial complexity, Lee and 

Rudebeck (2010) found evidence of a negative BOLD signal in a working memory task 

when the stimuli represented simple 2D displays but a positive BOLD signal when it 

represented complex 3D scenes. Thus, it could be suggested that the use of a single target 

location and the relatively simplistic environment in the NGT could account for the 

negative BOLD signal found in the allocentric condition. An obvious caveat of this account, 

however, is that the egocentric condition involves a similarly low memory load and an 

identical environment. In fact, relative to the egocentric condition, the allocentric condition 

is likely to have imposed a greater memory load and spatial complexity given the need to 

remember the single target location in relation to one or several landmark locations. Thus, 
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the decreased BOLD signal in the allocentric condition relative to the egocentric condition 

is unlikely to be accounted for by a lower memory load or lower spatial complexity.  

A related task-specific account was proposed in the study conducted by (King et al., 2002). 

In this study, a patient with hippocampal damage was shown to be disproportionately 

impaired when locations had to be remembered from a shifted viewpoint, but only for list 

lengths greater than one (for more detail, see section 2.2.4.2). It was argued that only for 

longer list lengths was it more efficient to store the target locations relative to a fixed 

reference direction compared to storing and manipulating self-object vectors individually. 

According to this account, the single target location in the allocentric condition of the NGT 

may have rendered a mental rotation strategy sufficient to solve the task, reducing the need 

for an allocentric representation and thereby the recruitment of the hippocampus. Although 

the parietal and frontal engagement in the allocentric condition could be indicative of a 

mental rotation strategy in the allocentric condition, it is unclear why such a hippocampus-

independent strategy should result in a negative BOLD signal in this very region (Zacks, 

2008). Conversely, a lack of a hippocampus-dependent strategy in the allocentric condition 

would be expected to make this condition more similar to the egocentric condition and 

thereby reduce the likelihood of differential hippocampal activation when the two 

conditions are contrasted. Consequently, the negative BOLD signal in the hippocampus is 

difficult to delineate as a simple lack of hippocampal involvement.  

The above discussion indicates that the negative BOLD signal in the hippocampus is 

unlikely to be accounted for by factors such as the number of target locations and the 

complexity of the virtual environment. In contrast to such task-specific effects, the negative 

BOLD signal could also be explained by effects that are independent of the specific 

requirements of the NGT. Specifically, the suppression of the hippocampus in the 

allocentric condition could be due to the generally greater demand of the allocentric 

condition, as indicated by higher error rates and longer response times in this condition.  

At rest, the hippocampus demonstrates functional correlations with the default network, 

which consistently shows deactivations during active compared to passive baseline 

conditions (Shulman et al., 1997) and during difficult compared to easy task conditions 

(McKiernan et al., 2003; Gimbel and Brewer, 2011).  Thus, it is possible that the 

hippocampus is suppressed as part of a larger default mode network as a consequence of 
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the greater demand in the allocentric condition. In relation to such default suppression of 

hippocampal activity, it is noteworthy that several of the studies that have demonstrated 

hippocampal deactivations in arguably hippocampus-relevant conditions have also reported 

worse behavioural performance in that particular condition (Rekkas et al., 2005; Shipman 

and Astur, 2008; Rodriguez, 2010; Lambrey et al., 2012).  

One specific example of a task-general effect was offered by Reas et al. (2011), who 

demonstrated a negative BOLD signal in the hippocampus during elaborate associative 

recall, which was greater for poorly remembered than for strongly remembered items. It 

was argued that the longer memory search accompanying poorly remembered items 

required a greater suppression of tonic encoding-related activity in the hippocampus, in 

favour of retrieval-related processes taking place elsewhere. In other words, a suppression 

of default hippocampal encoding activity was proposed to underlie the negative BOLD 

response. Compared to the egocentric condition, the allocentric condition indeed required a 

longer memory search, in addition to a potential retrieval of obscured relevant landmarks, 

which suggests that the negative BOLD signal in this condition could be the result of 

suppressed encoding-related activity. However, no evidence was found of an increased 

BOLD response in the hippocampus at encoding, which contradicts the idea that signal in 

this region is reflective of encoding processes in the NGT. Consequently, this particular 

default suppression is unlikely to explain the present findings. 

Further to this, it is important to emphasise that the coupling of the hippocampus with other 

default regions during memory retrieval appears to vary according to task condition 

(Gimbel and Brewer, 2011; Huijbers et al., 2011; Reas et al., 2011), which indicates that 

the areas deactivated during memory retrieval may only partially overlap with those 

deactivated during non-memory tasks (Israel et al., 2010). In relation to this, although the 

more difficult allocentric condition was associated with deactivations in classic default 

regions such as the medial prefrontal cortex and the posterior cingulate, it was associated 

with strong activations in another default region, the RSC (Buckner et al., 2008). 

Furthermore, when the less demanding control condition was contrasted with the allocentric 

condition, no differential signal was demonstrated in the hippocampus whilst the typical 

default response was demonstrated in the posterior cingulate cortex. Thus, a suppression of 

classic default regions does not necessarily appear to be accompanied by a suppression of 
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the hippocampus, indicating that the negative BOLD signal may not be the simple result of 

differences in difficulty levels between conditions. 

In relation to the effect of task difficulty, it is also important to mention the outcome of the 

exploratory whole-brain analysis, in which average response times were included as a 

covariate of no interest at the second level (section 5.3.2.3). In this analysis, no evidence 

was found of a negative BOLD signal in the hippocampus, suggesting that this result could 

be fully accounted for by the higher demand of the allocentric relative to the egocentric 

condition. However, responses times in the NGT are not only a proxy for difficulty but are 

also likely to be closely associated with the cognitive processes of interest. Consequently, 

by controlling for response times one is controlling not only for differences in difficulty 

levels but also for the cognitive processes of interest (Gilbert et al., 2012). Furthermore, it 

could be argued that accounting for response times independently of conditions resulted in 

an inappropriate adjustment of the data. This follows from the elimination of all clusters 

previously associated with the contrast between the allocentric condition and the no-

memory control condition. In contrast to the allocentric and egocentric conditions, which 

theoretically could involve similar cognitive processes and neural systems, the allocentric 

and the no-memory conditions can safely be assumed to involve distinct cognitive 

processes and neural systems. The lack of a modulating effect of response times on 

hippocampal BOLD amplitude at the second level further strengthens the argument that 

factors other than response time are likely to be more important.  

In addition to the indications above, neurons in the hippocampus appear to show no or very 

low activity during baseline conditions whilst firing selectively in response to different 

categories of visual stimuli (Quiroga et al., 2005; Kraskov et al., 2007), which is contrary 

to the relatively high activity levels expected in default regions at baseline. Furthermore, 

when BOLD signal is not used as the measure of neural activity, results do not tend to 

support a suppression of hippocampal activity during spatial memory tasks. For example, 

when contrasted to a less demanding visuomotor control condition, goal-directed 

navigation has been found to be associated with increased cerebral blood flow to the 

hippocampus, as measured by PET (Maguire et al., 1997), and with increased theta activity 

in the hippocampus, as measured by MEG (Cornwell et al., 2008). Thus, although a task-

independent effect of difficulty cannot be excluded in the present study, a general 



 

 
 

143 

suppression of the default network is unlikely to fully account for the negative BOLD 

response in the hippocampus in Experiment 7. 

5.4.1.2 Increase of hippocampal activity 

The negative BOLD response in the allocentric condition may not be a reflection of 

suppression of neural activity but of an increase of neural activity. This is possible because 

of the relative nature of the BOLD signal, which depends on a complex interplay between 

changes in cerebral blood flow (CBF), cerebral blood volume (CBV) and oxygen 

metabolism (cerebral metabolic rate of oxygen, CMRO2) that results from neural activity 

(Buxton et al., 2004; Logothetis and Pfeuffer, 2004; Buxton, 2012). In fact, measurable 

increases in BOLD signal rely on a relatively greater increase in CBF compared to CMRO2 

(Ogawa et al., 1990). Consequently, if neural activity causes a greater increase in CMRO2 

relative to the increase in CBF, a decreased BOLD signal could theoretically result (Buxton, 

2012).  

Ekstrom (2010) proposed that the negative BOLD response in the hippocampus during 

memory encoding and retrieval tasks could be explained by such a neurovascular account. 

In support of this account, the coupling between CBF and CMRO2 in the hippocampus 

appears more complex than that traditionally observed in the cortex (Leontiev et al., 2007; 

Restom et al., 2008), possibly as a result of a more limited blood supply in the 

hippocampus compared to cortex (Borowsky and Collins, 1989). For example, whilst 

BOLD changes in the parahippocampus were found to be positively correlated with local 

field potential (LFP) power changes in a sample of epilepsy patients during a spatial 

navigation task, BOLD changes in the hippocampus showed a weak or no correlation with 

LFP power changes (Ekstrom et al., 2009).  Furthermore, Schridde et al. (2008) found that 

induced seizures in the rat resulted in marked increases in LFP activity across the entire 

brain but that such increases were associated with negative BOLD responses in the 

hippocampus and with positive BOLD responses in the cortex. Importantly, the coupling 

between CMRO2 and CBF was found to account for the negative BOLD response; the 

increase in CRMO2 nearly matched the increase in CBF in the hippocampus whilst the 

normal CBF/CMRO2 overshoot was observed in the cortex. Based on such results, Ekstrom 

(2010) proposed that demanding memory tasks may be associated with an increase in 

CMRO2 that is just matched or even undershot by the increase in CBF, which, when 
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contrasted with a resting baseline condition, results in a negative BOLD signal. 

Considering the lack of signal change relative to the baseline in the egocentric condition, 

such a scenario could account for the present findings: the demand of the allocentric 

condition could have caused the oxygen consumption in the hippocampus to exceed its 

supply, which could have resulted in a negative BOLD signal in the face of increased 

neural activity. In agreement with Ekstrom (2010), I propose that relative to a suppression 

of default activity, such a neurovascular account is more likely to explain the negative 

hippocampal BOLD signal in the allocentric condition of the NGT and in previous spatial 

memory tasks.  

5.4.1.3 Differential hippocampal activity 

The discussion above has highlighted two valid but mutually exclusive accounts of the 

negative BOLD signal demonstrated in the hippocampus. Despite such interpretational 

difficulties, the present data allows me to conclude that the allocentric and egocentric 

conditions resulted in a differential engagement of the anterior hippocampus bilaterally. 

The lack of a significant signal change from the fixation baseline in the egocentric and 

control conditions further indicates that the anterior hippocampus was specifically 

implicated in the allocentric condition, albeit in the form of a negative BOLD signal. As 

such, the present results appear to add to the substantial evidence base that supports a role 

of the hippocampus in allocentric spatial memory (Muller et al., 1987; Baumann et al., 

2010; Goodrich-Hunsaker et al., 2010). The anterior hippocampus specifically has 

previously been implicated in the initial stages of navigation (Cornwell et al., 2008; 

Shipman and Astur, 2008; Xu et al., 2010), route planning (Spiers and Maguire, 2006) and 

mental navigation (Mellet et al., 1995), which suggests a role for this particular subsection 

in providing the allocentric spatial representations that underlie goal-directed navigation. 

Importantly, the present results extend such findings by demonstrating a similar 

hippocampal involvement in a task that requires no navigation. Consequently, it can be 

proposed that the anterior hippocampus is particularly important for the allocentric process 

of self- and target-localisation based on available environmental landmarks and not for the 

execution of a navigational plan. As such, the results of Experiment 7 are in line with 

previous neuropsychological findings, which have demonstrated a disproportionate effect 

of hippocampal damage on allocentric short-term memory in similar viewpoint-shift tasks 
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(King et al., 2002; Hartley et al., 2007). Furthermore, the predominantly right-sided 

hippocampal engagement in the allocentric condition is consistent with the use of a 

landmark-based strategy (Iaria et al., 2003; Bohbot et al., 2004) and with a general right-

sided lateralisation of spatial memory (Smith and Milner, 1981; Feigenbaum and Morris, 

2004).It is important to emphasise the strength of the hippocampal effect in Experiment 7, 

which was revealed at a whole-brain level after correction for multiple comparisons. Such 

an obvious implication of the hippocampus when the two experimental conditions in the 

NGT were compared strongly supports that the inclusion of the egocentric condition 

provided a sensitive contrast. Indeed, when the much more general no-memory control 

condition was contrasted with the allocentric condition, no hippocampal involvement could 

be detected. This should be considered in the context of the study of Schmidt et al. (2007), 

who did not find evidence of hippocampal involvement when a comparable viewpoint-shift 

task was contrasted with a general no-memory control condition. Experiment 7 has 

therefore further emphasised the importance of the selection of an appropriate control 

condition when investigating hippocampal function (Stark and Squire, 2001) and highlights 

that the use of an over-general control conditions may prevent the detection of hippocampal 

involvement in a viewpoint-shift task (Schmidt et al., 2007).  

5.4.2 The parieto-medial temporal pathway and allocentric spatial memory 

In addition to the hippocampal involvement, the allocentric condition of the NGT was 

hypothesised to uniquely engage the RSC and the lingual gyrus. In support of such 

predictions, the allocentric condition was associated with a substantial cluster of activation 

along the parieto-medial temporal pathway, which included both the RSC and the lingual 

gyrus bilaterally. However, this cluster also extended to another primary region of the 

parieto-medial temporal pathway, namely the posterior parietal lobe. Thus, the present 

study provides support for the recruitment of the full extent of the parieto-medial temporal 

pathway for allocentric short-term memory retrieval, even in scenarios in which no 

navigation execution is required.  The proposed role of the regions in this pathway in the 

NGT will be explored in more detail below.  

The implication of the RSC in the allocentric condition is consistent with its role in the 

translation between egocentric and allocentric spatial systems, which allows for the critical 

coordination of the egocentric perspective with the allocentrically represented target 
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location (Maguire, 2001; Epstein, 2008). It also supports a role for the RSC that extends 

beyond navigation to also include environment-centred referencing following a shift in 

viewpoint (Galati et al., 2010). The recruitment of the RSC in the allocentric condition can 

also be considered in the context of a recent study, which demonstrated a specific 

sensitivity in this region to landmarks with a high degree of stability (Auger et al., 2012). 

Given the stability of the landmarks in the allocentric condition and the instability of the 

same landmarks in the egocentric conditions, the implication of the RSC in the NGT can 

therefore be considered consistent with a role of this region in the identification of stable 

landmarks. The implication of the lingual gyrus is furthermore consistent with its proposed 

role in the representation of the orientation value of salient environmental landmarks, 

which only would have been important in the allocentric condition (Aguirre et al., 1998; 

Aguirre and D'Esposito, 1999).  

As expected, the PPA did not show differential activation in the allocentric and egocentric 

conditions, indicating that this structure makes equal demands in terms of scene perception 

and recognition in the two conditions (Epstein and Kanwisher, 1998). Alternatively, this 

null finding could be considered consistent with findings showing that the PPA is sensitive 

to both viewpoint-changes and scene changes (Epstein et al., 2003), which arguably 

correspond to the manipulations in the allocentric and egocentric conditions, respectively. It 

is worth noting that when encoding of the target location was contrasted with the no-

memory control condition in the presentation phase, increased activation was revealed in 

the right posterior parahippocampal gyrus. Assuming no incidental encoding occurred in 

the no-memory control condition, this finding is therefore consistent with a role of this 

region in the encoding of a local scene (Epstein, 2008). 

Consistent with a role of the posterior parietal cortex in egocentric memory representations 

(Burgess, 2008), the egocentric condition of the NGT was associated with greater activity 

in this region relative to the no-memory control condition. In contrast, the posterior parietal 

involvement in the allocentric condition appears contradictory to its predominantly 

egocentric role. One potential account for this finding could be derived from recent 

proposals that the posterior parietal lobes are particularly important for one type of 

egocentric transformation, namely body referencing, which is defined as the coordination 

of body knowledge with sensory maps of space (Committeri et al., 2004; Galati et al., 

2010). Although the egocentric condition is likely to require some basic mapping between 
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the retinotopic and the body-centred coordinates, the viewpoint-shift in the allocentric 

condition may have triggered a more explicit reference to the virtual position of the body in 

space. As a result, the allocentric condition may have necessitated a greater degree of 

remapping between the egocentric coordinate systems and thereby placed a higher demand 

on the posterior parietal lobe. Alternatively, the posterior parietal involvement in the 

allocentric condition can be considered consistent with proposals that the role of this region 

extends to egocentric-to-allocentric transformations (Byrne et al., 2007; Calton and Taube, 

2009; Save and Poucet, 2009). In the primate brain, neurons in area 7 in the posterior 

parietal cortex represent locations in eye-centred coordinated but show sensitivity to the 

orientation of the animal within the testing room (Snyder et al., 1998) and neurons in more 

medial parietal areas respond to the position of stimuli in allocentric space (Dean and Platt, 

2006). Posterior parietal activation has also been consistently associated with mental 

rotation, which is thought to require coordination of the frame of the rotated object relative 

to the environment-centred frame, both of which need to be computed from egocentric 

retinal coordinates (Zacks, 2008). Thus, it is possible that the coordination of the 

allocentrically represented target location and the egocentrically experienced perspective in 

the allocentric condition accounts for the posterior parietal involvement. In brief, the 

posterior parietal involvement in the allocentric condition of the NGT would be consistent 

with the greater reliance on translations between different coordinate systems.   

Further to the lateral portions of the posterior parietal lobe, activation in the precuneus in 

the medial portion of the posterior parietal lobe was associated with the allocentric 

condition.  This region has been associated with imagery of retrieved material (Fletcher et 

al., 1996), with the retrieval of the spatial context of a life-like event (Burgess et al., 2001) 

and with the construction of an updated spatial representation after movement through 

virtual space (Wolbers et al., 2008). It is therefore conceivable that the precuneal 

involvement in the allocentric condition could be a reflection of imagination of the target 

location and of the parts of the scene that have become obstructed following the viewpoint-

shift. In other words, the increased activation of the precuneus could be a reflection of the 

greater reliance on imagery of the retrieved material in the allocentric compared to the 

egocentric condition.  
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5.4.3 The neural basis of the alignment effect 

Further to the involvement of the hippocampus and the parieto-medial temporal pathway in 

the NGT, predictions were made in relation the neural basis of the alignment effect, as 

reflected in the effect of increasing viewpoint-shifts in the allocentric condition. Consistent 

with the predictions and previous findings, BOLD signal amplitude in the hippocampus 

was found not to be sensitive to increasing viewpoint-shifts (Schmidt et al., 2007). This 

suggests that although the hippocampus appears to be involved in the allocentric condition 

of the NGT, as evidenced by the negative BOLD signal in the whole-brain analysis, it does 

not appear to be implicated in the process of calculating the effect of increasing viewpoint-

shifts per se. This is consistent with the general lack of hippocampal involvement during 

imagined viewpoint-shifts (Hannula and Ranganath, 2008; Lambrey et al., 2012). 

BOLD signal amplitude in the left lingual gyrus was instead found to be associated with 

increasing viewpoint-shifts, which is also consistent with the predictions and previous 

findings (Schmidt et al., 2007). Considering the role of the lingual gyrus in representing the 

orientation value of landmarks (Aguirre et al., 1998), an increased reliance on such 

landmark information for more substantial viewpoint-shifts could be proposed to underlie 

this finding. Specifically, it is conceivable that greater viewpoint-shifts resulted in greater 

disorientation, which in turn increased the reliance on landmarks to regain orientation. 

Importantly, the sensitivity to increasing viewpoint-shifts in this particular region also 

contradicts the use of a mental rotation strategy in this condition. This follows from 

findings that the superior parietal lobe, and not the lingual gyrus, exhibits sensitivity to the 

angular disparity in mental rotation tasks (Gauthier et al., 2002). Thus, as opposed to an 

object-like rotation of the entire scene, the allocentric condition appears to involve a 

process of reorientation based on the orientation information of landmarks. In the context of 

the allocentric updating theory, the left lingual gyrus can therefore be proposed to play an 

important role in the process of recovering the reference direction from the interobject 

vectors present in the visual scene (Zhang et al., 2011). 

In addition to the lingual gyrus, the left cuneus was found to be sensitive to increasing 

viewpoint-shifts, which represents a novel finding compared to a similar study (Schmidt et 

al., 2007). Being part of the occipital lobe, it could be suggested that the visual change 

resulting from the viewpoint-shift is underlying the cuneal response. However, since BOLD 
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signal in the cuneus did not appear to be modulated by the identical visual change resulting 

from the landmark-shift in the egocentric condition, the finding in the allocentric condition 

is unlikely to be explained by changes in the visual display. It is worth noting that the 

cuneus is situated next to the precuneus, which has been implicated in imagery of retrieved 

material (Fletcher et al., 1996). It can therefore be speculated that the cuneus may play a 

role in relaying information about what parts of the scene that has become unavailable after 

the viewpoint-shift, which can then be used by the precuneus to determine what aspects that 

need to be imagined to retrieve the target location. Evidently, further research will be 

required to determine the exact role of the cuneus in the calculation of the effects of 

viewpoint-shifts.  

In contrast to the predictions and previous findings (Schmidt et al., 2007), BOLD signal in 

the PPA was not found to be sensitive to increasing viewpoint-shifts. One potential 

explanation for this null finding is the relatively small visual change in the scene following 

viewpoint-shifts in the NGT environment. In the study by Schmidt et al. (2007), the 

geometry and environmental detail of the roof top environment meant that a shift in 

viewpoint resulted in a relatively drastic visual change of the scene, more so for greater 

viewpoint-shifts. In contrast, the circular shape and the visually similar landmarks in the 

NGT environment meant that even larger viewpoint-shifts resulted in a limited change of 

the visual aspects of the scene. Considering the established sensitivity of the PPA to scene 

changes (Epstein et al., 2003), it is possible that the small visual changes following 

viewpoint-shifts may not have provided sufficient sensitivity to detect variation in PPA 

BOLD signal in the NGT.  

Finally, it is important to emphasise that no region was found to be sensitive to the extent 

of the landmark-shift in the egocentric condition. This confirms that such a change in the 

visual background was indeed appraised as irrelevant in remembering the target location in 

the egocentric condition. Thus, similarly to the pattern of behavioural results (section 5.3.1), 

angle of rotation only appears to have an effect on neural activity in the allocentric 

condition of the NGT.  

5.4.4 Performance-related effects 

Further to the parametric analyses of the magnitude of the manipulations of viewpoint and 

landmark positions in the NGT, the effect of response times on BOLD signal was 
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investigated. When considered as a covariate at the second level, response times did not 

show a significant effect on BOLD signal in any region of the brain (see section 5.4.1.1 for 

discussion). In contrast, when the effect of response times was considered as a parametric 

modulator at the first level, separately for the allocentric and egocentric conditions, 

significant modulating effects were revealed. Specifically, longer response times in the 

allocentric condition were associated with increased BOLD amplitude in the right lingual 

gyrus and cuneus. Considering the effect of increasing viewpoint-shifts on response times 

in the allocentric condition (section 5.3.1), this provides an interesting parallel to the 

sensitivity of the left lingual gyrus and cuneus in the previous section. Although the effects 

of response times and the size of the viewpoint-shifts are necessarily difficult to disentangle, 

this can be interpreted as further support for the possible role of the lingual gyrus and the 

cuneus in processing the orientation information of landmarks in order to recover the 

reference direction in the allocentric condition.  

In the egocentric condition, longer response times were found to be associated with greater 

BOLD amplitude in an entirely separate region, the left medial frontal gyrus. This indicates 

that the processes underlying longer response times are different in the two experimental 

conditions, which in turn may explain the lack of an effect of response times when it is 

added as a covariate at the second level. Furthermore, the lack of a modulating effect of 

response times in the hippocampus in any of the analyses indicates that the negative BOLD 

signal in the allocentric condition is unlikely to be the sole result of variation in this 

particular proxy of difficulty. 

The effect of response times was also investigated in a between-subject analysis. 

Hippocampal BOLD signal was not associated with any of the performance measures in the 

allocentric and egocentric conditions in this analysis, indicating that the negative BOLD 

signal in the allocentric condition occurs independently of the performance of individual 

participants. Although this provides important evidence for the consistency of the negative 

BOLD signal across participants, it is worth mentioning a coincidental link between sex 

differences in allocentric performance and hippocampal BOLD. Specifically, relative to 

females, males were found to make fewer errors in the allocentric condition and to exhibit a 

generally greater negative BOLD signal in the right hippocampus. This finding therefore 

indicates that a group of good allocentric performers coincidentally also showed greater 

negative BOLD signal in the right hippocampus. However, in the absence of any direct 



 

 
 

151 

relationship between hippocampal BOLD signal and performance in the NGT, it can only 

be concluded that the hippocampal involvement in the allocentric condition appears to be 

independent of individual performance.   

5.4.5 The NGT-R in the scanner 

In addition to the brain imaging results, it was important to consider how behavioural 

performance in the NGT-R inside the scanner compared to performance produced outside 

the scanner. The behavioural analysis revealed a significant interaction between condition 

and task context, which reflected non-significant trends of lower error rates in the 

egocentric condition and higher error rates in the allocentric condition when the NGT-R 

was performed inside of the scanner. One potential explanation for the trending effect in the 

egocentric condition could involve the fixed head position of participants in the scanner. 

Specifically, the stable head position may have reduced the need for remapping between the 

retinotopic representation and the head-centred representation of the target location. 

Considering that the absolute location of the target location remains the same after the 

delay in the egocentric condition, the gain resulting from a stable head position is likely to 

have been greater in this condition. The trend towards higher error rates in the allocentric 

condition could be the result of the way in which the NGT-R was presented in the scanner. 

Specifically, the task was projected onto a large screen outside of the bore of the scanner 

and was viewed through a pair of binoculars fitted inside of the coil. Relative to 

presentation of the task on a standard computer screen at close distance, the viewing 

conditions in the scanner may therefore have been affected. Since spatial relationships 

require more interpretation in the allocentric condition, such a limitation would be expected 

to have a greater effect in this condition.  

With the exception of such non-significant trends in terms of error rates, the NGT-R was 

performed in an equivalent way in the scanner as outside the scanner. Thus, it can be 

concluded that the NGT-R produces comparable results inside as outside the scanner, 

which provides further support for the usability of the task. 
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Chapter 6 Background (Part II) 

Part I of the present project demonstrated that the NGT-R can be used reliably in young and 

middle-aged samples and that a contrast of the experimental conditions of the task reveals 

reliable differential hippocampal involvement in a neuroimaging context. In Part II of the 

project, the aim was to evaluate the potential use of the NGT-R as a measure of 

hippocampal function in clinical populations. Given the proposed role of the hippocampus 

in the pathophysiology of major depressive disorder (MDD; (Sapolsky et al., 1986; Sahay 

and Hen, 2007; Palazidou, 2012)), depressed patients represented the clinical population of 

interest. In this chapter, after a general introduction of MDD, a thorough background of 

hippocampal volume, hippocampus-relevant cognition and hippocampal function in the 

disorder will be provided.   

6.1 Major depressive disorder 

The fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (APA, 

1994) characterizes MDD in terms of affective symptoms such as depressed mood, a loss of 

pleasure and interest, and feelings of worthlessness and guilt, but also in terms of 

observable symptoms, such as weight gain or loss, hypersomnia or insomnia, psychomotor 

agitation or retardation and fatigue. Further to this and in particular interest for the present 

project, depression is also characterised by cognitive symptoms, which are defined 

diagnostically as a reduced ability to concentrate and making decisions. Such cognitive 

symptoms represent a significant determinant of social and occupational functioning in 

depression and are likely to play an important role in functional recovery following 

remission of affective symptoms (Jaeger et al., 2006; Hasselbalch et al., 2011).  

The importance of increasing the understanding of the symptoms of depression and their 

respective causes cannot be understated. Among the mental disorders, depression represents 

the most common with a lifetime prevalence of 5 to 25%, with women being affected more 

frequently than men to a ratio of 2:1 (Kessler, 2003). Among all diseases it is ranked as the 

fourth leading cause of burden and is expected to show a rising trend in coming years 

(WHO, 2001). The onset of depression can happen at any time in life (Fava and Kendler, 

2000) and the severity of the symptoms can vary greatly. Depression also tends to be a 

recurrent disorder with more than half of patients experiencing a second episode following 
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recovery from a first episode (Kupfer, 1991). Following the second and third episode, the 

risk of further relapses increases to 70% and 90%, respectively (Kupfer, 1991) with around 

12% of patients experiencing a chronic disorder without interleaving asymptomatic periods 

(Keller, 1992). The recurrent and debilitating nature of the symptoms of depression 

therefore warrants an effort to understand and ultimately prevent its causes.  

One approach to increase our understanding of depression is to explore the neural 

underpinnings of the symptoms associated with the disorder. Given the complexity of the 

course and expression of MDD, the neural basis of the disorder can only be assumed to be 

equally complex (Palazidou, 2012). As such, Experiment 7 only focused on a small part of 

the proposed neural basis, namely the consistently reported structural abnormalities of the 

hippocampus and how this may translate into hippocampal dysfunction and spatial memory 

deficits (Campbell and MacQueen, 2004; Koolschijn et al., 2009).  

6.2 Hippocampal structure 

6.2.1 Introduction 

It is well established that depression is associated with structural brain abnormalities. In a 

meta-analysis of 64 MRI studies, including 2418 depressed patients and 1974 control 

participants, Koolschijn et al. (2009) concluded that patients consistently showed volume 

reductions in frontal regions, the hippocampus, putamen and caudate nucleus. A consistent 

bilateral reduction of the hippocampus was confirmed in a recent meta-analysis 

incorporating 4118 depressed patients (Arnone et al., 2012).  Earlier meta-analyses of 

hippocampal volume in MDD reached the same conclusion and estimated the reduction to 

8% in the left hippocampus and 10% in the right hippocampus (Campbell and MacQueen, 

2004; Videbech and Ravnkilde, 2004).   

More detailed investigations have indicated that all subsections of the hippocampus may 

not be similarly affected in depression. Structural reductions and shape abnormalities have 

been shown to be more prominent in the posterior compared to the anterior hippocampus 

(Neumeister et al., 2005; Maller et al., 2007; Cole et al., 2010) and in the CA1 subfield 

compared to the CA2 and CA3 subfields (Cho et al., 2010; Cole et al., 2010). In a post-

mortem study of depressed patients, Stockmeier et al. (2004) found evidence of increased 
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density of pyramidal neurons and glial cells in all subfields and a reduction of neural size, 

which could provide an account for the volumetric changes demonstrated in the MR studies.  

An interesting contrast to the volumetric reduction of the posterior hippocampus in 

depression (Neumeister et al., 2005; Maller et al., 2007; Cole et al., 2010) is the volumetric 

increase of the same subsection of the hippocampus in London taxi drivers (Maguire et al., 

2000). London taxi drivers undergo extensive training to learn the complex route network 

and are required to navigate flexibly between goal locations on a daily basis, supporting the 

importance of hippocampal volume for spatial behaviour. A similar volumetric increase is 

not present bus drivers, however, which suggests that navigation along a constrained set of 

routes is not sufficient to alter hippocampal volume (Maguire et al., 2006a; Maguire et al., 

2006b). Given that an increased posterior hippocampus appears to allow London taxi 

drivers to represent and make use of an extensive allocentric map, it can therefore be 

proposed that a volumetric reduction of the same region may alter the way that depressed 

patients represent space in memory.  

In depression, a hyperactive hypothalamic-pituitary-adrenal (HPA) axis is often proposed 

as the pathophysiological mechanism underlying the changes in hippocampal volume 

(Pariante and Lightman, 2008). Specifically, a disruption of the negative feedback loop of 

the HPA axis is thought to lead to elevated cortisol levels (Nelson and Davis, 1997; 

Vreeburg et al., 2009), which in turn has a particularly toxic effect on the hippocampus 

(Sapolsky et al., 1986). In a recent review, Palazidou (2012) highlighted that several 

additional factors, such as reduced levels of brain-derived neurotrophic factor (BDNF), 

reduced noradrenergic and serotonergic neurotransmission and a hyperactive inflammatory 

response system, are likely to reflect important pathophysiological mechanisms that also 

influence hippocampal volume in depression. Consistent with a relatively greater influence 

of mechanisms other than an abnormal HPA axis, O'Brien (2004) found no relationship 

between hippocampal volume reductions and level of hypercortisolemia in older depressed 

patients. Furthermore, although hippocampal volume in depression is likely to have a 

genetic basis, it is also likely to be affected by environmental stressors, such as early 

trauma and major life events (Vythilingam et al., 2002; Kronmuller et al., 2009; Chen et al., 

2010). The causes of the changes in hippocampal volume in depression can therefore be 

assumed to be complex. For the purposes of the present study, however, the causes of the 
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hippocampal abnormality are of less relevance than the functional consequences of such 

changes. 

In summary, a reduction of hippocampal volume represents one of the most consistently 

reported structural abnormalities in MDD. In order to understand the nature of the 

hippocampal reduction in the disorder, it is important to explore whether it appears to be 

the result of an accumulative scarring of illness processes or whether it represents a marker 

of risk preceding and predisposing to depression. To achieve this, the following review will 

focus on how hippocampal volume changes as the depressive illness progresses. 

6.2.2 Recurrent, long-lasting and severe depression 

If mechanisms associated with the illness have an accumulative toxic effect on 

hippocampal volume (Fossati et al., 2004), longer illness duration should be associated 

with smaller hippocampi. In support of this prediction, MacQueen et al. (2003) 

demonstrated that patients with multiple episodes had smaller hippocampi than first-

episode patients and that only the former group differed significantly from control 

participants. This pattern of results was confirmed in a subsequent meta-regression analysis, 

in which the total number of episodes was found to correlate inversely with right 

hippocampal volume (Videbech and Ravnkilde, 2004). However, it is also worth noting 

that multi-episode patients do not always exhibit smaller hippocampi than first-episode 

patients and control participants (Vythilingam et al., 2004).  

In terms of the total illness duration across depressive episodes, an inverse correlation has 

been found with hippocampal volume in samples of depressed patients in remission 

(Sheline et al., 1996; Sheline et al., 1999). More recently, Sheline et al. (2003) found that 

the duration during which the depressive episodes went untreated was associated with 

reductions in hippocampal volume in a sample of recurrently depressed patients currently in 

remission. Consistent with this, Caetano et al. (2004) found an inverse correlation between 

length of untreated illness and hippocampal volume. Similarly, Colla et al. (2007) 

demonstrated an association between illness duration and reduced hippocampal volume in a 

sample of symptomatic depressed inpatients. However, as in the case of the number of 

episodes, longer total illness duration has not always been associated with smaller 

hippocampal volumes (Vythilingam et al., 2004; Neumeister et al., 2005).  
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Further to the effect of the number of episodes and illness duration, smaller hippocampal 

volumes also appear to be associated with greater severity of symptoms. In a large recent 

meta-regression analysis, Arnone et al. (2012) found that depressive mood state at the time 

of testing was the only significant clinical predictor of hippocampal volume. In the study by 

Vakili et al. (2000), depressed patients were found to have equal hippocampal volume to 

control participants but that left hippocampal volume correlated inversely with depression 

severity. Similarly, Weniger et al. (2006) found that smaller left hippocampal volumes 

were associated with higher anxiety scores. Such evidence appears to suggest that severity 

as well as the duration of symptoms influence alterations of hippocampal volume in 

depression.  

Consistent with the effect of illness duration on hippocampal volume in depression, 

McKinnon et al. (2009) found in a meta-analysis of 32 MRI studies that the reduction was 

limited to patient who had been depressed for longer than two years or who had 

experienced more than one depressive episode. Furthermore, when the analysis was limited 

to young adult patients, no difference in hippocampal volume was detected. Similarly, Eker 

and Gonul (2010) concluded in a qualitative review that patients with a mean age older than 

40 years and samples consisting of patients who had severe or multiple episodes were more 

likely to demonstrate smaller hippocampal volumes. Thus, hippocampal reductions may be 

more prominent in older patient samples, as well as in patients with a longer and more 

severe illness history. 

6.2.3 1st episode depression and premorbid risk 

The above evidence appears to suggest a hippocampal reduction is only a feature in 

recurrent, more long-lasting and more severe cases of depression, indicating that they occur 

as a result of the accumulative effect of the state of the illness. In contrast to such a 

conclusion, hippocampal volume reductions have been demonstrated in an early stage of 

the illness. In a meta-analysis of seven studies of first-episode depression, Cole et al. 

(2011) concluded that patients exhibited an approximate 4% bilateral reduction of the 

hippocampus relative to control participants. Similarly, Zou et al. (2010) demonstrated 

reduced hippocampal volume in a sample of first-episode drug naïve patients. The 

occurrence of hippocampal reduction at such an early stage of illness indicates that it is not 
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simply a “scar” of depression but that it may reflect a marker of risk for depression (Cole et 

al., 2011).  

Evidence in support of a pre-dispositionary role of a small hippocampal volume has also 

been found in studies investigating healthy participants who are at high risk of developing 

depression from having a first-degree relative suffering from the disorder (e.g. Williamson, 

2004). Chen et al. (2010) investigated 55 healthy girls, 23 of who were daughters of 

mothers with recurrent depression. Voxel-based morphometry revealed that daughters of 

depressed mothers exhibited reduced hippocampal grey matter bilaterally relative to low-

risk control participants, indicating that hippocampal reductions may be present even before 

the onset of depressive illness. Similarly, Amico et al. (2011) found smaller hippocampal 

volume in healthy relatives of depressed patients when compared to control participants 

without a family history of psychiatric illness. Furthermore, Baare et al. (2010) found that 

twins who had a depressed co-twin (high-risk) had smaller hippocampal volumes than 

twins who had no first-degree family history of major psychiatric disorder (low-risk). Thus, 

it appears as if hippocampal reductions can occur before illness onset, as well as early in 

the illness course, indicating its potential as a trait marker of depression.  

6.2.4 Treatment response and remission 

Further to the evidence indicating that hippocampal volume may be important as a risk 

factor for developing depression, recent investigations have shown that it may also be 

important in determining the subsequent course of the illness. Frodl et al. (2008) followed 

patients with recurrent depression over three years and found that patients with small 

hippocampi at baseline demonstrated a worse clinical outcome, as indicated by yearly 

HAM-D scores, compared to patients with large hippocampi. Small hippocampal volume at 

baseline was furthermore associated with a greater number of relapses over the three years. 

There was also no evidence of volume decline during the depressive episodes, indicating a 

relative stability of hippocampal volume in depression over time. However, hippocampal 

volume at baseline did not appear to predict full remission. This last null finding was in 

contrast to an earlier study in which depressed patients who had smaller hippocampal 

volume at baseline were less likely to be remitted from an episode of depression one year 

after discharge (Frodl et al., 2004). Similarly, MacQueen et al. (2008) demonstrated that 

patients who remitted after eight weeks of treatment had larger hippocampal volume at 
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baseline than patients who did not achieve remission. Furthermore, a subdivision of the 

hippocampus in this study revealed that the finding was accounted for by variation in the 

volume of the body and the tail of the hippocampus and not of the hippocampal head. 

Taken together, such evidence supports a role of the hippocampus not just as a risk factor 

but also as a predictor of clinical outcome in depression. 

It is important to note that although hippocampal reductions in depression compared to 

control participants may occasionally persist in remission (Sheline et al., 1996), this is not 

always the case. In an longitudinal study, Ahdidan et al. (2011) found that the reduction of 

the right hippocampus that was present when patients were depressed did not remain in 

patients who had achieved remission 11 years later. Similarly, Hviid et al. (2010) found no 

evidence of hippocampal abnormalities in a sample of remitted depressed patients in an 8-

year follow-up study. In a cross-sectional study of medication naïve patients, Caetano et al. 

(2004) found that currently depressed patients had smaller hippocampal volumes than 

remitted patients. This apparent restoration of hippocampal volume in remission may be 

indicative of ‘healing’ following removal of the neurotoxic effect of the illness (Fossati et 

al., 2004) or of neuroprotective effects of the factors leading to remission of symptoms. 

Treatment with antidepressant medication may represent one such neuroprotective factor.  

The negative relationship between the duration of untreated depression and smaller 

hippocampal volume indicates the presence of a neurotoxic effect on the hippocampus in 

the absence of treatment (Sheline et al., 2003; Caetano et al., 2004). Interestingly, 

continuous treatment may not only protect patients from such neurotoxic effects (Hviid et 

al., 2010; Ahdidan et al., 2011) but may even have a positive effect on hippocampal 

volume. Frodl et al. (2008) found that a subgroup of depressed patients who had been 

taking antidepressants over the full three years of the study showed a significant increase in 

left hippocampal volume compared to baseline. In the study by Amico et al. (2011), healthy 

relatives of depressed patients were found to have smaller hippocampi than depressed 

patients, indicating that treatment in the latter group may have influenced hippocampal 

volume. However, not all evidence speaks to an increase in hippocampal volume following 

treatment. Vythilingam et al. (2004) found no changes in hippocampal volume after an 

average of seven months successful treatment with selective serotonin re-uptake inhibitors 

(SSRI). Therefore, although a large preclinical literature implicates the hippocampus as a 

key target of antidepressant medication (Santarelli et al., 2003), it is unclear if and how this 
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translates into changes in hippocampal volume (Sahay and Hen, 2007). However, it can be 

speculated that an increase in hippocampal volume following successful treatment (Frodl et 

al., 2008) could contribute to the restored hippocampal volume relative to control 

participants in remission (Ahdidan et al., 2011). An alternative explanation is that patients 

who achieved remission exhibited larger hippocampi at baseline (MacQueen et al., 2008).  

6.3 Hippocampus-relevant cognitive function 

6.3.1 Introduction 

It is possible that the reduced hippocampal volume in depression can account for some of 

the cognitive deficits associated with the disorder. Depressed patients demonstrate 

impairment across a broad range of cognitive domains, including attention, executive 

function, psychomotor speed and memory (Elliott et al., 1996; Landro et al., 2001; Stordal 

et al., 2004; Murrough et al., 2011). Unfortunately, however, great heterogeneity between 

studies has prevented a detailed neuropsychological characterisation of depression to be 

made (Porter et al., 2007; Beblo et al., 2011). The heterogeneous picture of 

neuropsychological function in depression is likely to be due to methodological differences 

as well as complex interactions between patient characteristics, such as the severity and 

subtype of illness, demographic factors and comorbidities (Porter et al., 2007; Beblo et al., 

2011; Hasselbalch et al., 2011). A more focused investigation, in which a specific factor is 

defined as influencing cognitive performance, has been put forward as a more fruitful 

approach (Porter et al., 2007; Beblo et al., 2011). In the following review, this specific 

factor will constitute the volumetric reduction of the hippocampus. As such, focus will be 

directed towards mnemonic functions and when possible towards the spatial domain 

specifically. After a brief and general introduction of memory function in depression in this 

section, the course of the memory deficits as the illness progresses will be explored to 

provide a potential parallel to the changes in hippocampal volume.  

It is generally accepted that depression is associated with memory deficits (Burt 1995; 

Austin, 2001). Such memory deficits tend to affect the declarative domain, particularly 

episodic memory, whilst leaving implicit memory intact (Ilsley et al., 1995; Zakzanis et al., 

1998; MacQueen et al., 2002). However, the relative effect on mnemonic abilities in the 

verbal and visuospatial domains remains elusive. Whilst some studies have shown 

impairments in both domains (Hickie et al., 2005; Hinkelmann et al., 2009), others have 
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found deficits that are limited to the visuospatial domain (Ravnkilde et al., 2002; Porter et 

al., 2003) or to the verbal domain (Vythilingam et al., 2004; Thomas, 2009). Furthermore, 

it should be noted that there are studies that have failed to find memory deficits in either 

domain (Purcell et al., 1997; Grant et al., 2001). Therefore, as in the literature on 

neuropsychological function in depression at large, findings relevant to mnemonic abilities 

in depression appear difficult to reconcile. For the purposes of the present project, it was 

particularly important to explore whether memory deficits may parallel hippocampal 

volume reductions in depression. Therefore, as opposed to taking a general approach to 

memory function in depression, the following review will specifically focus on evaluating 

at what stages of the illness process memory deficits occur. 

6.3.2 Recurrent, long-lasting and severe depression 

Similarly to hippocampal reductions, memory impairments in depression tend to be more 

prominent in more severe and recurrent variations of depression. MacQueen et al. (2002) 

found that the number of depressive episodes correlated inversely with performance in an 

associative verbal memory task in a sample of currently depressed and remitted patients. In 

a large study comprising over 8000 depressed outpatients, Gorwood et al. (2008) used the 

delayed paragraph recall index from the Wechsler Memory Scale (Wechsler, 1981) to 

assess verbal declarative memory. The number of correct delayed recall responses was 

found to correlate with both depression severity and the number of past depressive episodes. 

However, in a structural equation modelling analysis, path coefficients were substantially 

higher for past depressive episodes than for mood at the time of testing, indicating that past 

illness burden was more important than current symptomatology. Furthermore, the decline 

in memory performance as the illness progressed could be estimated to occur at a rate of 2-

3% for each previous episode. However, it is worth noting that first-episode patients do not 

always outperform patients who have had multiple episodes in memory tasks (Wang et al., 

2006).  

In terms of depression severity, Elderkin-Thompson et al. (2003) compared cognitive 

performance of MDD patients with patients with minor depression (APA, 1994). Out of the 

range of cognitive measures, tasks loading on components of verbal recall and maintenance 

of set separated MDD patients from patients with minor depression. Interestingly, the non-

verbal component, which required patients to recognize complex designs after a delay, did 
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not separate the groups from each other or from the control group. Elliott et al. (1996) 

found significant correlations between depression severity and performance in pattern 

recognition, delayed-match-to-sample and spatial span. Similarly, in the study by Porter et 

al. (2003), depression severity was found to be associated with impaired verbal and 

visuospatial learning and memory performance. Furthermore, Austin et al. (1999) found 

that melancholic patients were more impaired than non-melancholic patients relative to a 

control group in tests of spatial and verbal memory, although both groups differed 

significantly from the control group. Of direct relevance to the present project, Gould et al. 

(2007) tested a mixed sample of currently depressed patients with a diagnosis of MDD or 

bipolar disorder in a virtual navigation task, which had previously been shown to involve 

the hippocampus (Maguire et al., 1998a). In addition to a general impairment in the 

navigation task in the patient group, depression severity was found to correlate inversely 

with the number of locations found in the task. Taken together, it appears that whilst 

memory impairments in general appear to get worse as the severity of the illness worsens, 

the relative effect on spatial and verbal memory is not yet clear (McClintock et al., 2010). 

In summary, it appears as if memory deficits in depression are more severe in patients who 

have experienced more depressive episodes (MacQueen et al., 2002; Gorwood et al., 2008), 

and in patients who are experiencing more severe depressive symptoms (Elliott et al., 1996; 

Austin et al., 1999; Porter et al., 2003). 

6.3.3 1st episode depression and premorbid risk 

Although neuropsychological impairments appear to become more prominent as illness 

severity and duration increase, memory deficits also seem to occur at an early stage of the 

illness. In a recent meta-analysis of 15 independent samples of first-episode depression, Lee 

et al. (2012b) found evidence of impairment in several cognitive domains. Pooled effect 

sizes revealed that first-episode patients performed worse relative to control participants in 

visual but not verbal memory tasks. It is therefore evident that memory deficits can occur at 

an early stage of the illness, contradicting that such deficits are the sole consequence of 

accumulative effects of the disease process.  

Extending the findings above, other studies have indicated that memory deficits may even 

pre-date the onset of the illness. In the study by Mannie et al. (2009), healthy young women 

with a familial risk of depression were found to have impaired verbal learning and memory 
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relative to control participants without such familial risk. Similarly, Christensen et al. 

(2006) found widespread cognitive impairment, including declarative memory deficits, in 

healthy twins with a co-twin with depression when compared to twins without such familial 

risk. Furthermore, memory performance in healthy individuals has been found to predict 

later development of depression. In a population-based sample of non-depressed 

individuals, poor performance in an immediate verbal recall task was found to be a reliable 

predictor for the development of depression three years later (Airaksinen et al., 2007). 

Similarly, in a separate population-based study, poor performance in the Rey Auditory 

Verbal Learning Test (RAVLT; (Spreen, 1998)) was found to predict subclinical depressive 

symptoms over a two-year follow-up period (Simons et al., 2009). Thus, although the 

memory deficit appears to be worsened by the state of depression, it appears that memory 

impairments in depression can precede illness onset and serve as a premorbid trait marker. 

6.3.4 Treatment response and remission 

As opposed to predicting response to treatment in depression, memory impairments have 

been shown to improve in parallel with depressive symptoms. Peselow et al. (1991) found 

that changes in performance in a set of difficult memory tasks following treatment with 

imipramine for four weeks correlated with improvement of depressive symptoms. Similarly, 

Biringer et al. (2007) found in a two-year follow-up study that remission of depressive 

symptoms was accompanied by an improvement in verbal memory function. In contrast, 

visual memory function remained the same at follow-up and did not change with 

improvement in depressive symptoms. In a six-month follow-up study, Gallagher et al. 

(2007) similarly found a greater improvement in verbal memory in remitted compared to 

non-remitted patients.  

The persistence of memory impairments following remission of depressive symptoms has 

received mixed support. In a review, Hasselbalch et al. (2011) highlighted that there has 

been great variability in the criteria used to establish remission and concluded that although 

several studies have demonstrated neuropsychological impairments in remission, it is 

difficult to draw any conclusions in regards to specific cognitive domains. As a reflection 

of this, some studies have demonstrated a persistent memory deficit in remission (Sheline 

et al., 1999; Preiss et al., 2009) whilst others have found evidence of normalised memory 

performance when depressive symptoms have resolved (Clark et al., 2005; Hviid et al., 
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2010). Since the level of residual symptoms differed between the studies, it remains unclear 

whether memory deficits would reliably resolve if complete remission was to be ensured.  

6.4 Hippocampal function 

Despite the large number of anatomic MR studies and neuropsychological investigations 

using hippocampus-relevant tasks, few studies have investigated hippocampal function 

directly in depression using functional imaging. Milne et al. (2012) recently highlighted 

this as a “striking paucity of research using functional imaging methods to study 

hippocampal function in patients with MDD” ((Milne et al., 2012), p 28). Below, I describe 

the small set of studies that have investigated hippocampal function in depression.   

In an early PET study, Videbech et al. (2002) investigated resting blood flow in 42 

inpatients with depression. Relative to matched control participants depressed patients were 

found to have increased blood flow to the hippocampus, in addition to the cerebellum, 

anterior cingulate gyrus and the basal ganglia. A comparable task-related increase in blood 

flow to the hippocampus was demonstrated in a PET study of 18 severely depressed 

patients (Bremner et al., 2004). In a verbal encoding task, participants listened to a 

paragraph and were instructed to form a mental image of the scene and to remember it. In a 

control condition, participants recalled words that had been implicitly presented prior to 

scanning. Relative to control participants, depressed patients showed a greater increase in 

blood flow in the hippocampus bilaterally during encoding compared to the control task. 

However, no behavioural difference was found between the two groups in the task.  

Werner et al. (2009) used fMRI to investigate hippocampal function during associative 

encoding and retrieval in eleven mildly to moderately depressed patients. At encoding, 

participants learned associations between faces and professions or simply watched face 

silhouettes in a control condition. At retrieval, participants retrieved the profession in 

response to the presented faces or decided which ear was the biggest in the silhouettes. No 

behavioural difference was found between the patients and the control participants in the 

associative memory task. Furthermore, no differential activation was found in the 

hippocampus for any of the contrasts, although depressed patients did show greater 

activation in the neighbouring left parahippocampal gyrus for the contrast between 

encoding and the control condition. The authors proposed that the lack of differential 

activation in the hippocampus could have been due to the mild depression severity or to the 
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high proportion of medicated patients included in the depressed sample. Furthermore, since 

no volumetric measures were included in the study, hippocampal volume reductions could 

not be assessed alongside the functional measures.  

Fairhall et al. (2010) used fMRI to test eight young patients with mild to moderate 

depression and matched control participants in an associative encoding task. Participants 

encoded face-name pairings whilst being scanned, after which a recall test was completed. 

Consistent with a previous study (Sperling, 2003), encoding success was associated with 

bilateral anterior hippocampal activation in the control participants. In contrast, the 

depressed patients did not show such a relationship. However, there was no main effect of 

group in the hippocampus. Furthermore, the patients did not differ behaviourally from 

control participants in the associative memory task.  

In a recent fMRI study, Milne et al. (2012) tested 22 euthymic patients with at least three 

previously treated depressive episodes and matched control participants. In a process 

dissociation task, participants were exposed to word pairs prior to scanning. Frequently 

presented word pairs engaged habit memory whilst rarely presented word pairs engaged 

recollection memory, of which only the latter was proposed to be dependent on the 

hippocampus. Once inside the scanner, participants were presented with a list of the word 

pairs and were instructed to read and remember them in preparation for a subsequent 

memory test (control task). At test, participants were shown one of the words in a word pair 

and a fragment of the second word (e.g. BARN _AR_) and were asked to complete the 

word fragment verbally. For the contrast between retrieval of recollection items and the 

encoding control condition, depressed patients were found to show reduced activation in 

the right hippocampus and the left parahippocampal gyrus relative to the control group. No 

group differences were found for the contrast between habit items and the control condition, 

however. Furthermore, consistent with the findings of Fairhall et al. (2010), performance 

for the recollection items was associated with greater activity in the right hippocampus in 

control participants but not in patients. At a behavioural level, depressed patient were found 

to be impaired for both recollection and habit word pairs.  

In direct relation to the current project, Cornwell et al. (2010) used MEG to assess 

hippocampal function in a virtual version of the MWM in a sample of 19 patients with 

moderate depressive symptoms. In a hidden platform condition, participants navigated to a 
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fixed hidden platform from four different start locations. In a control condition, participants 

navigated to a visible platform that changed location on each trial. Two environments with 

different distal cues were used for the two conditions to prevent incidental encoding. 

Relative to control participants, patients were found to take longer paths to the platform in 

both conditions but to spend longer finding the platform only in the hidden platform 

condition. Patients were also found to exhibit less oscillatory activity in the right 

hippocampus and the parahippocampal cortices during goal-directed navigation whilst no 

such differences were found in the control task. Furthermore, left posterior hippocampal 

theta activity was positively correlated with navigation performance in both groups.  

To summarise, PET investigations have provided evidence of increased regional blood flow 

to the hippocampus in depression (Videbech et al., 2002; Bremner et al., 2004) whilst 

fMRI studies have provided mixed findings (Werner et al., 2009; Fairhall et al., 2010; 

Milne et al., 2012). Taken together with an MEG study, however, there appears to be some 

indications of a functional abnormality of the right hippocampus in depression (Cornwell et 

al., 2010; Fairhall et al., 2010; Milne et al., 2012). However, whilst two studies revealed a 

significant group effect in this region during allocentric navigation and recollection 

retrieval (Cornwell et al., 2010; Milne et al., 2012), a third study failed to find such a group 

effect during associative encoding (Fairhall et al., 2010). Furthermore, whilst two studies 

have revealed a behavioural deficit in the measure used to demonstrate hippocampal 

dysfunction (Cornwell et al., 2010; Milne et al., 2012) others have not (Bremner et al., 

2004; Fairhall et al., 2010). It is also worth mentioning that none of the studies presented 

have included volumetric measurements of the hippocampus, which arguably complicates 

an interpretation of the presence or lack of hippocampal dysfunction. Therefore, although 

neuroimaging investigations have started to explore the possibility of hippocampal 

dysfunction in depression, the nature of this dysfunction and its relationship with structural 

abnormalities and cognitive impairments is far from clear. 

6.4.1 Summary 

In summary, it appears as if structural abnormalities of the hippocampus in depression are 

particularly prominent in older patient groups with recurrent or more severe depression 

(McKinnon et al., 2009; Eker and Gonul, 2010). However, hippocampal reductions have 

also been demonstrated in first-episode depression and in healthy individuals at risk of 
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developing depression (Chen et al., 2010; Cole et al., 2011), which contradicts proposals 

that such abnormalities are the sole result of an accumulative toxic effect of the disease 

process (Fossati et al., 2004). Furthermore, small hippocampal volume at baseline appears 

to be predictive of subsequent poor clinical outcome (Frodl et al., 2008), although 

hippocampal volumes may return to normal in remission (Ahdidan et al., 2011). Taken 

together, it appears as if small hippocampal volume represents a trait marker of depression, 

which is subsequently exacerbated by the state of a depressive episode. Further to this, 

antidepressant treatment may modulate the state-effects of depression, protecting it from 

the otherwise neurotoxic effects (Frodl et al., 2008). Interestingly, it appears as if memory 

impairments in depression may parallel changes in hippocampal volume. As such, memory 

impairments appear to be particularly prominent in more severe cases of depression 

(Gorwood et al., 2008) but also occur early (Lee et al., 2012b) and even before the onset of 

the illness (Airaksinen et al., 2007). Furthermore, memory impairments appear to improve 

alongside depressive symptoms following successful treatment and may resolve in 

remission (Gallagher et al., 2007; Hviid et al., 2010). Although the heterogeneity in the 

neuropsychological profile of depression should not be underestimated (Beblo et al., 2011), 

it appears as if memory impairments could potentially be associated with the hippocampal 

volume reductions of the disorder. Consistent with this, a very limited number of studies 

have provided indications that hippocampal dysfunction may underlie some of the memory 

deficits in depression (Cornwell et al., 2010; Milne et al., 2012).  
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Chapter 7 Experiment 8: The NGT-R in depression 

7.1 Predictions 

From the background provided in Chapter 6 it is evident that depression has been 

consistently associated with a volumetric reduction of the hippocampus and cognitive 

impairments in the memory domain. Importantly, hippocampal abnormalities and 

mnemonic deficits appear to occur in parallel as the disorder progresses, which support the 

existence of a link between cognitive symptomology and brain pathology in depression. It 

can therefore be proposed that the structural abnormalities in the hippocampus translate into 

a functional deficit in this region, which in turn may account for the reported memory 

deficits in the disorder.  

In Experiment 8, the NGT-R was used to assess hippocampal function in a small sample of 

depressed patients and sex- and age-matched controls. Following the working hypothesis of 

Part II of the project, depressed patients were predicted to show evidence of hippocampal 

dysfunction. At a behavioural level, this was expected to result in a disproportionate deficit 

in the allocentric condition relative to the egocentric condition in the patient group. At a 

neural level, hippocampal dysfunction was predicted to be reflected in an abnormal 

hippocampal engagement for the contrast between the allocentric and egocentric conditions. 

Specifically, for this contrast, depressed patients were expected to exhibit an attenuated 

differential signal in the hippocampus relative to matched control participants. Importantly, 

a replication of the previously demonstrated volumetric reduction of the hippocampus was 

also predicted for the patient group in Experiment 8.  

Both depressed patients and control participants were expected to be more reliant on spatial 

transformations and landmark information in the allocentric condition relative to the 

egocentric condition. Consequently, when the two groups were considered together, a 

greater involvement of the parieto-medial temporal pathway in the allocentric condition 

relative to the egocentric condition was predicted, consistent with the results of Experiment 

7. Similarly, although the differential BOLD signal in the hippocampus was predicted to be 

attenuated in the patient group, an on average negative hippocampal BOLD signal was 

expected to emerge in the pooled sample.  
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Experiment 8 was conducted in collaboration with Lucy Stevens (MPhil student at 

Newcastle University, supervised by Hamish McAllister-Williams).  

7.2 Pilot 

To test the general feasibility of using the NGT-R in a depressed population, a small-scale 

pilot study was conducted as part of a separate protocol. Eight depressed patients, three of 

who were currently symptomatic and five of who were recovered, were recruited via their 

consultant psychiatrist and tested in the NGT-R as described in Chapter 4 (section 4.6). 

Currently depressed patients had a Hamilton Depression Rating Scale (HAM-D; (Williams 

et al., 2008)) score of 15 or greater and remitted depressed patients had a score of seven or 

less. As a comparison, ten healthy participants without a personal or family history of 

psychiatric illness were also tested in the same task. Further inclusion and exclusion criteria 

for the depressed and the control groups were similar to that of the subsequent study (see 

section 7.3.1) and can be found in Appendix C. Demographic information and clinical 

characteristics for the two samples can be found in Table 7-1.  

The pilot confirmed that the NGT-R could be administered in a sample of currently 

symptomatic and remitted depressed patients. Although the small sample sizes prevented 

any statistical analyses, average error rates and response times indicated that the task was 

performed appropriately in both groups (Figure 7-1, Figure 7-2). It is worth noting that 

depressed patients appeared to produce higher error rates than the younger control group 

Table 7-1: Demographics and clinical characteristics of the depressed, remitted and control groups of 
the pilot. HAM-D= Hamilton Depression Rating Scale. NART=National Adult Reading Test. BDI=Beck 
Depression Inventory. 

  Depressed 
(n=3) 

Remitted 
(n=5) 

Control 
(n=10)  

Sex (female/male) 1/2 3/2 7/3 
Age (years) 54.0±3.0 45.6±13.9 35.3±6.2 
NART 118.7±4.0 117.0±7.2 112.7±7.1 
HAM-D 17 (score) 20.7±4.1 3.8±2.4 .50±.53 
BDI (score) 29.7±14.7 5.3±3.6  
Number of episodes 2±1.7 3.4±1.3  
Illness duration (years) 17.7±16.1 22.6±16.1  
Age at onset (years)  36.3±16.8 23±8.2  
Number of hospitalisations 2.0±2.0 .60±.90  
Antidepressant (yes/no)  3/0 5/0   
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and the similarly aged remitted group in the allocentric condition of the NGT-R (Figure 

7-1). The results of the pilot study therefore indicated that the NGT-R presented a viable 

methodology for testing in the clinical population of interest.   

 

Figure 7-1: Average error rates in the three conditions of the NGT-R in the depressed group (dark grey 
bars), remitted group (light grey bars) and the control group (unfilled bars).  

 

 

Figure 7-2: Average response times in the three conditions of the NGT-R in the depressed group (dark 
grey bars), remitted group (light grey bars) and the control group (unfilled bars). 
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7.3 Methodology 

7.3.1 Participants 

Patients with a DSM-IV confirmed diagnosis of current major depressive disorder, as 

assessed by the Mini International Neuropsychiatric Interview (MINI; (Sheehan et al., 

1998)), were recruited via their consultant psychiatrists. A total of 41 patients were 

contacted about the study, of which 24 attended the initial screening session (see Table 7-3). 

Ten patients were subsequently found to be eligible and completed the study. All patients 

had a HAM-D score of 16 or greater, as assessed by the GRID HAM-D (Williams et al., 

2008). Patient exclusion criteria included the presence of any other DSM-IV Axis 1 

disorder other than anxiety disorder considered secondary to a primary diagnosis of 

depression, present or past electroconvulsive therapy (ECT), a change in psychiatric 

medication in the last four weeks, dependence or harmful use of alcohol or any other drug 

in the past 12 months and recent participation in another research study that could affect the 

results of the current one. 

Thirteen healthy volunteers were recruited to act as a comparison to the patient group. 

Healthy volunteers were recruited mainly via a volunteer pool provided by the Institute of 

Neuroscience (http://www.ncl.ac.uk/ion/involved/volunteer/) but also via flyers and word 

of mouth. Exclusion criteria for the healthy volunteers comprised any history of psychiatric 

illness, as assessed by the MINI, any major physical health problem, one or more first 

degree relatives with a history of psychiatric illness, dependence or harmful use of alcohol 

or any other drug in the past 12 months and recent participation in another research study 

that could affect the results of the current one. Both healthy volunteers and patients had to 

be right handed, as assessed by the Edinburgh Handedness Inventory (Williams, 1986), and 

could not have any fMRI contraindications, such as a pacemaker or other metal implants.  

Three of the healthy volunteers had to be excluded from analyses due to epilepsy, which 

was not disclosed until after completion of the study, an incidentally discovered cyst in the 

right mesial temporal lobe and substantial head motion in the scanner, respectively. 

Demographic information and clinical characteristics of the control group and the patient 

groups can be found in Table 7-2. The groups were well matched in terms of sex, age, 

handedness and pre-morbid intelligence, as assessed by the NART (Nelson, 1982). With 

one exception, all patients were taking antidepressant medication, of whom seven patients  
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Table 7-2: Demographics and clinical characteristics of the depressed and control groups of 
Experiment 8. EHI=Edinburgh Handedness Inventory. NART=National Adult Reading Test. HAM-
D=Hamilton Depression Rating Scale. STAI= Spielberg State and Trait Anxiety Inventory * note that 
data was missing for one patient for the STAI measure and for one patient for the illness duration 
measure. 

  Depressed 
(n=10) 

Control 
(n=10)  t p 

Sex (female/male) 3/7 3/7 0 1.00 

Age (years) 43.9±14.6 
(range=21-59) 

43.2±13.4 
(range=22-55) .11 .99 

EHI (% right handed) 95±10.5 95±0.83 0 1.00 
NART 106.3±11.6 111.3±5.3 -1.24 .23 
HAM-D 17 (score) 21.4±5.3 0.30±0.95 12.50 <.001 
BDI 35.2±11.9 0.80±0.92 9.10 <.001 
STAI state* 52.1±17.1 26.6±6.7 4.37 <.001 
STAI trait* 67.4±10.5 26.7±6.3 10.39 <.001 
Number of episodes 4.2±3.8    

Illness duration (years)* 7.7±6.7    

Age at onset (years)  29.1±15.0    

Number of hospitalisations 1.8±.4    

Antidepressant (yes/no)  9/1    

 

were taking one antidepressant and two patients were taking two antidepressants. One 

patient was taking an anticonvulsant and a benzodiazepine, in addition to antidepressant 

treatment. 

To ensure that the control group of Experiment 8 produced comparable performance in the 

scanner to what had previously been observed outside of the scanner, the pooled middle-

aged sample of Experiment 6 (n=36; see section 4.6.2.1) was used as a comparison group. 

This comparison allowed an exploration of NGT performance in a middle-aged sample 

inside and outside of the scanner. The control group of Experiment 8 was marginally 

younger (M=43.2, SD=13.4) than the pooled middle-aged sample from Experiment 6 

(M=49.4, SD=.7.20; t(44)=-1.98, p=.054), although the groups did not differ in terms of 

gender proportions (t(44)=.50, p=.62). It should be emphasised, however, that the pooled 

sample of Experiment 6 completed the NGT or the NGT-R, which both differed subtly 

from the task used in Experiment 8 in terms of the precise timings of events (see section 

7.3.3.1). Thus, the pooled sample of Experiment 6 should only be considered a general 

benchmark against which behavioural performance in Experiment 8 can be compared.  
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7.3.2 Ethics 

The study was approved by the National Research Ethics Service committee (North East, 

Newcastle and North Tyneside 1; 11/NE/0329, 04/01/2012).  

7.3.3 Neurocognitive assessment 

The NGT-R was part of a larger and more comprehensive neurocognitive test battery, 

which included additional measures of spatial memory and perception, verbal memory, 

executive functioning and psychomotor speed. Although the primary aim of Experiment 8 

was to investigate hippocampal function in depression, the inclusion of the additional 

measures was important for an evaluation of any potential deficits detected in the NGT-R. 

In particular, a measure of mental rotation was included to evaluate whether an inability to 

mentally rotate objects could account for a potential deficit in the allocentric condition of 

the NGT-R. Further to this, the inclusion of measures of short-term memory for visual 

patterns and for object locations was important to explore whether a potential deficit was 

general to spatial short-term memory or specific to the demands of the NGT-R. Similarly, 

the assessment of verbal memory was important in determining whether any potential 

deficits were specific to the spatial domain. Finally, since impairments in executive 

functioning and psychomotor speed are likely to influence performance in the majority of 

cognitive tasks, the inclusion of such measures was justified.  The tasks included in the test 

battery of Experiment 8 are described in more detail below.  

7.3.3.1 Spatial memory and cognition 

NGT-R 

The NGT-R represented the primary neuropsychological test in the test protocol for 

Experiment 8. This was also the only task in the test protocol that was performed in the MR 

scanner. The task was administered as described in Experiment 7 with the exception of 

some minor changes that were implemented to optimise it for use in a clinical sample. 

Based on the findings in Experiment 6 (section 4.6.3.2), middle-aged control participants 

can be expected to take longer to respond in all conditions of the NGT-R compared to the 

young sample scanned in Experiment 7. Furthermore, previous research has provided 

evidence of reduced psychomotor speed in depressed samples (Ilsley et al., 1995). 

Although no indications of such psychomotor speed impairments were indicated in the pilot 
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study (section 7.2), the likelihood of longer response times in the depressed sample 

emphasised the potential limitation of the 3.5 seconds response window used in Experiment 

7.  Consequently, to minimise the number of non-response trials, the response window was 

increased from 3.5 seconds to 5.0 seconds. To keep the timing of the task and the total 

length of each trial consistent with Experiment 7, the length of the delay was reduced from 

4.75 seconds to 3.75 seconds and the two screens of the empty arena, which were 

previously shown before the pole appeared (0.25s) and before the response options 

appeared (0.25s), were excluded.  

Following a trend towards significantly higher error rates when the NGT-R was performed 

inside compared to outside of the scanner (section 5.3.1.1), a further change relative to 

Experiment 7 involved the viewing conditions in the scanner. Instead of projecting the task 

on a screen outside of the scanner, the task was projected on a screen placed inside of the 

scanner at the head-end of the bore. Consequently, the size of the projection and the 

distance at which it was viewed was comparable to administration on a standard computer 

monitor. Furthermore, since the size of the projection no longer required magnification, the 

use of binoculars could be abandoned for Experiment 8.  

With the exception of the slight modifications to the timings of the NGT-R and the way in 

which it was projected in the scanner, the procedure and administration of the task was 

identical to that of Experiment 7, including the preceding training.  

Mental rotation 

In the classic mental rotation task (Shepard and Metzler, 1971), participants are shown two 

3D shapes and are required to determine whether the shapes are the same or mirror images. 

When the two shapes are presented in different orientations, one shape has to be 'mentally 

rotated' to arrive at a response. A specifically designed version of the mental rotation task 

was developed for Experiment 8 by Andreas Finkelmeyer (Institute of Neuroscience, 

Newcastle University). In this task, referred to as the disc rotation task, participants had to 

determine whether the symbols on two circular discs were the same or different as quickly 

and as accurately as possible (Figure 7-3). The symbols were based on the shapes used by 

Hochberg and Gellman (1977). In half of the 108 trials one of the discs was rotated and in 

the other half the two discs had the same orientation. Only in the former type of trial was a 

mental rotation process required, which was assumed to occur in the same plane as any  
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Figure 7-3: Example trial of the disc rotation task developed for Experiment 8. Note that this example 
trial required a 90° mental rotation of one of the discs to arrive at the correct answer (i.e. ‘different’). 

equivalent process in the NGT. Similarly to the NGT, the disc rotation task involved 

different angles of rotation for the rotated trials (45°, 90°, 135°). The disc rotation task was 

piloted in a small sample of healthy volunteer prior to Experiment 8. Accuracy and 

response times were measured. 

Visual Patterns Test 

The Visual Patterns Test (VPT; (Della Sala, 1997)) was used to assess participants' short-

term memory for visual patterns. In this task, participants were shown visual matrix 

patterns for two seconds and were then required to reproduce each pattern on an empty 

matrix after a short delay. The matrix patterns progressively increased in size with three 

trials for each size and difficulty level. The final score on the task constituted the last level 

at which all three trials were correct.  

 

Figure 7-4: Example matrix pattern for the Visual Patterns Test. 

Object location memory task 

The object-location memory (OLM; Figure 7-5) task was developed to separate between 

three distinct processing mechanisms relevant to spatial memory: object processing, spatial-

location processing and object-to-location binding (Kessels et al., 1999). In this task, 

participants were presented with a square frame containing 10 objects for 30 seconds on a  
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Figure 7-5: The presentation phase (top) and the test phase (bottom) of the object-location memory task. 
Left: position only condition. Middle: object-to-location binding condition. Right: combined condition. 

computer monitor. Subsequently, the objects disappeared and reappeared in a random order 

on a row above the square frame. In the position only condition, all objects were the same 

and at recall participants were required to relocate the objects to their exact positions. In the 

object-to-location binding condition, all objects were different and at recall participants 

were required to relocate the objects to their previous positions, which were indicated by 

black markers in this condition. In a final experimental condition, the two processes were 

combined and participants were asked to relocate ten different objects without marked 

positions. Performance in the position only and combined conditions was measured in 

terms of displacement error. Performance in the object-location binding condition was 

measured in the number of objects that were correctly placed on their respective marker.  

 The object-location memory task also included two control conditions. In the first control 

condition, the object memory condition, memory for object identity was tested without any 

demands on memory for location. Performance was measured in terms of the number of 

objects correctly identified as having been seen previously. In the second control condition, 

the visuospatial reconstruction condition, perceptual precision was tested by asking 

participants to reconstruct the configuration of objects whilst it was still visible on the other 
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side of the screen. Each condition of the OLM task included two trials, which was preceded 

by a less demanding practice trial.  

Newcastle Spatial Working Memory task 

The Newcastle Spatial Working Memory (NSWM) task was designed by Dr Peter 

Gallagher (Institute of Neuroscience, Newcastle University) and constructed by Daniel 

Jackson (Newcastle Informatics Centre, Newcastle University) to function as an adapted 

version of the CANTAB (Cambridge Automated Neuropsychological Test Battery) Spatial 

Working Memory task. Subjects were required to search marked spatial locations for 

hidden tokens. The essential rule of the task was that once a token had been found in a 

particular location, a token would not be placed there again. There was always the same 

number of tokens to be found as there were marked spatial locations, starting with 4 marked 

locations and progressing to 12 locations. Two types of errors where measured: between-

search errors, which constituted returning to a location in which a token had already been 

found, and within-search errors, which constituted returning to a location which had already 

been found to be empty in the same search. There was a 2D and a 3D version of the task. 

The 2D version displayed uniformly coloured circles to mark the spatial locations whilst 

the 3D version displayed upturned cups on a surface. The NSWM represented the primary 

task of interest for the MPhil project of Lucy Stevens.  

Verbal memory 

The Rey Auditory Verbal Learning Test (RAVLT; (Rey, 1964)) was used to assess verbal 

learning and immediate and delayed verbal memory. In this task participants were required 

to repeat a list of 15 aurally presented words immediately after presentation (A1). This 

procedure was repeated for the same list another four times (A2-A5). Subsequently, 

participants were presented with a second list, which also had to be repeated immediately 

after presentation (B), after which they were required to recall the first list again (A6, 

immediate recall). After an approximate delay of 20 minutes, participants were asked to 

recall the first list once more. In the subsequent recognition test, participants were 

presented with a list that contained words from the first and second lists and words that had 

not been presented before. For each word that was read out from the list, participants were 

required to determine whether it had been presented previously and if so whether it had 

been presented as part of the first list. Following inconsistencies in the administration of 
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this task, only the measures acquired before the 20-minute delay were included in the 

analysis. 

Executive function  

Three tasks were selected to capture three subcomponents of executive functioning 

(Miyake et al., 2000). The backward digit span from the WAIS-R (Wechsler, 1981), in 

which participants were required to repeat a random series of aurally presented digits in 

reverse order, was used to assess the updating component of executive function. The 

number of digits in each string increased as the task progressed with two trials for each 

string length. Memory span was defined as the longest string length at which participants 

answered correctly on both trials.  

The Stroop Neuropsychological Screening Test (Trenerry, 1989) was used to assess the 

inhibition component of executive function. In the incongruent condition of this task, 

interference was created between word reading and colour reading by presenting 

participants with names of colours that were printed in a different colour than the word 

itself denoted (e.g. green). By asking participants to name the colour of the ink, the habit of 

reading the word itself had to be inhibited. The task also included two control conditions, 

one in which participants were required to read colour words printed in black ink (e.g. 

green) and one in which they had to name the colour of crosses (e.g. XXXX). Response 

time was recorded for all conditions. The difference in response time between the 

incongruent condition and the colour naming condition constituted the measure of 

interference for this task.  

 Finally, Trail Making Part B (Reiten, 1958) was used to assess the set shifting component 

of executive functioning. In this task participants were required to connect a series of 

numbers and letters in ascending numerical and alphabetical order respectively, alternating 

between numbers and letters, as quickly as possible. Time taken to complete the task was 

measured. 

Psychomotor function 

In the Trail Making Part A task (Reiten, 1958) participants were required to connect a 

series of numbers in ascending order as quickly as possible. Time taken to complete the 

task was measured. 
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Table 7-3: Order of administration of the measures of Experiment 8. * completed in the scanner. 

Screening National Adult Reading Test 

 
Edinburgh Handedness Inventory 

 
Mini International Neuropsychiatric Interview (patients only) 

 
Illness history (patients only) 

 
Hamilton Depression Rating Scale 

Questionnaires Santa Barbara Sense of Direction Scale 

 
Beck Depression Inventory 

 
Spielberg State and Trait Anxiety Inventory  

Neuropsych. Session 1 Rey Auditory Verbal Learning Test - Immediate 

 
Object Location Memory task 

 
Rey Auditory Verbal Learning Test - Delayed 

 
Newcastle Spatial Working Memory Task 

 
Disc Rotation Task 

 
Trail Making Test (A, B) 

 
Digit Span (forward, reverse) 

 
Stroop Test 

 
Visual Patterns Test 

Neuropsych. Session 2 NGT Training 

 
NGT-R* 

  NGT Experience Questionnaire 
 

7.3.4 Questionnaires 

The Santa Barbara Sense of Direction Scale (SBSOD; (Hegarty et al., 2002)) was used to 

assess self-reported spatial awareness. The inclusion of this questionnaire was important to 

explore whether any potential spatial memory deficit was perceivable by patients in their 

every-day lives. The Spielberg State and Trait Anxiety Inventory Form Y (STAI; 

(Spielberger et al., 1970) was be used to measure the nature of any anxiety present and the 

Beck Depression Inventory II  (BDI; (Beck et al., 1996)) provided a self-reported measure 

of depression severity. In addition, generic questions about illness duration and number of 

previous episodes were posed to the patient group.  

7.3.5 Procedure 

Total participation in Experiment 8 lasted approximately 4.5 hours (excluding breaks). The 

study was divided into three parts: screening and questionnaires (1 hour 30 minutes), a first 

session of neurocognitive testing (1 hour 40 minutes) and a second session of 

neurocognitive testing (1 hour 30 minutes, Table 7-3). The three sessions could be 
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completed in one or two visits, depending on participant preferences. In the case of two 

visits, the second visit was always completed within a week of the first. The administration 

order in Table 7-3 was generally adhered to, although deviation from this order was 

occasionally required. Specifically, the availability of the MR scanner occasionally meant 

that parts of the first session of cognitive testing had to be completed after the second 

session. To avoid any potential training effects carrying over from the disc rotation task to 

the primary task, the disc rotation task was always completed after the NGT-R in such 

cases. 

7.3.6 Image acquisition 

Image acquisition for Experiment 8 was identical to that of Experiment 7 (section 5.2.3). 

7.3.7 fMRI pre-processing and analysis 

7.3.7.1 Whole-brain analyses 

Pre-processing stages and the first level model were identical to that of Experiment 7 

(section 5.2.4). The initial whole-brain analysis focused on replicating the engagement of 

the parieto-medial temporal pathway in the allocentric condition in the response phase in 

the combined sample. As in Experiment 7, the analysis included the contrasts for the 

response phase of the three conditions (Allocentric, Egocentric, Control), along with a 

subject variable. To explore any potential effects of group in the response phase at the 

whole-brain level, an additional and otherwise identical whole-brain analysis was 

conducted for the response phase, in which the depressed group was distinguished from the 

control group. The presentation phase was not considered in the analysis of Experiment 8.  

7.3.7.2 Region of interest analysis 

In direct relevance to the predictions of Experiment 8, a region of interest (ROI) analysis of 

the hippocampus was conducted. The ROI analysis was based on manual tracings of the 

hippocampus, which separated the head, body and tail of the region (for tracing protocol, 

see section 7.3.7.3). This separation was important considering proposals that the anterior 

and posterior sections of the hippocampus play different roles in spatial cognition and 

behaviour (Cornwell et al., 2008; Xu et al., 2010; Viard et al., 2011) and are differently 

affected in depression (Maller et al., 2007; Cole et al., 2010). In addition, the separation 
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was important to prevent a dilution of the specifically anterior effects demonstrated in 

Experiment 7. The SPM tool Marsbar (version 0.43; (Brett, 2002)) was used to extract the 

average BOLD signal from each subsection of the hippocampus in the right and left 

hemisphere for each participant. Considering the different number of voxels in the three 

subsections, there was a risk that the estimated averages of BOLD signal would vary in 

reliability between the subsections. Therefore, each subsection was considered separately 

for the ROI analyses. 

7.3.7.3 Volumetric analysis of the hippocampus 

Volumetric analyses were based on the same manual tracings as the ones used for the ROI 

analyses. The tracings were performed on the coronal T1-weighted images using the 

Analyze software (version 11.0; Brain Imaging Resource, Mayo Clinic, Rochester, MN). 

The tracings included the dentate gyrus, the hippocampus proper and the subicular complex 

(see Figure 2-2; (Duvernoy, 1999)). Tracing proceeded from anterior to posterior on the 

coronal slices according to the protocol proposed by Watson (1997) with the exception of 

the posterior portion of the hippocampal tail, which was included in the present tracings. 

The tail was defined as beginning on the slice where the crux of the fornix separates (Figure 

7-6, a-b). The body was defined as beginning on the slice after which the superior-lateral 

aspect of the hippocampus proper was no longer present, as identified from a sagittal 

orientation (Figure 7-6c). Raw hippocampal volumes were expressed in mm3.  

Intracranial volume (ICV) was obtained using the segmentation function in SPM. 

Specifically, voxels were classified as grey matter, white matter or cerebrospinal fluid 

based on a combined estimated probability of 0.8 or greater for presence of any of the three 

tissue/fluid types. Raw hippocampal volumes were normalised by ICV, as expressed in 

litres, and used for all statistical analyses.



 
 

 
 

 

 

Figure 7-6: Examples of MR slices illustrating the boundaries between the head, body and the tail of 
the hippocampus. (a) Most posterior slice traced for the body of the left hippocampus; the fornix is 
indicated (b) One slice posterior to (a), the separation of the fornix is indicated. (c) The most posterior 
slice traced for the head of the hippocampus is indicated from a sagittal orientation.  

7.3.7.4 Exploratory correlational analyses 

To explore the relationship between performance in the allocentric condition and 

hippocampal structure and function, two sets of Pearson’s correlation coefficients were 

calculated. In the first set, normalised volumes of the head, tail and body of the 

hippocampus in both hemispheres were correlated with error rates in the allocentric 

condition, separately for the depressed group and for the control group. The second set of 

analyses concerned hippocampal BOLD signal, as defined as the differential signal between 

the allocentric and egocentric conditions. Differential BOLD signal in all three subsections 

of the hippocampus in both hemispheres were correlated with error rates in the allocentric 

condition. To explore the effect of clinical characteristics in the depressed sample, illness 

duration (years) and depression severity (HAM-D 17 score) were similarly correlated with 

volume and differential BOLD signal in the three subsections in both hemispheres.  

The wide age rage within each group represented an important consideration for the 

correlational analyses. This followed from previous demonstrations of changes in 

hippocampal volume (Walhovd et al., 2011) and allocentric memory (Moffat et al., 2006; 

Antonova et al., 2009) in normal ageing. More specifically, age has been demonstrated to 

affect performance in the allocentric condition in the NGT-R (section 4.5). Consequently, 

correlational analyses were conducted between age and hippocampal volume and BOLD 

signal, which supported entering age as a covariate in the above analyses.  
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7.4 Results 

7.4.1 Behavioural results 

7.4.1.1 Replication of performance in the NGT-R in the scanner 

Before proceeding with the comparison between the depressed group and the control group, 

it was important to investigate whether the NGT-R performance in healthy middle-aged 

participants was equivalent when performed inside and outside the scanner. To this end, 

performance of the control participants of Experiment 8 was compared to that of the 

middle-aged participants in the pooled sample of Experiment 6. For accuracy and response 

times, a 2x2 mixed ANOVA was therefore conducted with task context (fMRI, 

behavioural) as a between-subject factor and condition (allocentric, egocentric) as a within-

subject factor. For accuracy and response times, respectively, there was no main effect of 

task context (F(1,44)=.433, p=.514; F(1,44)=.020, p=.888) and no interaction between task 

context and condition (F(1,44)=.227, p=.636; F(1,44)=.057, p=.812), evidencing that NGT 

performance in healthy middle-aged participants is comparable when performed inside and 

outside of the scanner.  

7.4.1.2 NGT-R 

Potential differences in NGT-R performance between depressed patients and control 

participants were investigated in a 2x2x3 mixed ANOVA with group (depressed, control) 

as a between-subject factor and condition (allocentric, egocentric) and rotation (45° 90°, 

135°) as within-subject factors. There was no significant main effect of group for accuracy 

or response times (Table 7-4, Table 7-5). For accuracy, there was a significant three-way 

interaction between group, condition and angle of rotation (Table 7-4; Figure 7-7). 

However, pairwise-comparisons revealed no significant group differences for any of the 

sub conditions. Relevant to this, one-sample t-tests revealed above-chance performance in 

all sub conditions in both groups (p<.001) with the exception of the 135° rotation in the 

allocentric condition in the depressed group (t(9)=-1.60, p=.15; § in Figure 7-7). For 

response times, there was a non-significant trend of an interaction between group and angle 

of rotation (Table 7-5, Table 7-8). 

To explore performance in the no-memory control condition, a 2x3 mixed ANOVA with 

group (depressed, control) as a between-subject factor and condition (allocentric, egocentric, 
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no-memory control condition) as a within-subject factor was conducted. For accuracy and 

response times, there was no main effect of group (F(1,18)=.218, p=.646; F(1,18)=1.209, 

p=.286) and no interaction between group and condition (F(2,36)=.524, p=.600; 

F(2,36)=.274, p=.762).  

Table 7-4: Mixed ANOVA of the effect of group (depressed, control), condition and angle of rotation on 
accuracy.  

Source MS df  F p 
Condition 0.904 1 38.525 <.001 
Condition X Group 0.012 1 0.502 0.488 
error (condition) 0.023 18 

  Rotation 0.104 2 8.561 0.001 
Rotation X Group <.001 2 0.028 0.973 
error (rotation) 0.012 36 

  Condition X Rotation 0.049 2 6.498 0.004 
Condition X Rotation X Group 0.045 2 6.015 0.006 
error (condition X rotation) 0.008 36 

  Group 0.002 1 0.022 0.884 
error (group) 0.076 18     

 

Table 7-5: Mixed ANOVA of the effect of group (depressed, control), condition and angle of rotation on 
response times. 

Source MS df  F p 
Condition 27068258.31 1 49.408 >.001 
Condition X Group 123409.602 1 0.225 0.641 
error (condition) 547584.242 18 

  Rotation 973986.472 2 15.908 >.001 
Rotation X Group 156773.046 2 2.561 0.091 
error (rotation) 61226.015 36 

  Condition X Rotation 345450.367 2 4.812 0.014 
Condition X Rotation X Group 41726.107 2 0.581 0.564 
error (condition X rotation) 71783.76 36 

  Group 787201.045 1 0.932 0.347 
error (group) 845079.342 18     

 

 



 
 

 
 

 

 

Figure 7-7: Interaction effect between group, condition and angle of rotation on accuracy. None of the 
pair-wise comparisons between groups were significant. Presented comparisons were performed for the 
interaction between condition and angle of rotation within each sample (* p<.05; ** p<.01). Filled bars 
represent the allocentric condition. Unfilled bars represent the egocentric condition.  

 

Figure 7-8: Effect of group, condition and angle of rotation on response times. None of the pair-wise 
comparisons between groups were significant. Presented pairwise comparisons were performed for the 
interaction between condition and angle of rotation within each sample (* p<.05; ** p<.01). Filled bars 
represent the allocentric condition. Unfilled bars represent the egocentric condition.  
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7.4.1.3 NGT-R training error and sense of direction 

Independent t-tests revealed that depressed patients made significantly more errors (M=5.60, 

SD=5.76) than control participants (M=1.30, SD=1.95) in the training paradigm preceding 

the NGT-R (t(18)=2.24, p=.038). Number of training errors were positively correlated with 

errors in the allocentric condition (r(19)=.56, p=.011) but not in the egocentric condition 

(r=.22, p=.35). When the two groups were considered separately, the correlation between 

training errors and allocentric errors remained in the depressed group (r(9)=.72, p=.018) but 

not in the control group (r(9)=.20, p=.60). Depressed patients also reported having a worse 

sense of direction (M=60.80, SD=17.49) than control participants (M=79.30, SD=10.65; 

t(18)=-2.86, p=.010).  

7.4.1.4 Mental rotation 

For the disc rotation task, non-responses were excluded from the analysis (0.3%). The 

analysis made no distinction between trials in which the two symbols were the same and 

trial in which they were not and average response times were based on correct trials only. 

As such, the analysis of the disc rotation task was similar to the analysis of the NGT-R.  

A 2x2 mixed ANOVA with group (depressed, control) as a between-subject factor and 

condition (rotation, no rotation) was conducted for accuracy and response times. For 

accuracy and response times, there was no main effect of group (F(1,18)=.368, p=.542; 

F(1,18)=.084, p=.775) and no interaction between group and condition (F(1,18)=1.359, 

p=.259; F(1,18)=.013, p=.910). For the rotation trials only, a 2x3 mixed ANOVA was 

subsequently performed with group (depressed, control) as a between-subject factor and 

angle of rotation (45°, 90°, 135°) as a within-subject factor. Although there was a 

significant main effect of rotation on both accuracy (F(2,36)=4.710, p=.015) and response 

times (F(2,36)=41.588, p<.001), there was no main effect of group (F(1,18)=.663, p=.426; 

F(1,18)=.046, p=.833) or interaction between group and rotation (F(2,36)=.513, p=.513; 

F(2,36)=1.552, p=.226) for accuracy or response times, respectively (Figure 7-9, Figure 

7-10). One-sample t-tests furthermore revealed that accuracy was above chance in all sub 

conditions in both groups (p<.001). 

Finally, Pearson’s correlation coefficients were used to assess the relationship between 

performance in the rotation condition of the disc rotation task and in the allocentric 

condition of the NGT-R. There was a significant correlation between error rates in the 
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rotation trials of the disc rotation task and error rates in the allocentric condition (r(18)=.65, 

p=.002; Figure 7-11) but not in the egocentric condition of the NGT-R (r(18)=.18, p=.46). 

When the two groups were considered separately, the relationship with allocentric 

performance remained significant in the depressed group (r(8)=.68, p=.031) but not in the 

control group (r(8)=.60, p=.069). 

 

Figure 7-9: Error rates for the no-rotation condition (0°) and the rotation conditions (45°, 90°, 135°) in 
the disc rotation task in the depressed group (filled bars) and the control group (unfilled bars).  

 

 

Figure 7-10: Response times for the no-rotation condition (0°) and the rotation conditions (45°, 90°, 
135°) in the disc rotation task in the depressed group (filled bars) and the control group (unfilled bars).  
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Figure 7-11: Scatterplot demonstrating the relationship between accuracy in the allocentric condition 
and accuracy in the rotation condition of the disc rotation task for the combined sample of depressed 
patients (blue circles) and control participants (green circles; R2=.418). Note that the relationship in the 
depressed group did not reach significance when the outlier was excluded (r(8)=.61, p=.083).  

7.4.1.5 Remaining neurocognitive measures 

Independent sample t-tests were used to compare performance in the two groups for the 

remaining tasks in the protocol. No explicit correction was applied to account for multiple 

comparisons. The only task that was not fully analysed was the RAVLT for which the 

recognition test was incorrectly administered after the 20-minute long delay for five 

patients and two control participants. Consequently, only the learning and immediate 

memory sections before the delay could be reliably included in the analysis (i.e. sections 

A1-A5, B, A6). 

For the spatial memory measures, depressed patients were significantly impaired in the 

position-only condition of OLM task (Table 7-6). Trending impairments were also 

identified in the object-location binding and the combined conditions of the OLM task and 

in the VPT. No impairments were found in the NSWM task. For the verbal memory 

measure, depressed patients performed normally on all sub-measures of the RAVLT, 

although there was a trend towards a significant impairment for the immediate recall of the 

first list (A6, Table 7-6). For the executive measures, there was a trend towards impairment 

in the incongruent condition and the interference measure of the Stroop task (Table 7-7). 

Similarly, patients showed a trend towards impairment in psychomotor speed (Table 7-7). 



 
 

 
 

 

Table 7-6: Performance in the depressed group and the control group on measures of spatial and verbal memory (df=18). VPT=Visual Patterns 
Test. OLM=Object-Location Memory task. NSWM=Newcastle Spatial Working Memory task. RAVLT=Rey Adult Verbal Learning Test. 

      Control Depressed       
      mean s.d. mean s.d. t p CI 95% 
Spatial Memory 

       VPT  
  

10.300 2.359 8.100 2.558 -1.999 0.061 [-4.512, .112] 

          OLM 
 

Position Only 149.871 31.290 205.420 40.672 3.423 0.003 [21.456, 89.641] 

  
Object-Location Binding 19.500 15.890 39.000 24.810 2.093 0.051 [-0.074, 39.074] 

  
Combined 265.510 124.933 374.785 144.802 1.807 0.088 [-17.784,236.335] 

  
Object Memory 3.500 5.297 10.500 11.891 1.701 0.106 [-1.648, 15.648] 

  
Visuospatial Reconstruction 81.456 24.500 101.465 44.416 1.247 0.228 [-13.691, 53.708] 

NSWM 2D Between-search 122.500 70.900 178.800 82.820 1.610 0.125 [-16.932, 127.932] 

  
Within-search 12.900 10.826 24.800 23.701 1.444 0.166 [-5.411, 29.211] 

 
3D Between-search 110.300 57.756 166.400 90.895 1.647 0.117 [-15.447, 127.647] 

  
Within-search 10.100 8.373 15.100 17.375 0.820 0.423 [-7.814, 17.814] 

Verbal memory 
       RAVLT 

 
A1 5.800 1.549 5.900 1.449 0.149 0.883 [-1.309, 1.509] 

  
A1-A5 48.700 8.056 42.900 12.688 -1.220 0.238 [-15.785, 4.185] 

  
B 5.900 1.370 5.900 2.601 <.001 ̴̴1.000 [-1.953, 1.953] 

    A6 (immediate recall) 10.700 2.058 8.400 3.565 -0.767 0.094 [-5.035, 0.435] 



 
 

 
 

Table 7-7: Performance in the depressed group and the control group on cognitive measures of executive functioning and psychomotor speed 
(df=18).  

    Control Depressed     !!

    mean s.d. mean s.d. t p CI 95% 

Executive Function   
       Reverse Digit Span 

 
5.300 1.418 5.100 1.663 -0.289 0.776 [-1.652, 1.252] 

         Stroop Incongruent ₁ 109.728 23.670 144.719 51.244 1.960 0.066 [-5.972, 25.302] 

 
Colour naming ₂ 68.710 9.454 73.862 21.424 0.682 0.504 [-10.506, 20.610] 

 
Word reading 46.221 3.527 55.886 23.271 1.299 0.211 [-5.972, 25.302] 

 
Interference ₁₋₂ 40.918 17.732 70.857 44.340 1.983 0.063 [-1.787, 61.665] 

         Trail Making Part B 
 

54.098 17.665 65.836 27.673 1.131 0.273 [-10.074, 33.550] 

  ! ! ! ! ! ! !Psychomotor Speed   
       Trail Making Part A 

 
29.205 6.189 34.704 6.654 1.913 0.072 [-0.539, 11.537] 

 
                



 
 

 
 

7.4.2 Imaging results 

7.4.2.1 Whole-brain analyses 

When no distinction was made between the patient group and the control group, the contrast 

between the allocentric and egocentric condition revealed clusters of differential activation in 

the occipital, lateral-temporal and frontal regions (Table 7-8). Relative to the equivalent 

analysis in Experiment 7, clusters in the superior and inferior parietal lobe and the 

mediotemporal regions were notably absent (Figure 7-12, red clusters). For the reverse 

contrast, clusters were limited to the temporal and frontal regions with an absence of any 

hippocampal clusters (Figure 7-12, blue clusters). 

 

Figure 7-12: Activation maps at retrieval for the Allocentric vs. Egocentric contrast. Activations maps 
are shown in sagittal sections on the average normalised structural image computed from the full sample 
of Experiment 8. Regions shown in red exhibited greater signal in the allocentric condition whilst regions 
shown in blue exhibited greater signal in the egocentric condition (p<.05, FWE, k≥10). Numbers 
represent X coordinates in MNI space. 
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Table 7-8: Peak activations for the whole brain analysis for the Allocentric vs. Egocentric contrast for the 
combined sample of depressed patients and control participants (p<.05, FWE, k≥10). Differences from 
baseline for the two conditions are marked as + when positive, as - when negative and as 0 when not 
significant.  

Contrast Region Local peak Cluster 
(voxels) t-value 

x,y,z 
Diff. 
baseline 
(allo/ego) 

(MNI) 

  
Allo>Ego Occipito-temporal L. cuneus 279 7.02 -10, -76, 8 +/+ 

  R. retrosplenial cortex 50 6.30 16, -58, 18 +/0 

  L. mid temporal gyrus 11 5.76 -42, -84, 16 +/+ 

       

 Frontal R. mid. frontal gyrus 81 6.37 26, 0, 50 +/+ 

  L. mid.frontal gyrus 23 3.06 -26, -2, 52 +/+ 

  L. media lfrontal gyrus 15 6.32 -8, 16, 44 +/+ 

       
Ego>Allo Temporal R. sup. temporal gyrus 161 7.34 50, -28, 16 -/0 

  R. sup. temporal gyrus 26 6.09 58, -22, 0 -/- 

  R. sup. temporal gyrus 23 5.98 66, -38, 2 -/- 

  L. sup. temporal gyrus 81 6.78 -52, -26, 22 0/+ 

       

 Frontal R. medial frontal gyrus 24 6.40 4, -22, 60 -/0 

    R. precentral gyrus 65 6.37 50, 0, 6 -/0 

 

For the contrast between Egocentric>Control contrast, the involvement of the superior 

parietal cortex revealed in Experiment 7 could be confirmed (Table 7-9). For 

Allocentric>Control contrast several regions of the parieto-medial temporal pathway were 

identified, including the RSC, the lingual gyrus and the parahippocampus (Figure 7-13, Table 

7-10).  

In an exploratory whole-brain analysis, the depressed group was distinguished from the 

control group in the analyses presented above. No regions were found to exhibit significant 

interactions between group and the Allocentric vs. Egocentric contrast. Similarly, no regions 

showed evidence of significant interactions between group and the Allocentric>Control or 

the Egocentric>Control contrasts.  
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Table 7-9: Peak activations for the Egocentric vs. Control contrast in the combined sample of depressed 
and control participants (Ctrl; p<.05, FWE, k≥10). Differences from baseline for the conditions (exp, ctrl) 
are marked as + when positive, as - when negative and as 0 when not significant. 

Contrast Region Local peak Cluster 
(voxels) t-value 

x,y,z 
Diff. 
baseline 
(exp/ctrl) 

(MNI) 

  
Ego>Ctrl Parietal R. angular gyrus 251 6.82 48, -44, 52 +/0 

  R. sup. parietal cortex 65 6.30 4, -68, 68 +/0 

  R. sup. parietal cortex 21 5.92 16, -72, 56 +/0 

       

 Frontal R. mid. frontal gyrus 19 5.97 30, 14, 56 +/0 

       
Ctrl>Ego  R. inf. temporal gyrus 177 6.70 52, -4, -34 -/0 

  L. sup. temporal gyrus 208 6.56 -66, -40, 
18 0/0 

  L. mid. occipital gyrus  26 6.32 -40, -58, 
20 -/0 

    R. medial frontal gyrus 10 5.85 4, 60, 10 -/0 

 



 
 

 
 

 

Figure 7-13: Activation maps at retrieval for the Allocentric vs. Control contrast. Activations maps are 
shown in sagittal sections on the average normalised structural computed from the full sample data in 
Experiment 8. Regions shown in red exhibited greater signal in the allocentric condition whilst regions 
shown in blue exhibited greater signal in the no-memory control condition (p<.05, FWE, k≥10). Numbers 
represent X coordinates in MNI space. 
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Table 7-10: Peak activations for the Allocentric vs. Control contrast in the combined sample of depressed 
and control participants (Ctrl; p<.05, FWE, k≥10). Differences from baseline for the conditions (exp, ctrl) 
are marked as + when positive, as - when negative and as 0 when not significant. 

Contrast Region Local peak Cluster 
(voxels) t-value 

x,y,z 
Diff. 
baseline 
(exp/ctrl) 

(MNI) 

  

Allo>Ctrl Parieto-occipital-
temporal R. angular gyrus 6842 8.55 38, -54, 48 +/+ 

  R. retrosplenial cortex  7.51 18, -58, 16 +/0 

  L. lingual gyrus 77 6.35 -12, -72, -6 +/+ 

  R. parahippocampal gyrus 89 7.32 30, -40, -12 +/+ 

  L. parahippocampal gyrus 30 6.23 -24, -46, -8 +/+ 

       

 Frontal R. insula 99 7.26 32, 24, 0 +/+ 

  R. mid. frontal gyrus 591 8.61 30, 12, 54 +/0 

   156 6.60 48, 36, 28 +/0 

   36 6.59 6, 28, 42 +/0 

  L. mid. frontal gyrus 314 7.63 -26, 0, 53 +/+ 

  R. inf. frontal gyrus 61 6.33 46, 10, 26 +/+ 

       

 Other L. cerebellum 64 7.37 -14, -52, -50 +/0 

   137 6.96 -4, -74, -28 +/0 

       
Ctrl>Allo Parieto-temporal R. angular gyrus 1919 8.91 50, -26, 16 -/0 

  L. angular gyrus 2646 8.54 -52, -26, 22 0/+ 

  R. mid. temporal gyrus 1330 8.87 56, 2, -20 -/0 

  L. mid. temporal gyrus 689 7.81 -52, 2, -24 -/0 

  L. inf. temporal gyrus 11 5.85 -30, 6, -44 -/0 

  Post. cingulate gyrus 315 7.85 6, -50, 26 -/- 

       

 Frontal R. insula 24 6.44 38, 8, 8 -/0 

  R. precentral gyrus 369 8.12 4, -24, 58 -/+ 

  L. medial frontal gyrus 1218 7.85 -4, 58, -4 -/0 

  L. sup. frontal gyrus 106 7.05 -10, 48, 48 -/0 

       

 Other R. cerebellum 52 6.48 22, -86, -40 -/0 

    L. cerebellum 40 6.50 -24, -82, -40 -/0 
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7.4.2.2 Region of interest analysis 

A 2x3x2 mixed ANOVA was conducted for each subsection of the hippocampus with group 

(depressed, control) as a between-subject factor and condition (allocentric, egocentric, no-

memory control) and hemisphere (right, left) as within-subject factors. There was a 

significant main effect of condition in all three hippocampal subsections (Table 7-11, Table 

7-12, Table 7-13). This main effect constituted a lower BOLD signal in the allocentric 

condition in all subsections of the hippocampus although this only reached significance 

relative to the egocentric condition in the body of the hippocampus (Figure 7-14). In the body 

of the hippocampus there was also a strong trend towards a significant interaction between 

hemisphere and group, which appeared to be a reflection of a greater drop in BOLD signal 

below the baseline in the control group in the right hemisphere but not in the left hemisphere 

(Figure 7-15). However, subsequent pairwise comparisons did not reveal any differences. 

Table 7-11: Mixed ANOVA for the effect of condition, group (depressed, control) and hemisphere on 
BOLD signal in the head of the hippocampus. 

Source MS df  F p 
Condition 50.846 2 9.111 0.001 
Condition X Group 1.577 2 0.283 0.756 
error (condition) 5.581 36 

  Hemisphere 0.139 1 0.055 0.718 
Hemisphere X Group 0.189 1 0.075 0.787 
error (hemisphere) 2.522 18 

  Condition X Hemisphere 0.097 2 0.119 0.888 
Condition X Hemisphere X Group 0.061 2 0.075 0.928 
error (condition X hemisphere) 0.816 36 

  Group 2.599 1 0.130 0.723 
error (group) 19.989 18     
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Table 7-12: Mixed ANOVA for the effect of condition, group (depressed, control) and hemisphere on 
BOLD signal in the body of the hippocampus. 

Source MS df  F p 
Condition 15.777 2 3.636 0.036 
Condition X Group 0.989 2 0.228 0.797 
error (condition) 4.340 36 

  Hemisphere 0.386 1 0.223 0.643 
Hemisphere X Group 7.277 1 4.194 0.055 
error (hemisphere) 1.735 18 

  Condition X Hemisphere 0.712 2 0.934 0.402 
Condition X Hemisphere X Group 0.013 2 0.017 0.984 
error (condition X hemisphere) 0.762 26 

  Group 8.786 1 0.348 0.563 
error (group) 25.240 18     

 

Table 7-13: Mixed ANOVA for the effect of condition, group (depressed, control) and hemisphere on 
BOLD signal in the tail of the hippocampus. 

Source MS df  F p 
Condition 14.498 2 4.027 0.026 
Condition X Group 0.032 2 0.009 0.991 
error (condition) 3.600 36 

  Hemisphere 3.114 1 0.851 0.369 
Hemisphere X Group 3.602 1 0.984 0.334 
error (hemisphere) 3.661 18 

  Condition X Hemisphere 2.753 2 1.568 0.222 
Condition X Hemisphere X Group 0.348 2 0.198 0.821 
error (condition X hemisphere) 1.756 36 

  Group 0.028 1 0.002 0.969 
error (group) 18.182 18     
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Figure 7-14: Main effect of condition in the head (blue), body (red) and tail (green) of the hippocampus 
and outcome of pairwise comparisons (* p<.05; ** p<.01; † .05<p>.1) for the response phase. Dark grey 
bars represent the allocentric condition, light grey bars represent the egocentric condition and unfilled 
bars represent the no-memory control condition. The subsections of the hippocampus are illustrated on a 
rendering of the left hippocampus from a single participant viewed from an axial orientation.  

 

Figure 7-15: Interaction effect between group (depressed, control) and hemisphere on differential BOLD 
signal extracted from the body of the hippocampus. Filled bars represent the depressed sample. Unfilled 
bars represent the control sample.  
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7.4.2.3 Volumetric analysis of the hippocampus 

A 2x3x2 mixed ANOVA was conducted for normalised hippocampal volumes with group 

(depressed, control) as a between-subject factor and hippocampal subsection (head, body, 

tail) and hemisphere (left, right) as within-subject factors. There was no significant main 

effect of group and no interaction effects between group and hippocampal subsection or 

hemisphere (Table 7-14, Figure 7-16). As could be expected, there was a significant main 

effect of hippocampal subsection on volume, with post-hoc tests revealing a larger volume 

for the head compared to the body (p<.001) and the tail (p<.001) and for the body compared 

to the tail (p<.001). There was also a significant interaction between hippocampal subsection 

and hemisphere, which was reflected by significant differences in volume between the 

hemispheres for the head and the body but not the tail of the hippocampus (Figure 7-17). 

For comparisons with other studies, the average raw hippocampal volume was 4114.47mm3 

(SD=513.67) in the right hemisphere and 4155.08mm3 (SD=543.88) in the left hemisphere 

when the two groups were combined.  

Table 7-14: Mixed ANOVA for the effect of group (depressed, control), hippocampal subsection and 
hemisphere on normalised hippocampal volume.  

Source MS df  F p 
HC Section 12024843.82 2 223.657 <.001 
HC Section X Group 8832.90 2 0.164 0.849 
error (HC section) 53764.73 36 

  Hemipshere 3287.53 1 1.593 0.223 
Hemipshere X Group 1817.28 1 0.881 0.360 
error (hemipshere) 2063.63 18 

  HC Section X Hemisphere 162606.50 2 15.053 <.001 
HC Section X Hemisphere X Group 1935.45 2 0.179 0.837 
error (HC section X hemisphere) 10802.00 36 

  Group 2742.38 1 0.055 0.818 
error (group) 50180.31 18     
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Figure 7-16: Volumes normalised for ICV for the head (dark grey bars), the body (light grey bars) and 
the tail (unfilled bars) of the right and left hippocampi in the depressed group and the control group.  

 

 

Figure 7-17: Interaction effect between hemisphere and hippocampal subsection and outcome of pairwise 
comparisons (* p<.05; ** p<.01). 
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7.4.2.4 Exploratory correlational analyses 

Correlational analyses of the relationship between age and normalised hippocampal volumes 

and differential BOLD signal in the allocentric and egocentric conditions indicated that age 

had a significant effect in selected subsections in the two groups (Appendix D). 

Consequently, age was entered as a covariate in the subsequent correlational analyses.  

In terms of normalised hippocampal volumes, the body of the left hippocampus showed a 

strong trend towards a negative relationship with error rates in the allocentric condition in the 

depressed sample and a weaker trend towards a positive relationship in the control sample 

(Table 7-15, Figure 7-18). In terms of the differential BOLD signal in the allocentric and 

egocentric conditions, there were no significant relationships with error rates in the 

allocentric condition (Table 7-16). 

Table 7-15: Pearson’s correlation coefficients for the relationships between normalised volumes of the 
hippocampal subsections and error rates in the allocentric condition, after controlling for age. 

  
Depressed Control 

    r p r p 
Head Right 0.029 0.942 -0.52 0.151 

 
Left 0.282 0.462 0.015 0.969 

Body Right -0.321 0.399 0.584 0.099 

 
Left -0.648 0.059 0.274 0.475 

Tail Right 0.116 0.767 -0.072 0.855 
  Left 0.126 0.746 -0.201 0.604 

 

Table 7-16: Pearson’s correlation coefficients for the relationships between the difference in BOLD signal 
between the allocentric and egocentric condition in the hippocampal subsections and error rates in the 
allocentric condition, after controlling for age. 

  
Depressed Control 

    r p r p 
Head Right -0.035 0.929 0.077 0.843 

 
Left -0.071 0.556 0.406 0.278 

Body Right -0.379 0.315 0.021 0.957 

 
Left -0.493 0.178 0.448 0.226 

Tail Right -0.203 0.601 -0.387 0.303 
  Left -0.237 0.540 -0.117 0.764 
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Figure 7-18: Scatterplot demonstrating the relationship between the proportion of error in the allocentric 
condition and normalised volume of the left body of the hippocampus. Blue circles represent depressed 
patients (R2=.394). Green circles represent control participants (R2=.087). Note that both variables have 
been adjusted for age. 

In terms of illness characteristics, there were no significant relationships between illness 

duration and hippocampal volume or differential BOLD signal (Table 7-17). However, 

depression severity correlated negatively with differential BOLD signal in the left body of 

the hippocampus (Table 7-18). This indicates that more severe depressive symptoms were 

associated with a greater differential signal between the allocentric and egocentric condition 

in the left body of the hippocampus (Figure 7-19). It should also be noted that allocentric 

error rates did not correlate with illness duration (r(7)=.517, p=.154) or depression severity 

(r(8)=.337, p=.340). Note that data for illness duration was not available for one patient, 

resulting in a sample size of 9 patients for analyses involving this variable. 

Table 7-17: Pearson’s correlation coefficients for the relationships between illness duration and 
normalised volume and difference in BOLD signal between the allocentric and egocentric conditions in 
the three subsections of the hippocampus, after controlling for age. 

  

Normalised volume 
(mm³) 

BOLD signal 
(arbitrary signal) 

    r p r p 
Head Right -0.009 0.983 -0.045 0.915 

 
Left -0.034 0.937 -0.193 0.647 

Body Right -0.049 0.908 0.117 0.782 

 
Left 0.007 0.988 -0.451 0.262 

Tail Right 0.285 0.494 -0.358 0.384 
  Left 0.323 0.435 0.397 0.330 
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Table 7-18: Pearson’s correlation coefficients for the relationships between depression severity (HAM-D 
17 score) and normalised volume and difference in BOLD signal between the allocentric and egocentric 
conditions in the three subsections of the hippocampus, after controlling for age. 

  

Normalised volume 
(mm³) 

BOLD signal 
(arbitrary signal) 

    r p r p 
Head Right -0.186 0.632 -0.016 0.967 

 
Left 0.256 0.506 0.073 0.852 

Body Right 0.493 0.178 -0.323 0.397 

 
Left 0.004 0.991 -0.809 0.008 

Tail Right -0.499 0.171 -0.627 0.071 
  Left -0.255 0.507 0.175 0.652 

 

 

Figure 7-19: Scatterplot demonstrating the relationship between the difference in BOLD signal between 
the allocentric and egocentric conditions in the left body of the hippocampus and depression severity 
(HAM-D score) in the depressed sample (R2=.402). Note that both variables have been adjusted for age.  

7.5 Discussion 

The primary hypothesis of Experiment 8 concerned the presence of hippocampal dysfunction 

in the depressed sample, as reflected in an attenuated differential signal in the anterior 

hippocampus for the contrast between the allocentric and egocentric condition and a 

behavioural impairment in the allocentric condition of the NGT-R. In addition, the volume of 

the hippocampus was predicted to be smaller in the depressed group. Finally, it was 
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hypothesised that the combined sample would show a similar pattern of results for the 

parieto-medial temporal pathway as was demonstrated in Experiment 7.  

The following discussion will be initiated by an interpretation of the behavioural 

performance in the NGT-R in the context of a selection of other neurocognitive tasks 

included in the protocol. Subsequently, the results derived from the ROI analysis of the 

hippocampus and the associated volumetric analysis will be summarised and evaluated 

relative to the hypotheses. In the same section, the explorative analyses of potential 

relationships between performance, clinical variables and hippocampal structure and function 

will be referred to and commented on. In a final section, a qualitative comparison will be 

made to evaluate how the results of the combined sample of Experiment 8 compared to the 

findings of Experiment 7.  

7.5.1 Spatial memory in depression 

In contrast to the predictions, the depressed patients in Experiment 8 performed normally in 

all conditions of the NGT-R, evidencing an absence of a disproportionate impairment in the 

allocentric condition. Thus, at least at a behavioural level, depressed patients did not appear 

to show evidence of hippocampal dysfunction in the NGT-R.  

Although the prediction of a disproportionate allocentric memory deficit in the depressed 

sample could not be supported, there were indications that the effect of increasing viewpoint-

shifts on accuracy was different in the depressed sample relative to the control sample. 

Specifically, relative to control participants, who exhibited the typical incremental increase in 

error rates for increasing viewpoint-shifts, depressed patients exhibited an abrupt increase in 

error rates for the 135° compared to the 45° and 90° viewpoint-shifts, resulting in at-chance 

performance. Although a similarly abrupt increase in error rates for the 135° viewpoint-shift 

has been demonstrated in healthy participants previously (e.g. Experiment 5), performance 

has always been above chance. Thus, the abrupt drop to at-chance performance for the 135° 

viewpoint-shift has the potential of providing clues for future investigations in larger samples. 

The differential effect of increasing viewpoint-shifts on error rates in the depressed sample 

should first be considered in the context of the outcome of the disc rotation task, which 

relevance to the NGT-R was indicated by a strong positive relationship between error rates in 

this task and error rates in the allocentric condition. In contrast to the effect of viewpoint-

shifts in the allocentric condition, depressed patients showed the typical incremental decrease 
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in performance for larger rotations and above-chance performance for all rotation angles in 

the disc rotation task. Consequently, an impaired mental rotation ability is unlikely to 

underlie the poor performance for the 135° viewpoint-shift in the allocentric condition in the 

depressed sample.  

One factor that may have played a role in the differential effect of viewpoint-shifts is the fact 

that depressed patients produced a greater number of errors in the preceding training 

paradigm compared to control participants. Although eight out of the ten patients managed to 

reach the criterion of no errors after three training sessions, a generally higher error rate 

indicated that learning the landmark locations in the NGT-R posed a greater challenge in this 

group. Importantly, there was a strong positive relationship between training error and error 

in the subsequent allocentric condition in the patient group, which supports that the efficacy 

of learning the landmark locations mattered for performance in the allocentric condition. As 

has been emphasised previously, larger viewpoint-shifts are more likely to result in that 

relevant landmarks disappear out of view. Thus, if patients were relying on a less accurate 

long-term representation of the landmark locations, greater viewpoint-shifts would be 

expected to be more detrimental to performance. However, if this was the case, it is unclear 

why a viewpoint-shift of 135° should result in an abrupt drop in performance when the 

increase from 45° and 90° resulted in no change. In contrast, the probability of the 

disappearance of a relevant landmark should increase incrementally for each increase in 

viewpoint-shift.  

An alternative account rests on the outcome of the additional memory assessments in the 

protocol of Experiment 8 and postulates the use of a verbal strategy to compensate for a 

visuospatial memory deficit. The results of the additional memory assessments revealed that 

depressed patients were significantly impaired when required to remember the precise 

locations of ten identical objects over a brief delay (position-only condition, OLM task) 

whilst they exhibited no equivalent impairment in the verbal domain (RAVLT, immediate). 

Consequently, patients may have been more likely to opt for a predominantly verbal strategy 

to remember the target location in the allocentric condition, which may have acted to 

disguise a spatial memory deficit in the NGT-R. In other words, as opposed to remembering 

the vectors between the target location and the landmarks visually, depressed patients may 

have relied on verbalising its location (e.g. “to the right of the fox”). Such a verbal strategy to 

remember spatial locations can be considered particularly likely in the NGT-R environment, 
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which involves landmarks that are easily nameable (Rossion and Pourtois, 2004). In contrast, 

a verbal strategy would arguably be difficult to implement in the position-only condition of 

the OLM task considering the identical objects. A similar case can be made for the VPT, for 

which there was a strong trend towards a significant deficit in the depressed sample. Namely, 

the visual pattern matrices are not amenable to a verbal strategy, which means that depressed 

patients would have had to rely on an impaired visuospatial memory strategy.  

Critically, a predominant use of a verbal strategy in the depressed sample may account for 

the abrupt drop to at-chance performance for the 135° viewpoint-shift in this group. 

Specifically, common verbal labels that are centred on the position of the observer, such as 

‘left’ and ‘right’, become irrelevant or misleading after viewpoint-shifts that are greater than 

90°. As such, the abrupt drop to at-chance performance for the 135° viewpoint-shift would be 

expected in the case of a predominantly verbal strategy in the depressed sample. A similar 

case of verbal scaffolding to compensate for visuospatial memory impairments has recently 

been proposed to explain a comparable pattern of cognitive deficits in bipolar disorder 

(Gallagher, 2011). In regards to the similar abrupt drop in performance for the 135° 

viewpoint-shift in healthy volunteers in previous experiments, it is conceivable that an intact 

visuospatial memory strategy would have allowed performance to remain above chance.  

In relation to a compensatory verbal strategy in depression, it is worth mentioning that 

patients were significantly impaired in the training paradigm preceding the NGT-R, which 

required them to learn the locations of seven easily nameable landmarks. In contrast to the 

VPT and the position-only condition of the OLM task, a predominantly verbal strategy would 

arguably be sufficient to remember the landmark locations in this training paradigm. Thus, at 

least at training, depressed patients appeared to have problems with associating an easily 

nameable landmark with its respective location. This finding can be considered in the context 

of the object-location binding condition of the OLM task, for which there was a strong trend 

towards a significant deficit in the depressed sample. Similarly to the NGT-R training 

paradigm, this condition required participants to remember the association of a number of 

easily nameable objects with marked locations. Although the locations in this task were not 

organised in the same way as the landmarks in the NGT-R environment, such results indicate 

that depressed patients may also be impaired in associating nameable objects with their 

respective spatial locations. In this context, the lack of a deficit in the allocentric condition is 

more difficult to interpret. Specifically, if depressed patients were unable to efficiently 
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associate nameable objects with spatial locations, an impairment would reasonably be 

expected when a target location needs to be represented by its spatial relationship with one or 

several landmarks in the allocentric condition of the NGT-R.   

One important difference distinguishing the allocentric condition from the NGT-R training 

paradigm and the object-location binding condition of the OLM task is the number of 

locations to be remembered. Namely, whilst only one location needs to be remembered in the 

allocentric condition, seven and ten locations have to be remembered in the NGT-R training 

paradigm and the OLM task, respectively. Thus, it appears as if depressed patients showed a 

deficit when a greater number of object-location associations needed to be represented. It is 

conceivable that a verbal strategy to remember target locations would become increasingly 

inefficient as the number of targets increases. Consequently, it can be speculated that the 

impairment in the NGT training paradigm and in the object-location binding condition of the 

OLM task is a reflection of a failing verbal memory strategy. Alternatively, it could be 

proposed that the use of a single target location in the NGT-R reduced the sensitivity of the 

task in detecting the impairment in object-location binding in the allocentric condition. 

Although a general lack of task sensitivity is a valid account, it should be mentioned that by 

increasing the number of locations to be remembered there is also a risk of increasing the 

actual and perceived demand of the task, which can be considered problematic in a clinical 

population with well documented motivational problems, executive deficits and frontal lobe 

abnormalities (Elliott et al., 1996; Fossati et al., 2004; Koolschijn et al., 2009).  

Independently of the results in the allocentric condition of the NGT-R, it is evident that the 

depressed patients were impaired in spatial memory tasks, in which both egocentric and 

allocentric strategies were possible. Specifically, both the OLM and the VPT involved a 

stable observer position, which allows for both an egocentric and an allocentric strategy to be 

used. This is consistent with previous studies showing a short-term spatial memory deficit in 

currently depressed individuals (Ravnkilde et al., 2002; Porter et al., 2003). The absence of a 

similar impairment in the verbal domain further indicates that spatial memory may be 

particularly sensitive to the effects of depression (Porter et al., 2003; Lee et al., 2012b). 

Based on the results of Experiment 8, however, the spatial memory deficit in depression does 

not appear to get worse when the location needs to be represented allocentrically, which 

would have been expected in the case of hippocampal dysfunction (O'Keefe, 1978; 

Goodrich-Hunsaker et al., 2010). Since it remains unclear whether the use of a compensatory 
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verbal strategy could have disguised a behavioural allocentric deficit in the depressed sample 

of Experiment 8, an absolute conclusion can only be considered premature.   

In summary, depressed patients did not show a disproportionate impairment in the allocentric 

condition, which contradicts the presence of hippocampal dysfunction in depression. 

However, a seemingly differential effect of the increasing viewpoint-shifts in the allocentric 

condition in the depressed sample relative to the control participants indicated that the two 

groups might rely on different memory strategies to solve the task. It was proposed that the 

NGT-R might be particularly amenable to a verbal strategy to support spatial memory, which 

may have prevented a behavioural deficit from emerging in the allocentric condition of this 

task. However, an alternative account is that the NGT-R lacks the necessary sensitivity to 

detect a short-term allocentric memory deficit. Importantly, the two accounts are not 

mutually exclusive and both should therefore be considered for future investigations in larger 

samples. It is also worth reiterating that a verbal scaffolding account represents only one of 

potentially several possible accounts for the present findings.  

7.5.2 Hippocampal structure and function in depression 

In contrast to the predictions, depressed patients did not show an attenuated differential 

BOLD signal for the contrast between the allocentric and egocentric condition in any of the 

subsections of the hippocampus. Further to this, they also did not show a volumetric 

reduction of the hippocampus. The first aspect to emphasise in terms of the absence of a 

hippocampal volume reduction concerns the interpretation of the spatial memory deficits 

discussed above. Namely, in the absence a structural abnormality, depressed patients would 

not necessarily be expected to show poor performance in the allocentric condition of the 

NGT-R. Further to this, the spatial memory deficits detected in the OLM and the VPT tasks 

are unlikely to be accounted for by volumetric differences of the hippocampus.  

Although depressed patients did not differ from the control group in terms of overall 

hippocampal volume or condition-specific activity, the results of Experiment 8 provided 

some indication that hippocampal function may not have been identical in the two groups. 

Specifically, the ROI analysis provided evidence of a strong trend towards a significant 

interaction between group and hemisphere in the body of the hippocampus, independent of 

task condition. Although the post-hoc pairwise comparisons did not reveal any significant 

differences, this interaction appeared to be a reflection of a differential BOLD response in the 
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two groups in the right but not the left body of the hippocampus. More specifically, whilst 

patients did not appear to differ from control participants in the left body, they appeared to 

exhibit a smaller signal change from baseline in the right body of the hippocampus. 

Consequently, it can be speculated that the right hippocampus may not have been 

appropriately engaged in the depressed sample of Experiment 8. Importantly, however, this 

differential hippocampal response did not result in poorer performance in any of the 

condition of the NGT-R, which may indicate a reliance on a compensatory mechanism. 

In relation to such a compensatory mechanism, a large body of evidence has indicated that 

there is a lateralisation of function in the medial temporal lobe, which is constituted by a 

right-sided specialisation for spatial memory (Smith and Milner, 1981; Spiers et al., 2001a; 

Feigenbaum and Morris, 2004) and a left-sided specialisation for verbal and episodic 

memory (Nyberg et al., 1996; Spiers et al., 2001a; Banks et al., 2012). It could therefore be 

proposed that depressed patients compensate for the functional abnormalities in the right 

hippocampus by shifting reliance to the left hippocampus, which behaviourally would be 

reflected in a shift from a predominantly visuospatial strategy to a predominantly verbal 

strategy to solve spatial memory tasks. As was discussed in the previous section, such a shift 

to a predominantly verbal strategy in the depressed sample could explain the behavioural 

results in the allocentric condition of the NGT-R.  

The above discussion will undoubtedly remain speculative until the indications of a 

differential BOLD response in the body of the right hippocampus can be confirmed in a 

larger sample. Nevertheless, it is worth mentioning that the exploratory correlational analyses 

appeared to provide preliminary support for a greater reliance on the left body of the 

hippocampus in the depressed sample. Specifically, after controlling for age, there was a 

strong trend towards a significant relationship between higher error rates in the allocentric 

condition and smaller volumes of the left body of the hippocampus in the depressed sample. 

Thus, it appears as if performance in the allocentric performance was particularly dependent 

on the volume of the left body of the hippocampus in the patient group, which in turn can be 

considered consistent with a greater reliance on a left-lateralised verbal memory strategy 

(Banks et al., 2012). In the control group, there was a weak trend towards a significant 

relationship between error rates in the allocentric condition and volumes of the right body of 

the hippocampus in the control group. If reliable, such a finding would support a reliance on 

the right hippocampus for allocentric performance in the control group, which in turn would 
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indicate the use of a visuospatial memory strategy in this group (Spiers et al., 2001a). 

However, the direction of the relationship was the opposite of that found in the depressed 

group, with higher error rates being associated with larger volumes. Although this appears 

paradoxical, it should be emphasised that previous research has provided little evidence for 

the bigger-is-better hypothesis in the context of memory performance and hippocampal size 

in participants without neurological or psychiatric disorders (Van Petten, 2004). Needless to 

say, the relationship between hippocampal volume and performance in the NGT-R will 

require further study in larger samples. 

Further to the relationship above, greater differential BOLD signal between the allocentric 

and egocentric condition in the left body of the hippocampus was strongly associated with 

greater severity of the depressive symptoms in the patient group. If such a differential signal 

is interpreted as a measure of the relative hippocampal engagement in the allocentric and 

egocentric conditions, it appears as if more severe depressive symptoms are associated with 

an increased engagement of the left body of the hippocampus in the NGT-R. In terms of 

hippocampal volume, the left hippocampus has previously been found to be particularly 

sensitive to the severity of symptoms in MDD (Vakili et al., 2000; Weniger et al., 2006). 

More importantly, it can be speculated that as patients become more depressed they become 

increasingly more reliant on the engagement of the left body of the hippocampus to 

implement the compensatory verbal memory strategy.  

The preliminary nature of Experiment 8 makes an evaluation in the context of previous 

investigations of hippocampal function in depression difficult. However, it can be mentioned 

that Experiment 8 is not the first study that has failed to find unambiguous evidence of 

hippocampal dysfunction in a similarly small sample of depressed patients (Werner et al., 

2009). Furthermore, in larger samples, Milne et al. (2012) and Cornwell et al. (2010) found 

evidence of an abnormal recruitment of the right hippocampus during a recollection memory 

task and during allocentric navigation, which can be considered consistent with the 

indications of an inappropriate engagement of the right hippocampus in the depressed sample 

of Experiment 8. Further to this, the implication of the body of the hippocampus specifically 

is consistent with previous proposals that the posterior portion of the hippocampus may be 

particularly affected in depression (Neumeister et al., 2005; Maller et al., 2007; Cole et al., 

2010).  
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In regards to the use of BOLD fMRI in depression, it is important to emphasise that the 

underlying relationship between CBF, CBV and CMRO2 may differ from that of healthy 

control participants. Specifically, early PET studies indicated that depressed patients exhibit 

increased blood flow to the hippocampus at rest (Videbech et al., 2002). More recently, 

Colloby et al. (2012) used arterial spin labelling (ASL; for more detail see section 8.3) to 

investigate CBF in late-life depression and found evidence of increases in white matter CBF. 

Considering the potential presence of such alterations of vascular function in depression, it 

follows that the coupling between blood flow and oxygen metabolism may also be different 

in this population. Such differences in the underlying physiology on the BOLD response 

necessarily complicates the detection and interpretation of any group differences in BOLD 

signal (Buxton, 2012). Thus, although the present and a previous fMRI study (Milne et al., 

2012) have indicated that depressed patients may exhibit an abnormal BOLD signal in the 

right hippocampus, the underlying neural cause and thereby meaningful interpretation of this 

finding remains elusive. 

Another important consideration in terms of the use of the NGT to assess hippocampal 

function in a depressed sample is whether it targets the appropriate subsection of the 

hippocampus. Specifically, when the egocentric condition was contrasted with the allocentric 

condition in Experiment 7, a strong effect was demonstrated in the head of the hippocampus, 

which is distinct from evidence showing that the body and the tail of the hippocampus are 

particularly affected in depression (Maller et al., 2007). Consequently, it could be argued that 

the failure to detect a task-specific dysfunction in Experiment 8 could be explained by the 

fact that the NGT only provides a measure of neural function in the head of the hippocampus. 

However, when the combined sample was considered in Experiment 8, the strongest 

hippocampal effect for the contrast between the allocentric and egocentric conditions was 

found in the body and not the head of the hippocampus. Importantly, the body was also the 

only hippocampal subsection in which indications were found in support of an altered 

hippocampal system in the depressed sample. Consequently, it appears as if the NGT 

provided a measure of hippocampal function that was relevant to the potential effects present 

in the depressed sample. Nevertheless, it remains possible that a task with a more posterior 

focus would have been more sensitive in detecting alterations in hippocampal function 

depression.  
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To summarise, although the predictions of a volumetric reduction and a condition-specific 

attenuation of BOLD signal in the depressed group could not be supported, Experiment 8 

provided indications that the right body of the hippocampus may not be normally engaged in 

the depressed group throughout the NGT-R. Exploratory correlational analyses subsequently 

provided preliminary evidence that such a task-independent reduction of the involvement of 

right hippocampus may have resulted in a greater reliance on the left body of the 

hippocampus in the depressed group. Although the small sample size prevents an absolute 

conclusion to be made in regards to hippocampal function in depression, Experiment 8 has 

therefore provided some interesting indications for future investigations in larger samples.  

7.5.3 On the absence of hippocampal volume changes 

Considering the consistency in the literature on hippocampal volume in depression 

(Koolschijn et al., 2009; Arnone et al., 2012), the lack of a significant reduction in the 

depressed sample of Experiment 8 was unexpected. On the other hand, such a null finding is 

also not unprecedented (Vakili et al., 2000; Vythilingam et al., 2004). Normal hippocampal 

volume in depresses patients is commonly proposed to be accounted for by the specific 

characteristics of the sample (Vythilingam et al., 2004), including variations in illness 

duration, symptomatology and age (Sheline et al., 2003; Colla et al., 2007; McKinnon et al., 

2009; Eker and Gonul, 2010; Arnone et al., 2012). In regards to the small sample tested in 

Experiment 8, it is also important to mention that the effect sizes derived from meta-analyses 

of hippocampal volume in depression have been relatively modest (~0.3-0.4; (Koolschijn et 

al., 2009; Arnone et al., 2012)).  

Although changes in hippocampal volume in depression are often more substantial in patients 

who have experienced multiple episodes or a long duration of illness (MacQueen et al., 2003; 

Sheline et al., 2003), volume reductions have also been consistently demonstrated in first-

episode depression (Cole et al., 2011). Consequently, the depressed sample of Experiment 8, 

who had experienced an average of 4.2 (SD=3.8) depressive episodes and a total illness 

duration of 7.7 years (SD=6.7), could reasonably be expected to exhibit such volumetric 

changes. However, it is also important to mention that the extent of the reduction appears to 

be more subtle in patients with fewer past episodes (MacQueen et al., 2003), with estimates 

of a 4-4.5% reductions in first-episode depression (Cole et al., 2011) compared to estimates 

of 8-10% reductions when no restrictions of number of past episodes are imposed (Videbech 
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and Ravnkilde, 2004). Considering the inclusion of three first-episode patients in Experiment 

8, it is therefore possible that the overall volume reduction was too subtle to be reliably 

detected in such a small sample. A similar case can be made for age at the time of testing. In 

a meta-analysis, McKinnon et al. (2009) estimated the hippocampal volume reduction in 

depressed patients between the age of 18 and 33 to 1.5%. Consequently, the inclusion of 

three patients under the age of 30 may have further diluted any existing effects in the small 

sample.  

In the context of illness characteristics, the results of Experiment 8 revealed no correlations 

between hippocampal volume in any of the subsections and illness duration. Although the 

small sample size is likely to have been the predominant limitation in such analyses, an 

additional factor to consider is the duration of untreated illness. It has been proposed that 

antidepressant treatment may protect against hippocampal volume loss with cumulative 

episodes of depression (Sheline et al., 2003), which suggest that the duration of untreated 

depression may be more important as a predictor of hippocampal volume than total illness 

duration. Thus, the use of total illness duration for the correlational analyses in Experiment 8 

may have prevented a significant relationship from emerging. In addition, it should be 

emphasised that the self-reported retrospective estimates of illness duration may not have 

provided a sufficient level of accuracy. Although information about the duration of untreated 

illness was not available in Experiment 8, nine out of ten patients were taking antidepressant 

medication at the time of testing. This raises the possibility antidepressant medication may 

have protected the depressed sample from the hippocampal atrophy that otherwise would 

have occurred as a result of the long illness duration (Sheline et al., 2003; Frodl et al., 2008).  

From the above discussion, it is clear that variation in factors such as illness duration, age 

and medication status could have contributed to the failure to detect any hippocampal volume 

reductions in Experiment 8. Although the null finding can also be interpreted as an indication 

that hippocampal volume reductions may not play a role in the pathophysiology in all cases 

of MDD, the consistency of previous findings and the limited sample size of Experiment 8 

favour the former interpretation (Koolschijn et al., 2009; Arnone et al., 2012). 

7.5.4 Replication of the results in Experiment 7 

An important aspect of Experiment 8 was to investigate whether the results of Experiment 7 

could be replicated. It was hypothesised that the greater reliance on spatial transformations 
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and landmark information in the allocentric condition would result in a greater involvement 

of the parieto-medial temporal pathway in the combined sample of patients and control 

participants. The findings of Experiment 8 only partially supported this hypothesis. 

Specifically, whilst the recruitment of the RSC in the allocentric condition was confirmed, 

the involvement of the posterior parietal lobe and the lingual gyrus could not be supported. 

The RSC represented the global peak for the contrast in Experiment 7, which indicates that 

only the strongest effects could be detected in Experiment 8. A likely cause for such an 

apparent lack of statistical power is the considerable variability of the sample tested in 

Experiment 8. Although the effects of age, depression and antidepressant medication on 

overall brain function is beyond the scope of the present project, such factors are likely to 

have acted to increase variability at a neural level and thereby reduced the statistical power to 

replicate previous effects (Spreng et al., 2010; Diener et al., 2012; Hoflich et al., 2012). 

Relative to the contrast between the allocentric and egocentric conditions of the NGT-R, the 

contrasts between such experimental conditions and the no-memory control condition 

revealed a set of clusters that was more comparable to the results of Experiment 7. 

Consequently, the association between the allocentric condition and regions along the 

parieto-medial temporal pathway, including the posterior parietal lobe, the RSC and the 

lingual gyrus, could be replicated. In addition, clusters of differential activation were found 

in the parahippocampus bilaterally, which can be considered consistent with its proposed role 

in memory for scenes and in the updating of the relationship between the observer and the 

scene viewpoint-shifts (Epstein and Kanwisher, 1998; Epstein et al., 2003; Schmidt et al., 

2007). For the contrast between the egocentric condition and the control condition, the 

implication of the posterior parietal lobe could also be replicated. In regards to the variability 

in age, mental health and medication status highlighted above, such factors may have had a 

lesser effect in the low-level no-memory control condition, explaining the more comparable 

results derived from this contrast.  

Further to the recruitment of the parieto-medial temporal pathway, the negative hippocampal 

BOLD signal in the allocentric condition relative to the egocentric condition was expected to 

be present in both groups of Experiment 8. Although no evidence was found to support this 

prediction at the whole-brain level, the ROI analysis supported the previously demonstrated 

negative BOLD response in the allocentric condition. Although the differential BOLD signal 

between the allocentric and the egocentric condition was only reliable in the body of the 
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hippocampus, the nature of the effect was comparable to that found in the head of the 

hippocampus in Experiment 7. Furthermore, the effect did approach significance in the head 

of the hippocampus, providing additional support that the hippocampus responds to the 

allocentric condition of the NGT-R by a drop in BOLD signal. It should not be understated, 

however, that such effects were considerably weaker in Experiment 8. Similarly to the 

parieto-medial temporal pathway, the weaker effects in the hippocampus are likely to be the 

results of the greater variability of the sample tested in Experiment 8. A potential effect of 

depression was indicated in the ROI analysis, in which the depressed group and the control 

group appeared to differ in the relative reliance on the left and right body of the hippocampus. 

Furthermore, previous research has indicated that hippocampal recruitment in allocentric 

spatial memory tasks may not be as reliable in older adults as in younger adults (Moffat et al., 

2006; Antonova et al., 2009).  

7.5.5 Summary 

In contrast to the working hypothesis of hippocampal dysfunction in depression, Experiment 

8 did not support an attenuation of the hippocampal engagement during allocentric short-term 

memory retrieval. The results did also not reveal any evidence of structural abnormalities of 

the hippocampus or of a disproportionate behavioural deficit of allocentric memory in the 

depressed sample. Although such null findings contradict the idea that the hippocampus 

plays a pivotal role in the pathophysiology of all cases of major depressive disorder, it is 

critical to emphasise that the variability and size of the depressed sample may have prevented 

any existing effects from emerging. In the absence of any volumetric changes to the 

hippocampus, Experiment 8 nevertheless provided subtle indications that the hippocampal 

system may not function normally in depression. Specifically, the ROI analysis indicated that 

the depressed group may not have engaged the right body of the hippocampus appropriately, 

which may have underpinned the demonstrated memory deficit for precise locations (Smith 

and Milner, 1981). To compensate for such a deficit, it was speculated that the depressed 

patients may have opted for a verbal memory strategy to solve the allocentric condition of the 

NGT-R. Such a switch to a left-lateralised verbal memory strategy received some 

preliminary support in the exploratory correlational analyses and was proposed to provide a 

valid account for the behavioural findings in the NGT-R. Although this interpretation 

provides some interesting avenues for future investigations, it will be undoubtedly be 

paramount to confirm the reliability of the results in Experiment 8 in larger samples.  
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Chapter 8 General discussion 

8.1 Summary of contributions 

8.1.1 The Northumberland Gallery Task 

The primary aim of Part I of the present project was to investigate the role of the 

hippocampus in allocentric memory when no navigation is required. To this end, the NGT 

was developed and represents an important contribution of the thesis. The design of the NGT 

is grounded in current models of spatial reference frames, which advocate the parallel 

workings of egocentric and allocentric subsystems (Shelton and McNamara, 2001; Burgess, 

2006; Zhang et al., 2011), and incorporates features from a range of tasks previously used to 

assess the contribution of the hippocampus in spatial memory (Morris, 1981; King et al., 

2002; King et al., 2004; Parslow et al., 2004; Schmidt et al., 2007). As such, it utilises an 

instantaneous viewpoint-shift to encourage the use of environmental landmarks and thereby 

engage the hippocampus-dependent allocentric subsystem (O'Keefe, 1978; Muller and Kubie, 

1987; Goodrich-Hunsaker et al., 2010). At a theoretical level, such a disruption is thought to 

require participants to recover the reference direction of the allocentric representation of the 

target location from the inter-landmark vectors in the scene (Shelton and McNamara, 2001; 

Zhang et al., 2011). In contrast to the vast majority of previous tasks (Maguire et al., 1998a; 

Parslow et al., 2004; Xu et al., 2010), the NGT does not require participants to navigate, 

which makes it ideal for a focused investigation of allocentric spatial memory, independently 

of the cognitive processes associated with the act of navigation execution (King et al., 2002; 

Schmidt et al., 2007). A critical feature of the NGT is the inclusion of a contrasting 

egocentric condition, in which an instantaneous shift of environmental landmarks encourage 

the use of the observer position to support location memory and engages the hippocampus-

independent egocentric subsystem (Burgess, 2008). Although similar strategies have been 

used to assess egocentric spatial memory in navigation-based tasks (Parslow et al., 2004; 

Weniger et al., 2012), the inclusion of a visually identical egocentric condition represents an 

improvement on previous viewpoint-shift tasks (King et al., 2004; Schmidt et al., 2007).  

Based on the eight studies implementing the NGT in the present project, it is evident that the 

viewpoint-shifts and landmark-shifts have distinguishable effects on spatial memory 

performance, which support that participants are indeed relying on different reference 
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systems to solve the allocentric and egocentric conditions. The alignment effect, as reflected 

by increased response times for greater viewpoint-shifts, can be interpreted as constituting 

the greater cognitive cost associated with the recovery of the reference direction following 

more substantial viewpoint-shifts (Shelton and McNamara, 2001; Zhang et al., 2011). 

Similarly, since the transient self-object vectors are directly accessible in the egocentric 

condition, the improved performance in this condition can be proposed to be a reflection of a 

corresponding cut in cognitive cost. Nevertheless, an effort was made to reduce the 

discrepancy in difficulty between the two conditions to optimise the task for a neuroimaging 

and a clinical context. Whilst a more extensive training paradigm and an introduction of 

subtle environmental axes did not improve performance in the allocentric condition, an 

elevation of the viewpoint significantly lowered error rates, arguably as a result of the 

improved visibility of object-to-object relationships and the prevention of the perspective 

projection distortion. The discrepancy in difficulty between the two conditions could not be 

completely eliminated, however. Although a further reduction of the discrepancy may have 

been achievable, it is important to emphasise that whilst the egocentric condition only 

requires the egocentric subsystem, the allocentric condition requires a coordination of both 

subsystems and a recovery of the reference direction, which necessarily increases the demand 

in the latter condition.  

The NGT, as performed from the elevated viewpoint, produces consistent results in both 

young and middle-aged healthy volunteers. An abbreviated version of the task, the NGT-R, 

has been piloted in a different lab with results consistent with the full-length version. The 

behavioural version of the NGT-R takes approximately 30 minutes to administer, including 

the training paradigm, instruction and practice trials, allowing it to form part of a larger test 

battery. The NGT-R has also been optimised for administration in an MR scanner with fixed 

trial lengths and incorporated fixation events. With an administration time of approximately 

30 minutes, excluding training and instruction, the neuroimaging version of the task produces 

consistent results with the behavioural version. The NGT and the NGT-R, as performed from 

the elevated viewpoint, has been administered to over 120 volunteers of a range of different 

ages with consistent results. Further to this, the NGT-R has been used successfully in a small 

sample of depressed patients. An important contribution of the present project is therefore a 

non-navigational task of short-term allocentric memory, which can be used in a range of 

different samples and contexts. 
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8.1.2 The hippocampus and allocentric memory 

As would be predicted from an engagement of the allocentric subsystem (O'Keefe, 1978; 

Burgess, 2008), the hippocampus showed a differential involvement in the allocentric 

condition relative to the egocentric condition in a neuroimaging context. This involvement 

was characterised by a substantial drop in BOLD signal relative to the fixation baseline in the 

allocentric condition, which theoretically could be due to either a suppression of neural 

activity as part of a larger default network (Buckner et al., 2008; Huijbers et al., 2011) or to 

an increase in neural activity accompanied by a greater increase in CMRO2 relative to the 

increase in CBF (Ekstrom, 2010; Buxton, 2012). Although arguments tended to favour an 

increase in neural activity, the two accounts could not be distinguished based on BOLD 

signal alone. Thus, the precise neural basis of the hippocampal involvement in the allocentric 

condition of the NGT-R remains elusive.  

Hippocampal BOLD signal was only different relative to the fixation baseline in the 

allocentric condition, which indicated a specific involvement of the hippocampus in 

allocentric spatial memory. This is consistent with models assigning a role for the 

hippocampus in environmentally grounded representations of space (O'Keefe, 1978; Byrne et 

al., 2007; Burgess, 2008) and with a vast evidence base linking the hippocampus to the 

allocentric subsystem of spatial memory (Muller and Kubie, 1987; Cornwell et al., 2008; 

Goodrich-Hunsaker et al., 2010). Importantly, the implication of the hippocampus in the 

allocentric condition of the NGT extends its role in providing landmark-centred 

representations to situations in which such representations do not form the basis for 

navigation (Burgess et al., 2001; Schmidt et al., 2007). It is also consistent with a role for the 

anterior hippocampus in the processes of self-localisation, target localisation and path 

planning in the initial stages of navigation (Spiers and Maguire, 2006; Cornwell et al., 2008; 

Shipman and Astur, 2008; Xu et al., 2010). In regards to the hippocampal involvement in the 

NGT, an interesting parallel can be drawn to the mental scene construction account proposed 

by Hassabis and Maguire (2007a, 2009). Specifically, it was proposed that the role of the 

hippocampus concerns the retrieval and integration of information into a coherent spatial 

context, both in processes of memory and imagination. In the context of the NGT, it is 

conceivable that the allocentric condition required a process of scene construction in order to 

retrieve and integrate the target location and the obscured landmarks into the context of the 

current scene. Considering the unlikely recruitment of a similar process in the egocentric 
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condition, it could therefore be argued that the apparent hippocampal involvement in the 

allocentric condition may be due to a memory-based scene construction element. 

Interestingly, memory-based scene construction has been associated with activation in the 

RSC and the posterior parietal lobe, as well as in the hippocampus (Hassabis et al., 2007b), 

which is consistent with the implication of these very regions in the allocentric condition of 

the NGT (see section 8.1.3). 

The implication of the hippocampus in a viewpoint-shift task, such as the NGT, has 

important implications for the design of allocentric spatial memory tasks. For investigations 

that are not concerned with navigation execution per se but with spatial memory, the 

inclusion of a navigational element will be redundant and risks diluting the effects of interest. 

Although classic rodent memory tasks, such as the MWM and the RAM (Olton and 

Samuelson, 1976; Morris, 1981), have provided invaluable inspiration for the assessment of 

allocentric spatial memory in humans (Shipman and Astur, 2008; Goodrich-Hunsaker and 

Hopkins, 2010), it should be remembered that humans are able to demonstrate memory  in 

ways other than actual navigation behaviour. Consequently, when navigation execution is not 

of interest, the NGT and other viewpoint-shift tasks appear to represent useful measures of 

allocentric spatial memory in humans (King et al., 2002; Hartley et al., 2007). The 

hippocampal involvement also supports the value of viewpoint-shift tasks in a neuroimaging 

context. Whilst viewpoint-shift tasks have been used to assess the effects of medial temporal 

lobe damage on allocentric memory in several investigations (Holdstock et al., 2000; King et 

al., 2002; King et al., 2004; Hartley et al., 2007), the use of this type of task in neuroimaging 

studies has been much more limited (Schmidt et al., 2007). To my knowledge, the present 

project represents the first neuroimaging study to demonstrate hippocampal involvement in a 

viewpoint-shift task. Whilst Schmidt and colleagues found that hippocampal activity varied 

as a function of performance in a viewpoint-shift task, the hippocampus was not implicated 

when this task was contrasted with a no-memory control condition. In the NGT, the 

egocentric condition therefore appears to have provided a more precise comparison for the 

contrast analysis, which is likely to have contributed to the detection of hippocampal 

recruitment. The present project has therefore further emphasised the importance of selecting 

an appropriate control condition when investigating hippocampal function (Stark and Squire, 

2001).  
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8.1.3 The parieto-medial temporal pathway and allocentric memory 

The implication of the full extent of the parieto-medial temporal pathway in the allocentric 

condition of the NGT-R supports its role in landmark-centred cognition even when no 

navigation is required (Burgess et al., 2001; Schmidt et al., 2007; Galati et al., 2010). It 

indicates that the posterior parietal lobe and the retrosplenial cortex both contribute to 

transformations between spatial coordinate systems, which allows for the critical 

determination of one’s location in space relative to allocentrically represented stable 

landmarks (Maguire, 2001; Byrne et al., 2007; Burgess, 2008; Calton and Taube, 2009). The 

engagement of the left lingual gyrus was found to be sensitive to the degree of viewpoint-

shift, which is consistent with previous findings and indicate a greater reliance on 

environmental landmarks for re-orientation following more substantial viewpoint-shifts 

(Epstein and Kanwisher, 1998; Schmidt et al., 2007). A similar sensitivity to viewpoint-shifts 

was demonstrated in a novel region, the left cuneus, which given its spatial proximity to the 

precuneus may reflect a contribution to the imagery of retrieved material (Fletcher et al., 

1996). As such, the left lingual gyrus and cuneus can be proposed to support the recovery of 

the reference direction from the inter-landmark vectors required following a shift in 

viewpoint (Shelton and McNamara, 2001; Zhang et al., 2011). 

8.1.4 Hippocampal function in depression 

The NGT-R was successfully administered to a small sample of depressed patients inside of 

an MR scanner. Inconsistent with previous findings (Koolschijn et al., 2009; Arnone et al., 

2012), depressed patients did not exhibit a reduction of hippocampal volume. The NGT-R 

did also not detect any abnormalities in the allocentric condition, neither at a behavioural nor 

at a neural level. Although there were indications of a deficient visuospatial strategy and of 

altered function of the right body of the hippocampus in the depressed sample, such findings 

must await confirmation in larger samples. Considering the limitations of the small sample, 

any firm conclusions in regards to hippocampal dysfunction in depression are considered 

premature. Nevertheless, the present project has demonstrated that the NGT can be used in a 

population with documented cognitive deficits, which indicates its potential use in a range of 

clinical populations. 
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8.2 Limitations 

Limitations of the present project have been emphasised and discussed in detail in the 

previous chapters. Therefore, only the most significant drawbacks of the NGT, BOLD fMRI 

and the size and characteristics of the samples will be reiterated in the present section. 

The NGT was developed to separate between location memory based on allocentric and 

egocentric reference frames. Although the manipulations of viewpoint and landmark 

positions act to engage one spatial subsystem over the other, it is critical to emphasise that 

the task does not achieve an absolute separation. Whilst it is the case that the landmarks can 

only be used to retrieve the target location in the allocentric condition, the appraisal of such 

landmarks necessarily depends on egocentric sensory systems. Conversely, allocentric cues, 

such as the arena wall or the edges of the screen, remain available after the landmark-shift in 

the egocentric condition. Whilst the influence of egocentric sensory systems in the allocentric 

condition is largely unavoidable, a cleaner distinction could have been achieved by 

preventing the use of non-landmark environmental cues in the egocentric condition. However, 

it is equally important to emphasise that a complete elimination of allocentric cues is unlikely 

to be possible (see section 3.1.1). Thus, whilst some overlap between the conditions should 

be expected as a result of the parallel workings of the allocentric and egocentric subsystems 

(Burgess, 2006), a more controlled egocentric condition could potentially have added further 

the sensitivity to the contrast analysis.  

Another important limitation of the NGT is the different levels of difficulty in the allocentric 

and egocentric conditions. This limitation was particularly apparent in the neuroimaging 

component of the present project, in which any differential BOLD signal in the two 

conditions could be ascribed to such differences in difficulty. In the NGT, statistical control 

of such differences in performance is furthermore problematic since the cognitive processes 

of interest are thought to be closely related to such measures (Gilbert et al., 2012). Although 

the nature of the allocentric condition may inherently make it more demanding, the 

discrepancy in performance between conditions was undoubtedly limiting for the 

interpretation of the negative BOLD signal in the hippocampus. Since the effects of difficulty 

could not be reliably estimated or statistically controlled for, the differential difficulty levels 

in the experimental conditions of the NGT must be considered an important confounding 

variable.  



 

 
 

222 

Further to the limitations above, the exploratory study in a depressed patient sample 

highlighted additional drawbacks of the NGT. First, the easily nameable landmarks in the 

NGT environment allow for a verbalised representation of the target location. Considering 

that both verbal and visuospatial memory strategies are likely to implicate the hippocampus, 

albeit in different hemispheres (Smith and Milner, 1981; Frisk and Milner, 1990; Spiers et al., 

2001a), this limitation is more concerned with the purity of the task rather than the 

contribution of the hippocampus in the task. Such task impurity is undesirable, however, and 

becomes particularly problematic for disentangling the cognitive processes associated with 

group differences. The second limitation to be highlighted was a potential lack of sensitivity 

of the NGT. As has been mentioned, the use of a single target location may have prevented 

the detection of subtler deficits in the patient group. Adding to this, the use of a single foil 

location at test means that a response can only be categorised as correct or incorrect. 

Considering that spatial memory representations are likely to vary continuously along 

dimensions of quality and precision, such a dichotomous response represents a relatively 

rough measure of performance. Thus, a potential lack of sensitivity of the NGT is an 

important limitation, particularly in relation to the detection of subtle group differences.  

A more general point can also be made in regards to the lack of formal tests of reliability and 

validity. Although the NGT has been used extensively throughout the project with robust and 

repeatable results, slight differences between experiments in terms of task design, testing 

situation or population prevented formal testing of reliability. Furthermore, in terms of 

validity, an exploration of the relationship between performance in the NGT and other tasks 

designed to assess allocentric spatial memory, such as the MWM, could have provided 

additional information of the cognitive processes involved.  

In addition to the limitations associated with the NGT, there are important limitations 

associated with measure of neural activity. In general terms, the use of BOLD fMRI is 

limited by a relatively poor understanding of the underlying physiological mechanisms of the 

signal (Buxton, 2012). Relative to the neocortex, the hippocampus is likely to show an even 

more complex relationship between CFB and CMRO2, which makes an interpretation of the 

resulting BOLD signal in this region particularly difficult (Ekstrom, 2010; Buxton, 2012). 

Consequently, the negative hippocampal BOLD signal in the present and in previous studies 

(Rekkas et al., 2005; Shipman and Astur, 2008) could be both a reflection of high-metabolic 

activity without a corresponding overshoot in cerebral blood flow and of an actual decrease 
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in metabolic activity. The inability to distinguish between such opposing accounts 

undoubtedly represents one of the most important limitations of the present project.  

A final limitation to be emphasised here concerns the size and characteristics of the samples 

tested. Although the NGT has been used behaviourally in a large sample of healthy 

volunteers covering a range of different ages, the initial neuroimaging study was limited to a 

smaller sample of young volunteers. Thus, the results of this study cannot be generalised to 

volunteers of an older age. In the subsequent neuroimaging study, the tested sample covered 

a greater age range but also included patients with depression. Consequently, it is difficult to 

disentangle the effects of age and mental health in a direct comparison of the outcome 

derived from the two studies. More importantly, the sample of depressed patients was small 

and varied considerably in both demographic and clinical characteristics, which presents a 

major limitation in terms of the statistical power for the group comparison in this study.  

8.3 Future directions 

A central finding of the present project was the demonstration of a negative BOLD signal in 

the hippocampus during allocentric short-term memory retrieval. To arrive at a meaningful 

interpretation of such a hippocampal response in this and previous investigations (Rekkas et 

al., 2005; Shipman and Astur, 2008) it will be critical to determine its physiological basis. 

An increased understanding of the complex relationship between CBF and CMRO2 and 

possible dissociations between BOLD signal and underlying neural activity represent a 

challenging but important goal for future investigations of hippocampal function (Restom et 

al., 2008; Schridde et al., 2008). To achieve this it will be necessary to go beyond the BOLD 

signal and focus on the multiple physiological processes that underlie it. One fMRI technique 

that allows for an independent measure of cerebral blood flow is arterial spin labelling (ASL), 

which uses radiofrequency pulses from the MR system to transiently label flowing blood. 

The spin-labelled MR scan is subsequently compared to a control acquisition to isolate the 

purely flow-dependent ASL difference signal (Detre et al., 2012). In calibrated fMRI, 

measurements of CBF from ASL and of regular BOLD during periods of activation and mild 

hypercapnia can be used to calculate CMRO2 (Davis et al., 1998). Information about 

hippocampal CMRO2 in response to relevant cognitive tasks is likely to be particularly 

important as this variable shows a tight relationship with neural activity (Hyder et al., 2001; 

Restom et al., 2008). Although computationally complex, multi-modal measurements of 
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changes in CMRO2, CBF and BOLD fMRI signal provide a way to validate and calibrate 

BOLD image-contrasts (Hyder et al., 2001). As such, it would allow an investigation of 

whether negative BOLD responses in demanding memory tasks, such as the allocentric 

condition of the NGT, can be explained by a tighter coupling between CMRO2 and CBF 

(Restom et al., 2008; Ekstrom, 2010). Such an investigation would also have the potential of 

shedding light on why certain baseline conditions are more likely than others to reveal a 

positive BOLD signal in the hippocampus (Stark and Squire, 2001). Calibrated fMRI could 

also provide important information about a potentially different coupling between CMRO2 

and CBF in clinical populations, which would allow a more meaningful interpretation of 

differences in BOLD signal relative to healthy control groups. Until the physiological basis 

of the negative BOLD response is better understood, it will be critical for researchers not to 

assume a simple correspondence between BOLD signal and neural activity in subcortical 

regions, such as the hippocampus (Buxton, 2012). Furthermore, it will be important to 

continue to report findings of negative BOLD signal in the hippocampus, as defined relative 

to an independent baseline condition (Hayes and Huxtable, 2012), to increase understanding 

of the circumstances under which it occurs.  

In contrast to the findings in the hippocampus, a number of regions exhibited a more 

unambiguous positive BOLD signal in response to the allocentric condition of the NGT. 

Considering its additional sensitivity to increasing viewpoint-shifts, the left lingual gyrus 

represents an interesting avenue for future research. The findings of the present project 

support a general role for the lingual gyrus in the decoding and representation of the 

orientation value of landmarks in memory and perception (Aguirre et al., 1998; Committeri 

et al., 2004; Schmidt et al., 2007). An interesting proposal for future investigations is that the 

lingual gyrus plays an instrumental role in recovering the reference direction from the 

available environmental cues in the scene (Shelton and McNamara, 2001; Zhang et al., 2011). 

Such a role could be tested empirically by contrasting the current allocentric condition of the 

NGT with a similar condition in which the need for recovery of the reference direction is 

removed by making it explicit in the scene. If the lingual gyrus underlies the recovery of the 

reference direction, its contribution can be considered critical for access to the stored spatial 

representations provided by the hippocampus.  

For future investigations, changes to the NGT itself should also be considered. In particular, 

a continuous response, such as indicating the location of the target by the use of a computer 
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mouse or a joystick, is likely to provide a more precise measure of the accuracy of the spatial 

memory representation. In the context of patient groups with executive and motivational 

problems (Elliott et al., 1996; Fossati et al., 2002), such a shift to a continuous response in an 

effort to increase task sensitivity would appear preferable to an increase in the number of 

target locations. Efforts are also recommended to further reduce the discrepancy in difficulty 

between the allocentric and egocentric conditions of the NGT. This could be achieved by an 

increase of the difficulty in the egocentric condition, for example by a reduction of target-foil 

distances in this condition. Alternatively, an additional control condition with a difficulty 

level that corresponds to the allocentric condition could be included to evaluate effects of 

general task difficulty.  

In addition to the modifications suggested above, the experimental control of the strategies 

available in the NGT could be improved further. In the egocentric condition, the wall of the 

NGT environment could be removed or altered in shape to prevent it from being used as a 

cue to location. Although such a manipulation would make the egocentric condition visually 

distinct from the allocentric condition and would not prevent the use of alternative 

environmental cues, such as the edges of the screen or the scanner bore, it would increase the 

probability of an egocentric strategy. Further to this, the NGT environment could be 

modified to be less amenable to a verbal memory strategy, for example by the use of abstract 

patterns as landmarks (Parslow et al., 2004). To allow for a closer evaluation of a potential 

shift between spatial subsystems or memory strategies for viewpoint-shifts greater than 90°, a 

larger set of viewpoint-shifts could also be included in the NGT. Finally, formal tests of 

reliability and validity of the NGT should be considered for future investigations.  

The NGT has the potential of being used to assess hippocampal function in a range of clinical 

populations. In the present project, the NGT was successfully administered to a sample of 

depressed patients. In the context of normal hippocampal volume in the depressed sample, no 

behavioural deficits or task-specific abnormalities of hippocampal dysfunction could be 

detected by the NGT. Although functional abnormalities are theoretically possible in the 

absence of structural abnormalities, it will be important to evaluate the NGT in a larger 

sample of depressed patients who also exhibit the typical hippocampal volume reduction 

(Arnone et al., 2012). To increase the probability of recruiting such a sample, it would be 

advisable to target patients with a longer history of depression (MacQueen et al., 2003). To 

explore the effect of past illness history on hippocampal volume and function, the duration of 
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untreated illness, in addition to total illness duration, should also be recorded (Sheline et al., 

2003).  

A more ambitious suggestion for future investigations would be a longitudinal investigation 

of hippocampal function in depression. If hippocampal volume and function could be reliably 

measured at the point of diagnosis, before any antidepressant treatment is administered, and 

subsequently at regular intervals as the illness progresses or resolves, it would likely increase 

our understanding of the specific role of the hippocampus in the pathophysiology of 

depression. Considering the likely complex relationship between hippocampal volume, 

cerebral blood flow and BOLD signal in depression (Buxton, 2012), calibrated fMRI may be 

considered for such investigations. Furthermore, it is important to emphasise that depressed 

patients are not the only patient group with hippocampal abnormalities. For example, patients 

with bipolar disorder (Hajek et al., 2012), schizophrenia (Shepherd et al., 2012) and mild 

cognitive impairment (Yassa et al., 2010) have all been shown to exhibit structural 

abnormalities of the hippocampus. Thus, the NGT may prove to be a useful measure of 

hippocampal function in such populations in the future. Importantly, since the NGT assesses 

the cognitive processes thought to underlie the initial stages of navigation, it provides a 

measure that is relevant for real-life functioning whilst also exhibiting a high degree of 

experimental control.  

8.4 Conclusions 

In Part I of the present thesis it was hypothesised that the hippocampus provides allocentric 

memory representations, independently of whether such representations form the basis for 

navigation. Results derived from an fMRI investigation supported a role for the hippocampus 

during allocentric short-term memory retrieval in a task that required no navigation, although 

this role was characterised by a substantial reduction of the BOLD signal below baseline. In 

Part II of the thesis, the working hypothesis implicated functional abnormalities of the 

hippocampus in depression. In the absence of structural abnormalities of the hippocampus, an 

fMRI investigation in a small sample of depressed patients and matched control participants 

revealed no evidence of task-specific functional abnormalities. Recommendations for future 

research include a detailed investigation of the physiological basis of the negative BOLD 

response in subcortical regions and further study of hippocampal function in depression and 

its relationship with illness characteristics in larger samples.  
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Appendix A 

GALLERY TASK – EXPERIENCE QUESTIONNAIRE 
 

Participant ID: …………………. 
 

Did you find any of the conditions more difficult than the others? 
 

Yes   No   
 

If yes, which condition did you find more difficult? 
 

You  Walls  None 
 

 
Why did you find this condition more difficult? 

----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------- 

 
What strategies, if any, did you use to remember the pole location in the… 

1) ‘You’ condition 
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………. 

2) ‘Walls’ condition 
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………. 

3) ‘None’ condition 
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………. 
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Appendix B 

SANTA BARBARA SENSE-OF-DIRECTION SCALE 

Sex: F M Today's Date:________________ 

Age:_______ V. 2 

This questionnaire consists of several statements about your spatial and navigational 

abilities, preferences, and experiences. After each statement, you should circle a number 
to indicate your level of agreement with the statement. Circle "1" if you strongly agree 

that the statement applies to you, "7" if you strongly disagree, or some number in 
between if your agreement is intermediate. Circle "4" if you neither agree nor disagree. 

 
1. I am very good at giving directions. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

2. I have a poor memory for where I left things. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

3. I am very good at judging distances. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

4. My "sense of direction" is very good. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

5. I tend to think of my environment in terms of cardinal directions (N, S, E, W). 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

6. I very easily get lost in a new city. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

7. I enjoy reading maps. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

8. I have trouble understanding directions. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
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9. I am very good at reading maps. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

10. I don't remember routes very well while riding as a passenger in a car. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

11. I don't enjoy giving directions. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

12. It's not important to me to know where I am. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

13. I usually let someone else do the navigational planning for long trips. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

14. I can usually remember a new route after I have traveled it only once. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 

15. I don't have a very good "mental map" of my environment. 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
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Appendix C 

INCLUSION AND EXCLUSION CRITERIA FOR THE PILOT  

Inclusion criteria for all depressed patients: 
1) Aged between 18-65  

2) Primary diagnosis of major depressive disorder 
3) No other axis-I diagnosis 

Additional inclusion criterion for remitted depressed patients: 
1) Free of depressive symptoms for at least 4 weeks and scored ≤ 7 on the 17-item Hamilton 
Depression Rating Scale (HAM-D; Hamilton 1960) on the day of testing  

Additional inclusion criterion for currently depressed patients: 

1) Symptomatic for at least two weeks and scored ≥ 15 on the HAM-D on the day of testing.  

Exclusion criteria for all depressed patients: 

1) A change of medication within four weeks of testing 
2) Use of steroidal medication 

3) Any other current axis-I diagnosis 
4) A history of mania or hypomania 

5) Current alcohol or drug dependence 
6) Electro-convulsive therapy in the last six months 

7) History of head injury with loss of consciousness exceeding 5 minutes 
8) Any other significant, uncorrected physical or neurological illness  

Inclusion criterion for the control group: 
1) Aged between 18-65 

Exclusion criteria for the control group: 

1) Not currently using any medication (other than the oral contraceptive pill) 
2) No personal history of psychiatric illness 

3) No history of affective disorder in a first degree relative 
4) Score of < 7 on the Beck Depression Inventory (BDI; Beck, Ward, Mendelson, Mock & 
Erbaugh 1961) 
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Appendix D 

Supplementary Table 1: Pearson’s correlation coefficients for the relationships between age and 
normalised hippocampal volume and difference in hippocampal BOLD signal between the allocentric 
and egocentric conditions in the depressed sample. 

  

Normalised volume 
(mm³) 

BOLD signal 
(arbitrary signal) 

    r p r p 
Head Right -0.009 0.981 -0.167 0.644 

 
Left 0.065 0.858 0.022 0.952 

Body Right -0.382 0.276 -0.084 0.817 

 
Left -0.376 0.284 -0.427 0.219 

Tail Right 0.635 0.049 -0.111 0.761 
  Left 0.109 0.763 -0.788 0.007 

 

Supplementary Table 2: Pearson’s correlation coefficients for the relationships between age and 
normalised hippocampal volume and difference in hippocampal BOLD signal between the allocentric 
and egocentric conditions in the control sample.  

  

Normalised volume 
(mm³) 

BOLD signal 
(arbitrary signal) 

    r p r p 
Head Right 0.035 0.924 0.609 0.062 

 
Left 0.055 0.881 0.592 0.071 

Body Right -0.457 0.184 0.494 0.146 

 
Left -0.682 0.03 0.505 0.136 

Tail Right -0.714 0.02 0.437 0.048 
  Left -0.646 0.043 -0.116 0.75 
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