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Abstract 

Electromagnetic imaging currently plays a vital role in various disciplines, from 

engineering to medical applications and is based upon the characteristics of 

electromagnetic fields and their interaction with the properties of materials. The 

detection and characterisation of metallic objects which pose a threat to safety is of 

great interest in relation to public and homeland security worldwide. Inspections are 

conducted under the prerequisite that is divested of all metallic objects. These 

inspection conditions are problematic in terms of the disruption of the movement of 

people and produce a soft target for terrorist attack. Thus, there is a need for a new 

generation of detection systems and information technologies which can provide an 

enhanced characterisation and discrimination capabilities.  

This thesis proposes an automatic metallic object detection and classification system. 

Two related topics have been addressed: to design and implement a new metallic object 

detection system; and to develop an appropriate signal processing algorithm to classify 

the targeted signatures. The new detection system uses an array of sensors in 

conjunction with pulsed excitation. The contributions of this research can be 

summarised as follows: (1) investigating the possibility of using magneto-resistance 

sensors for metallic object detection; (2) evaluating the proposed system by generating a 

database consisting of 12 real handguns with more than 20 objects used in daily life; (3) 

extracted features from the system outcomes using four feature categories referring to 

the objects’ shape, material composition, time-frequency signal analysis and transient 

pulse response; and (4) applying two classification methods to classify the objects into 

threats and non-threats, giving a successful classification rate of more than 92% using 

the feature combination and classification framework of the new system.  

The study concludes that novel magnetic field imaging system and their signal 

outputs can be used to detect, identify and classify metallic objects. In comparison with 

conventional induction-based walk-through metal detectors, the magneto-resistance 

sensor array-based system shows great potential for object identification and 

discrimination. This novel system design and signal processing achievement may be 

able to produce significant improvements in automatic threat object detection and 

classification applications. 
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Chapter 1: Introduction 

This chapter provides a brief background to electromagnetic detection, including an 

overview of the work undertaken within this thesis. A synopsis of the research 

objectives is provided and the scope of the work also discussed. Major research 

achievements are listed and finally the structure of the thesis is laid out. 

1.1 Background 

In recent years, scientists and engineers have used electromagnetism to invent 

systems that can detect and locate metallic objects. In many applications, it is desirable 

to be able to detect metallic objects remotely and automatically. In many security 

screening scenarios, manual searches and metal detectors are used to find dangerous 

objects and prevent them from being carried into a controlled area. However, metal 

detectors cannot provide warnings specifically about threatening objects, and manual 

searches place security personnel at risk. Imaging technologies such as x-ray and 

microwave systems are unfavourable in this context owing to the health implications 

involved, and therefore other imaging techniques that use sensor-arrays exploiting the 

millimetre wave and terahertz spectra are used. For an application to search for 

suspicious objects that may be concealed by clothing, while avoiding the health hazards 

of ionizing radiation, these latter methods can be cost effective. However, another key 

criterion would be preferable, which is to respect personal privacy [1]. Automatic 

detection can also increase the throughput of a security checkpoint by expediting 

decisions or enabling the management of several parallel screening points by fewer 

personnel. 

Currently, there are no reliable metal detector systems that can discriminate between 

a key chain and a knife using an electromagnetic (EM) method. However, EM methods 

are preferred for metallic object detection due to the fact that the EM field interacts with 

metallic objects giving an indication of their presence and electrical properties. Systems 

and devices that have been built using the principle of EM induction have been 

prevalent in airports, stations, and stadiums for the detection of suspicious metallic 

items that are being covertly carried. Inspections are conducted under the prerequisite 

that a constrained environment should be provided [2]. Here, a constrained environment 

refers to the following conditions:  
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 Interrogation of one person at a time. 

 Divestment of all metallic objects prior to inspection.  

 Detection of one metallic item at a time. 

These inspection conditions and detection limitations are problematic in terms of the 

disruption of the flow of people, the detection and discrimination of multiple metallic 

objects and false alarms from non-threatening objects. Thus, there is a need for a new 

generation of detection systems which can operate without the usual constraints and 

provide enhanced characterisation and discrimination capabilities.  

EM methods are one of the most suitable for the inspection and detection of metallic 

objects in engineering applications involving the petrochemical, aerospace, 

transportation, energy and nuclear industries. They comprise of a number of techniques 

that are based upon electromagnetism and the interaction of electromagnetic fields with 

conductive objects. Such techniques include: beat frequency oscillation, continuous 

wave metal detection, pulse induction metal detection, and magnetic field gradiometry 

[3]. Most metal detectors use active EM field techniques to detect and classify metal 

objects. An active EM field, in this instance, means that the detector sets up a field 

using a source coil, which is used to probe the environment. The applied (or primary) 

field induces eddy current (EC) in the metal under inspection, generating a secondary 

magnetic field that can be sensed by a detector coil. The rate of decay and the spatial 

behaviour of the secondary field are determined by the target’s electrical conductivity, 

magnetic permeability, shape, and size. Frequency-domain or time-domain analysis is 

adopted to extract features from the output to obtain information about the object, 

including its shape, orientation and material [4].  

The problem of detecting a concealed object and classifying it using data from the 

scattered EM field is very difficult to solve, for the following reasons: the scattering 

mechanism is very complicated, even for simple geometric objects; and also these 

scattered signals are strongly dependent on the signal polarization and aspect angle of 

incident and reflection. In fact, the aspect dependency of transient EM fields makes the 

problem more complicated since it may cause two types of error in the classification. 

The first relates to the transient response at two different aspects of the same object, 

which could incorrectly be identified as two different concealed objects. The second 

problem refers to the transient response of two different concealed objects, which could 

be classified as one concealed object. An extraction feature which is insensitive to 

aspect variations is needed to accurately detect and classify concealed objects [5]. 
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In this thesis, the design and implementation of a new metallic object detection and 

classification system is developed, based on the application of pulsed excitation in 

conjunction with accurate high spatial-resolution magnetic-field sensing and using giant 

magneto-resistance (GMR) sensor-arrays. This system uses an ex-service walk-through 

metal detector (WTMD) as a platform, enabling a two-dimensional image to be 

constructed from the measured backscattered signals, which can be used later for object 

identification and classification purposes. System circuit design, WTMD modification, 

and GMR sensor-array configurations were accomplished as a collaborative process 

within our team. 

An analysis is undertaken of the backscattered transient signal from a range of 

objects that include real handguns as well as objects that are usually expected to be in 

the possession of passengers such as mobile phones, keys and wristwatches. Tests 

focusing on the spatial behaviour of objects are carried out in this research, forming a 

theoretical framework for the induction detector, and to ascertain which feature 

extraction methods and classification techniques enable the target to be correctly 

identified in an effective manner. The signal processing algorithms and software 

necessary to isolate these signals are developed in order to determine the signatures of 

threatening and non-threatening objects.  

1.2 Motivation 

Driven by the need for end-applications and the potential of emerging technologies, 

there are three major motivations behind this research: 

1. Rising passenger numbers at airports and the ever-increasing threat of terrorism in 

society. Over the last decade events around the world have demonstrated the 

vulnerabilities of crowded public places to the evils of terror. The need for airport 

security and safety is now a major concern for all governments around the world. 

Terrorist activities are increasingly common and an unfortunate reality in today's 

world. 

2. The limited object discrimination and classification capabilities of current security 

systems cause a lot of false alarms, and passengers are required to remove metallic 

objects before entering the WTMD implemented in airports. This produces "soft 

targets" in the form of lengthy queues. These soft targets heighten the risk of a 

terrorist attack within airport premises that could potentially have the same impact 

as destroying a commercial flight. Also, composite materials in different objects 
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give rise to false alarms, where the objects almost made from different material; 

each material gives a different EM signature. This means that current systems have 

the ability neither to characterise object shape, size and material type, nor to 

discriminate between threat and non-threat items using imaging techniques.  

3. Limited automatic screening of people for the detection and localisation of threat 

objects using imaging systems. The traditional screening procedures take a long 

time to complete for only one scan, furthermore providing only an indication of the 

existence of a threat item, irrespective of information relating to its shape and 

location. As such, this can subject operators to various risks and vulnerabilities; 

hence the need for imaging technology that gives a higher degree of confidence in 

the automatic scanning and detection of threats.  

1.3 Aims and Objectives 

The main goal of this work is to design and develop a WTMD and associated signal 

interpretation algorithms, so that threatening metallic objects can be detected and 

classified using magnetic field imaging methods.  

This goal can be further broken down into the following aims: 

1. To design and develop a new WTMD for deployment in unconstrained 

environments, without necessitating that users divest themselves of metallic items. 

2. To improve the characterisation capabilities of such systems, in terms of multiple 

object separation, object localisation and different object orientations. 

3. To automatically recognise and classify threat objects from EM images to achieve 

rapid inspection at crowded checkpoints. 
 

To pursue these aims the following objectives have been adopted:  

 Conducting a literature survey to understand the state-of-the-art of current 

threat object detection systems. 

 To perform an extended experimental study with an existing WTMD, then to 

investigate the behaviour of GMR sensors in different circumstances in order 

to design and build a fully functional GMR sensor-array.  

 The development of electromagnetic imaging algorithms for the GMR 

sensor-array to use in the proposed threat object detection and classification 

system. 

 To investigate the system validity and responses relating to size, volume, 

different orientations, and multiple object discrimination. 
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 To investigate different feature extraction techniques to find suitable features 

for threat object identification using the proposed system.  

 To investigate suitable machine learning methods and algorithms for 

automatic threat object detection and classification.  

The work outlined in this thesis was carried out at Newcastle University as part of a 

project entitled “People screening for threats with automatic detection and localisation”, 

which is funded under the Innovative Research Call in Explosives and Weapons 

Detection 2007, a cross-government funded programme. 

1.4 Methodologies 

In its combination of theoretical and experimental approaches, the research work 

includes system design and implementation, data acquisition, feature extraction, 

data/feature fusion, and object detection and classification. The research work involves 

three essential stages as shown in Figure 1.1: Stage I: Hardware and software system 

developing; Stage II: Image processing and feature extraction; and Stage III: Automatic 

classification. Each stage involves sub-steps that are further described below. 

In Stage I, the design methodologies for and configuration of the new system are 

investigated. The new system is designed with maximum flexibility, with a variable 

sensor-array pitch and configuration and variable excitation in terms of signal waveform 

and amplitude. Tests are carried out using pulsed excitation in conjunction with 

advanced time-frequency analysis and signal shape analysis for object detection, 

characterisation, localisation and imaging. An EM database is created using real 

handguns and common metallic objects used in daily life. All acquired data is processed 

and prepared for better image formation and visualization. 

In Stage II, following pre-processing of the EM database, a comprehensive study and 

investigation of feature extraction tools is carried out. Geometrical shapes, material 

features, transient response features and time-frequency features are extracted from the 

EM data. Features are selected and integrated to obtain better object identification and 

discrimination. Feature vectors are then prepared to feed to the classifiers for the next 

classification steps. 

The final stage employs two different classifier techniques, which are an Artificial 

Neural Network (ANN) and a Support Vector Machine (SVM), to evaluate all of the 

proposed features individually and in combination for the accurate automatic 

classification of objects. 
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Stage I is covered in Chapters 3 and 4 and Chapter 5 covers Stage II, while Stage III 

is covered in Chapter 6. 

 

 

Figure 1.1: Methodology block diagram 

1.5 Achievements 

The main achievements of this research work include: 

1. A literature survey which has brought understanding of and familiarity with 

electromagnetic gun detection techniques as well as EC research work, and the use 

of signal processing in metallic object detection and classification.  

2. The design and implementation of a new electromagnetic threat object detection 

system based on the application of pulsed excitation, in conjunction with accurate 

high spatial resolution magnetic field sensing using GMR sensor-arrays. 

3. System validation and experimental testing have been undertaken relating to size, 

volume, orientation estimation and multiple object discrimination in a single EM 

image, using a database consisting of EM images derived from the EM pulse 

response of objects. The database consists of twelve handguns, four knives and 

approximately twenty other commonly carried objects.  

4. An extensive analysis of feature extraction methods to investigate their 

compatibility for the outcomes of the proposed system. Feature extraction 

techniques related to object materials, shape, time-frequency, and transient response 

analysis have been investigated. Based on the test results, these features have been 

optimised in order to meet the highest classification accuracy. 
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5. Among the several feature extraction techniques used within this project, a novel 

time-frequency image correlation method is proposed. This method is a good 

candidate for numerous applications where time-varying EM field images are 

encountered pertaining to material discrimination of ferromagnetic and 

paramagnetic metals. 

6. The introduction of a hierarchical framework of automatic object classification 

techniques in which ANN and SVM classifiers were used and investigated. From 

this, high classification rates have been achieved. 

7. Publications from the work through refereed journals and conferences. In three 

different conferences and workshop events this work was judged as the best research 

work presented. 

1.6 Thesis Outline 

This thesis consists of seven chapters including this introduction. Chapter 2 provides 

an extensive literature survey of metallic detection systems. Chapters 3 to 6 represent 

the main contributions of this work, while Chapter 7 summarises the scientific research 

contributions. Each chapter is outlined below. 

A two-part literature review of metal detection systems is provided in Chapter 2. The 

first part investigates recent sensor technologies used for metal detection, in addition to 

the physical theories behind these sensors. The second part reviews image processing 

and classification techniques used in threat object detection systems. 

In Chapter 3, the approach to the design and development of a new WTMD system is 

considered. The theoretical background of EM imaging is reviewed and correlations 

between measured magnetic properties and objects under test identified. The design and 

operation of the new metallic object detection system is presented. This system utilises 

a pulsed excitation coil and an array of GMR sensors for deployment in unconstrained 

environments. The chapter also describes three configurations of the sensor-array for the 

system. The signal processing algorithms and the software necessary to isolate EM 

signals in order to reconstruct a two-dimensional image from the sensor-array outcome 

are also presented. These are used later for feature extraction and classification 

purposes. 

Chapter 4 provides a study of the capability of the proposed GMR sensor-array in 

terms of detecting threat and non-threat items. This is accomplished through assessment 

of the proposed system by considering different characteristics such as: data validation 



  

8 

 

using threat and non-threat objects, repeatability of the same objects, multiple object 

separation, and response to different object orientations. Simulations where the 

detection of threat objects are undertaken using data from major tests are included, with 

results for 12 firearms, 4 knives and around 20 other commonly carried objects. This 

chapter concludes with the best setup and configuration of the sensor array to 

reconstruct the EM images of objects. 

Several groups of features are investigated and tested in Chapter 5, the aim of which 

is to find appropriate feature extraction methods with data retrieved from the new EM 

imaging system for threat object detection and classification. Features have been 

extracted from the system outcomes using four feature categories, referring to the 

objects’ shape, material composition, time-frequency signal analysis and transient pulse 

response. After the definition of the proposed feature extraction methods, the 

effectiveness of individual features is tested and discussed.  Based on the results, only 

features that perform well are selected and used.  

Two different types of classification techniques are presented and compared in 

Chapter 6 to evaluate the features extracted and to adopt an efficient classification 

technique for automated detection. Classifiers such as ANN and SVM are used and 

frameworks for these classifiers are presented. A set of training tests are carried out 

using the groups of features extracted in Chapter 5. Finally, the accuracy for threat 

object classification of the proposed system is presented for the classifiers. 

Finally, Chapter 7 presents the conclusion and major scientific contributions of this 

work and outlines the achievement of the proposed system for security applications, 

followed by suggestions for the direction of future work. 

1.7 Chapter Summary 

This chapter provides an introduction to the thesis and gives a synoptic review of the 

thesis. An introduction is presented to the research work, which has been conducted on 

the characterisation of objects using electromagnetic techniques for security purposes, 

to detect threat and non-threat objects. The current needs and requirements in industry 

for the development of security systems are generalised and depicted as the background 

to the on-going study, which is followed by the aims and objectives of the present 

research. The methodologies used in the research are then presented and the 

contributions of the work are outlined. Finally, the layout of this thesis and the content 

of each chapter are summarised. 
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Chapter 2: Devices and DSP Approaches for Metallic Object 

Detection 

This chapter reviews recent developments in the area of threat object detection and 

classification. These methods largely use electromagnetic means including: metal 

detection, magnetic field distortion, electromagnetic resonance, acoustic and ultrasonic 

inspection, millimetre and terahertz waves, infrared imaging, x-ray imaging... etc. The 

advantages and disadvantages of these approaches are discussed and research challenges 

and perspectives are identified. The chapter is organised as follows: Section 2.1 gives a 

brief introduction about metal detection, sections 2.2 and 2.3 present various underlying 

phenomena in addition to a comprehensive review of sensor technologies being 

investigated for the metal detection and EM imaging. Section 2.4 provides a survey of 

image processing techniques that are being developed to achieve improved threat object 

detection and classification. The last section summaries the challenges of the current 

threat object detection area with the proposed technique and the reasons behind that.   

2.1 Introduction 

Metal detection technology is used in many industries around the world, e.g. 

detecting metallic foreign bodies in the human body (medical), mine detection 

(military), screening people for potentially dangerous weapons (security), detection of 

metallic objects in food products (quality control) and professional treasure hunters. 

The goal of automatic detection and recognition of concealed weapons is a 

technological challenge that requires innovative solutions in sensor technologies and 

image processing. A number of sensors based on different phenomenology, as well as 

image processing support, are being developed to observe objects underneath people’s 

clothing. EM methods are preferred for weapon detection (WD) due to the fact that the 

EM field interacts with metallic objects, giving an indication of the presence and 

electrical properties of these objects. Systems and devices that are built upon the 

principle of EM induction have been prevalent in airports, stations, stadiums, etc. for the 

detection of suspicious metallic items that are being carried covertly. Inspections are 

conducted under the prerequisite that a constrained environment should be provided. 

Here, the constrained environment refers to the following conditions: interrogation of 

one person at a time, divestment of all metallic objects prior to inspection, and detection 
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of one metallic item at a time. These inspection conditions and detection limitations are 

problematic in terms of the disruption of the flow of people, detection and 

discrimination of multiple metallic objects and false calls from non-threat objects. Thus, 

there is a need for a new generation of detection systems which can operate without the 

usual constraints and provide enhanced characterisation and discrimination capabilities 

[1]. 

2.2 Metal Detection Underlying Phenomena  

The electromagnetic spectrum defines the range of all possible frequencies of 

electromagnetic radiation. EM metal detection is based on measuring variations in an 

EM field caused by an object. The excitation source could be earth gravity field in 

passive detection system which measure distortion in earth gravity. Alternatively, active 

detection systems use coils or antennas to generate an EM field, in which objects are 

detected by measuring reflected or induced signals. 

2.2.1 Magnetic field gradiometry 

Magnetic field gradiometry [6-10] takes advantage of the interaction between the 

earth’s field (Approx. 0.5G) and metallic objects. It is therefore applicable to the 

detection and localisation of guns and other ferromagnetic objects, as these materials are 

magnetically permeable or carry a permanent magnetic moment, and thus distort the 

earth’s field. This field distortion, or gradient, is quantified using a magnetic 

gradiometer with two field sensors connected in differential configurations to measure 

the spatial field difference. 

Techniques incorporating magnetic field gradiometry have been applied to the 

development of walk-through systems, using an array of gradiometers aligned vertically 

at either side of the portal [11]. When a ferromagnetic item passes through the portal, it 

causes magnetic field distortion, which is sensed by the gradiometer arrays. As the 

gradiometers are arranged in groups, a degree of localisation of the objects can be 

achieved. Although gradiometry has been used successfully for some security 

applications, only ferromagnetic materials can be detected but characterisation of 

materials is very difficult using this passive technique.  
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2.2.2 Electromagnetic field induction 

EM induction is a common approach for detection of metallic items and Unexploded 

Ordnance (UXO) [4, 5, 11-27]. Traditional EM induction metal detectors such as walk-

through doors and mine detection devices consist of a driver coil and a pickup coil. The 

driver coil constitutes the generation of the applied/primary magnetic field, which 

induces EC inside the metal under inspection. In contrast, the pickup coil is used for 

measuring the net field, which is the superposition of the primary magnetic field and the 

eddy-current-induced field, i.e. secondary magnetic field. The output from the pickup 

coil conceives the information of the metal. Either frequency or time-domain analysis is 

adopted to extract features from the output in an effort to obtain the metallic properties 

including: shape, orientation, material, etc. The arrangement regarding the configuration 

of the two coils is dependent on the applications of the detectors. Figure 2.1 shows a 

diagram of a typical EM induction detector for walk-through application. The 

configuration of the coils is the transmission setup. 

 

 

Figure 2.1: Diagram of EM induction metal detectors with coils in Transmission mode 

[7]. 

Based on EM induction, several technologies have been proposed and realised for 

advanced metal detectors, which include: very low frequency, pulse induction, beat 

frequency oscillation, and 3D steerable magnetic field as explained below.  
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2.2.2.1 Very low frequency technology 

Very low frequency (VLF) (3 kHz – 30 kHz) is the most commonly-used method for 

metal detectors, which uses both driver and pickup coils [21]. By measuring the field 

response to the primary magnetic field from the metals under inspection, the detection 

and characterisation of the objects are fulfilled. Compared with EM induction, the 

pickup coils are shielded from the primary field generated by the driver coils, in a bid to 

cancel out the mutual inductance between coils and thus improve the detectability.  

The signal responses from pickup coils give the implication of the presence of a 

metallic object. The magnitude of the signal is inversely proportional to the distance 

between the detector and the object, indicating the location of the object. The 

characterisation of metals is implemented by looking at the phase shift in the acquired 

signals. The reasoning behind this is that the inductance and resistance of a metal 

significantly affects the induced EC in the metal, in terms of amplitude and phase, 

which gives a distinct field signal with a particular magnitude and phase. During the 

application, a phase shift level that is determined by using thresholds or notches (phase 

segments) is employed to discriminate objects above and below the level. The analysis 

is found limited in object classification, such that just a group of objects in lieu of a 

particular item can be identified [21]. 

2.2.2.2 Pulse induction technology 

The difference between Pulse induction (PI) [21, 22] and VLF lies in the type of 

excitation of current supplied to the driver coil and the subsequent signal processing 

techniques. PI applies a short but powerful pulse to the driver coils in order to generate 

the pulsed primary magnetic field. After the pulse collapses, the reflected pulse (over 

several milliseconds), which travels in the opposite direction of the primary field, 

appears and results in another current flowing within the driver coil. The duration of the 

reflected pulse is increased when the PI detector is placed over a metallic object, due to 

the presence of pulsed EC, which support the reflected pulse and introduces echoes to 

the signals. In view of the physical background, the PI devices are only able to adopt a 

single coil for both generating the pulsed field and receiving the reflected pulse. For 

continuous inspection, PI detectors send the pulses ranging from 25 to 1,000+ pulses per 

second [23]. 

The detection of metals is realised by measuring the length of the reflected pulses. 

The distance between a metal and the PI detector can be estimated by analysing the 

interval between the driving pulse and the reflected pulse. Features such as pulse decay 
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are found to be effective for object characterisation [25], though the processing is more 

complicated than VLF. It is noteworthy that the utilisation of pulsed current makes PI 

capable of efficiently detecting objects at a longer distance, compared with VLF and 

multi-frequency VLF techniques. 

The pulse decay is used for metal detection and characterisation, since the pulse 

response varies with the properties of different objects, which includes material, shape 

and orientation. Figure 2.2 shows the pulse decays for different metallic objects. Since 

unique pulse decays in 3D field signals for a metal can be found. Therefore, the 

identification of metallic objects can be fulfilled by introducing libraries of target time 

decay constants. 

 

 

Figure 2.2: The pulse decays for different metal items [24, 25]. 

2.2.2.3 3D steerable magnetic field  

It is relevant that the previous technologies discussed measure the magnetic field in 

one particular direction, i.e. one-component of magnetic field, which implements the 

interrogation of metals with one-directional magnetic field vectors. The 3D steerable 

magnetic field (3DSMF) sensor system improves the traditional EM induction systems 

by extending one-directional field inspection to three directional inspections [24, 25]. 

The metals are excited with a 3D pulsed magnetic field, which is relatively uniform 

over the distance compared to a loop coil. The field vector of the sensor is steered in 
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accordance with the object-body coordinate system, as a result of which, the signal to 

noise ratio (SNR) is enhanced. The pick-up sensor is also designed to sense the 

magnetic field in 3D. 

The generation of a uniform magnetic field in a particular direction is of great 

importance. Multiple electrical wires in a 1D linear alignment are used to simulate the 

sheet current, which generates the uniform Horizontal Magnetic Field (HMF). 

Figure 2.3a shows the setup for generation of the HMF in the x-direction. A similar 

setup is used for HMF in the y- and z-directions. Figure 2.3b presents the concept 

illustration of a 3DSMF transmitter. 

  

Figure 2.3: a) Electrical wires for generation of uniform HMF in x-direction; b) Concept 

illustration of 3DSMF transmitter [24, 25]. 

The parameters of the individual HMF transmitter include: the spatial interval of 

each pair of electrical wires, the return current path separation distance, and the width 

a) 

b) 
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and depth (length of wire) of the transmitter. In [25], the suggested value for each 

parameter via simulations were as follows: spatial interval=2.5 cm, return current 

path=1 m, width=2 m, and depth=2 m. 

The sensing of field, when a target is illuminated by HMF in a particular direction, is 

achieved by using sensors in differential configuration. The concept illustration of field 

sensing for HMF in the x-direction is depicted in Figure 2.4. The field response is the 

superposition of the readings from the left and right sensors, which measure the field in 

the orthogonal direction, i.e. z-direction, in an effort to decouple the transmitter and the 

sensors. Since the differential configuration is applied, the noise at two sensor locations 

is cancelled out, and thus the SNR is improved. 

 

Figure 2.4: Concept illustration of field sensing [25]. 

Field sensing for the other two HMFs are implemented using the same approach, 

leading to the construction of the 3D field sensing module. 

2.2.3 Electromagnetic wave reflectometry 

The difference between EM induction and EM reflectometry (EMR) [28-43] is that 

EM induction detects the variation in a net magnetic field, or mutual inductance, due to 

the introduction of metal in the field-illumination region, whilst EMR measures the EM 

waves reflected from an item in the wave-illumination region. EMR is established based 

on the wave characteristics of an EM field, with the wave propagation taken into 

account. In which case, the wavelength of the EM field is comparable with or smaller 

than the dimension of a detection system. In contrast, the wavelength of EM field used 
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in EM induction is much larger than the system size and thus the displacement current 

and wave propagation are both neglected. 

The frequency range of EMR covers very high frequency (30 MHz– 300 MHz), ultra 

high frequency (300 MHz – 3 GHz) and super high frequency (3 GHz – 30 GHz). Over 

such ranges, the EM wave can propagate for a certain distance, which defines the 

illumination region. When the incident EM wave ‘hits’ an object, it is reflected. The 

difference between the incident wave and the reflected wave indicates the location of 

the object, while the amplitude and phase of the reflected wave provides information 

about the properties of the object, which influences the characteristics of the 

displacement current within the object. Unlike EM induction, EMR has been found to 

be sensitive to the permittivity, aside from the conductivity of an object, and capable of 

inspecting the non-metallic targets such as explosive, plastic knives and liquid. The 

shape of an object can also be ‘seen’ by EMR. The scattering centres distributing over 

the object result in the EM resonance [28, 29]. The frequency of EM resonance is found 

related to the distance between two scattering centres, whilst the amplitude gives an 

indication regarding the material of the object. EMR normally consists of a transmitter 

and a receiver [30-34]. The transmitter constitutes the generation of incident EM waves, 

and the receiver collects the reflected EM waves. The schematic illustration of a 

reflectometer for detecting and characterising a single metallic object as an example is 

presented in Figure 2.5a. Figure 2.5b shows the actual dual-polarisation reflectometer (1 

GHz - 14 GHz) for object localisation and identification [35, 36].  

 

 

Figure 2.5: The schematic illustration of a reflectometer for detecting and characterising 

a single metallic object: a) Schematic illustration of a dual-polarisation reflectometer, b) 

the picture of the system. 

a) b) 
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The reflectometer captures the reflected EM wave in both coherence polarisation and 

cross polarisation. The cepstrum analysis of the coherence-polarisation wave provides 

the feature of optical depth, which indicates the location of a metal. The cross 

correlation between coherence-polarisation and cross-polarisation waves in both time 

and frequency domains is used as another feature for object identification. 

Since only a pair of antennas can be used in construction of the reflectometer, and 

the antennas stay still (no scan) during the measurement, reflectometers are therefore 

applicable to gun and knife detection via the acquisition of signals, instead of images. 

The features extracted from the signals are investigated in order to find the correlation 

with the location and properties of the objects under EM illumination. So far, 

reflectometers for security purposes are capable of detecting and identifying a single 

object from stand-off distance, even though the positions of two metals can be 

determined via cepstrum analysis. 

2.3 EM Imaging for Threat Object Detection 

To reliably detect threat and explosives in places like airports, sensitive buildings, 

and famous constructions, the manual screening procedures do not satisfactory results 

currently. This is due several reasons, for example the manual screening procedures take 

a long time to complete only one scan, where it provides only an indication about the 

existence of the threat item, irrespective of any information relating to its shape and 

location. As such, this can subject the operator to risks and vulnerabilities, hence the 

need of imaging technology that has a higher degree of confidence in the automatic 

scanning and detection of the threat.  

This section reviews recent developments in the area of imaging concealed weapon 

detection (CWD). These methods largely use electromagnetic means, including: 

microwave imaging, millimetre waves (MMW), terahertz imaging, and infrared 

imaging. The x-ray imaging has been used for border control and luggage inspections in 

airports but, because x-ray is harmful to humans, this technique will not be discussed in 

this review. The advantages and disadvantages of these approaches are discussed and 

research challenges and perspectives are presented. 

2.3.1 Microwave imaging 

Microwave imagers are based on the reflectometer principle, but images can be 

constructed by using the scanning device over the object under inspection, or by using 
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an array of antennas comprising of multiple pairs of transmitters and receivers. The 

incident EM wave is sent at different angles and positions and the reflected wave is 

collected by the receivers in the array. Recent advances include the development of 

security imaging systems, such as those shown in Figure 2.6 [44, 45]. An antenna array 

is moved around a person by a cylindrical mechanical scanner. The scan takes 4–7 

seconds before a 3D cylindrical set of holographic images are produced. The 

holographic imager can detect threats such as weapons constructed of metal, plastic and 

ceramic as well as explosive solids and liquids. Although these systems can produce 

very impressive results, a constrained environment is clearly required [46].   

 

 

a)      b) 

Figure 2.6: A Microwave imager for body inspection. a) Conceptual design for entry 

portal screening using holographic radar imaging [45], b) Microwave images of a 

person carrying two concealed guns. 

Significant research and development activities have been undertaken to enhance the 

state of the art of holographic radar imaging systems to be installed at security 

checkpoints, for screening people with concealed threats. Such enhancements include 

improvements to privacy techniques, by removing human features, but also providing 

automatic detection of body-worn concealed threats. The imaging techniques include: 

polarisation-diversity illumination and reception, dual-frequency implementation, and 

high-frequency imaging at 60 GHz.  

In [45] the authors have developed a commercial rapid-throughput, holographic 

imaging system that has demonstrated the ability of detecting concealed threats. This 

system is a walk-through system that requires a person to stop for approximately 2-4 

seconds, providing a full body scan of the person under surveillance. The operational 

throughput is on the order of 200 – 400 people per hour. This system has been deployed 
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at security checkpoints throughout the world, including airports in Europe (Amsterdam) 

and the United States (Phoenix). One of the limitations of this system type is of concern 

with respect to privacy. 

2.3.2 Millimetre waves imaging  

MMW based screening systems can be classified into of two types: passive and 

active. Passive sensors simply observe and report whatever has been detected within the 

local environment. In the radio frequency (RF) spectral range, natural surfaces will emit 

different amounts of radiation depending on parameters such as temperature and 

emissivity. In addition, metals are strongly reflective to RF, which reduces a metal 

surface’s emissivity and allows it to produce reflections of other sources within the 

scene, the most significant of which being the sky. Passive sensors have the great 

advantage of producing valuable information without emitting any signals from people 

[47].  

Active sensors typically stimulate the environment by generating and emitting 

known signals. These signals propagate out to the objects or targets of interest, interact 

with them, and reflect or scatter energy back to the sensor. Owing that the self-

generated signals have known properties, it is often possible to use signal processing to 

extract very weak emitted target signals from competing sources of noise.  

According to safety views, MMW systems utilises very low radiation power to 

generate detection capability. The system uses a radiation power level approximately 

10,000 times less than that of a cell phone (maximum specific absorption rate level of 

cell phone at 2009 is 1.6~2W/kg depending on region). The use of millimetre wave 

technology eliminates issues associated with the use of ionising radiation, such as those 

seen with X-ray systems [48-50].  

Figure 2.7 shows how MMW images will look [51]. Passive MMW sensors measure 

the apparent temperature through the energy that is emitted or reflected by sources. The 

output of the sensors is a function of the emissivity of the objects in the MMW 

spectrum as measured by the receiver. Clothing penetration for CWD is made possible 

by MMW sensors due to the low emissivity and high reflectivity of objects like metallic 

guns. 
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Figure 2.7: MMW images (QinetiQ imaging system). 

Active MMW imaging systems can be configured as personnel screening portals.  It 

has been developed in a variety of active MMW imaging systems and a technology, 

including the cylindrical imaging technique that has been successfully commercialised 

In addition, a three-dimensional imaging technique and prototype that operate close to 

350 GHz has been developed. This prototype system uses focusing optics coupled to a 

high-speed mirror scanning system [52].  In [53], these advanced imaging techniques 

are described in detail. Figure 2.8a shows a conceptual illustration of this system and 

experimental imaging results are shown in Figure 2.8b. 

 

 

Figure 2.8: Three dimensional MMW: a) Conceptual illustration showing a possible 

deployment of imaging system for personnel screening,  b) cylindrical imaging results 

of a clothed mannequin at 40–60 GHz in [54]. 

a) b) 
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2.3.3 Terahertz imaging 

The Terahertz (THz) imaging technique is based on the use of THz electromagnetic 

waves to spectroscopically detect and identify concealed explosives, chemical or 

biological agents, and metals through characteristic transmissions or reflectivity spectra 

in the THz range. Most explosives  and  related  compounds  have  characteristic 

absorption  and  many  non-metal  and  non-polarity materials  are transparent  to  

terahertz  wave,  showing that there is significant potential  for safety  inspection [54]. 

Different materials have different effects on the THz wave. Typical clothing items and 

paper and plastic packaging should appear transparent in the THz system, whereas 

metals completely block or reflect THz waves. Ceramic guns and knives would partially 

reflect the THz signal. Skin, because of its high water content, would absorb nearly all 

T-Rays, with the energy being harmlessly dissipated as heat in the first 100 microns of 

skin tissue [55]. A THz reflection image of a person as shown in Figure 2.9 would show 

the outline of clothing and the reflection of objects beneath, such as  guns or key chains, 

but the person’s skin would appear substantially dark [56].  

 

 

Figure 2.9: THz reflection image of a person carrying a gun [58]. 

There are some advantages of this technique that are attractive for CWD, such as 

spatial resolution of THz waves that are excellent for CWD; many materials of interest 

for security applications including explosives, chemical agents, and biological agents 

have characteristic THz spectra that can be used to fingerprint and thereby identify these 

concealed materials. THz waves are non-dangerous and totally harmless, as T-rays are 

non-ionising [56]. However, THz imaging has some issues that will have to be 
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eventually solved, such as the cost and processing complexity because it requires 

special power sources. The recent introduction of near infrared radiation source, has 

helped to bring the cost of such systems down below 50K Euros [57]; The most 

significant limiting factor of the capabilities of THz imaging at stand-off range (3m to 

100m) is the atmosphere which causes attenuation and turbulence to the waves [58]. 

Proper guidelines for using these imaging systems have to be finalised and put into 

action, as they might be harmful at some specific conditions of exposure [59] or have 

legal implications; i.e. with respect to the privacy invasion issue because THz can 

penetrate clothes. In [60], continuous THz wave has also been used in an imaging field. 

However, the speed of the imaging process requires improvement for security screening 

applications. To increase the imaging speed, the authors proposed a fast continuous THz 

imaging system, in which a galvanometer is introduced. The galvanometer makes the 

beams reflected in different angles by vibrating at a certain frequency, which 

significantly can decrease the image acquisition time compared to traditional continuous 

THz imaging system; ideal results of better resolution are obtained too. 

2.3.4  Infrared imaging  

Infrared (IR) imaging is another commonly used detection system for military 

purposes. Such applications include target acquisition, surveillance, night-vision, 

homing and tracking. Human bodies, as well as any other material, emit radiation 

provided that they are at a temperature above 0 °K. The wavelength of the radiation 

peak is dependent on the temperature of the body, and the total power emitted from the 

body is dependent on the size and emissivity of the body. Most infrared sensors are 

designed to have peak sensitivity near the peak emission wavelength of the human 

body, which is 10 µm. This technology is normally used for a variety of night-vision 

applications.  

IR radiation emitted by people is absorbed by clothing. This absorbed radiation heats 

the clothing and is then re-emitted by the clothing. Consequently, the image of a 

concealed weapon will be blurred, at best, assuming that the clothing is tight and 

stationary. For normally loose clothing, the emitted infrared radiation will be spread 

over a larger clothing area, thereby significantly decreasing the ability to image a 

weapon. The difficulty in observing an infrared signal of a concealed weapon becomes 

worse as the weapon temperature approaches that of the body [61]. In [62], the 

researcher used a passive and non-intrusive IR imaging scanning method, combining it 

with a visual image to devise a scheme that was not only able to highlight sufficiently 

http://en.wikipedia.org/wiki/Target_acquisition
http://en.wikipedia.org/wiki/Night_vision
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the presence of a concealed weapon, but also protect the privacy of the person that is 

being scanned. The work was mainly based on various image processing and computer 

vision techniques, including image registration and image fusion using the wavelet 

transform and image segmentation. The experimental results are demonstrating some 

limitations in terms of hardware used, adopted techniques and implementations. 

Examples of thermal images are shown in Figure 2.10.  

More complete information can be obtained by fusing IR and its corresponding 

passive MMW image data or electro-optical image, the information can then be utilized 

to facilitate CWD, as can be seen from more information delivered in the next section. 

 

Figure 2.10: Comparison of thermal images and their respective visual images [63]. 

2.4 Other Metal Detection Approaches 

Several technologies are currently used and applied for metal detection in different 

imaging applications. 

2.4.1  Wide area metal detection 

Wide area metal detection (WAMD) is the extension of 3DSMF used in applications 

from UXO detection to crowd screening for gun and knife inspection [26, 27]. The 

structure of multiple aligned wires simulating the conducting sheet affords the HMF 
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covering a large area. The differential configuration of sensors for field sensing makes 

the WAMD capable of capturing the field response from metals at larger distances from 

the transmitters. A concept system is illustrated in Figure 2.11. 

 

 

Figure 2.11: Concept illustration of the WAMD system [26]. 

The WAMD system is integrated with CCTV surveillance to monitor a crowd of 

people in a wide-open area. WAMD constitutes the detection and characterisation of 

metals carried and concealed in luggage and clothing. In the presence of metallic 

objects, the WAMD alarm is triggered, when the measured signals or pulse decay match 

for those weapons within the database. Subsequently, CCTV surveillance localises and 

tracks the suspect for further interrogation. 

2.4.2 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) has been used as a powerful inspection tool in 

medical science. The MRI system normally consists of three gradient coils for the 

generation of a 3D magnetic field (up to several Tesla) in the body. This magnetic field 

interacts with the nucleus of atoms in the body, which is in turn detected by a 

microwave probe using pulse microwave excitation scanning over the body. Different 

nuclei behave differently when exposed to the pulsed 3D magnetic field and thus 

produce various resonances (energy absorbance), which produces a distinct output from 

the microwave probe. Even though in medical surgery MRI is conducted in the absence 

of any metals for health and safety issues, it can be seen that MRI can be used for 

weapon detection, especially those that are concealed on the body. A metallic weapon 
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results in a void in the MRI images. Figure 2.12a exhibits a typical MRI system in 

medical science. Figure 2.12b shows an MRI image containing a metallic item in the 

brain, the metallic item causes void in the MRI image, which indicates that the use of 

MRI for the detection of weapons is achievable [11, 43]. 

 

 

Figure 2.12: a) picture of an MRI system; b) an MRI image showing a metal implant 

(white void) in the brain [11, 43]. 

2.4.3 Acoustic and ultrasonic detection  

The detection of weapons using acoustic and ultrasonic detectors is dependent on the 

acoustic/ultrasonic reflectivity of materials that make up an object, as well as the shape 

and orientation of the object. Hard objects provide a high acoustic/ultrasonic 

reflectivity, while soft objects provide small reflectivity. The important detection 

parameters for these technologies are size of the target, diameter of the detector antenna, 

wavelength of the wave emitted, and the emitted power. Ultrasonic detectors operate 

from 40 kHz to frequencies well below 1 MHz, because of the increasing attenuation at 

higher frequencies.  

Ultrasonic (high frequency) detectors [63] have problems penetrating thick clothing, 

whereas acoustic (low frequency) detectors can propagate more easily through clothing 

and “see” a concealed object. Conventional acoustic and ultrasonic based detectors are 

sensitive to hard objects in general, and therefore they cannot differentiate between 

weapons and harmless objects. Consequently, devices based on these technologies 

produce many false-positive detections. From the combination of the ultrasonic/acoustic 

approach, a nonlinear acoustic method for WD has been developed [64]. Figure 2.13 

a) b) 
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shows the principle of the ultrasonic/acoustic technique. This technology uses the 

ultrasonic beams of frequencies f1 and f2 to project sound onto a small area of a person 

at a distance and converts the energy probed from ultrasound into audio frequencies. 

The nonlinear interaction in the mix zone produces the frequencies: f1, f2, f1-f2, and 

f1+f2. The frequency difference f1-f2, tuned in the audio range, is used to interrogate the 

subject with a beam that is able to penetrate clothing. Parametric acoustic arrays [65] 

can be used to produce nonlinear acoustic effects where the detection of a concealed 

weapon can be based on signatures. The nonlinear acoustic method for WD uses 

correlation algorithms to perform pattern matching and classification techniques to 

display the nature of a hidden weapon. In general, this technique is harmless because: it 

does not involve ionising radiation, it is sensitive to metals and non-metals, and it is 

able to penetrate clothing [63]. However, fast scanning is required for ultrasonic beams 

in order to find and focus on a target.  

 

Figure 2.13: Concept showing crossed beam ultrasonic nonlinear acoustic generator for 

the CWD. Practical design considerations include parametric or crossbeam mixing to 

generate the acoustic probe [65]. 

2.4.4 Electromagnetic resonances  

This is an active technique that uses EM resonance as a fingerprints or signature to 

distinguish weapons and nuisance objects. EM resonances in the objects are determined 

by its size, shape, physical composition. These resonances occur over the range between 

200 MHz and 2 GHz.  The detector uses radar to sweep through this range of 

frequencies and record the resonant response.  The radar return, or resonance based 

scattering, exhibits some features that make it attractive for object identification 

schemes such as: scattering return, which is larger in the resonance region; natural 
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resonances, as seen in the scattered return, which are independent of the orientation of 

the object; some natural resonances can characterise an object over a large frequency 

band; an object’s resonance pattern can uniquely identify it within a class of objects.  

To induce a resonant response in an object, it is necessary to illuminate it in the 

frequency band of the natural resonances [66]. Figure 2.14 shows the radar cross section 

of a sphere, where the radius as a function of its circumference is measured in 

wavelengths. The figure shows that radar cross section increases as a fourth power of 

frequency and sixth power of radius. When the circumference length is between 1 and 

10, the wavelengths in the radar cross section exhibit oscillatory behaviour with several 

peaks, which correspond to the natural electromagnetic resonance of the sphere [29].  

 

 

Figure 2.14: Enhancement of radar cross section in the resonance region [29]. 

The theory of operation of this method begins with the target space illuminated by 

either a pulse or swept frequency source. The signal reflected by objects in the target 

space provide an electromagnetic signature (EM resonance), a unique spectrum for each 

object. The object signatures are then compared to known signatures so as to determine 

whether or not any of the objects within the target space are threat items [11]. Neural 

network processing is used to classify the difference between weapons and harmless 

objects [67]. The person carrying the object will also exhibit a unique electromagnetic 

signature, which must be subtracted from the composite person-object signature. 

Benefits of this method include: an operational approximate range of 6 m, allowing the 

detection of concealed weapons, even if they are behind a human body, operational 

power that is at a safe limit power for human exposure, and does not invade the privacy 

of individuals. The problem found with this technique is the noise corresponding to the 
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signature of people. Signatures of individuals vary from one person to another and also, 

they vary when a weapon is present. Unfortunately, the signature of an individual with a 

weapon is very similar to one without a weapon, and so there is a problem with 

classification and a high rate of false alarms.  

2.4.5 Combining different sensors for security monitoring  

Imaging techniques based on a combination of sensor technologies and processing 

will potentially play a key role in addressing the problem of threat object detection. The 

combination or fusion between multiple EM sensors is essential for the improvement of 

weapon and gun detection. Throughout the literature, different EM sensors have been 

combined over the past 10 years [11, 43, 50, 62, 68, 69]. The technology of sensor 

fusion is a research area that is growing rapidly due to the fact that it provides means for 

combining pieces of information coming from different sources/sensors, resulting in 

enhanced overall system performance (improved decision making, increased detection 

capabilities, diminished number of false alarms, improved reliability in various 

situations at hand) with respect to separate sensors/sources. As an example, by fusing 

passive MMW image data and its corresponding IR or electro-optical image using CCD 

camera, more complete information can be obtained; the information can then be 

utilized to facilitate concealed weapon detection. In [43], fusion of an IR image 

revealing a concealed weapon and its corresponding MMW image has been shown to 

facilitate extraction of the concealed weapon. In addition, fusion of a CCD image and its 

corresponding MMW image facilitate recognition of a concealed weapon by locating 

the person hiding the object. If either one of these two images alone is presented to a 

human operator, it is difficult to recognize the weapon concealed underneath the 

clothing. If a fused image is presented, a human operator is able to respond with higher 

accuracy. This demonstrates the benefit of sensor fusion for the CWD application, 

which integrates complementary information from multiple types of sensors. 

Recently, a new system has been tested in a US laboratory called Future Attribute 

Screening Technology (FAST). FAST relies on non-contact sensors, so it can measure 

attributes as someone walks through a corridor at an airport. Also, it does not depend on 

active questioning of the subject. The system measures pulse rate, skin temperature, 

breathing, facial expression, body movement, pupil dilation, and other psycho 

physiological/behavioural patterns to stop unknown terrorists [70]. 

The system, based on: a remote cardiovascular and respiratory sensor to measure 

heart rate and respiration, a remote eye tracker, thermal cameras that provide 
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information on the temperature of the skin in the face, a high resolution video for 

assessing facial expressions and body movements, and an audio system for analysing 

changes in voice. This system is expected to scour crowds looking for unusual 

behaviour. These techniques are deployed with the aim of identifying people who 

should be approached and quizzed by security staff, as can be seen in Figure 2.15. 

 

Figure 2.15: Concept illustration of a FAST system [71]. 

The project hopes to advance a security system that monitors people for 

unintentional facial twitches, called “micro-expressions”, which can suggest someone is 

lying or trying to conceal information. The new mobile units transmit data to analysts, 

who then use a system to recognise, define and measure seven primary emotions and 

emotional cues that are reflected in contractions of facial muscles. The results are then 

transmitted back to the screeners. The FAST system has been installed and tested at an 

airport and has shown to be 78% successful [70]. Figure 2.16 shows a snapshot from the 

new FAST system. 

 

Figure 2.16: Snapshot from the new FAST system 
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2.5 EM Signal and Image Processing for Threat Object Detection  

Manual screening procedures for detecting concealed weapons such as handguns, 

knives and explosives are common in controlled access settings such as airports, 

entrances to sensitive buildings and public events. It is sometimes desirable to be able to 

detect concealed weapons from a standoff distance, especially when it is impossible to 

arrange the flow of people through a controlled procedure. The development of 

automatic detection and recognition of concealed weapons systems is a technological 

challenge, which will require innovative solutions in sensor technologies and image 

processing. This problem also presents challenges in the legal field that, a number of 

sensors based on different phenomenology, as well as image processing support, are 

needed to observe objects underneath people’s clothing. Before an image or video 

sequence is presented to a human observer for operator-assisted weapon detection or fed 

into an automatic weapon detection algorithm, it is desirable to pre-process the images 

or video data to maximize their exploitation. 

The image processing procedures that have been investigated for CWD applications 

range from simple de-noising and feature extraction, to automatic pattern recognition 

and classification [71]. An image processing architecture for CWD is shown in 

Figure 2.17.  

 

Figure 2.17: Image processing architecture for CWD. 

It would be impossible to discuss the entire signal processing techniques for weapon 

detection, because the processing algorithms vary according to the detection techniques 

and the applications. However, this section provides a general picture of what has been 

achieved within this research field. 
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2.5.1 Threat object detection signal processing  

WD images come with background noise and clutter, which directly lower the 

probability of detection. The sources of noise can be divided into two categories: 

inherent and environmental. Inherent noise includes such things as sensor electronic 

offsets. Environmental noise includes induced electrical noise and stray dynamic 

magnetic fields caused by nearby moving objects. Digital filters with proprietary pole 

and response functions are used to further condition the raw data [72]. Lee et al. [73] 

proposed a method to simultaneously suppress noise and enhance objects for passive 

MMW video sequences. They adopted an un-decimated wavelet transform to achieve 

enhancement via multi-scale edge representation. A motion compensated filtering was 

applied for temporal de-noising.  

Ramac et al. [74] employed the grayscale morphologic filtering technique to remove 

the clutter and spots in IR and MMW images. This clutter refers to the irrelevant details 

such as shadows, wrinkles, and artefacts. Xilin et al. [75] used the NL-means algorithm 

to remove the noise from THz images, because it is asymptotically optimal under a 

generic statistical image model. In addition, they found the anisotropic diffusion 

algorithm to perform very similarly for terahertz images. The results of the two de-

noising algorithms are provided in the research. Slamani et al. [76] proposed a mapping 

procedure consisting of three stages. The first stage is threshold computation, which 

segments the original image into a number of binary scenes. A low-pass filer and a 

high-pass filter are used to group pixels and detect edges for each scene in the second 

stage. At the third stage, a composite is obtained by summing all the processed sub-

images together. This procedure actually accomplishes a clustering of pixels with 

common features that will directly affect the systematic performance.  

Image fusion techniques have also been used to combine more than one EM sensor 

for CWD purposes [43, 68]. The pixel-level image fusion will retain salient features, 

irrespective if these features are relevant or not. Such prominence will be presented in 

the final fusion result. Another critical issue that should be addressed is image 

registration which aims to ensure that each pixel from different images corresponds to 

the same physical point on the object so that the images can be compared or operated 

upon the original images.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Xilin%20Shen.QT.&newsearch=partialPref
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2.5.2 Feature extraction techniques for threat object detection 

Feature extraction is a general term for the process of transforming a large input data 

set into a reduced representational set of features, which are still able to describe the 

input data with sufficient accuracy. In order to achieve effective pattern recognition, two 

types of features are normally required: features having physical meaning and features 

without physical meaning [77]. For example, geometric features such as shape, size and 

position of the pattern are considered to be features with physical meaning. Features 

extracted from the same image, but based on the statistical understanding of the image 

fall into the second category. 

Advanced signal processing algorithms have been used to analyse changes in the 

magnetic field change that are generated when a person passes through a portal. Pattern 

recognition and classification techniques can calculate the probability that the acquired 

magnetic signature correlates to a known database of weapon versus non-weapon 

responses. Also, extracting distinctive features from the EM signal is imperative for the 

proper classification of these signals [78, 79]. Feature extraction techniques involve the 

transformation of the input image into a set of features. In other words, feature 

extraction is the use of a reduced representation and not the full representation of an 

image, in order to solve pattern recognition problems with sufficient accuracy. 

One common method for metal detection and classification is to extract or generate 

features from the EM signal to represent the possible targets of interest. Feature 

extraction using time-frequency analysis has been used for stationary targets of 

backscattered signals, where features are extracted from the scattered field of a given 

candidate target, from the joint time-frequency plane. These features are then fused 

using the Principal Component Analysis (PCA) to obtain a single characteristic feature 

vector that can effectively represent the target of concern [80]. Joint time frequency 

analysis was used to overcome the limitation of using the Fourier series to represent the 

EM signals, which requires an extremely high number of sinusoid functions. The 

sinusoid function provides a feasible way of computing the power spectrum for an EM 

signal, which serves as a unique fingerprint for the CWD response to various targets 

(such as weapons and cell phones) [72].  

Time-frequency analysis using Fourier and wavelet transforms (WT) have been used 

extensively for signal representation. The WT has been used to represent time series 

data, such as ECG waveforms and mine signal detection [81-83], and can be thought of 

as an extension of the classic Fourier transform, except operating on a multi-resolution 
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basis. The results obtained from [84] verify that the continuous wavelet transform based 

technique produces features that are suitable to detect and identify signal data of 

metallic targets in laterite soil environments. 

Shape is one of the most prominent features of any object. Many researchers have 

tackled the problem of object detection and classification using object shape features 

with different tools such as invariant moments, Fourier descriptors, Hough transform 

and shape matrices to extract shape characteristics [85, 86]. The invariant moment’s 

method is widely used in feature extraction, since it is rotation, scale, and translation 

invariant. Objects can be detected with a classification of over 90% accuracy, after 

producing a set of invariant moments feature vectors in certain systems [87]. In [88] 

invariant moments have been used to identify the shape of a hand gun to classify objects 

into weapon and non-weapon objects, in which the researchers obtained an accuracy 

rate of up to 96%. In [89],  the author reported three different shape recognition 

methods: invariant moments, Fourier descriptors and compactness (which is provides a 

measure of contour complexity versus area enclosed). In the first stage, several shapes 

are extracted from known weapon and non-weapon images. Each shape is run through 

the three algorithms and three dimensional numbers are obtained, such that each shape 

is represented by a three dimensional vector. The vectors that were obtained from the 

eight known weapons are grouped in one reference named as Libarary1, which is 

shown in Figure 2.18, and the other shapes (squares and circles) are grouped as 

Labrary2. During the second stage of a newly extracted shape image with unknown 

origin, the three algorithms are executed and the shape is characterised by a three 

dimensional vector. The Euclidean distances between the new sample and each sample 

of the reference libraries are computed, where the shortest distance determines the class 

of the new image. 

 

 

Figure 2.18: Typical shape in the weapon library. 
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Statistical techniques have been used as feature extraction methods to detect and 

classify metal objects. Throughout the literature, PCA has been used as a feature 

extraction tool [80, 90]. PCA is a multivariate statistical analysis method that transforms 

data into uncorrelated eigenvectors, or principal components, corresponding to the 

maximum variability within the data. PCA is also used to optimise and reduce the 

amount of redundant data, providing a convenient way to normalise the object in terms 

of translation and rotation [77]. In [91], PCA was used to propose detection and 

recognition in real-time of a concealed object with passive MMW imaging. A feature 

vector is extracted after PCA, which is invariant to scale and orientation, and tolerant to 

distortion. The decision rule is based upon the feature vectors and Euclidean distance 

technique to classify between handguns and steel plate. Edge chain code is used as a 

reinforcement feature technique for edge detection in the image field [92]. It can also be 

applied to features for representing objects in images [93]. 

Cross correlation techniques can be used as useful features for metallic object 

detection and characterisation. In [36] the authors designed  a system working within a 

range of 1 to 14 GHz for gun detection, using this portion of the microwave frequency 

spectrum. The cross correlation between coherence polarisation and cross-polarisation 

RF returns are used to distinguish between different objects. Cross correlation 

techniques haves been applied from [94] [95], where the authors of EM signal transient 

responses derive their work from a series of EM images based upon defect 

characterisation and metallic object classification respectively.  

Examples of other features extracted from a metal detector include: the signal 

amplitude that represents a material feature in order to obtain the properties of the 

objects under test [79], the key model parameters associated with fitting a Gaussian 

approximation to the input data [69], and the morphological / statistical properties and 

significant raw data values of target signatures in the input data [96]. Some extraction 

techniques that do not produce a set of features but instead attempt to model the input 

data associated with target signatures, are methods such as: electromagnetic induction 

spectroscopy [97], Kalman transform based using data array [98] and the phase loop 

representation [99].  

2.5.3 Threat object classification techniques  

After pre-processing, the images can be displayed for operator-assisted weapon 

detection, or they can be analysed with a weapon detection module for automated 

detection and classification. Artificial neural networks (ANN) are widely used in pattern 
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recognition and classification, since they do not require neither any information about 

the probability distribution nor a priori probability of different classes [100]. ANNs 

have applications in distributed information storage, parallel processing, reasoning, and 

self-organization. They also have the capability of rapid fitting of nonlinear data, so 

they can solve many problems that are difficult for other methods [101]. In [102], the 

authors presented a neural-network-based scheme for metal target detection and 

classification. A single-layer network trained using the recursive least square learning 

rule was employed in six different optical bands for performing feature extraction and 

detection/classification tasks. Simulation results on six different optical bands were 

provided, which indicated the effectiveness of the proposed schemes. It was shown that 

the use of a neural network in multispectral wavelengths provided a useful tool for 

target detection and classification. In [78], a case study to classify a metal detector 

signal for automated target discrimination was conducted. Two different network 

strategies were applied to classify metallic object signal data with ANN. These results 

indicated that ANNs provide a vital role for improving the performance of the 

classification. In [88], probabilistic an ANN classifier was used to classify the extracted 

weapons candidate regions into threat and non-threat objects. The proposed framework 

was evaluated against a database consisting of real images and data of various weapons, 

with different sizes and types of gun, where a high accuracy rate was achieved. In [103], 

an ANN was used to differentiate between different target types of handguns in MMW 

images. A combination of techniques was presented that enabled handguns to be 

effectively detected at standoff distances. The using of late time responses allows non-

threat objects to be distinguished from handguns. Information regarding the optical 

depth separation of the scattering corners, as well as the degree and shape of the cross 

polarisation, enable a neural network to successfully detect concealed handguns in the 

research. 

In [91], the author used a simple classification procedure to detect and classifay hidden 

objects from MMW images based on Euclidean distance. A decision rule classified an 

unknown object into one of trained classes. The decision rule is based upon the Euclidean 

distance between feature vectors. Andrews et al. [104] have presented a technique of 

sweeping using  MMW to detect concealed items, where ANNs have been used with the 

extracted information to detect conceald objects. 

Recently, other machine learning methods have been used, such as the support vector 

machine (SVM). The SVM is a concept in statistics and computer science to derive a set 
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of related supervised learning methods, which analyse data and recognise patterns used 

for classification and regression analysis [105]. In [106], the authors revisit an 

attractively simple model for EM induction response of a metallic object using SVM, to 

train and produce reliable gross characterisation of objects based on the inferred tensor 

elements as discriminators. The researchers are focusing on shape and size to evaluate 

the classification success of different SVM formulations for different types of objects. 

Consequently, they noticed that SVM has an inherent limitation, in that it takes a very 

long time to determine an answer in some instances. The other limitation is that the 

capacity of the SVM and the width of its kernel are adjustable parameters, which should 

be fixed in certain scenarios. In [107], the problem of classification metallic objects 

using their EM induction response was proposed, by decomposing that response into 

coefficients and then using an SVM and an ANN to process these coefficients. The 

performance of each method was also compared, since it demonstrated that there was no 

simple relationship between the size of the objects and the overall magnitude of their 

coefficients, so learning algorithms were necessary for the classification of these 

objects. When trained with all types of objects, both the ANN and the SVM were able 

to classify all of the objects with a reasonable degree of accuracy. In [108], SVM was 

used to detect and classify metallic UXO. The classifier ran by itself and did not require 

any human intervention. The SVM can be trained very quickly, even when the feature 

space has more than 20 dimensions, and it was a simple matter to add more training data 

on-the-fly. The authors stress that none of the classifications yielded false negatives: all 

UXO were identified correctly in every instance. 

2.6 Summary and Problems Identified 

The first part of this chapter reviews the sensor technologies currently being used for 

the metal and weapon detection application. Several of the systems are based upon 

electromagnetic, acoustic or ultrasonic-wave technologies. A critical issue raised is the 

challenge of performing detection and classification at a close distance with high 

probability of detection and low probability of false alarm. Also, the systems 

performance relies highly on the operator decision. All approaches show the advantages 

and disadvantage in the operating range, material composition of the weapon, 

penetrability, and attenuation factors. It is clear that no single technology can meet all 

the requirements for a comprehensive CWD system.  
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The second part of this chapter provide a survey of the previous image processing 

techniques being developed to achieve better weapon detection. Specifically, topics 

such as image enhancement, feature extraction and fusion, and classification methods 

were reviewed. The progresses in signal processing and artificial intelligence techniques 

have allowed the object classification to be carried out precisely, which automate the 

process and make it more reliable, as it is not a subjective analysis.  

Through literature survey, the high risk aspects of the problem have been identified 

as: 1) Detection sensitivity in unconstrained environments; 2) Metallic object 

identification; 3) Multiple object separation; 4) Signal processing and feature extraction 

and; 5) Automatic object classification. 

To minimise the risks, proposed mitigation methods can be summarised as follows 

 The new system should provide accurate detection results not only in the lab, 

but also in noisy, real world environments (with electronic devices, metallic 

structural components, surrounding buildings, etc.); the system should 

quickly make decisions with low false-alarm rate, and be capable of 

discriminating and identifying multiple objects in close proximity. 

 The system should have no ‘side-effects’ regarding health and safety issues. 

Among all of the pervious methods, we choose to develop a detection system 

based upon induction phenomena, since it is safe to human body and require 

cheap equipment, albeit that it provides imprecise detection and it is hard to 

handle.  

 To improve the detection sensitivity and signal-to-noise ratio, a high current, 

narrow pulse excitation source should be used. The narrow pulse excitation 

source will allow a high peak field value while retaining a comparable RMS 

field strength to current designs. Unlike current pulsed metal detection 

systems, where only the decay time of the signal is measured, the developed 

system will take advantage of more sophisticated signal analysis techniques 

extended from our team pulsed EC work.  

 The system should be able to; detect non-stationary and small objects;  

discriminate threat objects (e.g. guns and knives) from non-threat objects 

(e.g. keys, drinks cans and mobile phones); be capable of decision making for 

different object combinations with threat and non-threat items (e.g. mobile 

phones close to guns). 
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 A rich metallic object database and their characteristics will be established 

and analysed for our feature extraction, selection and system evaluation, in 

collaboration with London Metropolitan Police. 

 The project aims also to build an open platform, which can integrate other 

modality sensing and imaging e.g. CCTV, thermal and radar images to 

overcome the fact that current approaches are more sensitive to magnetic 

volumes than fine structural and material characteristics due to limitations of 

detection distance. 

 To address the issue of multiple object separation and different object 

orientation, the following techniques will be applied: (1) optimisation of 

sensor array specification involving sensor sensitivity and spatial resolution; 

(2) correlation of amplitude and time features of pulse field responses; (3) use 

invariant feature extraction techniques, e. g. invariant moments. 

 To address the automatic object classification issue, several feature extraction 

techniques will be applied and investigated to select proper features to use 

them with classifiers for a best classification rate can be achieved. 

In the following chapter, new system designs and signal processing methodologies 

are investigated in relation to these challenges. 
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Chapter 3: GMR Electromagnetic Imaging System: Design 

and Implementation 

The comprehensive literature survey carried out suggests that more research work 

on threat object detection systems and their signal analysis are still required in the field 

of security applications. This chapter details the design and implementation of a new 

metallic object detection system, utilising an array of GMR sensors in conjunction with 

pulsed excitation to develop a new WTMD for deployment in unconstrained 

environments, i.e. without users divesting themselves of metallic items. System 

hardware was supported with a graphical user interface (GUI), which enabled a two-

dimensional image to be constructed from measured backscattered signals, to be used 

later in image processing for object identification and classification purposes are 

developed.   

This chapter is organised as follows: section 3.1 discusses the fundamentals of a 

WTMD. Section 3.2 presents the new system design and the underlying development 

steps. Data acquisition and pre-processing is detailed in section 3.3, with the formation 

of the two-dimensional image. Section 3.4 explains the GUI development for the 

system, while section 3.5 summarises the chapter. 

3.1 Fundamentals of Walk-Through Metal Detector 

WTMDs are an integral part of airport security surveillance systems and 

government buildings. Most of these metal detectors use the EM signal variations as a 

mean to detect metal. Any modern WTMD comprises mainly of a transmit panel 

(transmit coil), a receive panel (receive coil), and an excitation method. The magnetic 

field produced by a source will interact with a nearby object. The type and strength of 

these interactions depends on: 

• Type of material that the object is made of 

• Size and shape of the object 

• Orientation of the object in the magnetic field 

• Speed of the object through the magnetic field. 

Most WTMD units use active EM techniques to detect and classify metal objects. 

An active EM field, in this instance, means that the detector sets up a field using a 

source coil, where the field is used to probe the environment. The primary (applied) 
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field induces EC in the metal under inspection, which in turn generates a secondary 

magnetic field that can be sensed by a detector coil. The rate of decay and the spatial 

behaviour of the secondary field are determined by the target’s electrical conductivity, 

magnetic permeability, shape, and size. Sets of these measurements can be then taken 

and used to identify the objects. 

The following subsections discuss the basics of electromagnetic imaging and 

specification used in WTMD. 

3.1.1 Theory of Electromagnetic Imaging Systems 

The EM response of a material can be obtained by solving Eq. 3.1: 

    
  

  
           3.1 

where     is the curl of electric field,   is time,  and   is the magnetic flux density. 

The electric displacement and magnetic field are introduced solely as a matter of 

convenience when considering polarisable and magnetisable materials. The magnetic 

field   is related to   through the magnetisation   (Eq. 3.2): 

  
 

  
   ( )           3.2 

In this equation,    is the permeability of vacuum and M is explicitly written as a 

function of H. In the material, the magnetization vector M is defined as the average 

magnetic moment per unit volume. It is thus suitable to visualise the magnetisation of a 

material as being from an assembly of magnetic dipoles. If these dipoles are distributed 

evenly throughout the material, the material is consistently magnetised. For a 

nonmagnetic material, such as copper, there is no magnetisation (M=0) and thus, the 

magnetic flux density and the magnetic field are related by Eq.3.3. 

                  3.3 

where    is the relative magnetic permeability of the target and    is the 

permeability of vacuum. 

The functional relationship of the magnetisation with the magnetic field, M (H), 

helps classify the three main classes of magnetic materials: diamagnetic, paramagnetic 

and ferromagnetic. The magnetic field at any point around the magnetic source is 

governed by the Eq. 3.4, 3.5 and 3.6 [109]: 
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The magnetic field produced from the objects will use the same equation but with 

equations 3.4, 3.5 and 3.6 multiplied by the relative permeability     . 

The type of magnetic field generated by an excitation coil is that of a pulse induction 

field. Pulse induction detectors typically produce a transmitter current, which is turned 

on for a time and then turned off. The decaying field generates pulsed ECs in the target, 

which are then detected by analysing the decay of the pulse induced in the receiver coil. 

Conductive objects show a unique time-decay response. The pulse induction technique 

detects metal objects by calculating the time-decay response of the pulse induced in the 

receiver coil [26].  

Figure 3.1 illustrates the concept of magnetic inductive metal detection methods, 

using the received signals for each position. The figure shows a change in decay rate of 

the signal received by the pulse induction detector with respect to the reference signal 

when passing over a metal object at position 10. The magnetic field produced by a 

source interacts with a nearby conductive object. The type and strength of this 

interaction depends on several parameters such as: the type of material that the object is 

made of, the size and shape of the object, the orientation of the object in the magnetic 

field, the speed of the object through the magnetic field, and the distance between the 

sensors and the object. All of these parameters should be taken into account when 

designing a system, so as to detect and discriminate between threat items [11]. 

 

 

Figure 3.1: Pulse induction metal detection. 
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In this work, a WTMD from CEIA Company was used, which is widely used in UK 

airports. Details of this device will be presented in next section. 

3.1.2 Specifications of CEIA System 

A thorough investigation of the Construction Electronics Industrial Automation 

(CEIA) walkthrough arch, donated by the London metropolitan police (shown in 

Figure 3.2) has been undertaken to ascertain: the mode of operation, the excitation and 

pickup coil configuration, and the signal processing techniques. The operation of the 

CEIA arch is simplistic in terms of object detection, as the arch simply beeps when a 

metallic material passes through it; there is no indication of the type of metal or location 

of the metal. 

 

Figure 3.2: a) CEIA walk through metal detection arch [4], b) Measurements of CEIA 

arch in the laboratory. 

In order to ascertain and understand the coil configuration, electromagnetic and X-

ray investigations of the arch panels were carried out, yielding the result shown in 

Figure 3.3. It can be seen from the X-ray image in Figure 3.3a and b that there is a 

network of coils, criss-crossing the panel, measurements with a magnetic field sensor 

indicated that the wires were organised as two coils with current flow shown in 

Figure 3.3c. The use of multiple, overlapping trapezoid (parallelogram) shaped 

excitation and receive coils are described in a number of metal detection patents. The 

advantages of such coil configurations are described as [110, 111]: 1) They allow 

detection of objects orientated in any direction through a multi-axis excitation field, 

unlike loop coils, where excitation is predominantly along one field axis. 2) The design 

a) b) 
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of the coils can be configured to vary sensitivity along the height of the detector to 

optimise sensitivity in the most security aware areas. 3) The interaction of the coils can 

be designed to maximise sensitivity to the horizontal field component. This can be 

achieved by reinforcing fields in the horizontal plane and partially cancelling fields in 

the vertical plane, helping to cancel potential sources of noise from underneath the 

detector. 

 

Figure 3.3 : X-ray image and predicted configuration of: a) Tx and Rx panel, b) Panel’s 

measurements, and c) Coil configuration deduced from EM measurements. 

a) 

c) 

b) 
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Further investigation of the arches revealed that they operate in a transmit-receive 

configuration, with two overlapping transmit coils in the left panel and two mirror 

image receive coils in the right panel. The two transmit coils operate at different 

frequencies, 3.42 kHz and 3.72 kHz. The primary purpose of the coil configuration 

suggest that the two mirror image pairs of coils are coupled by differing excitation 

frequencies, thus the sensitivity of the arch to objects in different positions can be 

tailored to the desired application. Object detection is accomplished through the 

integration of the signals from the two receive coils, leading to an increase in amplitude 

at the integrator output when an object passes through the arch. Simple thresholding is 

applied to the integrated signals to trigger the alarm. 

The strengths of the CEIA system include the ability to vary sensitivity to objects in 

different human body parts. The major limitation of the system is its inability to 

discriminate between different materials or provide any kind of identification or 

characterisation of the objects detected.  

3.2 Proposed System Design and Principles of Operation  

In this section, a description of the detection system will be detailed with their 

capturing condition. 

3.2.1 Giant magneto-resistance sensor 

The GMR is one of the most fascinating discoveries in thin-film magnetism, which 

combines both technological potential and deep fundamental physics. In 1988, Baibich 

et al. discovered giant negative magneto-resistance in Fe/Cr multilayers, in which the 

interlayer exchange interaction causes antiferromagnetic alignment of adjacent Fe layers 

[112]. Like other magneto-resistance effects, GMR is the change in electrical resistance 

in response to an applied magnetic field. Baibich’s group discovered that the application 

of a magnetic field to a Fe/Cr multilayer resulted in a significant reduction of the 

electrical resistance of the multilayer. In fact, the resistivity changed by as much as a 

factor of two. This effect was found to be much larger than either ordinary or 

anisotropic magneto-resistance, earning the new title “giant magneto-resistance” or 

GMR. 

The use of GMR technology for magnetic sensing appears promising due to the fact 

that it has a high sensitivity within a wide frequency range while an extremely low 

power and cost, and a collective manufacturing process, which facilitates the 
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construction of large array probes [113]. The GMR sensor, which is one of the families 

of solid state magnetic field sensors, is made of several ferromagnetic metallic thin 

films that are separated by thin nonmagnetic layers. When these layers are subjected to 

a magnetic field, the resistance can be reduced significantly (see Figure 3.4). The wide 

spectrum response and high sensitivity of these GMR sensors are of particular interest 

in EC inspection. With its small dimensions, the usage of GMR sensors can also give a 

high spatial resolution for defect detection. Smith et al. reported the technology of 

fabricating GMR sensor-arrays that are promising for EC testing [114]. A 2D array of 

GMR sensors can be built to form a magnetic imaging plane [115], which would 

provide an image of a relatively large area in a single sweep, with high resolution and 

without the need to scan the probe. The potential of using sensor-arrays for pulsed EC 

(PEC) imaging provides ways to obtain more information about defect location and 

geometry, in addition to rich depth information. With the construction of more 

sophisticated array arrangements, the imaging technique can provide more reliable and 

faster inspection results for defect characterisation, assessment and reconstruction of 3D 

defects [116]. 

 

Figure 3.4: GMR senor layers 

3.2.2 Pulsed excitation current 

The EC technique has been shown to be one of the most effective techniques for the 

detection and characterisation of conductive samples. This technique is based on 

inducing electric currents in the material being inspected and observing the interaction 

between those currents and the material. The induced ECs are essentially a circulating 

current generated by the electromagnetic coils and monitored simultaneously by 

measuring the electrical impedance of the coil. When an alternating current is applied to 

the test coil, a primary magnetic field is established in an axial direction around the coil. 



  

46 

 

As the coil approaches an electrically conductive material, the alternating magnetic field 

interacts with the test object material, causing a circular electrical current to flow in the 

object as predicted by Faraday’s law. This electrical current then creates its own 

secondary magnetic field, which is at all times, opposite in direction and opposing the 

coil’s magnetic field, in accordance to Lenz’s law. The interaction between the 

magnetic field generated by the coil and the magnetic field generated by the ECs, is 

monitored by pick up coils to give an indication of objects size, shape, or any variations 

in the material’s properties [117]. 

The excitation frequency for EC testing is selected based on the material of each 

object to be detected. In obtaining the best sensor response, the sensor must induce the 

greatest EC density in the sample to be tested [118]. The oscillation is sinusoidal and 

may range from several Hz up to several MHz. The effectiveness of conventional single 

frequency EC is limited to the identification of only one or two test conditions [119].  

In order to counteract some of the limitations of single frequency EC, the pulsed EC 

(PEC) technique has been introduced. PEC is currently an emerging technology in EC. 

This technology is based upon pulsed excitation current, providing new perspectives for 

the detection and the characterisation of the test sample. It measures the transient 

response of the magnetic field instead of the impedance and reactance of coils used in 

conventional EC testing [120]. In recent years, PEC has gained attention in different 

application [118] and extensive research has been performed in the area thanks to its 

wideband spectrum excitation that is an improvement to the multi-frequency techniques. 

3.2.3 GMR sensors with PEC excitation feasibility study 

An initial study was carried out to verify the suitability of the use of pulsed excitation 

in conjunction with NVE GMR sensors for the work, where NVE is the name of the 

company, to optimise signal conditioning circuitry and to select the appropriate GMR 

sensor package (different packages have different sensitivities and field ranges) for the 

full array. In order to accomplish this, a small 8-element array was constructed and 

interfaced to an array of instrumentation amplifiers with an existing data acquisition 

system, which is used to collect readings from the sensors and using pulse excitation 

mode. Figure 3.5 shows the measured field for three different objects; an Aluminium 

block, a Stanley knife and a set of keys, in reflection mode. It can be seen from the plot 

that each object invokes its own characteristic signature in terms of signal amplitude, 

signal shape and time based features, such as time to-peak. It is these characteristics that 

can be used to characterise and classify different objects passing through the arch. 
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Figure 3.5c shows results of a test using the 1x8 array to image aluminium step shaped 

sample, where the sample gets thicker towards the right hand side of the plot. A 2D 

interpolation of the image has been used to increase the resolution of the image. 

Although the array is rather sparse at a 20mm pitch, the results show the potential of the 

technique for object imaging. 

 

 

Figure 3.5: EM measured field. a) Normalised falling edge of measured field with three 

different objects present, b) Normalised difference signal for three different objects, c) 

Percentage change in amplitude for aluminium step sample. 

These preliminary results show that the use of pulsed excitation in conjunction with a 

sensor-array has the potential to: match the capabilities of current detector to detect the 

presence of an object and identify the object position though simple thresholding of the 

response signal, characterise the object material through time-frequency analysis and 

extraction of signal features such as time to peak, and finally provide an image of the 
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object through tomography techniques in conjunction with real time interpolation to 

improve image resolution. 

3.2.4 Sensor-array configuration 

Different configurations of the sensor-array have been investigated. First, a 2D 

sensor-array has been formulated. Second, one column was then selected from the 

whole array to form 1D array. Finally, two diagonal 1D arrays that cover whole person 

body were used and also aligned directly above the excitation coil.  

As a result of the successful completion of the feasibility of the GMR array test 

outlined in the previous section, a full array was designed for the system. The array was 

designed with maximum flexibility in order to fully assess optimal sensor spacing for 

the system. Figure 3.6 shows the first array design; the pitch of the array in the 

horizontal direction is fixed at 7.75mm, but the vertical pitch is variable, with a 

minimum pitch of 3.5mm. The sensor and the amplifier are built on separate boards, 

with the signal lines as close as possible and a twisted pair cable between the two 

boards in order to optimise common mode rejection and reduce pickup noise. 

 

Figure 3.6: a) Minimum sensor pitch is 7.75mm x 3.5mm, b) Stacked sensor-array 

design configurable as two 8 x 8 arrays, one 16 x 8 array, one 40 x 1 array, or two 40 x 

1, all with variable vertical pitch. 

a) 

b) 
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A single column in the array provides a more coherent result than using the full array 

because the relationship between the sensors used to create the image and the excitation 

field remains constant, whereas for the full array, the relationship between the sensors 

and the excitation field varies between columns of sensors. On the other hand, using 

less number of sensors will reduce hardware costs and processing time. 

Uniform pulsed excitation response have been achieved by employing a linear array 

aligned with the coil, as shown in Figure 3.7a. By aligning the array in this way, the 

pulse measured at each sensor is close to identical (Figure 3.7b and c); any variation in 

the pulse amplitude is due to small errors in sensor positioning, with respect to the coil. 

The local magnetic field distribution for each sensor is almost identical, as shown in 

Figure 3.7c. As such, the change in response to the presence of a given object is uniform 

for the whole array and the models for EM excitation, resulting in a greatly simplified 

magnetic field distribution. Therefore, the diagonal sensor-array setup will be 

considered for the rest of this study.  

 

 

Figure 3.7: Uniform pulse excitation response. a) Sensor-array positioning with respect 

to coil, b) Interaction of applied field and GMR sensor, c) Uniform pulse response from 

a group of sensors. 

Restricted by the: width of the WTMD panel, the coil position, and the separation 

between each two consecutive sensors, it was not possible to place more than 40 sensors 

onto the coil. This would make the proposed system able to examine only a portion of 

b) 

c) 

a) 
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the individual body. To overcome this pitfall, another configuration was adopted where 

two sensor-arrays, each with 40 sensors, was placed onto two adjacent coils. This 

allowed the system to cover a whole individual body. All three different types of 

configuration are shown in Figure 3.8. 

 

Figure 3.8: Different sensor-array configurations  

The spacing or separation between the sensors (Figure 3.9a) has a large impact on the 

overall design of the system; the smaller the spacing, the greater the number of sensors 

that are needed and the greater the complexity and cost of the system. Four different 

sensor spacing were trialled during the tests: 7.5mm, 10mm, 15mm and 42mm. After an 

analysis of the results was completed, the 15mm spacing was found to be a good 

compromise between spatial resolution and system complexity (Figure 3.9b). The 

exaggeration of field distribution for smaller objects works to compensate for the sensor 

separation. Although the chosen sensor separation means that the vertical accuracy can 

only be guaranteed to be within 15mm, tests have shown that the measurement of the 

actual position of the distribution is not particularly useful in object characterisation, 

and analysis of other aspects of the EM signature are more reliable for object 
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discrimination. Figure 3.9c show the two sensor boards fitting together to form a 

continuous linear array. 

 

Figure 3.9 : The spacing between the sensors: a) The array spacing, b) Single GMR 

sensor board layout, and c) Two sensor boards fitting together to form a continuous 

linear array. 

3.2.5 Magnetic sensor-array specifications 

NVE GMR sensors were chosen for the array, primarily because NVE company 

offers a number of sensors with varying magnetic field ranges. After initial tests and the 

feasibility study with Hall sensors, which offer a wide magnetic field range but with low 

sensitivity, the AAL002-02 [121-123] low hysteresis GMR sensor was chosen for the 

array, according to its highest sensitivity compared with the other NVE GMR sensors. 

These selections of sensors are shown in Figure 3.10, where the sensitivity to the 

magnetic field is indicated by the slope of each line. The AAL002-02 sensor has a linear 

magnetic field range of 1.5 - 10.5 mT and a sensitivity of 4.5 - 63μ V/T at a supply 

voltage of 15V. The “L” in the sensor model name indicates that a low hysteresis 

(maximum 2%) GMR material has been used to fabricate the sensor. This characteristic 
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Spacing 

15 mm 

 

a) 

b) 

c) 



  

52 

 

was chosen because it was initially intended to utilise an applied magnetic field, varying 

from zero to a maximum value, where the lower hysteresis value would minimise the 

error at low field strengths. However, after initial testing, it was found that a more stable 

signal could be achieved by biasing the sensor response into its linear region using a DC 

offset superimposed on the excitation signal.  

 

Figure 3.10: Sensitivity of the different NVE GMR sensors [121] 

As mentioned in 3.2.4, the sensor and the amplifier are built on separate boards as 

shown Figure 3.11, with signal lines as close as possible and a twisted pair cable 

between the two boards as in order to optimise common mode rejection and reduce 

pickup noise. 

 

 

Figure 3.11: GMR measurement circuit 
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3.2.6 Magnetic sensor-array excitation response  

In this system, a pulsed excitation is applied to the coil. Pulsed excitation provides 

opportunities to apply an interrogating field with rich frequency components in a single 

waveform. In the tests detailed in this work, a pulse repetition frequency of 500Hz is 

used with a square wave pulse width of 1ms and an applied current of 0.5A – 1.5A. 

Figure 3.12 shows the pulse response for a steel object and an aluminium object, 

measured using a single GMR sensor. It can be seen from the plots that the change in 

pulse response from the presence of an object (steel or aluminium) is actually very 

small. Computing the difference between the signal with and without an object present, 

as shown in Figure 3.12b and Figure 3.12d (amplification x200), allows us to accentuate 

the difference between the two signals. It can be seen that a peak in the signal difference 

can be observed during the rising/transient part of the signal; the time and amplitude 

characteristics of this signal can be used to extract information about the object under 

inspection.  

 

Figure 3.12: a) Pulse response of one sensor in a diagonal array in the presence of an 

aluminium object, b) Rising edge of the pulse response for an aluminium object with the 

difference calculated, c) Pulse response from the presence of a steel object, and d) 

Rising edge of the pulse response for a steel object with the difference calculated. 
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3.2.7 System blocks and connection diagram  

A connection diagram of the system is shown in Figure 3.13. The upper part 

(Capturing the signal part) of the diagram is duplicated five times to make 80 channels 

(16 channels on each of the five cards). Two 8-channel sensor boards are connected to 

each of the 16-channel amplifier boards via a 20-core ribbon cable. The input 

instrumentation amplifier INA111 provides differential termination and amplification 

for the sensor outputs. The amplifier circuits are powered by a +/-15V power supply. 

The outputs from the amplifier boards are connected to the data acquisition boards in 

the PC via the breakout boxes. An additional connection is established to the data 

acquisition board from the function generator. This allows the data acquisition to be 

synchronised to the excitation waveform.  

A function generator supplies the excitation waveform in the excitation part as 

showed in the lower part in Figure 3.13. The Bipolar power amplifier is set to produce 

an output current that is proportional to the input voltage supplied by the function 

generator. The output from the function generator must be connected to the current 

programming input on the amplifier for this to be achieved. The output from the power 

amplifier is connected to the coil in the excitation board via the arch control box. None 

of the electronics in the control box are used in the test; it is just there to establish a 

connection to the excitation panel. A list of the equipment used is shown in Table 3.1, 

while the overall system set up in the laboratory is depicted in Figure 3.14. 

 

 

Figure 3.13: Proposed system diagram. 
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Table 3.1: Equipment list 

Equipment Name Description 

Agilent 33250A function 

generator [124] 

Provides the excitation waveform to power amplifier. 

Kepco BOP 36-12ML 

bipolar power amplifier 

[125] 

Provides the excitation to the coil, where the 

excitation current is proportional to the excitation 

voltage from the function generator. 

National instruments data 

acquisition system: 

PC equipped with a PXI bus to accommodate 

multiple data acquisition cards [126]. 

5 x NI PXI-6251, 16 input data acquisition cards. 

Allows acquisition of 80 channels of data at a sample 

rate of 125kHz [127]. 

5x breakout boxes and cables to allow us to establish 

a connection to the data acquisition cards. 

Sensor boards  Each board contains 8 x NVE AAL002-02 GMR 

sensors [121]. 

Amplifier boards  Each board contains 16 circuits based on the INA111 

instrumentation amplifier [128], to allow connections 

from two 8-channel sensor boards. 

CEIA walk-through metal 

detector and control box 

We provide our own pulsed excitation to the coils in 

the metal detector panel via a connection in the 

control box. 
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Figure 3.14: System set up in the Lab. 

3.3 Electromagnetic Signal and Data Processing 

Different metallic objects were used during the conduction of the experiment, 

observing the reaction of the system to a threat items (i.e. guns and knives) and non-

threat items (i.e. mobile phone, keys, etc.). The resultant EM signals measured by GMR 

sensors during the presence of object in the system are organized as a two-dimensional 

array to be used for image processing purposes. In order to detect the response of any 

concealed weapons, powerful signal processing algorithms that accurately extract the 

target signature are required. The proposed system configuration consists of the existing 

walk-through system with a sensor-array consisting of 80 sensors, connected to the data 

acquisition hardware. Signal processing scripts have been written in MATLAB and 

integrated into GUI, in order to develop the prototype system towards a fully 

operational system. The following subsections discuss the processing of the received 

EM signal, as well as the GUI specification. 
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3.3.1 Investigation of selected feature maps  

Different EM field visualisation techniques in conjunction with pulsed excitation 

have been studied. The minimum value of each sensor response is considered as an 

offset. Figure 3.15 shows the typical sensor response, both with and without this offset. 

The mean signal level (VDC) is calculated with the offset included as shown in 

Figure 3.15a. This method of quantification is affected by both static fields, as well as 

the variation in pulse amplitude. Alternatively, the offset value requires to be removed 

before calculating VPEAK and VRMS, in order to obtain the equivalent responses from all 

sensors, as shown in Figure 3.15b.  

 

Figure 3.15: Quantification of signal level for: a) Offset-included mean calculation, and 

b) Offset-removed peak and RMS calculation 

 

Figure 3.16: VDC feature signals: a) Raw signals for all 80 sensors, and b) Signals for all 

80 sensors with background field subtracted 
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The process shown in Figure 3.15 produces a matrix with 40 or 80 channels 

(depending if 40 or 80 sensors are used), with one sample (VDC, VRMS and VPEAK) for 

each pulse. The result of VDC feature is shown in Figure 3.16a. In order to obtain only 

the back-scattered field of the object being detected, the back-scattered field response 

without the target presence is subtracted from the responses obtained when the target is 

presented. This method cancels out most of the effects of the surroundings, which 

makes way for the next stage where the background field is subtracted from the result. 

As no object is in the array at the start of the test, the first few readings are taken as the 

background field. The average value of these first few readings for each sensor is 

subtracted from the signal, resulting in the signal shown in Figure 3.16b.  

The 2D array sensor configuration for the initial test required that the signals to be 

reorganised, forming a series of images (one image for each of the original pulse 

repetitions) and a 2D spline interpolation of the image was used to increase the 

resolution of the image. It was observed during the comprehensive test for the system 

that the (VDC) feature map produces the lowest noiseless signature results of objects. 

Figure 3.17 shows the three feature map images for the keys sample. The location of the 

object under test is marked in the figure with a black rectangular frame. 

 

 

Figure 3.17: Three feature map images for keys sample only: a) VDC image, b) VRMS 

image, and c) VPEAK image. 
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3.3.2 Max-value image formation 

After the single column sensor-array configuration was adopted, a new feature map 

for image formation method was used. In this type of image construction, the maximum 

value of each signal measured by the GMR sensors during the presence of object in the 

system was captured and recorded (versus time) as follows: 

 

1. The object under inspection is moved through the detector with data being 

acquired at 125000 sample/sec and an excitation pulse repetition rate of 500Hz 

(Figure 3.18a).  

2. Sets of 10 pulse responses are averaged to produce a single pulse response signal 

(Figure 3.18b). (Each pulse response equivalent to 250 samples, so 10 pulse 

responses equivalent to 2500 sample).  

3. A single value is computed from each previously computed pulse response 

signal (Figure 3.18b). The maximum value of the difference signal (with and 

without object) was used. 

4. Each of these single values corresponds to a single pixel in the final image 

(Figure 3.18c). 

 

Over the time, the EM field distribution of the object can be determined, as the object 

moves through the array, and consequently the object can be identified. When 40 

sensors were used, the EM images dimensions will be 40*140 pixels. The 140 reading-

values were found to be enough to capture the response of an object that passes through 

the proposed system.  

Figure 3.19 shows some samples used to test the system and their constructed 

max-value images using the 40 diagonal sensor-arrays. The images were scaled for the 

display to show the details, the colour scale represents the change in magnetic field 

intensity. It was also observed that there was alternate dipole colour orientation in 

constructed image so that the red colour represents the positive increase and the blue 

represents the negative increase. 
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Figure 3.18: EM image constructed from data acquired from line array over time. 
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Figure 3.19: Some samples used to test the system and their constructed max-value 

images using the 1D diagonal sensors array: a) Samples in the holder. b) The equivalent 

EM images formed using 40 sensors. 
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3.3.3 Transient response images formation 

In order to extract more information about the objects in the WTMD from the test 

results, a form of transient analysis was employed. It has been observed that aluminium 

objects exhibit a tendency for the EM signature to appear later in the image sequence, 

increasing in intensity over time. In contrast, the EM signatures corresponding 

predominantly to ferromagnetic objects (such as the hunting knife used in our database) 

have a tendency to appear earlier in the sequence, peak in amplitude at a particular point 

and to change in distribution field over time.  

In this formed transient EM imaging technique, the pulse response from each sensor 

is analysed and chopped into sections, or time slots, as shown in Figure 3.20a. The 

values of the samples in each time slot are averaged using the data from all sensors for 

the whole test. Finally, an image is built up for each time slot using the average value of 

each slot, instead of the maximum values, and represented as pixels in the final images.  

This procedure can be summarised as follows: 

 

1. The object under inspection is moved through the detector with data being 

acquired at 125000 sample/sec and an excitation pulse repetition rate of 500Hz.  

2. Sets of 10 pulse responses are averaged to produce a single pulse response.  

3. The averaged pulse response from each sensor is analysed and chopped into 

sections, or time slots, as shown in Figure 3.20a.  

It was observed that the pulse rising edge is enclosed between the 44
th

 and 72
nd

 

samples, distributed over 28 samples. Each time slot was chosen to be two 

samples, therefore 14 time-slots were made. 

4. A single value was computed from each pulse response, which was the average 

of the samples in each slot of the difference signal, with and without the object. 

5. Each of these single values corresponds to a single pixel in the final image for a 

particular time slot. Fourteen images were made for the fourteen time-slots 

values of all sensors as shown in Figure 3.20b. 

 

Figure 3.20b shows a sequence of these transient images for the hunting knife. 

Analysis of the transient image sequence can be used to extract more information about 

the object under examination.  
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Figure 3.20: A sequence of transient images for the hunting knife sample: a) Pulse 

response with time slots marked, b) Transient response imaging result. 
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3.4 Guide User Interface of the System 

The basic GUI shown in Figure 3.21 has been developed to ease: data acquisition, 

response viewing, and parameter settings for the threat object detection system. It 

features: 

1. First axis showing the raw signal from one of the sensors. 

2. Second axis showing the processed image from the array. 

3. A place to enter the desired gain of the system (i.e. sensitivity adjustment that 

should be fixed for certain system setup and coil power). 

4. A drop-down menu to determine the type of analysis to apply to the raw data to 

produce the image, i.e. DC, Peak, and RMS. 

5. A start button; initialises the data acquisition routine and starts acquisition. 

6. A stop button; stops data acquisition and clears all the active data acquisition 

objects.  

 

  

Figure 3.21: The basic GUI for the system 
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The second axis were set to suppress noise data, until the user press the START 

button (show as dark blue part in Figure 3.21). When START is pressed, a red line is 

drawn vertical along the x-axis to indicate the start of recording pass. The recording 

pass involves a short period of signal recording, prior to the introduction of the object, 

to estimate the background noise when then object is moved through the system. The 

object moves through the system over a period of 1~3 seconds, which is equivalent to 

pedestrian normal walking speed [129]. As the object moves through the system, the 

second axes begins appending new information to the left of image, removing the oldest 

information from right so that only the recent 200 program iterations are displayed. The 

captured image will appear sliding from left to right. As previously highlighted, 140 

iterations were found enough to cover the object response, so generated images of 

140*N pixels will be used in subsequent image processing in the next chapters, where N 

is the number of sensors used. For further details refer to the system manual in 

Appendix A. 

3.5 Summary 

The design methodology and configuration of the new system have been presented in 

in this chapter. The new system has been designed with maximum flexibility, with a 

variable sensor-array pitch and configuration and variable excitation in terms of signal 

waveform and amplitude. Tests have been carried out using pulsed excitation and it has 

been concluded that pulsed excitation in conjunction with advanced time-frequency 

analysis and signal shape analysis has the greatest potential for object detection, 

characterisation, localisation and imaging.  

The CEIA walkthrough arch, donated by the London Metropolitan Police, was used 

to form the infrastructure of our new design. A thorough investigation of this arch has 

been undertaken, to ascertain: the mode of operation, excitation and pickup coil 

configuration and signal processing techniques. The new system has been designed 

around the use of GMR sensor (AAL002-02 NVE) arrays in conjunction with pulsed 

excitation. 

An optimum sensor-array design is achieved by the adjustment of: 1) number of the 

sensors which is either one sensor-array consist of 40 sensors or two sensor-arrays 

consist of 80 sensors; 2) space between these sensors which is 15mm sensor spacing in 

the array that gave the best balance between spatial resolution and system complexity; 

3) position and direction of the sensor-array in terms of the coils or pulse excitation, the 
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diagonal sensor-array that is aligned above the coil configuration was found to give 

better results. Pulsed excitation is applied to the coil, owing that the pulsed excitation 

provides the opportunity to apply an interrogating field with a rich frequency 

components in a single waveform. 

To achieve the best visual detection of the object, different statistical characteristics 

of the response signals were studied. A novel formation of reconstructed images has 

been developed and called: max-value image formation which use a simple average and 

select the maximum value techniques, and transient response images formation which 

involving the generation of a transient image sequence, which is used to extract further 

information about the object under examination. When 40 sensors were used, the 140 

reading-values were found to be enough to capture the response of an object that passes 

through the proposed system therefore; the dimensions of the reconstructed images will 

be 40*140 pixels.  

A prototype user interface was developed, encompassing: signal pre-processing, the 

necessary software to isolate the response signals, management of the data acquisition, 

parameter setting, and image reconstruction. The chapter conclude that magnetic field 

imaging could be used to detect and identify a metallic objects. In comparison with 

conventional induction based WTMDs, the GMR array based system has shown great 

potential in object identification and discrimination. 
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Chapter 4: System Validation and Experimental Testing for 

Threat Object Detection 

The key to a successful detection of threat objects, such as guns and knives, is an 

effective detection system with high resolution and high dynamic range. The detection 

system should be efficient and safe for human as possible, having less distortion in the 

pulse transmission/ reception, and be directive with high-radiation efficiency. The previous 

chapter detailed the proposed EM imaging system according to: GMR sensor fusibility 

study, design and implementation of the proposed system, and the use of different signal 

and data processing methods on the resultant signal from the system. In order to validate 

the system for detection, characterisation and classification of objects using EM signatures, 

this chapter aims to study the capability of the new system in terms of detection and 

identification of threat and non-threat items. Tests are carried out within a controlled 

environment (object placed in sample holder) and uncontrolled environment (an object 

concealed in clothes of a person passing through the WTMD). The following sections also 

discuss the data validation and repeatability of the similar type objects, robustness against 

object orientation, and system capability for multiple object separation. 

4.1 Real Handgun Detection    

A selection of six handguns was borrowed from the London Metropolitan Police to 

investigate the EM response from a variety of real threat items. The specifications of the 

handgun samples are listed in Table 4.1 and pictured in Figure 4.1 

Table 4.1: Specification of the real handguns used 

Sample # Description 

1 Small revolver – 0.38” Smith & Wesson – Deactivated. 

2 Revolver – 0.38” Enfield service revolver – Deactivated. 

3 Large automatic – 9mm Glock G17 – Live. 

4 Large automatic – 0.45 Colt M1911 – Replica. 

5 Small revolver – Brocock Puma air pistol – Live. 

6 Small automatic – 7.65mm Walther – Deactivated. 
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The test samples are representative of a range of weapons which would be of interest 

for detection. The composition of the weapons includes steel, zinc alloy, aluminum, and 

polymers. A single diagonal sensor-array configuration (as explained in Chapter 3) was 

adopted for the tests. Experimental setups and follow-on results with the real handguns are 

detailed in the following subsections. 

 

 

Figure 4.1: The six samples used in the tests 

              Sample 1                                                                      Sample 2                         

              Sample 3                                                                      Sample 4                         

              Sample 5                                                                     Sample 6                         
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4.1.1 Controlled/uncontrolled experiments setup 

Controlled experiments tests were carried out using the apparatus depicted 

in Figure 4.2. The apparatus consists of: 

 The holder (see Figure 4.2a) that holds each sample in a constant position as it is 

moved past the array.  

 The platform, which is fixed between the panels to ensure that the sample 

maintains a constant horizontal position with respect to the array and the panel. 

 The ramp (see Figure 4.2c), where the sample is moved down the ramp (in the 

holder) past the array. 

Figure 4.2a shows the array configuration and the relationship between the array and 

the samples, while Figure 4.2b shows the weapons in the sample holder constructed for 

the tests. The holder is configured to ensure that the samples retain a constant and 

comparable distance and orientation with respect to the array during each pass through 

the system. Figure 4.2c shows the ramp position in respect to the sensor-array, which 

will allow the sliding of the holder with the sample to be passed through the WTMD. 

The apparatus is designed so the sample can move past the array in 10cm increments 

with respect to the panel as shown in Figure 4.2d.  

Additionally, uncontrolled tests were carried out by concealing object within clothes 

of an individual. The individual was then directed to walk at normal walking speed 

through the arch of the proposed system. Figure 4.3 depicts the uncontrolled test with an 

object being concealed under raincoat jacket.  

To emulate the situation in a secure area like an airport, the following procedure was 

adopted in subsequent tests: 

1. No restriction to the distance of the object from the sensor-array was imposed. 

However, the distance would be less than 1.0 meter, as this is the width of the 

WTMD. 

2. The individual was carrying the samples in different bodily locations, i.e. upper and 

lower body. 

3. Another important aspect was that the walking speed of the individual was neither 

restricted nor measured. However, as stated previously, the individual was allowed 

to walk freely. 
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Figure 4.2: Controlled experiments test set-up: a) Sensor array configuration, b) The 

handgun in the sample holder, c) Schematic top view of the WTMD with holder, and d) 

without holder showing the selected separation distances between the sensor-array and 

the object. 

c) 

d) 

 
     Sample 4                            Sample 5                        Sample 6 a) b) 
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Figure 4.3: Walking through the proposed system arch in an uncontrolled test. 

4.1.2 Handgun detection in controlled environment 

Using the gun samples previously highlighted, several tests were undertaken with 

objects being placed at distances of: 100mm, 150mm, 200mm, 250mm, 300mm and 

350mm from the excitation panel.  

 Results for the 100mm test are shown in Figure 4.4 and appear to set an acceptable 

baseline, as would be expected for the controlled test set-up, with a characteristic 

“dipole” signature being evident in most cases for a metal mass. The one exception is 

sample 4, the replica gun, which is very difficult to locate from the test results, having 

the lowest amplitude response and therefore the poorest signal to noise ratio. It is 

notable that samples 2 and 3 give similar results, responding with a type of dipole 

distribution, indicative of a ferromagnetic object made predominantly from a single type 

of metal. The simple form of the distribution also indicates that there is a very little 

metal in the handle of these objects, and the array sees them as a simple tube/block of 

metal.  
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Figure 4.4: Feature maps (EM images results) for all samples, for tests using the sample 

holder. 
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4.1.3 Handgun detection in uncontrolled environment (walk-through tests) 

Another set of tests for the uncontrolled walk-through simulations, using the same 

real handguns as used in the previous section. The guns in this test are carried in the 

inside jacket pocket of an individual walking through the arch, as shown in Figure 4.3 

with test results provided in Figure 4.6. The EM images for the objects are clearly 

compressed along the x-axis in comparison to the controlled tests. This is due to the 

object moving through the arch at a greater speed, albeit the actual distributions remain 

very similar.  

4.1.4 Difference between controlled and uncontrolled test 

To give clear view in respect of the differences between the two previous cases, 

Figure 4.5 shows EM images for sample 3 for the controlled and walk-through tests 

using a sensor-array with 40 sensors. The results from the walk-through test have been 

expanded along the horizontal axis and compared to sample 3, as shown in Figure 4.5 to 

aid in comparison. The comparison of the plots show that although the controlled and 

walk-through tests do not give identical results, the general form of the EM signatures 

are very similar. Thus, using appropriate analysis techniques, it could be ascertained 

that the signatures are from similar, if not the same object. 

 

 

 

Figure 4.5: EM images for Sample #3: a) controlled and b) Non-controlled tests. 
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Figure 4.6: Results for all handguns, from the non-controlled walk-through test. 
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Figure 4.7: Threat and Non-Threat objects used. 

Large pen knife 

Screwdriver Adjustable Staple remover 

Scissors 

Metallic pen House key 

Bunch of keys 

7 inch hunting knife Aluminium shaped gun Belt 

Replica GAP gun Coins 

Kitchen knife 

Panasonic mobile phone 

USB stick 



  

75 

 

4.2 Daily used Objects Detection  

In order to examine the new system upon other objects, including items normally 

carried by members of the public, a series of tests were set up using the same diagonal 

array configuration. More than 16 common daily used items have been investigated. 

Figure 4.7 shows the objects that were used in this test. 

The objects represent a combination of small objects typically carried by members of 

the public (coins, USB stick, mobile phone, etc.), larger ferromagnetic objects which 

may possibly be carried by members of the public and have the potential to be identified 

as threat objects (screwdriver, spanner, large bunch of keys) and actual threat objects 

(kitchen knife, pen knife, 7ʺ hunting knife). 

The objects are moved past the array dynamically and data acquired with the object 

inside a holder. The tests were repeated for controlled and uncontrolled environments, 

as discussed in previous section. 

4.2.1 Daily used objects in controlled environment 

The test was done using the same set up for the handguns. Some of the resulting EM 

images are shown in Figure 4.8. 
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Figure 4.8: EM images results for some daily used items. 
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Calculations of feature amplitude have been undertaken. Figure 4.9 presents plots of 

the peak-to-peak amplitude of the three feature maps processing (as detailed in Chapter 

3, section 3.3), corresponding to the objects.  

 

 

Figure 4.9: The peak-to-peak amplitude for the three feature maps 

The objects are numbered in descending order according to the peak-to-peak 

amplitude as follows: 

1.  Kitchen knife 9. Panasonic mobile phone 

2.  Screwdriver 10. Bunch of keys 

3.  Large pen knife 11. Pen 
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6.  Single house key 14. Staple remover 

7.  Adjustable spanner 15. Gun shaped aluminium 

8.  Scissors, 16. USB stick 
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carried in the jacket pocket of an individual walking through the array, rather than 

mounted within the sample holder. 

 

 

Figure 4.10: Results of tests for various objects passing through the system in an 

unconstrained environment. 
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objects. It can be seen from the test results that similar to previous tests, the 

ferromagnetic objects give the strongest signature. 

Using a simple amplitude measurement for objects in an unconstrained environment, 

show that similar to the tests using the sample holder, the larger ferromagnetic objects 

give the strongest response, with the smaller non-threat objects and the predominantly 

aluminium objects giving a very low amplitude response as in Figure 4.11.  

 

 

Figure 4.11: Feature amplitude for the unconstrained test 
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Figure 4.12: Results of tests for various objects passing through the system in: a) an 

uncontrolled (Walk-through) environment, and b) a controlled environment. 
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from more than one sensor, in addition to appropriate signal processing algorithm to 

distinguish trivial changes in different responses, hence 40 or 80 sensors were used.  

 

 

Figure 4.13: Sensitivity plot of variation in response with increasing distance. 
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Figure 4.14: Amplitude difference for five repetitions (Rep) of the test for the real 

handgun samples for: a) Controlled test, and b) Walk-through test. 

4.5 Robustness Against Object Orientation 

Another set of experiments were carried out to study the reflected signals from 

objects under different orientations, to check the validity of the proposed system. 

Figure 4.15a illustrates the test set-up for different orientations. The objects were moved 

past the array dynamically and data was acquired with the object moving. Data 

acquisition was undertaken with the samples orientated in three directions.  
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Figure 4.15: a) Test set-up for sample orientations. b) Kitchen knife sample in the 

holder along with their corresponding EM results. 

The results for the kitchen knife are shown in Figure 4.15b. It can be seen from these 

images that the feature map follows a fairly predictable evolution with the rotation of 

the object; in the x-direction and y-direction the object appears as a dipole distribution, 

yet with the rotation of the distribution correlating to the rotation of the object. In the z-

direction, only one end of the “dipole” is presented to the array, so a uni-polar 

distribution is observed.  

A similar trend is followed by all of the objects, where the object appears as two 

peaks in the feature map. As the object is rotated, this distribution is also rotated from 

the x-directional image to the y-directional image. However, the z-directional image 

exhibits a clear uni-polar distribution. 

Figure 4.16 presents the peak-to-peak amplitude of the feature maps, while 

Figure 4.17 presents the same information, but normalised for ease of comparison. It is 

interesting to note from the two figures, that the trend of the data is similar, irrespective 
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of the orientation of the object, when 16 samples were used and numbered in 

descending order (as in subsection 4.2.1) according to the peak-to-peak amplitude, as 

the amplitude measurement is invariant of the object rotation/orientation.  

 

 

Figure 4.16: Peak to peak amplitude for feature maps for: a) x-direction, b) y-direction, 

and c) z-direction. (The x-axis represents the sample number as identified in section 

4.2.1). 

From the amplitude plot, the following observations can be deduced: 

 Because the minimum (rather than the mean) distance between the array and 

object was kept constant during the tests, the z-directional plots are generally 

lower in amplitude.  
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 The system shows that it is least sensitive to objects that are either very small 

(USB) or non-ferromagnetic. The problem with the non-ferromagnetic 

objects may be addressed by an improved signal processing routine.  

 It should also be noted that the gun and knifes provide the highest amplitudes 

of the objects across all three features. Also large size daily used item, e.g., 

screwdriver, spanner and scissors gives also higher amplitude response 

compared to other small size items.  

 

 

Figure 4.17: Normalised peak to peak amplitude for feature maps for: a) x-direction, b) 

y-direction, and c) z-direction 
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direction, so a uni-polar distribution is observed. It can be seen from the plot that for 

this sample at least, the signature is not rotation invariant.  

 

 

Figure 4.18: Feature map for rotation of object: a) Sample 1 parallel to panel, and b) 

Sample 1 rotated 90° to panel (z-direction). 

4.6 Multiple Object Detection 

Two experiment configurations used to measure the capabilities of the proposed 

system in order to discriminate multiple objects will be discussed in this section.  

Firstly, in the early stage of the developing system, tests were undertaken using the 

2D sensors array configuration, with 80 sensors to test two different samples: a standard 

set of keys and a Stanley knife arranged side by side. The results of the test are 

presented in Figure 4.19, where it is shown the feature maps for combinations of the 

two objects. It can be seen from Figure 4.19a, and Figure 4.19b, the presence of these 

objects individually can easily be identified from the EM images. The signatures from 

these two objects are distinctive and comply with previous observations from different 

materials; the Stanley knife consisting predominantly of aluminium, causes a strong 

reduction in EM images; the set of keys consisting predominantly of steel causes a 

switch in polarity of the EM image, i.e. a strong increase in image in the object position 

and a strong reduction outside this position. Figure 4.19c shows the EM image for both 

objects (keys and Stanley knife) positioned in the system, with a separation of 

approximately 30mm. It can be seen from Figure 4.19c that the signatures for both 

objects are preserved in this image, thus the objects can still be identified and 

consequently, the proposed GMR sensor can be used for this purpose. 
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Figure 4.19: Images of VRMS with: a) Keys only, b) Stanley knife only, and c) 

Combinations of keys, and Stanley knife (boxes indicate the approximate position of the 

objects). 

Secondly, an additional test was conducted to assess the capabilities of the system 

using the last 1D sensor-array configuration with a sensor-array consisting of 40 

sensors, to detect multiple objects and to determine the optimal object separation 

distance for accurate object detection and discrimination. The test shown in Figure 4.20 
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The replica gun was clamped within the sample holder and the mobile phone was hung 
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at a separation distance of 0mm simply increases the intensity of the negative peak; thus 

in this position, the two objects are virtually indistinguishable from one larger object. 
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objects. This discrimination of object signatures can be further enhanced by employing 

a simple processing technique, through taking absolute values of the measurements and 

then suppressing the values to less than a certain threshold, as shown in Figure 4.21, 

where a clear object discrimination can be achieved at 60mm and greater. 

 

 

Figure 4.20: Multiple object tests: a) Test set-up, and b) Result images for gun alone 

and gun with phone for a separation distance of 0mm, 60mm, and 120mm. 
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Figure 4.21: Thresholding techniques applied to discriminate between the two objects 
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4.7 Using Full-Body Array (Two Sensor-arrays) 

Another group of tests was undertaken to verify the proposed system using two 

sensor-arrays, each using 40 sensors (totalling 80 GMR sensors). Items were placed in 

different pockets of a person walking through the arch, as shown in Figure 4.22. The 

following group of tests were carried out:  

1. Gun in inside trouser pocket. 

2. Gun in inside jacket pocket. 

3. Gun in inside jacket pocket & phone in trouser pocket. 

4. Gun in trouser pocket & phone with keys in jacket inside pocket. 

Due to data acquisition card requirements, the sampling rate was reduced from 

125 kHz to 62.5 kHz in order to maintain the same memory space, while introducing the 

new sensor-array. Figure 4.23 shows the results for this test. In general the results of 

this test are poor, possibly due to the decreased tolerance to noise from the lower 

sample rate. 

 

 

Figure 4.22: Walk through test set-up with full array. 
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Figure 4.23: Test results with full array for test #1, gun in trouser pocket. 
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4.8 Summary 

Different experimental tests have been carried out to assess the new system in 

respect to object detection and classification. The tests included a variety of threat and 

non-threat items, either in sample holders or carried by an individual through the system 

in typical places on the body, i.e. jacket and trouser pockets.  

The sensitivity of the system to evaluate the object detection distance was 

investigated. The test results showed that for good resolution the distance from the 

panel should be less than 60cm for all objects and that sensitivity decreases substantially 

as the distance from the arch panel increases. The test results show that when the 

metallic object is far from the sensors, both in theory as well as in the experiments, the 

image of the object is not the same size as the original object, due to the amplitudes 

becoming smaller. To overcome this problem, ideally a relationship should be 

determined between the distance and amplitude. 

To check data validity, simple repeatability tests were also carried out. Each sample 

was tested several times and the results were then plotted for all objects, where the 

initial results show the validation of the system in terms of repeatability in both 

controlled and walk-through test. 

 Different tests have been investigated to determine the validity of the different 

object orientations. The test results show that, in the x-direction and y-direction the 

object appears as a dipole distribution, yet with the rotation of the distribution 

correlating to the rotation of the object. In the z-direction, only one end of the “dipole” 

is presented to the array, so a uni-polar distribution is observed. It has been observed 

also that the trend of the data is similar, irrespective of the orientation of the object, 

when 16 samples were used and numbered according to the peak-to-peak amplitude.  

A small set of tests incorporating multiple objects was also carried out. The results 

show that using a simple analysis of the feature map with thresholding applied, in order 

to discriminate objects, can yield some useful information such that at object separation 

distances < 30mm, the system only see objects as one composite item, thus not 

distinguishing between them as separate items. While at object separation distances > 

60mm the system can distinguish between the two targets. However, sampling objects 

that are in close proximity to each other may appear as one large object.  

The tests where an individual walked through the arch carrying the objects, rather 

than objects moved through on the sample holder represents a move towards the 

application of the equipment in an unconstrained environment.  
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It has been shown that some basic real-time imaging of EM signatures from objects 

may be possible. It is clear from the experiments conducted that magnetic field imaging 

could be used to detect and identify a metallic object. In comparison with conventional 

induction based WTMDs, the GMR array based system has shown great potential in 

material discrimination, as samples are made from mixed materials are clearly 

distinguished. Whereas with currently induction based WTMD, only discrimination 

between metal and non-metal is possible, our novel system has taken previous 

possibilities a step further. The proposed EM system technique is more advanced in 

object characterisation as it depends on the amplitude of the EM field making training 

possible using a database of objects; unlike traditional thresholding adopted in the 

traditional induction based system, which largely depends on material volume. 

The data collected will be applied for offline processing, investigating of different 

feature extraction methods and training of algorithms for object classification for both 

detection and classification, which will be discussed in the next chapters.  
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Chapter 5: Feature Extraction and Combination 

The feature extraction work presented in this chapter is the second major part of the 

proposed system for automatic detection and classification using EM images. The aim 

of this chapter is to find appropriate feature extraction techniques for the data retrieved 

from the new EM imaging system. Several groups of features such as shape, material, 

time-frequency analysis and transient response features are investigated, developed and 

tested. These methods have been proposed in order to provide complementary 

information about the threat object signature. A novel time-frequency image correlation 

method was successfully proposed pertaining to the discrimination of ferromagnetic and 

non-ferromagnetic metallic materials. In the following sections, a brief background is 

given of each feature extraction technique along with the motivation behind its use, in 

addition to detailing the feature extraction approach involved. The effectiveness of 

individual features is then tested and discussed. Based on the results for individual 

feature characters, only features that perform well are selected for feature fusion and 

then for object classification. 

5.1 Introduction 

For image pattern recognition, feature extraction is a special tool to reduce the 

dimensionality of a large set of data.  When the input image is too large to be processed 

using an algorithm, it needs to be transformed into a representative set of features. The 

process of transforming the input image into a set of features is called feature extraction. 

In other words, feature extraction is the use of a reduced representation of an image to 

solve pattern recognition problems with sufficient accuracy, instead of using the image 

at full size. Following the feature extraction step, feature selection and optimisation are 

considered to be complementary steps. Feature optimisation helps to improve the 

performance of learning models, such as training using a neural network, by removing 

the least relevant features from the data. Feature optimisation also improves the 

understanding of extracted features by identifying the important features and 

determining how they are related to each other. Therefore, extracting distinctive and 

distinguishable features from EM signals is imperative for their proper classification 

[77-79]. 
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 In this work, four main groups of features have been extracted from the EM signal. 

These groups are categorized as: shape, material, time-frequency analysis and transient 

response. The shape groups consist of edge chain codes and invariant moments features 

[130, 131], while the material groups are inferred from both the change in amplitude 

[79] and PCA [90] of the EM signal. The time-frequency analysis categories consist of 

the use of Fourier and Wavelet transform techniques [78, 132]. The transient response 

category applies cross-correlation techniques [80, 94, 133] to the novel EM transient 

response images developed in Chapter 3. These features are considered as object 

signatures, both individually and when combined, and are processed by a classifier. 

Two types of classifier were used, ANN and SVM, both of which are discussed in the 

following chapter. Figure  5.1 below shows the proposed feature extraction and 

classification plan for the detection and classification of threat objects.  

 

Figure 5.1: Hierarchical Classification Methodology 
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5.2 Image pre-processing  

Various methods are introduced for the processing of EM images in order to detect 

objects and prepare the images for subsequent feature extraction and classification. 

These techniques are applied to the results obtained from the three configurations of the 

sensor-array. 

The final EM response data arranged from the final system configuration consists of 

40*140 values, as explained previously in Chapter 3. These datasets were interpreted as 

2D greyscale images (as shown in Figure  5.2a) for the feature extraction process. 

However, coloured images (as shown in Figure  5.2b) were presented throughout this 

thesis for better viewing. The Matlab image functions mat2gray and imagesc were used 

for these purposes. 

  

Figure 5.2: Data received from the system for the handguns sample #2: a) Greyscale 

image. b) Colour scale image.  

5.2.1 EM image enhancement 

Different operations were undertaken for the receiving of the EM data from the 

acquisition card and the display of the EM images, and enhancement processes were 

used for viewing the images with optimal resolution and adequate noise reduction. In 

addition to averaging the data, the first 5 seconds was marked as a background period 

and subsequently subtracted from the rest of data. 

A smoothing filter was also used, namely Savitzky–Golay filter. This filter more 

effectively preserves the high-frequency content of the desired signal, by performing a 

local polynomial regression (of degree k) on a series of values (of at least k+1 points, 

which are treated as being equally spaced in the series) to determine the smoothed value 

for each point. The main advantage of this approach is that it tends to preserve 

characteristics of distribution, such as relative maxima, minima and width, which are 

                    a)                                                              b) 

http://en.wikipedia.org/wiki/Polynomial_regression
http://en.wikipedia.org/wiki/Smoothing
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usually “flattened” by other adjacent averaging techniques, such as moving averages for 

an example [134, 135]. All of these operations have consequently contributed to the 

enhancement of the image outcome from the system.  

5.2.2 EM image segmentation  

In computer vision, segmentation refers to the process of partitioning a digital image 

into multiple sets of pixels, by assigning individual pixels to classes. Image 

segmentation is typically used to locate objects and boundaries in images. The goal of 

segmentation is to simplify or change the representation of an image into something that 

is more meaningful and easier to analyse, and therefore image segmentation is an 

important step towards pattern detection and recognition [77].  

 

  

Figure 5.3: Segmentation process for the kitchen-knife sample using image histogram. 

a) Original image, b) Segmented image, and c) Original image histogram.  

In this work, histogram-based segmentation has been developed for the specific 

automatic segmentation of the EM images. The image segmentation used here consists 

of the following steps: 

a) 
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1. Normalise the data to values between [0 1]. 

2. Compute the image histogram. 

3. Extract 95% of the values from the histogram that represents the background.  

4. The remaining data represents the object effect. 

Looking at the grey-level histograms of our database, two thresholds are needed to 

extract the object from background. These thresholds were chosen to comply with the 

95% confidence interval rule [77].  In other words, the thresholds are chosen to be ±3 

STDs away from the mean of the background cluster in the histogram. This process 

obtains the region of interest from the EM signal. Figure  5.3 shows the kitchen-knife 

sample segmentation process. 

5.3 Proposed Feature Extraction 

Four categories of features have been extracted from the EM signal. These are: 

object shape features; object material features; time-frequency features; and the 

transient feature response, which are explained next. 

5.3.1 Shape categories 

Shape is one of the most prominent features of any object. As reviewed in chapter 

two, geometrical shape features are the most widely used features for weapon detection 

and classification. This is because the shape of the threat items is the first and major 

factor analysed by experts during manual interpretation. Many researchers have tackled 

the problem of object classification based on feature extraction techniques using the 

object shape descriptor by employing different tools such as edge chain codes, invariant 

moments, Fourier descriptors, Hough transform and shape matrices in order to extract 

shape characteristics [85]. 

5.3.1.1 Edge chain code feature 

The edge chain code is mostly used as a reinforcement technique for edge detection 

in the image segmentation field [92]. It can also be applied to features representing 

objects in images [93]. It is a type of representation that consists of a series of numbers. 

These numbers represent the direction from one pixel to the next, which can be used to 

represent the shape and input format for numerous shape analysis algorithms [136]. In 

this work, the edge chain code is implemented for the first time in the area of weapon 

detection and classification. The edge chain code consists of a list of codes ranging from 

zero to seven in an anticlockwise direction. These codes represent the direction of the 
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next pixel connected in a 3*3 window, as shown in Figure  5.4a. For example, in 

Figure  5.4b we start at the first edge on the top left and go clockwise around the edge. 

The code for each edge has been listed, resulting in the chain code: 

0011760066556644333222. 

Statistical moments were applied to the EM images. Based on the understanding of 

moments and considering the object edge chain code as a distribution, the seven features 

shown in Table  5.1 can be defined and described to analyse the sample's edge [137, 

138]. 

 

Figure 5.4: Calculation of the 8-directional chain code: a) 8-directional chain code, and 

b) Chain code sample. 
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The first six features are used to analyse the chain code as a distribution. In addition, 

the code for each pixel represents the change in direction from the last pixel. All those 

codes together represent the change for the entire edge. Therefore, the chain code 

change from one pixel to the next can be determined as 1i i ir r r   , so that it is 

possible to evaluate whether or not the edge is smooth by measuring the average chain 

code change. Based on this technique, the last edge chain code feature Rv is defined.  

To prepare the EM images for the edge chain code process, several image pre-

processing steps were taken. Firstly, the optical and EM images were converted to black 

and white scale images. Secondly, Otsa and Kubur threshold techniques were applied 

[77]. Then fill the unwanted hole followed the threshold techniques. Finally, the 

removal of very small objects was undertaken, such as the effects that appear under the 

platform of the EM images. Figure  5.5 shows the results for handgun 6. The six real 

handgun samples (the same samples as were used in Chapter 4) have been tested using 

the first sensor-array configuration and the relationship between the features derived 

from the resulting optical images and the EM images can be seen in Figure  5.6.  

 

 

Figure 5.5: Image pre-processing of handgun sample #6: a) Optical image, b) Black and 

white image, c) EM image, and d) EM black and white image. 

It can be seen from Figure  5.6 that there is a relationship between the threshold real 

optical image and the threshold EM images.  Therefore, the edge chain code features 

could be considered as a feature to represent the objects’ signature. However, this 

method was applicable only to the two dimensional sensor-array results, and 

consequently is not discussed further or used in the classifiers in the following chapter. 

Further investigation of this technique for use in automatic classification will be a task 

for future work. For further details refer to Appendices B and C. 

 

 

       a)                                b)     c)   d) 
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Figure 5.6: The relationship between the features obtained from the real image samples 

and the EM images. 
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5.3.1.2 Invariant moments 

The moment invariant technique has been used since the early 1960s [86]. It was an 

essential development, since many problems in image processing and recognition focus 

on classifying an image. The method used to determine the invariant moment is also 

widely used in feature extraction, since it is invariant to rotation, scale, and translation. 

The fact that invariant moment can be used to describe the geometric behaviour of 

image intensity distribution yields the benefit that its values can be used as tools in 

recognition, identification and verification processes. In certain systems [87], objects 

can be detected with a classification accuracy of over a 90%, after a set of invariant 

moment feature vectors have been produced. Invariant moments have also been used 

[88] to identify the shape of a handgun and to classify objects into weapon and non-

weapon objects, where the researchers obtained an accuracy rate up to 96%. Three 

different shape recognition methods have been reported [89]. One of these was an 

invariant moment technique used to build a feature vector for the classification of eight 

types of handguns. 

In this work, shape features were extracted from the EM images using the invariant 

moments introduced in  a previous study [86]. Two-dimensional moments of a digitally 

sampled M×M image that has grey function f(x,y), (x, y=0,…M-1) is given as Eq. 5.1: 

    ∑ ∑       (   )

     

   

       

   

 

                                                     

                                                           (5.1) 

where p, q=0,1,2,3…..  

Based on the second and third moments from the general moment in Eq. 5.1, eight 

moments (øn) Where n=1, 2..., 8 are derived (Eq. 5.2) and applied to grey images 

converted from the original data. The resultant eight moments are grouped into a feature 

vector called an f-Moment, which is considered as a signature for each individual object 

based on the characteristics of its EM image shape.  

Figure 5.7 shows the 8 moments for the ten objects, the six handgun samples and the 

other four are non-threat items (mobile phone, USB, pen and belt). It can be concluded 

that the moments of the handgun samples are higher than those of the other objects in 

this test. It is noteworthy that the results will not be affected by the orientation of the 

object, as the invariant moment does not vary with rotation. 
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Figure 5.7: Eight moments øn for 10 different objects, six handgun samples (#1- #6) and 

four non-threat metallic items (#7- #10) samples respectively. 
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5.3.2 Material categories 

Since the EM signal represents the EM reflection of samples sensed by a GMR 

sensor, this signal shows primarily the material properties of an object. Each sample has 

a different EM field, because these fields are typical for different objects. Reasons for 

these differences include size, electrical and magnetic material properties and also the 

metal distribution in the object. The proposed material features were deduced from the 

EM image using two techniques as follows. 

5.3.2.1 Maximum EM field change features 

Signal amplitude represents a material feature used to obtain the properties of the 

objects under test. Each object generates an overall variation in EM signal amplitude 

according to the EM reflectivity of the material it is constructed from [79]. As an 

example, Figure 5.8 shows an initial field test measured using a GMR sensor for three 

different objects: an aluminium block, a Stanley knife, and a set of keys. To alleviate the 

error in this test, samples were chosen of approximately equal sizes and positioned at 

the same distance from the sensor. It can be seen from the plots that each object yields 

its own characteristic signature in terms of signal amplitude. The aluminium object 

produces a smaller amplitude variation than those made of steel. The test reveals that 

objects made of different materials produce different amplitude variations. 

 

 

Figure 5.8: Electromagnetic signals for three different objects from one GMR sensor. 
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The proposed amplitude variation feature (AMPchange) is calculated as the difference 

between the maximum (Max(EMsignal)) and the minimum (Min(EMsignal)) values from 

the received signal, as shown in Eq. (5.3):  

AMPchange=Max(EMsignal)- Min(EMsignal)                                                                     5.3 

           is directly related to the EM field intensity of the object’s material. This 

new feature is formed in a feature vector called f-Max-Min which is used by the classifier. 

Figure  5.9 shows the maximum amplitude change for the samples used. Generally, the 

handguns have the highest amplitude change, except that the mobile phone (#7 in the 

figure) gives a higher amplitude change than some of them. This is because its battery cell 

returns a high EM response, especially when it is fully charged, and so the system will give 

a positive false alarm when classifying the mobile phone. 

 

 

Figure 5.9: Maximum amplitude change for ten objects, six handgun samples (#1-#6) 

and four non-threat metallic items (#7- #10). 
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of the remaining variability as possible. This technique is a popular statistical method 

which tries to explain the covariance structure of data by means of a small number of 

components. These are calculated based on maximizing variance and decomposing 

covariance. Usually, two or three PCs provide a good summary of all of the original 

variation. The PCA approuch has two most significant goals. Firstly, it reduces the 

dimensions of the data; Secondly, it can also reveal those underlying factors or 

combinations of the original variables that principally determine the structure of the data 

distribution. Therefore it can be used to provide the features of this data. PCA has been 

widely used as a feature extraction tool [80, 90] which transforms data into uncorrelated 

eigenvectors or principal components (PCs) corresponding to the maximum variability 

within the data. Therefore, it is used to optimise and reduce the amount of redundant data 

and provides a convenient way to normalize objects in terms of translation and rotation 

[77]. From PCA a feature vector is extracted, which is invariant to scale and orientation, 

and tolerant to distortion. Concealed object detection and recognition in real-time has been 

proposed using PCA with passive millimeter wave imaging  [91]. The detailed steps of 

PCA [80, 90, 102] are summarised  as follows: 1) organisation of the dataset; 2) 

calculation of the mean along each dimension; 3) calculation of the deviation; 4) 

determination of the covariance matrix; 5) calculating the eigenvectors and eigenvalues of 

the covariance matrix; 6) sorting the eigenvectors and eigenvalues; 7) computing the 

cumulative energy content for each eigenvector; and finally, 8) selecting a subset of the 

eigenvectors as the basis vectors such that the k eigenvectors correspond to the maximum 

k of eigenvalues.  

In this work, PCA is applied to each EM signal to derive its eigenvector. The 

covariance of input data (Σx) is calculated as follows (Eq. 5.4): 

 

∑    ((    )(    )
 )                              5.4 

 

Eigenvalues λ and Eigenvectors    are identified using covariance Σx (Eq. 5.5). 

 

(     )    ; 

 

(     )      

                                      

                                           5.5 

 

where, I is an identity matrix of the same order as    and    is the mean.  

To identify between the objects, the PCA technique was applied to a sample of a 

range of 14 commonly used items in addition to the six handguns in a separate test. The 
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PCA components were integrated together and the relationship between the PCA1 and 

PCA2 are plotted in two dimension feature space which represents the correlation 

between the PCA components as shown in Figure 5.10. It was found that PCA method 

has the potential to discriminate between handguns and other objects, where objects are 

clearly classified into two non-overlapping clusters based on their two PCA 

components.  

 

Figure 5.10: PCA discrimination between handguns and other commonly used items. 

A further test was carried out using the handgun samples only. The first two 

components, PCA1 and PCA2, have been plotted in a 2D space. The test was repeated 

five times with the handgun in the holder being moved through the WTMD, and the 

results are shown in Figure 5.11. Likewise, the results for five other uncontrolled tests 

of a person walking through the system with a handgun concealed inside his jacket 

pocket are shown in Figure 5.12. 

It can be seen from Figures 5.11 and 5.12 that, in general, the objects can easily be 

separated and that each object correlates to a specific grouping.  

The results of the uncontrolled tests in Figure 5.12 show some fluctuations; however, 

items can still be discriminated when using three PCA components. So, in order to 

ensure more accurate classification results, the third component is also proposed in 

addition to the first and second components as an input for the classifier. These three 
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components are grouped in a feature vector named f-PCA for each sample and are then 

supplied to the classifier, as explained in the next chapter. 

 

 

Figure 5.11: Discrimination using PCA for six handguns in the holder using: a) Two 

PCA components, and b) Three PCA components. 
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Figure 5.12: Discrimination using PCA for six handguns concealed inside a person 

jacket pocket using: a) Two PCA components, and b) Three PCA components. 
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5.3.3 Time-frequency based features 

Feature extraction using time-frequency analysis has been used for study of EM 

response signal. Features are extracted from the scattered field of a given candidate 

target from the time-frequency plane to obtain a single characteristic feature vector that 

can effectively represent the target of concern [80].  

In this work the feasibility is investigated of using the time-frequency domain as a 

feature extraction technique in terms of its outcomes in improving detection and 

classification capability of the new system. Two different features were extracted using 

two different techniques, which are the Fast FT (FFT) and WT. Brief backgrounds of 

FFT and WT are given below along with the motivation behind their use, and the 

feature extraction approaches employed are detailed in subsequent sections. 

5.3.3.1 Fast Fourier transform 

The Fourier series provides an alternative way of representing data. Instead of 

representing the signal amplitude as a function of time, the signal represents how much 

information is contained at different frequencies. This technique is important in data 

acquisition, just as it is in stereos that allow you to isolate certain frequency ranges. In 

general the FFT is a better way to compute the Fourier transform of discrete data [72]. 

The signal can be decomposed as a weighted sum of sinusoid functions. This 

provides a feasible way of computing the power spectrum for a signal. The power 

spectrum then allows to be computed the Fourier coefficients more rapidly. The power 

spectrum serves as the fingerprint of the analysed signal and can be used for the 

detection and classification of concealed weapon [72]. Researchers usually only care 

how much information is contained at a particular frequency, irrespective of whether it 

is part of a sine or cosine series. Therefore, they are interested in the absolute values of 

the FFT coefficients. The absolute value of FFT for an EM signal provides the total 

amount of information contained at a given frequency, where the square of the absolute 

value is considered to be the power of the signal [139].  

In this work, the power spectrum (PS) at each frequency for each object signal is used 

as a feature vector to discriminate between different objects, where each object gives a 

different PS. Examples are shown in Figure  5.13, where the FFT was applied and the 

absolute value of the result was squared to obtain the PS.  
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Figure 5.13: Part of the power spectra of: a) Handgun, and b) Mobile Phone. 

The PS results will be (40*140), so to reduce the size of data before being sent to the 

classifier, PCA techniques were applied and the first three PCA components were 

selected since these accounted for 99.6% of the variance. Subsequently, the data is 

subjected to PCA and the data is approximated using a limited number of the most 

significant eigenvectors. So, at the end, each object has 3 features delivered from the 

FFT process, as summarised in Figure 5.14. These are fed to the classifier method, 

named f-FFT as detailed in the next chapter. 

 

Figure 5.14: FFT feature extracted steps. 
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process. The test was conducted using the six handguns along with the different non-
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cannot discriminate between the different samples and they should be fused or 

combined with other features for accurate classification.  

 

 

Figure 5.15: Feature vector extracted from the FFT process for 10 objects, #1-#6 are 

threat items (handgun samples) and the others (#7-#10) are non-threat items (camera, 

house key, mobile phone and pen). 
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translation of a specified analysing (also called a “mother” wavelet). Each resolution 
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information after the transformation is another feature of the wavelet transform [140]. 
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This enables the identification of areas in the original signal that correspond to 

particular object characteristics present in the wavelet transform data. An example of 

this is its application to electrocardiogram signals, which in some respects resemble 

metal detector signals [141]. Previous researchers have also verified that the WT can be 

used to produce features from metal detector data suitable for target classification [78, 

84]. 

In this study, the discrete wavelet transform has been used. Since the target responses 

consists of early and late time responses, the multiresolution property of the WT is well 

suited for analysing such data. The term “discrete” here refers to discrete sets of dilation 

and translation factors, and discrete sampling of the signal. At a given scale, J, a finite 

number of translations is used in applying multiresolution analysis to obtain a finite 

number of scaling and wavelet coefficients. The signal can be represented in terms of 

the following coefficients (Eq.5.6) [31]: 

 (   )  ∑          ( )  ∑ ∑       ( ) 
 
                                                          5.6 

where      are the scaling functions, CJk are the scaling coefficients,      are the 

mother wavelets and djk are the wavelet coefficients. The first term in Eq.5.6 gives the 

low resolution approximation of the signal, while the second term gives the detailed 

information at resolutions from the original down to the current resolution J. 

Daubechies order 4 has been selected from the wavelet family, due to its similarity to 

the waveforms generated by metal detection target signals [84, 142], and three 

resolution levels of wavelet decomposition have been implemented to encapsulate the 

majority of the significant wavelet behaviour, and to eliminate most of the significant 

wavelet behaviour which corresponds to background noise in the signal. Three types of 

statistical operation were applied to the wavelet approximation coefficients as a unique 

fingerprint for each object. These statistical operations are entropy (ENT), standard 

deviation (STD) and root mean square (RMS). As a result, each EM image has three 

types of features with three levels of decompositions. Thus, a feature vector was 

generated named f-WT consisting of 9 values to be fed to the classifiers. Figure 5.16 

shows the flowchart diagram of the classification procedure using WT. 

Figure 5.17 shows the resulting features of ENT, STD and RMSE for the three WT 

levels using the same 10 handguns and non-threat objects as in the previous test. It can 

be seen from this figure that these feature give good indications to discriminate between 

the handguns and the other objects. However, some of the non-threat objects have 

features close to those of the handguns, such as the entropy of the house key for 
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instance. This leads to the need to combine wavelet features with the other features in 

order to improve the classification results. 

 

Figure 5.16: Flowcharts of the gun classification procedure using discrete wavelet 

transform features. 

 

Figure 5.17: Wavelet feature for 10 objects, #1-#6 are threat items (handgun samples) 

and the others (#7-#10) are non-threat items (camera, house key, mobile phone and 

pen), for the one-level WT analysis. 
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5.3.4 Transient analysis features 

Analysis of the transient image sequence can be used to obtain more information 

about the object under examination, and is especially useful for object classification. In 

this work, a cross-correlation technique is used to obtain signatures for the objects under 

test using the sequences of 14 images generated by the new system as detailed in 

Chapter 3. 

Cross-correlation techniques can be used to generate useful features for metallic 

object detection and characterisation. Young [36] designed a system for gun detection 

using a portion of the microwave frequency spectrum. In his work, the cross-correlation 

between coherence polarisation and cross-polarisation RF returns was used to 

distinguish between different threat objects. Normalized cross-correlation has also been 

implemented in our previous work [94], using the EM transient response signal obtained 

from  a sequence of EM images to detect different angular defects (this technique is 

detailed in Appendix D).  

In our work [95] a novel cross-correlation technique was used to classify different 

objects into a number of groups such that: paramagnetic, ferromagnetic and 

combinations of both depending on the transient analysis features. The EM images were 

generated using the pulse response from the material in the handguns and other daily 

used objects under inspection. The cross-correlation for each two successive images 

f(s,t) and g(x,y) in this sequence is calculated using Eq.5.7. Then the maximum value of 

each cross-correlation result is aggregated for all of the 14 images pairs to create a 13-

value feature vector, to be used as a unique fingerprint for each sample under test [77].  

 

 (   )  ∑ ∑  (   )   (       )                                                                    5.7 

 

for x=0,1,2,…,M-1, y=0,1,2,….,N-1, and the summation is taken over the image 

region where g and f overlap. 

The whole cross-correlation analysis procedure is summarized in Figure  5.18. 
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Figure 5.18: Cross correlation analysis steps 

An example is shown in Figure 5.19, where a cross-correlation technique has been 
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Figure 5.19: Material determination through transient analysis: a) Maximum cross-

correlation between each two successive images in transient sequences for 20 different 

objects, and b) Ratio of highest two peaks of each curve in (a). (AL=aluminium, ST= 

steel) 
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Table 5.2: Cross correlation results (AL=aluminium, ST= steel) 

Class 1 
 Para-magnetic 

Class 2 
Mixed 

Class 3 
Ferro-magnetic 

AL-Block ST-AL-Block ST-Block 
Gun shaped AL-Block AL-ST-Block Screwdriver 
 Hunting-Knife Kitchen Knife 
 House-key Pen-Knife 
 Belt Gap-gun 
 Staple-remover Scissors 
 Coins Spanner 
 USB Bunch of keys 
 Pen Phone 

 

The validity of the maximum cross-correlation value has been proved in previous 

tests in that each sample has a different signature from the transient response analysis, 

and so each cross-correlation is aggregated for all the 14 images pairs to create a 13-

value feature vector to be used as an input for the automatic classification purposes 

described in the next chapter. 

5.4 Feature Combination  

Several attempts at feature fusion were conducted in order to identify and 

discriminate between real handguns and items in daily use based on combinations of the 

feature categories described above. Some of these attempts are explained in this section, 

and have been discussed in more detail elsewhere [143, 144]. 

5.4.1 Feature combination for handgun identification 

To distinguish between the various handgun samples two features are used. In the 

first attempt, edge chain features are combined with maximum amplitude change 

features. To select the best feature from the seven edge chain features, minimum 

Euclidian distances between the two edge chain code feature vectors in the optical and 

EM images using the six handguns have been obtained and the results are shown in 

Table 5.3. It is clear that the STD
2nd

 feature has the lowest Euclidian distance, and so it 

is the best one to represent the handgun samples. Figure 5.20 illustrates the feature 

space plot for the discrimination and identification of the six handguns using STD
2nd

 

and PCA features.  

 Table 5.3: Minimum Euclidian distance between two feature vectors 

Features Mean
1sr

 Var
2nd

 STD
2nd

 ADev
2nd

 Skew
3nd

 Kurt
4nd

 R 
v
 

Euclidian D. 0.7 0.8 0.3 0.5 1.3 3.2 1.1 
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Figure 5.20: Handgun identification using PCA and edge chain code features. 

 

Figure 5.21: Handgun identification using maximum amplitude change and first 

invariant moments features. 
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samples can be identified. The six handgun samples are made from different 

combinations of materials, and sample 4 which was a Glock pistol can be easily 

discriminated. This could be because this sample is made from ordnance grade steel 

material and also contains a lot of plastic polymer. The results for samples 1 and 2 also 

allow relatively good discrimination. Samples 3, 5 and 6 are nearest to each other, from 

which it may be infer that they are made from very similar materials, and they also have 

high weights (937g, 800g, 1140g respectively), compared to samples 1, 2 and 4 (which 

weigh 516g, 637g, and 689g respectively). Using this identification approach, 

promising results for clustering and classification are expected. 

5.4.2 Feature combination for daily used items 

Different combinations of features using EM images have been investigated to 

discriminate between other objects which are not handguns (the database for such objects 

was detailed in Chapter 3).  One of these tests is shown in this subsection, where the 

relationship between the first invariant moment and maximum amplitude change features 

are plotted in Figure  5.22. 

 

 

Figure 5.22: Object identification using invariant moment and maximum amplitude 

change features 
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It can be seen from Figure 5.22 that some of the threat objects, i.e. the kitchen knife, 

hunting knife, pen-knife, GAP gun, Al-Gun, screwdriver, spanner and scissors, can be 

discriminated from the other objects, which are the USB stick, staple remover, mobile 

phone, pen, coins, belt, and bunch of keys. Most of the non-threat items are clustered in 

the top-left corner of the figure, while the threat items are scattered throughout the 

feature space. Hence, discrimination using the invariant moment and maximum 

amplitude change features is used to classify daily used items (non-handguns) in the 

next chapter. 

5.5 Summary 

New approaches to weapon detection have been successfully tested based on features 

extracted from the EM response signal of a target. A comprehensive study and 

investigation of feature extraction tools has been carried out in this chapter. Geometrical 

shapes, material features, transient response features and time-frequency features were 

extracted from the EM data. Features were selected and integrated to obtain better 

object identification and discrimination. Feature vectors were prepared to feed to the 

classifiers for the next classification steps.  

A novel time-frequency image correlation method is proposed and successfully 

tested. This method is a good candidate for numerous applications where time-varying 

EM field images are encountered, pertaining to material discrimination among 

ferromagnetic and non-ferromagnetic metals. The PCA features have shown promising 

results. The PCA1 and PCA2 components can discriminate between handguns and other 

commonly used items very clearly, whereas PCA3 has been found to be able to 

discriminate among members of the handgun group when plotted together with PCA1 

and PCA2. On the other hand, edge chain code features have been neglected in this 

analysis because the configuration of the sensor-array adopted did not provide EM 

images corresponding to the actual sample shape. 

Several attempts were conducted in this chapter to determine the possibility of 

identifying and discriminating between real handguns and daily used items based on 

combinations of feature categories. Several feature combination tests have been carried 

out using feature clustering in two- or three-dimensional feature space. These 

combinations showed the feasibility of identifying different handguns as well as non-

threat objects.  
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The proposed feature extraction techniques have achieved good object detection and 

identification performance using the new data system. Some promising results 

indicating the feasibility of using these data to characterise and classify objects have 

been produced. Table 5.4 shows a comparison of the extracted features with the 

numbers of features in each feature vector.  

In the next chapter the prepared feature vectors from this chapter will be the input for 

techniques for automatic threat object classification. 

Table 5.4: Comparison of the extracted features 

Technique Purposes Limitation No. 

Edge chain 

code 

Shape descriptor Only binary data and EM 

images equivalent to the optical 

images 

7 

Invariant 

moments  

Describe the geometric 

behaviours of the image 

intensity distribution 

Preferable to use the 8 moments 

together 

8 

Principal 

component 

analysis 

Preserves the total variance 

of the images in the first few 

components 

Neglects redundant information 

and small data variations 

3 

Maximum-

minimum 

Finds amplitude range of 

each image - directly  

related to EM intensity 

Only measures the maximum 

EM field change – no 

information on distribution, etc. 

1 

Fast Fourier 

transform 

The signal will be 

represented in frequency 

domain 

Could not represent the data in 

the time domain 

3 

Wavelet 

transform 

The signal will be 

represented in time-

frequency domain. 

Adjustment needed to select 

mother wavelets and the number 

of levels analysis  

9 

Cross 

correlation  

Track the correlation 

between transient images 

Only applicable to transient  

data 

13 
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Chapter 6: Automatic Classification of Threat Objects  

In threat object detection applications the EM images can be displayed after pre-

processing for operator-assisted weapon detection or fed into a weapon detection 

module for automated weapon detection and classification. Automatic or machine 

recognition and classification are important, since the images obtained from the EM 

fields provide mostly ghost imaging which is not directly related to the object’s 

properties and so is very difficult to interpret. Among the various frameworks in which 

pattern recognition has been traditionally formulated, the statistical approach has been 

most intensively studied and widely used in metal detection and classification. More 

recently, artificial neural networks (ANN) and support vector machines (SVM) 

imported from statistical learning theory have been receiving increasing attention.   

In this chapter, two different types of classification techniques are investigated and 

compared, in order to identify an efficient technique for an automated classification 

process that suits the proposed system, and to evaluate the appropriate feature or feature 

combinations extracted from the EM response signature detailed in Chapter 5. The two 

classification methods are the ANN and SVM, both of which are supervised learning 

classifiers. The architecture and design of the classifiers are then presented. A set of 

training tests were carried out using the feature vectors prepared in Chapter 5 with a 

proposed feature combination framework. Classification methodology and test bed 

setup are explained, and two groups of objects representing threats and non-threats were 

used. Finally, the results are presented and the accuracy of each classifier for the 

identification of threat objects using the proposed system is discussed. 

6.1 Pattern Recognition Methods for Object Classification 

Pattern recognition and classification aims to classify objects based either on a priori 

knowledge or on special information extracted from the pattern. The objective of this 

process is to classify the patterns of objects based on the feature extracted from them. 

Four classification methods are widely used for object classification. Decision tree 

classification is a technique for object classification based on a tree-like model, using 

decision tree learning. This classification method is very simple for people to 

understand and interpret. However, the decision has to be generated in advance based 
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on expert knowledge and descriptions of the object. The K-nearest neighbour (KNN) 

classification method is a type of instance-based learning method that classifies 

unlabelled objects based on their similarity to examples in the training set. This method 

is analytically tractable and simple to implement. The biggest advantage of using KNN 

is that it is a method using highly adaptive local information. However, this method is 

also very susceptible to high dimensionality [100]. Alternatively, ANN and SVM 

methods are implemented in this work because of the capability of these methods to 

perform parallel processing on large input data sets simultaneously. They are good at 

classifying patterns when the training data is complex and noisy [145], which is more 

like the situation in this work.  

6.2 Artificial Neural Network Classifier 

Among pattern recognition techniques, ANNs have been increasingly used as an 

alternative way to implement basic pattern classifiers such as KNN classifiers [146]. 

ANNs can be viewed as systems inspired by the operation of biological neural 

networks. An ANN consists of an interconnected group of artificial neurons which 

process information based on their self-learning ability. The main characteristics of 

neural networks are that they have the ability to learn complex nonlinear input-output 

relationships, use sequential training procedures, and adapt themselves to the data [145]. 

This method is used in pattern recognition and classification since it does not need any 

information about probability distributions or the priori probabilities of different classes 

[100]. In addition, ANNs have the capacity for distributed information storage, parallel 

processing, reasoning, and self-organization. They also have the capability of the rapid 

fitting of nonlinear data, and can thus solve many problems which are difficult when 

using other methods [101].   

The three major advantages of using ANNs are that: (1) they can perform 

classification work that a linear classifier cannot; (2) when one element of an ANN fails 

in operation, the network can continue based on their parallel nature; and (3) the way 

ANNs learn does not need to be reprogrammed. However, there are two major 

drawbacks of ANNs: (1) every ANN needs to be trained before use; and (2) a long 

processing time is needed for a large neural network [146].  

ANNs have been used widely in metal object detection and classification [78, 88, 91, 

102-104, 147], as reported in Chapter 2. Two major types of ANN have been developed 

for detection and classification: feed-forward neural networks [148-150] and recurrent 
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neural networks [151]. Among several ANN applications, it has been concluded that 

feed-forward neural networks are used in most applications [100, 152].  

6.2.1 Neural network selection for threat object detection 

In pattern recognition there are many ways to develop classifiers, and methods which 

follow the neural networks paradigm have been among the most successful [100]. A 

number of neural networks have been developed based on different applications. Based 

on the learning algorithm, the feed-forward back-propagation neural network (BP neural 

network) is considered the simplest and most successful neural network for pattern 

recognition. This is because the information moves in only one direction in this 

network, forward from the input nodes, then through the hidden nodes and to the output 

nodes. There are no cycles or loops in the network [146]. This characteristic makes BP 

neural networks more robust in solving the metallic object classification problem 

effectively when the input data (features) contain overlapping information. So, in this 

work, a feed-forward BP neural network is selected as the classifier used for the 

proposed system.  

Each input into the neuron has its own weight associated with it. A weight is simply 

a floating point number and it's these adjust when eventually come to train the network. 

The weights in most ANN can be both negative and positive, therefore providing 

influences to each input. As each input enters the node it's multiplied by its weight. The 

node then sums all these new input values which gives the activation (again a floating 

point number which can be negative or positive). If the activation is greater than a 

threshold value, number 1 as an example, the neuron outputs a signal. If the activation is 

less than 1 the neuron outputs zero.. 

A neuron can have any number of inputs from 1…n, where n is the total number of 

inputs. The inputs may be represented as x1, x2, x3… xn, and the corresponding weights 

for the inputs as w1, w2, w3… wn. The summation of the weights multiplied by the inputs 

is typically called a step function as in Eq. 6.1 [153]. 

 

  ∑    

   

   

 

                                                (6.1) 

 

Feed-forward BP neural networks allow signals to travel one way only; from input to 

output with no feedback. The output of any layer does not affect that same layer. Feed-
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forward BP neural networks tend to be straightforward networks that associate inputs 

with outputs. The architecture of a three layer feed-forward BP neural network is shown 

in Figure 6.1. This network consists of the input layer, hidden layer and output layer. 

There can be multiple hidden layers, so the feed-forward BP neural network is also 

called a multilayer perceptron [146]. 

 

 

Figure 6.1: Architecture of a three layer feed-forward neural network 

6.2.2 Feed-forward BP neural network learning 

When the training of feed-forward neural network is being undertaken, the weights 

of each neuron are adjusted in such a way that the error between the expected output 

and the actual output is decreased. This process requires that the neural network 

computes the error derivatives of the weights. In other words, it must calculate how the 

error changes as each weight is slightly increased or decreased. The back propagation 

algorithm is a very typical supervised learning method for determining these weights. 

For example, when a data set is applied to the neural network, the network produces 

some output based on the current weights. This output is compared with the expected 

output, and a mean-squared error value is calculated. The error value is then propagated 

backwards through the network, and small changes are made to the weights in each 

layer. The weight changes are calculated in order to reduce the error signal for the case 

in question. The whole process is repeated for each of the example cases, and then 

reiterated with the first case again, and so on. The cycle is repeated until the overall 

error value drops below some pre-determined threshold. Mathematical presentations of 

the BP algorithm can be found in [145, 153].  

The architecture of the proposed feed-forward BP neural network can directly 

influence the speed of convergence of network training and the accuracy of object 



  

126 

 

classification. The design of BP neural network architecture mostly refers to the 

numbers of layers and neurons in each layer. 

6.2.2.1 Number of layers 

The BP neural network designed in this work for metallic object classification has 

one input layer and one output layer. The number of hidden layers needs to be decided 

prudently as it may directly influence the results. Cybenko pointed out in the Cybenko 

theorem (1989) that, with respect to a data set which can be classified using a linear 

classifier, the hidden layer is not necessary [154]. It may complicate the network and 

even degrade the results. Therefore, a feed forward neural network with one single 

hidden layer is capable of approximating any continuous, multivariate function to any 

expected degree of accuracy. Technically, increasing the number of hidden layers can 

enhance the processing capabilities of neurons. However, it also makes the network far 

more complicated and will rapidly increase the time needed for the training process. 

Based on the reasons outlined above, in this work one hidden layer is believed to be 

sufficient to solve the object classification problem. 

6.2.2.2  Number of neurons in each layer 

The number of neurons in the input layer is totally dependent on the dimensions of 

the input data. For example, in this work the number of input neurons is eight when f-

moment feature vectors are used as an input. On other hand, the number of neurons in 

the output layer is equal to the number of categories desired. So, the number of neurons 

in the output layer in this work is one, for guns or non-guns. The non-guns objects are 

further classified as threats or non-threats at the second stage. 

The decision about the number of neurons in the hidden layer is always a 

complicated issue and has been discussed by many researchers. It is normally decided 

based upon the application concerned, although it does not have to be a certain number 

for any specific application. Hecht-Nielsen [155] suggested that the number of neurons 

in the hidden layer for a neural network with one hidden layer should be smaller than

12 N , where N  is the number of neurons in the input layer, in order to insure that the 

neural network is able to approximate any continuous function. In another method [156] 

it is suggested that the number of neurons should be equal to iNM   , where M  is 

the number of output neurons, N is the number of input neurons and i  is varied from 

one to ten.  
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6.2.3 ANN specifications used for threat object detection 

Table 6.1 summarizes the BP ANN specifications used in this study. Feature vectors 

generated in Chapter 5 are used as input to the ANN classifier. A three-layered ANN 

classifier was used. The number of nodes in the hidden layer was selected to be 2N 

nodes based on [155] with the sigmoid activation function. Sigmoid functions are 

commonly used in ANNs because of their special mathematical properties. These 

properties include continuity, differentiability at all points and monotonicity (i.e. 

monotonically increasing within a finite range). Among several types of sigmoid 

functions, the “logsig” function S(t) was used for the hidden layer in this work as in Eq. 

6.2 [153]: 

 ( )  
 

     
  

                                                     (6.2) 

The output layer consists of a single output neuron to provide the classification of the 

target (1= gun, 0= non-gun in the first stage, and 1= threat, 0=non-threat in the second 

stage) with a linear activation function. The ANN classifier was trained using the BP 

learning rule with the Levenberg-Marquardt algorithm. This algorithm appears to be the 

one of the fastest methods for training moderate-sized feed-forward neural networks 

[132].  

Table 6.1: Artificial Neural Network Parameters (as used in MATLAB) 

No. of nodes in Input layer : Same no. of feature vector elements 

used (N). 

No of nodes in Hidden layer : Double no. of used features (2N). 

No of nodes in Output layer : One node (gun or not). 

Transfer function : ‘logsig’ for hidden layer, ‘purelin’ 

for output layer 

Training function : ‘trainlm’ 

Max number of Epochs : 10000 

Min performance gradient : 1e-10 

6.3 Support Vector Machine Classifier 

Recently SVM has attracted considerable interest in the classification field area. 

Although the subject can be said to have originated in the late 1970s [129], it is only in 

the past decade has it received close attention. The SVM is a concept in statistics and 
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computer science which involves a set of related supervised learning methods that 

analyse data and recognize patterns, and used is for classification and in regression 

analysis [157]. The SVM runs by itself and does not require any human intervention, 

and it can also be trained very quickly, even when the feature space has more than 20 

dimensions. In this work, the SVM based method is used as a second classification 

method to classify EM signals since it is  good at classifying patterns when the training 

data is complex and noisy [145], which is the case in the presented context. A 

comparison of the SVM with the ANN results was made to determine which method is 

most suitable for the proposed system.  

6.3.1 The principles of SVM 

The SVM is a binary classification method that takes as input labelled data from two 

classes, and then outputs a model file for classifying new unlabelled or labelled data 

into one of two classes. The basic objective of an SVM is to find the optimal hyper- 

plane that correctly separates the data of the two classes as completely as possible (see 

Figure 6.2). This method maximizes the margin between the classes by selecting a 

minimum number of support vectors. Non-linear SVM classifiers operate in two stages: 

first they perform a non-linear mapping of the feature vector onto a high-dimensional 

space that is hidden from the inputs and outputs, and then they construct an optimal 

separating hyper-plane in the high-dimensional space [158]. 

 

 

Figure 6.2: Classification of data by SVM 

Support vector 

Support vector 

Support vector 
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 The SVM abstracts a decision boundary in multi-dimensional space using an 

appropriate sub-set of the training set of vectors; and the elements of this sub-set are the 

support vectors. Geometrically, support vectors are those training patterns that are 

closest to the decision boundary. This method is based on the idea of mapping the data x 

into a higher-dimensional feature space via a nonlinear mapping ɸ, and linear regression 

is then worked out in this space. The general regression problem can be described as 

follows: given a group of training samples, and learn machines (training) study the 

relationship among the input-output variables. Assuming the given training data ((xi, xj), 

i = 1,2, ... ,l), in which xi  Rn is the i
th

 point of a study sample of n-dimensional input 

values, xj  R is the corresponding target value, and  j is the number of training samples. 

The goal is to find a function f(x) which can make a good approximation to all the 

sample points. In general, the support vector machine estimating function is (Eq.6.3) 

[159]: 

 

f(x)=<  T. ɸ (x)>+b                   (6.3) 

 

where, f(x) is the regression function;   is the normal vector; b is the offset; and ɸ (x) is 

the feature mapping function.  

6.3.2 Kernel selection 

The standard support vector regression algorithm at the same time needs a kernel 

function to be introduced, such as Eq.6.4: 

 

  K(xi; xj )= ɸ (xi)
T
 ɸ (xj )        (6.4)  

 

Though new kernels have been proposed by researchers, four main types could be 

used: linear, polynomial, sigmoid and radial basis functions. 

In this work, the radial basis function (RBF) is used as a kernel (K), as in Eq.6.5 

[105]: 

0 ),exp(),(
2

  jiji xxxxK                                                               (6.5) 

 

Here    is a kernel parameter. The RBF kernel was selected for two reasons. Firstly, 

it maps samples nonlinearly into a higher dimensional space so that, unlike the linear 

kernel, it can handle cases when the relationship between class labels and attributes is 
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nonlinear. Secondly, the number of hyper-parameters influences the complexity of 

model selection, and the RBF kernel has less hyper-parameters than the polynomial 

kernel. Hence the RBF kernel is associated with fewer numerical difficulties [160].  

There are two parameters for an RBF kernel: C and  . C > 0 is the penalty parameter 

of the error term and   is the kernel parameter of the RBF. It is not known beforehand 

which C and   is best for a given problem; consequently some kind of model selection 

or parameter search must be conducted. The goal is to identify a good (C; ) so that the 

classifier can accurately predict unknown data. The LIBSVM, is a library for SVM 

developed by Chang and Lin [105] and is used in this work. Chang and Lin developed 

an improved procedure known as cross-validation to find the best (C; ) and embed it in 

the LIBSVM library core. 

As specified by [105], all the feature vectors are normalised to the range [-1, +1] in 

each column as a preliminary step in applying SVM. The advantages of scaling are to 

avoid attributes in greater numeric ranges dominating those in small numeric ranges and 

to avoid numerical difficulties during calculation. After training using the SVM, the 

model is obtained for the prediction of unknown objects.  

6.4 Classification Strategy 

Features extracted from EM response signals were applied, individually and in 

combination, to the ANN and SVM classifiers through two major stages in order to 

categorise the objects under test into Gun and Non-gun in stage one, and in a second 

stage the Non-gun were categorised into Threat and Non-threat items, Threat items here 

refers to the any common daily used objects which have the ability to directly injure a 

human body or are otherwise considered to be harmful objects. Based on the initial 

classification results, the features with the highest classification rates (Hcr) were 

selected to be combined with the other features in order to gain higher classification 

accuracy. If the new classification rate is less than the previously achieved classification 

rate or when 100% is achieved then the combination process is halted. The block 

diagram of the classification strategy is explained in Figure  6.3. 
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Figure 6.3: Classification strategy block diagram. 

6.5 Classification Test Bed Setup 

Experiments were conducted using the proposed system with two groups of objects. 

The first group (GROUP_1) consisted of twelve different objects: six of these objects 

were handguns which are called “Gun”, while the others were daily used objects that 

contain metallic parts which are called “Non-gun”. The second group (GROUP_2) 

consisted of ten daily used objects, five of which contained a bulky amount of steel 

(such as knives, scissors and screwdrivers) that may be considered as threats and were 

named “Threat” and the rest are considered as non-threatening and are named “Non-

threat” (such as cameras, mobile phones, and keys). 

Table 6.2 describes the specifications of the GROUP_1 objects, where Table 6.2a 

represents the handgun types and weights and Table 6.2b represents the non-guns 

objects. The handgun samples represent the most common weapons seized by the 

police; of particular interest are sample #5, which is blank firer that has been converted 

so as to fire live ammunition through the welding of another barrel to the existing 
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mechanism, and a replica handgun (sample #6) which is commonly used by armed 

robbers.  

Table 6.2: GROUP_1 objects used in experimental test. 

      (a) Guns  (b) Non-Guns  

#1 Small revolver   

0.516g 
#7 Panasonic mobile phone  

#2 Small semi-automatic 

revolver 0.637g 
#8 Wrist watch 

#3 Medium revolver   

0.937g 
#9 House Key 

#4 Medium semi-automatic 

revolver 0.689g 
#10 Screwdriver 

#5 Converted blank firer 

0.800g 
#11 Scissors 

#6 Replica  

 1.140g 
#12 Kitchen knife 

 

Figure 6.4 shows GROUP_1 samples in the sample holder constructed for the tests, 

where Figure 6.4a represents the gun samples and Figure 6.4b represents the non-gun 

samples. The composition of all of the weapon samples commonly includes steel, with 

several other materials being incorporated such as zinc alloy, aluminium, and polymers. 

 GROUP_2 samples are shown in Figure 6.5, where Figure 6.5a represents samples 

that are usually considered harmless, or “Non-threat”, and Figure 6.5b represents 

samples that are usually considered harmful, or “Threat”, similar configuration was 

used to set up the two groups of samples in the system. 

During the tests, the sensitivity of the proposed system to each gun sample was 

measured in terms of the peak to peak amplitude change of the resultant response signal 

at different distances from the sensor-array.  

Figure 6.6 shows a plot of the system sensitivity to different samples. It is clear that 

the differences between average peaks are extremely small. This was also found to be 

true for several tests using the same gun. 

 



  

133 

 

 

Figure 6.4: GROUP_1 samples utilized in the test: a) gun samples, and b) non-gun 

samples. 

 

b) 

     #1                           #2          #3  

      #4                            #5           #6  

   #10                         #11    #12  

    #7                              #8       #9  

a) 
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Figure 6.5: GROUP_2 samples utilized in the test: a) non-threat samples, and b) threat 

samples.  

The results of the sensitivity test were used to solve the data shortage problem and to 

increase the number of items. Each object was tested five times using the proposed 

system to generate five samples for the same object. Hence, for the twelve objects under 

test (six being guns and the other six not), 60 EM signal samples were generated. Based 

on this, the ANN classifier was trained using 48 EM signals for all of the objects (four 

for each object), while the remaining 12 EM signals were used as test samples. In terms 

of GROUP_2, five threats and five non-threat samples were used, so 50 EM signals 

were generated; 40 EM of which were used for training and the rest for testing, as 

shown in Table 6.3. 
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Figure 6.6: Sensitivity plot of variation in response for the six guns. 

Table 6.3: Data set of the work 

 

GROUP_1 

Total No. of Images used= 60 

No. of training images =  

48 

No. of testing images = 

12 

Guns Non-guns Guns Non-guns 

24 24 6 6 

 

GROUP_2 

Total No. of Images used= 50 

No. of training images =  

40 

No. of testing images= 

10 

Threat Non-threat Threat Non-threat 

20 20 5 5 
 

6.6 ANN Classification Performance 

In this section, the results of the proposed features for object classification are 

presented. The results of GROUP_1 are discussed first, followed by discussion of the 

results of GROUP_2. 

6.6.1 GROUP_1 ANN classification results 

For GROUP_1, each type of feature vector was individually provided as the input for 

the ANN. The results are shown in Table  6.4. 
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Table 6.4: Results for each feature vector using ANN with GROUP_1 objects. 

Feature 

vector 

Hidden layer 

neurons  

Objects Correctly 

classified 

Incorrectly 

classified 

Classification 

rate 

f-Moment 16 Gun 6 0 100% 

Non-gun 3 3 50% 

 9 3 75% 

f-Max-Min 2 Gun 5 1 83% 

Non-gun 4 2 67% 

 9 3 75% 

f-PCA 6 Gun 4 2 67% 

Non-gun 5 1 83% 

 9 3 75% 

f-Corr 26 Gun 5 1 83% 

Non-gun 5 1 83% 

 10 2 83% 

f-WT 18 Gun 5 1 83% 

Non-gun 5 1 83% 

 10 2 83% 

f-FFT 6 Gun 5 1 83% 

Non-gun 3 3 50% 

 8 4 67% 

f-All 74 Gun 6 0 100% 

Non-gun 4 2 67% 

 10 2 83% 

 

In addition to the features obtained in Chapter 5, another feature set named f-All was 

formed from all the individual features combined to enhance the classification rate. The 

features were normalised before combination to avoid any misclassification. The results 

are also shown in Table 6.5 . However, the f-All feature vector did not achieve a higher 

classification rate compared to those with the individual features alone. 

Taking it a step further, combinations of Hcr features and other features were then 

adopted. The highest classification rates were achieved from f-Corr and f-WT features. 

Therefore, the combination of  f-Corr with the each of other features was selected as it 

yielded one of the two highest classification rates. The selected combination is 

illustrated below: 

 Comb.1: f-Corr with f-Moment features. 

 

 Comb.2: f-Corr with f-PCA features. 

 

 Comb.3: f-Corr with f-Max-Min features. 

 

 Comb.4: f-Corr with f-WT features. 
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 Comb.5: f-Corr with f-FFT features. 

 

The classification rates of these combinations are displayed in Table 6.5. 

Table 6.5: Results for different feature combinations using ANN with GROUP_1 

objects. 

Feature  

vector 

Hidden 

layer 

neurons  

Objects Correctly 

classified 

Incorrectly 

classified 

Classification rate 

Comb.1 42 Gun 2 4 33% 

Non-gun 6 0 100% 

 8 4 67% 

Comb.2 32 Gun 5 1 83% 

Non-gun 5 1 83% 

 10 2 83% 

Comb.3 28 Gun 6 0 100% 

Non-gun 5 1 83% 

 11 1 92% 

Comb.4 34 Gun 5 1 83% 

Non-gun 6 0 100% 

 11 1 92% 

Comb.5 34 Gun 5 1 83% 

Non-gun 4 2 67% 

 9 3 75% 
 

 

The results in Table 6.5 show an improvement in the classification rates, for example 

when the f-Corr features were combined with the f-Max-Min and f-WT features (Comb.3 

and Comb.4) where both achieved 92% classification rates. Based on these results, a 

new combination (Comb.6) was created. Since Comb.6 did not achieve a 100% 

classification rate, a new combination (Comb.7) between Comb.2 and Comb.3 was then 

created. Thus, the last two new combinations were as follows: 

 Comb.6: f-Corr, f-Max-Min and  f-WT features. 

 

 Comb.7: f-Corr, f-Max-Min and  f-PCA features 

 

The results of the final two combinations are shown in Table 6.6. The classification 

rate of Comb.7 reached 100%, it should be mentioned here that this ideal classification 

rate could have been obtained due to the limited number of handgun samples. 

Generally, the results give an indication that the transient features show better results 

than other features when used together for the classification of the EM signals. 

Figure 6.7 shows the classification rates of all of the individual and combined features 



  

138 

 

using the ANN with GROUP_1 objects. No further combinations were tried as a 100% 

classification rate had been achieved. 

Table 6.6: Results for further features combinations using ANN with GROUP_1 

objects.  

Feature  

vector 

Hidden 

layer 

neurons  

Objects Correctly 

classified 

Incorrectly 

classified 

Classification rate 

Comb.6 34 Gun 5 1 83% 

Non-gun 6 0 100% 

 10 2 92% 

Comb.7 34 Gun 6 0 100% 

Non-gun 6 0 100% 

 12 0 100% 

 

 

Figure 6.7: Classification rate of the features extracted from the EM system using ANN 

with GROUP_1 objects. 

6.6.2 GROUP_2 ANN classification results 

As a second stage after the handguns were detected, the non-gun items were further 

classified into threat and non-threat items. For this purpose, GROUP_2 was used. Tests 

were carried out using each of the feature vectors individually as the input for the ANN. 

The classification results for GROUP_2 are presented in Table 6.7. From this table, the 

results for the f-Corr features reached a 100% classification rate, indicating also that the 

transient response feature through time is the best feature for discriminating between the 

everyday items using an ANN. Hence, no further combined features were investigated. 
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Furthermore, the results show a 0% misdetection rate for the threat objects when using 

f-Moment, F-WT and f-Max-Min features. 

Figure 6.8 shows the classification rates of the features extracted from the EM 

detection system using ANN with the GROUP_2 objects. 

Table 6.7: Results of each feature vectors using ANN with GROUP_2 objects.  

Feature 

vector 

Hidden layer 

neurons  

  Objects Correctly 

classified 

Incorrectly 

classified 

Classification 

rate 

f-Corr 26 Threat 5 0 100% 

Non-threat 5 0 100% 

 10 0 100% 

f-Moment 16 Threat 5 0 100% 

Non-threat 4 1 80% 

 9 1 90% 

f-PCA 6 Threat 1 5 80% 

Non-threat 5 0 100% 

 6 5 90% 

f-WT 18 Threat 5 0 100% 

Non-threat 4 1 80% 

 9 1 90% 

f-FFT 6 Threat 3 2 60% 

Non-threat 5 0 100% 

 8 2 80% 

f-Max-Min 2 Threat 5 0 100% 

Non-threat 3 2 60% 

 8 2 80% 

 

 

Figure 6.8: Classification rate of the features extracted from the EM detection system 

using ANN with the GROUP_2 objects. 
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6.7 SVM Classification Performance 

In this section, the results for the features proposed for object classification using the 

SVM method are displayed. This method was used as a second classifier method to 

evaluate the features extracted from the new system and to adopt an efficient 

classification technique for an automated process. The same methodology as that shown 

in Figure  6.3 is used to classify the objects, but this time using the SVM. Firstly, the 

results of GROUP_1 are discussed, and then results of GROUP_2 are presented. 

6.7.1 GROUP_1 SVM classification results 

Each type of feature vector was individually provided to the SVM as the input. Also, 

another feature set named f-All was formed from all the individual features combined to 

enhance the classification rate. However, the f-All feature vector did not achieve a 

higher classification rate compared to the individual features alone. The results are 

shown in Table 6.8.  

Table 6.8: Results for each feature vector using SVM with GROUP_1 objects. 

Feature  

vector 

Objects Correctly 

classified 

Incorrectly 

classified 

Classification 

 rate 

f-Moment Gun 6 0 100% 

Non-gun 3 3 50% 

 9 3 75% 

f-Max-Min Gun 6 0 100% 

Non-gun 2 4 33% 

 8 4 67% 

f-WT Gun 6 0 100% 

Non-gun 2 4 33% 

 8 4 67% 

f-PCA Gun 6 0 100% 

Non-gun 1 5 16% 

 7 5 58% 

f-FFT Gun 6 0 100% 

Non-gun 1 5 16% 

 7 5 58% 

f-Corr Gun 6 0 100% 

Non-gun 0 6 0% 

 6 6 50% 

f-All Gun 1 5 16% 

Non-gun 6 0 100% 

 7 5 58% 
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Also, combinations of the feature vector with the highest classification rate and the 

other features were tested, as illustrated below: 

 Comb.1:  f-Moment with f-Max-Min features. 

 Comb.2: f-Moment with f-WT features. 

 Comb.3:  f-Moment with f-PCA features. 

 Comb.4: f-Moment with f-FFT features 

 Comb.5: f-Moment with f-Corr features. 

The classification rates for these combinations are shown in Table 6.9, and it is clear 

that there is an improvement in the classification rates compared to when using 

individual features. All other possible combinations were tried, however no further 

improvements were achieved. 

Table 6.9: Results of different feature combinations using SVM with GROUP_1 

objects. 

Feature  

vector 

Objects Correct 

classified 

Incorrect 

classified 

Classification 

rate 

Comb.1 Gun 6 0 100% 

Non-gun 3 3 50% 

 9 3 75% 

Comb.2 Gun 6 0 100% 

Non-gun 2 4 33% 

 8 4 67% 

Comb.3 Gun 6 0 100% 

Non-gun 3 3 50.% 

 9 3 75% 

Comb.4 Gun 6 0 100% 

Non-gun 3 3 50% 

 9 3 75% 

Comb.5 Gun 6 0 100% 

Non-gun 2 4 33% 

 8 4 67% 

 

The SVM classifier shows 0% misdetection in all combinations of features, as shown 

in Table 6.9. (Again, this ideal result may have been due to the use of limited numbers 

of samples). 

The classification rates of the features individually and in combination extracted from 

the EM detection system using the SVM with GROUP_1 objects are summarised in 

Figure 6.9. 
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Figure 6.9: Classification rates of the features extracted from the proposed system using 

SVM with GROUP_1 objects. 

6.7.2 GROUP_2 SVM classification results 

The results for GROUP_2 are presented in Table 6.10 classifying threat and non-

threat items from among the everyday used objects. 

Table 6.10: Results for each feature vector using SVM with GROUP_2 objects.  

Feature 

vector 

Objects Correctly 

classified 

Incorrectly 

 classified 

Classification 

 rate 

f-Corr Threat 1 4 20% 

Non-threat 5 0 100% 

 6 4 60% 

f-FFT Threat 4 1 80% 

Non-threat 0 5 0% 

 4 6 40% 

f-PCA Threat 3 2 60% 

Non-threat 1 4 20% 

 4 6 40% 

f-Max-Min Threat 3 2 60% 

Non-threat 0 5 0% 

 3 7 30% 

f-WT Threat 3 2 60% 

Non-threat 0 5 0% 

 3 7 30% 

f-Moment Threat 2 3 40% 

Non-threat 0 5 0% 

 2 8 20% 
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Table 6.10 shows that when using the SVM classifier the transient features 

(f-Corr) gave the best results in classifying the everyday items.  

Combinations between the highest scoring feature (f-Corr) and all other features 

yielded the same results as using f-Corr alone. It is noted that all combination results 

will give the same result as that for the highest individual feature. Figure 6.10 shows the 

classification rates of the features extracted from the EM detection system using the 

SVM with GROUP_2 objects. 

 

Figure 6.10: Classification rates of the features extracted from the proposed system 

using SVM with GROUP_2 objects. 

6.8 Comparison of the SVM and ANN 

In this work, the performance of each classification method was compared in terms of 

threat object detection and classification using the new system. To highlight the 

differences between the SVM and ANN, the ANN training phase employs an empirical 

risk minimization principle which minimizes the error in the training data, whereas the 

SVM adopts a structural risk minimization principle which minimizes the upper bound 

of the generalization error. There are, therefore, a number of difficulties inherent to 

ANN design, namely model selection and parameter settings (and generally, the choices 

made are a result of the designer’s experience and empirical considerations) [108]. The 

SVM, is instead trained by solving a constrained quadratic optimization problem, and in 

order to identify the optimal architecture as well as evaluate the influence on 

performance of various design parameters, several SVM setups have to be tested [161]. 

This problem was solved by developing an improved procedure known as cross-

validation to find the best parameters, and to embed this procedure in the LIBSVM 

library core. Also, unlike with ANNs, the computational complexity of SVMs does not 

depend on the dimensionality of the input space [162]. 
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Based on our study, both algorithms are capable of classifying objects when trained 

on the features extracted from the EM objects’ responses. The classification process 

using the SVM was faster than that of the ANN because, when a test vector is 

presented, a trained SVM only has to determine on which side of the hyper-plane the 

new point falls in order to determine its class, while the ANN uses different functions 

through its layers. 

In general, ANN classification rates proved superior to those of the SVM. On the 

other hand, all handgun samples were accurately identified using the SVM algorithm. 

This is due to its use of the LIBSVM model which represents an improved procedure to 

find the best kernel parameter of the function. 

Although both classification methods gives good classification rates in terms of 

GROUP_1 objects, the ANN method yielded superior results for GROUP_2 objects. 

This is because the SVM is more sensitive, and training on these objects is not so 

efficient due to the diversity in their sizes and materials. 

A closer look at the GROUP_1 results for both classifiers show that, although both 

classification methods give high classification rates for most features, especially in 

terms of handgun objects, the ANN classifier gives low of false alarms rates compared 

to the SVM for non-gun items. Furthermore, the SVM classifier yields no false alarms 

for handgun objects when using all features both individually and in combination.  

In terms of feature combinations, the classification rates using the ANN are became 

higher, whereas the classification rates stay the same or are less than those for each 

feature individually when using the SVM. 

In comparison with the other EM classification algorithms reported in the literature 

[78, 88, 91, 103, 104, 105, 107-109], our algorithm shows superior results in terms of 

the variety of object tested, algorithm complexity and the accuracy of results. 

As a final recommendation, it is suggested that LIBSVM should be used in the first 

stage, as it has the capability to detect the handgun samples with higher classification 

rates using all feature types. In the second stage, the ANN is better for discriminating 

between the threat and non-threat objects because it has the highest classification rate 

using also all of the feature types. 

6.9 Summary 

In this chapter, the problem of metallic object classification using their EM induction 

responses is solved using an ANN and an SVM to process features extracted from these 
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responses. The performance of each method has been compared. In brief, the high 

classification accuracies obtained show that the feature extraction technique is capable 

of generating features that are adequate for representing the targets uniquely by target 

type. Hence, the proposed methodologies for feature extraction and the classifier 

techniques are suitable for the task of metallic threat object classification.  

The two classification methods, ANN and SVM, were used for threat object 

classification. They are implemented due to their capability for parallel processing on 

large input data sets simultaneously as well as because they are good at classifying 

patterns when the training data is complex and noisy, which is the case in the context 

investigated. The characteristics of the BP neural network make it more robust than 

other ANN algorithms, and it solves the object classification problem effectively when 

the input data of features contain overlapping information. A feed-forward BP neural 

network with one hidden layer was chosen, because it is capable of approximating any 

continuous, multivariate function to a great degree of accuracy. The number of neurons 

in the hidden layer was decided to be double the number of input vectors. In the SVM, 

LIBSVM was chosen for use because it is an improved procedure to find the best RBF 

kernel parameter. 

Several experimental tests have been carried out using six types of features. These 

features were utilized to classify 22 objects, six of which are real handguns and the 

others are different metallic items used in daily life. Several feature combination tests 

have been carried out in order to achieve the highest possible classification accuracy 

and these combinations showed better results than with each feature tested alone. The 

results show that transient response features are particularly good for classifying 

metallic items among other features used individually and in combination with other 

features, especially when using the ANN classifier. 

The majority of the results showed that more than 92% of the objects can be 

correctly classified using the ANN, while in feature combination cases classification 

rates of 100% were achieved so that all the samples used were correctly classified. On 

the other hand, the SVM gave a 100% classification rate in terms of the detection of all 

handguns in the sample using all features with or without combinations. The SVM also 

had a faster processing time, which would be important in easing flows in any crowded 

secure area. 

Based on these studies, the use of the SVM in the first classification stage should be 

recommended to classify handgun samples, while the ANN is suitable for use to 
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discriminate between threatening and non-threatening objects in the second 

classification stage.  

Table 6.11 summarises the characteristics of the proposed system in comparison with 

other available WTMD systems. It can be seen from the table that, although microwave 

imaging has excellent capabilities in terms of imaging and localisation, the costs are 

high and the technique is highly constrained in application, since subjects must stand 

still for inspection. Both magnetic field gradiometry and EM induction have reasonable 

detection capabilities and low cost, but localisation and characterisation are limited and 

imaging is not possible. The proposed system offers a good compromise between the 

constraint of the non-divestment of metal objects, imaging, characterisation, and 

classification capabilities. As a number of sensors are used in the system, the cost will 

be acceptable compared to current walk through systems, but the gains in imaging and 

the discrimination of multiple objects as well as classification will justify the cost. 

It can be concluded that magnetic field imaging could be used to detect and identify 

metallic objects. In comparison with conventional induction based WTMDs, the GMR 

array based system has shown great potential in object identification, discrimination and 

classification. 

Table 6.11: Summary of techniques used in walkthrough metal detectors 
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Chapter 7: Conclusions and Further Work 

This chapter summarises the research work presented in the thesis. Conclusions are 

drawn and the contributions of the work to the field of EM metal detection and 

classification are highlighted. Finally, potential future directions for research are 

outlined in terms of improving the existing system, such as extending it to build an EM 

threat item database and developing image processing software to detect and classify 

threat items. 

7.1 Conclusions and Major Contributions 

A system for the automatic detection and classification of threat objects based upon 

the responses of objects to EM fields has been developed in this thesis. The heart of the 

method is to use pulse excitation to generate an EM field induced inside the object 

body, and then to receive the secondary EM field reflected from the object after 

disturbing this field. Features were extracted from the received signal to represent a 

unique signature in classifying each object. There were two main objectives for this 

thesis. The first was to design and implement a new metallic object detection system 

that could identify a metallic object based on the object’s response to EM fields using 

magnetic field imaging methods. The second was to develop a suitable signal 

processing algorithm to classify the targeted signatures. 

The proposed system uses an array of GMR sensors in conjunction with pulsed 

excitation to develop a new WTMD for deployment in unconstrained environments 

where users need not divest themselves of metallic items in any secured area. This 

system enables a two-dimensional image to be constructed and used in later image 

processing for object identification and classification purposes. 

In the development and investigation of the new system, four major parts were 

undertaken: to design and implement an EM sensor-array system; to test and evaluate 

this system in terms of detecting different threat and non-threat objects; image pre-

processing and feature extraction from the system outcome; and finally automatic threat 

object classification. All of these parts have been investigated, discussed and developed 

in chapters 3 to 6 of this thesis.  
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The main scientific findings of this work are as follows: 

 

 The new system has been designed around the use of AAL002-02 NVE GMR 

sensor-arrays. This sensor type was chosen for the array due to its highest 

sensitivity compared with the other NVE GMR sensors. Tests have been 

carried out using pulsed excitation and it has been concluded that pulsed 

excitation in conjunction with advanced time-frequency analysis has the 

greatest potential for object detection, characterisation, localisation and 

imaging.  

An optimum sensor-array design is achieved by the adjustment of following:  

1) The number of sensors, which is even one array units, consists of 40 sensors 

or two arrays units consisting of 80 sensors. 

2) The space between these sensors in the array, which at 15mm gave the best 

balance between spatial resolution and system complexity. 

3) The position and direction of the sensor-array in terms of the coils or pulse 

excitation which is slanted in the sensor-array directly above the coil. 

 A novel formation of reconstructed images has been developed and is called 

max-value image formation. This technique uses simple averaging and chooses 

the maximum value. Transient response image formation then involves the 

generation of a transient image sequence which is used to extract further 

information about the object under examination. 

 A prototype user interface was developed, which included signal pre-

processing, the software necessary to isolate the response signals, management 

of data acquisition, parameter setting, and image reconstruction.  

 The capability of the proposed system to detect threat and non-threat items was 

tested. Twelve real handguns were tested along with more than twenty other 

items commonly used in daily life. Tests were undertaken using a holder as 

well as an individual walking through the system arch carrying the objects in 

typical sites on the body such as in jacket and trouser pockets.  

 The new system was evaluated in terms of the following:  

1) Repeatability: the test results showed that the control and walk-through tests 

have the greatest repeatability. 

2) Orientation robustness: it is concluded from the test results that the images 

follow a fairly predictable evolution with the rotation of the object. The 
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trends in the data were observed to be similar irrespective of the orientation 

of the object. 

3)  Distance sensitivity: The test results showed that, for good resolution, the 

distance from the panel to the object should be less than 60cm and that 

sensitivity decreases substantially as the distance from the arch panel 

increases. 

4) Multiple object detection: the test results show that, at object separation 

distances greater than 0.6 cm the system can easily distinguish between two 

target objects. 

 Features which reflect the objects’ shape, material properties, time-frequency, 

and transient response analysis have been extracted and integrated to obtain 

better object identification and discrimination. A novel time-frequency image 

correlation method was successfully proposed, pertaining to the discrimination 

of material into ferromagnetic and non-ferromagnetic metals. The results show 

that the transient response features are most suitable for threat object 

classification and deliver a high classification rate individually or when 

combined with other features when used with the two proposed classifiers. 

 The two classifiers, ANN and SVM, were selected to find an efficient 

technique for an automated classification process which best suits the proposed 

system, and to evaluate the features suitable for threat object classification. 

Several feature combination tests have been carried out. The results showed 

that the SVM can recognise all the handgun samples correctly and it has faster 

processing time which is an important issue in easing the flow of people in any 

crowded secure area. On the other hand, the majority of results showed that 

more than 92% of the objects can be correctly classified using the ANN, while 

in feature combination cases it achieved 100% classification where all of the 

samples used were correctly classified. 

 Based on the study’ results, the SVM should be recommended in the first 

classification stage as it has the capability to detect all of the handgun samples 

used in this research, while ANN is suitable to be used to discriminate between 

threat and non-threat objects in the second classification stage since it has the 

highest classification rates for these types of objects. 
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7.2 Further work 

Following the research outcomes achieved in this work, several directions for further 

work are suggested in terms of improving the existing techniques. A stand-alone walk-

through system with superior object discrimination and localisation capabilities is 

envisaged for future exploitation. It is thought that the discrimination capabilities of the 

system could be developed to the point that an individual could pass through the system 

without removing metallic objects. This would be realised through “training” the system 

to identify threat objects by presenting it with a wide variety of threat and non-threat 

objects and programming responses accordingly. 

The next section presents a proposal for a new route to design an EM detection and 

imaging system, while the subsequent lists suggestions to enhance specific areas of our 

proposed system.  

7.2.1 Design of a new prototype of the EM detection and imaging system 

A new EM imaging prototype system has been proposed. Figure 7.1 shows the 

overall prototype system design proposed for future work. Pulsed excitation is provided 

to the two excitation coils via a switching circuit controlled by the PC. A GMR sensor-

array is used to measure the field in both transmit-receive and reflection modes, with a 

multiplexer used to switch between groups of sensors to reduce the data acquisition 

requirements of the system. Although the system is designed to work as a stand-alone 

detector, the configuration will be flexible enough to accommodate other sensing modes 

such as CCTV or thermal imaging. The prototype system will utilise the existing CEIA 

arch coils, but a new coil can also be designed and constructed at a later date. 

 Figure 7.2 shows the proposed operation of the system. Step 1; a line of sensors at 

each side operate as regional metal detectors; the presence of a metallic object is 

detected through simple thresholding of the signal, with decision making informed by 

the parameters of the measured signal such as shape and material which can be used to 

identify the material and calculate the approximate volume of the object. Steps 2; if the 

object is identified as a potential threat, a set of sensors near to the object are activated 

for data acquisition. Step 3; the result of this data acquisition can be used for object 

imaging, further discrimination of the object’s material and volume and fitting to known 

patterns for classification and categorisation in discriminating, for example, between 

guns, knives and non-threat objects such as keys and mobile phones. 
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Figure 7.1: System diagram for the new prototype pulsed electromagnetic threat 

detection and imaging system. 

 

 

Figure 7.2: Proposed system operation. 
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7.2.2  Suggested enhancements for the proposed system 

In order to bring the system to a point where a fully operational prototype could be 

realised, the following issues would need to be resolved: 
 

 Hardware integration; the current system is built around a number of discrete 

devices. For prototyping, the system would need to be integrated into a single 

control box. Also, the current system is built around a CEIA arch, with our own 

excitation system attached. Although this works well, there are obvious issues 

with this arrangement. The design of a customised WTMD will enhance the 

system. 

 There are some noise and cross interference issues when a magneto-resistive 

array of large area is deployed in this type of application. Noise reduction 

techniques such as EM shielding need to be investigated. 

 The system could be built for 3D imaging to enhance its sensitivity by adding a 

sensor array in the roof of the WTMD panel in order to visualize in the third 

dimension. This will help much in the recognition of actual shape and size as 

well as the orientation and localisation of the object. 

 Large sample size and real application tests are needed. The collection of signal 

responses of different classes of guns, knives and other threatening metallic 

objects are vital in the development of a comprehensive signature database. 

 New research looking at optical magnetometers could be applied to this work in 

order to compensate for some of the current system’s shortcomings, including 

further improvements in spatial resolution for magnetic field measurement. 

These qualities have made such technology valuable in the medical field, and its 

introduction into this system would certainly enhance object identification and 

classification.  

 The project was also built as an open platform, which can integrate other 

modalities of sensing and imaging such as CCTV, thermal and radar images in 

order to overcome the fact that current approaches are more sensitive to 

magnetic volumes than fine-structural and material characteristics due to the 

limitations of detection distance. 



  

 153   

 

References 

[1] D. Daniels, EM Detection of Concealed Targets. Inc Hoboken, New Jersey: 

John Wiley & Sons, 2010. 

[2] F. Sadjadi and B. Javidi, Physics of Automatic Target Recognition: Springer, 

USA, 2007. 

[3] B. Javidi, Optical Imaging Sensors and Systems for Homeland Security 

Applications. USA: Springer, 2006. 

[4] N. G. Paulter, "Users’ Guide for Hand-Held and Walk-Through Metal 

Detectors," NIJ Guide 600-00, NCJ 184433, Office of Science and Technology, 

U.S. Department of Justice, DC 20531, 2001. 

[5] A. Agurto, Y. Li, G. Tian, N. Bowring, and S. Lockwood, "A Review of 

Concealed Weapon Detection and Research in Perspective," presented at the 

IEEE Proceedings of International Conference on Networking, Sensing and 

Control, 2007. 

[6] Honeywell. Simple Magnetic gradiometer. Available: 

http://www.magneticsensors.com/applications/gradiometer.html 

[7] R. Koch and G. Keefe, "Room temperature three sensor magnetic field 

gradiometer," Review of Scientific Instruments, vol. 67, pp. 230-235, 1996. 

[8] L. Roybal, P. Rice, and J. Manhardt, "New approach for detecting and 

classifying concealed weapons," in SPIE Proceeding on Surveillance and 

Assessment Technologies for Law Enforcement, pp. 96-107, 1997. 

[9] P. Czipott, "stand-off detection and tracking of concealed weapons using 

magnetic tensor tracking:Final activities report," National Institute of Justice, US 

Dept Justice, United States, 2001. 

[10] S. Kumar, R. Perry, R. Moeller, C. Skvoretz, J. Ebbert, K. Ostrom, L. Bennett, 

and V. Czipott, "Real-time tracking magnetic gradiometer for underwater mine 

detection," in IEEE Techno-Oceans '04, pp. 874-878 Vol.2, 2004. 

[11] N. G. Paulter, "Guide to the technologies of concealed weapon and contraband 

imaging and detection," NIJ Guide 602-00, 2001. 

[12] R. Jia and R. Groom, "On inversion of gradient magnetic data for detection of 

multiple buried metallic objectives," in Symposium on the Application of 

Geophysics to Engineering and Environmental Problems, pp. 1772-1778, 2004. 

[13] S. Singh and M. Singh, "Explosives detection systems (EDS) for aviation 

security," Signal Processing, vol. 83, pp. 31-55, 2003. 

[14] E. Gasperikova, "A new-generation EM system for the detection and 

classification of buried metallic objects," Lawrence Berkeley National 

Laboratory. Paper LBNL-53963, 2003. 

[15] K. Davis, Y. Li, and M. Nabighian, "Automatic detection of UXO magnetic 

anomalies using extended Euler deconvolution," GEOPHYSICS, vol. 24, pp. 

1133-1136, 2005. 

[16] R. International. (2011). EM61 electro-magnetic metal detection. Available: 

http://www.reynolds-international.co.uk/uploads/files/07tssem61.pdf 

[17] C. Bruschini, "Evaluation of a commercial visualising metal detector for 

UXO/mine detection: the HILTI Ferroscan system," International Workshop on 

Sustainable Humanitarian Demining, 1997. 

[18] N. Goldfine, A. Washabaugh, D. Schlicker, and I. Shay, "High-resolution 

inductive sensor arrays for UXO detection, identification, and clutter 

http://www.magneticsensors.com/applications/gradiometer.html
http://www.reynolds-international.co.uk/uploads/files/07tssem61.pdf


  

 154   

 

suppression," SPIE Proceedings on Detection and Remediation Technologies for 

Mines and Minelike Targets VIII, vol. 5089, pp. 1-12, 2003. 

[19] D. He and M. Yoshizawa, "Metal detector based on high-Tc RF SQUID," 

Physica C, vol. 378-381, pp. 1404-1407, 2002. 

[20] W. Dagang, Q. Rui, C. Ji, W. Kainz, and S. Seidman, "Safety evaluation of 

walk-through metal detectors," in Electromagnetic Compatibility, 2005. EMC 

2005. 2005 International Symposium on, vol. 3, pp. 796-800, 2005. 

[21] J. Tyson. (2002). How Metal Detectors Work. Available: 

http://electronics.howstuffworks.com/metal-detector.htm 

[22] A. Agurto and M. Sibley, "New proposal for the detection of concealed 

weapons," Proceedings of Researchers’ conference at Huddersfield University, 

2007. 

[23] Y. Tiejun and L. Carin, "Analysis of the electromagnetic inductive response of a 

void in a conducting-soil background," IEEE Transactions on Geoscience and 

Remote Sensing, vol. 38, pp. 1320-1327, 2000. 

[24] C. Nelson, C. Cooperman, W. Schneider, D. Wenstrand, and D. Smith, "Wide 

bandwidth time-domain electromagnetic sensor for metal target classification," 

IEEE Transactions on Geoscience and Remote Sensing, vol. 39, pp. 1129-1138, 

2001. 

[25] C. Nelson, D. Mendat, T. Huynh, L. Thomas, J. Beaty, and J. Craig, "Three-

dimensional steerable magnetic field (3DSMF) sensor system for classification 

of buried metal targets," SERDP Project MM-1314 Final Technical Report, 

2006. 

[26] C. Nelson, "Metal Detection and Classification Technologies," Johns Hopkins 

APL technical Digest, vol. 24, pp. 62-66, 2004. 

[27] C. Nelson, "Wide-area metal detection system for crowd screening," in 

Proceedings of SPIE Conference on AeroSense, Sensors and Command, 

Control, Communication, and Intelligence (C3T) Technologies for Homeland 

Defense and Law Enforcemnt II, pp. 380-387, 2003. 

[28] A. Maradudin, A. Shchegrov, and T. Leskova, "Resonant scattering of 

electromagnetic waves from a rectangular groove on a perfectly conducting 

surface," Optics Communications, vol. 135, pp. 352-360, 1997. 

[29] A. Hunt, "Demonstration of a concealed weapons detection system using 

electromagnetic resonances, Final report," National Institute of Justice, US 

Department of Justice, NCJ Number: 190134, 2001. 

[30] D. Novak, R. Waterhouse, and A. Farnham, "Millimeter-wave weapons 

detection system," in Applied Imagery and Pattern Recognition Workshop, pp. 6 

-20, 2005. 

[31] N. Bowring, J. Baker, N. Rezgui, M. Southgate, and J. Alder, "Active millimeter 

wave detection of concealed layers of dielectric material," in Optics and 

Photonics in Global Homeland Security III, USA, pp. 1-10, 2007. 

[32] N. Bowring, J. Baker, N. Rezgui, and J. Alder, "A sensor for the detection and 

measurement of thin dielectric layers using reflection of frequency scanned 

millimetric waves," Measurement Science and Technology, vol. 19, pp. 1-7, 

2008. 

[33] A. Ibrahim, K. Liu, D. Novak, and R. Waterhouse, "A subspace signal 

processing technique for concealed weapons detection," in IEEE International 

Conference on Acoustics, Speech and Signal Processing, pp. II-401 - II-404, 

2007. 

[34] J. Hausner, "A radar-based concealed threat detector," Microwave Journal, vol. 

50, pp. 26-40, 2007. 

http://electronics.howstuffworks.com/metal-detector.htm


  

 155   

 

[35] Y. Li and G. Y. Tian, "A radio-frequency measurement system for metallic 

object detection using pulse modulation excitation," Proceedings of 17th World 

Conference on Nondestructive Testing, pp. 1-9, 2008. 

[36] Y. Li, G. Y. Tian, N. Bowring, and N.  Rezgui, "A microwave measurement 

system for metallic object detection using swept-frequency radar," in SPIE 

proceeding on Millimetre Wave and Terahertz Sensors and Technology, 2008. 

[37] Y. L. a. G. Y. Tian, "A radar system for detection and characterisation of guns 

and knives," Proceedings of the 47th Annual British Conference on NDT, pp. 1-

12, 2008. 

[38] V. Lubecke, O. Boric-Lubecke, A. Host-Madsen, and A. Fathy, "Through-the-

Wall Radar Life Detection and Monitoring," in IEEE/MTT-S International, 

Microwave Symposium, pp. 769-772, 2007. 

[39] M. Shaw, S. Millard, T. Molyneaux, M. Taylor, and J. Bungey, "Location of 

steel reinforcement in concrete using ground penetrating radar and neural 

networks," NDT & E International, vol. 38, pp. 203-212, 2005. 

[40] L. Douglas, M. David, H. Collins, E. Thomas, and H. Ronald, "Wideband 

millimeter-wave holographic weapons surveillance systems," in SPIE 

proceedings on Law Enforcement Technologies: Identification Technologies and 

Traffic Safety, pp. 131-141, 1995. 

[41] M. David, L. Douglas, H. Collins, E. Thomas, and H. Ronald, "Concealed 

explosive detection on personnel using a wideband holographic millimeter-wave 

imaging system," in SPIE Proceeding on Signal Processing, Sensor Fusion, and 

Target Recognition, pp. 503-513, 1996. 

[42] L. Douglas, M. David, E. Thomas, and H. Ronald, "Cylindrical holographic 

radar camera," in SPIE Proceeding on Enforcement and Security Technologies, 

pp. 79-88, 1998. 

[43] C. Hua-Mei, L. Seungsin, R. M. Rao, M. A. Slamani, and P. K. Varshney, 

"Imaging for concealed weapon detection: a tutorial overview of development in 

imaging sensors and processing," Signal Processing Magazine, IEEE, vol. 22, 

pp. 52-61, 2005. 

[44] D. Kozakoff and V. Tripp, "Antennas for concealed weapon detection," in 5th 

International Conference on Antenna Theory and Techniques, pp. 65-69, 2005. 

[45] L. Douglas, E. Thomas, and M. David, "Holographic radar imaging privacy 

techniques utilizing dual-frequency implementation," in SPIE Proceeding on 

Sensors and Command, Control, Communications, and Intelligence, 

Technologies for Homeland Security and Homeland Defense, p. 69430P, 2008. 

[46] D. Sheen, D. McMakin, and T. Hall, "Three-dimensional millimeter-wave 

imaging for concealed weapon detection," IEEE Transactions on Microwave 

Theory and Techniques, vol. 49, pp. 1581-1592, 2001. 

[47] H. Essen, H. Fuchs, M. Hagelen, S. Stanko, D. Notel, S. Erukulla, J. Huck, M. 

Schlechtweg, and A. Tessmann, "Concealed weapon detection with active and 

passive millimeter-wave sensors, two approaches," presented at the German 

Microwave Conference, Karlsruhe, Germany, 2006. 

[48] R. Appleby, "Passive millimetre-wave imaging and how it differs from terahertz 

imaging," The Royal Society, vol. 362, pp. 379- 393, 2004. 

[49] L. Yujiri, M. Shoucri, and P. Moffa, "Passive millimeter wave imaging," IEEE 

Microwave Magazine, vol. 4, pp. 39-50, 2003. 

[50] R. McMillan, N. Currie, D. Ferris, and M. Wicks, "Concealed weapon detection 

using microwave and millimeter wave sensors," in IEEE Proceedings on 

Microwave and Millimeter Wave Technology, pp. 1-4, 1998. 

[51] A. Luukanen, "Bolometer and Thz imaging," Millimetre-wave Laboratory of  

Finland -MilliLab-Microsensing seminar, 2008. 



  

 156   

 

[52] S. Harmer, N. Bowring, D. Andrews, N. Rezgui, M. Southgate, and S. Smith, "A 

review of nonimaging stand-off concealed threat detection with millimeter-wave 

radar," IEEE Microwave Magazine, vol. 13, pp. 160-167, 2012. 

[53] D. Sheen, D. McMakin, T. Hall, and R. Severtsen, "Active millimeter-wave 

standoff and portal imaging techniques for personnel screening," in IEEE 

Conference on Technologies for Homeland Security, pp. 440-447, 2009. 

[54] G. Wang, D. Xu, and J. Yao, "Review of explosive detection using terahertz 

spectroscopy technique," in Electronics and Optoelectronics (ICEOE), 2011 

International Conference on, pp. V4-22-V4-25, 2011. 

[55] A. Burnett, J. Cunningham, A. Davies, P. Dean, and E. Linfield, "Terahertz 

frequency spectroscopy and its potential for security applications," in Infrared 

and Raman Spectroscopy in Forensic Science, ed: John Wiley & Sons, Ltd, pp. 

295-314, 2012. 

[56] J. Federici, R. Barat, D. Gary, and D. Zimdars, "THz standoff  detection and 

imaging of explosives and weapons," Proceeding SPIE, vol. 5781, 2005. 

[57] R. Jennifer and D. Woolard, "Terahertz for military and security applications," 

Proceedings of the SPIE, vol. 6212, 2006  

[58] R. Mcmillan, "Terahertz imaging, milimeter-wave radar," presented at the 

Conference on  surveillance and assessment technologies for law, Alabama, 

USA, 2004. 

[59] G. P. Gallerano. (2004). Tera-Hertz radiation in Biological Research, 

Investigations on Diagnostics and study on potential Genotoxic Effects: Final 

Report. Available: http://www.frascati.enea.it/THz-BRIDGE/reports/THz-

BRIDGE  

[60] Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, "Fast continuous 

terahertz wave imaging system for security," Optics Communications, vol. 282, 

pp. 2019-2022, 2009. 

[61] R. Willardson, D. Skatrud, and P. Kruse, Uncooled Infrared Imaging Arrays  

and Systems in Semiconductors and Semimetals: Academic Press, New York, 

1997. 

[62] C. Siu-Yeung and T. Nanda-Pwint, "Using infrared imaging technology for 

concealed weapons detection and visualization," in TENCON 2010 - 2010 IEEE 

Region 10 Conference, pp. 228-233, 2010. 

[63] J. Duchateau and M. Hinders, "Using ultrasound in concealed weapons 

detection," NDE Lab, Department of Applied Science, College of William and 

Mary, pp. 1-59, 2005. 

[64] A. Achanta, M. McKenna, and J. Heyman, "Nonlinear acoustic concealed 

weapons detection," presented at the Applied Imagery and Pattern Recognition 

Workshop, 2005. 

[65] M. Hamilton and D. Blackstock, Nonlinear acoustics. Boston: Academic Press, 

1998. 

[66] E. Knott, J. Shaeffer, and M. Tuley, Radar cross section. SciTech Publishing, 

2004. 

[67] A. Hunt, R. Hogg, and W. Foreman, "Concealed weapons detection using 

electromagnetic resonances," SPIE Proceeding, The International Society for 

Optical Engineering, Conference on Enforcement and Security Technolog vol. 

3575, pp. 62-67, 1998. 

[68] Z. Liu, T. Macuda, Z. Xue, D. Forsyth, and R. Laganiére, "Concealed Weapon 

Detection: A Data Fusion Perspective," Journal of Aerospace Computing 

Information and Communication, vol. 6, pp. 1-29, 2009. 

[69] L. Collins and P. Torrione, "Comparison of pattern recognition approaches for 

multi-sensor detection and discrimination of anti-personnel and anti-tank 

http://www.frascati.enea.it/THz-BRIDGE/reports/THz-BRIDGE
http://www.frascati.enea.it/THz-BRIDGE/reports/THz-BRIDGE


  

 157   

 

landmines," presented at the SPIE Conf. Detection and Remediation 

Technologies for Mines and Minelike Targets, 2006. 

[70] Department of Homland security. (2008). Privacy Impact Assessment for the 

Future Attribute Screening Technology (FAST) Project. Available: 

http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_st_fast.pdf 

[71] C. Hua-Mei, L. Seungsin, R. Rao, M. Slamani, and P. Varshney, "Imaging for 

concealed weapon detection: a tutorial overview of development in imaging 

sensors and processing," IEEE Signal Processing Magazine, vol. 22, pp. 52-61, 

2005. 

[72] K. Dale, G. Lyle, and E. Robert, "Detection and classification of concealed 

weapons using a magnetometer-based portal," in SPIE Proceeding, Sensors and 

Command, Control, Communications, and Intelligence (C3I) Technologies for 

Homeland Defense and Law Enforcement, pp. 145-155, 2002. 

[73] L. Seungsin, R. Rao, and M. Slamani, "Noise reduction and object enhancement 

in passive millimeter wave concealed weapon detection," in Proceedings of 

International Conference on Image Processing, vol.1, pp. I-509-I-512, 2002. 

[74] C. Liane, K. Mucahit, K. Pramod, G. Mark, D. David, and J. Ferris, 

"Morphological filters and wavelet-based image fusion for concealed weapons 

detection," in SPIE Proceding, Sensor Fusion: Architectures, Algorithms, and 

Applications II, pp. 110-119, 1998. 

[75] S. Xilin, C. R. Dietlein, E. Grossman, Z. Popovic, and F. G. Meyer, "Detection 

and Segmentation of Concealed Objects in Terahertz Images," Image 

Processing, IEEE Transactions on, vol. 17, pp. 2465-2475, 2008. 

[76] M. Slamani, M. Alford, and D. Ferris, "Setting thresholds in infrared images for 

the detection of concealed weapons," in Proceedig SPIE, Applications of Digital 

Image Processing XXI, pp. 630-639, 1998. 

[77] R. C. Gonzalez, Digital Image Processing Second ed.: Prentice-Hall Inc., 2003. 

[78] M. Tran, C. Lim, C. Abeynayake, and L. Jain, "Feature extraction and 

classification of metal detector signals using the wavelet transform and the fuzzy 

ARTMAP neural network," Journal of Intelligent and Fuzzy Systems, vol. 21, 

pp. 89-99, 2010. 

[79] K. Hendrik and E. Hartmut, "Signal processing and pattern recognition for eddy 

current sensors, used for effective land-mine detection," in Proceedings of the 

Second international conference on Autonomous and intelligent systems, 

Burnaby, Canada, pp. 294-302, 2011. 

[80] G. Turhan-Sayan, "Real time electromagnetic target classification using a novel 

feature extraction technique with PCA-based fusion," IEEE Transactions on 

Antennas and Propagation, vol. 53, pp. 766-776, 2005. 

[81] S. Pal and M. Mitra, "Detection of ECG characteristic points using 

Multiresolution Wavelet Analysis based Selective Coefficient Method," 

Measurement, vol. 43, pp. 255-261, 2010. 

[82] Z. Qibin and Z. Liqing, "ECG feature extraction and classification using wavelet 

transform and support vector machines," in International Conference on Neural 

Networks and Brain, pp. 1089-1092, 2005. 

[83] F. Zhang and M. Li, "Wavelet analysis method of harmonics and 

electromagnetic interference in coal mines," Mining Science and Technology, 

vol. 20, pp. 576-580, 2010. 

[84] M. Tran and C. Abeynayake, "Evaluation of the continuous wavelet transform 

for feature extraction of metal detector signals in automated target detection: 

New advances in intelligent decision technologies." vol. 199, K. Nakamatsu, G. 

Phillips-Wren, L. Jain, and R. Howlett, Eds., ed: Springer Berlin/Heidelberg, pp. 

245-253, 2009. 

http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_st_fast.pdf


  

 158   

 

[85] M. Nixon and A. S. Aguado, Feature Extraction & Image Processing. : Elsevier 

Ltd, Second edition, 2008. 

[86] M. Hu, "Visual pattern recognition by moment invariants," IRE Transactions on 

Information Theory, vol. 8, pp. 179-187, 1962. 

[87] M. Rizon, H. Yazid, P. Saad, A. Shakaff, A. Saad, M. Mamat, S. Yaacob, H. 

Desa, and M. Karthigayan, "Object detection using geometric invariant 

moment," American Journal of Applied Sciences, vol. 2, pp. 1876-1878, 2006. 

[88] H. Pourghassem, O. Sharifi-Tehrani, and M. Nejati, "A novel weapon detection 

algorithm in X-ray dual-energy images based on connected component analysis 

and shape features," Australian Journal of Basic and Applied Sciences, vol. 5, 

pp. 300-307, 2011. 

[89] Air Force Research Laboratory. (2001). Final Technical Report: Sensor fusion 

algorithms and performance limits. Available: http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA391935 

[90] A. Sophian, G. Y. Tian, D. Taylor, and J. Rudlin, "A feature extraction 

technique based on principal component analysis for pulsed Eddy current NDT," 

NDT and E International, vol. 36, pp. 37-41, 2003. 

[91] S. Yeom, D. Lee, Y. Jang, M. Lee, and S. Jung, "Real-time concealed-object 

detection and recognition with passive millimeter wave imaging," Optical 

Society of America, Opt. Express, vol. 20, pp. 9371-9381, 2012. 

[92] W. Chin-Hsiung and H. Shi-Jinn, "Run-length chain coding and scalable 

computation of a shape's moments using reconfigurable optical buses," IEEE 

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, 

pp. 845-855, 2004. 

[93] D. Xiaolong and S. Khorram, "A feature-based image registration algorithm 

using improved chain-code representation combined with invariant moments," 

IEEE Transactions on Geoscience and Remote Sensing, vol. 37, pp. 2351-2362, 

1999. 

[94] A. R. Al-Qubaa, G. Y. Tian, J. Wilson, W. L. Woo, and S. Dlay, "Feature 

extraction using normalized cross-correlation for pulsed eddy current 

thermographic images," Measurement Science and Technology, vol. 21, pp. 

115501-115511, 2010. 

[95] A. R. Al-Qubaa, G. Y. Tian, and J. Wilson, "Electromagnetic Imaging System 

for Weapon Detection and Classification," presented at the Fifth International 

Conference on Sensor Technologies and Applications, France,pp.317-321, 2011. 

[96] S. Mehmet, K. Gulay, B. Melih, and B. Yildirim, "Buried metalic object 

identification by EMI sensor," in SPIE Proceedings on Detection and 

Remediation Technologies for Mines and Minelike Targets XII, p. 65530C, 

2007. 

[97] H. Haoping, F. Bill San, N. Steve, and I. J. Won, "Identification of buried 

landmines using electromagnetic induction spectroscopy: evaluation of a blind 

test against ground truth," in SPIE Proceeding on Detection and Remediation 

Technologies for Mines and Minelike Targets X, pp. 233-241, 2005. 

[98] C. Abeynayake, I. J. Chant, and G. Nash, "Modified Kalman target detection 

algorithm applied to metal detection," in SPIE Proceeding on Detection and 

Remediation Technologies for Mines and Minelike Targets VII, Orlando, FL, 

USA, pp. 836-846, 2002. 

[99] H. Krüger and H. Ewald, "New approach of signal processing for classification 

problems using a-priori information," in IEEE Sensores conference, pp. 1459-

1462, 2009. 

[100] M. Paliwal and U. Kumar, "Neural networks and statistical techniques: A review 

of applications," Expert Systems with Applications, vol. 36, pp. 2-17, 2009. 

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA391935
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA391935


  

 159   

 

[101] S. Kamruzzaman and A. Sarkar, "A new data mining scheme using artificial 

neural networks," Sensors, vol. 11, pp. 4622-4647, 2011. 

[102] M. Xi, M. Azimi-Sadjadi, T. Bin, A. Dubey, and N. Witherspoon, "Detection of 

mines and minelike targets using principal component and neural-network 

methods," IEEE Transactions on Neural Networks, , vol. 9, pp. 454-463, 1998. 

[103] A. David, B. Nicholas, D. Nacer, S. Matthew, G. Elizabeth, H. Stuart, and A. 

Ali, "A multifaceted active swept millimetre-wave approach to the detection of 

concealed weapons," in SPIE Proceeding on Millimetre Wave and Terahertz 

Sensors and Technology, pp. 711707, 2008. 

[104] D. Andrews, N. Rezgui, S. Smith, N. Bowring, M. Southgate, and J. Baker, 

"Detection of concealed explosives at stand-off distances using wide band swept 

millimetre waves " in SPIE Proceeding on Millimetre Wave and Terahertz 

Sensors and Technology, 2008. 

[105] C. Chang and C. Lin, "LIBSVM: A Library for support vector machines," ACM 

Transactions on Intelligent Systems and Technology, vol. 2, pp. 1-27, 2011. 

[106] J. Fernandez, B. Barrowes, K. O’Neill, K. Paulsen, I. Shamatava, F. Shubitidze, 

and K. Sun, "Evaluation of SVM classification of metallic objects based on a 

magneticdipole representation," presented at the Detection and Remediation 

Technologies for Mines and Minelike Targets XI, 2006. 

[107] Z. Beijia, K. O'Neill, K. Jin Au, and T. M. Grzegorczyk, "Support Vector 

Machine and Neural Network Classification of Metallic Objects Using 

Coefficients of the Spheroidal MQS Response Modes," Geoscience and Remote 

Sensing, IEEE Transactions on, vol. 46, pp. 159-171, 2008. 

[108] F. Juan Pablo, ndez, S. Fridon, S. Irma, E. B. Benjamin, and O. N. Kevin, 

"Realistic subsurface anomaly discrimination using electromagnetic induction 

and an SVM classifier," EURASIP J. Adv. Signal Process, vol. 2010, pp. 1-11, 

2010. 

[109] G¨. Lehner, Electromagnetic Field Theory for Engineers and Physicists. 

Springer-Verlag, Berlin Heidelberg, 2010. 

[110] John E. Nelson, "Coil assembly for electronic article surveillance system," 

U.S.A. Patent, No:5440296, Aug 8, 1995. 

[111] K. T. Mcdonald. (2003 ). A parallelogram loop antenna, Joseph Henry 

Laboratories, Princeton University, Princeton, NJ 08544. Available: 

http://physics.princeton.edu/~mcdonald/examples/loopantenna.pdf 

[112] M. Baibich, J. Broto, A. Fert, F. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. 

Friederich, and J. Chazelas, "Giant Magnetoresistance of (001)Fe/(001)Cr 

Magnetic Superlattices," Physical Review Letters, vol. 61, pp. 2472-2475, 1988. 

[113] S. Yamada, K. Chomsuwan, T. Hagino, H. Tian, K. Minamide, and M. Iwahara, 

"Conductive microbead array detection by high-frequency eddy-current testing 

technique with SV-GMR sensor," IEEE Transactions on Magnetics, vol. 41, pp. 

3622-3624, 2005. 

[114] C. Smith, R. Schneider, T. Dogaru, and S. Smith, "Eddy-current testing with 

GMR magnetic sensor arrays," Review of Progress in Quantitative 

Nondestructive Evaluation, vol. 23, pp. 406-413, 2003. 

[115] Y. Guang, A. Tamburrino, L. Udpa, S. Udpa, Z. Zhiwei, D. Yiming, and Q. 

Peiwen, "Pulsed eddy-current based giant magnetoresistive system for the 

inspection of aircraft structures," IEEE Transactions on Magnetics, vol. 46, pp. 

910-917, 2010. 

[116] K. Thiyagarajan, B. Maxfield, K. Balasubramaniam, and C. Krishnamurthy, 

"Pulsed eddy current digital imaging of corrosion pits," Journal of 

Nondestructive Testing & Evaluation, vol. 7, pp. 32-36, 2008. 

http://physics.princeton.edu/~mcdonald/examples/loopantenna.pdf


  

 160   

 

[117] G. Y. Tian and A. Sophian, "Study of magnetic sensors for pulsed eddy current 

techniques," INSIGHT, vol. 47, pp. 277-280, 2005. 

[118] F. Thollon, B. Lebrun, N. Burais, and Y. Jayet, "Numerical and experimental 

study of eddy current probes in NDT of structures with deep flaws," NDT & E 

International, vol. 28, pp. 97-102, 1995. 

[119] G.Y. Tian and A. Sophian, "Pulsed eddy current sensor," in Encyclopedia of 

Sensors. vol. 8, ed, pp. 347-366, 2006,. 

[120] L. Shu, H. Songling, and Z. Wei, "Development of differential probes in pulsed 

eddy current testing for noise suppression," Sensors and Actuators A: Physical, 

vol. 135, pp. 675-679, 2007. 

[121] NVE Corporation. (2011). GMR sensor catalogue Available: 

www.nve.com/Downloads/catalog.pdf 

[122] J. Lenz and S. Edelstein, "Magnetic sensors and their applications," Sensors 

Journal, IEEE, vol. 6, pp. 631-649, 2006. 

[123] J. Pelegrí , J. Alberola , and J. Lajara "Signal conditioning for GMR magnetic 

sensors: Applied to traffic speed monitoring GMR sensors," Sensors and 

Actuators A: Physical, vol. 137, pp. 230-235, 2007. 

[124] Agilent 33250A. Function Generator. Available: 

http://cp.literature.agilent.com/litweb/pdf/5968-8807EN.pdf 

[125] Kepco BOP 36-12ML bipolar power amplifier. Available: 

http://www.kepcopower.com/1461965.pdf 

[126] National instruments PXI PC. Available: http://www.ni.com/pxi/ 

[127] NI PXI-6251 data acquisition card. Available: 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/14125 

[128] INA111 instrumentation amplifier datasheet. Available: 

http://www.farnell.com/datasheets/80119.pdf 

[129] V. Vapnik, Estimation of Dependences Based on Empirical Data. Springer 

Verlag, New York, 1982. 

[130] J. Flusser, T. Suk, and B. Zitová, Moments and Moment Invariants in Pattern 

Recognition: John Wiley & Sons, 2009. 

[131] Air Force Research Laboratory, "Sensor fusion algorithms and performance 

limits," Final Technical Report, 2001, Available: http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA391935,2001. 

[132] R. Smid, A. Docekal, and M. Kreidl, "Automated classification of eddy current 

signatures during manual inspection," NDT & E International, vol. 38, pp. 462-

470, 2005. 

[133] Y. Li, G. Tian, N. Bowring, and N. Rezgui, "A  microwave measurement system 

for metallic object detection using swept frequency radar," in SPIE Proceeding 

on Millimetre Wave and Terahertz Sensors and Technology, 2008. 

[134] A. Savitzky and M. Golay, "Smoothing and differentiation of data by simplified 

least squares procedures," Analytical Chemistry, vol. 36, pp. 1627-1639, 1964. 

[135] S. J. Orfanidis, Introduction to Signal Processing: Prentice-Hall, Englewood 

Cliffs, NJ, 2010. 

[136] F. Herbert, "Computer processing of line-drawing images," ACM Computing 

Surveys, vol. 6, pp. 57-97, 1974. 

[137] E. Micheli-Tzanakou, Invariant moments: supervised and unsupervised pattern 

recognition: CRC Press, 2000. 

[138] Y. Yin and G. Tian, "Feature extraction and optimisation for X-ray weld image 

classification," presented at the 17th World Conference on Non-Destructive 

Testing, Shanghai, China, 2008. 

[139] Computing Fourier Series and Power Spectrum with MATLAB. Available: 

http://faculty.olin.edu/bstorey/Notes/Fourier.pdf 

http://www.nve.com/Downloads/catalog.pdf
http://cp.literature.agilent.com/litweb/pdf/5968-8807EN.pdf
http://www.kepcopower.com/1461965.pdf
http://www.ni.com/pxi/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/14125
http://www.farnell.com/datasheets/80119.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA391935,2001
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA391935,2001
http://faculty.olin.edu/bstorey/Notes/Fourier.pdf


  

 161   

 

[140] H. G. Stark, Wavelets and Signal Processing: An Application-based 

Introduction: Springer, Heidelberg, 2005. 

[141] E. Tamil, N. Kamarudin, R. Salleh, and A. Tamil, "A review on feature 

extraction & classification techniques for biosignal processing " in (Part I: 

Electrocardiogram) 4th Kuala Lumpur International Conference on Biomedical 

Engineering 2008. vol. 21, N. Abu Osman, F. Ibrahim, W. Wan Abas, H. Abdul 

Rahman, H. Ting, and R. Magjarevic, Eds., ed: Springer Berlin Heidelberg, pp. 

107-112, 2008. 

[142] C. Torrence and G. Compo, "A practical guide to wavelet analysis," American 

Meteorological Society vol. 79, pp. 61–78, 1998. 

[143] A. Al-Qubaa, G. Tian, and J. Wilson, "Object identification using feature 

extraction for electromagnetic images," presented at the Electrical and 

Electronic Conference of Postgraduate Research  Newcastle University, 2011. 

[144] G. Y. Tian, A. Al-Qubaa, and J. Wilson, "Design of an electromagnetic imaging 

system for weapon detection based on GMR sensor arrays," Sensors and 

Actuators A: Physical, vol. 174, pp. 75-84, 2012. 

[145] K. Anil, P. Robert, and M. Jianchang, "Statistical pattern recognition: A review," 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 4-

37, 2000. 

[146] M. Egmont-Petersen, D. Deridder, and H. Handels, "Image processing with 

neural networks- A review," Pattern Recognition, vol. 35, pp. 2279-2301, 2002. 

[147] N. Bowring, D. Andrews, N. Rezgui, M. Southgate, S. Smith, S. Harmer, and A. 

and Atiah, "A multifaceted active swept millimeter-wave approach to the 

standoff detection on concealed weapons," presented at the SPIE Proceeding on 

Millimetre Wave and Terahertz Sensors and Technology, 2008. 

[148] Y. Zheng, J. Greenleaf, and J. Gisvold, "Reduction of breast biopsies with a 

modified self-organizing map," IEEE Transactions on Neural Networks vol. 8, 

pp. 1386-1396, 1997. 

[149] Z. Zhigang, Y. Shiqiang, X. Guangyou, L. Xueyin, and S. Dingji, "Fast road 

classification and orientation estimation using omni-view images and neural 

networks," IEEE Transactions on Image Processing, vol. 7, pp. 1182-1197, 

1998. 

[150] Y. Park, "A comparison of neural net classifiers and linear tree classifiers: Their 

similarities and differences," Pattern Recognition, vol. 27, pp. 1493-1503, 1994. 

[151] T. Ziemke, "Radar image segmentation using recurrent artificial neural 

networks," Pattern Recognition Letters, vol. 17, pp. 319-334, 1996. 

[152] S. Marinai, M. Gori, and G. Soda, "Artificial neural networks for document 

analysis and recognition," IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 27, pp. 23-35, 2005. 

[153] F. Chen, "Back-propagation neural networks for nonlinear self-tuning adaptive 

control," IEEE Control Systems Magazine, vol. 10, pp. 44-48, 1990. 

[154] G. Cybenko, "Approximation by superpositions of a sigmoidal function," 

Mathematics of Control, Signals, and Systems (MCSS), vol. 5, pp. 455-455, 

1992. 

[155] R. Hecht-Nielsen, "Neurocomputing: picking the human brain," IEEE Spectrum 

vol. 25, pp. 36-41, 1988. 

[156] G. Onkal-Engin, I. Demir, and S. Engin, "Determination of the relationship 

between sewage odour and BOD by neural networks," Environmental Modelling 

& Software, vol. 20, pp. 843-850, 2005. 

[157] J. Christopher, "A tutorial on support vector machines for pattern recognition," 

Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998. 



  

 162   

 

[158] R. Duda, P. Hart, and D. Stork, Pattern Classification. USA: John Wiley&Sons, 

2001. 

[159] K. Wang, Y. Xie, and L. Sun, "Study on nonlinear compensation of eddy current 

sensor based on support vector machine," in IEEE International Symposium on 

Industrial Electronics, pp. 133-137, 2009. 

[160] S. Keerthi and C.-J. Lin, "Asymptotic Behaviors of Support Vector Machines 

with Gaussian Kernel," Neural Computation, vol. 15, pp. 1667-1689, 2003. 

[161] A. Bernieri, L. Ferrigno, M. Laracca, and M. Molinara, "Crack shape 

reconstruction in eddy current testing using machine learning systems for 

regression," IEEE Transactions on Instrumentation and Measurement, vol. 57, 

pp. 1958-1968, 2008. 

[162] M. Curilem, M. Chacón, G. Acuña, S. Member, S. Ulloa, C. Pardo, C. Defilippi, 

and A. Madrid "Comparison of artificial neural networks an support vector 

machines for feature selection in electrogastrography signal processing," 

presented at the IEEE International Conference of the Engineering in Medicine 

and Biology Society, 2010. 

[163] D. Mcmakin, D. Sheen, H. Collins, T. Hall, and R. Severtsen, "Wideband 

millimetre-wave holographic weapons surveillance systems," in SPIE 

Proceedings on Law Enforcement Technologies: Identification Technologies 

and Traffic Safety, pp. 131-141, 1995. 

[164] D. Mcmakin, D. Sheen, T. Hall, and R. Severtsen, "Cylindrical holographic 

radar camera," in SPIE Proceedings on Enforcement and Security Technologies, 

pp. 79-88, 1998. 

[165] W. Zhijun, D. Ziou, C. Armenakis, D. Li, and L. Qingquan, "A comparative 

analysis of image fusion methods," IEEE Transactions on Geoscience and 

Remote Sensing, vol. 43, pp. 1391-1402, 2005. 

[166] C. Pohl and J. Van-Genderen, "Review Article: Multisensor image fusion in 

remote sensing: concepts, methods and applications," International Journal of 

Remote Sensing, vol. 19, pp. 823-854, 1998. 

[167] Z. Liu, T. Macuda, Z. Xue, D. Forsyth, and R. Laganière, "Concealed weapon 

detection: A data fusion perspective," Journal of Aerospace Computing, 

Information, and Communication, vol. 6, pp. 1-13, 2009. 



  

A 

 

Appendix A: System Manual 

A.1 Equipment Connection and Functions: 

 Agilent 33250A function generator– provides excitation waveform to power 

amplifier.  

 Kepco BOP 36-12ML bipolar power amplifier – provides excitation to the 

coil where the excitation current is proportional to the excitation voltage from 

the function generator.  

 National instruments data acquisition system: 

o PC equipped with a PXI bus to accommodate multiple data acquisition 

cards. 

o 5 x NI PXI-6251, 16 input data acquisition cards. Allows acquisition of 

80 channels of data at a sample rate of 125kHz. 

o 5x breakout boxes and cables to allow us to establish a connection to the 

data acquisition cards.  

 Sensor boards – Each board contains 8 x NVE AAL002-02 giant magneto-

resistive sensors. 

 Amplifier boards – Each board contains 16 circuits based on the INA111 

instrumentation amplifier, to allow connections from two 8-channel sensor 

boards.  

 CEIA walk-through metal detector and control box – We provide our own 

pulsed excitation to the coils in the metal detector panel through a connection in 

the control box.  

 

 

Figure A.01: System connection diagram 
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Figure A.01 shows the system connection diagram. The upper part of the diagram is 

duplicated five times to make 80 channels (16 channels on each card x 5 cards). Two 8-

channel sensor boards are connected to each of the 16-channel amplifier boards via 20-

core ribbon cable. The INA instrumentation amplifiers provide differential termination 

and amplification for the sensor outputs (see Figure A.02). The amplifier circuits are 

powered by a +/-15v power supply. The outputs from the amplifier boards are 

connected to the data acquisition boards in the PC via the breakout boxes. An additional 

connection is established to the data acquisition board from the function generator. This 

allows the data acquisition to be synchronised to excitation waveform.  

A function generator supplies the excitation waveform. The Bipolar power amplifier 

is set to produce an output CURRENT that is proportional to the input VOLTAGE 

supplied by the function generator. The output from the function generator must be 

connected to the current programming input on the amplifier to achieve this. The 

output from the power amplifier is connected to the coil in the detector board via the 

arch control box. Note – none of the electronics in the control box are used in the test, it 

is just there to establish a connection to the detector panel. 

 

 

Figure A.02: BOP connections 

A.2 System Operation 

The following steps are required to either image the EM field from objects passing 

through the system or to acquire data using the system. 
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A.2.1 Start-up 

1. Turn on the computer and monitor. 

2. Turn on the lab power supply; check the red lights just above the power 

connectors. If any of these are lighted up, turn off the power supply and check for short 

circuits. 

3. Turn on the function generator (FG) and recall setting #2 from the function 

generator memory. This should result in a waveform with the following parameters: 

 Frequency = 500Hz. 

 Waveform = square wave. 

 Amplitude = 1v. 

 Offset = 500mv. 

 Duty = 50%. 

4. Check that the function generator output is ON. 

5. Turn on the Kepco BOP power amplifier. Check the VU meters on the front. If 

either of the needles are at maximum, turn off the BOP and check; i) that the FG output 

is on and outputting the right signal, ii) that the signal is reaching the BOP (use 

oscilloscope), iii) that the connection to the arch is OK (check resistance), and iv) that 

the settings on the BOP match those in the previous section. 

Note: The function generator must always be ON and outputting the right waveform 

if the BOP is on, otherwise a large current could be applied to the arch and damage it. 

So always turn the BOP off BEFORE the FG. 

 A.2.2 Data acquisition / scanning 

1. Open the file “plotter_02” in the following directory (see Figure A. 3) 

 (C:\MATLAB_FILES\ NEW_GUI_FULL_ARRAY\plotter_02) 
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Figure A. 3: The paths and the files used to capture data and process it. 

2. Check the user input section of the file; different settings are required for different 

array configurations; see the annotation in the file for details. 

3. Enter a location to save the generated data. See the annotation in the file for 

details.  

4. Run the file (F5) and change directory when prompted. The GUI will appear as 

shown in Figure A.04. 

 

Figure A.04: The GUI for the system 
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5. Set the gain and the analysis type. Gain = 1000, Analysis type = DC mean is a 

good starting point for most tests. But smaller / more distant objects may require 

more gain. 

6. Press the START button to start acquisition / scanning.  

Note: The system must be clear of any metallic objects during the first 6 readings 

after the START button is pressed, as these readings are taken as a measurement of the 

background field. 

7. Move the object under test through the arch. Slower movement will results in a 

better resolution in the final images. 

8. The GUI saves the first “K” (currently set at 140) readings after the start button is 

pressed. The file is saved on pressing the STOP button or the data acquisition loop in 

the GUI file reaching its end.  

Note: The saved file will be overwritten if the save location is not changed before the 

next time the START button is pressed. 

A.2.3 Data processing 

The saved data file “IMAGE.mat” contains the following: 

 IM2 – matrix representing the image shown in the GUI at the end of the data 

acquisition period. 

 KEEP – matrix containing the raw unprocessed data collected by the system 

during the test, in the form WP x CH x K (see “plotter_02” for definitions), i.e. 

(number of samples acquired for each reading) x (number of sensors in the 

array) x (number of readings). 

 TIME – time vector for the data acquisition period.  

 PARAMS – structure storing all the user input parameters. 

The data can be processed using the following files: 

 Image_generation – outputs a number of images that correspond to different 

processing techniques, see functions called for definitions of processing 

techniques. This file will generate the data VDC and VAC from the original 

“IMAGE.mat” file. Each of them related with different signal processing 

methods. 
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 Image_segmentation – outputs segmented, ‘time slot’ images. This file will 

generate the 14 frames for same objects captured by the sensor-array through the 

time. 

 These two files will be in the same directory (Image_generation   

Image_segmentation):  

(C:\MATLAB_FILES\ NEW_GUI_FULL_ARRAY\) 

The files require the user to enter the locations of the files to be processed – see file 

annotation for details. As an example, the final generated data will be appearing as 

shown in Figure A.05. 

 

 

Figure A.05: The final appearance of the data 
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Appendix B: Police Test Report 

A test was carried out in the Metropolitan Police office in London in the beginning of 

the project which all the system equipment were moved to the location of the test. A 

report was written for this test as follows. 

B.1 Sample Summary  

Six weapons (Table B.0.1) were provided by the Metropolitan Police for the tests. 

The samples represent common weapons seized by the police; of particular interest is 

sample #5 – the blank firer, converted to fire real bullets by welding another barrel to 

existing mechanism and the replica hand gun (sample #6), commonly used by armed 

robbers, etc., as a threat.  

Table B.0.1: Summary of samples used in tests 

No. Type Model Notes Weight Length 

1 
Small 

revolver 
Brocock .22” 

Not many of this type in 

circulation 
516g 150mm 

2 
Small semi-

automatic 

Walther PP - 

7.65mm 

Used as personal protection by a 

few people – quite rare 
637g 175mm 

3 

Medium 

revolver 

 

Brocock .22” 

 

Converted from firing air 

capsules, common modification 
937g 215mm 

4 

Medium 

semi-

automatic 

Glock  

Used by police, light, lots of 

plastic, not many used by 

criminals 

689g 205mm 

5 
Converted 

blank firer 

BBM GAP, 

8mm 

Barrel replaced by welding, 

common modification 
800g 200mm 

6 Replica Bruni 8mm 
Replica, commonly used by 

armed robbers, etc. as a threat 
1140g 215mm 

 

B.2 Test Set-up 

Tests were carried out using the apparatus shown in Figure B.01. The apparatus 

consists of: 

 The array; fixed to the Tx or Rx panel in the optimal position with respect to the 

excitation coil, ascertained by previous tests.  
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 The sample holder: holds the sample in a constant position as it is moved past 

the array.  

 The platform; fixed between the panels to ensure that the sample maintains a 

constant horizontal position with respect to the array and the panel. 

 The ramp; the sample is moved down the ramp (in the holder) past the array. 

The apparatus is designed so the sample can move past the array in 10cm increments 

with respect to the panel. 

Figure B.2a shows the array configuration and the relationship between the array and 

the samples. Two 80-elemet arrays were built into one framework: 

 Array 1; 80-element array with a 7.5mm x 42 mm pitch. 

 Array 2: 80-element array with a 7.5mm x 10 mm pitch. 

A multiplexing circuit is used to switch between the two arrays configurations, as 

shown in Figure B.2b.  

 

 

 

Figure B.01: Test set-up – top view 

Two set of tests were carried out, as shown in Figure B.03: 

 Dynamic tests; samples moved through the arch in one pass, data taken with the 

sample moving. Separate data sets taken in positions 1, 2, 3 ….10. Sample rate = 

62.5 kHz, pulse repetition rate 100 kHz. .  

 Static tests; samples moved through the arch in 10cm increments, data taken 

with the sample stationary. Separate data sets taken in positions 1, 2, 3 ….10, 

sample rate = 250 kHz, pulse repetition rate = 1 kHz. 
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Figure B.2: Test set-up: a) Test set-up side view b) System setup 

B.3 Test Results  

In this section the dynamic tests results with the sample moving through the arch are 

shown. The low sample rate and lack of data for averaging meant that processing of the 

raw data (Figure B.04a) did not yield useful results. For this reason, the following steps 

were taken: 

1. Up-sampling of the raw signal (x10), as shown in Figure B.04b.  

2. Calculation of a moving average (20 pulse responses). 

3. Calculation of the difference signal (signal with object – signal without object) 

for each sensor.  

a) 

b) 
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4. Calculation of mean and RMS amplitude of difference signal (see Figure B.04c 

and Figure B.04d) for all sensors and interpolation to produce sample image.  

 

 

Figure B.03: Sample position increments. 

 

The moving average process allowed 20 pulse responses to be averaged to increase 

the effective SNR while retaining the response to the presence of the object.   

The data from only one column of sensors (see Figure B.5) was used in order to 

produce the images shown in Figure B.6, with the sample passing by the column of 

sensors, and data plotted with respect to time.  
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Figure B.04: a) Raw sensor signal for one sensor, b) Up-sampled (x10) signal for all 

sensors, c) Mean amplitude of raw signal with object passing through the arch, d) Mean 

amplitude of up-sampled and averaged signal with object moving through the arch 

 

Figure B.5: One column of sensors used to produce the images 

1 1.5 2 2.5 3
0

1

2

3

4

5

6

7
DYNAMIC: RAW SIGNAL

Time - ms

A
m

p
lit

u
d

e
 -

 V

0 0.1 0.2 0.3 0.4 0.5
-1

0

1

2

3

4

5

6
DYNAMIC: UPSAMPLED SIGNAL

Time - ms

A
m

p
lit

u
d

e
 -

 V

0 1 2 3 4
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Mean Amplitude of Difference Signal

A
m

p
lit

u
d

e
 -

 V

Time - s
0 1 2 3 4

-0.15

-0.1

-0.05

0

0.05
Mean Amplitude of Difference Signal

A
m

p
lit

u
d

e
 -

 V

Time - s

a) b) 

c) d) 



  

L 

 

 

 

Time - s

D
is

ta
n

c
e

 -
 m

m

Sample 1: RMS amplitude of difference signal

 

 

Platform

Gun position

1 1.5 2 2.5

50

100

150

200

250

300

350

0.02

0.04

0.06

0.08

0.1

Time - s

D
is

ta
n

c
e

 -
 m

m

Sample 1: Mean amplitude of difference signal

 

 

Platform

Gun position

1 1.5 2 2.5

50

100

150

200

250

300

350 -0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time - s

D
is

ta
n

c
e

 -
 m

m

Sample 2: RMS amplitude of difference signal

 

 

Platform

Gun position

1 1.5 2 2.5

50

100

150

200

250

300

350

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time - s

D
is

ta
n

c
e

 -
 m

m

Sample 2: Mean amplitude of difference signal

 

 

Platform

Gun position

1 1.5 2 2.5

50

100

150

200

250

300

350
-0.1

-0.05

0

0.05

0.1

Sample 3: RMS amplitude of difference signal

Time - s

D
is

ta
n

c
e

 -
 m

m

 

 

Platform

Gun position

1.5 2 2.5

50

100

150

200

250

300

350

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sample 3: Mean amplitude of difference signal

Time - s

D
is

ta
n

c
e

 -
 m

m

 

 

Platform

Gun position

1.5 2 2.5

50

100

150

200

250

300

350 -0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08



  

M 

 

 

Figure B.6: Maps of RMS and mean amplitude of difference signals for a single column 

of sensors over time as object passes through the arch for all samples 

Figure B.7 shows another test of the maps of RMS of difference signals for a single 

column of sensors over time as object passes through the arch, for sample 2 only with 

10, 20, 30, and 40 cm distance from array changing as shown in Figure B.03. 
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Figure B.7: Maps of RMS of difference signals for a single column of sensors over time 

as object passes through the arch, for sample 2 only with distance from array changing 

as shown in Figure B.03. 

B.4 Conclusions 

The results show that: 

 Figure B.6 shows that there is some correlation between the position and shape of 

the object and the signal from the array (at least at short distances). 

 Figure B.7 shows that the correlation is retained as the distance between the array 

and the object is increased up to a limit of around 400mm, this is still not good 

enough.  

 A single column of sensors (10 sensors rather than 80 sensors) can be used to 

create an image of the object passing through the arch. 
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Appendix C: Image Fusion 

Several fusion attempts have been tested using different image fusion techniques 

through the system developing stages to visualize the object under test. Pixel-based 

image fusion approaches were investigated and tested: Average approaches, principle 

component analysis and contrast enhancement techniques. All the three methods are 

single resolution methods. The source images for all methods were greyscale images.  

C.1 Average Algorithm 

Image averaging is the most simply and commonly used example of fusion methods. 

In this case, the fused signal is evaluated as the average value between the inputs, 

however, despite being significantly more computationally efficient than most other 

fusion systems, image averaging, does not achieve enviable performance. The main 

reason for this is the loss of contrast, a result of destructive superposition when input 

signals are added. So it does not give the exact small defect in NDE application.  

C.2 Principal Component Analysis (PCA)  

PCA is a powerful tool used for merging different sensors images. It is a statistical 

technique that transforms a set of correlated variables into a set of new uncorrelated 

linear combinations of the original variables. Evaluation of principal components (PCs) 

of an image signal also involves calculations of covariance and eigenvalues (vectors). 

An inverse PCA, transforms the data back to the original image space. 

PCA are produced in our system by performing a PCA of the covariance matrix of 

input intensities, the weightings for each input frame are obtained from the eigenvector 

corresponding to the largest eigenvalues then multiply the first eigenvalues by the first 

image and the second one by the second image then adding the results to form the fused 

images. 

C.3 Contrast Enhancement 

Image fusion using contrast enhancement as Equation below: 

 New Image=255*((img1/255)^(img2/255)). 
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Figure C.1 below shows the original images and the results of the fusion methods 

used [165-167]. 

 

 

Figure C.1: Different fusion methods deployed to help visual of the EM images and a 

certainty of the threat objects (especially for the operator). 
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Appendix D: Cross Correlation 

A novel research was developed by the researcher, and used later in this project, to 

investigate the transient temperature distribution inside material using cross-correlation 

(CC) technique. Defects can be characterized by tracking the diffusion of heat in a 

sample through the analysis of a sequence of PEC thermography images. The CC 

technique is based on finding the statistical correlation between two images.  

This novel technique has been used in Chapter 4 for classify the type of targeted 

object material. The technique has been demonstrated below [97]: 

 

Cross Correlation (CC): 

The CC technique is based on finding the statistical correlation between two images. 

The basic principle of the CC method is to search for the maximum correlation between 

small zones in the two images from which the displacement at different positions in the 

zone of interest can be obtained. The simplest form of image-matching can be obtained 

using cross-correlation, which determines the in-plane displacement field by matching 

different zones of two images. 

CC is one of the methods used to measure the degree of similarity between two 

images. It is used to determine the location of a certain pattern in a two dimensional 

image function based on a template-matching algorithm. To match a template to an 

image, where the template is a sub-image that contains the shape to be found, the 

template will be centred on an image point and the number of points in the template 

which match those in the image will be calculated. The procedure is repeated for the 

entire image, and the point that leads to the best match (the maximum count) is 

considered to be the point where the shape (given by the template) lies within the 

image. For two images F(t0) and F(t0+ ∆t) in a video sequence to be correlated, where 

t is the difference in time between consequent frames, two sub-images of spatial 

coincident pixel positions are placed in both images (Figure D.1). A name template will 

be called to the sup-image of F(t0) and a search area to the sup-image of F(t0+∆t). f(x, y) 

are image intensity value of the search area f with a size of Mx×My at the pixel position 

(x, y) , x ∈ {0, . . ., Mx −1}, y ∈ {0, . . ., My −1}. Similarly, let t(x, y) be the intensity 

value of the template t at pixel (x, y) with a size of Nx×Ny where Nx ≤ Mx and Ny ≤ My. 

CC is evaluated at every point (u, v) for f and t, which has been shifted over the original 
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image f(x, y) by u-steps in the x-direction and v-steps in the y-direction. All the CC 

coefficients are stored in a correlation matrix (   ) defined in Eq. 1 shown below [94]: 

 (   )  
∑    (   )  ̅      (       )  ̅    

{∑   (   )   ̅       
 
 ∑    (       )   ̅     }

   
 
                               

where u ∈ {0, 1, 2, . . ., Mx−Nx} and v ∈ {0, 1, 2, ...,My−Ny}, and   ̅    ̅    denotes 

the mean value of f(x, y) within the area of the template t shifted by (u, v) steps.   ̅ 

denotes the mean value of the  template t. 

 

 

Figure D.1: Formation of cross-correlating: a) The two images.  b) Template 

dimension=3×3 and search area dimension=5×5 pixels.  c) Resulting 9 coefficient 

matrix. 

Features derived from CC techniques in conjunction with appropriate templates and 

ROIs, including the size and direction of heat propagation, have been considered as 

quantitative defect characterizations for the angular defects. The CC technique has been 

developed to track the heat diffusion through tracking the changes in pixel intensity 

caused by heat transformation. Experimental studies have been carried out to 

demonstrate the influence of the defect geometry on the thermographic distribution. 

Thus, the work shows that the identification of the defect angle is necessary to evaluate 

the other geometrical features such as the length and depth of a defect. 

The results have been used to extract the features of defects including characterize 

the length and depth of defects. 

(1) 
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