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Abstract

In the South Korean Navy the demand for many spare parts is infrequent and the

volume of items required is irregular. This pattern, known as non-normal demand,

makes forecasting difficult. This research uses data obtained from the South Korean

Navy to compare the performance of forecasting methods that use hierarchical and

direct forecasting strategies for predicting the demand for spare parts.

Among various forecasting methods tested, a simple combination of exponential

smoothing models, which uses a hierarchical forecasting strategy, was found to

minimise forecasting errors and inventory costs. This simple combination forecasting

method was generated by a simple combination between an exponential smoothing

model with quarterly aggregated data adjusted for linear trend at group level and an

exponential smoothing model with monthly aggregated unadjusted data at item level.

Logistic regression classification model for predicting the relative performance of

alternative forecasting methods (Le. a direct forecasting method vs. a hierarchical

forecasting method) by multivariate demand features of spare parts was developed.

Logistic regression classification model is generalisable, because it is based on

relationships between the relative performance of alternative forecasting methods and

demand features. This classification model reduced inventory costs, compared to the

results of only using the simple combination forecasting method. This classification

model is likely to be a promising model to guide the selection of a forecasting method

between alternative forecasting methods for predicting spare parts demand in the South

Korean Navy, so that it could maximise the operational availability of weapon systems.
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Chapter 1. Introduction

This chapter begins by describing the background of the research problems. In Section

1.2, the research problems are identified. In Section 1.3, the aim and the objectives are

presented. In Section 1.4, the research questions are presented. In Section 1.5, the

research gaps and the contributions are presented. Finally, this thesis is summarised in

Section 1.6.

1.1 Background

After the end of the Cold War, the chances of a full-scale war happening were reduced.

However, transnational or non-military threats such as terrorism and Nuclear Biological

Chemical (NBC) weapon proliferation are continuously afIlicting the peace of the world

(Sipila, 2004). In addition, the costs of maintenance for weapon systems are increasing

continuously with the development of technology and the increased complexity of

weapon systems (Choi et al., 2005). The South Korean Navy is required to manage its

supply system effectively in order to maximise the operational availability of warships

under such conditions.

One of the basic courses of defence policy of the Korean Ministry of

National Defence (MND) is to transform its management system to a highly

efficient management system with high cost effectiveness within the limited
defence resources (Korean Defence White Paper, 2008, p.79).

1.1.1 Operational availability

Operational availability is defined as "the total time during the mission's duration when

the weapon system or equipment is capable of meeting specified performance standards,
1



Chapter J. Introduction

that is, the ratio of time available when needed to total time needed" (The US Naval

Institute, 1977, p. 260). A weapon system is defined as "a combination of one or more

weapons with all related equipment, materials, services, personnel, and means of

delivery and deployment (if applicable) required for self-sufficiency" (Schmitt, 2005, p.

456). It can refer to an individual platform such as a warship, a submarine or an aircraft

(The US Naval Institute, 1977). Although the South Korean Navy has classified

regulations for weapon systems that specify the required operational availability, the

operational availability of the Naval warships was reported to be an average of 80% in

2005 (Lee, 2007).

The operational availability of weapon systems depends on reliability, maintainability

and supply (The US Naval Institute, 1977). Reliability refers to the probability that a

system will perform as expected during the entire period of a mission, and can be

gauged in terms of mean time between failure (MTBF) (The US Naval Institute, 1977).

Maintainability refers to the probability that a system, inoperable for any reason, can be

returned to service in a given period (The US Naval Institute, 1977). The US Naval

Institute (1977) argued that maintainability, reliability and supply are important factors

that determine operational availability. It was postulated that, if operational availability

is quantified with the spare parts supply fixed for a weapon system, both higher

reliability and higher maintainability for the weapon system cannot be achieved at the

same time, because the reliability may have to be traded off in view of the

maintainability collations. The higher reliability of a weapon system requires a lower

maintainability of the weapon system (i.e. a longer time to return the system to service).

Figure 1-1 illustrates that system I has longer MTBF (i.e. higher reliability) but requires

a much longer repair time to return the system to service (i.e. lower maintainability)

2



Chapter I. Introduction

than system II. In order to achieve both higher reliability and higher maintainability (so

as to maximise the operational availability of weapon systems), an adequate supply of

spare parts to meet the requirements of repair and maintenance is necessary (The US

Naval Institute, 1977).

System I:

System II:

--- Time between failures ••• Time taken for repairs

Figure 1-1 Trade-off between reliability and maintainability
(The US Naval Institute, 1977)

The operational availability of weapon systems is important and should not be

jeopardised by lack of spare parts, because the operational availability can affect the

operations of militaries which are charged with the defence of the nation (Fowler, 2003).

Thus, it is common for military forces to hold a large stock of spare parts. For example,

the US Department of Defence continues to hold a 60% excess of spare parts

inventories which are expected to be required at any present time (Hinton Jr., 1999).

The British Navy holds almost twice as many spare parts as are expected to be required

(Fowler, 2003). However, militaries could not hold unlimited amount of spare parts for

sustaining operational availability. This is due to budgetary limitations. These budgetary

problems are related as follows.

1.1.2 Budgetary problem

Militaries in some countries are suffering from limited budgets to maintain operational

availability (Rustenburg et aI., 2001, Agripino et aI., 2002, Yonhap News, 2007, Lee,

3



Chapter I. Introduction

2007). For instance, the US Department of Defence faces escalating maintenance costs

(Agripino et ai., 2002). Figure 1-2 shows that the projected percentage of operational

maintenance costs, within the total budget, increases continuously and will equal the

total current budget (net present value) of the US Department of Defence (DoD) by the

year 2024. This projection is based upon a monetary unit - billion dollars in the Fiscal

Year (FY) 1999. Whilst the budget (supply) of the US Department of Defence keeps to

current planned levels, the funding required to support the US forces (demand) based

upon the Quadrennial Defence Review Report (QDR) is expected to increase steadily.

The reasons for increasing maintenance costs of the US Department of Defence were

analysed and categorised according to: a) increased operational tempo; b) increased

operational requirements; c) increased life extension of existing weapon systems due to

delays in new system acquisition; d) unforeseen support problems associated with aging

weapon systems; and e) material shortages because of diminishing manufacturing

resources and technological obsolescence (Agripino et aI., 2002).

St~ State Funding
Reqllired to Support aOR

FOrce (Oema.nd)

Operation &. Support

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Fiscal Year

Figure 1-2 The US Department of Defence budget profile (Agripino et ai., 2002)

The South Korean Air Force was reported to have suffered from the insufficient budget

to sustain operational availability at a regulated level (Yonhap News, 2007). The

4



Chapter I. Introduction

expenditure for the maintenance of military equipment has been increased by an annual

average of 0.5% from 2000 to 2006, whilst the total defence budget has been increased

by an annual average of 7.3% during the same period. Although the number of items of

spare parts stocked by the South Korean Air Force has increased by 53% (from 174,848

to 268,522), the budget for the spare parts has increased by only 0.7% since 2000

(Yonhap News, 2007). As a result of an insufficient budget, the operational availability

of the South Korean Air Force decreased from 89.3% in 2000 to 77.8% by the first

quarter of the year 2006 (YonhapNews, 2007).

The Netherlands Navy has also received an insufficient re-supply budget for spare parts

to satisfy requests from the Naval warships (Rustenburg et al., 2001). It seems likely

that the budgetary problem of maintaining operational availability might not be a

problem only for the Netherlands Navy, the South Korean Air Force and the US

Department of Defence. Most of militaries are probably suffering from budgetary

problems. These budgetary problems are increasingly forcing the militaries to review

and reform their supply systems so that they are more cost effective (Rustenburg et al.,

2001).

1.2 Research Problem

In order to maximise the operational availability within the budgetary limitation, the

spare parts supply may have to increase. Stock, also known as inventory, is defined as

"the stored accumulation of transformed resources in a process" (Slack et al., 2004, p.

774). Over-stocking is usually not the best solution to the supply problem; spare parts

can become obsolete or damaged; some items can deteriorate or have limited shelf life

and there is also the possibility of theft or loss. Over-stocking increases inventory, the

5



Chapter I. Introduction

amount of capital required and carrying costs (Waller, 2003, Slack et al., 2004). Under-

stocking can lead to a weapon system being unavailable when a timely supply of spare

parts for repair and maintenance for the weapon system is obstructed by a lack of spare

parts. This unavailability of the weapon system could be a waste of budget resources

and could even lead to a military defeat that could cause casualties and deaths

(MacDonald, 1997). A weapon system undergoing service or maintenance could remain

unavailable until the spare parts are supplied (Rustenburg et al., 2000). The situation of

unavailability could continue longer with a long procurement lead time.

As stated above, it is common for military forces to hold a large stock of spare parts,

with often little or no demand for a large proportion of the stock items. However, the

shortage of some items of spare parts is unavoidable. For example, the US Department

of Defence holds a 60% excess of spare parts, with 18% of the inventory ($1.5 billion)

having no demand. However, inventory shortages for some items still occur (Hinton Jr.,

1999).

Forecasting is defined as ''the prediction of values of a variable based on known past

vaIues of that variable or other related variables" (Hyndman et aI., 1998, p. 599).

Forecasting is important for supply, because forecasting is the most inexact function in

supply as well as the trigger which sets the supply in motion (Waller, 2003). An accurate

demand forecasting is required in order to purchase the exact amount of spare parts for

the requirement of a weapon system.

Hinton (1999) claimed that the problems relating to spare parts inventory in the US

Department of Defence arose because of the inaccurate forecasting of inventory
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requirements. Although the procurement of spare parts may be initiated to meet specific

requests, it is common for requirements to change after items have been ordered (Hinton

Jr., 1999). It has also been reported that South Korean military experiences spare parts

supply problem caused by inaccurate forecasts of spare parts demand (Lee, 2007, Yoon

and Sohn, 2007, Seon and U, 2009). This research focuses on the forecasting problems,

within the context of the spare parts demand for the South Korean Navy.

1.2.1 Forecasting accuracy for the spare parts demand in the South Korean Navy

The forecasting accuracy for the spare parts demand in the South Korean Navy has not

been satisfactory. Table 1-1 presents the forecasting accuracy for the spare parts demand

in terms of item in the South Korean Navy.

Table 1-1 Forecasting accuracy in terms of item (Seon and U, 2009)

Forecast Observed 2006 2007 2008
ii = 0 v. = 0 31,447 27,333 35,043
ii = 0 Yi> 1 6,040 13,913 15,278
ii> 1 Yi=O 13,795 3,850 4,617
ii> 1 Yi> 1 10,610 11,421 11,137

Forecasting accuracy 68% 694'10 70%
Key:v, (or ii) = the observed (or forecast) demand for item i; the numbers of correct cases are

shown in bold.

In 2008, 15,278 items of spare parts, which had been forecast to be non-demanded, were

demanded; 4,617 items of spare parts, which had been forecast to be demanded, were

not demanded. The forecasting accuracy was calculated as "the number of correct cases

divided by the number of all cases". For example, in 2008 the forecasting accuracy was

calculated as 46,180 (no. of correct cases) divided by 66,075 (no. of all cases). If the

forecasting accuracy is calculated in terms of volume, the forecasting accuracy is very

low. Table 1-2 presents the forecasting accuracy for spare parts based on the cases with
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y, ~ 1 (Le. the cases in the second and third rows from the bottom in Table 1-1) in terms

of volume in the South Korean Navy (Seon and U, 2009). Very low percentages (6 - 9%)

of cases were correct.

Table 1-2 Forecasting accuracy in terms of volume (Seon and U, 2009)

2006 2007 2008
Correct v.=s. 6% 7% 9%

Over-forecast Y;<i; 31% 30% 30%
Under-forecast y,>y; 27% 38% 32%
Non-demand y;=O 36% 25% 29010

Key: YI (or YI) = the observed (or forecast) demand for item i; Yi ~ I.

Some authors have claimed that the reason for the inaccurate forecasts of spare parts

demand in the South Korean military is that it uses simple forecasting methods which

could not reflect the characteristics of spare parts demand (Choi et al., 2005, Seon and U,

2009). The identification of the characteristics of spare parts demand might be

important for the development of an accurate forecasting method.

1.2.2 Nature of spare parts demand

There are two types of military spare parts, consumable and repairable (Rustenburg et

al., 2001). Repairable spare parts remain in the inventory list until they are repaired and

reissued or until it is decided to remove them. Consumable spare parts are deleted from

the inventory list when they are supplied to users. Spare parts are classified into parts,

components and assemblies in the South Korean Navy as shown in Table 1-3.
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Table 1-3Classification of spare parts in the South Korean Navy (Korean Navy, 2003)

Classification Description Example

Assembly An end system that is assembled from
components or parts

The engine or the
generator of a warship

Component The part of an end system composed of
parts

The pump or the cooler
of a generator

Part The smallest unit composing an end system The cover or the ring of a
pump and a cooler

Assemblies and components denote repairable items; and parts indicate consumable

items. If failed spare parts can be repaired (i.e. reparable spare parts), no further budget

is required for resupply. However, reparable spare parts are rare cases. In practice, many

spare parts are consumable (Rustenburg et al., 2001). This research focuses on the

forecasting of consumable spare parts.

A time series is defined as "a collection of observations made sequentially through time"

(Chatfield, 2004, p. 1). A stochastic process is defined as "a collection of random

variables that are ordered in time and defined at a set of time points" (Chatfield, 2004, p.

33). A stochastic process is presented as a model for an observed time series (Cryer and

Chan, 2008). A strictly stationary time series is defined as "one for which the

probabilistic behaviour of every collection of values {Y'I, Ya, ... , YIn}is identical to that

of the time shifted set {Y'I+k, Ya+k, • ." YIn+k}; that is, P{Y" ~ Cl. ... , Yin ~ cn} = P{Y'I+k ~

Cl. •••, YI1I+k ~ cn} for all n = 1, 2, ... , all time points ti, tz. ... , tn, all numbers Cl. C2, ••• ,

Cn, and all time shifts k = 0, ±1, ±2, ... " (Shumway and Stoffer, 2006, p. 23). Strict

stationarity is particularly true for normal (i.e. Gaussian) process (Chatfield, 2004,

Shumway and Stoffer, 2006).

Forecasting Naval spare parts is a difficult issue. This might arise from the non-

normality of the spare parts demand (Willemain et al., 1994, Regattieri et al., 2005,
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Syntetos and Boylan, 2005). Demand that is characterised as infrequent demand

occurrences of irregular demand sizes, when demand actually occurs, is an example of

non-normal demand (Boylan et al., 2008). Boylan et al. (2008, p. 474) categorized non-

normal demand as follows:

a) an intermittent demand item is an item with infrequent demand occurrences;

b) a slow moving item is an item whose average demand per period is low. This may

be due to infrequent demand occurrences, low average demand sizes or both;

c) an erratic demand item is an item whose demand size is highly variable;

d) a lumpy demand item is an intermittent item for which demand, when it occurs, is

highly variable; and

e) a clumped demand item is an intermittent item for which demand, when it occurs, is

constant (or almost constant).

Non-normality of demand encompasses many demand features as shown above. Many

researchers have pointed out that a large part of the time series of spare parts demand

exhibits non-normal characteristics (Willemain et al., 1994, Ghobbar and Friend, 2002,

Ghobbar and Friend, 2003, Willemain et al., 2004, Regattieri et al., 2005). Spare parts

demand for militaries is more likely to be non-normal. Previous research about military

spare parts has demonstrated that the time series of the spare parts demand are non-

normal: the spare parts for helicopters in the US Army (Markland, 1970); the spare parts

for the US Navy (Businger and Read, 1999); and the spare parts for the UK Air Force

(Eaves and Kingsman, 2004).

Irregular large orders from a few large customers (e.g. Naval warships) can be highly
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sporadic. A few large customers for spare parts could induce non-normality (Silver,

1970, Eaves, 2002). The fleet of the South Korean Navy is characterised by a small

number of large warships (Saunders, 2009). Therefore, the Naval spare parts demand is

expected to be non-normal. Non-normal demand is difficult to forecast, because the

demand occurs sporadically with some time periods showing zero demand whilst when

demand does occur then the size of the demand is erratic (Willemain et al., 1994,

Regattieri et al., 2005, Syntetos and Boylan, 2005). The non-normality of the Naval

spare parts is described in more detail in Chapter 4.

1.2.3 Hierarchical structure

A time series for individual items is known as an item level time series. An aggregated

time series for more than two items is called a group level time series. A multi-level

time series structure consists of item level time series and a group level time series in

which the items are members. This is known as a hierarchical structure (Hyndman et al.,

2007).

A demand can be either dependent or independent. A demand is regarded as an

independent demand when estimates of the demand have to be forecast; whereas a

demand is regarded as a dependent demand when estimates of the demand can be

calculated directly from known physical or technical relationships (DeLurgio, 1998). An

item level time series might be dependent upon the group level time series

(Schwarzkopf et al., 1988, DeLurgio, 1998, Fliedner, 1999, Widiarta et al., 2006).

Hence, under a hierarchical structure, an aggregate pattern of demand comprised of

several item level spare parts time series can be analysed using the group level time

series.
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In this research, a dependent demand structure for spare parts, known as the National

Stock Number (NSN) which is utilised in North Atlantic Treaty Organisation (NATO)

countries, is employed to take advantage of its hierarchical structure. The NSN structure

is described in more detail in Chapter 4.

1.2.4 Forecasting non-normal demand

There are two forecasting strategies. A forecasting strategy which ignores the

hierarchical structure of time series and simply generates a forecast at item or group

level using item or group level time series is variously known as a traditional

forecasting, independent forecasting, or direct forecasting (DF) (Fliedner and Lawrence,

1995, Fliedner, 1999, Miller et al., 2007). A forecasting strategy which derives a

forecast at item or group level using the hierarchical structure of time series is variously

known as a family-based forecasting, pyramidal forecasting, dependent forecasting,

derived forecasting, or hierarchical forecasting (HF) (Fliedner and Lawrence, 1995,

Fliedner, 1999, Zotteri et al., 2005, Miller et al., 2007). When an item level demand is

volatile and intermittent, a higher group level demand is probably less volatile and less

intermittent. This is because the volatility and intermittency of an item level demand can

be offset by other item level demand in the group (Widiarta et al., 2009). This lower

level of volatility and less intermittency of a group level demand could guarantee a

more reliable item level demand forecast using a hierarchical forecasting strategy

(Fliedner and Lawrence, 1995, Fliedner, 1999).

Top-down forecasting (TD) and bottom-up forecasting (BU) are considered to be

hierarchical forecasting, because they consider the hierarchical structure of time series
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(Fliedner, 1999). Top-down forecasting models a forecast at the top group level using

the top group level time series of a hierarchical time series, and then creates lower level

forecasts according to the item's percentage contribution within the group (Schwarzkopf

et al., 1988). Bottom-up forecasting models forecasts separately for each individual item

level demand, and then sums the contemporaneous item level forecasts to forecast the

group level demand (Schwarzkopf et al., 1988, Fliedner, 1999).

Combinatorial forecasting (CF) models forecasts at all levels of a hierarchical time

series using all levels of the time series, and then creates lower level forecasts based on

a combination of the forecasts at all levels (DeLurgio, 1998, Kahn, 1998, Hyndman et

al., 2007). Combinatorial forecasting can be considered to be hierarchical forecasting,

because it considers the hierarchical structure of demands. Combinatorial forecasting

could produce superior forecasting performance to top-down forecasting or direct

forecasting (Kahn, 1998, Dekker et al., 2004, Hyndman et al., 2007).

Top-down forecasting can produce item level forecasts, bottom-up forecasting can

produce group level forecasts, and combinatorial forecasting can produce both level

forecasts. The major concern of this research is the hierarchical forecasting strategies

which can produce item level demand (i.e. individual spare parts demand) forecasts

such as top-down forecasting and combinatorial forecasting.

As mentioned above, the spare parts demand is expected to be non-normal and difficult

to forecast. However, there can be some hidden features of the pattern of demand for

spare parts, such as seasonality, or some other trend in the time series. An advantage of

hierarchical forecasting is that it can bring out these hidden demand features so as to
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decrease forecasting errors (DeLurgio, 1998). A comparative analysis between

alternative forecasting strategies (i.e. hierarchical forecasting and direct forecasting) is

made in Chapter 5 and 6 in order to identify the superior forecasting strategy for non-

normal demand.

However, many previous studies demonstrated that the relative performance of the

alternative forecasting strategies (i.e. hierarchical forecasting and direct forecasting) is

conditional on some specific demand features such as correlations between the time

series of items within a group (Widiarta et aI., 2006) and forecasting horizon (Shlifer

and Wolff, 1979). Forecasting horizon is defined as "the length of time into the future

for which forecasts are to be prepared" (Hyndman et aI., 1998, p. 599). Owing to the

conditional performance, identifying demand features which influence upon the

conditional performance of the alternative forecasting strategies for the demand is

important.

1.3 Aim and Objectives

The aim of this research is to establish an appropriate forecasting strategy for predicting

the demand for spare parts in the South Korean Navy. The objectives of this research are

to:

a) Clarify the nature of the spare parts demand in the South Korean Navy;

b) Compare the performance of the alternative forecasting strategies (i.e. top-down

forecasting, combinatorial forecasting and direct forecasting) for predicting the

spare parts demand at item level under the inventory control environment of the

South Korean Navy;
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c) Investigate the influence of demand features upon the performance of the

alternative forecasting strategies; and

d) Develop a classification model for the spare parts demand in order to predict a

superior forecasting method.

The main objective of this research is to compare the alternative forecasting strategies

within the context of spare parts demand for the South Korean Navy. The comparisons

of various direct forecasting methods are beyond the scope of this research.

1.4 Research Questions

The objectives of this research are to be achieved by answering the following research

questions:

a) What is the nature of the spare parts demand in the South Korean Navy?

b) What forecasting method is appropriate for the spare parts demand in the South

Korean Navy?

c) Under what conditions are top-down forecasting or combinatorial forecasting

superior or inferior to direct forecasting?

d) How can the spare parts demand be classified in order to predict a superior

forecasting method?

The above research questions are answered sequentially in the following chapters.

Question a) is answered in Chapter 4; questions b) and c) are addressed in Chapter 5

and 6; and a solution to question d) is proposed in Chapter 6.
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1.S Research Gaps and Contributions

Hierarchical forecasting might be applicable to predicting spare parts demand in the

South Korean Navy for the following reasons:

a) The data obtained from the Navy contain missing or unreliable data. Schwarzkopf

et al. (1988) found that hierarchical forecasting was more accurate than direct

forecasting for such data.

b) As stated, spare parts demand is expected to be non-normal. In practice there can be

some hidden features in the pattern of demand for spare parts, such as seasonality,

or some other trend in the time series. Hierarchical forecasting can bring out some

hidden demand features, so as to decrease forecasting errors (DeLurgio, 1998).

c) A large proportion of the Naval spare parts is substitutable; that is, spare parts for

specific equipment are used in a similar series of other equipment. This is because

the South Korean Navy purchased a series of equipment from the same

manufacturers to ensure stability of supply and continued technical support. Such

substitutability makes forecasting more difficult; however, research argued that

hierarchical forecasting presented more accurate forecasts for the highly

substitutable demand than direct forecasting (Widiarta et al., 2008b).

d) The Naval procurement system for the spare parts requires a long forecasting

horizon comprised of a long procurement lead time and long review cycle. This

long forecasting horizon is a feature which could make hierarchical forecasting

more accurate than direct forecasting (Shlifer and Wolff, 1979).

e) The Naval spare parts are structured by a hierarchical structure, namely the

National Stock Number code. Hierarchical forecasting is an advantageous

forecasting strategy for the hierarchical demand structure (Hyndman et al., 2007).
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However, the literature has paid little attention to the use of hierarchical forecasting for

the intermittent demand at item level, which is a feature of non-normal demand

associated with spare parts demand. This is the first research gap. There is research

(Fliedner and Mabert, 1992, Fliedner and Lawrence, 1995) which examined the

performance of hierarchical forecasting with automotive spare parts demand. However,

the authors screened out irregular time series such as time series with missing

observations and demand values of zero. Viswanathan et al. (2008) examined

hierarchical forecasting with intermittent demand generated by probability distributions.

Nevertheless, their discussion was restricted to forecasting at group level and a

production planning context with simulated data.

Second, there has been little discussion about the guidelines of hierarchical forecasting

for non-normal demand. No research has investigated the influence of correlations

between non-normal. time series upon the relative forecasting performance of

hierarchical and direct forecasting methods. Although combinatorial forecasting was

argued to be a superior forecasting strategy (Kahn, 1998, Dekker et al., 2004, Hyndman

et al., 2007), there has been no controlled research which has examined the influence of

demand features upon the performance of combinatorial forecasting. As shown earlier,

non-normal demand encompasses many demand features. In order to identify the

influence of the non-normal demand features upon the performance of the forecasting

strategies, a combined influence of demand features might have to be investigated.

However, no research has found a combined influence of non-normal demand features

upon the performance of hierarchical forecasting.
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Research questions a), b), and c) are attempts to fill the first research gap. In the process

of answering research question a). the non-normality expected for the spare parts

demand in the South Korean Navy is identified. For research question b), the

performance of hierarchical forecasting is investigated. For research question c). the

forecasting conditions of the South Korean Navy and its influence upon the

performance of the forecasting strategies are identified.

Research questions c) and d) are attempts to fill the second research gap. In the process

of answering research question c). the influence of correlations between the time series

for spare parts demand and intermittency associated with the. spare parts upon the

performance of combinatorial forecasting is investigated. A combined influence of

multiple demand features including correlations and intermittency upon the

performance of combinatorial forecasting is examined. In order to answer research

question d). a multivariate classification model that predicts the relative performance of

alternative forecasting methods for spare parts demand by the multivariate demand

features including correlations and intermittency is proposed.

Theories on hierarchical forecasting for non-normal demand associated with spare parts

demand in the South Korean Navy are not well-developed. The contributions of this

research are to:

a) Identify the nature of the spare parts demand in the South Korean Navy;

b) Identify the performance of alternative forecasting strategies (hierarchical

forecasting and direct forecasting) for the spare parts demand;

c) Identify the influence of demand features upon combinatorial forecasting;
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d) Develop a new classification model for the spare parts demand which predicts the

relative performance of the alternative forecasting methods (hierarchical and direct

forecasting methods) by the multivariate demand features; and

e) Validate the research findings with diagnostics, cross-validation and a variety of

accuracy measures including an accuracy measure using simulation with empirical

data.

1.6 Outline of the Thesis

The remainder of this thesis presents the following chapters:

Chapter 2 reviews the literature on various topics including: forecasting methods in

general, direct forecasting strategy for non-normal demand, hierarchical forecasting

strategy, classification of demand for forecasting, and measures of forecasting accuracy.

Chapter 3 introduces the deployment and development of the methodology for this

research. This includes: the purpose of the research, research methodologies in

operations management, the choice of a case study strategy, the relationship between

theory and a case study, research design, evaluating research, and the research

procedure of this research.

Chapter 4 identifies the nature of the spare parts demand in the South Korean Navy

containing the general information and the logistical system in the South Korean Navy,

the analysis of spare parts demand data obtained from the Navy, decomposition, and the

sources of non-normality.
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Chapter 5 compares the performance of a range of forecasting methods with a variety of

accuracy measures. This chapter comprises forecasting in the South Korean Navy,

measures of forecasting accuracy including an accuracy measure using simulation, and

the performance of direct and hierarchical forecasting methods.

Chapter 6 suggests a classification scheme for selecting forecasting methods. This

chapter includes the competing performance of direct forecasting and hierarchical

forecasting, possible demand features to guide the selection of a forecasting method, the

process of classification, and classification results.

Chapter 7 presents the conclusion of this research. This chapter includes a summary of

the findings with regard to the existing theories, the contributions of this research, a

forecasting strategy for the South Korean Navy, limitations, and suggestions for further

research.
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As mentioned in Chapter 1, the supply of Naval spare parts relies heavily on forecasting

accuracy. However, identifying an appropriate forecasting method for a specific case is

difficult. This is because forecasting performance is situational; that is, no single

forecasting method is universally applicable (DeLurgio, 1998, Chatfield, 2004).

This chapter begins by reviewing general forecasting methods. In Section 2.2, previous

research on direct forecasting method for non-normal demand is discussed. In Section

2.3, theories about hierarchical forecasting are reviewed. In Section 2.4, the comparative

performance of forecasting strategies and related issues including hierarchical

forecasting for non-normal demand are discussed. In Section 2.5, the classification of

demand for forecasting including the influence of demand features upon forecasting

performance is examined. In Section 2.6, measures of forecasting accuracy are reviewed.

In Section 2.7, issues related to measuring an inventory model are examined. Finally, a

summary and concluding remarks are presented in Section 2.8.

2.1 Forecasting Methods inGeneral

There are a variety of forecasting methods which demonstrate different performance in

different situations (DeLurgio, 1998, Chatfield, 2004). Hyndman et al. (1998)

categorised forecasting methods as either quantitative or qualitative. They argued that a

quantitative method can be used when sufficient quantitative information is available,

and a qualitative method can be used when little or no quantitative information is

available, but sufficient qualitative knowledge exists. This research deals solely with

quantitative approaches.
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Quantitative methods can be classified as either univariate or multivariate (DeLurgio,

1998). Univariate forecasting methods forecast the future based on a model fitted only

to present and past observations of a given time series. In comparison, multivariate

forecasting methods forecast the future based at least partly on values of one or more

additional time series (Chatfield, 2004).

A forecast quantity of any time series is a single figure; however, the value of the time

series is actually made up of five components (Bowersox and Closs, 1996, Silver et al.,

1998): base demand component, seasonal component, trend component, cyclic

component, and irregular component. The base demand component identifies the scale

of a time series; the seasonal component captures seasonal variations which repeat

themselves over each period; the trend component establishes the rate of growth or

decline of a time series over time; the cyclic component identifies variations at a fixed

period apart from the seasonal component; and the irregular component is the residuals

after the other four components are identified and removed from a time series

(Hyndman et al., 1998, Silver et al., 1998, Chatfield, 2004). Since the irregular

component includes a random or unpredictable quantity, it makes demand forecasting

difficult (Silver et al., 1998).

Bowerman et al. (2005) intimated that all forecasting situations involve some degree of

uncertainty due to an irregular component in the description of a time series; that is,

some errors in forecasting must be expected. No matter how well-designed or

sophisticated demand forecasting is, some degree of forecasting errors cannot be

avoided.
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Ghobbar and Friend (2002, 2003) examined weekly, monthly and quarterly spare parts

demand (e.g. battery, main undercarriage unit and brake assembly unit) for aircrafts (Le.

Fokker, BAe and ATR) in KLM-UK and identified the trend component, the seasonal

component and the irregular component for a time series of the spare parts demand.

They observed that a large number of items exhibit a non-normal demand pattern. The

large proportion of non-normal demands of the spare parts might be caused by a large

proportion of an irregular component in the times series of spare parts demands, because

the trend component and the seasonal component are distinguishable from the non-

normal demand patterns. Owing to the high proportion of items which exhibit non-

normal demand patterns, forecasting spare parts demand is probably the biggest

difficulty in the repair and overhaul industry (Ghobbar and Friend, 2002, 2003).

2.2 Direct Forecasting

As stated in Subsection 1.2.4, two forecasting strategies for non-normal demand can be

recommended: a direct forecasting strategy; or a hierarchical forecasting strategy when

a group of similar, related time series is identified (DeLurgio, 1998). In this section,

issues related to the performance of direct forecasting methods for non-normal demand

are reviewed, and then research on hierarchical forecasting methods is reviewed later in

this chapter.

2.2.1 Transformation for forecasting

Transformation refers to a process of taking data which are non-normally distributed

and converting them to approximate normally distributed data (Gaussian distributions)
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(Miles and Shevlin, 2001). When data deviate from a normal distribution, it is sensible

to consider transforming the data (Miller Jr., 1986, Chatfield, 2004).

A general class oftransfonnation is the Box-Cox transformation (Box and Cox, 1964).

A particular transformed series can be defmed as in equation (2-1) (Box and Cox, 1964,

p. 214). The value of the transformation parameter, A, can be estimated by an

appropriate inferential procedure (e.g. maximum likelihood). For any set of

observations, Yt.n,.·., Yn, the likelihood function is defined as "the joint probability

density of obtaining the data actually observed" (Cryer and Chan, 2008, p. IS8). The

maximum likelihood estimator is then defmed as "the value of the parameter for which

the data actually observed is most likely, that is, the value that maximise the likelihood

function" (Cryer and Chan, 2008, p. 158). The estimation procedure of the best value of

A is quite complex and difficult (Nelson and Granger, 1979).

(2-1)

where: y~,n= the transformed value at time t

y, = the observed value at time t

A. = transformation parameter

Some authors have claimed that the model built for the transformed data is less helpful

compared to the complexity and difficulty of the Box-Cox transformation (Nelson and

Granger, 1979, Chatfield, 2004). Nelson and Granger (1979) examined the forecasting

performance of autoregressive integrated moving average (ARIMA) models (see

Subsection 2.2.3) coupled with the Box-Cox transformation for 21 empirical time series

in various contexts (e.g. steel prices, sales of grocery stores, and index of stock prices)
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and forms (i.e. monthly series over 245 - 360 observations or quarterly series over 111

- 115 observations). They claimed that the data were extremely non-normal and no

value of Aproduced normally distributed data. Using the Box-Cox transformation, the

forecasting performance improvement was found to be very small (approximately 2% at

most in reduction of RMSE for one-period ahead forecasting) (Nelson and Granger,

1979).

Tukey (1977) suggested that a simple transformation (Le. replacing the raw numbers by

the same simple power of each of the numbers) is useful. For example, this can be

expressed as square roots (1/2 powers), reciprocals (-1 powers), or reciprocals of square

roots (-112 powers).

Chatfield (2004) recommended avoiding transformation for the following reasons: a)

skewness is difficult to eliminate with a transformation; b) it is more difficult to

interpret the transformed data; and c) when the model is transformed back to be of use,

the reverse transformation can cause biasing effects.

Miles and Shevlin (2001) noted that the linear transformation using a quadratic, cubic,

log, or inverse function makes a case, which is close to being an outlier before

transformation, an extreme case (Le. an outlier) after transformation. The linear

transformation is unlikely to handle outliers, so it does not mitigate the non-normality.

Miller Jr. (1986) conceded that the linear transformations rarely handle outliers, so he

recommended robust estimators such as trimming and winsorizing which convert

outliers into proximity with the rest of the data. Trimming discards small portions (e.g.
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0.1 or 0.05) of each tail in the data distribution in order to remove aberrant values.

Winsorizing replaces the tails by a smaller (or larger) value. As such, Businger and

Read (1999) used a winsorized data set to produce forecasts for predicting the spare

parts demand in the US Navy. However, it should be noted that the robust estimators are

based on the assumption that underlying distribution is symmetric about its median

(Miller Jr., 1986).

2.2.2 Multivariate versus univariateforecasting methods

As stated above, quantitative forecasting methods can be categorised as either univariate

forecasting methods or multivariate forecasting methods. A multivariate forecasting

method might be classified as a direct forecasting method, because multivariate

forecasting methods do not consider the hierarchical structure of demands. While

multivariate forecasting methods are expected to be at least as good as univariate

forecasting methods, there are many practical cases in which a univariate forecasting

method outperforms a multivariate forecasting method (Chatfield, 2004).

Although multivariate models generally generate a better fit to given data than

univariate models, this supremacy does not necessarily convert into superior forecasts

due to the sensitivity of multivariate models to changes in structure (Chatfield, 2004).

Multivariate models can be expected to give more accurate forecasts than univariate

models when a high cross-correlation between time series, such as financial time series,

is observed (du Preez and Witt, 2003). Cross-correlation is defined as "a standardised

measure of association between one time series and the past, present, and future values

of another time series" (Hyndman et al., 1998, p. 594). However, Willemain et al. (1994)

found that the sparseness of the empirical intermittent sales data of electrical equipment,
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jet engine tools, veterinary health, and consumer food items makes most of the cross-

correlation non-significant. Therefore, multivariate models are unlikely to produce more

accurate forecasts for intermittent demand than univariate models.

For the purpose of forecasting non-normal demand, univariate forecasting methods have

been recognised as appropriate forecasting methods. These include exponential

smoothing (ES) (Markland, 1970, DeLurgio, 1998), weighted moving average (WMA)

(Ghobbar and Friend, 2003), exponentially weighted moving average (EWMA)

(Regattieri et al., 2005), Croston's method (Croston, 1972), Syntetos-Boylan

approximation (SBA) (Syntetos and Boylan, 2005) and Box-Jenkins models (Businger

and Read, 1999).

2.2.3 Direct forecasting for non-normal demand

The standard method for forecasting non-normal demand is considered to be

exponential smoothing (ES) (Croston, 1972, Sani and Kingsman, 1997, Narasimhan et

al., 1998, Ghobbar and Friend, 2003). Simple exponential smoothing (SES) is the

method that gives more recent observations more weight than older observations,

because it is based on the thought that older demands are less related to more recent

demands (Waters, 1991). The recurrence formula of simple exponential smoothing can

be written as:

Y,(1) = ay, + (1- a)Yt-l (1) (2-2)

where:

.v,(1) = the one period ahead forecast made at time t

Y,= the observed demand for an item at time t
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a = smoothing parameter (0 < a <1)

As a is closer to 0, the estimation is less changeable by the latest updating, whereas as a

is closer to 1, the estimation is more adjusted to the latest periods. For non-normal

demand, a very small smoothing parameter for simple exponential smoothing, a

between 0.01 and 0.05, was considered to be appropriate because of a large amount of

noise in the demand pattern (Narasimhan et al., 1998).

Exponential smoothing has some benefits: a) it hedges in that only a part of the forecast

error is used by updating the Yt-l(l); b) it reduces arithmetic by only requiring the most

recent observation to update forecasts; and c) it could save data storage by only

requiring retention of the most recent Y,-I(1) (Silver et al., 1998, Chatfield, 2004, Sani

and Kingsman, 1997). Simple exponential smoothing should generally be used for non-

seasonal time series showing no systemic trend (Chatfield, 2004). Exponential

smoothing was intimated to be available for a time series in which seasonality and trend

are measured or removed (Waters, 1991, Gardner Jr. and Diaz-Saiz, 2002).

A seasonal component can be referred to as additive; however, when the size of a

seasonal effect is directly proportional to the mean, the seasonal component is referred

to as multiplicative (Chatfield, 2004). The additive seasonality model can be defined as

in equation (2-3); the multiplicative seasonality model can be defined as in equation (2-

4) or equation (2-5) (Chatfield, 2004, p. 20).

Yt = rn,+ s, + et (2-3)

(2-4)

(2-5)

Yt = m, x s, + et

Yt =m, x s, x et
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where: m, = the deseasonalized mean level at time t

S, = the seasonal effect at time t

et = the random error at time t

For intermittent time series, it is impossible to calculate multiplicative seasonality. In

this case, Gardner Jr. and Diaz-Saiz (2002) conducted an ad hoc procedure; that is,

adding a constant before decomposition and removing it afterward.

Gardner Jr. and Diaz-Saiz (2002) compared the forecasting performance of exponential

smoothing models coupled with multiplicative and additive decompositions for

predicting automotive spare parts demand at BPX Holding Corporation of Huston. 691

monthly demand time series over 3 years including some intermittent time series were

tested. They found that the additive seasonal models minimised forecasting errors

significantly. A 20% reduction in mean absolute deviation (MAO) using the additive

seasonal decomposition compared to the multiplicative seasonal decomposition was

observed. They argued that additive seasonal models work well with intermittent data

and are more robust to outliers.

A more complicated version of exponential smoothing such as Holt-Winters forecasting

(Chatfield, 2004) is adaptable to seasonality and trend without coupling decomposition

procedures. Trend and seasonality can be dealt with using Holt-Winters forecasting. The

three values, L" T, and I, are updated by three smoothing parameters, a, )' and <5: the

smoothing parameters are usually valued between 0 and 1. The seasonal index, It, can

represent either additive or multiplicative: that is, y, - I, is deseasonalised value for the

additive case; whereas, y,lI, is for the multiplicative case. Recurrence equations for
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updating Li; TI and II for monthly multiplicative data and the r periods ahead forecast

made at time t can be written as (Chatfield, 2004):

L, = aCY, /11-12)+ (1-a)(lt-l +T,-I) (2-6)

T, = yel, - l,_t) +(1- y)T,-t (2-7)

t, =O(Y,/ L,) +(1-0)/1-12 (2-8)

Y,(r)=(l, +tr,)It-I2+r (2-9)

where:

II = local level at time t

TI = trend at time t

II = seasonal index at time t

YI = the observed demand for an item at time t

:PtC r) = the l'periods ahead forecast made at time t

There are various direct forecasting methods for non-normal demand. Table 2-1

compares the results of eleven major studies that have examined the forecasting

performance of various direct forecasting methods for non-normal demand. In the

literature the methods have been examined using empirical studies or simulation. The

researchers cited obtained data from a range of sources.
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Table 2-1 A review of direct forecasting methods for non-normal demand

Reference Forecasting methods Method of Data Performance
comparison Source Demand eattem

Nelson and ARIMA coupled with Empirical Various time Non-normal The forecasting performance
Granger (1979) transformation & non- study series improvement is non-significant

transformation Simulation
Willemain et SES & Croston Empirical Demand for Intermittent & Croston presents an average of
al. (1994) study electrical highly variable I - 14% smaller MAPE

equipment, jet
engine tools,
veterinary
health, & food

Johnston and Croston & EWMA Simulation Probability Croston presents smaller MSE
Boylan (1996) distributions when ADI is greater than 1.25

forecast review ~riods
Saniand SES, SMA & Croston Empirical Spare parts Low& SMA minimises inventory
Kingsman study demand for intermittent costs
(1997) vehicles and

machin
Businger and ES&ARIMA Empirical Spare parts Extremely ARIMA models presents 9"10-
Read (1999) study demand for the volatile 18% smaller forecasting errors

US Navy

Gardner Jr. and ES coupled with Empirical Automotive Intermittent & ES coupled with additive
Diaz-Saiz additive & study spare parts seasonal decomposition presents 20%

(2002) multiplicative demand smaller MAD
decompositions

Ghobbarand 13 methods including Empirical Spare parts Erratic, WMA minimises MAPE
Friend (2003) SES, Croston, WMA study demand for intermittent, or

&EWMA aircraft luml!~
Eaves and ES, MA, Croston & Empirical Spare parts Intermittent or SBA minimises stock-holding
Kingsman SBA study demand for the slow moving
(2004) UK Air force
Syntetos and SES, SMA, Croston & Empirical Automotive Slow moving, SBA minimise forecasting
Boylan (2005) SBA study spare parts lumpy, or errors

demand intermittent

Regattieri et al. 10 methods including Empirical Spare parts Intermittent WMA minimises MAD &
(2005) SES, Croston, WMA study demand for MADIA

&EWMA aircraft

Jiafu et al. ARMA Empirical Spare parts Slight Relative error: 3.14%

(2009) study demand for fluct~on
power plant
gencratin~ units

Key: AR(I)MA = autoregressive (integrated) moving average; (S)ES = (simple) exponential smoothing; Croston =
Croston's method; EWMA = exponentially weighted moving average; (S)MA = (simple) moving average; SSA
= Syntetos-Boylan approximation; ADI = average inter-demand interval; MAPE = mean absolute percentage
error; MSE = mean squared error; MAD(/ A) = mean absolute deviation (divided by average demand).

Some authors noted that exponential smoothing can be biased when the demand pattern

is non-normal (Croston, 1972, Eaves and Kingsman, 2004, Silver et al., 1998). For

instance, immediately after a transaction occurs in a period, the forecast of exponential
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smoothing will exceed the average demand, whereas if any transaction does not occur in

a period, the forecast of exponential smoothing will be below the average.

Croston (1972) theorised Croston's method, which is argued to be an unbiased

forecasting method. Croston's method can be expressed as in equation (2-10) (Eaves,

2002). Croston's method combines the estimates of the demand size (Z/) and the

estimates of the demand interval (PI) in order to estimate the mean demand per period. If

demand occurs every period, Croston's method is equivalent to exponential smoothing.

PI =PI-I; ZI = ZI_I; and q = q + 1

else,

PI =PI-I + a(q - PI-I); ZI = ZI_I + a(yl - ZI_I); and q = 1

y, =z,' P, (2-10)

where:

PI = Croston's estimate of mean interval between transactions

ZI = Croston's estimate of mean demand size

q = time interval since last demand

YI = the observed demand for an item at time t

a = smoothing parameter (0 < a <1)

YI = Croston's estimate of mean demand per period

Croston's method has subsequently been corroborated by several other researchers

(Willemain et al., 1994, Johnston and Boylan, 1996, Sani and Kingsman, 1997).

Willemain et al. (1994) compared simple exponential smoothing and Croston's method
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for intermittent and highly variable demand, which is a pattern of non-normal demand,

in terms of mean absolute percentage error (MAPE). 54 empirical data sets from four

sources such as electrical equipment demand over 36 months, jet engine tools demand

over 910 days, veterinary health items demand over 28 months, and consumer food

items demand over 210 weeks were used. They argued that Croston's method presents

an average of 1 - 14% smaller MAPE than simple exponential smoothing. Various

measures of forecasting accuracy are reviewed in Section 2.6 in detail.

Johnston and Boylan (1996) compared Croston's method and exponentially weighted

moving average (EWMA) with generated data [Poisson distribution for demand interval

and several different probability distributions (Le. exponential, Erlang and rectangular)

for demand size]. These probability distributions are described in Appendix A. They

postulated that Croston's method presents smaller mean squared error (MSE) when

average inter-demand interval is greater than 1.25 forecast review periods (Le. weeks).

In exponentially weighted moving average, weightings for previous observations

decrease exponentially (i.e. giving more weighting to later data). A one period ahead

forecast by exponentially weighted moving average can be illustrated as in equation (2-

11). If the number of moving time periods is identical to the entire data periods

available, exponentially weighted moving average is equivalent to exponential

smoothing.

Y, (1) = ay, + (1- a}Yt-I (1) (2-11)

where:

y,(l) = the one period ahead forecast made at time t

y, = the observed demand for an item at time t

a = 21(n+l)
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n = the number of the time periods

Sani and Kingsman (1997) also demonstrated the superiority of Croston's method, in

that Croston's method reduces inventory costs for low and intermittent demand (Le. 30

daily spare parts demand for vehicles and agricultural machinery over five years), which

is a pattern of non-normal demand, compared to simple exponential smoothing.

There are other researchers who believe that Croston's method has more modest

benefits than exponential smoothing (Eaves, 2002, Eaves and Kingsman, 2004).

Croston's method appears to reduce the bias of exponential smoothing, but not perfectly.

After simulation experiments with intermittent data, Syntetos and Boylan (2001)

claimed that the combined ratio (Z, I P,) of Croston's method can fail to produce accurate

estimates of demand per time period. This was corroborated by several researchers

(Eaves, 2002, Eaves and Kingsman, 2004, Syntetos and Boylan, 2005). These

researchers argued that the bias of Croston's method increases when the smoothing

parameter, a, increases: the smoothing parameter, a, greater than 0.3 introduces

considerable bias. They indicated that Syntetos-Boylan approximation (SBA) provides a

reasonable approximation of the actual demand per period, especially for very low

volumes and large intervals between transactions. Syntetos-Boylan approximation can

be written as:

y, = (1- a 12)z, I P, (2-12)

where:

p, = Croston's estimate of mean interval between transactions

z, = Croston's estimate of mean demand size

Yt = Syntetos-Boylan approximation of mean demand per period
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a = smoothing parameter (0 < a <I)

Eaves and Kingsman (2004) collated Syntetos-Boylan approximation with exponential

smoothing, moving average and Croston's method using an inventory control model

simulation (see Subsection 2.6.3) with 18,750 empirical spare parts demand data

(quarterly, monthly, and weekly time series over six years), which have an intermittent

or a slow moving demand pattern, in the UK Air Force. They showed that an inventory

system using SBA reduces stock-holding significantly compared to other methods.

Syntetos and Boylan (2005) also verified that SBA is the most accurate forecasting

method with 3,000 demand data (monthly time series over two years) from the

automotive industry, which have a slow moving, a lumpy, or an intermittent demand

pattern, when compared to simple exponential smoothing (SES), simple moving

average (SMA), and Croston's method.

Simple moving average (SMA) is a forecasting model based on the last n demand

figures and ignores older values. Simple moving average can be expressed as:

" 1 n
y,(l} =-LY'-i+1

n ;=1
(2-13)

where:

y,(l} = the one period ahead forecast made at time t

Y, = the observed demand for an item at time t

n = the number of the time periods

Simple moving average has some advantages and disadvantages (Bowersox and Closs,

1996, Choi et al., 2005, Silver et al., 1998). In terms of advantages, a} it can be
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calculated easily; and b) it is able to reflect the latest trend. The disadvantages are that, a)

a large amount of data must be maintained; and b) it is unresponsive or sluggish to

change, because it does not consider seasonal change, and equal weight is allocated to

the n most recent pieces of data. Sani and Kingsman (1997) argued that simple moving

average minimises inventory costs for the low and intermittent demand (Le. 30 daily

spare parts demand for vehicles and agricultural machinery over five years), compared

with Croston's method and simple exponential smoothing.

More immediate past observations might be more relevant in forecasting than older

observations. While simple moving average places equal weight to each observation,

weighted moving average (WMA) gives more weight to the more recent data. Weighted

moving average can be expressed as:

n / nY,(1) = fr (n - i +1)Yt-i+1 fr n (2-14)

where:

yt..l) = the one period ahead forecast made at time t

Yt = the observed demand for an item at time t

n = the number of the time periods

Weighted moving average was argued to be a superior forecasting method for predicting

spare parts demand for airline fleets when compared to other methods such as

exponential smoothing and Croston's method (Ghobbar and Friend, 2003, Regattieri et

al., 2005). Ghobbar and Friend (2003) found that most of the weekly, monthly and

quarterly spare parts (e.g. battery, main undercarriage unit and brake assembly unit)

demand for aircrafts (Le. Fokker, BAe and ATR) in KLM-UK are erratic, intermittent,
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or lumpy. Then, they compared thirteen different methods (including simple

exponential smoothing, Croston's method, weighted moving average, and exponentially

weighted moving average) in terms of MAPE and argued that weighted moving average

is superior to other methods.

Regattieri et al. (2005) corroborated the superiority of weighted moving average. They

compared 10 forecasting methods including weighted moving average, simple

exponential smoothing, Croston's method and exponentially weighted moving average

for predicting monthly spare parts demand for Airbus A320 aircraft of Alitalia, which

has an intermittent demand pattern. Then, they argued that weighted moving average

produced the most accurate results in terms of mean absolute deviation (MAD) and

MAD divided by average demand (MADIA).

An advantage of weighted moving average and exponentially weighted moving average

is that the resulting smoothed trend is smoother than simple moving average. Different

from simple moving average, the weights can be slowly down-weighted (Hyndman et

al., 1998). Various schemes for selecting appropriate weights are available for weighted

moving average and exponentially weighted moving average (DeLurgio, 1998,

Hyndman et al., 1998). Weighted moving average and exponentially weighted moving

average have the same disadvantages as those of the simple moving average: a) they

cannot model seasonality or trend; and b) they have to store and process a large amount

of data; however, it seems to be no longer a matter of concern with the improvement of

computer technology (Del.urgio, 1998).
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An autoregressive integrated moving average (ARIMA) model, sometimes called the

Box-Jenkins model, is a tool for understanding and predicting future values. The model

includes an autoregressive (AR) part in which the current value is dependent upon past

values to the p'h depth as shown in equation (2-15) and a moving average (MA) part in

which the current value is dependent upon forecast errors of previous periods as shown

in equation (2-16). A model with both the autoregressive and moving average parts is

usually referred to as an autoregressive moving average model [ARMA (p, q)] where p

is the order of the autoregressive part and q is the order of the moving average part as

shown in equation (2-17). If a time series is non-stationary, the general approach is to

difference the time series using the difference operator as shown in equation (2-18).

This model is normally referred to as an ARIMA (p, d, q) model where p, d, and q are

integers greater than or equal to zero and refer to the order of the autoregressive,

integrated, and moving average parts of the model respectively.

(2-15)

(2-16)

(2-17)

(2-18)

where:

Yt = a value at time I

z, = a random variable which are mutually independent and identically

distributed at time t

(J's, B IS, p, q, and d = constants
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gJ= the backward shift operator such that gJ Yt =Yt-d

Vd = the difference operator such that Vd Y I = Y I - Y I-d

W, = Vd Y, = (1- B)d Y,

When p, d, q, ;'s and () 's are chosen and estimated, a r periods ahead forecast made at

time t can be produced by substituting t+ r for t in equation (2-18). Future error terms,

z/s, are predicted by their mean (i.e. zero).

Businger and Read (1999) argued that ARIMA models are useful in forecasting demand

for spare parts in the US Navy. Approximately 12,000 quarterly spare parts demand

time series having at least 20 positive demands in 40 quarters were used for their

investigation. The time series were found to be extremely volatile. They compared one

period ahead forecasting accuracy between exponential smoothing and ARIMA models,

and found 9%, 15% and 18% smaller forecasting errors in ARIMA(I, 1, I), ARIMA(2,

2, 2) and ARIMA(3, 2, 3) respectively.

Recently, Jiafu et al. (2009) have examined ARMA models for forecasting one year

ahead demand for four spare parts (i.e. whorl, valve, atmoseal and shaft) for power plant

generating units. Quarterly time series demand data for the spare parts between 2000

and 2007 were used for their examination. The time series were characterised as slight

fluctuations. They argued that ARMA models for the four spare parts demands based on

data between 2000 and 2006 presented reasonable forecasts; that is, the models

generated 3.14% under-forecasts in 2007 (i.e. observed demand = 12,665; forecast

demand = 12,267).
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2.3 Hierarchical Forecasting

Direct forecasting strategy, as discussed above, ignores the hierarchical structure of a

time series and simply generates forecasts at an item level. Traditionally, various direct

forecasting methods were considered as appropriate forecasting methods for non-normal

demand. However, as stated in Section 1.5, hierarchical forecasting might be applicable

to predicting military spare parts demand which is likely to be non-normal. In this

section, theories related to hierarchical forecasting strategy, which consider hierarchical

demand structure, are reviewed.

2.3.1 Concept of hierarchical forecasting

Hierarchical forecasting is based on the premise that: a) aggregated time series will be

less volatile and will provide better forecast performance; b) hierarchical forecasting

can generate different hierarchical levels of forecast for the different hierarchical

departments of an organisation; and c) hierarchical forecasting could reduce forecasting

burdens by forecasting only the aggregated level demand because the individual item

level demand can be produced by a simple proration method (Gross and Sohl, 1990,

Fliedner and Lawrence, 1995, Fliedner, 1999, Fliedner, 2001, Widiarta et al., 2009).

The first analysis using hierarchical forecasting may be traced back to the work of Theil

(1954). He intimated two forecasting strategies; that is, a direct forecasting strategy and

a derived forecasting (DRF) strategy. Shlifer and Wolff (1979) corroborated the two

forecasting strategies: direct forecasting and derived forecasting (i.e. hierarchical

forecasting). In hierarchical forecasting strategies, there are two sub-strategies, which

are a top-down (TD) strategy and a bottom-up (BU) strategy (Shlifer and Wolff, 1979,

DeLurgio, 1998, Fliedner and Lawrence, 1995, Fliedner, 1999, Fliedner, 2001). The two

sub-strategies are described as follows.
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2.3.2 Bottom-up and top-down

In a bottom-up strategy, forecasts for a group level are produced by a two-step process.

In the current period, t, the group (or aggregated) level time series is expressed as:

N

Y, = LY;,(
;=1

(2-19)

where:

Yi = the aggregate demand for a group of N items at time t

yu = the demand of item i at time t

i = 1,2,..,.N

t = 1,2, ..., n

First, the direct forecast of item i, r periods ahead made at time t, J;,t+'r' is generated;

then, the derived forecast at group level, r periods ahead made at time t, Ft+T' is

determined as a contemporaneous sum of the item level forecasts.

(2-20)

Top-down forecasting is originated from the notion that the sum of errors in several

individual item level forecasts are normally greater than the errors of the cumulative

group level forecast in which the items are members (DeLurgio, 1998, Schwarzkopf et

al., 1988). Following the top-down forecasting strategy, a forecast for a group level or

an item level is generated by a two-step process. First, a direct forecast of demand at the
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group level is generated; second, the forecast is prorated to accomplish item level

forecasts with a proration method as described below.

2.3.3 Proration methods

There are many possible proration methods (Gross and Sohl, 1990, Fliedner and

Lawrence, 1995, DeLurgio, 1998, Narasimhan et al., 1998, Fliedner, 1999, Fliedner,

2001, Widiarta et al., 2008b). Gross and Sohl (1990) suggested a mean proportion of a

given product's demand to the total product line's demands as in equation (2-21);

similarly, another proportion is the proportion of a given product's mean demand to the

overall product line's mean demand as in equation (2-22). In both methods, the item

forecasts are produced by multiplying the group level direct forecast by the ratio of the

respective item level demand.

I" - ~Yi,l /
j i,l+r = F;+r x £...J- n

1=1 y, (2-21)

n n

LYi" LY,
f, F- I-I I Izl
;I+r = I+r X --, n n

(2-22)

where:

f;,t+T = the hierarchical forecast of item i, r periods ahead made at time t

F,+r = the group level direct forecast, r periods ahead made at time t

Yt = the aggregate demand for a group of N at time t

Yi.,= the demand of item i at time t

i = 1, 2,..,. N

t = 1,2, ..., n
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There is another mean proportion process as in equation (2-23) (Fliedner and Lawrence,

1995, Fliedner, 1999, Fliedner, 2001). An item level forecast can be calculated by

multiplying the aggregated group level direct forecast by the ratio of the direct item

level forecast divided by the sum of the direct forecasts at item level constituting their

group.

N

/;.I+T = F;+r(lJ+rfIll+r)
;=1

(2-23)

where:

fi.l+r = the hierarchical forecast of item i, 1" periods ahead made at time t

J; t+r = the direct forecast of item i, 1" periods ahead made at time t

F,+r = the group level direct forecast, 1" periods ahead made at time t

Gross and Sohl (1990) proposed several correlation processes using differential weights.

In equation (2-24), lagged proportions (lag two, three and four, respectively) are

combined using weights based on correlations. k denotes the lag ofwk;j denotes a lag to

be compared; 1 denotes the total number of lags compared. The weights are generated

by each lag's correlation divided by the sum of all correlations. Therefore, the highest

correlation generates the maximum weight, the next highest the next largest weight, and

so forth.

I

/;,1+1 = F;+1 xL wkPR;J-k' 1= 2, 3, 4
k=1

(2-24)

PR =y;,,1
I.' /y,

where: corr(PRIt,PRit_k)
Wk = I "

Lcorr(PR;",PR;,,_j)
j=1
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Furthermore, Gross and Sohl (1990) extended the correlation process to the

combination of higher correlations with the current period's lag. For example, equation

(2-25) combines two lags having the highest correlations with the current period's lag. q

denotes a lag which has the highest correlation with the current period's lag; s denotes a

lag which has the second highest correlation with the current period's lag; k and I denote

q or s; r denotes a lag to be compared; n denotes the total number of lags compared.

2

/;.1+1 = F,+I X LwkPR;.r_1
k-I
l-q ...

(2-25)

where: w2 = corr(PR;J'PR;,1_JI Lcorr(PR;.r,PR;.r-J)
J-q,s

max [corr(PR;1 PR;,1_r}]= corr(PR;.r,PR;.r_q)
r=1 10 n "

rIJ~Jcorr(PR;",PR;,1-r)]= corr(PR;,1,PR;,H)
r""l

In their empirical study with the eighteen monthly sales time series of three industrial

galvanised steel products from a particular company (USG Industries, Inc.), Gross and

Sohl (1990) argued that proration methods adopting equations (2-21), (2-22), and (2-25)

generated relatively accurate forecasts among the various proration methods tested.

Particularly, they intimated that the simple average methods [Le. equation (2-21) and (2-

22)] are uncomplicated to calculate, implement and update, and intuitively reasonable.

On the other hand, there is a proration method which uses simple exponential

smoothing as shown in equation (2-26) (Narasimhan et al., 1998). ~'_I)+I (or 7;.(1-1)+1)

denotes a group level direct forecast (or a direct forecast of item i), 1 period ahead made
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at time I-I. Widiarta et al. (2008b) argued that an accurate product's proportion in top-

down forecasting could be achieved by this method because this method considers the

most recent distribution of demands by giving later product's proportions more weights

than older proportions of forecasts.

A Yi,H (1 A) 7:,(/-1)+1 Fa N + -a -'-~~ 1+1

'" v. F;,-I)+IL.J /,1-1
1=1

(2-26)

where:

[;,1+ I= the hierarchical forecast of item i, one period ahead made at time I

/;,1+1 = the direct forecast of item i, one period ahead made at time I

-F,+I= the group level direct forecast, one period ahead made at time I

yu = the demand of item i at time t

a =min{D, / D, 0.20)

D, = the group's total demand during period t

D = the group's total demand during last year

When one forecasting model does not greatly dominate the other forecasting model,

combining forecasts of the two models was suggested to improve forecast accuracy

compared to the forecast accuracy of the two models individually (DeLurgio, 1998).

This combining method refers to combinatorial forecasting as mentioned in Subsection

1.2.4, DeLurgio (1998) illustrated three proration methods for combinatorial forecasting:

simple averages [equation (2-27)] and two weighted averages [equation (2-28)]: weights

inversely proportionate to the sum of squared errors [equation (2-30)]; and weights

determined by regression analysis [equation (2-31)], He postulated that simple

averaging usually performs better than the other methods, and weights inversely
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proportionate to the sum of squared errors (SSE) is often better than weights determined

by regression analysis. SSE can be expressed as in equation (2-29).

I" 1 (F. ~ r ) f,l+r
J;,1+1 ='2 t+t + £..JJ;,1+1 X N _

;=1 ~ I"
£..JJ ;,1+r
;=1

(2-27)

N '"1
I" _ (F- ~ '; ) J ;,1+1
J ;,1+1 - WI 1+1 +W2 £..J J ;,1+1 X -:N-:-=-;":_

;=1 ~';
£..JJ ;1+1

(2-28)

;=1

where:

/;,I+T = the hierarchical forecast of item i, T periods ahead made at time t

J; t+t = the direct forecast of item i, T periods ahead made at time t

-F,+r = the group level direct forecast, T periods ahead made at time t

W; =weights of individual forecasts; Z'w; = 1.0

Since direct forecasting models with lower squared errors can be expected to be more

accurate than other direct forecasting models (although this is not so in all cases), the

weights for individual forecasts should be inversely related to the squared errors. Thus,

the SSE set rational weights in a way so that a higher weight is given to the more

accurate forecasting model.

n

SSE =L (YI _YI)2
1=1

(2-29)

where:

Yt = the observed demand at time t

YI = the estimated demand of YI
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t = 1,2,3, ... , n

n = the total number of time periods

II SSEI
WI = -I I-S-'S-'E-I-+-II-S-'S-'E-2

1/ SSE2
w2 = -1 I-S-'S-'E-l-+-l I-S-'S-'E-2

(2-30)

where:

SSE I = the sum of squared errors for the group level direct forecast ( FM )

SSE2 = the sum of squared errors for all the item level direct forecasts within
N

the group (L .1.I+T )
1=1

The concept of regression analysis is also used as a combining method as shown in

equation (2-31).

I' (b F- b .f -; ) 11+r
JiJ+T = I I+r + 2~Jil+r X--:N~""--

i=1 ~-;
~JiJ+r

(2-31)

i=1

where: bl and bi = the regression coefficients of individual forecasts

Least square method estimates the regression coefficients (bl and b2) using equation
N

Y,+r =blF;+r +b2L11+r where the actual value, Y,+r (Le. the aggregate demand for a
i=1

_ N _

group of N at time r+r), is the dependent variable and F,+r and L/;,1+r are independent
/ .. 1

variables.

In addition, Schwarzkopf et al. (1988) illustrated the proration updating cycle. When a
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demand for an item within a group is volatile, the ratio might require regular updating,

probably at each forecast period. However, in a stable environment the ratio might be

updated annually.

2.4 Performance of Forecasting

Several studies have discussed the comparative analysis of the performance of the

forecasting strategies. Table 2-2 compares the results of 14 major studies that have

compared the performance of different forecasting strategies that have used top-down

forecasting, direct forecasting and combinatorial forecasting. The methods were

compared using analytical models, simulation, empirical studies or some combination

of these approaches. Analytical studies compare forecasting performance in terms of the

variance of forecasting errors. Simulation and empirical studies compare forecasting

performance in terms of the magnitude of forecasting errors. The researchers obtained

data from a range of contexts and sources which present various patterns as shown in

Table 2-2. The number of items or levels in the group are also various.

The research literature on the comparisons of forecasting strategies can be divided into

three streams based on forecasting levels: a) group level; b) item level; and b) both

levels. As stated in Section 1.3, the major concern of this research is the item level

forecasting strategies. However, the group level forecasting strategy (Le. bottom-up

forecasting) is worth reviewing because it might have implications for the item level

forecasting strategies.

Gross and Sohl (1990) contended that the applicability of top-down forecasting should

be considered as a function of three conceptual factors: a) the group level forecasting
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accuracy; b) the proration accuracy; and c) the item level forecasting accuracy. As the

first factor, the magnitude and the direction of group level forecasting errors are

considered. When the direct forecasting at group level is accurate, the top-down

forecasting can be considered. This is because an accurate item level forecast can be

derived by an appropriate proration method from an accurate direct forecasting at group

level. When the direct forecasting at group level is consistently under- or over-estimated,

as the second factor, the proration is claimed to be biased toward the opposite direction

of group level forecasting to compensate the group level forecasting errors. However, if

the direct forecasting at group level is inaccurate with no eminent direction for the bias,

the top-down forecasting is unlikely to produce an accurate forecast at time level. Also,

when the performance of a direct forecasting method at item level is unsatisfactory,

compared with the performance of a direct forecasting method at group level, the top-

down forecasting method is considered.

Therefore, higher forecasting accuracy and a consistent direction of forecasting at group

level might have implications for the capability of the top-down forecasting to produce

higher forecasting accuracy at item level with an appropriate proration method. As such,

all three streams (Le. forecasting strategies for group level, item level, and both levels)

of literature are reviewed as follows.
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2.4.1 Bottom-up forecasting

Preliminary work on the performance of hierarchical forecasting was undertaken by

Shlifer and Wolff (1979). In their analytic study, Shlifer and Wolff (1979) compared

direct and bottom-up forecasting in terms of the variance of forecasting errors. After a

series of arithmetic processes, they concluded that, at group level, bottom-up forecasting

is superior to direct forecasting.

On the contrary, there are researchers (Fliedner, 1999, Widiarta et al., 2008b) who

postulated that direct forecasting is superior to bottom-up forecasting. Widiarta et a1.

(2008b) argued that, at group level, direct forecasting outperforms bottom-up

forecasting after a simulation experiment. Simple exponential smoothing was used as

the forecasting method under both bottom-up and direct forecasting. Direct forecasting

was argued to be superior to bottom-up forecasting in all the cases with data generated

from AR (1) and ARMA (1, 1) processes and 87.5% of cases with data generated from

MA (1) process (Widiarta et al., 2008b).

After his simulation study with data made by a time series generator using MA(1)

process, Fliedner (1999) argued that, at group level, direct forecasting using simple

exponential smoothing outperforms direct forecasting using moving average and

bottom-up forecasting using simple exponential smoothing.

Some authors (Fliedner, 1999,Viswanathan et aI., 2008) contended that the performance

of bottom-up and direct forecasting at group level is dependent upon demand features

such as correlations and the variability of demand interval and demand size. Fliedner

(1999) argued that, when the correlations (regardless of whether they are negative or
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positive} between two time series are high, the accuracy of both direct and bottom-up

forecasting at group level improves. Viswanathan et al. (2008) examined group level

forecasting performance with simulation using data generated by a variety of probability

distributions. The variation in item level demand size was modelled as a normal

distribution, lognormal distribution or gamma distribution. The intermittent demand

interval was modelled as a uniform or gamma distribution (see Table A-I for these

probability distributions). Simple exponential smoothing and Croston's method were

used as the forecasting methods under both bottom-up and direct forecasting. They

indicated that forecasting performance depends on the variability of demand interval

and demand size; that is, when the variability of interval is low, bottom-up forecasting is

superior. Conversely, when the variability of interval and demand size is high, direct

forecasting is superior.

On the other hand, Widiarta et al. (2009) argued that the difference in the performance

of bottom-up and direct forecasting at group level is non-significant regardless of

correlations. This argument was derived from their combination of analytic study and

simulation with data generated using MA (I) process. Simple exponential smoothing

was used as the direct forecasting method for both bottom-up and direct forecasting.

2.4.2 Top-down forecasting

Inconsistent with the intuitive notion, top-down forecasting at item level has been

observed to provide rather inferior performance (Shlifer and Wolff, 1979, Gross and

Sohl, 1990, Dangerfield and Morris, 1992, Fliedner and Lawrence, 1995) or identical

performance (Widiarta et al., 2008a) to direct forecasting. Shlifer and Wolff (1979)

compared direct and top-down forecasting in terms of the variance of forecasting errors.
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In the analytic study, they concluded that, at item level, direct forecasting is superior to

top-down forecasting.

Dangerfield and Morris (1992) investigated the effects of correlations between items in

a group and an item's proportion of a group on the performance of forecasting strategies

with 178 monthly time series from M-competition data. Makridakis, et al. (1982)

proposed 1,001 time series, known as M-competition, that are used to compare

forecasting methods. 89 group level time series (each containing two items) were

constructed using the 178 item level time series. The pairs of item level time series were

observed to be varied with regard to correlations (-0.96 < r <1.0), to seasonal and trend

patterns, and to their relative proportion of the group level time series. Forecasts both at

group and item levels were generated by exponential smoothing. Equation (2-21) was

employed as the proration method. Dangerfield and Morris (1992) argued that direct

forecasting is superior to top-down forecasting in almost three out of four data sets

regardless of the correlations and the proportions.

Gross and Sohl (1990) collated top-down and direct forecasting methods with the

monthly time series consisting of 53 observations for three industrial galvanised steel

product sales (grip strut, channel and accessories) from USG Industries Inc. The grip

strut group consisted of seven items; the channel group consisted of three items; and the

accessories group consisted of five items. Several forecasting methods such as simple

exponential smoothing, Holt-Winters forecasting, and linear time series regression were

used for both top-down and direct forecasting methods. Several proration methods such

as equation (2-21), equation (2-22), equation (2-24) and equation (2-25) were used for

top-down forecasting. Very low correlations were observed among all time series, both
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within and between the product lines. In their study, direct forecasting was argued to

outperform top-down forecasting in 98.4% of cases.

Fliedner and Lawrence (1995) compared top-down and direct forecasting methods with

954 monthly time series consisting of 42 observations for automotive spare parts

demand from Cummins Engine Inc. Cummins Engine Inc. uses a hierarchical structure

for classifying products; namely standard product classification. They screened out

irregular time series such as time series with missing observations and demand values of

zero. However, the volatile demand feature was still observed from the data sets which

remained after the screening process. Among the three forecasting methods (Le. simple

exponential smoothing, Holt-Winters forecasting and moving average) simple

exponential smoothing was used for both top-down and direct forecasting methods

because simple exponential smoothing was argued to make the performance of top-

down forecasting better. Equation (2-23) was used as the proration method. Fliedner and

Lawrence (1995) argued that direct forecasting is superior to top-down forecasting. The

mean percentage errors (MPE) of direct and top down forecasting methods were -74.89

and -76.60 respectively withp-value, 0.021.

Widiarta et al. (2008a) contended that no superiority is observed between top-down and

direct forecasting methods. The data were generated by MA (1) process. The number of

items in a group was restricted to two items. Simple exponential smoothing was

employed as the forecasting method for top-down and direct forecasting methods.

Equation (2-21) was used as the proration method for top-down forecasting. They

argued that the performances of top-down and direct forecasting are identical in an

analytic evaluation and the forecasting error difference of each forecasting strategy is
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non-significant in a simulation.

In practice most studies demonstrated that the performance of top-down forecasting

method is conditional on some specific demand features: correlations between time

series (Schwarzkopf et al., 1988, Widiarta et al., 2006); the lag-l autocorrelation of the

time series (Widiarta et al., 2006); the variability of demand (Schwarzkopf et al., 1988);

forecasting horizon (Shlifer and Wolff, 1979); and the degree of substitutability and the

variability of an item's proportion (Widiarta et al., 2008b). These will be discussed later

in this chapter.

2.4.3 Combinatorial forecasting

Some authors (Kahn, 1998, Dekker et al., 2004, Hyndman et al., 2007) contended that

combinatorial forecasting is superior to top-down forecasting and direct forecasting.

Kahn (1998) claimed that combinatorial forecasting outperforms top-down forecasting

and direct forecasting after an empirical study with sales data which have various

seasonal patterns. Dekker et al. (2004) compared five forecasting methods: simple

exponential smoothing, Holt- Winters, Holt- Winters combined with Naive 1,

aggregation method, and aggregation method combined with Naive 1. Naive 1 refers to

a forecast identical with the most recent demand. The aggregation method lays the

foundation on the multiplicative Holt-Winters forecasting: firstly, seasonal indices at the

group level are produced; then, item level demands are forecast using seasonal indices

of the group level. Through experiments using five years of weekly empirical sales data

(Le. sales for 14 beers, 42 soft drinks and 11 plastic tubes for construction), they argued

that the aggregation method combined with Naive 1 generated the most accurate

forecasts. In their view, the reason for its superiority was that, if in a particular period
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the demand is too high or too low, the aggregation method combined with Naive will

correct the irregularity and the forecast will remain closer to the most recent demand.

Hyndman et al. (2007) argued for the superiority of combinatorial forecasting by

simulation with data from ARIMA process and an empirical study of Australian tourism.

Quarterly time series on the number of visitor nights covering the period of 1998 - 2006

from the National Visitor Survey were used for the empirical study. These data were

composed of four levels of a hierarchical structure: level 0 (top) indicates aggregate

domestic tourism demand for the whole of 'Australia'; level I is divided by 'purpose of

travel'; level 2 is divided by 'states and territories'; and level 3 (bottom) is divided by

'capital city versus other'. Exponential smoothing was used as the forecasting method

for all forecasting strategies (direct forecasting, top-down forecasting, bottom-up

forecasting, and combinatorial forecasting). Equation (2-20) was used for bottom-up

forecasting; equation (2-21) was used for top-down forecasting. In order to produce

combinatorial forecasting, all four levels were forecast individually using exponential

smoothing and then these forecasts were optimally combined using a regression model.

They argued for the superiority of combinatorial forecasting; that is, the combinatorial

forecasting was the most superior at intermediate levels (Le. level I and 2) with the

simulation experiment, and the most superior at the intermediate level (Le. level 1) and

the bottom level (Le. level 3) for the Australian tourism data. For example, with the

tourism data the combinatorial forecasting method was observed to present 0.07% and

8.59% smaller mean absolute percentage error (MAPE) than those of direct forecasting

and top-down forecasting respectively at the bottom level.
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2.4.4 Disagreement in the performance

Lack of agreement in the performance of hierarchical forecasting methods was shown in

the previously mentioned research. The disagreement could be attributed to different

features of data in each investigation, for example, variations in the number of items in

a group or the sources of data used as shown in Table 2-2. Fliedner (1999) noted the

number of items in the groups as a source of incongruity in the literature. In an

analytical study, the number of items in a group was normally constrained to two items

in order to control the statistical correlation (Shlifer and Wolff, 1979, Wei and Abraham,

1981, Schwarzkopf et al., 1988, Widiarta et al., 2006, Widiarta et al., 2008a). However,

in empirical studies, greater numbers of items were usually used without measuring the

association of homogeneity within family groups (Fliedner and Lawrence, 1995, Kahn,

1998, Hyndman et al., 2007). Fliedner (1999) pointed out that the statistical features of

data used could be another reason for incongruity. For example, a specific data

generator in analytic studies (Viswanathan et al., 2008, Fliedner, 1999, Widiarta et al.,

2006, Widiarta et al., 2008a) could lead to different forecast results.

2.4.5 Hierarchical forecasting for non-normal demand

As stated in Chapter 1, the aim of this research is to establish an appropriate forecasting

strategy for predicting the demand for spare parts in the South Korean Navy. Much of

the research in forecasting non-normal demand has only been carried out in terms of a

direct forecasting method: exponential smoothing (Croston, 1972, Sani and Kingsman,

1997, Narasimhan et al., 1998, Ghobbar and Friend, 2003), Croston's method (Croston,

1972, Willemain et al., 1994, Johnston and Boylan, 1996, Sani and Kingsman, 1997),

Syntetos-Boylan approximation (Syntetos and Boylan, 2001, Eaves, 2002, Eaves and

Kingsman, 2004, Syntetos and Boylan, 2005), weighted moving average (Ghobbar and
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Friend, 2003, Regattieri et al., 2005), and the Box and Jenkins models (Businger and

Read, 1999).

Hierarchical forecasting was discussed in many application areas such as economics,

marketing, manufacturing, planning and travelling (Theil, 1954, Shlifer and Wolff, 1979,

Wei and Abraham, 1981, Schwarzkopf et al., 1988, Fliedner and Lawrence, 1995,

DeLurgio, 1998, Kahn, 1998, Fliedner, 1999, Fliedner, 2001, Widiarta et al., 2006,

Hyndman et al., 2007, Viswanathan et al., 2008, Widiarta et al., 2008a, Widiarta et al.,

2009). However, the nature of spare parts demand might be rather different. The spare

parts demand is more intermittent and more variable (Ghobbar and Friend, 2002). It

usually comprises of many periods of no demand and its demand size is highly variable.

The applicability of hierarchical forecasting to predicting spare parts demand in the

South Korean Navy was stated in Section 1.5. However, the literature has paid little

attention to the use of hierarchical forecasting for the intermittent demand at item level.

This is a feature of non-normal demand associated with spare parts demand. As stated

above, Fliedner and Mahert (1992) and Fliedner and Lawrence (1995) examined the

performance of hierarchical forecasting with the automotive spare parts demand.

However, they screened out irregular time series such as time series with missing

observations and demand values of zero. Although they found the volatile demand

feature which is a demand feature of non-normal demand, the intermittent demand

feature was not examined.

Recently, Viswanathan et al. (2008) applied hierarchical forecasting to intermittent

group level demand in a simulation study. The intermittent demand was generated by a
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variety of probability distributions. However, their discussion was restricted to

forecasting at group level and a production planning context with data generated from

probability distributions. Forecasting intermittent demand at item level with empirical

data might be different.

In this section, the comparative performance of forecasting strategies was reviewed.

Much of the research has found that the performance of hierarchical forecasting is

conditional on some specific demand features. Lack of agreement in the performance of

hierarchical forecasting strategies, which might originate from the different features of

the data, was identified. Lack of hierarchical forecasting research for intermittent

demand at item level with empirical data was also identified. Therefore, a literature

review about the effect of demand features including the intermittent demand feature

upon the performance of direct and hierarchical forecasting strategies is necessary.

2.5 Classification of Demand for Forecasting

This section reviews the literature about the classification scheme of demand and the

influence of demand features upon the performance of forecasting methods.

Classification schemes for non-normal demand and the influence of non-normal

demand features upon the performance of direct forecasting are reviewed. This is

followed by a literature review about the influence of demand features upon the

performance of hierarchical forecasting. Then, the literature about the influence of

demand features upon the performance of hierarchical forecasting is evaluated with

respect to research opportunities.
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2.5.1 Direct forecasting

Various demand features have been considered for classifying non-normal demand for

direct forecasting (Williams, 1984, Willemain et al., 1994, Businger and Read, 1999,

Ghobbar and Friend, 2002, Ghobbar and Friend, 2003, Eaves and Kingsman, 2004,

Regattieri et al., 2005, Syntetos, 2007, Boylan et al., 2008, Eaves, 2002). Their

classification schemes are reviewed below.

Businger and Read (1999) classified the quarterly demand time series for spare parts in

the US Navy in order to predict the suitability of the Box-Jenkins models to each class

of the demand time series. In the first step, they classified the demand time series for

spare parts by two dimensions such as the coefficient of variation in demand size and

the number of periods with zero demand.

Coefficient of variation in demand size is a unit free measure of relative variability

(Williams, 1984, Businger and Read, 1999, Syntetos, 2001). The erratic and the lumpy

demand features in the categories of non-normal demand (Boylan et al., 2008, p. 474)

might be captured by this statistic. It can be expressed as:

Coefficient of variation in demand size = s / y

where: s = the standard deviation of demand size

y = the mean demand size

(2-32)

The number of periods with zero demand was used in order to measure the

intermittency of a demand time series (Businger and Read, 1999, Boylan et al., 2008).

Demand features reflecting intermittency (Le. intermittent, slow moving, clumped and
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lumpy) in the categories of non-normal demand (Boylan et al., 2008) might be captured

by this statistic. However, this statistic cannot provide a general measure for

classification. This statistic depends on the overall data periods; that is, the number of

zero periods might be longer when the overall data periods are longer, and vice versa.

Table 2-3 Classification of spare parts demand by two dimensions

(Businger and Read, 1999)

Zero count Coefficients of variation groups

cell group O~s/ ji<0.8 0.8 ~ s / y < 1.0 1.0 s s / y < 1.2 1.2 s s / y < 1.5 1.5 s s / y
0 0-2 0-5 0-8 0-8

2 3-5 6-9 9-12 9-12

3 6-7 10-12 13-16 13-16

4 2-3 8-10 13-15 17-18 17-18

5 4-20 11-20 16-20 19-20 19-20

Businger and Read (1999) partitioned the coefficient of variation in demand size into

five groups by the four boundaries (i.e. 0.8, 1.0, 1.2 and 1.5); then, each group was re-

partitioned into five groups by the number of periods with zero demand as shown in

Table 2-3. Roughly the same number of the demand time series for spare parts was

allocated to each cell. The numbers in each cell indicate the boundaries of the number of

zero demand series allocated in each cell. Businger and Read (1999) claimed that each

cell has some internal homogeneity in terms of the coefficients of variation in demand

size and the number of periods with zero demand. In the second step, although the

variations and the intermittency of demand can be considered to be particular

characteristics of non-normal demand, they considered more statistics such as trend, the

number of peaks, skewness, and autocorrelation.

Trend was computed as in equation (2-33) (Businger and Read, 1999). The time series
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are divided into thirds. A trend is not less than -1 and not more than +1, because YL is

not less thanY(1/6), andyu is not more thanY(5/6).

(2-33)

where: yu = the upper third median

YL = the lower third median

Y(1/6)= the 116median

Y(SI6)= the 5/6 median

The number of peaks was calculated as in equation (2-34) (Businger and Read, 1999).

ltd, > 2) is an indicator function taking the value of 0 if d, ~ 2 or 1 otherwise. d, ~ 2

indicates that y, is a non-peak demand; d, > 2 indicates that Yt is a peak demand. The

erratic and the lumpy demand features (Boylan et al., 2008) might be captured by this

statistic.

n

Number of peaks= L/(d, >2)
1=1

(2-34)

where: Yt = the observed demand size for an item at time period t

y = the mean demand size

s = the standard deviation of demand size

n = the number of the total periods

d = IYI - YI
I

S

{

O, d, ~2
Rd;» 2) =

1, dt> 2

The lack of symmetry of a distribution around its mean can be identified by skewness
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(Tabachnick and Fidell, 2007). The values. above or below zero. indicate departure from

a normal distribution (Miles and Shevlin, 2001. Tabachnick and Fidell, 2007, Howitt

and Cramer, 2008). A simple index of skewness was measured as in equation (2-35)

(Businger and Read, 1999).

Skewness =y / m

where:y = the mean demand size; m = the median demand size

(2-35)

Autocorrelation is defined as "the correlation between values of the same time series at

different time periods" (Hyndman et al., 1998, p. 590). Autocorrelation (Willemain et al.,

1994. Businger and Read, 1999) and cross-correlation (Willemain et al., 1994) were

examined to identify demand features for non-normal demand.

Businger and Read (1999) examined the relationships between the accuracy of the four

models including three Box-Jenkins models [ARIMA(I, 1, 1), ARIMA(2, 2, 2) and

ARIMA(3, 2, 3)] and exponential smoothing and the spare parts demand time series

characterised by the above statistics. They used multiple linear regressions to analyse

the relationships. The independent variables in the regressions were the above statistics;

the dependent variable was an objective function, namely measure of effectiveness

(MOE). as expressed in equation (2-36). The greater MOE score for a forecasting

method indicates the greater accuracy of the forecasting method.

(2-36)

where: s = the standard deviation; Yt = the fitted value; and n = the number of the total

periods
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Businger and Read (1999) found that the Box-Jenkins models are superior to

exponential smoothing and ARIMA (1, 1, 1) is the best. However, they failed to find

distinct patterns in the relationships between the forecasting accuracy and the statistics.

Williams (1984) and Eaves and Kingsman (2004) considered lead time variation in the

demand classification. Williams (1984) established an analytical method for classifying

demand for 11,000 products over two years, which are generally low volume. Each

product was regarded as independent and the demand was regarded to be entirely

unplanned. He decomposed the variance of the demand during a lead time (DDLT) into

the three constituent parts of transaction variability (C~/ I), demand size variability

( C; / fir) and lead-time variability (C i). The variance partition equation can be

written as in equation (2-37).

(2-37)

where:

C~DLT = the square coefficient of variation ofDDLT

C~ = the square coefficient of variation of number of orders, n

C; = the square coefficient of variation of order sizes, x

Ci = the square coefficient of variation of lead times, L

I = the mean replenishment lead time

n = the mean number of orders per unit time

Williams (1984) then developed a two-dimensional classification scheme (i.e. the

transaction variability and the demand size variability) in order to clarify demand
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features of the products for applying a suitable forecasting method to each product. If

the number of demands for an item per week is Poisson distributed with mean 1. with a

constant lead time. the transaction variability can be represented as 1IAI (boundary =

0.7). and the demand size variability (i.e. lumpiness of the demand) can be represented

as C; /).L (boundary = 0.5). This classification scheme can be expressed as Figure

2-1. While he argued that the choice of boundaries between each of the categories is a

management decision, he offered no rational criterion to set these boundaries.

Small C; /).L 0.5 Large C; / iE
o~ ~t ~

large 1I).L
I---------+----------l+__ 0.7

DI---.--..---- -.--- --+-- 2.8
D2

B

A CSmall 1/).L

Figure 2-1 Two-dimensional classification of demand during lead time (Williams, 1984)

Williams (1984, p. 939) defined sporadicity as: "high sporadicity - one demand at least

ten times the average weekly demand; low sporadicity - average demand during the

lead time less than ten items; and no sporadicity - neither of the above". Then. he

argued that class A mainly has rapidly arriving demand of a not-widely spreading

demand size (namely no sporadicity); class B mostly has slow-moving demand (namely

low-sporadicity); class C mostly has frequent demand of widely varying demand sizes;

and class D mostly has little demand of widely varying demand sizes (namely high

sporadicity). He sub-classified class D into DI and D2 using a boundary of 2.8 for AI:

0.7 ~ DI < 2.8; and 2.8 ~ D2. Then, he argued that Croston's method has to be used for

class C and DI. Although Williams (1984) presented a sophisticated classification
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scheme, he offered no rational criterion to set those boundaries. He also made no

attempt to provide an empirical evidence for his argument on forecasting methods.

Eaves and Kingsman (2004) crystalised the analytical framework of Williams (1984).

They categorised the time series of spare parts demand in the UK Air Force into smooth,

irregular, slow-moving, and intermittent demand features. Then, they distributed the

demand features by transaction variability, demand size variability, and lead-time

variability as shown in Table 2-4.

Table 2-4 Classification of demand (Eaves and Kingsman, 2004)
Lead-time demand component Demand pattern

classificationTransaction Demand size Lead-time
variability variability Variability

Low Low Smooth
Low High Irregular
High Low
High High Low Mildly intermittent

Slow moving

High High High Highly intermittent

In common with Williams (1984), Eaves and Kingsman (2004) argued that the choice of

boundaries between each of the categories is a management decision. The boundaries of

demand size variability and lead-time variability were set to the median of the demand

size variability and the median of the lead-time variability respectively. However, the

boundary of transaction variability was decided at a lower quartile of the transaction

variability because of the higher variability of the spare parts in the UK Air Force

compared to most other organisations. Thus, 25% of the demand was classified as

smooth or irregular, approximately half the remainder was classified as slow moving,

and the remainder was classified as intermittent (either mildly or highly intermittent).

As stated earlier, Eaves and Kingsman (2004) then examined the performance of
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Syntetos-Boylan approximation (Syntetos and Boylan, 2005), exponential smoothing,

moving average and Croston's method for the classification using an inventory model

simulation. They claimed that Syntetos-Boylan approximation minimises stock-holdings

across all the demand categories.

The above mentioned classification schemes appear to be built in a sophisticated

fashion. However, the above research failed to present a clear guideline for selecting a

forecasting method suitable to forecast a demand in a category. There is research

(Johnston, 1980, Johnston and Boylan, 1996, Boylan et al., 2008) which has presented a

clear guideline for selecting a forecasting method.

Average inter-demand interval (ADI) refers to the average period of time in which a

demand occurs. Average inter-demand interval was used in order to measure the

intermittency of a demand (Johnston, 1980, Johnston and Boylan, 1996, Syntetos, 2001,

Boylan et al., 2008). Some of the demand features (i.e. intermittent, slow moving,

clumped and lumpy) in the categories of non-normal demand (Boylan et al., 2008, p.

474) might be captured by this statistic.

As stated earlier, Johnston and Boylan (1996) suggested a guideline for Croston's

method and exponentially weighted moving average as a result of simulation analysis

with generated data. Johnston and Boylan (1996) argued that if the average inter-

demand interval is greater than 1.25 forecast review periods (i.e. weeks), then Croston's

method should be used rather than exponentially weighted moving average; whereas the

variability of demand sizes is considered to have no effect on forecasting performance.
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Boylan et al. (2008) developed the guideline and suggested a classification scheme that

allocates forecasting methods according to the number of periods with zero demand and

average inter-demand interval during the last n time periods as shown in Table 2-5. The

last 13 time periods (n = 13) for the classification was used. However, they offered no

explanation for the decision of n.

Table 2-5 Classification scheme for identifying intermittence (Boylan et al., 2008)

Intermittent Non-intermittent
Recommended range
of break-point values
(number of zeroes)

Equivalent range of
average inter-demand

intervals
Croston SMA 5-7 1.63 - 2.17

2 Croston SES 6-8 1.86- 2.60
3 SBA SMA 2-3 1.18 - 1.30
4 SBA SES 2-4 1.18 - 1.44

Boylan et al. (2008) compared each pair of forecasting methods in terms of forecasting

accuracy for 16,000 empirical data such as monthly automotive spare parts data over 26

periods, bi-monthly aerospace spare parts data over 52 periods, and monthly chemical

products data over 60 periods. They considered Croston's method (Croston, 1972) and

the Syntetos-Boylan approximation (SBA) (Syntetos and Boylan, 2005) to be more

suitable for the intermittent demand category (Le. demand features associated with a

'low' demand frequency as determined by the break-point), whereas simple exponential

smoothing (SES) and simple moving average (SMA) were considered to be more

suitable for non-intermittent demand category (i.e. demand features associated with a

'high' demand frequency). For example, when nine zero demand periods are observed

in a data set during the last 13 periods, Croston's method is preferred to simple moving

average 13 (Le. 13periods) and simple exponential smoothing.
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In this subsection, various classification schemes for non-normal demand and various

attempts to guide the selection of direct forecasting methods using a classification

scheme were reviewed. Some limitations of the research were also identified. In the

next subsection, a literature review about the classification schemes and the guidelines

for the use of hierarchical forecasting is presented.

2.5.2 Hierarchical/orecasting

As stated earlier, most research has demonstrated that the performance of top-down

forecasting is conditional on some specific demand features. These demand features

might be able to guide the selection of a forecasting strategy for data characterising a

specific demand feature. Table 2-6 compares the results of major studies that have

compared the influences of demand features upon the relative performance of top-down

and direct forecasting strategies. Superior forecasting strategies at group or item level,

which are conditional on the value (high or low) of the demand features in the I"

column, are presented in the 2nd or 3rd column respectively. These are reviewed as

follows.
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Table 2-6 The influence of demand features upon the relative performance of top-down
forecasting and direct forecasting

Demand
feature

Impact on relative performance
[superior strategy (level)] Reference
High Low

Positive: DF (item)
Negative: TO TO Schwarzkopf et al (1988)

OF (item)
Gross and Soh I (1990) &
Widiarta et al.(2006)

Correlation Both OF (group) and BU Fliedner (1999)

Non-significance (OF outperforms TO) Dangerfield and Morris
(1992)

Non-significance (identical performance)
Widiarta et al. (2008a) &
Widiarta et al. (2009)

Greater superiority in OF (item) OF (item) Dangerfield and Morris
(1992)

Proportion Non-significance Widiarta et al.(2006)
Non-significance (identical performance) Widiarta et al.(2008a)

Variability
TO OF (item) Schwarzkopf et al. ( 1988)

OF (group) BU Viswanathan et al.(2008)
Substitutability (fJ)
& variability of
proportion (v)

HighP (& high v) or Low v: TO
Low-medium P & High v: OF (item)

Widiarta et al. (2008b)

F~r:..::g Long: TO Short: OF (item) Shlifer and Wolff(1979)

Lag-I auto P(I) > 1/3: OF (item) -I <P(I) < 1/3 :
correlation [P(l)) Non- significance

Widiarta et al.(2006)

Grouping criteria UV and DV are better than SI and HP Fliedner and Mabert (1992)
No. of groups Fliedner and Mabert (1992)
(No. of items in Non-significance Fliedner and Lawrence

a group) (1995)
TO = top-down forecasting; BU = bottom-up forecasting; OF (group or item) = direct forecasting (at
group or item level); UV= historical unit volume; DV = historical dollar volume; SI = item demand
series' seasonal index; HP = historical item forecasting performance.

Correlations

Previous research findings into the influence of correlations between item level time

series in a group upon the relative performance of top-down and direct forecasting

strategies have been inconsistent and contradictory as shown. Schwarzkopf et a1. (1988)

compared top-down forecasting and direct forecasting using an analytic method. Two

item level top-down forecasts of demand t (i = 1, 2), T periods ahead made at time I,/;,I+r

-P'+T is a group level direct forecast composed of the two items, r periods ahead made at
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time t; PRi.l+r is the estimated percentage for item i (PRt,l+r+ PR2.I+r= 1); and £i.l+r is the

estimated error terms assumed to be independent with mean 0 and variance s/.

Schwarzkopf et at. (1988) contended that, when two item level time series are

independent, the sum of the variability of top-down forecasting can be expressed as in

equation (2-38). Letting PRt,l+r = PR2,t+r= 112,the sum of the variability of the errors of

top-down forecasting is = ;/4; and the sum of the variability of the errors of direct

forecasting is = l/2 (Le. the errors of direct forecasting are more variable than the errors

of top-down forecasting). However, if the time series of items are dependent, which is

usually the case, a covariance term, Cov(fi,I+n h,l+r), has to be incorporated into the

relationships for top-down forecasting as in equation (2-39). Thus, the sum of the

variability of the errors of top-down forecasting is greater than the sum of the variability

of the errors of direct forecasting when there is a strong positive correlation between the

items. However, the variability of the errors of top-down forecasting is smaller when

there is a negative correlation.

Var(fi,I+r +h,l+r ) = Var(fi,I+r) + Var(f2,I+r)

Var(fi,I+r +h,l+r ) = Var(fi,I+r) + Var(fi,I+r) + 2Cov(fi,I+n!i.,+r)

(2-38)

(2-39)

As stated earlier, Gross and Sohl (1990) observed very low correlations among all the

time series for their analysis both within and between the product lines. They therefore

suggested that direct forecasting outperformed top-down forecasting consistently for

these time series. Widiarta et al. (2006) conceded to the argument of Gross and Sohl

(1990) about correlations. Widiarta et al. (2006) examined the relative performance of

top-down forecasting and direct forecasting with AR (1) process. Exponential
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smoothing was used as the forecasting method for both forecasting strategies. Equation

(2-22) was used as the proration method for top-down forecasting. They contended that

the supremacy of direct forecasting increases when the correlation between two items

decreases.

These arguments (Gross and Sohl, 1990, Widiarta et al., 2006) with the argument of

Fliedner (1999) about correlations seem to be inconsistent with the above arguments of

Schwarzkopf et al. (1988). While the latter claimed the superiority of top-down

forecasting with a decreasing correlation, the former claimed either the superiority of

direct forecasting with a decreasing correlation (Gross and Sohl, 1990, Widiarta et al.,

2006) or the superiority of forecasts at group level with an increasing correlation

(Fliedner, 1999). The argument (Fliedner, 1999) is considered as being in line with the

arguments of Gross and Soh! (1990) and Widiarta et al. (2006) because the superiority

of forecasts at group level implies an applicability of top-down forecasting at item level

(Gross and Sohl, 1990).

A number of authors have also found that a correlation does not have any significant

effect upon the relative forecasting performance between direct forecasting and top-

down forecasting (Dangerfield and Morris, 1992, Widiarta et al., 20088, Widiarta et al.,

2009).

Proportion

There is research which has examined the influence of an item's proportion of the group,

in which the item is a member, upon the relative performance of top-down forecasting

and direct forecasting. An item's proportion was argued not to have significant influence
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upon the relative performance of top-down forecasting and direct forecasting in

previous research. Dangerfield and Morris (1992) investigated an item's proportion of a

group as well as the effects of correlations between items in a group upon forecasting

performance. As stated above, they found that direct forecasting is superior to top-down

forecasting in almost three out of four data sets, regardless of the items' proportions.

Greater superiority of direct forecasting was observed when an item's proportion (Pi) of

the group was high (0.65 < Pi < 1.0). This non-significance of the proportion for the

relative performance was conceded to by the two pieces of research (Widiarta et al.,

2006, Widiarta et al., 2008a).

Variability

Schwarzkopf et al. (1988) argued that direct forecasting is to be preferred in order to

detect distinctions between demand patterns for individual items. However, when

individual demand data contains missing or unreliable data, then top-down forecasting

is better.

As stated in Subsection' 2.4.1, Viswanathan et al. (2008) indicated that forecasting

performance at group level depends on the variability of demand interval and demand

size; that is, when the variability of interval is low, bottom-up forecasting is superior;

and conversely, when the variability of interval and demand size is high, direct

forecasting is superior. This might suggest the applicability of top-down forecasting to a

time series which is highly variable in the demand interval and the demand size. This is

because the superiority of forecasts at group level implies an applicability of top-down

forecasting at item level (Gross and Sohl, 1990).
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Although the demand interval and the demand size (Viswanathan et al., 2008) are

completely different demand features from the missing or unreliable data (Schwarzkopf

et al.• 1988). the argument of Schwarzkopf et al. (1988) might be more or less in line

with Viswanathan et al. (2008) in that both arguments can be interpreted as the

applicability of top-down forecasting for highly variable data.

Suhstitutahility and variahility of proportion

Widiarta et al. (2008b) claimed that the degree of substitutability and the variability of

an item's proportion influenced the relative performance of top-down forecasting and

direct forecasting after a simulation experiment with three time series [Le. MA (1), AR

(1) and ARMA (1. 1)]. Exponential smoothing was used as a direct forecasting method

for both top-down and direct forecasting strategies. Equation (2-26) was used as the

proration method for top-down forecasting. The number of items in a group was

restricted to two items. The degree of substitutability, Pij, indicates a portion of the

unsatisfied demand for item i that is passed to item}, on condition that itemj has excess

inventory. The variability of an item's proportion in the group, v, indicates the range of

variability of the item's proportion in the group. v was calculated as the upper bound

(UB) of the item demand in the group minus the lower bound (LB) of the item demand

in the group (v = UB - LB). The demand proportion for each item in the group, Pi (0 S:Pi

S: 1),was assumed to be uniformly distributed, Pi U (LB, UB).

Widiarta et al. (2008b) argued that, at group level, direct forecasting outperformed

bottom-up forecasting consistently. The relative advantage of direct forecasting was

claimed to be more augmented as the degree of substitutability, p, decreased and the

variability of the product's proportion, v, increased. At item level, the superiority of top-
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down forecasting was argued to increase when the degree of substitutability, p,

increases (approximately greater than 0.2).

Widiarta et at. (200Sb) suggested that the reason for this result was as follows. When

two items are highly substitutable, the information distortion of the observed demand

from real demand becomes more pronounced. Any excess demand, p, for an item A

would be satisfied by a substitutable item B, and this phenomenon is invisible to the

inventory manager. Thus, the inventory manager is prone to under-forecasting the

demand of item A, but over-forecasting the demand of item B. However, top-down

forecasting is less affected by the information distortion because top-down forecasting

uses the historical demand of the items' group, which could be less dependent upon the

degree of item substitutability, p. Assuming that SUbstitutabilityof Naval spare parts

demand is high, top-down forecasting might be superior to direct forecasting at item

level.

Widiarta et al. (200Sb) continued their argument that. top-down forecasting

outperformed direct forecasting with the low variability of proportion. However, as the

variability of proportion increased, direct forecasting outperformed top-down

forecasting with the low to medium substitutability where the low to medium

substitutability is a value between 0.0 and O.Sfor MA (1), between 0.0 and 0.2 for AR

(1), and 0.0 for ARMA (1, 1). They suggested that the reason for this result was that, as

the variability of an item's proportion increases, the amplification of the item's demand

Increases, so that this makes the proration process of top-down forecasting more

difficult.
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Forecasting horizon

As stated earlier, Shlifer and Wolff (1979) contended that direct forecasting is preferred

to top-down forecasting. Then, they argued that for some time boundary, 0, direct

forecasting is superior for forecasting horizon, t < 0; however, top-down forecasting is

superior for t > O. As a practical implication of this arithmetic induction, they contended

that, direct forecasting is preferred to top-down forecasting for the near future; however,

top-down forecasting is preferred as the forecast goes further into the future. It implies

that, when a forecasting horizon is long, this might be an advantageous condition for

top-down forecasting.

Lag-l autocorrelation

Widiarta et al. (2006) postulated that the forecasting performance depends on lag-l

autocorrelation of a demand time series. When the lag-I autocorrelation, p( 1), of the

time series for at least one of the items in a group consisting of two items was greater

than 113,direct forecasting outperformed top-down forecasting. However, when the lag-

1 autocorrelations of the two item level time series were satisfied, -1 < p(1) ::; 113, the

difference in the performance of the two forecasting strategies was non-significant.

Grouping criteria

The relationships between grouping (or clustering) criteria and the performance of top-

down forecasting have been investigated. Fliedner and Mabert (1992) examined

grouping criteria and the influence of the number of groups (i.e. the number of items in

a group) upon the performance of top-down forecasting using empirical product data

(i.e. demand for automotive spare parts from Cummins Engine Inc.). As stated earlier,
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Cummins Engine Inc. uses a hierarchical structure for classifying products; namely

standard product classification. In total, 22,241 monthly demand data for spare parts

such as cylinder heads, turbocharger components, fuel pump components and air

compressors, were used for their study. Similarly to Fliedner and Lawrence (1995),

Fliedner and Mabert (1992) screened out time series with missing observations and

demand values of zero and found the volatile demand feature that might be a demand

feature of non-normal demand. Holt-Winters forecasting was used for top-down

forecasting; equation (2-23) was used for the proration method.

Fliedner and Mabert (1992) analysed the performance of top-down forecasting with

respect to: a) four grouping criteria (UV: historical unit volume; DV: historical dollar

volume; SI: item demand series' seasonal index; and HP: historical item forecasting

performance); and b) the number of groups (Le. two, five and ten) with 22,241 item

level time series. Items that have similar volumes of historical demand formed a group

using UV grouping criterion. Similar items based on the product of historical demand

volumes and item dollar values formed a group using DV grouping criterion. An

analysis of variance (ANOVA) identified that grouping based on UV and DV provided

significantly smaller mean absolute percentage error (MAPE) and mean percentage

error (MPE) for top-down forecasting than grouping based on SI and HP. Analysis of

variance (ANOVA) refers to a statistical method for comparing two or more groups in

terms of their mean scores on a dependent variable (Howitt and Cramer, 2008).

Variations in the number of groups with a limited number of items indicates variations

in the number of items within a group (Fliedner and Lawrence, 1995). The number of

items within a group (or the number of groups with the limited number of items) was
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not observed to provide a significant difference in the performance of top-down

forecasting (Fliedner and Mabert, 1992). Fliedner and Lawrence (1995) corroborated

that an ANOVA identified the non-significant difference of the number of groups with

the limited number of items (or the number of items within a group) in the performance

of top-down forecasting.

Seasonality in hierarchical forecasting

Kahn (1998) briefly suggested guidelines for a hierarchical forecasting strategy in terms

of seasonality in his empirical study with sales data consisting of three levels (top level:

one brand; intermediate level: two items; and bottom level: seven locations). He

suggested that a combinatorial forecasting method, which combined a non-seasonal top

level direct forecast with a seasonal bottom level direct forecast, provided superior

forecasting at the bottom level.

Dekker et al. (2004) argued that Holt-Winters forecasting, which can handle trend and

seasonality, performed worse than simple exponential smoothing. They reasoned that

the seasons in the data are stochastic (e.g. the summer may begin later one year and

earlier the next year). Then, as mentioned in Subsection 2.4.3, they argued that the

aggregation method combined with Naive 1 (Le. a forecast identical with the most

recent demand) could minimise forecasting errors.

Directforecasting method within hierarchical forecasting strategy

As for a direct forecasting method within hierarchical forecasting strategy, simple

exponential smoothing has been evaluated as superior to moving average or other

complex models such as Holt-Winters forecasting and ARIMA models in several
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studies (Fliedner and Lawrence, 1995, Fliedner, 1999, Dekker et al., 2004, Viswanathan

et al., 2008). Fliedner (1999) recommended simple exponential smoothing for

hierarchical forecasting strategy owing to the following reasons:

a) it is frequently selected for industrial production planning and inventory control

purposes;

b) it requires less time to generate forecasts especially with a large number of items;

and

c) it is suitable fordemand without such patterns as seasonality and trend.

The fit of the exponential smoothing parameter to data was contended not to have a

significant effect on the relative performance of top-down forecasting and direct

forecasting (Dangerfield and Morris, 1992). In their experiment, Dangerfield and Morris

(1992) compared the best fit smoothing parameters and randomly selected smoothing

parameters, and found that the selection of a smoothing parameter was not a substantial

factor of the relative forecasting performance.

2.5.3 Evaluation of hierarchical forecasting research

Previous research findings into the influence of demand features upon the performance

of hierarchical forecasting have been rather inconsistent and contradictory as shown in

Table 2-6. There has also been little discussion about the influence of non-normal

demand features upon the relative performance of hierarchical and direct forecasting

methods. Thus, several research opportunities can be identified in these areas. This

subsection discusses these controversial issues and research gaps.
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Disagreement in the influence of correlations upon hierarchical forecasting

The influence of correlations upon the relative performance of top-down forecasting and

direct forecasting might be the most controversial issue (Schwarzkopf et al., 1988,

Gross and Sohl, 1990, Dangerfield and Morris, 1992. Fliedner, 1999. Widiarta et al.,

2006, Widiarta et al., 2008a). As stated above, the disagreement could be attributed to

different features of data in each investigation (Kahn, 1998, Fliedner, 1999).

In much of the research about the influence of correlations upon the performance of top-

down forecasting and direct forecasting, the number of items in a group was restricted

to two items. However, the statistical features of the data used in the research were very

different. This is shown in Table 2-7. Much of the research for correlations used

simulated data rather than empirical data. Some studies (Fliedner, 1999, Widiarta et al.•

2009) were about group level forecasting. These might be the main sources of the

disagreement.

Table 2-7 Research on the influence of correlations upon hierarchical forecasting

Impact on Forecasting No. of
Reference relative level items in a Data

performance grou~
Schwarzko~f et al. {1988} iTO Item 2 Analytic stud~
Gross and Sohl {1990} ~DF(item)

Item 3-7 Steel sales
Widiarta et al. {2006} Item 2 AR{I}

Fliedner (1999) [Df'(group) & Group 2 MA(I)BU
Dangerfield and Morris {1992} Non-

Item 2 M-com~etition
Widiarta et al. (2008a} significance Item 2 MA{l}
Widiarta et al. (2009} Grou~ 2 MA{l}

t (or !) = increasing (or decreasing) correlations increases the relative performance of the forecasting strategy; TO =
top-down forecasting; DF(group or item) = direct forecasting at group or item level; BU = bottom-up forecasting.

As stated above, the nature of non-normal demand is rather different from the demand

used in the research on the impact of correlations on the performance of top-down
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forecasting. However, there have been no controlled studies which examine the

influence of correlations between non-normal demand time series upon the relative

performance of hierarchical and direct forecasting methods.

The influence of intermittency upon hierarchicalforecasting

As shown in the categories of non-normal demand, high variability and intermittency

seem to be important demand features for non-normal demand. There is research

(Schwarzkopf et al., 1988, Viswanathan et al., 2008) which can be interpreted as

arguing for the applicability of top-down forecasting for highly variable data.

Intermittency is a demand feature that makes forecasting very difficult (Willemain et al.,

1994, Syntetos and Boylan, 2005). As stated earlier, the intermittency is an important

demand feature for the selection of a direct forecasting method. The influence of

intermittency (e.g. number of periods with zero demand) and variance (e.g. coefficient

of variation in demand size) upon the performance of direct forecasting methods has

been well-identified. This is especially so with Johnston and Boylan (1996) and Boylan

et al. (2008) who suggested. clear cut-off values to classify intermittent demand for

direct forecasting methods. However, no research has been carried out on the influence

of intermittency upon the performance of hierarchical forecasting.

Influence of demandfeatures upon combinatorialforecasting

All the literature regarding the influence of demand features upon hierarchical

forecasting was carried out for top-down forecasting. In practice combinatorial

forecasting was contended to be a superior forecasting strategy to top-down forecasting

(Kahn, 1998, Dekker et al., 2004, Hyndman et al., 2007). What is needed is an

82



Chapter 2 Literature Review

investigation on the influence of demand features upon the performance of

combinatorial forecasting. However, there may be no controlled research which

examines the influence of demand features upon the performance of combinatorial

forecasting.

Combined influence of demand features upon hierarchical forecasting

Non-normal demand encompasses various demand features as shown in Subsection

1.2.2. In order to capture the nature of non-normal demand for selecting a superior

forecasting method, a multidimensional calibration of data features might be necessary.

Some researchers classified non-normal demand for direct forecasting methods in terms

of multiple demand features (Williams, 1984, Businger and Read, 1999, Eaves and

Kingsman, 2004). However, they failed to find any empirical evidence for a distinct

combined influence of demand features upon direct forecasting methods. Williams

(1984) provided no empirical evidence; the Box-Jenkins models have been observed to

be superior regardless of the demand features (Businger and Read, 1999); and Syntetos-

Boylan approximation has also been observed to be superior regardless of the demand

features (Eaves and Kingsman, 2004).

Some researchers also examined the influence of multiple demand features upon the

performance of top-down forecasting (Schwarzkopf et al., 1988, Dangerfield and Morris,

1992, Widiarta et al., 2006, Widiarta et al., 2008a). However, they have failed to find

any combined influence of demand features upon the relative performance between top-

down forecasting and direct forecasting. Schwarzkopf et al. (1988) examined multiple

demand features such as correlations and reliability of demand; however, they did not

83



Chapter 2 Literature Review

take into account the combined influence of demand features. Dangerfield and Morris

(1992) examined a combined influence of the correlation and item's proportion in the

group upon the relative performance. However, no combination of the correlation and

item's proportion that influences on the relative performance was found. Widiarta et al.

(2006) investigated a combined influence of lag-I autocorrelation, an item's proportion

in the group and the correlation. However, they found that the relative forecasting

performance mainly depends on the lag-l autocorrelation regardless of the item's

proportion and the correlation. Widiarta et al. (2008a) argued that the correlation

between the demand time series of items and the item's proportion in the group were

non-significant demand features for the relative forecasting performance.

Widiarta et al. (2008b) identified the combined influence of the degree of

substitutability and the variability of an item's proportion upon the relative performance

of top-down forecasting and direct forecasting. Their argument was restricted to a

simulation experiment with three time series [Le. MA (1), AR (1) and ARMA (1, 1)].

The relationships between the features of non-normal demand and the relative

performance of hierarchical forecasting might be different. However, they provided no

evidence for their findings with empirical non-normal time series.

In this section much of the previous research on classification schemes for non-normal

demand for the selection of direct forecasting methods and the influence of demand

features upon the relative performance of hierarchical forecasting were reviewed. Some

limitations of the research, some controversial issues, and several research opportunities

were also identified.
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In the literature reviewed above, various accuracy measures were used with their own

justification; however, those measures produced differing results. For instance,

Dangerfield and Morris (1992) found that the results from mean absolute percentage

error (MAPE) and mean squared error (MSE) were very different. While top-down

forecasting was observed to be superior to direct forecasting for 51 - 63% of the cases

in terms of MSE, direct forecasting was observed to be superior to top-down forecasting

for 73 - 74% of the cases in terms of MAPE. Then, they used the results from MAPE

because they believed that the results from MSE were unreliable. Establishing reliable

accuracy measures is important. This requires a discussion about forecasting accuracy

measurements.

2.6 Measures of Forecasting Accuracy

Measuring forecasting performance is a crucial issue. This is because different accuracy

measures can lead to different conclusions (Syntetos and Boylan, 2005). The best model

under one criterion cannot always be the best under some other criteria (Chatfield,

2004). A performance measure also contributes to calibrating or refining a model in

order to forecast accurately in a given set of time series (Armstrong and Collopy, 1992).

Moreover, the special property of intermittent data (Le. some zero-demand periods)

creates a particular difficulty in selecting an appropriate accuracy measure (Syntetos

and Boylan, 2005). Various accuracy measures are available. Syntetos and Boylan

(2005) divided accuracy measures into two groups, namely absolute measures and

relative measures: a) an absolute measure of error evaluates a forecasting method in

isolation; and b) a relative measure evaluates one forecasting method relative to another

method across a set of time series, where the forecast error of the each method is

evaluated using one of the absolute measures. A limitation of these measures is that they
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do not capture the monetary value and the service level of each item, so do not measure

the practical impact that a forecasting method has on the inventory system. A derivative

measure is referred to as an accuracy measure which uses simulation to derive the

impact of forecasting accuracy in terms of the inventory levels and the service levels

achieved by the inventory system (Sani and Kingsrnan, 1997, Eaves and Kingsman,

2004). The above three groups of error measures are examined in this research.

2.6.1 Absolute measures of accuracy

Mean squared error (MSE) [equation (2-40)] is a commonly used absolute measure of

accuracy for intermittent demand forecasts (Johnston and Boylan, 1996). MSE and root

mean squared error (RMSE) [equation (2-41)] place a heavier weight on large errors

(Gross and Sohl, 1990, Eaves, 2002). To avoid this effect, some research (Makridakis

and Winkler, 1983, Dangerfield and Morris, 1992, Willemain et al., 1994, Ghobbar and

Friend, 2003) has used mean absolute percentage error (MAPE) [equation (2-42)] as a

unit-free measure. MAPE is useful when comparing different forecasts (Regattieri et al.,

2005).

1 "MSE =- L(Y, _y,)2
n ,.1 (2-40)

I

(
1 II )2RMSE = - L(Y, - j,)2
n ,=1

(2-41)

MAPE = [.!.i:y, - y, I]x 100
n ,=1 y,

(2-42)

(2-43)
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where:

Yt = the observed demand at time t

Yt = the estimated demand of Yt

t= 1,2,3, ... .n
,

n = the total number of time periods

For intermittent time series (i.e. many observations with zero or near-zero demand),

MAPE [also mean percentage error (MPE)] are difficult to define because the

percentage error in equations (2-42) and (2-43) cannot be calculated with a zero

denominator (Gross and Sohl, 1990, Hyndman et al., 1998, Eaves and Kingsman, 2004,

Regattieri et al., 2005, Syntetos and Boylan, 2005). Ad hoc procedures (e.g. excluding

zero-demand time periods or adding a small amount to zero demand) could not

contribute to significantly improving confidence (Syntetos and Boylan, 2005). For these

reasons, mean absolute deviation divided by average (MADIA) [equation (2-45)]

(Regattieri et al., 2005, Boylan et al., 2008) or geometric root mean square error

(GRMSE) [equation (2-47)] (Boylan et al., 2008) was used. MADIA ignores its sign,

taking its absolute values of errors, and summarises data across the time series by its

mean value (Boylan et al., 2008). MAD is less sensitive to outliers than MSE (Eaves,

2002). Outliers are defined as "aberrant scores that lie outside the usual range of scores

which are expected for a particular variable" (Miles and Shevlin, 2001, p. 63). GRMSE

rests on squared errors and takes the appropriate geometric mean as the summary

measure; thus the effect of high errors for outliers can be cancelled out (Boylan et al.,

2008). Root mean square error (RMSE) has also been considered useful when

measuring forecasting errors due to its simplicity and ability to weigh heavily the

magnitude of errors (Gross and Sohl, 1990). As mentioned, MSE and RMSE place a
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heavier weight on large errors (Gross and Sohl, 1990, Eaves, 2002). Hence, MSE and

RMSE are useful when large errors cause greater inventory costs in proportion to small

errors (Kling and Bessler, 1985). As with RMSE, root mean squared error/average

(RMSE/ A) can be useful when large errors cause greater costs in proportion to small

errors. MAD and MAD/ A are also useful in order to avoid heavier weight on large

errors. As such, MAD and MAD/A, together with RMSE and RMSE/ A, can be utilised

as error measures in order to capture the two alternative effects of larger errors upon

weight (or costs).

1 n

MAD=-LIYI-YII
n 1=1

(2-44)

MADIA = MAD
Y

(2-45)

RMSE / A = RM_SE
Y

(2-46)

I

(
n )2nGRMSE= O(Y,- y,Y
I-I

(2-47)

where:

Yt = the observed demand at time t

Pt = the estimated demand of y,

y = the average value of the demand time series Y,

t=I,2,3, ... ,n

n = the total number of time periods

On the other hand, Narasimhan et al. (1998) argued that unbiased forecasts should lead

cumulative or a running sum of forecast errors (RSFE) to near zero. RSFE can be

expressed as in equation (2-48). When the forecasts are continually high, negative
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RSFE would be observed, and vice versa. A relative size of RSFE, S, can be expressed

as in equation (2-49) (Narasimhan et al., 1998).

1 n
RSFE = - L (y, - y,) ~ 0

n ,=1
(2-48)

S= RSFE
MAD

(2-49)

S should be used with caution, because the purpose of S is to monitor the balance of

negative and positive errors (Narasimhan et al., 1998). If negative errors and positive

errors are cancelled each other out, a collection of very high negative errors and very

high positive errors could result in a value close to zero. S close to zero does not mean

an accurate forecast, but a balanced forecast.

2.6.2 Relative measures of accuracy

Assuming squared error, e~,t, generated by a forecasting method, M, at time point t as

in equation (2-50), method (M) specific error, e1,t can be measured by a relative

measure to another method (Syntetos and Boylan, 2005).

(2-50)

where:

YI = the observed demand at time t

YM.I = the estimated demand ofYI by forecasting method M

e~.1 = method (M) specific error at time t
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Ut = error due to the particular time point t affecting all methods equally

Syntetos and Boylan (2005) argued that the error can be contaminated by occasional

outliers; however, relative geometric root-mean-square error (RGRMSE) is independent

of the Ut and is a well-behaved relative accuracy measure for intermittent demand.

RGRMSE for methods A and B in a time series is expressed as in equation (2-51).

(Ii {y, - YA_,)2 )21n
RGRMSE = ...;:..;_t"'..;_1 -=--_

(Ii{Y, - YB.,y)2
I

n
,=1

(2-51)

where:

subscript A or B = the forecasting method A or B

YA.,= the estimated demand ofy,by forecasting method A

Relative measures have been used to compare two forecasting method that use top-

down and direct forecasting strategies. Gross and Sohl (1990) investigated a relative

measure to compare top-down and direct forecasting methods at item level. They used

composite RMSE differential (CD) to summarise relative performance of forecasting

strategies. RMSE for a top-down forecasting method (RMSETD) which can be calculated

as in equations (2-52) and (2-53). CD can be calculated as in equation (2-55). A

negative score of CD suggests that a top-down forecasting method provides smaller CD

than a direct forecasting method; a positive score of CD indicates that a direct

forecasting method provides smaller CD than a top-down forecasting method.

fu = PRi,tF, (2-52)
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(
In 2)~RMSE1V(i) = - L (Y;,I - /;,1)
n 1=1

(2-53)

where:

Ji,I = the forecast of item i at time point t, using PRi,t as the proration method

PR; = the proration method used to allocate item i's share of the total forecast at

time point t

F,= the total forecast for all products in the line at time point t

RMSETD (i) = RMSE of a top-down forecasting method for item i

YI" = the observed demand of item i at time point t

t=1,2,3, ... ,n

n = the total number of time periods

D, = RMSETD(i) - RMSEDF(I)
N _

CD=I:DjPRj
; .. 1

(2-54)

(2-55)

where:

D, = RMSE differential

RMSEDF(i) = RMSE of a direct forecasting method for item i

CD = composite root mean square error differential

PR; = average proportion of total group demand for item i

i = 1,2,3, 00, N

N = the total number of items within the group

Widiarta et al. (2008b) used the proportion of RMSE, A, as a relative error measure

[equation (2-56)]. A value of A < 1 indicates that a top-down forecasting method
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outperforms a direct forecasting method, and a value of L1 > 1 indicates that a direct

forecasting method outperforms a top..down forecasting method

L1= RMSErdRMSEDF (2-56)

Dangerfield and Morris (1992) proposed a relative measure. In the first step, they

produced a relative direct summary measure as with Widiarta et al. (2008b); that is,

MAPErD / MAPEDF. In the second step, the natural log of the ratios of errors for the two

forecasts was calculated as in equation (2-57). A positive log relative error indicates that

a direct forecasting method outperforms top-down forecasting method, and vice versa.

Dangerfield and Morris (1992) suggested that this measure is an unbiased relative

measure. For example, assuming that the MAPETD and MAPEDF of a time series "A" are

2 and 1, and the MAPETD and MAPEDF of a times series "B" are 1 and 2, the simple

ratio, MAPETD / MAPEDF of the time series, "A" and "B", are 2.0 and 0.5 respectively.

Thus, the total average ratio is 1.25 = (2 + 0.5) / 2, although the overall performance of

the two methods are identical. However, as the average natural log of the ratios of errors

for the same time series, "A" and "B", which are 0.69 and -0.69 respectively, is 0 =

(0.69 - 0.69) / 2, this can furnish an unbiased summary statistic.

Log relative error = In(MAPETD / MAPEDF) (2-57)

2.6.3 Derivative measures of accuracy

There are studies which have considered the derivative impact of forecasting methods

on stock-holding (Johnston and Boylan, 1996, Boylan et al., 2008). Two kinds of

comparisons were carried out. Firstly, errors were summed at every point in time;
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secondly, the comparisons were made only immediately after an issue has occurred. The

authors (Johnston and Boylan, 1996, Boylan et al., 2008) argued that the first

comparisons would be associated with a re-order interval stock replenishment system;

whereas the second would correspond to a re-order level stock replenishment system.

The re-order interval stock replenishment system which is also known as a periodic

review system is referred to as an inventory control system that defines time points for

examining inventory levels and then makes decisions accordingly. The re-order level

stock replenishment system which is also known as a continuous review system is

referred to as an inventory control system that makes inventory-related decisions when

inventory reaches a particular level (Slack et al., 2004).

Sani and Kingsman (1997) investigated a forecasting accuracy measure scheme which

assesses the regret of using a particular method compared to the best method for a

specific time series. They compared forecasting methods and inventory methods in

terms of either average inventory cost regret (RC) [equation (2-59)] or average service

level regret (RS) [equation (2-61)]. The ratio of RC and RS is expressed as a percentage.

(2-58)

(2-59)

where:

C;= the average inventory cost for item i over the five forecasting methods

Cu = the inventory cost for item i using forecasting method k

Mn, = mineC;), the minimum cost for item i across the inventory methods
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I S
S=-""Sk

I 5 £..J I.
k=1

(2-60)

I
RS =--(Mx -S)

I MX. I I

I

(2-61)

where:

Si = the average service level for item i over the five forecasting methods

Si ,k = the service level for item i using forecasting method k

Mx, = max(Si), the maximum service level

Eaves and Kingsman (2004) attempted to measure forecasting accuracy in terms of

implied stock-holding. Average stock-holdings using each forecasting method were

computed and compared through a backward-looking simulation. The backward-

looking simulation is referred to as an inventory control simulation using historical real

data. A periodic review inventory system was simulated. A forecasting method which

leads to the lowest stock-holding was regarded as the best forecasting method. This

measure was argued to provide more intuitive comparison results compared to other

measures because this can present forecasting performance in terms of inventory

carrying costs (Eaves and Kingsman, 2004).

In this section, various accuracy measures were reviewed. Derivative measures were

argued to present practical and intuitive comparisons. In order to implement a derivative

measure, a review of theories related to inventory system is necessary. In the next

section, inventory theories for implementing derivatives measures are reviewed.

2.7 Derivative Measures of Inventory Model Performance

The first issue involved in an inventory system might be establishing how critical the
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item under consideration is to the organisation (Silver et al., 1998). This section reviews

theories related to inventory classification which establishes the inventory priorities.

This is followed by a review of inventory system control theories. Then, inventory

model measurements are examined.

2.7.1 Inventory classifICation

For the purposes of inventory control, ABC classification can be utilised. ABC

classification can be described as: a) A: expensive items needing special care; b) B:

ordinary items needing standard care; c) C: cheap items needing little care (Silver et al.,

1998, Waters, 1991). More concentration is placed on higher value items than on lower

value items. This analysis is sometimes called a Pareto analysis, or the 'rule of 80/20'

(suggesting that 80% of inventory items need 20% of the attention, while the remaining

20% of items need 80% of the attention) (Waters, 1991). An ABC classification does not

have to be done on the basis of the classification of value alone. Managers may consider

other reasons such as criticality of the operation to the firm (Silver et al., 1998).

Table 2-8 Weapon System Indicator Code (Deshpande et al., 2003)

VeryHigh High Medium Low

High A B C 0
Medium E F G H
Low I J K L

The US Defence Logistics Agency (DLA) decides inventory investments to balance two

conflicting goals: minimising holding and investment costs while maximising mission

readiness (Deshpande et al., 2003). The importance of parts in supporting readiness is

measured by two dimensions: essentiality to the operation of the weapon system in
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which it is housed, and criticality of that system to the user's overall mission. A part is

assigned a Weapon System Indicator Code (WSIC) as shown in Table 2-8. As such, the

DLA differentiates the service level for different WSICs (Deshpande et al., 2003).

2.7.2 Inventory systems

It is necessary to define inventory systems and terminologies related to inventory

systems before discussing inventory system theories. Silver et al. (1998, pp. 233 - 234)

defined terminologies related to inventory control systems as:

a) Stock on hand is a stock which is physically on the shelf;

b) Stock on order is a stock which has been requisitioned but not yet received;

c) Stock-out is an occasion when the stock on hand drops to the zero level;

d) Net stock can be calculated as "net stock = stock on hand - backorders"; and

e) Inventory position can be calculated as "inventory position = (stock on hand) +

(stock on order) - (backorders)".

Slack et al. (2004) divided inventory systems into single-stage, two-stage, multi-stage,

or multi-echelon inventory systems by the positions of inventories:

a) A single-stage inventory system has only one stock position to manage;

b) A two-stage inventory system has a central depot and various local distribution

points;

c) A multi-stage inventory system has various stages of stocks as a form of work-in-

process in which materials from suppliers flow through the various stages of a

production process; and
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d) Multi-echelon inventory systems refers to interconnected sets of inventory systems

in which materials flowing through the inventory systems are stored at different

points before reaching customers.

Two approaches to the decision on when to place an order (i.e. the continuous and

periodic review systems) were introduced in Subsection 2.6.3. These can be expounded

as:

a) The continuous review system (fixed order quantity system) processes reviewing

inventory status continuously and then places an order as a constant order quantity

(Q) when the inventory position reaches its re-order point (s) (Waters, 1991,

Bowersox and Closs, 1996, Waller, 2003, Slack et al., 2004). The re-order point is

determined by estimating the expected usage of inventory during lead time, plus a

safety stock (Waller, 2003). In order to process this system effectively, accurate

calculation and computer assistance is required (Bowersox and Closs, 1996).

b) The periodic review system (fixed time period system) places orders of variable

quantities at regular intervals (R) (Waters, 1991, Bowersox and Closs, 1996,Waller,

2003, Slack et al., 2004). An order quantity is determined to cover demand between

the replenishment order being placed and the following replenishment order

arriving.

Silver et al. (1998) discussed the advantages and disadvantages of the continuous and

periodic review systems. The periodic review system can allow a reasonable prediction

of the level of the workload and also allow the same review interval on every member in

a supply chain so that coordination of replenishment can be achieved. However, this
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system is likely to involve lager stock holdings than the continuous review system.

Under the continuous review system, the workload is less predictable because a

replenishment decision can be made at any moment and more costs for the reviewing

process are required. However, the continuous review system can provide the same

level of customer service continuously and requires less safety stock than does the

periodic review system. When demand is unusually high between ordering times under

the periodic review system, stock-out is more likely to occur (Waller. 2003).

To accommodate specific situations, the variations of the periodic and continuous

review systems have been developed (Bowersox and Closs, 1996, Silver et al., 1998).

An order-point, order-quantity (s, Q) system, also known as two-bin system. is a special

form of the continuous review system (Silver et al.• 1998, Waller. 2003, Slack et al.,

2004). A constant order quantity (Q) is ordered when the inventory position reaches the

reorder point (s). A simple two bin system stores the re-order level inventory plus the

safety inventory in the second bin whilst using spare parts from the first bin. When the

spare parts in the first bin are depleted, a new re-order is placed and the spare parts in

the second bin are used. When the replenishment arrives, the second bin is refilled and

the remainder moves into the first bin. An inventory system which has a third bin for

storing the safety inventory separately refers to a three-bin system. The (s, Q) system is

quite simple, so that errors are less likely to occur and production requirements are

predictable for suppliers. However, there is a disadvantage that its inflexible order

quantity is unlikely to cope with unusual large demand (Silver et al., 1998).

In contrast to the (s, Q) system, a continuous review system uses a variable

replenishment quantity, which raises inventory position to the order-up-to-level (S). An
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order-point, order-up-to-Ievel (s, S) system, also known as min-max system or optional

system, is another special form of the continuous review system (Bowersox and Closs,

1996, Silver et al., 1998). The best (s, S) system could have inventory and shortage

smaller than those of the best (s, Q) system. However, there are no simple procedures

nor algorithms to obtain the best values of the control parameters, s and S, in any

practical situation (Sani and Kingsman, 1997, Silver et al., 1998). In the (s, S) system

more errors are likely to be made by suppliers for the variable, order quantity, than the

(s, Q) system (Silver et al., 1998).

A periodic-review, order-up-to-Ievel (R, S) system, also known as a replenishment

cycle system, is a special form of the periodic review system (Bowersox and Closs,

1996, Silver et al., 1998). At every review interval (R), enough order quantity is ordered

to raise inventory position to the order-up-to-Ievel (S). This system has the advantage of

coordination of replenishment. However, this system has the disadvantage of larger

stock holdings than the continuous review system (Silver et al., 1998).

A combination of the (s, S) system and the (R, S) system refers to the (R, s, S) system

(Silver et al., 1998). At every review interval (R), the inventory position is checked. If

the inventory position reaches the reorder point (s), enough order quantity is ordered to

raise inventory position to the order-up-to-Ievel (S). Otherwise, no order is placed until

the next review. The best (R, s, S) system could produce lower inventory carrying costs

and lower inventory stock-out costs than the above systems, however, it is difficult to

obtain the best control parameters, R, s, and S (Silver et al., 1998). Owing to the

difficulty of obtaining the best control parameters, Silver et al. (1998) suggested that the
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(s, S) and (R, s, S) systems are used for A items, and the (s, Q) and (R, S) systems are

used for B items.

There is research that compared the performance of the (s, S) system and the (R, S)

system for spare parts demand. Sani and Kingsman (1997) examined the performance of

the various forms of the (s, S) system and the (R, S) system with 30 daily spare parts

demand data for vehicles and agricultural machinery over five years. They classified the

spare parts into three groups by their annual demand and compared the inventory

systems in terms of either average inventory cost regret (RC) or average service level

regret (RS) as shown in Table 2-9. In terms of average inventory cost regret (RC),

compared with the (s, S) systems, the (R, S) system performed reasonably well for the

very low demand items, but badly for the medium and high demand items. In terms of

average service level regret (RS), the (R, S) system provided poor performance,

compared with the (s, S) systems.

Table 2-9 The performance of inventory systems for spare parts

(Sani and Kingsman, 1997)

Group Very low demand Low to medium demand High demand

Annual demand Less than 20 units Between 20 and 40 units Over 40 units

Measure RC RS RC RS RC RS

The best (s, S) 8% 3% 2% 2% 2% 1%

The worst (s, S) 72% 10% 61% 17% 63% 8%

The (R, S) 19% 12% 52% 15% 60% 18%

RC = average inventory cost regret [equation (2-59)]; RS = average service level regret [equation (2-61)].
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2.7.3 Measures

Theories for inventory systems were reviewed above. These theories could provide the

basis for the assessment of the performance of an inventory system to derive the impact

of a forecasting method on the inventory system. Clarification of an appropriate

measurement to assess the performance of an inventory model is another important

issue related to the derivative measure of accuracy.

The performance of an inventory model can be measured by the total inventory costs

and the inventory fill rate (Petrovica et al., 1998). This subsection reviews

measurements for inventory costs. This is followed by measurements for customer

service including the inventory fill rate.

Costs relevant to the inventory management can be categorised as five factors: unit

variable cost, inventory carrying costs, inventory ordering costs, inventory stock-out

costs, and system control costs (Silver et al., 1998):

a) Unit variable cost of an item can be expressed in a monetary value per unit. This

can bemerely the price paid to the supplier.

b) Inventory carrying costs comprise the opportunity costs of the money invested.

warehousing costs, and special holding costs such as insurance and obsolescence.

c) Inventory ordering costs are those related costs to procurement.

d) Inventory stock-out costs are those relevant costs with insufficient inventory to

satisfy user demand. This includes backordering costs and the costs of lost demand.

e) System control costs are those related costs with the operation of the specific

decision system such as data acquisition, data storage and computation.
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In practice for the purpose of measuring the performance of an inventory model, many

researchers calculate the total inventory costs as the sum of inventory carrying costs and

inventory stock-out costs (Sterman, 1989, Sani and Kingsman, 1997, Petrovica et al.,

1998, An et al., 2002). Sterman (1989) quantified weekly inventory carrying costs and

weekly inventory stock-out costs per item as $0.5 and $1.0 respectively for the "beer

distribution game". Sani and Kingsman (1997) quantified annual inventory carrying

costs and annual inventory stock-out costs per item as 20% and 33% of the unit variable

cost respectively for spare parts for vehicles and agricultural machinery. Petrovic et al.

(1998) conducted a supply chain simulation with generated demand sets, and specified

unit carrying costs as 1.5, 1,0.5,0.3, and 0.1, and unit stock-out costs as 6.5, 4.3, 2.15,

1.29, and 0.43 for five products. For a spare parts inventory system simulation for tanks

in the South Korean Army, An et al. (2002) quantified inventory carrying costs and

inventory stock-out costs per item as $1.0 and $2.0 respectively.

Slack et al. (2004) noted five strategic roles of inventory. They are supporting quality

objectives, speed objectives, dependability objectives. flexibility objectives. and cost

objectives. In militaries, supporting dependability objectives (i.e. sustaining operational

availability) and supporting speed objectives (i.e. fast responding to the demand) can be

more important than supporting cost objectives because of the seriousness of a result

which could be caused by the unavailability of a weapon system. This could lead

militaries to large stock holdings. Large stock holdings amplify the disadvantages of

stock holding such as obsoleteness, damage, deterioration and loss (Slack et al., 2004).

In practice, as stated in Chapter 1. in many militaries the ability to stock spare parts is

constrained by limited budgets. Redundant large stock holdings as well as stock-out are
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to be avoided. Therefore, both inventory carrying costs and inventory stock-out costs

might need to be considered to measure the performance of a military inventory model.

Waller (2003) claimed that the inventory carrying costs are up to one-third of the value

of the inventory. He pointed out that inventory stock-out costs are difficult to quantify

directly. Although quantifying the inventory stock-out costs are difficult in business,

they can be quantified by backorder costs, lost sale costs, or lost customer costs (Waller,

2003). However, it is more difficult in militaries, because the stock-out costs could lead

to a military defeat that could cause casualties and deaths (MacDonald, 1997).

In order to avoid calculating the difficult inventory stock-out costs, a safety margin (Le.

safety stock), which provides inventory to user units as a fill rate of one hundred percent,

was introduced (Wemmerlov, 1989, Eaves, 2002, Eaves and Kingsman, 2004). They

measured the performance of an inventory system only by inventory-holdings or

inventory carrying costs. Eaves (2002) and Eaves and Kingsman (2004) used the

implied stock-holdings to measure the performance of the inventory simulation model

for spare parts in the UK Air force. With an (R, S) system model the safety stock levels

were iteratively added to the order-up-to-level (S), until no stock-outs occurred. To

achieve one hundred percent fill rate, an average of ten iterations was carried out for

each item. As such, the implied stock-holdings (Le. the measure of the inventory system)

were calibrated as the average of the opening stock plus deliveries and the closing stock

(Eaves, 2002, Eaves and Kingsman, 2004). The implied stock-holdings were also

converted into the monetary values of the additional investment in stock-holdings so

that the amount of additional stock-holdings was quantified in terms of costs.
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The performance of an inventory model can also be measured by customer service.

Silver (1970) addressed three measures of customer service such as the item availability,

the fraction of demand satisfied without backorder, and the average amount on

backorder at a random point in time. The item availability is referred to as the fraction

of time that the stock on hand is greater than zero (Silver, 1970). Silver et a1. (1998)

developed these three customer service measures into four customer service measures

such as the cycle service level, the ready rate, the average time between stock-out (TBS)

occasions, and the fill rate. The cycle service level is referred to as the fraction of

replenishment cycle in which a stock-out does not occur. The ready rate is referred to as

the fraction of time during which the net stock is positive. TBS can be calculated as the

reciprocal of the average number of stock-out occasions per year. The fill rate is referred

to as the fraction of customer demand which is met routinely without backorders or lost

sales. The inventory fill rate can be computed as the ratio of demand immediately filled

from the stock on hand. A simple equation of the fill rate can be expressed as (Heuts et

al., 1999):

mean shortage
Fill rate =1

mean demand
(2-62)

where: shortage = demand quantity - (stock on hand + delivery quantity).

2.8 Summary and Conclusion

Traditionally, various direct forecasting methods such as exponential smoothing,

weighted moving average, Croston's method, Syntetos-Boylan approximation, and the

Box-Jenkins models were considered as appropriate forecasting methods for non-
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normal demand. However, hierarchical forecasting might be applicable to military spare

parts demand which is likely to be non-normal. There are three sub-strategies of

hierarchical forecasting, namely bottom-up forecasting, top-down forecasting, and

combinatorial forecasting. Research found that top-down forecasting presents inferior

performance to that of direct forecasting or conditional performance to some demand

features. Combinatorial forecasting was suggested to be a superior forecasting strategy

to other forecasting strategies (Kahn, 1998, Dekker et al., 2004, Hyndman et al., 2007).

Lack of agreement in the performance of hierarchical forecasting, which might originate

from the different features of data, was identified. Therefore, the influence of demand

features upon the performance of forecasting methods was reviewed.

Classification scheme for non-normal demand and its influence upon the performance

of direct forecasting methods are rather well-developed. Various demand features, such

as average inter-demand interval, coefficient of variation in demand size, number of

periods with zero demand, lead time variability, trend, number of peaks, and skewness,

have been examined to classify non-normal demand. Among the studies, Johnston and

Boylan (1996) and Boylan et al. (2008) developed practical classification schemes

which present the boundary values of the non-normal demand features for direct

forecasting methods.

Literature about the influence of demand features upon the performance of hierarchical

forecasting was also reviewed. Demand features, which were considered to influence

the performance of top-down forecasting, are correlations, proportion, variability, the

degree of substitutability and the variability of an item's proportion, forecasting horizon,

lag-l autocorrelations, grouping criteria, and seasonality.
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Measurement of forecast accuracy is important. because different accuracy measures

can lead to different conclusions. Accuracy measures are of three groups. that is,

absolute measures, relative measures, and derivative measures. Absolute measures, such

as MAD, MAD/A, RMSE, RMSE/A, and a running sum of forecast errors divided by

MAD (RSFElMAD) are useful. when evaluating a forecasting method in isolation for

non-normal demand. As a relative measure. the log relative error is useful when

comparing alternative two forecasting methods across a set of time series. A derivative

measure uses simulation to derive the impact of forecasting accuracy in terms of the

inventory levels and the service levels achieved by the inventory system. For the

purpose of implementing the derivative measure theories related to the measurement of

the performance of an inventory model were also reviewed.

This chapter identified two research gaps:

a) Little attention has been paid to the use of hierarchical forecasting for the

intermittent demand at item level which is a feature of non-normal demand

associated with spare parts demand. In spite of its high applicability, no research

has examined the applicability of hierarchical forecasting to intermittent demand at

item level.

b) There has been little discussion about the influence of non-normal demand features

upon the performance of hierarchical forecasting. No research has investigated the

influence of correlations between non-normal time series upon the relative

performance of hierarchical and direct forecasting methods. There has been no

controlled research which has examined the influence of demand features upon the
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performance of combinatorial forecasting. No research has found a combined

influence of non-normal demand features upon the relative performance of

hierarchical forecasting.

The first research gap leads to research questions a), b), and c). It can be assumed on the

basis of the existing literature that spare parts demand in the South Korean Navy is non-

normal (Markland, 1970, Businger and Read, 1999, Eaves and Kingsman, 2004).

However, the nature of the spare parts demand in the Navy is required to be identified

empirically. This requirement leads to research question a) "what is the nature of the

spare parts demand in the South Korean Navy?" When the nature of the spare parts

demand is identified, it is also expected that hierarchical forecasting can be superior for

the spare parts demand to direct forecasting (DeLurgio, 1998, Hyndman et al., 2007,

Widiarta et al., 2008b). This expectation leads to research question b) "what forecasting

method is appropriate for the spare parts demand in the South Korean Navy?" Authors

argued that combinatorial forecasting is a superior forecasting strategy to other

strategies (Kahn, 1998, Dekker et al., 2004, Hyndman et al., 2007). Once the nature of

the spare parts demand is identified, the superiority of combinatorial forecasting for the

spare parts demand is investigated. This enquiry leads to research question c) "under

what conditions are top-down forecasting or combinatorial forecasting superior or

inferior to direct forecasting?"

As results of answering research questions a), b), and c) with respect to the first research

gap, the following contributions will be achieved: the nature of the spare parts demand

in the South Korean Navy will be identified and the performance of competing
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forecasting strategies (hierarchical forecasting and direct forecasting) for the spare parts

demand will be also identified.

The second research gap leads to research questions c) and d). The second research gap

requires research on the influence of correlations between the spare parts demands upon

the performance of combinatorial forecasting. Research on a combined influence of

multiple demand features including correlations and intermittency upon combinatorial

forecasting is also required. These requirements lead to research question c) "under

what conditions are top-down forecasting or combinatorial forecasting superior or

inferior to direct forecasting?" Furthermore, research on a multivariate classification

model that predict the relative performance of alternative forecasting methods

(hierarchical and direct forecasting methods) for spare parts demand by the

multivariate demand features including correlations and intermittency is required. This

requirement leads to research question d), "how can the spare parts demand be classified

in order to predict a superior forecasting method?"

As results of answering research questions c) and d) with respect to the second research

gap, the following contributions will be achieved: the influence of demand features

upon combinatorial forecasting will be identified; a new classification model for the

spare parts demand which predicts the relative performance of the alternative

forecasting methods by the multivariate demand features will be developed; and the

research findings will be validated with diagnostics, cross-validation and a variety of

accuracy measures including derivative measures using simulation with empirical data.
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In this chapter, literature related to this research was reviewed and the research gaps in

the literature were identified. It was demonstrated that the research questions were

derived from the research gaps. Then, the contributions which will be achieved as

results of answering the research questions were identified. After reviewing literature,

the next step antecedent to collecting data is designing the research (Saunders et al.,

2007). The next chapter provides a methodological framework which will be applied in

this research.
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This chapter delineates the research methodology. It starts by identifying the purpose of

this research. In Section 3.2, the methodological categories in operational management

research are reviewed. In Section 3.3, the suitability of the case study to the research

questions is discussed. In Section 3.4, the relationship of theory to the case study is

examined. In Section 3.5. the case study research design is outlined. In Section 3.6, the

criteria for evaluating the research are discussed. In Section 3.7, the research procedure

of this study is presented. Finally, this chapter is summarised in Section 3.8.

3.1 Purpose of Research

The purposes of research can be categorised as exploratory, descriptive and explanatory

(Saunders et al., 2007). An exploratory study can be described as finding out what is

happening and asking questions and assessing phenomena in a new light. A descriptive

study can be described as portraying an accurate profile of persons, events or situations.

An explanatory study can be described as establishing causal relationships between

variables.

Recalling the aim of this research, which is ''to establish an appropriate forecasting

strategy for predicting the demand for spare parts in the South Korean Navy", this can

be achieved by answering the research questions. This requires ascertaining the nature

of spare parts demand and the forecasting system in the South Korean Navy and

identifying an appropriate forecasting method for the spare parts demand in the Navy

with a new forecasting strategy (i.e. hierarchical forecasting strategy) and a new
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measurement (Le. derivative measure of accuracy). This also requires establishing the

relationships between forecasting methods and the performance of the forecasting

methods, and between demand features and the performance of the forecasting methods.

Therefore, this research might be in line with an exploratory study as well as an

explanatory study.

3.2 Empirical Research in Operations Management

Operations management is defined as "the effective planning, organising, and control of

all resources and activities necessary to provide the market with tangible goods and

services. It applies to manufacturing, service industries and not-for-profit organisations"

(Waller, 2003, p. 875). This research focuses on model-based quantitative research in

operations management disciplines applied to a not-for-profit organisation (Le. the

South Korean Navy). Model-based quantitative research refers to research where

models of causal relationships between control variables and performance variables are

developed, analysed or tested (Bertrand and Fransoo, 2002). In causal relationships, a

change of value a in one variable will lead to a change ofj{a) in another variable, so

that a model can be utilised to predict the future state of the modelled processes

(Bertrand and Fransoo, 2002). In this research, the future state refers to the change of

performance variables such as inventory level, inventory costs, and inventory fill rate.

The change of forecasting methods for spare parts demand can lead to a change in the

performance variables.

Bertrand and Fransoo (2002) classified quantitative operations management research as

either axiomatic research or empirical research: a) axiomatic quantitative research

indicates the process of achieving resolutions by the defmed model; b) empirical
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quantitative research indicates the process of achieving resolutions by empirical

findings. Bertrand and Fransoo (2002) divided axiomatic and empirical quantitative

research into two sub-categories by their objectives, namely normative research and

descriptive research: normative research has the objective of establishing policies,

strategies and actions; descriptive research has the objective of analysing models or

describing the causal relationships in reality.

In terms of the classification scheme from Bertrand and Fransoo (2002), this research

might be in line with empirical normative quantitative research. This is because the

resolutions were achieved by empirical findings; and the aim of this research is to

establish an appropriate forecasting strategy for predicting the demand for spare parts in

the South Korean Navy. Empirical normative quantitative research was claimed to be

difficult to verify because controlling all relevant variables is impossible and this is a

requirement for evaluating performance changes in empirical normative quantitative

research (Bertrand and Fransoo, 2002). The verification of the performance of a

forecasting method is difficult because different forecasting accuracy measures can lead

to different conclusions as stated in Section 2.6 (Syntetos and Boylan, 2005). This

research compares the performance of different forecasting methods in the context of

spare parts demand in the South Korean Navy. In order to assess the practical impact

that a forecasting method has on the inventory system, controlling all relevant variables

such as the forecasting review cycle and the procurement lead times and purchasing

prices of spare parts is required. Thus, the verification is an important issue for this

research.

Wacker (1998) classified operations management research as either analytical (formal)
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research or empirical research for the purpose of theory building as shown in Table 3-1.

In empirical statistical research, theoretical relationships are verified statistically in

large external samples from reality. However, an empirical case study looks into small

samples to test and develop complex relationships between variables to suggest a new

theory (Wacker, 1998).

In terms of the classification scheme from Wacker (1998), this research might be in line

with an empirical quantitative case study because this research investigates only one

case (Le. the case of spare parts in the South Korean Navy) to test and develop a

forecasting strategy.

Table 3-1 Research category in operations management (Wacker, 1998)

Types of research included
Analytical Conceptual Futures research scenarios, introspective reflection,

hermeneutics, conceptual modelling
Mathematical Reason/logical theorem providing nonnative analytical

modelling, descriptive analytical modelling, proto-typing,
physical modelling, laboratory experiments, mathematical
simulation

Statistical Mathematical statistical modelling
Empirical Experimental

design
Empirical experimental design, descriptive analytical
modelling

Statistical
sampling

Action research, structured and unstructured research,
surveying, historical analysis, expert panels
Field studies, case studiesCase studies

3.3 Case Study Strategy

A case study is defined as "an empirical inquiry that investigates a contemporary

phenomenon within its real-life context" (Yin, 2003, p. 13). A case study is a research

strategy which concentrates on perceiving the dynamics present within single settings

(Eisenhardt, 1989). Saunders et al. (2007, p, 139) noted that a case study strategy is
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most often used in explanatory and exploratory research. This research has been stated

to be exploratory study as well as explanatory study. A case study is suitable for

achieving these research purposes.

A case study is particularly good for examining "why" as well as "how" and "what"

questions among question series, "who", "what", "where", "how" and "why", which are

enquiries about a contemporary set of events over which the investigator has little or no

control (Yin, 2003, Saunders et al., 2007). A case study is especially suitable for "how"

questions because these questions deal with operational links needed to be traced over

time, rather than mere frequencies or incidence (Yin, 2003). Table 3-2 restates the

research questions of this research. "How" and "what" questions are noticed as shown.

A case study is appropriate to answer these questions.

Table 3-2 The research questions

a) What is the nature of the spare parts demand in the South Korean Navy?

b) What forecasting method is appropriate for the spare parts demand in the South
Korean Navy?

c) Under what conditions are top-down forecasting or combinatorial forecasting
superior or inferior to direct forecasting?

d) How can the spare parts demand be classified in order to predict a superior

forecasting method?

3.4 Theory inCase Study

A theory is defined as "a statement of relationships between units observed or

approximated in the empirical world" (Bacharach, 1989, p. 498). A case study can be

used for theory building, theory testing, or theory refinement (Voss et al., 2002). This

section examines the association between theory and the findings of research and the
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issue of theory induction from data.

3.4.1 Theory as know/edge base

Research is based on theory as a knowledge base. There are three possibilities in which:

a} existing theory provides no framework for findings; b) existing theory conflicts with

findings; and c) existing theory is in accordance with findings (Eisenhardt, 1989,

McCutcheon and Meredith, 1993, Yin, 2003). When the existing theories are indigent

and the available literature provides no conceptual framework or hypotheses of note,

such a knowledge base may not be a good theoretical foundation, and any new

empirical study is likely to assume the characteristic of an "exploratory" study (Yin,

2003).

On the other hand, the existing theories can be either in accord with the findings or in

disagreement with the findings; in both cases, theory is important (Eisenhardt, 1989).

Eisenhardt (1989) noted two reasons why enfolding literature which conflicts with the

emergent theory is important: a) if conflicting findings are ignored, then confidence in

the finding is reduced; b) conflicting literature generates an opportunity for refining the

theory.

Theories for a case study can be very well-developed, especially where the object is to

test or compare theories against empirical evidence, or the necessary foundation is

available in the well-developed theories from other disciplines. (McCutcheon and

Meredith, 1993). Such cases are also important, because these theories bind together

underlying similarities in phenomena typically not related to each other (Eisenhardt,

1989). This process of linking results might be essential in a theory-building case study
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research because the findings often rely upon a very restricted number of cases

(Eisenhardt, 1989).

Theory is important in this research, in that the findings of this research are related to

existing literature. However, as discussed in Subsection 2.2.3, theories related to the

hierarchical forecasting for non-normal demand associated with spare parts demand are

not well-developed. As such, two research gaps were identified. However, the necessary

theoretical base is available from literature for top-down forecasting strategy as well as

direct forecasting strategy in similar contexts.

1.4.2 Theory induction from data

A theory can be formed by either induction or deduction (Saunders et al., 2007). Wacker

(1998) pointed out that the pivotal distinction between a case study and an analytical

method is that empirical case study methods use induction (Le. depend on data) and

analytical methods use deduction. If a theory is based on data, then a large amount of

data is required and case studies are a prime source of this kind of research

(McCutcheon and Meredith, 1993). The data can be quantitative or qualitative and they

can be collected from either single or multiple cases (Yin, 2003). This research adopted

an empirical case study strategy employing an inductive method.

1.4.1 Generalisation

Eisenhardt (1989) argued that binding the emergent theory with existing literature

strengthens the internal validity, generalisability (external validity), and theoretical level

of theory building from case study research. Internal validity demonstrates a causal
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relationship, in which certain conditions lead to other conditions; and external validity

tests whether a study's findings are generalisable beyond the immediate case study (Yin,

2003). Generalisability is a particular concern for a single case study as in this research

(Saunders et al., 2007). In this case, analytic generalisation can be claimed for the case

study research (Yin, 2003). There are two kinds of generalisation from case to theory:

statistical generalisation and analytic generalisation (Yin, 2003).

In statistical generalisation, generalisability is established by an inference made about a

population on the basis of empirical data collected about a sample (Yin, 2003). However,

statistical generalisation should not be considered to be the method of generalising the

results of the case study (Yin, 2003).

In analytic generalisation, generalisability is established by the process as: an existing

theory is used as a framework with which to collate the empirical results of the case

study; then, when more cases support the same theory, replication can be claimed

(McCutcheon and Meredith, 1993, Yin, 2003). Analytic generalisation can be used in

either single or multiple case study (Yin, 2003).

This research employed analytic generalisation in single case study design. A single

case study (i.e. the case of spare parts in the South Korean Navy) was used for

advocating or refining existing theories. Then, the theory established from the case

study could extend to other situations such as other militaries and business logistics.

3.S Research Design

Research design is the logical sequence that links the empirical data to a study's initial
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research questions; that is, the design discourages the situation in which the evidence is

disconnected from the initial research questions (Yin, 2003). In this section, four

components of research design are considered. Then, the rationales of the single case

design for this research are presented.

3.5.1 Four components of research design

Yin (2003, p. 21) identified five components of a case study research design: a) a

study's questions; b) its proposition, if any; c) its unit(s) of analysis; d) the logic linking

the data to the propositions; and e) the criteria for interpreting the findings. Components

a), b) and c) refer to what data are to be collected, whereas components d) and e) refer

to what is to be done after the data have been collected (Yin, 2003). In this research, the

four components a), c), d) and e) were considered because this research did not make a

research proposition.

The first component is research questions. Although a case study is an inductive

approach, a preliminary view of the general constructs or categories and their

relationships, is required. then, initial research questions behind the proposed study

should be followed (Voss et al., 2002). Even though the prior questions are tentative, it

is crucial to establish a well-defined focus at the start, and to direct the collection of data

(Voss et al., 2002). The initial research questions of this research directed this research

to focus upon the research topic, and review the related literature. After reviewing the

literature, the research gaps were identified. Then, the research gaps have led to the

genuine research questions as shown in Table 3-2, and guided to collect the spare parts

data in the South Korean Navy.
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The second component, the unit of analysis is relevant to the fundamental problem of

defining what the 'case' is (Yin, 2003). Precisely specifying research questions leads

into the appropriate selection of the unit of analysis (Yin, 2003). As shown in Table 3-2,

the research questions lead to the one unit of analysis; that is, the case of spare parts in

the South Korean Navy. Once a general definition of the case has been established,

other clarifications in the unit of analysis become important: for example, specific group

of people, district boundary, or specific time boundary (Yin, 2003). Specifically three

types of warships were clarified in this research. This is because these three types of

warships have consumed a large volume of spare parts and many of these warships use

the same pieces of equipment. The time boundary was defined from January 2002 to

November 2007. This is because the Naval maintenance data system, which is the major

data source, has been stabilised since 2002.

The third component, linking data to propositions, is a way of relating the data to the

propositions (Yin, 2003). In lieu of the proposition, research questions were considered

to be the objectives to link the data to. Inorder to relate the data to research question a),

the spare parts demand and the current inventory control methods of the South Korean

Navy are analysed in Chapter 4; to research question b), forecasts are generated with the

data by the competing forecasting methods and compared with each other in Chapter 5

and 6; to research question c), the performance of the competing forecasting methods

under different conditions such as accuracy measures, equipment groups and demand

features are examined in Chapters 5 and 6; and to research question d). the relative

performance of the alternative forecasting methods (hierarchical and direct forecasting

methods) in the classification model is examined in Chapter 6.
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The last component is the criteria for interpreting the findings. The results of tests which

adopt competing forecasting methods are interpreted using appropriate accuracy

measures (Le. absolute and relative measures) in Chapters 5 and 6. This is verified by

derivative measures using simulation.

3.5.2 Single case design

Voss et al. (2002) discussed case study research design in terms of the number of cases.

They categorised it as either single cases or multiple cases, and illustrated the

advantages and disadvantages of each as shown in Table 3-3. Single cases have the

advantage of greater depth. In this research, the single case design (i.e. the case of spare

parts in the South Korean Navy) was expected to provide more opportunity for in-depth

observation.

Table 3-3 Choice of number of cases (Vosset al., 2002)

Advantages Disadvantages
Single Greater depth
cases

Limits on the generalisability of conclusions
drawn. Biases such as misjudging the
representativeness of a single event and
exaggerating easily available data

Multiple Augment external validity
cases

Less depth per case

However, this single case design might have limitations (Leonard-Barton, 1990, Voss et

al., 2002): a) single cases have limits on the generalisability of the conclusions because

models or theories are developed from one case study; b) the limit of generalisability

implies the risks of misjudging the representativeness of a single event, and of

exaggerating easily available data. These risks are also present in multiple cases,

although these are mitigated (Voss et al., 2002). However, as stated above, analytic
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generalisation in lieu of statistical generalisation can be used for single cases as well as

multiple cases.

Yin (2003) postulated five rationales for single case designs as shown in Table 3-4. The

case of spare parts in the South Korean Navy might represent a typical military

logistical case. This case might represent an extreme case as well, for its extremely non-

normal demand features. These rationales could serve as the main reasons for

conducting this single case study.

Table 3-4 Five rationales for single case design (Yin, 2003)

a) When it represents the critical case in testing a well-formulated theory;
b) When the case represents an extreme case or a unique case;
c) A single case is the representative or typical case;
d) A single case study is the revelatory case; and
e) A single case study is the longitudinal case: studying the same single case at

two or more different points in time.

Furthermore, Ym (2003) sub-categorised the single and multiple cases as a two x two

matrix: single-case versus multiple-case x holistic versus embedded. A single case can

involve more than one unit of analysis: a case study design involving embedded units is

called an embedded case study design; a case study design examining only the global

nature of an organisation is called a holistic design (Yin, 2003). The case of spare parts

in the South Korean Navy can be considered to be a holistic single case design if the

case is considered at the Naval supply centre of the Naval Logistics Command (NLC).

However, the case can be also regarded as an embedded single case design if the case is

examined at the depots of the Naval bases. There are four major Naval bases and four

minor Naval bases in the South Korean Navy (Saunders, 2009). This research employed
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the holistic single case design, because the focus of this research was to evaluate

forecasting performance rather than inventory system performance. Therefore, the

complex multi-echelon inventory systems consisted of various suppliers, the Naval

supply centre, several depots at Naval bases, and warships in the South Korean Navy

were not required to be described in detail.

3.6 EvaluatioD of Research

Quantitative empirical case study research should be designed to test the validity of

quantitative theoretical models and quantitative theoretical problem solutions, with

respect to real-life operational situations (Bertrand and Fransoo, 2002). Yin (2003)

discussed four tests relevant to evaluating the quality of a research design: construct

validity, internal validity, external validity, and reliability.

3.6.1 Construct validity

Construct validity tests correct operational measures for the concepts being studied, and

ensures consistency between theory and the defined construct (McCutcheon and

Meredith, 1993, Yin, 2003). Bertrand and Fransoo (2002) argued that operational

research studies generally lack construct validity because data could be affected by

SUbjective judgements. However, the major data for this research, historical

consumption of spare parts, were obtained from the logistical database in the Naval

Logistics Command. Therefore, construct validity might not to be a problem. However,

the non-normal demand features of spare parts cause distrust in the data generating

process. This is discussed in Chapter 4.
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3.6.2 Internal validity

Internal validity demonstrates a causal relationship, in which certain conditions lead to

other conditions (Yin, 2003). Internal validity is used for explanatory (or causal) studies

only (Yin, 2003). This research is to investigate the causal relationships between

forecasting methods and the performance of the forecasting methods, and between

demand features and the performance of the forecasting methods. This research employs

various accuracy measures for establishing the causal relationships including derivative

measures using simulation in Chapters 5 and 6.

In Chapter 6, a classification model which predicts the relative performance of

alternative forecasting methods will be proposed. In order to establish internal validity

for a predictive model, validation is especially important (Hosmer and Lemeshow,

2000). Model diagnostics refers to an assessment of the quality of the model that have

been specified and estimated (Cryer and Chan, 2008, p. 8). An example of diagnostics is

measuring the fit of the data to the model and the overall influence of an observation

upon the model. This research employs various diagnostic tests for establishing internal

validity of the classification model in Chapter 6.

Resubstitution refers to an estimate which uses a data set to build the model as well as

to test the model (White and Liu, 1997). The resubstitution is likely to present an overly

optimistic view of the true accuracy of the model (White and Liu, 1997). One common

method for establishing internal validation is cross-validation. Cross-validation is

defined as "assessing the accuracy of a model across different samples" (Field, 2009, p.

784). The procedure of cross-validation can be conducted as: a model is built using the

first portion of the data (namely training set); then its ability to predict an outcome is
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evaluated using the second portion of the data (namely test set) (Altman and Royston,

2000).

When the sample size for cross-validation is small, accurate estimation of the internal

validity of the predictive model is difficult (Altman and Royston, 2000, Steyerberg et al.,

2001). This requires a careful choice of a ratio for splitting data. A variety of ratios for

splitting data are possible. For example, 50% cross-validation uses 50% of the data to

test a model developed on 50% of the sample, then this process repeats two times, so

that all data are tested for the model (Steyerberg et al., 2001). Steyerberg et al. (2001)

tested cross-validation for the logistic regression model which is the classification

model with this research. They fitted the logistic regression model with 30-day

mortality data set of 40,830 patients with acute myocardial infarction, and then

compared the splitting ratios. They argued that the resubstitution presented the over-

optimistic result and l00A,cross-validation produced lower bias and less variable

estimation, compared with 50% cross-validation. The bias is referred to as the

difference between estimated performance (Le. performance in the training set) and test

performance (performance in the test set). The performance of 50% cross-validation is

likely to underestimate the model because only half of the data are used to build the

model; the performance of 50% cross-validation is likely to be more variable because

half of the data are used for validation (Steyerberg et al., 2001). Therefore, this research

also employs 10% cross-validation for establishing internal validity of the classification

model inChapter 6.

3.6.3 External validity

External validity tests whether a study's findings are generalisable beyond the
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immediate case study (Yin, 2003). External validity is a major barrier in conducting

case studies (Yin, 2003). Internal validity can be seen as an approximation to external

validity (Steyerberg et al., 2001). By establishing internal validity, the applicability of

the model to other data sets in the South Korean Navy could be approximated.

As a single case study design, the case of the South Korean Navy can be used in

generalising existing theory, because a case study relies on analytic generalisation (Yin,

2003). The case of the South Korean Navy can also be used in extrapolating the theory

to other situations (e.g. other military forces or airline industry) relying on logical

analysis.

3.6.4 ReliabUity

Reliability tests whether the operations of a study can be repeated with the same results

(Yin, 2003). Reliability was maintained by revealing every data source and every

reference explicitly, and presenting every equation and every process in models adopted

in the research transparently, so that any calculations are able to be audited. In order to

maintain the reliability of the forecasting performance, the forecasts generated were

examined by a variety of measures.

3.7 Research Procedure

The research procedure of this research is described as Figure 3-1. As a model-based

single case study, this research started from establishing the research questions in

Chapter 1. As mentioned, research questions are crucial to establishing a well-defined

focus at the start and to directing the data collection. This is followed by theory
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development.
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Figure 3-1 Research procedure

In the theory development stage, the forecasting process of the South Korean Navy and

its problems were identified in Chapters 1 and 4. After reviewing literature relevant to

these problems, the research gaps were identified in Chapter 2. Then, initial research

which combines initial data selection, initial data collection, initial data analysis, and

initial modelling was conducted. During the initial research period, a variety of analysis

and modelling based upon the previous research, which was discussed in Chapter 2,

were attempted. For example, lag-l autocorrelations of the spare parts data obtained

from the SouthKorean Navy were tested in the initial data analysis stage because lag-I

autocorrelation of the demand was identified to be a demand feature which influenced

upon the performance of hierarchical forecasting (Widiarta et al., 2006). Businger and

Read (1999) argued that the Box-Jenkins models can be useful in forecasting extremely
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volatile demand associated with many items of the US Naval spare parts. Thus, in the

initial modelling stage, the Box-Jenkins models were attempted to be fitted to the data

obtained. The initial research results provided feedback which requires a further

literature review. This feedback clarified the research questions and guided further data

collection. The stage of data collection is described in Chapter 4.

Following the data collection stage, the modelling stage was carried out based on the

theory developed: the various competing forecasts are generated and measured in

Chapter 5; simulation is conducted to verify forecasting performance in Chapters 5 and

6; and the classification model is proposed in Chapter 6.

In the stage of analysing and concluding, the results of empirical modelling are

measured and interpreted in view of forecasting accuracy as well as the inventory

context in Chapters 5 and 6. Depending on the results and the existing theory, the theory

is modified and generalised as analytic generalisation. Also, the theory contributes to

the development of a forecasting strategy for the South Korean Navy. Then, concluding

remarks are presented in Chapter 7.

3.8 Summary and Conclusion

This chapter presented a methodological framework for this research. The purpose of

this research might be in line with an exploratory study as well as an explanatory study.

As an operations management study, this research might be empirical normative

quantitative research and empirical quantitative case study.

Since a case study is suitable for "how" and "what" questions as well as exploratory
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research and explanatory research, which are the cases with this research, this research

employed a case study as the research strategy.

Theories relevant to this research are available from the existing theories, although the

necessary theories are not well-developed for the context of this research. However,

theories from similar contexts can be the theoretical foundation of this research. The

theory of this research can be formed by an inductive method and can generalise as

analytic generalisation.

Research design is the logical sequence that links the empirical data to research

questions (Yin, 2003). The four components of research design were reviewed: research

questions; the unit of analysis; the logic linking the data to the research questions; and

the criteria for interpreting the findings. This research employed the single case research

design because this provides more opportunities for in-depth observation, and the single

case design is appropriate for extreme cases and typical cases which are the case

involved with this research. Then, four tests which can evaluate the research were

reviewed. Finally, the overall research procedure was described.

Based on the research topic presented in Chapter 1, the related literature was reviewed

in Chapter 2, and the research design of this research was presented in this chapter. This

thesis moves into the empirical case from the next chapter. The finding chapters start

with the analysis of the data, which is the nature of the spare parts demand in Chapter 4.
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As stated earlier, the core of the problem for forecasting the Naval spare parts demand

might be the non-normality of the demand and the inappropriate forecasting methods of

the Navy. The non-normality of the spare parts demand in the South Korean Navy was

expected as explained in Subsection 1.2.2. The impact of demand features upon

forecasting performance was reviewed in Section 2.5. The identification of the nature of

spare parts demand of the South Korean Navy is important as a prerequisite for the

investigation into forecasting methods. This chapter analyses the nature of the spare

parts demand in the South Korean Navy.

This chapter starts by presenting the general information about the fleet of the South

Korean Navy and the spare parts demand of the Navy in Section 4.1. This is followed

by reviewing the inventory control methods in the South Korean Navy in Section 4.2.

Clarification of the general information and the inventory control methods of the South

Korean Navy might be useful to understand the demand features of the spare parts. The

inventory system of the South Korean Navy will also be the framework for the

simulation experiment to measure forecasting performance in the next chapter. Section

4.3 relates the demand features of the spare parts. The spare parts demand is analysed

with various techniques including the various statistics which were reviewed in Section

2.5. In Subsection 1.2.2, it was stated that the difficulty of forecasting spare parts

demand might arise from the non-normality of the spare parts demand data. In

Subsection 2.5.2, simple exponential smoothing has been reported as a superior

forecasting method for hierarchical forecasting strategy. In order to use simple

exponential smoothing trend and seasonal components need to be removed or measured.
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Section 4.4 presents the procedure for removing the trend and seasonal components in

the time series of the Naval spare parts. In Chapter 3, it was stated that the non-normal

demand features cause distrust in the data generating process with respect to construct

validity. The sources of non-normality in the demand are reviewed in Section 4.5.

Finally, a summary and concluding remarks are presented in Section 4.6.

4.1 General Information

The South Korean Navy consists of 184 warships including 22 submarines, 10

destroyers, 9 frigates, 28 corvettes, and 82 fast attack crafts (Saunders, 2009). Warships

are characterised as having high construction costs. For example. the construction costs

for a destroyer with Aegis combat control systems of the South Korean Navy are known

to be W1.2 trillion (£613 million)' (Defence Industry Daily, 2009).

There are four major Naval bases in the South Korean Navy: fleet headquarters in

Chinhae, the 1st fleet in Donghae, the 2nd fleet in Pyongtaek, and the 3rd fleet in Pusan

(Saunders, 2009). There are also four minor Naval bases in Cheju, Mokpo, Mukho, and

Pohang (Saunders. 2009). In order to supply spare parts to warships, complex multi-

echelon inventory systems consisting of various suppliers, the Naval supply centre.

several depots at the major and minor Naval bases, and warships have been established.

A large stock of spare parts is held for the 184 warships in the Navy. However, there is

no demand for a large proportion of the stocked items. While 45,557 warship spare parts

items were held, the demand in 2008 was for 26,415 of these (Seon and U, 2009). Table

1 1.00 British pounds sterling (£) = 1,957.00 South Korean Won (IN) on 22l1li May 2009

(www.cUITencyconventor.uk.com)
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4-1 presents the classification of spare parts items for warships by value or demand

volume in the South Korean Navy in 2008. A large proportion of spare parts are low

value or low demand items. 62.13% of spare parts were less than W100,000 (£51.1) in

terms of unit cost. 52.3% of spare parts had a demand of one or zero.

Table 4-1 Classification of spare parts (Seon and U, 2009)

Classification b~ value Classification b~ demand volume
Value Unit cost No. of items % Volume Annual demand No. of items %
Low 0- WIOO,OOO 28,303 62.1 Low 0-1 23,838 52.3

Medium WIOO,OOI- 14,341 31.5 Medium 2-5 11,159 24.5
W5,000,000

High W5,000,000 - 2,913 6.4 High 6- 10,560 23.2
Total 45,557 lOO Total 45,557 100

1.00 British pounds sterling (£) 1,957.00 South Korean Won (W) on 22nd May 2009
(www.currenc):,conventor.uk.com).

Although the unit cost of most of the spare parts is low, the stock-out costs can

dramatically outweigh the unit cost. For example, the absence of a £10,000 spare part

might cause a £ 100 million warship to be non-operational. This could even lead to a

military defeat that could cause casualties and deaths (MacDonald, 1997).

Figure 4-1 presents time plots of annual mean demand per item in each value group.

Annual demand volumes for low value items were significantly higher than high and

medium value items. Whilst similar volumes of high and medium value items were

demanded throughout the whole period, higher volumes of low value items were

demanded in 2002 ~ 2003 than in 2004 ~ 2007. As such, low value items are

characterised with downward trends throughout the period.
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Figure 4-1 Mean annual demand for items in three value groups (Seon and U, 2009)

4.2 Inventory Control Method

The inventory control methods for spare parts in the South Korean Navy are based on

Authorized Stock Item List (ASL). ASL is the list of items which are sanctioned to be

stocked within each depot and the Naval supply centre; however, items which are not in

the list [i.e. Non-Authorized Stock Item List (N-ASL)] are not required to be stocked.

This section describes the inventory control methods for the ASL and N-ASL items.

4.2.1 Authorised Stock Item List

The South Korean Navy differentiates the inventory control methods for ASL items and

N-ASL items. An order of an N-ASL item is placed only when a backorder of the item

is placed. Items with at least one demand occurrence in two of the previous five years

(i.e. TOD 1 ~ TOD 4) are considered to be selected as an ASL item; among them, items

with at least one demand occurrence in four of the previous five years (i.e. TOD 1 and
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TOD 2) are automatically selected as ASL items as shown in Table 4-2. Insurance items

are also selected as ASL items. Insurance items refer to indispensible items to operate

equipment which require a long time to procure, although they are rarely demanded.

Table 4-2 Types of Demand

TOO
(Types of demand)

Occurrence of demand
for the previous five years ASL selection

Over five years
2 Four years Automatic selection

3 Three years
4 Two years Manager's decision

5 One years Insurance item

4.2.2 Inventory objective of Authorised Stock Item List items

The inventory systems for warship spare parts in the South Korean Navy consist of four

interconnected echelons in which spare parts flowing through the systems are stored at

different points. These four echelons are various suppliers, the Naval supply centre, 8

depots, and 184 customers (i.e. warships). Such inventory systems are known as multi-

echelon inventory systems (Slack et aI., 2004). The South Korean Navy uses the terms

retail-level and wholesale-level. The retail-level refers to the echelon with the depots;

the wholesale-level refers to the echelon with the Naval supply centre. Each major or

minor Naval base has its own retail-level depots. Each warship also carries a limited

range of spare parts, so as to deal with routine maintenance or minor breakdown at sea.

In principle, spare parts for warships are supplied from retail-level (i.e. the depots); and

spare parts stored at retail-level are supplied from wholesale-level (i.e. the Naval supply

centre).

As inventory objective refers to an order-up-to-Ievel either at wholesale-level or at
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retail-level. The South Korean Navy distinguishes the inventory objectives of

Authorized Stock Item List items between wholesale-level and the retail-level. The

Requirements Objective (ROI) indicates the inventory objective at the wholesale-level

and the Requisition Objective (R02) denotes the inventory objective at the retail-level.

Table 4-3 describes the corresponding composition of the inventory objectives at each

level. PC indicates the expected quantity of demand during the intervals of procurement

at the wholesale-level as a similar concept to OL at the retail-level. SL means the safe

stock level. PROLT means the real empirical lead time at the wholesale-level including

lead times for administration, manufacturing and delivery. OST indicates the lead time

at the retail-level including order and shipment times.

Table 4-3 Inventory objective of the South Korean Navy

Wholesale-level Retail-level
Requirements Objective (ROI) Requisition Objective (R02)

Procurement Cycle Quantity (PC) Operating Level (OL)
Safety Level (SL) Safety Level (SL)

Procurement Lead Time (PROLT) Order & Shipping Time (OST)

The South Korean Navy differentiates the inventory control methods for the retail-level

and the wholesale-level. The inventory control method of retail units is similar to the (s,

S) control system; that is, continuous review, order-point, order-up-to-Ievel system

(Silver et al., 1998). As shown in Subsection 2.7.2, inventory position can be calculated

as "inventory position = (stock on hand) + (stock on order) - (backorders)" (Silver et al.,

1998). When the inventory position of a retail unit is below a reorder point, s (s = SL +

OST), the unit places an order to raise the inventory position to R02 automatically. On

the other hand, the inventory control method of wholesale units is similar to the (R, S)

control system; that is, the periodic-review, order-up-to-Ievel system (Silver et al., 1998).

Although the enacted review cycle (Le. procurement decision cycle) is one year, the
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modification of the orders is allowed for an exceptional case throughout a year.

Generally, the wholesale unit places an order to raise inventory position to RG 1 (RG 1 =

PC + SL + PRGLT) once a year, in line with legal requirements.

An order of an ASL item can come from two sources. For the purpose of repairs and

maintenances of warships in the Naval shipyard of the Naval Logistics Command

(NLC), at the repair shops of Naval bases, and on the warships themselves, customers

(i.e. warships) place an order to a retail unit. For the purpose of keeping their inventory

positions, retail and wholesale units also place an order to wholesale units and suppliers

respectively.

This section identified that the inventory control method for the spare parts in the South

Korean Navy is based upon the Authorized Stock Item List. The inventory objectives in

both retail- and wholesale-levels, and their control methods were also clarified. Upon

the basis of this information about the inventory control methods together with the

general information described in Section 4.1, the demand features of spare parts which

are the main concerns of this chapter are analysed as follows.

4.3 Spare Parts Demand Analysis

In Subsection 1.2.2, it was mentioned that the spare parts demand in the South Korean

Navy might be non-normal. It was also mentioned that hierarchical forecasting strategy

is based upon a hierarchical demand structure. In Section 2.5, it was reviewed that the

demand features such as correlation and forecasting horizon influence forecasting

performance. In this section, the spare parts demand features in the South Korean Navy

are analysed. This section starts by presenting the structure of National Stock Number
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(NSN) on which the Naval spare parts are based. The processes of data selection and

grouping then follow. Then, detailed description of the data with respect to the

techniques reviewed in Chapter 2 is presented.

4.3.1 National Stock Number

National Stock Number is a thirteen-digit numeric code used by North Atlantic Treaty

Organisation (NATO) to classify standardised material items of supply as shown in

Figure 4-2.

NSCG NUN
NSG NSC NCB lIN

2 8 1 5 0 1 2 547 152

Figure 4-2 National Stock Number (NSN)

The first two-digits, NATO Supply Group (NSG), classify items according to their end

use (see Appendix B); then, the next two-digits, NATO Supply Class (NSC), sub-

classify them according to their shape and size. The last nine-digits represent National

Item Identification Number (NUN). The first two-digits of NUN, National Codification

Bureau (NCB), indicate the country of origin (e.g. 01 is assigned to the USA; and 99 is

assigned to the United Kingdom). The next seven-digits, Item Identification Number

(lIN), are simply allocated without a pattern. In Figure 4-2, the first two-digits, "28"

indicates NSG 28 (i.e. engines, turbines and components); the first four-digits, "2815"

denotes NSCG 2815 (i.e. diesel engines and components); the next two-digits, "01"

indicates NCB 01 (i.e. the USA); and the last seven-digits, "547152" denotes a serial

number which has no specific pattern. Therefore, the exemplified thirteen-digit code,
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"2815012547152" represents a part (Le. piston ring) of a generator (Le. MTU 6V396).

As such, National Stock Number represents a hierarchical demand structure. The South

Korean Navy utilises National Stock Number.

4.3.2 Data selection and grouping

Before presenting the demand features, it is necessary to clarify the process of data

selection and grouping methods required to generate hierarchical forecasting. Generally,

the ratio of the ASL to all spare parts in the South Korean Navy is merely eleven percent;

meanwhile, approximately eighty percent of the total request is replenished by ASL

items. As mentioned in Subsection 2.7.1, by the rule of 80/20, managing high frequency

items might be crucial in increasing spare parts supply within budgetary limitations so

as to maximise operational availability. Unlike business data, the range of frequency in

the South Korean Navy is relatively low. High frequency items in militaries can be

considered to be low frequency items in business (Eaves and Kingsman, 2004). For

example, Sani and Kingsman (1997) classified 'annual demand less than 20 units' into

'very low demand' for 30 daily spare parts demand data for vehicles and agricultural

machinery over five years as shown in Table 2-9.

Although TOD 1 and TOD 2 of Table 4-2 are still of very low demand in the

classification scheme of Sani and Kingsman (1997), TOO 1 and TOD 2 are considered

to be high frequency items for the South Korean Navy. The ratio of TOD 1 and TOO 2

to all spare parts is merely four percent, however, TOO I and TOD 2 account for

approximately sixty percent of the total requests. Managing TOO 1 and TOD 2 might be

crucial to increase the operational availability of weapon systems. Low frequency items

(lower than TOD 2) are extremely difficult to analyse. Hence, low frequency items were
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screened out in this research. Managing low frequency items (lower than TOD 2) is

beyond the scope of this research. These might be able to be managed with a strategic

collaboration between suppliers and users such as military supply chain integration

(Chen et al., 2005).

Historical demand records (2002 - 2007) for three types of warships (type A, B and C)

were collected for this research. As stated in Subsection 3.5.1, a specific group of

warships and a time boundary were clarified. The time boundary was decided to be

from January 2002 to November 2007 because the Naval maintenance data system,

which is the major data source, has been stabilised since 2002. Among the demand

records, those for eight pieces of equipment installed in the three kinds of warships were

selected. These eight pieces of equipment are important for sustaining the operational

availability of those warships. Table 4-4 presents the description of the selected data.

Table 4-4 Selection of data (300 items)

Equipment
No. of items Type of shipSelected TOO 1 -2 Total

Gun I 22 27 155 C
Gun II 10 12 760 A,B,C
Gun III 6 7 1,038 A,B

Main Engine {ME}I 54 65 1,830 A,B
Main Engine {ME}II 134 161 2,489 C
Generator {GEl I 56 67 2,036 A,B

Air Com~ressor {AC}I 12 15 595 A,B,C
Radar(RDlI 6 7 466 B,C

Total 300 361 9,369

Overall, 9,369 items were identified which met the above conditions. Among the 9,369

items, 361 items were identified to be either TOO 1 or TOD 2. For the purpose of

grouping in pairs, and for the ease of analysing the data and understanding the results,

an even number of samples, rounded to the nearest hundred (i.e. 300) were chosen from
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the 361 items. An even number sample from each equipment group was chosen using a

random sampling procedure with a random number generator (Howitt and Cramer,

2008). The dataset therefore comprised 300 items, which were selected for inclusion in

forecasting models.

In order to use a hierarchical forecasting method, the form of a group needs to be

defined. An exemplified grouping structure for this research is presented as in Figure

4-3. Grouping is based on the types of equipment and National Stock Number (NSN).

The 300 items were classified by the 8 types of equipment which the items are used for.

Then, the items of each type of equipment were sub-classified into 36 groups using the

NATO Supply Classification Group (NSCG). Intuitively, as shown in Table 1-3, the

hierarchical assembly structure of Naval spare parts consisted of parts and components,

and so an assembly structure might capture a more practical hierarchical demand

structure than the NSCG. However, the data required to identify the assembly structure

such as assembly drawings and data on failure of assemblies are classified and hence

not available for this research.

8 equipment
groups

DV H L DV H

36NSCG
group

150pair groups ~
of300 Items

Key: DV = historical dollar volume (historical demand per year x item unit price); L = low DV; H = high DV.

Figure 4-3 Grouping structure

As stated in Subsection 2.5.2, Fliedner and Mabert (1992) have claimed that grouping

criterion based on historical dollar volume (DV) provides significantly better
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performance for hierarchical forecasting. Hence, the items were ranked in terms of DV

(defined as historical demand per year x item unit price) within the same type of

equipment and the same NSCG.

As mentioned in Subsection 2.5.2, research has found that the number of items in a

group (or the number of group with a limited number of items) has no significant effect

upon the performance of hierarchical forecasting (Fliedner and Mabert, 1992, Fliedner

and Lawrence, 1995). Fliedner (1999) noted that the different numbers of items in the

groups is a source of incongruity of the performance of hierarchical and direct

forecasting methods. Much of the research about the influence of correlations upon the

performance of hierarchical and direct forecasting methods limited the number of items

in a group to two items (Schwarzkopf et al., 1988, Dangerfield and Morris, 1992,

Fliedner, 1999, Widiarta et al., 2006, Widiarta et al., 2008a, Widiarta et al., 2009). In

order to test the impact of correlations on forecasting performance, avoid any biasing

effect which could be introduced by complex interrelationships among more than two

items in a group, and compare the results of this research with the previous research, the

experimental design of two item groups was employed for this research.

Grouping an item with another similar item can bring out hidden patterns and decrease

errors (DeLurgio, 1998). Hence, the two nearest items (i.e. the most homogeneous) in

terms of historical dollar volume (DV) formed a group. The 300 items can be

considered as 150 pair groups for hierarchical forecasting, each containing two items.
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4.3.3 Measures of demand features

A variety of measures to identify demand features were reviewed in Section 2.5. This

research employs measures from the literature. Before analysing the spare parts demand

data, this subsection clarifies the measures and their properties to be used.

In Subsection 2.5.2, lag-I autocorrelation of a time series was discussed as a measure to

identify demand feature which influences upon the relative performance of top-down

and direct forecasting (Widiarta et aI., 2006). If the lag-I autocorrelation, p( 1), of the

time series for at least one of the items in a group consisting of two items is greater than

113, direct forecasting outperforms top-down forecasting. However, if the lag-I

autocorrelations of the two item level time series are satisfied, -1 < p( I) S II3, the

difference in the performance of the two forecasting strategies is non-significant. In the

initial data analysis stage of this research, the lag-I autocorrelations of 272 monthly,

252 quarterly, and 286 yearly time series of the 300 item level time series were found to

be in the scope of non-significant autocorrelations (-I < p(l) S II3). Thus, the

autocorrelation was not considered to be a measure used to identify a data feature in this

research. The spare parts demand data were analysed by the following measures.

Identification of trend and seasonal components is important because these are

predictable components of a time series (Bowersox and Closs, 1996, Silver et aI., 1998).

As stated in Section 2.1, Ghobbar and Friend (2002,2003) examined the time series of

aircraft spare parts demand and identified trend, seasonal and irregular components.

Businger and Read (1999) used trend and seasonality to identify demand features of

spare parts in the US Navy. In this research, Slope denotes the gradient of a linear
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regression model fitted to the time series data. The processes and the results of tests for

seasonal effects will be presented later in this section.

As stated in Subsection 2.5.1, coefficient of variation in demand size is a unit free

measure of relative variability. Coefficient of variation in demand size was used as a

classification criterion for non-normal demand in previous literature (Williams, 1984,

Businger and Read, 1999, Syntetos, 2001). In this research, Cv(size) indicates the

coefficient of variation in demand size. Equation (2-32) was employed to express

Cv(size). As stated in Subsection 2.5.1, the erratic and lumpy demand features in the

categories of non-normal demand in Subsection 1.2.2 might be captured by this measure.

The number of periods with zero demand is a statistic for measuring the intermittency

of demand (Businger and Read, 1999, Boylan et al., 2008). As stated in Subsection 2.5.1,

demand features reflecting intermittency (i.e. the intermittent, slow moving, clumped

and lumpy demand features) in the categories of non-normal demand might be captured

by this statistic. A problem with this statistic was identified in Subsection 2.5.1. It was

noted that the number of zero demand periods depends on the overall data periods; that

is, the number of zero demand periods might be longer when the overall data periods are

longer, and vice versa. Boylan et al. (2008) employed the number of demand periods

with zero demand during the last n time periods. They used the last 13 time periods (n =

13) for their classification. However, they offered no rationale for this decision about

the time periods, n.

In this research, different data periods were utilised to generate different forecasts in

different years. For example, in order to generate a monthly forecast in 2005, 36
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monthly data points (i.e. between January of2002 and December of2004) were utilised;

in order to generate a monthly forecast in 2006, 48 monthly data points (i.e. between

January of 2002 and December of 2005) were utilised. In order to compare all the

forecasting results, a unit free measure for the number of zero periods was required. A

unit free measure, the proportion of zero demand periods, namely Pr(zero), employed in

this research is defined as:

nL I(y,)
Proportion of zero demand periods = ...!..:,-:.!.I -- (4-1)

n

where:

y, = the real demand size for an item at time period t

if y, = 0, I(y,) = 1; otherwise, I(y,) = 0

n = the number of overall time series periods

The distribution of data can deviate in two ways from a normal distribution: the

distribution can be skewed, when one tail of the distribution is longer than the other tail;

and the distribution can be kurtosed, when the distribution is too flat or highly peaked

(i.e. the tails are too long or too short) (Miles and Shevlin, 2001).

The lack of symmetry of a distribution around its mean can be identified by skewness

(Tabachnick and Fidell, 2007). As mentioned in Subsection 2.5.1, Businger and Read

(1999) used a simple formula of skewness to identify a demand feature of spare parts.

Skewness for this research is defined as in equation (4-2). The skewness of a variable

that is normally distributed has the value O. Positive skewness denotes a distribution

with an asymmetric tail stretching toward more positive values (right longer tail) - the

mean and the median are larger than the mode; whereas negative skewness represents a
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distribution with an asymmetric tail clustered at the more negative values (left longer

tail) - the mean and the median are smaller than the mode (Howitt and Cramer, 2008).

n ( _)3Skewness = n I Y, - Y
(n-l)(n-2) 1=1 s

(4-2)

where:

Yt = the real demand size for an item at time period I

y = the mean demand size

s = the standard deviation of demand size

n = the number of overall time series periods

Kurtosis (pointyness) identifies the relative peakedness or flatness of a distribution

compared with a normal distribution (Tabachnick and Fidell, 2007). The kurtosis of a

variable that is normally distributed has the value O. Positive kurtosis (i.e. leptokurtic

distribution) represents a relatively pointy distribution; negative kurtosis (Le. platykurtic

distribution) represents a relatively flat distribution (Howitt and Cramer, 2008). Kurtosis

for this research is defined as in equation (4-3).

K . [ n(n + I) ~(YI - y)4] 3(n _1)2
urlOS1S = ~ -- - -_..:_-~-

(n -l)(n - 2)(n - 3) 1=1 S (n - 2)(n - 3)
(4-3)

As stated in Subsection 2.5.2, some authors (Schwarzkopf et al., 1988, Viswanathan et

al., 2008) found that the variability of demand size significantly influenced upon the

relative forecasting performance of top-down and direct forecasting. In addition to

Cv(size), this research used another measure for the variability of demand size
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reflecting the peak demand. As stated in Subsection 2.5.1, Businger and Read (1999)

used the number of peaks as in equation (2-34). However, a unit free measure is

required for this research because different data periods were utilised to generate

different forecasts in different years. As a unit free measure, proportion of peak

demands [Pr(peak)] is calibrated as in equation (4-4). In order to capture the variability

of demand size, the sum of the peak demands was divided by the sum of the total

demands. As stated in Subsection 2.5.1, the erratic and lumpy demand features in the

categories of non-normal demand might be captured by this statistic.

11

IJ(d, >2)xy,
Proportion of peak demands = ...:..';:...:..1 _

"LY,
,;1

(4-4)

where: d = Iy, - JI,
s

{

O, dt~ 2
ltd,> 2) =

1, d,> 2

As discussed in Subsection 2.5.2, the influence of correlations upon the relative

performance of top-down forecasting and direct forecasting is the most controversial

issue (Schwarzkopf et aI., 1988, Gross and Sohl, 1990, Dangerfield and Morris, 1992,

Fliedner, 1999, Widiarta et aI., 2006, Widiarta et al., 2008a, Widiarta et aI., 2009). In

addition to the correlations of the item level time series with other item level time series

in the same group [i.e. Corr(item)], the correlations of the item level time series with the

group level time series [i.e. Corr(group)] composed of two item level time series were

also examined. This was because hierarchical forecasting is expected to be influenced

by the correlations between the group level time series and the item level time series

[Corr(group)] through a proration method. A high Corr(group) is expected, because
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group level time series is a linear combination of item level time series.

As stated in Subsection 2.5.1, lead time variation was argued to be an important demand

feature in the demand classification for direct forecasting (Williams, 1984, Eaves, 2002,

Eaves and Kingsman, 2004). A long procurement lead time (PROLT) requires a long

forecasting horizon for a procurement decision. As stated in Subsection 2.5.2, Shlifer

and Wolff (1979) contended that forecasting horizon (reflecting PROLT) influences

upon the relative performance of top-down and direct forecasting. Thus, this research

examined PROLTs of the spare parts.

As shown in Subsection 2.5.2, UV (historical unit volume) and DV (historical dollar

volume) were contended to be significant grouping criteria which improved the

performance of top-down forecasting (Fliedner and Mabert, 1992). In this research, UV

was calculated by monthly, quarterly or yearly mean demand (Le. mean) for an item.

DV was calculated as "DV = historical demand for an item per year x item unit price".

4.3.4 Historical demand analysis

Using the above mentioned measures, the spare parts demand data were analysed. This

subsection presents the results of analysis. Data aggregation refers to the bucketing of

individual data observations into time periods (Eaves, 2002). The time series plot of the

sum of the 300 monthly aggregated spare parts demand time series is presented in

Figure 4-4. There were two peak points in June 2002 and March 2003 followed by a

downward trend. These two peak points could be explained by an increased operational

demand on the warships caused by the sea battles with the North Korean Navy in June

of 2002 (Jie-Ae, 2002) and subsequent preparation against possible clashes before the
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fishing season in the next year 2003. The downward trend of demand is consistent with

the mean annual demand for total spare parts as shown in Figure 4-1. Although it is not

obvious, there was a more or less seasonal fluctuation: high in December - March; low

in May - October.

0
N N N N '" '" '" M -.:t -.:t -.:t -.:t In In In V\ \0 \0 \0 \0 r- r-- r-- e-0 0 0 5: 6 0 <;' 5: 0 0 <;' 5: <;' 0 <;' <;' <;' 0 <;' <;' 0 0 <;' 5:Cl I- ~ I-

~ Cl I- -a I': I- -a U '" I- -a U Cl I- -a'" 0- c '" 0- o '" 0- u ~ 0- '" ~ '" ~ U-, -< 0 -, -< 0 -, -< -, 0 -< -, 0 -, .... 0 .... -, 0

Figure 4-4 Time series plot of the sum of the 300 monthly aggregated spare parts
demand time series

Figure 4-5 presents the histogram of the sum of demand quantities in the 300 monthly

aggregated data. The data were significantly skewed toward the left and were highly

peaked (i.e. leptokurtic distribution) as shown in Figure 4-5. The two outliers in June

2002 and March 2003 were identified as two separate columns.
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Figure 4-5 Histogram of the sum of the 300 monthly aggregated spare parts
demand data
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Figure 4-6 presents the probability plot against a normal distribution for the sum of the
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Figure 4-6 Probability plot of the sum of the 300 monthly aggregated spare
parts demand data
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300 monthly aggregated spare parts demand data. The distribution of the data was non-

normal and skewed (as the curve deviated from a straight line and was asymmetrical).

The two outliers, in June 2002 and March 2003, where the line jumps to the end, were

clearly visible.

The time series plots of the sums of the monthly aggregated time series of the spare

parts demand for the eight pieces of equipment are presented as shown in Figure 4-7.

Enlarged figures are also presented in Appendix C. One (Gun III, ME 1,GE 1,AC I, and

RD I) or two/three (Gun I and ME II) outliers were identified. Downward trends were

identified in Gun II, Gun III, AC I and RD I, whereas trends were not identified in Gun I,

ME I, ME II, and GE 1. Although lower demands for Gun I and AC I were identified in

June and July, seasonality was not obvious in most of the time series.

Figure 4-8 presents the histograms of the sums of the monthly aggregated time series of

the spare parts demand for the eight pieces of equipment. The data were significantly

skewed toward the left (with the exception of AC I) and were highly peaked. One (Gun

III, ME I, GE I, AC I, and RD I) or two/three (Gun I and ME II) outliers were also

identified.

Figure 4-9 presents the probability plots for the sums of the monthly aggregated time

series of the spare parts demand for the eight pieces of equipment. The distributions of

the data were non-normal and skewed (as the curves deviated from a straight line and

were asymmetrical). One (Gun III, ME I.GE I, AC I, and RD I) or two/three (Gun 1and

ME II) outliers, where the lines jump to the ends, were also identified.
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Figure 4-7 Time series plots of the sums of the monthly aggregated time series of the
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Table 4-5 presents average statistics of the 300 monthly aggregated item level spare

parts demand time series. Although, the data ranging between January 2002 and

November 2007 were obtained, the average statistical features of the monthly

aggregated data were measured throughout periods between January 2002 and

December 2006. This was in order to present the statistics consistently with quarterly

and yearly aggregated data as shown in Table 4-6. This is because different data

aggregation methods (i.e. monthly, quarterly and yearly aggregations) are difficult to

compare with only 11 months of data periods for the year 2007. In order to produce

summary statistics, the statistical features of individual item level time series were

averaged over each piece of equipment. The correlation of an item level time series was

measured with other item level time series in the group which was constructed as

described in Subsection 4.3.2.

Table 4-5 Average statistics for the monthly aggregated data

Gun I Gun II Gun III MEl ME II GEl ACI RDI Total

Slope -0.05 -0.01 ·0.02 -0.27 -0.46 -0.18 -0.04 -0.03 -0.29

Corr(item) 0.44 0.22 0.54 0.50 0.26 0.44 0.29 0.44 0.36

Corr(group) 0.82 0.77 0.87 0.82 0.73 0.79 0.77 0.77 0.77

Cv(size) 2.17 2.02 230 2.11 2.13 2.52 1.68 I.S9 2.IS

Pr(peak) 0.40 0.39 0.49 0.36 0.38 0.41 0.28 0.33 0.38

Skewness 3.18 2.85 3.14 3.87 3.78 4.77 3.16 3.63 3.87

Kurtosis 12.93 11.37 11.53 19.57 18.77 28.66 14.49 19.24 19.78

Pr(zcro) 0.61 0.65 0.72 0.49 0.45 0.53 0.38 0.44 0.49

Mean 2.67 1.02 0.S4 12.66 26.30 7.06 4.47 2.39 15.82

Key: the highest scores and the lowest scores are shown in bold.

All of the time series had downward trends as shown by their negative Slopes. Time

series for ME II seemed to have the steepest downward trends. In practice there were

non-significant trends for ME II indentified as shown in Figure 4-7. The lowest value of

Slope for ME II was caused by the three peak demands in 2002 and 2003. There were

significant correlations [0.22 - 0.54 for Corr(item) and 0.73 - 0.87 for Corr(group)].

153



Chapter 4. Nature Of The Spare Parts Demand

These identified that the item level time series significantly correlate with each other

within the same group and with the group level time series. Time series for Gun III has

items which correlate most as shown by the highest Corr(item) and Corr(group). There

were high Cv(size) and Pr(peak) in most of the data. This analysis identified that most

of the time series were highly variable and highly peaked. Time series for AC I was

least variable and least peaked as shown by its lowest Cv(size) and Pr(peak). Time

series for GE I was most variable as shown by its highest Cv(size). Time series for Gun

III was most peaked as shown by its highest Pr(peak).

There was skewness greater than 2.85 and kurtosis greater than 11.37. This identified

that the time series were significantly skewed toward the left and were highly peaked

(i.e. leptokurtic distribution) as shown in Table 4-5. Time series for GE I was most

skewed as well as most kurtosed; whereas, time series for Gun II was least skewed and

least kurtosed as shown in Table 4-5. These features of GE I and Gun II were identified

as shown in Figure 4-8. Most of the time series were highly intermittent as shown by a

total average Pr(zero) of 0.49. Time series for Gun III was most intermittent, and time

series for AC I was least intermittent.

There were features characterised in the equipment groups. Gun III was characterises as

the highest Pr(peak), Corr(item), Corr(group) and Pr(zero). GE I was characterised as

the highest Cv(size), skewness and kurtosis. AC I was characterised as the lowest

Cv(size), Pr(peak) and Pr(zero}.

Three mean demand quantity groups were identified as shown in Table 4-5. The small

mean demand quantity group (0.84 - 2.67) is composed of Gun I, Gun II, Gun III, and
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RD. The medium mean demand quantity group (4.47 - 7.06) is composed of GE I and

AC I. The large mean demand quantity group (12.66 - 26.30) is composed of ME I and

ME II.

As stated in Subsection 1.2.2, non-normal demand is difficult to forecast (Willemain et

al., 1994, Regattieri et al., 2005, Syntetos and Boylan, 2005). The spare parts demand

time series were identified as non-normal as shown in Table 4-5. Considering that the

time series were non-normal, it was difficult to find a significantly superior forecasting

method for an equipment group consisting of a small number of items. A larger sample

size produces better estimates of the population (Howitt and Cramer, 2008, Field, 2009).

As shown in Table 4-4, some equipment groups (i.e. Gun III and RD I) consist of only

six items. In fact, it will be shown in the next chapter that a significantly superior

forecasting method could not be found for RD, due to the small group size (i.e. only 6

items). For the purpose of comparing forecasting performance at different equipment

groups in the next chapter, the 8 equipment groups were combined into 3 homogeneous

equipment groups.

By the functions and the links of the pieces of equipment, the 8 equipment groups were

combined into 3 equipment groups (i.e. Gun/RD, ME and GElAC): a) Guns and RD are

composed of complex electrical parts, moved by electric power, and controlled by

electric signal. Moreover, some Guns are linked with RD in combat data systems

(Saunders, 2009). Therefore, Gun I, Gun II, Gun III and RD were combined into an

equipment group, Gun/RD. b) The function of GE I and AC I are mainly assisting MEs.

Therefore, GE I and AC I were combined into an equipment group, GElAC. c) ME I

and ME II were combined into an equipment group, ME. This is because both ME I and
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ME II are different sizes of a main engine, which substitutes spare parts, and are

manufactured by the same manufacturer.

The combining criteria were consistent with the previously mentioned three mean

demand quantity groups. Small mean demand quantities were observed in Gun/Rl);

medium mean demand quantities were observed in GE/AC; and large mean demand

quantities were observed in ME. As such, the 3 equipment groups (i.e. GunIRD, ME,

and GE/AC) were established from the 8 pieces of equipment. These 3 equipment

groups will be used for comparing the performance of forecasting methods at different

equipment groups in the next chapter.

As stated in Subsection 2.4.3, some authors (Kahn, 1998, Dekker et aI., 2004) have

found that combinatorial forecasting combined with a model that considers seasonality

outperforms top-down and direct forecasting. The South Korean Navy generates

forecasts based on yearly aggregated data sets (Seon and U, 2009). Yearly aggregated

data cannot reflect seasonality. In this research the time series for the 300 items and

their 150 groups were aggregated into yearly, quarterly, or monthly aggregations to

compare the performance of forecasts produced using these different aggregation

approaches.

Table 4-6 presents average statistical features of the demand time series of the 300 items

as well as the 150 pairs. The average statistical features of the data were measured

throughout periods between January 2002 and December 2006 in order to compare the

different data aggregations. In order to produce summary statistics, the statistical

features of individual time series were averaged over either each equipment group
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respectively or the total items.

Table 4-6 Statistical features of the time series

300 item time series 150 grou~ time series
GunlRD ME GE/AC Total Gun/RD ME GE/AC Total

Cornitem) 0.46 0.37 0.56 0.43
Corr(8:rou~) 0.82 0.75 0.82 0.78

Slo~e -4.01 -57.02 -19.50 -40.74 -8.01 -114.03 -39.01 -81.48
Cv(size) 0.68 0.70 0.93 0.75 0.56 0.63 0.90 0.68

Yearly Pr(~eak) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Skewness 0.86 0.91 1.42 1.02 0.70 0.98 1.63 1.08
Kurtosis 0.66 1.00 2.37 1.26 0.21 1.11 2.85 1.37
Pr(zero) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean 24.11 268.62 79.24 189.83 48.22 537.24 158.49 379.67

Corrtitern) 0.43 0.36 0.47 0.39
Corr(grou~) 0.82 0.77 0.81 0.78

Slo~e -0.31 -3.84 -1.41 -2.77 -0.62 -7.66 -2.83 -5.53
Cv(size) 1.25 1.28 1.44 1.31 1.01 1.13 1.32 1.15

Quarterly Pr(~eak) 0.29 0.28 0.33 0.20 0.24 0.26 0.30 0.06
Skewness 1.71 1.94 2.42 2.02 1.43 1.98 2.64 2.05
Kurtosis 3.58 4.54 7.40 5.05 2.35 4.80 8.72 5.33
Pr(zero) 0.28 0.17 0.20 0.20 0.11 0.05 0.07 0.06
Mean 6.03 67.16 19.81 47.46 12.05 134.31 39.62 94.92

Corr(item) 0.41 0.33 0.41 0.36

Corr grou~) 0.81 0.76 0.79 0.77

Slo~e -0.03 -0.41 -0.15 -0.29 -0.07 -0.81 -0.30 -0.59
Cv(size) 2.12 2.13 2.37 2.18 1.69 1.86 2.14 1.90

Monthly Pr(~eak) 0.40 0.38 0.39 0.38 0.35 0.33 0.32 0.33
Skewness 3.16 3.81 4.48 3.87 2.76 3.88 4.89 3.94
Kurtosis 13.24 19.00 26.16 19.78 10.13 19.99 30.28 20.88
Pnzero) 0.61 0.46 0.50 0.49 0.44 0.26 0.30 0.29
Mean 2.01 22.39 6.60 15.82 4.02 44.77 13.21 31.64

For all the equipment groups, Corr(item) slightly increased in order of monthly,

quarterly and yearly. However, Corr(group) were similar regardless of the method of

data aggregation. Slope, Cv(size), Pr(peak), skewness, kurtosis, and Pr(zero) for all the

equipment groups declined in order of monthly, quarterly and yearly. While skewness

and kurtosis were pronounced in quarterly and monthly time series, yearly time series

for all the equipment groups were less skewed and less kurtosed. Especially, Pr(peak)

and Pr(zero) in yearly aggregated time series for all the equipment groups were zero

with the exception of Pr(zero) 0.01 for the item level time series of Gun/RD. This
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seemed to indicate that the yearly aggregated time series do not represent non-normal

demand features anymore. However, as yearly time series have very few data points (i.e.

five observations), it is problematic to assert that yearly time series are either normal

data or closer to normal data.

When comparing the features of group level time series with the features of item level

time series, some patterns were identified. Compared to item level time series, skewness

and kurtosis increased in group level time series with the exception of Gun/RD; whereas

Slope, Cv(size), Pr(peak) and Pr(zero) decreased in group level time series. Data

aggregation in group level time series might simply lead to strengthening skewness and

kurtosis in ME and GElAC and Slope in all the equipment groups.

The decreased 3 statistical features [Le. Cv(size), Pr(peak) and Pr(zero)] in group level

time series should be noted. As stated, Cv(size) and Pr(peak) might represent the degree

of variability capturing the erratic or lumpy demand, and Pr(zero) might represent the

degree of intermittency capturing the intermittent, slow moving, clumped or lumpy

demand. As such, reduced non-normal demand features at group level time series were

characterised. This reduced non-normality of group level time series suggests that

hierarchical forecasting would be superior to direct forecasting (Gross and Sohl, 1990,

Fliedner and Lawrence, 1995, Fliedner, 2001).

Some relative demand features in the equipment groups were identified. GunIRD was

characterised as having higher intermittency and smaller demand volume, owing to

higher Pr(zero) and smaller Mean. ME was characterised as having lower correlation,

steeper downward trend, lower intermittency, and larger demand volume owing to lower
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Corr(item), lower Corr(group), steeper Slope, lower Pr(zero), and greater mean. GElAC

was characterised as having higher variability, greater peakedness, and greater deviation

from a normal distribution owing to higher Cv(size), higher Pr(peak), higher skewness,

and higher kurtosis.

4.3.5 Seasonality

As stated in Subsection 2.5.2, seasonality could influence the performance of

hierarchical forecasting when seasonality exists in the time series (Kahn, 1998, Dekker

et al., 2004). As suggested by Figure 4-4, spare parts demand in the South Korean Navy

could be influenced by seasonal effects. For example, during winter seasons, more

Naval warships are scheduled to be overhauled than the other seasons because of the

reduced demand of the Naval warships caused by bad sea conditions. On the other hand,

during the fishing season in summer and also in autumn when it is more appropriate for

exercises due to better sea conditions, operational demands on Naval warships are likely

to be high. Thus, major overhauls are unlikely to be scheduled.

An approximate value for the standard error of seasonal effect, S.E.( SJ j , was employed

to measure the significance of seasonal effects as shown in equation (4-5). In this

research, the value,}iil' was adjusted by linear trend and additive seasonality. The

process of trend and seasonal adjustment will be described later in this chapter.

S.E.(s,) == stdevCh)1 F (4-5)

where:

s = the seasonal effect
J
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ji" = the value adjusted for trend and seasonality

n . = the number of observations of ther seasonal deviation
.I

A r-test compares Ho and HI (Ho: s = 0 versus HI: .~ =f. 0). I values were calculated.I ,

for each value ofj as shown in equation (4-6) and compared each with tnj_l•

It I= Is, I
S.E.(s,)

(4-6)

Quarterly seasonality was tested throughout periods between the 1st quarter of 2002 and

the 3rd quarter of2007. Table 4-7 presents the summary of the test for the significance of

seasonal effect (Seffect) in the sum of the 300 quarterly aggregated time series for the

300 items. The seasonal effects were calculated based on the data adjusted by linear

trend. No seasonal effect was significant.

Table 4-7 Test for quarterly seasonal effect

1st 2nd 3rd 4th
Seffeet 4039.8343 694.5145 -4389.3053 -414.0522
Std 11784.60061 7561.736001 5031.058251 2489.975468
n 6 6 6 5
S.E. 4811.043052 3087.065795 2053.92093 1113.550882
It I 0.839700308 0.224975607 2.137037151 0.371830517
n-l 5 5 5 4

p-va1ue 0.439 0.831 0.086 0.729

Table 4-8 presents quarterly seasonal effects in each equipment group with their p-

values. All quarterly seasonal effects in all equipment groups were non-significant.
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Table 4-8 Quarterly seasonal effect in equipment groups

1st 2nd 3rd 4th
GuniRD Seffect 85.4 27.8 -34.3 -94.6

p-value 0.398 0.625 0.571 0.088
ME Seffect 3144.1 846.5 -3938.7 -62.2

p-value 0.436 0.786 0.082 0.964

GE/AC Seffect 810.3 -179.7 -416.3 -257.2
p-value 0.549 0.663 0.153 0.523

Total
Seffect 4039.8 694.5 -4389.3 -414.1
p-value 0.439 0.831 0.086 0.729

Monthly seasonality was tested throughout periods between the January 2002 and

November 2007. Table 4-9 presents the summary of the test for the seasonal effects of

the sum of the 300 monthly aggregated data for the 300 items. The seasonal effect of

July was the only significant seasonal effect as p-value < 0.05. This might be explained

by the higher demand of Naval warships which reduces major overhauls in July.

Table 4-9 Test for monthly seasonal effect

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Seffect -1501.0 49.3 5527.5 -640.3 -1191.6 2539.2 -1563.6 -1399.9 -1436.2 -1652.5 -245.0 1816.8

Std 1946.1 4309.9 11288.3 2828.2 1443.4 7626.4 1402.4 1963.5 2335.6 1792.1 1798.5 3456.7

n 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0

S.E. 794.5 1759.5 4608.4 1154.6 589.2 3113.5 572.5 801.6 953.5 731.6 734.2 1545.9

III 1.9 0.0 1.2 0.6 2.0 0.8 2.7 1.7 I.S 2.3 0.3 1.2

n-I 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0

p-value 0.118 0.979 0.284 0.603 0.099 0.452 0.041 0.141 0.192 0.074 0.752 0.305

The significant seasonal effect is shown in bold.

Table 4-10 presents monthly seasonal effects in each equipment group with their p-

values. Some monthly seasonal effects were significant. The highly negative seasonal

effects in July for the sum of the 300 monthly time series were also pronounced in

GuniRD and ME.
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Table 4-10 Monthly seasonal effect in equipment groups

Jan Feb Mar Apr May Jun lui Aug Scp Oct Nov Dec

Gun! Seffect ·31 9 115 1053 107 156 04 -44.5 -96 18 I -39.0 -02 -43.7

RD p-value 0066 0648 0360 0777 0631 0<)93 0.033 0693 0:;22 o 02~ 0993 0007

Seffect -12Q2 2 1205 4355.7 -6849 -1072 9 2626 I -1327.0 -12478 ·1360 I ·IWOI -ISS 2 19534
ME

p-value 0144 0943 0.244 0484 0076 0430 0.042 0.142 o 170 n (lOO 0.848 0276

GEl Seffect -1769 -827 10665 33.9 ·1343 -873 -1920 -1425 -94 :2 <~J <; -896 ·929

AC p-value 0139 0633 0426 0900 0245 0476 0068 0214 0486 081: 0421 0198

Seffect -1501 0 493 11275 -6403 -1191.6 21]Q 2 -1563.6 -13999 -14.162 ·16~2 5 -2450 18168
Total

p-value 0118 0979 0284 0603 o Q<)9 0452 0041 0141 0192 0074 0752 0305

Significant seasonal effects are shown in bold.

For GunIRD, two more seasonal effects were significant. There was a significantly

negative seasonal effect of GunIRD in October. This might be explained by the high

operational demands on Naval warships caused by better sea conditions. The

significantly negative seasonal effect of GuniRD in December is difficult to explain. A

positive seasonal effect in December was expected because of increased major

overhauls during the winter season. There was a positive seasonal effect for ME in

December, although the seasonal effect was non-significant. This inconsistency could be

explained by demand information distortion caused by many sources. The demand

information distortion will be discussed in more detail later in this chapter.

4.3.6 Procurement lead time

As stated in Subsection 2.5.2, Shlifer and Wolff (1979) suggested that a long forecasting

horizon makes the performance of top-down forecasting better than direct forecasting.

This required the examination of the procurement lead time (PROLT) of the Naval spare

parts. Figure 4-10 and Table 4-11 present the features of the PROLT. Although the

PROLTs ranged from 3 months to 18 months, 70.3% of the PROLTs (211 items) were

concentrated on the mode (i.e. 10 months) for all 300 spare parts as shown in Figure

4-10. High concentration on the mode was identified by the high value of kurtosis (Le.
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8.64 in total). 16.7% of items (50 items) had 9 months PROLT, and 2.7% of items (8

items respectively) had 8, 6 and 5 months PROLT. The PROLTs were concentrated

toward to the left from the mode value with the exception of GuniRD (as shown in

Figure 4-10 and Table 4-11). GuniRD had shorter PROLT (mean 9.2 months) than ME

and GE/AC and spread widely (standard deviation is 2.67 months) as shown in Figure

4-10.
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Figure 4-10 Histograms of PROLT

Table 4-11 PROLT analysis

Mean Median Std Skewness Kurtosis
Total 9.47 10 1.81 -0.33 8.64

GuniRD 9.20 9 2.57 1.32 4.68
ME 9.57 10 1.65 -0.61 11.18

GE/AC 9.34 10 1.64 -3.04 8.79

Longer PROLT increases R01 (Requirement Objective), because it covers longer

periods of demand. A large volume of RO! (composed of the PROLT, the PC and the
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SL) introduces large stock holdings. Large stock holdings amplify the disadvantages of

stock holdings such as obsolescence, damage, deterioration and loss (Slack et al., 2004).

This increases the inventory carrying costs such as investment in the inventory,

warehousing and holding costs (Waller, 2003).

The long PROLTs indicated that the forecasting horizons need to be quite long periods

ranging from 15 months to 30 months including 12 months review periods

(procurement cycle). As stated in Subsection 2.5.2, these long forecasting horizons of

the spare parts imply an advantageous condition for top-down forecasting (Shlifer and

Wolff, 1979).

4.3.7 Item unit price

As stated in Subsection 2.5.2, Fliedner and Mabert (1992) contended that DV (historical

dollar volume) is a significant grouping criterion which provides better performance

for top-down forecasting. Therefore, the item unit prices for the 300 spare parts and DV

were examined. An item unit price is a standardised unit price for an item in November

2007. It ignores minimum batch quantities. Table 4-12 describes the features of item

unit prices and DV. Figure 4-11 presents the histograms of item unit prices for the total

items and the items in each equipment groups. Figure 4-12 presents the histograms of

DVs for the total items and the items in each equipment groups. DV was calculated as

"'DV= the sum of historical demand for an item between January 2002 and November

2007 x item unit price" for Table 4-12 and Figure 4-12.
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Table 4-12 Item unit price and DV (Unit: Wl,OOO)

Mean Median Std Skewness Kurtosis
GunlRD 781 637 925 3.40 15.78

Unit ME 171 8 1004 10.31 114.14
Price GE/AC 129 4 391 4.62 22.91

Total 251 11 915 9.13 103.30
GunlRD 692348 402950 1062566 4.48 23.63

DV ME 722068 32705 2632114 5.87 37.74
GE/AC 192932 868 452264 3.74 15.26
Total 59852 4913 214 147 7.03 56.23
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Figure 4-11 Histograms of item unit price (Unit: WI00,000)

Most of the unit prices for the items were smaller than W500,000 (£255) and the mean

unit price was W251,000 (£128). Spare parts for Gun/RD were characterised as more

expensive spare parts as the mean unit price of the spare parts for GunlRD was more

expensive [i.e. W781,000 (£399)]. The higher prices of the spare parts for GunlRD than

other equipment groups were identified in Figure 4-11. Most of the DV s were smaller

than WI50,000,000 (£76,648) and the mean DV was W59,852,000 (£30,583). Owing to

the larger historical demand volume (i.e. Mean) of the spare parts for ME as shown in
165



Chapter 4. Nature Of The Spare Parts Demand

Table 4-6, the mean DV of ME was greater than the mean DV of GunlRD. However, the

mean DV of ME was not a good statistic to represent the DV of ME, as the DVs of ME

spread widely [standard deviation of ME is W263,114,000 (£134,448)]. The wide-

spreading DVs of ME caused by outliers are identified in Figure 4-12.
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Figure 4-12 Histograms of historical dollar volume (Unit: W100,000)

were found to be non-normal. Downward trends and non-significant seasonality in most

of the time series were identified. Some advantageous conditions for hierarchical

forecasting were also identified such as reduced non-normal demand features at group

level time series than item level time series and long procure lead times.

166



Chapter 4. Nature Of The Spare Parts Demand

4.4 Decomposition Procedure

The time series of the Naval spare parts demand were found to be non-normal. The

problems of transformation were discussed in Subsection 2.2.1. Transformation has

limitations (Chatfield, 2004) and the forecasting performance improvement for non-

normal demand was found to be very small (Nelson and Granger, 1979). The linear

transformations using quadratic, cubic, log, or inverse functions rarely handle outliers

and make a case, which is close to being an outlier before transformation, an extreme

case (i.e. an outlier) after transformation (Miller Jr., 1986, Miles and Shevlin, 2001).

Robust estimators (e.g. trimming and winsorizing), which could convert outliers into

proximity with the rest of the data, are based on the assumption that underlying

distribution is symmetric about its median (Miller Jr., 1986). An asymmetric distribution

such as the Naval spare parts demand as shown in Figure 4-5 and Figure 4-8 could not

be handled by the robust estimators. Therefore, transformation was not conducted in this

research.

As stated in Section 2.1, a time series can be decomposed into five components: base

demand, seasonal, trend, cyclic, and irregular components. In order to examine more

closely other components, trend and seasonal components can be estimated or removed

(Hyndman et al., 1998, Chatfield, 2004). Simple exponential smoothing will be

employed to generate forecasts for both hierarchical and direct forecasting methods in

the next chapter. In order to employ simple exponential smoothing, as stated in

Subsection 2.2.3, trend and seasonal components have to be measured or removed

(Waters, 1991, Gardner Jr. and Diaz-Saiz, 2002). Thus, this research employed a

decomposition process. The decomposition process conducted for the trend and

seasonal components in the spare parts demand time series are described as follows.
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Some authors examined various trends such as polynomial trends (Morris and Glassey,

1962) and linear/exponential trends (Gardner, 1985) for exponential smoothing. In their

analytical study, Morris and Glassey (1962) contended that exponential smoothing

models coupled with polynomial trends have a tendency to amplify noise in the time

series. In his analytical study, Gardner (1985) argued that exponential smoothing

models coupled with exponential trends are inaccurate at long forecasting horizons,

however, a linear trend is typically used for any forecasting horizon. Exponential trends

are not suitable for the spare parts demand time series in the South Korean Navy,

because the Navy requires a long forecasting horizon as stated in Subsection 4.3.6.

A linear trend is defined as in equation (4-7) (Cryer and Chan, 2008, p. 27). This

research employed the linear trend in order to extrapolate this trend to produce forecasts.

Po and PI in equation (4-7) were estimated by a regression method that minimises

equation (4-8) (Cryer and Chan, 2008). Peak points in 2002 - 2003 and downward

trends were identified in the spare parts demand time series as shown in Figure 4-4 and

Figure 4-7. A time series can be expressed as in equation (4-9). The linear trend.j', , was

removed from the data in this research so as to analyse local fluctuations.

(4-7)

where: y, = the trend value at time t

n

Q(PO,Pl) =~)y, - (Po + Plt)f
'~l

(4-8)

where: y, = the observation at time I

n = the number of time periods
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Yt = Yr +Gr (4-9)

where: Yr = the observation at time t

Yr = the trend value at time t

e, = the random error at time t

As stated in Subsection 2.3.2, when the size of seasonality is directly proportional to the

mean, the seasonality is referred to as multiplicative (Chatfield, 2004). The seasonality

of the Naval spare parts is unlikely to be directly proportional to the mean as shown in

Figure 4-4 and Figure 4-7. As stated in Subsection 2.2.3, Gardner Jr. and Diaz-Saiz

(2002) found that the forecasting performance of exponential smoothing models

coupled with additive decomposition was significantly superior to the performance of

exponential smoothing models coupled with mulplicative decomposition for predicting

automotive spare parts demand that was intermittent. The Naval spare parts demand

time series were found to be highly intermittent as the proportion of zero demand

periods [Pr(zero)] was high as shown in Table 4-6. Therefore, this research employed an

additive seasonality model.

The seasonal deviations were obtained as historical demand values deducted by trend

values:

. -Yt = Yr - Yt (4-10)

where: Yt = the seasonal deviations at time t

Y = the trend value at time tI
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The seasonal effects, s,, were calculated as the seasonal means deducted by overall

means:

(4-11)

where: S = the seasonal effect in the /h season
I

y = the seasonal means in the /h season
.I

y = the overall means

Then, the seasonally adjusted values were calibrated as historical demand values

deducted by seasonal effects:

(4-12)

where: 'yij = the seasonally adjusted value in the/h season in the ith year

Y = the observation in the jth season in the ith year
IJ

Trend and seasonally adjusted values were produced as seasonally adjusted values

deducted by trend values:

(4-13)

where: 'ii,= the trend and seasonally adjusted value in the /h season in the ithyear

s = the seasonal effect in the /h season
I

h d 1 'h'th 'h'thy!! = t e tren va ue In t eJ season In tel year
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Each time series for the demand for the 300 items (aggregated by the yearly, quarterly

or monthly aggregation method) was adjusted by the above decomposition procedure.

The adjusted time series were aggregated across the 300 items used for analysis. Figure

4-13, Figure 4-14 and Figure 4-15 describe the aggregated time series plots across the

adjusted or unadjusted yearly, quarterly or monthly aggregated time series respectively.

The downward trends were removed in the trend adjusted data plots and the trend and

seasonality adjusted data plots. The removal of the downward trends identified that the

decomposition characterised the trends. However, the decomposition failed to remove

seasonality, as most of the seasonal effects were non-significant as shown in Subsection

4.3.5. The two peak points were observed in all the aggregated time series plots. The

smallest positive peaks were observed in the trend and seasonal adjusted quarterly data

plot.
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Figure 4-13 Yearly data adjustment
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Figure 4-14 Quarterly data adjustment
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Figure 4-15 Monthly data adjustment
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Data adjustment method
u unadjusted data
I data adjusted for Iinear trend
s data adjusted for additive seasonality
Is data adjusted for linear trend and

additive seasonality

L__ I
I

I 1

I

Data aeeregation method
m monthly aggregated data
q quarterly aggregated data
y yearly aggregated data

10 direct forecastlnz methods
um a forecast with monthly aggregated unadjusted data
tm a forecast with monthly aggregated data adjusted for linear trend
sm a forecast with monthly aggregated data adjusted additive

seasonal ity
Ism a forecast with monthly aggregated data adjusted for linear trend

and additive seasonality
uq a forecast with quarterly aggregated unadjusted data
tq a forecast with quarterly aggregated data adjusted for linear trend
sq a forecast with quarterly aggregated data adjusted additive

seasonal ity
tsq a forecast with quarterly aggregated data adjusted for linear trend

and additive seasonality
uy a forecast with yearly aggregated unadjusted data
o· a forecast with yearly aggregated data adjusted for linear trend

Figure 4-16 Ten direct forecasting methods

In order to test the effect of data adjustment and data aggregation upon forecasting

performance, the four kinds of data adjustment methods together with the three data

aggregation methods were employed to generate forecasts as shown in Figure 4-16.

Abbreviations were utilised to refer to these data succinctly. Ten direct forecasting

methods are generated. In the next chapter, forecasts are generated at group level as well

as at item level in order to produce a hierarchical forecasting method. In order to

represent a hierarchical forecasting method two direct forecasting methods at group and

item levels are to be expressed in sequence with a prefix which indicates a proration

method as shown in Figure 4-1 7.

Data adjustment method ---,--------.

Proration method 1 se 1 LI_t_c..._q___,1 =1=u=====m==
L- --L_ Data aggregation method

Figure 4-17 Abbreviation for a hierarchical forecasting method

Group level Item level

The exemplified forecasting method, SCtqum indicates a forecasting method generated

by a simple combination (SC) between the forecast with quarterly aggregated data
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adjusted for linear trend at group level (tq) and the forecast with monthly aggregated

unadjusted data at item level (urn). Proration methods employed for this research are

described in the next chapter in detail.

4.5 Sources of Non-Normality

Under a holistic single case design (Yin, 2003), a typical military logistical case (i.e. the

case of spare parts in the South Korean Navy) was employed to verify the theory which

was developed in this research. As mentioned in Subsection 3.6.1, construct validity

tests correct operational measures for the concepts being studied (McCutcheon and

Meredith, 1993, Yin, 2003). The historical spare parts demand data obtained from the

logistical database of the Naval Logistics Command (NLC) were thought of as

establishing the construct validity of this research. However, the non-normal demand

causes distrust in the data generating process. In practice, the low reliability of data was

contended to be the major reason of the low accuracy of forecasting spare parts demand

in the South Korean Navy (Seon and U, 2009). Several sources of the non-normal

demand can be presented as follows.

4.5.1 Afew large customers

A few large customers could induce non-normality (Silver, 1970, Eaves, 2002).

Irregular large orders from a few customers (e.g. Naval warships) could be highly

sporadic. For instance, only 9 Ulsan class Frigates and 28 Po-Hang class Corvettes have

been commissioned in the South Korean Navy (Saunders, 2009). Spare parts demand

for the 76 MM guns which are uniquely installed in these warships has a tendency to

fluctuate depending on irregular large demand volumes from some of these warships.
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4.5.2 Operating/actors

Ghobbar and Friend (2002, 2003) pointed out three operating factors (i.e. aircraft

utilisation rate; component overhaul life; and primary maintenance process) which

contributed to generating non-normality of data in their experimental study with aircraft

spare parts data. Aircraft spare parts demand has similar characteristics to Naval spare

parts demand in that it has non-normal demand patterns and has to respond to the peak

demand reasonably (Ghobbar and Friend, 2002).

Ghobbar and Friend (2002, 2003) described the three factors as follows. Aircraft

utilisation rate was expressed as 'hours (cycles) per period' form (e.g. 7.1 hours per day

or 3.5 cycles per day). Over-utilisation can cause costly mechanical failure as well as

shorter asset-life; under-utilisation can lead to a reduction in fleet size. Component

overhaul life was expressed as 'flying hours/landings' controlled by mean time between

overhaul (MTBO) so as to assist the movement of spare parts into periodic maintenance

tasks smoothly and systematically. Primary maintenance process is a categorical factor

which is divided into three sub-factors such as hard-time, on-condition and condition-

monitoring. Hard-time indicates a preventive process in which the known deterioration

of an item is maintained to an acceptable level by the maintenance actions carried out at

periods related to time in service (i.e. calendar time, number of cycles, or number of

landings); on-condition indicates a preventive process which requires periodical

inspection against some appropriate physical standard; and condition-monitoring

indicates a corrective procedure based on information on items (e.g. the thickness of a

brake pad).
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Ghobbar and Friend (2002) noted that all the three factors affected demand variation (i.e.

the square coefficient of variation in spare parts demand sizes); and aircraft utilisation

rate was a major source of non-normality in the way that, as it increases, the square

coefficient of variation in demand size increases and the average inter-demand interval

decreases respectively. These operating factors can also be one of the main sources for

non-normality of the spare parts demand in the South Korean Navy.

By way of example, as stated in Subsection 4.3.4, the large demand for spare parts in

June of 2002 and March of 2003 in Figure 4-4 could be explained by an increased

demand of the warships caused by the sea battles with the North Korean Navy in June

of 2002 (Jie-Ae, 2002) and subsequent preparation against possible clashes before the

fishing season in the next year 2003. As stated in Subsection 2.7.3, this kind of

unexpected demand is the reason why the Navy holds a large amount of stock.

4.5.3 Multi-echelon inventory systems

The above two sources of the non-normal demand are unavoidable, because these

reflect the true demand fluctuations. However, the following three sources reflecting the

difficulty of obtaining true demand data might cause biasing effects on forecasts.

'Bullwhip effect' is defined as "the phenomenon where orders to the supplier tend to

have larger variance than sales to the buyer (i.e. demand distortion), and the distortion

propagates upstream in an amplified form (i.e. variance amplification)" (Lee et al., 1997,

p. 546). Lee et al. (1997) claimed that the 'bullwhip effect' can occur in a wholesaler-

distributor relationships. When an inventory manager in the supply chain experiences a

surge of demand in one period, the manager is likely to interpret it as a signal of high
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future demand, adjust the demand forecast, and place a large order. Typically, an

upstream supplier relies on the order data from the downstream retailer. Lee et al. (1997)

contended that this phenomenon will cause the supplier to lose track of the true demand

pattern at the retail end. Likewise, in the multi-echelon inventory systems in the South

Korean Navy, the demand information is likely to be distorted.

Choi et al. (2005) illustrated information distortion with respect to the inventory control

method based on ASL in the multi-echelon systems. If an N-ASL item changes to ASL

with a demand quantity (e.g. 100 units) in the year Y, a retail unit would place an order

to raise inventory position to Requisition Objective (R02), 127 units, which is more

than Operating Level (OL), 100 units. In this case, R02 consists ofOL (100 units) and

SL + OST (27 units). Therefore, the demand record ofthe year Y (127) is followed on. If

the item is kept as ASL in the year Y+I and later on, the retail unit would place an order

to raise the inventory position to R02 which is the same amount of stock as OL; that is

100 units (see Figure 4-18) .

Y-I Y Y+I Y+2 Y+3

.............
100~ 127

lUU 1':0 1ClO
.... -....

Figure 4-18 Change of demand (N-ASL -l- ASL) (Choi et al., 2005)
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Figure 4-19 Change of demand (N-ASL -+ ASL -+ N-ASL) (Choi et al., 2005)

However, if the item changes to N-ASL in the year Y+l, the retail unit would place an

order only 73 units: i.e. order quantity (73 units) = OL (100 units) - stock on hand (27

units) (see Figure 4-19). This is because an N-ASL item does not need SL and OST.

Although customers (i.e. warships) consume the same amount of spare parts (100 units),

fluctuation in the demand record could be observed. Choi et al (2005) contended that in

order to prevent this unnecessary fluctuation, the records of R02 and OL have to be

managed separately.

Table 4-13 presents inconsistency between the numbers of items ordered from retail-

level units (i.e. depots at Naval bases) and customer units (i.e. warships) in the South

Korean Navy.
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Table 4-13 Inconsistency between the number of items ordered in the South Korean
Navy (Seon and U, 2009)

Customer>O Retail/Customer Customer=O Customer=O (b+c)
Sum /

Retail=O <50% 50-80% 80-120%(b) 12-150% 150%< Retail>O Retail=O(c) sum
'02 878 572 1,125 22.821 291 257 320 19.293 45.557 92%

'03 1.311 643 991 17.409 243 246 202 24.512 45.557 92%

'04 785 397 736 17.300 368 323 281 25.367 45.557 94%

'05 1.566 544 946 13.819 405 544 401 27.332 45.557 90%

'06 2.113 979 1,086 12.300 333 419 369 27.958 45.557 88%
'07 2.043 850 916 11569 387 496 249 29.047 45,557 89%

Key: Retail = the number of items ordered from retail-level units; Customer = the number of items ordered from
customer units: Retail / Customer = the number of items ordered from retail-level units divided by the number of
items ordered from customer units.

Requisition Objective (R02) of retail-level units is approximately inventory for two

months (Seon and U, 2009). This is roughly 20% of annual demand quantity. Seon and

U (2009) assumed that the ratios between 80 - 120% are acceptable differences in

orders between retail-level units and customer units. When (b) and (c) are correct cases,

the ratio of correct cases can be calculated as "(b + c)/sum" and are presented in the last

column. Approximately 9% of cases were incorrect based on this criterion. This implies

9% of demand data were distorted.

As stated, an order of an ASL item can come from either the purpose of repair and

maintenance or the purpose of keeping inventory position. Whilst the order from the

purpose of repair and maintenance is true demand, the order from the purpose of

keeping inventory is proxy demand. The problem is that forecasts for procurement

decision are generated using historical order data of retail-level units (not customers)

which include orders from both purposes (Seon and U, 2009). These could not identify

true demand. This is a limitation of this research.

4.5.4 Budgeting process

Choi et al. (2005) claimed that the budgeting process could cause non-normality in the
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Military. There is a tendency of inventory managers to under-request spare parts when

the budget is deficient; however, over-request spare parts when there is sufficient budget.

This may amplify the information distortion with the multi-echelon inventory systems.

4.5.5 Maintenance system

Choi et aI. (2005) claimed information distortion caused by the maintenance system

could induce non-normality of the demand. Substituting spare parts during maintenance

processes could be one of the reasons for non-normality. As mentioned in Subsection

2.5.2, when two items are highly substitutable, the information distortion of the

observed demand from real demand becomes more serious (Widiarta et al., 2008b). Any

excess demand for an item A would be satisfied by a substitutable item B, and this

phenomenon is invisible to the inventory manager. Thus, the inventory manager is apt to

under-forecast the demand of item A, but over-forecast the demand of item B (Widiarta

et aI., 2008b).

Widiarta et al. (2008b) contended that top-down forecasting is less affected by the

information distortion, because top-down forecasting uses historical demand at group

level, which could be less dependent upon the degree of item substitutability. The South

Korean Navy purchased a series of weapon systems from the same manufacturers to

ensure stability of supply and continued technical support. For instance, the South

Korean Navy installed MTU (Motoren- und Turbinen-Union) series as a main diesel

engine for all the large warships: MTU 20V 956 TB92 for Destroyers; MTU 16V 538

TB82 for Frigates; and MTU 12V 956 TB82 for Corvettes (Saunders, 2009). This

allows a large proportion of the spare parts to be substitutable. While substitutability
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causes the difficulty of forecasting spare parts, this can make the performance of top-

down forecasting better than direct forecasting.

Maintenance for warships in the South Korean Navy is classified as Military

maintenance or contract maintenance (Korean Navy, 2003). Military maintenance refers

to a maintenance conducted by the Military maintenance units themselves. Contract

maintenance refers to a maintenance conducted by contractors with the Military. When

Military maintenance is impossible, the contract maintenance is to be conducted.

Contract maintenance could induce non-normality. Information on spare parts

consumed by the Military maintenance is updated on the logistical database in the Naval

Logistics Command; however, information on spare parts consumed by contract

maintenance is likely to be missing from the logistical database. Therefore, the entire

records of the spare parts demand could not be stored on the logistical database.

The information distortion caused by the above sources provides unreliable data to the

inventory manager for demand forecasting, then an inaccurate demand forecast caused

by the faulty data introduces large stock holdings (Choi et al., 2005, Lee, 2007). As

stated above, the first and the second sources are unavoidable because these originate

from the true demand fluctuations. However, the other three sources of the non-normal

demands would generate proxy demand data because they distort true demand. The

reliability of the data input system should be established to prevent "garbage in garbage

out". Forecasts based on the proxy demands are likely to be biased. This might be a

limitation of this research. True demand data for the purpose of repair and maintenance,

not for the purpose of stocking, should be used for generating forecasts. The entire

information on the spare parts demand, including demand for the contract maintenance
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and substitution, should be included in the logistical database, however, these data are

not currently captured.

It should be noted that research found that top-down forecasting could outperform direct

forecasting for missing or unreliable data as stated in Subsection 2.5.2 (Schwarzkopf et

al., 1988). This suggested that hierarchical forecasting could be more accurate than

direct forecasting for the spare parts data obtained from the South Korean Navy.

4.6 Summary and Conclusion

This research particularised a specific group of warships and time boundary for data

collection. The time boundary was decided from lanuary 2002 to November 2007, and

three types of warships were selected; and eight pieces of equipment installed in these

warships were selected. Then, 300 items were chosen. The 300 items were ranked in

terms of historical dollar volume within the same type of equipment and the same

NATO Supply Classification Group (NSCG). Finally, two nearest items in terms of

historical dollar volume formed a group.

The demand features of the spare parts were analysed by several measures. The time

series were found to be non-normal and correlate within a group. Thus, the findings in

the literature (Markland, 1970, Businger and Read, 1999, Eaves and Kingsman, 2004)

that military spare parts demands are non-normal were repeated in this research.

Comparing the features of group level time series with the features of item level time

series, Cv(size), Pr(peak) and Pr(zero) decreased at group level time series. This

identified reduced non-normal demand features at group level time series than those at
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item level time series. This reduced non-normality of group level time series suggests

that hierarchical forecasting would be superior to direct forecasting (Gross and Sohl,

1990, Fliedner and Lawrence, 1995, Fliedner, 2001).

In most of the data, seasonality was non-significant, although some monthly seasonal

effects were significant. Long procurement lead time was identified in the spare parts.

Long procurement lead time together with long review cycle introduces large stock

holdings. However, this long procurement lead time is a feature which makes

hierarchical forecasting more accurate than direct forecasting (Shlifer and Wolff, 1979).

Some relative demand features which are different in each equipment group were

identified. GunIRD was characterised as having higher intermittency, smaller demand

volume, shorter lead time, and more expensive prices. ME was characterised as having

lower correlation, steeper downward trend, lower intermittency, and larger demand

volume. GElAC was characterised as having higher variability, greater peakedness, and

greater deviation from a normal distribution.

In order to implement simple exponential smoothing in the next chapter for both direct

and hierarchical forecasting methods, trend component and seasonal component have to

be measured or removed (Waters, 1991, Gardner Jr. and Diaz-Saiz, 2002). Thus, linear

trend and additive seasonality adjustment was implemented. The adjustment removed

trends from the time series; however, outliers were still prominent after the adjustment.

Five sources of non-normality of data were identified: a) a few large customers; b)

operating factors; c) the multi-echelon inventory systems; d) the budgeting process; and

183



Chapter 4. Nature Of TheSpare Parts Demand

e) the maintenance system. The former two sources reflect true demand fluctuations;

however, the latter three sources would generate rather proxy demands than true

demands. This might be a limitation of this research.

However, for these missing or unreliable data hierarchical forecasting could present

better performance than direct forecasting (Schwarzkopf et aI., 1988). With respect to

the source e) the maintenance system, it was identified that a large proportion of the

Naval spare parts is substitutable. This substitutability of the spare parts is a feature

which makes hierarchical forecasting more accurate than direct forecasting (Widiarta et

al., 2008b).

As the first chapter of findings, this chapter found the nature of the demand to be non-

normal. Data features which could make hierarchical forecasting more accurate than

direct forecasting were also identified. Therefore, this chapter answers research question

a) "what is the nature of the spare parts demand in the South Korean Navy?" Then, this

chapter created the appropriate conditions to produce hierarchical forecasting; that is,

data selection, grouping and trend and seasonal adjustment. Based on this chapter. both

direct and hierarchical forecasting methods can be produced and the performance of the

forecasting methods are compared in the following chapters.
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In Chapter 4, the nature of the demand for warship spare parts in the South Korean

Navy was shown to be non-normal. Demand features, which could make hierarchical

forecasting more accurate than direct forecasting, were also identified. These include

long forecasting horizons (Shlifer and Wolff, 1979), a reduction of non-normality at

group level time series (Gross and Sohl, 1990, Fliedner and Lawrence, 1995, Fliedner,

2001), substitutability in many spare parts (Widiarta et aI., 2008b), the hierarchical

demand structure using the types of equipment and the National Stock Number (NSN),

and the unreliability of data (Schwarzkopf et aI., 1988). In this chapter, a range of direct

and hierarchical forecasting methods are compared.

As stated in the beginning of Chapter 2, forecasting performance is situational

(DeLurgio, 1998, Chatfield, 2004). The special property of intermittent data creates a

particular difficulty in selecting an appropriate accuracy measure (Syntetos and Boylan,

2005). As shown in Chapter 4, the South Korean Navy holds a large stock of spare parts

to cover the non-normal demands from warships for long lead time periods. The

performance of the Naval inventory systems for spare parts crucially influenced by its

forecasting performance could affect the operational availability of the weapon systems

using those spare parts. This requires a well-identified forecasting method that

accurately predicts the spare parts demand.

Three groups of accuracy measures such as absolute, relative and derivative measures

were reviewed in Section 2.6. The absolute and relative measures do not capture the
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monetary value and the service level of each item and so do not present the practical

impact of a forecasting method upon the inventory system. Derivative measures have

been suggested as a practical resolution to verify forecasting performance (Wernmerlov,

1989, Sani and Kingsman, 1997, Heuts et aI., 1999, Eaves, 2002). The performance of

forecasting methods was measured by the three groups of measures in this research.

This chapter begins with a review of the forecasting procedure in the South Korean

Navy in Section 5.1. The absolute and relative measures are clarified in Section 5.2. The

derivative measure is clarified in Section 5.3. Forecasting processes and results under

direct and hierarchical forecasting strategies are presented in Section 5.4 and 5.5

respectively. Finally, a summary and concluding remarks are presented in Section 5.6.

5.1 Forecasting Spare Parts Demand in the South Korean Navy

An annual demand (AD) denotes an estimate of an annual demand for an item for the

next year. An annual demand is a point forecast consisting of a single number. The

South Korean Navy does not produce a prediction interval consisting of upper and

lower limits. The Navy forecasts annual demand for items in the Authorised Stock item

List (ASL). An annual demand is forecast on the basis of yearly aggregated time series

over the most recent five years expressed as five observations (Seon and U, 2009). The

Navy uses three simple univariate demand forecast techniques (i.e. naive average;

simple moving average; and least square method) for forecasting annual demands (Seon

and U, 2009).

Narve average assumes that on examining historical data from period to period the

changes are not significant enough to be taken into consideration (Waller, 2003). Naive
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average can be defined as in equation (5-1). Naive average can smooth out random

fluctuations. It is appropriate when the observed time series have no noticeable trend

and seasonality (Hyndman et aI., 1998). Simple moving average was reviewed in

Subsection 2.2.3.

~ 1 n

Yt(l) = - LYt-I+1
n 1=1

(5-1)

where:

y, (1) = the one step ahead forecast made at time period t

Y, = the observed demand for an item at time period t

n = the number of the total time periods

A linear trend [equation (4-7)] in a time series can be estimated by fitting a straight line.

Assuming the trend will continue to future values, extrapolation using the fitted trend is

possible. Least square method assumes that the relationship between the dependent

variable, y" and the independent variable, t, can be approximated by a straight line

(Bowerman et al., 2005, Silver et al., 1998). Least square method determines the best

straight line for the given time series by minimising equation (4-8) (Waller, 2003, Cryer

and Chan, 2008). Then, least square method can generate forecasts using equation (5-2).

(5-2)

where:

Yt (r) = the r steps ahead forecast made at time period t

Po and PI= the estimated parameters
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The confidence limits can be calculated as Yt (T) ± ZI x~
2

~VAR(T) where p is the

probability value for the confidence limits, Z 1_1' is the upper 100( 1- P )% point from- 2
2

the standard normal distribution, and Var(T) is the T steps ahead forecast variance. For

example, a 95% confidence limits of the forecast can be calculated as Yt (T) ± 1.96 x

~VAR(T) (McCleary, 1980). However, the South Korean Navy does not produce

confidence limits.

Requirement objective (R01) at wholesale-level and requisition objective (R02) at

retail-level are determined based upon the annual demand. The South Korean Navy

provides criteria for the selection of a forecasting method: a) naive average is used for

the items in which the continuing annual demands are approximately similar or irregular;

b) simple moving average is used for items which exhibit downward trends; and c) least

square method is used for items which exhibit upward trends (Seon and U, 2009). The

inventory manager in the Navy selects a forecasting method for an item based on the

criteria and his experience (Seon and U, 2009). However, the Navy provides no specific

criteria expressed as the value of a demand feature or equations.

As shown in Subsection 1.2.1 the forecasting accuracy in terms of volume has been

very low. Generally this low accuracy might be caused by the nature of the demand

characterised as non-normal which was identified in Chapter 4. In addition, the current

forecasting methods in the Navy are too naive to catch the characteristics of the demand

so the methods have failed to generate accurate forecasts (Choi et al., 2005). When a

time series deviates from a normal distribution, least square method will be inaccurate

(Miles and Shevlin, 2001). Moving average could not produce an accurate forecast for
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spare parts demand compared with other methods. For instance, some authors argued

that the performance of moving average for forecasting spare parts demand for the UK

Air Force (Eaves and Kingsman, 2004) and vehicles and agricultural machinery (Sani

and Kingsman, 1997) was inferior by Croston's method and Syntetos-Boylan

Approximation. Naive average was found to be superior for forecasting the spare parts

demand in the UK Air Force to moving average; however, this was inferior to

exponential smoothing, Croston's method and Syntetos-Boylan Approximation (Eaves

and Kingsman, 2004). More accurate direct forecasting methods for spare parts than the

three forecasting methods currently used in the South Korean Navy were identified in

Subsection 2.2.3.

As stated in Section 1.3, the comparisons of various direct forecasting methods were

beyond the scope of this research. The main objective of this research was to compare

the alternative forecasting strategies within the context of spare parts demand for the

South Korean Navy. Clarifying reliable accuracy measures might be an important

precondition for comparing the forecasting strategies.

5.2 Absolute and Relative Measures of Accuracy

The intermittent and erratic characteristics of the spare parts demand require a deliberate

choice of accuracy measures. Three groups of measures were identified. This section

clarifies absolute and relative measures to be used for this research. Derivative measures

are described in the next section.

As stated in Subsection 2.6.1, it is appropriate to use mean absolute deviation (MAD) in

order to avoid heavier weight on large errors; root mean square error (RMSE) can be
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also useful when large errors cause greater inventory costs in proportion to small errors.

In order to capture these two alternative effects of large errors upon weight (or costs),

both MAD [equation (2-44)] and RMSE [equation (2-41)] were employed as absolute

measures.

In order to compare relative forecasting errors across a large amount of data, accuracy

measures should be standardised. Thus, as stated in Subsection 2.6.1, error measures

divided by means were introduced by researchers (Regattieri et al., 2005, Boylan et aI.,

2008). MADIA [equation (2-45)] and RMSE/A [equation (2-46)] were employed for

this research.

The mean rank of each forecasting method also provides a rough measure of forecasting

performance across the overall data set (Kling and Bessler, 1985, Sani and Kingsman,

1997). The forecasting performance of each forecasting method was measured and

ranked in terms of MAD and RMSE, and then the ranks of each forecasting method

were averaged across the overall data series.

A parametric test is defined as "a statistical test which assumes that scores used come

from a population of scores which is normally distributed" (Howitt and Cramer, 2008, p.

515). A non-parametric test is defined as "a statistical test of significance which requires

fewer assumptions about the distribution of values in a sample than a parametric test"

(Howitt and Cramer, 2008, p. 514). A statistical method for comparing the means of

several groups is analysis of variance (ANOVA) (Moore et aI., 2009). Although an

assumption of ANOVA is that the data are from a normally distributed population,

ANOVA F-test is robust to the non-normality (Neter et al., 1990). The spare parts
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demand data were found to be extremely non-normally distributed as shown in

Subsection 4.3.4. In this case, previous research (Sani and Kingsman, 1997, Eaves,

2002) on comparing the performance of forecasting methods for spare parts demand,

that were non-normal, used Friedman's non-parametric test. This research used

Friedman's test based on the previous research comparing forecasting methods for spare

parts demand.

If there are more than two conditions (defined as forecasting methods) and the same

cases (defined as spare parts) are used in all conditions, Friedman's non-parametric test

can be used in order to test differences between experimental conditions (Friedman,

1937). The mean rank of each forecasting method can be examined with Friedman's test,

because Friedman's test is based on ordinal data. With a sum of ranks for each condition

(Le. each forecasting method), the test statistic of Friedman's test, Fr was calibrated as

in equation (5-3) (Kanji, 2006). The test statistic, Fr has a tendency to be distributed

according to X2 distribution (see Table A-I) with k-I degrees of freedom (Howitt and

Cramer, 2008).

12 k ~
Fr = LR,- -3n(k + 1)

nk(k + 1) ,=1
(5-3)

where:

R, = the sum of ranks for each forecasting method

n = the total sample size

k = the number of conditions (i.e. forecasting methods)

As mentioned in Subsection 2.6.1, cumulative or running sum of forecast errors (RSFE)

[equation (2-48)] can detect the biased tendency of a forecasting method (Narasimhan et
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al., 1998). While unbiased forecasts lead RSFE to near zero, over-forecasting leads to

negative RSFE, and under-forecasting leads to positive RSFE. A relative size of RSFE,

S was calculated as RSFE divided by MAD [equation (2-49)].

For the purpose of comparing the two alternative forecasting strategies (i.e. hierarchical

forecasting versus direct forecasting), an unbiased relative measure was used [equation

(2-57)] (Dangerfield and Morris, 1992). As a summary statistic, a natural log of the

ratios is defined as in equation (5-4), equation (5-5), or equation (5-6). A positive log

relative error indicates that a direct forecasting method is superior to a hierarchical

forecasting method, and vice versa. LN(ratio) or LN(HF/DF) denotes this natural log

relative error in this research. For example, LN(HFltsm) for MAD indicates

In(MA DHFlMADtsm}.

Log relative error(MAD} = In(MADHF IMADDF) (5-4)

Log relative error(RMSE) = In(RMSEHF I RMSEoF) (5-5)

Log relative error(lnventory costs) = ln(lnventory costs HFI Inventory costs/)/-} (5-6)

5.3 Derivative Measures of Accuracy

Derivative measures use simulation to derive the impact of forecasting accuracy in

terms of inventory levels and service levels achieved by the inventory system. This

section formulates the simulation model used for the derivative measures. The

simulation process is illustrated with a case of an item. Then, the processes of

measuring simulation results and model selection are clarified.
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5.3.1 Simulation model structure

The simulation model employed in this research is similar to the implied stock-holding

model which was reviewed in Chapter 2 (Eaves, 2002, Eaves and Kingsman, 2004). The

simulation of this research is based on the wholesale-level procurement system which is

described in Chapter 4. This model is characterised as the (R, S) control system; that is,

the periodic-review, order-up-to-Ievel system (Silver et aI., 1998).

The real historical demand and procurement lead time data from January 2002 to

November 2007, which were employed for generating forecasts and measuring the

performance of the forecasts, were used for this simulation. For simplicity, two

restrictions of the simulation model against the real case were imposed. First, the retail-

level replenishment systems were not considered. This was because the purpose of this

simulation was to verify the performance of forecasting methods using the inventory

system and not to verify the performance of the inventory system in itself. Second, the

procurement decision was only allowed once a year (i.e. in every January of the years

considered), although in the real life case a modification of the annual procurement

decision is allowed for an exceptional case.

Figure 5-1 illustrates the simulated inventory system. The simulation was a

deterministic process. A particular demand forecast for an item always produced the

same inventory position. The simulation was based on discrete events. Each demand

was assumed to occur on the first day of every month from January 2005 to November

2007. The procurement decisions were made at three times (Le. January 2005, January

2006 and January 2007). The order-up-to-Ievel (R) was calculated until November 2007
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in order to avoid a biasing effect caused by redundant inventory after the simulation

periods. Thus, the last order quantities in January 2007 were computed as the amounts

of expected demand until November 2007. Forecast quantity can influence the inventory

position after the first delivery's arrival which are ordered by an order-up-to-Ievel (S)

based on the first forecasting. The performance was measured in each month after the

first deliveries arrived, because forecasting quantities are unable to have any effect on

the simulation performance before the first deliveries arrive (Eaves, 2002).

Replenish from
On hand inventory

On hand inventory
+ Outstanding

replenishments <
Order-up-to-Ievel

Figure 5-1 Simulation process

The simulation was conducted with the assumptions shown in Table 5-1. A primary

packaged quantity indicates a packaged quantity in which a unit of the product is

delivered. The primary packaged quantity for all spare parts was assumed as one unit.

Fractions were rounded up to the nearest integer.
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Table 5-1 Assumptions for the simulation

a) Simulation period = monthly, January 2005 - November 2007
b) Measuring period = monthly, the first delivery arrival- November 2007

c) Initial inventory position = inventory consumed before the first delivery arrival
d) Review interval (R) = twelve months procurement decision in January
e) Order-up-to-Ievel (S) = lead time demand + review period + safety level
f) Stock on hand open at time I = stock on hand close at time 1-1
g) Order quantity = S - (stock on hand open + delivery + stock on order)
h) Primary packaged quantity = one unit

A lead time demand refers to an estimated demand during the lead time. Eaves (2002)

set the initial inventory position as an equal amount to the first lead time demand plus

one unit. However, as different forecasting methods produce different lead time

demands, different initial stocks by the different forecasting methods for the same item

have a possibility of causing a biasing effect upon the simulation's performance.

Therefore, in this research, the initial inventory position of an item was established as

the same amount of inventory for all the forecasting methods; that is, the inventory

consumed after January 2005 and before the first delivery arrival. As the future demand

is invisible, establishing the initial inventory position as the inventory consumed before

the first delivery might be unrealistic. However, this might be fair for all the forecasting

methods because all the forecasting methods were given the same initial inventory

position. Too high an initial inventory position which cannot be consumed until the end

of the simulation periods would be unfairly advantageous to under-forecasting. Too low

an initial inventory position which will be depleted from the start of the simulation

periods would also be unfairly advantageous to over-forecasting. Therefore, establishing

the initial inventory position as the same amount to the inventory consumed before the

first delivery arrival would have no biasing effect upon the comparisons of the

forecasting methods which can be introduced by the initial inventory position based on
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different forecasts as in Eaves (2002).

5.3.2 Simulation process

Table 5-2 exemplifies the simulation process. This simulation employs a forecasting

method, namely a simple combination (Se) between an exponential smoothing model

with quarterly aggregated data adjusted for linear trend at group level and an

exponential smoothing model with monthly aggregated data adjusted for additive

seasonality at item level (SCtqsm). Detailed description of forecasting methods will be

provided later in this chapter. Using SCtqsm, three forecasts were generated for the

simulation; that is, forecasts in January 2005, January 2006 and January 2007. The

initial inventory position was set as 17 units because the historical demand before the

first delivery arrival (i.e. in this case until September 2005) is 17 units. Delivery was

assumed to be completed at the end of the procurement lead time (PROLT), then to be

used from the first day of the next month. Assuming the PROLT of the exemplified item

is 9 months, the first delivery would arrive on the last day of September 2005, and the

items can be replenished from the first day of October 2005. A stock on hand close was

calculated as the sum of stock on hand open and delivery quantity minus demand

quantity. The stock on hand close in October 2005 was calculated as "16 = 0 + 17 - 1".
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Table 5-2 Example of the simulation process

Stock
Stock

Stock
Back

Demand On Order Delivery On Stock
Unfilled

Forecast Safety
Order-

On Order Demand up-to-
Qty Hand Qty Qty Hand Qty Qty Level

Open
Order

Close
Qty Qty Level

Jan-05 5 17 17 12 12 29.67 4.24 34

Feb-05 12 17 12 12

Mar-05 6 12 17 6 6

Apr-05 6 17 6 6

May-05 6 17 6 6

Jun-05 6 17 5 5

Jul-05 5 17 4 4

Aug-05 4 4 17

Sep-05 0 17

Oct-05 0 17 16 16

Nov-05 4 16 12 12

Dec-05 12 II II

Jan-06 2 II 20 9 9 26.38 3.77 31

Feb-06 4 9 20 5 5

Mar-06 8 5 20 -3 3 3

Apr-06 -3 20 -3 3

May-06 -3 20 -3 3

Jun-06 -3 20 -4 4

Jul-06 -4 20 -4 4

Aug-06 -4 20 -4 4

Sep-06 2 -4 20 -6 6 2

Oct-06 -6 20 13 13

Nov-06 I3 I3 13

Dec-06 13 I3 13

Jan-07 I3 4 13 13 14.31 1.95 17

Feb-07 13 4 13 I3

Mar-07 2 I3 4 II II

Apr-07 II 4 II II

May-07 II 4 10 10

Jun-07 10 4 10 10

Jul-07 2 10 4 8 8

Aug-07 4 8 4 4 4

Sep-07 4 4 4 4

Oct-07 4 4 7 7

Nov-07 7 6 6
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A safety level was calculated by multiplying the forecast quantity (i.e. lead time demand

and review period) by the safety period (i.e. three months) divided by the sum of the

PROLT and review period. The first forecast quantity, the safety period, the PROLT, and

the review period are 29.67 units, 3 months, 9 months, and 12 months respectively.

Thus, the first safety level was calculated as a quantity for three months; that is, "4.24

units = 29.67 x [3 / (9 + 12)]". The first order-up-to-level (S) was calculated as the

safety level plus forecast quantity (i.e. lead time demand and review period); that is,

"33.91 units = 4.24 + 29.67". Then, the first order-up-to-level is rounded up to 34 units

which are multiple of the primary packaged quantity (i.e. one unit). The last safety level

was calculated as a quantity for one and a half months which is a half quantity of the

safety level in the previous periods. This is because the demand data were only

available until November 2007 (i.e. 11 months from the last order point, which is

roughly a half of the forecasting horizon of the two previous periods). If the last safety

level is established as the same quantity as the previous safety level (i.e. the quantity for

3 months), this would introduce a biasing effect which can be advantageous to under-

forecasting. Therefore, the last safety level was calculated by multiplying the forecast

quantity (i.e. estimated demand for eleven months) by the safety period (i.e. one and a

half months) divided by forecasting periods (i.e. eleven months); that is, "1.95 units =

]4.31 x (1.5111)".

An order quantity was calibrated as order-up-to-level (S) minus the sum of stock on

hand open, delivery and stock on order. The first order quantity was calculated as "17 =

34 - (17 + 0 + 0)". The first backorder occurred in March 2006. The demand quantity, 8

units, is 3 units larger than stock on hand open, 5 units, without any delivery arrival.

Thus, 3 units were backordered until the next replenishment arrival which was planned
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in October 2006. These backorders accumulate continuously until October 2006. Thus,

the maximum stock-out reached 6 units in September 2006.

5.3.3 Measures of inventory model performance

As stated in Subsection 2.7.3, the performance of an inventory model from a simulation

can be measured by the total inventory costs and the inventory fill rate (Petrovica et al.,

1998). It was also mentioned that the total inventory costs can be calculated as the sum

of inventory carrying costs and inventory stock-out costs (Sterman, 1989, Sani and

Kingsman, 1997, Petrovica et al., 1998, An et al., 2002). As noted in Subsection 2.7.3,

quantifying inventory stock-out costs is difficult, especially in militaries (MacDonald,

1997).

Total inventory costs

For the purpose of sorting out the difficulty in quantifying stock-out costs, two kinds of

approach, namely safety margin approach and total inventory costs approach, were

employed in previous research. The safety margin approach refers to a simulation

method which avoids the quantification of stock-out costs (Wemmerlov, 1989, Eaves,

2002, Eaves and Kingsman, 2004). The total inventory costs approach refers to a

simulation method which attempts to establish a reasonable criterion to quantify stock-

out costs (Sterman, 1989, Sani and Kingsman, 1997, An et al., 2002).

The safety margin approach used by some authors (Wemmerlov, 1989, Eaves, 2002,

Eaves and Kingsrnan, 2004), which provides spare parts to user units as a till rate 100%

by adding the safety stock levels to the order-up-to-level until no stock-outs occurred,

were reviewed in Subsection 2.7.3. This safety margin approach could be considered to

199



Chapter 5. Forecasting The Spare Parts Demand

be an appropriate methodology to a simulation for a military inventory system. This is

because militaries are unlikely to reconcile themselves to the risk of stock-out. However,

assuming an inventory system which holds the exact same amount of safety stock to

achieve a 100% fill rate is rather unrealistic. In practice, the safety stock level is

determined by a forecast for the demand and cannot be adjusted to the exact amount of

no stock-out because the future demand for the safety stock is invisible. The shortage of

some items of spare parts is unavoidable in militaries. As mentioned in Chapter 1,

although the US Military continues to hold as much as 60% excess stock, inventory

shortages for some items still occur (Hinton Jr., 1999). Therefore, a reasonable criterion

to quantify stock-out costs for spare parts was required.

As mentioned above, the total inventory costs can be calculated as the sum of inventory

carrying costs and inventory stock-out costs. However, it is difficult to quantify the

inventory costs, especially the inventory stock-out costs. Waller (2003) suggested a

rough stock-out costs structure which consists of 55% of a backorder case, 25% of a lost

sale case, and 20% of a lost customer case. For example, if the costs of a backorder, a

lost sale, and a lost customer are £5, £50 and £500, respectively, the expected stock-out

costs would be: 0.S5x£5 + 0.25x£50 + 0.20x£500 = £115.25.

In the South Korean Navy, every unfilled spare part demand is backordered. Then, the

unfilled spare parts are either expedited for a special case with a specially allocated

budget or supplied in the next regular delivery. The case of lost customers can be

thought of as being equivalent to non-operational weapon systems caused by either

incomplete repair or incomplete maintenance. As such, the costs of lost customers also

need to be considered in the stock-out costs.
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As stated in Subsection 2.7.3, previous researchers (Sterman, 1989, Sani and Kingsman,

1997, Petrovica et al., 1998, An et al., 2002) quantified the total inventory costs by their

own criteria. When the information of unit variable costs is available, quantifying the

total inventory costs as a fraction of unit variable cost might be rational as with the total

inventory costs structure by Sani and Kingsman (1997).

Excess stock holdings increase inventory carrying costs (Waller, 2003). However, stock-

out costs can dramatically outweigh unit variable cost as stated in Section 4.1. Avoiding

a stock-out situation in order to sustain operational availability of weapon systems and a

fast response to the demand might be more important than saving inventory carrying

costs.

Thus, a stock-out case in the South Korean Navy might have to be charged more penalty

costs than a stock-out case in business; for example, 33% of the item costs in the above

case of Sani and Kingsman (1997). As with the costs structure of An et al. (2002),

weighing twice the inventory carrying costs on the inventory stock-out costs might be

appropriate. As such, in this research, following An et al. (2002), the total inventory

costs were calculated using equation (5-7).

Total inventory costs = unit variable cost x (mean inventory per month

x 0.2 + mean stock-out per month x 0.4)

(5-7)

In this research, the performance of a forecasting method was measured after the first

delivery arrival until November 2007. In the exemplified simulation process, the

performance was measured between October 2005 and November 2007. This is because
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the first delivery arrived on the last day of September 2005. The unit variable cost of the

item, the monthly mean inventory position, and the monthly mean backorder quantity

are W828,353 (£423), 6.73 units, and 1.04 units respectively. Using equation (5-6), the

total inventory costs were calculated as "Wl,549,558 (£792) = (6.73 x 0.2 + 1.04 x 0.4)

x W828,353".

Inventory fill rate

The performance of a simulation model can also be measured by an inventory fill rate.

This research used equation (2-62) to compute the inventory fill rates. In the

exemplified simulation process, the performance was measured between October 2005

and November 2007 (i.e. 26 months). The monthly mean shortage was calculated as the

sum of unfilled demand quantity divided by simulation periods; that is, "0.23 = 6/26".

The monthly mean demand between October 2005 and November 2007 was 1.35 units.

As the fill rate is to be calculated as one minus the mean shortage divided by the mean

demand, it was calculated as "0.83 = I - (0.23/1.35)".

The inventory fill rate is easier to calculate than the total inventory costs. However, the

inventory fill rate is incapable of summarising the total performance of a model. By

simply adding inventories to the safety level regardless of increasing inventory carrying

costs, the inventory fill rate can be increased. Moreover, the inventory fill rate could not

capture the volume and monetary value of all the items, so that the inventory fill rate

cannot summarise the total performance appropriately. However, the total inventory

costs can comprise the carrying inventory quantities and the stock-out quantities as well

as the monetary values of all the items, although they are difficult to calculate exactly.

Therefore, in this research, the total inventory costs were employed as the major
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performance measure, whereas the inventory fill rate was employed as a qualifying

measure. The South Korean Navy considers that a fill rate for the spare parts, greater

than 70%, is to be an acceptable fill rate. Therefore, for this research, a fill rate greater

than 70% was assumed to be qualified as an acceptable fill rate.

5.3.4 Simulation model selection

The two mentioned approaches toward the total inventory costs were compared. Table

5-3 presents the results of two simulation models. Model I employed the total inventory

costs approach; model II employed the safety margin approach. As the simulation model

of this research, the process of model I was exemplified earlier in this chapter. As

described in Chapter 2, in model II, the safety stock level increased iteratively to the

order-up-to-level until no stock-outs occurred under the (R, S) control system (Eaves,

2002, Eaves and Kingsman, 2004). Real data for the selected 300 items were used for

this simulation. Simple exponential smoothing using a software package, Forecast 2.04

(Hyndman, 2010), was employed to generate forecasts. For the purpose of comparing

the simulation models, the two models used the same forecasting quantities.

Table 5-3 Simulation model comparisons

Model I Model II
S

Inventory costs Mean fill rate Inventory costs Mean fill rate
um W778,942,252 0.865 W3,709,522,615 1.00 -129.79
tm W804,463,179 0.630 W3,733,496,873 1.00 91.91
sm W887,983,370 0.869 W4,183,624,548 1.00 -136.46
Ism W790,657,985 0.762 W3,910,508,135 1.00 -8.3
uq_ W816,285,294 0.859 W3,859,OO6,687 1.00 -133.74
tq_ WS04, 120, 116 0.623 W3,687,836,343 1.00 98.14
sq_ W981,537,203 0.851 W4,599,250,682 1.00 -129.81
Isq_ W922, 928,23 7 0.679 W4,312,433,923 1.00 37.54

ul: Wl,368,692,175 0.880 W6,175,031,932 1.00 -147.37

!.!:: WI,IS5,235,950 0.760 W3,927,614,229 1.00 24.S2
S = the relative size of RSFE: a negative S value indicates that the forecasting method continuously
generated over-forecasts, and vice versa.
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Positive S values of tm, tq, tsq and ty denoted that these forecasting methods

continuously generate under-forecasts. Negative S values of urn, sm, tsm, uq, sq, and uy

denoted that these forecasting models continuously generate over-forecasts. In Model I,

urn (followed by tsm) minimised the inventory costs. tm, tq, and tsq were disqualified by

their fill rates of smaller than 70%. On the other hand, in Model II, tq (followed by urn)

minimised the inventory costs. Comparing the total inventory costs of the forecasting

methods for the two simulation models, Model II was found to be advantageous to

under-forecasts. Figure 5-2 describes the change of the ranks for the forecasting

methods in terms of the total inventory costs in the two simulation models. As shown in

the figure, the under-forecasts have a tendency of being ranked higher in Model II than

Model I in terms of the total inventory costs; the over-forecasts have a tendency of

being ranked lower in Model II than ModelL

Rank 1

Rank 1

Rank .3

Rank .t

Rank :;

Rank6

Rank7

RankS

Ran}.;:9

Rank 10

Modell

D negativ eS' (ov er-fcrecast)

Model IIo positive S(under-forecast)

Figure 5-2 Forecasting performance comparisons in the two simulation models
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This advantageous position to under-forecasts m Model II might be caused by the

unrealistic adding ofthe safety stocks. By adding safety stock up to the exact amount of

no stock-out, under-forecasts can minimize unnecessary stocks, so that under-forecasts

score lower total inventory costs in Model II. As a matter of fact, however, the safety

stock level is determined by a forecast quantity and cannot be adjusted to the exact

amount of no stock-out, because the future demand of the safety stock is invisible. As

mentioned, the shortage of some items of spare parts is unavoidable in militaries. Model

I was employed as the simulation model for this research, because Model I establishes

the safety stock level according to a forecast quantity, so it is closer to a real life

situation.

5.4 Direct Forecasting

In the previous sections, the three accuracy measures which were employed for this

research were clarified. In Sections 5.4 and 5.5, forecasting results are analysed using

the three accuracy measures. Two alternative forecasting strategies (direct and

hierarchical forecasting strategies) to forecast non-normal demand were reviewed in

Chapter 2. For the purpose of generating a hierarchical forecast, a direct forecast at

group level or direct forecasts at both group and item levels need to be generated. As a

preliminary task in developing hierarchical forecasting methods, this section develops

direct forecasting methods at both group and item levels and analyses the performance

of the direct forecasting methods. Then, the performance of direct forecasting methods

will be compared with that of hierarchical forecasting methods in the next section.
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5.4.1 The development of direct forecasting methods

A variety of direct forecasting methods for non-normal demand were reviewed in

Subsection 2.2.3. Some authors (Businger and Read, 1999, Jiafu et aI., 2009) used the

Box-Jenkins models to forecast spare parts demand. As mentioned in Section 3.7, the

Box-Jenkins models were the initial models used to examine the spare parts demand

data obtained from the South Korean Navy. This research used a series of diagnostic

tests (for the Box-Jenkins models) such as the analysis of residuals against fitted values,

the analysis of the standardized residuals, and the analysis of probability plots. The new

residuals (it) and the standardized residuals (et) can be expressed as in equation (5-8)

and (5-9) respectively.

~ ~
Ct = Yt - Yt (5-8)

et = (Yt - Yt)/ .JP: (5-9)

where: Yt = the observed demand for an item at time period t

~
Yt = the estimated demand for the item at time period t

Pt = the estimated error variance at time period t

In equation (5-8), the new residuals, it, against the fitted values, Yt, should give a

random scatter if the model fits the data (Shumway and Stoffer, 2006). However, in

most of the 300 units of data, there were still some patterns remaining in the plots after

the Box-Jenkins models had fitted the data. Figure 5-3 exemplifies the plots of residuals,

Ct, against the fitted values, Yt· Monthly aggregated time series for four spare parts (i.e.

Starting Valve, Cylinder Ring, Air Reduction Valve, and Flexible Shaft for ME II) were
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fitted with ARMA (1, 1), ARMA (2, 1), ARMA (1, 1) and ARIMA (1, 1, 0) which were

found to be the best fitting models for the time series respectively. However, as shown

in the figure, all the plots failed to give a random scatter.
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Figure 5-3 Residuals against fitted values

In equation (5-9), the standardized residuals, et, should behave as an independent and

identically distributed (iid) sequence with a mean of 0 and variance of 1 if the model fits

the data (Shumway and Stoffer, 2006). Figure 5-4 presents the standardized residuals

plots for the above four spare parts. As shown in the figure, all the plots failed to

provide an iid sequence. Assuming standardized residuals have a normal distribution 99%

of the standardized residuals should lie between -2.58 and +2.58. All the residuals

violated this assumption as 95.45% of residuals for Starting Valve, 95.77% of those for
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Cylinder Ring, 98.59% of those for Air Reduction Valve, and 97.18% of those for

Flexible Shaft lay between -2.58 and +2.58.
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Figure 5-4 Standardized residuals

Figure 5-5 presents probability plots against a normal distribution for the above four

spare parts. The distributions of the data were non-normal and skewed (as the curves

deviated from a straight line and were asymmetrical). Outliers, where the line jumps to

the end, were identified. Based on the above diagnostic tests, the Box-Jenkins models

were found to not fit the spare parts demand data obtained from the South Korean Navy.
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Figure 5-5 Probability plots of the residuals

in structure (Chatfield, 2004). Multivariate models can be expected to give more

accurate forecasts than univariate models when a high cross-correlation between time

series, such as financial time series, is observed. However, Willemain et a1. (1994)

found that the sparseness of the empirical intermittent data makes most of the cross-

correlation non-significant. Multivariate models are unlikely to produce more accurate

forecasts for intermittent demand than univariate models.

As stated in Subsection 4.5.2, a few large customers (i.e. warships) could induce non-

normality (Silver, 1970, Eaves, 2002). Considering the large number of warships in the

US Navy (Saunders, 2009), it can be expected that the demand for spare parts in the US
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Navy may not fluctuate as much as the demand for spare parts in the South Korean

Navy which has fewer warships. The failures of fitting the Box-Jenkins models to the

demand data obtained from the South Korean Navy might be caused by the smaller fleet

size consisting of fewer warships that might induce greater non-normality in the

demand data than the demand data obtained from the US Navy that were used by

Businger and Read (1999).

As stated in Subsection 2.2.3, Jiafu et al. (2009) used ARMA models to forecast spare

parts demand. The spare parts demand data used by Jiafu et al. (2009) might have

different characteristics from the spare parts demand data obtained from the South

Korean Navy. As the total observed demand for four spare parts used by Jiafu et al.

(2009) in 2007 was 12,665 units, the mean yearly demand per item can be calculated as

3,166.25 units. As shown in Table 4-6, the mean yearly demand per item of this

research was 189.83 units. The spare parts data from the South Korean Navy were

probably more intermittent and fluctuated more than the data used by Jiafu et al. (2009).

Large volumes of demand might have led to reasonable performance of ARMA models

in the investigation of Jiafu et al. (2009).

As stated in Subsection 2.2.3, the standard forecasting method for non-normal demand

is exponential smoothing (Croston, 1972, Sani and Kingsman, 1997, Narasimhan et aI.,

1998). As stated in Subsection 2.5.2, simple exponential smoothing has been shown to

be superior to moving average or other complex models when used with hierarchical

forecasting (Fliedner and Lawrence, 1995, Fliedner, 1999, Dekker et al., 2004,

Viswanathan et aI., 2008). The suitability of simple exponential smoothing for

hierarchical forecasting was discussed in Subsection 2.5.2 (Fliedner, 1999). As stated in
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Section 1.3, the main objective of this research was comparing direct and hierarchical

forecasting strategies. In the assessment of forecasting strategies for spare parts in the

South Korean Navy this research uses simple exponential smoothing as a benchmark to

compare the alternative forecasting strategies. In this research, simple exponential

smoothing was adopted as an individual forecasting method for both forecasting

strategies (i.e. hierarchical forecasting and direct forecasting) due to the following

reasons:

a) the performance of simple exponential smoothing has been well-verified in research

(Fliedner and Lawrence, 1995, Fliedner, 1999, Dekker et aI., 2004, Viswanathan et

aI.,2008);

b) simple exponential smoothing is suitable for the purpose of forecasting spare parts

demand for controlling spare parts inventory (Fliedner, 1999);

c) simple exponential smoothing is suitable for forecasting a large number of spare

parts which is the case with spare parts for warships in the South Korean Navy,

because simple exponential smoothing requires less time to generate forecasts

especially with a large number of items (Fliedner, 1999);

d) the potential trend and seasonality of spare parts demand can be removed through

trend and seasonal adjustment, so that simple exponential smoothing can be used for

forecasting spare parts demand.

Simple exponential smoothing (SES) for forecasting spare parts was generated utilising

a forecasting software-package, i.e. "Forecast 2.04" (Hyndman, 2010). As mentioned in

Subsection 2.5.2, the smoothing parameters might not have a significant effect on the

relative forecasting performance of hierarchical and direct forecasting methods
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(Dangerfield and Morris, 1992). Thus, optimal smoothing parameters which were

generated in "Forecast 2.04" have been simply employed.

As a holistic single case design (Yin, 2003), forecasts were generated at the wholesale-

level; that is, the Naval Logistics Command (NLC). The NLC decides annual demand

(AD) for items in Authorised Stock item List (ASL) once a year, although modification

is allowed throughout a year. Likewise, forecasts for this research were produced at four

times: i.e. January 2004, January 2005, January 2006, and January 2007. These

forecasting results were assumed to be used as a basis of annual procurement decisions

in this research. Forecasting horizons were established as the period including

procurement lead time (between 3 and 18 months) and review period (12 months).

Therefore, forecasting horizons were set up as quite long periods between 15 months

and 30 months (i.e. procurement lead time + review period). As stated in Subsection

4.3.2, the period of data obtained from the Navy was January 2002 to November 2007.

Hence, the forecasts were generated until November 2007; the performance of the

forecasts was measured until November 2007.

Each forecast was based on all the previous periods. For example, the forecast for 2005

(or 2006) used data for the periods between January of2002 and December of2004 (or

2005). Based on monthly aggregated data, SES generates a one period ahead (i.e. one

month ahead) forecast. In order to generate a long period forecast, this one period ahead

forecast was multiplied by the forecasting horizons. For example, in order to generate a

20 months ahead forecast, the one period ahead forecast was multiplied by 20. Based on

quarterly or yearly aggregated data, a one period ahead forecast was multiplied by the

fraction of the quarters or the years. For example, in order to generate a 20 months
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ahead forecast, the one period ahead forecast based on quarterly aggregated data was

multiplied by 20/3.

As shown in Section 4.4, the data were adjusted for the four data adjustment methods (u,

I, s, and IS) to generate the forecasts. After generating the forecasts using the adjusted

data, the forecasts were reverse adjusted so that the forecasts could be compared with

actual demands.

5.4.2 Group level forecasting

As mentioned in Section 1.3, item level forecasting is the major concern of this research.

However, group level forecasting should also be investigated because the group level

forecasting accuracy might affect item level forecasting accuracy with a proration

method (Gross and Sohl, 1990). Simple exponential smoothing forecasting models were

generated for predicting the group level demand of the 150 pair groups which were

clarified in Subsection 4.3.2. Forecasting results for four different measuring periods

were provided, that is, 2004 - 2007,2005 - 2007,2006 - 2007, and 2007. For example,

for the forecasting measuring period, 2004 - 2007, four forecasts were generated for a

pair group using each forecasting method in January of 2004, January of 2005, January

of 2006 and January of 2007. Likewise, for the forecasting measuring period, 2005 -

2007, three forecasts were generated for a pair group using each forecasting method in

January of 2005, January of 2006 and January of 2007. As such, the forecasting errors

were measured once a year.

Table 5-4 provides a summary of the performance of direct forecasting methods for the

150 pair group level demand as the sums of the standardised errors. As stated in Section

213



Chapter 5. Forecasting The Spare Parts Demand

5.2, for the purpose of comparing forecasting performance across a large amount of data,

forecasting errors (MAD and RMSE) were divided by the mean demand of the time

series (Regattieri et aI., 2005, Boylan et al., 2008). MAD and RMSE for each forecast

have been divided by the yearly mean demand of the data which were used for

generating the forecast. For example, MAD and RMSE between 2005 and 2007 were

divided by the yearly mean demand of the data used for generating the 3 years of

forecasts between 2002 and 2004. As such, MAD/ A and RMSE/ A for each forecast

were generated. Then, S (RSFE/MAD), MAD/A, and RMSE/ A for the 150 pair groups

were summed up respectively to present the summary of the performance for each

forecasting method. Table 5-4 presents these sums of the standardised errors for each

forecasting method.

Table 5-4 Sums of direct forecasting errors at group level

Year um tm sm Ism um tq sq tsq uy ty
04-07 -92.40 -28.82 -97.67 -59.50 -97.20 -21.45 -95.55 -32.20 -81.22 -2.32

05 - 07 -68.42 59.12 -74.23 17.50 -82.42 60.10 -79.29 30.03 -66.30 28.09
S

06-07 -34.97 89.56 -49.29 53.09 -55.76 91.14 -54.63 67.39 -43.50 80.69

07 -32.00 58.00 -38.00 22.00 -54.00 66.00 -52.00 44.00 -58.00 60.00

04-07 92.11 208.84 107.18 125.86 96.52 133.72 109.56 124.63 96.17 78.58

MAD 05 - 07 86.01 176.33 86.27 75.81 93.44 97.05 94.43 88.73 90.44 93.65

lA 06-07 79.68 194.88 77.05 75.21 86.15 104.41 82.33 87.75 85.95 95.48

07 54.50 172.54 53.65 51.31 56.94 69.05 56.06 60.18 59.07 67.72
04-07 109.89 256.39 134.86 177.01 113.54 175.67 135.31 167.01 112.66 93.29

RMSE 05 - 07 99.84 191.48 100.98 90.58 108.84 112.20 111.67 104.79 104.42 110.15
lA 06-07 89.20 207.51 86.26 85.33 97.57 116.66 93.27 98.61 95.80 106.51

07 54.50 172.54 53.65 51.31 56.94 69.05 56.06 60.18 59.07 67.72

The balanced forecasts in terms of S and the forecasting methods giving minimmum MADIA or
RMSEI A are shown in bold.

The forecasting results in 2004 - 2007 and others were obviously different. This might

be caused by the high influence of the two peak points in June 2002 and March 2003

previously mentioned upon the forecasts in 2004. A relative size of RSFE, S

(RSFEIMAD) denotes the tendency of over- and under-forecasts. As stated in

Subsection 2.6.1, S should be used with caution, because the purpose of S is to monitor
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the balance of negative and positive errors. An S close to zero does not mean an

accurate forecast, but a balanced forecast. In the years 2004 - 2007, all forecasting

methods produced an over-forecast due to the high influence of peak points in 2002 and

2003 upon the forecasts in 2004. As stated in Section 2.4, Gross and Sohl (1990)

contended that the applicability of top-down forecasting when a consistent direction of

group level forecasting is observed. The consistent over-forecasting caused by the peak

points might have an implication for a suitable condition of hierarchical forecasting.

With the exception of the forecasts in 2004 - 2007, the forecast with data adjusted for

linear trend (t) and the forecast with data adjusted for linear trend and additive

seasonality (ts) were under-forecasts, whereas the forecast with unadjusted data (u) and

the forecast with data adjusted for additive seasonality (s) were over-forecasts.

MADIA and RMSE/A showed similar results. In the years 2004 - 2007, the forecast

with yearly aggregated data adjusted for linear trend (ty) minimised MADIA and

RMSEIA. However, with the exception of the year 2004, the forecast with monthly

aggregated data adjusted for linear trend and additive seasonality (tsm) followed by the

forecasts with monthly aggregated unadjusted data (urn) dominated by minimum

MADIA and RMSEIA.

The above results were corroborated as shown in Table 5-5. Table 5-5 presents the mean

ranks of direct forecasting methods at group level. Friedman's non-parametric test was

conducted. The number of treatments is 10 (i.e. the number of direct forecasting

methods) and the number of blocks is 150 (i.e. the number of the groups). In the years

2004 - 2007, the forecast with yearly aggregated data adjusted for linear trend (/y)
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minimised the mean rank in terms of MAD and RMSE; whereas, with the exception of

the forecasts in 2004 the forecast with monthly aggregated data adjusted for linear trend

and additive seasonality (tsrn) followed by the forecast with monthly aggregated

unadjusted data (urn) minimised the mean rank in terms of MAD and RMSE.

Table 5-5 Mean ranks of direct forecasting methods at group level
(Friedman's test for forecasting errors: p-value < 0.001)

Year um 1m sm Ism uq Iq sq ISq_ u./:: ~
04 - 07 4.04 8.03 5.54 6.70 4.30 7.45 5.42 6.54 3.95 3.01
05 - 07 4.95 6.21 5.19 3.90 5.93 6.37 5.89 5.33 5.24 5.95

MAD
06 -07 4.73 6.51 4.91 4.21 5.35 7.01 5.41 5.16 5.35 6.16

07 4.95 5.97 5.21 4.63 5.38 6.39 5.35 5.25 5.48 6.05
04 - 07 3.87 8.01 S.25 7.33 4.29 7.36 5.32 6.76 3.74 3.07
OS- 07 4.98 6.01 5.21 3.87 6.07 6.31 6.24 5.31 5.01 5.96

RMSE
06 -07 4.70 6.53 4.93 4.33 5.38 7.01 5.47 5.23 5.24 5.97

07 4.95 5.97 5.21 4.63 5.38 6.39 5.35 5.25 5.48 6.05

The mean rank of the forecasting method among the 10 direct forecasting methods over the 150
groups in terms of MAD or RMSE is presented in each cell; the forecasting methods minimising
the mean rank in terms of MAD or RMSE are shown in bold.

Table 5-6 Forecasting accuracy comparisons by data aggregation (group)

Year m q y

04 -07 6.08 5.93 3.48
05 -07 5.06 5.88 5.59
06-07 5.09 5.73 5.75

07 5.19 5.59 5.77
04 -07 6.12 5.93 3.40
05 -07 5.02 5.98 5.49
06 -07 5.13 5.77 5.61

07 5.19 5.59 5.77

MAD

RMSE

The mean rank of the forecasting methods using the data aggregation method in Table 5-5 is
presented in each cell; the data aggregation methods minimising the mean rank in terms of
MAD or RMSE are shown in bold.

Table 5-6 presents a summary of Table 5-5 in terms of the data aggregation method. In

the years 2004 - 2007, the forecast with yearly aggregated data (y) minimised the mean

rank in terms of MAD and RMSE; however, with the exception of the forecasts in 2004,

the forecast with monthly aggregated data (rn) minimised the mean rank in terms of
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MAD and RMSE.

Table 5-7 Forecasting accuracy comparisons by data adjustment (group)

Year u I s Is

04 -07 4.10 6.19 5.35 6.52

MAD
05 -07 5.37 6.15 5.49 4.96
06 -07 5.14 6.41 5.20 4.85

07 5.27 5.90 5.52 4.97
04 -07 3.96 6.19 5.23 6.84

RMSE
05 -07 5.35 6.20 5.52 4.91
06 -07 5.11 6.48 5.15 4.89

07 5.27 5.90 5.52 4.97
The mean rank of the forecasting methods using the data adjustment method in Table 5-5 is
presented in each cell; the data adjustment methods minimising the mean rank in terms of MAD
or RMSE are shown in bold.

Table 5-7 presents a summary of Table 5-5 in terms of the data adjustment method. The

forecast with unadjusted data (u) presented the minimum mean rank. in the years 2004 -

2007, and the second minimum mean rank. in other periods. The forecast with data

adjusted for linear trend and additive seasonality (IS) minimised the mean rank. with the

exception of the year 2004.

5.4.3 Item level forecasting

Item level forecasting was the major subject of this research. Simple exponential

smoothing forecasting models were generated for the 300 items. As with group level

forecasting, forecasting results for four different measuring periods were provided, that

is, 2004 - 2007, 2005 - 2007, 2006 - 2007, and 2007. For example, three forecasts

were generated for an item using each forecasting method in January of 2005, January

of 2006 and January of 2007. The results of the item level forecasting were similar to

the above results of the group level forecasting. Table 5-8 presents the results of the

item level direct forecasting over the 300 items. As in Table 5-4, this table also presents

the sum of the standardised errors for each forecasting method. In the years 2004 - 2007,
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every forecasting method had a tendency towards over-forecasting. From the year 2005,

there was a tendency of under-forecast in the forecast with data adjusted for linear trend

(t) and the forecast with data adjusted for linear trend and additive seasonality (IS) with

the exception of the forecast with monthly aggregated data adjusted for linear trend and

additive seasonality (tsm) in the years 2005 - 2007.

Table 5-8 Sums of forecasting errors (item)

Year um 1m sm Ism uq tq sq tsq uy ty

04-07 -160.50 -44.61 -175.89 -114.31 -157.24 -31.66 -155.68 -56.13 -173.30 -32.21

05 -07 -129.79 91.91 -139.46 -8.30 -133.74 98.14 -129.81 37.54 -147.37 24.81
S

06-07 -84.46 147.80 -101.85 54.85 -88.53 148.52 -96.60 91.64 -100.26 121.17

07 -82.00 106.00 -88.00 14.00 -80.00 11600 -98.00 54.00 -104.00 92.00

04 -07 258.36 375.24 293.09 352.99 262.04 362J5 297.85 347.15 381.59 284.77

MAD 05 - 07 214.59 240.43 221.64 209.91 226.08 24302 23405 231.04 309.00 282.18

lA 06-07 214.75 254.65 210.83 208.39 221.28 255.52 220.34 227.56 292.26 271.73

07 147.76 167.05 147.60 143.05 149.58 168.58 151.08 150.78 221.49 186.66

04-07 314.13 498.58 365.96 477.92 311.65 473JO 370.84 455.47 439.47 347.74

RMSE 05 -07 249.19 283.93 259.08 250.98 262.67 286.49 276.68 275.72 350.52 338.24

lA 06-07 237.15 284.22 232.63 233.10 246.06 286.10 245.95 254.89 319.11 307.39

07 147.76 167.05 147.60 143.05 149.58 168.58 151.08 150.78 221.49 186.66

The balanced forecasts in terms of S and the forecasting methods giving minimum MADIA or
RMSE/A are shown in bold.

MAD and RMSE were divided by the yearly mean demand of the data which had been

used for generating the forecast. With the exception of 2004, Ism presented minimum

MAD/A, which is consistent with the forecasting result at group level. However, the

forecasting method giving minimum RMSE/ A was different from the result for group

level forecast in each row. Moreover, the item level forecast giving minimum MAD/ A

in each row was incongruous with the item level forecast giving minimum RMSE/ A in

each row.

Compatible results were observed in terms of the mean ranks of direct forecasting

methods at item level, as shown in Table 5-9. This supports the result of group level
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forecasting. The number of treatments is 10 (i.e. the number of direct forecasting

methods) and the number of blocks is 300 (i.e. the number of the selected items). In the

years 2004 - 2007, the forecast with yearly aggregated data adjusted for linear trend (ty)

minimised the mean rank in terms of MAD and RMSE. However, the forecast with

monthly aggregated data adjusted for linear trend and additive seasonality (Ism)

dominated by minimising the mean rank when the forecasting performance in 2004 was

ruled out. The forecast with monthly aggregated unadjusted data (urn) followed the

performance of tsm in terms of the mean rank.

Table 5-9 Mean ranks of direct forecasting methods at item level
(Friedman's test for forecasting errors: p-value < 0.001)

Year um (m sm tsm u'1. 1'1. s'1. /s'1. u.1:: ~
04 -07 4.08 7.76 5.39 6.66 4.36 7.28 5.30 6.39 4.24 3.53
05 - 07 4.84 6.16 5.22 4.50 5.53 6.28 5.76 5.42 5.24 6.02

MAD
06-07 4.76 6.36 4.99 4.55 5.28 6.59 5.40 5.15 5.47 6.27

07 4.96 5.85 5.41 4.71 5.42 6.20 5.63 5.23 5.58 5.64
04 -07 4.00 7.79 5.29 7.09 4.26 7.24 5.17 6.58 4.03 3.53
05 - 07 4.87 6.15 5.13 4.43 5.59 6.29 5.91 5.38 5.07 6.15

RMSE
06 - 07 4.70 6.43 4.87 4.58 5.19 6.62 5.43 5.20 5.41 6.40

07 4.96 5.85 5.41 4.71 5.42 6.20 5.63 5.23 5.58 5.64

The mean rank of the forecasting method among the 10 direct forecasting methods over the 300
items in terms of MAD or RMSE is presented in each cell; the forecasting methods minimising
the mean rank in terms of MAD or RMSE are shown in bold.

Table 5-10 Forecasting accuracy comparisons by aggregation (item)

Year m
04 -07 5.97 5.83 3.88
05 -07 5.18 5.74 5.63
06 -07 5.17 5.61 5.87

07 5.24 5.62 5.61
04 -07 6.05 5.81 3.78
05 -07 5.14 5.79 5.61
06 -07 5.14 5.61 5.90

07 5.24 5.62 5.61

MAD

RMSE

The mean rank of the forecasting methods using the data aggregation method in Table 5-9 is
presented in each cell; the data aggregation methods minimising the mean rank in terms of
MAD or RMSE are shown in bold.
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Table 5-10 presents a summary of Table 5-9 in terms of data aggregation methods. Table

5-11 presents a summary of Table 5-9 in terms of data adjustment methods. Table 5-10

and Table 5-11 corroborate the result of the group level forecasting. In the years 2004 -

2007, the forecast with yearly aggregated data (y) and the forecast with unadjusted data

(u) minimised the mean rank in terms of MAD and RMSE; however, with the exception

of 2004, the forecast with monthly aggregated data (m) and the forecast with data

adjusted for linear trend and additive seasonality (IS) minimised the mean rank. in terms

of MAD and RMSE. The forecast with unadjusted data (u) presented the second

minimum mean ranks with the exception of the year 2004.

Table 5-11 Forecasting accuracy comparisons by data adjustment (item)

Year u t s ts
04 -07 4.23 6.19 5.35 6.52

MAD
05 -07 5.20 6.15 5.49 4.96
06 -07 5.17 6.41 5.20 4.85

07 5.32 5.90 5.52 4.97
04 -07 4.09 6.19 5.23 6.84
05 -07 5.17 6.20 5.52 4.91

RMSE 06 -07 5.10 6.48 5.15 4.89
07 5.32 5.90 5.52 4.97

The mean rank of the forecasting methods using the data adjustment method in Table 5-9 is
presented in each cell; the data adjustment methods minimising the mean rank in terms of
MAD or RMSE are shown in bold are shown in bold.

Additionally, the forecasting results were compared in terms of the equipment groups

identified in Subsection 4.3.4 so as to test whether there is any preference of forecasting

methods for a particular group of equipment. For these comparisons, the forecasts in

2004 were ruled out because there was an obvious biasing effect of the two peak points

on the forecasting performance. At the outset, forecasting results of a 4 group scheme

(Gun, ME, GE/AC, and RD) in 2005 - 2007 were investigated. However, due to the

small group size (i.e. only 6 items) ofRD, a significant result for RD could not be found.

Thus, these groups were required to be combined. The reasonableness of combining the
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equipment groups was presented in terms of mean demand, and the functions and the

links of the pieces of equipment in Subsection 4.3.4. It was shown that Gun and RD can

be combined into a group. In addition to the reasonableness of the combination, RD and

Gun represented the similar preference for forecasting methods (i.e. um minimised the

mean rank in terms of MAD and RMSE in both Gun and RD). Therefore, RD was

integrated with Gun. As such, Friedman's test was conducted.

Table 5-12 Mean ranks of direct forecasting methods for equipment groups at group
level (Friedman's test for forecasting errors,p-values are shown in the 3rd column)

Group p-value No. um 1m sm Ism uq Iq sq tsq uy ty

GunIRD p = 0.075 22 4.2 6.5 5.9 4.4 4.8 6.7 5.3 5.7 5.7 6.0
MAD ME p < 0.001 94 4.9 6.7 4.9 4.0 5.7 6.7 5.5 5.6 5.0 5.8

GE/AC p < 0.001 34 5.4 4.7 5.6 3.4 7.2 5.2 7.3 4.4 5.5 6.2
Gun/RD P = 0.104 22 4.3 6.3 5.7 4.6 5.0 6.8 5.7 5.5 4.8 6.3

RMSE ME p<O.OOI 94 5.1 6.3 4.9 3.8 6.0 6.5 5.9 5.5 5.1 5.9
GE/AC p < 0.001 34 5.1 5.1 5.8 3.S 7.0 5.5 7.4 4.7 5.0 5.9

No. indicates the number of the pair groups within the equipment group; the mean rank of the
forecasting method over the pair groups within the equipment group in terms of MAD or RMSE
is presented in each cell; the forecasting methods minimising the mean rank in terms of MAD or
RMSE are shown in bold.

Table 5-12 presents the mean ranks of direct forecasting methods for equipment groups

at group level. The number of treatments is 10 (Le. the number of direct forecasting

methods) and the numbers of blocks (i.e. the number of item pairs in each equipment

group) are 22 for Gun/RD, 94 for ME, and 34 for GE/AC. GuniRD was non-significant

as the p-value was greater than 0.05. tsm minimised the mean rank in terms of MAD

and RMSE for ME and GElAC. The results of ME and GElAC were consistent with the

results of the overall group level forecasting.

Table 5-13 presents the mean ranks of direct forecasting methods for equipment groups

at item level. At item level forecasting, um minimised the mean rank for GunlRD; tsm

minimised the mean rank for ME and GElAC. This is consistent with the group level
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forecasting results.

Table 5-13 Mean ranks of direct forecasting methods for equipment groups at item level
(Friedman's test for forecasting errors, p-values are shown in the 3rd column)

Group p-value No. um tm sm Ism uq Iq sq tsq uy I)'

GunfRD p=O.OOI 44 3.7 6.1 5.2 5.4 4.6 6.5 5.4 6.1 5.9 6.0

MAD ME P < 0.001 188 5.0 6.5 5.2 4.5 5.5 6.4 5.6 5.5 5.0 5.9

GE/AC P < 0.001 68 5.1 5.4 5.4 3.9 6.3 5.8 6.5 4.8 5.5 6.4

GuniRD p =0.001 44 3.8 6.1 5.3 5.4 4.6 6.6 5.3 6.2 5.8 6.0

RMSE ME p < 0.001 188 5.1 6.3 5.1 4.4 5.5 6.4 5.8 5.4 4.9 6.1

GE/AC p < 0.001 68 5.0 5.7 5.2 4.0 6.3 5.8 6.7 4.7 5.1 6.4

No. indicates the number of the items within the equipment group; the mean rank of the
forecasting method over the items within the equipment group in terms of MAD or RMSE is
presented in each cell; the forecasting methods minimising the mean rank in terms of MAD and
RMSE are shown in bold.

Recalling the average statistics for the 3 equipment groups in Subsection 4.3.4, there

were some differences in data features among the equipment groups. Gun/RD was

characterised as having higher intermittency, smaller demand volume, shorter lead time,

and more expensive price. ME was characterised as having lower correlation, steeper

downward trend, lower intermittency, and larger demand volume. GElAC was

characterised as having higher variability, greater peakedness, and greater deviation

from a normal distribution.

Some of the differences among the 3 equipment groups might be a reason for the

different performance of the forecasting methods for different equipment groups. Based

on these results of the different forecasting performance upon different equipment

groups, it starts to suggest the consideration of different forecasting methods for

different equipment groups.

In summary, there were some inconsistencies in the results of direct forecasting method

in terms of S, MADIA, RMSE/A. However, some obvious patterns were found in the
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mean ranks of the forecasting methods. At both group and item levels, the forecast with

monthly aggregated data adjusted for linear trend and additive seasonality (Ism) was the

most robust direct forecasting method between 2005 and 2007. Some differences in the

performance of direct forecasting methods for the three equipment groups were also

identified.

5.4.4 Simulation

So far, the performance of direct forecasting methods has been measured with absolute

measures. However, the absolute measures do not measure the practical impact that a

forecasting method has on the inventory system. It has been suggested that derivative

measures are more practical (Wemmerlov, 1989, Sani and Kingsman, 1997, Heuts et al.,

1999, Eaves, 2002). This approach uses simulation to derive the impact of forecasting

accuracy in terms of the inventory levels and the service levels achieved by the

inventory system. Corresponding with the above results of direct forecasting methods,

simulations, which were clarified earlier, were conducted for every month from January

2005 to November 2007 with the same data which had produced the forecasts. Then, the

simulation results were compared in terms of the total inventory costs and the inventory

fill rate.

Table 5-14 provides simulation results for the direct forecasting usmg simple

exponential smoothing. The ranks (MAD and RMSE) are based on Table 5-9. um

minimised the total inventory costs, although it ranked as 2nd in terms of MAD and

RMSE; Ism ranked as 2nd in terms of the total inventory costs in spite of its 1st rank in

terms of MAD and RMSE. The fill rates of um and Ism (i.e. 86.5% and 76.2%

respectively) were considered to be acceptable fill rates. tm, tq, and tsq, were
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disqualified, because the fill rates of these were lower than 70%.

Table 5-14 Simulation results for direct forecasting

Total Total inventory costs Rank Mean stock Mean backorder Fill rate Rank Rank
(MAD) (RMSE)

um W778,942.252.81 79373.50 1410.71 0.865 2 2
1m W804,463,179.71 4 40606.17 16337.82 0.630 9 8
sm W887,983,370.44 6 70100.92 1942.35 0.869 3 4
Ism W790,657,985.15 2 40981.07 7644.91 0.762 I I

ulJ. W816,285,294.67 5 81554.87 1547.44 0.859 6 6

IIJ. W804,120,116.83 3 35784.89 16699.36 0.623 10 10

slJ. W981,537,203.85 8 74358.24 2470.49 0.851 7 7

ISIJ. W922,928,237.58 7 35267.36 12607.54 0.679 5 5
uy WI,368.692,175.98 10 79308.20 1390.90 0.880 4 3

~ W1,185,235,950.28 9 48538.46 9227.46 0.760 8 9
Rank (MAD) or Rank (RMSE) indicates the rank of the forecasting methods in terms of MAD
or RMSE between 2005 and 2007.

The performance of the direct forecasting methods in terms of the total inventory costs

and the mean rank according to the inventory costs of the forecasting methods are

presented in Table 5-15.

Table 5-15 Inventory costs and mean ranks of direct forecasting

Total inventory costs Friedman's test (p < 0.001)

Costs Rank Mean rank Rank
um W778,942,252.81 1 5.14 3

1m W804,463,179.71 4 5.24 5

sm W887,983,370.44 6 5.82 8

Ism W790,657,985.15 2 4.54 1

uq W816,285,294.67 5 6.01 9

tq W804,120,116.83 3 5.19 4

slJ. W981,537,203.85 8 6.36 10

tsq W922.928,237.58 7 5.05 2

uy WI,368.692.175.98 10 5.35 6

ty WI,185,235.950.28 9 5.59 7

The mean rank of the forecasting method among the 10 direct forecasting methods over the 300
items in terms of the total inventory costs is presented in the 4th column.

Friedman's test for the inventory costs was conducted. The number of treatments is 10

and the number of blocks is 300. In contrast to the results of the total inventory costs in
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Table 5-14, tsm minimised the mean rank. This performance of tsm was consistent with

the results of MAD and RMSE. The 1SI ranked forecast in terms of the total inventory

costs (i.e. um) was just found as the 3rd ranked forecast in terms of the mean rank.

Table 5-16 presents the simulation results for the direct forecasting methods sorted by

the three equipment groups. urn minimised the inventory costs for GunlRD; tsm

minimised the inventory costs for ME and GE/AC. Although tm and Iq for GE/AC

presented lower total inventory costs than those of Ism, both tm and tq were disqualified

by their fill rates lower than 70%. These results were consistent with the results from the

absolute measures (Le. MAD and RMSE) in Table 5-13.

Table 5-16 Simulation results of direct forecasting for the equipment groups

Gun/RD ME GE/AC
Inventory costs Fill rate Inventory costs Fill rate Inventory costs Fill rate

um W115,040,970 0.89 W601,551,261 0.85 W62,012,736 0.89
1m WI72,273,596 0.57 W5 78,268,916 0.63 W53,536,033 0.66
sm WI54,750,262 0.94 W668,430,66I 0.84 W64,50 I,528 0.91
Ism W164,695,241 0.73 W569,675,266 0.77 W55,921,397 0.77
uq W133,818,259 0.89 W618, 702,964 0.84 W63,332,090 0.89
Iq WI78,429,279 0.58 W571,590,821 0.63 W53,635,640 0.63
sq WI56,OO2,223 0.91 W756,639,734 0.83 W68,499,63I 0.89
tsq WI81,057,864 0.64 W684,987,714 0.69 W56,418,282 0.69
uy W613,290,211 0.93 W578,919,118 0.87 W 176,154,652 0.89
ty W398, 797 ,491 0.76 W622,437,365 0.76 WI63,661,042 0.75

The forecasting methods minimising the total inventory costs in each equipment group are
shown in bold.

Table 5-17 provides the mean ranks of direct forecasting methods for equipment group

in terms of the total inventory costs and the mean rank for MAD (Table 5-13). Only the

results of MAD were compared with the results of the total inventory costs, because the

mean ranks for MAD were consistent with those for RMSE as shown in Table 5-13. As

shown in Table 5-17, the mean ranks in terms of the total inventory costs presented

consistent patterns with the mean ranks in terms of MAD. For Gun/RD, um minimised
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the mean ranks in terms of both the total inventory costs and MAD; for ME and GE/AC

Ism minimised the mean ranks in terms of both the total inventory costs and MAD. As

mentioned earlier, the different performance of the forecasting methods might originate

from some of the differences of the data features in the equipment groups.

Table 5-17 Mean ranks of direct forecasting methods for equipment group in terms of
inventory costs and MAD (Friedman's test, p-values are shown in the 3rd row)

GunIRD ME GE/AC

Totalcosts Meanrank Totalcosts Meanrank Totalcosts Meanrank
(MAD) (MAD) (MAD)

p-value p = 0.001 P = 0.002 P < 0.001 P < 0.001 P < 0.001 P < 0.001
um 3.S5 3.73 5.45 5.02 5.32 5.07
tm 6.14 6.07 5.28 6.45 4.71 5.41
sm 5.91 5.20 5.77 5.15 5.94 5.41
tsm 5.45 5.41 4.46 4.52 4.25 3.87
uq 4.57 4.64 6.31 5.46 6.31 6.29
tq 6.27 6.55 5.21 6.40 4.60 5.75
sq 5.43 5.39 6.44 5.57 6.87 6.51
tsq 6.30 6.09 5.04 5.50 4.40 4.75
uy 5.68 5.93 5.29 4.99 5.35 5.47
ty 5.40 5.98 5.38 5.89 6.31 6.40

The mean rank of the forecasting method among the 10 direct forecasting methods in each
equipment group in terms of the total inventory costs or MAD is presented in each cell; the
forecasting methods minimising the mean rank in terms of the total inventory costs or MAD are
shown in bold.

Table 5-18 Robust direct forecasting methods

Absolutemeasure Derivativemeasure

ThemostrobustDF Ism
um (total inventorycosts);
Ism (meanrankfortotal inventorycosts)

Equipmentgroup Gun/RD:um; ME& GE/AC: tsm

Table 5-18 presents the major findings of this section; that is, the robust direct

forecasting methods in terms of absolute and derivative measures. There were some

inconsistencies in the results of direct forecasting methods between absolute and

derivative measures. In the years 2005 - 2007, while the forecast with monthly

aggregated data adjusted for linear trend and additive seasonality (Ism) was found to be

the most robust direct forecasting method in terms of MAD and RMSE, the forecast
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with monthly aggregated unadjusted data (urn) was found to be the most robust direct

forecasting method in terms of the total inventory costs. However, some consistent

results were found in terms of the mean ranks; that is, tsm was the most robust direct

forecasting method in terms of the mean ranks by MAD, RMSE, and the total inventory

costs.

There were also some consistent results of direct forecasting methods for the equipment

groups between absolute and derivative measures. urn was the most robust direct

forecasting method for GunIRD, and tsm was the most robust direct forecasting method

for the other two groups. The different forecasting performance in the different

equipment groups might originate from the differences in data features identified in

Subsection 4.3.4.

For the 300 items tested, the two direct forecasting methods, urn and Ism, were found to

minimise the total inventory costs and the mean rank in terms of the total inventory

costs respectively (as shown in Table 5-15). As stated in Section 1.3, the main objective

of this research is to compare alternative forecasting strategies (i.e. direct forecasting

and hierarchical forecasting). Forecasting results using hierarchical forecasting methods

are compared with these two direct forecasting methods in the next section.

5.5 Hierarchical Forecasting

In Section 2.4, arguments from the literature about the performance of hierarchical

forecasting were presented. As mentioned in Section 4.6, several demand features for

the Naval spare parts that could make hierarchical forecasting more accurate than direct

forecasting were identified. This section develops a range of hierarchical forecasting
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methods. Then, the forecasts generated usmg hierarchical forecasting methods are

compared with the forecasts generated using direct forecasting methods in terms of the

absolute, relative, and derivative accuracy measures.

5.5.1 The development of hierarchical forecasting methods

Various proration methods were reviewed in Subsection 2.3.3 (Gross and Sohl, 1990,

Fliedner and Lawrence, 1995, DeLurgio, 1998, Narasimhan et al., 1998, Fliedner, 1999,

Fliedner, 2001, Widiarta et al., 2008b). Four proration methods capable of producing a

long forecast horizon were employed. This is because the Naval procurement system

requires a long forecast horizon as stated in Subsection 4.3.6.

As stated in Subsection 2.3.3, Gross and Sohl (1990) compared several top-down

forecasting proration methods for predicting demand for three industrial galvanised steel

product sales [e.g. equations (2-21), (2-22), (2-24), and (2-25)]. They found reasonably

good performance with the two mean proportion methods [equations (2-21) and (2-22)].

This research employed these two kinds of top-down forecasting (TD) proration

methods. TD 1 produced the item level forecast by multiplying the group level direct

forecast by the mean ratio of the item's demand to the group's demand as shown in

equation (2-21). TD2 produced the item level forecast by multiplying the group level

direct forecast by the ratio of the item's mean demand to the group's mean demand as

shown in equation (2-22).

Combinatorial forecasting has been claimed to be a good forecasting method (DeLurgio,

1998, Kahn, 1998, Dekker et aI., 2004, Hyndman et aI., 2007). It could correct an

irregularity of a time series consisting of two time series and improve the combinatorial

228



Chapter 5. Forecasting The Spare Parts Demand

forecasting accuracy (DeLurgio, 1998, Dekker et aI., 2004). This research employed

two combinatorial forecasting methods which were recommended by Del.urgio (1998).

Simple combination (SC) is defined as in equation (2-27). While SC is the simplest

combinatorial method, SC was claimed to be as good as other more sophisticated

methods (DeLurgio, 1998). Weighted combination (WC) is defined as in equation (2-28)

with weights defined as in equation (2-30). WC is a rational way to combine forecasting

models, because WC sets higher weights into more accurate forecasting models. WC is

based on the idea that forecasting accuracy and the sum of squared errors are inversely

related.

Corresponding to the direct forecasts produced as shown in Subsection 5.4.1, the direct

forecasts for the hierarchical forecasts were produced identically. 10 TO 1 and 10 T02

methods were generated with the 10 group level direct forecasts ( Fl+r)' 100 SC and 100

WC methods were produced with the combinations of the 10 group level direct

forecasts (F;+r ) and the 10 item level direct forecasts (/;,I+r)' In total 220 hierarchical

forecasting methods were generated.

As with the direct forecasts, forecasting horizons for the hierarchical forecasts were also

established as the period including PROLT and review period. The hierarchical forecasts

were generated until November 2007; the performance of the hierarchical forecasts was

measured until November 2007. After generating the forecasts using the adjusted data,

the data were reverse adjusted so that the forecasts can be compared with actual demand.
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5.5.2 Forecasting performance comparisons

In Subsection 3.5.2, it was stated that the logistical case of the South Korean Navy is a

typical case as well as an extreme case. The two peak points might represent the

extreme case which is typical of military logistics. This typical/extreme case could have

a biasing effect upon the performance of the forecasting method. The high impact of the

two peak points in 2002 and 2003 upon the forecasts in 2004 - 2007 was identified as

shown in Subsection 5.4.2 and 5.4.3. In this subsection, the forecasting periods with the

exception of 2004 were considered. The performance of the 220 hierarchical forecasting

methods in 2005 - 2007 was compared with that of the most robust direct forecasting

method (Ism) at item level in terms of MAD and RMSE.

Appendix D and Appendix E compare the performance of the 220 hierarchical

forecasting methods. LN(ratio) denotes the natural log of the ratios. Appendix 0

presents LN(ratio) for MAD; Appendix E presents LN(ratio) for RMSE. In the

forecasting period 2005 - 2007, the relative performance of the hierarchical forecasting

methods was rather moderate. 36 hierarchical forecasting methods (16.4%) were

superior to the most robust direct forecasting method (tsm) in terms of the LN(ratio) for

MAD (as shown in Appendix D).

Although the forecasting results in terms of MAD and RMSE were similar, the top 20

hierarchical forecasting methods were different. In order to find a group of good

forecasting methods in terms of both measures, the common top 21 hierarchical

forecasting methods in terms of the both measures were selected. Table 5-19 presents

the top 21 hierarchical forecasting methods in terms of the LN(ratio) for MAD in the

forecasting period 2005 - 2007.
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Table 5-19 Top 21 hierarchical forecasting methods (MAD)

LN(ratio) for MAD Rank
05 - 07 06-07 07 05 - 07 06- 07 07

TD2tsm -22.98 -17.62 22.77 6 9 42
SCtmum -24.75 -7.50 43.33 5 24 93
SCtmsm -21.87 -19.40 34.01 8 8 67
SCtmuq -9.14 1.94 47.78 16 33 105
SCtsmum -26.02 -27.74 2.79 3 1 8
SCtsmsm -20.63 -24.98 15.64 9 3 28
SCtsmuq -5.92 -1.82 13.09 21 29 22
SCtqum -32.10 -12.71 33.56 13 62
SCtqsm -25.25 -23.09 24.69 4 6 47
SCtquq -15.07 -4.77 34.85 13 25 70
SCtqsq -6.83 -8.95 37.86 20 18 81
sCtquJ:. -8.79 5.20 35.54 17 40 74
SCtsqum -27.00 -20.55 7.75 2 7 10
SCtsqsm -18.54 -23.69 15.28 10 5 25
SCfJ:.um -12.35 -23.79 26.86 14 4 52
WCtmum -10.06 -3.32 11.38 15 27 19
WCtsmum -15.46 -12.02 -1.57 12 14 4
WCtqum -22.34 -15.87 -0.16 7 10 6
WCtqsm -7.55 -15.22 -7.28 19 II 2
WCtsqum -17.85 -14.54 -6.29 II 12 3
WCfJ:.um -7.61 -3.12 -14.63 18 28

The most robust forecasting methods are shown in bold; LN(ratio) = the sum of natural log
relative error [In(errorHFlerrorDF)]over the 300 items.

In the forecasting period 2005 - 2007, 39 hierarchical forecasting methods (17.7%)

were superior to Ism in tenns of the LN(ratio) for RMSE as shown in Appendix E.

Table 5-20 presents the top 21 hierarchical forecasting methods in terms of the LN(ratio)

for RMSE in the forecasting period 2005 - 2007.
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Table 5-20 Top 21 hierarchical forecasting methods (RMSE)

LN(ratio) for RMSE Rank
05 - 07 06-07 07 05 - 07 06 - 07 07

TD2tsm -23.81 -19.41 22.77 8 9 42
SCtmum -28.76 -11.85 43.33 3 16 93
SCtmsm -25.35 -23.93 34.01 6 7 67
SCtmuq_ -12.37 -0.22 47.78 14 32 105
SCtsmum -27.68 -27.80 2.79 5 I 8
SCtsmsm -22.71 -24.93 15.64 9 5 28

SCtsmuq -8.04 -0.40 13.09 20 31 22
SCtqum -36.38 -16.20 33.56 I II 62
SCtq_sm -28.81 -26.74 24.69 2 3 47

SCtq_uq_ -17.02 -5.16 34.85 13 26 70

sCtq_sq_ -9.25 -12.30 37.86 18 15 81

SCtqul. -12.13 5.61 35.54 17 41 74

SCtsqum -28.66 -21.76 7.75 4 8 10

SCtsq_sm -20.30 -24.69 15.28 II 6 25
SCtyum -12.33 -26.28 26.86 15 4 52

WCtmum -12.32 -4.10 11.38 16 27 19

WCtsmum -17.08 -II. 78 -1.57 12 17 4

WCtq_um -24.34 -16.53 -0.16 7 10 6

WCtq_sm -8.99 -15.29 -7.28 19 12 2

WCtsq_um -20.80 -14.97 -6.29 10 13 3
WCtyum -7.83 -0.87 -14.63 21 29 I

The most robust forecasting methods are shown in bold; LN(ratio) = the sum of natural log
relative error [In(errorHF/errorDF)]over the 300 items.

As shown in Table 5-19 and Table 5-20, the performance of the top 21 hierarchical

forecasting methods in 2005 - 2007 was more or less consistent with that in 2006 -

2007; that is, in terms of the LN(ratio) the top 21 hierarchical forecasting methods in the

years 2005 - 2007 were also superior to Ism in the years 2006 - 2007 with the

exception of SClmuq and SCtquy. However, only five hierarchical forecasting methods

of the top 21 hierarchical forecasting methods in the year 2007 were superior to Ism. An

eleven month period in 2007 (Le. January 2007 - November 2007) might be insufficient

to compare the performance of the forecasting methods. Within the top 21, no TD 1, 1

TD2, 14 (66.7%) se and 6 we methods are included as shown in Table 5-19 and Table

5-20. se dominated the top 21.

There was some preference for employing data aggregation and data adjustment
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methods for the top 21 hierarchical forecasting methods. At group level, m, q and y were

employed for 9, 10 and 2 hierarchical forecasting methods respectively as the data

aggregation method; I and Is were employed for 13 and 8 hierarchical forecasting

methods respectively as the data adjustment method. At item level, m, q and y were

employed for 15, 4 and 1 hierarchical forecasting methods respectively as the data

aggregation method; u and s were employed for 14 and 6 hierarchical forecasting

methods respectively as the data adjustment method. At group level, m and q were the

most frequently higher ranked data aggregation methods and t and Is were the most

frequently higher ranked data adjustment methods for the top 21. At item level, m was

the most frequently higher ranked data aggregation method and u was the most

frequently higher ranked data adjustment method. As the combination of the data

aggregation methods and the data adjustment methods, tq at group level and um at item

level were the most frequently higher ranked methods. At group level tq was employed

for 7 hierarchical forecasting methods; at item level um was utilised for 10 hierarchical

forecasting methods.

The performance of the 220 hierarchical forecasting methods were compared with each

other in Appendix F. Table 5-21 presents the mean ranks of the top 21 hierarchical

forecasting methods between 2005 and 2007 in Appendix F. Friedman's test for

forecasting errors was conducted. The number of treatments is 220 (i.e. the number of

forecasting methods) and the number of blocks is 300 (i.e. the number of items). The

top 21 forecasting methods in terms of the mean rank in Table 5-21 are different from

the top 21 forecasting methods in terms of the LN(ratio) in Table 5-19 and Table 5-20.

Three forecasting methods (i.e. SCtqsq, SCtyum, and WCtyum) included in the top 21

forecasts in terms of the LN(ratio) for MAD and RMSE are not included in the top 21
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forecasts in terms of the mean rank for MAD and RMSE; three forecasting methods (i.e.

SCtmuy, SCtsmuy, and SCtsquy) included in the top 21 forecasts in terms of the mean

rank for MAD and RMSE are not included in the top 21 forecasts in terms of the

LN(ratio) for MAD and RMSE. However, the test results in Table 5-21 were similar to

the results in Table 5-19 and Table 5-20 in that the most robust forecasting method was

consistently SCtqum from all the tests, and se dominated the top 21. No TO 1, 1 TD2,

15 (71.4%) se and 5 we methods included within the top 21 hierarchical forecasting

methods in terms of the mean rank.

Table 5-21 Top 21 hierarchical forecasting methods (mean rank)

(Friedman's test,p-value < 0.001)
MAD RMSE

Mean rank Rank Mean rank Rank
TD2tsm 84.90 17 85.26 19
SCtmum 79.34 4 79.21 7
SCtmsm 79.05 3 78.38 3
SCtmuq_ 84.92 18 83.93 17
SCtmuy 80.01 7 79.00 4
SCtsmum 78.70 2 79.07 5
SCtsmsm 81.30 10 81.03 9
SCtsmuq_ 85.77 19 85.81 20
SCtsmuy 84.05 15 81.67 II
SCtqum 77.54 1 77.37 1
SCtq_sm 79.70 6 77.67 2
SCtq_uq_ 84.33 16 83.47 14
SCtq_uy 80.97 9 79.15 6
SCtsq_um 80.95 8 81.61 10
SCtsq_sm 83.85 14 83.74 16
SCtsq_uJ:, 86.63 21 84.21 18
WCtmum 82.17 II 83.67 15
wCtsmum 82.52 12 82.93 13
WCtq_um 79.64 5 79.73 8
WCtqsm 85.78 20 85.88 21
WCtsq_um 83.39 13 82.83 12

Mean rank = mean rank of the forecasting method among the 220 hierarchical forecasting
methods over the 300 items in terms of MAD or RMSE; Rank = the rank of the forecasting
method among the 220 hierarchical forecasting methods based on the mean rank; the forecasting
method minimising the mean rank are shown in bold.

A summary of direct forecasting methods at group and item levels used for the top 21
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hierarchical forecasting methods is presented in Table 5-22. The frequencies of direct

forecasting methods used for the top 21 hierarchical forecasting methods in terms of the

LN(ratio) and the mean rank were similar.

Table 5-22 Direct forecasting methods used for the top 21
hierarchical forecasting methods

LN(ratio) Mean rank
Group Item

m 9 15
Data

10 4
Aggregation

y 2
u 14

Data 13
Adjustment s 6

Group Item
II 13
10 3

4

15
11

5
~ 8 10

The number of hierarchical forecasting methods in the top 21 which the direct forecasting method was
used for either at group level or at item level is presented in each cell; the LN(ratio) from Table 5-19 and
Table 5-20; the mean rank from Table 5-21.

At group level, m and q were the most frequently higher ranked data aggregation

methods; and I and Is were the most frequently higher ranked data adjustment methods.

At item level, m was the most frequently higher ranked data aggregation method; and u

was the most frequently higher ranked data adjustment method. At item level, m was

used for 15 (71.4%) and 13(61.9%) hierarchical forecasting methods in terms of the

LN(ratio) and the mean rank respectively; u was used for 14 (66.7%) and 15 (71.4%)

hierarchical forecasting methods in terms of the LN(ratio) and the mean rank

respectively.

The combinations of the data aggregation methods and the data adjustment methods for

the top 21 hierarchical forecasting methods were also investigated. At group level, Iq

was the most frequently higher ranked combination, that is, Iq was used for 7

hierarchical forecasting methods in Table 5-19 and Table 5-20. In Table 5-21, at group
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level, while tq was used for 6 hierarchical forecasting methods, tsm and tm also used 6

and 5 hierarchical forecasting methods respectively. tq was not the only most frequently

higher ranked combination at group level in Table 5-21. um, which was the most

frequently higher ranked combination at item level in terms of MAD and RMSE, was

also the most frequently higher ranked combination in terms of the mean rank as shown

in Table 5-21. While um was used for 10 hierarchical forecasting methods at item level

in Table 5-19 and Table 5-20, um was used for 8 hierarchical forecasting methods at

item level in Table 5-21.

Table 5-23 compares the relative performance of the proration methods in the

forecasting years 2005 - 2007. In order to calculate the mean LN(HFltsm), the sum of

the LN(HFltsm) for each item using each forecasting method was divided by n (n = the

number of item x the number of proration methods). For example, the sum of the

LN(HFltsm) for 300 items using TDI was divided by 3,000 [3,000 = 300 (no. of the

items) x 10 (no. of the TDI proration methods)]; the sum of the LN(HFltsm) for 300

items using se was divided by 30,000 [300 (no. of the items) x lOO (no. of the se
proration methods)]. The standard deviation of the mean used the identical n which was

used for calculating the mean LN(HFltsm).

Table 5-23 Proration methods comparisons [LN(HFltsm)]

MAD RMSE
Mean LN(HFltsm) Std Mean LN(HFltsm) Std

TDI 0.22 0.09 0.20 0.08
TD2 0.09 0.07 0.08 0.07
se 0.12 0.12 0.11 0.12
we 0.11 0.08 0.10 0.08

Mean LN(HFltsm) = the mean values of natural log relative error [In(errorHFlerrortsm)] for MAD
or RMSE per item for forecasting methods using the proration method over the 300 items; Std =

standard deviation of the mean LN(HFltsm).
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se dominated the top 21 in Table 5-19, Table 5-20 and Table 5-21. As shown in Table

5-23, TD2 presented the minimum mean LN(HFltsm) and we presented the second

minimum mean LN(HFllsm). The reason why TD2 presented the minimum mean

LN(HFltsm) than that of se might originate from the higher standard deviation of the

mean LN(HFllsm) of SC. This implies that the performance ofSe was highly variable.

Table 5-24 compares the performance of the proration methods in the 3 equipment

groups in the forecasting period 2005 ~ 2007. um was compared with hierarchical

forecasting methods in GunIRD, and Ism was compared with hierarchical forecasting

methods in ME and GElAC. This is because um was the most robust direct forecasting

method for GunIRD, and tsm was the most robust direct forecasting method for ME and

GE/Ae as shown in Table 5-13. The LN(ratio) and the Std in Table 5-24 were calculated

the same way as the mean LN(HFltsm) and the Std in Table 5-23. For example, the sum

of the natural log relative error [In(errorHFlerrorDd] for MAD or RMSE for 188 items

for ME using se was divided by 18,800 [188 (no. of items) x 100 (no. of proration

methods)].

Table 5-24 Proration methods comparisons in the 3 equipment groups [LN(ratio)]

MAD RMSE

GunIRD ME GEiAC GunIRD ME GEiAe
LN(ratio) Std LN(ratio) Std LN(ratio) Std LN(ratio) Std LN(ratio) Std LN(ratio) Std

TDI 0.204 0080 0280 0.089 0193 0160 0216 0070 0268 0086 0.172 0146

TD2 0.097 0085 O.t33 0074 O.lll 0109 0.113 0.074 0123 0.071 0.104 0102

se 0243 0189 0138 0123 o 115 0114 0263 0186 0.1l4 0.123 0121 OliO

we 0260 0.163 0.115 0088 0.1>2 0088 0281 0166 0.113 0.086 o 115 0.083

LN(ratio) = the mean values of natural log relative error (In(errorHF/errorDF)j for MAD or RMSE per item in the equipment group;
Std = standard deviation of LNtratio): the proration methods presenting the minimum LN (ratio) in each group are shown in bold.

TD2 presented the minimum LN(ratio) for GuniRD and GElAe, and we presented the

minimum LN(ratio) for ME as shown in Table 5-24. The standard deviations of the
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mean LN(ratio) of se were the highest in GunJRDand ME. Although se dominated the

top 21 in Table 5-19, Table 5-20 and Table 5-21, se for each equipment group

performed the least well. This might be caused by the highly variable performance of

se which can be identified by the high standard deviation as shown in Table 5-24.

It is necessary to examine the performance of the hierarchical forecasting methods for

the each group. urn was compared with the hierarchical forecasting methods for

Gun/RD, and tsm was compared with the hierarchical forecasting methods for ME and

GE/AC. Among the 220 hierarchical forecasting methods, 18 (8.2%) and 14 (6.4%)

hierarchical forecasting methods were superior to urn for GunIRD in terms of

LN(HFlurn) for MAD and RMSE respectively; 28 (12.7%) hierarchical forecasting

methods were superior to tsm for ME in terms of both LN(HFltsrn) for MAD and RMSE;

and 18 (8.2%) and 20 (9.1%) hierarchical forecasting methods were superior to tsm for

GE/Ae in terms of the LN(HFltsrn) for MAD and RMSE respectively. Hierarchical

forecasting provided much superior performance for ME than that for GunJRD and

GE/AC.

Table 5-25, Table 5-26, and Table 5-27 present the top 10 hierarchical forecasting

methods for GunIRD, ME, and GE/AC in terms of either LN(HF/DF) for MAD or

LN(HFIDF) for RMSE respectively. SC dominated all the top 10 hierarchical

forecasting methods. 7 (58.3%) se methods are included in the 12 forecasting methods

for GunJRD (Table 5-25); 9 (81.8%) SC methods are included in the 11 forecasting

methods for ME (Table 5-26); and 9 (81.8%) se methods are included in the 11

forecasting methods for GE/Ae (Table 5-27). The most robust forecasting method

(SCtqurn) for the 300 items tested is included in all the top 10 hierarchical forecasting
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methods for the 3 equipment groups.

Table 5-25 Top 10 hierarchical forecasting methods for GuniRD in terms of either the
natural log relative error for MAD or RMSE

MAD RMSE
LN(HFlum) Rank LN(HFlum) Rank

TD2um -I.S 12 -0.7 9
TD2tsm -2.S 6 -0.2 13
SCtmum -S.9 -4.8
SCtmsm -4.0 3 -2.1 4
SCtsmum -3.9 4 -2.6 3
SCtqum -4.3 2 -3.8 2
SCtqsm -2.4 7 -O.S II
SCtsqum -2.1 10 -1.0 8
SCtyum -2.3 8 -1.6 6
WCtmum -3.1 S -2.0 S
WCtsmum -1.8 II -0.7 10
WCtqum -2.3 9 -I.S 7

LN(HFlum) = the sum of natural log relative error [In(errorHFlerrorllm)) for MAD or RMSE of each
forecasting method over the items in GunlRD; Rank = the rank of the forecasting method in the 220
forecasting methods in terms ofLN(HFlum).

Table 5-26 Top 10 hierarchical forecasting methods for ME in terms of either the natural

log relative error for MAD or RMSE

MAD RMSE
LN(HFltsm) Rank LN(HFltsm) Rank

SCtmuy -7.2 8 -8.1 10
SCtsmum -u.s 3 -11.2 4
SCtsmsm -7.0 10 -8.6 9
SCtsmuy -7.1 9 -6.8 13
SCtqum -10.9 4 -12.8 2
SCtqsm -6.4 13 -9.7 6
SClquy -12.6 1 -13.1
SCtsqum -11.6 2 -11.4 3
SCtsquy -7.3 7 -8.8 8
WCtqum -10.1 6 -9.7 7
WCtsqum -10.6 5 -10.8 S

LN(HFltsm) = the sum of natural log relative error [In(errorHFlerror/,,m)) for MAD or RMSE of each
forecasting method over the items in ME; Rank = the rank of the forecasting method in the 220
forecasting methods in terms ofLN(HFltsm).
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Table 5-27 Top 10 hierarchical forecasting methods for GElAC in terms of either the
natural log relative error for MAD or RMSE

MAD RMSE
LN(HFltsm) Rank LN(HFltsm) Rank

TDltsm -3.0 8 -3.8 7
TD2tsm -3.3 6 -4.3 5
SCtmum -3.4 5 -5.1 4
SCtmsm -5.5 3 -5.9 3
SCtsmsm -2.2 10 -2.4 II
SCtqum -6.6 -7.9
SCtqsm -6.2 2 -6.6 2
SCtquq -2.7 9 -3.1 10
SCtquy -1.7 II -3.7 8
SCtsqum -3.0 7 -4.2 6
SCtsqsm -3.5 4 -3.7 9

LN(HFltsm) = the sum of natural log relative error [In(errorHFlerror/\m)] for MAD or RMSE of each
forecasting method over the items in GElAC; Rank = the rank of the forecasting method in the 220
forecasting methods in terms of LN(HFltsm).

Table 5-28 presents the major findings of this subsection; that is, the performance of

hierarchical forecasting methods in terms of absolute and relative measures. In this

subsection, the 220 hierarchical forecasting methods were compared with the most

robust direct forecasting method (Ism) in terms of the natural log relative error. 36

(16.4%) and 39 (17.7%) hierarchical forecasting methods were superior to Ism in terms

of the LN(ratio) for MAD and RMSE in the years 2005 - 2007 respectively.

The most robust forecasting method for the 300 items was found to be SCtqum in terms

of the LN(ratio) and the mean rank in the years 2005 - 2007. Combinational forecasting

(especially, simple combination) dominated the top 21 hierarchical forecasting methods

ranked by the LN(ratio). The most frequently higher ranked data aggregation and data

adjustment methods for the top 21 hierarchical forecasting methods were analysed in

this subsection.
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Table 5-28 The performance of hierarchical forecasting methods in terms of absolute
and relative measures

Performance
Superior to the most

robust OF
16.4% & 17.7% ofHFs to tsm by LN(ratio) for MAD & RMSE

The most robust
forecasting method

SCtqurn

Proration method
Top-21 by LN(ratio): 14 SCs, 6 WCs, 0 TO I, & I T02
Top-21 by mean rank in MAO/RMSE: 15 SCs, 5 WCs, 0 TO I, & I T02

The most frequently
higher ranked OF for

Top-21

Group level: rn' & q': r& ts2

Group level combination: tq
Item level: m' & u2

Item level combination: urn
OF = direct forecasting; HF = hierarchical forecasting; SC = simple combination; WC = weighted
combination; TO = top-down forecasting; I = data aggregation method; and 2 = data adjustment method;
LN(ratio) = natural log relative error [In(errorHFlerroroF)).

5.5.3 Simulation

In the above subsection, the 220 hierarchical forecasting methods were compared with

the most robust direct forecasting method (tsm) identified by MAD and RMSE in terms

of the absolute and relative measures. However, as stated in Section 2.6, these measures

do not present the practical impact of a forecasting method upon the inventory system.

In this section, direct forecasting methods are compared with the 220 hierarchical

forecasting methods in terms of the total inventory costs and the inventory fill rate

derived from simulations.

The total inventory costs of the 220 hierarchical forecasting methods were compared

with um; the relative total inventory costs of the hierarchical forecasting methods were

compared with Ism using the LN(ratio). This is because um was the most robust direct

forecasting method in terms of the total inventory costs; Ism was the most robust direct

forecasting method in terms of the mean rank for the total inventory costs as shown in

Table 5-15. The entire simulation results for the 300 items between 2005 and 2007 are

presented in Appendix G. 35 (15.9%) forecasting methods of the 220 hierarchical
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forecasting methods were superior to urn in terms of the total inventory costs as shown.

Table 5-29 Top 20 hierarchical forecasting methods

MAD RMSE Total inventory costs
Mean rank Rank Mean rank Rank Costs Rank

Fill rate
!IF-um

SCtmum 79.34 4 79.21 7 W726,OO2,802 -W52.939.451 7 0.79

SCtmsm 79.05 3 78.38 3 W730,726,074 -W48.216.179 10 0.79

SCtmuq 84.92 18 83.93 17 W740,191,882 -W38.750.371 12 0.78

SCtsmum 78.70 2 79.07 5 W730,245,647 -W48.696.606 9 0.83

SCtsmsm 81.30 10 81.03 9 W748,440,413 -W30.501,840 16 0.83

SCtsmuq 85.77 19 85.81 20 W748,193,308 -W30.748,944 15 0.82

SCtqum 77.54 77.37 I W693,601,747 -W85.340.50S I 0.79

SCtqsm 79.70 6 77.67 2 W702,219,843 -W76.722.409 3 0.79

SCtquq 84.33 16 83.47 14 W706,669,26I -W72,272,992 4 0.78

SCtyum 89.50 30 92.56 45 W702,216,842 -W76.725.411 2 0.83

SCtysm 92.13 43 95.40 55 W715,748,865 -W63,193,388 6 0.83

SCtyuq 95.07 53 98.77 59 W714,672,940 -W64.269,313 5 0.82

WCumtsm 89.00 25 88.05 24 W758,279,736 -W20.662,517 18 0.79

WCumtq 123.33 166 121.46 150 W761,152,212 -WI7.790,041 20 0.67

WCtmum 82.17 II 83.67 15 W756,997,I40 -W21.94S.113 17 0.83

WCtsmum 82.52 12 82.93 13 W747,740,8JO -W31.201.442 14 0.85

WCtqum 79.64 5 79.73 8 W728,256,615 -W50,685.638 8 0.83

wCtquq 90.18 33 91.14 38 W759,015,207 -WI9.927.046 19 0.82

WCuytsm 89.11 28 90.40 35 W745,773,185 -W33,169,068 13 0.78

WCtyum 93.90 47 95.21 53 W739,345,856 -W39,596.397 II 0.81
Mean rank = mean rank of the forecasting method among the 220 hierarchical forecasting methods over the
300 items in terms of MAD or RMSE; Rank = the rank of the forecasting method among the 220 hierarchical
forecasting methods; HF - um = the total inventory costs of each hierarchical forecasting method deducted by
the total inventory costs of um; Fill rate = the mean inventory fill rate using the hierarchical forecasting
method.

Of the 35 forecasting methods, the top 20 ranking forecasting methods in terms of the

total inventory costs are presented in Table 5-29. Although 3 TD2 methods (i.e.

TD2urn, TD2tsrn and TD2uy) were included in the above 35 hierarchical forecasting

methods as shown in Appendix G, no TD!, no TD2, !2 se and 8 we methods are

included in the top 20 hierarchical forecasting methods as shown in Table 5-29. This

was consistent with the top 21 hierarchical forecasting methods in the previous

subsection. Recalling the results in the previous subsection, no TD 1, 1 TD2, 14 se and

6 we methods were included in the top 21 hierarchical forecasting methods in terms of
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the LN(ratio); no TDI, 1 TD2, 15 se and 5 we methods were included in the top 21

hierarchical forecasting methods in terms of the mean rank based on MAD and RMSE.

Table 5-29 compares the performance of the top 20 hierarchical forecasting methods

from simulation with the performance of the forecasting methods in terms of MAD and

RMSE which were presented in the previous subsection. Although, the ranks in MAD

and RMSE and the total inventory costs were more or less inconsistent, there was a

tendency that a good forecasting method in terms of MAD and RMSE was also a good

forecasting method in terms of the total inventory costs. SCtqum. which held the rank of

1st by MAD and RMSE, held the rank of I st by the total inventory costs. SCtqsm, which

also held high ranks (Le. the rank 6th by MAD and the rank 2nd by RMSE), held the rank

of 3rd by the total inventory costs. With the exception of WCumtq, the top 20 forecasting

methods in terms of the total inventory costs are included in the top 53 forecasting

methods in terms of MAD and the top 59 forecasting methods in terms of RMSE.

Although the exceptional case, WCumtq, is included in the top 20 forecasting method,

this forecasting method was disqualified in terms of the inventory fill rate of less than

70% (Le. 67%).

Direct forecasting methods at group and item levels used for the top 21 hierarchical

forecasting methods in terms of the LN(ratio) and the mean rank and the top 20

hierarchical forecasting methods in terms of the total inventory costs are presented in

Table 5-30. At group level, m as the data aggregation method and t as the data

adjustment method were the most frequently higher ranked methods in terms of the total

inventory costs as well as the LN(ratio) and the mean rank. At item level, m was the

most frequently higher ranked data aggregation method and u was the most frequently
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higher ranked data adjustment method. At item level, rn was used for 15 (71.4%), 13

(61.9%), and 14 (70.0%) hierarchical forecasting methods in terms of the LN(ratio), the

mean rank, and the total inventory costs respectively; u was used for 14 (66.7%), 15

(71.4%), and 13 (65.0%) hierarchical forecasting methods in terms of the LN(ratio), the

mean rank, and the total inventory costs respectively.

Table 5-30 Direct forecasting methods used for the top 21 or the top 20 hierarchical
forecasting methods

LN(ratio) Mean rank
Group Item Group Item

9 15 II 13
Data 10 4 10 3

Aggregation
2 I 4

u 14 15
Data 13 II

Adjustment s 6 5

Total inventory costs
Group Item

10 14
5 6
5
3 13
13

4
ts 8 10 4 2

The number of hierarchical forecasting methods in the top 21 or the top 20 which the direct forecasting
method was used for either at group level or at item level is presented in each cell; the LN(ratio) from
Table 5-19 and Table 5-20; the mean rank from Table 5-21; the total inventory costs from Table 5-29.

As for the combination of the data aggregation methods and the data adjustment

methods, recalling the results in the previous subsection, urn was employed for 10

(47.6%) and 8 (38.1%) hierarchical forecasting methods at item level in terms of the

LN(ratio) (Table 5-19 and Table 5-20) and the mean rank (Table 5-21) respectively. urn

was still the most frequently higher ranked method at item level in terms of the total

inventory costs as urn was employed for 8 (40%) hierarchical forecasting methods of the

top 20 hierarchical forecasting methods as shown in Table 5-29.

Appendix G compares the performance of direct and hierarchical forecasting methods in

terms of the total inventory costs and the relative total inventory costs. While 35

forecasting methods of the 220 hierarchical forecasting methods were superior to urn in
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terms of the total inventory costs, 19 forecasting methods of the 220 hierarchical

forecasting methods were superior to tsm in terms of the LN(HFltsm) for the total

inventory costs [equation (5-6)]. In order to establish internal validity the 220

hierarchical forecasting methods were assessed with both of the measures.

Table 5-31 presents the 33 hierarchical forecasting methods which include the above top

20 hierarchical forecasting methods in Table 5-29 as well as the 19 superior hierarchical

forecasting methods in terms of the LN (HFltsm) for the total inventory costs. The 1si

ranked forecasting method in terms of the total inventory costs, SCtqum was found to be

the 2nd ranked forecasting method in terms of the LN(HFltsm) for the total inventory

costs. On the other hand, TD2tsm, which ranked as 2th in terms of the total inventory

costs, was observed as the 1si ranked hierarchical forecasting method in terms of LN

(HFltsm) for the total inventory costs.
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Table 5-31 The 33 hierarchical forecasting methods in simulation

MAD RMSE

HF-um

Total inventory costs

RankMean
rank Rank Mean Rank Total inventory

costs

LN
(HF/tsm)

Rank

TD2tm 19118.60

rank
137 116.04 123 W854,063,515 W75,121,262 109 -0.98

TD2tq 16

TD2tsm 84.90 17 85.26 19 W770,753,404 -W8.I 88,848 27 -25.38

122.44 157 120.02 144 W799,522,960 W20,580,707 65 -3.67

SCtmum 79.34 4 79.21 7 W726,002,802 -W52,939,451 7 -18.42 3

SCtmsm 79.05 3 78.38 3 W730,726,074 -W48,216,179 10 -11.79 8

St'tmuq 17
SCtmtsm 99.25 60 98.78 60 W803,679,850 W24,737,597 72 -13.54 6

84.92 18 83.93 17 W740,I91,882 -W38,750,371 12 -2.66

SCtsmum 78.70 2 79.07 5 W730,245,647 -W48,696,606 9 1.29 21

SCtsmsm 81.30 10 81.03 9 W748,440,413 -W30.501,840 16 9.99 33

SCtsmllq 41
SCtsmtsm 90.71 35 89.68 32 W780,OO7,802 WI.06S,549 37 -8.28 II

SCtqllm 2
85.77 19 85.81 20 W748,I93,308 -W30,748,944 15 14.62

SCtqsm 5

77.54 77.37 W693,601,747 -W85,340.505 -24.64

79.70 6 77.67 2 W702,219,843 -W76.722,409 3 -16.08

SCtquq 10
SCtqtsm 101.74 66 99.43 61 W773,325,925 -W5,616,328 30 -17.04 4

SCtqllY 18

84.33 16 83.47 14 W706,669,261 -W72,272,992 4 -9.04

80.97 9 79.15 6 W991,497,949 W212,555,696 158 -1.14

SCtsqllm 80.95 8 81.61 10 W833,085,383 W54,143.I31 92 -3.90 15

sCtsqtsm 97.88 59 97.24 58 W819,406,914 W40.464.66I 82 -7.31 12

SCtyum 89.50 30 92.56 45 W702,2I 6,842 -W76,725,411 2 13.53 39

SCtysm 92.13 43 95.40 55 W715,748,865 -W63,193,388 6 19.80 58

SCtyuq 95.07 53 98.77 59 W714,672,940 -W64,269,313 5 22.51 65

WClImtsm 89.00 25 88.05 24 W758,279,736 -W20,662,517 18 10.45 34

WClImtq 123.33 166 121.46 150 W761,152,212 -WI7,79O,041 20 26.52 78

WCtmum 82.17 II 83.67 15 W756,997,140 -W21,945,113 17 14.70 42

WOmtsm 93.85 46 92.41 44 W796,912,497 WI7,970,244 60 -6.91 13

WCtsmum 82.52 12 82.93 13 W747,740,810 -W31,201,442 14 15.07 45

WCtsmtsm 91.71 41 89.98 34 W787,884,582 W8,942,330 51 -6.33 14

WCtqum 79.64 5 79.73 8 W728,256,615 -W50,685,638 8 5.29 27

WCtqtsm 94.68 51 93.20 46 W782,633,097 W3,69O,845 43 -12.68 7

WCtquq 90.18 33 91.14 38 W759,015,207 -WI9,927,046 19 24.45 73

WCtsqtsm 95.13 54 93.79 48 W836,978,887 W58,036,634 96 -9.39 9

WCuytsm 89.11 28 90.40 35 W745,773,185 -W33,169,068 13 11.02 35

WCtyum 93.90 47 95.21 53 W739,345,856 -W39,596,397 II 5.38 28

Mean rank = mean rank for the forecasting method in terms of MAD or RMSE over the 300 items; Rank
= the rank of the forecasting method among the 220 hierarchical forecasting methods; HF - um = the total
inventory costs of each hierarchical forecasting method deducted by the total inventory costs of um;
LN(HFltsm) = the sum of natural log relative error [In(errorHFlerror,.,m)] for the total inventory costs of
each forecasting method over the 300 items.

Friedman's test for the LN(HFltsm) for the total inventory costs of the 33 hierarchical

forecasting methods was conducted. Table 5-32 compares the total inventory costs, the

LN(HFltsm) for the total inventory costs and the mean rank according to the LN(HFltsm)
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for the total inventory costs of the 33 hierarchical forecasting methods.

Table 5-32 Mean rank of the 33 hierarchical forecasting methods

Total invent0!2: costs LN(HFltsm) Friedman's test !.e<0.001)
Sum Rank Sum Rank Mean rank Rank

TD2tm W854,063,515 109 -0.98 19 17.27 20
TD2tsm W770,753,404 27 -25.38 15.56 7
TD2tq W799,522,960 65 -3.67 16 17.48 22

SCtmum W726,OO2,802 7 -18.42 3 14.47 4
SCtmsm W730,726,074 10 -11.79 8 15.21 6
SCtmtsm W803,679,850 72 -13.54 6 16.58 18
SCtmuq_ W740,191,882 12 -2.66 17 16.07 11
SCtsmum W730,245,647 9 1.29 21 16.50 16
SCtsmsm W748,440,413 16 9.99 33 17.55 23
SCtsmtsm W780,OO7,802 37 -8.28 11 16.18 14
SCtsmuq_ W748,193,308 15 14.62 41 17.79 25
SCtq_um W693,601,747 -24.64 2 13.49 1
SCtq_sm W702,219,843 3 -16.08 5 14.32 3
SCtqtsm W773,325,925 30 -17.04 4 16.14 13

SCtq_u'l. W706,669,261 4 -9.04 10 14.99 5
SCtq_uy W991,497,949 158 -1.14 18 14.13 2
SCtsq_um W833,085,383 92 -3.90 15 15.80 9
SCtsq_tsm W819,406,914 82 -7.31 12 17.19 19
SCtyum W702,216,842 2 13.53 39 18.25 29
SCtysm W715,748,865 6 19.80 58 19.12 31
SCtyuq_ W714,672,940 5 22.51 65 19.30 32

WCumtsm W758,279,736 18 10.45 34 17.82 26
WCumtq_ W761,152,212 20 26.52 78 19.32 33
WCtmum W756,997,140 17 14.70 42 17.34 21
WCtmtsm W796,912,497 60 -6.91 13 16.04 10
WCtsmum W747,740,810 14 15.07 45 18.01 27
WCtsmtsm W787,884,582 51 -6.33 14 16.25 15
WCtq_um W728,256,615 8 5.29 27 16.52 17
WCtq_tsm W782,633,097 43 -12.68 7 15.73 8
WCtq_uq_ W759,015,207 19 24.45 73 18.36 30
WCtsq_tsm W836,978,887 96 -9.39 9 16.09 12
WCu,r_tsm W745, 773,185 13 11.02 35 17.76 24
WCtyum W739,345,856 11 5.38 28 18.04 28

Mean rank = mean rank for the forecasting method in terms of the LN(HFltsm) for the total inventory
costs over the 300 items.

The robustness of sCtqum in terms of the total inventory costs was confirmed by the

mean rank. The 1st ranked TD2tsm in terms of the LN(HF Ilsm) for the total inventory

costs was merely ranked as 7th by the mean rank.
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Table 5-33 compares the performance of the proration methods for the 300 items in

terms of derivative and relative measures in the forecasting years 2005 - 2007. The

mean values (i.e. mean inventory costs, mean stock, mean back order, and mean fill rate)

and the standard deviation of mean used the identical n used for calculating the mean

LN(HFltsm) in Table 5-23.

As shown in Table 5-23 the LN(HFltsm) for MAD and the LN(HFltsm) for RMSE were

found to be similar to each other. Thus, the only result from MAD is provided. In terms

of both the total inventory costs and the mean LN(HFltsm) for MAD, TD2 presented the

minimum mean total inventory costs and the minimum mean LN(HFltsm).

Table 5-33 Proration methods comparisons (simulation)

Mean inventory costs Mean Mean Mean Mean LN(HFltsm)
Mean Std stock backorder fill rate for MAD

TDI W4,549,086 W695,251 197 26 0.78 0.22
TD2 W2,877,407 W424,018 194 24 0.76 0.09
se W3,117,380 W597,222 189 20 0.78 0.12
we W3,025,997 W599,491 182 22 0.78 0.11

Mean = the mean inventory costs per item for forecasting methods using the proration method over the
300 items; Std = the standard deviation of mean; mean stock (or backorder) = the mean stock (or back
order) per item; mean LN(HFltsm) for MAD = the mean values of natural log relative error
[In(errorHFlerrorlSm)] for MAD per item for forecasting methods using the proration method over the 300
items.

TD2 (which presented the minimum mean total inventory costs) was characterised as

having the minimum standard deviation for the total inventory costs as shown in Table

5-33. Although there was no TD2 included within the top 20 hierarchical forecasting

methods in Table 5-29, this minimum standard deviation of the mean inventory costs for

TD2 might make TD2 present the minimum mean total inventory costs in Table 5-33.

The high variability in the performance of se was identified by the highest standard

deviation of the mean LN(HFltsm) for MAD and RMSE of se as shown in Table 5-23.
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The higher standard deviation of the mean total inventory costs of se than that of TD2

was also identified as shown in Table 5-33.

It should be noted that se produced the minimum mean backorder with the second

lowest mean stock as shown in Table 5-33. Recalling equation (5-6) weighing twice the

inventory carrying costs on the inventory stock-out costs, the equation can account for

the reason why se was observed to dominate the top 20 hierarchical forecasting

methods in terms of the total inventory costs as shown in Table 5-29. In addition, there

was no significant difference in the mean fill rate across the proration methods.

Table 5-34 Proration methods comparisons in the 3 equipment groups (simulation)

Gun/RD ME GE/Ae
Mean invento~ costs W3,589,86I W5,772,497 WI,781,231

TDI Mean fill rate 0.75 0.76 0.85
Mean LN(HF/DF) MAD 0.204 0.280 0.193
Mean inventory costs W3,469,953 W3,483,099 W814,288

TD2 Mean fill rate 0.76 0.74 0.80
Mean LN(HF/DF) MAD 0.097 0.133 0.133
Mean inventory costs W4,463,679 W3,543,689 WI,062,390

se Mean fill rate 0.77 0.77 0.80
Mean LN(HF/DF) MAD 0.243 0.138 0.135
Mean inventory costs W4,955,543 W3,238,745 WI,183,738

we Mean fill rate 0.77 0.77 0.80
Mean LN(HF/DF) MAD 0.260 0.115 0.152

Mean inventory costs = the mean inventory costs per item of the forecasting methods using the proration method in
the equipment group; Std = the standard deviation of the mean inventory costs; mean LN(HFIDF) = the mean values
of natural log relative error [In(errorHFlerrorDF)] for MAD per item in the equipment group.

Table 5-34 compares the performance of the proration methods in the 3 equipment

groups in terms of the mean inventory costs and the LN(HFIDF) for MAD in the

forecasting years 2005 - 2007. urn was compared with the hierarchical forecasting

methods in Gun/Rl) and tsm was compared with the hierarchical forecasting methods in

ME and GE/AC. For GuniRD and GE/Ae, TD2 presented the minimum mean inventory

costs and the minimum LN(HF/DF) for MAD; For ME, we presented the minimum
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mean inventory costs and the minimum LN(HF/OF) for MAD. Most of the proration

methods produce similar mean inventory fill rate. TOt in GE/AC produces the highest

mean inventory fill rate, at 85%.

The 220 hierarchical forecasting methods were compared with the most robust direct

forecasting methods for the groups in terms of the relative measure in the previous

subsection. The 220 hierarchical forecasting methods were compared with the best

direct forecasting method for spare parts for each equipment group in terms of the

derivative measure (i.e. the total inventory costs) in this subsection. urn was compared

with the hierarchical forecasting methods in GunIRD and tsm was compared with the

hierarchical forecasting methods in ME and GElAC. This is because these direct

forecasting methods were found to be the most robust direct forecasting methods for

spare parts for the equipment groups in terms of both the relative and derivative

measures.

In terms of the total inventory costs, among the 220 hierarchical forecasting methods, 6

(2.7%) hierarchical forecasting methods were superior to urn for GunIRD; 39 (17.7%)

hierarchical forecasting methods were superior to tsm for ME; and 65 (29.5%)

hierarchical forecasting methods were superior to tsm for GElAC. Table 5-35, Table

5-36 and Table 5-37 present the top 10 hierarchical forecasting methods for spare parts

for each equipment group in terms of either the sum of the LN(ratio) for MAD or

RMSE, or the total inventory costs.
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Table 5-35 Top 10 hierarchical forecasting methods for GunlRD in terms of either the

natural log relative error for MAD or RMSE, or the total inventory costs

MAD RMSE Simulation
Total inventory Mean Mean Fill

LN(ratio) Rank LN(ratio) Rank HF-um Rank
costs Stock Backorder rate

7D2um -1.5 12 -0.7 9 W119.228,678 W4.187,708 13 1134.18 21.36 0.91

7V21sm -2.5 6 -0.2 13 W153,527.634 W38,486,664 104 817.39 294.10 0.74

SOmum -5.9 -4.8 WI17,987,344 W2,946,374 10 704.95 216.40 0.78

SClmsm -4.0 3 -2.1 4 W121,397,922 W6,356,952 17 844.60 143.34 0.83

SCtsmum -3.9 4 -2.6 3 WI22,417,637 W7,376,667 18 861.86 135.12 0.85

SCtqum -4.3 2 -3.8 2 W 122,602,086 W7,561,I16 19 703.29 218.18 0.78

SClqsm -2.4 7 -0.5 II W126,163,277 WII,I22,307 24 848.46 143.65 0.83

SClsqum -2.1 10 -1.0 8 WI 28,037,489 WI2,996,519 32 811.32 180.83 0.83

SCuyum 0.5 21 0.8 16 WI14,878,374 -W162,596 6 755.Q7 203.81 0.81

SCuysm 1.2 26 2.4 26 W 113,686,365 -WI,354,605 3 885.71 129.92 0.86

SCuyuq 4.5 54 5.4 55 WI17,386,Oli W2,345,041 7 780.76 201.28 0.82

SCtyum -2.3 8 -1.6 6 W113,472,778 -WI,568,192 2 690.19 201.09 0.82

SCtysm -0.2 17 1.2 18 WI14,648,085 -W392,885 4 837.83 131.94 0.86

SCtyuq 3.0 37 3.8 36 WI17,425,I04 W2,384,I34 8 723.38 20540 0.80

WCumum -0.4 16 -0.2 14 W114,752,663 -W288,307 1054.24 50.01 0.90

WC/mum -3.1 5 -2.0 5 W 120,766,521 W5,725,551 16 801.01 149.97 0.83

WCtsmum -1.8 II -0.7 10 W 122,840,265 W7,799,295 21 88303 116.30 0.86

WCtqum -2.3 9 -1.5 W 122,642,884 W7,60l,914 20 769.27 170.42 0.81

WCuyum 1.7 28 2.4 27 WI17,801,524 W2,760,554 9 743.21 156.80 0.82

WCuysm 3.0 38 3.7 35 WI I 1,534,862 -W3,506,108 925.91 47.82 0.88

LN(ratio) = the sum of natural log relative error [In(errorHF/errorum)) for MAD or RMSE of each forecasting method
over the items in GunlRD; HF-um = the total inventory costs of each hierarchical forecasting method deducted by the

total inventory costs ofum; Rank = the rank ofthe forecasting method in the 220 forecasting methods.

Consistent with the above results, SC dominated the top 10 hierarchical forecasting

methods for GunIRD and ME in terms of the total inventory costs. 7 and 8 SC methods

are included in the top 10 forecasting methods for GunIRD and ME respectively in

terms of the total inventory costs. However, for GE/AC only 4 SC methods are included

in the top 10 forecasting methods in tenns of the total inventory costs.
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Table 5-36 Top 10 hierarchical forecasting methods for ME in terms of either the natural

log relative error for MAD or RMSE, or the total inventory costs

MAD RMSE Simulation

LN(ratio) Rank LN(ratio) Rank
Total inventory IIF-,,,,, Rank Mean Mean Fill

costs Stock Backorder rate

SCtmuy -7.2 8 -8.1 10 W52S,430,OSO -W41.245,186 8 50966.71 393 1.64 0.79

SC'/.,mum -11.5 3 -11.2 4 W550,407,79O -WI9_267,476 17 46129.31 2305.95 0.82

S(',sm"m -7.0 10 -8.6 9 W556,323,892 -WI3)51)74 23 42651.41 2934.44 0.80

SC""muy -7,1 9 -6.8 13 W526,626,765 -W4,\048.50 I 7 45583.40 2478.43 0.S2

SClqum -10.9 4 -12.8 2 W5 17,805,384 -W5 I ,86\1,882 4 40917.39 3519.23 0.78

SCtqsm -6.4 J3 -9.7 6 W52 I .395,839 -W48.279,427 5 36803. I 7 3915.59 0.77

SCtquq -2.3 20 -3.6 19 W524,765,817 -W44.909_449 6 41844.69 3699.22 0.77

SCtquy -12.6 I -13.1 W491,733,078 -W77,942,188 I 39963.45 4169.75 0.79

S(',squm -11.6 2 -11.4 W647,552,177 W77,876,911 144 41640.18 279S.17 0.80

,W',squy -7.3 7 -8.8 8 W621,769,254 W52,093,988 124 40902.33 3 I 59.02 0.81

S("yum -0.4 24 0.7 31 W530,764,346 -W38,910,920 9 48839.60 2182.89 0.82

SClyuy 2.4 38 3.7 44 W5 I0,603,793 -W59,071,473 2 48437.87 2378.10 0.83

WCtqum -10.1 6 -9.7 W546,635,272 -W23,039,994 14 44412.86 307709 0.81

WClquy -0.1 27 2.0 38 W537,217,736 -W32,4S7.S30 10 52781.37 2143.35 0.84

W('/squm -10.6 5 -10.8 5 W596,994,894 W27,319,628 84 40470.27 2946.83 0.82

WCtyuy -5.5 14 -3.5 20 W517,073,770 -W52,60 I ,496 3 39289.90 5031.13 0.82

LN(ratio) = the sum of natural log relative error [In(errorHFierror,,m)] for MAD or RMSE of each forecasting method
over the items in ME; HF-tsm = the total inventory costs of each hierarchical forecasting method deducted by the
total inventory costs of Ism; Rank = the rank of the forecasting method in the 220 forecasting methods,

In Table 5-35, for GunIRD, no forecasting method was identified as a robust forecasting

method, although SCtyum was ranked within the top 10 for all the three measures [Le.

the sum of the LN(ratio) for MAD and RMSE, and the total inventory costs] with a

qualified fill rate (i.e. greater than 70%), In Table 5-36, for ME, SCtquy was the most

robust forecasting method and superior to Ism in terms of the three measures. In Table

5-37, for GE/AC, no forecasting method was ranked within the top 10 for all the three

measures in common.
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Table 5-37 Top 10 hierarchical forecasting methods for GElAC in terms of either the
natural log relative error for MAD or RMSE, or the total inventory costs

MAD RMSE Simulation

LN(ratio) Rank LN(ratio) Rank Total inventory
HF-/m, Rank Mean Mean Fill

costs Stock Backorder rate
IV/,sm -3.0 8 -3.8 7 W107,256,575 W5)J35,I78 175 5867.59 344.21 0.83
ID2tm 3.6 48 2.3 44 W46,816,337 -W9,105,060 2 5941.18 612.06 0.69
71)21.,m -3.3 6 -4.3 W50,338,878 -W5,582.519 II 5953.13 439.46 0.77
lJ)2tq 4.1 52 1.4 37 W44,727,227 -WII,194,170 5086.00 741.45 0.66
71)2uy 11.1 134 7.7 99 W49,204,I74 -W6, 717 .223 8 8184.22 421.97 0.85

S("lmum -3.4 5 -5.1 4 W53,200,105 -W2,721,292 25 7791.55 334.37 0.82
.W·tm.,m -5.5 3 -5.9 3 W55,212,827 -W708.570 53 7092.00 288.35 0.84
.W'tsm.,m -2.2 10 -2.4 II W58,415,518 W2,494,121 83 7221.40 255.90 0.S6
.W·tqum -6.6 -7.9 W52,S49,515 -W3,071,S82 22 7270.65 321.87 0.82
SCtq.,m -6.2 2 -6.6 2 W54,315,965 -W 1.605,432 38 6606.75 301.30 0.83
SCtquq -2.7 9 -3.1 10 W50,791,881 -W5.129.516 13 7581.S0 30S.32 0.S2
S('tquy -1.7 II -3.7 S WI24,453,833 W6S,532,436 IS4 6925.75 319.44 0.81
S('tsqum -3.0 7 -4.2 6 W57,I42,233 WI,220,836 77 7913.09 291.65 0.85
S( 'tsqsm -3.5 4 -3.7 9 W58,546,I21 W2,624,724 84 7251.27 278.70 0.85
S('uylm 13.2 147 12.5 154 W47,446,316 -WS.475,081 4 7319.22 379.08 0.76
S('uylsm 1.5 30 0.1 22 W48,667,348 -W7.254,049 6 7110.25 348.21 0.S2
S('uylJq 4.7 57 4.0 58 W46,896,55I -W9,024,846 3 7221.84 370.36 0.78
SCtytm 9.9 116 10.6 138 W50,272,102 -W5,649,295 10 7162.12 538.28 0.68
W('uytm 7.5 80 8.1 101 W47,919,716 -W8,00 I ,681 5 6719.71 542.79 0.68
W("uyl.,m 1.5 29 1.6 39 W49,639,365 -W6,282,032 9 6746.37 416.57 0.77
WCuytq 10.4 121 10.6 139 W48,949,611 -W6,97I ,786 6560.72 604.01 0.66

LN(ratio) = the sum of natural log relative error [In(errorHFlerror,.,,,,)) for MAD or RMSE of each forecasting method

over the items in GEl AC; HF-Ism = the total inventory costs of each hierarchical forecasting method deducted by the
total inventory costs of Ism; Rank = the rank of the forecasting method in the 220 forecasting methods.

If the most robust forecasting method for all the 300 items (i.e. SCtqum) is used for

forecasting spare parts for Gun/RD and GElAC, and the most robust forecasting method

for the spare parts for ME (i.e. SCtquy) is used for forecasting spare parts for ME, the

total inventory costs for all the 300 items can be calculated as W667,184,679

(£340,922). These inventory costs are 3.8% smaller than the total inventory costs from

using only SCtqum for forecasting all the 300 spare parts; that is, W693,601,747

(£352,619).
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Table 5-38 The performance of hierarchical forecasting methods

Absolute & relative measures Derivative measure
Superior to the most

robust OF
16.4% & 17.7% of HFs to tsm by 15.9% of HFs to um by total
LN(ratio) for MAD & RMSE inventory costs

The most robust
forecasting method

SCtqurn

Proration
method

Top-21 by LN(ratio):
14 SCs, 6 WCs, 0 TOI, & 1 T02

Top-21 by mean rank in
MAOIRMSE:

15 SCs, 5 WCs, 0 TOI, & I T02

Top-20 by total inventory costs:
12 SCs, 8 WCs, 0 TDI, & 0

TD2

The most frequently
higher ranked OF for
Top-21 or Top-20

Item level: m' & u2

Item level combination: urn
Group level: m' & q'; r& ti
Group level combination: tq

Item level: rn'& u1

Item level combination: um
Group level: m' & r

The most robust method
for equipment

group
ME: SCtquy

OF = direct forecasting; HF = hierarchical forecasting; TO = top-down forecasting; SC = simple
combination; WC = weighted combination; LN(ratio) = natural log relative error [In(errorHF/erroroF)]; 1
= data aggregation method; 2 = data adjustment method.

Table 5-38 presents the major findings of this section; that is, the performance of

hierarchical forecasting methods in terms of absolute, relative and derivative measures.

SCtqum was demonstrated to be the most robust forecasting method in terms of the

LN(HFltsm) for MAD and RMSE, the total inventory costs, and the LN(HFIIsm) for

total inventory costs in the years 2005 - 2007. Among the 4 proration methods, the

proration methods for combinatorial forecasting, especially simple combination,

dominated the top 21 and the top 20.

The frequencies of direct forecasting methods at group and item levels for the top 21

hierarchical forecasting methods in terms of the relative accuracy measure and the top

20 hierarchical forecasting methods in terms of the derivative measure were

investigated. For the top 20 hierarchical forecasting methods, at group level, m as the
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data aggregation method and t as the data adjustment method were the most frequently

higher ranked methods; at item level, m as the data aggregation method and u as the

data adjustment method were the most frequently higher ranked methods. As the

combination of the data aggregation and adjustment methods, at item level, urn was

found to be the most frequently higher ranked forecasting method. In addition, the

performance of forecasting methods for spare parts for the three equipment groups (Le.

Gun!RD, ME, and GE/AC) was investigated.

5.6 Summary and Conclusion

This chapter compared a range of direct and hierarchical forecasting methods using

absolute, relative and derivative measures.

5.6.1 Summary offindings

The major findings (i.e. superior forecasting methods) of this chapter are presented as

shown in Table 5-39. In the period 2004 - 2007, the forecast with yearly aggregated

data adjusted for linear trend (ty) presented the minimum mean rank in terms of MAD

and RMSE. With the exception of 2004, the forecast with monthly aggregated data

adjusted for linear trend and additive seasonality (Ism) [followed by the forecast with

monthly aggregated unadjusted data (urn)] presented the minimum mean rank in terms

of MAD and RMSE. In the period 2005 - 2007 Ism was the most robust direct

forecasting method among the 10 direct forecasting methods tested. The difference in

the forecasting performance between the periods might be caused by the influence of

the two peak points in 2002 and 2003 upon the forecasts in 2004. In terms of the total

inventory costs urn was found to be the most robust direct forecasting method (followed
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by Ism). um was also found to be the most frequently higher ranked item level direct

forecasting method for the top 21 and 20 hierarchical forecasting methods. However,

Ism minimised the mean rank in terms of the total inventory costs which is consistent

with the results from the absolute measures.

Table 5-39 Summary of the performance of forecasting methods

Absolute & relative measures Derivative measure

The most robust
DF

tsm
Total inventory costs: um
Mean rank for total inventory
costs: tsm

OF

GunlRD: um; ME & GE/AC: tsm
The most robust
DF for equipment

ou
Superior to the
most robust DF

15.9% ofHFs to um
16.4% & 17.7% of HFs to Ism by
LN(ratio) for MAO & RMSE

The most robust
method

SCtqum

Top-20 by total inventory costs:
12 SCs, 8 WCs, 0 TOI, & 0 T02

Proration
method

HF

Top-21 by LN(ratio):
14 SCs, 6 WCs, 0 TDI, & I TD2

Top-21 by mean rank in
MAO/RMSE:

15 SCs, 5 WCs, 0 TDI, & I TD2

The most
frequently higher
ranked OF for

Top-21 or Top-20

Item level: m' & u2

Item level combination: um
Group level: ml & q'; i& Ii
Group level combination: tq

Item level: m' & u2

Item level combination: um
Group level: ml & r2

The most robust
method for
equipment

group

ME: SCtquy

OF = direct forecasting; HF = hierarchical forecasting; TO = top-down forecasting; SC = simple
combination; WC = weighted combination; LN(ratio) = natural log relative error [In(errorHF/errorDF)); I =
data aggregation method; 2 = data adjustment method.

The most robust forecasting method among the forecasting methods tested for the 300

items was SCtqum in terms of the LN(HFltsm) for MAD and RMSE, the total inventory

costs, and the LN(HFltsm) for total inventory costs in the years 2005 - 2007. As such,

the internal validity of the robustness of SClqum is claimed to be established. In the
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years 2005 - 2007, among the 220 hierarchical forecasting methods, 36 (16.4%), 39

(17.7%), and 35 (15.9%) of the hierarchical forecasting methods were superior to tsm in

terms of the LN(ratio) for MAD and RMSE and the total inventory costs respectively.

Combinatorial forecasting methods, especially simple combination methods dominated

the top 21 and 20 hierarchical forecasting methods. The domination of combinatorial

forecasting in the top 21 and 20 hierarchical forecasting methods corroborated the

literature (Kahn, 1998, Dekker et aI., 2004, Hyndman et al., 2007) in that combinatorial

forecasting could present lower forecasting errors and lower inventory costs than top-

down and direct forecasting. The domination of simple combination in the top 21 and

20 hierarchical forecasting methods corroborated DeLurgio (1998).

5.6.2 Forecasting scheme/or the South Korean Navy

As stated earlier, the way that the South Korean Navy forecasts the spare parts demand

is inappropriate because it does not capture the characteristics of the demand. A

forecasting scheme for the South Korean Navy was derived from the results of this

chapter as follows:

a) In lieu of the current direct forecasting, hierarchical forecasting is suggested.

b) As a proration method for hierarchical forecasting, combinatorial forecasting,

especially simple combination, should be considered.

c) A careful selection of a forecasting method from various forecasting methods using

simple combination is required, because the performance of the forecasting methods

using simple combination for forecasting the 300 spare parts demand was highly

variable.

d) As a forecasting method using simple combination, SCtqurn is recommended for
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forecasting spare parts demand for GuniRD and GElAC, because SCtqum generally

provided the most robust forecasting performance for forecasting the 300 spare parts

demand.

e) For forecasting spare parts demand for ME which is characterised as having lower

correlation, steeper downward trend, lower intermittency, and larger demand volume,

SCtquy is recommended, because SCtquy provided the most robust forecasting

performance for forecasting the spare parts demand for ME.

f) Verification of a forecasting performance using simulation before implementing the

forecast should be conducted. The simulation can reduce the risk of a wrong decision

and guarantee the best practical decision in terms of monetary value and service level.

5.6.3 Conclusion

In this chapter, the performance of the direct and hierarchical forecasting methods was

measured by the three groups of accuracy measures. With the three-fold measurements,

reliability and internal validity of the results are claimed to be established. This chapter

identified the robust forecasting methods and proposed the forecasting scheme for the

South Korean Navy. Therefore, this chapter can claim to answer research question b)

"what forecasting method is appropriate for the spare parts demand in the South Korean

Navy?" by providing the robust forecasting methods. This also answers a part of

research question c) "under what conditions are top-down forecasting or combinatorial

forecasting superior or inferior to direct forecasting?" by providing the forecasting

scheme.

The above forecasting scheme, which suggests using SCtqum for GuniRD and GElAC

and SCtquy for ME, should be used with caution because it is based on the investigation
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with the equipment groups consisting of a small number of spare parts for the selected

three types of warships. It might be difficult to apply these forecasting methods to

forecasting other demands for the spare parts of other pieces of equipment or other types

of warships in the South Korean Navy. The relationship between the demand features of

ME and the forecasting performance of ME was suggested in this forecasting scheme.

However, this forecasting scheme cannot explain the effect of the demand features upon

the relative forecasting performance explicitly. In the next chapter, the effect of the

demand features upon the relative forecasting performance will be investigated. A

classification model which guides a choice of a superior forecasting strategy will be

proposed.
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In Chapter 4, the demand features of the spare parts in the South Korean Navy were

analysed. In Chapter 5, the most robust direct forecasting method (Le. Ism) and the most

robust hierarchical forecasting method (i.e. SClqum) for predicting the spare parts

demand were identified in terms of the absolute, relative, and derivative measures. The

robust forecasting method for spare parts for Main Engines was also identified.

However, the forecasting scheme suggested in Subsection 5.6.2 cannot explicitly

explain the relationships between the demand features of spare parts for the equipment

groups and the performance of the forecasting methods for the spare parts for the

equipment groups. This might have a limitation because those forecasting results for

spare parts for Main Engines were derived from examinations with the limited number

of spare parts. Hence, it might be difficult to apply the forecasting scheme to forecast

other spare parts demands which have not been tested in the South Korean Navy. In this

chapter, a classification model which uses demand features to predict the relative

performance of alternative forecasting methods is examined, so that this model can be

more generalisable than the forecasting scheme. A classification model to predict a

superior forecasting method between the most robust hierarchical forecasting method

and the most robust direct forecasting method by the multivariate demand features is

proposed.

This chapter starts by describing the competing performance of the most robust direct

forecasting method and the most robust hierarchical forecasting method in Section 6.1.

In Section 6.2, possible demand features to guide the selection of a forecasting method

are outlined. In Section 6.3, the process of classifying demands for the selection of a

superior forecasting method by the features of the demands is described. In Section 6.4,

classification results are related. Finally, a summary and concluding remarks are

presented in Section 6.5.

6.1 Competing Performance

In Sections 5.4 and 5.5, a group of good forecasting methods were identified. Of the

direct forecasting methods, Ism was generally found to be the most robust forecasting
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method for the 300 selected items in terms of MAD and RMSE, although um was found

to provide a better result in terms of the total inventory costs. Of the hierarchical

forecasting methods, SCtqum was generally found to be the most robust forecasting

method for the 300 items in terms of most of the measures. SCtqum was unveiled as the

superior forecasting method compared to the best direct forecasting method, tsm, in

terms of all measurements. However, if the forecasting performance for each item is

individually assessed, SCtqum is not always superior to tsm for each item.

Figure 6-1 compares the relative forecasting performance between the most robust

direct forecasting method (i.e. tsm) and the most robust hierarchical forecasting method

(i.e. SCtqum) for the 300 items between 2005 and 2007. Approximately, the share of the

superiority for the 300 items is 40 % versus 60 % for tsm and SCtqum respectively. This

implies that there is a 40 % chance of improvement compared with employing only

SCtqum for the 300 items. If there is any guideline to select a forecasting method

between tsm and SCtqum, a better performance than just employing a single forecasting

method could be achieved.

200
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MAD RMSE Inventory Costs

Figure 6-1 Relative forecasting performance (tsm vs. SCtqum)

6.2 Possible Demand Features to Guide the Selection of a Forecasting Method

Some guidelines for the use of top-down forecasting in previous research were reviewed
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in Subsection 2.5.2. The previous research is about guidelines for the use of top-down

forecasting. However, these might also present an implication to guide the use of

combinatorial forecasting because combinatorial forecasting can be considered to be a

variant of top-down forecasting.

In this research, the most robust direct forecasting method (Ism) was generated by

monthly aggregated time series at item level; the most robust hierarchical forecasting

method (SCtqum) was generated by the simple combination of the forecast with

quarterly aggregated time series at group level and the forecast with monthly aggregated

time series at item level. Hence, the demand features for monthly aggregated time series

at item level as well as the demand features for quarterly aggregated time series at group

level were examined. In order to represent a variable, an abbreviation scheme was used

as shown in Figure 6-2. For example, I.Slope denotes the Slope of monthly aggregated

time series at item level; G.Cv(size) denotes the coefficient of variation in demand size

in the quarterly aggregated time series at group level.

Quarterly aggregated data at group level tEl. [
. Variable

Monthly aggregated data at item level---

Figure 6-2 Abbreviation for a variable

As stated earlier, non-normal demand associated with spare parts demand in the South

Korean Navy encompasses many demand features. For the purpose of capturing the

nature of non-normal demand for selecting a superior forecasting method the need for a

multidimensional calibration of data features was identified.

Among the various possible demand features to guide the use of a hierarchical

forecasting method, eight continuous features (expressed as nineteen continuous

variables) and two categorical features were included in the classification model in this

research. Table 6-1 presents possible demand features and variables that might capture

the demand features to guide the selection of a forecasting method with their impacts on

the relative performance of forecasting strategies in research.
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Table 6-1 Possible variables to guide the selection of a forecasting method

Demand feature Variable
Impact on relative

erformance
Reference

!TD Schwarzkopf et al. (1988)

Correlation
I.Corr(group)
l.Corrtitem)

!DF (item) Gross and Soh I (1990) & Widiarta et al.(2006)
1DF (group) & BU Fliedner ( 1999)

Non-significance
Dangerfield and Morris ( 1992). Widiarta et al.
(2008a) & Widiarta et al. (2009)

Variability

G.Cv(size)
I.Cv(size)
G.Pr(peak)
I.Pr( eak)

1TD Schwarzkopf et al. ( 1988)

1DF (group) Viswanathan et al. (2008)

Forecasting horizon PROLT 1TD Shlifer and Wolff (1979)

uv G.Mean
I.Mean

1TD Fliedner and Mabert (1992)
DV

PricexG.Mean
Price xI.Mean

Trend
G.Slope
I.Slo e

Businger and Read (1999)

Deviation from a
normal distribution

G.Skewness
I.Skewness

Businger and Read (1999)

G.Kurtosis
I.Kurtosis

Intermittency
Cl.Pr( zero)
I.Pr(zero)

Johnston ( 1980). Johnston and Boylan ( 1996).
Businger and Read (1999). Syntetos (2001). &
Boylan et al. (2008)

Categorical Year
variable Equipment

UV: historical unit volume: DV: historical dollar volume; Corr(item or group) = correlations of the item level time
series with other item level time series in the same group or the group level time series: Cv(size) = coefficient of
variation in demand size: Pr(peak) = proportion of peak demands; PROLT = procurement lead time: Price = unit
purchasing price; Prtzero) = Proportion of zero demand periods: 1 (or !) = increasing (or decreasing) the value ofthc
demand feature increases the relative performance of the forecasting strategy: TD = top-down forecasting; BU =

bottom-up forecasting: Df'(group or item) = direct forecasting at group or item level.

Correlation

As discussed In Subsection 2.5.2, there was inconsistency about the impact of

correlations. As shown in Subsection 4.3.3, in order to test the influence of correlations

upon the relative performance of the alternative forecasting methods (SCtqum and tsmt,

the two kinds of correlations such as Corr(item) and Corr(group) were employed in the

classification model of this research.

Variability

In order to measure the variability of non-normal demand, 'coefficient of variation in

demand size' (Williams, 1984, Businger and Read, 1999, Syntetos, 2001) and 'number

of peaks' (Businger and Read, 1999) were employed. As discussed in Subsection 2.5.3,

there have been a few investigations about the influence of variability upon the
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performance of hierarchical forecasting. Schwarzkopf et al. (1988) examined the

performance of direct and top-down forecasting methods at item level with missing or

unreliable data. Viswanathan et al (2008) examined the influence of variability of

demand size upon the performance of direct and bottom-up forecasting methods at

group level. Cv(size) and Pr(peak) at both group and item levels identified In

Subsection 4.3.4 were employed in the classification model of this research.

Forecasting horizon

As mentioned in Subsection 2.5.2, Shlifer and Wolff (1979) claimed that a top-down

forecasting method was preferred to a direct forecasting method as the forecast goes

further into the future. In order to test the influence of forecasting horizon upon the

relative performance between SCtqum and Ism, PROL T was utilised in the classification

model of this research.

UVandDV

Historical unit volume (UV) and historical dollar volume (DV) are grouping criteria

which have been claimed to increase the accuracy of top-down forecasting significantly

(Fliedner and Mabert, 1992). In this research, quarterly mean demand at group level (to

test the influence of the quarterly mean demand upon Iq at group level of SCtqum), and

monthly mean demand at item level (to test the influence of the monthly mean demand

upon um at item level of SCtqum and Ism) were employed as UV. In Section 4.3, DV

was calculated as either "DV= sum of historical consumption for an item between Jan

2002 and Nov 2007 x item unit price" in order to understand the general demand feature

of items or "DV = historical demand for an item per year x item unit price" in order to

form the pair group. In this chapter, in order to test the discriminating influence of DV

between quarterly demand at group level and monthly demand at item level upon the

relative performance of the alternative forecasting methods in the classification model,

"item unit purchasing prices multiplied by quarterly mean demand at group level" and

"item unit purchasing prices multiplied by monthly mean demand at item level" were

included in the model to test the influence of DV.

Trend and deviation from a normal distribution

Businger and Read (1999) used trend, seasonality, and skewness to classify demands for
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forecasting. As shown in Subsection 4.3.5, most of the seasonal effects of the spare parts

data obtained from the Navy were found to be non-significant. Hence, seasonality was

not considered to be a demand feature to be used in the classification model. Slope (to

test the influence of the linear trend upon the relative performance of the alternative

forecasting methods), skewness and kurtosis (to test the influence of the deviation from

a normal distribution upon the relative performance of the alternative forecasting

methods) at both group and item levels were utilised in the classification model of this

research.

Intermittency

'Number of periods with zero demand' (Businger and Read, 1999, Boylan et aI., 2008)

and 'average inter-demand interval (ADI)' (Johnston, 1980, Johnston and Boylan, 1996,

Syntetos, 2001, Boylan et al., 2008) were employed in order to measure the

intermittency of a demand as stated. However, no research has been carried out about

the influence of intermittency upon the performance of hierarchical forecasting.

Pr(zero)s at both group level and item level were employed in the classification model

of this research.

Categorical features

In categorical data observations are sorted into discrete mutually exclusive categories;

in ordinal data objects are put into a rank order; and in interval data the intervals

between adjacent values are equal (Howitt and Cramer, 2008, Field, 2009). As shown in

Sections 5.4 and 5.5, the relative performance of forecasting methods were different in

the different equipment groups (i.e. Gun/RD, ME or GElAC) and also different year by

year. The three forecasting years (i.e. 2005,2006, and 2007) might not be either interval

data or ordinal data. The intervals of the performance of forecasting methods between

adjacent years were not equal; that is, a change in the performance of a forecasting

method from 2005 to 2006 was not the same as the change in the performance of a

forecasting method from 2006 to 2007. The performance of a forecasting method also

was not put into a rank order between 2005 and 2007. The classification model included

two categorical features, which are the three forecasting years and the three equipment

groups; namely Year and Equipment respectively.
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6.3 Process of Classification

This section describes the process of the classification modelling. This includes a

detailed description of the forecasts and their performance for the modelling,

classification methods, the building process of the model, the diagnostics of the model,

the cross-validation process and a description of the final model.

6.3.1 Forecasting performance

For the purpose of investigating the classification model which predicts the superiority

of the alternative forecasting methods (tsm vs. SCtqum) by the demand features, the

three years (i.e. 2005, 2006 and 2007) of the demand forecasts and the corresponding

demand features of the data which were used to produce these forecasts were examined.

As the classification model is a prediction model, the demand features in the previous

periods were utilised. For example, in order to test the forecasting accuracy of 2005 (or

2006), the forecast ranging from January 2005 (or 2006) to procurement lead time plus

the review periods (12 months) was generated and measured. Then, the influence of

demand features of the data ranging from January 2002 to December 2004 (or 2005)

upon the forecasting performance was examined.

For the classification model, the same spare parts data, as used for forecasting in

Chapter 5, were employed. In Section 5.4, it was shown that the forecasts in 2004 were

highly influenced by the peak points in 2002 and 2003. In order to mitigate the erratic

effect from the peak points of the years 2002 and 2003, the forecasts from the year 2005

to the year 2007 were investigated. Thus, 900 forecasts (i.e. the 300 items x the 3 years)

were produced. Forecasting accuracy was measured until November 2007.

In Subsection 2.6.1, the two alternative effects of absolute measures of accuracy were

reviewed. An absolute measure of accuracy using squared error such as RMSE places

heavier weight on large errors than other methods; an absolute measure using absolute

deviation such as MAD is less sensitive to outliers. In practice, the results measured

using MAD and RMSE were found to be similar in Sections 5.4 and 5.5. Therefore, in

this chapter, the performance of the two alternative forecasting methods was compared

in terms of an error measure using only absolute deviation. In Subsection 2.6.1, in order

to measure forecasting errors across a large amount of data, the error measures divided
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by means were introduced. As such, MAD/ A and RMSE/ A were used in Chapter 5.

In this chapter, the performance of each forecast was measured by the absolute

deviation divided by the item's monthly mean consumption in order to avoid biasing

effects of an item with large consumption as shown in equation (6-1). For example, the

absolute deviation between the observed demand and the estimated demand of an item

in 2005 (t = 1) was divided by the monthly mean demand for the item between 2002 (1-3,

k = 3) and 2004 (t-1). The sum of the absolute deviations divided by monthly mean over

the 300 items (N = 300) for the 3 years (n = 3) (i.e. 900 observations) is defined as in

equation (6-2).

Absolute deviation divided by monthly mean =
Y,.t

(6-1)

Sum of absolute deviations divided by monthly mean =tf Iyi,t: )1"/1 (6-2)
1=1 1=1 y,,1

where:
yu = the observed demand for item i at time t
Yi,I = the estimated demand for item i at time I
Y u = the monthly mean demand for item i between t-k and t-l

{

3, t = 1 (Le. 2005)
k = 4, t: 2 (~.e.2006)

5, t - 3 (I.e. 2007)

The sum of absolute deviations divided by the monthly mean over the 300 items for the

3 years for SCtqum was compared with those of the alternative forecasting methods.

This included the top 21 hierarchical forecasting methods in terms of MAD and RMSE

as in Subsection 5.5.2, and the alternative direct forecasting methods (i.e, um and Ism).

Table 6-2 presents the sum of the absolute deviation divided by the monthly mean over

the 900 observations for the alternative forecasting methods. Consistently, as with the

results in Chapter 5, tsm presented smaller errors than um; SCtqum presented smaller

errors than any other forecasting methods. This led to the choice of SCtqum and tsm as

two alternative forecasting methods representing the most robust hierarchical and direct

forecasting methods respectively in the classification models of this research.
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Table 6-2 Forecasting performance comparisons in tenns of the sum of absolute
deviations divided by the monthly mean

Forecasting method Sum of errors Forecasting method Sum of errors
um 8138.35 tsm 7877.95

TD2tm 12129.88 SCtlJ.slJ. 7609.62
TD2tsm 7452.18 SCtlJ.uJ!.. 9191.39
TD2tlJ. 8985.57 SCtslJ.um 7242.81

SCtmum 8818.46 SCtslJ.sm 7375.56
SCtmsm 8957.36 SC!!:.um 7430.90
SCtmulJ. 9036.49 WCtmum 8879.40
SCtsmum 7167.39 WCtsmum 7355.10
SCtsmsm 7291.10 WCtlJ.um 7260.91
SCtsmuq_ 7474.08 WCtlJ.sm 7523.94
SCtq_um 7154.79 WCtslJ.um 7367.40
SCtlJ.sm 7258.84 WC!!:.um 7612.62
SCtlJ.ulJ. 7388.41

Sum of errors = the sum of absolute deviations divided by the monthly mean over the 300 items for the 3
years.

Figure 6-3 compares the performance of Ism, SClqum and an ideal selection. The total

inventory costs and the sum of absolute deviations were calculated over the 300 items

for the 3 years. The ideal selection represents a combination of superior forecasts

between Ism and SClqum for each observation in terms of equation (6-1). A series of

simulations using the same simulation processes in Subsection 5.3.2 were conducted to

calibrate the total inventory costs for Ism, SClqum and the ideal selection. Considering

that SCtqum is the most robust forecasting method, the ideal selection achieves

considerable improvements over SClqum in terms of the total inventory costs as well as

the sum of errors. Building a classification model to approach the ideal selection might

be a crucial way to achieve the improvement of forecasting accuracy so as to maximise

the operational availability of weapon systems.
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Figure 6-3 Forecasting performance comparisons

6.3.2 Various classification methods

Various classification methods such as multiple linear regression, logistic regression

decision tree, and artificial neural networks to build a classification model were

considered. As stated in Subsection 2.5.1, Businger and Read (1999) used multiple

linear regression to examine the relationships between the accuracy of the four models

such as three Box-Jenkins models [ARIMA(l, 1, 1), ARIMA(2, 2, 2) and ARIMA(3, 2,

3)] and exponential smoothing and the spare parts demand time series characterised by

several statistics. However, they failed to find any distinct patterns in the relationships

between the forecasting accuracy and the statistics. Linear regression cannot be used for

dichotomous outcomes (i.e. tsm or SCtqurn) because one of the assumptions of linear

regression is that the relationship between outcome variables and predictors is linear

(Field, 2009).
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As a variant of the multiple linear regression, multiple logistic regression uses a

dichotomy outcome (i.e. a dependent variable) and several predictors (i.e. independent

variables) (Hosmer and Lemeshow, 2000). A multiple logistic regression formula is

defined as in equation (6-3). Logistic regression is a model for predicting the probability

of occurrence of event y given known values of Xi (Field, 2009).

(6-3)

where:
P(y) = the probability of y occurring
e = the base of natural logarithms
hi = the coefficient of ther parameter, Xi

A probability, P(y) varies between 0 and 1: probability 1 indicates that there is a 100 %

chance of occurrence; probability 0 indicates that there is no chance of occurrence. For

the purpose of fitting the model, the dependent variables were encoded as either 0 or 1.

Logistic regression is a suitable model here because this research requires predicting the

relative performance of the two alternative forecasting methods for predicting spare

parts demand by several demand features.

Perlich et al. (2003) argued that a decision tree requires a large data set to present a

better performance than logistic regression. They examined 36 large empirical two-class

data sets (e.g. "Adult": whether income exceeds $50,000 per year; and "Bacteria":

whether bacteria were found or not) which had at least 700 examples (i.e. observations).

They argued that logistic regression was superior for smaller data sets and decision tree

was superior for larger data sets. For example, in the case with the data set, Adult,

decision tree was argued to outperform logistic regression for sets including more than

around 10,000 observations in terms of classification accuracy (Perlich et aI., 2003). A

decision tree might be inappropriate for this research because only 900 observations (i.e.

900 annual forecasts for 300 items for 3 years) are available. Therefore, a decision tree

was not considered for this research.

There are limitations of artificial neural networks (ANNs). Weights generated in ANNs

are difficult to interpret. This difficulty of interpretation is called the "black box" nature
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of ANNs (Tu, 1996). Another limitation of ANNs IS proneness to over-fitting

(Ottenbacher et al., 2001). ANNs with several hidden layers may be able to achieve 100%

accuracy by memorising all the cases; however, this over-fitted model cannot produce

an accurate prediction with new data sets. Various methods to prevent over-fitting are

available; however, some require losing information (Ottenbacher et al., 2001). Logistic

regression is less likely to be over-fitted because the range of functions for logistic

regression is more limited than ANNs (Ottenbacher et al., 2001).

Discrimination refers to a measure of how well the two classes in the data set are

separated (Dreiseitl and Ohno-Machado, 2002). In practice there were no statistically

significant difference in discrimination between artificial neural networks (ANNs) and

logistic regression. Ottenbacher et al. (2001) postulated no statistically significant

difference in discrimination between ANNs and logistic regression. Dreiseitl and Ohno-

Machado (2002) analysed 72 academic papers and argued that in most of the statistical

testing in discrimination, both ANNs and logistic regression performed at around the

same level. Owing to the above limitations of ANNs and their similar performance to

logistic regression, ANNs were not considered for this research.

6.3.3 Classification by logistic regression

In order to build the classification model which predicts the relative performance of the

two alternative forecasting methods, multiple logistic regression was employed. "SPSS

15.0 for windows" was used to build a logistic regression model. When the performance

of an SCtqum is superior to a tsm (i.e. the mentioned absolute deviations divided by the

monthly mean of SCtqum was less than those of tsm) for an item, the dependent variable,

Pry) in equation (6-3), was encoded as 1; when the performance of a Ism is superior to

an SCtqum (i.e. the mentioned absolute deviation divided by the monthly mean of

SCtqum was greater than those of Ism) for an item, the dependent variable was encoded

as O. As such, the logistic regression model was fitted to the data obtained from the

South Korean Navy.

In order to test the fitted logistic regression model, an outcome variable from the model

was classified into either 0 or 1 with a cut-off value of c; that is, Pry) larger than c was

classified as SClqum, whereas Pry) smaller than c was classified as Ism. In this research,
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the cut-off value, 0.5 was employed because this is the most commonly used value for c

(Hosmer and Lemeshow, 2000).

The above mentioned demand features of the data which were used for generating the

forecasts were utilised as predictors. In logistic regression, predictors can be either

continuous variables or categorical variables (Pallant, 2005). Nineteen continuous

predictors and two categorical predictors which were shown in Table 6-1 were

employed for this research. Dummy coding refers to a way of representing groups using

only zeros and ones (Field, 2009). Two categorical predictors, Year and Equipment,

were encoded as four dummy variables as in Table 6-3.

Table 6-3 Categorical variables coding

Frequency Parameter coding

Equipment
GunIRD 132 o 0

ME 564 I 0
GE/AC 204 o I

Year
2005 300 o 0
2006 300 1 0
2007 300 o I

In dummy coding, one group is considered to be a reference group (or a control group)

against which all other groups should be compared (Miles and Shevlin, 200 I, Field,

2009). Recalling the forecasting performance in each group, whilst urn was the most

robust direct forecasting method for GunIRD, tsm was the most robust direct forecasting

method for the other two groups. Recalling the demand features in each group,

compared with other groups, GunIRD was characterised as a more intermittent time

series. Intermittency is an important demand feature which guided the selection of a

forecasting method for non-normal demand (Johnston and Boylan, 1996, Boylan et aI.,

2008). Therefore, among the equipment groups, GunIRD was determined to be the

reference group in order to compare it with ME and GElAC.

The forecasts in the year 2005 are more likely to be affected by the two peak points than

the forecasts in the years 2006 and 2007. This is because the forecasts in the year 2005

are closer to the two peak points than the forecasts in the years 2006 and 2007. The year

2007, which might be least influenced by the two peak points, might not be appropriate

to be used as the reference group because the year 2007 has an eleven-month period.
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Therefore, the year 2005, which might be most influenced by the two peak points, was

determined to be the reference group in order to compare the forecasts in 2005 with the

forecasts in the years 2006 and 2007. As such, the reference groups were assigned to the

code, '00'.

Selecting a predictor entry method together with identifying the predictors has a crucial

impact on the performance of logistic regression (Field, 2009). Hierarchical predictor

entry, forced entry and stepwise methods can be illustrated as predictor entry methods

(Hosmer and Lemeshow, 2000, Miles and Shevlin, 2001, Field, 2009). In hierarchical

predictor entry method, predictors are selected based on previous research and model

builder's decision. These are entered into the model in order of their importance to the

outcome (Field, 2009). Forced entry also stands upon existing theory about which

predictors should be chosen, however, it forces all predictors into the model

simultaneously without considering their importance (Field, 2009). Forced entry with

all the 19 continuous predictors and the 2 categorical predictors was attempted for this

research as follows.

In order to test the classification performance of the logistic regression model, the 10%

cross-validation, which was stated in Subsection 3.6.2, was conducted. Among the 900

observations, 90 observations (i.e. 10% of the data set) were left out as a test set and

810 observations (90% of the data set) were used to build the model. This process was

repeated 10 times, so as to test all the data sets. 10 logistic regression models based on

forced entry method with the 10 training sets were built. However, the model found

only 1 statistically significant (p-value < 0.05) predictor (i.e. Year) for 4 training sets;

and no statistically significant predictor for 1 training set among the 10 training sets.

The classification results from the models using forced entry method with either only 1

significant predictor (i.e. Year), which is not based on any existing theory, or no

significant predictor were therefore potentially unreliable.

Stepwise method refers to a predictor entry method in which predictors are included in

the regression model based on a statistical criterion (Hosmer and Lemeshow, 2000,

Field, 2009). When the related theory is not well-developed, stepwise method IS

suggested (Hosmer and Lemeshow, 2000, Field, 2009). The stepwise process IS
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continued until none of the remaining predictors have a significant score statistic (the

cut-off point for p-value = 0.05) (Field, 2009). In lieu of forced entry method, stepwise

method was considered. In this research, stepwise method is plausible. This is because

there is little previous literature which verifies the significant influence of the demand

features upon the performance of combinatorial forecasting; and a parsimonious model

can be built using a stepwise method. A parsimonious model is defined as "one that

explains the most variance in the dependent variable containing the fewest number of

independent variables" (Miles and Shevlin, 2001, p. 38). This means that, all other

things being equal, the simplest model is usually the best (DeLurgio, 1998).

Forward stepwise method starts with none of the predictors in the equation, then the

most significant predictor is added into the equation (Miles and Shevlin, 2001, Field,

2009). On the contrary, in backward stepwise method, a computer starts calculations by

placing all predictors in the equation, and assessing the contribution of each predictor to

the outcome. Then, non-significant predictors are removed (Miles and Shevlin, 2001,

Field, 2009). This research used both forward and backward stepwise methods, which

could select different sets of predictors, to select predictors for the classification model.

Logistic regression estimates parameters (i.e. coefficients of the predictors) usmg

maximum likelihood estimation. Maximum likelihood estimation maximizes the

likelihood of obtaining the observed values of the dependent variable, given the

independent variables (Miles and Shevlin, 200 I). The log of the likelihood is defined as

in equation (6-4). P(Yi.t) greater (or less) than 0.5 was classified as SClqum (or Ism). The

larger value oflog-likelihood (LL), the better the model fits the data (Miles and Shevlin,

2001). The LL function is multiplied by -2, namely -2 log-likelihood (-2LL). This is for

two reasons: a) to make LL a positive number because the LL is a negative number; b)

to make LL distributed approximately as I, in order to assess its significance with a1
distribution (Miles and Shevlin, 2001). The smaller value of -2LL, the better the model

fits the data, because the LL is multiplied by -2.

n N

Log -likelihood =L L {Y,,1 In[P(Y"/)] + (1- Y,.t) In[l- P(Y,.t}]}
1=1 ,;1

(6-4)

where:
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yo = the actual outcome of item i at time t
yu = I (or 0) indicates that SCtqum (or Ism) is superior
P(Yi.t) = the probability ofY,.f for item i at time I (the cut-ofT value = 0.5)

When utilising the LL function different models can be compared as in equation (6-5)

(Field. 2009). LL(Baseline) indicates the LL of a model which includes only the

constant. The baseline model predicts all cases as the majority group (in this case,

SCtqum). The I distribution has degree of freedom equal to the number of parameters

in the new model minus the number of parameters in the baseline model (Field, 2009).

Thus. the degree of freedom is merely the number of parameter in the new model minus

one because the number of parameters in the baseline model is one (i.e. the constant).

x2 ='}I._LL(New)-LL(Baselin~] (6-5)

As with linear regression, confidence limits are available for thej" slope coefficient (b)

and the intercept (bo) of equation (6-3) (Hosmer and Lemeshow, 2000). 100(l-p)% point

confidence limits for the estimated r slope coefficient (b I) can be calculated as in
A

equation (6-6); those for the estimated intercept (bo) can be calculated as in equation

(6-7).

A

Confidence limits (b) = b, ± ZI_p x SE(b,)
2

(6-6)

A

Confidence limits (bo) = bo ±ZI_p xSE(bo)
2

1\ A

(6-7)

where:

p is the probability value for the confidence limits

Z 1_1' is the upper 100( 1~ p )% point from the standard normal distribution
2

1\

SE is the estimator of the standard error of the respective estimated coefficient

6.3.4 Diagnostics

Once a regression model is built, assessing model fit and the overall influence of an
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observation upon the model, namely the diagnostics of the model, is a critical issue

(Field, 2009). A residual represents difference between an observed value and the value

predicted by a model (Moore et al., 2009). Large residuals for a model imply a poorly

fitted model and possible outliers. Standardized residuals refer to the residuals divided

by an estimate of their standard deviation in order to standardise the scores to give them

a mean of 0 and a standard deviation of 1 (Miles and Shevlin, 2001). Assuming

standardized residuals have a normal distribution, 95% of the standardized residuals

should lie between -1.96 and +1.96 and 99 % of the standardized residuals should lie

between -2.58 and +2.58. Hence, in the process of building the classification model in

this research, observations which lay outside of ± 1.96 were removed.

Detecting improper influence of an observation upon the parameters of the model is also

worthy of concern. Cook's distance is a measure of the overall influence of an

observation upon the model (Cook and Weisberg, 1982). Cook and Weisberg (1982)

claimed that a Cook's distance greater than 1 can introduce improper influence upon the

parameters. Hence, in this research, observations scoring Cook's distance as greater than

1 were removed when constructing the model.

Multicollinearity is defined as "the size of correlations among the independent variables

in a regression calculation" (Miles and Shevlin, 2001, p. 126). Multicollinearity can be

introduced when predictors of a regression model are highly correlated (Pallant, 2005).

Multicollinearity makes it difficult to estimate regression coefficient uniquely because

there are large number of combinations of coefficients which work similarly (Field,

2009). Since each predictor contributes similar variance to the outcome, evaluating each

predictor is also difficult (Miles and Shevlin, 2001, p. 126). Therefore, the regression

coefficient would be unstable from data set to data set (Field, 2009).

Multicollinearity can be measured by a variance inflation factor (VIF) and tolerance

(Miles and Shevlin, 2001, Field, 2009). VIF detects if a predictor has strong linear

relationships with the other predictor(s). Tolerance indicates the reciprocal of VIF (Le.

INIF). A tolerance smaller than 0.1 denotes a possible multicollinearity problem

(Menard, 2002); VIF greater than 10 also can indicate a problem with multicollinearity

(Myers, 1990). Diagnostics with the standardised residuals, Cook's distance, and
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multicollinearity were conducted for the logistic regression classification models in this

research.

6.3.5 Cross-validation

As stated above, the 10% cross-validation was conducted for establishing internal

validity of the classification model. Both forward and backward stepwise methods were

employed for cross-validation. Table 6-4 presents predictors contained within each

cross-validation set. The sets 1 - 10 indicate the sets for the 10% cross-validation which

consisted of a 90% (810 observations: N = 270; n = 3) training set and a 10% (90

observations: N = 30; n = 3) test set from the total 900 observations (N = 300; n = 3).

With the 10 pairs, all the data sets can be tested.

The equipment groups and the coefficient of variation in monthly demand size were

identified as important demand features, because the two predictors [i.e. Equipment and

I.Cv(size)] were contained within all sets as shown in Table 6-4. DV and Pr(zero) for

both group and item level time series, O.Pr(peak) for group level time series,

I.Skewness for item level time series, I.Corr(item), and PROLT were not contained

within any set.

More item level demand features were contained than group level demand features. This

might imply that demand features at group level have less effect on the relative

performance of the alternative forecasting methods than demand features at item level.

The time series data at group level were only used for generating a group level direct

forecasting method (i.e. Iq) for SClqum; however, the time series data at item level were

used for generating two item level direct forecasting methods (i.e. um and Ism) for

SCtqum and Ism respectively. Hence, the item level demand features might influence

more upon the relative performance of the two alternative forecasting methods than the

group level demand features.
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A suppressor variable is a variable having a very small correlation with the outcome

variable. However due to a correlation with another predictor, it has a significant effect

on the outcome variable (Conger, 1974, Lancaster, 1999). Backward stepwise method

tends to include more suppressor variables than forward stepwise method (Field, 2009).

Forward stepwise method is more inclined to exclude predictors involved in the

suppressor effect than backward stepwise method. This is because the suppressor effect

appears when a predictor has a significant effect but only when another predictor is held

constant (Field, 2009).

As shown in the Table 6-4, the forward stepwise method was found to generate a more

parsimonious model than the backward stepwise method. The forward stepwise method

required fewer predictors than the backward stepwise method. This might be because

forward stepwise method is more inclined to exclude predictors involved in the

suppressor effect than backward stepwise method.

The performance of the foreward and backward stepwise methods in the data sets were

measured by three measures. The sum of absolute deviations divided by the monthly

mean over the items in the set for the 3 years [equation (6-2)], the total inventory costs

from simulation, and Brier score (Brier, 1950) were employed. The Brier score can be

expressed as in equation (6-8). P"I varies between 0 and 1. P,.I greater (or less) than

0.5 was classified as SCtqum (or tsm). Steyerberg et a1. (2001) intimated that the Brier

score ranges from 0 (perfect) to 0.25 for sensible models: the bigger the score, the worse

the quality of the prediction. The Brier score is suitable for quantifying overall accuracy

of dichotomy predictions which is the case with the logistic regression model.

1 n N

Brier score = I I (Y,I - P, I )2
(nxN) 1;1/;1 ' ,

(6-8)

where:

Yu = the actual outcome of item i at time I

Yu = 1 (or 0) indicates that SClqum (or Ism) is superior

P", = the forecast probability for item i at time I (the cut-off value = 0.5)
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Table 6-5 The performance of backward and forward stepwise methods

Training set Test set

No. of Brier Brier
Errors Costs(W) Errors Costs(W)

predictors score score

Setl 4 0.240 6,374 634.925.248 0.230 729 44,263.784

Set2 4 0.236 6.233 620,367.219 0.259 886 64.292,651

Set3 4 0.239 6,468 639.522,525 0.233 637 40,597,863

Set4 2 0.243 6.173 638,408,750 0.230 837 37,478.283

Set5 6 0.235 6,321 601,214.356 0.261 759 90.990,877
Forward

Set6 2 0.240 6,452 600,620.770 0.260 581 75,434,066
stepwise

Set7 2 0.247 6,549 545.965.245 0.254 569 147.623.952
method

Set8 4 0.238 6,265 542,286.696 0.250 861 142,473,586

Set9 2 0.241 6,455 684,031.722 0.251 632 16,582,087

SetiO 2 0.241 6,337 660,116.966 0.251 736 20.613,099

Sum 2.399 63,627 6.167,459,498 2.480 7,227 680,350,249

Mean 0.240 6,363 616,745.950 0.248 723 68,035.025

Setl 4 0.240 6,398 638,839.677 0.231 728 44,262,260

Set2 6 0.235 6,168 620,720.318 0.264 930 65,484,473

Set3 8 0.235 6,443 667.335.878 0.242 652 40,606,892

Set4 8 0.237 6,241 653,881,485 0.227 807 38,140,787

Set5 8 0.232 6,262 603.416,768 0.274 796 90,830.244
Backward

Set6 6 0.236 6.512 605,500,089 0.252 566 77,820,417
stepwise

Set7 8 0.236 6,515 544.097,484 0.236 543 143,972,281
method

Set8 9 0.233 6,189 555.778.834 0.259 865 139,693.982

Set9 6 0.236 6,369 664.136.774 0.259 615 16,208,927

SetlO 9 0.234 6,303 665,544.084 0.265 731 21,055.107

Sum 2.353 63,398 6,219,251.392 2.508 7,232 678,075,370

Mean 0.235 6,340 621,925.139 0.251 723 67,807,537

Errors = the sum of the absolute deviations divided by the monthly mean over the set; Costs(W) = the
total inventory costs over the set; Sum (or Mean) = the sum (or mean) of the scores over the total training
or test sets for forward or backward stepwise method.

Table 6-5 compares the performance of backward and forward stepwise methods in the

10% cross-validation sets. When comparing the perforrnance in the training sets,

backward stepwise method was superior in terms of the Brier Score and the errors;

however, forward method was superior in terms of the costs. However, when comparing

the performance in the test sets, the opposite results were observed. Forward stepwise

method was superior in tenns of the Brier score and the errors; however, the backward

stepwise method was superior in terms of the costs. The superiority of forward stepwise

method in terms of the Brier Score and the errors in test sets can be explained by the

parsimonious model: that is, all other things being equal, the simplest model is usually

the best.

A bias refers to the difference between estimated performance (i.e. the performance in

the training data set) and test performance (Le. the performance in the test data set).
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Mean bias of the errors and mean bias of the costs were calculated as in equations (6-9)

and (6-10) respectively.

{
I 3 270 Iy - Y I} { I 3 30 Iy - y" I}Mean bias of errors = II 1.1 1,1 - II 1.1 1,1

(3x270) 1=1 1=1 jill (3x30) 1=1 1=1 jill
. IJi ' IS

(6-9)

{
I 3 270 } { I 3 30 }Mean bias of costs = IIe - IIe

. (3x27~ 1=1 1=1 1.1 rH (3x30) 1=1/=1 1,1 IS

(6-10)

where:
yu = the observed demand of item i at time I
Yi.I = the estimated demand of item i at time t
Yi.I = the monthly mean value of item i in the previous period
C"I = the inventory costs of item i at time t
TR = training sets; TS = test sets

The superiority of forward stepwise method in terms of the Brier Score and the errors in

the test sets can also be explained by the smaller bias for forward stepwise method.

Table 6-6 compares mean biases between forward and backward stepwise methods for

the cross-validation.

Table 6-6 Bias comparisons between forward and backward stepwise

Stepwise Bias of Brier Mean bias of errors Mean bias of costs(W)
Forward 0.008 0.175 5,470
Backward 0.016 0.208 14,932

It can be seen that forward stepwise method was less biased than backward stepwise

method as shown. The smaller bias of forward stepwise method might cause the

superiority of forward stepwise method in the test sets.

Table 6-7 presents the performance comparisons among the results in the test sets using

forward stepwise method, using backward stepwise method, and without using

classification model (i.e. only adopting SCtqum). It is interesting to note that, for both

stepwise methods the classification results in the test sets presented lower total

inventory costs than those of the case with only adopting SCtqum. However, in terms of

the sum of the errors, both stepwise methods presented inferior performance to that of

only adopting Setqum.
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Table 6-7 Performance comparisons among forward, backward and SCtqum

Stepwise Sum of the errors Total inventory costs(W)

Forward 7,226.8 680,350,249

Backward 7,231.6 678,075,370

SCtqum 7,154.8 693,601,747

Sum of the errors = the sum of absolute deviations divided by the monthly mean over the 300 items for
the 3 years; Total inventory costs (W) = the total inventory costs (W) over the 300 items for the 3 years.

Forward stepwise method was superior in terms of the sum of the errors; whereas

backward stepwise method was superior in terms of the sum of the total inventory costs

as shown in Table 6-7. However, when forward stepwise method was conducted with

too small a number of predictors (i.e. 2), the performance of forward stepwise method

was observed to have a tendency to be inferior to that of backward stepwise method in

terms of the Brier score, the errors (i.e. the absolute deviation divided by the monthly

mean), and the total inventory costs. 5 sets (i.e. the sets 4, 6, 7, 9, and 10) were

identified as the cases with 2 predictors for forward stepwise method as shown in Table

6-5. As shown in Table 6-4, the forward stepwise methods for the sets 4, 6, 7, 9, and 10

selected the same 2 predictors such as I.Cv(size) and Equipment. When comparing the

performance between forward and backward stepwise methods in the above 5 test sets,

backward stepwise method was superior to forward stepwise method. The Brier score,

mean errors per item, and mean total inventory costs per item for backward stepwise

method in the above 5 test sets were 0.248, 7.25, and W660,439 (£337) respectively;

those for forward method were 0.249, 7.45, and W661 ,626 (£338) respectively. As such,

forward stepwise method with too small a number of predictors (i.e. 2) was identified to

produce inferior performance than backward stepwise method for the 900 observations

tested.

Therefore, a two step process for selecting a stepwise method was conducted. At the

first step, for the purpose of achieving a parsimonious model, forward stepwise method

is preferentially considered. At the second step, if forward stepwise method selects too

small a number of predictors (i.e. 2), backward stepwise method is employed; otherwise,

forward stepwise method is employed. This resulted in, sets 1, 2, 3, 5 and 8 employing

forward stepwise method, whilst sets 4, 6, 7, 9 and 10 which included 2 predictors for

forward stepwise method employing backward stepwise method.
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Table 6-8 compares mean biases among forward stepwise, backward stepwise and the

employed model. The employed model represents the employed logistic regression

model combining the two stepwise methods using the above two step process (i.e.

forward stepwise method for sets 1,2,3,5 and 8; backward stepwise method sets 4,6, 7,

9 and 10). The employed model presented the smallest bias in the errors. However, the

bias of the Brier score and the mean bias of the costs for the employed model were in

between forward stepwise method and backward stepwise method. This is logical as the

employed model is a combination of backward stepwise method and forward stepwise

method.

Table 6-8 Bias comparisons among forward, backward and employed

Stepwise Bias of Brier Mean bias of errors Mean bias of costs(W)
Forward 0.008 0.175 5,470
Backward 0.016 0.208 14,932
Employed 0.011 0.007 6,063

Mean bias of errors and mean bias of costs were calculated as in equations (6-9) and (6-10) respectively.

Table 6-9 presents the classification results using the employed model in the test sets

compared with the results using only the most robust forecasting method (i.e. SCtqum).

The mean Brier score of the classification model was 0.247 which is within the range

for sensible models (Steyerberg et al., 2001). In terms of mean errors and mean costs,

the performance of the model was observed to be marginally superior to that of SClqum.

In seven test sets out of all ten test sets, the model presented smaller errors than SCtqum.

In six test sets out of all ten test sets, the model presented smaller costs than SClqum.
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Table 6-9 Classification results using the employed model

Brier score Errors Costs(W)
Model SCtq_um Model SCt'ium Model

Set I 0.230 733 729 50.848.742 44,263,784
Set2 0.259 911 886 65.439.615 64,292,651
Set3 0.233 668 637 41.355.311 40,597,863
Set4 0.227 834 807 37,763,001 38,140,787
Set5 0.261 764 759 91.462.305 90,990,877
Set6 0.252 598 566 84.190.734 77,820,417
Set7 0.236 569 543 147,623.952 143,972,281
Set8 0.250 810 861 138,875,307 142,473.586
Set9 0.259 578 615 15,721,017 16,208.927
SetlO 0.265 690 731 20,321,763 21,055.107
Sum 2.471 7,155 7,133 693.601.747 679,816,280
Mean 0.247 715 713 69,360.175 67,981,628

Model = the classification model using the employed model; Errors = the sum of absolute deviations
divided by the monthly mean over the set; Costs (W) = the total inventory costs over the set; lower errors
and lower costs are shown in bold.

Table 6-10 compares the prediction results classifying all 900 observations into SClqum

and the prediction results classifying the 900 observations according to the employed

model in the cross-validation test sets. "Predicted" indicates these prediction results.

"Observed" indicates the classification results from the ideal selection stated in

Subsection 6.3.1. "Observed" classification results were compared with the "predicted"

classification results. If the "observed" classification result for an observation is

equivalent to the "predicted" classification result for the observation, this is counted as a

correct prediction. While the total percentage of correctness using only SCtqum was

54.0, the total percentage of correctness using the employed model was 55.9%.

Table 6-10 Prediction results

Observed
Predicted

Ism SCtqum
Ism 0 414

SCtqum 0 486
Overall percentage

(sm 160 254
SCtqum 143 343

Correct (%)

o
SCtqum 100

54.0

Employed
model

38.6
70.6

Overall percentage 55.9
Correct (%) = the percentage of correct predictions.

There was a tendency to classify more into the major class (i.e. SCtqum) in the predicted
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classification than in the observed classification. Whilst 486 (54.0%) observations were

classified into SCtqum in the observed classification, 597 (66.3%) observations were

classified into SCtqum in the predicted classification. Whilst 414 (46.0%) observations

were classified into Ism in the observed classification, 303 (33.7%) observations were

classified into tsm in the predicted classification. Hence, higher correctness (70.6%) for

SCtqum was observed than correctness (38.6%) for tsm in the predicted classification.

The improvement of the forecasting performance of the employed model using the

employed model in the test sets can be observed in Figure 6-4. The total inventory costs

of the employed model in the test sets were calculated from the simulation using the

predicted classification results of the model utilising the employed model. The sum of

absolute deviations divided by the monthly mean as well as the total inventory costs

decreased compared with those of SCtqum. The sum of the e~ors reduced from 7154.8

to 7132.9; the total inventory costs reduced from W693,601,747 (£354,420) to

W679,816,280 (£347,377). Based on these results, it might be suggested that the

internal validity is established for the classification model.
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Figure 6-4 Forecasting performance improvement of the employed model

As stated in Subsection 3.6.3, internal validity can be seen as an approximation to

external validity (Steyerberg et al., 2001). Therefore, the applicability of the

classification model to other data sets in the South Korean Navy could be approximated.

Since existing theories provide a framework to compare the results of this research,

when more cases appear to support this classification model, replication can be claimed

(McCutcheon and Meredith, 1993, Yin, 2003).

These results need to be interpreted with caution. The purpose of the classification is to

select a superior forecasting method. Top-down forecasting was observed not to be a

robust forecasting method in Section 5.5. Thus, top-down forecasting was not

considered in the classification model. As this classification model compares a

combinatorial forecasting method (i.e. SCtqum) and a direct forecasting method (tsm), it

could not be asserted firmly that any result of this model is either consistent or
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inconsistent with previous research which has compared top-down forecasting and

direct forecasting. As stated in Subsection 2.5.3, there has been no controlled research

which examined the influence of demand features upon the performance of

combinatorial forecasting. All of the previous researchers examined the influence of

demand features upon the performance of top-down forecasting. This is a research gap

as well as a contribution of this research. Nevertheless, the results of this research are

worth comparing to previous research because combinatorial forecasting can be

considered to be a variant of top-down forecasting. Likewise, existing theories could

provide a framework for the findings of this research.

6.3.6 Final model

Although various models based on split data sets were tested for the cross-validation,

the final model should be based on full data sets (Harrell et al., 1996). The reduction in

data size logically induces poorer performance; thus, it is considered to be a waste of

data (Steyerberg et al., 2001). Therefore, the final model was conducted using the full

data sets.

As with the employed model building process, the two step process for selecting a

stepwise method was conducted for the final model. At the first step, for the purpose of

achieving parsimonious model, forward stepwise method was considered. At the second

step, however, forward stepwise method was observed to select too small a number of

predictors (i.e. two predictors). Therefore, backward stepwise method was employed for

the final model.

The diagnostics of the final model was conducted. In the final model, the standardized

residuals of all the observations lay inside of ±1.96. Therefore, the model fitting was

satisfactory in terms of standardized residuals. As mentioned above, a Cook's distance

greater than I can introduce improper influence upon the parameters (Cook and

Weisberg, 1982). In the final model, there was one observation greater than 1 (i.e.

1.32853). This observation is the item, Gasket1 in group 83, which is included in the

equipment group, ME, in the years 2002 - 2004 for demand features (Le. in the year

2005 for forecasting). It should be recognized that the final model could be biased by

this one observation. If this observation is a substantial case, removing this case is not
287



Chapter 6. Forecasting Performance And Demand Features

justified. A close inspection is required to eliminate such observations (Field, 2009). As

stated in Section 4.5, there are three sources of distortion in the demand data with the

South Korean Navy (i.e. the multi-echelon inventory systems, the budgeting process

and the maintenance system). Unusually high demands for Gasketl (i.e. more than 10

times higher than the monthly mean demand for Gasketl) were identified in December

2002 and December 2003. This might be caused by one of the three sources distorting

the true demand. As such, this observation was removed, and then a new model was

built without the observation. However, there was then another observation greater than

1 (i.e. 1.03692). This observation is the item, Sealing Ring in group 85, in the

equipment group, ME, in the years 2002 - 2004 for demand features (i.e. in the year

2005 for forecasting). An unusually high demand for Sealing Ring (i.e. 7.5 times higher

than the monthly mean demand for Sealing Ring) was identified in February 2004. This

might also caused by one of the three sources of distortion. Therefore, a final logistic

regression model without these two observations was built.

Table 6-11 presents Multicollinearity statistics for the predictors included in the final

model. As shown in the table, all the tolerance statistics were greater than 0.1; and all

the variance inflation factor (VIF) were smaller than 10. Therefore, there was no serious

concern of multicollinearity for the final model.

Table 6-11 Multicollinearity statistics

Predictors Tolerance VIF
Year 0.891 1.123

Equipment 0.832 1.202
G.Kurtosis 0.560 1.787
I.Slope 0.372 2.689

I.Cv(size) 0.197 5.083
I.Corr(group) 0.777 1.287
I.Pr(peak) 0.440 2.272
I.Kurtosis 0.203 4.933
I.Mean 0.383 2.613

Tolerance < 0.1 (or to < VIF): a possible multicollinearity problem.

Overall, twelve steps of iterations using backward stepwise method were conducted for

the final model. -2LL of the baseline model and the new model were 1241.899 and

1192.313 respectively. Thus, the I was 49.586 by equation (6-5). The number of

parameters in the new model was 12; that is, 1 constant, 2 categorical predictors (Le.

288



Chapter 6. Forecasting Performance And Demand Features

Year and Equipment) expressed as 4 dummy variables, and 7 continuous predictors (i.e.

O.Kurtosis, I.Slope, I.CV(size), I.Corr(group), I.Pr(peak.) I.Kurtosis and I.Mean). Thus,

the degrees of freedom were 11. The new model was significant as the p-value was less

than 0.001 by the I distribution.

6.4 Classification Results

After twelve steps of calculation by backward stepwise method using a likelihood ratio

statistic, the logistic regression model produced the final model. This section includes

the performance of the classification, interpretation of the models and the predictors,

and also individual relations between the performance of the alternative forecasting

methods and significant predictors.

6.4.1 Classification by the logistic regression model

The results of the final model are presented in Table 6-12. As stated in Subsection 3.6.2,

resubstitution refers to an estimate which uses a data set to build the model as well as to

test the model (White and Liu, 1997). "Observed" indicates the classification results from

the ideal selection stated in Subsection 6.3.1. "Predicted" indicates the classification results

produced using the final model. If the "observed" classification result for an observation is

equivalent to the "predicted" classification result for the observation, this is counted as a

correct prediction.

Table 6-12 Prediction results from resubstitution

Observed Predicted Correct (%)
Ism Selqum

Ism 188 226 45.4
SCtqum 139 347 71.4

Overall percentage 59.4
Correct (%) = the percentage of correct predictions using the classification model in the total
observations.

As these results were from resubstitution, these presented an overly optimistic view of

the true accuracy of the model, compared with the results from the employed model in

the cross-validation test sets as shown in Table 6-10. The total percentage of correctness

(59.4%) ofresubstitution was higher than that (55.9%) with the test sets.
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As with the classification results from the test sets, there was a tendency to classify

more into the major class (i.e. SCtqum) in the predicted classification than in the

observed classification. Whilst 486 (54.0%) observations were classified into SCtqum in

the observed classification, 573 (63.7%) observations were classified into SCtqum in the

predicted classification. Whilst 414 (46.0%) observations were classified into Ism in the

observed classification, 327 (36.3%) observations were classified into Ism in the

predicted classification Hence, higher correctness (71.4%) for SCtqum was observed

than correctness (45.4%) for Ism in the predicted classification. The two outlier items

which had been screened out earlier for building the model were included to calculate

the correctness of the final model. As it can be expected, the final regression model

predicted wrong outcomes for theses two outlier items.

Figure 6-5 presents the comparisons of the forecasting performance among Stltqum; the

employed model for the test sets and the final model for resubstitution in terms of the

sum of absolute deviations divided by the monthly mean and the total inventory costs.
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Figure 6-5 Forecasting performance improvement in the model

As resubstitution presents an optimistic VIew, the sum of forecasting errors were

observed to reduce in order of SCtqum, the employed model and the final model. What

was surprising is that the total inventory costs of the employed model were smaller than

those of the final model; that is, the performance of the employed model in the split data

was superior to the performance of the final model in the resubstitution. The smaller

biases of forward stepwise method in the Brier score, the absolute deviation divided by

the monthly mean and the total inventory costs than those of backward stepwise method

were identified as shown in Table 6-6. It may be that the smaller bias of forward

stepwise method in terms of the total inventory costs could create a superior

performance to the performance of the final model which employs backward stepwise

method. Remembering that both forward and backward stepwise methods were

employed for the test sets, the employed model for the test sets can present the smaller

total inventory costs than the final model.
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6.4.2 Interpretation of the classificationmodel

Table 6-13 presents variables in the equation which were produced after the 12 steps of

backward stepwise calculation for the final model.

Table 6-13 Variables in the equation

e"
95%Cllore"

b SE Wald dl Sig.
Lower Upper

Year 10.798 2 .005

Year( I) -.013 .173 .006 .938 .987 .704 1.384

Year(2) -.512 .180 8.102 .004 .600 .422 .853

Equipment 16.974 2 .000

Equipment( I ) -.870 .216 16.148 .000 .419 .274 .641

Equipment(2) -.909 .259 12.314 .000 .403 .243 .670

G.Kurtosis .038 .021 3.134 .077 1.038 .996 1.082

I.Slope .452 .145 9.749 .002 1.571 1.183 2.086

I.Cv(size) -.872 .245 12.695 .000 .418 .259 .675

I.Corr(group) -.639 .307 4.327 .038 .528 .289 .964

I.Pr(peak) 1.242 .683 3.312 .069 3.463 .909 13.194

I.Kurtosis .025 .012 4.391 .036 1.026 1.002 1.050

I.Mean .009 .004 7.163 .007 1.010 1.003 1.017

Constant 2.367 .452 27.447 .000 10.664

b = the estimated regression coefficient; SE = the standard error; eb = an indicator of the proportionate
change in odds (i.e. tsodds),

The Wald statistic tests whether the b-coefficient in equation (6-3) for a predictor is

significantly different from zero (Field, 2009). When the b-coefficient is significantly

different from zero, the b-coefficient is implied to contribute significantly to the

outcome. The Wald statistic can be calculated as in equation (6-11) (Hosmer and

Lemeshow, 2000).

Wald = (_!!_J2
SE"

(6-11)

Odds (i.e. the probability of an event occurring divided by the probability of that event

not occurring) are defined as in equation (6-12) (Miles and Shevlin, 2001, p. 155). The

odds ratio, Sodds is defined as in equation (6-13) (Field, 2009, p. 271). The relationship

between Sodds and the b-coefficient is represented as in equation (6-14) (Hosmer and

Lemeshow, 2000).
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Odds= P(y)
1- P(y)

(6-12)

odds after a unit change in the predictor
!10dds = --------------

odds before change
(6-13)

(6-14)

A value, i (i.e. !1odds) of greater than 1 denotes that, when the predictor increases, the

odds of the outcome occurring increase; and a value, eh ofless than 1 denotes that, when

the predictor increases, the odds of the outcome occurring decrease. In this research, tsm

was encoded as 0 and SCtqum was encoded as 1. Thus, the i of greater than 1 indicates

that: as the predictor increases, the odds of classifying SCtqum increase. The i of less

than 1 indicates that: as the predictor increases, the odds of classifying tsm increase.

"1OO(I-p)% point confidence limits for the estimated coefficient ( bJ ) was presented as in

equation (6-6). The corresponding 1OO(I-p)% point confidence limits for the Sodds (i.e.

eh) can be calculated as in equation (6-15) (Hosmer and Lemeshow, 2000). 95%

confidence intervals (Cl) for the i are presented as shown in Table 6-13.

(6-15)

where:

p is the probability value for the confidence limits

z I-p is the upper 100( 1~ p )% point from the standard normal distribution
2

1\

SE is the estimator of the standard error of the respective estimated coefficient

In the final model, five continuous predictors [i.e. I.Slope, I.Cv(size), I.Corr(group),

I.Kurtosis and I.Mean] and one categorical predictor (Le. Equipment) were significantly
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different from zero according to the Wald statistic. As I.Slope, I.Kurtosis or I.Mean

increases, the odds of classifying Se/qum increase in terms of eh. On the contrary, as

I.Cv(size) or I.Corr(group) increases, the odds of classifying Ism increase in terms of e''.

For the 10% cross-validation, both forward and backward stepwise methods used 90 %

of the data set (i.e. 810 observations) to build a model and were repeated 10 times

respectively. In addition to the significant predictors for the final model, other predictors

were also observed to be significant for the classification models using both forward

and backward stepwise methods for the 10% cross-validation. In forward stepwise

method, among the predictors contained within each set (as shown in Table 6-4),

G.Slope, G.Kurtosis and G.Mean were additionally observed to be significant as the p-

values of the Wald statistic, as shown in equation (6-11), were less than 0.05. In

backward stepwise method, among the predictors contained within each set (as shown

in Table 6-4), G.Slope, G.Kurtosis and I.Pr(peak) were additionally observed to be

significant for the models as the p-values were less than 0.05. The i scores of all of

these additionally significant predictors were observed to be greater than one. This

means that as G.Slope, G.Mean, G.Kurtosis or I.Pr(peak) increases, the odds of

classifying Selqum increase.

6.4.3 Predictors in the classification model

Among the 19 continuous predictors and the 2 categorical predictors, the 7 continuous

predictors and the 2 categorical predictors were included in the final model. Among

them, only the 5 continuous predictors and the 1 categorical predictor were significant

as shown in Table 6-13. Additionally, 4 more predictors were found to be significant in

terms of the Wald statistic in the employed classification models for the 10% cross-

validation. Table 6-14 presents the relations between the 10 significant predictors and

odds of classification. Related references to the findings of this research are presented in

the last column. These are discussed as follows.

294



Chapter 6. Forecasting Performance And Demand Features

Table 6-14 Relations between predictors and odds of classification in the models

Demand

feature
Reference

Significant
predictor

Odds of classification

Correlation I.Corr(group) I.Corr(group) -+ Ism = Schwarzkopf et al. (1988);

#- Gross and Soh I (1990), Dangerfield and Morris (1992),
Fliedner (1999), Widiarta et al.(2006), Widiarta et al. (2008a).
& Widiarta et al. (2009)

Variability #- (or =) Schwarzkopf et al. (1988) & Viswanathan et al.
(2008)

Forecasting
horizon

l.Cvtsize) I.Cv(size) (or l.Prtpeak) -+

I.Pr(peak) Ism (or SClqum)

Non-sig.

G.Mean G.Mean or I.Mean -+

I.Mean. SCtqum

G.Slope G.slope or I.Slope-+

I.Slope SCtqum

G.Kurtosis G.Kurtosis or I.Kurtosis
I.Kurtosis SClqum

t Shlifer and WoltT( 1979)

UV&DV

Trend

Deviation
from a
normal

distribution

= Fliedner and Mabert (1992)

Intermittency Non-sig.

Categorical
variable

Equipment The odds of classification in
GunlRD are significantly

different from the odds in
ME and GE/AC

-+: increasing the value of the predictor increases the odds of classifying the forecasting method;
= (or t): consistent (or inconsistent) with the finding of the research; Non-sig.: non-significance;

UV: historical unit volume; DV: historical dollar volume.

Correlation

Between the statistics [I.Corr(item) and I.Corr(group)] representing correlations,

I.Corr(group) was observed to be a significant predictor for the final model and some of

the models using backward stepwise method for the 10% cross-validation. By the i,the
odds of classifying tsm increase with the increasing I.Corr(group). This result might be

consistent with the analytic argument of Schwarzkopf et al. (1988). Schwarzkopf et al.

(1988) contended that, when two item level time series are independent, forecasting

errors for direct forecasting are more variable than forecasting errors for top-down

forecasting; however, when there are strong positive correlations between the items, the

sum of the variability of the top-down forecasting errors is greater than the sum of the

variability of the direct forecasting errors. Hence, this result might be inconsistent with

the research which stands for the opposite argument (Gross and Sohl, 1990, Fliedner,

1999, Widiarta et al., 2006) and the research which claimed the non-significance of the

correlations (Dangerfield and Morris, 1992, Widiarta et al., 2008a, Widiarta et al., 2009).
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Variability

Among the statistics [G.Cv(size), I.Cv(size), G.Pr(peak), and I.Pr(peak)] representing

the variability of demand size, I.Cv(size) was observed to be a significant predictor for

the final model, and I.Pr(peak) was observed to be a significant predictor for some of

the models using backward stepwise method for the 10% cross-validation. By the e'', the
odds of classifying Ism increase with the increasing I.Cv(size); however, the odds of

classifying SClqum increase with the increasing I.Pr(peak).

The case with I.Pr(peak) might be consistent with the research (Schwarzkopf et al.,

1988, Viswanathan et al., 2008) which contended the applicability of top-down

forecasting for highly variable data; however, the case with I.Cv(size) might be

inconsistent with the research. However, it should be made aware that the result does

not firmly corroborate or violate the research because the previous research employed

rather different kinds of measures (Schwarzkopf et al., 1988) or a different level of

forecasting (i.e. group level forecasting) (Viswanathan et al., 2008).

Forecasting horizon

The association between forecasting horizon and the performance of hierarchical

forecasting in the literature (Shlifer and Wolff, 1979) was not repeated as PROLT was

excluded from all of the models tested.

UVandDV

Among the statistics representing historical unit volume (UV) [G.Mean and I.Mean] and

historical dollar volume (DV) [unit purchasing price x G.Mean and unit purchasing

price x I.Mean], I.Mean was observed to be a significant predictor for the final model,

and G.Mean was also observed to be a significant predictor for a model using forward

stepwise method for the 10% cross-validation. By the i,the odds of classifying SCtqum

increase with the increasing either G .Mean or I.Mean. These results might be consistent

with the argument of Fliedner and Mabert (1992). They argued that UV is a significant

grouping criterion which increases the accuracy of top-down forecasting.

Trend

Among the statistics [G.Slope and Slope] representing the linear trend, I.Slope was
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observed to be a significant predictor for the final model, and G.Slope was observed to

be a significant predictor for some of the models using forward or backward stepwise

method for the 10% cross-validation. By the i,the odds of classifying SCtqum increase

with the increasing either I.Slope or G.Slope.

Deviation from a normal distribution

Among the statistics [G.Kurtosis, G.Skewness, I.Kurtosis and I.Skewness] representing

the deviation from a normal distribution, I.Kurtosis was observed to be a significant

predictor for the final model, and G.Kurtosis was observed to be a significant predictor

for some of the models using forward or backward stepwise method for the 10% cross-

validation. By the i, the odds of classifying SCtqum increase with the increasing either

I.Kurtosis or G.Kurtosis.

Intermittency

As stated earlier, the intermittency was expected to be a significant demand feature

which influences upon the performance of hierarchical forecasting. This is because the

intermittency is an important demand feature which guides the use of forecasting

methods for non-normal demand in the literature (Johnston and Boylan, 1996, Boylan et

al., 2008). However, all of the statistics representing intermittency [G.Pr(zero) and

I.Pr(zero)] were found to be non-significant for all of the models tested.

Categorical variables

Between the two categorical predictors, Equipment was observed to be a significant

predictor. The odds of classification in GunlRD (i.e. the reference group) were

significantly different from the odds in ME (i.e. Equipment 1) and GElAC (i.e.

Equipment 2) by the Wald statistic. The odds of classification in the year 2005 (i.e. the

reference group) were significantly different from the odds in the year 2007 (i.e. Year 2);

however, they were non-significantly different from the odds in the year 2006 (i.e, Year

1) by the Wald statistic.

It is noteworthy that there were no group level demand features in the final model and

only three group level demand features (i.e. G.Slope, G.Kurtosis and G.Mean) of the

five group level demand features (as shown in Table 6-4) in the employed models for
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the 10% cross-validation found to be significant. As stated in Subsection 6.3.5, this

might imply that demand features at group level have less effect on the relative

performance ofthe alternative forecasting methods than demand features at item level.

So far, the associations between the forecasting methods and the multivariate demand

features have been discussed within the logistic regression classification model.

However, the individual associations between the forecasting methods and the demand

features can be different. In the following subsection, the individual relations between

the relative performance of the alternative forecasting methods and the significant

predictors are analysed.

6.4.4 Individual relations between forecasting methods and demand features

The relative performance of the alternative forecasting methods is equivalent to the

ideal selection assessed by equation (6-1): an observation (i.e. item i at time I) which

shows smaller error by equation (6-1) for tsm (or SCtqum) than that for SCtqum (or Ism)

was classified as an observation for tsm (or SCtqum). The associations between the

individual variables which have b-coefficients significantly different from zero

according to the Wald statistic in the models (either the final classification model or the

employed classification models for the 10% cross-validation) and the relative

performance of the alternative forecasting methods were investigated. For this analysis,

all the 900 observations (i.e. the 300 items for the 3 years) used for the logistic

regression model were examined. In order to examine the predictability of the demand

features, the demand features in the previous period (not in the future period) were used

in the same way as the classification model. "SPSS 15.0 for windows" was used to

examine the individual relations.

As with the logistic regression classification models, the individual relations have been

also examined between a combinatorial forecasting method (i.e. SCtqum) and a direct

forecasting method (i.e. tsm), because they represented the most robust hierarchical and

direct forecasting methods respectively. Therefore, it could not be asserted firmly that

any result of this research is either consistent or inconsistent with previous research

which compared top-down forecasting and direct forecasting.
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Categorical variable

Table 6-15 provides cross-tabulation between the alternative forecasting methods and

the three equipment groups. Expected count is defined as in equation (6-16).

Row Total x Column Total
Expected count =

900
(6-16)

Table 6-15 Cross-tabulation between the alternative forecasting methods and the three
equipment groups

Ism SClq_um Total
Count 43 89 132

GuniRD EXEected count 60.7 71.3 132.0
% within eguiEment 32.6% 67.4% 100.0%

Count 274 290 564
ME EXEected count 259.4 304.6 564.0

% within eguiEment 48.6% 51.4% 100.0%
Count 97 107 204

GE/AC EXEected count 93.8 110.2 204.0
% within eguiEment 47.5% 52.5% 100.0%

Count 414 486 900
Total EXEected count 414.0 486.0 900.0

% within eguiEment 46.0% 54.0% 100.0%

In ME and GE/AC, more tsm and fewer SCtqum were observed than expected counts,

whereas in GunIRD fewer tsm and more SCtqum were observed than expected counts.

This has an implication that SCtqum provided much better forecasts in Gun/Rl) than in

other groups.

Pearson's I test can be used for testing whether there is a relationship between two

categorical variables (Fisher, 1922). The test statistics can be written as in equation (6-

17) (Kanj i, 2006). The expected count should be greater than 5. Table 6-16 presents the

result of Pearson's I test for independence between the relative performance of the

alternative forecasting methods and the three equipment groups. The I value, 11.287,

was significant as shown. This would indicate a significant association between the

relative performance of the alternative forecasting methods and the three equipment

groups. This corroborates the results from the logistic regression models.
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X2 =I (Observed count - Expected count r
Expected count

(6-17)

Table 6-16 Chi-Square test between the forecasts and the equipment groups

Value dj Significance
PearsonI 11.287 2 0.004

The better performance of SCtqum for GunIRD than that for the other two equipment

groups can be explained by the relatively inferior performance of tsm to um for GunIRD

in terms of the mean rank for MAD and RMSE as shown in Subsection 5.4.3. For ME

and GEIAC, tsm provided much better performance than that for Gun/RD. The

differences in the relative performance between SCtqum and tsm for ME and GElAC

have been less obvious than the difference for GunIRD because Ism was also a good

forecasting method for ME and GE/AC. This might make the relative performance of

SCtqum for GunIRD look much better.

Continuous variables
As stated in Subsection 2.5.2, ANOVA was used to examine relations between grouping

criteria and the performance of top-down forecasting by Fliedner and Mabert (1992) and

between the number of groups and the performance of top-down forecasting by Fliedner

and Lawrence (1995) with volatile monthly demand for spare parts. One way ANOVA

involves one independent variable (Pallant, 2005). Table 6-17 presents the one way

ANOVA results for the continuous variables which have b-coefficients significantly

different from zero by looking at the Wald statistic in the classification models. The one

independent variable was the relative performance (as defined earlier in this Subsection)

of the alternative forecasting methods; the dependent variables were the variables.

ANOVA tests the null hypothesis that all group means are equal.
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Table 6-17 ANOYA for the variables in the logistic regression model

Variable Sum of squares df Mean square F Sig.
Between Groups 819.237 189.237 0.645 0.422

G.Slope Within Groups 263277.3 898 293.182
Total 263466.6 899

Between Groups 1.019 1.019 0.51 0.821
G.Kurtosis Within Groups 17862.834 898 19.892

Total 17863.853 899
Between Groups 14347.817 14347.817 0.360 0.549

G.Mean Within Groups 35792162 898 39857.642
Total 35806510 899

Between Groups 3.169 I 3.169 2.258 0.133
I.Slope Within Groups 1260.682 898 1.404

Total 1263.851 899
Between Groups 5.550 5.550 13.403 0.000

I.Cv(size) Within Groups 371.883 898 .414
Total 377.434 899

Between Groups .198 .198 2.941 0.087
I.Corr(group) Within Groups 60.515 898 .067

Total 60.713 899
Between Groups 1036.833 1036.833 6.384 0.012

I.Kurtosis Within Groups 145834.684 898 162.399
Total 146871.517 899

Between Groups 0.021 I 0.21 0.906 0.341
I.Pr(peak) Within Groups 20.770 898 0.23

Total 20.790 899

Between Groups 1.976 I 1.976 0.001 0.975
l.Mean Within Groups 1843382.347 898 2052.764

Total 1843384.324 899

The statistics (Le. variables), I.Cv(size) and I.Kurtosis had significant associations with

the relative performance of the alternative forecasting methods as shown. The

alternative hypothesis of associations between the two statistics [Le. I.Cv(size) or

I.Kurtosis] and the relative performance of the alternative forecasting methods should

be accepted, with only a less than one in a thousand chance of making a type 1 error for

I.Cv(size), and 1.2% chance of making a type 1 error for I.Kurtosis. However, the

statistics, G.Slope, G.Mean, G.Kurtosis, I.Pr(peak), I.Slope, I.Corr(group) and I.Mean

had no association with the relative forecasting performance as shown.

The reason why l.Slope, I.Corr(group) and I.Mean were significant predictors in the

final model in spite of the non-significance for the individual relations might be

attributed to the suppressor effect. Although there are no significant direct associations

between the statistics [i.e. I.Slope, I.Corr(group) or I.Mean] and the relative forecasting

performance in terms of one way ANOYA, these statistics contribute to the final logistic
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regression model with another predictor held constant. The significance of the

predictors in the classification models for the 10% cross-validation sets might depend

on the characteristics of data set. Although their individual associations were non-

significant as shown in Table 6-17, G.Slope, G.Mean, G.Kurtosis and I.Pr(peak) were

observed to be significant predictors in some of the classification models for the 10%

cross-validation sets. This might be attributed to the different characteristics of different

data sets making these predictors either significant or non-significant.

The ANOVA results for G.Slope, I.Slope, G.Kurtosis, I.Corr(group), G.Mean, I.Mean,

and I.Pr(peak) reached different conclusions from the results of the logistic regression

models which have presented significant associations. The ANOVA results for

correlations were consistent with the previous literature (Dangerfield and Morris, 1992,

Widiarta et aI., 2008a, Widiarta et al., 2009) which claimed that correlations do not have

any significant effect upon the relative forecasting performance between direct

forecasting and top-down forecasting. The ANOVA results for G.Mean and I.Mean does

not corroborate the research (Fliedner and Mabert, 1992) which has claimed that UV is

a significant grouping criterion which increased the accuracy of hierarchical forecasting

significantly.

Significant continuous variables

Table 6-18 and Table 6-19 describe the two variables which have b-coefficients

significantly different from zero in terms of the Wald statistic as well as significant

associations with the relative forecasting performance in terms of the ANOVA. As the eb

was 0.415 and 1.024 for I.Cv(size) and I.Kurtosis respectively in Table 6-13, the value

of I.Cv(size) was expected to increase with a higher possibility of classifying Ism;

whereas the value of I.Kurtosis was expected to increase with higher possibility of

classifying SClqum. The case with I.Cv(size) was confirmed in Table 6-18; that is, the

mean level of tsm (Le. 2.1925) was greater than the mean level of SCtqum (i.e. 2.0349).

However, the case with LKurtosis was not confirmed in Table 6-19; that is, the mean

level of Ism (i.e. 17.4279) was also greater than the mean level of SCtqum (i.e. 15.2762).

The values of the both variables were observed to increase when the possibility of

classifying tsm increases.
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Table 6-18 Description ofI.Cv(size)

Mean Std SE
95% Confidence Interval for Mean
Lower Bound Upper Bound

Min Max

Ism 2.1925 .67993 .03342 2.1268 2.2582 .56 4.89
SCtqum 2.0349 .61082 .02771 1.9805 2.0893 .59 4.63
Total 2.1074 .64795 .02160 2.0650 2.1498 .56 4.89

Table 6-19 Description of I.Kurtosis

Mean Std SE
95% Confidence Interval for Mean
Lower Bound Upper Bound

Min Max

Ism 17.4297 12.75752 .62700 16.1972 18.6622 -.08 56.06
SCtqum 15.2762 12.73174 .57752 14.1414 16.4109 -.38 58.37
Total 16.2668 12.78171 .42606 15.4306 17.1030 -.38 58.37

This inconsistency of I.Kurtosis could be explained by the correlations between

I.Cv(size) and I.Kurtosis as shown in Table 6-20. The two variables strongly correlated

in a positive direction as shown. These two statistics associate with the relative

performance in the same direction, when the associations between the relative

forecasting performance and the variables are detected individually. However, the two

statistics were observed to influence the relative forecasting performance toward the

different directions in the logistic regression model by the i.

Table 6-20 Correlation between I.Cv(size) and I.Kurtosis

I.Cv(size) I.Kurtosis
I.Cv(size) Pearson Correlation I 0.732

Sig. (2-tailed) 0.000
I.Kurtosis Pearson Correlation 0.732

Sig. (2-tailed) 0.000

The individual relations for the 900 observations can be observed in Figure 6-6 and

Figure 6-7. The value in the y-axis (i.e. SCtqum-tsm) smaller than zero indicates that

SCtqum is superior to tsm; the value greater than zero in the y-axis indicates that Ism is

superior to SCtqum. In most cases, the dots place around the zero point in y-axis. This

means that the difference of the performance is indistinct. It was difficult to identify a

cut-off value which divides the demand features clearly showing superior forecasting

preferences. However, there was an obvious tendency that SCtqum was superior to tsm

in lower value ofI.Cv(size) and I.Kurtosis.
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Figure 6-7 Relations between SCtqum-tsm and I.Kurtosis
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Considering the I.Cv(size) is an indicator representing demand variability, it can be

claimed that, combinatorial forecasting method (i.e. SCtqum) is superior; however.

when the variability of the data increases, the performance of combinatorial forecasting

method becomes moderate compared to the performance of direct forecasting method

(i.e. Ism). As this result corroborates the results from the logistic regression model

above, this result might be inconsistent with the research (Schwarzkopf et al., 1988.

Viswanathan et al., 2008).

As the I.Kurtosis is considered to be an indicator representing the deviation from a

normal distribution, it also can be claimed that, combinatorial forecasting method (i.e.

SClqum) is superior; however, in individual associations between the indicator and the

relative performance of the alternative forecasting methods, when the data kurtosed

more from a normal distribution, the performance of combinatorial forecasting method

becomes moderate compared to the performance of direct forecasting method (i.e. Ism).

Nevertheless, it should be noted that the case of I.Kurtosis is inconsistent with the result

from the logistic regression.

The moderate performance of SClqum in highly variable and highly kurtosed items

might be caused by the fact that direct forecasting is able to capture a variable or

kurtosed characteristic of a single item series more than combinatorial forecasting

method when the variability is high. However, in general, the most robust hierarchical

forecasting method, SCtqum, provided superior forecasts to the most robust direct

forecasting method, Ism.

Table 6-21 presents the summary of the individual relations between the variables and

the relative performance of the alternative forecasting methods which was identified in

this subsection. Related references to the findings of this research are presented in the

last column.
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Table 6-21 Individual relations between forecasting methods and variables
Demand

feature
Variable Relation Reference

Correlation I.Corr(group) Non-sig, = Dangerfield and Morris (1992), Widiana et al. (2008a) &

Widiarta et al. (2009)

t- Schwarzkopfet al. (1988). Gross and Sohl (1990). Fliedner

(1999) and Widiarta et al.(2006)

Variability I.Cv(size) I.Cv(size) -+ Ism

I.Pr(peak) Non-sig.

UV&DV G.Mean Non-sig.

I.Mean.
Deviation l.Kurtosis l.Kurtosis -+ Ism
from a

G.Kunosisnormal
distribution

Trend I.Slope Non-sig.

G.Slope

Categorical Equipment SCtqum provides much

variable better forecasts for GunlRD

t- Schwarzkopf et al. (1988) & Viswanathan et al.(2008)

t- Fliedner and Maben (1992) & Fliedner and Lawrence

(1995)

than other groups

-+: increasing the value of the variable increases the relative performance of the forecasting method (SCtqum or Ism):

= (or t): consistent (or inconsistent) with the finding of the research; Non-sig.: non-significance; UV: historical unit
volume; DV: historical dollar volume.

6.5 Summary and Conclusion

This chapter proposed a -multivariate classification model to predict the relative

performance of the alternative forecastingmethods between the most robust hierarchical

forecasting method (i.e. SClqum) and the most robust direct forecasting method (i.e.

Ism).

6.5.1 Summary of findings

For the purpose of predicting the relative performance of the alternative forecasting

methods, a logistic regression model was built. Then, the performance of the logistic

regression classification model was validated with separated 10% test data sets using

the 10% cross-validation. In 7 test sets out of all 10 test sets, the classification model

presented smaller forecasting errors than the result when using only the most robust

forecasting method (i.e. SCtqum). In 6 test sets, the model presented smaller total

inventory costs than the result using only SClqum. The sum of the forecasting errors

(the absolute deviations divided by monthly mean) reduced from 7,154.8 in the result

using only SCtqum to 7,132.9 in the result from the 10 (10%) test sets using the

classification model; the total inventory costs reduced from W693,601,747 (£354,420)

in the result using only SCtqum to W679,816,280 (£347,377) in the result from the 10
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(10%) test sets using the classification model as shown in Figure 6-4. While the total

percentage of correctness in the result using only SCtqum was 54.0, the total percentage

of correctness in the result from the 10 (l0%) test sets using the classification model

was 55.9% as shown Table 6-10. Hence, it might be suggested that the internal

validation is established for the logistic regression classification model.

The final model was built using backward stepwise method. In the final model, among

the 19 continuous variables and the 2 categorical variables, the 5 continuous variables

[i.e. I.Slope, I.Cv(size), I.Corr(group), I.Kurtosis and I.Mean] and the 1 categorical

variable (Equipment) were significantly different from O. Additionally, 4 more

predictors of the employed models were found to be significant for the 10% cross-

validation; that is, G.Slope, G.Mean, G.Kurtosis and I.Pr(peak). No group level demand

feature (i.e. predictors) of the final model and only 3 group level demand features of the

employed models for the 10% cross-validation were found to be significant. Item level

demand features might have more effect upon the performance of the classification

model.

The individual relations between the relative performance of the alternative forecasting

methods and the significant predictors in the logistic regression model were also

analysed. Different results from the logistic regression model were observed. While

G.Slope, G.Kurtosis, I.Slope, I.Corr(group), G.Mean, I.Pr(peak) and I.Mean were non-

significant demand features in the ANOVA, the reason why these dead features were

observed to be statistically significant predictors in the logistic regression models might

be attributed to the suppressor effect in the logistic regression model and the different

characteristics of data in different cross-validation data sets.

The summary of the findings in this chapter with respect to the previous research is

presented as shown in Table 6-22. The summary of findings from the logistic regression

model and the individual relations are presented in the left four and right two columns

respectively. The findings need to be interpreted with caution. Dissimilar to the previous

research which had compared top-down forecasting and direct forecasting, this research

has compared combinatorial forecasting and direct forecasting. This was because a

forecasting method using a combinatorial forecasting strategy (i.e. SCtqum) was found
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to be robust as with the research (Kahn, 1998, Dekker et al., 2004, Hyndman et al.,

2007). However, the previous research is worth comparing to the results of this research

because combinatorial forecasting can be considered to be a variant of top-down

forecasting. This is also a contribution of this research in that this research has

investigated the influence of demand features upon the performance of a combinatorial

forecasting method. There are more contributions in this research in that this research

identified a combined influence of demand features of non-normal data including

correlations and intermittency upon the performance of hierarchical forecasting.
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6.5.2 Forecasting scheme for the South Korean Navy

It was demonstrated that the most robust forecasting method for the spare parts demand

is SCtqurn in Chapter 5. Based on this finding, the forecasting scheme was suggested in

Subsection 5.6.2. In particular, an attempt to select a robust forecasting method for spare

parts with different demand features in ME was made. However, this forecasting

scheme could not explain the effect of the demand features upon the relative forecasting

performance explicitly, so that it might be difficult to apply to different data sets which

have not been tested.

In this chapter, the process of building the logistic regression classification model was

clarified. The logistic regression classification model might be able to be applied to

different data sets because this model is based on the relationships between demand

features and relative forecasting performance. This can be more generalisable than the

forecasting scheme based on the different demand features in ME as suggested in

Subsection 5.6.2. A forecasting scheme for the South Korean Navy based on demand

features can be suggested as follows:

a) The logistic regression classification model provides a clear guideline to choose a

superior forecasting method. It is recommended to implement the logistic

regression classification model to select a forecasting method from the alternative

forecasting methods (tsm vs. SCtqum) for forecasting spare parts demand.

b) Continuous demand features such as correlations [expressed as I.Corr(group)],

variability [expressed as I.Cv(size) and I.Pr(peak)], trend [expressed as G.Slope and

I.Slope], deviation from a normal distribution [expressed as G.Kurtosis and

I.Kurtosis], and historical unit volume (UV) [expressed as G.Mean and I.Mean],

and a categorical variable such as the type of equipment [expressed as Equipment]

should be considered as predictors for the logistic regression classification model.

c) When selecting a predictor entry method for the logistic regression model, the two

step process which chooses a superior stepwise method for the model is

recommended. At the first step, forward stepwise method is preferentially

considered. At the second step, if forward stepwise method selects too small a

number of predictors (i.e. two predictors), backward stepwise method is suggested

to be employed. Otherwise, forward stepwise method is suggested to be employed.
310



Chapter 6. Forecasting Performance And Demand Features

6.5.3 Conclusion

This chapter answers research question b) "what forecasting method is appropriate for

the spare parts demand in the South Korean Navy?" by identifying the superior

forecasting method in given demand features with the logistic regression classification

model; answers research question c) "under what conditions are top-down forecasting or

combinatorial forecasting superior or inferior to direct forecasting?" by identifying

significant predictors and their coefficient in the logistic regression model as well as the

individual relations between the demand features and the relative forecasting

performance; and answers research question d) "how can the spare parts demand be

classified in order to predict a superior forecasting method?" by proposing the

multivariate logistic regression classification model.

In the next chapter, the findings of this research are summarised. Then, contributions,

implications, limitations and further research are presented.
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Chapter 7. Conclusion

The aim of this research was "to establish an appropriate forecasting strategy for

predicting the demand for spare parts in the South Korean Navy". An appropriate

forecasting strategy has been identified by achieving the research objectives; and the

research objectives were achieved by answering the research questions. This chapter

restates the research objectives and the research questions; then summarises the findings

related to the research objectives and the research questions in Sections 7.1, 7.2 and 7.3.

The contributions of this research are described in Section 7.4. A forecasting scheme for

the South Korean Navy is suggested in Section 7.5. Limitations of this research are

presented in Section 7.6. Finally, further research is recommended in Section 7.7.

7.1 Nature of the Spare Parts Demand

In order to achieve the research objective a) "to clarify the nature of the spare parts

demand in the South Korean Navy", research question a) "what is the nature of the

spare parts demand in the South Korean Navy?" was answered in Chapter 4. For

answering research question a), 300 spare parts were selected from 9,369 spare parts

(for the 3 types of warships in the South Korean Navy with time boundary from January

2002 and November 2007) and analysed. The demand for the 300 spare parts could

account for approximately 60% of demand for the 9,369 spare parts

The time series of the spare parts tested were found to be non-normal; however, they

correlated within a pair group. The non-normality of spare parts demand in militaries

found in the literature (Markland, 1970, Businger and Read, 1999, Eaves and Kingsman,

2004) was repeated in this research.

Some relative demand features which are different in each equipment group were

identified. GuniRD (consisting of Gun I, II, III, and Radar I) was characterised as

having higher intermittency, smaller demand volume, shorter lead time, and more

expensive prices. ME (consisting of Main Engine I and II) was characterised as having

lower correlation, steeper downward trend, lower intermittency, and larger demand

volume. GE/AC (consisting of Generator I and Air Compressor I) was characterised as
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having higher variability, greater peakedness, and greater deviation from a normal

distribution.

Features which could make hierarchical forecasting more accurate than direct

forecasting for the 300 Naval spare parts demand were identified as:

a) Long forecasting horizons ranging from 15 months to 30 months for the Naval

spare parts consisted of procurement lead time and review cycle imply a feature

that hierarchical forecasting can be superior to direct forecasting (Shlifer and Wolff,

1979).

b) Less variable and less intermittent, and less peaked demand features at group level

than those at item level [as Cv(size), Pr(zero), Pr(peak) at group level time series

were smaller than those at item level time series] were found. Therefore, reduced

non-normal demand features at group level time series can be characterised, so as to

satisfy the major premise of hierarchical forecasting which could be superior to

direct forecasting (Gross and Sohl, 1990, Fliedner and Lawrence, 1995, Fliedner,

2001).

c) The data obtained from the Navy were identified to contain missing or unreliable

data. Hierarchical forecasting could present better performance than direct

forecasting for predicting demand based on such data (Schwarzkopf et aI., 1988).

d) The substitutability of the Naval spare parts is also a feature which could make

hierarchical forecasting more accurate than direct forecasting. Hierarchical

forecasting uses the historical demand at group level, which could be less

dependent upon the degree of item substitutability than the direct demand at item

level (Widiarta et aI., 2008b).

e) The Naval spare parts are structured by the types of equipment and the National

Stock Number (NSN) code. These represent the hierarchical structure of spare parts.

Hierarchical forecasting is an advantageous forecasting strategy for forecasting

demand which is structured by a hierarchical demand structure (Hyndman et al.,

2007).

However, as the current forecasting methods in the South Korean Navy are too naive to

catch the characteristics of the Naval spare parts demand, they are inappropriate for the
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nature of the demand.

7.2 The Performance of the Forecasting Methods

In order to achieve the research objective b) "to compare the performance of the

alternative forecasting strategies (i.e. top-down forecasting, combinatorial forecasting

and direct forecasting) for predicting the spare parts demand at item level under the

inventory control environment of the South Korean Navy", research questions b) "what

forecasting method is appropriate for the spare parts demand in the South Korean Navy?"

and c) "under what conditions are top-down forecasting or combinatorial forecasting

superior or inferior to direct forecasting?" were answered in Chapter 5. For answering

research questions b) and c), a range of forecasts using alternative forecasting methods

were generated with the time series of the 300 items, and these were compared in terms

of absolute, relative and derivative measures.

Derivative measures use simulation to derive the impact of forecasting accuracy in

terms of the inventory levels and the service levels achieved by the inventory system.

Two approaches (i.e. safety margin approach vs. total inventory costs approach) toward

the total inventory costs in the simulation were compared. Between them, the total

inventory costs approach was employed in this research. This is because it is unrealistic

to adjust a safety stock to the exact amount of no stock-out as the case with safety

margin approach which was used by some researchers (Wemmerlov, 1989, Eaves, 2002,

Eaves and Kingsman, 2004).

Four years (2004 - 2007) of yearly forecasts for the Naval spare parts were generated.

Among them, the performance of the forecasts in 2004 was different from that of the

forecasts in 2005 - 2007. This might be attributed to the influence of the two peak

points in 2002 and 2003 upon the forecasts in 2004. A summary of findings about the

performance of forecasting methods in 2005 - 2007 is presented as in Table 7-1. The

most robust direct forecasting method among direct forecasting methods tested with the

exception of the total inventory costs was found to be the simple exponential smoothing

model with monthly aggregated data adjusted for linear trend and additive seasonality

(Ism). In general, the most robust forecasting method among all the forecasting methods

tested was found to be the simple combination between the simple exponential
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smoothing model with quarterly aggregated data adjusted for linear trend at group level

and the simple exponential smoothing model with monthly aggregated unadjusted data

at item level (SCtqurn). Simple combination dominated Top-21 and Top-20. These are

consistent with the literature (Kahn, 1998, Dekker et aI., 2004, Hyndman et al., 2007) in

that combinatorial forecasting could present lower forecasting errors and lower

inventory costs than top-down and direct forecasting; and DeLurgio (1998) in that

simple combination could be as good as a more complex proration method (e.g.

weighted combination).

Table 7-1 A summary of findings: the performance of forecasting methods

Absolute & relative measures Derivative measure

The most robust OF tsm

OF
The most robust DF

for equipment
rou

The most robust
forecasting method

Total inventory costs: um
Mean rank for total inventory costs:
Ism

GunIRD: um; ME & GElAC: Ism

SCtqum

Proration
method

Top-21 by LN(ratio):
t4 SCs, 6 WCs, 0 TOt, & 1 TD2

Top-21 by mean rank in
MAO/RMSE:

15 SCs, 5 WCs, 0 TOl, & 1 TD2

Top-20 by total inventory costs:
12 SCs, 8 WCs, 0 TOl, & 0 T02

HF The most frequently
higher ranked DF
used for Top-21 or

Top-20

Item level: m' & i
Item level combination: um
Group level: m' & l; rs. ti
Group level combination: tq

Item level: m'& u2

[tern level combination: um
Group level: m' & r

The most robust
forecasting method

for equipment
grou

ME: SCtquy

OF = direct forecasting; HF = hierarchical forecasting; se = simple combination; we = weighted
combination; TO = top-down forecasting; LN(ratio) = natural log relative error [In(errorHFlerrorDF)]; 1=
data aggregation method; 2 = data adjustment method.

The most frequently higher ranked direct forecasting methods for the top 20 or 21

hierarchical forecasting methods are summarised in the table. As a combination of data

aggregation method and data adjustment method, urn was found to be the most

frequently higher ranked method for the top 20 and 21 hierarchical forecasting methods

at item level. The most robust forecasting methods for Main Engines were also

identified as shown. This suggested a forecasting scheme for the South Korean Navy
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with respect to the different demand feature in ME. 3.8 % of the total inventory costs,

which resulted from using the generally most robust forecasting method (i.e. SCtqum),

were demonstrated to be reduced by using this forecasting scheme.

7.3 Forecasting Performance and Demand Features

For the purpose of achieving the research objectives c) "to investigate the influence of

demand features upon the performance of the alternative forecasting strategies" and d)

"to develop a classification model for the spare parts demand in order to predict a

superior forecasting method", research questions c) "under what conditions are top-

down forecasting or combinatorial forecasting superior or inferior to direct forecasting?"

and d) "how can the spare parts demand be classified in order to predict a superior

forecasting method?" were answered in Chapter 6. For answering research questions c)

and d), the logistic regression classification model was implemented, and the individual

relations between the relative performance of the alternative forecasting methods and

the significant predictors in the logistic regression classification model were analysed.

The logistic regression classification model could predict a superior forecasting method

between the two alternative forecasting methods (i.e. SClqum and Ism). The sum of

absolute deviations divided by the monthly mean demand (or the total inventory costs)

over 900 observations (i.e. the 300 spare parts x 3 times of yearly forecasts) reduced

from 7,154.8 (or £354,420) in the results using only SCtqum to 7,132.9 (or £347,377) in

the result using the logistic regression classification model for the 10 (10%) test sets.

While the total percentage of correctness using only SCtqum was 54.0, the total

percentage of correctness using the logistic regression classification model for the 10

(10%) test sets was 55.9%. Hence, it might be suggested that the internal validation is

established for the logistic regression classification model.

For the final model which uses all the 900 observations, the 5 continuous variables

which represent trend [I.Slope], variability [I.Cv(size)], correlation [I.Corr(group)],

deviation from a normal distribution [I.Kurtosis], and historical unit volume [I.Mean]

and the 1 categorical variable [Equipment] were observed to be statistically significant.

For the logistic regression classification models for the 10% cross-validation which

used 90% of the observations (i.e. 10 training sets), 4 more continuous variables which
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represent trend [G.Slope], variability [I.Pr(peak)], deviation from a normal distribution

[G.Kurtosis] and historical unit volume [G.Mean] were observed to be statistically

significant. For the final model, all of the significant predictors were found to be item

level demand features; none of them were found to be group level demand features. For

the logistic regression classification models for the 10% cross-validation, only 3

significant group level predictors were observed. Item level demand features might have

more effect upon selecting a superior forecasting method in the logistic regression

model. A summary of findings about the influence of demand features upon the relative

performance of the alternative forecasting methods with respect to the related previous

research in terms of the logistic regression model and the individual relations is

presented as shown in Table 7-2.

The influence of the significant demand features in the logistic regression model was

identified. As G.Slope, I.Slope, G.Kurtosis, I.Kurtosis, G.Mean, I.Mean, or I.Pr(peak)

increases, the odds of classifying SCtqum increase. On the contrary, as I.Cv(size) or

I.Corr(group) increases, the odds of classifying tsm increase. The case with I.Corr(group)

might be consistent with Schwarzkopf et al. (1988), the case with I.Pr(peak) might be

consistent with the research (Schwarzkopf et al., 1988, Viswanathan et al., 2008); the

cases with G.Mean and I.Mean might be consistent with Fliedner and Mabert (1992).

The individual relations between the relative performance of the alternative forecasting

methods and the significant predictors in the classification model were more or less

inconsistent with the results from the logistic regression classification model. SClqum

provided much better forecasts for GuniRD than for ME and GE/AC. G.Slope, I.Slope,

I.Corr(group), G.Mean, I.Mean, G.Kurtosis, and I.Pr(peak) were found to be non-

significant demand features which are inconsistent with the logistic regression

classification model results. I.Cv(size) and I.Kurtosis were found to increase with

higher possibility of classifying Ism. The result with I.Kurtosis is inconsistent with the

logistic regression classification model result. The non-significance of I.Corr(group)

might be consistent with the research (Dangerfield and Morris, 1992, Widiarta et aI.,

2008a, Widiarta et al., 2009).
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Table 7-2 A summary of findings: the influence of demand features upon the relative
performance of alternative forecasting methods

Logistic regression classification model Individual relations

Demand Odds of
Reference Relation Reference

feature classification

Correlation I.Corr(group) -+ = Schwarzkopf et al. Non- = Dangerfield and Morris (1992),

tsm (1988): significance Widiarta et al. (2008a) &

f. Gross and Sohl Widiarta et al. (2009)

(1990). Dangerfield and f. Schwarzkopf et al. (1988),
Morris (1992), Fliedner Gross and Sohl (1990), Fliedner
(1999), Widiarta et (1999) & Widiarta et a!. (2006)
al.(2006), Widiarta et al.
(2008a), & Widiarta et
a!. (2009)

Variability r.Cv(size) (or et (or =) Schwarzkopf et I.Cv(size) et Schwarzkopf et al. (1988) &
I.Pr(peak» -+ Ism a!. (1988)& -+ Ism Viswanathan et a!. (2008)
(orSC/qum) Viswanathan et al.

(2008)

Forecasting Non-significance =F Shlifer and Wolff

horizon ( 1979)

UV&DV G.Mean or I.Mean = Fliedner and Mabert Non-sig. f. Fliedner and Mabert (1992)
-+ SCtqum (1992) & Fliedner and

Lawrence (1995)

Trend G.Slope or LSlope Non-

-+ SCtqum significance

Deviation G.Kurtosis or I.Kurtosis

from a I.Kurtosis -+ -+Ism

normal SCtqum
distribution

Intermittency Non-significance

Categorical The odds of classification in Gun/RD are SCtqum provides much better forecasts for

variable significantly different from the odds in ME and GuniRD than other groups
GE/AC

->: increasing the value of the predictor (variable) increases the odds of classifying the forecasting method (or the

relative performance of the forecasting method); = (or f.): consistent (or inconsistent) with the finding of the research;
UV: historical unit volume; DV: historical dollar volume.

7.4 Contributions

Theories and guidelines for using hierarchical forecasting for predicting non-normal

demand associated with the spare parts demand in the South Korean Navy are not welI-

developed. The research gaps led to the current research objectives. In the process of

achieving these research objectives, the research contributions have been made. The

contributions of this research are presented in Table 7-3.
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In spite of the applicability of hierarchical forecasting in predicting volatile and

intermittent demand as stated in Subsection 1.2.4, the literature has paid little attention

to the use of hierarchical forecasting for the intermittent demand at item level. This is a

feature of non-normal demand associated with spare parts demand. This research gap

led to the first two research objectives. In the process of achieving the two research

objectives, the nature of the spare parts demand and the performance of the alternative

forecasting strategies were identified.

There have been no controlled studies on: the influence of correlations between non-

normal demand time series upon the performance of the alternative forecasting

strategies; the influence of intermittency upon the performance of the alternative

forecasting strategies; the influence of demand features upon the performance of

combinatorial forecasting; and, the combined influence of demand features of empirical

non-normal data upon the performance of the alternative forecasting strategies. These

research gaps led to the next two research objectives. In the process of achieving these

two research objectives, a new multivariate logistic regression classification model for

predicting the relative performance of the alternative forecasting methods was

developed. In doing this the influence of the demand features upon the relative

performance of the alternative forecasting methods was identified.

The forecasting performance was evaluated with the three groups of measurement. With

these three-fold measurements, reliability and internal validity of the results were

established. The practical impact of forecasting methods on the inventory system was

evaluated with the derivative measures.

319



•

•

• • • • •• • • ••



Chapter 7. Conclusions

7.5 Forecasting Scheme for the South Korean Navy

A forecasting scheme for predicting the demand for spare parts in the South Korean

Navy is suggested in this research. The performance of this forecasting scheme was

demonstrated with the three-fold accuracy measures. This forecasting scheme is

presented as follows:

a) In lieu of the current direct forecasting, hierarchical forecasting is suggested.

b) As a proration method for hierarchical forecasting, combinatorial forecasting,

especially simple combination, should be considered.

c) A careful selection of a forecasting method from various forecasting methods using

simple combination is required, because the performance of the forecasting

methods using simple combination for forecasting the 300 spare parts demand was

highly variable.

d) As a forecasting method using simple combination, SCtqum is recommended for

forecasting spare parts demand for GunIRD and GE/AC, because SCtqum generally

provided the most robust forecasting performance for forecasting the 300 spare

parts demand.

e) For forecasting spare parts demand for ME which is characterised as having lower

correlation, steeper downward trend, lower intermittency, and larger demand

volume, SCtquy is recommended, because SCtquy provided the most robust

forecasting performance for forecasting the spare parts demand for ME.

f) However, SCtqum and SCtquy might be difficult to use for the spare parts of other

pieces of equipment or other types of warships. The logistic regression

classification model can be used even for other demands, because this model is

based on the relationships between demand features and the relative forecasting

performance of the alternative forecasting methods.

g) The logistic regression classification model provides a clear guideline to choose a

superior forecasting method. It is recommended to implement the logistic

regression classification model to select a forecasting method from the alternative

forecasting methods (tsm vs. SCtqum) for forecasting the spare parts demand.

h) Continuous demand features such as correlation [expressed as I.Corr(group)],

variability [expressed as I.Cv(size) and I.Pr(peak)], trend [expressed as G.Slope and

I.Slope], deviation from a normal distribution [expressed as G.Kurtosis and
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I.Kurtosis], historical unit volume (UV) [expressed as G.Mean and I.Mean], and a

categorical variable such as the type of equipment [expressed as Equipment] should

be considered as predictors for the logistic regression classification model.

i) When selecting a predictor entry method for the logistic regression model, the two

step process which chooses a superior stepwise method for the model is

recommended. At the first step, forward stepwise method is preferentially

considered. At the second step, if forward stepwise method selects too small a

number of predictors (i.e. two predictors), backward stepwise method is suggested

to be employed. Otherwise, forward stepwise method is suggested to be employed.

j) Verification of a forecasting performance using simulation before using the forecast

for a procurement decision should be conducted. The simulation can reduce the risk

of a wrong decision and guarantee the best practical decision in terms of inventory

and service levels.

7.6 Limitations

Three important limitations need to be considered. The first limitation is the difficulty of

obtaining and publishing detailed information. The Military might be one of the strictest

organisations regarding issues of confidentiality. It is against the Military information

Security Act to collect and reveal confidential information. Therefore, accessing

detailed information about the spare parts demand and the inventory systems was

limited. However, as the time series of the 9,369 spare parts were collected, there might

be no problem to investigate an appropriate forecasting strategy for the spare parts.

The second limitation is the difficulty of obtaining true demand. The five sources of

non-normality of the spare parts demand were identified in Section 4.5. Among them,

the three sources (i.e. the multi-echelon inventory systems, the budgeting process and

the maintenance system) would generate proxy demand data, because they distort true

demand. Forecasts based on the proxy demand are likely to be biased. However, since

no other data sources are available except the logistical database of the Naval Logistics

Command, this research relies on the logistical database, and assumes that the construct

validity is established.

The third limitation lies in the fact that the logistic regression classification model and
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the individual relations between the demand features and the performance of the

alternative forecasting methods are based on the comparisons between combinatorial

forecasting and direct forecasting rather than top-down forecasting and direct

forecasting. As the previous research compared top-down forecasting and direct

forecasting, it could not be asserted firmly that any result of this research on

classification is either consistent or inconsistent with the previous research. As stated,

this is a limitation as well as a contribution of this research in that this research has

investigated the influence of demand features upon the performance of a combinatorial

forecasting method which might not have been conducted before. The previous research

is worth comparing with the result of this research because combinatorial forecasting

can be considered to be a variant of top-down forecasting. As such, existing theories

could provide frameworks for the findings of this research.

7.7 Further Research

This research has thrown up four questions in need of further investigation. First, in

order to increase the generalisability of the classification model, more investigation with

more data sets, either in other militaries or in other organisations might be required.

Second, it would be interesting to examine more demand features for the classification

model as well as their individual influence upon the forecasting performance. For

example, the influence of seasonality needs to be examined. Seasonality was not

included in the logistic regression classification model in this research. This was

because most of the seasonal effects were non-significant as shown in Subsection 4.3.5.

However, some of the seasonal effects were found to be significant as shown in

Subsection 4.3.5. tsm which is a forecasting method using data adjusted for trend and

seasonality was observed to present the most robust performance among the direct

forecasting methods tested as shown in Section 5.4. There could be interesting relations

between seasonality and forecasting performance.

Third, further research should be done to investigate the impact of data adjustment

methods on the outcomes of hierarchical forecasting methods. As shown in Table 7-1,

the forecast with monthly aggregated data adjusted for linear trend and additive

seasonality ({srn) was the most robust direct forecasting method; the most frequently
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higher ranked direct forecasting methods for the top 21 or the top 20 hierarchical

forecasting methods were also identified. However, the impact of trend and/or

seasonality adjustment on the performance of the 220 hierarchical forecasting methods

might be different.

Fouth, in this research, the dichotomy classification and relations between one of the

combinatorial forecasting methods (i.e. SCtqurn) and one of the direct forecasting

methods (i.e. tsrn) were investigated. However, in some cases, other forecasting

methods were observed to be higher ranked than SCtqurn and tsm. For instance, um was

observed to be higher ranked than tsm in terms of the total inventory costs in Subsection

5.4.4; and TD2tsm was observed to be higher ranked than SCtqurn in terms of the

natural log relative error [In(errorHFlerrortsm)] for the total inventory costs in Subsection

5.5.3. Therefore, investigation employing other forecasting methods (e.g. TD2tsrn or urn)

is needed.
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Appendices

Appendix A - Probability Distributions

A probability distribution refers to a specification of all the values and their associated

probabilities for a complete description of a random variable (Krzanowski, 1998). A

variable whose numerical values are determined by chance factors is named a random

variable (Krishnamoorthy, 2006). Random variables can be divided into discrete and

continuous random variables. When the set of all possible values of a random variable X

is countable, X is named a discrete random variable; and when the set of all possible

values of X is an interval or union of two or more non-overlapping intervals, X is named

a continuous random variable (Krishnamoorthy, 2006). Probability of an event, P(A) can

be expressed as in equation (A-I) (Krishnamoorthy, 2006).

Number of outcomes in the event A
P(A) =-------------

Total number of outcomes in the sample space
(A-I)

If R is the set of all possible values of a discrete random variable X, andj{k) = P(X = k)

for each kin R, thenj{k) is called the probability mass function of X where: P(X = k) is

the probability that X assumes the value k (Krishnamoorthy, 2006). For a continuous

random variable any real valued functionf{x) which satisfies equation (A-2) is defined

as a probability density function. Table A-I describes various probability distributions

and presents the equations of them.

f(x) ~ 0 for all x, and (f(x)dx = 1 (A-2)
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Appendices

Appendix B - NATO Supply Group

Table B-2 NATO Supply Group

Group
Number

NATO Supply Group title

10 Weapons
II Nuclear Ordinance
12 Fire Control Equipment
13 Ammunition and Explosives
14 Guided Missiles
15 Aircraft and Airframe Structural Components
16 Aircraft Components and Accessories
17 Aircraft Launching, Landing, and Ground Handling Equipment
18 Space Vehicles
19 Ships, Small Craft, Pontoons, and Floating Docks
20 Ship and Marine Equipment
22 Railway Equipment
23 Ground Effects Vehicles, Motor Vehicles, Trailers, and Cycles
24 Tractors
25 Vehicular Equipment Components
26 Tires and Tubes
28 Engines, Turbines and Components
29 Engine Accessories
30 Mechanical Power Transmission Equipment
31 Bearings
32 Woodworking Machinery and Equipment
34 Metalworking Machinery
35 Service and Trade Equipment
36 Special Industry Machinery
37 Agricultural Machinery and Equipment

38 Construction, Mining, Excavating, and Highway Maintenance Equipment
39 Materials Handling Equipment
40 Rope, Cable, Chain, and Fittings
41 Refrigeration, Air-Conditioning, and Air Circulating Equipment
42 Fire Fighting, Rescue and Safety Equipment
43 Pumps and Compressors
44 Furnace, Steam Plant, Drying Equipment; and Nuclear Reactors
45 Plumbing. Heating, and Sanitation Equipment
46 Water Purification and Sewage Treatment Equipment
47 Pipe, Tubing, Hose and Fittings
48 Valves
49 Maintenance and Repair Shop Equipment
51 Hand Tools

(Continued)
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Table B-1 Continued

Group
Number

NATO Supply Group title

52 Measuring Tools
53 Hardware and Abrasives
54 Prefabricated Structures and Scaffolding
55 Lumber, MiIIwork, Plywood and Veneer
56 Construction and Building Materials
58 Communication, Detection and Coherent Radiation Equipment
59 Electrical and Electronic Equipment Components
60 Fiber Optics Materials, Components, Assemblies, Accessories
61 Electric Wire and Power and Distribution Equipment
62 Lighting Fixtures and Lamps
63 Alarm, Signal and Security Detection Systems
65 Medical, Dental, and Veterinary Equipment and Supplies
66 Instruments and Laboratory Equipment
67 Photographic Equipment
68 Chemicals and Chemical Products
69 Training Aids and Devices

70
General Purpose Automatic Data Processing Equipment (Including Firmware), Software,

Supplies and Support Equipment
71 Furniture
72 Household and Commercial Furnishings and Appliances
73 Food Preparation and Serving Equipment
74 Office Machines, Text Processing Systems, and Visible Record Equipment
75 Office Supplies and Devices
76 Books, Maps and Other Publications
77 Musical Instruments, Phonographs, and Home-Type Radios
78 Recreational and Athletic Equipment
79 Cleaning Equipment and Supplies
80 Brushes, Paints, Sealers and Adhesives
81 Containers, Packaging, and Packing Supplies
83 Textiles, Leathers, Furs, Apparel and Shoe Findings, Tents and Flags
84 Clothing, Individual Equipment, and Insignia
85 Toiletries
87 Agricultural Supplies
88 Live Animals
89 Subsistence
91 Fuels, Lubricants, Oils and Waxes
93 Nonmetallic Fabricated Materials
94 Nonmetallic Crude Materials
95 Metal Bars, Sheets, and Shapes
96 Ores, Minerals, and Their Primary Products
99 Miscellaneous
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Appendix C - Time Series Plots Of The Sums Of The Monthly Aggregated Time

Series Of The Spare Parts Demand For The Eight Pieces Of Equipment
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Figure C-l Time series plot of spare parts for Gun I
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Figure C-2 Time series plot of spare parts for Gun II
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Figure C-3 Time series plot of spare parts for Gun III
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Figure C-4 Time series plot of spare parts for Main Engine I
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Figure C-5 Time series plot of spare parts for Main Engine II
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Figure C-6 Time series plot of spare parts for Generator I
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Figure C-7 Time series plot of spare parts for Air Compressor I
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Figure C-8 Time series plot of spare parts for Radar I
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Appendix D - Hierarchical Forecasting Comparisons (MAD)

Table D-3 Hierarchical forecasting comparisons in term of MAD
LN ~ratiot Rank

05 -07 06-07 07 05 - 07 06- 07 07
TDlum 69.36 71.92 100.26 198 157 210
TDlim 63.42 97.47 91.93 178 198 199
TDlsm 67.02 57.86 109.47 192 143 217
TDllsm 3.92 6.78 33.91 43 43 65uu« 96.33 97.49 113.37 214 199 219
tuu« 65.93 102.36 99.14 188 208 207
tin« 93.25 73.42 91.14 211 158 198
tuu« 40.59 48.91 52.64 113 131 116
TDluf. 78.45 76.56 108.07 204 163 216
TD/IJ:. 67.11 86.74 98.59 193 182 206
TD2um 18.16 19.73 40.40 71 78 88
TD21m 37.61 70.57 83.43 104 155 185
TD2sm 23.48 11.60 35.95 88 58 76
TD21sm -22.98 -17.62 22.77 6 9 42
TD2uq 42.56 46.97 57.82 122 128 130
TD21q 43.09 81.00 88.01 125 172 191
TD2sq 47.72 39.80 33.86 136 112 64
TD2Isq_ 19.38 23.12 46.96 75 85 101
TD2uf. 29.29 34.30 59.98 92 103 139
TD21J:. 42.85 68.25 99.91 123 151 209

SCumum 18.35 19.50 34.53 72 77 69
SCumlm 86.89 107.57 100.63 207 213 212
SCumsm 20.00 10.00 60.71 78 52 143
SCumlsm 7.78 -0.99 18.89 50 31 38
SCuml!9. 36.53 36.52 58.27 102 108 132
SCumlq_ 98.02 113.93 96.49 216 217 203
SCumsq_ 39.48 28.68 63.71 109 96 150
SCumlsq 41.27 35.00 36.79 115 105 79
SCumuJ:. 47.99 54.59 54.03 137 138 121
SCumfJ:._ 91.32 108.Q2 119.03 209 214 220
SCtmum -24.75 -7.50 43.33 5 24 93
SCtmlm 62.78 98.98 93.20 176 202 200
SCtmsm -21.87 -19.40 34.01 8 8 67
SCtmlsm 9.55 25.54 13.35 52 90 23
SCtmuq_ -9.14 1.94 47.78 16 33 105
SCtmlq_ 66.08 99.39 88.67 190 203 193
SCtmsq -2.96 -4.76 39.86 27 26 84
SCtmlsq_ 42.25 57.80 49.10 121 142 107
SCtmuf. -4.19 8.49 45.91 25 45 99
SCtmfJ:._ 65.36 96.64 90.42 187 193 195
SCsmum 14.08 10.72 16.81 61 56 32
SCsmlm 84.80 97.00 86.04 205 196 189
SCsmsm 22.95 9.65 56.13 85 50 127
SCsmlsm 10.74 6.54 37.32 54 42 80
SCsmuq_ 36.62 34.80 44.20 103 104 95
SCsmlq 95.84 101.31 85.72 213 205 188

(Continued)

2 LN(ratio) = the sum of natural log relative error [In(errorHFlerrorDF)] for MAD over the 300
items.
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Table D-I Continued
LN {ratio} Rank

05 - 07 06-07 07 05 - 07 06-07 07
SCsmsq 40.44 31.82 47.28 112 98 103
SCsmtsq 39.37 29.02 36.78 108 97 78
SCsmu:r_ 48.59 53.10 50.82 140 135 110
SCsmtv 91.37 105.54 99.58 210 212 208
SCtsmum -26.02 -27.74 2.79 3 I 8
SCtsmtm 58.63 78.87 74.55 167 170 172
SCtsmsm -20.63 -24.98 15.64 9 3 28
SCtsmtsm -3.05 5.16 2.77 26 38 7
SCtsmuq -5.92 -1.82 13.09 21 29 22
SCtsmtq 65.18 84.77 74.79 186 179 174
SCtsmsq -0.70 -8.35 11.20 32 19 18
SCtsmtsq 25.17 25.14 26.73 90 89 51
SCtsmu:r_ 3.23 10.47 35.54 40 54 73
SCtsmt,:r. 56.92 81.23 78.85 164 173 179
SCuqum 29.60 32.78 53.39 93 99 120
SCuqtm 96.43 112.26 100.53 215 215 211
SCuqsm 33.62 32.79 69.24 97 100 163
SCuqtsm 20.05 23.47 34.93 79 87 71
SCuquq 48.09 53.38 66.17 138 137 159
SCuqtq 106.02 117.62 103.50 220 219 214
SCuqsq 52.33 48.46 62.55 153 129 148
SCuqtsq 53.52 52.20 45.14 156 133 98
SCuqu:r_ 60.90 68.87 64.75 173 152 154
SCuqt,:r. 99.52 118.07 102.63 217 220 213
SCtqum -32.10 -12.71 33.56 1 13 62
SCtqtm 59.20 96.91 86.77 170 195 190
SCtqsm -25.25 -23.09 24.69 4 6 47
SCtqtsm 9.64 28.45 15.93 53 95 29
SCtquq -15.07 -4.77 34.85 13 25 70
SCtqtq 63.52 100.46 91.13 179 204 197
SCtqsq -6.83 -8.95 37.86 20 18 81
SCtqtsq 41.88 59.29 45.02 118 144 97
SCtqu:r_ -8.79 5.20 35.54 17 40 74
SCtqt,:r. 62.85 98.63 88.95 177 201 194
SCsqum 24.38 22.66 32.59 89 83 61
SCsqtm 94.86 105.50 88.62 212 211 192
SCsqsm 33.37 25.57 58.94 96 91 136
SCsqtsm 22.60 15.90 31.61 84 71 57
SCsquq 43.44 40.57 43.79 126 116 94
SCsqtq 104.83 113.68 81.76 219 216 183
SCsqsq 48.70 41.78 51.64 143 121 113
SCsqtsq 51.79 41.76 36.35 149 120 77
SCsqu:r_ 57.11 65.42 52.65 165 148 117
SCsqt,:r. 100.70 115.70 98.01 218 218 205
SCtsqum -27.00 -20.55 7.75 2 7 10
SCtsqtm 55.88 74.32 70.60 161 160 166
SCtsqsm -18.54 -23.69 15.28 10 5 25
SCtsqtsm 6.75 10.59 9.30 48 55 13
SCtsquq -5.10 -1.34 13.52 23 30 24
SCtsqtq 61.22 82.75 68.22 174 177 161
SCtsqsq -0.39 -7.95 22.62 33 21 41
SCtsqtsq 35.76 33.99 44.87 99 102 96
sCtsqu:r_ 3.37 15.98 35.43 41 72 72

SCtsqt,:r. 58.92 81.84 77.76 169 175 177
SCuyum 17.68 14.68 38.44 69 65 82

SCu:r_tm 78.28 97.12 95.94 203 197 202

SCu:r_sm 19.41 17.13 54.06 76 74 122

SCu:r_tsm 13.41 9.39 35.81 57 49 75
(Continued)
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Table D-l Continued
LN ~ratio} Rank

05 - 07 06-07 07 05 - 07 06- 07 07
SCu}:'_uq_ 35.77 38.27 41.77 100 110 91
SCu}:'_tq_ 87.83 102.68 109.68 208 209 218
SCu}:'_sq_ 42.14 37.29 56.75 120 109 128
SCu}:'_tsq_ 38.20 39.75 55.44 106 111 125
SCu}:'_u}:'_ 47.11 56.08 64.20 133 141 153
SCuyty 84.91 103.69 106.19 206 210 215
SC~um -12.35 -23.79 26.86 14 4 52
SC~tm 64.96 87.68 79.99 185 183 181
SC~sm -5.39 -25.56 -0.91 22 2 5
SC~tsm 15.98 20.55 18.02 63 82 37
SC~uq_ 3.76 -7.58 23.41 42 23 44
SCD!_tq_ 69.68 91.62 75.88 199 188 176
SC~sq_ 13.65 -11.74 23.45 58 15 45
SC~tsq_ 44.00 49.01 42.52 129 132 92
SC~u}:'_ 13.23 4.14 30.80 56 35 55
SCtyty 66.36 89.55 65.48 191 187 156

WCumum 16.62 20,43 41.03 66 81 89
WCumtm 48.68 76.54 74.66 142 162 173
WCumsm 23.17 15.74 62.54 86 69 147
WCumtsm -0.08 5.37 8.04 34 41 II
WCumuq_ 36.22 40.52 58.56 101 115 134
WCumtq_ 53.74 78.64 85.45 158 168 187
WCumsq 40.35 33.42 63.59 III 101 149
WCumtsq_ 41.30 43.18 33.95 116 122 66
WCumu}:'_ 41.59 39.84 40.38 117 113 87

WCum~ 64.18 77.95 59.22 181 166 137
WCtmum -10.06 -3.32 11.38 15 27 19
WCtmtm 64.53 101.67 94.23 183 206 201
WCtmsm 0.49 -8.15 15.39 36 20 26
WCtmtsm 5.46 16.54 15.94 45 73 30
WCtmuq_ 6.89 15.80 32.33 49 70 59
WCtmtq_ 67.34 102.18 97.93 195 207 204
WCtmsq 21.17 11.17 17.32 82 57 35
WCtmtsq_ 56.59 66.33 62.40 163 149 146
WCtmu}:'_ 23.38 12.74 47.08 87 62 102
WCtm~ 74.83 97.92 73.78 202 200 169
WCsmum 13.73 14.04 34.28 59 64 68
WCsmtm 43.50 67.53 61.43 127 150 145
WCsmsm 26.08 15.73 60.37 91 68 140
WCsmtsm 0.25 5.17 17.04 35 39 34
WCsmuq_ 34.80 36.50 57.29 98 107 129
WCsmtq_ 52.52 70.45 65.49 154 154 157
WCsmsq 42.07 35.72 58.34 119 106 133
WCsmtsq_ 43.69 43.25 40.21 128 123 85
WCsmu}:'_ 40.30 40.27 41.71 110 114 90

WCsm~ 64.74 76.78 53.18 184 164 119
WCtsmum -15.46 -12.02 -1.57 12 14 4
WCtsmtm 48.22 77.16 75.10 139 165 175
WCtsmsm -0.78 -9.28 26.51 31 17 49
WCtsmtsm -2.43 4.30 11.46 28 36 20
WCtsmuq_ 4.62 13.59 23.30 44 63 43
WCtsmtq_ 52.96 81.36 73.06 155 174 168
WCtsmsq 17.77 9.19 17.04 70 47 33
WCtsmtsq_ 45.20 46.60 47.40 130 127 104

WCtsmu}:'_ 19.21 12.73 31.37 74 61 56

WCtsm~ 63.65 78.55 51.71 180 167 114

WCuqum 22.40 27.77 50.36 83 93 108
(Continued)
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Table D-l Continued
LN (ratio} Rank

05 - 07 06-07 07 05 - 07 06-07 07
WCuq_tm 51.28 78.71 73.96 147 169 171
WCug_sm 30.65 26.24 64.17 94 92 152
WCug_tsm 6.55 15.61 9.70 47 67 14
WCug_ug_ 46.09 53.16 72.78 131 136 167
WCug_tg_ 58.86 82.11 85.38 168 176 186
WCug_sg_ 49.29 44.50 59.89 144 126 138
WCuq_tsq_ 46.61 48.72 28.19 132 130 53
WCuq_uJ:_ 51.90 55.46 57.92 151 140 131
WCug_2:_ 68.64 87.88 61.19 197 184 144
WCtq_um -22.34 -15.87 -0.16 7 10 6
WCtg_lm 56.44 95.13 80.37 162 192 182
WCtg_sm -7.55 -15.22 -7.28 19 II 2
WCtq_lsm 1.80 15.03 10.93 37 66 17
wCtq_uq_ -1.09 4.62 17.89 30 37 36
wCtqtq 61.37 96.76 91.08 175 194 196
WCtg_sg_ 13.89 3.90 10.11 60 34 15
wCtqlsq_ 52.15 60.15 52.68 152 145 118
WCtquJ:_ 16.21 9.19 33.75 64 48 63
WCtg_2:_ 70.73 94.24 67.47 200 191 160
WCsq_um 20.89 20.04 40.35 80 79 86
WCsq_lm 51.66 69.43 51.76 148 153 115
WCsqsm 32.42 23.18 58.87 95 86 135
WCsq_tsm 9.47 12.34 19.45 51 60 39
WCsquq 42.86 43.58 60.48 124 124 141
WCsqtq_ 59.93 73.80 68.67 172 159 162
WCsg_sq 48.66 41.19 60.60 141 118 142
WCsq_lsq_ 47.49 44.12 25.67 135 125 48
WCsqu!::. 47.33 52.85 51.50 134 134 112
WCsq!l. 68.28 84.87 55.16 196 180 124

WCtsqum -17.85 -14.54 -6.29 II 12 3
WCtsqtm 54.25 85.69 73.88 159 181 170
WCtsqsm -5.10 -9.50 10.64 24 16 16
WCtsg_lsm 3.00 9.96 6.19 39 51 9
WCtsq_uq_ 5.61 12.02 19.54 46 59 40
wCtsqlq_ 59.65 89.48 81.76 171 186 184
WCtsqsq_ 16.77 10.44 15.94 67 53 31
wCtsq_tsq_ 51.88 54.71 47.82 150 139 106
wCtsq_uJ:_ 18.50 17.98 32.54 73 75 60
wCtsq_2:_ 66.06 84.73 63.97 189 178 151
WCuJ:_um 16.32 9.08 31.94 65 46 58
WCuJ:_lm 50.01 70.84 69.39 145 156 164
WCuJ:_sm 19.56 8.03 45.93 77 44 100
WCuJ:.lsm 2.53 -0.92 24.15 38 32 46
WCuJ:_uq 37.84 41.38 54.36 105 119 123
WCuJ:_tq_ 58.46 74.59 79.18 166 161 180
WCuJ:_sq 38.61 27.94 51.39 107 94 III
WCuJ:.lsq 41.03 40.69 38.83 114 117 83
WCuJ:_uJ:_ 50.32 60.36 65.77 146 146 158
WCul:.2:_ 54.81 80.20 56.06 160 171 126
WCtyum -7.61 -3.12 -14.63 18 28 I
WC2:_tm 64.48 88.68 70.31 182 185 165
WC!l.sm -2.07 -7.78 15.59 29 22 27
WC!l.tsm 16.81 22.73 8.53 68 84 12
WC!l.u'l. 13.06 20.19 11.61 55 80 21
WCtytq_ 73.96 91.97 78.31 201 189 178
WCtysq_ 20.91 18.57 28.49 81 76 54
WCtytsq 53.65 62.37 50.79 157 147 109
WCtyuy 14.55 24.35 26.66 62 88 50
WCtyty 67.30 92.08 65.17 194 190 155
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Appendix E - Hierarchical Forecasting Comparisons (RMSE)

Table E-4 Hierarchical forecasting comparisons in term of RMSE

LN (rano)' Rank
05 -07 06-07 07 05 -07 06 -07 07

TDlum 61.86 68.97 100.26 185 152 210
TDltm 56.70 96.11 91.93 172 192 199
TDIsm 62.48 54.66 109.47 188 138 217
TD I Ism 2.49 6.87 33.91 43 43 65
TDluq_ 89.02 96.80 113.37 209 194 219
TDltq_ 58.21 100.22 99.14 176 202 207
TDIsq_ 89.49 73.54 91.14 210 157 198
TDltsq_ 38.72 49.65 52.64 118 132 116
TDluy 72.04 73.96 108.07 201 159 216
TDIIJ:'_ 64.86 85.34 98.59 190 179 206
TD2um 12.14 18.38 40.40 60 78 88
TD2tm 32.15 68.58 83.43 102 lSI 185
TD2sm 18.29 10.15 35.95 81 53 76
TD2tsm -23.81 -19.41 22.77 8 9 42
TD2uq_ 36.70 46.71 57.82 110 128 130
TD2tq_ 34.63 78.45 88.01 105 166 191
TD2sq_ 43.82 41.62 33.86 137 116 64
TD2tsq_ 16.69 22.62 46.96 74 84 101
TD2uy 22.11 30.63 59.98 91 97 139
TD2p_ 39.98 66.06 99.91 126 149 209

SCumum 13.51 17.79 34.53 64 76 69
SCumtm 83.75 108.39 100.63 207 213 212
SCumsm 16.20 7.31 60.71 72 46 143
SCumtsm 7.10 0.21 18.89 51 33 38
SCumuq_ 31.51 35.55 58.27 101 106 132
SCumtq_ 94.41 114.88 96.49 215 216 203
SCumsq_ 36.20 27.21 63.71 108 94 ISO
SCumtsq_ 42.33 39.38 36.79 133 110 79
SCumuy 42.24 54.97 54.03 131 139 121
SCumfJ!_ 90.18 109. IO Il9.03 212 214 220
SCtmum -28.76 -11.85 43.33 3 16 93
SCtmtm 58.79 99.38 93.20 178 200 200
SCtmsm -25.35 -23.93 34.01 6 7 67
SCtmtsm 8.34 26.44 13.35 53 93 23
SCtmuq_ -12.37 -0.22 47.78 14 32 105
SCtmtq_ 61.14 100.05 88.67 183 201 193
SCtmsq_ -5.80 -8.14 39.86 25 23 84
SCtmtsq_ 39.83 58.99 49.10 124 144 107

(Continued)

3 LN(ratio) = the sum of natural log relative error [In(errorHF/errorDF)] for RMSE over the 300
items.
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Table E-l Continued

LN (ratio) Rank
05 -07 06 -07 07 05 -07 06 -07 07

SCtmuy -7.50 7.26 45.91 22 45 99
SCtmt.x. 63.50 97.17 90.42 189 196 195
SCsmum 10.48 10.33 16.81 56 55 32
SCsmtm 83.75 100.48 86.04 206 203 189
SCsmsm 19.10 8.05 56.13 83 49 127
SCsmtsm 8.74 7.56 37.32 54 47 80
SCsmuq_ 33.08 34.64 44.20 103 103 95
SCsmtq_ 94.50 104.89 85.72 216 210 188
SCsms'l 37.27 32.41 47.28 113 101 103
SCsmtsq_ 40.69 31.62 36.78 127 100 78
SCsmuy 42.32 52.88 50.82 132 135 110
SCsmt.x. 89.70 106040 99.58 211 211 208
SCtsmum -27.68 -27.80 2.79 5 I 8
SCtsmtm 56.04 81.61 74.55 170 172 172
SCtsmsm -22.71 -24.93 15.64 9 5 28
SCtsmtsm -4.26 5.25 2.77 27 38 7
SCtsmu'l -8.04 -0040 13.09 20 31 22
SCtsmt'l 61.10 86.56 74.79 182 180 174
SCtsms'l -1.26 -6.92 H.20 34 25 18
SCtsmts'l 24.51 25.56 26.73 92 89 51
SCtsmuy -0.26 11.80 35.54 38 59 73
SCtsmt.x. 58.22 83.94 78.85 177 176 179
SCu'lum 25.38 31.48 53.39 93 99 120
SCuq_tm 92.65 113.78 100.53 214 215 211
SCuq_sm 27.96 31.12 69.24 95 98 163
SCuq_tsm 17.77 25.09 34.93 80 87 71
SCuq_u'l 42.21 52.37 66.17 130 134 159

SCu'lt'l 103.20 119.12 103.50 220 219 214
SCuq_s'l 48.22 48.32 62.55 148 129 148

SCuq_ts'l 52.48 56.30 45.14 160 141 98

SCu'luy 54.51 70.36 64.75 166 153 154

SCuq_t.x. 98.55 119.83 102.63 217 220 213
SCtq_um -36.38 -16.20 33.56 1 11 62
SCt'ltm 53.46 97.95 86.77 164 197 190
SCtq_sm -28.81 -26.74 24.69 2 3 47
SCtq_tsm 6.44 28.93 15.93 50 96 29
SCtq_u'l -17.02 -5.16 34.85 13 26 70

SCt'lt'l 57.97 100.54 91.13 175 204 197
SCtq_sq_ -9.25 -12.30 37.86 18 15 81
SCtq_ts'l 38.37 59.80 45.02 117 146 97
SCtq_ul!_ -12.13 5.61 35.54 17 41 74

SCt'lt.x. 60.64 98.79 88.95 180 199 194
SCsq_um 21.37 22.89 32.59 89 85 61

SCs'ltm 91.46 107.66 88.62 213 212 192

SCsq_sm 30.03 25.93 58.94 97 92 136

SCs'ltsm 20.90 16.28 31.61 87 74 57

SCs'lu'l 39.97 42.34 43.79 125 119 94

SCsq_t'l 102.14 1I6.01 81.76 219 217 183
(Continued)
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Table E-l Continued

LN (ratio) Rank
05 -07 06 -07 07 05 -07 06 -07 07

SCs'ls'l 45.87 43.58 51.64 144 123 113
SCs'ltsq 52.06 45.54 36.35 158 126 77
SCsquy 52.16 68.06 52.65 159 150 117
SCsqty 98.74 116.76 98.01 218 218 205
SCtsqum -28.66 -21.76 7.75 4 8 10

SCts'ltm 52.65 75.01 70.60 161 161 166
SCts'lsm -20.30 -24.69 15.28 II 6 25
SCts'ltsm 6.22 11.80 9.30 49 60 13
SCtsquq -6.64 -0.75 13.52 24 30 24
sCts'ltq 57.46 83.37 68.22 173 175 161
SCts'lsq -0.90 -8.70 22.62 36 22 41
SCts'ltsq 35.60 35.49 44.87 107 105 96

SCts'luJ!. -1.23 15.59 35.43 35 70 72
SCtsqty 59.11 84.61 77.76 179 177 177
SCuyum 13.40 13.06 38.44 63 65 82
SCuytm 76.49 97.98 95.94 203 198 202
SCuysm 16.17 14.41 54.06 71 67 122
SCuytsm 1l.75 8.58 35.81 59 50 75

SCuyuq 30.65 38.26 41.77 100 109 91
SCuytq 84.69 103.07 109.68 208 208 218
SCuysq 37.71 35.55 56.75 115 107 128
SCuytsq 37.33 42.28 55.44 114 118 125
SCuyuy 39.19 54.50 64.20 121 137 153
SCuyty 82.45 103.42 106.19 205 209 215

SC!l:.um -12.33 -26.28 26.86 15 4 52

SC!l:.tm 6l.l7 87.25 79.99 184 181 181

SC!l:.sm -3.34 -27.21 -0.91 29 2 5

SC!l:.tsm 16.82 20.96 18.02 77 80 37
SCtyuq 4.78 -8.75 23.41 47 21 44

SC!l:.t'l 66.02 92.74 75.88 191 189 176

SC!l:.sq 15.48 -12.40 23.45 69 14 45

SC!l:.tsq 45.41 49.46 42.52 142 131 92

SC!l:.uy 12.79 4.11 30.80 62 34 55

SC!l:.!l:. 67.14 91.90 65.48 195 188 156
WCumum 1l.l5 17.81 41.03 57 77 89
WCumtm 46.48 76.68 74.66 145 163 173
WCumsm 18.60 12.16 62.54 82 61 147
WCumtsm -1.93 5.41 8.04 32 39 II
WCumuq 30.63 40.64 58.56 99 114 134

WCumtq 49.53 78.13 85.45 152 165 187
WCumsq 36.96 33.04 63.59 III 102 149

WCumts'l 39.09 42.47 33.95 119 120 66

WCumuJ!. 37.12 41.05 40.38 112 115 87

WCum!l:. 66.41 80.07 59.22 192 168 137

WCtmum -12.32 -4.10 1l.38 16 27 19

WCtmtm 60.69 101.18 94.23 181 206 201

WCtmsm -1.80 -9.60 15.39 33 20 26

WCtmtsm 4.16 17.20 15.94 45 75 30
(Continued)
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Table E-l Continued

LN (ratio) Rank

05 -07 06 -07 07 05 -07 06 -07 07

WCtmuq 4.25 16.02 32.33 46 72 59

WCtmtq 62.36 101.89 97.93 187 207 204

WCtmsq 20.50 12.31 17.32 86 62 35

WCtmtsq 53.37 65.65 62.40 163 148 146

WCtmuy 21.67 10.10 47.08 90 51 102

WCtm!l_ 76.79 100.71 73.78 204 205 169

WCsmum 9.77 12.63 34.28 55 63 68
WCsmtm 42.49 70.46 61.43 134 154 145
WCsmsm 21.17 12.90 60.37 88 64 140
WCsmtsm -0.37 5.05 17.04 37 37 34

WCsmuq 30.40 36.64 57.29 98 108 129

WCsmtq 50.43 73.58 65.49 154 158 157

WCsmsq 39.15 35.34 58.34 120 104 133

WCsmtsq 42.14 43.48 40.21 129 122 85

WCsmuy 35.08 40.18 41.71 106 112 90

WCsm!l_ 66.84 78.52 53.18 193 167 119

WCtsmum -17.08 -11.78 -1.57 12 17 4

WCtsmtm 44.44 77.79 75.10 138 164 175

WCtsmsm -4.74 -11.18 26.51 26 18 49

WCtsmtsm -3.78 4.23 11.46 28 35 20

WCtsmuq 1.10 14.89 23.30 40 68 43

WCtsmtq 48.12 80.91 73.06 147 170 168

WCtsmsq 16.81 10.25 17.04 76 54 33

WCtsmtsq 43.26 46.21 47.40 136 127 104

WCtsmuJ: 15.84 11.79 31.37 70 58 56

WCtsm!l_ 67.05 82.94 51.71 194 174 114

WCuqum 17.10 25.78 50.36 78 91 108

WCuqtm 48.65 80.81 73.96 149 169 171

WCuqsm 25.82 24.37 64.17 94 86 152

WCuqtsm 4.98 15.82 9.70 48 71 14

WCuquq 39.32 52.07 72.78 122 133 167

WCuqtq 54.97 82.77 85.38 167 173 186

WCuqsq 44.96 44.33 59.89 139 125 138

WCuq,tsq 45.09 48.44 28.19 141 130 53

WCuquy 45.02 56.53 57.92 140 142 131

WCuq!l_ 69.62 90.89 61.19 199 186 144

WCtqum -24.34 -16.53 -0.16 7 10 6

WCtqtm 51.74 94.96 80.37 157 190 182

WCtqsm -8.99 -15.29 -7.28 19 12 2

WCtqtsm 0.40 15.06 10.93 39 69 17

WCtquq -2.79 5.51 17.89 30 40 36

wCtqtq 55.85 96.18 91.08 169 193 196

WCtqsq_ 13.52 4.35 10.11 65 36 15

WCtqtsq 49.88 59.42 52.68 153 145 118

WCtq_uJ: 14.77 7.61 33.75 67 48 63

WCtq!l_ 72.69 96.91 67.47 202 195 160

WCsqum 16.80 18.97 40.35 75 79 86
(Continued)
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Table E-l Continued

LN (ratio) Rank
05 -07 06 -07 07 05 -07 06-07 07

WCsqtm 50.44 72.65 51.76 155 156 115
WCsqsm 27.99 21.25 58.87 96 81 135
WCsqtsm 7.62 11.02 19.45 52 56 39
WCsquq 38.19 43.45 60.48 116 121 141
WCsqtq 57.62 75.59 68.67 174 162 162
WCsqsq 45.84 41.86 60.60 143 117 142
WCsqtsq 46.94 44.10 25.67 146 124 48
WCsquy 41.13 53.59 51.50 128 136 112
WCsqty 69.57 88.54 55.16 198 184 124
WCtsqum -20.80 -14.97 -6.29 10 13 3
WCtsqtm 48.93 85.23 73.88 151 178 170
WCtsqsm -6.93 -9.85 10.64 23 19 16
WCtsqtsm 2.06 10.12 6.19 41 52 9
WCtsquq 2.08 13.37 19.54 42 66 40
WCtsqtq 54.12 88.17 81.76 165 182 184
WCtsqsq 16.29 11.26 15.94 73 57 31
wCtsqtsq 50.89 55.14 47.82 156 140 106
WCtsquy 14.83 16.17 32.54 68 73 60
WCtsqty 68.95 88.53 63.97 197 183 151
WCuyum 13.94 7.19 31.94 66 44 58
WCuytm 48.72 71.14 69.39 150 155 164
WCuysm 17.11 6.74 45.93 79 42 100
WCuytsm 4.11 -1.31 24.15 44 28 46
WCuyuq 33.41 39.72 54.36 104 III 123
WCuytq 56.45 74.95 79.18 171 160 180
WCuysq 36.29 28.58 51.39 109 95 III
WCuytsq 39.64 40.48 38.83 123 113 83
WCuyuy 42.81 58.77 65.77 135 143 158
WCuyLy 55.64 81.l5 56.06 168 171 126
WCtyum -7.83 -0.87 -14.63 21 29
WCtytm 62.21 89.35 70.31 186 185 165
WCtysm -2.53 -7.34 15.59 31 24 27
WCtytsm 19.36 25.60 8.53 84 90 12
WCtyuq 11.50 22.46 11.61 58 83 21
WCtytq 69.83 91.25 78.31 200 187 178
WCtysq 20.35 21.72 28.49 85 82 54
WCtytsq 52.99 63.19 50.79 162 147 109
WCtyuy 12.19 25.28 26.66 61 88 50
WCtyty 68.89 95.06 65.17 196 191 155
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Appendix F - Hierarchical Forecasting Comparisons (2005 - 2007)

Table F-5 Hierarchical forecasting comparisons in term of the mean rank of MAD and RMSE

MAD RMSE
Mean rank" Ranks Mean rank Rank

TDlum 115.80 122 116.08 124
TDltm 121.82 153 120.45 145
TDlsm 115.49 120 115.57 121
TDltsm 91.06 37 92.17 41
TDluq_ 129.67 197 129.06 192
TDltq_ 127.29 184 125.43 172
TDlsq_ 127.54 187 128.66 190
TDltsq_ 110.91 103 111.33 106
TDluy 123.18 165 120.63 147
TDIIJ!.. 126.89 182 126.70 180
TD2um 103.90 79 105.10 82
TD2tm 1I8.60 137 116.04 123
TD2sm 106.06 88 106.00 86
TD2tsm 84.90 17 85.26 19
TD2uq_ 1I8.15 134 119.38 140
TD2tq_ 122.44 157 120.02 144
TD2sq_ 121.16 148 122.07 151
TD2tsq_ 106.54 89 107.18 92
TD2uy 107.56 91 106.75 90
TD21J!.. 122.07 155 123.27 163

SCumum 103.23 76 104.37 80
SCumtm 126.30 179 126.86 182
SCumsm 103.38 77 104.32 79
SCumtsm 94.06 50 93.83 49
SCumuq_ 110.56 102 112.15 110
SCumtq_ 131.78 203 130.02 196
SCumsq_ 1I2.12 113 112.77 116
SCumtsq_ 110.35 100 110.98 105
SCumuy 108.52 95 107.62 95
SCumlJ!.. 125.39 174 127.15 184
SCtmum 79.34 4 79.21 7
SCtmtm 132.75 205 131.76 204
SCtmsm 79.05 3 78.38 3
SCtmtsm 99.25 60 98.78 60
SCtmuq_ 84.92 18 83.93 17
SCtmtq_ 134.88 215 133.93 213

(Continued)

4 Mean ranks for the forecasting method in terms of MAD or RMSE over the 300 items;
S The ranks of the forecasting method among the 220 hierarchical forecasting methods based on mean
rank.
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Table F-l Continued

MAD RMSE
Mean rank Rank Mean rank Rank

SCtmsq 89.02 26 88.25 26
SCtmtsq 117.59 131 116.14 125
SCtmuy 80.01 7 79.00 4
SCtmty 123.00 163 122.80 159
SCsmum 103.75 78 104.18 78
SCsmtm 125.83 177 127.04 183
SCsmsm 105.99 86 105.15 83
SCsmtsm 96.24 58 94.84 51
SCsmuq 111.58 108 112.32 III
SCsmtq I3l.51 201 131.50 201
SCsmsq 116.25 124 116.02 122
SCsmtsq 111.01 104 112.69 115
SCsmuy 110.06 99 108.08 97
SCsmty 128.55 192 129.57 195
SCtsmum 78.70 2 79.07 5
SCtsmtm 122.57 159 122.53 155
SCtsmsm 81.30 10 81.03 9
SCtsmtsm 90.71 35 89.68 32
SCtsmuq 85.77 19 85.81 20
SCtsmtq 126.96 183 126.63 179
SCtsmsq 91.13 38 91.08 37
SCtsmtsq 107.93 92 107.04 91
SCtsmuy 84.05 15 81.67 II
SCtsmty 116.93 127 118.26 134
SCuqum 109.39 98 110.59 102
SCuqtm 132.75 206 131.52 202
SCuqsm 114.44 118 112.53 113
SCuqtsm 102.80 73 101.32 63
SCuquq 119.76 143 120.96 149
SCuqtq 138.01 217 136.01 216
SCuqsq 123.69 168 123.09 162
SCuqtsq 117.98 133 117.58 130
SCuquy 118.27 135 117.14 128
SCuqty 131.63 202 133.69 211
SCtqum 77.54 I 77.37 I
SCtqtm 133.12 208 130.79 199
SCtqsm 79.70 6 77.67 2
SCtqtsm 101.74 66 99.43 61
SCtquq 84.33 16 83.47 14
SCtqtq 135.63 216 134.85 214
SCtqsq 89.43 29 87.74 22
SCtqtsq 119.58 142 117.27 129
SCtquy 80.97 9 79.15 6
SCtqty 124.58 171 123.88 165

SCsqum 107.33 90 108.57 98
SCsqtm 133.62 210 132.99 209

SCsqsm 112.88 Il5 112.53 114
(Continued)
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Table F-1 Continued

MAD RMSE
Mean rank Rank Mean rank Rank

SCsqtsm 104.64 83 103.05 73
SCsquq 116.70 125 118.37 135
SCsqtq 138.67 219 137.70 219
SCsqsq 122.86 162 123.01 160
SCsqtsq 118.62 138 119.51 142
SCsquy 116.15 123 114.61 118
SCsqty 134.76 213 136.49 217
SCtsqum 80.95 8 81.61 10
SCtsqlm 127.46 186 126.85 181
SCtsqsm 83.85 14 83.74 16
SCtsqtsm 97.88 59 97.24 58
SCtsquq 89.08 27 89.16 29
SCtsqtq 130.95 199 130.51 197
SCtsqsq 94.74 52 93.99 50
SCtsqtsq 115.45 119 114.76 119
SCtsquy 86.63 21 84.21 18
SCtsqty 121.08 146 122.40 153
SCuyum 100.11 62 102.08 67
SCuytm 124.61 In 124.84 169
SCuysm 102.80 n 102.43 68
SCuytsm 95.76 56 95.60 56
SCuyuq 109.14 96 110.29 101
SCuytq 130.53 198 129.33 194
SCuysq H3.66 II7 113.76 117
SCuytsq HO.39 101 109.33 99
SCuyuy 111.50 107 108.07 96
SCuyty 126.36 180 125.92 175
SCtyum 89.50 30 92.56 45
SCtytm 133.56 209 132.70 206
SCtysm 92.13 43 95.40 55
SCtytsm 104.39 82 104.54 81
SCtyuq 95.07 53 98.77 59
SCtytq 138.55 218 136.93 218
SCtysq 103.17 75 106.54 88
SCtytsq 121.12 147 122.66 156
SCtyuy 94.02 49 95.31 54
SCtyty 129.56 196 133.70 212

WCumum 102.82 74 103.28 74
WCumtm ll9.24 141 119.20 139
WCumsm 106.01 87 105.35 84
WCumtsm 89.00 25 88.05 24
WCumuq 111.34 106 112.13 109
WCumtq 123.33 166 121.46 150

WCumsq ll5.71 121 117.05 126

WCumtsq ll7.64 132 117.06 127
(Continued)
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Table F-1 Continued

MAD RMSE
Mean rank Rank Mean rank Rank

WCumuy 104.20 80 103.78 76
WCumty 121.62 150 125.56 173
WCtmum 82.17 II 83.67 15
WCtmtm 131.87 204 130.88 200
WCtmsm 87.41 22 87.93 23
WCtmtsm 93.85 46 92.41 44
WCtmuq 91.31 40 91.99 39
WCtmtq 134.12 211 132.75 207
WCtmsq 100.33 63 101.88 65
WCtmtsq 125.66 176 124.17 167
WCtmuy 90.21 34 89.57 31
WCtmty 128.24 191 131.91 205
WCsmum 102.63 70 102.91 72
WCsmtm 117.13 129 117.83 132
WCsmsm 108.46 94 107.19 93
WCsmtsm 91.18 39 90.77 36
WCsmuq 112.15 114 112.41 112

WCsmtq 122.68 160 122.51 154

WCsmsq 118.46 136 119.13 138
WCsmtsq 1I8.72 139 118.17 133
WCsmuy 104.32 81 102.64 70
WCsmty 122.26 156 125.60 174
WCtsmum 82.52 12 82.93 l3

WCtsmtm 123.43 167 122.74 158

WCtsmsm 90.72 36 89.77 33

WCtsmtsm 91.71 41 89.98 34
WCtsmuq 91.99 42 92.32 42

WCtsmtq 127.58 188 126.28 176

WCtsmsq 102.00 67 102.81 71

WCtsmtsq 121.66 152 120.82 148

WCtsmuy 89.65 31 88.17 25

WCtsmty 122.06 154 126.44 178

WCuqum 105.88 85 106.73 89
WCuqtm 120.26 145 120.48 146
WCuqsm II 1.59 109 110.93 104
WCuqlsm 93.12 44 92.39 43
WCuquq 119.00 140 119.46 141

WCuqlq 126.67 181 124.73 168

WCuqsq 122.85 161 123.41 164

WCuqtsq 120.02 144 119.87 143

WCuquy II2.07 112 109.72 100

WCuqty 124.83 173 127.98 188

WCtqum 79.64 5 79.73 8

WCtqlm l3l.l0 200 129.16 193

WCtqsm 85.78 20 85.88 21

WCtqlsm 94.68 51 93.20 46

wCtquq 90.18 33 91.14 38
(Continued)
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Table F-1 Continued

MAD RMSE

Mean rank Rank Mean rank Rank

wCtqtq 134.44 212 132.94 208

wCtqsq 99.61 61 100.72 62

wCtqtsq 126.21 178 124.87 170

wCtquy 88.52 23 88.56 28

WCtqty 128.23 190 131.76 203

WCsqum 104.78 84 105.90 85

WCsqtm 122.46 158 123.01 161

WCsqsm 111.93 111 111.79 108

WCsqtsm 96.15 57 95.20 52

WCsquq 117.07 128 117.83 131

WCsqtq 128.71 194 127.64 187

WCsqsq 123.13 164 123.95 166

WCsqtsq 121.64 151 122.10 152

WCsquy 108.23 93 106.18 87

WCsqty 124.17 170 127.39 185

WCtsqum 83.39 13 82.83 12

WCtsqtm 128.61 193 126.43 177

WCtsqsm 88.55 24 88.28 27

WCtsqtsm 95.13 54 93.79 48

wCtsquq 93.99 48 93.71 47

wCtsqtq 132.83 207 130.63 198

wCtsqsq 102.76 71 103.36 75

WCtsqtsq 125.43 175 124.99 171

WCtsquy 90.10 32 89.26 30

WCtsqty 124.03 169 128.21 189

WCuyum 101.61 65 101.98 66

WCuytm 121.23 149 122.73 157

WCuysm 102.41 68 101.87 64

WCuytsm 89.11 28 90.40 35

WCuyuq 111.79 110 111.43 107

WCuytq 127.78 189 127.52 186

WCuysq 113.30 116 114.89 120

WCuytsq 117.35 130 11S.67 137

WCuyuy 111.14 105 107.31 94

WCuyty 116.75 126 11S.52 136

WCtyum 93.90 47 95.21 53

WCtytm 134.S2 214 135.83 215

WCtysm 95.34 55 95.90 57

WCtytsm 100.36 64 102.59 69

WCtyuq 102.61 69 103.S4 77

WCtytq 141.19 220 140.98 220

WCtysq 109.1S 97 110.67 103

WCtytsq 127.35 185 12S.90 191

WCtyuy 93.39 45 92.15 40

WCtyty 129.03 195 133.01 210
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Appendix G - Hierarchical Forecasting Simulation Results Comparisons (200S - 2007)

Table G-6 Hierarchical forecasting simulation results

MAD RMSE Total invento!}: costs
Mean Rank'

Mean
Rank7 Costs HF-umR Rank7 LN

Rank '
rank" rank" (HFlfsm)9

TD/um 115.80 122 116.08 124 WI,297,371,653 W518,429,400 205 96.84 214
TD/tm 121.82 153 120.45 145 WI ,284,977,980 W506,035,727 199 21.84 64
TD/sm 115.49 120 115.57 121 WI,498,622,344 W719,680,09I 218 107.39 218
TD/tsm 91.06 37 92.17 41 WI,201,187,680 W422,245,427 191 6.04 30
TD/'!!J. 129.67 197 129.06 192 WI,289,275,626 W51O,333,373 201 126.76 219
TDltq_ 127.29 184 125.43 172 WI,216,999,330 W438,057,077 195 19.56 57
TD/sq_ 127.54 187 128.66 190 WI,818,557,369 WI.039,615,1I6 220 129.25 220
TD/tsq_ 110.91 103 111.33 106 WI,598,703,780 W819,761,527 219 23.86 71
TD/uf_ 123.18 165 120.63 147 WI,276,903,532 W497,961,279 198 103.50 217
TD/~ 126.89 182 126.70 180 WI,I64,660,122 W385,717,869 175 42.59 121
TD2um 103.90 79 105.10 82 W771,715,898 -W7,226,355 29 53.54 142
TD2tm 118.60 137 116.04 123 W854,063,515 W75,121,262 109 -0.98 19
TD2sm 106.06 88 106.00 86 W912,760,261 WI33,818,OO8 137 61.51 156
TD2tsm 84.90 17 85.26 19 W770,753,404 -W8, 188,848 27 -25.38
TD2'!!J. 118.15 134 119.38 140 W787,978,172 W9,035,919 52 78.55 189
TD2tq_ 122.44 157 120.02 144 W799,522,960 W20,580,707 65 -3.67 16
TD2sq_ 121.16 148 122.07 151 WI,123,507,820 W344,565,567 170 83.34 202
TD2tsq_ 106.54 89 107.18 92 WI,050,381,845 W271,439,592 163 2.15 23
TD2uf_ 107.56 91 106.75 90 W774,645,225 -W4,297,028 33 55.99 150
TD2~ 122.07 155 123.27 163 W786,891 ,652 W7,949,399 49 16.76 48

SCumum 103.23 76 104.37 80 W780,85I ,097 WI,908,844 39 54.29 145
SCumtm 126.30 179 126.86 182 WI ,205,874,413 W426,932,161 192 72.75 179
SCumsm 103.38 77 104.32 79 W841,595,350 W62,653,097 100 64.10 160
SCumtsm 94.06 50 93.83 49 W863,951,076 W85,OO8,823 116 32.10 94
SCum'!!J. 110.56 102 112.15 110 W811,323,226 W32,380,973 78 69.83 174
SCumtq_ 131.78 203 130.02 196 WI, 156,796,378 W377,854,125 173 84.34 206
SCumsq_ 112.12 113 112.77 116 W904,806,802 W 125,864,549 133 72.12 177
SCumtsq_ 110.35 100 110.98 105 W943,474,150 WI64,53I,897 150 53.93 144
SCumuf_ 108.52 95 107.62 95 WI,16I,312,366 W382,370,1I4 174 82.48 200
SCum~ 125.39 174 127.15 184 WI,289,852,844 W51O,91O,591 202 84.29 204
SCtmum 79.34 4 79.21 7 W726,OO2,802 -W52,939,451 7 -18.42 3
SCtmtm 132.75 205 131.76 204 W820, 724, 706 W41,782,454 85 22.73 67

(Continued)

6 Mean ranks for the forecasting method in terms of MAD or RMSE over the 300 items;

7 The rank of the forecasting method among the 220 hierarchical forecasting methods in terms of the

criterion in the left column;
8 The total inventory costs of each hierarchical forecasting method deducted by the total inventory costs of

um; and
9 The sum of natural log relative error [In(errorHF/error,sm)) for the total inventory costs of each

forecasting method over the 300 items.
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Table 0-1 Continued

MAD RMSE

HF-um

Total inventory costs

RankMean
rank

Rank
Mean
rank

Rank Costs
LN

(HFltsm)
Rank

SCtmsm
6

79.05 3 78.38 3 W730,726,074 -W48,216,179 10 -11.79 8

SCtmuq 17
SCtmtsm 99.25 60 98.78 60 W803,679,850 W24,737,597 72 -13.54

SCtmlq 69
84.92 18 83.93 17 W740,191,882 -W38,750,371 12 -2.66

134.88 215 133.93 213 W839,930,034 W60,987,782 98 23.00

SCtmsq 89.02 26 88.25 26 W795,862,0I8 WI6,919,765 59 6.00 29

SCtmtsq 117.59 131 116.14 125 W872,434,952 W93,492,699 122 15.65 46

SCtmty 108
SCtmuy 80.01 7 79.00 4 WI,027,042,295 W248, I00,042 161 4.59 26

123.00 163 122.80 159 Wl,079,385,032 W300,442,779 167 35.78

SCsmum 103.75 78 104.18 78 W828,519,I64 W49,576,911 91 56.05 151

SCsmlm 125.83 177 127.04 183 WI,207,929,635 W428,987,383 193 74.11 183

93
SCsmsm 105.99 86 105.15 83 W885,115,763 WI06,173,51O 126 64.18 161

SCsmtsm 96.24 58 94.84 51 W872,1I6,714 W93,I74,461 121 31.72

SCsmtq 203
SCsmuq 111.58 108 112.32 III W858,I07,344 W79,I65,091 III 69.39 171

131.51 201 131.50 201 WI, I86,685,985 W407, 743, 732 189 83.48

SCsmsq 116.25 124 116.02 122 W929,966,505 WI51,024,252 146 72.21 178

SCsmtsq 111.01 104 112.69 115 W962,553,907 WI83,611,654 154 52.82 140

SCsmty 198
SCsmuy 110.06 99 108.08 97 WI,211,488,999 W432,546,746 194 81.98 199

128.55 192 129.57 195 WI,319,877,599 W540,935,347 210 81.98

SCtsmum 78.70 2 79.07 5 W730,245,647 -W48,696,606 9 1.29 21

SCtsmtm 122.57 159 122.53 155 W9OI,933,968 W122,99I,715 132 29.77 90

II
SCtsmsm 81.30 10 81.03 9 W748,440,413 -W30,50 I,840 16 9.99 33

SCtsmtsm 90.71 35 89.68 32 W780,007,802 WI,065,549 37 -8.28

SCtsmtq 109
SCtsmuq 85.77 19 85.81 20 W748,I93,308 -W30,748,944 15 14.62 41

126.96 183 126.63 179 W909,257,343 WI30,3I5,09I 134 36.26

sCtsmsq 91.13 38 91.08 37 W81l,127,257 W32,185,005 77 20.95 62

SCtsmtsq 107.93 92 107.04 91 W853,436,369 W74,494,1I6 108 11.87 36

SCtsmty 117
SCtsmuy 84.05 15 81.67 II WI,059,065,064 W280,122,811 165 26.55 79

116.93 127 118.26 134 WI,097,099,01O W318,I56,757 168 40.72

SCuqtm 207
SCuqum 109.39 98 110.59 102 W791,577,425 WI2,635,172 57 68.86 170

132.75 206 131.52 202 WI,226,847,655 W447,905,402 196 87.30

SCuqsm 114.44 118 112.53 113 W851,688,467 W72,746,214 106 75.14 185

SCuqtsm 102.80 73 101.32 63 W878,725,716 W99,783,463 123 41.34 118

SCuqtq 215
SCuquq 119.76 143 120.96 149 W819,859,183 W40,916,930 84 80.14 195

138.01 217 136.01 216 WI, I72,274,765 W393,332,512 180 97.91

SCuqsq 123.69 168 123.09 162 W915,212,040 W 136,269,788 139 82.62 201

SCuqtsq 117.98 133 117.58 130 W956,899,709 WI 77,957,456 152 65.65 165

SCuqty 212
SCuquy 118.27 135 117.14 128 WI, I82,430,883 W403,488,630 188 92.95 211

131.63 202 133.69 211 WI,296,394,155 W5I7,451,902 204 95.24

SCtqum 77.54 77.37 I W693,6OI,747 -W85,340,505 -24.64 2

SCtqtm 133.12 208 130.79 199 W798,643,689 W19,701,436 64 17.18 51

4
SCtqsm 79.70 6 77.67 2 W702,2I 9,843 -W76,722,409 3 -16.08 5

SCtquq 10
SCtqtsm 101.74 66 99.43 61 W773,325,925 -W5,616,328 30 -17.04

84.33 16 83.47 14 W706,669,26I -W72,272,992 4 -9.04

sCtqlq
20SCtqsq

135.63
89.43

216 134.85 214 W814,055,960
22 W77I,252,823

W35,113,707
-W7,689,430

80 15.84 47

SCtqlsq 119.58

29 87.74
129 W846, 733, 720 W67,791,467 102

28 0.96
12.25 37

(Continued)
sCtquy 80.97

142 117.27
6 W991,497,949 W212,555,696 158 -1.14 189 79.15
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Table G-l Continued

MAD RMSE

HF-um

Total inventory costs

RankMean
rank

Rank
Mean
rank

Rank Costs
LN

(HFltsm)
Rank

SCtqty
163

124.58 171 123.88 165 WI,053,941,420 W274,999,167 164 32.13 95

SCsqum 107.33 90 108.57 98 W940,265.1O I WI61,322,848 148 65.46

SCsqtm 133.62 210 132.99 209 W 1.3 17,188.854 W538,246,601 209 88.00 209

120
SCsqsm 112.88 115 112.53 114 W942.413.391 WI63,471,138 149 71.57 176

SCsqtsm 104.64 83 103.05 73 W932,183.368 W153,241.115 147 42.29

SCsqtq 216
SCsquq 116.70 125 118.37 135 W962.029.570 WI83,087.317 153 76.17 187

138.67 219 137.70 219 W 1.285,423.294 W506,481,042 200 98.18

SCsqsq 122.86 162 123.01 160 W980.153.669 W201,211,416 157 80.00 194

SCsqtsq 118.62 138 119.51 142 W 1.050,00 1.366 W271 ,059, 113 162 68.35 168

SCsqty 213
SCsquy 116.15 123 114.61 118 WI.327,825.555 W548,883,302 211 90.29 210

134.76 213 136.49 217 WI.432.940.798 W653,998,545 217 96.81

SCtsqum 80.95 8 81.61 10 W833.085.383 W54, 143, 131 92 -3.90 15

SCtsqtm 127.46 186 126.85 181 W91O.049.252 W13I,106,999 135 29.63 89

12
SCtsqsm 83.85 14 83.74 16 W786.260.960 W7,318,707 47 4.41 25

SCtsqtsm 97.88 59 97.24 58 W819,406.914 W40,464,66I 82 -7.31

SCtsqtq 87
SCtsquq 89.08 27 89.16 29 W848,480.754 W69,538,502 104 9.71 32

130.95 199 130.51 197 W928.240.757 WI 49,298,504 145 29.27

SCtsqsq 94.74 52 93.99 50 W839.873.763 W60,931,510 97 17.87 54

SCtsqtsq 115.45 119 114.76 119 W913.666.873 W 134,724,621 138 17.41 52

SCtsqty 114
SCtsquy 86.63 21 84.21 18 WI.I43.739.608 W364,797,355 172 17.70 53

121.08 146 122.40 153 W 1.189.443.687 W410,501,434 190 39.51

SCuyum 100.11 62 102.08 67 W763,061,418 -W 15,880,835 23 53.57 143

SCuytm 124.61 172 124.84 169 WI.I78,317.100 W399,374,847 184 65.70 166

88
SCuysm 102.80 72 102.43 68 W798,553.013 WI9,61O,760 63 55.61 149

SCuytsm 95.76 56 95.60 56 W850.360.325 W71,418,072 105 29.62

SCuytq 184
SCuyuq 109.14 96 110.29 101 W781.629.520 W2,687.267 42 63.30 159

130.53 198 129.33 194 WI,101,853.761 W322,911.509 169 74.37

SCuysq 113.66 117 113.76 117 W864,855,028 W85,912,775 117 65.94 167

SCuytsq 110.39 101 109.33 99 W920,408,032 WI41,465,780 141 44.27 126

SCuyfy 182
SCuyuy 111.50 107 108.07 96 WI.060,238,351 W281,296,098 166 78.75 190

126.36 180 125.92 175 W 1.178.892, I I3 W399,949,860 185 73.44

SCtyum 89.50 30 92.56 45 W702,216,842 -W76,725,411 2 13.53 39

SCtytm 133.56 209 132.70 206 W794,344.92I W15,402,668 58 38.56 III

SCtysm 92.13 43 95.40 55 W715,748,865 -W63,193,388 6 19.80 58

SCtytsm 104.39 82 104.54 81 W762,744,963 -W 16,197,290 22 4.32 24

SCtytq
SCtyuq 95.07 53 98.77 59 W714.672.940 -W64,269,313 5 22.51 65

42.26 119138.55 218 136.93 218 W801.943.719 W23,001,466 68

SCtysq 103.17 75 106.54 88 W784,043,581 W5,101,328 45 30.80 92

SCtytsq 121.12 147 122.66 156 W823.139,479 W44,197.226 88 24.85 74
38.75 112

SCtyty
SCtyuy 94.02 49 95.31 54 W993.229.897 W214,287,644 159

129.56 196 133.70 212 WI.OO7.623,544 W228,681,291 160
36

45.04 128

WCumum 102.82 74 103.28 74 W779.073.203 W130.950
32 21.56 63

52.41 138

WCumtm 119.24 141 119.20 139 W773.869.906 -W5,072,347

WCumsm 106.01 87 105.35 84 W840.466,528 W61,524.275
18 10.45 34

65.17 16299

WCumtsm 89.00 25 88.05 24 W758.279,736 -W20,662,517

WCumtq
WCumuq II1.34 106 112.13 109 W807.528,276 W28,586,024 69.76 17374

123.33 166 121.46 150 W76I.152,212 -WI7,790,041 26.52 7820
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Table G-l Continued

MAD RMSE

HF-um

Total inventory costs

RankMean
rank

Rank
Mean
rank

Rank Costs
LN

(HFltsm)
Rank

WCumsq
91

115.71 121 117.05 126 W886,940,427 WI07.998.175 128 72.89 180

WCumtsq 117.64 132 117.06 127 W861,553,487 W82,611.234 114 30.75

WCumty 147
WCumuy 104.20 80 103.78 76 WI,337.962.681 W559.020,428 214 81.93 197

121.62 150 125.56 173 WI,169,793.269 W390,851.016 177 55.60

WCtmum 82.17 II 83.67 15 W756,997.140 -W21.945.113 17 14.70 42

WCtmtm 131.87 204 130.88 200 W817,146.107 W38.203.855 81 24.40 72

13
WCtmsm 87.41 22 87.93 23 W826,137.247 W47.194.994 90 34.74 104

WCtmtsm 93.85 46 92.41 44 W796,912,497 WI7,970.244 60 -6.91

WCtmtq 70
WCtmuq 91.31 40 91.99 39 W785,064.652 W6.122.399 46 32.65 98

134.12 211 132.75 207 W824,868,592 W45,926.339 89 23.24

WCtmsq 100.33 63 101.88 65 W885,426.849 WI06.484,597 127 47.50 129

WCtmtsq 125.66 176 124.17 167 W925,407.367 WI46,465.115 144 27.36 84

WCtmty 136
WCtmuy 90.21 34 89.57 31 WI ,309,566.180 W530,623,927 208 55.30 146

128.24 191 131.91 205 WI,173,789.234 W394,846.98I 181 51.82

WCsmum 102.63 70 102.91 72 W802,080.605 W23.138.352 69 53.38 141

WCsmtm 117.13 129 117.83 132 W799,863.630 W20,921,377 66 26.78 80

38
WCsmsm 108.46 94 107.19 93 W881,604.720 WI02,662.467 124 65.52 164

WCsmuq 175
WCsmtsm 91.18 39 90.77 36 W790.889.818 WII,947.565 56 12.92

WCsmtq 97
112.15 114 112.41 112 W835,22L735 W56,279,482 94 69.96

122.68 160 122.51 154 W790,576.879 W II ,634,626 55 32.64

WCsmsq 118.46 136 119.13 138 W924,376.969 WI45,434,716 143 73.16 181

WCsmtsq 118.72 139 118.17 133 W893,890,407 WI14,948,154 129 33.06 100

WCsmty 148
WCsmuy 104.32 81 102.64 70 WI,335,436,872 W556,494,619 213 79.53 192

122.26 156 125.60 174 WU76.265.315 W397,323.062 183 55.60

WCtsmum 82.52 12 82.93 13 W747,740,81O -W31,201,442 14 15.07 45

WCtsmtm 123.43 167 122.74 158 W804.133.818 W25, 191,565 73 16.86 50

14
WCtsmsm 90.72 36 89.77 33 W822,160,863 W43,218,61O 87 35.77 107

WCtsmtsm 91.71 41 89.98 34 W787,884,582 W8,942,330 51 -6.33

WCtsmtq 55
WCtsmuq 91.99 42 92.32 42 W776,019,061 -W2,923,192 34 33.28 101

127.58 188 126.28 176 W802,739.066 W23,796,814 71 18.28

WCtsmsq 102.00 67 102.81 71 W869,166,363 W90,224, II 0 119 44.94 127

WCtsmtsq 121.66 152 120.82 148 W901,298,819 W 122,356,566 131 22.63 66

WCtsmty 134
WCtsmuy 89.65

122.06
31 88.17 25 WI,304,531,909

178 WI,I72,030,145
W525,589,656
W393,087,892

206
179

52.01
48.62

137

WCuqtm
WCuqum 105.88

154 126.44
89 W781,156,444 W2,214,191 59.65 15541

120.26

85 106.73
146 W778,328,564 -W613.689 35 28.18 86

WCuqsm 111.59
145 120.48

104 W844,150,886 W65,208.633 101 69.53 172

WCuqtsm 93.12
109 110.93

43 W761,937,401 -WI7,004,852
79

14.99 4421

WCuqtq
WCuquq 119.00

44 92.39
141 W812,202,332 W33,260,079 78.30 188

126.67
140 119.46

168 W765.910,726 -W 13,031 ,526 33.72 10325

WCuqsq 122.85
181 124.73

164 W896,428,526 WI17,486,273 130 78.96 191

WCuqtsq 120.02

161 123.41
143 W867.243.218 W88,300.965 118 34.77 105

WCuqty
WCuquy 112.07

144 119.87
100 WL344,361,608 W565,419,355 215 87.31 208

124.83

112 109.72
188 WI.171.479,891 W392,537,639 178

8
59.52 154

WOqum 79.64

173 127.98
8 W728.256.615 -W50,685,638 5.29 27

WOqtm 131.10

5 79.73
193 W798,23I ,792 WI9,289,539 14.73 4362

(Continued)
WCtqsm 85.78

200 129.16
21 W802,284,947 W23,342.694 70 25.85 7620 85.88
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Table G-I Continued

MAD RMSE
HF-um

Total inventory costs

RankMean
rank

Rank Mean
rank

Rank Costs
LN

(HFltsm)
Rank

WCtquq 73
WCtqtsm 94.68 51 93.20 46 W782,633,097 W3,690.845 43 -12.68 7

wCtqtq 40
90.18 33 91.14 38 W759,015.207 -WI9,927.046 19 24.45

134.44 212 132.94 208 W808,126.980 W29, 184.728 75 14.46

WCtqsq 99.61 61 100.72 62 W863,562,880 W84.620.627 115 38.90 113

WCtqtsq 126.21 178 124.87 170 W912,739,321 WI33.797.068 136 22.85 68

WCtqty 133
wCtquy 88.52 23 88.56 28 WI,293,165,408 W514.223.156 203 47.76 132

128.23 190 131.76 203 WI,169,187,203 W390.244.95I 176 48.48

WCsqum 104.78 84 105.90 85 W848.298,802 W69.356.550 103 59.10 152

WCsqtm 122.46 158 123.01 161 W860,676,055 W81,733.802 113 37.20 110

60
WCsqsm 111.93 III 111.79 108 W921,403,054 WI42,460.801 142 68.40 169

WCsqtsm 96.15 57 95.20 52 W836.659,068 W57.716.816 95 20.32

WCsqtq 123
WCsquq 117.07 128 117.83 131 W884,685,348 WI05,743.096 125 76.01 186

128.71 194 127.64 187 W852,106,918 W73.164.665 107 43.44

WCsqsq 123.13 164 123.95 166 W977.070,648 WI98,128.395 156 79.85 193

WCsqtsq 121.64 151 122.10 152 W949,170.448 W 170.228. 195 151 39.59 lIS

WCsqty 153
WCsquy 108.23 93 106.18 87 WI,355,332,352 W576.390,099 216 81.92 196

124.17 170 127.39 185 WI,181,394,664 W402.452.412 186 59.13

WCtsqum 83.39 13 82.83 12 W783,713,973 W4.771,720 44 9.08 31

WCtsqtm 128.61 193 126.43 177 W859,385,696 W80,443.443 112 19.00 56

9
WCtsqsm 88.55 24 88.28 27 W854,524,732 W75.582.479 110 28.15 85

WCtsqtsm 95.13 54 93.79 48 W836,978.887 W58.036,634 96 -9.39

WCtsqtq 59
WCtsquq 93.99 48 93.71 47 W819,425,092 W40,482,839 83 26.93 82

132.83 207 130.63 198 W870,907,524 W91.965.27I 120 20.01

wCtsqsq 102.76 71 103.36 75 W916,446,088 WI37.503.835 140 40.69 116

WCtsqtsq 125.43 175 124.99 171 W972,1I7,307 W 193.175.054 155 25.46 75

wCtsqty 130
WCtsquy 90.10 32 89.26 30 WI,306.456,688 W527,514.435 207 43.81 124

124.03 169 128.21 189 WI,174,526,160 W395,583.907 182 47.57

WCuyum 101.61 65 101.98 66 W767,420,877 -WII,521,375 26 49.85 135

WCuytm 121.23 149 122.73 157 W787,477,282 W8,535,029 50 26.89 81

35
WCuysm 102.41 68 101.87 64 W773,371,356 -W5,570,897 31 52.50 139

WCuytsm 89.11 28 90.40 35 W745, 773,185 -W33,169.068 13 11.02

WCuytq 102
WCuyuq 111.79 110 111.43 107 W789,760,473 WI0,818,220 54 62.66 158

127.78 189 127.52 186 W781,151,346 W2,209.093 40 33.40

WCuysq 113.30 116 114.89 120 W800,631,743 W21,689.490 67 61.93 157

WCuytsq 117.35 130 118.67 137 W786,519,567 W7,577.314 48 26.18 77

WCuyty 122
WCuyuy 111.14 105 107.31 94 WI,333,774,117 W554.831.865 212 84.30 205

116.75 126 118.52 136 WI,126.777,335 W347,835,082 171 42.61

WCtyum 93.90 47 95.21 53 W739,345,856 -W39,596.397 II 5.38 28

WCtytm 134.82 214 135.83 215 W809,566,242 W30,623.989 76 35.00 106

22
WCtysm 95.34 55 95.90 57 W780.231,795 W1.289.543 38 16.78 49

WCtytsm 100.36 64 102.59 69 W789,731,749 WI0,789,497 53 1.95

WCtytq 125
WCtyuq 102.61 69 103.84 77 W764.988.840 -W 13,953.412 24 20.66 61

141.19 220 140.98 220 W820,906.630 W41,964.377 86 43.89

WCtysq 109.18 97 110.67 103 W797,394.222 WI8,451.969 61 32.63 96

WCtytsq 127.35 185 128.90 191 W834,727,752 W55.785.499 93 27.07 83

wCtyty 131
WCtyuy 93.39

129.03
45 92.15 40 WI ,270,529,795

210 WI,182,294,273

W491,587.542
W403.352.021

197
187

32.98
47.72

99

195 133.01
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