
AN ERROR RECOVERY SCHE"iE

l''OR

CONCURRENT PROCESSES

by

Lindsay Forsyth Marshall

Ph . D. Thesis

~omputing Laboratory

Universi t y of Newcast l e upon Tyne

August 1980

AN ERROR RECOVERY SCHEME

FOR

CONCURRENT PROCESSES

Lindsay Forsyth Marshall

Ph.D. Thesis

University of Newcastle upon Tyne, August 1980

Abstract

With the more widespread use of multi- processors and distributed

comput ing systems , progranmers need a simple , reliable interface to

them. This thesis describes language constructs, and mechanisr~s for

their support, that can be used in the implementation of

fault-tolerant concurrent processes. 'i'he basic language structure is

the Atomic Action, supported by a modified recovery cache mechanism .

This combines the collection of recovery data with the lockinR of

resources and allows recovery blocks to be integrated with Ator~ic

Actions. Synchronisation between actions is discussed, as well as a

means of detecting and breaking deadlocks , based on the use of a

"blocking graph".

Reliable connunication and cooperation between actions is

considered, and several constructs are investigated. The linitations

of Shared Atonic Actions are identified , and , further, the use of a

form of reliable "secretary" is shown to lead to unncccessnry

recovery activity . These problems are resul.ved by structures based

on a classification of resources by the way they are used in

prograns.

Also contained in the thesis are descriptions of trial

inpler:1entations of some of the mechanisns described , and a discussion

of existing concurrent programning techniques.

Aknotvledgemen ts

I would like to thank ny supervisor Pr ofessor B. Randell for

his help anrl encouragenent . His criticisms of my work and his

suggest ions for sources of information have been invaluable in

shaping this thesis.

l!y thanks are also due to the research staff at the Cooputing

Laborato r y at the University of !~ewcastle upon Tyne, especially Drs.

T. Anderson , S.K. Shrivastava and P. Treleaven , with whom I had

many fruitful discussions .

Finally, I !'JUSt thank Hiss C. J. Snith \vho t yped this thesis,

and the British Ship Research Association who have l~ind ly alloHed me

to use their facilities for its production .

The work desc ribed in this thesis 1vas supported by a grant fr01:1

the Science Research Council of Great Rritain .

Contents

1. Introduction

1.1
.... 2
1. 2.1
1. 2. 2
1. 2. 3
1. 2. 4
1.3

Objectives
Definition of basic concepts
Atomicity
Resources
Commitment
Cooperation
Summary of thesis

2. Schemes for control and recovery of concurrent activities

2.1
2.1.1
2.1.2
2. 1.3
2.1. 4
2. 2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.3
2.3.1
2.3.2
2.3.3
2. 3.4
2.3.5
2.3.6

Locking
Classes of locking
Granularity of locking
Modes of locking
Requirements of programmers
Existing systems for controlling concurrency
Semaphores
Path expressions
Regions
Monitors
Atomic Actions
Communicating processes
Summary
Recovery schemes for concurrent processes
Sequential programs
Database systems
Ports
Deadlines and safe programming
Distributed systems
Spheres of Control
Conclusion - the programmer interface

3. Uncooperative Processes

3.1
3.2
3.3
3.4
3.5

3.6
3. 6.1
3.6.2
3.7
3.7.1
3.7.2
3.7.3

Introduction
Multi-level systems
Specification of uncooperative processes
Recovery blocks and the recovery cache
A recovery cache scheme to support uncooperative
processes
Rules for providing X and SR locks
Non-Preemptive Systems
Preemptive System
Deadlocks
Deadlock prevention and avoidance
Deadlock detection for recoverable atomic action
Deadlock recovery management

1
3
3
4
5
6
7

10
11
14
15
19
22
23
26
28
31
33
35
38
38
40
42
44
49
52
54
56

5!:1
5!:1
60
62
66

73
73
75
77
77
80
83

3.7.4

3.8
3.8.1
3.8.2
3.9

3.9.1
3.9.2
3.9.2.1
3.9.2.2
3.9.2.3
3.10

3.11

A possible infinite loop in the deadlock recovery
mechanism
Synchronisation with external events
The AWAIT statement
Evaluation of synchronisation conditions
Implementation of a system supporting uncooperative
processes
General considerations
Implementation of a test system
The language interface
Interpreter structure
Experience with the system
Efficiency of systems supporting
actions
Conclusion

recoverable atomic

4. Closely Cooperative Processes

4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.4
4.5
4.6

Introduction
Specification of shared atomic actions
Sub-processes and co-existing processes
Access to shared resources within shared actions
Implementation
General considerations
Actual implementation
The Dining Philosophers' problem
Efficiency
Conclusion

5. Cooperative Processes

5.1
5.2
5.3
5.3.1
~.3.2

5.3.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.5.1
5.5.2
5.5.3
~-~-4
5.5.5
5.6

Introduction
Programmer's Interface
The MARSHAL
General description
Special cache mechanism for MARSHAL's
Conclusions regarding MARSHAL's
Resources and their use
Classification of resources based on their usage
Specification of Resource Acquisition and Release
Reusable resources - the Dining Philosophers' problem
Limits on the use of Resources
Pools and Sequences
Structures for manipulating consumable resources
Implementation of pools and sequences
A test system
Additional features for POOL's and SEQUENCE's
Mutually suspicious processes
Conclusion

87

90
90
92
94

94
98
99

102
109
111

116

119
123
123
128
130
130
133
134
138
140

142
143
14~

145
149
156
158
158
163
165
167
16~

168
1/0
173
178
179
182

6. Conclusion

6.1
6.2
6.2.1
6.2.2
6.2.3

The work presented
Directions for future research
Implementation
Systems without interrupts
A base for software testing and development

References

184
1!:!9
lYO
192
193

lY.J

1.0 Introduction

1.1 Objectives

With the rising cost of software development and the increasing

use of distributed processing (especially the advent of cheap

multi-microprocessors) there is considerable pressure to make

concurrent programming techniques more reliable and more accessible

to the average computer user. The problems involved in concurrent

programming are well understood, but the design of language

interfaces and the mechanisms to support them has lagged behind the

theoretical work in this field. The interface usually provided to

the programmer consists of a set of library procedures, calls on

which allow him to spawn tasks and share the use of resources with

these tasks. An example of this kind of interface is that provided

on the UNIX system which is described in (Rit 78). However, as the

structured programming techniques advocated by Dahl, Dijkstra and

Hoare (Dah 72) become more widely used there is a need for parallel

programming facilities to become a more integral .Part of programming

languages (for example see the "STEELMAN" language requirements (DoD

78)). The result of this has been the development of languages like

concurrent PASCAL (BrH 75) and MODULA (Wir 77), both specifically

designed to provide a simple, structured means of specifying

concurrent programs. Unfortunately, though the process structuring

primitives provided by these languages are excellent, their

facilities for controlling the use of shared resources and for error

detection and recovery are severely limited. It is the aim of this

PAGE 2

thesis to show how to support a simple language interface, permitting

controlled access to all types of shared resources and providing

comprehensive error recovery facilities.

Existing work in this field has tended to fall into one of two

areas - either concerned with the fairly simple interactions between

processes at the lowest levels of operating systems or with the

highly complex interactions occuring in data base systems. The

tormer area has produced several language structures for resource

control some of which will be discussed in chapter two, but in

general the question of recovery from errors when shared resources

are being used has not been addressed. Almost the reverse is true of

the latter area where the development of language interfaces has been

secondary to that of mechanisms to ensure the integrity of data bases

and of sophisticated locking schemes to make access to data more

efficient. There is obviously a need, . therefore to bring together

ideas from the two fields so that a more general purpose set of

tacilities can be built up. This thesis attempts to show one way of

acheiving this synthesis by combining the main features of these two

areas into a system that provides the user with the ability to '~rite

FAULT-TOLERANT software.

A fault-tolerant program is one which will produce acceptable

results even when it has passed through erroneous states during its

execution. It will normally contain code that is designed to cope

with these incorrect states by attempting to ensure that errors are

not propagated to later stag~s of execution. Where programs may

PAGE 3

interact through the use of shared resources or by direct

communication it is often very difficult for the programmer to know

the extent of the damage caused by a fault and in these cases the

underlying system must play a large part in the collection and

maintenance of recovery information. The main part of the work below

is a description of a mechanism , based on the Recovery Cache (Ran

7)) (see section 3.4) , which allows this to be done very simply and

which gives the user control over the way in which error recovery

takes place. Ho~~ever before embarking on this description we must

aefine some fundamental concepts which are used throughout this

thesis.

1.2 Definition~ basic concepts

1.2.1 Atomicity-

An activity will be described as ATO~fiC if the operation that it

performs appears to be indivisible and does not interfere with any

other concurrently executing activity. Dijkstra (Dij 72) and Brinch

Hansen (BrH 75) have categorised such operations as being ~lliTUALLY

EXCLUSIVE, however we shall use this term to describe only the subset

of atomic operations which do not allow the possibility of several

activities performing them concurrently. An example of an operation

which is not mutually exclusive is the reading of a variable without

modifying its value, which can be carried out safely by any number of

processes. Brinch Hansen has said that without mutually exclusive

PAGE 4

operations discussion of concurrent computation would be meaningless,

and Lipton (Lip 75) has shown the desirability of atomic operations

in that their presence simplifies the task of proving parallel

programs. Eswaran et al (Esw 76) use the notion of atomicity to

define a TRANSACTION which is a sequence of atomic operations grouped

together forming a unit of consistency. That is, the system state

will be consistent before and after the transaction has been

executed. For the purposes of this thesis we shall assume that a

PROCESS consists of a sequence of one or more, possibly nested,

transactions. The term process will also be used in cases where

transactions are nested and we need to refer to the innermost

transaction and all its ancestors. PROGRAM will be used

interchangeably with process, except where there is no concurrency in

which case it will be prefixed by the qualifier SEQUENTIAL .

A formal model of ato~icity has been described by Best and

Randell (Bes 78, Bes 79), which, though still under development, is

being used as a basis for studies of parallelism and error recovery.

Gray et al (Gra 76) and Davies (Dav 79) also make considerable use of

the concept of ato~icity in their work in these 'fields.

1.2.2 Resources -

Throughout this thesis we shall use the term RESOURCE to

describe ~ object which a programmer can use through the mediu~ of

his programming language. The most usual examples of such objects

are the variables held i~ a computer's memory, but magnetic tape

PAGE 5

drives, graph plotters and terminals are also resources. In

describing the operations that a programmer performs on resources we

shall use the categories - READ and WRITE. A read operation is one

which examines the state of a resource but does not modify it (for

example determining the position of a disc head), whilst a write

operation always modifies the state. Thus rewinding a magnetic tape

would be regarded as a write operation as it affects the state of the

drive by changing the position of the tape. Many of the examples in

the text will be couched in terms of variables (storage resources),

but by using this classification of operation they can be generalised

to all types of resources.

1.2.3 Commitment -

The state of a resource is said to have been COMMITTED when the

transaction l.rhich put it in that state confirms that the state is

correct and relinquishes the ability to perform any recovery

involving that resource. Where transactions are nested, commitment

is also nested, the ability to recover being maintained until the

outermost transaction commits the resource's state. Before this

FINAL CO~lliiTMENT the state of a resource is not guaranteed correct

and may be subject to change at any time, especially in the event of

an error. If other processes make use of the uncoilll'litted results of

a program the support system must record this fact to enable any

subsequent changes to the resource to be correctly propagated

throughout the system. This is especially important where the

results are found to be in error and corrective action must be taken.

PAGE 6

There are two ways in which this can be done. Firstly,

processes which use uncommitted data can be prevented from committing

their results until the data in question has itself been committed.

We shall describe these processes and the originator of the

uncommitted data as being COUPLED. Secondly processes may use

uncommitted data but some means of CO~WENSATION must be provided to

correct any errors that may have arisen. For example, when some

goods have been sent out from a depot by mistake, by issuing a recall

order a compensation mechanism has been invoked to recover from the

error. Processes which interact in this way will be described as

UNCOUPLED.

1.2.4 Cooperation

Shrivastava and Banatre (Shr 78a) have identified three types of

interaction between activities INTERFERENCE, COOPERATION and

CO~WETITION. Interference is always erroneous and occurs when shared

resources are modified simultaneously and the use of atomic

operations is designed to eliminate such interactions. Cooperation

occurs when activities deliberately pass information between each

other, and competition (or contention) arises when activities simply

wish to share resources but do not wish to pass information. However

in this thesis we shall look at the interaction between activities in

a slightly different way which will require another terminology. To

this end we shall introduce the idea of COOPERATIVENESS, it will,

however, be easier to first define its opposite - UNCOOPERATIVENESS.

PAGE 7

An activity is said to be uncooperative if it does not

communicate directly with other activities and if it does not release

the shared resources it has acquired during its existence until it

terminates. That is, the activity appears atomic to the rest of the

system. On the other hand a cooperative activity is one which may

communicate with other activities directly and which may also release

some resources during the course of its execution. Such an activity

would not seem to be atomic but we shall show that by restricting

communication and the type of resources that can be released, a form

of atomicity can be attained.

There is also another type of interaction and we shall call

activities which uses it CLOSELY-COOPERATIVE. Here a group of

activities appear to be one simple uncooperative activity to the rest

of the system, but are able to communicate with each other and

release resources so that other members of the group can acquire

them.

1.3 Summary~ thesis

The major part ot this thesis consists of a description of a

user interface for the implementation of parallel processes which

share the use of resources. and the mechanisms needed to support it.

The interface provides the programmer with facilities for

incorporating fault-tolerance into his programs and allows him to

control the way in which the failure of one process affects other

processes which have interacted with it. The most important features

PAGE 8

of this interface have been built into test systems and their

implementation is described.

Before this, in chapter two, an overview of existing systems for

controlling the use of shared resources is given. Firstly there is a

discussion of the kind of facilities that such systems ought to

provide and this is followed by a description of some of the

techniques that have been developed. Evaluation of these systems is

carried out with reference to two areas - the interface they provide

to a user, and their reliability in the face of errors.

Chapter three describes a basic user interface for the support

of uncooperative processes based on a mechanism which combines the

locking of shared resources with the collection of recovery

information. A discussion of deadlocks follows and a means of

detecting and recovering from them is developed. The problems of

synchronisation between processes are then described and a program

structure to overcome them is introduced. Implementation of a system

of the type described is then discussed with reference to an existing

system. Finally the efficiency and cost of such a system are

considered.

Chapter four introduces an extension to the basic user interface

that allows the specification of closely-cooperative processes.

Difficulties that arise when designing a language interface suitable

for this are discussed and various solutions are considered. The

incorporation of closely-cooperative processes into the prototype

PAGE 9

system of chapter three is then outlined. An example of the use of

closely-cooperative processes is given and in conclusion their

overall usefulness is discussed.

chapter five extends the interface to permit cooperative

processes to be supported, developing a new classification of

resource types to do this. Examples are given of the use of the

facilities that are built up, with special reference to the way in

which error recovery is managed. A test system utilising some of the

1deas developed in this chapter is described and the problems

encountered in its construction are discussed.

Finally in chapter six, a summary and evaluation of the work

described are presented, and this is followed by suggestions for

directions that future research in this area could take. The sources

of the references contained in the text are then given as an

appendix.

PAGE 10

2. 0 Scr.emes for control and recovery of concurrent activities

2.1 Locking

Whenever two or more activities take place at the same time (or

what appears to be the same time), there is always the possibility

that they may interfere with each other in such a way that erroneous

and inconsistent system states will arise. The classic example of

such circumstances is that of concurrent assignments to the same

variable, where, if no control is exercised over the interaction, the

variable can take on one of several different values, depending on

the execution flow of the processes involved . The guaranteed

prevention of such events is a necessary condition for the results of

an activity to be regarded as correct, and, as the system supporting

the activities may not be able to differentiate between correct and

incorrect interactions, facilities must b e provided to allow the

explicit delineation of those areas of an activity where interactions

involving a specified shared object are to be prevented. We shall

call such a facility a LOCKING SCHEME.

The control a locking scheme provides over activities can be

usefully regarded as serving two distinct but related purposes:-

1. Resource allocation by associating locks with shared

resources, activities competing to use them must pass their

requests to the manager of the locking scheme, thereby

I'eaving the granting ' of requests in the hands of the system,

PAGE 11

2. Prevention of communication of uncommitted data between

activities that is locking a resource guarantees that

operations upon it will appear atomic to those activities

not involved in changing its state.

The need for these arises in all fields and it will be worth

while to look at the more general aspects of locking, before turning

to its application to computer systems.

2.1.1 Classes of locking-

Locking schemes can be classified in several different ways, but

we shall look at only two of them here. The first is concerned with

when a request for a resource is made, and gives rise to two

classes:-

1. STATIC schemes, where resources are locked before the

activity wishing to use them starts its operations,

2. DYNAMIC schemes, where requests for resources are issued

during the course of an activity, generally immediately

before the resources in question are first needed.

The important difference between these classes, apart from the

obvious one, is in the way in ~o1hich system DEADLOCKS are handled - a

deadlock being said to occur when two or more activites block one

PAGE 12

another in such a way that their further progress is prevented. We

shall look at this topic in greater depth in section 3.7 belo~.

The other classification system we shall look at is based on the

way in \.rhich the "lock" is actually placed on a resource. '~e shall

identify three distinct ways of doing this, but in most cases some

combination of the three methods is used to ensure greater security.

The three are:-

1. Presence/absence method - when an activity wishes to make

use of a shared object it "removes" it from the commonly

accessible place allocated for it, to a place private to the

activity, thus reserving the object for its own use. There

are many examples of this type of lock - a switch (presence

or absence of electricity) or in a reference library

(presence or absence of a book) - and most have the extra

property that the locked object can be relinquished,

voluntarily or involuntarily, to some other activity,

without it being returned for normal competition. This type

of "lending" forms the basis for the preemption schemE!s used

in many computer systems. The major weakness of this scheme

is that an object may be "stolen'' and so never be returned

to be contended for, and this can only be prevented by

combining this method with one or both of 2) and 3).

2. Record method - here the status of the object in question is

noted down in some way, and this record is consulted to

PAGE 13

determine whether a request to lock the object can be

granted. This scheme is often used where the object

contended for is not amenable to a class 1) solution (for

example where it is not present at the place where the

request must be made) and has the advantage that the

identity of the activity possessing the object can be

recorded allowing it to be traced should that become

necessary.

3. Token method - in this method an activity is given a token -

for example a theatre ticket for a specified seat - which

shows that it has locked some object. Note that such things

as library tickets, passwords and keys are NOT examples of

this kind of token, but are members of the more general

category of "CAPABILITIES" (Den 66) which are one step

removed from locking schemes, controlling whether or not an

activity has the right to perform certain operations, the

ability to make requests for resources being one of them.

All these types of locks occur in computer systems, though the

presence/absence kind only exist in the hardware, the other two

methods often being used to simulate it at the software level.

PAGE 14

2.1.2 Granularity of locking-

Whenever structured objects are contended for it is very

important to specify how much or how little of the structure must be

locked by a user to enable him to operate on one of its parts. We

shall call this amount the GRANULARITY OF LOCKING for the structure.

This concept was introduced by Gray et al (Gra 76) for use in the

discussion of access control for databases, but may be usefully

extended to include the types of structure available in programming

languages.

The granularity of a structure determines the amount of

concurrency that can occur when several activities attempt to use it

and so can drastically affect the efficiency with which a system

operates. Generally, if the lock unit is too large concurrency will

be reduced, if it is too small the probability of requests

overlapping and causing deadlock will increase. So to select the

lock unit the system designer must evaluate the trade off between the

need for concurrency and the frequency of possible deadlock. Of

course there is no theoretical reason why all lock units should be

the same size as each other and it may be possible to arrange that

parts of structures which are always used together are locked as a

whole. However, different programs may wish to impose different

groupings of parts on a single stru•:ture, and where these overlap

deadlocks can arise. Gray (Gra 76) has tackled this problem by

introducing a new type of lock which is related to the way in ,.,hich

structures are accessed and we shall describe this in the next

PAGE 15

section.

Another aspect of the choice of granularity is the amount of

storage space required to record information about the locks that

have been placed by processes. The smaller the lock unit, the

greater the number of locks placed so the system will need a larger

amount of storage space for its control information. This larger

quantity of information could also mean that checking whether a

deadlock will arise if a request is granted will be slower, thereby

reducing the overall performance of the system.

We can see therefore that the chosen granularity of locking has

a significant effect on the efficiency of the system, and we shall

discuss this topic further in section 3.9.

2.1.3 Modes of locking-

So far we have made no mention of the access rights that a

process acquires when it places a lock on a resource, these being

dependent on the MODE of the lock request. The simplest mode is that

of the EXCLUSIVE lock, which when granted, gives the requestor read

and write (as defined in section 1.2.2) access to a resource, whilst

preventing other processes from using it in any way. Of course the

request could be made on behalf of a group of processes resulting in

them all having SHARED READ/WRITE access to the resource, and this

can be a very useful facility, even though it allows the processes in

the group to interact with each other in an uncontrolled manner. We

PAGE 16

shall discuss the application of this in chapter four.

However there are cases where exclusive locks are too

restrictive, such as that where several processes all wish only to

read a resource. Here all the processes could use the resource

concurrently, but an exclusive locking scheme will only permit one

process to use it at a time. To overcome this the SHARED READ (SR)

lock has been introduced which gives a process read only access to a

resource, several processes being permitted to hold such a lock at

the same time. Any process wishing to modify the resource must

either wait till all the shared read locks on it have been released

(barring any that the process may hold itself) or PREEMPT the other

processes, forcing them to release their locks, before placing an

exclusive lock on the resource. If the process previously held a

shared read lock on the resource it is said to have CONVERTED the

lock mode from shared read to exclusive. Unfortunately the process

of conversion can lead to a deadlock, where two processes both wish

to convert a lock on the same resource, and we shall look at this

difficulty in section 3.7 below.

These two lock modes are sufficient in systems where only

simple, unstructured resources are contended for, but where resources

are more complex in structure, as in a data base system, a greater

degree of control is needed over access. The reason for this is that

exclusive and shared read locks can only be applied to the specific

parts of a structure that a process wishes to use. For if locks had

to span the hierarchy of the structure one exclusive lock would

PAGE 17

prevent any other process from accessing it at all, but then a

process cannot safely lock a part of a structure without first

determining whether any sub-structure contained within the part it

wishes to lock has been locked by another process, a very time

consuming procedure if a large structure is involved. A solution to

this problem has been given by Gray et al (Gra 76) who have

introduced the concept of INTENTION mode locks. They have suggested

the use of three specific locks:-

1. Intention shared read (ISR) - a process placing such a lock

is declaring that it will only place shared read or

intention shared read locks on lm~er parts of the structure,

and, if conversion is allowed, will only attempt to convert

ISR locks to shared read,

2. Intention exclusive (IX) which has the same properties as

ISR but with respect to exclusive access,

3. Shared Read and Intention exclusive (SIX) - which allows a

process to have shared read access to a· part of a structure,

but also lets it lock smaller parts in IX or X mode, thus

allowing concurrency with other processes who wish to

examine parts it does not wish to alter.

Fig. 2.1a shows a possible partial ordering of all the modes we

have discussed, where NL represents the unlocked state and the

operator·>· is used to mean''is more binding than'. The table in

PAGE 18

fig . 2.lb shm.rs hm.r the system n.ust treat multiple lock requests for

the same resource - Y indicates that the request is compatible with

the current lock state of the resource and can be g ranted, N means

that this combination of locks is not possible. The intention locks

provide an excellent way of controlling access to hierarchical

struc t ures, and Gray g ives several examples of their use in cases

which are usually exceedingly difficult to cater for . However in the

rest of this thesis we shall not concern ourselves with the use of

intention locks as the extra complexity they introduce would obscure

the working of the mechanisms developed. Nonetheless the possibility

that they may be required must always be borne in mind.

> IX
X > SIX > IS > NL

> s

(a)

REQUEST ?fODE
NL IS IX s SIX " "

NL y y y y y y

IS y y y y y N

l<.ESOURCE IX y y y N N N

STATE s y y N y N N

SIX y y N N N N

X y N N N N N

(b)

Fig. 2.1

PAGE 19

2.1.4 Requirements of programmers-

Before looking at some of the existing programming language

tacilities for controlling the use of shared resources, let us try

and set out the characteristics that such an interface should

possess. We shall assume that the user expresses his programs in a

structured high-level language such as PASCAL (Wir 71).

The interface has to provide the user with four essential

functions:-

1. The ability to issue a request to lock a resource in the

required mode,

2. To wait until the request is granted,

3. Allow the resource to be manipulated without restrictions,

other than those set by the definition of the resource and

the mode in which it has been locked,

4. To release the lock making the resource available to other

users.

Two additional functions could also be provided, namely the

ability to convert the mode of a lock, and the option not to wait if

a resource is not immediately available when a request is made for

it. The interface must also be reliable - it should be impossible to

PAGE 20

use a shared resource without first having locked it and should an

error occur after the lock has been placed the support system must be

able to release it in a consistent state if the error handling in the

failing process does not.

Of course though these facilities must all exist they need not

be used explicitly by a programmer for them to be invoked - the

system may provide them automatically. This will free the programmer

from worrying about resource allocation and release, and allow the

system to conceal the fact that some resources are shared though they

do not appear to be. Most systems supporting shared resources have

already hidden any waiting for resources from the user, but

automating acquisition and release presents some problems, though

their solutions increase the reliability of the system considerably.

Let us look first at the process of acquisition.

If the whole text of a program is available a compiler can

determine the points at which resources must be acquired and where

they can be safely released. The analysis will be fairly difficult

because conditional use of resources means that resouce acquisition

must take place at a point in the program which will be executed by

all paths or else the code must be repeated where necessary (this may

mean that a process must be allowed to request a resource it already

possesses). However with the rise of modular programming techniques

separate compilation of modules has become the norm, so this approach

is not really usable. The only alternative is to perform resource

acquisition at run time, that is whenever a shared resource is used

PAGE 21

the system must check to see if it has been locked by the process,

and if not must lock it. This will of course be relatively

inefficient, but it guarantees that a resource cannot be used without

being locked, and that resources which are used in paths that are not

executed will not be locked. One disadvantage is that where more

than one lock mode is implemented mode conversion must be supported.

For it will often be the case that the first use of a resource will

only need a weak lock (reading - shared read) but a later use may

require a stronger lock (writing- exclusive), and so the lock must

be converted. Section 3.7.2 dicusses the problems that can arise

where conversion is provided.

Automatic release of resources is considerably more difficult

and either requires analysis of the whole program or for all

resources to be released at some predefined point, usually the end of

a process's execution. The former though providing far more

efficient use of resources is not reliable as commitment of a value

can take place before it is certain that the value is correct, so the

latter is preferable because of the increase in reliability obtained

through using it. The fact that resource release is automatic also

means that the system should easily be able to implement the other

reliability requirement mentioned above - that resources should be

released when an error occurs.

From the above we can see that the simplest interface (probably

only from the programmer's point of view) would be one where the

programmer treats shared resources exactly as he would unshared ones,

PAGE 22

leaving the support system to determine when locking is appropriate.

The fact that a resource is shared can be determined from its address

which will point to a part of the address space common to several

processes. In effect the memory management hardware of most computer

systems performs this operation anyway so existing techniques should

be perfectly adequate to do this. The association between a shared

resource and an address need only be carried out once, as most

modules could access it as an external object, alowing the shared

attribute of the resource to be concealed if necessary. Resource

release still presents problems, as holding resources till a process

terminates may not implement what the user wishes. However we would

suggest that by splitting a process into a sequence of transactions

and releasing all locks at the end of each transaction the programmer

will be able to implement most algorithms.

2.2 Existing systems for controlling concurrency

Many language interfaces have been devised to allow programmers

to control the use of shared resources, however .we shall only examine

six of them. The constructs chosen are representative of all the

other methods that have been developed and are the ones most

frequently referred to in the literature. Of course the vast

majority of today's computer systems do not provide the programmer

with languages that have these constructs embedded in them. The

acquisition and release of resources are normally achieved either

through the use of a Job Control Language or by procedures calls in a

process body. However both these methods can be regarded as

PAGE 23

equivalent to the use of certain of the constructs described below

and we shall indicate this relationship in the appropriate sections.

2.2.1 Semaphores-

The semaphore, described by Dij kstra in (Dij 68a) and developed

by him for use in the THE operating system, is widely regarded as a

paradigm for concurrency control mechanisms, and the correctness of a

new construct is often demonstrated by showing how semaphores may be

implemented using it. In fact the concept behind semaphores is so

tundamental that almost all the actual implementations of other

constructs make use of them (if they are not exactly equivalent).

A semaphore is a special non-negative integer variable which has

two operations associated with it called P and v. P is the "acquire"

operation of the pair and, where s is a semaphore, is equivalent to

the operation:-

\-lAIT UNTIL S > 0;
S:=S-1;

The V operation performs the release function and can be represented

as :-

s:=S+1;

and of course both these operations must be atomic to eliminate any

interactions between processes executing them at the same time.

Dijkstra identifies two types of semaphore, namely the BINARY

semaphore, whose value is' either zero or one, and the GENERAL

PAGE 24

semaphore which can take on larger values, however in (Dij 68a) he

shows that only binary semaphores are strictly necessary.

There are two ways in which semaphores can be used to control

access to resources. The first is to associate a semaphore with

every common resource and require the programmer to perform P's and

V's on it to acquire and release the resource. The alternative

method is to use one semaphore to control several resources, using

single P and V operations to acquire and release all of them at one

time. Unfortunately, though the use of these methods gives the

programmer considerable flexibility and power in the way in which he

builds his program they both possess severe disadvantages:-

1. The fact that a resource has a semaphore associated with it

does not guarantee that the programmer will actually perform

a P on the semaphore before using the resource,

2. Because p and v are explicit operations there is no

structure to link them together, which can not only reduce

the modularity and clarity of programs . using them, but can

also lead to the programmer forgetting the V operation

altogether, thereby preventing any more P operations from

being successful. Another problem is that the programmer is

not prevented from performing two P's without a V between

them causing his program to deadlock itself, or from issuing

two V's without a P between them, which could cause two

processes to acqui~e the resource at the same time .

users

PAGE 25

3. Semaphores only provide exclusive locking and cannot be used

to support shared read or intention locks, for firstly only

one process can hold a semaphore at a time and secondly it

cannot be guaranteed that the process acquiring the resource

will not modify it, this would require some extra protection

mechanism,

4. In order to avoid deadlocks the programmer must use special

methods such as the "banker's algorithm" (Dij 68a) or must

carefully analyse the interactions between the processes in

the system before implementation to ensure that they cannot

occur.

Despite these disadvantages semaphores are often provided to

sometimes explicitly, as in the language ALGOL 68 (Wij 69),

but more usually through the medium of system procedures. These

procedures, for example ones to open and close files, can be used to

hide the manipulation of semaphores from the user, but still suffer

the disadvantage of being unstructured. Other approaches which have

been tried, such as the LOCK and UNLOCK statements of Dennis and Van

Horn (Den 66), effectively hide semaphore like mechanisms from the

user, but still do not provide structure. This need, and that of

simplifying the task of deciding how many semaphores are required to

implement a given algorithm, has therefore led to the developnent of

other interfaces.

PAGE 26

2.2.2 Path expressions -

Campbell and Habermann (Cam 74) have tackled this problem by

introducing what they call PATH EXPRESSIONS. These are a means of

specifying the valid sequences of operations that can occur, all

those not conforming to the path expression being erroneous - for

example the functioning of a semaphore can be represented thus:-

PATH P;V END;

which indicates that a P operation must always occur before a v.

More complex relations can be built up in the notation, and fig. 2.2

shows the specification of a type "file" which can either be opened,

read or written several times and closed or can be renaned.

TYPE FILE IS
CLASS

PATH ((OPEN ; (READ , ~-lRITE) * ; CLOSE) , RENAME) END;

ENTRY PROC READ BEGIN ••• END; reads from the file

ENTRY PROC WRITE BEGIN ••• END; writes to the file

ENTRY PROC OPEN BEGIN ••• END; opens the file

ENTRY PROC CLOSE BEGIN ••• END; closes the file

ENTRY PROC RENAME BEGIN ••• END; renames the file

BEGIN ••• END; --initialisation of a new file

Fig. 2. 2

An instance of the path is associated with each object declared

of type file, and a complete path, that is a sequence of operations

PAGE 27

such as open, read, write, close, would be executed exclusively by

the process which initiated it, any other process having to wait

until the path terminated before it could initiate one on the same

file. There are several different kinds of paths possible and these

are discussed in (Lau 75), which also shows how path expressions are

related to Petri nets, (Pet 77) and gives a solution to the

"Cigarette smoker's" problem using paths. In order to implement

paths, Campbell and Habermann have developed an algorithm which can

translate them into equivalent sequences of P and V operations on

semaphores which can be placed round the operations used in the path

in order to control them. They have thus been able to structure the

use of semaphores safely, ensuring that P and V operations are not

ommitted, overcoming the first two disadvantages of simple

semaphores. However, though this frees the user of correct sequences

from concern about interactions between processes, if he erroneously

issues an operation out of sequence his process will wait

indefinitely, possibly blocking other processes at the same time.

Such circumstances can be detected by performing complex analyses of

the programs involved, as the use of Petri nets shows, but the

techniques required have not been sufficiently developed as to make

them accessible to the ordinary user, and this may be one of the

reasons why Path expressions have not been incorporated into the

design of more recent general purpose languages. Another

disadvantage is that, again because of the requirements for mutual

exclusion, shared read and intention locks cannot be supported.

Also, where separate compilation of program modules is supported, the

same path can be representeq in different ways (either by error or

PAGE 28

malicious intent), resulting in hard to detect run-time errors.

We can see therefore that though path expressions provide a

clear and compact way of controlling the operations on shared

resources, they are as error prone, in their own way, as the explicit

use of semaphores. Also the use of regular expressions to describe

sequences of operations does not reflect the algorithmic approach

that most programmers adopt when implementing a new type. It would

seem, therefore, that, whilst path expressions will remain an

outstandingly useful theoretical tool, applications programmers will

require resource control mechanisms which are directly related to the

structure of their programs.

2.2.3 Regions -

In order to make the s tructure of programs using semaphores

clearer Dijkstra (Dij 68a) has introduced the notion of a critical

region, which is the term he uses to describe a section of program

executed in mutual exclusion from other processes. A critical

section is entered by performing a P on a semaphore and terminated

when the process performs a V on the same semaphore. Brinch Hansen

(BrH 72) has incorporated this concept into a programming language by

the use of the REGION statement, which allows statement blocks to be

marked as critical with respect to certain specified resources. A

compiler can then automatically generate the appropriate operations

needed to acquire and release those resources, for example:-

REGION P,Q DO
BEGIN

use P and Q

END;

PAGE 29

. This is interpreted as meaning that resources P and Q are to be

locked before the compound statement is executed and released

immediately it terminates. This provides several advantages to the

programmer over the previously described methods:-

1. The notation is simple and relates closely to that used when

abstract specifications of programs are written (note that

the job control statements that must often be supplied

around program bodies are a type of REGION statement),

2. The user is forced to structure the use of shared resources

more carefully, preventing such occurrences as overlapping

critical regions which are possible with semaphores,

3. The compiler can verify that only those shared resources

named in the REGION statement are actually used in the

statement body, preventing interference, (though by doing

this separate compilation of program modules may be made

difficult),

4. rhough the structure was originally designed for use with

PAGE 30

semaphores, any resource locking scheme could be used to

support it, allowing the use of the more sophisticated lock

structures described above.

There are, however, disadvantages:-

1. Deadlocks can occur if careful analysis of programs using

the statement is not carried out, and, as with the other two

schemes we have described, no method of breaking a deadlock

that has arisen can be provided,

2. The body of a region statement is NOT atomic and resources

can be altered without the users knowledge. Consider this

example:-

REGION A DO
BEGIN

P·
'

P·
'

E~;

PROCEDURE P;
BEGIN

REGION B DO
BEGIN

END;
E~;

Here the programmer may expect the results of the procedure

P to be identical after each of the two calls. However, as

the shared resource B is acquired and released every time P

is called, B can be used by other processes between the

calls on P, introducing the posssibility of incorrect

interactions between process es,

PAGE 31

3. The statement is inherently unreliable, for if an error

occurs during its execution the resource release part of the

statement implied by its termination will not be executed.

This means that the shared resources it acquired will not be

returned to the common pool, and, even if a mechanism could

be provided to release them, irreversible alterations could

have been made to them, possibly rendering the system state

inconsistent.

For these reasons the REGION statement is not as useful as it

appears at first, and, like path expressions, it seems to be used

more as a theoretical tool than a practical part of a programming

language, however this cannot be said of our next example.

2.2.4 Monitors -

The MONITOR was first described by Hoare in (Hoa 74) and has

been used very successfully by Brinch Hansen in the language

Concurrent Pascal (BrH 75) and his Solo operating system (BrH 76),

and also by WIRTH in programming language HODULA (Wir 77). A MONITOR

is a special kind of CLASS (Bir 73) in which only one entry can ever

be active at a given time, the body of each procedure forming a

critical region with respect to the variables declared within the

MONITOR. These procedure bodies are atomic because they can only

access variables local to the MONITOR or passed in as parameters,

and, as only one entry is active at a time, the environment seen by a

PAGE 32

process cannot change whilst it is executing the entry.

~ynchronisation and co-ordination of process activity is achieved by

the use of queues, a process putting itself on a queue when it wishes

to wait for some condition to become true. ~fhen a process joins a

queue it automatically releases the MONITOR, allowing other processes

to use it, and will not be reactivated until another process detects

that the condition associated with a queue is true and explicitly

activates the waiting process, at the same time relinquishing its

lock on the monitor.

However though l10NITOR's have been used with great success to

solve a great variety of problems they suffer from similar

disadvantages to the constructs described above:-

1. The use of queues is not only inelegant but can lead to

deadlocks, where their attached conditions are ill formed,

2. The mutual exclusion enforced on ?10NITOR entries prevents

any concurrency, even in cases where it would be perfectly

acceptable, and so again shared read and intention locks

could not be implemented.

3. Should an error occur in a MONITOR entry, the MONITOR

variables could be left in an inconsistent state, causing

erroneous information to be propagated when other processes

use the MONITOR. Also if the support system cannot identify

that the error aros~ in a MONITOR entry, the MONITOR may not

PAGE 33

be released, thus preventing other processes from using it,

4. Because of the scope rules applied to MONITOR variables,

algorithms which require the use of nested monitor calls can

'>~come very complicated, leading to programmer error.

However despite these disadvantages, MONITOR's have been widely

used and the methods needed to solve problems using them are becoming

tamiliar to a widening circle of users. This has led to considerable

work being done to improve the reliability of MON ITOR's and we shall

look at this in a later section.

2.2.5 Atomic Actions -

Ultimately all locking schemes are concerned with ensuring that

certain sequences of operations are performed atomically, and to this

end Lomet has introduced the notion of an ATOHIC ACTION (Lorn 76a) as

an explicit program structure. This is simply a device that can be

used either like a BEGIN ••• END block or a procedure, but which

indicates that the sequence of statements enclosed by the structure

is to be executed atomically. This has several advantages over the

techniques we have described above:-

1. Nested ATOHIC ACTION's do not have the problems of nested

REGION's as atomicity is guaranteed from the start of the

outermost ATmnc ACTION until its termination;

PAGE 34

l. Once a statement block has been declared as atomic the

programmer can use shared resources exactly as he would

private ones. This allows programs to be written and tested

using local resources, and later converted to use shared

resources, simply by altering the declarations of the

resources in question;

3. Separate compilation of ATOt1IC ACTION's is possible firstly

because of their modularity and secondly because the

atomicity or otherwise of any enclosing modules, defined

elsewhere, is not important;

4. As there is no explicit acquisition and release of resources

in a program, the support system has full control over the

way in '~hich these operations are carried out, this ensures

that all shared resources useo in an ATOMIC ACTION are

locked before use eliminating the possibility of interfering

with other processes,

S. Because an ATOMIC ACTION does not necessarily have to be

executed in mutual exclusion the support system can provide

the user with shared read and intention locks, allowing the

use of data bases and other structured resources to be

amalgamated efficiently into the system.

The disadvantage of ATOMIC ACTION's is that the way in which the

atomicity they provide is to be implemented is not defined. If a

PAGE 35

technique similar to any of those described above is adopted, ATOMIC

ACTION's will suffer form the same kinds of reliability problems that

they do, namely deadlocks, permanently locked resources and the

propagation of inconsistent information through a system. However

other mechanisms can be devised to overcome this and the subsequent

chapters of this thesis will show how one of these can be developed.

We shall also discuss an extension of the ATOMIC ACTION which Lomet

has introduced, knmrn as a SHARED ATOHIC ACTION. This allows several

processes to collectively acquire shared read/write access to

resources, their combined operations appearing atomic to the rest of

the system though they may not be atomic with respect to each other.

2.2.6 Communicating processes -

Up until now all the constructs we have looked at have required

there to be a set of resources commonly available to all processes,

but recently both Hoare (Hoa 78) and Brinch Hansen (BrH 78) have

proposed systems which do not require this to be so. These systems

are based on the use of messages passed between processes in

synchronisation, Hoare's system making communication similar to

input/output by allowing processes to read from and write to each

other, Brinch Hansen's giving one process the ability to remotely

call a procedure in the body of another process. Both these

constructs are related to the idea of coroutines, introduced by

Conway (Con 63), and the "call", "detach" and "resume" primitives

provided by SIMULA (Bir 73), and similar proposals have been put

forward by other authors, for example Kahn and MacQueen (Kah 76).

PAGE 36

However many of these tend to be directed towards aiding program

proving and are not particularly suitable as "real" programming

languages.

Both Hoare and Brinch Hansen's systems control the interactions

between processes by specifying that a process executing a send

operation (that is an output to another process or a remote call)

must wait until the process to which the operation is· directed

specifically accepts the message, in Hoare's system this is done by

the use of GUARDED REGIONS. A guarded region is a non-deterministic

structure internal to a process, consisting of several procedures

callable by other processes, entry to which is controlled by a GUARD,

which is a necessary condition for execution to commence . When one

of the guards comes true and a call has been issued for the procedure

associated with it, the procedure is executed and when it terminates

the calling process is reactivated, if several calls are outstanding

on one procedure they must be queued and handled one at a time. The

use of guards is due to Dijkstra (Dij 75) and is a subject which we

shall be returning to in several later sections.

Another feature common to these systems is the ability to

describe arrays of processes, thereby allowing messages to be

directed to a process whose identity is determined at run time,

however Kieburty and Silberschatz (Kie 79) have suggested that some

of the interactions expressible using this facility are not

implementable on a system made up of distributed processors, and as

the use of such distributed ,systems is the avowed aim of Brinch

PAGE 37

Hansen's system, some doubt must exist as to the practical usefulness

of the whole system, for many problems require the use of process

arrays to solve them, as demonstrated in both (Hoa 78) and (BrH 79).

Another criticism leveled against these systems is that the level of

concurrency is unnecessarily reduced by the requirement of

synchronisation between processes in situations where message passing

is the only aim of the interaction as, for example, in the "pipes"

available to the user on the UNIX system (Rit 78), and we shall look

at this topic in greater depth in chapter 5 below. As to the

reliablity of the constructs, all the problems existing in other

systems arise for the queueing required to send messages can lead to

exactly the same kinds of deadlocks and related errors that queueing

for access to common resources can.

Despite these difficulties this type of technique must be

regarded as opening up new possibilities in the design of systems, as

it encourages highly modular designs, eliminates the need for shared

resources, can be applied to distributed systems (though with the

reservations expressed above) and allows algorithms to be expressed

in new ways. It remains to be seen how successful people will be in

using and implementing systems of this type, but the fact that the

much disputed tasking mechanism in ADA (Ich 79) is based on the use

of communicating processes must encourage more research to be done in

this area.

PAGE 38

2.2.7 Summary-

This brief examination of the main language facilities for

controlling resource usage in concurrent processes has shmm that,

though constructs exist which are modular and conform to the

principles of structured programming, none of them, as they stand,

are proof against the occurrence of software errors. Also, support

for the sophisticated locking schemes needed for the efficient use of

data bases is very difficult (and in some cases impossible) to

provide. The main reason for these problems would seem to be that

most of the constructs we have looked at were designed for use in the

implementation of operating systems, and so cannot be considered as

general purpose structures. Only ATmnc ACTIONS and communicating

processes seem to possess the attributes necessary for such a general

purpose interface. However both these techniques suffer froo the

disadvantage that, as they are relatively new, little use has been

made of them, so the problems they give rise to are not fully known.

2.3 Recovery schemes for concurrent processes

Now we must turn our attention to the techniques that have been

developed to cope with the reliability problems raised by the use of

the methods described above. There are four main areas which must be

tackled:-

1. If a process becomes dependent on uncommitted data which is

later found to be 1n error it too must be regarded as being

PAGE 39

in error,

2. Deadlocks must either be prevented or detected and broken,

3. Resources locked by a process which fails must be unlocked

and returned to common availablity, preferably in a

consistent state,

4. Some means must be found of detecting processes in

unintended infinite loops, and making them fail explicitly,

thus causing the release of the resources they hold (because

of 3).

The problem of deadlocks has long been recognised and we shall

discuss it futher in sectiion 3.7 below, the rest of this section

will look at some specific areas of fault tolerance, which relate

directly to the other three areas. A general survey of fault

tolerance techniques exists in (Ran 78) which gives many examples of

the different approaches used in this field, but we shall only look

at those which impinge directly on the programmer by providing a

language interface to their facilities. However before dealing with

concurrent processes per se we must look at recovery facilities in

sequential programs.

PAGE 40

2.3.1 Sequential programs-

Up to this time only two language facilities for the control of

errors have been provided to the programmer. The first is an example

of what is known as FORWARD ERROR RECOVERY and is the provision of

the ability to handle exceptions, such as the "ON" conditions of PL/I

(IBMa). The facility provided by the use of ON conditions is rather

limited and several suggestions have been made for expanding the

usefulness of exceptions, for example (Goo 75a), (Goo 75b) and (Par

72), which all describe ways of integrating exception handling into

the structure of programming language. The use of such forward error

recovery techniques is ideal where the programmer knows the exact

nature of the faults that may occur in his program, and can precisely

define the operations that must take place to recover from them.

However, as is shown in (Mel 76), in cases where unforeseen errors

arise, possibly due to residual software faults, forward error

recovery does not provide an adequate solution. This is due to the

fact that the program may not be able to assess fully the damage to

the program state caused by the error, so cannot repair it

completely.

For this reason approaches based on BACKWARD ERROR RECOVERY have

usually been adopted where unforseen errors must be handled. The

characteristic of these techniques being the restoration of the

program state to that pertaining at some defined time prior to the

error, known as a CHECKPOINT. This restoration is made possible by

either storing a complete representation of the program state as it

PAGE 41

was at the checkpoint or by maintaining a record of all the

operations which affect the system state, that have been performed

since the checkpoint. To provide recovery in the latter case the

system must undo all the operations it has recorded, whilst in the

former recovery is implemented by making the current program state

identical to the stored state. The most widely used backward error

recovery mechanism is the RECOVERY CACHE, devised at the University

of Newcastle upon Tyne, which provides a means of building up an

incremental checkpoint of a program state. Often associated with the

recovery cache is a program structure knows as a RECOVERY BLOCK, and

both of these are fully described in section 3.4 below.

The main disadvantage of backward error recovery is that it is

expensive to implement, requiring processor time and storage to

maintain the recovery information needed. However as it provides a

means of handling a very wide range of errors (all except those

involving the recovery mechanism itself) the expense is generally

regarded as worthwhile. Implementations of backward error recovery

in sequential programs have been described in (Shr 78b), (And 76) and

(Cri 79), the latter combining the use of exception handlers and the

recovery cache. Certainly, as we shall see from the succeeding

sections, the use of backward error recovery, especially the recovery

cache, has been the foundation of most of the recent research done on

the field of fault-tolerant software, and this thesis also bases its

proposals on this type of mechanism.

PAGE 42

2.3.2 Database systems -

Much of the impetus for research into recovery in systems

supporting parallelism has come from the need to preserve integrity

in large data bases. Verhofstad (Ver 78) has identified seven

classes of fault tolerant recovery techniques used in data base

systems, these are:-

1. Salvation programs - programs run to restore the data base

to a consistent state after an error,

2. Incremental Dumping - periodically archiving data to provide

checkpoints for updated files,

3. Audit Trials - recording the order of operations performed

on a data base, so that these may be "undone" in the correct

sequence in order to reach a consistent state, namely the

start of the sequence of operations,

4. Differential Files- here file updates 'are not made to the

main file, but take place in other files which are

periodically merged with it and emptied.

S. Backup/current verion - where all the files in the data base

are periodically archived to provide a checkpoint should the

current information be damaged.

PAGE 43

6. Multiple copies - several copies of every file are held,

which all contain the same data, except during an update

operation,

7. Careful Replacement - updates only take place in COPIES of

the data, which are merged with the original, only when the

values are committed.

The common feature of these techniques, except the audit trail

method, is that they are primarily concerned with the integrity of

the data base, and regard the effects of errors on the programs

running in the system as secondary. From the programmer's point of

view these systems often appear highly fault intolerant, as

facilities for error handling are minimal, the usual solution being

for all programs affected by state restoration to be rerun. This

will usually include several programs which were not in error and

which w·ere not dependent on erroneous data, and, even if the jobs are

resubmitted without involving the programmer, a considerable

lengthening of the turn-around will be experienced by those users

affected.

However systems that use audit trail methods can BACK OUT an

individual process, rather than BACKING UP all the processes in the

system providing a much better user interface. The programmer can

then be given facilities to control the way in which recovery takes

place in his programs, very much as for sequential programs (note

that the recovery cache mechanism can be viewed as an optimised audit

PAGE 44

trail as well as an incremental check point). An example of this is

provided by System R (Ast 76) which gives the programmer the

operations SAVE, (to identify the start of an audit trail), RELEASE

(to commit an audit trail) and RESTORE (to wind back to a named point

in an audit trail). This type of interface is very often

unstructured because of the COBOL-like languages used in data base

systems, but they must be regarded as a major step forward in making

error handling by fault tolerant methods available and familiar to a

much wider spectrum of users.

:l.3.3 Ports -

Uutside the sphere of databases much of the work on error

recovery in concurrent systems has been theoretical and very little

attention has been given to the needs of the programmer. However

Shrivastava and Banatre (Shr 78a) have described a program structure

known as a PORT which allows competition and cooperation between

processes whilst preserving recoverability. A PORT is a specialized

type of SIMULA class with features to aid recovery, and is used to

control access to resources. It consists of some variables, some

entry procedures, a reverse procedure and an initialisation statement

consisting of two parts known as a PRELUDE and a POSTLUDE separated

by means of a SIMULA INNER statement. The prelude of a PORT is

concerned with resource acquisition and the postlude with resource

release, and they are invoked by means of the USING statement. This

associates a block of statements with an instance of the PORT, and

causes the block to be execu'ted when the INNER statement of the PORT

PAGE 45

initialisation code is reached, ensuring that the block is bracketed

by the prelude and postlude. The PORT assumes the presence of a

recovery cache and if an error occurs whilst a USING statement is

executing, state restoration will take place, and the postlude of the

PORT will automatically be executed, guaranteeing that resources will

be released by failing processes. However if an error occurs after a

USING statement has t •~rminated the effects of the operations

performed in it must be undone, and this is where the special reverse

procedure comes in. The use of a PORT is recorded in the recovery

cache and when state restoration takes place the prelude and postlude

are executed to reacquire and release the r esources used, the reverse

procedure being executed when the INNER statement is encountered.

This procedure is only accessible to the recovery mechanism and is to

provide compensation for the effects of the previous use of the PORT,

that is, because the USI NG statement cannot be undone by the system,

the user must provide a piece of program ¥hich attempts to do this.

In most cases this will involve sending a special message to other

processes or the system operator to tell them to ignore certain data,

but it can also consist of constructing messages whose effects will

be the exact opposite of the earlier message , thus undoing its

effects. Another facility provided to the user is an errorflag which

allows him to determine, during the postlude and prelude, whether the

process is recovering or not, and so these parts of the program can

be tailored to the recovery process also.

TYPE HANAGER IS
HONITOR

PROCEDURE ENTRY SEND (I : INTEGER ; LAST : BOOLEAN);

PAGE 46

-- queue value for receiver, last is true if it is final value
BEGIN ••• END ;
PROCEDURE ENTRY RECEIVE(! : OUT INTEGER ; LAST : OUT BOOLEAN)
-- get a value form the queue
BEGIN ••• END;

BEGIN ••• END; --initialisation code

TYPE SENDER IS
PORT (MAN : MAl~AGER ; I : INTEGER ; LAST : BOOLEAN)

VALUE : INTEGER ; COHPENSATE : BOOLEAN ;
REVERSE PROCEDURE;
BEGIN END; -- called as INNER when recovering

BEGIN

LiNK
SEND

first of all the prelude
IF ERRORFLAG THEN -- system is recovering
BEGIN

COMPENSATE:=TRUE; indicate this to postlude
MAN.SEND(VALUE,LAST) -- send compensating value to receiver

END
ELSE -- its a normal exchange
HEGIN

VALUE:=-I; -- record compensating value for this exchange
COMPENSATE:=FALSE; -- for postlude
MAN.SEND(I,LAST) -- send the value

END;
lNNt:R; -- perform the user's code

now the postlude
IF ERRORFLAG AND NOT COHPENSATE THEN

MAN.SEND(VALUE,LAST) -- compensate for error in INNER
END;

MANAGER
SENDER ; -- port to control LINK

TASK PRODUCER;
BEGIN

ENSURE (•••) BY-- some acceptance test
BEGIN

fOR I:= 1 TO 3 DO
USING SEND(LINK,I,FALSE) DO -- send the numbers

END
t.;LSE BY
HEGIN ••• END
ELSE BY ERROR;

a secondary algorithm

USING SEND(LINK,O,TRUE) DO; -- signal termination
END;

fig. 2.3 •••

TASK CONSUMER;
tiEGIN

LAST:=FALSE
~UM := 0;
WHILE NOT LAST DO
HEGIN

LINK.RECEIVE(I,LAST)
IF NOT LAST THEN SUM:=SUM+I
ELSE

END
~ND;

HEGIN ••• END --use the result

Fig. 2.3

PAGE 47

Fig. 2.3 shows an example of how a PORT can be used to provide

reliable communication between processes. It consists of two

processes 'PRODUCER' and 'CONSUMER' which communicate via a MONITOR

'LINK'. The function of the system is for CONSUMER to calculate the

sum of the numbers generated by PRODUCER, and the use of the PORT

'SEND' ensures that the sum is correct even if an error occurs in the

producer. This is because each time the port is used to send a

message a compensating value (the negative of the value being sent)

is stored in PRODUCER's cache. Should an error occur in PRODUCER,

the 'reverse' invocations of SEND will cause these negative values to

be sent to CONSUMER, thereby correcting the sum that it holds. In

this example the reverse procedure is actually null, and the

compensating action is taken in the prelude and postlude of the PORT.

This is to allow for the possibility of errors occuring whilst the

INNER statement of the PORT is being executed, in which case the test

on ERRORFLAG in the postlude will ensure that compensation takes

place .

PAGE 48

The main advantage of this scheme is that processes do not

become dependent on each other and so recovery of an individual

process can take place, meaning that the DOMINO EFFECT (Ran 75) will

be avoided. This occurs when processes have interacted and become

dependent on each other in such a way that successive state

restorations must take place, until the processes have been wound

back to their first checkpoints. The effectiveness of this structure

has been demonstrated in an implementation based on Concurrent Pascal

and the SOLO operating system (BrH 76), which is described, with

several examples in (Shr 79a) and (Shr 79b).

From the programmer's point of view, however, there are several

disadvantages. Firstly the suggested use of MONITOR's with PORT's,

brings with it all the difficulties described in section 2.2.4.

Secondly the use of the errorflag makes the prelude and postlude

rather inelegant, giving the appearance of a somewhat adhoc addition.

Thirdly, the use of PORT's adds considerable complexity to programs,

as can be seen from the examples in (Shr 79a). Finally the need to

provide compensation will restrict the user in the ways in which he

can solve problems, circumstances being made even worse by the

possible presence of errors in reverse procedures. There are also

disadvantages from the point of view of recoverability because the

programmer cannot be guaranteed that his attempts at compensation

will have any effect, for other processes may have used the erroneous

data and terminated before the error was discovered causing faulty

results to be committed. In order to overcome this the programmer

must ensure that processes are properly synchronised, but in cases

PAGE 49

where interactions take place with unknown processes (that is

processes created by other programmers) it can never be certain

whether they will behave in the correct manner. This problem does

not occur in the limited environment of a Concurrent Pascal program,

but in "real" systems this situation will arise fairly frequently.

2.3.4 Deadlines and safe programming -

None of the systems we have looked at so far have offered a

solution to the problem of unintentional infinite loops or waits that

was identified above. All of them would require manual intervention

to stop the execution of a looping process. Of course a loop need

not be infinite to be in error - especially in real time systems

where the time taken to execute sections of program can have a

significant result on the system state. Anderson (And 75) has

attacked this problem by introducing a new approach to the way in

which looping constructs are used in programs.

three control structures as being necessary:-

He has identified

1. REPEAT S UPTO N TIMES - which, with "EXIT" statements in S,

can be used to implement constructs such as "WHILE" and

"UNTIL" statements,

2. DO S EXACTLY N TIMES -where S contains no EXIT statements,

thus providing "FOR" statment facilities,

3. CYCLE S INDEFINITELY - again with no EXITs in S, here the

PAGE 50

programmer specifically intends this to be an infinite loop.

These constructs allow the more usual loop errors to be

detected, but do not provide any way of trapping erroneous waits and

loops (and other errors) caused by the corruption of the internal

representation of a program. These can often be detected by

checksumming straight ·line sections of code (that is sections

containing no control transfers) at compile time and run time. A

comparison of the two values can be carried out at the end of each

straight line section - if they are not identical the code has been

corrupted, so a failure condition can be raised in the process

executing the code. Another approach adopted in the PLURIBUS system

(Rea 73,0rn 75) is to periodically checksum all the program modules

that make up the system, again comparing the value obtained with one

that was statically determined at compile (or load) time. These two

methods are not foolproof, as errors could cancel each other out

(especially in the latter case where much larger quantities of data

are being checked), but they will significantly enhance the

reliability of a system by trapping errors which may not otherwise be

detectable (though note that the former method will detect an error

the first time a corrupted section is executed, whereas with the

latter corrupted code could have been exeucted several times before

it is detected).

Another technique which is often used for trapping faulty loops

and waits is based on the use of watch-dog timers . This involves

setting a maximum execution ,time for a program section and starting a

PAGE 51

timer when it is entered, if the time allotted is exceeded an error

condition is raised. This technique has been used in the PLURIBUS

system and was also suggested by Dennis and Van Horn for the system

they describe in (Den 66). Horton and Campbell (HoC) have formalised

this use of timers into the concept of DEADLINES, which allow for the

detection and recovery from possible timing errors. The structure

they develop allows the programmer to assign a maximum time limit to

a section of program and to provide a recovery block structure (see

section 3.4) to handle any errors that occur. The scheduling of the

execution of such sections is very critical, and Liestman and

Campbell (Lie 80) have shown how certain optimal schedules for

systems using deadlines can be achieved and how idle time created by

program successes (that is within their deadlines) can be

rescheduled. Deadlines have their most important applications in

real-time systems, (for example fig. 2.4 which shows a navigational

application, due to Campbell), but should. prove to be useful in all

cases where looping errors occur.

EVERY SECOND -- frequency at which process is to be executed
SERVICE POSITION UPDATE
WITHIN 1 MILLISECOND -- deadline time limit
BY
BEGIN

E~

READ_NAVIGATIONAL_pATA;
CALCULATE_NEW_POSITION;

ELSE BY
~STIMATE_POSITION_FROM_OLD_DATA;

¥ig. 2.4

PAGE 52

2.3.5 Distributed systems -

Recently considerable attention has been given to the

theoretical aspects of backward error recovery in concurrent systems

and Merlin and Randell have developed a formal method of describing

the concepts involved, by the use of "Occurrence Graphs", which are

similar to Petri's Causal Nets (Pet 77). The special characteristic

of Merlin and Randell's graphs is that they are regarded as being

created and recorded dynamically by the system that they are

modelling as it executes and they also have some extra features

geared towards the problems of state restoration. One of the

important concepts that they introduce is that of RESTORABLE PLACE or

RECOVERY POINT (Ran 78), which is a point in the execution of a

process to which the process can be returned, because checkpoint

information had been built up after it, enabling state restoration to

take place. Where the state restoration of several processes is

related the set of recovery points to which they are wound back is

known as a RECOVERY LINE.

In order to constitute a recovery line the set of recovery

points chosen must each belong to a different process, and be

consistent, that is:-

1. One of the recovery points must belong to the process in

which the error that initiated recovery was detected;

2. .No information must have passed between any two of the

PAGE 53

processes in the set betweeen the saving of their recovery

points;

3. No information must have passed between any process external

to the set and a member of the set after its recovery point

was saved.

It is the search for such a set of recovery points that causes

the domino effect, described in section 2.3.3 to occur.

Herlin and Randell describe various operations which can be

performed on occurence graphs, but their most important result is the

development of what they term a "Chase Protocol". This can be used

1n a decentralised recovery mechanism for a distributed system and

they present a proof that the use of such a protocol will provide

system recoverability even when there are several faults in the

overall system. Such a protocol involves the sending of messages

between the modes of a system to propagate recovery activity; it is

called a "chase protocol" because processes which are dependent on

erroneous data will continue to execute normally, until the failure

message manages to reach them. This means that there may be times at

which the system state is inconsistent, but it is guaranteed that a

consistent state will be reached after a finite, though perhaps

arbitrarily long time.

Occurrence graphs are a useful tool for representing the state

of concurrent systems, and the work of Best (Bes 78, Bes 79) on

PAGE 54

atomicity has extended their utility considerably. At the moment the

work being done is purely theoretical, however it can be expected

that ideas with practical application for the programmer will result

from it.

2.4 Spheres of Control

As we have just indicated the theoretical aspects of both

resource control and reliablity have been studied in considerable

depth, and both topics are nmo~ fairly well understood. We have seen

that the work on occurrence graphs has produced a flexible and

powerful tool for modelling concurrent systems and the effect that

recovery has on them, and that work is being carried out on modelling

atomicity using them. However occurrence graphs are a mathematical

tool and as such are inaccessible to many people, and the work of

Davies on SPHERES OF CONTROL (Dav 73, Dav 79, Bjo 73) provide a

simpler way of characterising the problems of resource control and

recovery. Davies defines a sphere of control (SOC) as "a boundary

around the effects of a process for the specific purpose of

controlling commitments", and states that each SOC is an atomic

process \Jhen seen from its enclosing level of control. He goes on to

define three kinds of resource usage:-

1. Reference - where the value of a resource may alter at any

time and the supplier of the resource does not have to

inform users of the resource of the change, for example the

system clock,

PAGE 55

2. Dependent - where the supplier of the resource must inform

the users of any change in value, and they in turn must give

up the resource on demand, (providing backward

recovery)

error

3. Committed - which is the same as dependent, except that the

user is not obliged to give up the resource when requested

to do so, so a compensation function must exist to correct

the system. (providing forward error recovery).

Then, using the definitions, he shows the steps needed to

initiate and terminate a sphere of control so that integrity is

preserved. In (Dav 79) he extends these notions to cover such things

as consistency, auditing and the scheduling of transactions,

providing a complete framework within which the problems of

reliability can be discussed no matter whether the systems in

question are based on computers or are completely operated by humans.

Some of the ideas he presents could be built into real systems,

however as yet there are still concepts which. we do not know how to

implement efficiently (or sometimes at all) and more research must be

done before the benefits of such theoretical work reach the

programmer.

PAGE 56

2.5 Conclusion~ the programmer interface

From the foregoing we can see that though several well

structured methods of resource control are available to the

programmer little thought has been given to making them recoverable

and providing the user with adequate error handling facilities. The

systems that have been developed all use the recovery block as the

basic building unit for structured error handling, and this reflects

the fundamental simplicity of the construct. However in order to

allow reliable control of access to resources additional features,

such as PORTS, must also be provided to augment whichever of the

locking constructs is adopted. This makes the task of writing

programs more complex and means that the code intended to increase

the reliablity of programs could be a source of software error.

The access control methods discussed do not provide particularly

good interfaces to the user, most of them being primarily concerned

with implementing mutual exclusion, and not being flexible enough to

allow extensions to include other lock modes. Only atomic actions

could easily provide this facility and of the schemes requiring the

use of shared resources they provide the interface which fits most

easily into the widest range of languages, being closely related to

the block structure of prograns. Ho~Jever the use of conrnunicating

processes opens up a different set of possibilities and may require

the development of completely new approaches to the way in ~Jhich

processes interact.

PAGE 57

Of all the language interfaces and facilities we have looked at

above, only the use of safe programming and deadlines combine

reliability and simplicity and do not disadvantage the user in any

way. These two features must be considered as an essential part of

any highly reliable programming system because they are the only

defence against looping and waiting errors. Some means of detecting

code corruption must also be considered, as this also provides error

detection that cannot be attained through any other means.

In general then, the programmer is not well provided for in the

realms of resource control and reliability, probably due to the

theoretical nature of most of the work done in this field. However

this will have to change quite drastically if the present trend

towards distributed systems continues at its present rate.

PAGE 58

3.0 Uncooperative Processes

3.1 Introduction

In section 1. 2 we introduced the concept of "uncooperativeness"

to describe processes \~hich release all the resources they have

acquired together, before either terminating or starting to build up

a new set of resources. In this chapter we shall show how a system

supporting such processes providing full recoverability and a simple

user interface can be constructed by using a modified version of the

recovery cache mechanism (Hor 74, Ran 75). The system described will

also form the basis for facilities to be developed in the following

chapters that will allow cooperative processes to be supported, and

the reader should bear this in mind throughout. Uncooperative

processes form a very important class as most of the jobs run on any

computer system either are or could easily be made "uncooperative".

Therefore any changes in the way in which they are handled must not

introduce cumbersome constructs to the user interface, nor should

they adversely affect the efficiency of the system without providing

some compensating benefits. We shall endeavour to show that the

system developed here achieves these ends.

3.2 Multi-level systems

We must first briefly describe the abstract structure within

which t~e system to be described is designed to fit. This will be

PAGE 59

assumed to consist of a series of LEVELS, one above the other, where

each level provides a more abstract view of the underlying machine to

the levels above it. Levels may be used to provide new facilities or

to hide existing ones in a similar fashion to the CLASS structure of

SIMULA (Bir 73) or the PRIVATE types of ADA (Ich 79). This new view

provided by a level constitutes an INTERFACE for the level

immediately above, prograns written to run at the higher level being

expressed in terms of the operations and types defined by the

interface. Note however that the level supporting this interface

"sees" the user's program in terms of operations and types provided

by still lower levels. This is especially important to remember for

interfaces supporting concurrency in the level above them. In this

case it is not necessarily possible for the lower level to determine

the validity of a sequence of interacting operations because the user

expressed relationships between processes are not meaningful to it.

The idea of multi-level systems is discussed more fully in (Ver

77) and (And 78), both of which relate closely to the work described

in (Dij 68b). However for the purposes of this thesis we need only

be concerned with the topmost two levels 'of the system and the

interface that lies between them. We shall call the higher the USER

level, and the lower the INTERPRETER level . The interpreter level

will be assumed to provide COMPLETE RECOVERABILITY to the user, that

is every type provided by it is RECOVERABLE. This means that should

an error arise in the user level (either detected by the interpreter

or explicitly signalled by a program) the interpreter guarantees to

be able to restore the states of objects of any type which have been

PAGE 60

altered to those pertaining at some previous user specified point in

the execution of the program. Always assuming that the user has

actually made use of the facility to indicate such points. If an

interface does not provide complete recovery for every type it is

said to be PARTIALLY RECOVERABLE. These are fully discussed in (Ver

77) and will not be considered further here.

Anderson et al (And 78) have introduced the concept of

INTERPRETER EXTENSIONS to describe programs that provide users \vith

new abstract types in addition to those supported by an existing

interpreter. They have described two types - DISJOINT and INCLUSIVE,

the difference between them being that in the former, recovery

information for the new types is held by the program providing the

extension, and in the latter this is held by the programs using the

extended facilities. However, for the purposes of this thesis the

use of interpreter extensions, and the pr~blems this introduces, need

not concern us and it will be assumed that the interface seen by a

user is not provided by an interpreter extension.

3.3 Specification~ uncooperative processes

Before embarking on the description of an interpreter to support

uncooperative processes we must first set out the facilities that we

intend it to provide the user. However we are not concerned with the

actual details of the language in which the user expresses his

programs. This topic is discussed briefly in section 3.9.1 and an

actual example described in 'section 3.9.2.1.

PAGE 61

There are five main features:-

1. Common resources should not be differentiated fron private

resources except by their declaration. This would mean,

firstly, that the user need not be aware of the need for

locking of resources, secondly that existing software, such

as library procedures , could be used just as well on cannon

resources as on private ones . Thirdly, that no program

module using common resources is dependent on another module

having been executed before it for the purpose of acquiring

the resources, making testing easier. Finally that the

system can easily hide the fact that some resources

available to the programmer are actually common rather than

private,

2. The user is always protected from the activities and errors

of other users,

3. In the event of an error being detected in a program,

causing it to fail, common resources that it was using will

be released and left in a consistent state,

4. It should be easy to make existing programs uncooperative,

S. The above facilities should not impair the efficiency of the

system and should be usable for real-time applications.

PAGE 62

These five are fully in accord with the characteristics required

of a programmer interface set out in section 2.1.4.

3.4 Recovery blocks and the recovery cache

As we have just seen, for the facilities of a completely

recoverable interface to be of any utility the user must indicate

certain points in his programs which can be regarded as checkpoints.

In chapter two we saw that this facility could be provided by t~e use

of RECOVERY BLOCKS supported by a RECOVERY CACHE, a scheme developed

by the highly reliable computing systems project at the University of

Newcastle upon Tyne. This has been described in (Hor 74) and (Ran

75), however as its use is so fundamental to the work developed in

this thesis its characteristics and operation will be set out here.

A recovery block consists of a set 'of ALTERNATES, which are

realisations of the algorithmn that the block is to implement, and an

ACCEPTANCE TEST, which is used to determine the validity, of the

results produced by the execution of an alternate. One of the

alternates is designated the PRIMARY and is always executed. Should

an error occur during its processing, or if the results it produces

do not pass the acceptance test, the program state is restored to

that existing just prior to the start of the recovery block and the

SECONDARY alternate is executed. This process is repeated until an

alternate executes successfully and passes the acceptance test or

until either no more alternates are available or a deadline

associated with the recovery block expires. If either of the latter

ENSURE <ATl> BY
nEG IN

~NSURE <AT2> BY
.tSEGIN

EN~URE <AT3> BY
.tSEGIN

END
ELSE BY
BEGIN

END
ELSE ERROR;

~ND

t;LSE BY
.BEGIN

END
t;LSE ERROR;

END
ELSE BY
BEGIN

~ND

ELSE ERROR;

• • • • • • • • • • (a)

• • • • • • • • • • (b)

• • • • • • • • • • (c)

• • • • • • • • • • (d)

• • • • • • • • • • (e)

• • • • • • • • • • (f)

Example Execution Sequences

a,b ,c
a,b,c,d
a,b,c,d,e
a,b,f

- no errors
- error at c
- errors at c and d
- error at b

t'ig. 3.1

PAGE 63

events takes place the recovery block is said to have FAILED and an

error is raised. Should the failing recovery block be nested within

another, the enclosing alternate is wound back and the process of

error recovery continues at its level. However if the error occurs

in an outermost recovery block the program containing it has failed

and no more recovery can take place. An event of this sort is

PAGE 64

designated a CATASTROPHE. Fig. 3.1 shows a typical nested recovery

block structure and how a typical execution may progress.

Some other points to note about recovery blocks are:

1. A primary alternate must always be present, but the presence

of other alternates is not mandatory,

l. Alternates need not be distinct, that is any alternate may

be RETRIED, the number of times that it is attempted being

specified by the user, an undefined number being permissible

only when the recovery block has a deadline associated with

it,

J. In the case of nested recovery blocks an expiring deadline

causes restoration to take place to the start of the block

enclosing the statements associated with the deadline,

rather than the block executing at the time - deadlines

cannot be extended and an enclosing deadline takes

precedence over those set up inside it.

The mechansism used to provide the state restoration required by

recovery blocks is the recovery cache which, as we have seen, is in

essence a device for providing an automatic audit trail by arranging

that when an operation takes place that alters the state of a

resource, its previous state is recorded before the update is carried

PAGE 65

out. This ensures that the effects of the operation can be undone

should an error occur. The advantages that the recovery cache has

over other audit trail mechanisms are that only the first state

change occuring to a resource in a recovery block is recorded, all

others being unnecessary for state restoration, and that only those

resources actually changed are entered into the cache. Let us now

look at the mechanism in detail to see how these are achieved.

The cache itself is a stack consisting of elements which are

either BARRIERS or records of a state change. Each time a recovery

block is entered a new barrier is created in the cache, and the

RECOVERY LEVEL is incremented. The barrier represents the point to

which state restoration takes place for this recovery level,

therefore by undoing all the state changes recorded after the barrier

was created the program state will be identical to that existing when

the barrier was created. The records of state change consist of

three elements - firstly a pointer to the resource which was altered,

then some representation of its state before it was altered and

thirdly a copy of the recovery level field associated with the

resource. Every object that can be cached has one of these fields

which is used to record the last level at which a state was cached

tor the object. It is this field that is used to prevent multiple

entries being made for a resource at any one recovery level. This is

achieved by comparing the recovery level field with the current

recovery level; if they are equal there is no need to cache the

item, otherwise the object is cached and the recovery field is

updated 'to contain the current level thus eliminating further

PAGE 66

cacheing. This has the additional advantage of allowing local

variables of a recovery block to escape being cached. their recovery

level fields being initialised to the value of the current recovery

level when they are created.

When an error occurs and the entries are restored as described

above. the operation is known as REJECTION. but if the recovery block

terminates successfully the cache must be ACCEPTED. This activity is

more complex than that of rejection because in order to maintain the

process's recoverability the record of state changes must be

cumulative. That is if a state change has taken place at level N to

a resource not cached at level N-1 the entry must be preserved in the

cache to allow level N-1 to recover fully. This occurence is.

however. easily detected because if an entry needs to be preserved

the value of its recovery level field stored in the cache will not be

the same as the recovery level enclosing ~he block which is being

processed. (Note that the barrier entry for a recovery block is

deleted when the block is accepted).

This description is of course of a cache for unshared resources.

and in the next section we shall show how this mechanism must be

altered to support shared resources.

3.5 A recovery cache scheme to support uncooperative processes

One characteristic of recovery blocks which only becomes

apparent when concurrency is required is that during the execution of

PAGE 67

an alternate the state changes made to resources are not committed.

Hence, if the resources in question are shared, other processes must

be prevented from using them until the alternate terminates

successfully. If this is not done processes may build up

dependencies upon each other which could be very complex and

therefore difficult to undo in the event of an error. In order to

avoid this every alternate must be atomic, therefore every shared

resource used within an alternate must be locked and cannot be

released until the alternate terminates. Thus any alternate of a

recovery block can be represented by an ATOMIC ACTION (see section

2.2.5), as has been suggested by Lomet (Lom 76a). Of course an

atomic action on its own is not equivalent to a recovery block for

its use carries no implication about the collection of recovery data,

so we shall introduce the concept of a RECOVERABLE ATOMIC ACTION.

This has all the properties of an atomic action, with the addition

that at any time before its termination .the action may be wound back

to its starting point, releasing all the resources acquired during

its execution without affecting the environment as seen by other

processes. The advantages to be obtained from the use of recoverable

atomic actions will become clear later. Suffice it to say here that

from now on any unqualified reference to an atomic action or simply

action will mean a recoverable atomic action, and that "recovery

block" may be substituted for any such reference without affecting

its meaning. Where a set of nested actions is intended we shall use

the terms "process" and "program", which will be taken to refer to

all the actions existing at a given instant. Now we shall examine

the requirements of a syste~ to support recoverable atomic actions.

PAGE 68

The properties such a system must possess are:-

1. A recovery cache to collect state restoration data,

l. The ability to recognise the use of shared variables and

place an appropriate lock before proceeding,

3. A book keeping scheme to record locks put on by an action,

which can be used to release locks for the current action

when an error occurs, but which will otherwise accumulate

all the locks placed until the end of the outermost action.

Inspection of the above shm-1s that properties two and three are

very similar to those of the recovery cache, though with respect to

lock status rather than "value". This suggests that it i s possible

to devise a cache mechanism which will handle both locking and state

saving and the rest of this section will be devoted to the

description of such a scheme. From now on we shall refer to the

scheme described in the previous section as the simple recovery

cache.

ln order that the simple recovery cache may operate, each

resource must have a recovery level field associated with it, and to

support atomic actions each shared resource must have a field in

which its lock status is recorded. However ANY resource may become

shared if a process forks into several sub-processes \-lhich share the

use of its private r e sources , s o every resourc e would ha ve to hav e a

PAGE 69

lock field as well as a recovery level field, which could mean an

unacceptably large storage overhead. The solution to this is to

combine the lock field and the recovery level field into a single

ATOMIC ACTION INDENTIFIER FIELD. The value in this field will be

such that

1. It will differentiate between different nested levels of

actions within a single process, just as the recovery level

does for nested recovery blocks.

l. It will allow the interpreter to determine, by inspection,

whether a particular process has access permission to the

resource to which the field is attached.

To achieve this it is necessary that every time an action is

entered a unique identifier be generated for it and to store, in a

area accessible to all processes and addressable using the generated

identifier, the identity of the process that initiated the action.

Similar requirements are needed for the identifiers used in

information protection schemes (Den 66, Sal 75) and, as in those

cases, they must be generated by the interpreter and not the user.

This is for several reasons :-

1. User generated names may not be distinct,

l. Actions may be entered recursively,

PAGE 70

J. The user may not identify the action (this occurs where

shared ato~ic actions are used- see chapter 4),

4. User generated names could be "forged" to obtain access to

resources \¥here none is allowed.

Assuming that these requirements have been met the operation of

the recovery cache will now be as follows :-

If the identifier field of a resource has the same value as the

identifier of the current action then proceed, (cf. recovery levels)

otherwise wait until either the process is a member of the set

of processes addressed by the identifier field or the field is null

(that is the resource is not locked), then perform the usual encache

operation (store the resource address, its state and its identifier

field and update the field to contain the

identifier).

current action's

This sequence, if used in the simple cache environMent, would

successfully handle updates, however it is also necessary to lock

common resources which are "read". Therefore operations that do this

must recognise when a coMmon resource is used and cache it if

necessary. Cacheing of ALL reads, shared and private alike, would

eliminate the need for this recognition (though it effectively takes

place in the memory management hardware anyway), but this would

presumably present unaccep'table overheads in terms of cache size.

PAGE 71

Fig. 3.2 shows various stages of cache growth for a simple process.

It is important to note how the cache acceptance algorithm developed

for the simple recovery cache guarantees that locks are accumulated

until the outermost action terminates. The rejection alg orithm also

guarantees that locks placed by an action are released when an error

occurs.

The size of the units which are cached we can term t he

GRANULARITY OF CACHEING and is simply related to the granularity of

locking for the system. It must never be greater than the

granularity of locking because the cache may then be recording data

which the process has no access to, which can cause interference

between processes if the cache has to be backed out. If the

granularity of locking is larger than the granularity of cacheing

extra action identifier fields will be needed to control the locking

of groups of resources. However as these . resources must all have

such fields in order to control their recovery this would seem to be

redundant, but it may provide advantages as far as preventing

deadlocks and reducing waiting times for resource requests. For

simplicity though we shall assume from now on that the granularities

are equal.

The scheme we have just described only caters for requests in

one lock mode (exclusive) but it can be adapted to implement the more

complex locking schemes as described in section 2.1.3. However it

must be remembered that as we are dealing with uncooperative

processe~ locks cannot he released (except in the case of error)

COH110N A, B,C :

TASK EXAMPLE;
L,M,N : ••.•••
BEGIN

ENSURE ••• BY
BEGIN

END

L := A;
B := :H;
ENSURE ••• BY
BEGIN

~ND

C := N;
H := B;

~LSE ERROR
L : = C;

ELSE ERROR;
END;

a) - IXJ

-- some shared variables

some local variables

.• • • • • • • . • • • . • .. • • • • • • . (a)

••••••••••••.•••••••••• (b)
••••••••••••••••••••••• (c)
.••••••••.••••••••••••• (d)

••• • •••• • ••• • • ••••• • ••• (e)
•.•••••.••••••••••••••• (f)

-- ••••••••••••••••••••••• (g)

-- •••••••••••••••••••••••• (h)

Cache States

Create a new barrier in the cache.

b) -

Cache/lock A as it is shared, update and cache local L.

c) -

Cache/lock B, but not ~ as access is a local read.

d) -

Another new barrier in the cache.

e) -

Cache/lock C, but not local N.

Fig. 3.2 •••

PAGE 72

PAGE 73

f) -

Cache B for this recovery level and updated local M.

g) -

Accept cache - maintain C and M from previous level.

h) -

Final cache acceptance - A, B and C are now released.

Fig. 3. 2

until the process terminates. They can only be made more binding.

The next section demonstrates this by giving the rules for

controlling locking when exclusive and shared read locks are

provided. The problem of deadlocks will be discussed in section 3.7.

3.6 Rules for providing! and SR locks

3.6.1 Non-Preemptive Systems -

Let us look first at the rules governing non-preemptive systems,

that is systems where processes may have different priorities

associated with them, but where a process of high priority cannot

"snatch" a resource from a process of lower priority which is using

it. However the queue of processes waiting to lock the resource

could be priority ordered, thus ensuring that a high priority process

will be delayed for as short. a time as possible. Fig. 3.3 shows the

RESOURCE
STATE

ACTION
KEQUEST

X LOCK
AT

PRIORITY
Pl

SR LOCK
AT

PRIORITY
Pl

FREE

APPLY X
AND

CONTINUE

APPLY SR
AND

CUN'l'lNUE

SR

LOCK
JW SANE

ACTION

CONVERT
TO

X LOCK
AND

CONTINUE

CmlTINUE

SR LOCK
BY

OTHER ACTION
AT

PRIORITY P2

P 1 >P 2 :
PRE-EHPT
APPLY X

AND
CONTI!'IUE

Pl<=P2 :
JOIN QUEUE

APPLY SR
AND

cONTINUE

SR LOCK BY
OTHER ACTIO~~

AND
SAI1E ACTION
PRIORITY P2

Pl>P2 :
PRE-EaPT

AND
CONVERT TO

X LOCK

Pl<=P2 :
JOIN QUEUE

CONTINUE

X LOCK
BY

SA}fE ACTION

CONTINUE

CONTINUE

* Note that here one may wish to wait to obtain the latest value.

J:<'ig. 3.3

X LOCK
~y

OTHER ACTION
AT

PRIORITY P2

Pl>P2 :
PRE-mWT
APPLY X

AND
CONTINUE

Pl<=P2 :
JOIN QUEUE

P l>P2
..

PRE-E~1PT

APPLY SR
AND

cONTINUE

Pl<=P2 :
JOIN QUEU£

"d
;:t>
C)
ttJ

......,

.1:-

PAGE 75

various combinations of lock request mode and the mode in which a

resource is actually locked with the operations needed to acquire the

resource. This diagram is related to a preemptive system, but if the

reader lets the priorites P1 and P2 be equal the rules for a

non-preemptive system will be obtained.

3.6.2 Preemptive System

In a normal preemptive system a process of high priority may

take a resource from a process of lower priority, halt that process,

save the state of the resource, use the resource, and then restore

its previous state, proceeding with its execution after reactivating

the halted process. This is akin to the concept of lending mentioned

in section 2.1.1, and assumes that the resource can be placed into

some defined initial state after saving its current state, but this

is a special case which \-till be dealt with in section 5.4 below.

Since in general such an assumption cannot be made preemption is not

often implemented, however as the system we are dealing with supports

recoverable atomic actions preemption can take place. This is done

by causing the action holding the resource in question to be wound

back, thus releasing the resource in ~ consistent state, allowing it

to be locked by the high priority process. There are several points

to be aware of here:-

1. Preemption is not an error condition so an action that is

backed out is restarted, if it is part of a recovery block

the next alternate is not taken,

PAGE 76

2. Deadlocks can only occur between processes of equal

priority, as the system behaves as if it were non-preemptive

in that case,

3. A special case arises when a process wishes to preempt a

resource which is held exclusively by another process. Here

the high priority process may wish to wait until the

resource is released in order to obtain its most recent

"value". This would seem to be advantageous, except where

the extra delay involved would prejudice the performance of

the process.

Fig. 3.3 shows the operations required for a preemptive system,

and assumes that the priority of an action is identical to that of

the process which initiated it. 'fhere the resource is not locked the

request may be granted immediately, and where the resource has

already been locked by the action (or one of its enclosing actions)

the same is true, though a conversion must take place when an X lock

is requested on a resource held in SR. The remaining cases arise

where the resource is already locked by other actions not enclosing

the requesting action. In all cases, if the lock request and actual

lock mode are compatible, the request is granted, but if this is not

the case preemption may be possible. To determine if this is so the

priority of the requesting action is compared with the maximum of the

priority of the actions currently holding the resource (excepting

itself should it be one of them). If it is greater, all the actions

are wound back and the requesting action proceeds, possibly

PAGE 77

performing a lock conversion fro~ SR to X in the process. Otherwise

the action must wait until its request can be granted.

Similar systems have been described by Gray et al (Gra 76) and

Chamberlin et al (Cha 74), the latter however restricting the places

where preemption can occur to preserve consistency (see section

3.10).

3.7 Deadlocks

3.7.1 Deadlock prevention and avoidance-

Methods for handling system deadlocks are usually classified

into three types after (Cof 71), these are:-

1. Deadlock prevention- the design of the system excludes, a

priori, the possibility of any deadlock occurring,

2. Deadlock avoidance - programs must predeclare the usage they

wish to make of shared resources. The system then analyses

these requests in the light of other outstanding requests,

and allows those programs whose requests are SAFE (that is

will not cause a deadlock) to proceed.

3. Deadlock detection and recovery - The system has the ability

to detect when a deadlock has or will occur, and to break

PAGE 78

the deadlock in some way.

Systems providing deadlock prevention usually rely on special

knowledge of the mix of programs they are to support, though many

systems described as preventing deadlocks do so by the use of

avoidance techniques. These techniques usually support STATIC

allocation of resources, that is all the resources that a user has

indicated he requires are given to him at the start of his program,

when his request is adjudged to be safe. This means that users may

have possession of resources for far longer than they actually need

them.

Habermann (Hab 69) has, however, developed an algorithm where

the user states the upper limit of his requirements, and is a llowed

to acquire resources dynamically as his program proceeds. However

this solution and that of Holt (Hol 72) are only designed for systems

providing ARBITRARY resources, that is where a user is constrained to

specifying the type of resource he requires rather than precisely

identifying a particular resource. Lomet (Lorn 76b) has developed an

algorithm, supporting both exclusive and shared read requests, which

overcomes this disadvantage and can be used in, what he terms,

UN IT-RESOURCE systems, such as those providing access to data bases.

This method still depends on the predeclaration and static allocation

of resources, and so cannot support programs whose requests fall into

the following categories:-

1. Non-unique resource·name where one resource may have

PAGE 79

several descriptions, which are not distinguishable,

2. Modifiable resource categories - where operations on the

resource can change its description,

J. Interdependent locks after locking one resource and

examining it a program may decide to lock another resource,

the identity of which depends on the results of the

examination.

To provide support for such requests a dynamic resource

allocation scheme must be adopted, and this requires that deadlocks

be detected and recovered from. Chamberlin et al (Cha 74) develop an

algorithm for this, which uses preemption of resources to break

deadlocks, but constrains the user as to the way in which requests

for resources are made (see section 3.10). This scheme possesses the

disadvantage that a process may be kept waiting indefinitely if its

resources are continually being preempted by other processes. This

is also a possibility with Habermann's method, and Holt (Hal 71) has

suggested associating a time limit with a resource request, after the

expiry of which, the request must be granted, Chamberlin et al use a

related solution with respect to preemption.

The implementation of recoverable atomic actions requires a

deadlock detection and recovery solution as they require a dynamic

resource allocation strategy to support requests of the types

described above. Recovery'can of course be provided by backing out

PAGE 80

one of the deadlocked actions, forcing it to release the resources it

holds, which will break the deadlock. However the deadlock must

first be detected, and we shall describe a method for this in the

next section.

3.7.2 Deadlock detection for recoverable atomic action-

Most of the deadlock detection algorithms mentioned in the

previous section are very complex. This is because they are usually

designed to handle multiple requests for specified resources classes

from a process and must delay the granting of the complete request

until it can be guaranteed that a deadlock will not occur. However

because the recovery cache mechanism can only operate on one resource

at a time, and it is the part of the system which issues lock

requests, the need to check multiple requests from a process is

eliminated and this allows the deadlock detection scheme used to be

very much simpler. There are two ways in which deadlocks can arise

when resources are being allocated and we shall now show these can be

detected.

The first deadlock is of the type known as the DEADLY EMBRACE

(Dij b~), and occurs when an action A attempts to lock a resource

held by another action, B, whose progress is BLOCKED by A. Such

blocking occurs either directly, when A (or one of its enclosing

actions) holds a resource required by B, or indirectly when A holds a

resource required by another action which directly or indirectly

blocks B. To detect this we shall introduce the concept of a

PAGE 81

BLOCKING GRAPH, which is maintained by the system and consists of

directed arcs indicating which action is blocking which others.

Hefore adding a new arc to the graph when a request is blocked the

graph is checked to see whether the addition of the arc would cause a

cycle to occur in it. If so a deadlock has been detected and

appropriate recovery action must be taken. Fig. 3.4 shows a set of

actions and their associated blocking graph at various stages in

their execution. This shows that the blocking graph exhibits the

tollowing properties:-

1. No action is represented more than once in the graph,

l. No action can block itself or an action nested within it,

3. No action can be blocked by more than one action,

4. The blocking graph can consist of several disjoint trees,

5. The number of directed arcs in a tree is always one less

than the number of actions in it, unless a deadlock occurs

in \>lhich case it equals the nunber of actions.

This last property could be used to provide a means of detecting

aeadlocks, however this can be done in other ways as we shall see in

section 3. ;}. Similar schemes can be devised for handling multiple

requests, tor example Lomet's (Lorn 76b) but are considerably more

complicated.

PAGE ~z

Cmtl-10N Q,K,S,T,U,V,v/ •••••

AC'l'lUN A; ACTiON ll; ACTiON C; AC'1'10N D; -- HLUCKING GRAPH

Q: =R;

,., : = •• ;

!'.;ND;

s: = •• ;

R: =. •; U: = •• ;

U: =H •• ;

t.ND; t;NO;

1 .. - . . - .. '

T: =U •• ; --

t;ND;

C-40

where 1 indicates that a process is waiting.

fig 3.4

The second deadlock that can occur in recoverable atomic action

systems only arises where several lock modes are in use and actions

are allowed to convert the locks they hold from one mode to another

more binding mode. For example, where exclusive and shared read

locks are supported, a deadlock will arise when two or more processes

that have locked a resource in shared read mode wish to convert this

lock to an exclusive one. Only ONE process can be allowed to do this

so the system must resolve the situation. Two possible ways in which

this can be done both rely on the fact that lock requests must be

processed atomically. Firstly preemption of resources can be

introduced meaning that the first conversion request received will be

granted and cause all the other actions involved to be stopped,

effectively preventing the clashing requests from being made.

However if priorities are'in use preemption may not be permitted so

PAGE 83

the system must also incorporate the second method which is to make

all conversion requests after the first encountered (which may not

have yet been granted) illegal , causing the actions making them to be

recovered, which may allow the first conversion to be processed. Of

course, if priorities are supported, the first request may be

preempted by a later one causing the waiting request to become

invalid. The management of the recovery action for this and the

previous deadlock will be discussed in the next section.

3.7.3 Deadlock recovery management-

In the recoverable atomic action system the deadlocks we have

just described can only occur between two actions, because of the

atomicity of requests, and are resolved by backing out one of the

actions. This will release the resource being contended for and

allow the other action to proceed . However the question of which

action to back out must be given very careful consideration , the aim

at all times being to maximise throughput and minimise system

disruption .

Where actions have priorities attached the system will obviously

back out the action with the lowest priority, guaranteeing (barring

the incidence of program errors) that the action of highest priority

will be executed without ever being backed out, though actions of

lower priority could have been wound back several times. However for

actions of equal priority (or where there are no priorities) some

measure of ' the system disruption caused by backing out each of the

PAGE 84

actions involved is needed, the least disruptive atomic action being

wound back.

Several possible criteria present themselves, though some may be

viewed in different ways and the inherent non-determinism of the

system makes finding a perfect, general solution impossible. Let us

consider seven of the possibilities :

!. An action which is near termination should not be wound back

in favour of one which has just started execution - a

similar idea has been suggested in (Cof 71) and the

reasoning behind it is obvious. However actually putting it

into practice is hard because there is no surefire way of

gauging what proportion of an action has been executed.

Hethod 4, belol-1, may sometimes provide a means of doing

this, because an action accumulates locks as its execution

proceeds, but the success of this is highly dependent on the

way in which an action uses shared resources - some actions

may only acquire resources very near their end and others

may acquire all the resources they need when they begin.

Method 7 would provide a much better indicator, but requires

that deadlines are implemented,

2. The action which is blocking the larger number of other

actions should be backed out - this would be done in order

to increase the number of active processes in the system

and, thereby, hopefully, the throughput. The difficulty

PAGE 85

here is that the blocking graph does not indicate which

resources are being requested by the blocked actions and if

they are all in contention for the same one nothing has been

gained. Horeover increasing the number of active processes

in the system increases the number of actions \vhich may

deadlock, thus causing even more disruption in the system,

3. The action which is blocking the lesser number of other

actions should be backed out - this would ensure that the

action which is causing the greater bottleneck in the system

would be allowed to proceed bringing it nearer to

termination and its subsequent disappearance from the

system. This presents the opposite view to method 2,

4. The action which holds the lesser number of locks (possibly

including the locks held by its enclosing actions) should be

backed out - the reasoning being either similar to that of

method 1 or that of method 3,

5. The action which was blocked when the deadlock was

discovered should be wound back - this is based on the idea

that if the action which is progresssing is left alone it

will be brought nearer to its termination. The method also

has the advantage of being simple to implement as it does

not require extra information to be accumulated to aid the

decision process. It should also have a fairly consistent

.success rate which, is unaffected by the mix of processes in

PAGE 86

the system, a characteristic not shared by any of the above .

6. TtJhere deadlines are in force, the action '"hich has the

longest time left till its deadline expires should be wound

back - the reason behind this is obvious, and should prove

fairly successful because the relationship between the

length of a deadline and priority is very close (the shorter

the time, the higher the priority), as is shown by the

discussion in (Lie 80).

7. Again, where deadlines are being used, the length of time

left in a deadline be taken as a measure of how near

comple t ion an action is, winding back the one which has

progressed the least - this is another realisation of method

1 and, to be accurate, the comparison must be based on the

proportion of the whole deadline period which is left to be

executed rather than on the times themselves as in method 6.

This should prove very effective , but of course deadlines

may not necessarily have been used or even be supported.

Of these methods only number five can be guaranteed to function

in every case. With all the others there is the possibility that the

two quantities being compared are equal, in '"hich case a decision

cannot be made. For this reason method five was chosen for the

experimental system described in section 3.9.2, and it was through

its use that the problem described in the next section was

discovered.

PAGE 87

Another question which must be considered regarding the

management of deadlock recovery is ~o~hether or not a deadlock is

regarded as an error, that is, whether or not the next alternate of a

recovery block should be executed when a deadlock occurs in an

alternate and it is wound back. The answer must of course be no,

because the deadlock was in effect caused by the supporting system

scheduling the concurrent processes incorrectly and hence the error

lies in the interpreter level rather than the user level. What must

be done instead is that the backed out action should be retried.

Note that the deadlock which caused recovery to take place cannot

take place in the same way, because the two resources being contended

for are now held by a single action.

3.7.4 A possible infinite loop in the deadlock recovery mechanism-

Fig. 3.5. shows part of a program involving three processes of

equal priority each trying to use some conmon variables. Under

certain timing conditions, when supported by the system described

above using method five of the previous section to break deadlocks, a

race condition arises ,.,here actions Al, A2 and A3 are repeatedly

backed out and no progress is made. Programs exhibiting similar

characteristics could also be constructed for the other methods we

have described, except for those involving deadlines, where

conditions are inherently unrepeatable. Fig . 3.6a shows an execution

sequence which will cause the race to occur, and though the

probability of such a sequence happening compared with other possible

execution · flows is low, a so!"ution must be found, as, inevitably, the

PAGE 88

sequence will arise at some time.

Cut-lttON A, B, C, D, E, F : INT ;

ACTION Al; ACTION A2; ACTION A3;

P(A, B,C,D); R(E,D , C,F); S(F,D , B,A);

El'.'D; END; END;

Fig. 3 . 5

The main characteristic of this loop is that the actions are

backed out in the same sequence every time. That is Al, then A2 then

AJ and so on, so what is needed, therefore, is some way of breaking

this ordering which will cause the loop to be broken. This is

achieved by giving each action a priority , if they do not have them

a lready, and then incrementing the priority of the action \-lhich is

not backed out when a deadlock occurs. The effect of this being that

the actions will now have different priorities so future deadlocks

will be broken on this basis rather than any other. Fig. 3 . 6b shows

how the execution flow in fig. 3.6a is affected by the use of this

algorithm. Incrementing priorities also has the . advantage that at

least one process will pass through the system without ever being

wound back.

Al A2 AJ

LOCK A LOCK E LOCK F

LOCK B LOCK D LOCKE

LOCK C LOCK C

LOCK D

WIND BACK LOCK F

LOCK A IHND BACK LOCK B

LOCK B LOCK E

LOCK A

HI ND BACK

LOCK C LOCK D LOCK F

LOCK C LOCK E

etc .

(a)

Al A2 A3

LOCK A LOCK E LOCK F

LOCK B LOCK D LOCK E

LOCK C LOC K C

LOCK D

HIND BACK LOCK F

LOCK A END WIND BACK

BLOCKI~G GRAPH

A2~AJ

Al~A2-'>-A3

A~2-A3
~

A2-+A3

A~l
~
A~l

Al--A2-4-A3

BLOCKING GRAPH

Al-+A2-+AJ

~
Al-+A2--A3

A2--A3

only two processes remain, and hence will tenninate.

(b)

Fig. 3. 6

PAGE 89

PAGE 90

3.8 Synchronisation with external events

3.8.1 The AWAIT statement-

The provision of a facility allowing synchronisation with

external events requires that a process must be able to delay its

progress until some condition involving shared resources becomes

true. This is normally implemented by some form of "busy waiting"

where the synchronisation condition is repeatedly evaluated until it

becomes true. However, as this requires the shared resources to be

locked for the duration of the evaluation and then unlocked, if the

result is false, to enable other processes to set up the desired

state, busy waiting cannot be implemented inside an atomic action.

The programmer must therefore be provided with an operation which

will allow him to specify synchronisation without violating the

atomicity of his process. Lomet (Lom 76a) has introduced the AWAIT

statement for this purpose, with which the programmer specifies the

condition he requires to be true and the interpreter level delays his

process until the condition is satisfied. Execution of the process

is then allowed to proceed, the resources involved in the condition

having been locked. Best (Bes 79) has raised some doubt about

whether atomicity can be implemented where AWAIT statements are used

inside atomic actions, basing his comments on an analysis using

occurrence graphs. He suggests that the interaction between

processes implied by the use of synchronisation violates the criteria

for atomicity. However from the programmer's point of view this is

not so, because his program 'does not "see" the processes which make

PAGE 91

the synchronisation condition become true, even though a theoretical

analysis of it shows that interaction has taken place. We shall

therefore proceed under the assumption that the use of the AWAIT

statement is valid, though future work may show this to be false.

In order to simplify the implementation of the AWAIT statement

Lomet has suggested that the conditions attached to them are built up

only of what he calls SYNCHRONISING VARIABLES. These are in essence

shared booleans which can be set to true to signal that some event

has taken place. This helps the system because it then knows which

variables can occur in AWAIT statements, allowing them to be provided

in a way that makes the process of waiting more efficient. However

even if general conditions are allowed the interpreter can minimise

the number of times the synchronising condition has to be evaluated

because :-

1. The condition cannot be evaluated until the resources

involved are accessible to the action executing the AWAIT,

so the system can use its own locking information to

determine when it is worth attempting an evaluation,

2. If the condition evaluates to false it need not be evaluated

again until some other action has used one of the resources

involved in it; when that action releases the resource then

the condition may be re-evaluated.

PAGE 92

There are two error conditions involving the A~-IAIT statement

which are worth mentioning here. The first is \.Then the synchronising

condition will never become true and we have seen that the prog rammer

must provide a deadline to overcome this type of error. However the

second error can be detected by the interpreter and occurs when the

programmer uses a resource that has already been locked by his

process as part of a synchronising condition. If the value of this

resource does not affect the result of evaluation of the condition

t here is no error, hmo~ever if the state of the resource is such that

it renders the condition false an error must be raised. This is

because the resource state will never be changed as it is locked by

the waiting process, so the AWAIT would never terminate . The

interpreter level c a n detect this situation fairly easily by

examining its lock information, however we shall see in chapter four

that there are circumstances where this type of condition is not

erroneous and is in fact very useful.

3.8.2 Eval uation of synchronisation conditions

Apart fron the error condition described above, there are other

difficulties with the A~-IAIT statement, as described by Lomet. The

first concerns the order of evaluation of expressions. Obviously the

condition "A & B" must be fully evaluated to be true but "A v B" need

not, provided A is true . However, if the condition were not

completely evaluated, B would not be locked after the A\·1AIT

statement, and, though this is not a source of error (if the user

examines B it will be locked and if he makes an assumption about B' s

PAGE 93

value then his program is wrong), it would seem to be against the

spirit of atomic actions. We shall therefore state that A'-IAIT

conditions are fully evaluated.

AWAIT
BEGIN

'-/HEN A

AWAIT A OR B THEN
BEGIN

END;

Both A and B will be locked when
this statement is executed

(a) a simple A\lAIT statement

-> BEGIN •• • END; A will be locked
~1HtN B OR C -> BEGIN ••• END; B and C will be locked
WHEN D AND E -> BEGIN •• • END; D and E will be

END;
at this point only those resources used in t he

-- selected statement and its guard will be locked

(b) a guarded AHAIT statement

Fig. 3. 7

locked

The second difficulty with the AWAIT s'tatement is that it does

not support non-determinacy. That is, an action cannot detect one of

a set of events without preventing other processes from detecting one

of the others, and for this purpose we shall introduce the guarded

AWAIT statement, in analogy to Dijkstra ' s guarded commands (Dij 75).

An example is shown in fig. 3.7. Here the system delays execution of

the action containing the statement, until ONE of the guard

conditions becomes true and then causes the statement block connected

with that guard to be executed. After the statement has terminated

only those com~on resources used in the guard and its statement block

will be locked, all the others used in the statement will be free.

The question of which guard is selec t ed if several become true at the

PAGE 94

same time will not be discussed here, as the general area of

"fairness" in non-deterministic systems is still a topic of debate,

there being a brief discussion of the topic in (Hoa 78).

3.9 Implementation of~ system supporting uncooperative processes

3.9.1 General considerations-

Section 3.3 has described the facilities that a language

interface to the system we have described should provide and we shall

first look at ways in which this interface can be realised. At the

simplest level, where the user is unaware of other processes and is

unconcerned about error recovery, the best solution is to surround

his program (whatever the language it is specified in) implicitly

with an atomic action and associate a deadline with the action. This

will ensure the safe use of all common resources, and will prevent

infinite loops, though of course it will not guarantee the

correctness of the program and its effects on the resources it uses.

In fact this is in effect the solution adopted by all the typical

small job, compile-and-go batch systems. such as \.JATFOR (Cre 78),

where only one job runs at a time (hence it is ato~ic), COQmon

resources (input device and output device) are "locked" for the

duration of the job and "released" if it fails, and a maximum

execution time limit is set for each job to catch loops and improve

turnaround. Such systems usually allow the user to control the

deadline .· for his job, within. certain defined limits, and also provide

PAGE 95

another feature which we have not considered previously. That is the

ability to control the amount of "use" a program makes of a resource.

Typically this is a limit on the number of pages of printed output

generated or cards punched. We shall look at this facility in

greater detail in section 5.4.4.

The more sophisticated user, who appreciates the complexity of

the system, will wish to have an interface which allows him to use

its full power. He will need a special language which provides

recovery blocks, deadlines, atomic actions and the AWAIT statement

and this may be constructed from the various language structures

already existing for these facilities (Lom 76a, And 75, Ran 75, HoC).

In section 3.10 we shall discuss the role that the language's

compiler can have in increasing the efficiency of the system.

At the interpreter level considerati~n must be given to the

requirement for unique naming of actions identified in section 3.5.

Such names need only be unique for the existence of the actions they

refer to, and may be re-used at any time afterwards. The same

function is served in the simple recovery block scheme by the

recovery level, which is also unique at a given time but is re-used,

so the best general solution for uncooperative processes is to

maintain a record of the depth of nesting of atomic actions and

generate identifiers by combining this value with some representation

of the identity of the process in which the action occurs (but see

sec ton 4.3.1).

PAGE 96

~he next item to be considered must be the granularity of

locking/cacheing of the system, and for the purposes of this

discussion we shall assune that they are the same. There are two

trade offs which must be examined with respect to this, the first

being between concurrency and program size. This is because the

smaller the unit of locking for any structural resource the greater

the number of processes which can use its parts in parallel, but, as

each unit requires an action identifier field with it, the greater

the amount of space required to store lock data. As an example,

consider a system capable of supporting fifteen tasks each with a

maximum limit of fifteen nested actions. This would require eight

bits to represent all the possible unique identifiers (assuming that

all zeros indicate the unlocked state), and so, taking a byte

addressable main store as our resource, would require twice as much

store as was visible to the user to support locking at the level of

the byte. Of course, with the current trend in storage prices this

may not be unacceptable, especially where very high reliability is

needed and special purpose hardware is being built, but in an

interpretive system based on existing hardware limits on address

space could make such a store size impossible.

The second trade off is between concurrency and frequency of

deadlock, and has been discussed in section 2.1.2. The decision

taken must be based, firstly on the kind of processes to be run on

the sys tem (in some cases deadlocks may never occur no matter ~1at

the granularity of locking) and secondly on the cost of backing out

an action which will occur every time a dearllock arises. In the

PAGE 97

general case it would seem better to have a unit of locking larger

than the unit of addressing, though not so large as to prevent any

concurrency at all.

Section 3.7.3 has already discussed various criteria to be used

to determine which ator:lic action should be backed out when a deadlock

occurs between actions of equal priority. Consideration of this

indicates that a combination of method five with either method six or

seven would be best for a general system - the tests on deadlines

being carried out first. However special cases may allo\v special

solutions, the aim always being to minimise recovery activity. It

must also be remembered that the loop described in section 3.7.4 must

be prevented.

The final topic which we must look at is the way in which the

parallelism seen by the user is implemented at the interpreter level.

There are two options. Firstly each distinct process at the user

level could be implemented by a distinct process at the interpreter

level, all the processes having access to a common store, or secondly

a sequential interpreter could multi-program the processes at the

user level. Both schemes have their advantages and disadvantages.

In the first case scheduling of user processes is not a concern of

the interpreter as this will be handled by the level providing it

with parallelism, however the interpreter level must ensure the

atomicity of its operations on the common store. For the second case

the opposite is true atomicity is guaranteed as only one user

process is ever active at a given time, but a scheduling algorithm

PAGE 98

must be provided for the processes. Ultimately the choice of method

is dependent on the hardware and software that will underly the

interpreter. If multiple processors sharing common store are

available then they will be used, otherwise a sequential interpreter

is more likely, unless the levels below it provide adequate support

for parallelism. (Note here that uncooperative processes cannot be

implemented using processes which are themselves uncooperative as the

blocking graph needs to be accessible to all processes). The major

advantage that the use of multiple processors has is that when an

action is backed out because of a deadlock the processor time that

has been spent attempting to execute has not been wasted, because

with any other scheme the same amount of time would have been spent

waiting to acquire the resources in question.

The next section will briefly describe a trial implementation of

some of the ideas we have been discussing in this chapter and report

on the problems encountered.

3.9.2 Implementation~~ test system-

The system to be described below was implemented on the IBM

370/168 of the University of Newcastle upon Tyne, running under the

MTS operating system. Its purpose was to determine whether or not a

system of the type described above was feasible and was therefore not

implemented with considerations of efficiency in mind.

PAGE 99

3.9.2.1 The language interface-

The language interface to the system was provided using a

modified version of the concurrent PASCAL compiler designed for the

SOLO operating system (BrH 76). The compiler, due to Hartmann (Har

77), consisted of seven passes, and produced code designed to be run

on the interpreter that supports the SOLO system. Several new types

and statements were added to the language, whilst others, for example

any using the type REAL, were removed from it completely. The

compiler was also converted to assume a basic word length of

thirty-two bits rather than the sixteen that it was set up with.

The additions to the language were as follows :-

1. Atomic actions - These were provided at the procedure level

rather than by allowing any . statement block to be made

atomic. The keywords ACTION and AGENT being substituted for

PROCEDURE and FUNCTION to indicate that atomicity was

required. The body of an ACTION/AGENT could be of two

forms, the first provided the user with recovery blocks, its

syntax being :

ENSURE <acceptance test> BY

<statement block>

{ ELSE BY <statement block> };

The compiler adding a default call to ERROR after the last

, alternate. The ~econd form is a simple BEGIN ••• END block,

PAGE 100

which is translated into this recovery block:

ENSURE TRUE BY
BEGIN

END
ELSE ERROR;

~·ig. 3. 8 shows the form of code generated for a recovery

block consisting of a primary and a secondary alternate.

GOTO ALTl
ATST:

IF TRUE THEN GOTO EXIT
GOTO NEXT@

ALTl:NEXT:=@ALT2

GOTO ATST
ALT2:NEXT: =@ALT3

GOTO ATST
ALT3:ERROR

enter primary
acceptance test

test was successful
NEXT points to alternate
set up NEXT for secondary

body of primary

perform acceptance test

body of secondary

perform acceptance test
failure of recovery block

Fig. 3.8

l. The ERROR statement - when executed this statement caused an

error to be signalled and whatever recovery action was

possible to be initiated,

3. The RETRY statement - this statement could only occur as an

alternate of a recovery block (not the primary) and caused

the preceding alternate to be executed again.

4. The ASSERT statement - the syntax of this statement is

ASS~RT <condition>;

PAGE 101

and is equivalent to the statement

iF NOT <condition> THEN ERROR;

5. The PRIOR operation - this facility, also provided in the

system described in (And 76), is only allowed in the body of

an acceptance test and permits the user to access the

original value of a variable which has been stored in the

cache. If the variable was not cached during the action

which the acceptance test was attached to its current value

was returned. The preferred syntax for this operation would

have been of the form "V . PRIOR" making the prior operation

an attribute of every variable v. However due to

restrictions in the coopiler this had to be implemented as

"PRIOR V. "

6. The basic type SYNCHRONISING (or SYNC) - variables of this

type were exactly equivalent to booleans but had the extra

property of being allowed to appear in AHAIT statements.

7. The AHAIT statement - the version that was implemented was

highly restricted and constrained the user to \11aiting in a

single variable of type SYNC. The syntax of the statement

was

AWAIT <SYNC variable id>;

8. The basic type ALARH.- objects of type ALAR~1 provided the

PAGE 102

user with a form of deadline and had two operations

associated with them - A.enable(time) which "activated" A

and caused an error to be raised after "time" clock ticks

had passed, and, A.disable which stopped A and prevented it

trom raising an error.

Also if a user left a block which contained the

declaration of an ALARM variable, which was still enabled, a

warning was produced and the alarm disabled and deleted.

9. Shared atomic actions - these will be discussed in chapter

four.

These facilities provided enough power for some experiments in

the use of recoverable atomic actions to be carried out and we shall

review them in section 3.9.2.3.

3.9.2.2 Interpreter structure-

The interpreter for the language was, as was indicated above,

based on the inerpreter provided for use with the SOLO operating

system on the DEC PDP-11. Much of the interpreter was machine

dependent and several parts of it (such as input/output handlers)

were completely ignored. However the biggest difficulty encountered

in mounting the original interpreter on MTS was the need to convert

from sixteen bit words to thirty two bit words. The interpreter was

PAGE 103

a sequential program using a "round-robin" scheduling algorithm,

executing one instruction from each process in the run queue at a

time. The scheduling in the original SOLO version involved three

priority levels (processes in MONITOR'S, processes doing I/O and

others) and time slicing, however as the two highest priority levels

were irrelevant in the new system, and as the user could not attach

priorities to processes when they were specified, this method was

abandoned. The lack of priority structuring also constrained the

system to be non-preemptive and for system queues to use a FIFO

discipline. This had the advantage that no process could ever be

kept waiting for a resource indefinitely, other than as the result of

user error. The time slicing of the SOLO system was omitted (or at

least reduced to one clock "tick" per process) as this enabled

multi-processors to be modelled more closely. This had the effect of

increasing the interaction between the processes, thereby exercising

the systems capabilities more fully.

Only exclusive locking was supported and the granularity of

locking/cacheing was chosen as one word. This was done even though

the system allowed addressing to the byte level using the type CHAR,

because this reduced space requirements and as it was felt that

interactions at the level of adjacent bytes which would remain

independent were unlikely. Each process had its own data area,

including a cache whose size was set to be one quarter of the stack

area allocated for the process. The data space for the initial

process, which becomes the common area for all other processes, does

not contain a cache as the initial process was intended simply to

PAGE 104

CACHE CACHE CACHE

ACTION ACTION ACTION
ID ID ID

TAGS TAGS TAGS

STACK STACK STACK

l I

cmmo~

ACTION
ID

TAGS

C0Hl'10N
DATA

Hg. 3. 9

spmm the other processes and stop, its termination activating t he

rest of the system . Fig. 3.9 shows the data areas allocated and

fig. 3.10 shows the structure of a cache and its entries.

The scheme adopted for naming actions was less structured than

the one sugg ested in section 3.9.1 because of the need to support

shared atomic actions (see below). It consisted of restricting t he

user to sixty-three actions at any one time t h rougho ut his system,

each one having a data area allocated for it. When a new action was

required the array of data areas was searched until an unused one was

found and its index was used as the action identifier. Fig . 3.ll

shows the structure of an atomic action data area. One useful

simplification used throughout the system was to use process

identifiers rather than action identifiers when handling

TYPE BARRIER IS RECORD
LAST_BARRIER @BARRIER;
NEXT ALTRNTE LABEL;
ACCEPT TEST LABEL;
CURRENT ALT LABEL;

OLD SP
LAST ID

END;

ADDRESS
ACTION ID

TYPE DATA RECORD IS
VALUE
ULD ID
UHERE

END;

DATA;
ACTION_ID;
@DATA_ VALUE;

PAGE 105

enclosing action's barrier
address of next alternate

" " acceptance test
" " current alternate

(this allows retries)
saved value of stack pointer
name of enclosing action

saved value
saved action id tag
pointer to cached resource

CACHE : ARRAY [CACHE_SIZE) OF RECORD
CASE KIND : (BARRIER_ENTRY,DATA~NTRY)

VHEN BARRIER ENTRY -> B BARRIER;
\!HEN DATA ENTRY -> D : DATA_RECORD;

END
!::ND;

Fig. 3. 10

interactions, thus an action was not seen as preventing another

action from executing, but another process. This had two advantages,

the first being that, as the number of processes in a system was

normally considerably less than the nuMber of actions, a set (in the

PASCAL sense) of process identifiers could be represented in a much

smaller space. The second advantage was that the process identifier

not only stood for its current atomic action, but also for all the

actions enclosing it. This makes the implementation of the blocking

graph and subsequent deadlock detection very much easier. The

algorit~n used was as follows :-

1. Each atomic action had associated with it a queue of

processes whose progress was blocked by the action in

question having possession of a variable they required. The

identity of all these processes was recorded in a set

TYPE ACTION DATA IS RECORO
NA11E
MEMBERS

BLOCKING

WAITING

SHARED

ACTION_ID;
SET OF PROCESS_ID;

SET OF PROCESS_ID;

QUEUE OF PROCESS;

BOOLEAN;

PAGE 106

name of this action
identity of processes
that are in the action
identity of processes
that are blocked by
this action
processes waiting for
resources held by
this action
TRUE if this a shared

PRIORITY
END;

atomic action
(MIN_PRI. .HAX_PRI); -- priority of action

Fig. 3. 11

variable, which then effectively represented the directed

arcs in the blocking graph that linked this action to the

ones it was blocking .

2. When a new action was created its blocking set was

initialised with the value of that of its enclosing action's

blocking set, for it too was now blocking those processes.

3. W1en a request was made for a conmon variable and was

denied, the action (process) making the request had to join

the queue of actions (processes) waiting for the action

holding the variable to terminate, and have its identity

recorded in the blocking set . However before this could be

done safely, the intersection of the blocking set of the

action whose request was denied and the set of processes

that are members of the action blocking the request must be

taken. If the result of this calculation is not the empty

set a deadlock would arise if the requesting action joined

the queue, so recovery action must be taken.

PAGE 107

4. ~~en a process was allowed to join a wait queue its identity

was not only added to the blocking set of the action

immediately stopping it, but also to the blocking sets of

all its enclosing actions which are now effectively stopping

it as well.

5. When an action terminates its new blocking set was passed

back to its enclosing action and their wait queues

amalgamated, unless the action was the outermost, in which

case the wait queue can be released.

The deadlock detection part of this algorithm can be implemented

very efficiently on most computers. For its functioning on a system

supporting a maximum of 'p' processes and 'a' actions it only

requires '2pa' bits of data in total, there being two sets of size

'p' for each of the actions, where each bit in a set is taken to

represent a process. The test for a deadlock can be made by

performing a logical ' and ' between these sets, and testing for a zero

result (no deadlock). These operations are usually two of the

fastest in any machine's instruction set so this part of an

interpretive system can be made very small and fast.

\fuen a deadlock is detected by this method one of the actions

involved has to be backed out. \·fuich it was was decided by first

comparing the priority fields in the action data areas, and backing

out the action with the lowest priority. If the priorities were

equal, the halted action (note that an action identifier could always

PAGE 108

be determined from a process identifier) was backed out and the

priority of the other action was incremented. If the priority scheme

had not been used the race condition described in section 3.7.4 could

have occurred, and in fact the program shown in fig. 3.5 was used to

create this condition when the priority scheme was disabled.

The method used to implement the A\.JAIT statement was very

simple, and could be much improved. It simply cQnsisted of

maintaining a queue of processes that were waiting for synchronising

variables to come true, and whenever an action terminated, possibly

having altered the state of a synchronising variable, all the

processes on the queue were re-activated to retry their AWAIT

statements. The reason for such an inefficient implementation was

that the use of a synchronising variable within an action was

accomplished using the basic operations of the system. This meant

that any alterations to the variable were not explicitly detectable,

preventing the use of special queue's to eliminate busy waiting.

However if these alterations had taken place through the use of

instructions specific to that purpose, such a scheme could have been

implemented, but limitations in the basic compiler prevented the

generation of special instructions, so the above method was adopted.

\ve have now outlined the features of the support for recoverable

atomic actions, the recovery cache mechanism being implemented

exactly as described in section 3.5. All the basic operations of the

system were modified to include cacheing of operands, though their

function was not altered in a~yway. The only other feature added to

PAGE 109

the interpreter was the use of code checksums as described in section

2.3.4. These were built up during execution and compared with a

value computed at compile time whenever a transfer of control took

place. If the values were not identical an error was raised and

recovery initiated.

In the next section we shall describe the experience that was

had with the whole system, and evaluate its usefulness.

3.9.2.3 Experience with the system-

The system just described was tested with a wide range of simple

examples and in all cases was found to perform correctly. Testing

was concentrated on the use of nested recovery blocks and on the

deadlock detection/recovery mechanism, and one of the results of this

was the discovery of the race condition discussed in section 3.7.4.

However even though the system effectively demonstrated the

feasibility of using the mechanisms developed in this chapter, it was

not possible to use it to measure the overheads involved in their

support. There were several reasons for this .

Firstly the language interface proved to be inconvenient and

difficult to use for anything other than the simple test programs

mentioned above. This was not due to the features added to the

language, but was caused by the scope rules built into the Concurrent

PASCAL language which was used as a starting point. These restricted

procedure's to accessing either local variables or variables declared

PAGE 110

in their immediately enclosing blocks. This was done to simplify the

implementation of MONITOR's, whose correct functioning depends on

just such a limited scope, and means that any accessing done outside

these levels must use the parameter passing mechanism. However to

use atomic actions effectively access of this type must be done

frequently so very large numbers of parameters were required if

operations of any complexity were attempted. Concurrent PASCAL is

also not designed to allow the use of shared variables, again because

it is a MONITOR based language, and restrictions against their use

were built in to the compiler. It proved very difficult to eliminate

all these controls, because of the multi-pass nature of the compiler

and because no documentation describing the compiler was available

when the system was being developed. The result of this was that the

number of shared variables available to the programmer was severely

limited, and the development of any "real" programs was prevented.

The interpreter also gave rise to several problems. The main

difficulty, as regards performance measurement, was the lack of a

suitable yardstick with which it could be compared. The only

evaluation of performance that could be made was subjective, and,

from a user's point of view the response obtained from the system was

perfectly acceptable. Cache size measurements were hampered because

the restrictions imposed by the compiler meant that a suitable

cross-section of program types could not be tested. Nevertheless it

was noticeable that allocated cache sizes, based on process stack

space, were small (typically less than a hundred words) and cache

space was never exhausted d~ring any of the test runs.

PAGE 111

One piece of information which did arise from the investigation

was that the use of code checksums had a significant affect on code

size. Every control transfer (jumps and calls) had an extra memory

word with it to hold the compiler generated checksum for the straight

line code sequence preceding, and this was found to increase code

size by, on average, ten percent. The reason for this was the large

number of control transfers that occurred in programs written for the

system. These were generated because of the procedural mechanism

used to invoke atomic actions and because of the control structure

needed to support recovery blocks. Fig. 3.8 shows that where a

statement is replaced by a recovery block consisting of a primary and

secondary alternate an additional six control transfers are

introduced, not including those that may be contained in the bodies

of the alternates. This shows that the extra security provided by

the code verification may introduce an unacceptable storage overhead

especially considering that program size is considerably increased by

the presence of recovery blocks. On machines with a large address

space this may not present a problem, but on many small computers

such overheads could be critical.

3.10 Efficiency of systems supporting recoverable atomic actions

As we have seen the test system did not provide much information

by which the efficiency of recoverable atomic actions could be

judged. However consideration of the various areas where performance

may be affected can allow us to judge how efficient such a system may

be. The recovery cache mechanism introduces overheads in terms of

PAGE 112

space and time. Section 3.9.1 has already discussed the storage

overhead due to the need for atomic action identifier fields with

every resource and indicated its relationship to the chosen

granularity of locking. However there is also the overhead

introduced by the cache that each process has. This topic has been

discussed in several previous papers (Wye 73, Ran 75, Ver 77) and the

conclusion has always been that the storage requirements for cacheing

would not be excessive, and experience with the system just described

has not contradicted this. Of course, these two overheads need not

affect the address space available to programs as the storage can be

provided in seperate memory. However, as we have seen, the use of

fault-tolerant programming techniques will increase program size.

The exact increase is difficult to estimate, as it depends on the

number of alternates used and the algorithms contained in them, but

it is obvious that program size could be doubled if every section of

code was provided with an alternate, and this could present problems.

Execution overheads fall into two classes those associated

with the evaluation of acceptance tests, and those incurred by every

instruction that loads or stores data. No data ' exists for the first

class, though Kim (Kim 76) has considered it important enough to

produce a design for a system that will execute acceptance tests in

parallel with their recovery blocks. However as the specification of

acceptance tests is still an area where much research remains to be

done very little can be said about it.

PAGE 113

Until recently very little information about the second class of

delay was available either, for all the implementations of the

recovery cache (And 76, Ver 77, Shr 79b) were in t erpretive and could

not take advantage of parallelism to increase t heir efficiency.

Shrivastara (Shr 7Sa) estimates that performance in his systems was

degraded by eleven per cent when only assignments were being cached,

but points out that his system was purely for experimental purposes

and he makes no attempt to estimate the improvement that hardware

support would provide. However such a hardware system has been

implemented by Lee et al (Lee 79) which can be added to a PDP-11

UNIBUS to provide cache support. Their estimate, based on an

analysis of PDP-11 bus activity is that performance would be de3raded

by eight per cent when their device was in operation but that this

could be improved to four per cent if destructive read out were used

in the mer:wry unit. Of course to support recoverable a tomic actions

operations that "read" cmamon resources must also be cached which

could add to the overhead. However such cacheing could be performed

completely in parallel with the operation performing the read, as the

value obtained will not be affected, so this overhead could be

eliminated . The problem with this is that access to the resource may

be denied in which case the operation must not proceed. Therefore

the lock check must be performed before continuing adding some delay

to each shared read, though if access is g r anted the ac tual cacheing,

should it b e necessary, can take place concurrently with the

operation. No reliable figures for the number of "read" references

made to shared resources seem to be available, so it is difficult to

estimate how large an overhead the checking will be . TJyeth (Wye 73)

PAGE 114

has analysed the references in a set of sequential programs and his

figures show that reads occur three times as frequently as \..rrites.

This suggests that the nunber of read accesses made to shared

resources will be fairly high, because the simplifierl interface to

resources provided by recoverable atomic actions will encourage

programmers to use them as they would private resources. Ove r heads

may therefore be quite high, and ultimately there is a trade off

between these inefficiencies and the simplicity and the

recoverability provided by the system . The general consensus of

opinion \..rould seem to be that where reliability is required such

overheads are acceptable.

The other area where questions of performance can be raised

concerns the dynamic locking of resources and the deadlocks that may

arise from it. The point is that processor time is wasted in

carrying out computations which are subsequently rolled back because

they reach a deadlock, when the use of a static allocation policy

would avoid this. There are several answers to this objection, the

first being that it is only true where parallelism is implemented

using mul ti-programning techniques. For if each process \..rere running

on its own processor the time spent carrying out abortive

computations would otherwise have been idle time spent waiting to

acquire resources. The use of dynanic locking can also eliminate

such waits altogether, because static deadlock detection does not

take into account the pattern in which resources are used by

processes and will often indicate the presence of a deadlock which

would not actually arise.

PAGE 115

Another argunent for dynamic resource locking is that it is the

only way to support run time resource add r ess conputation and

synchronisation using shared resources. So if these facilities are

needed, deadlocks, and their associated recovery, must be accepted as

a necessary evil. The counter argument that a preemption scheme such

as the one described in (Cha 74) t·muld provide the same support

without the need to roll back computation is weak . For, i n order

that consistency be maintained, preemption can only t ake place at

certain "safe points". Chamberlin et al organise this by

constraining the user to nakine all resource requests within to~hat

they call a SIEZE block , in which no computation other than resource

specification can take place. This restriction ensures that no

dependencies on values are built up in a SIEZE block, so preemption

of resources can take place whilst it is being processed. However

when a SEIZE block terminates the process cannot he preempted and no

other SEIZE block can be executed till all the resources acquired in

the first block have been released together. If the user is not to

be restricted in such a fashion then some way must be provided for

the results of computations to be undone autonatically and this can

only be achieved by a system providing the kind of support that we

have described in this chilpter. The decision as to \o~hether the

advantaees given by the use of dynamic allocation outway the

disadvantages brought by the mechanisms needed to support it must

depend on circumstances, but in many cases it is certainly the case

that they will. It would of course be possib l e to use a compromise

method which involved some dynamic and some static locking, for

example dynamic locking of conditionally acquired resources, static

PAGE 116

for those known to be needed, though some modification to the cache

algorithm would be required.

3.11 Conclusion

Section 3.3 listed the features that it was hoped a system

incorporating the mechanisms described above would possess so in

conclusion let use see whether these features are in fact provided by

it.

The first requirement was that the only difference between

common resources and private ones that the programmer saw was in

their declaration. This implies that the location of a resource must

supply the system wit~ enough information to be able to determine the

way in which it should be treated, and, as we have seen , the modified

recovery cache mechanism makes this possible. The action i den tifier

field associated with each resource contains enough information to

indicate whether a resource is available or whether the action

r equesting it must wait. This field is located solely using the

resource address. In fact "read" operations are the only ones which

need to know whether a given address refers to a shared area, so that

the amount of cacheine can be minimised. Another advantage of the

mechanism from the user's point of view is that a resource which is

private to a process can be shared by any sub-process it spa~o~ns

without additonal overheads. This is because the position of its

declaration in the structure of his program ensures that its address

will be in a shared area when the sub-processes are in existance.

PAGE 117

The second requirement was protection from the activities and

errors of other users and the locking, recovery and deadlock

detection mechanisms developed certainly fulfil this. They also meet

the third require~aent which is essentially that the user is protected

from his own run-time errors, as does his ability to use recovery

blocks if he so wishes.

A simple method of making existing programs uncooperative was

the fourth requirement. Section 3. 9.1 shm.red how this can be done by

enclosing a program in an atonic action, though this will not work

for a program composed of several uncooperative transactions . In the

latter case additional control structures would have to be added to

the program, which could in fact be difficult if it were written

badly or in an unstructured language such as FORTRAN , so the system

does not fully meet this requirement.

The last feature wanted was that the efficiency of the system

should not be impaired by the facilities provided, and that it should

be usable for real time applications. He have discussed the

efficiency of the system that has been developed in the previous

section and seen that some de~radation of performance is unavoidable,

though it would appear that this is not as severe as might be

expected. However a full hardware realisation of t he mechanisms

would be needed to evaluate performance, especially if real-time

support is envisaged. One important point to remember here is that,

as far as software fault tolerance goes, the use of recovery blocks

in some shape or form is the only technique developed so far that can

PAGI:: 118

be described as successful. This entails the pr ovision of a recovery

cache to support them, so programmers seeking reliability will have

to have a cache in their system , whether it degrades peformance or

not.

In general, t hen, we can see that by combining the basic

operation of locking with the activity of collecting error recovery

information, we have produced a system which enables the programmer

to use shared resources safely without recourse to their explicit

acquistion. Not only that, the mechanism involved is simple and

could be incorporated into existing systems with little difficulty,

though performance will be degraded. However as it stands the system

\'1ill not allm'1 processes to communicate with each other and to make

use of resources and then release them immediately. The succeeding

chapters will attempt to show how these facilities may be built upon

the basic mechanisms described above.

PAGE 119

4.0 Closely Cooperative Processes

4.1 Introduction

In this chapter we shall expand the concept of the ato~ic action

to allow an action to contain several concurrently executed paths,

rather than just one, creating what Lomet calls a SHARED ATOtliC

ACTION. This structure possesses the important property that

resources locked within a shared action, are usable by ALL the paths

within the action, whilst their uses of them appear atomic to other

processes not involved in the action. This means that the processes

executing the paths of the action may communicate freely with each

other by using these resources, and this makes them closely

cooperative as defined in section 1.2. Any of the processes involved

in a shared action may use a resource exclusively by carrying out

their operations on it within a nested action, shared or unshared,

but on the sub-action's termination the ownership of the resource

reverts to the enclosing shared action and thus to all the processes

involved in it. As it stands this structure is not recoverable

because processes may leave the shared action at any time, thereby

committing the results of their operations before other, possibly

dependent, processes have terminated. To overcome this we shall

apply the rules developed by Randell for "conversations" (Ran 75) and

by Davis for "Spheres of Control" (Dav 73). Applied to shared atomic

action, these are :-

1. ·No process may leav·e an action (that is commit its results)

PAGE 120

until all the other processes involved in the action have

succesfully executed their respective paths through the

action and are ready to leave themselves (the processes are

coupled).

2. If an error occurs in the execution of one of the paths

through a shared action at a point where there is no nesting

of actions \vithin it, all the paths must be wound back.

These two rules make shared actions recoverable, and, because of

the restrictions they impose, simplify the system needed to support

such recoverability. The basic requirements for supporting shared

actions are identical to those for unshared actions and this should

allow us to use the modified recovery cache scheme to support them.

However this cannot be achieved simply by allowing an action to have

more than one member process, because the question of where resources

are cached must be answered. In the system supporting unshared

actions each process must have its own cache, and, as unshared

actions can be nested within shared actions, each of the processes

executing within an action must also have its own cache. If this is

done no additional facilities are needed in the recovery cache

mechanism. For when a process in a shared action first uses a

resource which has not been used previously by any other member of

the action, it will cache the resource and update its action

identifier field to contain the name of the shared action. This

means that all the other processes will "see" the resource as having

already b~en locked should ttiey cone to use it, and so will not cache

PAGJ: 121

p Q l{

::,Al

Al

A.L

t a)

(b)

(C)

(d)

.t:;rror at (a) - back out SA2 , taking with it A2.

Error at (b) back out A2, pr ocess p is unaffected.

Error at (c) - back out Al, processes P and Q unaffected.

Error at (d) - back out SAl , taking with it SA2.

Fig . 4.1

PAGE 122

it. However this does not impair recoverability, because the second

rule given above ensures that all caches are processed on an error so

the resource will be restored correctly no matter how many of the

processes involved have used it. Naturally this fact does not

preclude special methods being applied to cachein~ of resources

within shared actions, but they \Wuld not bear the direct

relationship with unshared actions that this one does. Section 4.3.1

will show other advantages that this scheme possesses.

The error handling mechanisms of the system must also be

extended to cope with shared actions, as they must now be able to

initiate recovery action in each of the menber processes. Note that,

as with deadlines, this ~ay require several layers of nesting to be

backed out if nested actions have been used. Fig. 4.1 shows a

typical shared action structure, and indicates the ways in which

recovery can take place within it. Later in this chapter we shall

look at more specific points concerning the inplementation of shared

actions, but before that we must examine the kind of interface that

is to be provided for the programmer when he wishes to use shared

action.

PAGE 123

4.2 Specification~ shared atomic actions

4.2.1 Sub-processes and co-existing processes-

Because of the restrictions on the ways in lolhich atomic actions

may be nested it is not possible for a set of processes \vhose access

rights are not identical to enter a shared atomic action together.

In fact there are only two ways in which shared atomic actions can

come into existence :-

1. By a single process forking into a set of sub-processes,

which either consitute a shared action in their own right or

EXPAND the action in which the fork operation occurs into a

shared action.

2. By a se t of processes within the same shared action forming

a nested shared action (note that this also includes the

case of a set of processes, none of which are members of any

action).

Representation of the first case is very simple any of the

existing notations used for parallel statements beine adequate, for

example Dijkstra's PARBEGIN and PAREND (Dij 68a). If the user wishes

to create a new action he need only prefix the statement with the

attribute SHARED to indicate this. Omitting this will cause the

membership of the action. within which the statement occurs to be

ACTION OUTER;
BEGH

PARBEGIN 0 0 0 I 0 0 0 I 0 • 0 END;

END;

(a) expansion of OUTER from unshared to shared

ACTION OUTER;
BEGIN

SHARED A2 -- name sub action A2
PARBEGIN 0 0 0 I 0 0 0 I 0 0 0 END;

END;

PAGE 124

(b) creation of a shared action inside an unshared action

Fig. 4.2

increased to include all the subprocesses, possibly turning an

unshared action into a shared action. Fig. 4.2 shows an example of

each case. There are two special points to make here. Firstly this

is the case, referred to in section f.S, where actions are created

without user specified nanes, and secondly sub-process members of

actions are allowed to terminate before the proper termination of an

action, because their separate control streams rejoin into a single

stream \-lhich must obey the termination rules.

The second case requires a different approach because of the

need to bring disjointly specified processes together. The most

structured method of doing this is to use a modified version of the

SIHULA CLASS specification (Bir 73), where each procedure entry

defines one of the execution paths within the shared action. In

order to enter the action a process simply calls one of the

PAGE 125

procedures. However, before control is returned on its successful

completion, all the other parallel paths through the action must also

have been executed without error. Unfortunately the situation is

more complex than this because the system must at least know how many

processes are needed to form the action , in order to determine when

all the paths have been processed or when the action may start, if

synchronisation between processes before com~encement is required.

Three possible ways of overco~ing this difficulty suggest themselves

:-

1. The user must define the valid groupings of processes \vhich

can form shared actions , thus indicating memberships as well

as the number of members,

2. Each process entering a shared action must do so through a

different entry, and all entries must be used - then the

number of entries equals the number of paths in the action,

3. The system records the identities of the processes that have

entered the action and of those which have completed the

entry they called, and when the two sets are identical the

action is adjudged to have terminated.

All these solutions present difficulties of varying magnitude,

either to the system or to the user. The third method is very simple

and requires no extra information from the user , but the system

cannot guarantee that when ·a process enters a shared action it will

PAGE 126

be sharing with the processes the user expects. This is because

scheduling is essentially non-deterministic and even the number of

processes in the action cannot be guaranteed. The only ~•ay to solve

this is for the user to include his own code which will ensure that

the correct processes cor.:te together, for example by including some

synchronisation as the first stateQent of each entry.

The second method presents a similar problem in that, though the

system knows how r.:tany processes are needed, it does not knm• their

identities so cannot guarantee that the expected set of processes has

come together. The system also has the problem of interpreting what

is f\leant when the same entry is called at the same time by two

different processes is it an error, or is it two valid, seperate

attempts to initiate the same action? If the latter, which process

should be allowed into the action and which delayed? There is

however an even worse problem because, th~ough programmer error, the

system can deadlock. This arises when one or more entry calls do not

occur, hence the processes which are in the action ~\Till wait

indefinitely for termination. Simple ommision of a call statement

can cause this to happen, or incorrect ordering of calls to several

actions shared by non-disjoint sets of processes which can lead to

the situation where an action A, containing process P is waiting for

a call from process Q which is in action B, which is itself waiting

for a call from P. Unfortunately, because the system does not knm"'

the identity of the processes which a given action is waiting for the

error will only becone apparent when every process in the system

becones involved and all activity stops. In this case an error can

PACE 127

be raised in the action (if any) enclosing the deadlocked actions and

the process of recovery will break the deadlock. Hmvever, in the

general case, such detection is not possible and only the use of

deadlines can break the deadlocks that might arise.

The method '"hereby the user must declare which processes can

come together to form a shared action still has the same problem, but

because the system now knows which processes an action is waiting for

it can detect the deadlock and initiate recovery. The easiest way to

detect the deadlock is to build a blocking graph - a shared action,

one of whose members is needed by another action, being said to block

that action. \1hen a cycle occurs in the graph denoting the

relationship between actions, deadlock has been reached. However

this does not solve all the problems, because an ommitted call may

not cause a deadlock, and in that case will only be detected when the

process which should have given the call attempts to terminate or

leave the enclosing action if the shared action is nested. In the

latter case recovery action can be taken, but in the former it is

likely that commitment of the results of the incorrect process will

have taken place (especially if it consists of a sequence of

uncooperative transactions) and no recovery will be possible. A

partial solution to this would be for a compiler to check that a call

to the action was present in all the processes that make it up, but

the presence of conditional calls makes this approach unreliable.

It would seem, therefore, that some other abstract structure,

rather than the CLASS, must be used if complex patterns of action

PAGE 128

usage are to be supported. However the form it should take is not

obvious, though the use of a type of path expression to indicate at

conpile time the correct sequence that actions should be executed in

seems to be the most fruitful direction to take.

A final small point about shared actions, unrelated to the

question of deadlocks, is that where the paths through an action are

implemented as recovery blocks, all the blocks must have the same

number of alternates. Any other arrangement would be meaningless and

the check can easily be made at compile time.

4.2.2 Access to shared resources within shared actions -

When inside an unshared atomic action a process is fully

shielded from interference fron other processes, but inside a shared

atonic action, though protected from processes that are not part of

the action, there is no control over interaction with other member

processes. This can obviously lead the programmer into difficulties.

However it is this very lack of control that lends the concept of

shared actions its power, so any methods devised to protect the user

from erroneous interactions must not decrease the power available to

him. The simplest way to ensure that operations on resources conmon

to all processes in a shared action are performed correctly is to

enclose them in a nested unshared atomic action. This is the

approach adopted in the example described in section 4.4 and shown in

fig. 4.3. A compiler could easily enforce that this took place by

checking' that every access· to a shared resource took place within a

PAGE 129

unshared action. A similar check could be performed at run time if

this compile time enforcement was not possible.

Another method that can be used is for the progranmer to

synchronise the activities of the processes within the action so that

interference is eliminated. However this approach is highly error

prone relying as it does on t he correctness of the alg orithms used

and often on the programmer ' s assessment of the way in which t he

system will execute his processes. In fact the enforcement of

atonicity, as above, in no way prevents the prog ranmer from

constructing synchronised systems and will eliminate interference.

Where the synchronisation between the processes is correct the

protection given by the use of unshared actions will be redundant but

will mean that any recovery that has to take place will, in the first

instance, only involve the unshared action rather than the ~aole

action. This could represent a considerable improvement in

performance, especially where deadlock recovery is concerned.

'\IJe can see therefore that by restricting the use of s hared

resources to the bodies of unshared actions the problem of

interference can be eliminated. The power of shared actions is not

reduced comAunication and synchronisation between processes can

still take place, and some of the recovery overhead involved with

shared actions can be reduced. The user will have to add extra

control structure to his program, but the advantages obtained far

outweieh this disadvantage.

PAGE 130

4.3 Implementation

4.3.1 General considerations -

Many of the com.nents made in section 3.9.1 concerning the

implementation of unshared actions apply equally to shared actions.

However certain areas need further elucidation.

Firstly there is the question of naming shared actions. In

section 3.9.1 we suggested that names could be constructed for

actions from the process identifier and recovery depth of the process

involved but as there are several processes inside a shared action

this is not posible (though note that the recovery depths of

processes inside the same action, must be the same because of the

nesting rules for actions). If the process identifier/recovery depth

names are to be kept for unshared actions, the best solution is to

assign each shared action an identifier which can be used in the sane

way as the process identifier, this has the advantage that nested

shared actions can be referred to by the name of their outermost

enclosing action and their depth of nesting, thus reducing the number

of names required. However to implement this means either larger

storage overheads or more restrictions on the user - consider the

example given in section 3.9.1 of a system supporting a maximun of

tifteen processes, allowing fifteen nested levels of recovery. Out

of fifteen processes, seven outermost shared actions can be created

and to provide roon for these names in the action identifier field

requires an extra bit, which must be obtained either by extending the

PAGE 131

field by one bit, or reducing the depth of nesting permitted to seven

levels. This would give five bits for the process identifier giving

thirty-two names, which will alllow expansion to twenty processes and

the maximum ten shared actions possible with them. If more than

seven nesting levels are required and eight bits is the maximum space

available for identifier fields the number of processes allowed could

be reduced to ten, giving five shared actions possible - whichever

way is chosen depending on the programs that the system supports.

The problem with this sort of scheme, simple as it is to

implement, is that circumstances may arise where a new name cannot be

generated for an action even though many names are still unused. The

solution is to generate names from a pool rather than to build them

from the attributes of tasks. This, though still having an upper

limit on the number of names imposed by the size of the action

identifier field, allows for much greater .individual variation in the

structures and numbers of processes supported. This type of scheme

was adopted in the implementation described in section 3.9.2 where

only sixty-three names were available, and this limit was never

exceeded though nesting was often deep.

Cacheing is another area where differences arise between shared

and unshared actions, these being due to each process in a shared

action having its own cache. The result of this is that when a

resource is first used inside a shared action its recovery data is

recorded in the cache of the process which uses it, after this all

the other processes may use the resource but will not enter it into

PAGE 132

their caches, this of course being perfectly acceptable as ALL caches

must be processed on termination or backing out of an action so

recoverability is not impared. However in the case of a shared

action created out of sub-processes, on its termination all the data

in the individual caches which needs preserving must be merged into

the cache of the process '"hich spmmed them, which introduces

additional complexity, especially '"here the sub-processes acccept

their caches concurrently, and thus have to compete for t he use of

the parent cache. Of course if the system provided a c ommunal cache

for the share d action (though not for nested actions) this activity

would be much simpler, but competition would then be introduced every

time a cache operation had to be made. The only advantage a communal

cache would have is that the PRIOR opeation, described in section

3.9.2.1, could be provided for the acceptance tests of shared

actions. If separate caches are used the interpreter would have to

search the caches of all processes involv~d in the action to find the

value, which, whilst theoretically possible, would be impractical,

especially in distributed systems.

Synchronisation between processes in a shaied action also needs

examination, because the error described in section 3. 8.1 where and

unshared action waits for a condition involving a resource it has

locked, is not an error in a shared action, for other processes can

use the resource and make the condition true. Th is means that the

system can detect when a user has failed to set such a condition,

because if all the paths of a shared action have either fi n ished or

are waiting on a condition involving a resource locked by the action,

PAGE 133

then this error has occured.

In the next section we shall briefly describe how shared actions

were incorporated into the system described in section 3.9.2.

4.3.2 Actual implementation -

Many of the difficulties described in the preceding sections did

not arise in the trial system on ~1TS, simply because the language

interface to the system was so restricted. The case of shared

actions created by sub-processes could not arise as Concurrent Pascal

does not have facilities for sub-processes, and shared actions had to

be implemented using a CLASS structure with the third method of

control described in section 4.2.1, because the scope rules made it

impossible to define access rights using process identifiers. No

attempt was ~ade to enforce the rule that · common resources may only

be used inside unshared actions (to allow more experimental freedom),

but, because of the way in '..rhich the AHAIT statement was implemented,

(section 3.9.2.2) setting of SYNCHRONISING variables used between

processes in a shared action had to be done inside an unshared

action, so that the waiting process would be rescheduled and

re-evaluate its condition.

As far as deadlocks were concerned, a shared action was assigned

an initial priority equal to the number of processes involved in the

action, and this meant that if a deadlock arose there was less

likelihood of its having to be backed out. This device provides a

PAGE 134

simple measure of the cost of backing out an action and was found to

be very effective in reducine the amount of recovery activity during

a run. Deadlock detection using the blocking graph, is unaffected by

the use of shared actions, but the implementation of the graph using

blocking sets, means that when an action is blocking a resource

request from one of the processes inside a shared action it must be

regarded as blocking all the processes in the action rather than just

the one which issued the request. If this is not done it would be

possible for two processes within a shared action to deadlock each

other, one unable to terminate because the other is still executing

(albeit waiting) and so holding its locks, thus blocking other

actions, which in turn could be blocking the other process. This

means that membership of the blocking set of an action does not

necessarily imply that a process is waiting for a resource held by

the action, but rather that the termination of the action the process

is a member of is dependent on that of the -blocking action.

Altogether the implementation presented few problems, all of

which were solved by simple extensions of the methods used for

unshared actions. In the next section we shall look at an example to

show how shared actions can be used.

4.4 The Dining Philosophers problem

The problem of the Dining Philosophers, or spaghetti eaters as

they are sometimes known, was suggested by Dijkstra (Dij 72) and

involves five philosophers \~to alternately think and eat. When a

PAGE 135

philosopher becomes hungry he sits down at a table and picks up two

forks, one on either side of his plate, and eats. !-ImJever, there are

only five forks on the table, so if a philosopher is eating, neither

of his neighbours can eat . \-lhen a philosopher finishes eating he

puts down his forks and leaves the table. Therefore , if all five

philosophers try to eat at the sane time, each will pick up a fork,

and there will then be none left on the table, so no philosopher will

be able to make up a pair of forks and start eating. The problem is

to prevent this and thus to stop the philosophers starving.

Various solutions have been presented in the literature - using

semaphores in (Dij 72), critical regions in (HoA 72), communicating

sequential processes in HOA 78, distributed processes in (BrH 78) and

HONITOR's plus PORT's in (Shr 79a) - hmvever the approach taken to

solving the problem in every case requires the problem to be fully

analysed before the algorithm can be developed . Fig. 4. 3a sho,vs the

problem coded using shared atomic actions, implementing the dining

philosophers exactly as they are described in the problem

specification, and fig. 4.3b shows the execution flow and blocking

graphs of the '"'orst case, that is when the philosophers, having all

sat at the table at the same time, do not spend any time thinking

after finishing eating, but return at once to the table. After the

initial deadlock, which the system detects and breaks by forcing one

of the philosophers to return his fork to the table, each philosopher

then eats in turn and nobody starves. \fuen the philosophers start

thinking again the situation \vill becone more normal and two

philosoph~rs will be able to eat at the same time, the deadlock only

PAGE 136

occuring again should the five sit down to eat at exactly the same

time. Note that when this program is run on the test system

described above it is impossible for two philosophers to starve

another sitting between them, as in the solution given in (Brh 78).

This is because the way in which the queues of processes waiting to

lock resources are implemented ensures that requests are processed in

the order they occur.

This solution, however, does not support the kind of

recoverability provided by the use of PORT ' s as, even when each of

the atomic modules is made a recovery block, an error during a

philosopher's thinking phase will cause all the philosophers to be

rolled back, rather than just the one which failed, though errors

during eating will be handled on an individual basis. We shall

discuss the question of how such recoverability should be provided in

chapter five and a different solution ,for the dining philosophers '

problem will be presented in section 5.4.3.

PHILO

THINK
LOCK FO
LOCK Fl

I
I
I
I
I
I
I

END
THINK

TASK PHILS;
FORK: ARRAY [0 •• 4) OF BOOLEAN;
I: I NTEGER;
ACTION EAT (PHIL_NID1BER : 0 •• 4);
BEGIN

PAGE 137

FORK
FORK

PHIL_NUMBER) : = TRUE;
(PUIL_NUMBER + 1) REt1 5]

pick up forks
:= TRUE;

eating

FORK PHIL_NUXBER]:=FALSE; --put down fo r ks
FORK (PHIL_Nill1BER + 1) REM 5] :=FALSE;

END;

BEGIN
FOR I := 0 TO 4 DO

FORK [I] : = FALSE; initial values
SHARED PARBEGIN

DO BEGIN THINK
DO BEGIN THINK
DO BEGIN THINK
DO BEGIN THINK
DO BEGIN THINK

PAREND;
END;

EAT(O) END 10000 Tlt-1ES
EAT(l) END 10000 TIMES
EAT(2) END 10000 THIES
EAT(3) END 10000 THIES
EAT(4) END 10000 TIMES

(a) The Dining Philosophers ' problem

PH ILl PHIL2 PHIL3 PHIL4 BLOCKING GRAPH

THINK THINK THINK THI~K

LOCK Fl LOCK F2 LOCK F3 LOCK F4 ~
LOCK F2 LOCK F3 LOCK F4 LOCK FO P4-"P3 ~P2 ~p I.-PO

I I I BACK OUT P3-P2-+P1-PO
I I END LOCK F4 P3~P2-+P1-+PO
I I THINK I P2-+P 1--"PO
I END LOCK F3 LOCK FO P2~P1-4PO-+P4
I THINK I I Pl--PO -+P4

END LOCK F2 LOCK F4 I Pl~PO-+P4-+P3
THINK I I I PO-+P4-+P3

LOCK Fl LOCK F3 I I P0~4-P3-+P2
I I I I P4-+P3 -+.P2

etc . etc.

(b) Worst case execution flow.

Fig. 4 . 3

PAGE 138

4.5 Efficiency

The points raised in section 3.10 about the efficiency of the

mechanisms described in chapter three are all still relevant when

shared actions are implemented using them, but some additional

problems are introduced. The first has been mentioned in section

4.3.2 and is the need to back out and retry all the processes

involved in a shared action in the case of a deadlock. One reason

for this was described above, but it may be argued that this simply

brings to light an inadequacy in the deadlock detection mechanism,

and that some other method, perhaps using more information about the

resources that are being contended for, would allow individual

processes in a shared action to be retried when a deadlock arose.

However it must be remembered that the cache of a member of a shared

action, does not contain a record of those resources which it has

used after another member has locked them~ so backing out the process

on its own would not necessarily restore the system state correctly.

Also if the processes in the action have been communicating, backing

out an individual process would create inconsistent states, and so

would not have the desired effect. It is clear that we must accept

that all the processes have to be rolled back if one has to be.

Section 4.3.2 described a method for assigning action priorities

which reduces the risk of this havine to happen, however the

possibility cannot be ruled out altogether, and so this inefficiency

cannot be eliminated.

PAGE 139

The second area which needs to be mentioned is that of the

necessity for all the processes involved in a shared action to

terminate before cor:tmitment can take place, which may mean processes

having to wait until others finish. This must happen because of the

definition of recoverable shared atomic actions, however, if the time

spent waiting for termination can be minimised, the action will block

other actions for the least time. In order to achieve this all the

processes must enter the action at the same time. Then termiation

occurs when the longest individual path through the action finishes,

and in order to achieve this the processes must all synchronise

immediately before entry. Thus by shifting any excess waiting time

from the end of an action to its beginning we have reduced its effect

on the system. However, note that the system must know how many

processes are involved in an action for this to be done, so the

specification method used in the test system would not allow this to

be implemented.

Finally, synchronisation between processes in a shared action

using a resource local to the action means that the A'ivAIT statement

mechanism must now look for events signalled during the course of an

action, rather than checking when an action which may have flagged

them terminates. This means that the amount of "busy-waiting" in the

system may increase, thus reducing its efficiency. The use of

specially handled SYNCHRONISING variables would allow the system to

overcome this, but some overhead would still be felt, due to the

checking that would then be carried out each time a SYNCHRONISING

variable was used.

PAGE 140

4.6 Conclusion

We have now seen how shared atonic actions can be integrated

into the system supporting uncooperative processes, introducing the

capability for inter-process comnunication, "cooperative" resource

use (that is resources can be released befor committment) and

controlling the way in which recovery takes place amongst groups of

processes. However, for several reasons, these are only of limited

usefulness. Fistly inter-process communication is hard to control

and so increases the chance of programmer error, this being due to

the fact that the processes within a shared action are not protected

from each other Secondly, communication is still not general enough,

because it can only take place between the members of the shared

action, and not with any process.

The capability for releasing resources before final connittment

is more generally useful (as the example of the Dining Philosophers '

problem shows) and is easy to control, but the restricted set of

processes which can compete freely using it is again a disadvantage.

However, the example also highlights the weaknesses of the recovery

structure for, when the processes within an action only conpete or

communicate uni-directionally, recovery entails undoing large

quantities of correct work done by processes which have not failed.

Of course where bi-directional communication has taken place, or the

processes are mutually dependent in some other way, as in the case of

sub-processes, this type of recovery is exactly what is needed, and

shared atomic actions, if carefully used, can make their

PAGE 141

implementation easier. Nevertheless, in many cases, for example

where software modules are produced by programmers working

independently of each other, more general methods of interaction are

required and in the next chapter we shall show how these can be

provided.

PAGE 142

5. 0 Cooperative Processes

5.1 Introduction

The preceding chapters have described a system that can support

processes ,.,hose operations do not cause them to become dependent on

others. {--!here dependency is required, that is where processes

communicate, the programmer must encapsulate the processes in a

shared atomic action, making them appear as a single process to the

rest of the system. However, as we have seen, this structure has two

major disadvantages. Firstly because of the recovery structure

provicied, the processes are too closely coupled, introducing the

possibility of unnecessary recovery activity and excluding the use of

compensation mechanisms. Secondly, the coupling of the processes

means that fully asynchronous operations are impossible as all the

processes within a shared action must synchronise on termination.

This makes the implementation of certain kinds of systems inefficient

and clumsy, for example one where a process collects information from

a unknown number of other processes. In this chapter we shall

describe some additional program structures which will allow systems

like this to be constructed much more easily, whilst still being

recoverable. The techniques to be described below, in effect, allow

the support system to construct shared atomic actions, invisible to

the user, made up of the processes \¥hich are communicating. This

means that the rules of atomicity (Lom 76a) are not violated, and

also permits the system to eliminate unnecessary recovery activity,

as it has full knowledge of the way in which interactions have taken

PAGE 143

place. before describing these techniques, we must

investigate the type of interface a programmer should have in order

to construct such systems as the one mentioned above.

5.2 Programmer's Interface

The language interface that this thesis has developed to enable

programmers to access shared resources is very simple - using a

resource implies that it must be locked - and it is important that

this simplicity be maintained as far as possible for any new

structures. Bearing this in mind, there are t\VO facilities that the

programmer needs to be provided with :-

1. The ability to send a message to another process whose

identity may or may not be kno"m,

2. The ability to release certain resources when they are no

longer needed by the process, thereby increasing the amount

of concurrency possible

philosophers' forks).

(for example the dining

The first facility can be provided by the type of structures

used by Hoare (Hoa 78) and Brinch Hansen (BrH 78), where messages are

passed to either explicitly named processes or to one of an array of

processes, picked out by a dynamically computed index. This

construct does not allow a process to send a message to an unknown

PAGE 144

process, but this can be achieved by the use of BUFFER PROCESSES

acting as intermediaries. The second facility can also be provided

with this type of structure by using SERVICE PROCESSES, whose sole

function is to perform an opera t ion using some resource and return

the results of this operation to the process that requested the

service, thereby eliminating the need for the requestor to acquire

and release the resource. This has considerable advantages fror:1. the

point of view of program modularity, and hence software reliability,

as it means that certain frequent operations need only be coded once

and only one active copy need be kept in the system. Also, the

programmer need only know about the functional properties of the

resources so controlled, \.,.ithout having to know

structure, thus increasing the security of the system.

their exact

Hmvever, as we have seen in section 2. 2. 5 the synchronisation

between processes inherent in this kind of system can impair its

efficiency by reducing the level of concurrency and so the programmer

may require another type of interface uhich will allow asynchronous

communication. Hessage passing can be achieved by the support system

itself buffering messages sent by a process arid holding them until

they are requested by anothe r process. However, if messages must be

directed to named processes the programmer must still use buffer

processes to comMunicate with unknown processes, forcing him to

replicate a facility provided by the system. For this reason , it

would seem better to provide the user with buffers controlled by the

interpreter level so that processes need only kno,.,. the identity of a

buffer where messages can be found or deposited rather than tha t of

PAGE 145

the messages' source or recipient. Unfortunately, this introduces

the possibility of a process receiving a message not intended for it

and this can only be avoided by programmer discipline and careful

project management.

In many cases, however, the use of inter-task communication is

not really necessary, and \.;rill introduce considerable overheads. The

programmer must, therefore, be provided with some means of acquiring

and releasing certain types of resources fran within his processes,

without violating the rules of atomicity, and we shall looL at this

topic in more detail in section 5.4.2.

Let us nm.;r look at some ways in which the above requirements

could be realised, starting with a structure based on direct

communication between processes.

5.3 The HARSHAL

5 . 3.1 General Description-

In the next few sections we shall look at a possible method of

providing the programmer with the means to communicate between

processes and to control resource allocation, based on the idea of

"secretaries" and "directors", introduced by Dijkstra in (Dij 72).

The f10NITOR (Hoa 74) is the usual realisation of this concept, but,

as it is implemented using direct procedure calls on a shared object,

PAGE 146

requires that processes be able to lock and release resources during

the course of their executions, and, as we have seen, this violates

t he rules of atomicity and makes recovery difficult. It is possible

to devise a scheme whereby recoverability can be main tai ned in these

circumstances, but it either requires recovery i nfo r mation to be

distributed throughout the caches of all the processes that have used

a :mNITOR , which presents problems of ensuring that values are

restored correctly, or each MONITOR must have a cache associated with

it, to centralise recovery information. The latter alternative is

obviously preferable, but makes the MONITOR rather more than a data

object, so in order to make it fit in better with the structure of

the system \ve have developed, we shall in traduce the NARSHAL as a

type to take its place. A l!ARSHAL is a special process with its own

cache, the body of ~1ich, like a monitor, consists of several atomic

"entries" \vhich can be called by other processes, using the type of

remote procedure call described in (Br~ 78) and (Ich 79), which we

shall call a RENDEZVOUS. The MARSf~L itself controls which entries

can be called at a given time by GUARDS - an entry only being

accepted if the guard associated with it is true and, as for

MON ITORs , only one entry can be active at a ~iven time . The major

advantage that this structure has over the 110NITOR is that being an

autonomous process any resources used in the body of a MARSHAL are

locked by it, and are available to other processes through its

auspices, thus avoiding t he need for processes to l ock and unlock

resources. This is not the only advantage, for, if access to

resources is controlled by t1ARSHAL ' s, t hey do not need to be

available to all processes and each resource can be made local to the

PAGE 147

~~RSHAL controlling it, thereby reducing, and in some cases even

eliminating, the need for common areas in the system. Also, the way

in which access to entries is handled hides the queueing involved in

their use, unlike the method used in HONITOR's, leading to more

elegant algorithms.

The language structures used to define MARSHALs can take many

torms but all have four features in common:-

1. Specification of the entries, as they are to be seen by an

external user,

'1.. Declaration of resources local to the HARSHAL, but global to

all its entries,

3. A piece of code used to initialize the resources when the

HARSH.I\L is first initiated,

4. Specification of the bodies of the entries, and of the

guards controlling their activation.

Fig. 5.1 shmJs two ways that MARSHAL's could be specified, the

first being loosely based on the tasking structures in the ADA

language (Ich 79) and the second being more close to the CLASS

structure of MONITORs, each having its advantages and disadvantages,

and showing that the HARSHAL structure can be represented in

different' \Jays.

MARSHAL BB IS
ENTRY PUT (X : IN DATA);
ENTRY GET RETURNS DATA;

END;
UARSHAL BODY BB IS
ST : ARRAY [BUFFER_RANGE) OF DATA;
HEAD,TAIL : BUFFER_RANGE;
BEGIN

HEAD := BUFFER_HIN; TAIL := BUFFER_HIN;
LOOP

SELECT
WHEN HEAD <> TAIL

ACCEPT GET;
P : BUFFER_RANGE;
BEGIN

P := TAIL;
TAIL := (TAIL+1) MOD BUFFER_TOP;
RETURN ST[P]

END;
OR Y.J'HEN (HEAD+1) HOD BUFFER_TOP <> TAIL

ACCEPT PUT (X IN DATA) ;
BEGIN

ST[HEAD] := X;
HEAD := (HEAD+1) HOD BUFFER_TOP;

END;
END SELECT;

END LOOP;
END;

(a) Task notation for HARSHAL's

TYPE BB IS HARSHAL
ST : ARRAY [BUFFER_RANG.C] OF DATA;
HEAD,TAIL : BUFFER_RANGE;

\.THEN HEAD<>TAIL
ENTRY PROCEDURE GET RETURNS DATA;
P : BUFFER_RANGE;
BEGIN

P :=TAIL;
TAIL := (TAIL+1) HOD BUFFER_TOP;

END;
HHEN (HEAD+l) MOD BUFFER_TOP<>TAIL

ENTRY PROCEDURE PUT (X : IN DATA);
BEGIN

ST[HEAD) :=X;
HEAD := (HEAD+1) HOD BUFFER_TOP;

END;
BEGI~

HEAD: =BUFFER_MIN; TAIL: =BUFFER_:H'.\1;
E}JD;

(b) Class type notation for ~1ARSH.AL' s
'

Fig. 5. 1

PAGE 148

PAGE 149

However no matter what notation is chosen, the underlying support

mechanism for the ~1ARSHAL is the same, and we shall now turn our

attention to t hat .

p .Q. R

ACTION Al ACTION A2 ACTION A3 (1)
HB.PUT (2)

HB.PUT (3)
BB.GET (4)

ACTION A21 (.))

ACTION All (6)
HB.PUT (7)

BB . GET (8)
El\1) (9)

END (10)

llH.GET (11)

r.NU (12)
END (13)

END (14)

Fig . 5. 2

5 . 3.2 Special cache mechaniso for r~RSHAL 's -

Hhenever processes communicate dependencies are built upon

uncommitted data, and so, if an error arises, the system must have

recorded these relationships so that any atomic action that has used

erroneous data can be wound back. ~here communication is

uncontrolled, this can be very difficult, but the restrictions

enforced by the MARSHAL structure allow this to be done fairly

easily . In order to maintain the necessary data, the system has to

support MARSHAL execution ~.rith a cache mechanism that is different

from the one we have described above . He shall describe how this

operates with the aid of an example .

PAGE 150

Consider the three processes- P, Q and R- shmm in fig. 5.2.

Processes Q and R communicate with P via a bounded buffer BB of the

kind shown in fig. 5.1 with the type BUFFER RANGE defined as the

sub-range (0 •• 1). The atomic actions A1,A2 and A3 constitute

transactions and so are the outermost level of nesting for the parts

of the processes shown in the figure. It is assumed that the

processes execute, as far as possible, in parallel, so on that basis

let us consider each numbered stage of execution in turn :-

1. All the processes' caches are empty, as is the cache of the

HARSHAL BB. At this point barriers are created in each of

the process caches to indicate the start of a new action.

Process P's cache will look like this :-

£. Process Q remotely calls the ~1ARSHAL BB to put some data

into the buffer. \•lhen BB accepts the rendezvous it

generates a new sequence number to uniquely identify it and

records this value in its cache, along with the identity of

the action that requested the rendezvous. BB then executes

the entry PUT, causing updated variables to be entered in

its cache in the normal way. It then returns the rendezvous

identifier to the calling process Q and waits for the next

rendezvous. In the meantime Q has been inactive, but when

the rendezvous is complete it caches the identity of the

HARSHAL it has called and the sequence number it has been

returned and contin~es. The cache changes are thus :-

PAGf: 151

Q A2 1 BB-1j

BB: 1-<Q,AZ>I ST[O] JHEAD I

3. The same sequence of events is repeated but this time

involving process R :-

R I A3 lss-z l

BB: l 1-<Q,A2> I sT [OJ I HEAD l z-<R,A3>1 sT r 1 J I HEAD I

4. P now calls the entry GET to retrieve some data fron the

buffer, this call is processed in a similar fashion to the

two preceding calls :-

P (Al i BB-3 J

BB: 1 1-<Q,AZ>I . ··1 3-<P,A1>1TAIL I

5. Process Q now enters a sub-action, creating a new barrier in

its cache :-

6. Process P does the same :-

7. Q agains calls BB to put data into the buffer. When the

rendezvous is accepted, the interpreter checks to see if the

calling action has rendezvoused with BB before. If it has

PAGE 152

not, as in this case, a new sequence number is generated and

returned to the calling process. If it has, cacheing of

updates takes place as normal, but no new rendezvous

identifier is generated (see 11 below). The caches nm-1 look

like this :-

Q I A2l BB-1 1 •• · ' A21 l BB-4 1

BB: ll-<Q, A2> 1 ••• 14-<Q,A2l> l sT[OJ I HEAnl

8. P calls BB to get some more data, and, as in the previous

case, a new identifier is generated :-

P j Al j BB-3 1 ... j All j RB-SI

BB: l l-<Q,A2> 1··· 15-<P,All> ITAIL I

9. The sub-action All within process P terminates , and P's

cache is processed. A message is sent by the support system

to BB to say that All wishes to commit rendezvous 5, and

BB's interpreter checks that this can be done. This

rendezvous can be committed because P has a previous

rendezvous with BB (number 3) to t-lhich recovery can be made

if necessary. No te, however, that the value for the

variable TAIL cached during the execution of rendezvous 5

must be propagated back to rendezvous 4 \<lhen 5 is deleted,

so that recoverability can be maintained : -

PAGE 153

BB: 1-<Q ,A2> I· .. 14-<Q. A21 >I ST [0 J I :lEAD I TAIL!

10. Q's sub-action also terminates, causing rendezvous 4 to be

processed :-

Q A2 1BB-1 I

BB: 1-<Q,A2> 1··· 13-<P,A1>1TAILjST[OJj HEAD!

11. P calls BB yet again, but action A1 has already interacted

with BB so there is no need to create a new rendezvous name.

The reason for this is exactly the same as that for the

single cacheing of resources in the normal cache mechanism,

namely that only the earliest interaction need be recorded

as that is the point to which recovery will take place. The

execution of the entry GET does not alter any variables of

BB that are not already cac~ed, so the caches r emain

unchanged.

12. Action A1 terminates causing rendezvous 3 to be processed,

P's cache is now empty again :-

lJ. A2 now terminates and rendezvous 1 mus t be processed. In

this case acceptance can proceed, because it is the first

rendezvous in the cache. However, if there had been others

before it, acceptance would have been delayed until they had

been con~itted and removed from BB ' s cache. If A2 had not

PAGE 154

been an outermost action, the rendezvous would have been

propagated back to its enclosing action, and the information

in BB's cache about the rendezvous would have been altered

to point to this other action. Note that cache processing

can take place at either end of a t1ARSHAL cache, unlike the

stack mechanism of the normal system. BB's cache now looks

like this :-

BB: J 2-<R,A3>I ST[lJ l HEAD (TAIL (ST(OJ!

14. AJ terminates and commits rendezvous 2, leaving all the

processes' caches and the HARSHAL's cache empty.

This example has shown \vhat occurs during normal system operation,

however if an error arises recovery action must be taken. Hhat

happens then, is that the cache of the process in \olhich the error has

arisen is rejected and the system finds that it has rendezvoused with

a MARSHAL. An interpreter level message is sent to the HARSHAL

involved, indicating the rendezvous identifier that was in the cache.

The ~·1ARSHAL's cache is then processed, rejecting the named rendezvous

and all those tha f:! .. followed it. When a rendezvous is rejected, a

message is sent to the process involved raising an error in that

process and initiating recovery action for it. Thus recovery is

propagated throughout the system. The reader can try this with the

example given above by postulatng an error at some point in the

execution flow and following the search for a recovery line. This

will sho\v that the mechanism described does collect sufficient

information to allow recover~ to take place.

PAGE 155

Let us nm..r summarise the way in \vhich the t1ARSHAL cache

mechanism would work :-

1. Only one rendezvous between a given action and a given

~~RSHAL is ever recorded,

2. Rendezvous information is recorded in both the calling

process' cache and the HARSHAL's cache,

3. Commitment of an entry in the HARSHAL 's cache occurs only

when the action which requested the rendezvous concerned

terminates and the conditions described in 4 hold,

4. An action may commit a rendezvous either if the rendezvous

in question is the earliest in the ~~SHAL 's cache, or if

its enclosing action has an earlier rendezvous with the

~ARSHAL.

If neither of these is the case then, if t he action is

not an outermost action, responsibility for the rendezvous

passes to its immediately enclosing action. This causes t he

rendezvous information to be propagated back in the process'

cache, and to be altered in the MARSHAL's cache to indicate

the new "owner". The final case is when an outermost action

tries to commit a rendezvous which is not the earliest entry

in a HARSHAL's cache. Here , cache acceptance must be

delayed until all the earlier rendezvous have been

PAGE 156

committed, in which case it is safe to proceed.

5. When a rendezvous other than the earliest one is accepted,

any alterations to variables not entered in the cache by its

preceding rendezvous must be propagated back.

5 . 3.3 Conclusions Regarding ~~RSHAL ' s -

He have seen that the MARSHAL provides programmers ~"i th

recoverable means of communicating between processes, by acting as an

intermediary, and of cooperating, by allo\dng service processes to be

constructed . It may be possible to develop the ideas presented to

allow more general use of entries in processes, as suggested in (BrH

78). However, as the method has several disadvantages, this line of

investigation appears not to be worth following. The most obvious

disadvantage is shown by the example of the bounded buffer - actions

which have called the MARSHAL will be wound back if a rendezvous

earlier than their first is backed out, EVEN THOUGH NO ERRORS HAVE

OCCURED IN THEM. This, as with shared actions, means that large

quantities of correct work have to be undone, but , unlike shared

actions , the programmer may have intended no dependency between the

actions involved. In the example, this dependency comes about

because of the method used to implement the buffer, which involves

variables that are used by every call and so rendezvous cannot be

independent . This dependency between processes can give rise to the

"domino-effect", mentioned in section 2. 3.3 , where the search for a

PAGE 157

Pl P2 PJ - ..-- - r- - r-

Al A2 AJ

"'
.,

....
All

"' ,.

ALl

J
A]l

"' ...
I' ,

Alll

"' ..
A21l

[; -""'
I' ,

AJll

~RROR

l"ig. 5. J

recovery line causes nested actions to be backed out to their

outermost level because of the way interactions have take place.

Fig. 5.3 shows how this can happen in a simple three process system.

The error in Pl causes Alll to be wound back, bringing with it A211

and thus A311, and so on, until the outermost level is reached.

The use of MARSHAL's also introduces the possibility of

deadlocks which the support system cannot detect . These arise when

guard conditions are malformed or when a deadly embrace occurs, and,

as the relationships between the processes involved are only knO\vn at

the user-level, these conditions are not apparent to the system, so

no recovery ·can be initiated'.

PAGE 158

Another problem area is the remote procedure call nechanism used

to invoke !1ARS~~L's, for this involves synchronisation between the

HARSHAL and the calling action, and also actions \-laiting for guards

to come true for their entry call to be processed. In many cases

programmers just wish to leave a message to be "collected" any time

after it has been left, and for their processes to proceed

immediately without any t.,raiting. Unfortunately the use of HARSHAL's

may cause their processes to be delayed for unnecessary amounts of

time , especially if the MARSHAL body contains any significant amount

of cot:tputation. In the following section we shall show how other

approaches to conmunication and cooperation can avoid the problens

encountered by the use of }~RSHAL's, which can really only be

usefully used in a very limited number of applications.

5.4 Resources and their Use

j.4.l Classification~ Resources based on their usage-

In section 5.2 we looked at the sort of facilities programmers

would like to have when implementing cooperative processes, and to

develop a better way of supporting them than MARSHAL ' s we must look

more closely at the way in which resources are used. The term

resource has been used throughout this thesis to describe any

"object" which a programmer may EXPLICITLY use, for example a named

variable. Any object which he uses implicitly, that is not by name

or reference in his program, is not considered a resource at the user

PAGE 159

level, though it may well be at the interpreter level. We shall

split resources up into three categories based on the functions they

perform for a programmer and the way in which they are used. Other

classifications than the one to be described are possible and some

resources may not fall easily into one category or another and some

may even change category at some point in their lifetime.

Nevertheless, based on these classes we can develop a recovery method

for supporting cooperative processes. The categories are :-

1. Mutable resources - As its name suggests, a mutable resource

is one which can be changed. That is an action may lock it,

use its value, change that value, and free it for other

actions to use, the best example of such a resource being a

record in a data-base.

2. Consumable resources - these resources are locked by a

process in the usual way, but disappear from the system when

they are freed. Inter-process messages are a good example

of consumable resources.

3. Reusable resources - the hallmark of a reusable resource is

that it is always in the same state when an action locks it

- that is, no inter-process communication can take place

using it. Perfect examples are the "forks" used by the

Dining Philosophers, which are always "clean" when picked

up.

PAGE 160

Mutable resources can obviously be used to communicate between

actions - by their very nature the data they hold can be read by many

actions, possibly over long periods of time. This is an extremely

useful property, but when the contents of a mutable resource are

uncomnitted the support system oust maintain a record of all actions

which have become dependent on its value, so that recoverability is

not impaired. However, this data can become very complicated and

space consuming, so, as mutable resources are generally used for the

storage of data with a relatively long life span, there is no harm in

preventing access to them whilst their values are uncommitted. This

means that actions may be delayed by having to wait till the contents

are committed, but this disadvantage is outweighed by the facts that

no data need be stored about dependencies and that the possibility of

other actions being backed out due to an error in the value is

eliminated. The preceding chapters in this thesis have developed a

system which supports this type of use of resources and we must

therefore turn our attention to the other categories of resources.

Having prevented actions from comnunicating during their

lifespans using mutable resources, some other means must be found of

allowing this facility, and consumable resources are ideal for this

purpose. Consumable resources can only be used by one action after

they have been created so there is a strictly one-to-one relationship

between sender and receiver, which reduces the complexity of the

recovery data that needs to be built up. In section 5.5 we shall

show, in detail, how recoverability is maintained when consumable

resources are used, and also develop language facilities \-lhich allm .. ,

PAGE 161

programmers to specify the use of resources ,.,hich are created

dynamically. Of course, an error in the creator of a consumable

resource automatically means that the action l-lhich used it must be

wound back. However, the dependency between creator and user is

1ntentional and the programmer can foresee this eventuality, and can

gauge the disruption an error can cause to a system.

We now have a means of inter-process comnunication, but actions

can still not co-operate without becoming unnecessarily dependent on

each other- the purpose of cooperation between actions being to allow

a limited set of resources to be shared between them, without causing

undue delays when an action's needs cannot be satisfied. The

resources which are being contended for are normally "tools" ,.,hich an

action wishes to use for a fixed period of time to operate on other

resources, and reusable resources can be used for this purpose,

providing several advantages. Firstly the "tool" is always in a

predefined state whenever an action acquires it, which makes usine it

much more reliable. Secondly, because no cocrmunication can take

place through reusable resources, an action need simply restore the

resource to its initial state and can then free it, at any time, for

use by other actions, without impairing recoverability. Finally, an

action can ask for a resource by type rather than by specific

identity, which reduces conflict between actions considerably.

When an action acquires a reusable resource, it is locked in the

normal way and the fact of its acquisition recorded in the cache.

'rhe action may then use the .facilities provided by the resource to

PAGE 162

pertorm operations on other resources, and then, when it is no longer

needed, the action can free it deleting the entry made in the cache.

Recoverability is not impaired by this, because any modifications

made to other resources by the action using a reusable resource will

cause cacheing in the normal way and so the recovery process can

restore them without the need to know how the state changes were

made. After the reusable resource has been freed no recovery action

need involve it, but if an error should occur before it is released,

the release must be done by the recovery mechanism - hence the cache

entry for the duration of the action's possession of the resource.

The fact that a reusable resource is always in the same state

when acquired by an action means that after it has been used its

initial state must be restored. This can be done either with a

"prelude" or a "postlude". The "prelude" method involves the

execution of user supplied code which sets up the state when the

resource is acquired and the "postlude" method either requires the

state to be recorded in the cache so that it can be restored or,

again, the execution of a piece of code. The former method, using a

facility similar to that provided for 'CLASS and MONITOR

initialisation in Concurrent Pascal has two advantages. It means

that reusable resources do not need to be initialised when they are

created, and also that when an action frees a resource it need only

release the lock it holds, 'vhich is especially useful when recovery

1s in process. The only advantage that the latter method has is

that, because a representation of a resource's state when it is first

acquired can be stored in the cache (provided that the resource is

PAGE 163

created in the correct state) the system can automatically perform

the reinitiallisation without the progranmer providing a special

procedure. In terms of efficiency the first method would therefore

be preferable, but where the language interface does not allow for

initialisation procedures, the second would have to be used.

The choice of language interface also affects the way in which

the acquisition and release of reusable resources is specified and in

the next section we shall look at several different ways this can be

done.

5.4.2 Specification of Resource Acquisition and Release-

The simplest way of providing the programmer with a neans of

accessing reusable resources is to state that the procedural

operations "acquire" and "release" are defined for any object

described as reusable, thus:-

ACTION Al;
1'': REUSABLE FORK;
tlEGIN

!''.ACQUIRE;

-- use F

1''. RELEASE;

r:ND;

This method, being unstructured, gives the programmer complete

treedom over where in his program acquisition and release of

resources are carried out, ~llowing him to nest the calls within

PAGE 164

different procedure bodies. However, it has the disadvantage that

should the programmer onit the "release" call the resource will be

held by the process until its outermost action terminates, thus

eliminating the possibility of competition with other processes. The

use of the procedural notation is also at variance with the way

mutable resources are acquired in the rest of the system, but this

may be regarded as an advantage as it can be seen as a way of

highlighting those parts of a program where cooperative use of

resources is intended.

If the procedural notation is not to be used, some other way of

indicating the programmer's intentions must be found. The

acquisition of a resource is not difficult, the locking method

described in the preceding chapters takes care of that, but

automatically determining when a resource can be released, before the

termination of the outermost action, cannot be done at run time (and

would require a full analysis of the program at conpile time). To

overcome this, the user must be constrained to structuring the way in

which he uses reusable resources so that the system Play know when

they can be released. There are two ways of doing this :-

1. Define the operation of the interpreter to be such that any

reusable resource is released to~hen the action that acquired

it terminates,

2. Provide some language structure like the "\liTH" statement of

·Pascal, of Shrivastava's "USING" statement, the start of

PAGE 165

which indicates resource acquisition and the end, release.

~oth these methods preclude the acquisition and release of

resources from being in seperate program modules, and the former,

though requiring no special syntax has the disadvantage that users

may forget that a resource has been released and attempt to continue

using it. This will not be seen as an error, but will be regarded as

a valid attempt to re-acquire the resource, and when the request has

been granted the action will proceed, possibly making invalid

assumptions about the state of the resource.

The second method is identical to the use of Critical Regions by

Brinch Hansen (BrH 72), though applied to a strictly limited set of

resources, and has the advantage of allowing a compiler to detect

where reusable resources have been used outside the appropriate

language structure, thus preventing the error described above. From

the point of view of reliability and efficiency, then, this would

seem to be the best method and we shall now look at an example using

it.

5.4.3 Reusable resources~ the Dining Philosophers' problem-

We have already seen, in section 4.4, how this problem may be

implemented using shared atomic actions, and have described the

difficulties that the programmer encounters using them. The major

difficulty was that independ~nt recovery of a philosopher was not

TYPE FORK IS -- whatever a FORK looks like

TYPE PHIL IS
TASK (Fl,F2 : REUSABLE FORK)
BEGIN

~NSURE ••• BY-- some acceptance test
DO
BEGIN

think
h'ITH Fl,F2 DO
BEGI~

use the forks

END;
~NU 10000 TIMES;
ELSE BY ERROR;

END;

l'. : AKKAY l O •• 4] OF REUSABLE FORK;
PHILS : ARRAY [0 •• 4] OF PHIL;

INIT PHILS[O](F(O),F(l)),PHILS[l](F(l),F(2)),
PH ILS [2] (F (2) , F (3)) , PH ILS [3] (F (3) , F (4)) ,
PUlLS [4] (F (4) , F(5)) ;

Fig. 5.4

PAGE 166

possible - a failure in one of them causing all the philosophers to

be wound back. However , by using reusab~e resources this problem is

overcome. Fig. 5.4 shows a program that implements this solution.

Each of the philosophers executes independently of all the

others, and the deadlock recovery mechanism described in chapter

three will detect and break any deadlocks that occur. This is

because a request for a reusable resource mus t be passed through the

same channels as for mutable resources and so the blocking graph will

still indicate the presence of deadlocks. The processes can now

compete with each other for the use of the forks , and dependency

between them will only arise if there is explicit con~unication

between qny of the philosoph~rs.

PAGE 167

5. 4. 4 Limits on the use .2f Resources -

In section 3.9.1 we mentioned how most batch processing system

apply not only time limits but also limits on the amount of output

produced, to the programs they support. This is an example of a type

of constraint associated with quantity of use rather than duration

(though there is obviously some relationship between the two) and is

not normally provided in programming languages. The safe programming

constructs defined in (And 75) give the programmer this control over

looping, and the various "range errors", like integer overflow or

floating underflow, can be regarded as falling into this class of

constraints, but control over the number of times a resource is used

is not catered for. This type of control may be invisible to the end

user of a resource, and thus allows the creator of the resource to

have some control over how it is used. Other controls could be

provided - a deadline specifying the maximum time a process may hold

a resource for, and a limit to the maximum number of resources of a

given type (or of any type) that a action can acquire. There are

many ways of implementing and specifying such restraints and we shall

not enumerate them here, however it is important that this kind of

facility be considered when new systems are being designed.

t

PAGE 168

5.5 Pools and Sequences

5.5.1 Structures for manipulating consumable resources-

As we have indicated above, the fact that consumable resources

are usually created dynamically means the programmer can only access

thera through indirect references, as their names are not known at

compile time. The language interface, therefore, must provide a way

of supporting this. The use of reference variables is the normal

method, but, in most programming languages, these are used either to

point to existing variables, or, in conjunction with a procedure that

returns a reference, to point to variables created in a free storage

area . Consumable resources come into existence from different

sources, and may not exist when an action attempts to use them, this

means that the programmer must be able to specify which source he is

requesting a resource from, and that · the interpreter level must

conceal any waiting that may occur. \-le shall introduce two

structures with these properties - the POOL and the SEQUENCE. The

declaration of pools and sequences follows the PASCAL syntax for sets

and arrays :-

Pl:POOL OF <type>;

S1:SEQUENCE OF <type>;

but they can only be used via two operators - "put" and "get". The

"get" function waits until an object of the required type is created

in the pool or sequence, removes it, and returns a pointer to it.

The "put'' operation creates a new object of the specified type ,

PAGE 169

copies the object passed as a parameter into it, and adds it to the

named pool or sequence. This far pools and sequences are identical

and the difference between them arises because of their properties

,.,hen recovery takes place.

We have already seen that when an error occurs in the creator of

a consunable resource, the recovery action taken must he propag ated

to the consumer of the resource, but where an error occurs in the

consumer it is obviously unnecessary for the producer to be wound

back (one of the major disadvantages of !-1ARSHAL's). Hhat is needed

is the ability to return consumable resources to their sources and

then to re-read them if the alternate statement so wishes. However

in what order must these messages be read back? Hust it be the same

as previously? By choosing a POOL or SEQUENCE the programmer can

control this pools implying no ordering relationship between

messages, the reverse being true for sequ~nces. If a pool is used to

communicate between two actions it will probably look very like a

sequence, as this would be the easiest way to i mplement it, ho\~ever

where several actions are creating messages for several others to

consume, the difference between pools and sequences becomes f!larked.

First consider a pool. If an error occurs in a resource creating

action, only those actions 'vhich have consumed resources created by

it need be backed out, other communications set up via the pool are

not affected, but in a sequence this is not the case. If a creator

error occurs, all resources created after the earliest erroneous

resource will be regarded as in error and all their producers and all

their consumers will be backed out. If a consumer error occurs, all

PAGE 170

consumers that have used resources created later than the first

resource consumed in error must be backed out. Obviously this

disruptive effect limits the usefulness of sequences, but where

actions are highly dependent on each other, and are not within a

shared action, this kind of recovery is necessary, and cannot be

provided by the use of pools (note that using sequences is very

similar to using HARSHAL's).

Let us now consider how pools and sequences are implenented at

the interpreter level.

5.5.2 Implementation of pools and sequences -

we need not concern ourselves here with how the dynamic creation

of resources is managed - in most systems this will be done using a

connon storage area controlled by an allocation package - but we do

need to specify what recovery information needs to be kept with each

resource and in the caches of the processes that manipulate them.

Let us first look at a resource creator.

\lhen an action creates a resource in a pool (or sequence - from

now on any reference to a pool can be taken as including sequences,

unless otherwise stated), the new resource is assigned an identifier

uniquely identifing this member of the pool. Associated with the

resource are two system controlled tag fields, one of which points to

the action that created the resource, and the other the action which

consumed 'it. This latte r field i s initialised to a value that

PAGE 171

indicates that the resource has not been consumed. If the action has

not created a resource in this pool before, an entry is made in its

cache recording the identity of the pool involved and that of the

resource created. The ne\vly created resource is nm.,r available to any

consumers which nay use the pool, though in the case of sequences, it

will not be allocated until ALL the resources created before it have

been removed. When the resource is finally taken by an action, the

identity of this consumer is recorded in another system controlled

tag kept with the resource, and the value of t he resource is recorded

in the consuming action's cache. (This cacheing of the resource's

value, allows the consumer to alter the contents of the resource

without impairing recoverability. However this additional freedom

may not be needed and all consumable resources could be treated as

read only, in which case only the identity of the resource need be

recorded.)

ComMitment of consumable resources occurs ,.,hen the outermost

enclosing action of the creating action terminates - responsibility

for the resources being passed outwards on the acceptance of each of

the nested actions. However, in the case of sequences committment

cannot be completed until all other resources created before the

first resource recorded in the action's cache have been committed.

\fuen commitment is completed, the creating action identifier field of

the resource is set to null, and this allm.rs the consumers of the

resources to terminate their activities, for a consumer cannot coonit

until all the resources it has consumed have been connitted. When

this has taken place, the sy~tem nay delete the resource from the

A7

~
Al~A2~A3

/ ?\,
A6 < A4 4--A5

(a) Action dependency graph

A7~

)"Al~1
A6+-(A3,A4,A5)

(b) First stage of graph collapse

A7~(Al,A2,(A3,A4,A5),A6)

(c) Final stage of graph collapse

Fig. 5. 5

PAGE 172

pool. However, this rule means that actions could becooe deadlocked

\vhen their coonitments are mutually dependent, for exaople where

messages have passed between two actions in both directions. The

system, therefore, must take steps to detect this situation in order

to allow termination to proceed, and ~1e blocking graph method

described in previous chapters can be adapted to do this. The

detection algorithn must be nodified, though, as actions are no

longer involved in one-to-one relationships ·with each other - an

action possibly being blocked by, and blocking, several others.

Fig. 5.5 shows a possible graph, the direction of the arrows being

from creator to consumer. In this example the commitment of action

A7 is the crucial event, and when that has taken place all the other

actions can be allowed to terminate, the interpreter having detected

their interdependence. To do this it is necessary to "collapse"

cycles that occur in the g raph into larger nodes, as in fig. 5.5(b)

PAGE 173

and (c) - all the actions in a node being allowed to commit when the

node no longer has any dependencies on other nodes.

The error recovery method described in the preceding section is

very easy to implement, because of the inter-action relationship

recorded in the tag fields associated with the resources. However,

as with the other pool operations, error recovery in systems

supporting true parallelism nust be performed atomically in case

several processes are trying to use the pool at the same time.

5.5.3 A test system-

In order to investigate the feasibility of pools, a trial

implementation was carried out on a DEC PDP-11 under the RSX-llM

operating system (DEC 79).

inter-process cor:tnunication

This system

tacilities ,

provides

allowing

powerful

sets of

communicating tasks to be implemented very easily. It was decided to

implement pools by the use of an interpreter extension (section J.L),

realised as a special task that carried out various pool operations

at the request of "user" processes. These user processes were other

KSX-11~ tasks which simulated the use of atomic actions and exercised

the pool handler via the system message passing facilities.

Your pool operations were supported :-

1. GET - this requested the pool handler to return the next

data item from a pool named in the request message. The

2.

PAGE 174

item was marked as consumed, the dependency graph updated,

and the data value returned to the requestor. If the pool

was empty, the request 'vas queued until another process put

an item into the pool. This request involved two inter-task

messages.

PUT - the data item contained in the request message was

added to the specified pool. If there were processes

,.,aiting to GET a value from this pool, a GET operation vas

carried out for the process at the head of the queue . This

request involved one inter-task message.

3. ERROR - all the pools were searched for resources created

and consumed by the process that sent the message (as the

users did not have recovery caches, this proved to be

simpler to implement than th~ scheme described above).

Consuned resources were marked unconsumed, and the processes

\vhich had consumed created resources ~vere sent a message

indicating that they should recover (this was a source of

difficulty, as it required the use of asynchronous message

handling which \oTas not supported by the language used to

implement the user tasks). This involves as many inter-task

messages as are necessary to propagate the error throughout

the system.

4. COHIHT - this request indicated that the process wished to

commit its operations, and caused the pool handler to

PAGE 175

analyse its dependency graph to see if this was permissible.

If so, the process was allowed to proceed and all trace of

it removed frou the handler's tables. If not, the pool

handler recorded the fact that this process wished to

commit, only reactivating it either when an error arose, or

when re-analysis of the dependency graph indicated that it

could proceed. This involves two inter-task messages .

VAR
DEPCND
CHECK
cmnnT

ARRAY [ACTION_ In
ARRAY [ACTION_ID
SET OF ACTION_ ID;

OF SET OF ACTIO N_ID;
OF BOOLEAN;

FUNCTION CANCOmtiT (ACTION : ACTION lD)
VAR LC : ACTION; RESULT : BOOLEAN;

BOOLEAN;

BEGIN
The set COHtHT contains all the actions which
are waiting to commit . The array DEPEND contains
the dependency information, and CHECK is used to
detect circuits in the graph .

IF NOT (ACTION IN COHHIT) THEN
CANCO.HHIT : = FALSE -- this a·ction is active

ELSE
BEGIN

RESULT := TRUE;
IF NOT CHECK [ACTION] TgEN
BEGIN -- this path has not been checked

t'OR LC IN DEPEND [ACTION] DO
HEGI~ -- check each blocking a~tion

CHECK[ACTION] := TRUE ; -- flag as checked
KESUL T : = RESULT AND CANCOHMIT (LC) ;

END;
END;
CANCOmUT : = RESULT;

END;
El'\D;

t ig. s. 6

Ihe dependency graph was implemented as an array of sets of

action identifiers, one element for each action in the system. When

PAGE 176

a GET request was processed, the set indexed by the requestor's name

had the identity of the consumed resource's creator added to it. To

determine whether or not an action could commit this "graph" was

processed using the algorithm shown in fig. 5.6. The array CHECK is

assumed to have all its elements set to FALSE before each call on

CANCOMMIT, and is used to indicate whether the status of an action

has been determined or not. This device prevents the program from

entering an infinite loop, when analysing graphs with circuits in

them.

The tests run on this system did not perform any computations,

but simply used the pools to pass data between tasks. This meant

that there was a very large number of inter-task messages being

generated, and thus the overhead due to calls on operating system

primitives was very high. In fact, most of the execution time for

the tests was absorbed in executing these system functions and this

was borne out by a simple test. If processes simply passed messages

directly to each other, only one inter-task message would be

generated, however, when we consider the strategy adopted for pools,

we can see

communication.

that this involves three messages to establish

Measurements taken on the system verified that

performance was indeed degraded by a factor of about three, verifying

that system overheads were swamping the small amount of computation

in each task. In a "real" system, the number of messages being

passed using pools would probably be considerably less than in this

test, and so the performance of the system would be better.

Nevertheless, it is obvious .that the use of such an interpreter

PAGE 177

extension \Wuld not be desirable in a production system and

experience with other systems of coonunicating processes under

KSX-llM backs this up. A better way of implementing pools would be

to provide each process with a copy of the pool handler and have each

process perform its own operations (atomically) on a shared data

area. This would reduce the number of inter-task messages required

and increase the performance of the system. This could not be

verified for the pool system, as modifications to the operating

system would have been required, but the technique has been applied

in another system (BSR 79) and

performance were obtained.

significant improvements in

Aside from the question of efficiency, pools were found to be

easy to use (even with the low-level interface provided by the test

system), and ,.,ere flexible enough to allow a wide variety of

comnunication patterns to be tried out. lt also became apparent that

the error recovery provided by pools did not need the support of the

recovery cache in user processes, and could as easily have been built

into a system based on, for example, exception handling mechanisms.

Altogether the test system showed that pools were indeed a feasible

way of supporting inter-task cor.munication, and the indications were

that the simplicity of the mechanisms involved would lend themselves

to highly efficient implementation when incorporated directly into a

system.

PAGE 178

5.5.4 Additional features for POOL's and SEQUENCE's -

Several enhancements to the pool mechanism suggest themselves,

the first of which is the attachment of priorities to resources put

into a pool. This allm.rs the programr.ter a certain amount of control

over the order in which resources are consumed - the interpreter

level always allocating the resource with the highest priority.

(Note ho~.rever that this kind of "queue-junping" would not be

acceptable for sequences \.rhere it would destroy their function). The

introduction of priorities, however, brings with it the possibility

of resources never being allocated, because their priority is always

lov1er than others in the pool . Careful use of the facility should

eliminate this risk, but, where this had to be avoided , the system

could implement the kind of measures mentioned in section 3.9 .1 ,

where, after a predefined time has passed , a resource becomes

FAVOURED and will be allocated in prefer ence to one of higher

priority . It would also be possible to associate deadlines with

consumable resources, and allow the programmer to specify a time

limit within 1.rhich a resource must be consumed, though this would

give rise to an error in the creating ac tion rather than causing a

resource to become favoured. In fact , the interpreter could use the

user's deadline to control its mechanism for selecting r esources to

become favoured - resourc es with the shortest time left before their

deadline expires being allocated first .

Another possible enhancement would be to provide a compensation

mechanism for pools, rather like that of the reverse procedures of

PAGE 179

PORT'S. When an error arose, rather than allowing a message to be

reconsumed, the pool handler would transform the erroneous message

into a compensating one, using a procedure provided by the user.

This would allow completely uncoupled communication between actions,

but, as with PORT's, would not guarantee that the compensating

message would be consumed (for example, where the consumer stops

consuming before an error arises in the producer). However, the

advantage of the compensation mechanism would be that the dependency

graph need not be maintained, and that commitment could always be

allowed.

Apart from its use for message passing, the POOL structure could

be used as a program interface for allocating any kind of dynamically

created resources. Naturally, different internal structures would

have to be developed to allow the allocation of resources other than

messages and variables, however the commi_tment of an action using a

resource obtained from a pool would still be delayed until the

resource's creator had committed. This usage of pools also permits

the allocation of such system resources as files to be integrated

into a programming language without the need for structures that are

type specific.

5.5.5 Mutually suspicious processes-

Now that we have seen how direct communication may be

established between actions, we must give some consideration to the

question of mutually suspicious processes. That is processes which,

-- some pools
A,l:l,C,lJ POOL OF MESSAGE!;
X POOL OF :1 r~S SAGE 2 ;
y POOL OF !1ESSAGE3;

some pointers
M.l (9HESSAGE 1;
i'12 (9HESSAGE2;
i-13 ~HESSAGEJ;

::;ELECT ~Il FROH A, B,C,D;

~H: =<A I B I c I D>;

(a) Two \vays of writing simple pool selection

::;ELECT Ml -- pools all one type
-- ~11 will point to t:-tessage
\.JHI:N A ->
I~HEN B -> ••• ,
I•IHEt\ C -> ••• ,
1~HEN D -> ••• ;
END;

SELECT -- pools different types
-- named pointer will point to
-- the resource obtained
HHEN A -> Hl
wHEN X -> H~
1'/Ht.;N 'i. -> HJ

t;ND;

... ' ... , ... ,

(b) Com?lex pool selection

SELECT ~11 FROH A,B,C,D OR NO~m;

M.l:=<AIBICIDINONE>;

(c) Simple selection without waiting

SELECT
WHEN X -> ~12 ... ,
WHEN y -> H3 ... ,
WHEN NONE -> ... ,
t;ND;

(d) Complex selection \vithout \.;raiting

Fig. 5. 7

PAGE 180

PAGE 181

before requesting a resource, look to see if the request will be

granted immediately and, if not, do not issue the request. This

facility is generally employed where a process can use one of several

different resources and will request the first one that is available,

thus reducing the time it may have to spend \o7aiting. In section

3.8.1 we discussed a similar requirement that arose with the use of

the AI~AIT statement, and the same type of non-deterministic structure

adopted there - a guarded AHAIT statement - would seem to sui t this

case. There are two different circumstances in which a programn.er

could use a construct of this type. The first is where the

programmer wishes to obtain a resource of a specific type, but from

any one of several sources, and the second is •.;rhere different

computations are performed depending on the identity of the pool

which provided the resource. Fig. 5.7 a and b show ways of

representing such usage of pools. The question of "fairness",

alluded to in section 3.9.1, arises here also in respect of which

resource will be chosen if several are available. However, as was

indicated, considerable research is still required into this problem

before it can be resolved one way or another.

One further developmen t of this usage, in the case where all the

pools named in a statement are empty, is to give d1e programmer the

option of waiting until one of his requests can be satisfied or of

proceeding . This can be done, in a fashion similar to t he DEFAULT

option of the BCPL case statement (Ric 69), by providing a

pseudo-pool which \olill always return a null pointer when accessed .

Note, however, that this pool may be selected even ~.rhen the other

PAGE 182

specified pools are not empty. This nust be done in order to hide

the vagaries of the process scheduling algorithm from the user, who

could otherwise write programs which \vere dependent on certain

execution flo\-lS (note that this possibility only arises in the case

of empty pools, for at other times the user cannot determine the

state of the other pools he has specified). Fig . 5.7 c and d show

examples of this usage.

5.6 Conclusion

In the preceding sections we have discussed the implementation

of two different styles of interface with which the programmer can be

provided for implementing cooperative processes (i.e. processes

which communicate and cooperate with each other) and we shall now

summarise their advantages and disadvantages.

The method of direct comnunication, though providing a si::1ple

and modular interface, has two important disadvantages :-

1. Direct asynchronous connunication between t\vO processes is

not allo,.;ed, thereby reducing system performance,

2. The use of buffer processes to allow messages to be passed

to unknown processes can allov um.;anted dependencies between

processes to be built up - specifically whe r e the buffer is

being used by several processes that are otherwise

ind ependent - and this will lead to r ecover y action being

PAGE 183

taken in processes where it is strictly not needed, should

an error or a deadlock occur.

\fuere speed of operation is of no importance both these

disadvantages can be discounted but there are nany applications \-lhere

this is not the case, so the less structured, b ut nore efficient

methods, based on the classification of resources described in

section 5.4.1 would be preferable.

disadvantages :-

Hm-1ever they also have their

1. The use of consumable resources involves the system in extra

book-keeping to control the termination of inter-acting

processes,

2. The use of pools means that the system has to have quite a

considerable storage area available to it for their

allocation (c.f. the use of "pipes" in UN IX (Rit 78)),

3. The interface provided to reusable resources is such that

multiple copies of operations on them, possibly using

different algorithms, could exist, which could reduce t he

overall reliability of the system.

Nevertheless the structures described are sufficiently pO\-lerful

that these disadvantages should be outweighed by the advantages that

they give to the programmer.

PAGE 184

6.0 Conclusion

6.1 The work presented

ln chapter one the goal of this thesis was defined to be the

development of a systera that could support fault-tolerant concurrent

programming without requiring complex extensions to ~1e languaee

interface to enable programmers to use its facilities. This \.Jas

motivated by the need to GJ.ake such facilities available to as \vide a

programmer base as possible so that the cost of software production

could be kept down by reducing the amount of specialized knm-1ledge

needed to implement concurrent programs. Chapter two discussed the

most commonly known techniques for controlling the use of shared

resources and compared their characteristics with those of a

hypothetical "easy to use" interface. This discussion shm.;red that

all the methods exhibited at least one of the following

inadequacies:-

1. The technique was unstructured - that is the acquisition of

a resource was not directly linked with its release by an

explicit program structure;

2. The technique was unreliable progran errors occurring

after a resource was acquired and before it was released,

could result in either the release of erroneous information

to other processes, or the permanent locking of the

~esource. Another source of difficulty was the possibility

PAGE 185

of unrecoverable deadlocks,

3. The technique was too co1:tplex - conplexity was introduced in

t~vo main \vays, either through the need to perform analysis

to ensure that a set of processes would not deadlock or by

the limitations placed on the programner by the techni'lue

making problems hard to solve.

Various approaches to improving the reliability of concurrent

progamming by the incorporation of error recovery were then examined.

These too had their difficulties, however, out of all the techniques

examined in both areas, five constructs seemed to provide a basis for

the kind of system that was required. They were :-

1. The recovery block - a clear, simple structure whose value

had already been demonstrated by its use in fault tolerant

sequential programs,

2. Deadlines/safe programming - also clear and well-structured,

these were needed to overcome the problem of looping errors,

undetectable in any other way,

J. Atomic actions

implementation

this

strategy

construct,

defined

though having no

for it, fitted the

requirements set out in chapter two for a transaction

orientated program structure which could support automatic

control over resource usage,

PAGE 186

4. Communicating processes - another concept which had not been

tested in practical impler.1entation, but which offered a

well-structured means of handling messages between processes

and which did not require the use of shared resources,

S. Reverse procedures these provided a simple means of

expressing compensation mechanisms. However there were

reservations about them, especially concerning software

errors within them.

The next chapter then showed the relationships between atonic

actions and recovery blocks. Based on this it was demonstrated how

the recovery cache mechanism, used to support recovery blocks, coul:i

be adapted to combine the automatic acquisition and release of

resources with the collecton of checkpoint information about t hem .

The use of this mechanism oeant that deadlocks could arise when

atomic action were competing for resources and a method to overcome

this problem was developed. The strategy adopted was one of

detecting an incipient deadlock and recovering from it. Detection

was carried out by analysing the relationships b etween atomic actions

with respect to outstanding resource requests and the resourc es each

atomic action already owned. These relationships were r ecorded by

means of a graph - a cycle in this graph indicating t hat a deadlock

had arisen. One feature of this system v1as that only two actions

coulci be involved in a deadlock thereby simplifying the task of

breaking it. This was achieved by selecting one of the actions ,

judged to be the least imp'ortant, and using the recovery cache

PAGE 187

mechanism to wind it back to its start, thus releasing the resources

it held and breaking the deadlock. The selection of the action to be

backed out should be based, if possible, on a priority assigned to

the action, but if the priorities of the two actions are equal some

other criterion must be used. Several criteria were suggested, but

none of them were guaranteed to identify the "best" action to back

out in all cases.

Various aspects of the control of synchronisation were then

discussed, and progran structures were suggested that could aviod the

problems that were uncovered. At this stage we had a system which

could support uncooperative processes (that is processes which hold

resources for the duration of transactions and do not communicate

with each other) and the interface to it had the characteristics that

,.,ere set out in chapter two. Unfortunately the system could not

support cooperative processes and so its usefulness was strictly

limited. Chapter 4 introduced the concept of the shared atoctic

action which allowed a subset of cooperative processes, styled

closely-cooperative processes, to be implemented. This extension

allowed a process within a shared action to cooperate with the other

processes in the action, forcing their recovery to be coupled. The

interface provided was, hmJever, too uncontrolled and methodologies

were developed to enable processes to interact in relative security.

ttm.,ever, even with this improvement, the structure, though useful in

certain cases, was not sufficiently general and so other ways of

allowing cooperation between processes had to be found.

PAGE 188

Chapter five turned to the use of cor.rMunicating processes and

J.ntroduced the t1ARSHAL, a reliable " secretary". However the use of

this structure was shmm to lead, in certain col11JTlon cases , to

unnecessary coupling between actions, meaning that actions which

should have been independent of each other were all wound back, if

one of them failed. This structure was therefore rejected and we

then exaMined the \vay in \vhich resources were used by programr:~ers .

This led to the identification of three distinct classes - mutable,

reusable and consumable. ~·lutable resources (those which held

information for relatively long periods of time) could be controlled

by the interface developed in chapter three , but the other types

needed special interfaces. For reusable resources (those that are

involved in an operation without their final state being affected) a

PASCAL type HITH statement was suggested to indicate the points \vhere

they should be acquired and released. This structure, similar to the

REGION s t atement described in section 2.2.3, limits the user

slightly, but conforms to the requirements of chapter two.

~·inally we investigated the class of consumable resources (those

used to pass information between processes), introducing the new type

torming operations POOL and SEQUENCE. It was then shown ho\v

resources defined with these oper ators could be used to comnunicate

between actions and a system structure \vas described which allowed

recovery to take place without affecting actions independent of the

one that was in error. Two methods of recovery were allmved by this

structure. Firstly actions could be coupled by the conceptual

construction of shared atomic actions involving t\¥0 comMunicating

PAGE 189

processes and secondly a compensation nechanism \las suggested, to

allow actions to remain uncoupled. The programmer interface provided

to these facilities was again very simple, and allowed for

considerable flexibility in progran construction.

He can see then that the system descrihed in this thesis ,.,ill

support fault-tolerant concurrent programming with a simple user

1nterface, as was required of it. However one area has not been

tully resolved. That is the question of the efficiency of the

mechanisms that have been developed. Throughout this thesis the

various factors involved have been discussed, and it would seem that

the advantages to be gained frot!l using the system will outweigh any

inefficiencies in it.

6.2 Directions for future research

Having summarised the work that has been presented in this

thesis and shown that the aims set out in chapter one have been ~et,

we must examine some of the avenues down which further research could

be directed. So~e of these are concerned with general questions

about the system itself, but others will have bearing on specific

proble~s that arise in highly reliable concurrent systems.

PAGE 190

6.2.1 Implementation-

So far only experimental implementations of parts of the system

have been carried out, and there is still a considerable quantity of

work to be done in the evaluation of the efficiency of the structures

described. This is especially true of their use of multi-procesors,

where the problems that arise are quite different to those

encountered in a multi- programning implementation . The type of

multi-processor used will also affect the implenentation carried out,

tor where resources are shared between processors there must also be

a com1'1on storage area in which system information required by all the

processors is held. If the hardware available is distributed, that

is the procesors are only connected by coomunication lines, the use

of shared resources (if any exist) would be difficult to control, so

the implementation of the inter-process comnunication features that

have been described would take priority. Individual processors in a

distributed network may also support multi-prograruned processes

introducing an additional level of complexity. To allow t he

implementation of reusable resources the use of service processes

could be investigated. These are processes· which can perform a

specific set of operations for other processes, but have the reusable

characteristic that their state is always the same when a re(}uest for

an operation is received. An example of such a process \vould be a

processor offering fast f loating point computations to other

processors in a network.

PAGE 191

If distributed processes are not used, the main area of

investi~ation is in the developnent of efficient hardware recovery

cache mechanisms which can support the locking protocols tve have

described. Lee et al (Lee 79) have susgested t ha t their hardware

cache can be augmented to include support for other than sequential

programs and this device would be an interesting start point for

experiments. The system they have designed could only be used, as it

stands , to support a multi-programoerl version of the structures tve

have described, but incorporating interfaces to several buses tvould

allow multi-processor inplementations to be investigated. Deadlines

are also an area where much work needs to be done. The basic type

ALAR~ introduced in section 3.9.2 leads to unstructured use and is

not linked closely enough with the recovery structure of a prograu .

The published work of Campbell et al (Li e 80 , Hor) tends to be

theoretical rather than practical, though the structures they have

introduced are excellent. The use of such f acilities hmvever, has

not been investigated properly, and there appears to be no data

available on how the programmer best detennines the appropriate time

interval to specify for a section of code . Obviously specific

applications will have predefined time limits, but a set of

guidelines that could be applied to programs will help the design

process by indicating where these limits are unrealistic or where

program efficiency need be improved.

One further topic t-Thich could be investigated is the enhancer.Jen t

of the data protection facilities provided by the system. Hith the

current design a user may access any shared resource and the sys tem

PAGE 192

will lock it, however the addition of a capability mechanism, such as

that described by Needham (Nee 79), would allow invalid requests to

De trapped, improving the reliability of the system considerably. A

certain amount of control over resource access can also be achieved

through manageQent of the production of software, using methods of

seperate compilation and program derivation such as those defined for

the ADA language (Ich 79) and its support environment. The modular

nature of the constructs that have been developed making then ideally

suited for such treatment.

6.2.2 Systems without interrupts -

Une area of development that has been suggested by Brinch Hansen

(BrH 78) is the use of the concept of communicating processes in the

development of systems without an interrupt mechanism (at least not

one that is visible to the programner). This would be achieved by

having processes which explicitly wait for each event that can occur

in the system and perform the necessary processing when they occur;

returning to their wait state when this has been done. The overall

effect of this should be to make event handling easier to program and

more reliable, whilst still maintaining the essential non-determinisTn

of the interrupt mechanism. Brinch Hansen envisaged such a systen

using the direct process to process com1unication he describes, but

the Pool structure developed in chapter five can also be used to

support this type of operation. For example, an (unreliable)

teletype handler could be represented as sho\vn in fig . 6.1.

PAGE 193

KEYBOARD, PRINTER ; POOL OF CHAl\; -- char by char hard\vare
READ,PRINT ; POOL OF BUFFER; -- whole line buffers
TASK TTY;
CH : Cl~R; B:BUFFER;

LOOP
SELECT

HHEN KEYBOARD -> CH : -- key has been struck
BEGIN

BUFFER.FLUSll; new line so clear buffer
\HilLE CH<>EOL 00 -- read in up to end of line
BEGI~

PRl~TER:=CH; -- echo character
RUFFER.PUT(CH); --store character
CH :=KEYBOARO; -- get next character

END;
READ:=BUFFER; make line availahle to user

END;
UHEN PRINT - > B : -- user wishes to output a line

BEGI~

\lHILE NOT BUFFER . e·1PTY DO
PRINTER := BUFFER . GET; -- type line

PRI~TER :=EOL ; -- end line character
E~m;

END SELECT;
Etm LOOP;

Fig. 6.1

6.2.3 ~base for software testing and development -

One of the perennial pr oblems of computing is the need to have

systems providing a service continuously twenty-four hours a day ,

seven days a week , whilst still requiring new soft-vmre to be

developed and integra ted into the system. These ne\.r protjram modules

will introduc e errors and need to be thour oughly exercised before

they can be allowed to t ake up their intended place in the systel:l·

However , some of this t esting must be car ried out on the real systen ,

off line testing not being fully adequate , and so a neans of safely

introducing new modules into the system must he found.

PAGE 194

This can be easily achieved using the structures we have

developed by allowing any atonic module to be converted into a

recovery block (if it is not already written that way) with the new

software as its primary. Then, should an error occur in the

execution of the new module, the system can fall back to the previous

version of the module which has been made the secondary alternate.

An extra facility would be the ability to make the use of the new

module conditional so that it was only used at predefined intervals,

the old module being used as a primary for all the other occasions.

PACE 195

REFERENCES

And75
Anderson, T.

Provably safe programs.

Technical Report No. 70, Computing Laboratory, University of
Newcastle upon Tyne February 1975

And76
Anderson, T. and Kerr, R.

Recovery blocks in action : A system supporting high reliability.

Proc. 2nd Int. Conf. on Software Engineering , San Francis co,
U.S . A, October 1976, pp.447-457

And7~

Anderson, T., Lee, P.A. and Shrivastava , S. K.

A model of recoverability in J:llllti-level systems.

lEE Transactions on Software Engineering , Vol. SE-4, No. 6.
(November 1978), pp.486-494

Ast76
Astrahan, M.~. et al

System R: Relational approach to data base management.

ACH Transactions on data base systems, Vol. 1, No. 2 (June 1976),
pp.97-137

Hes7tl
Hest, E. and Randell, B.

A formal model of atomicity in asynchronous systems.

Technical Report No. 130, Computing Laboratory, University of
Ne\,rcastle upon Tyne, December 1978

Bes79
Best, E.

Aspects of occurrence nets.

Advanced Course on General Net Theory of Processes and Systems,
Hamburg, October 8th-19th 1979

PAGE 196

Hir7J
Hirtwistle, G. M., Dahl 0-J, l~hrhaug , B. and Nygaard, K.

SI:1ULA BEGB.

Auerbach Publishers Inc., Philadelphia, Pa. 1973

Hjo73
Hj ork, L.A.

Kecovery scenario for a DB/DC system.

Proc. of the AC~, 1973, pp.142-146

HrH72
.Hrinch Hansen , P.

Structured multiprogramuing .

Conms. ACM, Vol. 15, No . 7 (July 1972), pp.574-577

urH73
Hrinch Hansen, P.

Uperating system principles.

Prentice Hall, Cliffs, N.J., U.S.A., 1973

BrH75
Brinch Hansen , P.

The programming language Concurrent PASCAL.

IEEE Trans. on Software Eneineering , Vol. 1, No . 2 (1975),
pp .199-207

.HrH76
Hrinch Hansen, P.

Papers on the Solo operating system.

Software - Practice and Experience, Vol. 6, April-June 1976 ,
pp .139-205

BrH7t>
Hrinch Hansen, P.

Distributed processes: A concurrent programming concept .

Comns. ACN, Vol. 21, No . 11 (November 1978), pp.934- 941

PAGE 197

tlSR79
British Ship Research Association

Results of internal experiments.

1979

Cam74
Campbell, R.H. and Habermann, A.N.

The specification of process synchronisation by path expressions.

Lecture notes in Computer Science 16, Springer Verlag, 1974,
pp.89-102

Cha74
Chamberlin, D.D., Boyce, R.F. and Traiger, I.L.

A deadlock-free scheme for resource locking in a data base
environment.

Information Processing 74,
Ansterdam, 1974, pp.341-343

North Holland Publishing Co.,

Cof71
Coffman, E.G., Elphick, M.J. and Shoshani, A.

System deadlocks.

ACH Computing Surveys, Vol. 3, No. 2 (June 1971), pp.67-68

Con63
Conway, H.E.

Design of a seperable transition-diagrarn conpiler.

Comms. ACH, Vol. 6, No. 7 (July 1963), pp.396-408

Cre78
Cress P. et al

/360 UATFOR implementation guirle.

University of Waterloo, Waterloo, Ontario, 1978

Cri7Y
Cristian, F.

A recovery mechanism for modular software.

IEEE 4th Int. Conference on Software
September 1979, pp.42-50

Engineering , t~unich,

PAGE 198

Dav73
Davies, C.T.

Recovery semantics for a DB/DC system.

Proc. of the ACH, 1973, pp.l36-141

Dav79
Davies, C.T.

Data processing integrity.

in Computing Systems Reliability an advanced course (Ed.
Anderson, T. and Randell, B.), Cambridge University Press, 197 9,
Chapter 8, pp.288-354

DEC79
Digital Equipment Corporation

Introduction to RSX-11M

Digital Equipment Corporation, AA-2555D-TC, 1979

Den66
Dennis, J.B. and Van Horn, E.C.

Programming semantics for multi-programmed computations.

Comms. AC~1, Vol. 9, No.3 (~{arch 1966), pp.143-155

Dij 6 ~a
Uijkstra, E.H.

co-operating sequential processes.

in Programming Languages (Ed. Gcnuys, F.), Academic Press, New
York, 1~6~

Uij6t5b
Dijkstra, E.H.

The structure of the THE multiprogramming system.

ComMs. AC!-1 , Vol. 11, No.5 (May 1968), pp.341-346

Dij72
Dij kstra, E. t~ .

Hierarchical ordering of sequential processes.

in Operating System Techniques, Academic Press, New York, 1972,
pp. 72-93

PAGE 199

Dij 75
Uijkstra, E.I-J.

Guarded conmands, nondeterminacy and
programs.

formal derivation of

Comns. ACM, Vol. 18, No . 8 (August 1975), pp.453-457

DoD73
u.s. Department of Defence IIOLUG.

Preliminary "STEELHAN".

in Proceedings of the "IRmJ1AN" language seminar (ed. Freeman H.),
York Computer Science Report No .22, University of York, Eng l and,
1979

ES\'i76
Eswaran, K. P. , Gray, J.N., Loeiw, R.A. and Traiger, 1.1.

The notions of consistency and predicate locks in a database
system.

Comns. ACH, Vol. 19, No. 11 (~ovember 1976), pp.624-633

Goo75a
Goodenough, J.B.

Structured exception handling.

Second AC!'-1 Symposium on Principles of .Prog. Lang., Palo Alto,
January 20th-22nd 1975, pp.204-224

Goo75b
Goodenough, J.B.

Exception handling: Issues and a proposed notation.

Comns . ACH, Vol. 18, No . 12 (December 1975), pp .683-696

Gra76
Gray, J.N., Lorie, R.A., Putzolu, G.R. and Traiger, 1.1.

Granularity of locks and degrees of consistency in a shared data
base.

in ?1odelling In Data Base :1anagenent Systems (Ed. Nijssen , G . ~t .),

North Holland Publishing Co., 1976, pp.365-394

PAGE 200

Hab69
Habermann, A.N.

Prevention of system deadlocks.

Comms. ACM, Vol. 12, No. 7 (July 1969), pp.373-385

Har77
Hartmann, A.c.

A Concurrent PASCAL compiler for minicomputers.

Lecture Notes in Computer Science 50, Springer Verlag, 1977

Hea73
Hearst, F.E., Ornstein, S.M., Crowther, W.R. and Barker, W.B.

A new minicomputer/multiprocessor for the ARPA network.

Proc. 1973 AFIPS National Camp. Conference, Vol. 42, AFIPS Press,
Montrale, N.J., pp.529-537

Hoa72
· Hoare, C.A.R.

Towards a theory of parallel programming.

in Operating System Techniques, Academic Press, New York, 1972,
pp.61-71

Hoa74
Hoare, C.A.R.

Monitors, an operating system structuring concept.

Comm. ACM, Vol. 17, No. 10 (October 1974), pp.549-557

Hoa78
Hoare, C.A.R.

Communicating sequential processes.

Comms. ACM, Vol. 21, No. 8 (August 1978), pp.666-677

HoC
Horton, K.H., Campbell, R.H. and Belford, G.G.

Meeting real-time deadlines.

Department of Computer Science, University of
Urbana-Champaign

Illinois at

PAGE 201

Hol71
Holt, R.c.

Comments on prevention of systen deadlocks.

Comms. A0·1, VoL 14, No. 1 (January 1971), pp.36-3 8

Hol72
Holt, R.c.

Some deadlock properties of computer systeQS.

/\CH Computing Surveys, VoL 4, ~o. 3 (Septenber 1972), pp.17'J-196

Hor74
Horning, J.J., Lauer, H.C., Hellier-Smith, P.H. and ~andell, B.

A program structure for error detection and recovery.

Proc. Conf. on Operating Systems, I RIA, 197~, pp.l77-193

Ibr:~a

IB~1 system/360 operating syste1:1

PL/I (F) Language Reference Hanual.

GC28-8201-4, File No . 5360-29

Ich79
Ichbiah, J. et al

Prelimary ADA reference manual and rationale for the desi~n of the
ADA programning language.

AC'1 Sigplan notices, Vol.14, No . 6 (June 1979), Parts A and B

Kah76
Y.:ahn , G and MacQueen, D.

Coroutines and networks of parallel processes.

IRI/\ Research Report No . 202, Novenher 1976

Kie79
Kieburty, R.B. and Silherschatz, A.

Comments on "Communicating sequential processes".

AC1 Tran. on Prog. Langs. and Systems, Vol.1, No .2 (October 19)79,
pp.218-225

PAGE 202

Kim76
Kim, K. H. and Ramar1oor thy, C. V.

Failure-tolerant
architecture.

parallel programfTling and its support

NCC 76, pp.413-423

Kim/~

Kim, K. H.

An approach to programmer transparent coordination of recovering
parallel processes and its efficient implenentation rules.

Presented at 1978 Int. Conf. on Parallel Processing, Au~ust 1978

Lau75
Lauer, P.E. and Campbell, R.H.

Formal semantics of a class of high-level primitives for
co-ordinating concurrent processes.

Technical Report No. 74, ConputinG Laboratory, Universi ty of
Newcastle upon Tyne, April 1975

Lee79
Lee, P.A., Ghani, N. and Heron, K.

A recovery cache for the PDP-11.

Technical Report No. 134, Computing Laboratory, University of
Newcastle upon Tyne, Harch 1979

Lie80
Liestman, A.L., and Campbell, R.H.

A fault-tolerant scheduling problen.

Department of Computer Science, University of
Urbana-Champaign

Lip75
Lipton, R.

Illinois

Reduction: A Method of proving properties of parallel programs.

Comns. ACH, Vol. 18, ~o . 12 (December 1975), pp .717-721

at

PAGE 203

Lom76a
Lomet, D.B.

Process structuring, synchronisation and recovery using atomic
ac tions.

Technical Report No. 92, Computing Laboratory, University of
~ewcastle upon Tyne, July 1976

Lom76b
Lomet, D. B.

A practical deadlock avoidance algorithmn for data base systems.

IBH Research Report RC 6288 (26989), 11th February 1976

Mcl 76
Melliar-Smith, P.M. and Randell, B.

Software Reliability : The role of programned exception handling.

Technical Report No . 95, Computin~ Laboratory, University of
Newcastle upon Tyne, December 1976

Her77
Merlin, P.M. and Randell, B.

Consistent state restoration in distributed systems.

Technical Report No. llJ, Computing Laboratory, University of
Newcastle upon Tyne, October 1977

Nee79
Needham, R.~1 .

Protection.

in Cor.1puting Sys tems Reliability An
Anderson, T., and Randell, B.), Cambridge
Chapter 7, pp.264-287

Orn75

advanced course (Ed.
University Press, 1979,

Ornstein, S.~1., Crowther, \l.R., Kr aley , H.F., Bressler, R. D.,
Micheal, A. and Hearst, F.E.

Pluribus - a reliable multi-processor.

Proc. 1975 AFIPS Natl. Computer Conference, Vol. 44, AFIPS Press
Hontrale NJ , pp.SSl-559

PAGE 204

Par72
Parnas , D.L.

Response t o detected errors in well- st ructured programs.

Carnegie- llellon University , July 1972

Pet77
Petri, C.A.

General net theory .

Proc. of the joint IBt1/University of Newcastle upon Tyne Seminar
on Computing System Design (Ed. Shaw B.), Computing Laboratory ,
University of Newcast l e upon Tyne , 1977, pp .131-169

Kan75
Randell, B.

System structure for software fault-tolerance .

Sigplan notices, Vol. 10, No. 6 (June 1975), pp.437-449

Ran78
Randell , B., Lee, P. A. and Trelevan, P. C.

Reliability issues in cooputine sys t em design .

ACM Computing Surveys , Vol. 10, No. 2 (June 1978) , pp .1 23-1 65

Ric69
Richards , ~·1 .

BCPL : A tool for compiler writing and system proeramming.

Spring Joint Computer Conference, 1969, pp .557-566

Rit78
Ritchie , D.~l .

Unix time-sharing system : A retrospective.

The Bel l System Technical Journal, Vol . 57 ,
(July-August 1978) , pp. 1947-1 969

Sal75
Saltzer , J. H. and Schroeder , l1.D .

The protec tion of information in computer systems .

Proc . IEEE , Vol.63, No . 9 (1975), pp.l278-l308

No . 6. Part 2

Shr78a
~hrivastava, S.K. and Banatre, J-P.

Reliable resource allocation between unreliable processes.

IEEC Trans. on Software Engineering, Vol. 4
pp.230-241

Shr78b
Shrivastava, S.K.

Sequential PASCAL with recovery blocks.

No.J

PAGE 205

(1978),

Software- Practice and Experience , Vol. 8 (1978), pp.l77-185

Shr79a
Shrivastava, S.K.

Concurrent PASCAL with backward error recovery
and examples.

Language features

Software- Practice and Experience, Vol. 9 (1979), pp.l001-1020

Shr79b
Shrivastava, S.K.

Concurrent PASCAL with backward error recovery : i~plementation.

Software- Practice and Experience , Vol. 9 (1979), pp.l021-l033

Ver77
Verhofstad, J.S.M.

The construction of recoverable multi-level systems.

PhD Thesis, University of Newcastle upon Tyne, August 1977

Ver78
Verhofstad, J.S.M.

Recovery techni~ues for database systems.

ACH Computing Surveys, Vol.lO, No.2 (June 1978) , pp.l67-195

\Hj69
V. Hij ngaarden, A.

Report on the algorithmic language ALGOL 68.

NuR. ~athematik 14, 1969, pp.79-218

PAGE 206

Wir71
Hirth, N.

The programming language PASCAL.

Acta Infor~atica 1, 1971, pp.JS-63

Hir77
lJirth, N.

t10DULA A programning language for modular 1:ml ti-progranming .

Software - Practice and Expe rience, Vol. 7, l':o. 1 (1 977) , pp.J- 35

;

	L Marshall PhD Thesis-1
	L Marshall PhD Thesis
	LM 1-50 SMonmouth13091609180
	LM 51-100 SMonmouth13091609460
	LM 101-150 SMonmouth13091609560
	LM 151-200 SMonmouth13091610050
	LM 201-206 SMonmouth13091610140

