AN ERROR RECOVERY SCHEME
¥OR
CONCURRENT PROCESSES
by
Lindsay Forsyth Marshall
Ph.D. Thesis
Computing Laboratory
University of Newcastle upon Tyne

August 1980



AN ERROR RECOVERY SCHEME
FOR

CONCURRENT PROCESSES

Lindsay Forsyth Marshall

Ph.D., Thesis

University of Newcastle upon Tyne, August 1980



Abstract

With the more widespread use of multi-processors and distributed
computing systems, programmers need a simple, reliable interface to
them. This thesis describes language constructs, and mechanisms for
their support, that can be wused in the implementation of
fault-tolerant concurrent processes. The basic language structure is
the Atomic Action, supported by a modified recovery cache mechanisn.
This combines the collection of recovery data with the locking of
resources and allows recovery blocks to be integrated with Atonic
Actions. Synchronisation between actions is discussed, as well as a
means of detecting and breaking deadlocks, based on the use of a

"blocking graph".

Reliable communication and cooperation between actions is
considered, and several constructs are investigated. The limitations
of Shared Atomic Actions are identified, and, further, the use of a
form of reliable "secretary" is shown to lead to unneccessary
recovery activity. These problems are resolved by structures based
on a classification of resources by the &ay they are used in

programs.

Also contained 1in the thesis are descriptions of trial
implementations of some of the mechanisms described, and a discussion

of existing concurrent programning techniques.



Aknowledgements

I would like to thank ny supervisor Professor B. Randell for
his help and encouragement. His criticisms of mwmy work and his
suggestions for sources of information have been invaluable in

shaping this thesis.

Iy thanks are also due to the research staff at the Computing
Laboratory at the University of Newcastle upon Tyne, especially Drs.
T. Anderson, S.K. Shrivastava and P. Treleaven, with whom I had

many fruitful discussions.

Finally, I must thank Miss C.J. Smith who typed this thesis,
and the British Ship Research Association who have kindly allowed me

to use their facilities for its productions

The work described in this thesis was supported by a grant from

the Science Research Council of Great Britain.



e
'3

e e e o o o
e & & & @ s
£ N

N oy W R

L] ® & & & & &
* & o 8 ®

oW W W W WD MNNMNNRNNN =

MMNNMNNNNNMNBDODNMNMNNMNRNNNNNNDRND DN

.
YU W

r
°

W wwiww W
s o o » °
wt B

L] o
.
N o=

.
.
Wk =

Lwwwwww

°

NN N~y

Contents

Introduction

Objectives

Definition of basic concepts
Atomicity

Resources

Commitment

Cooperation

Summary of thesis

Schemes for control and recovery of concurrent activities

Locking

Classes of locking

Granularity of locking

Modes of locking

Requirements of programmers

Existing systems for controlling concurrency
Semaphores

Path expressions

Regions

Monitors

Atomic Actions

Communicating processes

Summary

Recovery schemes for concurrent processes
Sequential programs

Database systems

Ports

Deadlines and safe programming
Distributed systems

Spheres of Control

Conclusion - the programmer interface

Uncooperative Processes

Introduction

Multi-level systems

Specification of uncooperative processes
Recovery blocks and the recovery cache

A recovery cache scheme to support uncooperative
processes

Rules for providing X and SR locks
Non-Preemptive Systems

Preemptive System

Deadlocks

Deadlock prevention and avoidance

Deadlock detection for recoverable atomic action
Deadlock recovery management

NN P

10
11
14
15
19
22
23
26
28
31
33
35
38
38
40
42
44
49
52
54
56

58
58
60
62
66

13
73
75
77
7
80
83



. e
.
RN =

e ®
.
N =

B S . S S
[« NNV, . U R WU W G B G

w
5 8 °® & e e ® 8 8 ® & & ° ® & = °
w N =

Lo ubLunuuububuuuuoo o b
oo uuuunpeEeEEEPRPPLOELLNE

A possible infinite loop in the deadlock recovery
mechanism

Synchronisation with external events

The AWAIT statement

Evaluation of synchronisation conditions
Implementation of a system supporting uncooperative
processes

General considerations

Implementation of a test system

The language interface

Interpreter structure

Experience with the system

Efficiency of systems supporting recoverable atomic
actions

Conclusion

Closely Cooperative Processes

Introduction

Specification of shared atomic actions
Sub-processes and co-existing processes

Access to shared resources within shared actions
Implementation

General considerations

Actual implementation

The Dining Philosophers’ problem

Efficiency

Conclusion

Cooperative Processes

Introduction

Programmer”s Interface

The MARSHAL

General description

Special cache mechanism for MARSHAL s

Conclusions regarding MARSHAL’s

Resources and their use

Classification of resources based on their usage
Specification of Resource Acquisition and Release

Reusable resources - the Dining Philosophers’ problem

Limits on the use of Resources

Pools and Sequences

Structures for manipulating consumable resources
Implementation of pools and sequences

A test system

Additional features for POOL’s and SEQUENCE’s
Mutually suspicious processes

Conclusion

87

90
90
92
94

94
98
99
102
109
111

116

119
123
123
128
130
130
133
134
138
140

142
143
145
145
149
156
158
158
163
165
167
168
168
1/0
173
178
179
182



Conclusion

The work presented 184
Directions for future research 189
Implementation 190
Systems without interrupts 192
A base for software testing and development 193

References 195



1.0 Introduction

l.1 Objectives

With the rising cost of software development and the increasing
use of distributed processing (especially the advent of cheap
multi-microprocessors) there 1is considerable pressure to  make
concurrent programming techniques more reliable and more accessible
to the average computer user. The problems involved 1in concurrent
programming are well wunderstood, but the design of language
interfaces and the mechanisms to support them has lagged behind the
theoretical work in this field. The interface usually provided to
the programmer consists of a set of 1library procedures, calls on
which allow him to spawn tasks and share the use of resources with
these tasks. An example of this kind of interface is that provided
on the UNIX system which is described in.(Rit 78). However, as the
structured programming techniques advocated by Dahl, Dijkstra and
Hoare (Dah 72) become more widely used there is a need for parallel
programming facilities to become a more integral part of programming
languages (for example see the "STEELMAN" language requirements (DoD
78)). The result of this has been the development of languages like
concurrent PASCAL (BrH 75) and MODULA (Wir 77), both specifically
designed to provide a simple, structured means of specifying
concurrent programse. Unfortunately, though the process structuring
primitives provided by these languages are excellent, their
facilities for controlling the use of shared resources and for error

detection and recovery are se%erely limited. It is the aim of this



PAGE 2

thesis to show how to support a simple language interface, permitting
controlled access to all types of shared resources and providing

comprehensive error recovery facilities.

Existing work in this field has tended to fall into one of two
areas = either concerned with the fairly simple interactions between
processes at the lowest levels of operating systems or with the
highly complex dinteractions occuring in data base systems. The
tormer area has produced several language structures for resource
control some of which will be discussed in chapter two, but in
general the question of recovery from errors when shared resources
are being used has not been addressed. Almost the reverse is true of
the latter area where the development of language interfaces has been
secondary to that of mechanisms to ensure the integrity of data bases
and of sophisticated locking schemes to make access to data more
efficient. There 1is obviously a need, therefore to bring together
ideas from the two fields so that a more general purpose set of
tacilities can be built up. This thesis attempts to show one way of
acheiving this synthesis by combining the main features of these two
areas 1into a system that provides the user with the ability to write

FAULT-TOLERANT software.

A fault-tolerant program is one which will produce acceptable
results even when it has passed through erroneous states during its
execution. It will normally contain code that is designed to cope
with these 1incorrect states by attempting to ensure that errors are

not propagated to later stages of execution. Where programs may



PAGE 3

interact through the use of shared resources or by direct
communication it is often very difficult for the programmer to know
the extent of the damage caused by a fault and in these cases the
underlying system must play a large part in the collection and
maintenance of recovery information. The main part of the work below
is a description of a mechanism , based on the Recovery Cache (Ran
75) (see section 3.4) , which allows this to be done very simply and
which gives the user control over the way in which error recovery
takes place. However before embarking on this description we must
define some fundamental concepts which are wused throughout this

thesis.

1.2 Definition of basic concepts

1.2.1 Atomicity -

An activity will be described as ATOMIC if the operation that it
performs appears to be indivisible and does not interfere with any
other concurrently executing activity. Dijkstra (Dij 72) and Brinch
Hansen (BrH 75) have categorised such operations as being MUTUALLY
EXCLUSIVE, however we shall use this term to describe only the subset
of atomic operations which do not allow the possibility of several
activities performing them concurrently. An example of an operation
which 1is not mutually exclusive is the reading of a variable without
modifying its value, which can be carried out safely by any number of

processes. Brinch Hansen has said that without mutually exclusive



PAGE 4

operations discussion of concurrent computation would be meaningless,
and Lipton (Lip 75) has shown the desirability of atomic operations
in that their presence simplifies the task of proving parallel
programs. Eswaran et al (Esw 76) use the notion of atomicity to
define a TRANSACTION which is a sequence of atomic operations grouped
together forming a wunit of consistency. That is, the system state
will be consistent before and after the transaction has been
executed. For the purposes of this thesis we shall assume that a
PROCESS consists of a sequence of one or more, possibly nested,
transactions. The term process will also be used in cases where
transactions are nested and we need to refer to the innermost
transaction and all its ancestors. PROGRAM will be wused
interchangeably with process, except where there is no concurrency in

which case it will be prefixed by the qualifier SEQUENTIAL.

A formal model of atomicity has been described by DBest and
Randell (Bes 78, Bes 79), which, though still under development, is
being used as a basis for studies of parallelism and error recovery.
Gray et al (Gra 76) and Davies (Dav 79) also make considerable use of

the concept of atomicity in their work in these fields.

1.2.2 Resources -

Throughout this thesis we shall wuse the term RESOURCE to
describe any object which a programmer can use through the medium of
his programming language. The most usual examples of such objects

are the variables held in a computer”s memory, but magnetic tape



PAGE 5

drives, graph plotters and terminals are also resources. In
describing the operations that a programmer performs on resources we
shall use the categories - READ and WRITE. A read operation 1is one
which examines the state of a resource but does not modify it (for
example determining the position of a disc head), whilst a write
operation always modifies the state. Thus rewinding a magnetic tape
would be regarded as a write operation as it affects the state of the
drive by changing the position of the tape. Many of the examples in
the text will be couched in terms of variables (storage resources),
but by using this classification of operation they can be generalised

to all types of resources.

1.2.3 Commitment -

The state of a resource is said to have been COMMITTED when the
transaction which put it 1in that state confirms that the state is
correct and relinquishes the ability to perform any recovery
involving that resource. Where transactions are nested, commitment
is also nested, the ability to recover being maintained until the
outermost transaction commits the resource’s state. Before this

FINAL COMMITMENT the state of a resource is not guaranteed correct

and may be subject to change at any time, especially in the event of
an error. If other processes make use of the uncommitted results of
a program the support system must record this fact to enable any
subsequent changes to the resource to be correctly propagated
throughout the system. This 1is especially important where the

results are found to be in error and corrective action must be taken.



PAGE 6

There are two ways in which this can be done. Firstly,
processes which use uncommitted data can be prevented from committing
their results until the data in question has itself been committed.
We shall describe these processes and the originator of the
uncommitted data as being COUPLED. Secondly processes may use

uncommitted data but some means of COMPENSATION must be provided to

correct any errors that may have arisen. For example, when some
goods have been sent out from a depot by mistake, by issuing a recall
order a compensation mechanism has been invoked to recover from the
error. Processes which interact in this way will be described as

UNCOUPLED.

1.2.4 Cooperation =

Shrivastava and Banatre (Shr 78a) have identified three types of

interaction between activities - INTERFERENCE, COOPERATION and

COMPETITION. Interference is always erroneous and occurs when shared
resources are modified simultaneously and the wuse of atomic
operations is designed to eliminate such interactions. Cooperation
occurs when activities deliberately pass inf;rmation between each
other, and competition (or contention) arises when activities simply
wish to share resources but do not wish to pass information. However
in this thesis we shall look at the interaction between activities in
a slightly different way which will require another terminology. To

this end we shall introduce the idea of COQOPERATIVENESS, it will,

however, be easier to first define its opposite - UNCOOPERATIVENESS.




PAGE 7

An activity is said to be uncooperative if it does not
communicate directly with other activities and if it does not release
the shared resources it has acquired during its existence until it
terminates. That is, the activity appears atomic to the rest of the
system. On the other hand a cooperative activity is one which may
communicate with other activities directly and which may also release
some resources during the course of its execution. Such an activity
would not seem to be atomic but we shall show that by restricting
communication and the type of resources that can be released, a form

of atomicity can be attained.

There is also another type of interaction and we shall call

activities which uses it CLOSELY-COOPERATIVE. Here a group of

activities appear to be one simple uncooperative activity to the rest
of the system, but are able to communicate with each other and
release resources so that other members of the group can acquire

them.

1.3 Summary of thesis

The major part ot this thesis consists of a description of a
user interface for the implementation of parallel processes which
share the use of resources, and the mechanisms needed to support it.
The interface provides the programmer with facilities for
incorporating fault-tolerance into his programs and allows him to
control the way 1in which the failure of one process affects other

processes which have interacted with it. The most important features



PAGE 8

of this interface have been built into test systems and their

implementation is described.

Before this, in chapter two, an overview of existing systems for
controlling the use of shared resources is given. Firstly there is a
discussion of the kind of facilities that such systems ought to
provide and this 1is followed by a description of some of the
techniques that have been developed. Evaluation of these systems is
carried out with reference to two areas - the interface they provide

to a user, and their reliability in the face of errors.

Chapter three describes a basic user interface for the support
of uncooperative processes based on a mechanism which combines the
locking of shared resources with the collection of recovery
information. A discussion of deadlocks follows and a means of
detecting and recovering from them is developed. The problems of
synchronisation between processes are then described and a program
structure to overcome them is introduced. Implementation of a system
of the type described is then discussed with reference to an existing
system. Finally the efficiency and cost ofl such a system are

considered.

Chapter four introduces an extension to the basic user interface
that allows the specification of closely-cooperative processese.
Difficulties that arise when designing a language interface suitable
tor this are discussed and various solutions are considered. The

incorporation of closely-cooperative processes into the prototype



PAGE 9

system of chapter three is then outlined. An example of the use of
closely=-cooperative processes 1is given and in conclusion their

overall usefulness is discussed.

Chapter five extends the interface to permit cooperative
processes to be supported, developing a new classification of
resource types to do this. Examples are given of the use of the
facilities that are built up, with special reference to the way in
which error recovery is managed. A test system utilising some of the
1deas developed in this chapter 1is described and the problems

encountered in its construction are discussed.

Finally in chapter six, a summary and evaluation of the work
described are presented, and this 1is followed by suggestions for
directions that future research in this area could take. The sources
of the references contained in the  text are then given as an

appendix.



PAGE 10

2.0 Sctemes for control and recovery of concurrent activities

2.1 Locking

Whenever two or more activities take place at the same time (or
what appears to be the same time), there is always the possibility
that they may interfere with each other in such a way that erroneous
and inconsistent system states will arise. The classic example of
such circumstances is that of concurrent assignments to the same
variable, where, if no control is exercised over the interaction, the
variable can take on one of several different values, depending on
the execution flow of the processes involved. The guaranteed
prevention of such events is a necessary condition for the results of
an activity to be regarded as correct, and, as the system supporting
the activities may not be able to differentiate between correct and
incorrect interactions, facilities must be provided to allow the
explicit delineation of those areas of an activity where interactions
involving a specified shared object are to be prevented. We shall

call such a facility a LOCKING SCHEME.

The control a locking scheme provides over activities can be

usefully regarded as serving two distinct but related purposes:-

1. Resource allocation - by associating locks with shared
resources, activities competing to use them must pass their
requests to the manager of the locking scheme, thereby

leaving the granting of requests in the hands of the system,



PAGE 11

2. Prevention of communication of wuncommitted data between
activities = that 1is locking a resource guarantees that
operations upon it will appear atomic to those activities

not involved in changing its state.

The need for these arises in all fields and it will be worth
while to look at the more general aspects of locking, before turning

to its application to computer systems.

2.1.1 Classes of locking -

Locking schemes can be classified in several different ways, but
we shall look at only two of them here. The first is concerned with
when a request for a resource is made, and gives rise to two

classes:-

1. STATIC schemes, where resources are locked before the

activity wishing to use them starts its operationms,

2. DYNAMIC schemes, where requests for resources are issued
during the course of an activity, generally immediately

before the resources in question are first needed.

The important difference between these classes, apart from the
obvious one, is in the way in which system DEADLOCKS are handled - a

deadlock being said to occur when two or more activites block one



PAGE 12

another in such a way that their further progress is prevented. We

shall look at this topic in greater depth in section 3.7 below.

The other classification system we shall look at is based on the
way in which the "lock" is actually placed on a resource. We shall
identify three distinct ways of doing this, but in most cases some
combination of the three methods is used to ensure greater security.

The three are:-

l. Presence/absence method - when an activity wishes to make
use of a shared object it "removes" it from the commonly
accessible place allocated for it, to a place private to the
activity, thus reserving the object for its own use. There
are many examples of this type of lock - a switch (presence
or absence of electricity) or in a reference 1library
(presence or absence of a book) - and most have the extra
property that the Jlocked object can be relinquished,
voluntarily or involuntarily, to some other activity,
without it being returned for normal competition. This type
of "lending" forms the basis for the preemption schemes used
in many computer systems. The major weakness of this scheme
is that an object may be "stolen" and so never be returned
to be contended for, and this can only be prevented by

combining this method with one or both of 2) and 3).

2. Record method = here the status of the object in question is

noted down in some way, and this record is consulted to



PAGE 13

determine whether a request to lock the object can be
granted. This scheme 1is often wused where the object
contended for is not amenable to a class 1) solution (for
example where it 1is not present at the place where the
request must be made) and has the advantage that the
identity of the activity possessing the object can be
recorded allowing it to be traced should that become

necessarye.

3. Token method - in this method an activity is given a token -
for example a theatre ticket for a specified seat = which
shows that it has locked somé object. Note that such things
as library tickets, passwords and keys are NOT examples of
this kind of token, but are members of the more general
category of '"CAPABILITIES" (Den 66) which are one step
removed from locking schemes, controlling whether or not an
activity has the right to perform certain operations, the

ability to make requests for resources being one of them.

All these types of locks occur in computer systems, though the
presence/absence kind only exist in the hardware, the other two

methods often being used to simulate it at the software level.



PAGE 14

2.1.2 Granularity of locking -

Whenever structured objects are contended for it 1is very
important to specify how much or how little of the structure must be
locked by a user to enable him to operate on one of its parts. We

shall call this amount the GRANULARITY OF LOCKING for the structure.

This concept was introduced by Gray et al (Gra 76) for wuse in the
discussion of access control for databases, but may be usefully
extended to include the types of structure available in programming

languages.

The granularity of a structure determines the amount of
concurrency that can occur when several activities attempt to use it
and so can drastically affect the efficiency with which a system
operates. Generally, if the lock unit is too large concurrency will
be reduced, if it is too small the probability of requests
overlapping and causing deadlock will increase. So to select the
lock unit the system designer must evaluate the trade off between the
need for concurrency and the frequency of possible deadlock. Of
course there is no theoretical reason why all lock wunits should be
the same size as each other and it may be possible to arrange that
parts of structures which are always used together are locked as a
whole. However, different programs may wish to impose different
groupings of parts on a single stru:ture, and where these overlap
deadlocks can arise. Gray (Gra 76) has tackled this problem by
introducing a new type of lock which is related to the way in which

structures are accessed and we shall describe this in the next



PAGE 15

section.

Another aspect of the choice of granularity is the amount of
storage space required to record information about the locks that
have been placed by processes. The smaller the lock unit, the
greater the number of locks placed so the system will need a larger
amount of storage space for its control information. This larger
quantity of information could also mean that checking whether a
deadlock will arise if a request is granted will be slower, thereby

reducing the overall performance of the system.

We can see therefore that the chosen granularity of locking has

a significant effect on the efficiency of the system, and we shall

discuss this topic further in section 3.9.

2.1.3 Modes of locking -

So far we have made no mention of the access rights that a
process acquires when it places a lock on a resource, these being
dependent on the MODE of the lock request. The simplest mode is that
of the EXCLUSIVE lock, which when granted, gives the requestor read
and write (as defined in section l1.2.2) access to a resource, whilst
preventing other processes from using it in any way. Of course the
request could be made on behalf of a group of processes resulting in

them all having SHARED READ/WRITE access to the resource, and this

can be a very useful facility, even though it allows the processes in

the group to interact with each other in an uncontrolled manner. We



PAGE 16

shall discuss the application of this in chapter four.

However there are cases where exclusive locks are too
restrictive, such as that where several processes all wish only to
read a resource. Here all the processes could use the resource
concurrently, but an exclusive locking scheme will only permit one

process to use it at a time. To overcome this the SHARED READ (SR)

lock has been introduced which gives a process read only access to a
resource, several processes being permitted to hold such a 1lock at
the same time. Any process wishing to modify the resource nust
either wait till all the shared read locks on it have been released
(barring any that the process may hold itself) or PREEMPT the other
processes, forcing them to release their 1locks, before placing an
exclusive lock on the resource. If the process previously held a
shared read lock on the resource it is said to have CONVERTED the
lock mode from shared read to exclusive. Unfortunately the process
of conversion can lead to a deadlock, where two processes both wish
to convert a lock on the same resource, and we shall look at this

difficulty in section 3.7 below.

These two lock modes are sufficient 1in systems where only
simple, unstructured resources are contended for, but where resources
are more complex in structure, as in a data base system, a greater
degree of control is needed over access. The reason for this is that
exclusive and shared read locks can only be applied to the specific
parts of a structure that a process wishes to use. For if locks had

to span the hierarchy of the structure one exclusive lock would



PAGE 17

prevent any other process from accessing it at all, but then a
process cannot safely lock a part of a structure without first
determining whether any sub-structure contained within the part it
wishes to lock has been locked by another process, a very time
consuming procedure if a large structure is involved. A solution to
this problem has been given by Gray et al (Gra 76) who have
introduced the concept of INTENTION mode locks. They have suggested

the use of three specific locks:=

1. Intention shared read (ISR} - a process placing such a lock
is declaring that it will only place shared read or
intention shared read locks on lower parts of the structure,
and, if conversion is allowed, will only attempt to convert

ISR locks to shared read,

2. Intention exclusive (IX) which has the same properties as

ISR but with respect to exclusive access,

3. Shared Read and Intention exclusive (SIX) = which allows a
process to have shared read access to a part of a structure,
but also lets it lock smaller parts in IX or X mode, thus
allowing concurrency with other processes who wish to

examine parts it does not wish to alter.

Fig. 2.la shows a possible partial ordering of all the modes we
have discussed, where NL represents the unlocked state and the

operator > is used to mean “is more binding than’. The table in



PAGE 18

fig. 2.1b shows how the system must treat multiple lock requests for
the same resource — Y indicates that the request is compatible with
the current lock state of the resource and can be granted, N means
that this combination of locks is not possible. The intention locks
provide an excellent way of controlling access to hierarchical
structures, and Gray gives several examples of their wuse in cases
which are usually exceedingly difficult to cater for. However in the
rest of this thesis we shall not concern ourselves with the use of
intention locks as the extra complexity they introduce would obscure

the working of the mechanisms developed. Nonetheless the possibility

that they may be required must always be borne in mind.

» I%
X > SIX » IS > NL

> 5

(a)

REQUEST MODE
NL I8 IX S SIX X

NL ¥ ¥ Y Y ¥ b §

I8 Y ¥ i Y ' - N

RESOURCE IX Y Y Y N N N

STATE S b5 Y N ¥ N N

SIX | ¥ ¥ N N N N

(b)

Figo 251



PAGE 19

2.1.4 Requirements of programmers -

Before looking at some of the existing programming language
tacilities for controlling the use of shared resources, let us try
and set out the characteristics that such an interface should
possess. We shall assume that the user expresses his programs in a

structured high-level language such as PASCAL (Wir 71).

The interface has to provide the wuser with four essential

functions:-

l. The ability to issue a request to lock a resource in the

required mode,

2. To wait until the request is granted,

3. Allow the resource to be manipulated without restrictions,
other than those set by the definition of the resource and

the mode in which it has been locked,

4. To release the lock making the resource available to other

users.

Two additional functions could also be provided, namely the
ability to convert the mode of a lock, and the option not to wait if
a resource is not immediately available when a request 1is made for

it The interface must also be reliable - it should be impossible to



PAGE 20

use a shared resource without first having locked it and should an
error occur after the lock has been placed the support system must be
able to release it in a consistent state if the error handling in the

failing process does not.

Of course though these facilities must all exist they need not
be wused explicitly by a programmer for them to be invoked - the
system may provide them automatically. This will free the programmer
trom worrying about resource allocation and release, and allow the
system to conceal the fact that some resources are shared though they
do not appear to be. Most systems supporting shared resources have
already hidden any waiting for resources from the user, but
automating acquisition and release presents some problems, though
their solutions increase the reliability of the system considerably.

Let us look first at the process of acquisition.

1f the whole text of a program 4is available a compiler can
determine the points at which resources must be acquired and where
they can be safely released. The analysis will be fairly difficult
because conditional wuse of resources means that resouce acquisition
must take place at a point in the program which will be executed by
all paths or else the code must be repeated where necessary (this may
mean that a process must be allowed to request a resource it already
possesses). However with the rise of modular programming techniques
separate compilation of modules has become the norm, so this approach
is not really wusable. The only alternative 1is to perform resource

acquisition at run time, that is whenever a shared resource is wused



PAGE 21

the system must check to see if it has been locked by the process,
and if not must lock it. This will of course be relatively
inefficient, but it guarantees that a resource cannot be used without
being locked, and that resources which are used in paths that are not
executed will not be locked. One disadvantage is that where more
than one lock mode is implemented mode conversion must be supported.
For it will often be the case that the first use of a resource will
only need a weak lock (reading - shared read) but a later use may
require a stronger lock (writing = exclusive), and so the lock must
be converted. Section 3.7.2 dicusses the problems that can arise

where conversion is provided.

Automatic release of resources is considerably more difficult
and either requires analysis of the whole program or for all
resources to be released at some predefined point, usually the end of
a process’s execution. The former though providing far more
efficient use of resources is not reliable as commitment of a value
can take place before it is certain that the value is correct, so the
latter is preferable because of the increase in reliability obtained
through wusing it. The fact that resource release is automatic also
means that the system should easily be able to implement the other
reliability requirement mentioned above - that resources should be

released when an error occurs.

From the above we can see that the simplest interface (probably
only from the programmer’s point of view) would be one where the

programmer treats shared resources exactly as he would unshared ones,



PAGE 22

leaving the support system to determine when locking is appropriate.
The fact that a resource is shared can be determined from its address
which will point to a part of the address space common to several
processes. In effect the memory management hardware of most computer
systems performs this operation anyway so existing techniques should
be perfectly adequate to do this. The association between a shared
resource and an address need only be carried out once, as most
modules could access it as an external object, alowing the shared
attribute of the resource to be concealed if necessary. Resource
release still presents problems, as holding resources till a process
terminates may not implement what the user wishes. However we would
suggest that by splitting a process into a sequence of transactions
and releasing all locks at the end of each transaction the programmer

will be able to implement most algorithms.

2.2 Existing systems for controlling concurrency

Many language interfaces have been devised to allow programmers
to control the use of shared resources, however we shall only examine
six of them. The constructs chosen are representative of all the
other methods that have been developed and are the ones most
frequently referred to in the 1literature. 0Of course the vast
majority of today’s computer systems do not provide the programmer
with languages that have these constructs embedded in them. The
acquisition and release of resources are normally achieved either
through the use of a Job Control Language or by procedures calls in a

process body. However both these methods can be regarded as



PAGE 23

equivalent to the use of certain of the constructs described below

and we shall indicate this relationship in the appropriate sections.

2.2.1 Semaphores -

The semaphore, described by Dijkstra in (Dij 68a) and developed
by him for use in the THE operating system, is widely regarded as a
paradigm for concurrency control mechanisms, and the correctness of a
new construct is often demonstrated by showing how semaphores may be
implemented using it. In fact the concept behind semaphores 1is so
tundamental that almost all the actual implementations of other

constructs make use of them (if they are not exactly equivalent).

A semaphore is a special non-negative integer variable which has
two operations associated with it called P and V. P is the "acquire"
operation of the pair and, where S is a semaphore, is equivalent to
the operation:-—

WAIT UNTIL S > 0
S =8 =13
The V operation performs the release function and can be represented

as =

5 ¢= 8 + lj

and of course both these operations must be atomic to eliminate any
interactions between processes executing them at the same time.
Dijkstra identifies two types of semaphore, mnamely the BINARY

semaphore, whose value 1is' either zero or one, and the GENERAL



PAGE 24

semaphore which can take on larger values, however in (Dij 68a) he

shows that only binary semaphores are strictly necessary.

There are two ways in which semaphores can be wused to control
access to resources. The first is to associate a semaphore with
every common resource and require the programmer to perform P’s and
Vs on it to acquire and release the resource. The alternative
method is to use one semaphore to control several resources, using
single P and V operations to acquire and release all of them at omne
time. Unfortunately, though the wuse of these methods gives the
programmer considerable flexibility and power in the way in which he

builds his program they both possess severe disadvantages:-

l. The fact that a resource has a semaphore asscciated with it
does not guarantee that the programmer will actually perform

a P on the semaphore before using the resource,

2. Because P and V are explicit operations there is no
structure to 1link them together, which can not only reduce
the modularity and clarity of programs using them, but can
also lead to the programmer forgetting the V operation
altogether, thereby preventing any more P operations from
being successful. Another problem is that the programmer is
not prevented from performing two P’s without a V between
them causing his program to deadlock itself, or from issuing
two V's without a P between them, which could cause two

_processes to acquire the resource at the same time.



PAGE 25

3. Semaphores only provide exclusive locking and cannot be used
to support shared read or intention locks, for firstly only
one process can hold a semaphore at a time and secondly it
cannot be guaranteed that the process acquiring the resource
will not modify it, this would require some extra protection

mechanism,

4. In order to avoid deadlocks the programmer must use special
methods such as the "banker’s algorithm" (Dij 68a) or must
carefully analyse the interactions between the processes in
the system before implementation to ensure that they cannot

occure.

Despite these disadvantages semaphores are often provided to
users = sometimes explicitly, as in the 1anguage ALGOL 68 (Wij 69),
but more usually through the medium of system procedures. These
procedures, for example ones to open and close files, can be used to
hide the manipulation of semaphores from the user, but still suffer
the disadvantage of being unstructured. Other approaches which have
been tried, such as the LOCK and UNLOCK statements of Dennis and Van
Horn (Den 66), effectively hide semaphore like mechanisms from the
user, but still do not provide structure. This need, and that of
simplifying the task of deciding how many semaphores are required to
implement a given algorithm, has therefore led to the development of

other interfaces.



PAGE 26

2.2.2 Path expressions -

Campbell and Habermann (Cam 74) have tackled this problem by

introducing what they call PATH EXPRESSIONS. These are a means of

specifying the valid sequences of operations that can occur, all
those not conforming to the path expression being erroneous - for

exanple the functioning of a semaphore can be represented thus:-
PATH P;V END;

which indicates that a P operation must always occur before a V.
More complex relations can be built up in the notation, and fig. 2.2
shows the specification of a type "file" which can either be opened,

read or written several times and closed or can be renaned.

TYPE FILE IS
CLASS
PATH (( OPEN ; ( READ , WRITE )* ; CLOSE ) , RENAME ) END;

ENTRY PROC READ ;s BEGIN...END; == reads from the file

ENTRY PROC WRITE ; BEGIN...END; == writes to the file

ENTRY PROC OPEN 3 BEGIN...END;

— opens the file

- closes the file

ENTRY PROC CLOSE ; BEGIN...END;
ENTRY PROC RENAME ; BEGIN...END; =- renames the file
BEGIN...END; == initialisation of a new file

Fig. 2.2

An instance of the path is associated with each object declared

of type file, and a complete path, that is a sequence of operations



PAGE 27

such as open, read, write, close, would be executed exclusively by
the process which initiated it, any other process having to wait
until the path terminated before it could initiate one on the same
file. There are several different kinds of paths possible and these
are discussed in (Lau 75), which also shows how path expressions are
related to Petri nets, (Pet 77) and gives a solution to the
""Cigarette smoker”s" problem using paths. In order to implement
paths, Campbell and Habermann have developed an algorithm which can
translate them into equivalent sequences of P and V operations on
semaphores which can be placed round the operations used in the path
in order to control them. They have thus been able to structure the
use of semaphores safely, ensuring that P and V operations are not
ommitted, overcoming the first two disadvantages of simple
semaphores. However, though this frees the user of correct sequences
from concern about interactions between processes, if he erroneously
issues an operation out of sequence his process will wait
indefinitely, possibly blocking other processes at the same time.
Such circumstances can be detected by performing complex analyses of
the programs involved, as the use of Petri nets shows, but the
techniques required have not been sufficiently developed as to make
them accessible to the ordinary user, and this may be one of the
reasons why Path expressions have not been incorporated into the
design of more recent general purpose languages. Another
disadvantage is that, again because of the requirements for mutual
exclusion, shared read and intention locks cannot be supported.
Also, where separate compilation of program modules is supported, the

same path can be represented in different ways (either by error or



PAGE 28

malicious intent), resulting in hard to detect run-time errors.

We can see therefore that though path expressions provide a
clear and compact way of controlling the operations on shared
resources, they are as error prone, in their own way, as the explicit
use of semaphores. Also the use of regular expressions to describe
sequences of operations does not reflect the algorithmic approach
that most programmers adopt when implementing a new type. It would
seem, therefore, that, whilst path expressions will remain an
outstandingly useful theoretical tool, applications programmers will
require resource control mechanisms which are directly related to the

structure of their programs.

2.2.3 Regions -

In order to make the structure of programs using semaphores
clearer Dijkstra (Dij 68a) has introduced the notion of a critical
region, which is the term he uses to describe a section of program
executed in mutual exclusion from other processes. A critical
section is entered by performing a P on a semaphore and terminated
when the process performs a V on the same semaphore. Brinch Hansen
(BrH 72) has incorporated this concept into a programming language by
the wuse of the REGION statement, which allows statement blocks to be
marked as critical with respect to certain specified resources. A
compiler can then automatically generate the appropriate operations

needed to acquire and release those resources, for example:-



PAGE 29

REGION P,Q DO
BEGIN

-= use P and Q

END;

This is interpreted as meaning that resources P and Q are to be

locked before the compound statement is executed and released

immediately it terminates. This provides several advantages to the

programmer over the previously described methods:-

The notation is simple and relates closely to that used when
abstract specifications of programs are written (note that
the job control statements that must often be supplied

around program bodies are a type of REGION statement),

The user is forced to structure the use of shared resources
more carefully, preventing such occurrences as overlapping

ceritical regions which are possible with semaphores,

The compiler can verify that only those shared resources
named in the REGION statement are actually used in the
statement body, preventing interference, (though by doing
this separate compilation of program modules may be made

difficult),

Though the structure was originally designed for use with



PAGE 30

semaphores, any resource locking scheme could be used to
support it, allowing the use of the more sophisticated lock

structures described above.

There are, however, disadvantages:-

Deadlocks can occur if careful analysis of programs using
the statement is not carried out, and, as with the other two
schemes we have described, no method of breaking a deadlock

that has arisen can be provided,

The body of a region statement is NOT atomic and resources
can be altered without the users knowledge. Consider this

example: -

REGION A DO PROCEDURE P;
BEGIN BEGIN
. REGION B DO
. BEGIN
P .
. END;
P END;
END;

Here the programmer may expect the results of the procedure
P to be identical after each of the two calls. However, as
the shared resource B is acquired and released every time P
is called, B can be used by other processes between the
calls on P, introducing the posssibility of dincorrect

interactions between processes,



PAGE 31

3. The statement is inherently unreliable, for 1if an error
occurs during its execution the resource release part of the
statement implied by its termination will not be executed.
This means that the shared resources it acquired will not be
returned to the common pool, and, even if a mechanism could
be provided to release them, irreversible alterations could
have been made to them, possibly rendering the system state

inconsistent.

For these reasons the REGION statement is not as useful as it
appears at first, and, like path expressions, it seems to be used
more as a theoretical tool than a practical part of a programming

language, however this cannot be said of our next example.

The MONITOR was first described by Hoare in (Hoa 74) and has
been used very successfully by Brinch Hansen in the language
Concurrent Pascal (BrH 75) and his Solo operating system (BrH 76),
and also by WIRTH in programming language MODULA (Wir 77). A MONITOR
is a special kind of CLASS (Bir 73) in which only one entry can ever
be active at a given time, the body of each procedure forming a
critical region with respect to the wvariables declared within the
MONITOR. These procedure bodies are atomic because they can only
access variables local to the MONITOR or passed in as paranmeters,

and, as only one entry is active at a time, the environment seen by a



PAGE 32

process cannot change whilst it is executing the entry.
Synchronisation and co-ordination of process activity is achieved by
the use of queues, a process putting itself on a queue when it wishes
to wait for some condition to become true. When a process joins a
queue it automatically releases the MONITOR, allowing other processes
to wuse it, and will not be reactivated until another process detects
that the condition associated with a queue is true and explicitly
activates the waiting process, at the same time relinquishing its

lock on the monitor.

However though MONITOR’s have been used with great success to
solve a great variety of problems they suffer from similar

disadvantages to the constructs described above:-

l. The use of queues is not only inelegant but can lead to

deadlocks, where their attached conditions are ill formed,

2. The mutual exclusion enforced on MONITOR entries prevents
any concurrency, even in cases where it would be perfectly
acceptable, and so again shared read and intention locks

could not be implemented.

3. Should an error occur in a HMONITOR entry, the MONITOR
variables could be left in an inconsistent state, causing
erroneous information to be propagated when other processes
use the MONITOR. Also if the support system cannot identify

.that the error arose in a MONITOR entry, the MONITOR may not



PAGE 33

be released, thus preventing other processes from using it,

4. Because of the scope rules applied to MONITOR wvariables,
algorithms which require the use of nested monitor calls can

»zcome very complicated, leading to programmer error.

However despite these disadvantages, MONITOR"s have been widely
used and the methods needed to solve problems using them are becoming
tamiliar to a widening circle of users. This has led to considerable
work being done to improve the reliability of MONITOR’s and we shall

look at this in a later section.

2.2.5 Atomic Actions -

Ultimately all locking schemes are concerned with ensuring that
certain sequences of operations are performed atomically, and to this
end Lomet has introduced the notion of an ATOMIC ACTION (Lom 76a) as
an explicit program structure. This is simply a device that can be
used either like a BEGIN ... END block or a procedure, but which
indicates that the sequence of statements enclosed by the structure
is to be executed atomically. This has several advantages over the

techniques we have described above:-

l. Nested ATOMIC ACTION's do not have the problems of nested
REGION"s as atomicity is guaranteed from the start of the

outermost ATOMIC ACTION until its termination;



PAGE 34

2. Once a statement block has been declared as atomic the
programmer can use shared resources exactly as he would
private ones. This allows programs to be written and tested
using local resources, and later converted to use shared
resources, simply by altering the declarations of the

resources in question;

3. Separate compilation of ATOMIC ACTION’s is possible firstly
because of their modularity and secondly because the
atomicity or otherwise of any enclosing modules, defined

elsewhere, is not important;

4. As there is no explicit acquisition and release of resources
in a program, the support system has full control over the
way in which these operations are carried out, this ensures
that all shared resources used in an ATOMIC ACTION are
locked before use eliminating the possibility of interfering

with other processes,

5. Because an ATOMIC ACTION does not necessarily have to be
executed in mutual exclusion the support system can provide
the user with shared read and intention locks, allowing the
use of data bases and other structured resources to be

amalgamated efficiently into the system.

The disadvantage of ATOMIC ACTION’s is that the way in which the

atomicity they provide 1is to be implemented is not defined. If a



PAGE 35

technique similar to any of those described above is adopted, ATOMIC
ACTION s will suffer form the same kinds of reliability problems that
they do, namely deadlocks, permanently locked resources and the
propagation of inconsistent information through a system. However
other mechanisms can be devised to overcome this and the subsequent
chapters of this thesis will show how one of these can be developed.
We shall also discuss an extension of the ATOMIC ACTION which Lomet
has introduced, known as a SHARED ATOMIC ACTION. This allows several
processes to collectively acquire shared read/write access to
resources, their combined operations appearing atomic to the rest of

the system though they may not be atomic with respect to each other.

2.2.6 Communicating processes =

Up until now all the constructs we have looked at have required
there to be a set of resources commonly available to all processes,
but recently both Hoare (Hoa 78) and Brinch Hansen (BrH 78) have
proposed systems which do not require this to be so. These systems
are based on the wuse of messages passed bgtween processes in
synchronisation, Hoare’s system making communication similar to
input/output by allowing processes to read from and write to each
other, Brinch Hansen’s giving one process the ability to remotely
call a procedure in the body of another process. Both these
constructs are related to the idea of coroutines, introduced by
Conway (Con 63), and the "call", '"detach" and "resume" primitives
provided by SIMULA (Bir 73), and similar proposals have been put

forward b} other authors, for example Kahn and MacQueen (Kah 76).



PAGE 36

However many of these tend to be directed towards aiding program
proving and are mnot particularly suitable as '"real" programming

languages.

Both Hoare and Brinch Hansen’s systems control the interactions
between processes by specifying that a process executing a send
operation (that is an output to another process or a remote call)
must wait wuntil the process to which the operation is directed
specifically accepts the message, in Hoare”s system this is done by
the wuse of GUARDED REGIONS. A guarded region is a non-deterministic
structure internal to a process, consisting of several procedures
callable by other processes, entry to which is controlled by a GUARD,
which is a necessary condition for execution to commence- When one
of the guards comes true and a call has been issued for the procedure
associated with it, the procedure is executed and when it terminates
the calling process is reactivated, if several calls are outstanding
on one procedure they must be queued and handled one at a time. The
use of guards is due to Dijkstra (Dij 75) and is a subject which we

shall be returning to in several later sections.

Another feature common to these systems 1is the ability to
describe arrays of processes, thereby allowing messages to be
directed to a process whose identity is determined at run time,
however Kieburty and Silberschatz (Kie 79) have suggested that some
of the interactions expressible wusing this facility are not
implementable on a system made up of distributed processors, and as

the use of such distributed systems 1is the avowed aim of Brinch



PAGE 37

Hansen’s system, some doubt must exist as to the practical usefulness
of the whole system, for many problems require the use of process
arrays to solve them, as demonstrated in both (Hoa 78) and (BrH 79).
Another criticism leveled against these systems is that the level of
concurrency is unnecessarily reduced by the requirement of
synchronisation between processes in situations where message passing
is the only aim of the interaction as, for example, in the "pipes"
available to the user on the UNIX system (Rit 78), and we shall 1look
at this topic in greater depth in chapter 5 below. As to the
reliablity of the constructs, all the problems existing in other
systems arise for the queueing required to send messages can lead to
exactly the same kinds of deadlocks and related errors that queueing

for access to common resources cane.

Despite these difficulties this type of technique must be
regarded as opening up new possibilities in the design of systems, as
it encourages highly modular designs, eliminates the need for shared
resources, can be applied to distributed systems (though with the
reservations expressed above) and allows algorithms to be expressed
in new ways. It remains to be seen how successful people will be in
using and implementing systems of this type, but the fact that the
much disputed tasking mechanism in ADA (Ich 79) is based on the use
of communicating processes must encourage more research to be done in

this area.



PAGE 38

2.2.7 Summary -

This brief examination of the main language facilities for
controlling resource usage in concurrent processes has shown that,
though constructs exist which are modular and conform to the
principles of structured programming, none of them, as they stand,
are proof against the occurrence of software errors. Also, support
for the sophisticated locking schemes needed for the efficient use of
data bases is very difficult (and in some cases impossible) to
provide. The main reason for these problems would seem to be that
most of the constructs we have looked at were designed for use in the
implementation of operating systems, and so cannot be considered as
general purpose structures. Only ATOMIC ACTIONS and communicating
processes seem to possess the attributes necessary for such a general
purpose interface. However both these techniques suffer from the
disadvantage that, as they are relatively new, little use has been

made of them, so the problems they give rise to are not fully known.

2.3 Recovery schemes for concurrent processes

Now we must turn our attention to the techniques that have been
developed to cope with the reliability problems raised by the use of
the methods described above. There are four main areas which must be

tackled: -

l. If a process becomes dependent on uncommitted data which is

later found to be in error it too must be regarded as being



PAGE 39

in error,

2. Deadlocks must either be prevented or detected and broken,

3. Resources locked by a process which fails must be unlocked
and returned to common availablity, preferably in a

consistent state,

4. Some means mnust be found of detecting processes in
unintended infinite loops, and making them fail explicitly,
thus causing the release of the resources they hold (because

of 3).

The problem of deadlocks has long been recognised and we shall
discuss it futher in sectiion 3.7 below, the rest of this section
will look at some specific areas of faulf tolerance, which relate
directly to the other three areas. A general survey of fault
tolerance techniques exists in (Ran 78) which gives many examples of
the different approaches used in this field, but we shall only look
at those which impinge directly on the programmer by providing a
language interface to their facilities. However before dealing with
concurrent processes per se we must look at recovery facilities in

sequential programs.



PAGE 40

2.3.1 Sequential programs -

Up to this time only two language facilities for the control of
errors have been provided to the programmer. The first is an example

of what is known as FORWARD ERROR RECOVERY and is the provision of

the ability to handle exceptions, such as the "ON" conditions of PL/I
(IBMa). The facility provided by the use of ON conditions is rather
limited and several suggestions have been made for expanding the
usefulness of exceptions, for example (Goo 75a), (Goo 75b) and (Par
72), which all describe ways of integrating exception handling into
the structure of programming language. The use of such forward error
recovery techniques 1is ideal where the programmer knows the exact
nature of the faults that may occur in his program, and can precisely
define the operations that must take place to recover from them.
However, as is shown in (Mel 76), in cases where unforeseen errors
arise, possibly due to residual softvare faults, forward error
recovery does not provide an adequate solution. This is due to the
fact that the program may not be able to assess fully the damage to
the program state caused by the error, so cannot repair it

completely.

For this reason approaches based on BACKWARD ERROR RECOVERY have

usually been adopted where unforseen errors must be handled. The
characteristic of these techniques being the restoration of the
program state to that pertaining at some defined time prior to the
error, known as a CHECKPOINT. This restoration is made possible by

either storing a complete representation of the program state as it



PAGE 41

was at the checkpoint or by maintaining a record of all the
operations which affect the system state, that have been performed
since the checkpoint. To provide recovery in the 1latter case the
system must undo all the operations it has recorded, whilst in the
former recovery is implemented by making the current program state
identical to the stored state. The most widely used backward error
recovery mechanism is the RECOVERY CACHE, devised at the University
of Newcastle upon Tyne, which provides a means of building up an
incremental checkpoint of a program state. Often associated with the
recovery cache is a program structure knows as a RECOVERY BLOCK, and

both of these are fully described in section 3.4 below.

The main disadvantage of backward error recovery is that it 1is
expensive to implement, requiring processor time and storage to
maintain the recovery information needed. However as it provides a
means of handling a very wide range of errors (all except those
involving the recovery mechanism itself) the expense is generally
regarded as worthwhile. Implementations of backward error recovery
in sequential programs have been described in (Shr 78b), (And 76) and
(Cri 79), the latter combining the use of exception handlers and the
recovery cache. Certainly, as we shall see from the succeeding
sections, the use of backward error recovery, especially the recovery
cache, has been the foundation of most of the recent research done on
the field of fault-tolerant software, and this thesis also bases its

proposals on this type of mechanism.



PAGE 42

2.3.2 Database systems -

Much of the impetus for research into recovery in systems

supporting parallelism has come from the need to preserve integrity

in large data bases. Verhofstad (Ver 78) has identified seven

classes

systems,

3.

5.

of fault tolerant recovery techniques used in data base

these are:=-

Salvation programs - programs run to restore the data base

to a consistent state after an error,

Incremental Dumping = periodically archiving data to provide

checkpoints for updated files,

Audit Trials - recording the order of operations performed
on a data base, so that these may be "undone" in the correct
sequence in order to reach a consistent state, namely the

start of the sequence of operations,

Differential Files = here file updates are not made to the
main file, but take place 1in other files which are

periodically merged with it and emptied.

Backup/current verion - where all the files in the data base
are periodically archived to provide a checkpoint should the

current information be damaged.



PAGE 43

6. Multiple copies = several copies of every file are held,
which all contain the same data, except during an update

operation,

7. Careful Replacement - updates only take place in COPIES of
the data, which are merged with the original, only when the

values are committed.

The common feature of these techniques, except the audit trail
method, 1s that they are primarily concerned with the integrity of
the data base, and regard the effects of errors on the programs
running in the system as secondary. From the programmer’s point of
view these systems often appear highly fault intolerant, as
facilities for error handling are minimal, the usual solution being
for all programs affected by state restoration to be rerun. This
will wusually include several programs'which were not in error and
which were not dependent on erroneous data, and, even if the jobs are
resubmitted without involving the programmer, a considerable
lengthening of the turn-around will be experienced by those users

affected.

However systems that use audit trail methods can BACK OUT an
individual process, rather than BACKING UP all the processes in the
system providing a much better user interface. The programmer can
then be given facilities to control the way in which recovery takes
place in his programs, very much as for sequential programs (note

that the fecovery cache mechanism can be viewed as an optimised audit



PAGE 44

trail as well as an incremental check point). An example of this is
provided by System R (Ast 76) which gives the programmer the
operations SAVE, (to identify the start of an audit trail), RELEASE
(to commit an audit trail) and RESTORE (to wind back to a named point
in an audit trail). This type of interface is very often
unstructured because of the COBOL-like languages used in data base
systems, but they must be regarded as a major step forward in making
error handling by fault tolerant methods available and familiar to a

much wider spectrum of users.

2.3.3 Ports -

Uutside the sphere of databases much of the work on error
recovery 1in concurrent systems has been theoretical and very little
attention has been given to the needs of the programmer. However
Shrivastava and Banatre (Shr 78a) have described a program structure
known as a PORT which allows competition and cooperation between
processes whilst preserving recoverability. A PORT is a specialized
type of SIMULA class with features to aid recovery, and 1is wused to
control access to resourcess. It consists of some variables, some
entry procedures, a reverse procedure and an initialisation statement
consisting of two parts known as a PRELUDE and a POSTLUDE separated
by means of a SIMULA INNER statement. The prelude of a PORT is
concerned with resource acquisition and the postlude with resource
release, and they are invoked by means of the USING statemente. This
associates a block of statements with an instance of the PORT, and

causes the block to be executed when the INNER statement of the PORT



PAGE 45

initialisation code is reached, ensuring that the block is bracketed
by the prelude and postlude. The PORT assumes the presence of a
recovery cache and if an error occurs whilst a USING statement is
executing, state restoration will take place, and the postlude of the
PORT will automatically be executed, guaranteeing that resources will
be released by failing processes. However if an error occurs after a
USING statement has terminated the effects of the operations
performed in it must be undone, and this is where the special reverse
procedure comes 1in. The use of a PORT is recorded in the recovery
cache and when state restoration takes place the prelude and postlude
are executed to reacquire and release the resources used, the reverse
procedure being executed when the INNER statement 1is encountered.
This procedure is only accessible to the recovery mechanism and is to
provide compensation for the effects of the previous use of the PORT,
that 1is, because the USING statement cannot be undone by the system,
the user must provide a piece of program which attempts to do this.
In most cases this will involve sending a special message to other
processes or the system operator to tell them to ignore certain data,
but it can also consist of constructing messages whose effects will
be the exact opposite of the earlier message, thus undoing its
effects. Another facility provided to the user is an errorflag which
allows him to determine, during the postlude and prelude, whether the
process 1is recovering or not, and so these parts of the program can

be tailored to the recovery process also.



PAGE 46

1YPE MANAGER IS

MONITOR
PROCEDURE ENTRY SEND ( I : INTEGER ; LAST : BOOLEAN );
-- queue value for receiver, last is true if it is final value
BEGIN...END ;
PROCEDURE ENTRY RECEIVE(I : OUT INTEGER ; LAST : OUT BOOLEAN )
-= get a value form the queue
BEGIN. ..END;

BEGIN...END; == initialisation code

TYPE SENDER IS

PORT( MAN : MANAGER 3 I : INTEGER ; LAST : BOOLEAN )
VALUE : INTEGER ; COMPENSATE : BOOLEAR ;
REVERSE PROCEDURE;
BEGIN END; == called as INNER when recovering

BEGIN
-- first of all the prelude
IF ERRORFLAG THEN -=- system is recovering

BEGIN
COMPENSATE: =TRUE; -~ indicate this to postlude
MAN.SEND{(VALUE,LAST) -- send compensating value to receiver
END
ELSE == its a normal exchange
BEGIN
VALUE:=-I; =- record compensating value for this exchange

COMPENSATE: =FALSE; -- for postlude
MAN.SEND(I,LAST) == send the value

END;

INNER; =-- perform the user’s code

== now the postlude

IF ERRORFLAG AND NOT COMPENSATE THEN
MAN.SEND(VALUE,LAST) =-- compensate for error in INNER

END;

LINK : MANAGER ;
SEND : SENDER ; == port to control LINK

TASK PRODUCER;
BEGIN
ENSURE («+.) BY -- some acceptance test
BEGIN
FOR I:=1 TO 3 DO
USING SEND(LINK,I,FALSE) DO ; == send the numbers
END
ELSE BY
BEGIN...END == a secondary algorithm
ELSE BY ERROR;

USING SEND(LINK,0,TRUE) DO; == signal termination
END;

Fige 2.3 o..



PAGE 47

TASK CONSUMER;
BEGIN
LAST:=FALSE ;
SUM := 03
WHILE NOT LAST DO
BEGIN
LINK.RECEIVE (I,LAST)
IF NOT LAST THEN SUM:=SUM+I1
ELSE
BEGIN...END =-- use the result
END
END;

Figo 2.3

Fig. 2.3 shows an example of how a PORT can be used to provide
reliable communication between processes. It consists of two
processes “PRODUCER’ and “CONSUMER’® which communicate via a MONITOR
‘LINK“. The function of the system is for CONSUMER to calculate the
sum of the numbers generated by PRODUCER, and the wuse of the PORT
“SEND‘ ensures that the sum is correct even if an error occurs in the
producer. This is because each time the port is used to send a
message a compensating value (the negative of the value being sent)
is stored in PRODUCER‘s cache. Should an error occur in PRODUCER,
the ‘reverse” invocations of SEND will cause these negative values to
be sent to CONSUMER, thereby correcting the sumlthat it holds. In
this example the reverse procedure is actually null, and the
compensating action is taken in the prelude and postlude of the PORT.
This 1is to allow for the possibility of errors occuring whilst the
INNER statement of the PORT is being executed, in which case the test
on ERRORFLAG in the postlude will ensure that compensation takes

place.



PAGE 48

The main advantage of this scheme 1is that processes do not
become dependent on each other and so recovery of an individual

process can take place, meaning that the DOMINO EFFECT (Ran 75) will

be avoided. This occurs when processes have interacted and become
dependent on each other in such a way that successive state
restorations must take place, until the processes have been wound
back to their first checkpoints. The effectiveness of this structure
has been demonstrated in an implementation based on Concurrent Pascal
and the SOLO operating system (BrH 76), which 4is described, with

several examples in (Shr 79a) and (Shr 79b).

From the programmer’s point of view, however, there are several
disadvantages. Firstly the suggested use of MONITOR’s with PORT's,
brings with it all the difficulties described in section 2.2.4.
Secondly the wuse of the errorflag makes the prelude and postlude
rather inelegant, giving the appearance of a somewhat adhoc addition.
Thirdly, the use of PORT"s adds considerable complexity to programs,
as can be seen from the examples in (Shr 79a). Finally the mneed to
provide compensation will restrict the user in the ways in which he
can solve problems, circumstances being made' even worse by the
possible presence of errors in reverse procedures. There are also
disadvantages from the point of view of recoverability because the
programmer cannot be guaranteed that his attempts at compensation
will have any effect, for other processes may have used the erroneous
data and terminated before the error was discovered causing faulty
results to be committed. In order to overcome this the programmer

must ensure that processes are properly synchromised, but in cases



PAGE 49

where interactions take place with unknown processes (that is
processes created by other programmers) it can never be certain
whether they will behave in the correct manner. This problem does
not occur in the limited environment of a Concurrent Pascal program,

but in "real" systems this situation will arise fairly frequently.

2.3.4 Deadlines and safe programming -

None of the systems we have looked at so far have offered a
solution to the problem of unintentional infinite loops or waits that
was identified above. All of them would require manual Intervention
to stop the execution of a looping process. Of course a loop need
not be infinite to be in error - especially in real time systems
where the time taken to execute sections of program can have a
significant result on the system state. Anderson (And 75) has
attacked this problem by dintroducing a new approach to the way in
which looping constructs are used in programs. He has identified

three control structures as being necessary:-

1. REPEAT S UPTO N TIMES - which, with "EXIT" statements in S,
can be used to implement constructs such as "WHILE" and

"UNTIL" statements,

2. DO S EXACTLY N TIMES - where S contains no EXIT statements,

thus providing "FOR" statment facilities,

3. CYCLE S INDEFINITELY - again with no EXITs in S, here the



PAGE 50

programmer specifically intends this to be an infinite loop.

These constructs allow the more wusual loop errors to be
detected, but do not provide any way of trapping erroneous waits and
loops (and other errors) caused by the corruption of the internal
representation of a program. These can often be detected by
checksumming straight ‘line sections of code (that is sections
containing no control transfers) at compile time and run time. A
comparison of the two values can be carried out at the end of each
straight 1line section - if they are not identical the code has been
corrupted, so a failure condition can be raised in the process
executing the code. Another approach adopted in the PLURIBUS system
(Hea 73,0rn 75) is to periodically checksum all the program modules
that make up the system, again comparing the value obtained with one
that was statically determined at compile (or load) time. These two
methods are not foolproof, as errors could cancel each other out
(especially in the latter case where much larger quantities of data
are being checked), but they will significantly enhance the
reliability of a system by trapping errors which may not otherwise be
detectable (though note that the former method will detect an error
the first time a corrupted section 1is executed, whereas with the
latter corrupted code could have been exeucted several times before

it is detected).

Another technique which is often used for trapping faulty loops
and waits 1is Dbased on the use of watch-dog timers. This involves

setting a maximum execution time for a program section and starting a



PAGE 51

timer when it is entered, if the time allotted is exceeded an error
condition is raised. This technique has been used in the PLURIBUS
system and was also suggested by Dennis and Van Horn for the system
they describe in (Den 66). Horton and Campbell (HoC) have formalised
this use of timers into the concept of DEADLINES, which allow for the
detection and recovery from possible timing errors. The structure
they develop allows the programmer to assign a maximum time limit to
a section of program and to provide a recovery block structure (see
section 3.4) to handle any errors that occur. The scheduling of the
execution of such sections 1is very critical, and Liestman and
Campbell (Lie 80) have shown how certain optimal schedules for
systems using deadlines can be achieved and how idle time created by
program  successes (that is within their deadlines) can be
rescheduled. Deadlines have their most important applications in
real-time systems, (for example fig. 2.4 which shows a navigational
application, due to Campbell), but should prove to be useful in all
cases where looping errors occur.

EVERY SECOND == frequency at which process is to be executed

SERVICE POSITION UPDATE

WITHIN 1 MILLISECOND -- deadline time limit

BY

BEGIN

READ NAVIGATIONAL DATA;
CALCULATE NEW_POSITION;
END
ELSE BY

KSTIMATE_POSITION_FROM OLD DATA;

Fige 2.4



PAGE 52

2.3.5 Distributed systems -

Recently considerable attention has been given to the
theoretical aspects of backward error recovery in concurrent systems
and Merlin and Randell have developed a formal method of describing
the concepts involved, by the use of "Occurrence Graphs", which are
similar to Petri”’s Causal Nets (Pet 77). The special characteristic
of Merlin and Randell’s graphs is that they are regarded as being
created and recorded dynamically by the system that they are
modelling as it executes and they also have some extra features
geared towards the problems of state restoration. One of the
important concepts that they introduce is that of RESTORABLE PLACE or
RECOVERY POINT (Ran 78), which is a point in the execution of a
process to which the process can be returned, because checkpoint
information had been built up after it, enabling state restoration to
take place. Where the state restoration of several processes is
related the set of recovery points to which they are wound back 1is

known as a RECOVERY LINE.
In order to constitute a recovery line the set of recovery
points chosen must each belong to a different process, and be

consistent, that is:=-

1. One of the recovery points must belong to the process in

which the error that initiated recovery was detected;

2. No information must have passed between any two of the



PAGE 53

processes in the set betweeen the saving of their recovery

points;

3. No information must have passed between any process external
to the set and a member of the set after its recovery point

was saved.

It is the search for such a set of recovery points that causes

the domino effect, described in section 2.3.3 to occure.

Merlin and Randell describe various operations which can be
performed on occurence graphs, but their most important result is the
development of what they term a "Chase Protocol". This can be wused
in a decentralised recovery mechanism for a distributed system and
they present a proof that the use of such a protocol will provide
system recoverability even when there‘ are several faults in the
overall system. Such a protocol involves the sending of messages
between the modes of a system to propagate recovery activity; it is
called a "chase protocol™ because processes which are dependent on
erroneous data will continue to execute normally, until the failure
message manages to reach them. This means that there may be times at
which the system state is inconsistent, but it is guaranteed that a
consistent state will be reached after a finite, though perhaps

arbitrarily long time.

Occurrence graphs are a useful tool for representing the state

of condurrent systems, and the work of Best (Bes 78, Bes 79) on



PAGE 54

atomicity has extended their utility considerably. At the moment the
work being done 1is purely theoretical, however it can be expected
that ideas with practical application for the programmer will result

trom it.

2.4 Spheres of Control

As we have just 1indicated the theoretical aspects of both
resource control and reliablity have been studied in considerable
depth, and both topics are now fairly well understood. We have seen
that the work on occurrence graphs has produced a flexible and
powerful tool for modelling concurrent systems and the effect that
recovery has on them, and that work is being carried out on modelling
atomicity using them. However occurrence graphs are a mathematical
tool and as such are inaccessible to many people, and the work of
Davies on SPHERES OF CONTROL (Dav 73, Dav 79, Bjo 73) provide a
simpler way of characterising the problems of resource control and
recovery. Davies defines a sphere of control (SOC) as "a boundary
around the effects of a process for the specific purpose of
controlling commitments", and states that each SOC 1is an atomic
process when seen from its enclosing level of control. He goes on to

define three kinds of resource usage:-

1. Reference - where the value of a resource may alter at any
time and the supplier of the resource does not have to
inform users of the resource of the change, for example the

ﬁsystem clock,



PAGE 55

2. Dependent - where the supplier of the resource must inform
the users of any change in value, and they in turn must give
up the resource on demand, (providing backward error

recovery)

3. Committed - which is the same as dependent, except that the
user 1is not obliged to give up the resource when requested
to do so, so a compensation function must exist to correct

the system. (providing forward error recovery).

Then, using the definitions, he shows the steps needed to
initiate and terminate a sphere of control so that integrity is
preserved. In (Dav 79) he extends these notions to cover such things
as consistency, auditing and the scheduling of transactions,
providing a complete framework within which the problems of
reliability can be discussed no matter whether the systems in
question are based on computers or are completely operated by humans.
Some of the ideas he presents could be built into real systems,
however as yet there are still concepts which we do not know how to
implement efficiently (or sometimes at all) and more research must be
done before the benefits of such theoretical work reach the

programmer.



PAGE 56

2.5 Conclusion - the programmer interface

From the foregoing we can see that though several well
structured wmethods of resource control are available to the
programmer little thought has been given to making them recoverable
and providing the user with adequate error handling facilities. The
systems that have been developed all use the recovery block as the
basic building unit for structured error handling, and this reflects
the fundamental simplicity of the construct. However 1in order to
allow reliable control of access to resources additional features,
such as PORTS, must also be provided to augment whichever of the
locking constructs 1is adopted. This makes the task of writing
programs more complex and means that the code intended to increase

the reliablity of programs could be a source of software error.

The access control methods discussed do not provide particularly
good interfaces to the user, most of them being primarily concerned
with implementing mutual exclusion, and not being flexible enough to
allow extensions to include other lock modes. Only atomic actions
could easily provide this facility and of the sc¢hemes requiring the
use of shared resources they provide the interface which fits most
easily into the widest range of languages, being closely related to
the block structure of programs. However the use of communicating
processes opens up a different set of possibilities and may require
the development of completely new approaches to the way in which

processes interact.



PAGE 57

Of all the language interfaces and facilities we have looked at
above, only the use of safe programming and deadlines combine
reliability and simplicity and do not disadvantage the wuser 1in any
way. These two features must be considered as an essential part of
any highly reliable programming system because they are the only
defence against looping and waiting errors. Some means of detecting
code corruption must also be considered, as this also provides error

detection that cannot be attained through any other means.

In general then, the programmer is not well provided for in the
realms of resource control and reliability, probably due to the
theoretical nature of most of the work donme in this field. However
this will have to change quite drastically if the present trend

towards distributed systems continues at its present rate.



PAGE 58

3.0 Uncooperative Processes

3.1 Introduction

In section 1.2 we introduced the concept of '"uncooperativeness"
to describe processes which release all the resources they have
acquired together, before either terminating or starting to build up
a new set of resources. In this chapter we shall show how a system
supporting such processes providing full recoverability and a simple
user Interface can be constructed by using a modified version of the
recovery cache mechanism (Hor 74, Ran 75). The system described will
also form the basis for facilities to be developed in the following
chapters that will allow cooperative processes to be supported, and
the reader should bear this in mind throughout. Uncooperative
processes form a very important class as most of the jobs run on any
computer system either are or could easily be made "uncooperative'.
Therefore any changes in the way in which they are handled must not
introduce cumbersome constructs to the user interface, nor should
they adversely affect the efficiency of the system without providing
some compensating Dbenefits. We shall endeavour to show that the

system developed here achieves these ends.

3.2 Multi-level systems

We must first briefly describe the abstract structure within

which the system to be described is designed to fit. This will be



PAGE 59

assumed to consist of a series of LEVELS, one above the other, where
each level provides a more abstract view of the underlying machine to
the levels above it. Levels may be used to provide new facilities or
to hide existing ones in a similar fashion to the CLASS structure of
SIMULA (Bir 73) or the PRIVATE types of ADA (Ich 79). This new view
provided by a level constitutes an INTERFACE for the level
immediately above, programs written to run at the higher level being
expressed in terms of the operations and types defined by the
interface. Note however that the level supporting this interface
"sees" the user’s program in terms of operations and types provided
by still lower levels. This is especially important to remember for
interfaces supporting concurrency in the level above them. In this
case it is not necessarily possible for the lower level to determine
the validity of a sequence of interacting operations because the user

expressed relationships between processes are not meaningful to it.

The idea of multi-level systems is discussed more fully in (Ver
77) and (And 78), both of which relate closely to the work described
in (Dij 68b). However for the purposes of this thesis we need only
be concerned with the topmost two levels 'of the system and the
interface that lies between them. We shall call the higher the USER
level, and the lower the INTERPRETER level. The interpreter level

will be assumed to provide COMPLETE RECOVERABILITY to the user, that

is every type provided by it is RECOVERABLE. This means that should
an error arise in the user level (either detected by the interpreter
or explicitly signalled by a program) the interpreter guarantees to

be able to restore the states of objects of any type which have been



PAGE 60

altered to those pertaining at some previous user specified point in
the execution of the program. Always assuming that the wuser has
actually made wuse of the facility to indicate such points. If an
interface does not provide complete recovery for every type it is

said to be PARTIALLY RECOVERABLE. These are fully discussed in (Ver

77) and will not be considered further here.

Anderson et al (And 78) have introduced the concept of

INTERPRETER EXTENSIONS to describe programs that provide users with

new abstract types in addition to those supported by an existing
interpreter. They have described two types = DISJOINT and INCLUSIVE,
the difference between them being that in the former, recovery
information for the new types is held by the program providing the
extension, and in the latter this is held by the programs wusing the
extended facilities. However, for the purposes of this thesis the
use of interpreter extensions, and the problems this introduces, need
not concern us and it will be assumed that the interface seen by a

user is not provided by an interpreter extension.

3.3 Specification of uncooperative processes

Before embarking on the description of an interpreter to support
uncooperative processes we must first set out the facilities that we
intend it to provide the user. However we are not concerned with the
actual details of the 1language in which the user expresses his
programs. This topic is discussed briefly in section 3.9.1 and an

actual example described in section 3.9.2.1.



PAGE 61

There are five main features:-

5.

Common resources should not be differentiated from private
resources except by their declaration. This would mean,
firstly, that the user need not be aware of the need for
locking of resources, secondly that existing software, such
as library procedures, could be used just as well on common
resources as on private ones. Thirdly, that no program
module using common resources is dependent on another module
having been executed before it for the purpose of acquiring
the resources, making testing easier. Finally that the
system can easily hide the fact that some resources
available to the programmer are actually common rather than

private,

The user is always protected from the activities and errors

of other users,

In the event of an error being detected in a progran,
causing it to fail, common resources that it was using will
be released and left in a consistent state,

It should be easy to make existing programs uncooperative,

The above facilities should not impair the efficiency of the

system and should be usable for real-time applications.



PAGE 62

These five are fully in accord with the characteristics required

of a programmer interface set out in section 2.1.4.

3.4 Recovery blocks and the recovery cache

As we have just seen, for the facilities of a completely
recoverable interface to be of any utility the user must indicate
certain points in his programs which can be regarded as checkpoints.
In chapter two we saw that this facility could be provided by the use

of RECOVERY BLOCKS supported by a RECUVERY CACHE, a scheme developed

by the highly reliable computing systems project at the University of
Newcastle upon Tyne. This has been described in (Hor 74) and (Ran
75), however as its use is so fundamental to the work developed in

this thesis its characteristics and operation will be set out here.

A recovery block consists of a set of ALTERNATES, which are
realisations of the algorithmn that the block is to implement, and an

ACCEPTANCE TEST, which is used to determine the wvalidity, of the

results produced by the execution of an alternate. One of the
alternates is designated the PRIMARY and is always executed. Should
an error occur during its processing, or if the results it produces
do not pass the acceptance test, the program state 1is restored to
that existing just prior to the start of the recovery block and the
SECONDARY alternate is executed. This process is repeated wuntil an
alternate executes successfully and passes the acceptance test or
until either no more alternates are available or a deadline

associated with the recovery block expires. If either of the latter



PAGE 63

ENSURE <AT1> BY
BEGIN
. cessssssns (@)
ENSURE <AT2> BY
BEGIN
. waswsmsaas L)
ENSURE <AT3> BY
BEGIN
- ssssssvses (C)
END
FLSE BY
BEGIN
. PRy S {1 1) |
END
ELSE ERROR;
END
ELSE BY
BEGIN
. swspawise s s ()
END
LLSE ERROR;
END
ELSE BY
BEGIN
. swnsumemeey  (E)
END
ELSE ERROR;

Example Execution Sequences

- no errors
d - error at c
d,e - errors at ¢ and d

- error at b

Figo 3.1
events takes place the recovery block is said to have FAILED and an
error 1is raised. Should the failing recovery block be nested within
another, the enclosing alternate is wound back and the process of
error recovery continues at its level. However if the error occurs

in an outermost recovery block the program containing it has failed

and no more recovery can take place. An event of this sort is



PAGE 64

designated a CATASTROPHE. Fig. 3.1 shows a typical nested recovery

block structure and how a typical execution may progress.

Some other points to note about recovery blocks are:

l. A primary alternate must always be present, but the presence

of other alternates is not mandatory,

2. Alternates need not be distinct, that is any alternate may
be RETRIED, the number of times that it is attempted being
specified by the user, an undefined number being permissible
only when the recovery block has a deadline associated with

it,

3. In the case of nested recovery blocks an expiring deadline
causes restoration to take place to the start of the block
enclosing the statements associated with the deadline,
rather than the block executing at the time - deadlines
cannot be extended and an enclosing deadline takes

precedence over those set up inside it.

The mechansism used to provide the state restoration required by
recovery blocks is the recovery cache which, as we have seen, is in
essence a device for providing an automatic audit trail by arranging
that when an operation takes place that alters the state of a

resource, its previous staté is recorded before the update is carried



PAGE 65

out . This ensures that the effects of the operation can be undone
should an error occur. The advantages that the recovery cache has
over other audit trail mechanisms are that only the first state
change occuring to a resource in a recovery block 1is recorded, all
others being unnecessary for state restoration, and that only those
resources actually changed are entered into the cache. Let us now

look at the mechanism in detail to see how these are achieved.

The cache itself is a stack consisting of elements which are
either BARRIERS or records of a state change. Each time a recovery
block is entered a new barrier is created in the cache, and the

RECOVERY LEVEL is incremented. The barrier represents the point to

which state restoration takes place for this recovery level,
therefore by undoing all the state changes recorded after the barrier
was created the program state will be identical to that existing when
the barrier was created. The records of state change consist of
three elements = firstly a pointer to the resource which was altered,
then some representation of its state before it was altered and
thirdly a copy of the recovery level field associated with the
resource. Every object that can be cached hag one of these fields
which is used to record the last level at which a state was cached
tor the object. It is this field that is used to prevent multiple
entries being made for a resource at any one recovery level. This is
achieved by comparing the recovery level field with the current
recovery level; 1if they are equal there is no need to cache the
item, otherwise the object 1is cached and the recovery field is

updated ‘to contain the current level thus eliminating further



PAGE 66

cacheing. This has the additional advantage of allowing local
variables of a recovery block to escape being cached, their recovery
level fields being initialised to the value of the current recovery

level when they are created.

When an error occurs and the entries are restored as described
above, the operation is known as REJECTION, but if the recovery block
terminates successfully the cache must be ACCEPTED. This activity is
more complex than that of rejection because in order to maintain the
process’s recoverability the record of state changes must be
cumulative. That is if a state change has taken place at level N to
a resource not cached at level N-l the entry must be preserved in the
cache to allow level N=1 to recover fully. This occurence is,
however, easily detected because if an entry needs to be preserved
the value of its recovery level field stored in the cache will not be
the same as the recovery level enclosing the block which is being
processed. (Note that the barrier entry for a recovery block is

deleted when the block is accepted).

This description is of course of a cache for unshared resources,

and 1in the next section we shall show how this mechanism must be

altered to support shared resources.

3.5 A recovery cache scheme to support uncooperative processes

One characteristic of recovery blocks which only becones

apparent’when concurrency is required is that during the execution of



PAGE 67

an alternate the state changes made to resources are not committed.
Hence, if the resources in question are shared, other processes must
be prevented from wusing them wuntil the alternate terminates
successfully. If this 1is not done processes may build up
dependencies upon each other which could be wvery complex and
therefore difficult to undo in the event of an error. In order to
avoid this every alternate must be atomic, therefore every shared
resource used within an alternate must be locked and cannot be
released until the alternate terminates. Thus any alternate of a
recovery block can be represented by an ATOMIC ACTION (see section
2.2.5), as has been suggested by Lomet (Lom 76a). Of course an
atomic action on its own is not equivalent to a recovery block for
its use carries no implication about the collection of recovery data,

so we shall introduce the concept of a RECOVERABLE ATOMIC ACTION.

This has all the properties of an atomic action, with the addition
that at any time before its termination the action may be wound back
to its starting point, releasing all the resources acquired during
its execution without affecting the environmment as seen by other
processes. The advantages to be obtained from the use of recoverable
atomic actions will become clear later. Suffice it to say here that
from now on any unqualified reference to an atomic action or simply
action will mean a recoverable atomic action, and that "recovery
block" may be substituted for any such reference without affecting
its meaning. Where a set of nested actions is intended we shall use
the terms "process" and "program", which will be taken to refer to
all the actions existing at a given instant. Now we shall examine

the requirements of a system to support recoverable atomic actions.



PAGE 68

The properties such a system must possess are:-

1. A recovery cache to collect state restoration data,

2. The ability to recognise the use of shared wvariables and

place an appropriate lock before proceeding,

3. A book keeping scheme to record locks put on by an action,
which can be wused to release locks for the current action
when an error occurs, but which will otherwise accumulate

all the locks placed until the end of the outermost action.

Inspection of the above shows that properties two and three are
very similar to those of the recovery cache, though with respect to
lock status rather than "value'". This suggests that it 1is possible
to devise a cache mechanism which will handle both locking and state
saving and the rest of this section will be devoted to the
description of such a scheme. From now on we shall refer to the
scheme described in the previous section as the simple recovery

cache.

In order that the simple recovery cache may operate, each
resource mnust have a recovery level field associated with it, and to
support atomic actions each shared resource must have a field in
which 1its 1lock status is recorded. However ANY resource may become
shared if a process forks into several sub-processes which share the

use of its private resources, so every resource would have to have a



PAGE 69

lock field as well as a recovery level field, which could mean an
unacceptably large storage overhead. The solution to this is to
combine the lock field and the recovery level field into a single

ATOMIC ACTION INDENTIFIER FIELD. The value in this field will be

such that

l. It will differentiate between different nested levels of
actions within a single process, just as the recovery level

does for nested recovery blocks.

2. It will allow the interpreter to determine, by inspection,
whether a particular process has access permission to the

resource to which the field is attached.

To achieve this it is necessary that every time an action is
entered a wunique 1identifier be generated for it and to store, in a
area accessible to all processes and addressable using the generated
identifier, the identity of the process that initiated the action.
Similar requirements are needed for the identifiers wused in
information protection schemes (Den 66, Sal 75) and, as in those
cases, they must be generated by the interpreter and not the user.

This is for several reasons :-

1. User generated names may not be distinct,

2. Actions may be entered recursively,



PAGE 70

3. The user may not identify the action (this occurs where

shared atomic actions are used - see chapter 4),

4. User generated names could be "forged" to obtain access to

resources where none is allowed.

Assuming that these requirements have been met the operation of

the recovery cache will now be as follows :=-

If the identifier field of a resource has the same value as the

identifier of the current action then proceed, (cf. recovery levels)

otherwise wait until either the process is a member of the set
of processes addressed by the identifier field or the field is null
(that is the resource is not locked), then perform the usual encache
operation (store the resource address, its state and its identifier
field and wupdate the field to contain the current action’s

identifier).

This sequence, if used in the simple cache enviromnment, would
successfully handle updates, however it is also necessary to lock
common resources which are 'read'". Therefore operations that do this
must recognise when a common resource 1is wused and cache it if
necessary. Cacheing of ALL reads, shared and private alike, would
eliminate the need for this recognition (though it effectively takes
place in the memory management hardware anyway), but this would

presumably present unacceptable overheads in terms of cache size.



PAGE 71

Fig. 3.2 shows various stages of cache growth for a simple process.
It 4is important to note how the cache acceptance algorithm developed
for the simple recovery cache guarantees that locks are accumulated
until the outermost action terminates. The rejection algorithm also
guarantees that locks placed by an action are released when an error

OCCurse.

The size of the units which are cached we can term the
GRANULARITY OF CACHEING and is simply related to the granularity of
locking for the system. It must never be greater than the
granularity of locking because the cache may then be recording data
which the process has no access to, which can cause interference
between processes if the cache has to be backed out. If the
granularity of locking is larger than the granularity of cacheing
extra action identifier fields will be needed to control the locking
of groups of resources. However as these. resources must all have
such fields in order to control their recovery this would seem to be
redundant, but it may provide advantages as far as preventing
deadlocks and reducing waiting times for resource requests. For
simplicity though we shall assume from now on that the granularities

are equal.

The scheme we have just described only caters for requests in
one lock mode (exclusive) but it can be adapted to implement the more
complex locking schemes as described in section 2.1.3. However it
must be remembered that as we are dealing with uncooperative

processes locks cannot be released (except in the case of error)



COMMON A,B,C : «.... == some shared variables

TASK EXAMPLE;

L,M,N 2 ceeeee -- some local variables
BEGIN
ENSURE ... BY e LT T T e - 1)
BEGIN
L := A; —— agasesesesenssanessssse(b)
B := M; == asssssasssssessssasissef(C)
ENSURE «os BY =% .siesnisssesisnsieedssinld)
BEGIN
C := N3 = praraiaeie @ 8 g e e e ey 8 e e wme B
M := B; —— aeelaleE m e SR W e § e L)
END
ELSE ERROR ;
L :=0C; == secsssssessssscssessssea(g)
END
ELSE ERROR;
END; R P, . .1
Cache States
a - X

Create a new barrier in the cache.

b) - ESEj Al L

Cache/lock A as it is shared, update and cache local L.

ah EZ;IA L 8

Cache/lock B, but not M as access is a local read.

d) - ESZj AlL| B

Another new barrier in the cache.

e) - 'iiil al L 15E><:[c

Cacheflock C, but not local N.

Figl 352 Ges

PAGE 72



PAGE 73

£) = MA L BMC Bl M

Cache B for this recovery level and updated local M.

g) - ELALSCM

Accept cache - maintain C and M from previous level.

h) -

Final cache acceptance - A, B and C are now released.

Fig. 3.2
until the process terminates. They can only be made more binding.
The next section demonstrates this by giving the rules for
controlling locking when exclusive and shared read 1locks are

provided. The problem of deadlocks will be discussed in section 3.7.

3.6 Rules for providing X and SR locks

3.6.1 Non-Preemptive Systems -

Let us look first at the rules governing non-preemptive systems,
that 1is systems where processes may have different priorities
associated with them, but where a process of high priority cannot
"snatch" a resource from a process of lower priority which is using
it. However the queue of processes waiting to 1lock the resource
could be priority ordered, thus ensuring that a high priority process

will be delayed for as short a time as possible. Fig. 3.3 shows the



RESOURCE SR LOCK SR LOCK BY X LOCK
STATE SR BY OTHER ACTION BY
FREE LOCK OTHER ACTION AND X LOCK OTHER ACTION
ACTION BY SAME AT SAME ACTION BY AT
REQUEST ACTION PRIORITY P2 | PRIORITY P2 | SAME ACTION | PRIORITY P2
APPLY X CONVERT P1>P2 : P1>P2 CONTINUE P1>P2 :
X LOCK AND 10 PRE-EMPT PRE-EMPT PRE-EMPT
AT CONT INUE % LOCK APPLY X AND APPLY X
PRIORITY AND AKD CONVERT TO AND
Pl CONTINUE CONT INUF, X LOCK CONTINUE
Pl<=P2 : Pl<=P2 : P1<=P2
JOIN QUEUE JOIN QUEUE JOIN QUEUE
APPLY SR CONTINUE APPLY SR CONTINUE CONTINUE P1>P2
SR LOCK AND ND PRE-EMPT
Al CONL LNUE CONTINUE APPLY $R
PRIORITY AND
Pl CONT INUE
P1<=P2
JOIN QUEUE
¥*

Note that here one may wish to wait to obtain the latest value.

Eig- 3.3

Y. HOVd



PAGE 75

various combinations of lock request mode and the mode in which a
resource is actually locked with the operations needed to acquire the
resource. This diagram is related to a preemptive system, but if the
reader lets the priorites Pl and P2 be equal the rules for a

non-preemptive system will be obtained.

346.2 Preemptive System -

In a normal preemptive system a process of high priority may
take a resource from a process of lower priority, halt that process,
save the state of the resource, use the resource, and then restore
its previous state, proceeding with its execution after reactivating
the halted process. This is akin to the concept of lending mentioned
in section 2.l.1, and assumes that the resource can be placed into
some defined initial state after saving its current state, but this
is a special case which will be dealt with in section 5.4 below.
Since in general such an assumption cannot be made preemption is not
often implemented, however as the system we are dealing with supports
recoverable atomic actions preemption can take place. This is done
by causing the action holding the resource in question to be wound

back, thus releasing the resource i

a consistent state, allowing it

to be locked by the high priority process. There are several points

to be aware of here:-

l. Preemption is not an error condition so an action that is
backed out is restarted, if it is part of a recovery block

the next alternate is not taken,



PAGE 76

2. Deadlocks can only occur between processes of equal
priority, as the system behaves as if it were non-preemptive

in that case,

3. A special case arises when a process wishes to preempt a
resource which is held exclusively by another process. Here
the high priority process may wish to wait wuntil the
resource 1is released in order to obtain its most recent
"value". This would seem to be advantageous, except where
the extra delay involved would prejudice the performance of

the process.

Fig. 3.3 shows the operations required for a preemptive system,
and assumes that the priority of an action is identical to that of
the process which initiated it. Where the resource is not locked the
request may be granted immediately, and where the resource has
already been locked by the action (or one of its enclosing actions)
the same is true, though a conversion must take place when an X lock
is requested on a resource held in SR. The remaining cases arise
where the resource is already locked by other actions not enclosing
the requesting action. In all cases, if the lock request and actual
lock mode are compatible, the request is granted, but if this is not
the case preemption may be possible. To determine if this is so the
priority of the requesting action is compared with the maximum of the
priority of the actions currently holding the resource (excepting
itself should it be one of them). If it is greater, all the actions

are wound back and the requesting action proceeds, possibly



PAGE 77

performing a lock conversion from SR to X in the process. Otherwise

the action must wait until its request can be granted.

Similar systems have been described by Gray et al (Gra 76) and

Chamberlin et al (Cha 74), the latter however restricting the places

where preemption can occur to preserve consistency (see section

3.10).

3.7 Deadlocks

3.7.1 Deadlock prevention and avoidance -

Methods for handling system deadlocks are usually classified

into three types after (Cof 71), these are:-

l. Deadlock prevention - the design of the system excludes, a

priori, the possibility of any deadlock occurring,

2. Deadlock avoidance - programs must predeclare the usage they
wish to make of shared resources. The system then analyses
these requests in the light of other outstanding requests,
and allows those programs whose requests are SAFE (that is

will not cause a deadlock) to proceed.

3. Deadlock detection and recovery - The system has the ability

to detect when a deadlock has or will occur, and to break



PAGE 78

the deadlock in some way.

Systems providing deadlock prevention usually rely on special
knowledge of the mix of programs they are to support, though many
systems described as preventing deadlocks do so by the wuse of
avoidance  techniques. These techniques wusually support STATIC
allocation of resources, that is all the resources that a user has
indicated he requires are given to him at the start of his program,
when his request is adjudged to be safe. This means that wusers may
have possession of resources for far longer than they actually need

them.

Habermann (Hab 69) has, however, developed an algorithm where
the wuser states the upper limit of his requirements, and is allowed
to acquire resources dynamically as his program proceeds. However
this solution and that of Holt (Hol 72) are only designed for systems
providing ARBITRARY resources, that is where a user is constrained to
specifying the type of resource he requires rather than precisely
identifying a particular resource. Lomet (Lom 76b) has developed an
algorithm, supporting both exclusive and shared read requests, which
overcomes this disadvantage and can be wused in, what he terms,

UNIT-RESOURCE systems, such as those providing access to data bases.

This method still depends on the predeclaration and static allocation
of resources, and so cannot support programs whose requests fall into

the following categories:-

1. Non-unique resource name - where one resource may have



PAGE 79

several descriptions, which are not distinguishable,

2. Modifiable resource categories - where operations on the

resource can change its description,

3. Interdependent locks - after locking one resource and
examining it a program may decide to lock another resource,
the didentity of which depends on the results of the

examinatione.

To provide support for such requests a dynamic resource
allocation scheme must be adopted, and this requires that deadlocks
be detected and recovered from. Chamberlin et al (Cha 74) develop an
algorithm for this, which wuses preemption of resources to break
deadlocks, but constrains the user as to the way in which requests
for resources are made (see section 3.10); This scheme possesses the
disadvantage that a process may be kept waiting indefinitely if its
resources are continually being preempted by other processes. This
is also a possibility with Habermann’s method, and Holt (Hol 71) has
suggested associating a time limit with a resource request, after the
expiry of which, the request must be granted, Chamberlin et al use a

related solution with respect to preemption.

The implementation of recoverable atomic actions requires a
deadlock detection and recovery solution as they require a dynamic
resource allocation strategy to support requests of the types

described above. Recovery can of course be provided by backing out



PAGE 80

one of the deadlocked actions, forcing it to release the resources it
holds, which will break the deadlock. However the deadlock must
first be detected, and we shall describe a method for this in the

next section.

3.7.2 Deadlock detection for recoverable atomic action =-

Most of the deadlock detection algorithms mentioned in the
previous section are very complex. This is because they are usually
designed to handle multiple requests for specified resources classes
from a process and must delay the granting of the complete request
until it can be guaranteed that a deadlock will not occure. However
because the recovery cache mechanism can only operate on one resource
at a time, and it is the part of the system which issues lock
requests, the need to check multiple requests from a process is
eliminated and this allows the deadlock detection scheme used to be
very much simpler. There are two ways in which deadlocks can arise
when resources are being allocated and we shall now show these can be

detected.

The first deadlock is of the type known as the DEADLY EMBRACE

(Dij 68), and occurs when an action A attempts to lock a resource
held by another actiomn, B, whose progress is BLOCKED by A. Such
blocking occurs either directly, when A (or one of its enclosing
actions) holds a resource required by B, or indirectly when A holds a
resource required by another action which directly or indirectly

blocks B. To detect this we shall introduce the concept of a



PAGE 81

BLOCKING GRAPH, which is maintained by the system and consists of

directed arcs indicating which action is blocking which others.
Before adding a new arc to the graph when a request is blocked the
graph is checked to see whether the addition of the arc would cause a
cycle to occur in it. If so a deadlock has been detected and
appropriate recovery action must be taken. Fig. 3.4 shows a set of
actions and their associated blocking graph at various stages in
their execution. This shows that the blocking graph exhibits the

tollowing properties:-

l. No action is represented more than once in the graph,

2. No action can block itself or an action nested within it,

3. No action can be blocked by more than one action,

4. The blocking graph can consist of several disjoint trees,

5. The number of directed arcs in a tree 1is always one less

than the number of actions in it, unless a deadlock occurs

in which case it equals the number of actions.

This last property could be used to provide a means of detecting
aeadlocks, however this can be done in other ways as we shall see in
section 3.3. Similar schemes can be devised for handling multiple
requests, for example Lomet”s (Lom 76b) but are considerably more

complicated.



PAGE 82

COMMON Q,R,S,T,U,V,W teuse

ACTIUN A; ACTION B; ACTIUN C; ACLULION D; -- BLOCKING GRAPH
Q:=R3; . Si=..; Ti=ea3
. Ri=.43 Ui=a4; . - A—B
a | . Ti=Uesy=- A—B C—D
Wi=es3 | . | - A—B C—D
. | Us=W.us | - A::E‘uc_#n
END; § 8 i -— (>
END; END; .
END;

where | indicates that a process is waiting.

Fig 3.4

The second deadlock that can occur in recoverable atomic action
systems only arises where several lock modes are in use and actions
are allowed to convert the locks they hold from one mode to another
more binding mode. For example, where exclusive and shared read
locks are supported, a deadlock will arise when two or more processes
that have locked a resource in shared read mode wish to convert this
lock to an exclusive one. Only ONE process can be allowed to do this
so the system must resolve the situation. Two possible ways in which
this can be done both rely on the fact that lock requests must be
processed atonically. Firstly preemption of resources can be
introduced meaning that the first conversion request received will be
granted and cause all the other actions involved to be stopped,
effectively preventing the clashing requests from being made.

However if priorities are in use preemption may not be permitted so



PAGE 83

the system must also incorporate the second method which is to make
all conversion requests after the first encountered (which may not
have yet been granted) illegal, causing the actions making them to be
recovered, which may allow the first conversion to be processed. Of
course, if priorities are supported, the first request may be
preempted by a later one causing the waiting request to become
invalid. The management of the recovery action for this and the

previous deadlock will be discussed in the next section.

3.7.3 Deadlock recovery management =

In the recoverable atomic action system the deadlocks we have
just described can only occur between two actions, because of the
atomicity of requests, and are resolved by backing out one of the
actions. This will release the resource being contended for and
allow the other action to proceed. However the question of which
action to back out must be given very careful consideration, the aim
at all times being to maximise throughput and minimise system

disruption.

Where actions have priorities attached the system will obviously
back out the action with the lowest priority, guaranteeing (barring
the incidence of program errors) that the action of highest priority
will be executed without ever being backed out, though actions of
lower priority could have been wound back several times. However for
actions of equal priority (or where there are no priorities) some

measure of the system disruption caused by backing out each of the



PAGE 84

actions involved is needed, the least disruptive atomic action being

wound back.

Several possible criteria present themselves, though some may be
viewed in different ways and the inherent non-determinism of the
system makes finding a perfect, general solution impossible. Let us

consider seven of the possibilities :

l. An action which is near termination should not be wound back
in favour of one which has just started execution - a
similar didea has been suggested in (Cof 71) and the
reasoning behind it is obvious. However actually putting it
into practice is hard because there is no surefire way of
gauging what proportion of an action has been executed.
Method 4, below, may sometimes provide a means of doing
this, because an action accumulates locks as its execution
proceeds, but the success of this is highly dependent on the
way 1in which an action uses shared resources - some actions
may only acquire resources very near their end and others
may acquire all the resources they need when they begin.
Method 7 would provide a much better indicator, but requires

that deadlines are implemented,

2. The action which is blocking the larger number of other
actions should be backed out = this would be done in order
to increase the number of active processes in the system

‘and, thereby, hopefully, the throughput. The difficulty



5.

PAGE 85

here is that the blocking graph does not indicate which
resources are being requested by the blocked actions and if
they are all in contention for the same one nothing has been
gained. Moreover increasing the number of active processes
in the system increases the number of actions which may

deadlock, thus causing even more disruption in the system,

The action which is blocking the 1lesser number of other
actions should be backed out = this would ensure that the
action which is causing the greater bottleneck in the system
would be allowed to proceed bringing it nearer to
termination and its subsequent disappearance from the

system. This presents the opposite view to method 2,

The action which holds the lesser number of locks (possibly
including the locks held by its enclosing actions) should be
backed out - the reasoning being either similar to that of

method 1 or that of method 3,

The action which was blocked when the deadlock was
discovered should be wound back - this is based on the idea
that if the action which is progresssing is left alone it
will be brought nearer to its termination. The method also
has the advantage of being simple to implement as it does
not require extra information to be accumulated to aid the

decision process. It should also have a fairly consistent

.success rate which is unaffected by the mix of processes in



PAGE 86

the system, a characteristic not shared by any of the above.

6. Where deadlines are in force, the action which has the
longest time left till its deadline expires should be wound
back - the reason behind this is obvious, and should prove
fairly successful because the relationship between the
length of a deadline and priority is very close (the shorter
the time, the higher the priority), as is shown by the

discussion in (Lie 80).

7. Again, where deadlines are being used, the length of time
left in a deadline be taken as a measure of how near
completion an action is, winding back the one which has
progressed the least - this is another realisation of method
1 and, to be accurate, the comparison must be based on the
proportion of the whole deadline period which is left to be
executed rather than on the times themselves as in method 6.
This should prove very effective, but of course deadlines

may not necessarily have been used or even be supported.

0f these methods only number five can be guaranteed to function
in every case. With all the others there is the possibility that the
two quantities being compared are equal, in which case a decision
cannot be made. For this reason method five was chosen for the
experimental system described in section 3.9.2, and it was through
its use that the problem described in the next section was

discovered.



PAGE 87

Another question which must be considered regarding the
management of deadlock recovery 1is whether or not a deadlock is
regarded as an error, that is, whether or not the next alternate of a
recovery block should be executed when a deadlock occurs in an
alternate and it is wound back. The answer must of course be no,
because the deadlock was in effect caused by the supporting system
scheduling the concurrent processes incorrectly and hence the error
lies 1in the interpreter level rather than the user level. What must
be done instead is that the backed out action should be retried.
Note that the deadlock which caused recovery to take place cannot
take place in the same way, because the two resources being contended

for are now held by a single action.

3.7.4 A possible infinite loop in the deadlock recovery mechanism =

Fig. 3.5. shows part of a program iﬁvolving three processes of
equal priority each trying to wuse some common variables. Under
certain timing conditions, when supported by the system described
above using method five of the previous section to break deadlocks, a
race condition arises where actions Al, A2 and A3 are repeatedly
backed out and no progress 1is made. Programs exhibiting similar
characteristics could also be constructed for the other methods we
have described, except for those 1involving deadlines, where
conditions are inherently unrepeatable. Fig. 3.6a shows an execution
sequence which will cause the race to occur, and though the
probability of such a sequence happening compared with other possible

execution flows is low, a solution must be found, as, inevitably, the



PAGE 88

sequence will arise at some time.

COMMON A,B,C,D,E,F : INT ;

ACTION Al; ACTION A2; ACTION A3;
P(A,B,C,D); R(E,D,C,F); S(F,D,B,A);
END; END; END;
Fig. 3.5

The main characteristic of this loop is that the actions are
backed out in the same sequence every time. That is Al, then A2 then
A3 and so on, so what is needed, therefore, is some way of breaking
this ordering which will cause the 1loop to be broken. This is
achieved by giving each action a priority, if they do not have them
already, and then incrementing the priority of the action which is
not backed out when a deadlock occurs. The effect of this being that
the actions will now have different priérities so future deadlocks
will be broken on this basis rather than any other. Tig. 3.6b shows
how the execution flow in fig. 3.6a is affected by the use of this
algorithm. Incrementing priorities also has the advantage that at
least one process will pass through the system without ever being

wound back.



Al

LOCK

LOCK

LOCK

LOCK

WIND

LOCK

LOCK

LOCK

Al

LOCK

LOCK

LOCK

LOCK

WIND

LOCK

C

D

BACK

A

A2

LOCK

LOCK

LOCK

LOCK

WIND

LOCK

LOCK

LOCK

A2

LOCK

LOCK

LOCK

LOCK

END

A3
E LOCK F
D LOCK E
c I
I
F I
BACK LOCK B
E
LOCK A
WIND BACK
D LOCK F
o LOCK E
etc.
(a)
A3
E LOCK F
D LOCK E
c I
I
F I
WIND BACK

BLOCKING GRAPH

A2—=A3
Al—A2—A3

AQ 2—=A3

NANE

as7a2 AL

/-'-——-\J
A3—A2 1

Al—=>A2—A3

BLOCKING GRAPH

A2—A3

Al—A2—A3
BTN

Al—A2—A3

A2—A3

only two processes remain, and hence will terminate.

(b)

Fig. 3.6

PAGE 89



PAGE 90

3.8 Synchronisation with external events

3.8.1 The AWAIT statement -

The provision of a facility allowing synchronisation with
external events requires that a process must be able to delay its
progress until some condition involving shared resources becomes
true. This is normally implemented by some form of "busy waiting"
where the synchronisation condition is repeatedly evaluated until it
becomes true. However, as this requires the shared resources to be
locked for the duration of the evaluation and then unlocked, if the
result 1is false, to enable other processes to set up the desired
state, busy waiting cannot be implemented inside an atomic action.
The programmer must therefore be provided with an operation which
will allow him to specify synchronisation without wviolating the
atomicity of his process. Lomet (Lom 76a) has introduced the AWAIT
statement for this purpose, with which the programmer specifies the
condition he requires to be true and the interpreter level delays his
process until the condition is satisfied. Execution of the process
is then allowed to proceed, the resources involved in the condition
having been locked. Best (Bes 79) has raised some doubt about
whether atomicity can be implemented where AWAIT statements are used
inside atomic actions, basing his comments on an analysis using
occurrence  graphs. He suggests that the interaction between
processes implied by the use of synchronisation violates the criteria
for atomicity. However from the programmer’s point of view this is

not so, because his program does not "see" the processes which make



PAGE 91

the synchronisation condition become true, even though a theoretical
analysis of it shows that interaction has taken place. We shall
therefore proceed under the assumption that the use of the AWAIT

statement is valid, though future work may show this to be false.

In order to simplify the implementation of the AWAIT statement
Lomet has suggested that the conditions attached to them are built up

only of what he calls SYNCHRONISING VARIABLES. These are in essence

shared booleans which can be set to true to signal that some event
has taken place. This helps the system because it then knows which
variables can occur in AWAIT statements, allowing them to be provided
in a way that makes the process of waiting more efficient. However
even 1f general conditions are allowed the interpreter can minimise
the number of times the synchronising condition has to be evaluated

because :-

1. The condition cannot be evaluated wuntil the resources
involved are accessible to the action executing the AWAIT,
so the system can use its own locking information to

determine when it is worth attempting an evaluation,

2. If the condition evaluates to false it need not be evaluated
again until some other action has used one of the resources
involved in it; when that action releases the resource then

the condition may be re-evaluated.



PAGE 92

There are two error conditions involving the AWAIT statement
which are worth mentioning here. The first is when the synchronising
condition will never become true and we have seen that the programmer
must provide a deadline to overcome this type of error. However the
second error can be detected by the interpreter and occurs when the
programmer uses a resource that has already been locked by his
process as part of a synchronising condition. If the value of this
resource does not affeect the result of evaluation of the condition
there is no error, however if the state of the resource is such that
it renders the condition false an error must be raised. This is
because the resource state will never be changed as it is 1locked by
the waiting process, so the AWAIT would never terminate. The
interpreter level can detect this situation fairly easily by
examining its lock information, however we shall see in chapter four
that there are circumstances where this type of condition is not

erroneous and is in fact very useful.

3.8.2 Evaluation of synchronisation conditions -

Apart from the error condition described aﬂove, there are other
difficulties with the AWAIT statement, as described by Lomet. The
first concerns the order of evaluation of expressions. Obviously the
condition "A & B" must be fully evaluated to be true but "A v B" need
not, provided A 1is true. However, 1if the condition were not
completely evaluated, B would not be locked after the AWAIT
statement, and, though this is not a source of error (if the user

examines . B it will be locked and if he makes an assumption about B’s



PAGE 93

value then his program is wrong), it would seem to be against the
spirit of atomic actions. We shall therefore state that AWAIT
conditions are fully evaluated.

AWAIT A OR B THEN

BEGIN

-=- Both A and B will be locked when
== this statement is executed

END;
(a) a simple AWAIT statement
AWAIT
BEGIN
WHEN A -> BEGIN...END; == A will be locked

WHEN B OR C => BEGIN...END; == B and C will be locked
WHEN D AND E -> BEGIN...END; == D and E will be locked
END;
== at this point only those resources used in the
-=- selected statement and its guard will be locked
(b) a guarded AVAIT statement

Fig. 3.7

The second difficulty with the AWAIT statement is that it does
not support non-determinacy. That is, an action cannot detect one of
a set of events without preventing other processes from detecting one
of the others, and for this purpose we shall introduce the guarded
AWAIT statement, in analogy to Dijkstra’s guardedlcommands (Dij 75).
An example is shown in fig. 3.7. Here the system delays execution of
the action containing the statement, until ONE of the guard
conditions becomes true and then causes the statement block connected
with that guard to be executed. After the statement has terminated
only those common resources used in the guard and its statement block
will be locked, all the others used in the statement will be free.

The question of which guard is selected if several become true at the



PAGE 94

same time will not be discussed here, as the general area of

"fairness" in non-deterministic systems is still a topic of debate,

there being a brief discussion of the topic in (Hoa 78).

3.9 Implementation of a system supporting uncooperative processes

3.9.1 General considerations =

Section 3.3 has described the facilities that a language
interface to the system we have described should provide and we shall
first look at ways in which this interface can be realised. At the
simplest level, where the user is unaware of other processes and is
unconcerned about error recovery, the best solution 1is to surround
his program (whatever the language it is specified in) implicitly
with an atomic action and associate a deadline with the action. This
will ensure the safe use of all common resources, and will prevent
infinite 1loops, though of course it will not guarantee the
correctness of the program and its effects on the resources it uses.
In fact this is in effect the solution adopted ‘by all the typical
small job, compile-and-go batch systems. such as WATFOR (Cre 78),
where only one job runs at a time (hence it 1is atomic), common
resources (input device and output device) are "locked" for the
duration of the job and '"released" if it fails, and a maximum
execution time limit is set for each job to catch loops and improve
turnaround. Such systems usually allow the wuser to control the

deadline ‘for his job, within certain defined limits, and also provide



PAGE 95

another feature which we have not considered previously. That is the
ability to control the amount of "use" a program makes of a resource.
Typically this is a limit on the number of pages of printed output

generated or cards punched. We shall look at this facility in

greater detail in section 5.4.4.

The more sophisticated user, who appreciates the complexity of
the system, will wish to have an interface which allows him to use
its full power. He will need a special language which provides
recovery blocks, deadlines, atomic actions and the AWAIT statement
and this may be constructed from the various language structures
already existing for these facilities (Lom 76a, And 75, Ran 75, HoC).
In section 3.10 we shall discuss the role that the language’s

compiler can have in increasing the efficiency of the system.

At the interpreter level consideration must be given to the
requirement for wunique naming of actions identified in section 3.5.
Such names need only be unique for the existence of the actions they
refer to, and may be re-used at any time afterwards. The same
function is served in the simple recovery block scheme by the
recovery level, which is also unique at a given time but is re-used,
so the best general solution for wuncooperative processes 1is to
maintain a record of the depth of nesting of atomic actions and
generate identifiers by combining this value with some representation
of the didentity of the process in which the action occurs (but see

secton 4.3.1).



PAGE 96

The next item to be considered must be the granularity of
locking/cacheing of the system, and for the purposes of this
discussion we shall assume that they are the same. There are two
trade offs which must be examined with respect to this, the first
being between concurrency and program size. This 1is because the
smaller the wunit of locking for any structural resource the greater
the number of processes which can use its parts in parallel, but, as
each unit requires an action identifier field with it, the greater
the amount of space required to store lock data. As an example,
consider a system capable of supporting fifteen tasks each with a
maximum limit of fifteen nested actions. This would require eight
bits to represent all the possible unique identifiers (assuming that
all zeros indicate the wunlocked state), and so, taking a byte
addressable main store as our resource, would require twice as much
store as was visible to the user to support locking at the level of
the byte. Of course, with the current trend in storage prices this
may not be unacceptable, especially where very high reliability is
needed and special purpose hardware 1is being built, but in an
interpretive system based on existing hardware limits on address

space could make such a store size impossible.

The second trade off is between concurrency and frequency of
deadlock, and has been discussed in section 2.1.2. The decision
taken must be based, firstly on the kind of processes to be run on
the system (in some cases deadlocks may never occur no matter what
the granularity of locking) and secondly on the cost of backing out

an actien which will occur every time a deadlock arises. In the



PAGE 97

general case it would seem better to have a unit of 1locking larger
than the wunit of addressing, though not so large as to prevent any

concurrency at all.

Section 3.7.3 has already discussed various criteria to be used
to determine which atomic action should be backed out when a deadlock
occurs between actions of equal priority. Consideration of this
indicates that a combination of method five with either method six or
seven would be best for a general system = the tests on deadlines
being carried out first. However special cases may allow special
solutions, the aim always being to minimise recovery activity. It
must also be remembered that the loop described in section 3.7.4 must

be prevented.

The final topic which we must look at is the way in which the
parallelism seen by the user is implemented at the interpreter level.
There are two options. Firstly each distinct process at the user
level could be implemented by a distinct process at the interpreter
level, all the processes having access to a common store, or secondly
a sequential interpreter could multi—prograﬁ the processes at the
user level. Both schemes have their advantages and disadvantages.
In the first case scheduling of user processes is not a concern of
the interpreter as this will be handled by the level providing it
with parallelism, however the interpreter level must ensure the
atomicity of its operations on the common store. For the second case
the opposite 1is true - atomicity is guaranteed as only one user

process is ever active at a given time, but a scheduling algorithm



PAGE 98

must be provided for the processes. Ultimately the choice of method
is dependent on the hardware and software that will wunderly the
interpreter. If multiple processors sharing common store are
available then they will be used, otherwise a sequential dinterpreter
is more 1likely, unless the levels below it provide adequate support
for parallelism. (Note here that uncooperative processes cannot be
implemented using processes which are themselves uncooperative as the
blocking graph needs to be accessible to all processes). The major
advantage that the wuse of multiple processors has is that when an
action is backed out because of a deadlock the processor time that
has been spent attempting to execute has not been wasted, because
with any other scheme the same amount of time would have been spent

waiting to acquire the resources in question.

The next section will briefly describe a trial implementation of

some of the ideas we have been discussing in this chapter and report

on the problems encountered.

3.9.2 Implementation of a test system -

The system to be described below was implemented on the IBM
370/168 of the University of Newcastle upon Tyne, running under the
MTS operating system. Its purpose was to determine whether or not a
system of the type described above was feasible and was therefore not

implemented with considerations of efficiency in mind.



PAGE 99

3.9.2.1 The language interface -

The language interface to the system was provided using a
modified wversion of the concurrent PASCAL compiler designed for the
S0LO operating system (BrH 76). The compiler, due to Hartmann (Har
77), consisted of seven passes, and produced code designed to be run
on the interpreter that supports the SOLO system. Several new types
and statements were added to the language, whilst others, for example
any using the type REAL, were removed from it completely. The
compiler was also converted to assume a basic word length of

thirty-two bits rather than the sixteen that it was set up with.

The additions to the language were as follows :=

l. Atomic actions - These were provided at the procedure level
rather than by allowing any - statement block to be made
atomic. The keywords ACTION and AGENT being substituted for
PROCEDURE and FUNCTION to indicate that atomicity was
required. The body of an ACTION/AGENT could be of two
forms, the first provided the user with recovery blocks, its

syntax being

ENSURE <acceptance test> BY
<statement block>

{ ELSE BY <statement block> };

The compiler adding a default call to ERROR after the last

.alternate. The second form is a simple BEGIN...END block,



PAGE 100

which is tramslated into this recovery block:

ENSURE TRUE BY
BEGIN

END
ELSE ERROR;

rig. 3.8 shows the form of code generated for a recovery
block consisting of a primary and a secondary alternate.
GOTO ALTI1 -- enter primary
ATSTz . —— acceptance test

IF TRUE THEN GOTO EXIT -- test was successful

GOTO NEXT@ —— NEXT points to alternate
ALT1:NEXT:=@ALT2 == set up NEXT for secondary
. —= body of primary

GOTO ATST -- perform acceptance test

ALT2:NEXT:=@ALT3

.

. —— body of secondary
GOTO ATST -= perform acceptance test
ALT3: ERROR —— failure of recovery block
Figo 3.8

2. The ERROR statement - when executed this statement caused an
error to be signalled and whatever recovery action was

possible to be initiated,

3. The RETRY statement - this statement could only occur as an
alternate of a recovery block (not the primary) and caused

the preceding alternate to be executed again.

4. The ASSERT statement = the syntax of this statement is

ASSERT <condition>;



5.

6.

7e

8.

PAGE 101

and is equivalent to the statement

1F NOT <condition> THEN ERROR;

The PRIOR operation = this facility, also provided in the
system described in (And 76), is only allowed in the body of
an acceptance test and permits the wuser to access the
original wvalue of a variable which has been stored in the
cache. If the variable was not cached during the action
which the acceptance test was attached to its current value
was returned. The preferred syntax for this operation would
have been of the form "V. PRIOR" making the prior operation
an attribute of every wvariable V. However due to
restrictions in the compiler this had to be implemented as

"PRIOR V."

The basic type SYNCHRONISING (or SYNC) = variables of this
type were exactly equivalent to booleans but had the extra

property of being allowed to appear in AVAIT statements.

The AWAIT statement - the version that was dimplemented was
highly restricted and constrained the user to waiting in a
single variable of type SYNC. The syntax of the statement

was

AWAIT <SYNC variable id>;

The basic type ALARM - objects of type ALARM provided the



PAGE 102

user with a form of deadline and had two operations
associated with them - A.enable(time) which "activated" A
and caused an error to be raised after "time" clock ticks
had passed, and, A.disable which stopped A and prevented it

trom raising an error.

Also if a wuser left a block which contained the
declaration of an ALARM variable, which was still enabled, a

warning was produced and the alarm disabled and deleted.

9. Shared atomic actions - these will be discussed 1in chapter

four.

These facilities provided enough power for some experiments in
the use of recoverable atomic actions to be carried out and we shall

review them in section 3.9.2.3.

3.9.2.2 Interpreter structure -

The interpreter for the language was, as was 1indicated above,
based on the inerpreter provided for use with the SOLO operating
system on the DEC PDP-l11. Much of the interpreter was machine
dependent and several parts of it (such as input/output handlers)
were completely ignored. However the biggest difficulty encountered
in mounting the original interpreter on MTS was the need to convert

from sixteen bit words to thirty two bit words. The interpreter was



PAGE 103

a sequential program using a "round-robin" scheduling algorithm,
executing one instruction from each process in the run queue at a
time. The scheduling in the original SOLO version involved three
priority levels (processes in MONITOR’S, processes doing I/0 and
others) and time slicing, however as the two highest priority levels
were irrelevant in the new system, and as the user could not attach
priorities to processes when they were specified, this method was
abandoned. The lack of priority structuring also constrained the
system to be non-preemptive and for system queues to use a FIFO
discipline. This had the advantage that no process could ever be
kept waiting for a resource indefinitely, other than as the result of
user error. The time slicing of the SOLO system was omitted (or at
least reduced to one clock "tick" per process) as this enabled
mul ti-processors to be modelled more closely. This had the effect of
increasing the interaction between the processes, thereby exercising

the systems capabilities more fully.

Only exclusive locking was supported and the granularity of
locking/cacheing was chosen as one word. This was done even though
the system allowed addressing to the byte level‘using the type CHAR,
because this reduced space requirements and as it was felt that
interactions at the level of adjacent bytes which would remain
independent were unlikely. Each process had its own data area,
including a cache whose size was set to be one quarter of the stack
area allocated for the process. The data space for the initial
process, which becomes the common area for all other processes, does

not contain a cache as the initial process was intended simply to



PAGE 104

CACHE CACHE CACHE
ACTION ACTION ACTION
ID ID ID
TAGS TAGS TAGS
STACK STACK STACK

COMMON
ACTION
ID
TAGS

COMMON
DATA

Fig- 3.9
spawn the other processes and stop, its termination activating the
rest of the system. Fig. 3.9 shows the data areas allocated and

fig. 3.10 shows the structure of a cache and its entries.

The scheme adopted for naming actions was less structured than
the one suggested in section 3.9.1 because of the need to support
shared atomic actions (see below). It consisted of restricting the
user to sixty-three actions at any one time throughout his system,
each one having a data area allocated for it. When a new action was
required the array of data areas was searched until an unused one was
found and its index was used as the action identifier. Fig. 3.11
shows the structure of an atomic action data area. One useful
simplification wused throughout the system was to use process

identifiers rather than  action identifiers when handling



PAGE 105

TYPE BARRIER IS RECORD
LAST_BARRIER : @BARRIER; -~ enclosing action”s barrier

NEXT_ALTRNTE : LABEL; -- address of next alternate
ACCEPT_TEST : LABEL; - v " acceptance test
CURRENT_ALT : LABEL; - % " current alternate
-- (this allows retries)
OLD_SP : ADDRESS -- saved value of stack pointer
LAST ID : ACTION_ID —- name of enclosing action
END;
TYPE DATA RECORD IS
VALUE : DATA; -- saved value
OLD_ID : ACTION_ID; -- saved action id tag
WHERE : (@DATA VALUE; -- pointer to cached resource
END;

CACHE : ARRAY [ CACHE_SIZE ] OF RECORD
CASE KIND : (BARRIER_ENTRY,DATA_ENTRY)
WHEN BARRIER_ENTRY => B : BARRIER;
WHEN DATA ENTRY -> D : DATA RECORD;
END
END;
Fig. 3.10
interactions, thus an action was not seen as preventing another
action from executing, but another process. This had two advantages,
the first being that, as the number of processes in a system was
normally considerably less than the number of actions, a set (in the
PASCAL sense) of process identifiers could be represented in a much
smaller space. The second advantage was that the process identifier
not only stood for its current atomic action, but also for all the
actions enclosing it. This makes the implementation of the blocking

graph and subsequent deadlock detection very much easier. The

algorithm used was as follows :=-

I. Each atomic action had associated with it a queue of
processes whose progress was blocked by the action in
question having possession of a variable they required. The

identity of all these processes was recorded in a set



PAGE 106

TYPE ACTION_DATA IS RECORD
NAME : ACTION_ID; -- name of this action
MEMBERS ¢ SET OF PROCESS_ID; -- identity of processes
-- that are in the action
BLOCKING : SET OF PROCESS_ID; -- identity of processes
-- that are blocked by
-- this action
WAITING : QUEUE OF PROCESS; -- processes waiting for
== resources held by
-- this action
SHARED :+ BOOLEAN; == TRUE if this a shared
-=- atomic action
PRIORITY : (MIN_PRI..MAX PRI);-- priority of action
END;

Figc 3a 1l
variable, which then effectively represented the directed
arcs 1in the blocking graph that linked this action to the

ones it was blocking.

When a new action was created dits blocking set was
initialised with the value of that of its enclosing action’s

blocking set, for it too was now blocking those processes.

When a request was made for a common variable and was
denied, the action (process) making the request had to join
the queue of actions (processes) waiting for the action
holding the wvariable to terminate, and have its identity
recorded in the blocking set. However before this could be
done safely, the intersection of the blocking set of the
action whose request was denied and the set of processes
that are members of the action blocking the request must be
taken. If the result of this calculation is not the enpty
set a deadlock would arise if the requesting action joined

the queue, so recovery action must be taken.



PAGE 107

4. When a process was allowed to join a wait queue its identity
was not only added to the blocking set of the action
immediately stopping it, but also to the blocking sets of
all its enclosing actions which are now effectively stopping

it as well.

5. When an action terminates its new blocking set was passed
back to its enclosing action and their wait queues
amalgamated, unless the action was the outermost, in which

case the wait queue can be released.

The deadlock detection part of this algorithm can be implemented
very efficiently on most computers. For its functioning on a system
supporting a maximum of “p” processes and “a” actions it only
requires “2pa’ bits of data in total, there being two sets of size
‘p’ for each of the actions, where each bit in a set 1is taken to
represent a process. The test for a deadlock can be made by
performing a logical “and’ between these sets, and testing for a zero
result (no deadlock). These operations are usually two of the

fastest in any machine’s instruction set so this part of an

interpretive system can be made very small and fast.

When a deadlock is detected by this method one of the actions
involved has to be backed out. Which it was was decided by first
comparing the priority fields in the action data areas, and backing
out the action with the lowest priority. If the priorities were

equal, the halted action (note that an action identifier could always



PAGE 108

be determined from a process identifier) was backed out and the
priority of the other action was incremented. If the priority scheme
had not been used the race condition described in section 3.7.4 could
have occurred, and in fact the program shown in fig. 3.5 was used to

create this condition when the priority scheme was disabled.

The method used to implement the AWAIT statement was very
simple, and could be much dimproved. It simply consisted of
maintaining a queue of processes that were waiting for synchronising
variables to come true, and whenever an action terminated, possibly
having altered the state of a synchronising wvariable, all the
processes on the queue were re—activated to retry their AWAIT
statements. The reason for such an inefficient implementation was
that the wuse of a synchronising wvariable within an action was
accomplished using the basic operations of the system. This meant
that any alterations to the variable were not explicitly detectable,
preventing the use of special queue’s to eliminate busy waiting.
However 1if these alterations had taken place through the use of
instructions specific to that purpose, such a scheme could have been
implemented, but limitations in the basic cdmpiler prevented the

generation of special instructions, so the above method was adopted.

We have now outlined the features of the support for recoverable
atomic actions, the recovery cache mechanism being implemented
exactly as described in section 3.5. All the basic operations of the
system were modified to include cacheing of operands, though their

function was not altered in anyway. The only other feature added to



PAGE 109

the interpreter was the use of code checksums as described in section
2.3.4. These were built up during execution and compared with a
value computed at compile time whenever a transfer of control took
place. If the wvalues were not identical an error was raised and

recovery initiated.

In the next section we shall describe the experience that was

had with the whole system, and evaluate its usefulness.

3.9.2.3 Experience with the system -

The system just described was tested with a wide range of simple
examples and in all cases was found to perform correctly. Testing
was concentrated on the use of nested recovery blocks and on the
deadlock detection/recovery mechanism, and one of the results of this
was the discovery of the race condition discussed in section 3.7.4.
However even though the system effectively demonstrated the
feasibility of using the mechanisms developed in this chapter, it was
not possible to wuse it to measure the overheads involved in their

support. There were several reasons for this.

Firstly the language interface proved to be inconvenient and
difficult to wuse for anything other than the simple test programs
mentioned above. This was not due to the features added to the
language, but was caused by the scope rules built into the Concurrent
PASCAL language which was used as a starting point. These restricted

procedurés to accessing either local variables or variables declared



PAGE 110

in their immediately enclosing blocks. This was done to simplify the
implementation of MONITOR’s, whose correct functioning depends on
just such a limited scope, and means that any accessing done outside
these levels must use the parameter passing mechanism. However to
use atomic actions effectively access of this type must be done
frequently so very large numbers of parameters were required if
operations of any complexity were attempted. Concurrent PASCAL 1is
also not designed to allow the use of shared variables, again because
it is a MONITOR based language, and restrictions against their use
were built in to the compiler. It proved very difficult to eliminate
all these controls, because of the multi-pass nature of the compiler
and because no documentation describing the compiler was available
when the system was being developed. The result of this was that the
number of shared variables available to the programmer was severely

limited, and the development of any '"real" programs was prevented.

The interpreter also gave rise to several problems. The main
difficulty, as regards performance measurement, was the lack of a
suitable yardstick with which it could be compared. The only
evaluation of performance that could be made was subjective, and,
from a user’s point of view the response obtained from the system was
perfectly acceptable. Cache size measurements were hampered because
the restrictions imposed by the compiler meant that a suitable
cross—-section of program types could not be tested. Nevertheless it
was noticeable that allocated cache sizes, based on process stack
space, were small (typically less than a hundred words) and cache

space was never exhausted during any of the test runs.



PAGE 111

One piece of information which did arise from the investigation
was that the use of code checksums had a significant affect on code
size. Every control transfer (jumps and calls) had an extra memory
word with it to hold the compiler generated checksum for the straight
line code sequence preceding, and this was found to increase code
size by, on average, ten percent. The reason for this was the large
number of control transfers that occurred in programs written for the
systems, These were generated because of the procedural mechanism
used to invoke atomic actions and because of the control structure
needed to support recovery blocks. Fig. 3.8 shows that where a
statement is replaced by a recovery block consisting of a primary and
secondary altermate an  additional six control transfers are
introduced, not including those that may be contained in the bodies
of the alternatese. This shows that the extra security provided by
the code verification may introduce an unacceptable storage overhead
especially considering that program size is considerably increased by
the presence of recovery blocks. On machines with a large address
space this may not present a problem, but on many small computers

such overheads could be critical.

3.10 Efficiency of systems supporting recoverable atomic actions

As we have seen the test system did not provide much information
by which the efficiency of recoverable atomic actions could be
judged. However consideration of the various areas where performance
may be affected can allow us to judge how efficient such a system may

be. The recovery cache mechanism introduces overheads in terms of



PAGE 112

space and time. Section 3.9.1 has already discussed the storage
overhead due to the need for atomic action didentifier fields with
every resource and indicated its relationship to the chosen
granularity of locking. However there 1is also the overhead
introduced by the cache that each process has. This topic has been
discussed in several previous papers (Wye 73, Ran 75, Ver 77) and the
conclusion has always been that the storage requirements for cacheing
would not be excessive, and experience with the system just described
has not contradicted this. Of course, these two overheads need not
affect the address space available to programs as the storage can be
provided in seperate memory. However, as we have seen, the use of
fault-tolerant programming techniques will increase program size.
The exact increase 1is difficult to estimate, as it depends on the
number of alternates used and the algorithms contained in them, but
it 1is obvious that program size could be doubled if every section of

code was provided with an alternate, and this could present problems.

Execution overheads fall into two classes = those associated
with the evaluation of acceptance tests, and those incurred by every
instruction that loads or stores data. No data exists for the first
class, though Kim (Kim 76) has considered it important enough to
produce a design for a system that will execute acceptance tests in
parallel with their recovery blocks. However as the specification of
acceptance tests is still an area where much research remains to be

done very little can be said about it.



PAGE 113

Until recently very little information about the second class of
delay was available either, for all the implementations of the
recovery cache (And 76, Ver 77, Shr 79b) were interpretive and could
not take advantage of parallelism to increase their efficiency.
Shrivastara (Shr 7%a) estimates that performance in his systems was
degraded by eleven per cent when only assignments were being cached,
but points out that his system was purely for experimental purposes
and he makes no attempt to estimate the improvement that hardware
support would provide. However such a hardware system has been
implemented by Lee et al (Lee 79) which can be added to a PDP-11
UNIBUS to provide cache support. Their estimate, based on an
analysis of PDP-11 bus activity is that performance would be degraded
by eight per cent when their device was in operation but that this
could be improved to four per cent if destructive read out were used
in the memory unit. Of course to support recoverable atomic actions
operations that 'read" common resources must also be cached which
could add to the overhead. However such cacheing could be performed
completely in parallel with the operation performing the read, as the
value obtained will not be affected, so this overhead could be
eliminated. The problem with this is that access to the resource may
be denied in which case the operation must not proceed. Therefore
the lock check must be performed before continuing adding some delay
to each shared read, though if access is granted the actual cacheing,
should it be necessary, can take place concurrently with the
operation. No reliable figures for the number of '"read" references
made to shared resources seem to be available, so it is difficult to

estimate how large an overhead the checking will be. Uyeth (Wye 73)



PAGE 114

has analysed the references in a set of sequential programs and his
figures show that reads occur three times as frequently as writes.
This suggests that the number of read accesses made to shared
resources will be fairly high, because the simplified interface to
resources provided by recoverable atomic actions will encourage
programmers to use them as they would private resources. Overheads
may therefore be quite high, and ultimately there is a trade off
between these inefficiencies and the simplicity and the
recoverability provided by the systemn. The general consensus of
opinion would seem to be that where reliability is required such

overheads are acceptable.

The other area where questions of performance can be raised
concerns the dynamic locking of resources and the deadlocks that may
arise from it. The point 1is that processor time 1is wasted in
carrying out computations which are subsequently rolled back because
they reach a deadlock, when the use of a static allocation policy
would avoid this. There are several answers to this objection, the
first being that it is only true where parallelism 1is implemented
using multi-programning techniques. For if eacﬁ process were running
on its own processor the time spent carrying out abortive
computations would otherwise have been idle time spent waiting to
acquire resources. The use of dynamic locking can also eliminate
such waits altogether, because static deadlock detection does not
take into account the pattern in which resources are used by
processes and will often indicate the presence of a deadlock which

would not actually arise.



PAGE 115

Another argument for dynamic resource locking is that it is the
only way to support run time resource address computation and
synchronisation using shared resources. So if these facilities are
needed, deadlocks, and their associated recovery, must be accepted as
a necessary evil. The counter argument that a preemption scheme such
as the one described in (Cha 74) would provide the same support
without the need to roll back computation is weak. For, in order
that consistency be maintained, preemption can only take place at
certain "safe points". Chamberlin et al organise this by
constraining the wuser to making all resource requests within what
they call a SIEZE block, in which no computation other than resource
specification can take place. This restriction ensures that no
dependencies on values are built up in a SIEZE block, so preemption
of resources can take place whilst it is being processed. However
when a SEIZE block terminates the process cannot he preempted and no
other SEIZE block can be executed till all the resources acquired in
the first block have been released together. 1If the user is not to
be restricted in such a fashion then some way must be provided for
the results of computations to be undone automatically and this can
only be achieved by a system providing the kind of support that we
have described in this chapter. The decision as to whether the
advantages given by the use of dynamic allocation outway the
disadvantages brought by the mechanisms needed to support it must
depend on circumstances, but in many cases it is certainly the case
that they will. It would of course be possible to use a comnpromise
method which involved some dynamic and some static locking, for

example dynanic locking of copnditionally acquired resources, static



PAGE 116

for those known to be needed, though some modification to the cache

algorithm would be required.

3.11 Conclusion

Section 3.3 listed the features that it was hoped a system
incorporating the mechanisms described above would possess so in
conclusion let use see whether these features are in fact provided by

it.

The first requirement was that the only difference between
common resources and private ones that the programmer saw was in
their declaration. This implies that the location of a resource must
supply the system with enough information to be able to determine the
way in which it should be treated, and, as we have seen, the modified
recovery cache mechanism makes this possible. The action identifier
field associated with each resource contains enough information to
indicate whether a resource is available or whether the action
requesting it must wait. This field 1is located solely using the
resource address. In fact "read" operations are the only ones which
need to know whether a given address refers to a shared area, so that
the amount of cacheing can be minimised. Another advantage of the
mechanism from the user’s point of view is that a resource which 1is
private to a process can be shared by any sub-process it spawns
without additonal overheads. This is because the position of its
declaration in the structure of his program ensures that its address

will be in a shared area when the sub=processes are in existance.



PAGE 117

The second requirement was protection from the activities and
errors of other users and the locking, recovery and deadlock
detection mechanisms developed certainly fulfil this. They also meet
the third requirement which is essentially that the user is protected
from his own run-time errors, as does his ability to wuse recovery

blocks if he so wishes.

A simple method of making existing programs uncooperative was
the fourth requirement. Section 3.9.1 showed how this can be done by
enclosing a program in an atomic action, though this will not work
for a program composed of several uncooperative transactions. In the
latter case additional control structures would have to be added to
the program, which could in fact be difficult if it were written
badly or in an unstructured language such as FORTRAN, so the system

does not fully meet this requirement.

The last feature wanted was that the efficiency of the system
should not be impaired by the facilities provided, and that it should
be wusable for real time applications. We have discussed the
efficiency of the system that has been developed in the previous
section and seen that some degradation of performance is unavoidable,
though it would appear that this 1is not as severe as might be
expected. However a full hardware realisation of the mechanisms
would be needed to evaluate performance, especially if real-time
support is envisaged. One important point to remember here is that,
as far as software fault toleraance goes, the use of recovery blocks

in some shape or form is the only technique developed so far that can



PAGE 118

be described as successful. This entails the provision of a recovery
cache to support them, so programmers seeking reliability will have
to have a cache in their system, whether it degrades peformance or

not.

In general, then, we can see that by combining the basic
operation of locking with the activity of collecting error recovery
information, we have produced a system which enables the programner
to wuse shared resources safely without recourse to their explicit
acquistion. Not only that, the mechanism involved 1is simple and
could be incorporated into existing systems with little difficulty,
though performance will be degraded. However as it stands the system
will not allow processes to communicate with each other and to make
use of resources and then release them immediately. The succeeding
chapters will attempt to show how these facilities may be built upon

the basic mechanisms described above.



PAGE 119

4.0 Closely Cooperative Processes

4.1 Introduction

In this chapter we shall expand the concept of the atomic action
to allow an action to contain several concurrently executed paths,
rather than just one, creating what Lomet calls a SHARED ATOHIC
ACTION. This structure possesses the important property that
resources locked within a shared action, are usable by ALL the paths
within the action, whilst their uses of them appear atomic to other
processes not involved in the action. This means that the processes
executing the paths of the action may communicate freely with each
other by wusing these resources, and this makes them <closely
cooperative as defined in section 1l.2. Any of the processes involved
in a shared action may use a resource exclusively by carrying out
their operations on it within a nested action, shared or unshared,
but on the sub-action’s termination the ownership of the resource
reverts to the enclosing shared action and thus to all the processes
involved in it. As it stands this structure is not recoverable
because processes may leave the shared action at any time, thereby
committing the results of their operations before other, possibly
dependent, processes have terminated. To overcome this we shall
apply the rules developed by Randell for "conversations" (Ran 75) and
by Davis for "Spheres of Control" (Dav 73). Applied to shared atomic

action, these are :-

l. No process may leave an action (that is commit its results)



PAGE 120

until all the other processes involved in the action have
succesfully executed their respective paths through the

action and are ready to leave themselves (the processes are

coupled) .

2. If an error occurs in the execution of one of the paths
through a shared action at a point where there is no nesting

of actions within it, all the paths must be wound back.

These two rules make shared actions recoverable, and, because of
the restrictions they impose, simplify the system needed to support
such recoverability. The basic requirements for supporting shared
actions are identical to those for unshared actions and this should
allow us to use the modified recovery cache scheme to support them.
However this cannot be achieved simply by allowing an action to have
more than one member process, because therquestion of where resources
are cached must be answered. In the system supporting unshared
actions each process must have its own cache, and, as wunshared
actions can be nested within shared actions, each of the processes
executing within an action must also have its own cache. If this is
done no additional facilities are needed in the recovery cache
mechanism. Tor when a process 1in a shared action first uses a
resource which has not been used previously by any other member of
the action, it will cache the resource and wupdate its action
identifier field to contain the name of the shared action. This
means that all the other processes will "see'" the resource as having

already been locked should they come to use it, and so will not cache



Error

Error

Error

Error

at

at

at

at

(a)
(b)
(e}

(d)

P 9] R
' SAL
SAZ
Al
Al
(a)
(b)
{c)
(d)
Y ¥ ¢
back out SA2, taking with it A2.
back out A2, process P is unaffected.
back out Al, processes P and Q unaffected.
back out SAl, taking with it SAZ2.

Fig. 4.1



PAGE 122

it. However this does not impair recoverability, because the second
rule given above ensures that all caches are processed on an error so
the resource will be restored correctly no matter how many of the
processes involved have wused it. Naturally this fact does not
preclude special methods being applied to cacheing of resources
within shared actions, but they would not bear the direct
relationship with unshared actions that this one does. Section 4.3.1

will show other advantages that this scheme possesses.

The error handling mechanisms of the system must also be
extended to cope with shared actions, as they must now be able to
initiate recovery action in each of the member processes. Note that,
as with deadlines, this may require several layers of nesting to be
backed out if nested actions have been wused. Fig. 4.1 shows a
typical shared action structure, and indicates the ways in which
recovery can take place within it. Later ia this chapter we shall
look at more specific points concerning the implementation of shared
actions, but before that we must examine the kind of interface that
is to be provided for the programmer when he wishes to use shared

actione.



PAGE 123

4.2 Specification of shared atomic actions

4.2.1 Sub-processes and co-existing processes =

Because of the restrictions on the ways in which atomic actions
may be nested it is not possible for a set of processes whose access
rights are not identical to enter a shared atomic action together.
In fact there are only two ways in which shared atomic actions can

come into existence :=-

1. By a single process forking into a set of sub-processes,
which either consitute a shared action in their own right or
EXPAND the action in which the fork operation occurs into a

shared action.

2. By a set of processes within the same shared action forming
a nested shared action (note that this also includes the
case of a set of processes, none of which are members of any

action).

Representation of the first case is very simple - any of the
existing notations used for parallel statements being adequate, for
example Dijkstra’s PARBEGIN and PAREND (Dij 68a). If the user wishes
to create a new action he need only prefix the statement with the
attribute SHARED to indicate this. Omitting this will cause the

membership of the action, within which the statement occurs to be



PAGE 124

ACTION OUTER;
BEGIN

PARBEGIN «.4 ces «se ENDj;

we @

END
(a) expansion of OUTER from unshared to shared

ACTION OUTER;
BEGIN

SHARED A2 =-— name sub action A2
PARBEGIN ... e | wws BNDG

END;
(b) creation of a shared action inside an unshared action
Fig. 4.2
increased to include all the subprocesses, possibly turning an
unshared action into a shared action. Fig. 4.2 shows an example of
each case. There are two special points to make here. Firstly this
is the case, referred to in section 1.5, where actions are created
without user specified nanes, and secondly sub-process members of
actions are allowed to terminate before the proper termination of an
action, because their separate control streams rejoin into a single

stream which must obey the termination rules.

The second case requires a different approach because of the
need to bring disjointly specified processes together. The most
structured method of doing this is to use a modified version of the
SIMULA CLASS specification (Bir 73), where each procedure entry
defines one of the execution paths within the shared action. In

order 'to enter the action a process simply calls one of the



PAGE 125

procedures. However, before control is returned on its successful
completion, all the other parallel paths through the action must also
have been executed without error. Unfortunately the situation is
more complex than this because the system must at least know how many
processes are needed to form the action, in order to determine when
all the paths have been processed or when the action may start, if
synchronisation between processes before commencement 1is required.

Three possible ways of overcoming this difficulty suggest themselves

l. The user must define the valid groupings of processes which
can form shared actions, thus indicating memberships as well

as the number of members,

2. Each process entering a shared action must do so through a
different entry, and all entries must be used - then the

number of entries equals the number of paths in the action,

3. The system records the identities of the processes that have
entered the action and of those which have completed the
entry they called, and when the two sets are identical the

action is adjudged to have terminated.

All these solutions present difficulties of wvarying magnitude,
either to the system or to the user. The third method is very simple
and requires no extra information from the wuser, but the system

cannot guarantee that when '‘a process enters a shared action it will



PAGE 126

be sharing with the processes the wuser expects. This 1s because
scheduling 1is essentially non-deterministic and even the number of
processes in the action cannot be guaranteed. The only way to solve
this 1is for the user to include his own code which will ensure that
the correct processes come together, for example by including some

synchronisation as the first statement of each entry.

The second method presents a similar problem in that, though the
system knows how many processes are needed, it does not know their
identities so cannot pguarantee that the expected set of processes has
come together. The system also has the problem of interpreting what
is meant when the same entry is called at the same time by two
different processes - is it an error, or is it two valid, seperate
attempts to initiate the same action? 1If the latter, which process
should be allowed into the action and which delayed? There is
however an even worse problem because, through programmer error, the
system can deadlock. This arises when one or more entry calls do not
occur, hence the processes which are in the action will wait
indefinitely for termination. Simple ommision of a call statement
can cause this to happen, or incorrect ordering of calls to several
actions shared by non-disjoint sets of processes which can lead to
the situation where an action A, containing process P is waiting for
a call from process Q which is in action B, which is itself waiting
for a call from P. Unfortunately, because the system does not know
the identity of the processes which a given action is waiting for the
error will only become apparent when every process 1in the system

becomes 1involved and all activity stops. In this case an error can



PAGE 127

be raised in the action (if any) enclosing the deadlocked actions and
the process of recovery will break the deadlock. However, in the
general case, such detection is not possible and only the use of

deadlines can break the deadlocks that might arise.

The method whereby the user must declare which processes can
come together to form a shared action still has the same problem, but
because the system now knows which processes an action is waiting for
it can detect the deadlock and initiate recovery. The easiest way to
detect the deadlock is to build a blocking graph - a shared action,
one of whose members is needed by another action, being said to block
that action. When a cycle occurs in the graph denoting the
relationship between actions, deadlock has been reached. However
this does not solve all the problems, because an ommitted call may
not cause a deadlock, and in that case will only be detected when the
process which should have given the call  attempts to terminate or
leave the enclosing action if the shared action is nested. 1In the
latter case recovery action can be taken, but in the former it is
likely that commitment of the results of the incorrect process will
have taken place (especially if it consists of a sequence of
uncooperative transactions) and no recovery will be possible. A
partial solution to this would be for a compiler to check that a call
to the action was present in all the processes that make it up, but

the presence of conditional calls makes this approach unreliable.

It would seem, therefore, that some other abstract structure,

rather than the CLASS, must be used if complex patterns of action



PAGE 128

usage are to be supported. However the form it should take 1is not
obvious, though the use of a type of path expression to indicate at
compile time the correct sequence that actions should be executed in

seems to be the most fruitful direction to take.

A final small point about shared actions, unrelated to the
question of deadlocks, is that where the paths through an action are
implemented as recovery blocks, all the blocks must have the same
number of alternates. Any other arrangement would be meaningless and

the check can easily be made at compile time.

4.2.2 Access to shared resources within shared actions =

When inside an unshared atomic action a process 1is fully
shielded from interference from other processes, but inside a shared
atomic action, though protected from processes that are not part of
the action, there 1is no control over interaction with other member
processes. This can obviously lead the programmer into difficulties.
However it dis this very lack of control that lends the concept of
shared actions its power, so any methods devised to protect the user
from erroneous interactions must not decrease the power available to
him. The simplest way to ensure that operations on resources common
to all processes 1in a shared action are performed correctly is to
enclose them in a nested unshared atomic action. This 1is the
approach adopted in the example described in section 4.4 and shown in
fig. 4.3. A compiler could easily enforce that this took place by

o

checking ® that every access to a shared resource took place within a



PAGE 129

unshared action. A similar check could be performed at run time if

this compile time enforcement was not possible.

Another method that can be wused 1is for the programmer to
synchronise the activities of the processes within the action so that
interference is eliminated. However this approach 1is highly error
prone relying as it does on the correctness of the algorithms used
and often on the programmer’s assessment of the way din which the
system will execute his processes. In fact the enforcement of
atomicity, as above, in‘ no way prevents the programmer from
constructing synchronised systems and will eliminate interference.
Where the synchronisation between the processes is correct the
protection given by the use of unshared actions will be redundant but
will mean that any recovery that has to take place will, in the first
instance, only involve the wunshared action rather than the whole
action. This could represent a considerable improvement in

performance, especially where deadlock recovery is concerned.

Ve can see therefore that by restricting the wuse of shared
resources to the bodies of unshared actions the problem of
interference can be eliminated. The power of shared actions 1is not
reduced - communication and synchronisation between processes can
still take place, and some of the recovery overhead involved with
shared actions can be reduced. The wuser will have to add extra
control structure to his program, but the advantages obtained far

outweigh this disadvantage.



PAGE 130

4.3 Implementation

4.3.1 General considerations -

Many of the comments made in section 3.9.1 concerning the
implementation of unshared actions apply equally to shared actions.

However certain areas need further elucidation.

Firstly there is the question of naming shared actions. In
section 3.9.1 we suggested that names could be constructed for
actions from the process identifier and recovery depth of the process
involved but as there are several processes inside a shared action
this is mnot posible (though note that the recovery depths of
processes inside the same action, must be the same because of the
nesting rules for actions). If the process identifier/recovery depth
names are to be kept for unshared actioﬁs, the best solution is to
assign each shared action an identifier which can be used in the sane
way as the process identifier, this has the advantage that nested
shared actions can be referred to by the name of their outermost
enclosing action and their depth of nesting, thus reducing the number
of names required. However to implement this means either larger
storage overheads or more restrictions on the user - consider the
example given in section 3.%9.1 of a system supporting a maximum of
tifteen processes, allowing fifteen nested levels of recovery. Out
of fifteen processes, seven outermost shared actions can be created
and to provide roonm for these names in the action identifier field

requires an extra bit, which must be obtained either by extending the



PAGE 131

field by one bit, or reducing the depth of nesting permitted to seven
levels. This would give five bits for the process identifier giving
thirty-two names, which will alllow expansion to twenty processes and
the maximum ten shared actions possible with them. If more than
seven nesting levels are required and eight bits is the maximum space
available for identifier fields the number of processes allowed could
be reduced to ten, giving five shared actions possible = whichever
way is chosen depending on the programs that the system supports.

The problem with this sort of scheme, simple as it is to
implement, is that circumstances may arise where a new name cannot be
generated for an actidn even though many names are still unused. The
solution dis to generate names from a pool rather than to build them
from the attributes of tasks. This, though still having an upper
limit on the number of names imposed by the size of the action
identifier field, allows for much greater individual variation in the
structures and numbers of processes supported. This type of scheme
was adopted in the implementation described in section 3.9.2 where
only sixty-three names were available, and this 1limit was never

exceeded though nesting was often deep.

Cacheing is another area where differences arise between shared
and unshared actions, these being due to each process in a shared
action having its own cache. The result of this is that when a
resource 1is first used inside a shared action its recovery data is
recorded in the cache of the process which uses it, after this all

the other processes may use the resource but will not enter it into



PAGE 132

their caches, this of course being perfectly acceptable as ALL caches
must be processed on termination or backing out of an action so
recoverability is not impared. However in the case of a shared
action created out of sub-processes, on its termination all the data
in the individual caches which needs preserving must be merged into
the cache of the process which spawned them, which introduces
additional complexity, especially where the sub-processes acccept
their caches concurrently, and thus have to compete for the use of
the parent cache. Of course if the system provided a comnunal cache
for the shared action (though not for nested actions) this activity
would be much simpler, but competition would then be introduced every
time a cache operation had to be made. The only advantage a comnmunal
cache would have is that the PRIOR opeation, described 1in section
3.9.2.1, could be provided for the acceptance tests of shared
actions. If separate caches are used the interpreter would have to
search the caches of all processes involved in the action to find the
value, which, whilst theoretically possible, would be impractical,

especially in distributed systems.

Synchronisation between processes in a shared action also needs
examination, Dbecause the error described in section 3.8.1 where and
unshared action waits for a condition involving a resource it has
locked, is not an error in a shared action, for other processes can
use the resource and make the condition true. This means that the
system can detect when a user has failed to set such a condition,
because if all the paths of a shared action have either finished or

are waiting on a condition involving a resource locked by the action,



PAGE 133

then this error has occured.

In the next section we shall briefly describe how shared actions

were incorporated into the system described in section 3.9.2.

4.3.2 Actual implementation -

Many of the difficulties described in the preceding sections did
not arise 1in the trial system on MTS, simply because the language
interface to the system was so restricted. The case of shared
actions created by sub=processes could not arise as Concurrent Pascal
does not have facilities for sub-processes, and shared actions had to
be dimplemented wusing a CLASS structure with the third method of
control described in section 4.2.1, because the scope rules made it
impossible to define access rights using process identifiers. No
attempt was made to enforce the rule that common resources may only
be used inside unshared actions (to allow nore experimental freedom),
but, because of the way in which the AWAIT statement was implemented,
(section 3.9.2.2) setting of SYNCHRONISING variables used between
processes in a shared action had to be done‘ inside an wunshared
action, so that the waiting process would be rescheduled and

re-evaluate its condition.

As far as deadlocks were concerned, a shared action was assigned
an initial priority equal to the number of processes involved in the
action, and this meant that 1if a deadlock arose there was less

likelihood of its having to be backed out. This device provides a



PAGE 134

simple measure of the cost of backing out an action and was found to
be very effective in reducing the amount of recovery activity during
a run. Deadlock detection using the blocking graph, is unaffected by
the use of shared actions, but the implementation of the graph using
blocking sets, means that when an action 1is bhlocking a resource
request from one of the processes inside a shared action it must be
regarded as blocking all the processes in the action rather than just
the one which issued the request. If this is not done it would be
possible for two processes within a shared action to deadlock each
other, one unable to terminate because the other is still executing
(albeit waiting) and so holding its locks, thus blocking other
actions, which in turn could be blocking the other process. This
means that membership of the blocking set of an action does not
necessarily imply that a process is waiting for a resource held by
the action, but rather that the termination of the action the process

is a member of is dependent on that of the blocking action.

Altogether the implementation presented few problems, all of
which were solved by simple extensions of the methods used for
unshared actions. In the next section we shall look at an example to

show how shared actions can be used.

4.4 The Dining Philosophers problem

The problem of the Dining Philosophers, or spaghetti eaters as
they are sometimes known, was suggested by Dijkstra (Dij 72) and

involves five philosophers who alternately think and eat. When a



PAGE 135

philosopher becomes hungry he sits down at a table and picks up two
forks, one on either side of his plate, and eats. However, there are
only five forks on the table, so if a philosopher is eating, neither
of his neighbours can eat. When a philosopher finishes eating he
puts down his forks and leaves the table. Therefore, if all five
philosophers try to eat at the same time, each will pick up a fork,
and there will then be none left on the table, so no philosopher will
be able to make up a pair of forks and start eating. The problem is

to prevent this and thus to stop the philosophers starving.

Various solutions have been presented in the literature - wusing
semaphores in (Dij 72), critical regions in (HoA 72), communicating
sequential processes in HOA 78, distributed processes in (BrH 78) and
MONITOR’s plus PORT’s in (Shr 79a) - however the approach taken to
solving the problem in every case requires the problem to be fully
analysed before the algorithm can be developed. Fig. 4.3a shows the
problem coded using shared atomic actions, implementing the dining
philosophers exactly as they are described in the problem
specification, and fig. 4.3b shows the execution flow and blocking
graphs of the worst case, that is when the philosophers, having all
sat at the table at the same time, do not spend any time thinking
after finishing eating, but return at once to the table. After the
initial deadlock, which the system detects and breaks by forcing one
of the philosophers to return his fork to the table, each philosopher
then eats in turn and nobody starves. When the philosophers start
thinking again the situation will become more normal and two

philosophers will be able to eat at the same time, the deadlock only



PAGE 136

occuring again should the five sit down to eat at exactly the same
time. Note that when this program is run on the test system
described above it is impossible for two philosophers to starve
another sitting between them, as in the solution given in (Brh 78).
This 1is because the way in which the queues of processes waiting to
lock resources are implemented ensures that requests are processed in

the order they occur.

This solution, however, does not support the kind of
recoverability provided by the use of PORT s as, even when each of
the atomic modules is made a recovery block, an error during a
philosopher”s thinking phase will cause all the philosophers to be
rolled back, rather than just the one which failed, though errors
during eating will be handled on an individual basis. We shall
discuss the question of how such recoverability should be provided in
chapter five and a different solution .for the dining philosophers”

problem will be presented in section 5.4.3.



PAGE

TASK PHILS;
FORK: ARRAY [ 0..4 ] OF BOOLEAN;
I: INTEGER;
ACTION EAT (PHIL_NUMBER : 0..4);
BEGIN
FORK [ PHIL_NUMBER ] := TRUE; =-- pick up forks
FORK [ (PHIL_NUMBER + 1) REM 5 ] := TRUE;

-- eating
FORK [ PHIL_NUMBER ]:= FALSE; == put down forks
FORK [ (PHIL_ﬁUMBER + 1) REM 5 ] := FALSE;

END;

BEGIN

FOR I := 0 TO 4 DO
FORK [ I ] := FALSE; == initial wvalues

SHARED PARBEGIN
DO BEGIN THINK
DO BEGIN THINK
DO BEGIN THINK
DO BEGIN THINK
DO BEGIN THINK

PAREND ;

END;

EAT(0) END 10000 TIMES
EAT(1) END 10000 TIMES
EAT(2) END 10000 TIMES
EAT(3) END 10000 TIMES
EAT(4) END 10000 TIMES

Me Me we we we

(a) The Dining Philosophers’ problem
PHILO PHILI1 PHIL2 PHIL3 PHIL4 BLOCKING GRAPH

THINK THINK THINK THINK THINK
LOCK FO LOCK F1 LOCK F2 LOCK F3 LOCK F4

LOCK F1 LOCK F2 LOCK F3 LOCK F4 LOCK FO P4—=P3—>P2—>P1—>P0

| I I | BACK OUT P3—P2—>P1—>P0
|

| | THINK | P2—P1—>P0

|

I
|
|
| | THINK | [ P1—P0—P4
| END LOCK F2 LOCK F4

| THINK | | PO—>P4—>P3

|
|

END LOCK F1 LOCK F3 | | PO—=Pl “P4—>P3—P2
|

THINK | | | P4—>P3 P2

etce. etce.
(b) Worst case execution flow.

Fig. 4.3

| END LOCK F4 P3—P4 P2—P1—P0
END LOCK F3 LOCK FO P2—P3 Pl1—>P0—>P4

PI>P2 “PO—P4—>P3

137



PAGE 138

4.5 Efficiency

The points raised in section 3.10 about the efficiency of the
mechanisms described in chapter three are all still relevant when
shared actions are implemented wusing them, but some additional
problems are introduced. The first has been mentioned in section
4.3.2 and is the need to back out and retry all the processes
involved in a shared action in the case of a deadlock. One reason
for this was described above, but it may be argued that this simply
brings to 1light an inadequacy in the deadlock detection mechanism,
and that some other method, perhaps using more information about the
resources that are being contended for, would allow individual
processes in a shared action to be retried when a deadlock arose.
However it must be remembered that the cache of a member of a shared
action, does not contain a record of those resources which it has
used after another member has locked them, so backing out the process
on its own would not necessarily restore the system state correctly.
Also 1f the processes in the action have been communicating, backing
out an individual process would create inconsistent states, and so
would not have the desired effect. It is clear that we must accept
that all the processes have to be rolled back if one has to be.
Section 4.3.2 described a method for assigning action priorities
which reduces the risk of this having to happen, however the
possibility cannot be ruled out altogether, and so this inefficiency

cannot bhe eliminated.



PAGE 139

The second area which needs to be mentioned is that of the
necessity for all the processes inveolved in a shared action to
terminate before commitment can take place, which may mean processes
having to wait until others finish. This must happen because of the
definition of recoverable shared atomic actions, however, if the time
spent waiting for termination can be minimised, the action will hlock
other actions for the least time. In order to achieve this all the
processes mnust enter the action at the same time. Then termiation
occurs when the longest individual path through the action finishes,
and in order to achieve this the processes must all synchronise
immediately before entry. Thus by shifting any excess waiting time
from the end of an action to its beginning we have reduced its effect
on the system. However, note that the system must know how many
processes are involved in an action for this to be done, so the
specification method used in the test system would not allow this to

be implemented.

Finally, synchronisation between processes in a shared action
using a resource local to the action means that the AWAIT statement
mechanism must now look for events signalled during the course of an
action, rather than checking when an action which may have flagged
them terminates. This means that the amount of "busy-waiting'" in the
system may 1increase, thus reducing its efficiency. The use of
specially handled SYNCHRONISING variables would allow the system to
overcome this, but some overhead would still be felt, due to the
checking that would then be carried out each time a SYNCHRONISING

variable was used.



PAGE 140

4.6 Conclusion

We have now seen how shared atomic actions can bhe integrated
into the system supporting uncooperative processes, introducing the
capability for inter-process communication, '"cooperative' resource
use (that 1is resources can be released befor committment) and
controlling the way in which recovery takes place amongst groups of
processess However, for several reasons, these are only of limited
usefulness. Fistly inter-process communication is hard to control
and so increases the chance of programmer error, this being due to
the fact that the processes within a shared action are not protected
from each other Secondly, communication is still not gemeral enough,
because it can only take place between the members of the shared

action, and not with any process.

The capability for releasing resources before final committment
is more generally useful (as the example of the Dining Philosophers’
problem shows) and is easy to control, but the restricted set of
processes which can compete freely using it is again a disadvantage.
However, the example also highlights the weaknesses of the recovery
structure for, when the processes within an action only compete or
communicate wuni-directionally, recovery entails undoing large
quantities of correct work done by processes which have not failed.
0f course where bi-directional communication has taken place, or the
processes are mutually dependent in some other way, as in the case of
sub-processes, this type of recovery is exactly what is needed, and

shared atomic actions, 1f carefully used, can make their



PAGE 141

implementation easier. Nevertheless, in many cases, for example
where software modules are produced by programmers working
independently of each other, more general methods of interaction are
required and in the next chapter we shall show how these can be

provided.



PAGE 142

5.0 Cooperative Processes

5.1 Introduction

The preceding chapters have described a system that can support
processes whose operations do not cause them to become dependent on
others. Where dependency 1is required, that 1is where processes
communicate, the programmer must encapsulate the processes in a
shared atomic action, making them appear as a single process to the
rest of the system. However, as we have seen, this structure has two
major disadvantages. Firstly because of the recovery structure
provided, the processes are too closely coupled, introducing the
possibility of unnecessary recovery activity and excluding the use of
compensation mechanismse. Secondly, the <coupling of the processes
means that fully asynchronous operations are impossible as all the
processes within a shared action must_synchronise on termination.
This makes the implementation of certain kinds of systems inefficient
and clumsy, for example one where a process collects information from
a unknown number of other processes. In th;s chapter we shall
describe some additional program structures which will allow systems
like this to be constructed much more easily, whilst still being
recoverable. The techniques to be described below, in effect, allow
the support system to construct shared atomic actions, invisible to
the wuser, made wup of the processes which are communicating. This
means that the rules of atomicity (Lom 76a) are not violated, and
also permits the system to eliminate unnecessary recovery activity,

as it has full knowledge of the way in which interactions have taken



PAGE 143

place. However, before describing these techniques, we mnust

investigate the type of interface a programmer should have in order

to construct such systems as the one mentioned above.

5.2 Programmer s Interface

The language interface that this thesis has developed to enable
programmers to access shared resources is very simple - using a
resource implies that it must be locked - and it is dimportant that
this simplicity be maintained as far as possible for any new
structures. Bearing this in mind, there are two facilities that the

programmer needs to be provided with :-

1. The ability to send a message to another process whose

identity may or may not be known,

2. The ability to release certain resources when they are no
longer mneeded by the process, thereby increasing the amount
of concurrency possible (for example the dining

philosophers” forks).

The first facility can be provided by the type of structures
used by Hoare (Hoa 78) and Brinch Hansen (BrH 78), where messages are
passed to either explicitly named processes or to one of an array of
processes, picked out by a dynamically computed index. This

construct does not allow a process to send a message to an unknown



PAGE 144

process, but this can be achieved by the use of BUFFER PROCESSES

acting as intermediaries. The second facility can also be provided

with this type of structure by using SERVICE PROCESSES, whose sole

tunction is to perform an operation using some resource and return
the results of this operation to the process that requested the
service, thereby eliminating the need for the requestor to acquire
and release the resource. This has considerable advantages from the
point of view of program modularity, and hence software reliability,
as it means that certain frequent operations need only be coded once
and only one active copy need be kept 1in the system. Also, the
programmer need only know about the functional properties of the
resources so controlled, without having to know their exact

structure, thus increasing the security of the system.

However, as we have seen in section 2.2.5 the synchronisation
between processes inherent in this kind of system can impair its
efficiency by reducing the level of concurrency and so the programmer
may require another type of interface which will allow asynchronous
communication. Message passing can be achieved by the support system
itself buffering messages sent by a process and holding them until
they are requested by another process. However, if messages must be
directed to named processes the programmer must still use buffer
processes to communicate with wunknown processes, forcing him to
replicate a facility provided by the system. For this reason, it
would seem better to provide the user with buffers controlled by the
interpreter level so that processes need only know the identity of a

buffer where messages can be found or deposited rather than that of



PAGE 145

the messages’ source or recipient. Unfortunately, this introduces
the possibility of a process receiving a message not intended for it

and this can only be avoided by programmer discipline and careful

project management.

In many cases, however, the use of inter=task communication is
not really necessary, and will introduce considerable overheads. The
programmer must, therefore, be provided with some means of acquiring
and releasing certain types of resources from within his processes,
without violating the rules of atomicity, and we shall look at this

topic in more detail in section 5.4.2.

Let us now look at some ways in which the above requirements
could he realised, starting with a structure based on direct

communication between processes.

5.3 The MARSHAL

5.3.1 General Description -

In the next few sections we shall look at a possible method of
providing the programmer with the means to communicate between
processes and to control resource allocation, based on the 1idea of
"secretaries" and 'directors'", introduced by Dijkstra in (Dij 72).
The MONITOR (Hoa 74) is the usual realisation of this concept, but,

as it is implemented using direct procedure calls on a shared object,



PAGE 146

requires that processes be able to lock and release resources during
the course of their executions, and, as we have seen, this violates
the rules of atomicity and makes recovery difficult. It is possible
to devise a scheme whereby recoverability can be maintained in these
circumstances, but it either requires recovery information to be
distributed throughout the caches of all the processes that have used
a MONITOR, which presents problems of ensuring that wvalues are
restored correctly, or each MONITOR must have a cache associated with
it, to centralise recovery information. The latter alternative is
obviously preferable, but makes the MONITOR rather more than a data
object, so in order to make it fit in better with the structure of
the system we have developed, we shall introduce the MARSHAL as a
type to take its place. A IMARSHAL is a special process with its own
cache, the body of which, like a wmonitor, consists of several atomic
"entries'" which can be called by other processes, using the type of
remote procedure call described in (Brh 78) and (Ich 79), which we
shall call a RENDEZVOUS. The MARSHAL itself controls which entries
can be called at a given time by GUARDS - an entry only being
accepted if the guard associated with it is true - and, as for
MONITORs, only one entry can be active at a given time. The major
advantage that this structure has over the MONITOR is that being an
autonomous process any resources used in the body of a MARSHAL are
locked by it, and are available to other processes through its
auspices, thus avoiding the need for processes to lock and unlock
resources. This is not the only advantage, for, if access to
resources 1is controlled by MARSHAL’s, they do not need to be

available to all processes and each resource can be made local to the



PAGE 147

MARSHAL controlling it, thereby reducing, and in some cases even
eliminating, the need for common areas in the system. Also, the way
in which access to entries is handled hides the queueing involved in
their use, unlike the method used in MONITOR’s, leading to more

elegant algorithms.

The language structures used to define MARSHALs can take many

torms but all have four features in common:-

1. Specification of the entries, as they are to be seen by an

external user,

2. Declaration of resources local to the MARSHAL, but global to

all its entries,

3. A piece of code used to initialize the resources when the

MARSHAL is first initiated,

4. Specification of the bodies of the entries, and of the

guards controlling their activation.

Fig. 5.1 shows two ways that MARSHAL"s could be specified, the
first being loosely based on the tasking structures in the ADA
language (Ich 79) and the second being more close to the CLASS
structure of MONITORs, each having its advantages and disadvantages,
and showing that the MARSHAL structure can be represented in

different ways.



PAGE 148

MARSHAL BB IS
ENTRY PUT ( X : IN DATA );
ENTRY GET RETURNS DATA;
END;
MARSHAL RBODY BB IS
ST : ARRAY [ BUFFER_RANGE ] OF DATA;
HEAD,TAIL : BUFFER _RANGE;
BEGIN
HEAD := BUFFER_MIN; TAIL := BUFFER MIN;
LOOP
SELECT
WHEN HEAD <> TAIL
ACCEPT GET;
P : BUFFER_RANGE;
BEGIN
P := TAIL;
TAIL := (TAIL+l1) MOD BUFFER_TOP;
RETURN STI[P]
END;
OR WHEN ( HEAD+l ) MOD BUFFER_TOP <> TAIL
ACCEPT PUT ( X : IN DATA );

BEGIN
ST[HEAD] := X;
HEAD := (HEAD+1) MOD BUFFER_TOP;
END;
END SELECT;
END LOOP;

END;

(a) Task notation for MARSHAL’s

TYPE BB IS MARSHAL
ST : ARRAY [ BUFFER_RANGE ] OF DATA;
HEAD,TAIL : BUFFER_RANGE;

WHEN HEAD<>TAIL
ENTRY PROCEDURE GET RETURNS DATA;

P : BUFFER_RANGE;

BEGIN

P == TAIL;

TAIL := (TAIL+l1) MOD BUFFER_TOP;
END3

WHEN (HEAD+1) MOD BUFFER_TOP<>TAIL
ENTRY PROCEDURE PUT ( X : IN DATA );

BEGIN

ST [HEAD] := X;

HEAD := (HEAD+l) MOD BUFFER_TOP;
END

BEGIX
HEAD:=BUFFER_MIN; TAIL:=BUFFER_MIN;

ERD;
(b) Class type notation for MARSHAL s

Figs 5el



PAGE 149

However no matter what notation is chosen, the underlying support

mechanism for the MARSHAL 1is the same, and we shall now turn our

attention to that.

E Q R
ACTION Al ACTION A2 ACTION A3 (1
. BB.PUT . { 2
. . BB .PUT £ 3
BB.GET . . ( 4)
. ACTION A2l . ¢ 59
ACTION All . . ( 6)
. BB.PUT . ¢ Ty
BB.GET . . ( 8)
END . . ¢ 9}
. END . (10)
BB.GET . . (L)
nND . . (12)
END . (13)
END (14)

Fig. 5.2

5.3.2 Special cache mechanism for MARSHAL s -

Whenever processes

uncommitted data,

communicate

dependencies

are built wupon

so, if an error arises, the system must have

recorded these relationships so that any atomic action that has used

erroneous data can

uncontrolled, this

enforced by the MARSHAL

be wound back.

can be wvery difficult,

structure allow

Where

communication is

restrictions

to be done fairly

easily. In order to maintain the necessary data, the system has to

support MARSHAL execution

with a cache mechanism that is different

from the one we have described above. We shall describe how this

operates with the aid of an example.



PAGE 150

Consider the three processes - P, Q and R - shown in fig. 5.2.
Processes Q and R communicate with P via a bounded buffer BB of the
kind shown in fig. 5.1 with the type BUFFER_RANGE defined as the
sub=range (0..1). The atomic actions Al,A2 and A3 constitute
transactions and so are the outermost level of nesting for the parts
of the processes shown in the figure. It 1is assumed that the
processes execute, as far as possible, in parallel, so on that basis

let us consider each numbered stage of execution in turn :=-

1. All the processes” caches are empty, as is the cache of the
MARSHAL BB. At this point barriers are created in each of
the process caches to indicate the start of a new action.

Process P°s cache will look like this :-

2. Process Q remotely calls the MARSHAL BB to put some data
into the buffer. When BB accepts the rendezvous it
generates a new sequence number to uniquely identify it and
records this value in its cache, along with the identity of
the action that requested the rendezvous. BB then executes
the entry PUT, causing updated variables to be entered in
its cache in the normal way. It then returns the rendezvous
identifier to the calling process Q and waits for the next
rendezvouss In the meantime Q has been inactive, but when
the rendezvous 1is complete it caches the identity of the
MARSHAL it has called and the sequence number it has been

‘returned and continues. The cache changes are thus :-



PAGE 151

Q : | a2[eB-1

BB: | 1-<q,A2>] sT(0] |HEAD]

3. The same sequence of events 1is repeated but this time

involving process R :-

R : |[A3]|BB-2 ]

8B: | 1-<q,A2>]sT(0]] HEAD|2-<R,A3>]|sT[1]]HEAD|

4. P now calls the entry GET to retrieve some data from the
buffer, this call is processed in a similar fashion to the

two preceding calls :-

p: [allss-3]

BB: | 1-<Q,A2>]...] 3-<P, A1>] TAIL |

5. Process Q now enters a sub-action, creating a new barrier in

its cache :=-

q : [az2]ss-1]...]a21]

6. Process P does the same :=-

p: |ai]se-3][...]a11]

7. Q agains calls BB to put data into the buffer. When the
rendezvous is accepted, the interpreter checks to see if the

calling action has rendezvoused with BB before. If it has



8.

PAGE 152

not, as in this case, a new sequence number is generated and
returned to the calling process. If it thas, cacheing of
updates takes place as normal, but no new rendezvous
identifier is generated (see 1l below). The caches now look

like this :=

Q : [a2]sB-1]...]a21]BB-4]

BB: | 1-<q,A2>]...]4-<q,a215]sT10]] HEAD]

P calls BB to get some more data, and, as in the previous

case, a new identifier is generated :-

P: |Al|BB-3

...|a11]BB-5]

BB: | 1-<Q,A2>[...|5-<P,A11>|TATL]

The sub=action All within process P terminates, and P’s
cache is processed. A message is sent by the support system
to BB to say that All wishes to commit rendezvous 5, and
BB’s interpreter checks that this can be done. This
rendezvous can be committed because P has a previous
rendezvous with BB (number 3) to which recovery can be made
if necessary. Note, however, that the wvalue for the
variable TAIL cached during the execution of rendezvous 5
must be propagated back to rendezvous 4 when 5 is deleted,

so that recoverability can be maintained :-

P : | Al|BB-3]




10.

11.

12.

13.

PAGE 153

BB: [ 1-<q,a2>]...[4-<q,a215]sT[01] HEAD] TATL

Q°s sub-action also terminates, causing rendezvous 4 to be

processed :-

Q : | a2|sB-1]

BB: [ 1-<q,A2>[...]3-<p,a15] Ta1L]sT0)] HEAD]

P calls BB yet again, but action Al has already interacted
with BB so there is no need to create a new rendezvous name.
The reason for this is exactly the same as that for the
single cacheing of resources in the normal cache mechanism,
namely that only the earliest interaction need be recorded
as that is the point to which recovery will take place. The
execution of the entry GET does not alter any variables of
BB that are not already cached, so the caches remain

unchanged.

Action Al terminates causing rendezvous 3 to be processed,

P’s cache is now empty again :-

BB: | 1-<Q,A2>|...] 2-<r,A3>]|sT[1]1]5EAD| TAIL| ST [0]]

AZ now terminates and rendezvous 1 must be processed. In
this case acceptance can proceed, because it is the first
rendezvous in the cache. However, if there had been others
before it, acceptance would have been delayed until they had

been committed and removed from BB’s cache. If A2 had not



PAGE 154

been an outermost action, the rendezvous would have been
propagated back to its enclosing action, and the information
in BB"s cache about the rendezvous would have been altered
to point to this other action. Note that cache processing
can take place at either end of a MARSHAL cache, unlike the
stack mechanism of the normal system. BB°s cache now looks

like this :=-

BB: [2-<r,a3>[sT(1][HEAD]TAIL]ST (0]

l4. A3 terminates and commits rendezvous 2, leaving all the

processes” caches and the MARSHAL s cache empty.

This example has shown what occurs during normal system operation,
however 1if an error arises recovery action must be taken. What
happens then, is that the cache of the process in which the error has
arisen is rejected and the system finds that it has rendezvoused with
a MARSHAL. An interpreter level message 1is sent to the MARSHAL
involved, indicating the rendezvous identifier that was in the caché.
The MARSHAL’s cache is then processed, rejecting the named rendezvous
and all those that™-followed it. When a rendezvous is rejected, a
message is sent to the process involved raising an error in that
process and initiating recovery action for it. Thus recovery is
propagated throughout the system. The reader can try this with the
example g¢iven above by postulatng an error at some point in the
execution flow and following the search for a recovery line. This
will show that the mechanism described does collect sufficient

information to allow recovery to take place.



PAGE 155

Let us now summarise the way in which the MARSHAL cache

mechanism would work :=

Only one rendezvous between a given action and a given

MARSHAL is ever recorded,

Rendezvous information 1is recorded in both the calling

process’ cache and the MARSHAL’s cache,

Commitment of an entry in the MARSHAL"s cache occurs only
when the action which requested the rendezvous concerned

terminates and the conditions described in 4 hold,

An action may commit a rendezvous either if the rendezvous
in question is the earliest in the MARSHAL’s cache, or if
its enclosing action has an earlier rendezvous with the

MARSHAL.

If neither of these is the case then, if the action is
not an outermost action, responsibility for the rendezvous
passes to its immediately enclosing action. This causes the
rendezvous information to be propagated back in the process’
cache, and to be altered in the MARSHAL’s cache to indicate
the new "owner". The final case is when an outermost action
tries to commit a rendezvous which is not the earliest entry

in a MARSHAL’s cache. Here, cache acceptance must be

delayed wuntil all the earlier rendezvous have  been



PAGE 156

committed, in which case it is safe to proceed.

5. When a rendezvous other than the earliest onme 1is accepted,

any alterations to variables not entered in the cache by its

preceding rendezvous must be propagated back.

5.3.3 Conclusions Regarding MARSHAL s -

We have seen that the MARSHAL provides programmers with
recoverable means of communicating between processes, by acting as an
intermediary, and of cooperating, by allowing service processes to be
constructed. It may be possible to develop the ideas presented to
allow more general use of entries in processes, as suggested in (BrH
78). However, as the method has several disadvantages, this line of
investigation appears not to be worth following. The most obvious
disadvantage 1is shown by the example of the bounded buffer - actions
which have called the MARSHAL will be wound back if a rendezvous
earlier than their first is backed out, EVEN THOUGH NO ERRORS HAVE
OCCURED IN THEM. This, as with shared actioné, means that large
quantities of correct work have to be undone, but, unlike shared
actions, the programmer may have intended no dependency between the
actions 1involved. In the example, this dependency comes about
because of the method used to implement the buffer, which involves
variables that are used by every call and so rendezvous cannot he
independent. This dependency between processes can give rise to the

"domino-effect", mentioned in section 2.3.3, where the search for a



PAGE 157

Pl P2 P3
L83 -
Al A2 A3
ati |
azl |
€ : 3
a3l |
e
AlLL |
—
A211 ]
P ——
A3LL |
ERROR}
Fige 543

recovery line causes nested actions to be backed out to their
outermost level because of the way interactions have take place.
Fig. 5.3 shows how this can happen in a simple three process system.
The error in Pl causes Alll to be wound back,‘bringing with it A2ll

and thus A31l, and so on, until the outermost level is reached.

The use of MARSHAL's also introduces the possibility of
deadlocks which the support system cannot detect. These arise when
guard conditions are malformed or when a deadly embrace occurs, and,
as the relationships between the processes involved are only known at
the user-level, these conditions are not apparent to the system, so

no recovery can be initiated.



PAGE 158

Another problem area is the remote procedure call mechanism used
to invoke MARSHAL®s, for this involves synchronisation between the
MARSHAL and the calling action, and also actions waiting for guards
to come true for their entry call to be processed. In many cases
programmers just wish to leave a message to be "collected" any time
after it has been left, and for their processes to proceed
immediately without any waiting. Unfortunately the use of MARSHALsg
may cause their processes to be delayed for unnecessary amounts of
time, especially if the MARSHAL body contains any significant amount
of computation. In the following section we shall show how other
approaches to communication and cooperation can avoid the problems
encountered by the wuse of MARSHAL"s, which can really only be

usefully used in a very limited number of applications.

5.4 Resources and their Use

5.4.1 Classification of Resources based on their usage -

In section 5.2 we looked at the sort of fdcilities programmers
would 1like to have when implementing cooperative processes, and to
develop a better way of supporting them than MARSHAL s we mnust look
more closely at the way 1in which resources are used. The term
resource has been used throughout this thesis to describe any
"object" which a programmer may EXPLICITLY use, for example a named
variable. Any object which he uses implicitly, that is not by name

or reference in his program, is not considered a resource at the user



PAGE 159

level, though it may well be at the interpreter level. We shall
split resources up into three categories based on the functions they
perform for a programmer and the way in which they are wused. Other
classifications than the one to be described are possible and some
resources may not fall easily into one category or another and some
may even change category at some point in their lifetime.
Nevertheless, based on these classes we can develop a recovery method

for supporting cooperative processes. The categories are :-

l. Mutable resources — As its name suggests, a mutable resource
is one which can be changed. That is an action may lock it,
use its value, change that value, and free dit for other
actions to use, the best example of such a resource being a

record in a data-base.

2. Consumable resources - these resources are locked by a
process in the usual way, but disappear from the system when
they are freed. Inter-process messages are a good example

of consumable resources.

3. Reusable resources = the hallmark of a reusable resource is
that it is always in the same state when an action locks it
- that is, no inter-process communication can take place
using dit. Perfect examples are the "forks" used by the

Dining Philosophers, which are always '"clean" when picked

up.



PAGE 160

Mutable resources can obviously be used to communicate between
actions - by their very nature the data they hold can be read by many
actions, possibly over long periods of time. This is an extremely
useful property, but when the contents of a mutable resource are
uncomnitted the support system must maintain a record of all actions
which have become dependent on its value, so that recoverability is
not impaired. However, this data can become very complicated and
space consuming, so, as mutable resources are generally used for the
storage of data with a relatively long life span, there is no harm in
preventing access to them whilst their values are uncommitted. This
means that actions may be delayed by having to wait till the contents
are comnitted, but this disadvantage is outweighed by the facts that
no data need be stored about dependencies and that the possibility of
other actions being backed out due to an error in the value is
eliminated. The preceding chapters in this thesis have developed a
system which supports this type of .use of resources and we must

therefore turn our attention to the other categories of resources.

Having prevented actions from communicating during their
lifespans using mutable resources, some other means must be found of
allowing this facility, and consumable resources are ideal for this
purpose. Consumable resources can only be used by one action after
they have been created so there is a strictly one-to-one relationship
between sender and receiver, which reduces the complexity of the
recovery data that needs to be built up. In section 5.5 we shall
show, in detail, how recoverability is maintained when consumable

resources are used, and also develop language facilities which allow



PAGE 161

programmers to specify the wuse of resources which are created
dynamically. Of course, an error in the creator of a consumable
resource automatically means that the action which used it must be
wound back. However, the dependency between creator and user is
intentional and the programmer can foresee this eventuality, and can

gauge the disruption an error can cause to a system.

We now have a means of inter-process communication, but actions
can still not co-operate without becoming unnecessarily dependent on
each other- the purpose of cooperation between actions being to allow
a limited set of resources to be shared between them, without causing
undue delays when an action”s needs cannot be satisfied. The
resources which are being contended for are normally "tools'" which an
action wishes to use for a fixed period of time to operate on other
resources, and reusable resources can be wused for this purpose,
providing several advantages. Firstly the '"tool" is always in a
predefined state whenever an action acquires it, which makes using it
much more reliable. Secondly, because no communication can take
place through reusable resources, an action need simply restore the
resource to its initial state and can then freelit, at any time, for
use by other actions, without impairing recoverability. Finally, an
action can ask for a resource by type rather than by specific

identity, which reduces conflict between actions considerably.

When an action acquires a reusable resource, it is locked in the
normal way and the fact of its acquisition recorded in the cache.

‘The action may then use the.facilities provided by the resource to



PAGE 162

perform operations on other resources, and then, when it is no longer
needed, the action can free it deleting the entry made in the cache.
Recoverability is not impaired by this, because any modifications
made to other resources by the action using a reusable resource will
cause cacheing in the normal way and so the recovery process can
restore them without the need to know how the state changes were
made. After the reusable resource has been freed no recovery action
need involve it, but if an error should occur before it is released,
the release must be done by the recovery mechanism = hence the cache

entry for the duration of the action’s possession of the resource.

The fact that a reusable resource is always in the same state
when acquired by an action means that after it has been used its
initial state must be restored. This can be done either with a
"prelude” or a ‘'postlude". The 'prelude" method involves the
execution of user supplied code which sets wup the state when the
resource 1is acquired and the "postlude" method either requires the
state to be recorded in the cache so that it can be restored or,
again, the execution of a piece of code. The former method, using a
racility similar to that provided for °'CLASS and MONITOR
initialisation in Concurrent Pascal has two advantages. It means
that reusable resources do not need to be initialised when they are
created, and also that when an action frees a resource it need only
release the lock it holds, which is especially useful when recovery
1s 1in process. The only advantage that the latter method has is
that, because a representation of a resource’s state when it is first

acquired can be stored in the cache (provided that the resource is



PAGE 163

created in the correct state) the system can automatically perform
the reinitiallisaﬁion without the programmer providing a special
procedure. In terms of efficiency the first method would therefore
be preferable, but where the language interface does not allow for

initialisation procedures, the second would have to be used.

The choice of language interface also affects the way in which
the acquisition and release of reusable resources is specified and in
the next section we shall look at several different ways this can be

done.

5.4.2 Specification of Resource Acquisition and Release =

The simplest way of providing the programmer with a mneans of
accessing reusable resources 1is to state that the procedural
operations '"acquire" and 'release" are defined for any object

described as reusable, thus:-

ACTION Alj
¥: REUSABLE FORK;
BEGIN

¥.ACQUIRE;

-= use F

¥ .RELEASE;
END;
This method, being unstructured, gives the programmer complete

treedom over where in his program acquisition and release of

resources are carried out, allowing him to nest the calls within



PAGE 164

different procedure bodies. However, it has the disadvantage that
should the programmer omit the '"release" call the resource will be
held by the process until its outermost action terminates, thus
eliminating the possibility of competition with other processes. The
use of the procedural notation is also at variance with the way
mutable resources are acquired in the rest of the system, but this
may be regarded as an advantage as it can be seen as a way of
highlighting those parts of a program where cooperative use of

resources is intended.

If the procedural notation is not to be used, some other way of
indicating the  programmer’s intentions must be found. The
acquisition of a resource is not difficult, the 1locking method
described in the preceding chapters takes care of that, but
automatically determining when a resource can be released, before the
termination of the outermost action, cannot be done at run time (and
would require a full analysis of the program at compile time). To
overcome this, the user must be constrained to structuring the way in
which he uses reusable resources so that the system may know when

they can be released. There are two ways of doing this :-

l. Define the operation of the interpreter to be such that any
reusable resource is released when the action that acquired

it terminates,

2. Provide some languape structure like the "UITH" statement of

‘Pascal, of Shrivastava’s "USING" statement, the start of



PAGE 165

which indicates resource acquisition and the end, release.

Both these methods preclude the acquisition and release of
resources from being 1in seperate program modules, and the former,
though requiring no special syntax has the disadvantage that users
may forget that a resource has been released and attempt to continue
using it. This will not be seen as an error, but will be regarded as
a valid attempt to re-acquire the resource, and when the request has
been granted the action will proceed, possibly making invalid

assumptions about the state of the resources.

The second method is identical to the use of Critical Regions by
Brinch Hansen (BrH 72), though applied to a strictly limited set of
resources, and has the advantage of allowing a compiler to detect
where reusable resources have been wused outside the appropriate
language structure, thus preventing the eiror described above. From
the point of view of reliability and efficiency, then, this would
seen to be the best method and we shall now look at an example using

it.

5.4.3 Reusable resources — the Dining Philosophers’ problem -

We have already seen, in section 4.4, how this problem may be
implemented using shared atomic actions, and have described the
difficulties that the programmer encounters using them. The major

difficulty was that independent recovery of a philosopher was not



PAGE 166

TYPE FORK IS «sss 3} == whatever a FORK looks like

TYPE PHIL IS
‘LASK ( F1,F2 : REUSABLE FORK )

BEGIN
ENSURE +.. BY —=- some acceptance test
DO
BEGIN
== think
WITH F1,F2 DO
BEGIN
-- use the forks
END;

END 10000 TIMES;
ELSE BY ERROR;
END;

F : ARRAY [ O..4 ] OF REUSABLE FORK;
PHILS : ARRAY [ 0..4 ] OF PHIL;

INIT PHILS[0](F(0),F(1)),PHILS[L])(F(1),F(2)},
PHILS[2](F(2),F(3)),PHILS[3](F(3),F(4)),
PHILS (4] (F(4),F(5));
Fig- 5S¢4
possible = a failure in one of them causing all the philosophers to

be wound back. However, by using reusable resources this problem is

overcome. Fig. 5.4 shows a program that implements this solution.

Each of the philosophers executes independently of all the
others, and the deadlock recovery mechanism described in chapter
three will detect and break any deadlocks that occur. This is
because a request for a reusable resource must be passed through the
same channels as for mutable resources and so the blocking graph will
still dindicate the presence of deadlocks. The processes can now
compete with each other for the use of the forks, and dependency
between them will only arise if there is explicit communication

between any of the philosophers.



PAGE 167

5.4.4 Limits on the use of Resources -

In section 3.9.1 we mentioned how most batch processing system
apply not only time limits but also limits on the amount of output
produced, to the programs they support. This is an example of a type
of constraint associated with quantity of use rather than duration
(though there is obviously some relationship between the two) and is
not normally provided in programming languages. The safe programming
constructs defined in (And 75) give the programmer this control over
looping, and the wvarious '"range errors'", like integer overflow or
floating underflow, can be regarded as falling into this class of
constraints, but control over the number of times a resource is used
is not catered for. This type of control may be invisible to the end
user of a resource, and thus allows the creator of the resource to
have some control over how it is used. Other controls could be
provided - a deadline specifying the maximum time a process may hold
a resource for, and a limit teo the maximum number of resources of a
given type (or of any type) that a action can acquire. There are
many ways of implementing and specifying such restraints and we shall
not enumerate them here, however it is important that this kind of

facility be considered when new systems are being designed.

e



PAGE 168

5.5 Pools and Sequences

5.5.1 Structures for manipulating consumable resources -

As we have indicated above, the fact that consumable resources
are usually created dynamically means the programmer can only access
them through indirect references, as their names are not known at
compile time. The language interface, therefore, must provide a way
of supporting this. The use of reference wvariables 1is the normal
method, but, in most programming languages, these are used either to
point to existing variables, or, in conjunction with a procedure that
returns a reference, to point to variables created in a free storage
areas. Consumable resources come into existence from different
sources, and may not exist when an action attempts to use them, this
means that the programmer must be able to specify which source he is
requesting a resource from, and that the interpreter level must
conceal any waiting that may occur. We shall dintroduce two
structures with these properties = the POOL and the SEQUENCE. The
declaration of pools and sequences follows the PASCAL syntax for sets

and arrays :=

P1:POOL OF <type>;

S1:SEQUENCE OF <type>;

but they can only be used via two operators - "put" and '"get". The
"get" function waits until an object of the required type is created

in the pool or sequence, removes it, and returns a pointer to it.

The "put" operation creates a new object of the specified tvpe,



PAGE 169

copies the object passed as a parameter into it, and adds it to the
named pool or sequence. This far pools and sequences are identical
and the difference between them arises because of their properties

when recovery takes place.

We have already seen that when an error occurs in the creator of
a consunable resource, the recovery action taken must be propagated
to the consumer of the resource, but where an error occurs 1in the
consumer it 1is obviously wunnecessary for the producer to be wound
back (one of the major disadvantages of MARSHAL"s). What is needed
is the ability to return consumable resources to their sources and
then to re-read them if the alternate statement so wishes. However
in what order must these messages be read back? Must it be the same
as previously? By choosing a POOL or SEQUENCE the programmer can
control this =~ pools dimplying no ordering relationship between
messages, the reverse being true for sequences. 1If a pool is used to
communicate between two actions it will probably look very like a
sequence, as this would be the easiest way to implement it, however
where several actions are creating messages for several others to
consume, the difference between pools and sequences becones marked.
First consider a pool. If an error occurs in a resource creating
action, only those actions which have consumed resources created by
it need be backed out, other communications set up via the pool are
not affected, but in a sequence this is not the case. If a creator
error occurs, all resources created after the earliest erroneous
resource will be regarded as in error and all their producers and all

their consumers will be backed out. 1If a consumer error occurs, all



PAGE 170

consumers that have used resources created later than the first
resource consumed in error must be backed out. Obviously this
disruptive effect limits the wusefulness of sequences, but where
actions are highly dependent on each other, and are not within a
shared action, this kind of recovery 1is necessary, and cannot be
provided by the wuse of pools (note that using sequences is very

similar to using MARSHAL s).

Let us now consider how pools and sequences are implemented at

the interpreter level.

5.5.2 Implementation of pools and sequences -

We need not concern ourselves here with how the dynamic creation
of resources 1is managed - in most systems this will be done using a
common storage area controlled by an allocation package - but we do
need to specify what recovery information needs to be kept with each
resource and in the caches of the processes that manipulate them.

Let us first look at a resource creator.

When an action creates a resource in a pool (or sequence - from
now on any reference to a pool can be taken as including sequences,
unless otherwise stated), the new resource is assigned an identifier
uniquely identifing this member of the pool. Associated with the
resource are two system controlled tag fields, one of which points to
the action that created the resource, and the other the action which

consumed “it. This latter field is 1initialised to a wvalue that



PAGE 171

indicates that the resource has not been consumed. If the action has
not created a resource in this pool before, an entry is made in its
cache recording the identity of the pool involved and that of the
resource created. The newly created resource is now available to any
consumers which may use the pool, though in the case of sequences, it
will not be allocated until ALL the resources created before it have
been removeds. When the resource is finally taken by an action, the
identity of this consumer is recorded in another system controlled
tag kept with the resource, and the value of the resource is recorded
in the consuming action”s cache. (This cacheing of the resource’s
value, allows the consumer to alter the contents of the resource
without impairing recoverabpility. However this additional freedom
may not be needed and all consumable resources could be treated as
read only, in which case only the identity of the resource need be

recorded.)

Commitment of consumable resources occurs when the outermost
enclosing action of the creating action terminates = responsibility
for the resources being passed outwards on the acceptance of each of
the nested actions. However, in the case of‘sequences committment
cannot be completed until all other resources created before the
first resource recorded 1in the action’s cache have been committed.
When commitment is completed, the creating action identifier field of
the resource 1is set to null, and this allows the consumers of the
resources to terminate their activities, for a consumer cannot comnit
until all the resources it has consumed have been comnitted. When

this has taken place, the system may delete the resource from the



PAGE 172

A7
Al=—3A2=—>A3

e - e -

(a) Action dependency graph

A7
Al e— A2
A/e‘—(A?,,Aq,As)

(b) First stage of graph collapse

A7=—P(Al,A2, (A3,A4,AD5),A6)
(c) Final stage of graph collapse
Fig. 5.5
pool. However, this rule means that actions could become deadlocked
when their commitments are mutually dependent, for example where
messages have passed between two actions in both directions. The
system, therefore, must take steps to detect this situation in order
to allow termination to proceed, and the blocking graph method
described 1in previous chapters can be adapted to do this. The
detection algorithm must be mnodified, though, as actions are no
longer involved in one-to-one relationships with each other - an
action possibly being blocked by, and blocking, several others.
Fig. 5.5 shows a possible graph, the direction of the arrows being
from creator to consumer. In this example the commitment of action
A7 1s the crucial event, and when that has taken place all the other
actions can be allowed to terminate, the interpreter having detected
their interdependence. To do this it is necessary to "collapse"

cycles that occur in the graph into larger nodes, as in fig. 5.5(b)



PAGE 173

and (c¢) = all the actions in a node being allowed to commit when the

node no longer has any dependencies on other nodes.

The error recovery method described in the preceding section 1is
very easy to implement, because of the inter-action relationship
recorded in the tag fields associated with the resources. However,
as with the other pool operations, error recovery in systems
supporting true parallelism must be performed atomically in case

several processes are trying to use the pool at the same time.

5.5.3 A test system -

In order to investigate the feasibility of pools, a trial
implementation was carried out on a DEC PDP-11 under the RSX-11M
operating system (DEC 79)a This system  provides  powerful
inter-process comnunication tacilities, allowing sets of
communicating tasks to be implemented very easily. It was decided to
implenment pools by the use of an interpreter extension (section 3.2),
realised as a special task that carried out various pool operations
at the request of "user" processes. These user processes were other
RSX-11M tasks which simulated the use of atomic actions and exercised

the pool handler via the system message passing facilities.

Your pool operations were supported :-

l. GET - this requested the pool handler to return the next

‘data item from a pool named in the request message. The



PAGE 174

item was marked as consumed, the dependency graph wupdated,
and the data value returned to the requestor. If the pool
was empty, the request was queued until another process put
an item into the pool. This request involved two inter-task

messagese.

PUT - the data item contained in the request message was
added to the specified pool. If there were processes
waiting to GET a value from this pool, a GET operation was
carried out for the process at the head of the queue. This

request involved one inter-task message.

ERROR - all the pools were searched for resources created
and consumed by the process that sent the message (as the
users did not have recovery caches, this proved to be
simpler to implement than the scheme described above).
Consuned resources were marked unconsumed, and the processes
which had consumed created resources were sent a message
indicating that they should recover (this was a source of
difficulty, as it required the use of asynchronous message
handling which was not supported by the language wused to
implement the user tasks). This involves as many inter-task
messages as are necessary to propagate the error throughout

the system.

COMMIT - this request indicated that the process wished to

_comnit its operatioms, and caused the pool handler to



PAGE 175

analyse its dependency graph to see if this was permissible.
If so, the process was allowed to proceed and all trace of
it removed from the handler’s tables. If not, the pool
handler recorded the fact that this process wished to
commit, only reactivating it either when an error arose, or
when re-analysis of the dependency graph indicated that it

could proceed. This involves two inter-task messages.

VAR

DEPEND : ARRAY [ ACTION_ID ] OF SET OF ACTION_ID;
CHECK : ARRAY [ ACTION_ID ] OF BOOLEAN;

COMMIT : SET OF ACTION_ID;

.

FUNCTION CANCOMMIT( ACTION : ACTION_ID ) : BOOLEAN;
VAR LC : ACTION; RESULT : BOOLEAN;
BEGIN
-- The set COMMIT contains all the actions which
-- are waiting to commit. The array DEPEND contains
-- the dependency information, and CHECK is used to
-- detect circuits in the graph.

IF NOT (ACTION IN COMMIT) THEN
CANCOMMIT := FALSE =-- this action is active
ELSE
BEGIN
RESULT := TRUE;
IF NOT CHECK [ ACTION ] THEN
BEGIN == this path has not been checked
FOR LC IN DEPEND [ ACTION ] DO
BEGIN -- check each blocking action

CHECK[ACTION] := TRUE ; =-- flag as checked
RESULT := RESULT AND CANCOMMIT(LC);
END;
END;
CANCOMMIT := RESULT;
END;
END;
rig. 5.6

The dependency graph was implemented as an array of sets of

action identifiers, one element for each action in the system. When



PAGE 176

a GET request was processed, the set indexed by the requestor’s name
had the identity of the consumed resource’s creator added to it. To
determine whether or not an action could commit this "graph" was
processed using the algorithm shown in fig. 5.6. The array CHECK is
assumed to have all its elements set to FALSE before each call on
CANCOMMIT, and is wused to indicate whether the status of an action
has been determined or not. This device prevents the program from
entering an dinfinite loop, when analysing graphs with circuits in

them.

The tests run on this system did not perform any computations,
but simply used the pools to pass data between tasks. This meant
that there was a very large number of inter-task messages being
generated, and thus the overhead due to calls on operating system
primitives was very high. In fact, most of the execution time for
the tests was absorbed in executing these system functions and this
was borne out by a simple test. If processes simply passed messages
directly to each other, only one inter-task message would be
generated, however, when we consider the strategy adopted for pools,
we can see that this dinvolves three méssages to establish
communication. Measurements taken on the system verified that
performance was indeed degraded by a factor of about three, verifying
that system overheads were swamping the small amount of computation
in each task. In a "real" system, the number of messages being
passed using pools would probably be considerably less than in this
test, and so the performance of the system would be better.

Nevertheless, it is obvious .that the use o0f such an interpreter



PAGE 177

extension would not be desirable in a production system and
experience with other systems of comnunicating processes under
RSX-11M backs this up. A better way of implementing pools would be
to provide each process with a copy of the pool handler and have each
process perform its own operations (atomically) on a shared data
area. This would reduce the number of inter-task messages required
and increase the performance of the system. This could not be
verified for the pool system, as mnodifications to the operating
system would have been required, but the technique has been applied
in another system (BSR 79) and significant improvements in

performance were obtained.

Aside from the question of efficiency, pools were found to be
easy to wuse (even with the low-level interface provided by the test
system), and were flexible enough to allow a wide variety of
communication patterns to be tried out. It also became apparent that
the error recovery provided by pools did not need the support of the
recovery cache in user processes, and could as easily have been built
into a system based on, for example, exception handling mechanisms.
Altogether the test system showed that pools were indeed a feasible
way of supporting inter-task communication, and the indications were
that the simplicity of the mechanisms involved would lend themselves
to highly efficient implementation when incorporated directly into a

system.



PAGE 178

5.5.4 Additional features for POOL’s and SEQUENCE’s =

Several enhancements to the pool mechanism suggest themselves,
the first of which is the attachment of priorities to resources put
into a pool. This allows the programmer a certain amount of control
over the order in which resources are consumed - the interpreter
level always allocating the resource with the highest priority.
(Note however that this kind of "queue-jumping'" would not be
acceptable for sequences where it would destroy their function). The
introduction of priorities, however, brings with it the possibility
of resources never being allocated, because their priority is always
lower than others in the pool. Careful use of the facility should
eliminate this risk, but, where this had to be avoided, the system
could implement the kind of measures mentioned in section 3.9.1,
where, after a predefined time has passed, a resource becones
FAVOURED and will be allocated in preference to one of higher
priority. It would also be possible to associate deadlines with
consumable resources, and allow the programmer to specify a time
limit within which a resource must be consumed, though this would
give rise to an error in the creating action rather than causing a
resource to become favoured. In fact, the interpreter could use the
user’s deadline to control its mechanism for selecting resources to
become favoured = resources with the shortest time left before their

deadline expires being allocated first.

Another possible enhancement would be to provide a compensation

mechanism for pools, rather like that of the reverse procedures of



PAGE 179

PORT’S. When an error arose, rather than allowing a message to be
reconsumed, the pool handler would transform the erroneous message
into a compensating one, using a procedure provided by the user.
This would allow completely uncoupled communication between actions,
but, as with PORT’s, would not guarantee that the compensating
message would be consumed (for example, where the consumer stops
consuming before an error arises in the producer). However, the
advantage of the compensation mechanism would be that the dependency
graph need not be maintained, and that commitment could always be

allowed.

Apart from its use for message passing, the POOL structure could
be used as a program interface for allocating any kind of dynamically
created resources. Naturally, different internal structures would
have to be developed to allow the allocation of resources other than
messages and variables, however the commitment of an action wusing a
resource obtained from a pool would still be delayed until the
resource’s creator had committed. This usage of pools also permits
the allocation of such system resources as files to be integrated
into a programming language without the need for structures that are

type specific.

5.5.5 Mutually suspicious processes -

Now that we have seen how direct communication may be
established between actions, we must give some consideration to the

question of mutually suspicious processes. That is processes which,



PAGE 180

-= some pools

A,B,C,D : POOL OF MESSAGEL;
X ¢ POUL OF MESSAGEZ;
b i : POOL OF MESSAGE3;

-- some pointers

Ml : {MESSAGE];
M2 : EMESSAGEZ;
M3 : @EMESSAGE3;

SELECT M1 FROM A,B,C,D;
ML:=<A|B|C|D>;

(a) Two ways of writing simple pool selection

SELECT M1 == pools all one type
-= M1 will point to nessage

WHEN A => «use
WHEN B => ...
WHEN C => 4443
WHEN D => .44
END;

SELECT == pools different types
—~- named pointer will point to
-~ the resource obtained
WHEN A => ML : sua3

WHEN X => M2 ¢ sea}

WHEN Y => M3 1 «es;

END;

(b) Complex pool selection

SELECT M1 FROM A,B,C,D OR NONE;
ML:=<A|B|C|D|NONE>;

.

(c) Simple selection without waiting

SELECT

WHEN X => M2 : .0}
WHEN Y => M3 : s}
WHEN NONE =-> . s
END;

{(d) Complex selection without waiting

Fige 5.7



PAGE 181

before requesting a resource, look to see if the request will be
granted immediately and, 1if not, do not issue the request. This
facility is generally employed where a process can use one of several
different resources and will request the first one that is available,
thus reducing the time it may have to spend waiting. In section
3.8.1 we discussed a similar requirement that arose with the use of
the AWAIT statement, and the same type of non-deterministic structure
adopted there - a guarded AVAIT statement - would seem to suit this
case. There are two different circumstances in which a programner
could use a construct of this type. The first 1is where the
programmer wishes to obtain a resource of a specific type, but from
any one of several sources, and the second is where different
computations are performed depending on the identity of the pool
which provided the resource. Fige. 5.7 a and b show ways of
representing such usage of pools. The question of "fairness",
alluded to in section 3.9.l1, arises hgre also in respect of which
resource will be chosen if several are available. However, as was
indicated, considerable research is still required into this problem

before it can be resolved one way or another.

One further development of this usage, in the case where all the
pools named in a statement are empty, is to give the programmer the
option of waiting until one of his requests can be satisfied or of
proceeding. This can be done, in a fashion similar to the DEFAULT
option of the BCPL case statement (Ric 69), by providing a
pseudo=pool which will always return a null pointer when accessed.

Note, however, that this pool may be selected even when the other



PAGE 182

specified pools are not empty. This must be done in order to hide
the vagaries of the process scheduling algorithm from the wuser, who
could otherwise write programs which were dependent on certain
execution flows (note that this possibility only arises in the case
of empty pools, for at other times the user cannot determine the
state of the other pools he has specified). Tig. 5.7 ¢ and d show

examples of this usage.

5.6 Conclusion

In the preceding sections we have discussed the implementation
of two different styles of interface with which the programmer can be
provided for implementing cooperative processes (i.e. processes
which communicate and cooperate with each other) and we shall now

summarise their advantages and disadvantages.

The method of direct comnunication, though providing a simple

and modular interface, has two important disadvantages :=-

l. Direct asynchronous communication between two processes is

not allowed, thereby reducing system performance,

2. The use of buffer processes to allow messages to be passed
to unknown processes can allow unwanted dependencies between
processes to be built up - specifically where the buffer is
being used by several processes that are otherwise

:iudependent - and this will lead to recovery action being



PAGE 183

taken 1in processes where it is strictly not needed, should

an error or a deadlock occur.

Where speed of operation is of no importance both these
disadvantages can be discounted but there are many applications where
this is not the case, so the less structured, but mnore efficient
methods, based on the c¢lassification of resources described in
section 5.4.1 would be preferable. However they also have their

disadvantages :-

1. The use of consumable resources involves the system in extra
book=keeping to «control the termination of inter-acting

processes,

2. The use of pools means that the system has to have quite a
considerable storage area available to it for their

allocation (c.f. the use of "pipes" in UNIX (Rit 78)),

3. The interface provided to reusable resources is such that
multiple copies of operations on them, possibly using
different algorithms, could exist, which could reduce the

overall reliability of the system.

Nevertheless the structures described are sufficiently powerful
that these disadvantages should be outweighed by the advantages that

they give to the programmer.



PAGE 184

6.0 Conclusion

6.1 The work presented

In chapter one the goal of this thesis was defined to be the
developrnent of a system that could support fault-tolerant concurrent
progranming without requiring complex extensions to the language
interface to enable programmers to use its facilities. This was
motivated by the need to make such facilities available to as wide a
programmer base as possible so that the cost of software production
could be kept down by reducing the amount of specialized knowledge
needed to implement concurrent programs. Chapter two discussed the
most commonly known techniques for controlling the wuse of shared
resources and compared their characteristics with those of a

"easy to use" interface. This discussion showed that

hypothetical
all the methods exhibited at least one of the following

inadequacies:-

l. The technique was unstructured - that is the acquisition of
a resource was not directly linked with its release by an

explicit program structure;

2. The technique was unreliable =~ program errors occurring
after a resource was acquired and before it was released,
could result in either the release of erroneous information
to other processes, or the permanent locking of the

resources Another source of difficulty was the possibility



PAGE 185

of unrecoverable deadlocks,

The technique was too complex - complexity was introduced in
two main ways, either through the need to perform analysis
to ensure that a set of processes would not deadlock or by
the 1limitations placed on the programmer by the technique

making problems hard to solve.

Various approaches to improving the reliability of concurrent

progamming by the incorporation of error recovery were then examined.

These too had their difficulties, however, out of all the techniques

examined in both areas, five constructs seemed to provide a basis for

the kind of system that was required. They were :-—

The recovery block - a clear, simple structure whose value
had already been demonstrated by its use in fault tolerant

sequential programs,

Deadlines/safe programming - also clear and well-structured,
these were needed to overcome the problem of looping errors,

undetectable in any other way,

Atomic actions = this construct, though having no
implementation  strategy defined for it, fitted the
requirements set out in chapter two for a transaction

orientated program structure which could support automatic

“control over resource usage,



PAGE 186

4. Communicating processes = another concept which had not been
tested in practical implementation, but which offered a
well=-structured means of handling messages between processes

and which did not require the use of shared resources,

5. Reverse procedures = these provided a simple means of
expressing compensation mechanisms. However there were
reservations about them, especially concerning software

errors within them.

The next chapter then showed the relationships between atonic
actions and recovery blocks. Based on this it was demonstrated how
the recovery cache mechanism, used to support recovery blocks, could
be adapted to combine the automatic acquisition and release of
resources with the collecton of checkpoint information about them.
The use of this mechanism meant that deadlocks could arise when
atomic action were competing for resources and a method to overcome
this problem was developed. The strategy adopted was one of
detecting an incipient deadlock and recovering 'from it. Detection
was carried out by analysing the relationships between atomic actions
with respect to outstanding resource requests and the resources each
atomic action already owned. These relationships were recorded by
means of a graph - a cycle in this graph indicating that a deadlock
had arisen. One feature of this system was that only two actions
could be involved in a deadlock thereby simplifying the task of
breaking it. This was achieved by selecting one of the actions,

judzed to be the least important, and using the recovery cache



PAGE 187

mechanism to wind it back to its start, thus releasing the resources
it held and breaking the deadlock. The selection of the action to be
backed out should be based, if possible, on a priority assigned to
the action, but if the priorities of the two actions are equal some
other criterion must be used. Several criteria were suggested, but
none of them were guaranteed to identify the "best" action to back

out in all casess

Various aspects of the control of synchronisation were then
discussed, and program structures were suggested that could aviod the
problems that were uncovered. At this stage we had a system which
could support uncooperative processes (that is processes which hold
resources for the duration of transactions and do not communicate
with each other) and the interface to it had the characteristics that
were set out in chapter two. Unfortunately the system could not
support cooperative processes and so _its usefulness was strictly
limited. Chapter 4 introduced the concept of the shared atomic
action which allowed a subset of cooperative processes, styled
closely=-cooperative processes, to be implemented. This extension
allowed a process within a shared action to cooperate with the other
processes in the action, forcing their recovery to be coupled. The
interface provided was, however, too uncontrolled and methodologies
were developed to enable processes to interact in relative security.
However, even with this improvement, the structure, though useful in
certain cases, was not sufficiently general and so other ways of

allowing cooperation between processes had to be found.



PAGE 188

Chapter five turned to the use of communicating processes and
introduced the MARSHAL, a reliable "secretary'. However the use of
this structure was shown to lead, in certain common cases, to
unnecessary coupling Dbetween actions, meaning that actions which
should have been independent of each other were all wound back, if
one of them failed. This structure was therefore rejected and we
then examined the way in which resources were used by programnmers.
This led to the identification of three distinct classes - mutable,
reusable and consumable. Mutable resources (those which held
information for relatively long periods of time) could be controlled
by the interface developed in chapter three, but the other types
needed special interfaces. For reusable resources (those that are
involved in an operation without their final state being affected) a
PASCAL type WITH statement was suggested to indicate the points where
they should be acquired and released. This structure, similar to the
REGION  statement described in section 2.2.3, 1limits the user

slightly, but conforms to the requirements of chapter two.

Finally we investigated the class of consumable resources (those
used to pass information between processes), introducing the new type
torming operations POOL and SEQUENCE. It was then shown how
resources defined with these operators could be used to communicate
between actions and a system structure was described which allowed
recovery to take place without affecting actions independent of the
one that was in error. Two methods of recovery were allowed by this
structure. Firstly actions could be coupled by the conceptual

construction of shared atomic actions involving two communicating



PAGE 189

processes and secondly a compensation mechanism was suggested, to
allow actions to remain uncoupled. The programmer interface provided
to these facilities was again very simple, and allowed for

considerable flexibility in program construction.

We can see then that the system described in this thesis will
support fault-tolerant concurrent prograuming with a simple user
interface, as was required of it. However one area has not been
tully resolved. That 1is the question of the efficiency of the
mechanisms that have been developed. Throughout this thesis the
various factors involved have been discussed, and it would seem that
the advantages to be gained from using the system will outweigh any

inefficiencies in it.

6.2 Directions for future research

Having summarised the work that has been presented in this
thesis and shown that the aims set out in chapter one have been met,
we must examine some of the avenues down which further research could
be directed. Some of these are concerned with general questions
about the system itself, but others will have bearing on specific

problems that arise in highly reliable concurrent systems.



PAGE 190

6.2.1 Implementation -

So far only experimental implementations of parts of the system
have been carried out, and there is still a considerable quantity of
work to be done in the evaluation of the efficiency of the structures
described. This is especially true of their use of multi-procesors,
where the problems that arise are quite different to those
encountered in a multi- programming dimplementation. The type of
nulti=-processor used will alseo affect the implementation carried out,
tor where resources are shared between processors there nust also be
a common storage area in which system information required by all the
processors 1is held. If the hardware available is distributed, that
is the procesors are only connected by communication lines, the wuse
of shared resources (if any exist) would be difficult to control, so
the implementation of the inter-process communication features that
have been described would take priority. Individual processors in a
distributed network may also support multi-programmed processes
introducing an additional 1level of complexity. To allow the
implementation of reusable resources the wuse of service processes
could be investigated. These are processes which can perform a
specific set of operations for other processes, but have the reusable
characteristic that their state is always the same when a request for
an operation is received. An example of such a process would be a
processor offering fast floating point computations to other

processors in a network.



PAGE 191

If distributed processes are not used, the main area of
investigation 1is 1in the development of efficient hardware recovery
cache mechanisms which can support the locking protocols we have
described. Lee et al (Lee 79) have suggested that their hardware
cache can be augmented to include support for other than sequential
programs and this device would be an interesting start point for
experiments. The system they have designed could only be used, as it
stands, to support a nulti-programmed version of the structures we
have described, but incorporating interfaces to several buses would
allow multi-processor implementations to be investigated. Deadlines
are also an area where much work needs to be done. The basic type
ALARM introduced in section 3.9.2 leads to unstructured use and is
not linked closely enough with the recovery structure of a progran.
The published work of Campbell et al (Lie 80, Hor) tends to be
theoretical rather than practical, though the structures they have
introduced are excellent. The use of.such facilities however, has
not been investigated properly, and there appears to be no data
available on how the programmer best determines the appropriate time
interval to specify for a section of code. Obviously specific
applications will have predefined time 1limits, but a set of
guidelines that could be applied to programs will help the design
process by indicating where these limits are unrealistic or where

program efficiency need be improved.

Une further topic which could be investigated is the enhancement
of the data protection facilities provided by the system. Uith the

current design a user may access any shared resource and the system



PAGE 192

will lock it, however the addition of a capability mechanism, such as
that described by Needham (Nee 79), would allow invalid requests to
be trapped, improving the reliability of the system considerably. A
certain amount of control over resource access can also be achieved
through management of the production of software, using methods of
seperate compilation and program derivation such as those defined for
the ADA language (Ich 79) and its support environment. The modular
nature of the constructs that have been developed making them ideally

suited for such treatment.

6+2.2 Systems without interrupts -

Une area of development that has been suggested by Brinch Hansen
(BrH 78) is the use of the concept of communicating processes in the
development of systems without an interrupt mechanism (at least not
one that 1is wvisible to the programner); This would be achieved by
having processes which explicitly wait for each event that can occur
in the system and perform the necessary processing when they occur;
returning to their wait state when this has beeq done. The overall
effect of this should be to make event handling easier to program and
more reliable, whilst still maintaining the essential non-determinism
of the interrupt mechanism. Brinch Hansen envisaged such a systenm
using the direct process to process comnunication he describes, but
the Pool structure developed in chapter five can also be used to
support this type of operation. For example, an (unreliable)

teletype handler could be represented as shown in fig. 6.1.



PAGE 193

KEYBOARD,PRINTER : POOL OF CHAR; == char by char hardware
READ,PRINT : POOL OF BUFFER; =-- whole line buffers
TASK TTY;
CH : CHAR; B:BUFFER;
LOOP
SELECT
WHEN KEYBOARD => CH : == key has been struck
BEGIN
BUFFER.FLUSH; =- new line so clear buffer
WHILE CH<>EOL DO == read in up to end of line
BEGIN
PRINTER:=CH; == echo character
BUFFER.PUT(CH); —- store character
CH:=KEYBOARD; == get next character
END;
READ:=BUFFER; =- make line available to user
END;
WHEN PRINT -> B : =- user wishes to output a line
BEGIN
WHILE NOT BUFFER.EMPTY DO
PRINTER := BUFFER.GET; -- type line
PRINTER:=EQL; == end line character
END;
END SELECT;
END LOOP;

Fig. 6.1

6.2.3 A base for software testing and development -

One of the perennial problems of computing is the need to have
systems providing a service continuously twenty-four hours a day,
seven days a week, whilst still requiring new software to be
developed and integrated into the system. These new program modules
will introduce errors and need to be thouroughly exercised before
they can be allowed to take up their intended place in the system.
However, some of this testing must be carried out on the real system,
off line testing not being fully adequate, and so a means of safely

introducing new modules into the system must he found.



PAGE 1%4

This can be easily achieved wusing the structures we have
developed by allowing any atomic module to be converted into a
recovery block (if it is not already written that way) with the new
software as dits primary. Then, should an error occur in the
execution of the new module, the system can fall back to the previous
version of the module which has been made the secondary alternate.
An extra facility would be the ability to make the use of the new
module conditional so that it was only used at predefined intervals,

the old module being used as a primary for all the other occasions.



PAGE 195

REFERENCES

And75
Anderson, T«

Provably safe programs.

Technical Report No. 70, Computing Laboratory, University of
Newcastle upon Tyne February 1975

And76
Anderson, T. and Kerr, R.

Recovery blocks in action : A system supporting high reliability.

Proc. 2nd Int. Conf. on Software Engineering, San Francisco,
U.S.A, October 1976, pp.447-457

And78
Anderson, T., Lee, P.A. and Shrivastava, S.X.

A model of recoverability in nulti-level systems.

LEE Transactions on Software Engineering, Vol. SE-4, No. 6.
(November 1978), pp.486=-494

Ast76
Astrahan, M.M. et al

System R: Relational approach to data base management.

ACM Transactions on data base systems, Vol. 1, No. 2 (June 1976),
pp+97-137

Bes78 )
Best, E. and Randell, B.

A formal model of atomicity in asynchronous systems.

Technical Report No. 130, Computing Laboratory, University of
Newcastle upon Tyne, December 1978

Bes79
Best, E.

Aspects of occurrence nets.

Advanced Course on General Net Theory of Processes and Systens,
Hamburg, October 8th-19th 1979



PAGE 196

Bir73
Birtwistle, G.M., Dahl 0-J, llyhrhaug, B. and Nygaard, K.

SIMULA BEGIN.
Auerbach Publishers Inc., Philadelphia, Pa. 1973

Bjo73
Bjork, L.A.

Recovery scenario for a DB/DC system.
Proc. of the ACM, 1973, pp.l42-146

Bri72
Brinch Hansen, P.

Structured multiprogramming.
Comms. ACM, Vol. 15, No. 7 (July 1972), pp.574=577

BrH73
Brinch Hansen, P.

Uperating system principles.
Prentice Hall, Cliffs, N.J., U.S.A., 1973

BrH75
Brinch Hansen, P.

The programming language Concurrent PASCAL.

IEEE Trans. on Software [Ingineering, Vol. 1, No. 2 (1975),
pp-199=207

BrH76
Brinch Hansen, P.

Papers on the Solo operating system.

Software - Practice and Experience, Vol. 6, April-June 1976,
pp.139-205

BrH78
Brinch Hansen, P.

Distributed processes: A concurrent programming concept.

Comns. ACM, Vol. 21, No. 11 (November 1978), pp.934-941



PAGE 197

BSR79
British Ship Research Association

Results of internal experiments.
1979

Cam74
Campbell, R.H. and Habermann, A.N.

The specification of process synchronisation by path expressions.

Lecture notes in Computer Science 16, Springer Verlag, 1974,
pp.89-102

Cha74
Chamberlin, D.D., Boyce, R.F. and Traiger, I.L.

A deadlock-free scheme for resource locking d1ian a data hase
environnent.

Information Processing 74, North Holland Publishing Co.,
Amsterdam, 1974, pp.341-343

Cof71
Coffman, E.G., Elphick, M.J. and Shoshani, A.

System deadlocks.
ACM Computing Surveys, Vol. 3, No. 2 (June 1971), pp.67-68

Conb3
Conway, M.E.

Design of a seperable transition-diagram compiler.
Comms. ACM, Vol. 6, No. 7 (July 1963), pp.396-408

Cre78
Cress P. et al

/360 VATFOR implementation guide.
University of Waterloo, Waterloo, Ontario, 1978

Crily
Cristian, F.

A recovery mechanism for modular software.

IEEE 4th Iant. Conference on Software Engineering, Munich,
September 1979, pp.42=50



PAGE 158

Dav73
DElViES, CeTas

Recovery semantics for a DB/DC system.
Proc. of the ACM, 1973, pp.136-141

Dav79
Davies, C.T.

Data processing integrity.
in Computing Systems Reliability : an advanced course (Ed.
Anderson, T. and Randell, B.), Cambridge University Press, 1979,

Chapter 8, pp.288-354

DEC79
Digital Equipment Corporation

Introduction to RSX-11IM
Digital Equipment Corporation, AA-2555D-TC, 1979

Denbb
Dennis, J.B. and Van Horn, E.C.

Programming semantics for multi-programmed computations.
Comms. ACM, Vol. 9, No. 3 (March 1966), pp.l43-155

Dijb8a
Dijkstra, E.%Y.

Co-operating sequential processes.

in Programming Languages (Ed. Genuys, F.), Academic Press, New
York, 1968

Dijosb
Dijkstra, E.W.

The structure of the THE multiprogramming system.
Comns. ACM, Vol. 11, No. 5 (May 1968), pp.341-346

Dij72
Dijkstra, E.W.

Hierarchical ordering of sequential processes.

in Operating System Techniques, Academic Press, New York, 1972,
pp+72=-93



PAGE 199

Dij75
Dijkstra, E.W.

Guarded commands, nondeterminacy and formal derivation of
programs.

tomms. ACM, Vol. 18, No. 8 (August 1975), pp.453-457

DoD78
U.S. Department of Defence HOLUG.

Preliminary "STEELMAN".
in Proceedings of the "IRONMAN" language seminar (ed. Freeman W.),
York Computer Science Report No.22, University of York, England,

1979

Esw76
Eswaran, X.P., Gray, J.N., Loeiw, R.A. and Traiger, I.L.

The notions of consistency and predicate locks in a database
system.

Comms. ACM, Vol. 19, No. 11 (November 1976), pp.624=-633

Goo75a
Goodenough, J.B.

Structured exception handling.

Second ACM Symposium on Principles of Prog. Lang., Palo Alto,
January 20th=22nd 1975, pp.204-=-224

Goo75b
Goodenough, J.B.

Exception handling: Issues and a proposed notation.
Comns. ACM, Vol. 18, No. 12 (December 1975), pp.683-696

Gra76
Gray, J.N., Lorie, R.A., Putzolu, G.R. and Traiger, I.L.

Granularity of locks and degrees of consistency in a shared data
base.

in Modelling In Data Base Management Systems (Ed. Nijssen, G.M.),
North Holland Publishing Co., 1976, pp.365=394



PAGE

Hab69
Habermann, A.N.

Prevention of system deadlocks.
Comms . ACM, Vol. 12, No. 7 (July 1969), pp-373-385

Har77
Hartmann, A.C.

A Concurrent PASCAL compiler for minicomputers.
Lecture Notes in Computer Science 50, Springer Verlag, 1977

Hea73
Hearst, F.E., Ornstein, S.M., Crowther, W.R. and Barker, W.B.

A new minicomputer/multiprocessor for the A