
AN ERROR RECOVERY SCHE"iE 

l''OR 

CONCURRENT PROCESSES 

by 

Lindsay Forsyth Marshall 

Ph . D. Thesis 

~omputing Laboratory 

Universi t y of Newcast l e upon Tyne 

August 1980 



AN ERROR RECOVERY SCHEME 

FOR 

CONCURRENT PROCESSES 

Lindsay Forsyth Marshall 

Ph.D. Thesis 

University of Newcastle upon Tyne, August 1980 



Abstract 

With the more widespread use of multi- processors and distributed 

comput ing systems , progranmers need a simple , reliable interface to 

them. This thesis describes language constructs, and mechanisr~s for 

their support, that can be used in the implementation of 

fault-tolerant concurrent processes. 'i'he basic language structure is 

the Atomic Action, supported by a modified recovery cache mechanism . 

This combines the collection of recovery data with the lockinR of 

resources and allows recovery blocks to be integrated with Ator~ic 

Actions. Synchronisation between actions is discussed, as well as a 

means of detecting and breaking deadlocks , based on the use of a 

"blocking graph". 

Reliable connunication and cooperation between actions is 

considered, and several constructs are investigated. The linitations 

of Shared Atonic Actions are identified , and , further, the use of a 

form of reliable "secretary" is shown to lead to unncccessnry 

recovery activity . These problems are resul.ved by structures based 

on a classification of resources by the way they are used in 

prograns. 

Also contained in the thesis are descriptions of trial 

inpler:1entations of some of the mechanisns described , and a discussion 

of existing concurrent programning techniques. 
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1.0 Introduction 

1.1 Objectives 

With the rising cost of software development and the increasing 

use of distributed processing (especially the advent of cheap 

multi-microprocessors) there is considerable pressure to make 

concurrent programming techniques more reliable and more accessible 

to the average computer user. The problems involved in concurrent 

programming are well understood, but the design of language 

interfaces and the mechanisms to support them has lagged behind the 

theoretical work in this field. The interface usually provided to 

the programmer consists of a set of library procedures, calls on 

which allow him to spawn tasks and share the use of resources with 

these tasks. An example of this kind of interface is that provided 

on the UNIX system which is described in (Rit 78). However, as the 

structured programming techniques advocated by Dahl, Dijkstra and 

Hoare (Dah 72) become more widely used there is a need for parallel 

programming facilities to become a more integral .Part of programming 

languages (for example see the "STEELMAN" language requirements (DoD 

78)). The result of this has been the development of languages like 

concurrent PASCAL (BrH 75) and MODULA (Wir 77), both specifically 

designed to provide a simple, structured means of specifying 

concurrent programs. Unfortunately, though the process structuring 

primitives provided by these languages are excellent, their 

facilities for controlling the use of shared resources and for error 

detection and recovery are severely limited. It is the aim of this 
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thesis to show how to support a simple language interface, permitting 

controlled access to all types of shared resources and providing 

comprehensive error recovery facilities. 

Existing work in this field has tended to fall into one of two 

areas - either concerned with the fairly simple interactions between 

processes at the lowest levels of operating systems or with the 

highly complex interactions occuring in data base systems. The 

tormer area has produced several language structures for resource 

control some of which will be discussed in chapter two, but in 

general the question of recovery from errors when shared resources 

are being used has not been addressed. Almost the reverse is true of 

the latter area where the development of language interfaces has been 

secondary to that of mechanisms to ensure the integrity of data bases 

and of sophisticated locking schemes to make access to data more 

efficient. There is obviously a need, . therefore to bring together 

ideas from the two fields so that a more general purpose set of 

tacilities can be built up. This thesis attempts to show one way of 

acheiving this synthesis by combining the main features of these two 

areas into a system that provides the user with the ability to '~rite 

FAULT-TOLERANT software. 

A fault-tolerant program is one which will produce acceptable 

results even when it has passed through erroneous states during its 

execution. It will normally contain code that is designed to cope 

with these incorrect states by attempting to ensure that errors are 

not propagated to later stag~s of execution. Where programs may 
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interact through the use of shared resources or by direct 

communication it is often very difficult for the programmer to know 

the extent of the damage caused by a fault and in these cases the 

underlying system must play a large part in the collection and 

maintenance of recovery information. The main part of the work below 

is a description of a mechanism , based on the Recovery Cache (Ran 

7)) (see section 3.4) , which allows this to be done very simply and 

which gives the user control over the way in which error recovery 

takes place. Ho~~ever before embarking on this description we must 

aefine some fundamental concepts which are used throughout this 

thesis. 

1.2 Definition~ basic concepts 

1.2.1 Atomicity-

An activity will be described as ATO~fiC if the operation that it 

performs appears to be indivisible and does not interfere with any 

other concurrently executing activity. Dijkstra (Dij 72) and Brinch 

Hansen (BrH 75) have categorised such operations as being ~lliTUALLY 

EXCLUSIVE, however we shall use this term to describe only the subset 

of atomic operations which do not allow the possibility of several 

activities performing them concurrently. An example of an operation 

which is not mutually exclusive is the reading of a variable without 

modifying its value, which can be carried out safely by any number of 

processes. Brinch Hansen has said that without mutually exclusive 
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operations discussion of concurrent computation would be meaningless, 

and Lipton (Lip 75) has shown the desirability of atomic operations 

in that their presence simplifies the task of proving parallel 

programs. Eswaran et al (Esw 76) use the notion of atomicity to 

define a TRANSACTION which is a sequence of atomic operations grouped 

together forming a unit of consistency. That is, the system state 

will be consistent before and after the transaction has been 

executed. For the purposes of this thesis we shall assume that a 

PROCESS consists of a sequence of one or more, possibly nested, 

transactions. The term process will also be used in cases where 

transactions are nested and we need to refer to the innermost 

transaction and all its ancestors. PROGRAM will be used 

interchangeably with process, except where there is no concurrency in 

which case it will be prefixed by the qualifier SEQUENTIAL . 

A formal model of ato~icity has been described by Best and 

Randell (Bes 78, Bes 79), which, though still under development, is 

being used as a basis for studies of parallelism and error recovery. 

Gray et al (Gra 76) and Davies (Dav 79) also make considerable use of 

the concept of ato~icity in their work in these 'fields. 

1.2.2 Resources -

Throughout this thesis we shall use the term RESOURCE to 

describe ~ object which a programmer can use through the mediu~ of 

his programming language. The most usual examples of such objects 

are the variables held i~ a computer's memory, but magnetic tape 
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drives, graph plotters and terminals are also resources. In 

describing the operations that a programmer performs on resources we 

shall use the categories - READ and WRITE. A read operation is one 

which examines the state of a resource but does not modify it (for 

example determining the position of a disc head), whilst a write 

operation always modifies the state. Thus rewinding a magnetic tape 

would be regarded as a write operation as it affects the state of the 

drive by changing the position of the tape. Many of the examples in 

the text will be couched in terms of variables (storage resources), 

but by using this classification of operation they can be generalised 

to all types of resources. 

1.2.3 Commitment -

The state of a resource is said to have been COMMITTED when the 

transaction l.rhich put it in that state confirms that the state is 

correct and relinquishes the ability to perform any recovery 

involving that resource. Where transactions are nested, commitment 

is also nested, the ability to recover being maintained until the 

outermost transaction commits the resource's state. Before this 

FINAL CO~lliiTMENT the state of a resource is not guaranteed correct 

and may be subject to change at any time, especially in the event of 

an error. If other processes make use of the uncoilll'litted results of 

a program the support system must record this fact to enable any 

subsequent changes to the resource to be correctly propagated 

throughout the system. This is especially important where the 

results are found to be in error and corrective action must be taken. 
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There are two ways in which this can be done. Firstly, 

processes which use uncommitted data can be prevented from committing 

their results until the data in question has itself been committed. 

We shall describe these processes and the originator of the 

uncommitted data as being COUPLED. Secondly processes may use 

uncommitted data but some means of CO~WENSATION must be provided to 

correct any errors that may have arisen. For example, when some 

goods have been sent out from a depot by mistake, by issuing a recall 

order a compensation mechanism has been invoked to recover from the 

error. Processes which interact in this way will be described as 

UNCOUPLED. 

1.2.4 Cooperation 

Shrivastava and Banatre (Shr 78a) have identified three types of 

interaction between activities INTERFERENCE, COOPERATION and 

CO~WETITION. Interference is always erroneous and occurs when shared 

resources are modified simultaneously and the use of atomic 

operations is designed to eliminate such interactions. Cooperation 

occurs when activities deliberately pass information between each 

other, and competition (or contention) arises when activities simply 

wish to share resources but do not wish to pass information. However 

in this thesis we shall look at the interaction between activities in 

a slightly different way which will require another terminology. To 

this end we shall introduce the idea of COOPERATIVENESS, it will, 

however, be easier to first define its opposite - UNCOOPERATIVENESS. 
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An activity is said to be uncooperative if it does not 

communicate directly with other activities and if it does not release 

the shared resources it has acquired during its existence until it 

terminates. That is, the activity appears atomic to the rest of the 

system. On the other hand a cooperative activity is one which may 

communicate with other activities directly and which may also release 

some resources during the course of its execution. Such an activity 

would not seem to be atomic but we shall show that by restricting 

communication and the type of resources that can be released, a form 

of atomicity can be attained. 

There is also another type of interaction and we shall call 

activities which uses it CLOSELY-COOPERATIVE. Here a group of 

activities appear to be one simple uncooperative activity to the rest 

of the system, but are able to communicate with each other and 

release resources so that other members of the group can acquire 

them. 

1.3 Summary~ thesis 

The major part ot this thesis consists of a description of a 

user interface for the implementation of parallel processes which 

share the use of resources. and the mechanisms needed to support it. 

The interface provides the programmer with facilities for 

incorporating fault-tolerance into his programs and allows him to 

control the way in which the failure of one process affects other 

processes which have interacted with it. The most important features 
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of this interface have been built into test systems and their 

implementation is described. 

Before this, in chapter two, an overview of existing systems for 

controlling the use of shared resources is given. Firstly there is a 

discussion of the kind of facilities that such systems ought to 

provide and this is followed by a description of some of the 

techniques that have been developed. Evaluation of these systems is 

carried out with reference to two areas - the interface they provide 

to a user, and their reliability in the face of errors. 

Chapter three describes a basic user interface for the support 

of uncooperative processes based on a mechanism which combines the 

locking of shared resources with the collection of recovery 

information. A discussion of deadlocks follows and a means of 

detecting and recovering from them is developed. The problems of 

synchronisation between processes are then described and a program 

structure to overcome them is introduced. Implementation of a system 

of the type described is then discussed with reference to an existing 

system. Finally the efficiency and cost of such a system are 

considered. 

Chapter four introduces an extension to the basic user interface 

that allows the specification of closely-cooperative processes. 

Difficulties that arise when designing a language interface suitable 

for this are discussed and various solutions are considered. The 

incorporation of closely-cooperative processes into the prototype 
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system of chapter three is then outlined. An example of the use of 

closely-cooperative processes is given and in conclusion their 

overall usefulness is discussed. 

chapter five extends the interface to permit cooperative 

processes to be supported, developing a new classification of 

resource types to do this. Examples are given of the use of the 

facilities that are built up, with special reference to the way in 

which error recovery is managed. A test system utilising some of the 

1deas developed in this chapter is described and the problems 

encountered in its construction are discussed. 

Finally in chapter six, a summary and evaluation of the work 

described are presented, and this is followed by suggestions for 

directions that future research in this area could take. The sources 

of the references contained in the text are then given as an 

appendix. 
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2. 0 Scr.emes for control and recovery of concurrent activities 

2.1 Locking 

Whenever two or more activities take place at the same time (or 

what appears to be the same time), there is always the possibility 

that they may interfere with each other in such a way that erroneous 

and inconsistent system states will arise. The classic example of 

such circumstances is that of concurrent assignments to the same 

variable, where, if no control is exercised over the interaction, the 

variable can take on one of several different values, depending on 

the execution flow of the processes involved . The guaranteed 

prevention of such events is a necessary condition for the results of 

an activity to be regarded as correct, and, as the system supporting 

the activities may not be able to differentiate between correct and 

incorrect interactions, facilities must b e provided to allow the 

explicit delineation of those areas of an activity where interactions 

involving a specified shared object are to be prevented. We shall 

call such a facility a LOCKING SCHEME. 

The control a locking scheme provides over activities can be 

usefully regarded as serving two distinct but related purposes:-

1. Resource allocation by associating locks with shared 

resources, activities competing to use them must pass their 

requests to the manager of the locking scheme, thereby 

I'eaving the granting ' of requests in the hands of the system, 
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2. Prevention of communication of uncommitted data between 

activities that is locking a resource guarantees that 

operations upon it will appear atomic to those activities 

not involved in changing its state. 

The need for these arises in all fields and it will be worth 

while to look at the more general aspects of locking, before turning 

to its application to computer systems. 

2.1.1 Classes of locking-

Locking schemes can be classified in several different ways, but 

we shall look at only two of them here. The first is concerned with 

when a request for a resource is made, and gives rise to two 

classes:-

1. STATIC schemes, where resources are locked before the 

activity wishing to use them starts its operations, 

2. DYNAMIC schemes, where requests for resources are issued 

during the course of an activity, generally immediately 

before the resources in question are first needed. 

The important difference between these classes, apart from the 

obvious one, is in the way in ~o1hich system DEADLOCKS are handled - a 

deadlock being said to occur when two or more activites block one 
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another in such a way that their further progress is prevented. We 

shall look at this topic in greater depth in section 3.7 belo~. 

The other classification system we shall look at is based on the 

way in \.rhich the "lock" is actually placed on a resource. '~e shall 

identify three distinct ways of doing this, but in most cases some 

combination of the three methods is used to ensure greater security. 

The three are:-

1. Presence/absence method - when an activity wishes to make 

use of a shared object it "removes" it from the commonly 

accessible place allocated for it, to a place private to the 

activity, thus reserving the object for its own use. There 

are many examples of this type of lock - a switch (presence 

or absence of electricity) or in a reference library 

(presence or absence of a book) - and most have the extra 

property that the locked object can be relinquished, 

voluntarily or involuntarily, to some other activity, 

without it being returned for normal competition. This type 

of "lending" forms the basis for the preemption schemE!s used 

in many computer systems. The major weakness of this scheme 

is that an object may be "stolen'' and so never be returned 

to be contended for, and this can only be prevented by 

combining this method with one or both of 2) and 3). 

2. Record method - here the status of the object in question is 

noted down in some way, and this record is consulted to 
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determine whether a request to lock the object can be 

granted. This scheme is often used where the object 

contended for is not amenable to a class 1) solution (for 

example where it is not present at the place where the 

request must be made) and has the advantage that the 

identity of the activity possessing the object can be 

recorded allowing it to be traced should that become 

necessary. 

3. Token method - in this method an activity is given a token -

for example a theatre ticket for a specified seat - which 

shows that it has locked some object. Note that such things 

as library tickets, passwords and keys are NOT examples of 

this kind of token, but are members of the more general 

category of "CAPABILITIES" (Den 66) which are one step 

removed from locking schemes, controlling whether or not an 

activity has the right to perform certain operations, the 

ability to make requests for resources being one of them. 

All these types of locks occur in computer systems, though the 

presence/absence kind only exist in the hardware, the other two 

methods often being used to simulate it at the software level. 
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2.1.2 Granularity of locking-

Whenever structured objects are contended for it is very 

important to specify how much or how little of the structure must be 

locked by a user to enable him to operate on one of its parts. We 

shall call this amount the GRANULARITY OF LOCKING for the structure. 

This concept was introduced by Gray et al (Gra 76) for use in the 

discussion of access control for databases, but may be usefully 

extended to include the types of structure available in programming 

languages. 

The granularity of a structure determines the amount of 

concurrency that can occur when several activities attempt to use it 

and so can drastically affect the efficiency with which a system 

operates. Generally, if the lock unit is too large concurrency will 

be reduced, if it is too small the probability of requests 

overlapping and causing deadlock will increase. So to select the 

lock unit the system designer must evaluate the trade off between the 

need for concurrency and the frequency of possible deadlock. Of 

course there is no theoretical reason why all lock units should be 

the same size as each other and it may be possible to arrange that 

parts of structures which are always used together are locked as a 

whole. However, different programs may wish to impose different 

groupings of parts on a single stru•:ture, and where these overlap 

deadlocks can arise. Gray (Gra 76) has tackled this problem by 

introducing a new type of lock which is related to the way in ,.,hich 

structures are accessed and we shall describe this in the next 
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section. 

Another aspect of the choice of granularity is the amount of 

storage space required to record information about the locks that 

have been placed by processes. The smaller the lock unit, the 

greater the number of locks placed so the system will need a larger 

amount of storage space for its control information. This larger 

quantity of information could also mean that checking whether a 

deadlock will arise if a request is granted will be slower, thereby 

reducing the overall performance of the system. 

We can see therefore that the chosen granularity of locking has 

a significant effect on the efficiency of the system, and we shall 

discuss this topic further in section 3.9. 

2.1.3 Modes of locking-

So far we have made no mention of the access rights that a 

process acquires when it places a lock on a resource, these being 

dependent on the MODE of the lock request. The simplest mode is that 

of the EXCLUSIVE lock, which when granted, gives the requestor read 

and write (as defined in section 1.2.2) access to a resource, whilst 

preventing other processes from using it in any way. Of course the 

request could be made on behalf of a group of processes resulting in 

them all having SHARED READ/WRITE access to the resource, and this 

can be a very useful facility, even though it allows the processes in 

the group to interact with each other in an uncontrolled manner. We 
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shall discuss the application of this in chapter four. 

However there are cases where exclusive locks are too 

restrictive, such as that where several processes all wish only to 

read a resource. Here all the processes could use the resource 

concurrently, but an exclusive locking scheme will only permit one 

process to use it at a time. To overcome this the SHARED READ (SR) 

lock has been introduced which gives a process read only access to a 

resource, several processes being permitted to hold such a lock at 

the same time. Any process wishing to modify the resource must 

either wait till all the shared read locks on it have been released 

(barring any that the process may hold itself) or PREEMPT the other 

processes, forcing them to release their locks, before placing an 

exclusive lock on the resource. If the process previously held a 

shared read lock on the resource it is said to have CONVERTED the 

lock mode from shared read to exclusive. Unfortunately the process 

of conversion can lead to a deadlock, where two processes both wish 

to convert a lock on the same resource, and we shall look at this 

difficulty in section 3.7 below. 

These two lock modes are sufficient in systems where only 

simple, unstructured resources are contended for, but where resources 

are more complex in structure, as in a data base system, a greater 

degree of control is needed over access. The reason for this is that 

exclusive and shared read locks can only be applied to the specific 

parts of a structure that a process wishes to use. For if locks had 

to span the hierarchy of the structure one exclusive lock would 
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prevent any other process from accessing it at all, but then a 

process cannot safely lock a part of a structure without first 

determining whether any sub-structure contained within the part it 

wishes to lock has been locked by another process, a very time 

consuming procedure if a large structure is involved. A solution to 

this problem has been given by Gray et al (Gra 76) who have 

introduced the concept of INTENTION mode locks. They have suggested 

the use of three specific locks:-

1. Intention shared read (ISR) - a process placing such a lock 

is declaring that it will only place shared read or 

intention shared read locks on lm~er parts of the structure, 

and, if conversion is allowed, will only attempt to convert 

ISR locks to shared read, 

2. Intention exclusive (IX) which has the same properties as 

ISR but with respect to exclusive access, 

3. Shared Read and Intention exclusive (SIX) - which allows a 

process to have shared read access to a· part of a structure, 

but also lets it lock smaller parts in IX or X mode, thus 

allowing concurrency with other processes who wish to 

examine parts it does not wish to alter. 

Fig. 2.1a shows a possible partial ordering of all the modes we 

have discussed, where NL represents the unlocked state and the 

operator·>· is used to mean''is more binding than'. The table in 
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fig . 2.lb shm.rs hm.r the system n.ust treat multiple lock requests for 

the same resource - Y indicates that the request is compatible with 

the current lock state of the resource and can be g ranted, N means 

that this combination of locks is not possible. The intention locks 

provide an excellent way of controlling access to hierarchical 

struc t ures, and Gray g ives several examples of their use in cases 

which are usually exceedingly difficult to cater for . However in the 

rest of this thesis we shall not concern ourselves with the use of 

intention locks as the extra complexity they introduce would obscure 

the working of the mechanisms developed. Nonetheless the possibility 

that they may be required must always be borne in mind. 

> IX 
X > SIX > IS > NL 

> s 

(a) 

REQUEST ?fODE 
NL IS IX s SIX " " 

NL y y y y y y 

IS y y y y y N 

l<.ESOURCE IX y y y N N N 

STATE s y y N y N N 

SIX y y N N N N 

X y N N N N N 

(b) 

Fig. 2.1 
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2.1.4 Requirements of programmers-

Before looking at some of the existing programming language 

tacilities for controlling the use of shared resources, let us try 

and set out the characteristics that such an interface should 

possess. We shall assume that the user expresses his programs in a 

structured high-level language such as PASCAL (Wir 71). 

The interface has to provide the user with four essential 

functions:-

1. The ability to issue a request to lock a resource in the 

required mode, 

2. To wait until the request is granted, 

3. Allow the resource to be manipulated without restrictions, 

other than those set by the definition of the resource and 

the mode in which it has been locked, 

4. To release the lock making the resource available to other 

users. 

Two additional functions could also be provided, namely the 

ability to convert the mode of a lock, and the option not to wait if 

a resource is not immediately available when a request is made for 

it. The interface must also be reliable - it should be impossible to 
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use a shared resource without first having locked it and should an 

error occur after the lock has been placed the support system must be 

able to release it in a consistent state if the error handling in the 

failing process does not. 

Of course though these facilities must all exist they need not 

be used explicitly by a programmer for them to be invoked - the 

system may provide them automatically. This will free the programmer 

from worrying about resource allocation and release, and allow the 

system to conceal the fact that some resources are shared though they 

do not appear to be. Most systems supporting shared resources have 

already hidden any waiting for resources from the user, but 

automating acquisition and release presents some problems, though 

their solutions increase the reliability of the system considerably. 

Let us look first at the process of acquisition. 

If the whole text of a program is available a compiler can 

determine the points at which resources must be acquired and where 

they can be safely released. The analysis will be fairly difficult 

because conditional use of resources means that resouce acquisition 

must take place at a point in the program which will be executed by 

all paths or else the code must be repeated where necessary (this may 

mean that a process must be allowed to request a resource it already 

possesses). However with the rise of modular programming techniques 

separate compilation of modules has become the norm, so this approach 

is not really usable. The only alternative is to perform resource 

acquisition at run time, that is whenever a shared resource is used 
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the system must check to see if it has been locked by the process, 

and if not must lock it. This will of course be relatively 

inefficient, but it guarantees that a resource cannot be used without 

being locked, and that resources which are used in paths that are not 

executed will not be locked. One disadvantage is that where more 

than one lock mode is implemented mode conversion must be supported. 

For it will often be the case that the first use of a resource will 

only need a weak lock (reading - shared read) but a later use may 

require a stronger lock (writing- exclusive), and so the lock must 

be converted. Section 3.7.2 dicusses the problems that can arise 

where conversion is provided. 

Automatic release of resources is considerably more difficult 

and either requires analysis of the whole program or for all 

resources to be released at some predefined point, usually the end of 

a process's execution. The former though providing far more 

efficient use of resources is not reliable as commitment of a value 

can take place before it is certain that the value is correct, so the 

latter is preferable because of the increase in reliability obtained 

through using it. The fact that resource release is automatic also 

means that the system should easily be able to implement the other 

reliability requirement mentioned above - that resources should be 

released when an error occurs. 

From the above we can see that the simplest interface (probably 

only from the programmer's point of view) would be one where the 

programmer treats shared resources exactly as he would unshared ones, 
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leaving the support system to determine when locking is appropriate. 

The fact that a resource is shared can be determined from its address 

which will point to a part of the address space common to several 

processes. In effect the memory management hardware of most computer 

systems performs this operation anyway so existing techniques should 

be perfectly adequate to do this. The association between a shared 

resource and an address need only be carried out once, as most 

modules could access it as an external object, alowing the shared 

attribute of the resource to be concealed if necessary. Resource 

release still presents problems, as holding resources till a process 

terminates may not implement what the user wishes. However we would 

suggest that by splitting a process into a sequence of transactions 

and releasing all locks at the end of each transaction the programmer 

will be able to implement most algorithms. 

2.2 Existing systems for controlling concurrency 

Many language interfaces have been devised to allow programmers 

to control the use of shared resources, however .we shall only examine 

six of them. The constructs chosen are representative of all the 

other methods that have been developed and are the ones most 

frequently referred to in the literature. Of course the vast 

majority of today's computer systems do not provide the programmer 

with languages that have these constructs embedded in them. The 

acquisition and release of resources are normally achieved either 

through the use of a Job Control Language or by procedures calls in a 

process body. However both these methods can be regarded as 
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equivalent to the use of certain of the constructs described below 

and we shall indicate this relationship in the appropriate sections. 

2.2.1 Semaphores-

The semaphore, described by Dij kstra in (Dij 68a) and developed 

by him for use in the THE operating system, is widely regarded as a 

paradigm for concurrency control mechanisms, and the correctness of a 

new construct is often demonstrated by showing how semaphores may be 

implemented using it. In fact the concept behind semaphores is so 

tundamental that almost all the actual implementations of other 

constructs make use of them (if they are not exactly equivalent). 

A semaphore is a special non-negative integer variable which has 

two operations associated with it called P and v. P is the "acquire" 

operation of the pair and, where s is a semaphore, is equivalent to 

the operation:-

\-lAIT UNTIL S > 0; 
S:=S-1; 

The V operation performs the release function and can be represented 

as :-

s:=S+1; 

and of course both these operations must be atomic to eliminate any 

interactions between processes executing them at the same time. 

Dijkstra identifies two types of semaphore, namely the BINARY 

semaphore, whose value is' either zero or one, and the GENERAL 
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semaphore which can take on larger values, however in (Dij 68a) he 

shows that only binary semaphores are strictly necessary. 

There are two ways in which semaphores can be used to control 

access to resources. The first is to associate a semaphore with 

every common resource and require the programmer to perform P's and 

V's on it to acquire and release the resource. The alternative 

method is to use one semaphore to control several resources, using 

single P and V operations to acquire and release all of them at one 

time. Unfortunately, though the use of these methods gives the 

programmer considerable flexibility and power in the way in which he 

builds his program they both possess severe disadvantages:-

1. The fact that a resource has a semaphore associated with it 

does not guarantee that the programmer will actually perform 

a P on the semaphore before using the resource, 

2. Because p and v are explicit operations there is no 

structure to link them together, which can not only reduce 

the modularity and clarity of programs . using them, but can 

also lead to the programmer forgetting the V operation 

altogether, thereby preventing any more P operations from 

being successful. Another problem is that the programmer is 

not prevented from performing two P's without a V between 

them causing his program to deadlock itself, or from issuing 

two V's without a P between them, which could cause two 

processes to acqui~e the resource at the same time . 
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3. Semaphores only provide exclusive locking and cannot be used 

to support shared read or intention locks, for firstly only 

one process can hold a semaphore at a time and secondly it 

cannot be guaranteed that the process acquiring the resource 

will not modify it, this would require some extra protection 

mechanism, 

4. In order to avoid deadlocks the programmer must use special 

methods such as the "banker's algorithm" (Dij 68a) or must 

carefully analyse the interactions between the processes in 

the system before implementation to ensure that they cannot 

occur. 

Despite these disadvantages semaphores are often provided to 

sometimes explicitly, as in the language ALGOL 68 (Wij 69), 

but more usually through the medium of system procedures. These 

procedures, for example ones to open and close files, can be used to 

hide the manipulation of semaphores from the user, but still suffer 

the disadvantage of being unstructured. Other approaches which have 

been tried, such as the LOCK and UNLOCK statements of Dennis and Van 

Horn (Den 66), effectively hide semaphore like mechanisms from the 

user, but still do not provide structure. This need, and that of 

simplifying the task of deciding how many semaphores are required to 

implement a given algorithm, has therefore led to the developnent of 

other interfaces. 
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2.2.2 Path expressions -

Campbell and Habermann (Cam 74) have tackled this problem by 

introducing what they call PATH EXPRESSIONS. These are a means of 

specifying the valid sequences of operations that can occur, all 

those not conforming to the path expression being erroneous - for 

example the functioning of a semaphore can be represented thus:-

PATH P;V END; 

which indicates that a P operation must always occur before a v. 

More complex relations can be built up in the notation, and fig. 2.2 

shows the specification of a type "file" which can either be opened, 

read or written several times and closed or can be renaned. 

TYPE FILE IS 
CLASS 

PATH (( OPEN ; ( READ , ~-lRITE ) * ; CLOSE ) , RENAME ) END; 

ENTRY PROC READ BEGIN ••• END; reads from the file 

ENTRY PROC WRITE BEGIN ••• END; writes to the file 

ENTRY PROC OPEN BEGIN ••• END; opens the file 

ENTRY PROC CLOSE BEGIN ••• END; closes the file 

ENTRY PROC RENAME BEGIN ••• END; renames the file 

BEGIN ••• END; --initialisation of a new file 

Fig. 2. 2 

An instance of the path is associated with each object declared 

of type file, and a complete path, that is a sequence of operations 
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such as open, read, write, close, would be executed exclusively by 

the process which initiated it, any other process having to wait 

until the path terminated before it could initiate one on the same 

file. There are several different kinds of paths possible and these 

are discussed in (Lau 75), which also shows how path expressions are 

related to Petri nets, (Pet 77) and gives a solution to the 

"Cigarette smoker's" problem using paths. In order to implement 

paths, Campbell and Habermann have developed an algorithm which can 

translate them into equivalent sequences of P and V operations on 

semaphores which can be placed round the operations used in the path 

in order to control them. They have thus been able to structure the 

use of semaphores safely, ensuring that P and V operations are not 

ommitted, overcoming the first two disadvantages of simple 

semaphores. However, though this frees the user of correct sequences 

from concern about interactions between processes, if he erroneously 

issues an operation out of sequence his process will wait 

indefinitely, possibly blocking other processes at the same time. 

Such circumstances can be detected by performing complex analyses of 

the programs involved, as the use of Petri nets shows, but the 

techniques required have not been sufficiently developed as to make 

them accessible to the ordinary user, and this may be one of the 

reasons why Path expressions have not been incorporated into the 

design of more recent general purpose languages. Another 

disadvantage is that, again because of the requirements for mutual 

exclusion, shared read and intention locks cannot be supported. 

Also, where separate compilation of program modules is supported, the 

same path can be representeq in different ways (either by error or 
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malicious intent), resulting in hard to detect run-time errors. 

We can see therefore that though path expressions provide a 

clear and compact way of controlling the operations on shared 

resources, they are as error prone, in their own way, as the explicit 

use of semaphores. Also the use of regular expressions to describe 

sequences of operations does not reflect the algorithmic approach 

that most programmers adopt when implementing a new type. It would 

seem, therefore, that, whilst path expressions will remain an 

outstandingly useful theoretical tool, applications programmers will 

require resource control mechanisms which are directly related to the 

structure of their programs. 

2.2.3 Regions -

In order to make the s tructure of programs using semaphores 

clearer Dijkstra (Dij 68a) has introduced the notion of a critical 

region, which is the term he uses to describe a section of program 

executed in mutual exclusion from other processes. A critical 

section is entered by performing a P on a semaphore and terminated 

when the process performs a V on the same semaphore. Brinch Hansen 

(BrH 72) has incorporated this concept into a programming language by 

the use of the REGION statement, which allows statement blocks to be 

marked as critical with respect to certain specified resources. A 

compiler can then automatically generate the appropriate operations 

needed to acquire and release those resources, for example:-



REGION P,Q DO 
BEGIN 

use P and Q 

END; 
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. This is interpreted as meaning that resources P and Q are to be 

locked before the compound statement is executed and released 

immediately it terminates. This provides several advantages to the 

programmer over the previously described methods:-

1. The notation is simple and relates closely to that used when 

abstract specifications of programs are written (note that 

the job control statements that must often be supplied 

around program bodies are a type of REGION statement), 

2. The user is forced to structure the use of shared resources 

more carefully, preventing such occurrences as overlapping 

critical regions which are possible with semaphores, 

3. The compiler can verify that only those shared resources 

named in the REGION statement are actually used in the 

statement body, preventing interference, (though by doing 

this separate compilation of program modules may be made 

difficult), 

4. rhough the structure was originally designed for use with 
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semaphores, any resource locking scheme could be used to 

support it, allowing the use of the more sophisticated lock 

structures described above. 

There are, however, disadvantages:-

1. Deadlocks can occur if careful analysis of programs using 

the statement is not carried out, and, as with the other two 

schemes we have described, no method of breaking a deadlock 

that has arisen can be provided, 

2. The body of a region statement is NOT atomic and resources 

can be altered without the users knowledge. Consider this 

example:-

REGION A DO 
BEGIN 

P· 
' 

P· 
' 

E~; 

PROCEDURE P; 
BEGIN 

REGION B DO 
BEGIN 

END; 
E~; 

Here the programmer may expect the results of the procedure 

P to be identical after each of the two calls. However, as 

the shared resource B is acquired and released every time P 

is called, B can be used by other processes between the 

calls on P, introducing the posssibility of incorrect 

interactions between process es, 
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3. The statement is inherently unreliable, for if an error 

occurs during its execution the resource release part of the 

statement implied by its termination will not be executed. 

This means that the shared resources it acquired will not be 

returned to the common pool, and, even if a mechanism could 

be provided to release them, irreversible alterations could 

have been made to them, possibly rendering the system state 

inconsistent. 

For these reasons the REGION statement is not as useful as it 

appears at first, and, like path expressions, it seems to be used 

more as a theoretical tool than a practical part of a programming 

language, however this cannot be said of our next example. 

2.2.4 Monitors -

The MONITOR was first described by Hoare in (Hoa 74) and has 

been used very successfully by Brinch Hansen in the language 

Concurrent Pascal (BrH 75) and his Solo operating system (BrH 76), 

and also by WIRTH in programming language HODULA (Wir 77). A MONITOR 

is a special kind of CLASS (Bir 73) in which only one entry can ever 

be active at a given time, the body of each procedure forming a 

critical region with respect to the variables declared within the 

MONITOR. These procedure bodies are atomic because they can only 

access variables local to the MONITOR or passed in as parameters, 

and, as only one entry is active at a time, the environment seen by a 
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process cannot change whilst it is executing the entry. 

~ynchronisation and co-ordination of process activity is achieved by 

the use of queues, a process putting itself on a queue when it wishes 

to wait for some condition to become true. ~fhen a process joins a 

queue it automatically releases the MONITOR, allowing other processes 

to use it, and will not be reactivated until another process detects 

that the condition associated with a queue is true and explicitly 

activates the waiting process, at the same time relinquishing its 

lock on the monitor. 

However though l10NITOR's have been used with great success to 

solve a great variety of problems they suffer from similar 

disadvantages to the constructs described above:-

1. The use of queues is not only inelegant but can lead to 

deadlocks, where their attached conditions are ill formed, 

2. The mutual exclusion enforced on ?10NITOR entries prevents 

any concurrency, even in cases where it would be perfectly 

acceptable, and so again shared read and intention locks 

could not be implemented. 

3. Should an error occur in a MONITOR entry, the MONITOR 

variables could be left in an inconsistent state, causing 

erroneous information to be propagated when other processes 

use the MONITOR. Also if the support system cannot identify 

that the error aros~ in a MONITOR entry, the MONITOR may not 
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be released, thus preventing other processes from using it, 

4. Because of the scope rules applied to MONITOR variables, 

algorithms which require the use of nested monitor calls can 

'>~come very complicated, leading to programmer error. 

However despite these disadvantages, MONITOR's have been widely 

used and the methods needed to solve problems using them are becoming 

tamiliar to a widening circle of users. This has led to considerable 

work being done to improve the reliability of MON ITOR's and we shall 

look at this in a later section. 

2.2.5 Atomic Actions -

Ultimately all locking schemes are concerned with ensuring that 

certain sequences of operations are performed atomically, and to this 

end Lomet has introduced the notion of an ATOHIC ACTION (Lorn 76a) as 

an explicit program structure. This is simply a device that can be 

used either like a BEGIN ••• END block or a procedure, but which 

indicates that the sequence of statements enclosed by the structure 

is to be executed atomically. This has several advantages over the 

techniques we have described above:-

1. Nested ATOHIC ACTION's do not have the problems of nested 

REGION's as atomicity is guaranteed from the start of the 

outermost ATmnc ACTION until its termination; 



PAGE 34 

l. Once a statement block has been declared as atomic the 

programmer can use shared resources exactly as he would 

private ones. This allows programs to be written and tested 

using local resources, and later converted to use shared 

resources, simply by altering the declarations of the 

resources in question; 

3. Separate compilation of ATOt1IC ACTION's is possible firstly 

because of their modularity and secondly because the 

atomicity or otherwise of any enclosing modules, defined 

elsewhere, is not important; 

4. As there is no explicit acquisition and release of resources 

in a program, the support system has full control over the 

way in '~hich these operations are carried out, this ensures 

that all shared resources useo in an ATOMIC ACTION are 

locked before use eliminating the possibility of interfering 

with other processes, 

S. Because an ATOMIC ACTION does not necessarily have to be 

executed in mutual exclusion the support system can provide 

the user with shared read and intention locks, allowing the 

use of data bases and other structured resources to be 

amalgamated efficiently into the system. 

The disadvantage of ATOMIC ACTION's is that the way in which the 

atomicity they provide is to be implemented is not defined. If a 
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technique similar to any of those described above is adopted, ATOMIC 

ACTION's will suffer form the same kinds of reliability problems that 

they do, namely deadlocks, permanently locked resources and the 

propagation of inconsistent information through a system. However 

other mechanisms can be devised to overcome this and the subsequent 

chapters of this thesis will show how one of these can be developed. 

We shall also discuss an extension of the ATOMIC ACTION which Lomet 

has introduced, knmrn as a SHARED ATOHIC ACTION. This allows several 

processes to collectively acquire shared read/write access to 

resources, their combined operations appearing atomic to the rest of 

the system though they may not be atomic with respect to each other. 

2.2.6 Communicating processes -

Up until now all the constructs we have looked at have required 

there to be a set of resources commonly available to all processes, 

but recently both Hoare (Hoa 78) and Brinch Hansen (BrH 78) have 

proposed systems which do not require this to be so. These systems 

are based on the use of messages passed between processes in 

synchronisation, Hoare's system making communication similar to 

input/output by allowing processes to read from and write to each 

other, Brinch Hansen's giving one process the ability to remotely 

call a procedure in the body of another process. Both these 

constructs are related to the idea of coroutines, introduced by 

Conway (Con 63), and the "call", "detach" and "resume" primitives 

provided by SIMULA (Bir 73), and similar proposals have been put 

forward by other authors, for example Kahn and MacQueen (Kah 76). 
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However many of these tend to be directed towards aiding program 

proving and are not particularly suitable as "real" programming 

languages. 

Both Hoare and Brinch Hansen's systems control the interactions 

between processes by specifying that a process executing a send 

operation (that is an output to another process or a remote call) 

must wait until the process to which the operation is· directed 

specifically accepts the message, in Hoare's system this is done by 

the use of GUARDED REGIONS. A guarded region is a non-deterministic 

structure internal to a process, consisting of several procedures 

callable by other processes, entry to which is controlled by a GUARD, 

which is a necessary condition for execution to commence . When one 

of the guards comes true and a call has been issued for the procedure 

associated with it, the procedure is executed and when it terminates 

the calling process is reactivated, if several calls are outstanding 

on one procedure they must be queued and handled one at a time. The 

use of guards is due to Dijkstra (Dij 75) and is a subject which we 

shall be returning to in several later sections. 

Another feature common to these systems is the ability to 

describe arrays of processes, thereby allowing messages to be 

directed to a process whose identity is determined at run time, 

however Kieburty and Silberschatz (Kie 79) have suggested that some 

of the interactions expressible using this facility are not 

implementable on a system made up of distributed processors, and as 

the use of such distributed ,systems is the avowed aim of Brinch 
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Hansen's system, some doubt must exist as to the practical usefulness 

of the whole system, for many problems require the use of process 

arrays to solve them, as demonstrated in both (Hoa 78) and (BrH 79). 

Another criticism leveled against these systems is that the level of 

concurrency is unnecessarily reduced by the requirement of 

synchronisation between processes in situations where message passing 

is the only aim of the interaction as, for example, in the "pipes" 

available to the user on the UNIX system (Rit 78), and we shall look 

at this topic in greater depth in chapter 5 below. As to the 

reliablity of the constructs, all the problems existing in other 

systems arise for the queueing required to send messages can lead to 

exactly the same kinds of deadlocks and related errors that queueing 

for access to common resources can. 

Despite these difficulties this type of technique must be 

regarded as opening up new possibilities in the design of systems, as 

it encourages highly modular designs, eliminates the need for shared 

resources, can be applied to distributed systems (though with the 

reservations expressed above) and allows algorithms to be expressed 

in new ways. It remains to be seen how successful people will be in 

using and implementing systems of this type, but the fact that the 

much disputed tasking mechanism in ADA (Ich 79) is based on the use 

of communicating processes must encourage more research to be done in 

this area. 
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2.2.7 Summary-

This brief examination of the main language facilities for 

controlling resource usage in concurrent processes has shmm that, 

though constructs exist which are modular and conform to the 

principles of structured programming, none of them, as they stand, 

are proof against the occurrence of software errors. Also, support 

for the sophisticated locking schemes needed for the efficient use of 

data bases is very difficult (and in some cases impossible) to 

provide. The main reason for these problems would seem to be that 

most of the constructs we have looked at were designed for use in the 

implementation of operating systems, and so cannot be considered as 

general purpose structures. Only ATmnc ACTIONS and communicating 

processes seem to possess the attributes necessary for such a general 

purpose interface. However both these techniques suffer froo the 

disadvantage that, as they are relatively new, little use has been 

made of them, so the problems they give rise to are not fully known. 

2.3 Recovery schemes for concurrent processes 

Now we must turn our attention to the techniques that have been 

developed to cope with the reliability problems raised by the use of 

the methods described above. There are four main areas which must be 

tackled:-

1. If a process becomes dependent on uncommitted data which is 

later found to be 1n error it too must be regarded as being 
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in error, 

2. Deadlocks must either be prevented or detected and broken, 

3. Resources locked by a process which fails must be unlocked 

and returned to common availablity, preferably in a 

consistent state, 

4. Some means must be found of detecting processes in 

unintended infinite loops, and making them fail explicitly, 

thus causing the release of the resources they hold (because 

of 3). 

The problem of deadlocks has long been recognised and we shall 

discuss it futher in sectiion 3.7 below, the rest of this section 

will look at some specific areas of fault tolerance, which relate 

directly to the other three areas. A general survey of fault 

tolerance techniques exists in (Ran 78) which gives many examples of 

the different approaches used in this field, but we shall only look 

at those which impinge directly on the programmer by providing a 

language interface to their facilities. However before dealing with 

concurrent processes per se we must look at recovery facilities in 

sequential programs. 
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2.3.1 Sequential programs-

Up to this time only two language facilities for the control of 

errors have been provided to the programmer. The first is an example 

of what is known as FORWARD ERROR RECOVERY and is the provision of 

the ability to handle exceptions, such as the "ON" conditions of PL/I 

(IBMa). The facility provided by the use of ON conditions is rather 

limited and several suggestions have been made for expanding the 

usefulness of exceptions, for example (Goo 75a), (Goo 75b) and (Par 

72), which all describe ways of integrating exception handling into 

the structure of programming language. The use of such forward error 

recovery techniques is ideal where the programmer knows the exact 

nature of the faults that may occur in his program, and can precisely 

define the operations that must take place to recover from them. 

However, as is shown in (Mel 76), in cases where unforeseen errors 

arise, possibly due to residual software faults, forward error 

recovery does not provide an adequate solution. This is due to the 

fact that the program may not be able to assess fully the damage to 

the program state caused by the error, so cannot repair it 

completely. 

For this reason approaches based on BACKWARD ERROR RECOVERY have 

usually been adopted where unforseen errors must be handled. The 

characteristic of these techniques being the restoration of the 

program state to that pertaining at some defined time prior to the 

error, known as a CHECKPOINT. This restoration is made possible by 

either storing a complete representation of the program state as it 
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was at the checkpoint or by maintaining a record of all the 

operations which affect the system state, that have been performed 

since the checkpoint. To provide recovery in the latter case the 

system must undo all the operations it has recorded, whilst in the 

former recovery is implemented by making the current program state 

identical to the stored state. The most widely used backward error 

recovery mechanism is the RECOVERY CACHE, devised at the University 

of Newcastle upon Tyne, which provides a means of building up an 

incremental checkpoint of a program state. Often associated with the 

recovery cache is a program structure knows as a RECOVERY BLOCK, and 

both of these are fully described in section 3.4 below. 

The main disadvantage of backward error recovery is that it is 

expensive to implement, requiring processor time and storage to 

maintain the recovery information needed. However as it provides a 

means of handling a very wide range of errors (all except those 

involving the recovery mechanism itself) the expense is generally 

regarded as worthwhile. Implementations of backward error recovery 

in sequential programs have been described in (Shr 78b), (And 76) and 

(Cri 79), the latter combining the use of exception handlers and the 

recovery cache. Certainly, as we shall see from the succeeding 

sections, the use of backward error recovery, especially the recovery 

cache, has been the foundation of most of the recent research done on 

the field of fault-tolerant software, and this thesis also bases its 

proposals on this type of mechanism. 
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2.3.2 Database systems -

Much of the impetus for research into recovery in systems 

supporting parallelism has come from the need to preserve integrity 

in large data bases. Verhofstad (Ver 78) has identified seven 

classes of fault tolerant recovery techniques used in data base 

systems, these are:-

1. Salvation programs - programs run to restore the data base 

to a consistent state after an error, 

2. Incremental Dumping - periodically archiving data to provide 

checkpoints for updated files, 

3. Audit Trials - recording the order of operations performed 

on a data base, so that these may be "undone" in the correct 

sequence in order to reach a consistent state, namely the 

start of the sequence of operations, 

4. Differential Files- here file updates 'are not made to the 

main file, but take place in other files which are 

periodically merged with it and emptied. 

S. Backup/current verion - where all the files in the data base 

are periodically archived to provide a checkpoint should the 

current information be damaged. 
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6. Multiple copies - several copies of every file are held, 

which all contain the same data, except during an update 

operation, 

7. Careful Replacement - updates only take place in COPIES of 

the data, which are merged with the original, only when the 

values are committed. 

The common feature of these techniques, except the audit trail 

method, is that they are primarily concerned with the integrity of 

the data base, and regard the effects of errors on the programs 

running in the system as secondary. From the programmer's point of 

view these systems often appear highly fault intolerant, as 

facilities for error handling are minimal, the usual solution being 

for all programs affected by state restoration to be rerun. This 

will usually include several programs which were not in error and 

which w·ere not dependent on erroneous data, and, even if the jobs are 

resubmitted without involving the programmer, a considerable 

lengthening of the turn-around will be experienced by those users 

affected. 

However systems that use audit trail methods can BACK OUT an 

individual process, rather than BACKING UP all the processes in the 

system providing a much better user interface. The programmer can 

then be given facilities to control the way in which recovery takes 

place in his programs, very much as for sequential programs (note 

that the recovery cache mechanism can be viewed as an optimised audit 
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trail as well as an incremental check point). An example of this is 

provided by System R (Ast 76) which gives the programmer the 

operations SAVE, (to identify the start of an audit trail), RELEASE 

(to commit an audit trail) and RESTORE (to wind back to a named point 

in an audit trail). This type of interface is very often 

unstructured because of the COBOL-like languages used in data base 

systems, but they must be regarded as a major step forward in making 

error handling by fault tolerant methods available and familiar to a 

much wider spectrum of users. 

:l.3.3 Ports -

Uutside the sphere of databases much of the work on error 

recovery in concurrent systems has been theoretical and very little 

attention has been given to the needs of the programmer. However 

Shrivastava and Banatre (Shr 78a) have described a program structure 

known as a PORT which allows competition and cooperation between 

processes whilst preserving recoverability. A PORT is a specialized 

type of SIMULA class with features to aid recovery, and is used to 

control access to resources. It consists of some variables, some 

entry procedures, a reverse procedure and an initialisation statement 

consisting of two parts known as a PRELUDE and a POSTLUDE separated 

by means of a SIMULA INNER statement. The prelude of a PORT is 

concerned with resource acquisition and the postlude with resource 

release, and they are invoked by means of the USING statement. This 

associates a block of statements with an instance of the PORT, and 

causes the block to be execu'ted when the INNER statement of the PORT 



PAGE 45 

initialisation code is reached, ensuring that the block is bracketed 

by the prelude and postlude. The PORT assumes the presence of a 

recovery cache and if an error occurs whilst a USING statement is 

executing, state restoration will take place, and the postlude of the 

PORT will automatically be executed, guaranteeing that resources will 

be released by failing processes. However if an error occurs after a 

USING statement has t •~rminated the effects of the operations 

performed in it must be undone, and this is where the special reverse 

procedure comes in. The use of a PORT is recorded in the recovery 

cache and when state restoration takes place the prelude and postlude 

are executed to reacquire and release the r esources used, the reverse 

procedure being executed when the INNER statement is encountered. 

This procedure is only accessible to the recovery mechanism and is to 

provide compensation for the effects of the previous use of the PORT, 

that is, because the USI NG statement cannot be undone by the system, 

the user must provide a piece of program ¥hich attempts to do this. 

In most cases this will involve sending a special message to other 

processes or the system operator to tell them to ignore certain data, 

but it can also consist of constructing messages whose effects will 

be the exact opposite of the earlier message , thus undoing its 

effects. Another facility provided to the user is an errorflag which 

allows him to determine, during the postlude and prelude, whether the 

process is recovering or not, and so these parts of the program can 

be tailored to the recovery process also. 



TYPE HANAGER IS 
HONITOR 

PROCEDURE ENTRY SEND ( I : INTEGER ; LAST : BOOLEAN ); 
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-- queue value for receiver, last is true if it is final value 
BEGIN ••• END ; 
PROCEDURE ENTRY RECEIVE(! : OUT INTEGER ; LAST : OUT BOOLEAN ) 
-- get a value form the queue 
BEGIN ••• END; 

BEGIN ••• END; --initialisation code 

TYPE SENDER IS 
PORT ( MAN : MAl~AGER ; I : INTEGER ; LAST : BOOLEAN ) 

VALUE : INTEGER ; COHPENSATE : BOOLEAN ; 
REVERSE PROCEDURE; 
BEGIN END; -- called as INNER when recovering 

BEGIN 

LiNK 
SEND 

first of all the prelude 
IF ERRORFLAG THEN -- system is recovering 
BEGIN 

COMPENSATE:=TRUE; indicate this to postlude 
MAN.SEND(VALUE,LAST) -- send compensating value to receiver 

END 
ELSE -- its a normal exchange 
HEGIN 

VALUE:=-I; -- record compensating value for this exchange 
COMPENSATE:=FALSE; -- for postlude 
MAN.SEND(I,LAST) -- send the value 

END; 
lNNt:R; -- perform the user's code 

now the postlude 
IF ERRORFLAG AND NOT COHPENSATE THEN 

MAN.SEND(VALUE,LAST) -- compensate for error in INNER 
END; 

MANAGER 
SENDER ; -- port to control LINK 

TASK PRODUCER; 
BEGIN 

ENSURE ( ••• ) BY-- some acceptance test 
BEGIN 

fOR I:= 1 TO 3 DO 
USING SEND(LINK,I,FALSE) DO -- send the numbers 

END 
t.;LSE BY 
HEGIN ••• END 
ELSE BY ERROR; 

a secondary algorithm 

USING SEND(LINK,O,TRUE) DO; -- signal termination 
END; 

fig. 2.3 ••• 



TASK CONSUMER; 
tiEGIN 

LAST:=FALSE 
~UM := 0; 
WHILE NOT LAST DO 
HEGIN 

LINK.RECEIVE(I,LAST) 
IF NOT LAST THEN SUM:=SUM+I 
ELSE 

END 
~ND; 

HEGIN ••• END --use the result 

Fig. 2.3 
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Fig. 2.3 shows an example of how a PORT can be used to provide 

reliable communication between processes. It consists of two 

processes 'PRODUCER' and 'CONSUMER' which communicate via a MONITOR 

'LINK'. The function of the system is for CONSUMER to calculate the 

sum of the numbers generated by PRODUCER, and the use of the PORT 

'SEND' ensures that the sum is correct even if an error occurs in the 

producer. This is because each time the port is used to send a 

message a compensating value (the negative of the value being sent) 

is stored in PRODUCER's cache. Should an error occur in PRODUCER, 

the 'reverse' invocations of SEND will cause these negative values to 

be sent to CONSUMER, thereby correcting the sum that it holds. In 

this example the reverse procedure is actually null, and the 

compensating action is taken in the prelude and postlude of the PORT. 

This is to allow for the possibility of errors occuring whilst the 

INNER statement of the PORT is being executed, in which case the test 

on ERRORFLAG in the postlude will ensure that compensation takes 

place . 
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The main advantage of this scheme is that processes do not 

become dependent on each other and so recovery of an individual 

process can take place, meaning that the DOMINO EFFECT (Ran 75) will 

be avoided. This occurs when processes have interacted and become 

dependent on each other in such a way that successive state 

restorations must take place, until the processes have been wound 

back to their first checkpoints. The effectiveness of this structure 

has been demonstrated in an implementation based on Concurrent Pascal 

and the SOLO operating system (BrH 76), which is described, with 

several examples in (Shr 79a) and (Shr 79b). 

From the programmer's point of view, however, there are several 

disadvantages. Firstly the suggested use of MONITOR's with PORT's, 

brings with it all the difficulties described in section 2.2.4. 

Secondly the use of the errorflag makes the prelude and postlude 

rather inelegant, giving the appearance of a somewhat adhoc addition. 

Thirdly, the use of PORT's adds considerable complexity to programs, 

as can be seen from the examples in (Shr 79a). Finally the need to 

provide compensation will restrict the user in the ways in which he 

can solve problems, circumstances being made even worse by the 

possible presence of errors in reverse procedures. There are also 

disadvantages from the point of view of recoverability because the 

programmer cannot be guaranteed that his attempts at compensation 

will have any effect, for other processes may have used the erroneous 

data and terminated before the error was discovered causing faulty 

results to be committed. In order to overcome this the programmer 

must ensure that processes are properly synchronised, but in cases 
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where interactions take place with unknown processes (that is 

processes created by other programmers) it can never be certain 

whether they will behave in the correct manner. This problem does 

not occur in the limited environment of a Concurrent Pascal program, 

but in "real" systems this situation will arise fairly frequently. 

2.3.4 Deadlines and safe programming -

None of the systems we have looked at so far have offered a 

solution to the problem of unintentional infinite loops or waits that 

was identified above. All of them would require manual intervention 

to stop the execution of a looping process. Of course a loop need 

not be infinite to be in error - especially in real time systems 

where the time taken to execute sections of program can have a 

significant result on the system state. Anderson (And 75) has 

attacked this problem by introducing a new approach to the way in 

which looping constructs are used in programs. 

three control structures as being necessary:-

He has identified 

1. REPEAT S UPTO N TIMES - which, with "EXIT" statements in S, 

can be used to implement constructs such as "WHILE" and 

"UNTIL" statements, 

2. DO S EXACTLY N TIMES -where S contains no EXIT statements, 

thus providing "FOR" statment facilities, 

3. CYCLE S INDEFINITELY - again with no EXITs in S, here the 
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programmer specifically intends this to be an infinite loop. 

These constructs allow the more usual loop errors to be 

detected, but do not provide any way of trapping erroneous waits and 

loops (and other errors) caused by the corruption of the internal 

representation of a program. These can often be detected by 

checksumming straight ·line sections of code (that is sections 

containing no control transfers) at compile time and run time. A 

comparison of the two values can be carried out at the end of each 

straight line section - if they are not identical the code has been 

corrupted, so a failure condition can be raised in the process 

executing the code. Another approach adopted in the PLURIBUS system 

(Rea 73,0rn 75) is to periodically checksum all the program modules 

that make up the system, again comparing the value obtained with one 

that was statically determined at compile (or load) time. These two 

methods are not foolproof, as errors could cancel each other out 

(especially in the latter case where much larger quantities of data 

are being checked), but they will significantly enhance the 

reliability of a system by trapping errors which may not otherwise be 

detectable (though note that the former method will detect an error 

the first time a corrupted section is executed, whereas with the 

latter corrupted code could have been exeucted several times before 

it is detected). 

Another technique which is often used for trapping faulty loops 

and waits is based on the use of watch-dog timers . This involves 

setting a maximum execution ,time for a program section and starting a 



PAGE 51 

timer when it is entered, if the time allotted is exceeded an error 

condition is raised. This technique has been used in the PLURIBUS 

system and was also suggested by Dennis and Van Horn for the system 

they describe in (Den 66). Horton and Campbell (HoC) have formalised 

this use of timers into the concept of DEADLINES, which allow for the 

detection and recovery from possible timing errors. The structure 

they develop allows the programmer to assign a maximum time limit to 

a section of program and to provide a recovery block structure (see 

section 3.4) to handle any errors that occur. The scheduling of the 

execution of such sections is very critical, and Liestman and 

Campbell (Lie 80) have shown how certain optimal schedules for 

systems using deadlines can be achieved and how idle time created by 

program successes (that is within their deadlines) can be 

rescheduled. Deadlines have their most important applications in 

real-time systems, (for example fig. 2.4 which shows a navigational 

application, due to Campbell), but should. prove to be useful in all 

cases where looping errors occur. 

EVERY SECOND -- frequency at which process is to be executed 
SERVICE POSITION UPDATE 
WITHIN 1 MILLISECOND -- deadline time limit 
BY 
BEGIN 

E~ 

READ_NAVIGATIONAL_pATA; 
CALCULATE_NEW_POSITION; 

ELSE BY 
~STIMATE_POSITION_FROM_OLD_DATA; 

¥ig. 2.4 
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2.3.5 Distributed systems -

Recently considerable attention has been given to the 

theoretical aspects of backward error recovery in concurrent systems 

and Merlin and Randell have developed a formal method of describing 

the concepts involved, by the use of "Occurrence Graphs", which are 

similar to Petri's Causal Nets (Pet 77). The special characteristic 

of Merlin and Randell's graphs is that they are regarded as being 

created and recorded dynamically by the system that they are 

modelling as it executes and they also have some extra features 

geared towards the problems of state restoration. One of the 

important concepts that they introduce is that of RESTORABLE PLACE or 

RECOVERY POINT (Ran 78), which is a point in the execution of a 

process to which the process can be returned, because checkpoint 

information had been built up after it, enabling state restoration to 

take place. Where the state restoration of several processes is 

related the set of recovery points to which they are wound back is 

known as a RECOVERY LINE. 

In order to constitute a recovery line the set of recovery 

points chosen must each belong to a different process, and be 

consistent, that is:-

1. One of the recovery points must belong to the process in 

which the error that initiated recovery was detected; 

2. .No information must have passed between any two of the 
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processes in the set betweeen the saving of their recovery 

points; 

3. No information must have passed between any process external 

to the set and a member of the set after its recovery point 

was saved. 

It is the search for such a set of recovery points that causes 

the domino effect, described in section 2.3.3 to occur. 

Herlin and Randell describe various operations which can be 

performed on occurence graphs, but their most important result is the 

development of what they term a "Chase Protocol". This can be used 

1n a decentralised recovery mechanism for a distributed system and 

they present a proof that the use of such a protocol will provide 

system recoverability even when there are several faults in the 

overall system. Such a protocol involves the sending of messages 

between the modes of a system to propagate recovery activity; it is 

called a "chase protocol" because processes which are dependent on 

erroneous data will continue to execute normally, until the failure 

message manages to reach them. This means that there may be times at 

which the system state is inconsistent, but it is guaranteed that a 

consistent state will be reached after a finite, though perhaps 

arbitrarily long time. 

Occurrence graphs are a useful tool for representing the state 

of concurrent systems, and the work of Best (Bes 78, Bes 79) on 
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atomicity has extended their utility considerably. At the moment the 

work being done is purely theoretical, however it can be expected 

that ideas with practical application for the programmer will result 

from it. 

2.4 Spheres of Control 

As we have just indicated the theoretical aspects of both 

resource control and reliablity have been studied in considerable 

depth, and both topics are nmo~ fairly well understood. We have seen 

that the work on occurrence graphs has produced a flexible and 

powerful tool for modelling concurrent systems and the effect that 

recovery has on them, and that work is being carried out on modelling 

atomicity using them. However occurrence graphs are a mathematical 

tool and as such are inaccessible to many people, and the work of 

Davies on SPHERES OF CONTROL (Dav 73, Dav 79, Bjo 73) provide a 

simpler way of characterising the problems of resource control and 

recovery. Davies defines a sphere of control (SOC) as "a boundary 

around the effects of a process for the specific purpose of 

controlling commitments", and states that each SOC is an atomic 

process \Jhen seen from its enclosing level of control. He goes on to 

define three kinds of resource usage:-

1. Reference - where the value of a resource may alter at any 

time and the supplier of the resource does not have to 

inform users of the resource of the change, for example the 

system clock, 
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2. Dependent - where the supplier of the resource must inform 

the users of any change in value, and they in turn must give 

up the resource on demand, (providing backward 

recovery) 

error 

3. Committed - which is the same as dependent, except that the 

user is not obliged to give up the resource when requested 

to do so, so a compensation function must exist to correct 

the system. (providing forward error recovery). 

Then, using the definitions, he shows the steps needed to 

initiate and terminate a sphere of control so that integrity is 

preserved. In (Dav 79) he extends these notions to cover such things 

as consistency, auditing and the scheduling of transactions, 

providing a complete framework within which the problems of 

reliability can be discussed no matter whether the systems in 

question are based on computers or are completely operated by humans. 

Some of the ideas he presents could be built into real systems, 

however as yet there are still concepts which. we do not know how to 

implement efficiently (or sometimes at all) and more research must be 

done before the benefits of such theoretical work reach the 

programmer. 
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2.5 Conclusion~ the programmer interface 

From the foregoing we can see that though several well 

structured methods of resource control are available to the 

programmer little thought has been given to making them recoverable 

and providing the user with adequate error handling facilities. The 

systems that have been developed all use the recovery block as the 

basic building unit for structured error handling, and this reflects 

the fundamental simplicity of the construct. However in order to 

allow reliable control of access to resources additional features, 

such as PORTS, must also be provided to augment whichever of the 

locking constructs is adopted. This makes the task of writing 

programs more complex and means that the code intended to increase 

the reliablity of programs could be a source of software error. 

The access control methods discussed do not provide particularly 

good interfaces to the user, most of them being primarily concerned 

with implementing mutual exclusion, and not being flexible enough to 

allow extensions to include other lock modes. Only atomic actions 

could easily provide this facility and of the schemes requiring the 

use of shared resources they provide the interface which fits most 

easily into the widest range of languages, being closely related to 

the block structure of prograns. Ho~Jever the use of conrnunicating 

processes opens up a different set of possibilities and may require 

the development of completely new approaches to the way in ~Jhich 

processes interact. 
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Of all the language interfaces and facilities we have looked at 

above, only the use of safe programming and deadlines combine 

reliability and simplicity and do not disadvantage the user in any 

way. These two features must be considered as an essential part of 

any highly reliable programming system because they are the only 

defence against looping and waiting errors. Some means of detecting 

code corruption must also be considered, as this also provides error 

detection that cannot be attained through any other means. 

In general then, the programmer is not well provided for in the 

realms of resource control and reliability, probably due to the 

theoretical nature of most of the work done in this field. However 

this will have to change quite drastically if the present trend 

towards distributed systems continues at its present rate. 
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3.0 Uncooperative Processes 

3.1 Introduction 

In section 1. 2 we introduced the concept of "uncooperativeness" 

to describe processes \~hich release all the resources they have 

acquired together, before either terminating or starting to build up 

a new set of resources. In this chapter we shall show how a system 

supporting such processes providing full recoverability and a simple 

user interface can be constructed by using a modified version of the 

recovery cache mechanism (Hor 74, Ran 75). The system described will 

also form the basis for facilities to be developed in the following 

chapters that will allow cooperative processes to be supported, and 

the reader should bear this in mind throughout. Uncooperative 

processes form a very important class as most of the jobs run on any 

computer system either are or could easily be made "uncooperative". 

Therefore any changes in the way in which they are handled must not 

introduce cumbersome constructs to the user interface, nor should 

they adversely affect the efficiency of the system without providing 

some compensating benefits. We shall endeavour to show that the 

system developed here achieves these ends. 

3.2 Multi-level systems 

We must first briefly describe the abstract structure within 

which t~e system to be described is designed to fit. This will be 
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assumed to consist of a series of LEVELS, one above the other, where 

each level provides a more abstract view of the underlying machine to 

the levels above it. Levels may be used to provide new facilities or 

to hide existing ones in a similar fashion to the CLASS structure of 

SIMULA (Bir 73) or the PRIVATE types of ADA (Ich 79). This new view 

provided by a level constitutes an INTERFACE for the level 

immediately above, prograns written to run at the higher level being 

expressed in terms of the operations and types defined by the 

interface. Note however that the level supporting this interface 

"sees" the user's program in terms of operations and types provided 

by still lower levels. This is especially important to remember for 

interfaces supporting concurrency in the level above them. In this 

case it is not necessarily possible for the lower level to determine 

the validity of a sequence of interacting operations because the user 

expressed relationships between processes are not meaningful to it. 

The idea of multi-level systems is discussed more fully in (Ver 

77) and (And 78), both of which relate closely to the work described 

in (Dij 68b). However for the purposes of this thesis we need only 

be concerned with the topmost two levels 'of the system and the 

interface that lies between them. We shall call the higher the USER 

level, and the lower the INTERPRETER level . The interpreter level 

will be assumed to provide COMPLETE RECOVERABILITY to the user, that 

is every type provided by it is RECOVERABLE. This means that should 

an error arise in the user level (either detected by the interpreter 

or explicitly signalled by a program) the interpreter guarantees to 

be able to restore the states of objects of any type which have been 
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altered to those pertaining at some previous user specified point in 

the execution of the program. Always assuming that the user has 

actually made use of the facility to indicate such points. If an 

interface does not provide complete recovery for every type it is 

said to be PARTIALLY RECOVERABLE. These are fully discussed in (Ver 

77) and will not be considered further here. 

Anderson et al (And 78) have introduced the concept of 

INTERPRETER EXTENSIONS to describe programs that provide users \vith 

new abstract types in addition to those supported by an existing 

interpreter. They have described two types - DISJOINT and INCLUSIVE, 

the difference between them being that in the former, recovery 

information for the new types is held by the program providing the 

extension, and in the latter this is held by the programs using the 

extended facilities. However, for the purposes of this thesis the 

use of interpreter extensions, and the pr~blems this introduces, need 

not concern us and it will be assumed that the interface seen by a 

user is not provided by an interpreter extension. 

3.3 Specification~ uncooperative processes 

Before embarking on the description of an interpreter to support 

uncooperative processes we must first set out the facilities that we 

intend it to provide the user. However we are not concerned with the 

actual details of the language in which the user expresses his 

programs. This topic is discussed briefly in section 3.9.1 and an 

actual example described in 'section 3.9.2.1. 
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There are five main features:-

1. Common resources should not be differentiated fron private 

resources except by their declaration. This would mean, 

firstly, that the user need not be aware of the need for 

locking of resources, secondly that existing software, such 

as library procedures , could be used just as well on cannon 

resources as on private ones . Thirdly, that no program 

module using common resources is dependent on another module 

having been executed before it for the purpose of acquiring 

the resources, making testing easier. Finally that the 

system can easily hide the fact that some resources 

available to the programmer are actually common rather than 

private, 

2. The user is always protected from the activities and errors 

of other users, 

3. In the event of an error being detected in a program, 

causing it to fail, common resources that it was using will 

be released and left in a consistent state, 

4. It should be easy to make existing programs uncooperative, 

S. The above facilities should not impair the efficiency of the 

system and should be usable for real-time applications. 
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These five are fully in accord with the characteristics required 

of a programmer interface set out in section 2.1.4. 

3.4 Recovery blocks and the recovery cache 

As we have just seen, for the facilities of a completely 

recoverable interface to be of any utility the user must indicate 

certain points in his programs which can be regarded as checkpoints. 

In chapter two we saw that this facility could be provided by t~e use 

of RECOVERY BLOCKS supported by a RECOVERY CACHE, a scheme developed 

by the highly reliable computing systems project at the University of 

Newcastle upon Tyne. This has been described in (Hor 74) and (Ran 

75), however as its use is so fundamental to the work developed in 

this thesis its characteristics and operation will be set out here. 

A recovery block consists of a set 'of ALTERNATES, which are 

realisations of the algorithmn that the block is to implement, and an 

ACCEPTANCE TEST, which is used to determine the validity, of the 

results produced by the execution of an alternate. One of the 

alternates is designated the PRIMARY and is always executed. Should 

an error occur during its processing, or if the results it produces 

do not pass the acceptance test, the program state is restored to 

that existing just prior to the start of the recovery block and the 

SECONDARY alternate is executed. This process is repeated until an 

alternate executes successfully and passes the acceptance test or 

until either no more alternates are available or a deadline 

associated with the recovery block expires. If either of the latter 



ENSURE <ATl> BY 
nEG IN 

~NSURE <AT2> BY 
.tSEGIN 

EN~URE <AT3> BY 
.tSEGIN 

END 
ELSE BY 
BEGIN 

END 
ELSE ERROR; 

~ND 

t;LSE BY 
.BEGIN 

END 
t;LSE ERROR; 

END 
ELSE BY 
BEGIN 

~ND 

ELSE ERROR; 

• • • • • • • • • • (a) 

• • • • • • • • • • (b) 

• • • • • • • • • • (c) 

• • • • • • • • • • (d) 

• • • • • • • • • • (e) 

• • • • • • • • • • (f) 

Example Execution Sequences 

a,b ,c 
a,b,c,d 
a,b,c,d,e 
a,b,f 

- no errors 
- error at c 
- errors at c and d 
- error at b 

t'ig. 3.1 
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events takes place the recovery block is said to have FAILED and an 

error is raised. Should the failing recovery block be nested within 

another, the enclosing alternate is wound back and the process of 

error recovery continues at its level. However if the error occurs 

in an outermost recovery block the program containing it has failed 

and no more recovery can take place. An event of this sort is 
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designated a CATASTROPHE. Fig. 3.1 shows a typical nested recovery 

block structure and how a typical execution may progress. 

Some other points to note about recovery blocks are: 

1. A primary alternate must always be present, but the presence 

of other alternates is not mandatory, 

l. Alternates need not be distinct, that is any alternate may 

be RETRIED, the number of times that it is attempted being 

specified by the user, an undefined number being permissible 

only when the recovery block has a deadline associated with 

it, 

J. In the case of nested recovery blocks an expiring deadline 

causes restoration to take place to the start of the block 

enclosing the statements associated with the deadline, 

rather than the block executing at the time - deadlines 

cannot be extended and an enclosing deadline takes 

precedence over those set up inside it. 

The mechansism used to provide the state restoration required by 

recovery blocks is the recovery cache which, as we have seen, is in 

essence a device for providing an automatic audit trail by arranging 

that when an operation takes place that alters the state of a 

resource, its previous state is recorded before the update is carried 
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out. This ensures that the effects of the operation can be undone 

should an error occur. The advantages that the recovery cache has 

over other audit trail mechanisms are that only the first state 

change occuring to a resource in a recovery block is recorded, all 

others being unnecessary for state restoration, and that only those 

resources actually changed are entered into the cache. Let us now 

look at the mechanism in detail to see how these are achieved. 

The cache itself is a stack consisting of elements which are 

either BARRIERS or records of a state change. Each time a recovery 

block is entered a new barrier is created in the cache, and the 

RECOVERY LEVEL is incremented. The barrier represents the point to 

which state restoration takes place for this recovery level, 

therefore by undoing all the state changes recorded after the barrier 

was created the program state will be identical to that existing when 

the barrier was created. The records of state change consist of 

three elements - firstly a pointer to the resource which was altered, 

then some representation of its state before it was altered and 

thirdly a copy of the recovery level field associated with the 

resource. Every object that can be cached has one of these fields 

which is used to record the last level at which a state was cached 

tor the object. It is this field that is used to prevent multiple 

entries being made for a resource at any one recovery level. This is 

achieved by comparing the recovery level field with the current 

recovery level; if they are equal there is no need to cache the 

item, otherwise the object is cached and the recovery field is 

updated 'to contain the current level thus eliminating further 
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cacheing. This has the additional advantage of allowing local 

variables of a recovery block to escape being cached. their recovery 

level fields being initialised to the value of the current recovery 

level when they are created. 

When an error occurs and the entries are restored as described 

above. the operation is known as REJECTION. but if the recovery block 

terminates successfully the cache must be ACCEPTED. This activity is 

more complex than that of rejection because in order to maintain the 

process's recoverability the record of state changes must be 

cumulative. That is if a state change has taken place at level N to 

a resource not cached at level N-1 the entry must be preserved in the 

cache to allow level N-1 to recover fully. This occurence is. 

however. easily detected because if an entry needs to be preserved 

the value of its recovery level field stored in the cache will not be 

the same as the recovery level enclosing ~he block which is being 

processed. (Note that the barrier entry for a recovery block is 

deleted when the block is accepted). 

This description is of course of a cache for unshared resources. 

and in the next section we shall show how this mechanism must be 

altered to support shared resources. 

3.5 A recovery cache scheme to support uncooperative processes 

One characteristic of recovery blocks which only becomes 

apparent when concurrency is required is that during the execution of 
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an alternate the state changes made to resources are not committed. 

Hence, if the resources in question are shared, other processes must 

be prevented from using them until the alternate terminates 

successfully. If this is not done processes may build up 

dependencies upon each other which could be very complex and 

therefore difficult to undo in the event of an error. In order to 

avoid this every alternate must be atomic, therefore every shared 

resource used within an alternate must be locked and cannot be 

released until the alternate terminates. Thus any alternate of a 

recovery block can be represented by an ATOMIC ACTION (see section 

2.2.5), as has been suggested by Lomet (Lom 76a). Of course an 

atomic action on its own is not equivalent to a recovery block for 

its use carries no implication about the collection of recovery data, 

so we shall introduce the concept of a RECOVERABLE ATOMIC ACTION. 

This has all the properties of an atomic action, with the addition 

that at any time before its termination .the action may be wound back 

to its starting point, releasing all the resources acquired during 

its execution without affecting the environment as seen by other 

processes. The advantages to be obtained from the use of recoverable 

atomic actions will become clear later. Suffice it to say here that 

from now on any unqualified reference to an atomic action or simply 

action will mean a recoverable atomic action, and that "recovery 

block" may be substituted for any such reference without affecting 

its meaning. Where a set of nested actions is intended we shall use 

the terms "process" and "program", which will be taken to refer to 

all the actions existing at a given instant. Now we shall examine 

the requirements of a syste~ to support recoverable atomic actions. 
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The properties such a system must possess are:-

1. A recovery cache to collect state restoration data, 

l. The ability to recognise the use of shared variables and 

place an appropriate lock before proceeding, 

3. A book keeping scheme to record locks put on by an action, 

which can be used to release locks for the current action 

when an error occurs, but which will otherwise accumulate 

all the locks placed until the end of the outermost action. 

Inspection of the above shm-1s that properties two and three are 

very similar to those of the recovery cache, though with respect to 

lock status rather than "value". This suggests that it i s possible 

to devise a cache mechanism which will handle both locking and state 

saving and the rest of this section will be devoted to the 

description of such a scheme. From now on we shall refer to the 

scheme described in the previous section as the simple recovery 

cache. 

ln order that the simple recovery cache may operate, each 

resource must have a recovery level field associated with it, and to 

support atomic actions each shared resource must have a field in 

which its lock status is recorded. However ANY resource may become 

shared if a process forks into several sub-processes \-lhich share the 

use of its private r e sources , s o every resourc e would ha ve to hav e a 
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lock field as well as a recovery level field, which could mean an 

unacceptably large storage overhead. The solution to this is to 

combine the lock field and the recovery level field into a single 

ATOMIC ACTION INDENTIFIER FIELD. The value in this field will be 

such that 

1. It will differentiate between different nested levels of 

actions within a single process, just as the recovery level 

does for nested recovery blocks. 

l. It will allow the interpreter to determine, by inspection, 

whether a particular process has access permission to the 

resource to which the field is attached. 

To achieve this it is necessary that every time an action is 

entered a unique identifier be generated for it and to store, in a 

area accessible to all processes and addressable using the generated 

identifier, the identity of the process that initiated the action. 

Similar requirements are needed for the identifiers used in 

information protection schemes (Den 66, Sal 75) and, as in those 

cases, they must be generated by the interpreter and not the user. 

This is for several reasons :-

1. User generated names may not be distinct, 

l. Actions may be entered recursively, 
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J. The user may not identify the action (this occurs where 

shared ato~ic actions are used- see chapter 4), 

4. User generated names could be "forged" to obtain access to 

resources \¥here none is allowed. 

Assuming that these requirements have been met the operation of 

the recovery cache will now be as follows :-

If the identifier field of a resource has the same value as the 

identifier of the current action then proceed, (cf. recovery levels) 

otherwise wait until either the process is a member of the set 

of processes addressed by the identifier field or the field is null 

(that is the resource is not locked), then perform the usual encache 

operation (store the resource address, its state and its identifier 

field and update the field to contain the 

identifier). 

current action's 

This sequence, if used in the simple cache environMent, would 

successfully handle updates, however it is also necessary to lock 

common resources which are "read". Therefore operations that do this 

must recognise when a coMmon resource is used and cache it if 

necessary. Cacheing of ALL reads, shared and private alike, would 

eliminate the need for this recognition (though it effectively takes 

place in the memory management hardware anyway), but this would 

presumably present unaccep'table overheads in terms of cache size. 
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Fig. 3.2 shows various stages of cache growth for a simple process. 

It is important to note how the cache acceptance algorithm developed 

for the simple recovery cache guarantees that locks are accumulated 

until the outermost action terminates. The rejection alg orithm also 

guarantees that locks placed by an action are released when an error 

occurs. 

The size of the units which are cached we can term t he 

GRANULARITY OF CACHEING and is simply related to the granularity of 

locking for the system. It must never be greater than the 

granularity of locking because the cache may then be recording data 

which the process has no access to, which can cause interference 

between processes if the cache has to be backed out. If the 

granularity of locking is larger than the granularity of cacheing 

extra action identifier fields will be needed to control the locking 

of groups of resources. However as these . resources must all have 

such fields in order to control their recovery this would seem to be 

redundant, but it may provide advantages as far as preventing 

deadlocks and reducing waiting times for resource requests. For 

simplicity though we shall assume from now on that the granularities 

are equal. 

The scheme we have just described only caters for requests in 

one lock mode (exclusive) but it can be adapted to implement the more 

complex locking schemes as described in section 2.1.3. However it 

must be remembered that as we are dealing with uncooperative 

processe~ locks cannot he released (except in the case of error) 
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Cache States 

Create a new barrier in the cache. 

b) -

Cache/lock A as it is shared, update and cache local L. 

c) -

Cache/lock B, but not ~ as access is a local read. 

d) -

Another new barrier in the cache. 

e) -

Cache/lock C, but not local N. 

Fig. 3.2 ••• 
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f) -

Cache B for this recovery level and updated local M. 

g) -

Accept cache - maintain C and M from previous level. 

h) -

Final cache acceptance - A, B and C are now released. 

Fig. 3. 2 

until the process terminates. They can only be made more binding. 

The next section demonstrates this by giving the rules for 

controlling locking when exclusive and shared read locks are 

provided. The problem of deadlocks will be discussed in section 3.7. 

3.6 Rules for providing! and SR locks 

3.6.1 Non-Preemptive Systems -

Let us look first at the rules governing non-preemptive systems, 

that is systems where processes may have different priorities 

associated with them, but where a process of high priority cannot 

"snatch" a resource from a process of lower priority which is using 

it. However the queue of processes waiting to lock the resource 

could be priority ordered, thus ensuring that a high priority process 

will be delayed for as short. a time as possible. Fig. 3.3 shows the 
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various combinations of lock request mode and the mode in which a 

resource is actually locked with the operations needed to acquire the 

resource. This diagram is related to a preemptive system, but if the 

reader lets the priorites P1 and P2 be equal the rules for a 

non-preemptive system will be obtained. 

3.6.2 Preemptive System 

In a normal preemptive system a process of high priority may 

take a resource from a process of lower priority, halt that process, 

save the state of the resource, use the resource, and then restore 

its previous state, proceeding with its execution after reactivating 

the halted process. This is akin to the concept of lending mentioned 

in section 2.1.1, and assumes that the resource can be placed into 

some defined initial state after saving its current state, but this 

is a special case which \-till be dealt with in section 5.4 below. 

Since in general such an assumption cannot be made preemption is not 

often implemented, however as the system we are dealing with supports 

recoverable atomic actions preemption can take place. This is done 

by causing the action holding the resource in question to be wound 

back, thus releasing the resource in ~ consistent state, allowing it 

to be locked by the high priority process. There are several points 

to be aware of here:-

1. Preemption is not an error condition so an action that is 

backed out is restarted, if it is part of a recovery block 

the next alternate is not taken, 
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2. Deadlocks can only occur between processes of equal 

priority, as the system behaves as if it were non-preemptive 

in that case, 

3. A special case arises when a process wishes to preempt a 

resource which is held exclusively by another process. Here 

the high priority process may wish to wait until the 

resource is released in order to obtain its most recent 

"value". This would seem to be advantageous, except where 

the extra delay involved would prejudice the performance of 

the process. 

Fig. 3.3 shows the operations required for a preemptive system, 

and assumes that the priority of an action is identical to that of 

the process which initiated it. 'fhere the resource is not locked the 

request may be granted immediately, and where the resource has 

already been locked by the action (or one of its enclosing actions) 

the same is true, though a conversion must take place when an X lock 

is requested on a resource held in SR. The remaining cases arise 

where the resource is already locked by other actions not enclosing 

the requesting action. In all cases, if the lock request and actual 

lock mode are compatible, the request is granted, but if this is not 

the case preemption may be possible. To determine if this is so the 

priority of the requesting action is compared with the maximum of the 

priority of the actions currently holding the resource (excepting 

itself should it be one of them). If it is greater, all the actions 

are wound back and the requesting action proceeds, possibly 
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performing a lock conversion fro~ SR to X in the process. Otherwise 

the action must wait until its request can be granted. 

Similar systems have been described by Gray et al (Gra 76) and 

Chamberlin et al (Cha 74), the latter however restricting the places 

where preemption can occur to preserve consistency (see section 

3.10). 

3.7 Deadlocks 

3.7.1 Deadlock prevention and avoidance-

Methods for handling system deadlocks are usually classified 

into three types after (Cof 71), these are:-

1. Deadlock prevention- the design of the system excludes, a 

priori, the possibility of any deadlock occurring, 

2. Deadlock avoidance - programs must predeclare the usage they 

wish to make of shared resources. The system then analyses 

these requests in the light of other outstanding requests, 

and allows those programs whose requests are SAFE (that is 

will not cause a deadlock) to proceed. 

3. Deadlock detection and recovery - The system has the ability 

to detect when a deadlock has or will occur, and to break 
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the deadlock in some way. 

Systems providing deadlock prevention usually rely on special 

knowledge of the mix of programs they are to support, though many 

systems described as preventing deadlocks do so by the use of 

avoidance techniques. These techniques usually support STATIC 

allocation of resources, that is all the resources that a user has 

indicated he requires are given to him at the start of his program, 

when his request is adjudged to be safe. This means that users may 

have possession of resources for far longer than they actually need 

them. 

Habermann (Hab 69) has, however, developed an algorithm where 

the user states the upper limit of his requirements, and is a llowed 

to acquire resources dynamically as his program proceeds. However 

this solution and that of Holt (Hol 72) are only designed for systems 

providing ARBITRARY resources, that is where a user is constrained to 

specifying the type of resource he requires rather than precisely 

identifying a particular resource. Lomet (Lorn 76b) has developed an 

algorithm, supporting both exclusive and shared read requests, which 

overcomes this disadvantage and can be used in, what he terms, 

UN IT-RESOURCE systems, such as those providing access to data bases. 

This method still depends on the predeclaration and static allocation 

of resources, and so cannot support programs whose requests fall into 

the following categories:-

1. Non-unique resource·name where one resource may have 
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several descriptions, which are not distinguishable, 

2. Modifiable resource categories - where operations on the 

resource can change its description, 

J. Interdependent locks after locking one resource and 

examining it a program may decide to lock another resource, 

the identity of which depends on the results of the 

examination. 

To provide support for such requests a dynamic resource 

allocation scheme must be adopted, and this requires that deadlocks 

be detected and recovered from. Chamberlin et al (Cha 74) develop an 

algorithm for this, which uses preemption of resources to break 

deadlocks, but constrains the user as to the way in which requests 

for resources are made (see section 3.10). This scheme possesses the 

disadvantage that a process may be kept waiting indefinitely if its 

resources are continually being preempted by other processes. This 

is also a possibility with Habermann's method, and Holt (Hal 71) has 

suggested associating a time limit with a resource request, after the 

expiry of which, the request must be granted, Chamberlin et al use a 

related solution with respect to preemption. 

The implementation of recoverable atomic actions requires a 

deadlock detection and recovery solution as they require a dynamic 

resource allocation strategy to support requests of the types 

described above. Recovery'can of course be provided by backing out 
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one of the deadlocked actions, forcing it to release the resources it 

holds, which will break the deadlock. However the deadlock must 

first be detected, and we shall describe a method for this in the 

next section. 

3.7.2 Deadlock detection for recoverable atomic action-

Most of the deadlock detection algorithms mentioned in the 

previous section are very complex. This is because they are usually 

designed to handle multiple requests for specified resources classes 

from a process and must delay the granting of the complete request 

until it can be guaranteed that a deadlock will not occur. However 

because the recovery cache mechanism can only operate on one resource 

at a time, and it is the part of the system which issues lock 

requests, the need to check multiple requests from a process is 

eliminated and this allows the deadlock detection scheme used to be 

very much simpler. There are two ways in which deadlocks can arise 

when resources are being allocated and we shall now show these can be 

detected. 

The first deadlock is of the type known as the DEADLY EMBRACE 

(Dij b~), and occurs when an action A attempts to lock a resource 

held by another action, B, whose progress is BLOCKED by A. Such 

blocking occurs either directly, when A (or one of its enclosing 

actions) holds a resource required by B, or indirectly when A holds a 

resource required by another action which directly or indirectly 

blocks B. To detect this we shall introduce the concept of a 
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BLOCKING GRAPH, which is maintained by the system and consists of 

directed arcs indicating which action is blocking which others. 

Hefore adding a new arc to the graph when a request is blocked the 

graph is checked to see whether the addition of the arc would cause a 

cycle to occur in it. If so a deadlock has been detected and 

appropriate recovery action must be taken. Fig. 3.4 shows a set of 

actions and their associated blocking graph at various stages in 

their execution. This shows that the blocking graph exhibits the 

tollowing properties:-

1. No action is represented more than once in the graph, 

l. No action can block itself or an action nested within it, 

3. No action can be blocked by more than one action, 

4. The blocking graph can consist of several disjoint trees, 

5. The number of directed arcs in a tree is always one less 

than the number of actions in it, unless a deadlock occurs 

in \>lhich case it equals the nunber of actions. 

This last property could be used to provide a means of detecting 

aeadlocks, however this can be done in other ways as we shall see in 

section 3. ;}. Similar schemes can be devised for handling multiple 

requests, tor example Lomet's (Lorn 76b) but are considerably more 

complicated. 
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where 1 indicates that a process is waiting. 

fig 3.4 

The second deadlock that can occur in recoverable atomic action 

systems only arises where several lock modes are in use and actions 

are allowed to convert the locks they hold from one mode to another 

more binding mode. For example, where exclusive and shared read 

locks are supported, a deadlock will arise when two or more processes 

that have locked a resource in shared read mode wish to convert this 

lock to an exclusive one. Only ONE process can be allowed to do this 

so the system must resolve the situation. Two possible ways in which 

this can be done both rely on the fact that lock requests must be 

processed atomically. Firstly preemption of resources can be 

introduced meaning that the first conversion request received will be 

granted and cause all the other actions involved to be stopped, 

effectively preventing the clashing requests from being made. 

However if priorities are'in use preemption may not be permitted so 
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the system must also incorporate the second method which is to make 

all conversion requests after the first encountered (which may not 

have yet been granted) illegal , causing the actions making them to be 

recovered, which may allow the first conversion to be processed. Of 

course, if priorities are supported, the first request may be 

preempted by a later one causing the waiting request to become 

invalid. The management of the recovery action for this and the 

previous deadlock will be discussed in the next section. 

3.7.3 Deadlock recovery management-

In the recoverable atomic action system the deadlocks we have 

just described can only occur between two actions, because of the 

atomicity of requests, and are resolved by backing out one of the 

actions. This will release the resource being contended for and 

allow the other action to proceed . However the question of which 

action to back out must be given very careful consideration , the aim 

at all times being to maximise throughput and minimise system 

disruption . 

Where actions have priorities attached the system will obviously 

back out the action with the lowest priority, guaranteeing (barring 

the incidence of program errors) that the action of highest priority 

will be executed without ever being backed out, though actions of 

lower priority could have been wound back several times. However for 

actions of equal priority (or where there are no priorities) some 

measure of ' the system disruption caused by backing out each of the 
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actions involved is needed, the least disruptive atomic action being 

wound back. 

Several possible criteria present themselves, though some may be 

viewed in different ways and the inherent non-determinism of the 

system makes finding a perfect, general solution impossible. Let us 

consider seven of the possibilities : 

!. An action which is near termination should not be wound back 

in favour of one which has just started execution - a 

similar idea has been suggested in (Cof 71) and the 

reasoning behind it is obvious. However actually putting it 

into practice is hard because there is no surefire way of 

gauging what proportion of an action has been executed. 

Hethod 4, belol-1, may sometimes provide a means of doing 

this, because an action accumulates locks as its execution 

proceeds, but the success of this is highly dependent on the 

way in which an action uses shared resources - some actions 

may only acquire resources very near their end and others 

may acquire all the resources they need when they begin. 

Method 7 would provide a much better indicator, but requires 

that deadlines are implemented, 

2. The action which is blocking the larger number of other 

actions should be backed out - this would be done in order 

to increase the number of active processes in the system 

and, thereby, hopefully, the throughput. The difficulty 
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here is that the blocking graph does not indicate which 

resources are being requested by the blocked actions and if 

they are all in contention for the same one nothing has been 

gained. Horeover increasing the number of active processes 

in the system increases the number of actions \vhich may 

deadlock, thus causing even more disruption in the system, 

3. The action which is blocking the lesser number of other 

actions should be backed out - this would ensure that the 

action which is causing the greater bottleneck in the system 

would be allowed to proceed bringing it nearer to 

termination and its subsequent disappearance from the 

system. This presents the opposite view to method 2, 

4. The action which holds the lesser number of locks (possibly 

including the locks held by its enclosing actions) should be 

backed out - the reasoning being either similar to that of 

method 1 or that of method 3, 

5. The action which was blocked when the deadlock was 

discovered should be wound back - this is based on the idea 

that if the action which is progresssing is left alone it 

will be brought nearer to its termination. The method also 

has the advantage of being simple to implement as it does 

not require extra information to be accumulated to aid the 

decision process. It should also have a fairly consistent 

.success rate which, is unaffected by the mix of processes in 
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the system, a characteristic not shared by any of the above . 

6. TtJhere deadlines are in force, the action '"hich has the 

longest time left till its deadline expires should be wound 

back - the reason behind this is obvious, and should prove 

fairly successful because the relationship between the 

length of a deadline and priority is very close (the shorter 

the time, the higher the priority), as is shown by the 

discussion in (Lie 80). 

7. Again, where deadlines are being used, the length of time 

left in a deadline be taken as a measure of how near 

comple t ion an action is, winding back the one which has 

progressed the least - this is another realisation of method 

1 and, to be accurate, the comparison must be based on the 

proportion of the whole deadline period which is left to be 

executed rather than on the times themselves as in method 6. 

This should prove very effective , but of course deadlines 

may not necessarily have been used or even be supported. 

Of these methods only number five can be guaranteed to function 

in every case. With all the others there is the possibility that the 

two quantities being compared are equal, in '"hich case a decision 

cannot be made. For this reason method five was chosen for the 

experimental system described in section 3.9.2, and it was through 

its use that the problem described in the next section was 

discovered. 
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Another question which must be considered regarding the 

management of deadlock recovery is ~o~hether or not a deadlock is 

regarded as an error, that is, whether or not the next alternate of a 

recovery block should be executed when a deadlock occurs in an 

alternate and it is wound back. The answer must of course be no, 

because the deadlock was in effect caused by the supporting system 

scheduling the concurrent processes incorrectly and hence the error 

lies in the interpreter level rather than the user level. What must 

be done instead is that the backed out action should be retried. 

Note that the deadlock which caused recovery to take place cannot 

take place in the same way, because the two resources being contended 

for are now held by a single action. 

3.7.4 A possible infinite loop in the deadlock recovery mechanism-

Fig. 3.5. shows part of a program involving three processes of 

equal priority each trying to use some conmon variables. Under 

certain timing conditions, when supported by the system described 

above using method five of the previous section to break deadlocks, a 

race condition arises ,.,here actions Al, A2 and A3 are repeatedly 

backed out and no progress is made. Programs exhibiting similar 

characteristics could also be constructed for the other methods we 

have described, except for those involving deadlines, where 

conditions are inherently unrepeatable. Fig . 3.6a shows an execution 

sequence which will cause the race to occur, and though the 

probability of such a sequence happening compared with other possible 

execution · flows is low, a so!"ution must be found, as, inevitably, the 
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sequence will arise at some time. 

Cut-lttON A, B, C, D, E, F : INT ; 

ACTION Al; ACTION A2; ACTION A3; 

P(A, B,C,D); R(E,D , C,F); S(F,D , B,A); 

El'.'D; END; END; 

Fig. 3 . 5 

The main characteristic of this loop is that the actions are 

backed out in the same sequence every time. That is Al, then A2 then 

AJ and so on, so what is needed, therefore, is some way of breaking 

this ordering which will cause the loop to be broken. This is 

achieved by giving each action a priority , if they do not have them 

a lready, and then incrementing the priority of the action \-lhich is 

not backed out when a deadlock occurs. The effect of this being that 

the actions will now have different priorities so future deadlocks 

will be broken on this basis rather than any other. Fig. 3 . 6b shows 

how the execution flow in fig. 3.6a is affected by the use of this 

algorithm. Incrementing priorities also has the . advantage that at 

least one process will pass through the system without ever being 

wound back. 
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Fig. 3. 6 

PAGE 89 



PAGE 90 

3.8 Synchronisation with external events 

3.8.1 The AWAIT statement-

The provision of a facility allowing synchronisation with 

external events requires that a process must be able to delay its 

progress until some condition involving shared resources becomes 

true. This is normally implemented by some form of "busy waiting" 

where the synchronisation condition is repeatedly evaluated until it 

becomes true. However, as this requires the shared resources to be 

locked for the duration of the evaluation and then unlocked, if the 

result is false, to enable other processes to set up the desired 

state, busy waiting cannot be implemented inside an atomic action. 

The programmer must therefore be provided with an operation which 

will allow him to specify synchronisation without violating the 

atomicity of his process. Lomet (Lom 76a) has introduced the AWAIT 

statement for this purpose, with which the programmer specifies the 

condition he requires to be true and the interpreter level delays his 

process until the condition is satisfied. Execution of the process 

is then allowed to proceed, the resources involved in the condition 

having been locked. Best (Bes 79) has raised some doubt about 

whether atomicity can be implemented where AWAIT statements are used 

inside atomic actions, basing his comments on an analysis using 

occurrence graphs. He suggests that the interaction between 

processes implied by the use of synchronisation violates the criteria 

for atomicity. However from the programmer's point of view this is 

not so, because his program 'does not "see" the processes which make 
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the synchronisation condition become true, even though a theoretical 

analysis of it shows that interaction has taken place. We shall 

therefore proceed under the assumption that the use of the AWAIT 

statement is valid, though future work may show this to be false. 

In order to simplify the implementation of the AWAIT statement 

Lomet has suggested that the conditions attached to them are built up 

only of what he calls SYNCHRONISING VARIABLES. These are in essence 

shared booleans which can be set to true to signal that some event 

has taken place. This helps the system because it then knows which 

variables can occur in AWAIT statements, allowing them to be provided 

in a way that makes the process of waiting more efficient. However 

even if general conditions are allowed the interpreter can minimise 

the number of times the synchronising condition has to be evaluated 

because :-

1. The condition cannot be evaluated until the resources 

involved are accessible to the action executing the AWAIT, 

so the system can use its own locking information to 

determine when it is worth attempting an evaluation, 

2. If the condition evaluates to false it need not be evaluated 

again until some other action has used one of the resources 

involved in it; when that action releases the resource then 

the condition may be re-evaluated. 



PAGE 92 

There are two error conditions involving the A~-IAIT statement 

which are worth mentioning here. The first is \.Then the synchronising 

condition will never become true and we have seen that the prog rammer 

must provide a deadline to overcome this type of error. However the 

second error can be detected by the interpreter and occurs when the 

programmer uses a resource that has already been locked by his 

process as part of a synchronising condition. If the value of this 

resource does not affect the result of evaluation of the condition 

t here is no error, hmo~ever if the state of the resource is such that 

it renders the condition false an error must be raised. This is 

because the resource state will never be changed as it is locked by 

the waiting process, so the AWAIT would never terminate . The 

interpreter level c a n detect this situation fairly easily by 

examining its lock information, however we shall see in chapter four 

that there are circumstances where this type of condition is not 

erroneous and is in fact very useful. 

3.8.2 Eval uation of synchronisation conditions 

Apart fron the error condition described above, there are other 

difficulties with the A~-IAIT statement, as described by Lomet. The 

first concerns the order of evaluation of expressions. Obviously the 

condition "A & B" must be fully evaluated to be true but "A v B" need 

not, provided A is true . However, if the condition were not 

completely evaluated, B would not be locked after the A\·1AIT 

statement, and, though this is not a source of error (if the user 

examines B it will be locked and if he makes an assumption about B' s 
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value then his program is wrong), it would seem to be against the 

spirit of atomic actions. We shall therefore state that A'-IAIT 

conditions are fully evaluated. 

AWAIT 
BEGIN 

'-/HEN A 

AWAIT A OR B THEN 
BEGIN 

END; 

Both A and B will be locked when 
this statement is executed 

(a) a simple A\lAIT statement 

-> BEGIN •• • END; A will be locked 
~1HtN B OR C -> BEGIN ••• END; B and C will be locked 
WHEN D AND E -> BEGIN •• • END; D and E will be 

END; 
at this point only those resources used in t he 

-- selected statement and its guard will be locked 

(b) a guarded AHAIT statement 

Fig. 3. 7 

locked 

The second difficulty with the AWAIT s'tatement is that it does 

not support non-determinacy. That is, an action cannot detect one of 

a set of events without preventing other processes from detecting one 

of the others, and for this purpose we shall introduce the guarded 

AWAIT statement, in analogy to Dijkstra ' s guarded commands (Dij 75). 

An example is shown in fig. 3.7. Here the system delays execution of 

the action containing the statement, until ONE of the guard 

conditions becomes true and then causes the statement block connected 

with that guard to be executed. After the statement has terminated 

only those com~on resources used in the guard and its statement block 

will be locked, all the others used in the statement will be free. 

The question of which guard is selec t ed if several become true at the 
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same time will not be discussed here, as the general area of 

"fairness" in non-deterministic systems is still a topic of debate, 

there being a brief discussion of the topic in (Hoa 78). 

3.9 Implementation of~ system supporting uncooperative processes 

3.9.1 General considerations-

Section 3.3 has described the facilities that a language 

interface to the system we have described should provide and we shall 

first look at ways in which this interface can be realised. At the 

simplest level, where the user is unaware of other processes and is 

unconcerned about error recovery, the best solution is to surround 

his program (whatever the language it is specified in) implicitly 

with an atomic action and associate a deadline with the action. This 

will ensure the safe use of all common resources, and will prevent 

infinite loops, though of course it will not guarantee the 

correctness of the program and its effects on the resources it uses. 

In fact this is in effect the solution adopted by all the typical 

small job, compile-and-go batch systems. such as \.JATFOR (Cre 78), 

where only one job runs at a time (hence it is ato~ic), COQmon 

resources (input device and output device) are "locked" for the 

duration of the job and "released" if it fails, and a maximum 

execution time limit is set for each job to catch loops and improve 

turnaround. Such systems usually allow the user to control the 

deadline .· for his job, within. certain defined limits, and also provide 
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another feature which we have not considered previously. That is the 

ability to control the amount of "use" a program makes of a resource. 

Typically this is a limit on the number of pages of printed output 

generated or cards punched. We shall look at this facility in 

greater detail in section 5.4.4. 

The more sophisticated user, who appreciates the complexity of 

the system, will wish to have an interface which allows him to use 

its full power. He will need a special language which provides 

recovery blocks, deadlines, atomic actions and the AWAIT statement 

and this may be constructed from the various language structures 

already existing for these facilities (Lom 76a, And 75, Ran 75, HoC). 

In section 3.10 we shall discuss the role that the language's 

compiler can have in increasing the efficiency of the system. 

At the interpreter level considerati~n must be given to the 

requirement for unique naming of actions identified in section 3.5. 

Such names need only be unique for the existence of the actions they 

refer to, and may be re-used at any time afterwards. The same 

function is served in the simple recovery block scheme by the 

recovery level, which is also unique at a given time but is re-used, 

so the best general solution for uncooperative processes is to 

maintain a record of the depth of nesting of atomic actions and 

generate identifiers by combining this value with some representation 

of the identity of the process in which the action occurs (but see 

sec ton 4.3.1). 
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~he next item to be considered must be the granularity of 

locking/cacheing of the system, and for the purposes of this 

discussion we shall assune that they are the same. There are two 

trade offs which must be examined with respect to this, the first 

being between concurrency and program size. This is because the 

smaller the unit of locking for any structural resource the greater 

the number of processes which can use its parts in parallel, but, as 

each unit requires an action identifier field with it, the greater 

the amount of space required to store lock data. As an example, 

consider a system capable of supporting fifteen tasks each with a 

maximum limit of fifteen nested actions. This would require eight 

bits to represent all the possible unique identifiers (assuming that 

all zeros indicate the unlocked state), and so, taking a byte 

addressable main store as our resource, would require twice as much 

store as was visible to the user to support locking at the level of 

the byte. Of course, with the current trend in storage prices this 

may not be unacceptable, especially where very high reliability is 

needed and special purpose hardware is being built, but in an 

interpretive system based on existing hardware limits on address 

space could make such a store size impossible. 

The second trade off is between concurrency and frequency of 

deadlock, and has been discussed in section 2.1.2. The decision 

taken must be based, firstly on the kind of processes to be run on 

the sys tem (in some cases deadlocks may never occur no matter ~1at 

the granularity of locking ) and secondly on the cost of backing out 

an action which will occur every time a dearllock arises. In the 
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general case it would seem better to have a unit of locking larger 

than the unit of addressing, though not so large as to prevent any 

concurrency at all. 

Section 3.7.3 has already discussed various criteria to be used 

to determine which ator:lic action should be backed out when a deadlock 

occurs between actions of equal priority. Consideration of this 

indicates that a combination of method five with either method six or 

seven would be best for a general system - the tests on deadlines 

being carried out first. However special cases may allo\v special 

solutions, the aim always being to minimise recovery activity. It 

must also be remembered that the loop described in section 3.7.4 must 

be prevented. 

The final topic which we must look at is the way in which the 

parallelism seen by the user is implemented at the interpreter level. 

There are two options. Firstly each distinct process at the user 

level could be implemented by a distinct process at the interpreter 

level, all the processes having access to a common store, or secondly 

a sequential interpreter could multi-program the processes at the 

user level. Both schemes have their advantages and disadvantages. 

In the first case scheduling of user processes is not a concern of 

the interpreter as this will be handled by the level providing it 

with parallelism, however the interpreter level must ensure the 

atomicity of its operations on the common store. For the second case 

the opposite is true atomicity is guaranteed as only one user 

process is ever active at a given time, but a scheduling algorithm 
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must be provided for the processes. Ultimately the choice of method 

is dependent on the hardware and software that will underly the 

interpreter. If multiple processors sharing common store are 

available then they will be used, otherwise a sequential interpreter 

is more likely, unless the levels below it provide adequate support 

for parallelism. (Note here that uncooperative processes cannot be 

implemented using processes which are themselves uncooperative as the 

blocking graph needs to be accessible to all processes). The major 

advantage that the use of multiple processors has is that when an 

action is backed out because of a deadlock the processor time that 

has been spent attempting to execute has not been wasted, because 

with any other scheme the same amount of time would have been spent 

waiting to acquire the resources in question. 

The next section will briefly describe a trial implementation of 

some of the ideas we have been discussing in this chapter and report 

on the problems encountered. 

3.9.2 Implementation~~ test system-

The system to be described below was implemented on the IBM 

370/168 of the University of Newcastle upon Tyne, running under the 

MTS operating system. Its purpose was to determine whether or not a 

system of the type described above was feasible and was therefore not 

implemented with considerations of efficiency in mind. 
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3.9.2.1 The language interface-

The language interface to the system was provided using a 

modified version of the concurrent PASCAL compiler designed for the 

SOLO operating system (BrH 76). The compiler, due to Hartmann (Har 

77), consisted of seven passes, and produced code designed to be run 

on the interpreter that supports the SOLO system. Several new types 

and statements were added to the language, whilst others, for example 

any using the type REAL, were removed from it completely. The 

compiler was also converted to assume a basic word length of 

thirty-two bits rather than the sixteen that it was set up with. 

The additions to the language were as follows :-

1. Atomic actions - These were provided at the procedure level 

rather than by allowing any . statement block to be made 

atomic. The keywords ACTION and AGENT being substituted for 

PROCEDURE and FUNCTION to indicate that atomicity was 

required. The body of an ACTION/AGENT could be of two 

forms, the first provided the user with recovery blocks, its 

syntax being : 

ENSURE <acceptance test> BY 

<statement block> 

{ ELSE BY <statement block> }; 

The compiler adding a default call to ERROR after the last 

, alternate. The ~econd form is a simple BEGIN ••• END block, 
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which is translated into this recovery block: 

ENSURE TRUE BY 
BEGIN 

END 
ELSE ERROR; 

~·ig. 3. 8 shows the form of code generated for a recovery 

block consisting of a primary and a secondary alternate. 

GOTO ALTl 
ATST: 

IF TRUE THEN GOTO EXIT 
GOTO NEXT@ 

ALTl:NEXT:=@ALT2 

GOTO ATST 
ALT2:NEXT: =@ALT3 

GOTO ATST 
ALT3:ERROR 

enter primary 
acceptance test 

test was successful 
NEXT points to alternate 
set up NEXT for secondary 

body of primary 

perform acceptance test 

body of secondary 

perform acceptance test 
failure of recovery block 

Fig. 3.8 

l. The ERROR statement - when executed this statement caused an 

error to be signalled and whatever recovery action was 

possible to be initiated, 

3. The RETRY statement - this statement could only occur as an 

alternate of a recovery block (not the primary) and caused 

the preceding alternate to be executed again. 

4. The ASSERT statement - the syntax of this statement is 

ASS~RT <condition>; 
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and is equivalent to the statement 

iF NOT <condition> THEN ERROR; 

5. The PRIOR operation - this facility, also provided in the 

system described in (And 76), is only allowed in the body of 

an acceptance test and permits the user to access the 

original value of a variable which has been stored in the 

cache. If the variable was not cached during the action 

which the acceptance test was attached to its current value 

was returned. The preferred syntax for this operation would 

have been of the form "V . PRIOR" making the prior operation 

an attribute of every variable v. However due to 

restrictions in the coopiler this had to be implemented as 

"PRIOR V. " 

6. The basic type SYNCHRONISING (or SYNC) - variables of this 

type were exactly equivalent to booleans but had the extra 

property of being allowed to appear in AHAIT statements. 

7. The AHAIT statement - the version that was implemented was 

highly restricted and constrained the user to \11aiting in a 

single variable of type SYNC. The syntax of the statement 

was 

AWAIT <SYNC variable id>; 

8. The basic type ALARH.- objects of type ALAR~1 provided the 
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user with a form of deadline and had two operations 

associated with them - A.enable(time) which "activated" A 

and caused an error to be raised after "time" clock ticks 

had passed, and, A.disable which stopped A and prevented it 

trom raising an error. 

Also if a user left a block which contained the 

declaration of an ALARM variable, which was still enabled, a 

warning was produced and the alarm disabled and deleted. 

9. Shared atomic actions - these will be discussed in chapter 

four. 

These facilities provided enough power for some experiments in 

the use of recoverable atomic actions to be carried out and we shall 

review them in section 3.9.2.3. 

3.9.2.2 Interpreter structure-

The interpreter for the language was, as was indicated above, 

based on the inerpreter provided for use with the SOLO operating 

system on the DEC PDP-11. Much of the interpreter was machine 

dependent and several parts of it (such as input/output handlers) 

were completely ignored. However the biggest difficulty encountered 

in mounting the original interpreter on MTS was the need to convert 

from sixteen bit words to thirty two bit words. The interpreter was 
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a sequential program using a "round-robin" scheduling algorithm, 

executing one instruction from each process in the run queue at a 

time. The scheduling in the original SOLO version involved three 

priority levels (processes in MONITOR'S, processes doing I/O and 

others) and time slicing, however as the two highest priority levels 

were irrelevant in the new system, and as the user could not attach 

priorities to processes when they were specified, this method was 

abandoned. The lack of priority structuring also constrained the 

system to be non-preemptive and for system queues to use a FIFO 

discipline. This had the advantage that no process could ever be 

kept waiting for a resource indefinitely, other than as the result of 

user error. The time slicing of the SOLO system was omitted (or at 

least reduced to one clock "tick" per process) as this enabled 

multi-processors to be modelled more closely. This had the effect of 

increasing the interaction between the processes, thereby exercising 

the systems capabilities more fully. 

Only exclusive locking was supported and the granularity of 

locking/cacheing was chosen as one word. This was done even though 

the system allowed addressing to the byte level using the type CHAR, 

because this reduced space requirements and as it was felt that 

interactions at the level of adjacent bytes which would remain 

independent were unlikely. Each process had its own data area, 

including a cache whose size was set to be one quarter of the stack 

area allocated for the process. The data space for the initial 

process, which becomes the common area for all other processes, does 

not contain a cache as the initial process was intended simply to 
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CACHE CACHE CACHE 

ACTION ACTION ACTION 
ID ID ID 

TAGS TAGS TAGS 

STACK STACK STACK 

l I 

cmmo~ 

ACTION 
ID 

TAGS 

C0Hl'10N 
DATA 

Hg. 3. 9 

spmm the other processes and stop, its termination activating t he 

rest of the system . Fig. 3.9 shows the data areas allocated and 

fig. 3.10 shows the structure of a cache and its entries. 

The scheme adopted for naming actions was less structured than 

the one sugg ested in section 3.9.1 because of the need to support 

shared atomic actions (see below). It consisted of restricting t he 

user to sixty-three actions at any one time t h rougho ut his system, 

each one having a data area allocated for it. When a new action was 

required the array of data areas was searched until an unused one was 

found and its index was used as the action identifier. Fig . 3.ll 

shows the structure of an atomic action data area. One useful 

simplification used throughout the system was to use process 

identifiers rather than action identifiers when handling 
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LAST_BARRIER @BARRIER; 
NEXT ALTRNTE LABEL; 
ACCEPT TEST LABEL; 
CURRENT ALT LABEL; 
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END; 

ADDRESS 
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VALUE 
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END; 
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enclosing action's barrier 
address of next alternate 

" " acceptance test 
" " current alternate 

(this allows retries) 
saved value of stack pointer 
name of enclosing action 

saved value 
saved action id tag 
pointer to cached resource 

CACHE : ARRAY [ CACHE_SIZE ) OF RECORD 
CASE KIND : (BARRIER_ENTRY,DATA~NTRY) 

VHEN BARRIER ENTRY -> B BARRIER; 
\!HEN DATA ENTRY -> D : DATA_RECORD; 

END 
!::ND; 

Fig. 3. 10 

interactions, thus an action was not seen as preventing another 

action from executing, but another process. This had two advantages, 

the first being that, as the number of processes in a system was 

normally considerably less than the nuMber of actions, a set (in the 

PASCAL sense) of process identifiers could be represented in a much 

smaller space. The second advantage was that the process identifier 

not only stood for its current atomic action, but also for all the 

actions enclosing it. This makes the implementation of the blocking 

graph and subsequent deadlock detection very much easier. The 

algorit~n used was as follows :-

1. Each atomic action had associated with it a queue of 

processes whose progress was blocked by the action in 

question having possession of a variable they required. The 

identity of all these processes was recorded in a set 
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BOOLEAN; 
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name of this action 
identity of processes 
that are in the action 
identity of processes 
that are blocked by 
this action 
processes waiting for 
resources held by 
this action 
TRUE if this a shared 

PRIORITY 
END; 

atomic action 
(MIN_PRI. .HAX_PRI); -- priority of action 

Fig. 3. 11 

variable, which then effectively represented the directed 

arcs in the blocking graph that linked this action to the 

ones it was blocking . 

2. When a new action was created its blocking set was 

initialised with the value of that of its enclosing action's 

blocking set, for it too was now blocking those processes. 

3. W1en a request was made for a conmon variable and was 

denied, the action (process) making the request had to join 

the queue of actions (processes) waiting for the action 

holding the variable to terminate, and have its identity 

recorded in the blocking set . However before this could be 

done safely, the intersection of the blocking set of the 

action whose request was denied and the set of processes 

that are members of the action blocking the request must be 

taken. If the result of this calculation is not the empty 

set a deadlock would arise if the requesting action joined 

the queue, so recovery action must be taken. 



PAGE 107 

4. ~~en a process was allowed to join a wait queue its identity 

was not only added to the blocking set of the action 

immediately stopping it, but also to the blocking sets of 

all its enclosing actions which are now effectively stopping 

it as well. 

5. When an action terminates its new blocking set was passed 

back to its enclosing action and their wait queues 

amalgamated, unless the action was the outermost, in which 

case the wait queue can be released. 

The deadlock detection part of this algorithm can be implemented 

very efficiently on most computers. For its functioning on a system 

supporting a maximum of 'p' processes and 'a' actions it only 

requires '2pa' bits of data in total, there being two sets of size 

'p' for each of the actions, where each bit in a set is taken to 

represent a process. The test for a deadlock can be made by 

performing a logical ' and ' between these sets, and testing for a zero 

result (no deadlock). These operations are usually two of the 

fastest in any machine's instruction set so this part of an 

interpretive system can be made very small and fast. 

\fuen a deadlock is detected by this method one of the actions 

involved has to be backed out. \·fuich it was was decided by first 

comparing the priority fields in the action data areas, and backing 

out the action with the lowest priority. If the priorities were 

equal, the halted action (note that an action identifier could always 
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be determined from a process identifier) was backed out and the 

priority of the other action was incremented. If the priority scheme 

had not been used the race condition described in section 3.7.4 could 

have occurred, and in fact the program shown in fig. 3.5 was used to 

create this condition when the priority scheme was disabled. 

The method used to implement the A\.JAIT statement was very 

simple, and could be much improved. It simply cQnsisted of 

maintaining a queue of processes that were waiting for synchronising 

variables to come true, and whenever an action terminated, possibly 

having altered the state of a synchronising variable, all the 

processes on the queue were re-activated to retry their AWAIT 

statements. The reason for such an inefficient implementation was 

that the use of a synchronising variable within an action was 

accomplished using the basic operations of the system. This meant 

that any alterations to the variable were not explicitly detectable, 

preventing the use of special queue's to eliminate busy waiting. 

However if these alterations had taken place through the use of 

instructions specific to that purpose, such a scheme could have been 

implemented, but limitations in the basic compiler prevented the 

generation of special instructions, so the above method was adopted. 

\ve have now outlined the features of the support for recoverable 

atomic actions, the recovery cache mechanism being implemented 

exactly as described in section 3.5. All the basic operations of the 

system were modified to include cacheing of operands, though their 

function was not altered in a~yway. The only other feature added to 
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the interpreter was the use of code checksums as described in section 

2.3.4. These were built up during execution and compared with a 

value computed at compile time whenever a transfer of control took 

place. If the values were not identical an error was raised and 

recovery initiated. 

In the next section we shall describe the experience that was 

had with the whole system, and evaluate its usefulness. 

3.9.2.3 Experience with the system-

The system just described was tested with a wide range of simple 

examples and in all cases was found to perform correctly. Testing 

was concentrated on the use of nested recovery blocks and on the 

deadlock detection/recovery mechanism, and one of the results of this 

was the discovery of the race condition discussed in section 3.7.4. 

However even though the system effectively demonstrated the 

feasibility of using the mechanisms developed in this chapter, it was 

not possible to use it to measure the overheads involved in their 

support. There were several reasons for this . 

Firstly the language interface proved to be inconvenient and 

difficult to use for anything other than the simple test programs 

mentioned above. This was not due to the features added to the 

language, but was caused by the scope rules built into the Concurrent 

PASCAL language which was used as a starting point. These restricted 

procedure's to accessing either local variables or variables declared 
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in their immediately enclosing blocks. This was done to simplify the 

implementation of MONITOR's, whose correct functioning depends on 

just such a limited scope, and means that any accessing done outside 

these levels must use the parameter passing mechanism. However to 

use atomic actions effectively access of this type must be done 

frequently so very large numbers of parameters were required if 

operations of any complexity were attempted. Concurrent PASCAL is 

also not designed to allow the use of shared variables, again because 

it is a MONITOR based language, and restrictions against their use 

were built in to the compiler. It proved very difficult to eliminate 

all these controls, because of the multi-pass nature of the compiler 

and because no documentation describing the compiler was available 

when the system was being developed. The result of this was that the 

number of shared variables available to the programmer was severely 

limited, and the development of any "real" programs was prevented. 

The interpreter also gave rise to several problems. The main 

difficulty, as regards performance measurement, was the lack of a 

suitable yardstick with which it could be compared. The only 

evaluation of performance that could be made was subjective, and, 

from a user's point of view the response obtained from the system was 

perfectly acceptable. Cache size measurements were hampered because 

the restrictions imposed by the compiler meant that a suitable 

cross-section of program types could not be tested. Nevertheless it 

was noticeable that allocated cache sizes, based on process stack 

space, were small (typically less than a hundred words) and cache 

space was never exhausted d~ring any of the test runs. 
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One piece of information which did arise from the investigation 

was that the use of code checksums had a significant affect on code 

size. Every control transfer (jumps and calls) had an extra memory 

word with it to hold the compiler generated checksum for the straight 

line code sequence preceding, and this was found to increase code 

size by, on average, ten percent. The reason for this was the large 

number of control transfers that occurred in programs written for the 

system. These were generated because of the procedural mechanism 

used to invoke atomic actions and because of the control structure 

needed to support recovery blocks. Fig. 3.8 shows that where a 

statement is replaced by a recovery block consisting of a primary and 

secondary alternate an additional six control transfers are 

introduced, not including those that may be contained in the bodies 

of the alternates. This shows that the extra security provided by 

the code verification may introduce an unacceptable storage overhead 

especially considering that program size is considerably increased by 

the presence of recovery blocks. On machines with a large address 

space this may not present a problem, but on many small computers 

such overheads could be critical. 

3.10 Efficiency of systems supporting recoverable atomic actions 

As we have seen the test system did not provide much information 

by which the efficiency of recoverable atomic actions could be 

judged. However consideration of the various areas where performance 

may be affected can allow us to judge how efficient such a system may 

be. The recovery cache mechanism introduces overheads in terms of 
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space and time. Section 3.9.1 has already discussed the storage 

overhead due to the need for atomic action identifier fields with 

every resource and indicated its relationship to the chosen 

granularity of locking. However there is also the overhead 

introduced by the cache that each process has. This topic has been 

discussed in several previous papers (Wye 73, Ran 75, Ver 77) and the 

conclusion has always been that the storage requirements for cacheing 

would not be excessive, and experience with the system just described 

has not contradicted this. Of course, these two overheads need not 

affect the address space available to programs as the storage can be 

provided in seperate memory. However, as we have seen, the use of 

fault-tolerant programming techniques will increase program size. 

The exact increase is difficult to estimate, as it depends on the 

number of alternates used and the algorithms contained in them, but 

it is obvious that program size could be doubled if every section of 

code was provided with an alternate, and this could present problems. 

Execution overheads fall into two classes those associated 

with the evaluation of acceptance tests, and those incurred by every 

instruction that loads or stores data. No data ' exists for the first 

class, though Kim (Kim 76) has considered it important enough to 

produce a design for a system that will execute acceptance tests in 

parallel with their recovery blocks. However as the specification of 

acceptance tests is still an area where much research remains to be 

done very little can be said about it. 



PAGE 113 

Until recently very little information about the second class of 

delay was available either, for all the implementations of the 

recovery cache (And 76, Ver 77, Shr 79b) were in t erpretive and could 

not take advantage of parallelism to increase t heir efficiency. 

Shrivastara (Shr 7Sa) estimates that performance in his systems was 

degraded by eleven per cent when only assignments were being cached, 

but points out that his system was purely for experimental purposes 

and he makes no attempt to estimate the improvement that hardware 

support would provide. However such a hardware system has been 

implemented by Lee et al (Lee 79) which can be added to a PDP-11 

UNIBUS to provide cache support. Their estimate, based on an 

analysis of PDP-11 bus activity is that performance would be de3raded 

by eight per cent when their device was in operation but that this 

could be improved to four per cent if destructive read out were used 

in the mer:wry unit. Of course to support recoverable a tomic actions 

operations that "read" cmamon resources must also be cached which 

could add to the overhead. However such cacheing could be performed 

completely in parallel with the operation performing the read, as the 

value obtained will not be affected, so this overhead could be 

eliminated . The problem with this is that access to the resource may 

be denied in which case the operation must not proceed. Therefore 

the lock check must be performed before continuing adding some delay 

to each shared read, though if access is g r anted the ac tual cacheing, 

should it b e necessary, can take place concurrently with the 

operation. No reliable figures for the number of "read" references 

made to shared resources seem to be available, so it is difficult to 

estimate how large an overhead the checking will be . TJyeth ( Wye 73) 
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has analysed the references in a set of sequential programs and his 

figures show that reads occur three times as frequently as \..rrites. 

This suggests that the nunber of read accesses made to shared 

resources will be fairly high, because the simplifierl interface to 

resources provided by recoverable atomic actions will encourage 

programmers to use them as they would private resources. Ove r heads 

may therefore be quite high, and ultimately there is a trade off 

between these inefficiencies and the simplicity and the 

recoverability provided by the system . The general consensus of 

opinion \..rould seem to be that where reliability is required such 

overheads are acceptable. 

The other area where questions of performance can be raised 

concerns the dynamic locking of resources and the deadlocks that may 

arise from it. The point is that processor time is wasted in 

carrying out computations which are subsequently rolled back because 

they reach a deadlock, when the use of a static allocation policy 

would avoid this. There are several answers to this objection, the 

first being that it is only true where parallelism is implemented 

using mul ti-programning techniques. For if each process \..rere running 

on its own processor the time spent carrying out abortive 

computations would otherwise have been idle time spent waiting to 

acquire resources. The use of dynanic locking can also eliminate 

such waits altogether, because static deadlock detection does not 

take into account the pattern in which resources are used by 

processes and will often indicate the presence of a deadlock which 

would not actually arise. 
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Another argunent for dynamic resource locking is that it is the 

only way to support run time resource add r ess conputation and 

synchronisation using shared resources. So if these facilities are 

needed, deadlocks, and their associated recovery, must be accepted as 

a necessary evil. The counter argument that a preemption scheme such 

as the one described in (Cha 74) t·muld provide the same support 

without the need to roll back computation is weak . For, i n order 

that consistency be maintained, preemption can only t ake place at 

certain "safe points". Chamberlin et al organise this by 

constraining the user to nakine all resource requests within to~hat 

they call a SIEZE block , in which no computation other than resource 

specification can take place. This restriction ensures that no 

dependencies on values are built up in a SIEZE block, so preemption 

of resources can take place whilst it is being processed. However 

when a SEIZE block terminates the process cannot he preempted and no 

other SEIZE block can be executed till all the resources acquired in 

the first block have been released together. If the user is not to 

be restricted in such a fashion then some way must be provided for 

the results of computations to be undone autonatically and this can 

only be achieved by a system providing the kind of support that we 

have described in this chilpter. The decision as to \o~hether the 

advantaees given by the use of dynamic allocation outway the 

disadvantages brought by the mechanisms needed to support it must 

depend on circumstances, but in many cases it is certainly the case 

that they will. It would of course be possib l e to use a compromise 

method which involved some dynamic and some static locking, for 

example dynamic locking of conditionally acquired resources, static 
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for those known to be needed, though some modification to the cache 

algorithm would be required. 

3.11 Conclusion 

Section 3.3 listed the features that it was hoped a system 

incorporating the mechanisms described above would possess so in 

conclusion let use see whether these features are in fact provided by 

it. 

The first requirement was that the only difference between 

common resources and private ones that the programmer saw was in 

their declaration. This implies that the location of a resource must 

supply the system wit~ enough information to be able to determine the 

way in which it should be treated, and, as we have seen , the modified 

recovery cache mechanism makes this possible. The action i den tifier 

field associated with each resource contains enough information to 

indicate whether a resource is available or whether the action 

r equesting it must wait. This field is located solely using the 

resource address. In fact "read" operations are the only ones which 

need to know whether a given address refers to a shared area, so that 

the amount of cacheine can be minimised. Another advantage of the 

mechanism from the user's point of view is that a resource which is 

private to a process can be shared by any sub-process it spa~o~ns 

without additonal overheads. This is because the position of its 

declaration in the structure of his program ensures that its address 

will be in a shared area when the sub-processes are in existance. 
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The second requirement was protection from the activities and 

errors of other users and the locking, recovery and deadlock 

detection mechanisms developed certainly fulfil this. They also meet 

the third require~aent which is essentially that the user is protected 

from his own run-time errors, as does his ability to use recovery 

blocks if he so wishes. 

A simple method of making existing programs uncooperative was 

the fourth requirement. Section 3. 9.1 shm.red how this can be done by 

enclosing a program in an atonic action, though this will not work 

for a program composed of several uncooperative transactions . In the 

latter case additional control structures would have to be added to 

the program, which could in fact be difficult if it were written 

badly or in an unstructured language such as FORTRAN , so the system 

does not fully meet this requirement. 

The last feature wanted was that the efficiency of the system 

should not be impaired by the facilities provided, and that it should 

be usable for real time applications. He have discussed the 

efficiency of the system that has been developed in the previous 

section and seen that some de~radation of performance is unavoidable, 

though it would appear that this is not as severe as might be 

expected. However a full hardware realisation of t he mechanisms 

would be needed to evaluate performance, especially if real-time 

support is envisaged. One important point to remember here is that, 

as far as software fault tolerance goes, the use of recovery blocks 

in some shape or form is the only technique developed so far that can 
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be described as successful. This entails the pr ovision of a recovery 

cache to support them, so programmers seeking reliability will have 

to have a cache in their system , whether it degrades peformance or 

not. 

In general, t hen, we can see that by combining the basic 

operation of locking with the activity of collecting error recovery 

information, we have produced a system which enables the programmer 

to use shared resources safely without recourse to their explicit 

acquistion. Not only that, the mechanism involved is simple and 

could be incorporated into existing systems with little difficulty, 

though performance will be degraded. However as it stands the system 

\'1ill not allm'1 processes to communicate with each other and to make 

use of resources and then release them immediately. The succeeding 

chapters will attempt to show how these facilities may be built upon 

the basic mechanisms described above. 
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4.0 Closely Cooperative Processes 

4.1 Introduction 

In this chapter we shall expand the concept of the ato~ic action 

to allow an action to contain several concurrently executed paths, 

rather than just one, creating what Lomet calls a SHARED ATOtliC 

ACTION. This structure possesses the important property that 

resources locked within a shared action, are usable by ALL the paths 

within the action, whilst their uses of them appear atomic to other 

processes not involved in the action. This means that the processes 

executing the paths of the action may communicate freely with each 

other by using these resources, and this makes them closely 

cooperative as defined in section 1.2. Any of the processes involved 

in a shared action may use a resource exclusively by carrying out 

their operations on it within a nested action, shared or unshared, 

but on the sub-action's termination the ownership of the resource 

reverts to the enclosing shared action and thus to all the processes 

involved in it. As it stands this structure is not recoverable 

because processes may leave the shared action at any time, thereby 

committing the results of their operations before other, possibly 

dependent, processes have terminated. To overcome this we shall 

apply the rules developed by Randell for "conversations" (Ran 75) and 

by Davis for "Spheres of Control" (Dav 73). Applied to shared atomic 

action, these are :-

1. ·No process may leav·e an action (that is commit its results) 
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until all the other processes involved in the action have 

succesfully executed their respective paths through the 

action and are ready to leave themselves (the processes are 

coupled). 

2. If an error occurs in the execution of one of the paths 

through a shared action at a point where there is no nesting 

of actions \vithin it, all the paths must be wound back. 

These two rules make shared actions recoverable, and, because of 

the restrictions they impose, simplify the system needed to support 

such recoverability. The basic requirements for supporting shared 

actions are identical to those for unshared actions and this should 

allow us to use the modified recovery cache scheme to support them. 

However this cannot be achieved simply by allowing an action to have 

more than one member process, because the question of where resources 

are cached must be answered. In the system supporting unshared 

actions each process must have its own cache, and, as unshared 

actions can be nested within shared actions, each of the processes 

executing within an action must also have its own cache. If this is 

done no additional facilities are needed in the recovery cache 

mechanism. For when a process in a shared action first uses a 

resource which has not been used previously by any other member of 

the action, it will cache the resource and update its action 

identifier field to contain the name of the shared action. This 

means that all the other processes will "see" the resource as having 

already b~en locked should ttiey cone to use it, and so will not cache 
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.t:;rror at (a) - back out SA2 , taking with it A2. 

Error at (b) back out A2, pr ocess p is unaffected. 

Error at (c) - back out Al, processes P and Q unaffected. 

Error at (d) - back out SAl , taking with it SA2. 

Fig . 4.1 
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it. However this does not impair recoverability, because the second 

rule given above ensures that all caches are processed on an error so 

the resource will be restored correctly no matter how many of the 

processes involved have used it. Naturally this fact does not 

preclude special methods being applied to cachein~ of resources 

within shared actions, but they \Wuld not bear the direct 

relationship with unshared actions that this one does. Section 4.3.1 

will show other advantages that this scheme possesses. 

The error handling mechanisms of the system must also be 

extended to cope with shared actions, as they must now be able to 

initiate recovery action in each of the menber processes. Note that, 

as with deadlines, this ~ay require several layers of nesting to be 

backed out if nested actions have been used. Fig. 4.1 shows a 

typical shared action structure, and indicates the ways in which 

recovery can take place within it. Later in this chapter we shall 

look at more specific points concerning the inplementation of shared 

actions, but before that we must examine the kind of interface that 

is to be provided for the programmer when he wishes to use shared 

action. 
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4.2 Specification~ shared atomic actions 

4.2.1 Sub-processes and co-existing processes-

Because of the restrictions on the ways in lolhich atomic actions 

may be nested it is not possible for a set of processes \vhose access 

rights are not identical to enter a shared atomic action together. 

In fact there are only two ways in which shared atomic actions can 

come into existence :-

1. By a single process forking into a set of sub-processes, 

which either consitute a shared action in their own right or 

EXPAND the action in which the fork operation occurs into a 

shared action. 

2. By a se t of processes within the same shared action forming 

a nested shared action (note that this also includes the 

case of a set of processes, none of which are members of any 

action). 

Representation of the first case is very simple any of the 

existing notations used for parallel statements beine adequate, for 

example Dijkstra's PARBEGIN and PAREND (Dij 68a). If the user wishes 

to create a new action he need only prefix the statement with the 

attribute SHARED to indicate this. Omitting this will cause the 

membership of the action. within which the statement occurs to be 



ACTION OUTER; 
BEGH 

PARBEGIN 0 0 0 I 0 0 0 I 0 • 0 END; 

END; 

(a) expansion of OUTER from unshared to shared 

ACTION OUTER; 
BEGIN 

SHARED A2 -- name sub action A2 
PARBEGIN 0 0 0 I 0 0 0 I 0 0 0 END; 

END; 
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(b) creation of a shared action inside an unshared action 

Fig. 4.2 

increased to include all the subprocesses, possibly turning an 

unshared action into a shared action. Fig. 4.2 shows an example of 

each case. There are two special points to make here. Firstly this 

is the case, referred to in section f.S, where actions are created 

without user specified nanes, and secondly sub-process members of 

actions are allowed to terminate before the proper termination of an 

action, because their separate control streams rejoin into a single 

stream \-lhich must obey the termination rules. 

The second case requires a different approach because of the 

need to bring disjointly specified processes together. The most 

structured method of doing this is to use a modified version of the 

SIHULA CLASS specification (Bir 73), where each procedure entry 

defines one of the execution paths within the shared action. In 

order to enter the action a process simply calls one of the 
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procedures. However, before control is returned on its successful 

completion, all the other parallel paths through the action must also 

have been executed without error. Unfortunately the situation is 

more complex than this because the system must at least know how many 

processes are needed to form the action , in order to determine when 

all the paths have been processed or when the action may start, if 

synchronisation between processes before com~encement is required. 

Three possible ways of overco~ing this difficulty suggest themselves 

:-

1. The user must define the valid groupings of processes \vhich 

can form shared actions , thus indicating memberships as well 

as the number of members, 

2. Each process entering a shared action must do so through a 

different entry, and all entries must be used - then the 

number of entries equals the number of paths in the action, 

3. The system records the identities of the processes that have 

entered the action and of those which have completed the 

entry they called, and when the two sets are identical the 

action is adjudged to have terminated. 

All these solutions present difficulties of varying magnitude, 

either to the system or to the user. The third method is very simple 

and requires no extra information from the user , but the system 

cannot guarantee that when ·a process enters a shared action it will 
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be sharing with the processes the user expects. This is because 

scheduling is essentially non-deterministic and even the number of 

processes in the action cannot be guaranteed. The only ~•ay to solve 

this is for the user to include his own code which will ensure that 

the correct processes cor.:te together, for example by including some 

synchronisation as the first stateQent of each entry. 

The second method presents a similar problem in that, though the 

system knows how r.:tany processes are needed, it does not knm• their 

identities so cannot guarantee that the expected set of processes has 

come together. The system also has the problem of interpreting what 

is f\leant when the same entry is called at the same time by two 

different processes is it an error, or is it two valid, seperate 

attempts to initiate the same action? If the latter, which process 

should be allowed into the action and which delayed? There is 

however an even worse problem because, th~ough programmer error, the 

system can deadlock. This arises when one or more entry calls do not 

occur, hence the processes which are in the action ~\Till wait 

indefinitely for termination. Simple ommision of a call statement 

can cause this to happen, or incorrect ordering of calls to several 

actions shared by non-disjoint sets of processes which can lead to 

the situation where an action A, containing process P is waiting for 

a call from process Q which is in action B, which is itself waiting 

for a call from P. Unfortunately, because the system does not knm"' 

the identity of the processes which a given action is waiting for the 

error will only becone apparent when every process in the system 

becones involved and all activity stops. In this case an error can 
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be raised in the action (if any) enclosing the deadlocked actions and 

the process of recovery will break the deadlock. Hmvever, in the 

general case, such detection is not possible and only the use of 

deadlines can break the deadlocks that might arise. 

The method '"hereby the user must declare which processes can 

come together to form a shared action still has the same problem, but 

because the system now knows which processes an action is waiting for 

it can detect the deadlock and initiate recovery. The easiest way to 

detect the deadlock is to build a blocking graph - a shared action, 

one of whose members is needed by another action, being said to block 

that action. \1hen a cycle occurs in the graph denoting the 

relationship between actions, deadlock has been reached. However 

this does not solve all the problems, because an ommitted call may 

not cause a deadlock, and in that case will only be detected when the 

process which should have given the call attempts to terminate or 

leave the enclosing action if the shared action is nested. In the 

latter case recovery action can be taken, but in the former it is 

likely that commitment of the results of the incorrect process will 

have taken place (especially if it consists of a sequence of 

uncooperative transactions) and no recovery will be possible. A 

partial solution to this would be for a compiler to check that a call 

to the action was present in all the processes that make it up, but 

the presence of conditional calls makes this approach unreliable. 

It would seem, therefore, that some other abstract structure, 

rather than the CLASS, must be used if complex patterns of action 
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usage are to be supported. However the form it should take is not 

obvious, though the use of a type of path expression to indicate at 

conpile time the correct sequence that actions should be executed in 

seems to be the most fruitful direction to take. 

A final small point about shared actions, unrelated to the 

question of deadlocks, is that where the paths through an action are 

implemented as recovery blocks, all the blocks must have the same 

number of alternates. Any other arrangement would be meaningless and 

the check can easily be made at compile time. 

4.2.2 Access to shared resources within shared actions -

When inside an unshared atomic action a process is fully 

shielded from interference fron other processes, but inside a shared 

atonic action, though protected from processes that are not part of 

the action, there is no control over interaction with other member 

processes. This can obviously lead the programmer into difficulties. 

However it is this very lack of control that lends the concept of 

shared actions its power, so any methods devised to protect the user 

from erroneous interactions must not decrease the power available to 

him. The simplest way to ensure that operations on resources conmon 

to all processes in a shared action are performed correctly is to 

enclose them in a nested unshared atomic action. This is the 

approach adopted in the example described in section 4.4 and shown in 

fig. 4.3. A compiler could easily enforce that this took place by 

checking' that every access· to a shared resource took place within a 
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unshared action. A similar check could be performed at run time if 

this compile time enforcement was not possible. 

Another method that can be used is for the progranmer to 

synchronise the activities of the processes within the action so that 

interference is eliminated. However this approach is highly error 

prone relying as it does on t he correctness of the alg orithms used 

and often on the programmer ' s assessment of the way in which t he 

system will execute his processes. In fact the enforcement of 

atonicity, as above, in no way prevents the prog ranmer from 

constructing synchronised systems and will eliminate interference. 

Where the synchronisation between the processes is correct the 

protection given by the use of unshared actions will be redundant but 

will mean that any recovery that has to take place will, in the first 

instance, only involve the unshared action rather than the ~aole 

action. This could represent a considerable improvement in 

performance, especially where deadlock recovery is concerned. 

'\IJe can see therefore that by restricting the use of s hared 

resources to the bodies of unshared actions the problem of 

interference can be eliminated. The power of shared actions is not 

reduced comAunication and synchronisation between processes can 

still take place, and some of the recovery overhead involved with 

shared actions can be reduced. The user will have to add extra 

control structure to his program, but the advantages obtained far 

outweieh this disadvantage. 
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4.3 Implementation 

4.3.1 General considerations -

Many of the com.nents made in section 3.9.1 concerning the 

implementation of unshared actions apply equally to shared actions. 

However certain areas need further elucidation. 

Firstly there is the question of naming shared actions. In 

section 3.9.1 we suggested that names could be constructed for 

actions from the process identifier and recovery depth of the process 

involved but as there are several processes inside a shared action 

this is not posible (though note that the recovery depths of 

processes inside the same action, must be the same because of the 

nesting rules for actions). If the process identifier/recovery depth 

names are to be kept for unshared actions, the best solution is to 

assign each shared action an identifier which can be used in the sane 

way as the process identifier, this has the advantage that nested 

shared actions can be referred to by the name of their outermost 

enclosing action and their depth of nesting, thus reducing the number 

of names required. However to implement this means either larger 

storage overheads or more restrictions on the user - consider the 

example given in section 3.9.1 of a system supporting a maximun of 

tifteen processes, allowing fifteen nested levels of recovery. Out 

of fifteen processes, seven outermost shared actions can be created 

and to provide roon for these names in the action identifier field 

requires an extra bit, which must be obtained either by extending the 
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field by one bit, or reducing the depth of nesting permitted to seven 

levels. This would give five bits for the process identifier giving 

thirty-two names, which will alllow expansion to twenty processes and 

the maximum ten shared actions possible with them. If more than 

seven nesting levels are required and eight bits is the maximum space 

available for identifier fields the number of processes allowed could 

be reduced to ten, giving five shared actions possible - whichever 

way is chosen depending on the programs that the system supports. 

The problem with this sort of scheme, simple as it is to 

implement, is that circumstances may arise where a new name cannot be 

generated for an action even though many names are still unused. The 

solution is to generate names from a pool rather than to build them 

from the attributes of tasks. This, though still having an upper 

limit on the number of names imposed by the size of the action 

identifier field, allows for much greater .individual variation in the 

structures and numbers of processes supported. This type of scheme 

was adopted in the implementation described in section 3.9.2 where 

only sixty-three names were available, and this limit was never 

exceeded though nesting was often deep. 

Cacheing is another area where differences arise between shared 

and unshared actions, these being due to each process in a shared 

action having its own cache. The result of this is that when a 

resource is first used inside a shared action its recovery data is 

recorded in the cache of the process which uses it, after this all 

the other processes may use the resource but will not enter it into 
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their caches, this of course being perfectly acceptable as ALL caches 

must be processed on termination or backing out of an action so 

recoverability is not impared. However in the case of a shared 

action created out of sub-processes, on its termination all the data 

in the individual caches which needs preserving must be merged into 

the cache of the process '"hich spmmed them, which introduces 

additional complexity, especially '"here the sub-processes acccept 

their caches concurrently, and thus have to compete for t he use of 

the parent cache. Of course if the system provided a c ommunal cache 

for the share d action (though not for nested actions) this activity 

would be much simpler, but competition would then be introduced every 

time a cache operation had to be made. The only advantage a communal 

cache would have is that the PRIOR opeation, described in section 

3.9.2.1, could be provided for the acceptance tests of shared 

actions. If separate caches are used the interpreter would have to 

search the caches of all processes involv~d in the action to find the 

value, which, whilst theoretically possible, would be impractical, 

especially in distributed systems. 

Synchronisation between processes in a shaied action also needs 

examination, because the error described in section 3. 8.1 where and 

unshared action waits for a condition involving a resource it has 

locked, is not an error in a shared action, for other processes can 

use the resource and make the condition true. Th is means that the 

system can detect when a user has failed to set such a condition, 

because if all the paths of a shared action have either fi n ished or 

are waiting on a condition involving a resource locked by the action, 
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then this error has occured. 

In the next section we shall briefly describe how shared actions 

were incorporated into the system described in section 3.9.2. 

4.3.2 Actual implementation -

Many of the difficulties described in the preceding sections did 

not arise in the trial system on ~1TS, simply because the language 

interface to the system was so restricted. The case of shared 

actions created by sub-processes could not arise as Concurrent Pascal 

does not have facilities for sub-processes, and shared actions had to 

be implemented using a CLASS structure with the third method of 

control described in section 4.2.1, because the scope rules made it 

impossible to define access rights using process identifiers. No 

attempt was ~ade to enforce the rule that · common resources may only 

be used inside unshared actions (to allow more experimental freedom), 

but, because of the way in '..rhich the AHAIT statement was implemented, 

(section 3.9.2.2) setting of SYNCHRONISING variables used between 

processes in a shared action had to be done inside an unshared 

action, so that the waiting process would be rescheduled and 

re-evaluate its condition. 

As far as deadlocks were concerned, a shared action was assigned 

an initial priority equal to the number of processes involved in the 

action, and this meant that if a deadlock arose there was less 

likelihood of its having to be backed out. This device provides a 
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simple measure of the cost of backing out an action and was found to 

be very effective in reducine the amount of recovery activity during 

a run. Deadlock detection using the blocking graph, is unaffected by 

the use of shared actions, but the implementation of the graph using 

blocking sets, means that when an action is blocking a resource 

request from one of the processes inside a shared action it must be 

regarded as blocking all the processes in the action rather than just 

the one which issued the request. If this is not done it would be 

possible for two processes within a shared action to deadlock each 

other, one unable to terminate because the other is still executing 

(albeit waiting) and so holding its locks, thus blocking other 

actions, which in turn could be blocking the other process. This 

means that membership of the blocking set of an action does not 

necessarily imply that a process is waiting for a resource held by 

the action, but rather that the termination of the action the process 

is a member of is dependent on that of the -blocking action. 

Altogether the implementation presented few problems, all of 

which were solved by simple extensions of the methods used for 

unshared actions. In the next section we shall look at an example to 

show how shared actions can be used. 

4.4 The Dining Philosophers problem 

The problem of the Dining Philosophers, or spaghetti eaters as 

they are sometimes known, was suggested by Dijkstra (Dij 72) and 

involves five philosophers \~to alternately think and eat. When a 
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philosopher becomes hungry he sits down at a table and picks up two 

forks, one on either side of his plate, and eats. !-ImJever, there are 

only five forks on the table, so if a philosopher is eating, neither 

of his neighbours can eat . \-lhen a philosopher finishes eating he 

puts down his forks and leaves the table. Therefore , if all five 

philosophers try to eat at the sane time, each will pick up a fork, 

and there will then be none left on the table, so no philosopher will 

be able to make up a pair of forks and start eating. The problem is 

to prevent this and thus to stop the philosophers starving. 

Various solutions have been presented in the literature - using 

semaphores in (Dij 72), critical regions in (HoA 72), communicating 

sequential processes in HOA 78, distributed processes in (BrH 78) and 

HONITOR's plus PORT's in (Shr 79a) - hmvever the approach taken to 

solving the problem in every case requires the problem to be fully 

analysed before the algorithm can be developed . Fig. 4. 3a sho,vs the 

problem coded using shared atomic actions, implementing the dining 

philosophers exactly as they are described in the problem 

specification, and fig. 4.3b shows the execution flow and blocking 

graphs of the '"'orst case, that is when the philosophers, having all 

sat at the table at the same time, do not spend any time thinking 

after finishing eating, but return at once to the table. After the 

initial deadlock, which the system detects and breaks by forcing one 

of the philosophers to return his fork to the table, each philosopher 

then eats in turn and nobody starves. \fuen the philosophers start 

thinking again the situation \vill becone more normal and two 

philosoph~rs will be able to eat at the same time, the deadlock only 
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occuring again should the five sit down to eat at exactly the same 

time. Note that when this program is run on the test system 

described above it is impossible for two philosophers to starve 

another sitting between them, as in the solution given in (Brh 78). 

This is because the way in which the queues of processes waiting to 

lock resources are implemented ensures that requests are processed in 

the order they occur. 

This solution, however, does not support the kind of 

recoverability provided by the use of PORT ' s as, even when each of 

the atomic modules is made a recovery block, an error during a 

philosopher's thinking phase will cause all the philosophers to be 

rolled back, rather than just the one which failed, though errors 

during eating will be handled on an individual basis. We shall 

discuss the question of how such recoverability should be provided in 

chapter five and a different solution ,for the dining philosophers ' 

problem will be presented in section 5.4.3. 



PHILO 

THINK 
LOCK FO 
LOCK Fl 

I 
I 
I 
I 
I 
I 
I 

END 
THINK 

TASK PHILS; 
FORK: ARRAY [ 0 •• 4) OF BOOLEAN; 
I: I NTEGER; 
ACTION EAT (PHIL_NID1BER : 0 •• 4); 
BEGIN 
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FORK 
FORK 

PHIL_NUMBER ) : = TRUE; 
(PUIL_NUMBER + 1) REt1 5 ] 

pick up forks 
:= TRUE; 

eating 

FORK PHIL_NUXBER ]:=FALSE; --put down fo r ks 
FORK (PHIL_Nill1BER + 1) REM 5 ] :=FALSE; 

END; 

BEGIN 
FOR I := 0 TO 4 DO 

FORK [ I ] : = FALSE; initial values 
SHARED PARBEGIN 

DO BEGIN THINK 
DO BEGIN THINK 
DO BEGIN THINK 
DO BEGIN THINK 
DO BEGIN THINK 

PAREND; 
END; 

EAT(O) END 10000 Tlt-1ES 
EAT(l) END 10000 TIMES 
EAT(2) END 10000 THIES 
EAT(3) END 10000 THIES 
EAT(4) END 10000 TIMES 

(a) The Dining Philosophers ' problem 

PH ILl PHIL2 PHIL3 PHIL4 BLOCKING GRAPH 

THINK THINK THINK THI~K 

LOCK Fl LOCK F2 LOCK F3 LOCK F4 ~ 
LOCK F2 LOCK F3 LOCK F4 LOCK FO P4-"P3 ~P2 ~p I.-PO 

I I I BACK OUT P3-P2-+P1-PO 
I I END LOCK F4 P3~P2-+P1-+PO 
I I THINK I P2-+P 1--"PO 
I END LOCK F3 LOCK FO P2~P1-4PO-+P4 
I THINK I I Pl--PO -+P4 

END LOCK F2 LOCK F4 I Pl~PO-+P4-+P3 
THINK I I I PO-+P4-+P3 

LOCK Fl LOCK F3 I I P0~4-P3-+P2 
I I I I P4-+P3 -+.P2 

etc . etc. 

(b) Worst case execution flow. 

Fig. 4 . 3 
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4.5 Efficiency 

The points raised in section 3.10 about the efficiency of the 

mechanisms described in chapter three are all still relevant when 

shared actions are implemented using them, but some additional 

problems are introduced. The first has been mentioned in section 

4.3.2 and is the need to back out and retry all the processes 

involved in a shared action in the case of a deadlock. One reason 

for this was described above, but it may be argued that this simply 

brings to light an inadequacy in the deadlock detection mechanism, 

and that some other method, perhaps using more information about the 

resources that are being contended for, would allow individual 

processes in a shared action to be retried when a deadlock arose. 

However it must be remembered that the cache of a member of a shared 

action, does not contain a record of those resources which it has 

used after another member has locked them~ so backing out the process 

on its own would not necessarily restore the system state correctly. 

Also if the processes in the action have been communicating, backing 

out an individual process would create inconsistent states, and so 

would not have the desired effect. It is clear that we must accept 

that all the processes have to be rolled back if one has to be. 

Section 4.3.2 described a method for assigning action priorities 

which reduces the risk of this havine to happen, however the 

possibility cannot be ruled out altogether, and so this inefficiency 

cannot be eliminated. 
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The second area which needs to be mentioned is that of the 

necessity for all the processes involved in a shared action to 

terminate before cor:tmitment can take place, which may mean processes 

having to wait until others finish. This must happen because of the 

definition of recoverable shared atomic actions, however, if the time 

spent waiting for termination can be minimised, the action will block 

other actions for the least time. In order to achieve this all the 

processes must enter the action at the same time. Then termiation 

occurs when the longest individual path through the action finishes, 

and in order to achieve this the processes must all synchronise 

immediately before entry. Thus by shifting any excess waiting time 

from the end of an action to its beginning we have reduced its effect 

on the system. However, note that the system must know how many 

processes are involved in an action for this to be done, so the 

specification method used in the test system would not allow this to 

be implemented. 

Finally, synchronisation between processes in a shared action 

using a resource local to the action means that the A'ivAIT statement 

mechanism must now look for events signalled during the course of an 

action, rather than checking when an action which may have flagged 

them terminates. This means that the amount of "busy-waiting" in the 

system may increase, thus reducing its efficiency. The use of 

specially handled SYNCHRONISING variables would allow the system to 

overcome this, but some overhead would still be felt, due to the 

checking that would then be carried out each time a SYNCHRONISING 

variable was used. 
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4.6 Conclusion 

We have now seen how shared atonic actions can be integrated 

into the system supporting uncooperative processes, introducing the 

capability for inter-process comnunication, "cooperative" resource 

use (that is resources can be released befor committment) and 

controlling the way in which recovery takes place amongst groups of 

processes. However, for several reasons, these are only of limited 

usefulness. Fistly inter-process communication is hard to control 

and so increases the chance of programmer error, this being due to 

the fact that the processes within a shared action are not protected 

from each other Secondly, communication is still not general enough, 

because it can only take place between the members of the shared 

action, and not with any process. 

The capability for releasing resources before final connittment 

is more generally useful (as the example of the Dining Philosophers ' 

problem shows) and is easy to control, but the restricted set of 

processes which can compete freely using it is again a disadvantage. 

However, the example also highlights the weaknesses of the recovery 

structure for, when the processes within an action only conpete or 

communicate uni-directionally, recovery entails undoing large 

quantities of correct work done by processes which have not failed. 

Of course where bi-directional communication has taken place, or the 

processes are mutually dependent in some other way, as in the case of 

sub-processes, this type of recovery is exactly what is needed, and 

shared atomic actions, if carefully used, can make their 
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implementation easier. Nevertheless, in many cases, for example 

where software modules are produced by programmers working 

independently of each other, more general methods of interaction are 

required and in the next chapter we shall show how these can be 

provided. 
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5. 0 Cooperative Processes 

5.1 Introduction 

The preceding chapters have described a system that can support 

processes ,.,hose operations do not cause them to become dependent on 

others. {--!here dependency is required, that is where processes 

communicate, the programmer must encapsulate the processes in a 

shared atomic action, making them appear as a single process to the 

rest of the system. However, as we have seen, this structure has two 

major disadvantages. Firstly because of the recovery structure 

provicied, the processes are too closely coupled, introducing the 

possibility of unnecessary recovery activity and excluding the use of 

compensation mechanisms. Secondly, the coupling of the processes 

means that fully asynchronous operations are impossible as all the 

processes within a shared action must synchronise on termination. 

This makes the implementation of certain kinds of systems inefficient 

and clumsy, for example one where a process collects information from 

a unknown number of other processes. In this chapter we shall 

describe some additional program structures which will allow systems 

like this to be constructed much more easily, whilst still being 

recoverable. The techniques to be described below, in effect, allow 

the support system to construct shared atomic actions, invisible to 

the user, made up of the processes \¥hich are communicating. This 

means that the rules of atomicity (Lom 76a) are not violated, and 

also permits the system to eliminate unnecessary recovery activity, 

as it has full knowledge of the way in which interactions have taken 
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place. before describing these techniques, we must 

investigate the type of interface a programmer should have in order 

to construct such systems as the one mentioned above. 

5.2 Programmer's Interface 

The language interface that this thesis has developed to enable 

programmers to access shared resources is very simple - using a 

resource implies that it must be locked - and it is important that 

this simplicity be maintained as far as possible for any new 

structures. Bearing this in mind, there are t\VO facilities that the 

programmer needs to be provided with :-

1. The ability to send a message to another process whose 

identity may or may not be kno"m, 

2. The ability to release certain resources when they are no 

longer needed by the process, thereby increasing the amount 

of concurrency possible 

philosophers' forks). 

(for example the dining 

The first facility can be provided by the type of structures 

used by Hoare (Hoa 78) and Brinch Hansen (BrH 78), where messages are 

passed to either explicitly named processes or to one of an array of 

processes, picked out by a dynamically computed index. This 

construct does not allow a process to send a message to an unknown 
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process, but this can be achieved by the use of BUFFER PROCESSES 

acting as intermediaries. The second facility can also be provided 

with this type of structure by using SERVICE PROCESSES, whose sole 

function is to perform an opera t ion using some resource and return 

the results of this operation to the process that requested the 

service, thereby eliminating the need for the requestor to acquire 

and release the resource. This has considerable advantages fror:1. the 

point of view of program modularity, and hence software reliability, 

as it means that certain frequent operations need only be coded once 

and only one active copy need be kept in the system. Also, the 

programmer need only know about the functional properties of the 

resources so controlled, \.,.ithout having to know 

structure, thus increasing the security of the system. 

their exact 

Hmvever, as we have seen in section 2. 2. 5 the synchronisation 

between processes inherent in this kind of system can impair its 

efficiency by reducing the level of concurrency and so the programmer 

may require another type of interface uhich will allow asynchronous 

communication. Hessage passing can be achieved by the support system 

itself buffering messages sent by a process arid holding them until 

they are requested by anothe r process. However, if messages must be 

directed to named processes the programmer must still use buffer 

processes to comMunicate with unknown processes, forcing him to 

replicate a facility provided by the system. For this reason , it 

would seem better to provide the user with buffers controlled by the 

interpreter level so that processes need only kno,.,. the identity of a 

buffer where messages can be found or deposited rather than tha t of 
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the messages' source or recipient. Unfortunately, this introduces 

the possibility of a process receiving a message not intended for it 

and this can only be avoided by programmer discipline and careful 

project management. 

In many cases, however, the use of inter-task communication is 

not really necessary, and \.;rill introduce considerable overheads. The 

programmer must, therefore, be provided with some means of acquiring 

and releasing certain types of resources fran within his processes, 

without violating the rules of atomicity, and we shall looL at this 

topic in more detail in section 5.4.2. 

Let us nm.;r look at some ways in which the above requirements 

could be realised, starting with a structure based on direct 

communication between processes. 

5.3 The HARSHAL 

5 . 3.1 General Description-

In the next few sections we shall look at a possible method of 

providing the programmer with the means to communicate between 

processes and to control resource allocation, based on the idea of 

"secretaries" and "directors", introduced by Dijkstra in (Dij 72). 

The f10NITOR (Hoa 74) is the usual realisation of this concept, but, 

as it is implemented using direct procedure calls on a shared object, 
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requires that processes be able to lock and release resources during 

the course of their executions, and, as we have seen, this violates 

t he rules of atomicity and makes recovery difficult. It is possible 

to devise a scheme whereby recoverability can be main tai ned in these 

circumstances, but it either requires recovery i nfo r mation to be 

distributed throughout the caches of all the processes that have used 

a :mNITOR , which presents problems of ensuring that values are 

restored correctly, or each MONITOR must have a cache associated with 

it, to centralise recovery information. The latter alternative is 

obviously preferable, but makes the MONITOR rather more than a data 

object, so in order to make it fit in better with the structure of 

the system \ve have developed, we shall in traduce the NARSHAL as a 

type to take its place. A l!ARSHAL is a special process with its own 

cache, the body of ~1ich, like a monitor, consists of several atomic 

"entries" \vhich can be called by other processes, using the type of 

remote procedure call described in (Br~ 78 ) and (Ich 79), which we 

shall call a RENDEZVOUS. The MARSf~L itself controls which entries 

can be called at a given time by GUARDS - an entry only being 

accepted if the guard associated with it is true and, as for 

MON ITORs , only one entry can be active at a ~iven time . The major 

advantage that this structure has over the 110NITOR is that being an 

autonomous process any resources used in the body of a MARSHAL are 

locked by it, and are available to other processes through its 

auspices, thus avoiding t he need for processes to l ock and unlock 

resources. This is not the only advantage, for, if access to 

resources is controlled by t1ARSHAL ' s, t hey do not need to be 

available to all processes and each resource can be made local to the 
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~~RSHAL controlling it, thereby reducing, and in some cases even 

eliminating, the need for common areas in the system. Also, the way 

in which access to entries is handled hides the queueing involved in 

their use, unlike the method used in HONITOR's, leading to more 

elegant algorithms. 

The language structures used to define MARSHALs can take many 

torms but all have four features in common:-

1. Specification of the entries, as they are to be seen by an 

external user, 

'1.. Declaration of resources local to the HARSHAL, but global to 

all its entries, 

3. A piece of code used to initialize the resources when the 

HARSH.I\L is first initiated, 

4. Specification of the bodies of the entries, and of the 

guards controlling their activation. 

Fig. 5.1 shmJs two ways that MARSHAL's could be specified, the 

first being loosely based on the tasking structures in the ADA 

language (Ich 79) and the second being more close to the CLASS 

structure of MONITORs, each having its advantages and disadvantages, 

and showing that the HARSHAL structure can be represented in 

different' \Jays. 



MARSHAL BB IS 
ENTRY PUT ( X : IN DATA ); 
ENTRY GET RETURNS DATA; 

END; 
UARSHAL BODY BB IS 
ST : ARRAY [ BUFFER_RANGE ) OF DATA; 
HEAD,TAIL : BUFFER_RANGE; 
BEGIN 

HEAD := BUFFER_HIN; TAIL := BUFFER_HIN; 
LOOP 

SELECT 
WHEN HEAD <> TAIL 

ACCEPT GET; 
P : BUFFER_RANGE; 
BEGIN 

P := TAIL; 
TAIL := (TAIL+1) MOD BUFFER_TOP; 
RETURN ST[P] 

END; 
OR Y.J'HEN ( HEAD+1 ) HOD BUFFER_TOP <> TAIL 

ACCEPT PUT ( X IN DATA ) ; 
BEGIN 

ST[HEAD] := X; 
HEAD := (HEAD+1) HOD BUFFER_TOP; 

END; 
END SELECT; 

END LOOP; 
END; 

(a) Task notation for HARSHAL's 

TYPE BB IS HARSHAL 
ST : ARRAY [ BUFFER_RANG.C ] OF DATA; 
HEAD,TAIL : BUFFER_RANGE; 

\.THEN HEAD<>TAIL 
ENTRY PROCEDURE GET RETURNS DATA; 
P : BUFFER_RANGE; 
BEGIN 

P :=TAIL; 
TAIL := (TAIL+1) HOD BUFFER_TOP; 

END; 
HHEN (HEAD+l) MOD BUFFER_TOP<>TAIL 

ENTRY PROCEDURE PUT ( X : IN DATA ); 
BEGIN 

ST[HEAD) :=X; 
HEAD := (HEAD+1) HOD BUFFER_TOP; 

END; 
BEGI~ 

HEAD: =BUFFER_MIN; TAIL: =BUFFER_:H'.\1; 
E}JD; 

(b) Class type notation for ~1ARSH.AL' s 
' 

Fig. 5. 1 
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However no matter what notation is chosen, the underlying support 

mechanism for the ~1ARSHAL is the same, and we shall now turn our 

attention to t hat . 

p .Q. R 

ACTION Al ACTION A2 ACTION A3 ( 1) 
HB.PUT ( 2) 

HB.PUT ( 3) 
BB.GET ( 4) 

ACTION A21 ( .)) 

ACTION All ( 6) 
HB.PUT ( 7) 

BB . GET ( 8) 
El\1) ( 9) 

END (10) 

llH.GET ( 11) 

r.NU (12) 
END (13) 

END (14) 

Fig . 5. 2 

5 . 3.2 Special cache mechaniso for r~RSHAL 's -

Hhenever processes communicate dependencies are built upon 

uncommitted data, and so, if an error arises, the system must have 

recorded these relationships so that any atomic action that has used 

erroneous data can be wound back. ~here communication is 

uncontrolled, this can be very difficult, but the restrictions 

enforced by the MARSHAL structure allow this to be done fairly 

easily . In order to maintain the necessary data, the system has to 

support MARSHAL execution ~.rith a cache mechanism that is different 

from the one we have described above . He shall describe how this 

operates with the aid of an example . 
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Consider the three processes- P, Q and R- shmm in fig. 5.2. 

Processes Q and R communicate with P via a bounded buffer BB of the 

kind shown in fig. 5.1 with the type BUFFER RANGE defined as the 

sub-range (0 •• 1). The atomic actions A1,A2 and A3 constitute 

transactions and so are the outermost level of nesting for the parts 

of the processes shown in the figure. It is assumed that the 

processes execute, as far as possible, in parallel, so on that basis 

let us consider each numbered stage of execution in turn :-

1. All the processes' caches are empty, as is the cache of the 

HARSHAL BB. At this point barriers are created in each of 

the process caches to indicate the start of a new action. 

Process P's cache will look like this :-

£. Process Q remotely calls the ~1ARSHAL BB to put some data 

into the buffer. \•lhen BB accepts the rendezvous it 

generates a new sequence number to uniquely identify it and 

records this value in its cache, along with the identity of 

the action that requested the rendezvous. BB then executes 

the entry PUT, causing updated variables to be entered in 

its cache in the normal way. It then returns the rendezvous 

identifier to the calling process Q and waits for the next 

rendezvous. In the meantime Q has been inactive, but when 

the rendezvous is complete it caches the identity of the 

HARSHAL it has called and the sequence number it has been 

returned and contin~es. The cache changes are thus :-
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Q A2 1 BB-1j 

BB: 1-<Q,AZ>I ST[O] JHEAD I 

3. The same sequence of events is repeated but this time 

involving process R :-

R I A3 lss-z l 

BB: l 1-<Q,A2> I sT [OJ I HEAD l z-<R,A3>1 sT r 1 J I HEAD I 

4. P now calls the entry GET to retrieve some data fron the 

buffer, this call is processed in a similar fashion to the 

two preceding calls :-

P ( Al i BB-3 J 

BB: 1 1-<Q,AZ>I . ··1 3-<P,A1>1TAIL I 

5. Process Q now enters a sub-action, creating a new barrier in 

its cache :-

6. Process P does the same :-

7. Q agains calls BB to put data into the buffer. When the 

rendezvous is accepted, the interpreter checks to see if the 

calling action has rendezvoused with BB before. If it has 
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not, as in this case, a new sequence number is generated and 

returned to the calling process. If it has, cacheing of 

updates takes place as normal, but no new rendezvous 

identifier is generated (see 11 below). The caches nm-1 look 

like this :-

Q I A2l BB-1 1 •• · ' A21 l BB-4 1 

BB: ll-<Q, A2> 1 ••• 14-<Q,A2l> l sT[OJ I HEAnl 

8. P calls BB to get some more data, and, as in the previous 

case, a new identifier is generated :-

P j Al j BB-3 1 ... j All j RB-SI 

BB: l l-<Q,A2> 1··· 15-<P,All> ITAIL I 

9. The sub-action All within process P terminates , and P's 

cache is processed. A message is sent by the support system 

to BB to say that All wishes to commit rendezvous 5, and 

BB's interpreter checks that this can be done. This 

rendezvous can be committed because P has a previous 

rendezvous with BB (number 3) to t-lhich recovery can be made 

if necessary. No te, however, that the value for the 

variable TAIL cached during the execution of rendezvous 5 

must be propagated back to rendezvous 4 \<lhen 5 is deleted, 

so that recoverability can be maintained : -
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BB: 1-<Q ,A2> I· .. 14-<Q. A21 >I ST [0 J I :lEAD I TAIL! 

10. Q's sub-action also terminates, causing rendezvous 4 to be 

processed :-

Q A2 1BB-1 I 

BB: 1-<Q,A2> 1··· 13-<P,A1>1TAILjST[OJj HEAD! 

11. P calls BB yet again, but action A1 has already interacted 

with BB so there is no need to create a new rendezvous name. 

The reason for this is exactly the same as that for the 

single cacheing of resources in the normal cache mechanism, 

namely that only the earliest interaction need be recorded 

as that is the point to which recovery will take place. The 

execution of the entry GET does not alter any variables of 

BB that are not already cac~ed, so the caches r emain 

unchanged. 

12. Action A1 terminates causing rendezvous 3 to be processed, 

P's cache is now empty again :-

lJ. A2 now terminates and rendezvous 1 mus t be processed. In 

this case acceptance can proceed, because it is the first 

rendezvous in the cache. However, if there had been others 

before it, acceptance would have been delayed until they had 

been con~itted and removed from BB ' s cache. If A2 had not 
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been an outermost action, the rendezvous would have been 

propagated back to its enclosing action, and the information 

in BB's cache about the rendezvous would have been altered 

to point to this other action. Note that cache processing 

can take place at either end of a t1ARSHAL cache, unlike the 

stack mechanism of the normal system. BB's cache now looks 

like this :-

BB: J 2-<R,A3>I ST[lJ l HEAD (TAIL ( ST(OJ! 

14. AJ terminates and commits rendezvous 2, leaving all the 

processes' caches and the HARSHAL's cache empty. 

This example has shown \vhat occurs during normal system operation, 

however if an error arises recovery action must be taken. Hhat 

happens then, is that the cache of the process in \olhich the error has 

arisen is rejected and the system finds that it has rendezvoused with 

a MARSHAL. An interpreter level message is sent to the HARSHAL 

involved, indicating the rendezvous identifier that was in the cache. 

The ~·1ARSHAL's cache is then processed, rejecting the named rendezvous 

and all those tha f:! .. followed it. When a rendezvous is rejected, a 

message is sent to the process involved raising an error in that 

process and initiating recovery action for it. Thus recovery is 

propagated throughout the system. The reader can try this with the 

example given above by postulatng an error at some point in the 

execution flow and following the search for a recovery line. This 

will sho\v that the mechanism described does collect sufficient 

information to allow recover~ to take place. 
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Let us nm..r summarise the way in \vhich the t1ARSHAL cache 

mechanism would work :-

1. Only one rendezvous between a given action and a given 

~~RSHAL is ever recorded, 

2. Rendezvous information is recorded in both the calling 

process' cache and the HARSHAL's cache, 

3. Commitment of an entry in the HARSHAL 's cache occurs only 

when the action which requested the rendezvous concerned 

terminates and the conditions described in 4 hold, 

4. An action may commit a rendezvous either if the rendezvous 

in question is the earliest in the ~~SHAL 's cache, or if 

its enclosing action has an earlier rendezvous with the 

~ARSHAL. 

If neither of these is the case then, if t he action is 

not an outermost action, responsibility for the rendezvous 

passes to its immediately enclosing action. This causes t he 

rendezvous information to be propagated back in the process' 

cache, and to be altered in the MARSHAL's cache to indicate 

the new "owner". The final case is when an outermost action 

tries to commit a rendezvous which is not the earliest entry 

in a HARSHAL's cache. Here , cache acceptance must be 

delayed until all the earlier rendezvous have been 
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committed, in which case it is safe to proceed. 

5. When a rendezvous other than the earliest one is accepted, 

any alterations to variables not entered in the cache by its 

preceding rendezvous must be propagated back. 

5 . 3.3 Conclusions Regarding ~~RSHAL ' s -

He have seen that the MARSHAL provides programmers ~"i th 

recoverable means of communicating between processes, by acting as an 

intermediary, and of cooperating, by allo\dng service processes to be 

constructed . It may be possible to develop the ideas presented to 

allow more general use of entries in processes, as suggested in (BrH 

78). However, as the method has several disadvantages, this line of 

investigation appears not to be worth following. The most obvious 

disadvantage is shown by the example of the bounded buffer - actions 

which have called the MARSHAL will be wound back if a rendezvous 

earlier than their first is backed out, EVEN THOUGH NO ERRORS HAVE 

OCCURED IN THEM. This, as with shared actions, means that large 

quantities of correct work have to be undone, but , unlike shared 

actions , the programmer may have intended no dependency between the 

actions involved. In the example, this dependency comes about 

because of the method used to implement the buffer, which involves 

variables that are used by every call and so rendezvous cannot be 

independent . This dependency between processes can give rise to the 

"domino-effect", mentioned in section 2. 3.3 , where the search for a 
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Pl P2 PJ - ..-- - r- - r-

Al A2 AJ 

"' 
., 

.... 
All 

"' ... .... ,. 

ALl 

J .. .... ... 
A]l 

"' ... 
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recovery line causes nested actions to be backed out to their 

outermost level because of the way interactions have take place. 

Fig. 5.3 shows how this can happen in a simple three process system. 

The error in Pl causes Alll to be wound back, bringing with it A211 

and thus A311, and so on, until the outermost level is reached. 

The use of MARSHAL's also introduces the possibility of 

deadlocks which the support system cannot detect . These arise when 

guard conditions are malformed or when a deadly embrace occurs, and, 

as the relationships between the processes involved are only knO\vn at 

the user-level, these conditions are not apparent to the system, so 

no recovery ·can be initiated'. 
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Another problem area is the remote procedure call nechanism used 

to invoke !1ARS~~L's, for this involves synchronisation between the 

HARSHAL and the calling action, and also actions \-laiting for guards 

to come true for their entry call to be processed. In many cases 

programmers just wish to leave a message to be "collected" any time 

after it has been left, and for their processes to proceed 

immediately without any t.,raiting. Unfortunately the use of HARSHAL's 

may cause their processes to be delayed for unnecessary amounts of 

time , especially if the MARSHAL body contains any significant amount 

of cot:tputation. In the following section we shall show how other 

approaches to conmunication and cooperation can avoid the problens 

encountered by the use of }~RSHAL's, which can really only be 

usefully used in a very limited number of applications. 

5.4 Resources and their Use 

j.4.l Classification~ Resources based on their usage-

In section 5.2 we looked at the sort of facilities programmers 

would like to have when implementing cooperative processes, and to 

develop a better way of supporting them than MARSHAL ' s we must look 

more closely at the way in which resources are used. The term 

resource has been used throughout this thesis to describe any 

"object" which a programmer may EXPLICITLY use, for example a named 

variable. Any object which he uses implicitly, that is not by name 

or reference in his program, is not considered a resource at the user 
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level, though it may well be at the interpreter level. We shall 

split resources up into three categories based on the functions they 

perform for a programmer and the way in which they are used. Other 

classifications than the one to be described are possible and some 

resources may not fall easily into one category or another and some 

may even change category at some point in their lifetime. 

Nevertheless, based on these classes we can develop a recovery method 

for supporting cooperative processes. The categories are :-

1. Mutable resources - As its name suggests, a mutable resource 

is one which can be changed. That is an action may lock it, 

use its value, change that value, and free it for other 

actions to use, the best example of such a resource being a 

record in a data-base. 

2. Consumable resources - these resources are locked by a 

process in the usual way, but disappear from the system when 

they are freed. Inter-process messages are a good example 

of consumable resources. 

3. Reusable resources - the hallmark of a reusable resource is 

that it is always in the same state when an action locks it 

- that is, no inter-process communication can take place 

using it. Perfect examples are the "forks" used by the 

Dining Philosophers, which are always "clean" when picked 

up. 
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Mutable resources can obviously be used to communicate between 

actions - by their very nature the data they hold can be read by many 

actions, possibly over long periods of time. This is an extremely 

useful property, but when the contents of a mutable resource are 

uncomnitted the support system oust maintain a record of all actions 

which have become dependent on its value, so that recoverability is 

not impaired. However, this data can become very complicated and 

space consuming, so, as mutable resources are generally used for the 

storage of data with a relatively long life span, there is no harm in 

preventing access to them whilst their values are uncommitted. This 

means that actions may be delayed by having to wait till the contents 

are committed, but this disadvantage is outweighed by the facts that 

no data need be stored about dependencies and that the possibility of 

other actions being backed out due to an error in the value is 

eliminated. The preceding chapters in this thesis have developed a 

system which supports this type of use of resources and we must 

therefore turn our attention to the other categories of resources. 

Having prevented actions from comnunicating during their 

lifespans using mutable resources, some other means must be found of 

allowing this facility, and consumable resources are ideal for this 

purpose. Consumable resources can only be used by one action after 

they have been created so there is a strictly one-to-one relationship 

between sender and receiver, which reduces the complexity of the 

recovery data that needs to be built up. In section 5.5 we shall 

show, in detail, how recoverability is maintained when consumable 

resources are used, and also develop language facilities \-lhich allm .. , 
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programmers to specify the use of resources ,.,hich are created 

dynamically. Of course, an error in the creator of a consumable 

resource automatically means that the action l-lhich used it must be 

wound back. However, the dependency between creator and user is 

1ntentional and the programmer can foresee this eventuality, and can 

gauge the disruption an error can cause to a system. 

We now have a means of inter-process comnunication, but actions 

can still not co-operate without becoming unnecessarily dependent on 

each other- the purpose of cooperation between actions being to allow 

a limited set of resources to be shared between them, without causing 

undue delays when an action's needs cannot be satisfied. The 

resources which are being contended for are normally "tools" ,.,hich an 

action wishes to use for a fixed period of time to operate on other 

resources, and reusable resources can be used for this purpose, 

providing several advantages. Firstly the "tool" is always in a 

predefined state whenever an action acquires it, which makes usine it 

much more reliable. Secondly, because no cocrmunication can take 

place through reusable resources, an action need simply restore the 

resource to its initial state and can then free it, at any time, for 

use by other actions, without impairing recoverability. Finally, an 

action can ask for a resource by type rather than by specific 

identity, which reduces conflict between actions considerably. 

When an action acquires a reusable resource, it is locked in the 

normal way and the fact of its acquisition recorded in the cache. 

'rhe action may then use the .facilities provided by the resource to 
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pertorm operations on other resources, and then, when it is no longer 

needed, the action can free it deleting the entry made in the cache. 

Recoverability is not impaired by this, because any modifications 

made to other resources by the action using a reusable resource will 

cause cacheing in the normal way and so the recovery process can 

restore them without the need to know how the state changes were 

made. After the reusable resource has been freed no recovery action 

need involve it, but if an error should occur before it is released, 

the release must be done by the recovery mechanism - hence the cache 

entry for the duration of the action's possession of the resource. 

The fact that a reusable resource is always in the same state 

when acquired by an action means that after it has been used its 

initial state must be restored. This can be done either with a 

"prelude" or a "postlude". The "prelude" method involves the 

execution of user supplied code which sets up the state when the 

resource is acquired and the "postlude" method either requires the 

state to be recorded in the cache so that it can be restored or, 

again, the execution of a piece of code. The former method, using a 

facility similar to that provided for 'CLASS and MONITOR 

initialisation in Concurrent Pascal has two advantages. It means 

that reusable resources do not need to be initialised when they are 

created, and also that when an action frees a resource it need only 

release the lock it holds, 'vhich is especially useful when recovery 

1s in process. The only advantage that the latter method has is 

that, because a representation of a resource's state when it is first 

acquired can be stored in the cache (provided that the resource is 
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created in the correct state) the system can automatically perform 

the reinitiallisation without the progranmer providing a special 

procedure. In terms of efficiency the first method would therefore 

be preferable, but where the language interface does not allow for 

initialisation procedures, the second would have to be used. 

The choice of language interface also affects the way in which 

the acquisition and release of reusable resources is specified and in 

the next section we shall look at several different ways this can be 

done. 

5.4.2 Specification of Resource Acquisition and Release-

The simplest way of providing the programmer with a neans of 

accessing reusable resources is to state that the procedural 

operations "acquire" and "release" are defined for any object 

described as reusable, thus:-

ACTION Al; 
1'': REUSABLE FORK; 
tlEGIN 

!''.ACQUIRE; 

-- use F 

1''. RELEASE; 

r:ND; 

This method, being unstructured, gives the programmer complete 

treedom over where in his program acquisition and release of 

resources are carried out, ~llowing him to nest the calls within 
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different procedure bodies. However, it has the disadvantage that 

should the programmer onit the "release" call the resource will be 

held by the process until its outermost action terminates, thus 

eliminating the possibility of competition with other processes. The 

use of the procedural notation is also at variance with the way 

mutable resources are acquired in the rest of the system, but this 

may be regarded as an advantage as it can be seen as a way of 

highlighting those parts of a program where cooperative use of 

resources is intended. 

If the procedural notation is not to be used, some other way of 

indicating the programmer's intentions must be found. The 

acquisition of a resource is not difficult, the locking method 

described in the preceding chapters takes care of that, but 

automatically determining when a resource can be released, before the 

termination of the outermost action, cannot be done at run time (and 

would require a full analysis of the program at conpile time). To 

overcome this, the user must be constrained to structuring the way in 

which he uses reusable resources so that the system Play know when 

they can be released. There are two ways of doing this :-

1. Define the operation of the interpreter to be such that any 

reusable resource is released to~hen the action that acquired 

it terminates, 

2. Provide some language structure like the "\liTH" statement of 

·Pascal, of Shrivastava's "USING" statement, the start of 
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which indicates resource acquisition and the end, release. 

~oth these methods preclude the acquisition and release of 

resources from being in seperate program modules, and the former, 

though requiring no special syntax has the disadvantage that users 

may forget that a resource has been released and attempt to continue 

using it. This will not be seen as an error, but will be regarded as 

a valid attempt to re-acquire the resource, and when the request has 

been granted the action will proceed, possibly making invalid 

assumptions about the state of the resource. 

The second method is identical to the use of Critical Regions by 

Brinch Hansen (BrH 72), though applied to a strictly limited set of 

resources, and has the advantage of allowing a compiler to detect 

where reusable resources have been used outside the appropriate 

language structure, thus preventing the error described above. From 

the point of view of reliability and efficiency, then, this would 

seem to be the best method and we shall now look at an example using 

it. 

5.4.3 Reusable resources~ the Dining Philosophers' problem-

We have already seen, in section 4.4, how this problem may be 

implemented using shared atomic actions, and have described the 

difficulties that the programmer encounters using them. The major 

difficulty was that independ~nt recovery of a philosopher was not 



TYPE FORK IS -- whatever a FORK looks like 

TYPE PHIL IS 
TASK ( Fl,F2 : REUSABLE FORK ) 
BEGIN 

~NSURE ••• BY-- some acceptance test 
DO 
BEGIN 

think 
h'ITH Fl,F2 DO 
BEGI~ 

use the forks 

END; 
~NU 10000 TIMES; 
ELSE BY ERROR; 

END; 

l'. : AKKAY l O •• 4 ] OF REUSABLE FORK; 
PHILS : ARRAY [ 0 •• 4 ] OF PHIL; 

INIT PHILS[O](F(O),F(l)),PHILS[l](F(l),F(2)), 
PH ILS [2] (F ( 2) , F ( 3) ) , PH ILS [ 3] (F ( 3) , F ( 4)) , 
PUlLS [ 4] (F ( 4) , F( 5)) ; 

Fig. 5.4 
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possible - a failure in one of them causing all the philosophers to 

be wound back. However , by using reusab~e resources this problem is 

overcome. Fig. 5.4 shows a program that implements this solution. 

Each of the philosophers executes independently of all the 

others, and the deadlock recovery mechanism described in chapter 

three will detect and break any deadlocks that occur. This is 

because a request for a reusable resource mus t be passed through the 

same channels as for mutable resources and so the blocking graph will 

still indicate the presence of deadlocks. The processes can now 

compete with each other for the use of the forks , and dependency 

between them will only arise if there is explicit con~unication 

between qny of the philosoph~rs. 
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5. 4. 4 Limits on the use .2f Resources -

In section 3.9.1 we mentioned how most batch processing system 

apply not only time limits but also limits on the amount of output 

produced, to the programs they support. This is an example of a type 

of constraint associated with quantity of use rather than duration 

(though there is obviously some relationship between the two) and is 

not normally provided in programming languages. The safe programming 

constructs defined in (And 75) give the programmer this control over 

looping, and the various "range errors", like integer overflow or 

floating underflow, can be regarded as falling into this class of 

constraints, but control over the number of times a resource is used 

is not catered for. This type of control may be invisible to the end 

user of a resource, and thus allows the creator of the resource to 

have some control over how it is used. Other controls could be 

provided - a deadline specifying the maximum time a process may hold 

a resource for, and a limit to the maximum number of resources of a 

given type (or of any type) that a action can acquire. There are 

many ways of implementing and specifying such restraints and we shall 

not enumerate them here, however it is important that this kind of 

facility be considered when new systems are being designed. 

t 
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5.5 Pools and Sequences 

5.5.1 Structures for manipulating consumable resources-

As we have indicated above, the fact that consumable resources 

are usually created dynamically means the programmer can only access 

thera through indirect references, as their names are not known at 

compile time. The language interface, therefore, must provide a way 

of supporting this. The use of reference variables is the normal 

method, but, in most programming languages, these are used either to 

point to existing variables, or, in conjunction with a procedure that 

returns a reference, to point to variables created in a free storage 

area . Consumable resources come into existence from different 

sources, and may not exist when an action attempts to use them, this 

means that the programmer must be able to specify which source he is 

requesting a resource from, and that · the interpreter level must 

conceal any waiting that may occur. \-le shall introduce two 

structures with these properties - the POOL and the SEQUENCE. The 

declaration of pools and sequences follows the PASCAL syntax for sets 

and arrays :-

Pl:POOL OF <type>; 

S1:SEQUENCE OF <type>; 

but they can only be used via two operators - "put" and "get". The 

"get" function waits until an object of the required type is created 

in the pool or sequence, removes it, and returns a pointer to it. 

The "put'' operation creates a new object of the specified type , 
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copies the object passed as a parameter into it, and adds it to the 

named pool or sequence. This far pools and sequences are identical 

and the difference between them arises because of their properties 

,.,hen recovery takes place. 

We have already seen that when an error occurs in the creator of 

a consunable resource, the recovery action taken must he propag ated 

to the consumer of the resource, but where an error occurs in the 

consumer it is obviously unnecessary for the producer to be wound 

back (one of the major disadvantages of !-1ARSHAL's). Hhat is needed 

is the ability to return consumable resources to their sources and 

then to re-read them if the alternate statement so wishes. However 

in what order must these messages be read back? Hust it be the same 

as previously? By choosing a POOL or SEQUENCE the programmer can 

control this pools implying no ordering relationship between 

messages, the reverse being true for sequ~nces. If a pool is used to 

communicate between two actions it will probably look very like a 

sequence, as this would be the easiest way to i mplement it, ho\~ever 

where several actions are creating messages for several others to 

consume, the difference between pools and sequences becomes f!larked. 

First consider a pool. If an error occurs in a resource creating 

action, only those actions 'vhich have consumed resources created by 

it need be backed out, other communications set up via the pool are 

not affected, but in a sequence this is not the case. If a creator 

error occurs, all resources created after the earliest erroneous 

resource will be regarded as in error and all their producers and all 

their consumers will be backed out. If a consumer error occurs, all 
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consumers that have used resources created later than the first 

resource consumed in error must be backed out. Obviously this 

disruptive effect limits the usefulness of sequences, but where 

actions are highly dependent on each other, and are not within a 

shared action, this kind of recovery is necessary, and cannot be 

provided by the use of pools (note that using sequences is very 

similar to using HARSHAL's). 

Let us now consider how pools and sequences are implenented at 

the interpreter level. 

5.5.2 Implementation of pools and sequences -

we need not concern ourselves here with how the dynamic creation 

of resources is managed - in most systems this will be done using a 

connon storage area controlled by an allocation package - but we do 

need to specify what recovery information needs to be kept with each 

resource and in the caches of the processes that manipulate them. 

Let us first look at a resource creator. 

\lhen an action creates a resource in a pool (or sequence - from 

now on any reference to a pool can be taken as including sequences, 

unless otherwise stated), the new resource is assigned an identifier 

uniquely identifing this member of the pool. Associated with the 

resource are two system controlled tag fields, one of which points to 

the action that created the resource, and the other the action which 

consumed 'it. This latte r field i s initialised to a value that 
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indicates that the resource has not been consumed. If the action has 

not created a resource in this pool before, an entry is made in its 

cache recording the identity of the pool involved and that of the 

resource created. The ne\vly created resource is nm.,r available to any 

consumers which nay use the pool, though in the case of sequences, it 

will not be allocated until ALL the resources created before it have 

been removed. When the resource is finally taken by an action, the 

identity of this consumer is recorded in another system controlled 

tag kept with the resource, and the value of t he resource is recorded 

in the consuming action's cache. (This cacheing of the resource's 

value, allows the consumer to alter the contents of the resource 

without impairing recoverability. However this additional freedom 

may not be needed and all consumable resources could be treated as 

read only, in which case only the identity of the resource need be 

recorded.) 

ComMitment of consumable resources occurs ,.,hen the outermost 

enclosing action of the creating action terminates - responsibility 

for the resources being passed outwards on the acceptance of each of 

the nested actions. However, in the case of sequences committment 

cannot be completed until all other resources created before the 

first resource recorded in the action's cache have been committed. 

\fuen commitment is completed, the creating action identifier field of 

the resource is set to null, and this allm.rs the consumers of the 

resources to terminate their activities, for a consumer cannot coonit 

until all the resources it has consumed have been connitted. When 

this has taken place, the sy~tem nay delete the resource from the 
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pool. However, this rule means that actions could becooe deadlocked 

\vhen their coonitments are mutually dependent, for exaople where 

messages have passed between two actions in both directions. The 

system, therefore, must take steps to detect this situation in order 

to allow termination to proceed, and ~1e blocking graph method 

described in previous chapters can be adapted to do this. The 

detection algorithn must be nodified, though, as actions are no 

longer involved in one-to-one relationships ·with each other - an 

action possibly being blocked by, and blocking, several others. 

Fig. 5.5 shows a possible graph, the direction of the arrows being 

from creator to consumer. In this example the commitment of action 

A7 is the crucial event, and when that has taken place all the other 

actions can be allowed to terminate, the interpreter having detected 

their interdependence. To do this it is necessary to "collapse" 

cycles that occur in the g raph into larger nodes, as in fig. 5.5(b) 
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and (c) - all the actions in a node being allowed to commit when the 

node no longer has any dependencies on other nodes. 

The error recovery method described in the preceding section is 

very easy to implement, because of the inter-action relationship 

recorded in the tag fields associated with the resources. However, 

as with the other pool operations, error recovery in systems 

supporting true parallelism nust be performed atomically in case 

several processes are trying to use the pool at the same time. 

5.5.3 A test system-

In order to investigate the feasibility of pools, a trial 

implementation was carried out on a DEC PDP-11 under the RSX-llM 

operating system (DEC 79). 

inter-process cor:tnunication 

This system 

tacilities , 

provides 

allowing 

powerful 

sets of 

communicating tasks to be implemented very easily. It was decided to 

implement pools by the use of an interpreter extension (section J.L), 

realised as a special task that carried out various pool operations 

at the request of "user" processes. These user processes were other 

KSX-11~ tasks which simulated the use of atomic actions and exercised 

the pool handler via the system message passing facilities. 

Your pool operations were supported :-

1. GET - this requested the pool handler to return the next 

data item from a pool named in the request message. The 
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item was marked as consumed, the dependency graph updated, 

and the data value returned to the requestor. If the pool 

was empty, the request 'vas queued until another process put 

an item into the pool. This request involved two inter-task 

messages. 

PUT - the data item contained in the request message was 

added to the specified pool. If there were processes 

,.,aiting to GET a value from this pool, a GET operation vas 

carried out for the process at the head of the queue . This 

request involved one inter-task message. 

3. ERROR - all the pools were searched for resources created 

and consumed by the process that sent the message (as the 

users did not have recovery caches, this proved to be 

simpler to implement than th~ scheme described above). 

Consuned resources were marked unconsumed, and the processes 

\vhich had consumed created resources ~vere sent a message 

indicating that they should recover (this was a source of 

difficulty, as it required the use of asynchronous message 

handling which \oTas not supported by the language used to 

implement the user tasks). This involves as many inter-task 

messages as are necessary to propagate the error throughout 

the system. 

4. COHIHT - this request indicated that the process wished to 

commit its operations, and caused the pool handler to 
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analyse its dependency graph to see if this was permissible. 

If so, the process was allowed to proceed and all trace of 

it removed frou the handler's tables. If not, the pool 

handler recorded the fact that this process wished to 

commit, only reactivating it either when an error arose, or 

when re-analysis of the dependency graph indicated that it 

could proceed. This involves two inter-task messages . 

VAR 
DEPCND 
CHECK 
cmnnT 

ARRAY [ ACTION_ In 
ARRAY [ ACTION_ID 
SET OF ACTION_ ID; 

OF SET OF ACTIO N_ID; 
OF BOOLEAN; 

FUNCTION CANCOmtiT ( ACTION : ACTION lD ) 
VAR LC : ACTION; RESULT : BOOLEAN; 

BOOLEAN; 

BEGIN 
The set COHtHT contains all the actions which 
are waiting to commit . The array DEPEND contains 
the dependency information, and CHECK is used to 
detect circuits in the graph . 

IF NOT (ACTION IN COHHIT) THEN 
CANCO.HHIT : = FALSE -- this a·ction is active 

ELSE 
BEGIN 

RESULT := TRUE; 
IF NOT CHECK [ ACTION ] TgEN 
BEGIN -- this path has not been checked 

t'OR LC IN DEPEND [ ACTION ] DO 
HEGI~ -- check each blocking a~tion 

CHECK[ACTION ] := TRUE ; -- flag as checked 
KESUL T : = RESULT AND CANCOHMIT (LC) ; 

END; 
END; 
CANCOmUT : = RESULT; 

END; 
El'\D; 

t ig. s. 6 

Ihe dependency graph was implemented as an array of sets of 

action identifiers, one element for each action in the system. When 
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a GET request was processed, the set indexed by the requestor's name 

had the identity of the consumed resource's creator added to it. To 

determine whether or not an action could commit this "graph" was 

processed using the algorithm shown in fig. 5.6. The array CHECK is 

assumed to have all its elements set to FALSE before each call on 

CANCOMMIT, and is used to indicate whether the status of an action 

has been determined or not. This device prevents the program from 

entering an infinite loop, when analysing graphs with circuits in 

them. 

The tests run on this system did not perform any computations, 

but simply used the pools to pass data between tasks. This meant 

that there was a very large number of inter-task messages being 

generated, and thus the overhead due to calls on operating system 

primitives was very high. In fact, most of the execution time for 

the tests was absorbed in executing these system functions and this 

was borne out by a simple test. If processes simply passed messages 

directly to each other, only one inter-task message would be 

generated, however, when we consider the strategy adopted for pools, 

we can see 

communication. 

that this involves three messages to establish 

Measurements taken on the system verified that 

performance was indeed degraded by a factor of about three, verifying 

that system overheads were swamping the small amount of computation 

in each task. In a "real" system, the number of messages being 

passed using pools would probably be considerably less than in this 

test, and so the performance of the system would be better. 

Nevertheless, it is obvious .that the use of such an interpreter 
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extension \Wuld not be desirable in a production system and 

experience with other systems of coonunicating processes under 

KSX-llM backs this up. A better way of implementing pools would be 

to provide each process with a copy of the pool handler and have each 

process perform its own operations (atomically) on a shared data 

area. This would reduce the number of inter-task messages required 

and increase the performance of the system. This could not be 

verified for the pool system, as modifications to the operating 

system would have been required, but the technique has been applied 

in another system ( BSR 79) and 

performance were obtained. 

significant improvements in 

Aside from the question of efficiency, pools were found to be 

easy to use (even with the low-level interface provided by the test 

system), and ,.,ere flexible enough to allow a wide variety of 

comnunication patterns to be tried out. lt also became apparent that 

the error recovery provided by pools did not need the support of the 

recovery cache in user processes, and could as easily have been built 

into a system based on, for example, exception handling mechanisms. 

Altogether the test system showed that pools were indeed a feasible 

way of supporting inter-task cor.munication, and the indications were 

that the simplicity of the mechanisms involved would lend themselves 

to highly efficient implementation when incorporated directly into a 

system. 
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5.5.4 Additional features for POOL's and SEQUENCE's -

Several enhancements to the pool mechanism suggest themselves, 

the first of which is the attachment of priorities to resources put 

into a pool. This allm.rs the programr.ter a certain amount of control 

over the order in which resources are consumed - the interpreter 

level always allocating the resource with the highest priority. 

(Note ho~.rever that this kind of "queue-junping" would not be 

acceptable for sequences \.rhere it would destroy their function). The 

introduction of priorities, however, brings with it the possibility 

of resources never being allocated, because their priority is always 

lov1er than others in the pool . Careful use of the facility should 

eliminate this risk, but, where this had to be avoided , the system 

could implement the kind of measures mentioned in section 3.9 .1 , 

where, after a predefined time has passed , a resource becomes 

FAVOURED and will be allocated in prefer ence to one of higher 

priority . It would also be possible to associate deadlines with 

consumable resources, and allow the programmer to specify a time 

limit within 1.rhich a resource must be consumed, though this would 

give rise to an error in the creating ac tion rather than causing a 

resource to become favoured. In fact , the interpreter could use the 

user's deadline to control its mechanism for selecting r esources to 

become favoured - resourc es with the shortest time left before their 

deadline expires being allocated first . 

Another possible enhancement would be to provide a compensation 

mechanism for pools, rather like that of the reverse procedures of 
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PORT'S. When an error arose, rather than allowing a message to be 

reconsumed, the pool handler would transform the erroneous message 

into a compensating one, using a procedure provided by the user. 

This would allow completely uncoupled communication between actions, 

but, as with PORT's, would not guarantee that the compensating 

message would be consumed (for example, where the consumer stops 

consuming before an error arises in the producer). However, the 

advantage of the compensation mechanism would be that the dependency 

graph need not be maintained, and that commitment could always be 

allowed. 

Apart from its use for message passing, the POOL structure could 

be used as a program interface for allocating any kind of dynamically 

created resources. Naturally, different internal structures would 

have to be developed to allow the allocation of resources other than 

messages and variables, however the commi_tment of an action using a 

resource obtained from a pool would still be delayed until the 

resource's creator had committed. This usage of pools also permits 

the allocation of such system resources as files to be integrated 

into a programming language without the need for structures that are 

type specific. 

5.5.5 Mutually suspicious processes-

Now that we have seen how direct communication may be 

established between actions, we must give some consideration to the 

question of mutually suspicious processes. That is processes which, 



-- some pools 
A,l:l,C,lJ POOL OF MESSAGE!; 
X POOL OF :1 r~S SAGE 2 ; 
y POOL OF !1ESSAGE3; 

some pointers 
M.l (9HESSAGE 1; 
i'12 (9HESSAGE2; 
i-13 ~HESSAGEJ; 

::;ELECT ~Il FROH A, B,C,D; 

~H: =<A I B I c I D>; 

(a) Two \vays of writing simple pool selection 

::;ELECT Ml -- pools all one type 
-- ~11 will point to t:-tessage 
\.JHI:N A -> 
I~HEN B -> ••• , 
I•IHEt\ C -> ••• , 
1~HEN D -> ••• ; 
END; 

SELECT -- pools different types 
-- named pointer will point to 
-- the resource obtained 
HHEN A -> Hl 
wHEN X -> H~ 
1'/Ht.;N 'i. -> HJ 

t;ND; 

... ' ... , ... , 

(b) Com?lex pool selection 

SELECT ~11 FROH A,B,C,D OR NO~m; 

M.l:=<AIBICIDINONE>; 

(c) Simple selection without waiting 

SELECT 
WHEN X -> ~12 ... , 
WHEN y -> H3 ... , 
WHEN NONE -> ... , 
t;ND; 

(d) Complex selection \vithout \.;raiting 

Fig. 5. 7 
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before requesting a resource, look to see if the request will be 

granted immediately and, if not, do not issue the request. This 

facility is generally employed where a process can use one of several 

different resources and will request the first one that is available, 

thus reducing the time it may have to spend \o7aiting. In section 

3.8.1 we discussed a similar requirement that arose with the use of 

the AI~AIT statement, and the same type of non-deterministic structure 

adopted there - a guarded AHAIT statement - would seem to sui t this 

case. There are two different circumstances in which a programn.er 

could use a construct of this type. The first is where the 

programmer wishes to obtain a resource of a specific type, but from 

any one of several sources, and the second is •.;rhere different 

computations are performed depending on the identity of the pool 

which provided the resource. Fig. 5.7 a and b show ways of 

representing such usage of pools. The question of "fairness", 

alluded to in section 3.9.1, arises here also in respect of which 

resource will be chosen if several are available. However, as was 

indicated, considerable research is still required into this problem 

before it can be resolved one way or another. 

One further developmen t of this usage, in the case where all the 

pools named in a statement are empty, is to give d1e programmer the 

option of waiting until one of his requests can be satisfied or of 

proceeding . This can be done, in a fashion similar to t he DEFAULT 

option of the BCPL case statement (Ric 69), by providing a 

pseudo-pool which \olill always return a null pointer when accessed . 

Note, however, that this pool may be selected even ~.rhen the other 
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specified pools are not empty. This nust be done in order to hide 

the vagaries of the process scheduling algorithm from the user, who 

could otherwise write programs which \vere dependent on certain 

execution flo\-lS (note that this possibility only arises in the case 

of empty pools, for at other times the user cannot determine the 

state of the other pools he has specified). Fig . 5.7 c and d show 

examples of this usage. 

5.6 Conclusion 

In the preceding sections we have discussed the implementation 

of two different styles of interface with which the programmer can be 

provided for implementing cooperative processes (i.e. processes 

which communicate and cooperate with each other) and we shall now 

summarise their advantages and disadvantages. 

The method of direct comnunication, though providing a si::1ple 

and modular interface, has two important disadvantages :-

1. Direct asynchronous connunication between t\vO processes is 

not allo,.;ed, thereby reducing system performance, 

2. The use of buffer processes to allow messages to be passed 

to unknown processes can allov um.;anted dependencies between 

processes to be built up - specifically whe r e the buffer is 

being used by several processes that are otherwise 

ind ependent - and this will lead to r ecover y action being 
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taken in processes where it is strictly not needed, should 

an error or a deadlock occur. 

\fuere speed of operation is of no importance both these 

disadvantages can be discounted but there are nany applications \-lhere 

this is not the case, so the less structured, b ut nore efficient 

methods, based on the classification of resources described in 

section 5.4.1 would be preferable. 

disadvantages :-

Hm-1ever they also have their 

1. The use of consumable resources involves the system in extra 

book-keeping to control the termination of inter-acting 

processes, 

2. The use of pools means that the system has to have quite a 

considerable storage area available to it for their 

allocation (c.f. the use of "pipes" in UN IX (Rit 78)), 

3. The interface provided to reusable resources is such that 

multiple copies of operations on them, possibly using 

different algorithms, could exist, which could reduce t he 

overall reliability of the system. 

Nevertheless the structures described are sufficiently pO\-lerful 

that these disadvantages should be outweighed by the advantages that 

they give to the programmer. 
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6.0 Conclusion 

6.1 The work presented 

ln chapter one the goal of this thesis was defined to be the 

development of a systera that could support fault-tolerant concurrent 

programming without requiring complex extensions to ~1e languaee 

interface to enable programmers to use its facilities. This \.Jas 

motivated by the need to GJ.ake such facilities available to as \vide a 

programmer base as possible so that the cost of software production 

could be kept down by reducing the amount of specialized knm-1ledge 

needed to implement concurrent programs. Chapter two discussed the 

most commonly known techniques for controlling the use of shared 

resources and compared their characteristics with those of a 

hypothetical "easy to use" interface. This discussion shm.;red that 

all the methods exhibited at least one of the following 

inadequacies:-

1. The technique was unstructured - that is the acquisition of 

a resource was not directly linked with its release by an 

explicit program structure; 

2. The technique was unreliable progran errors occurring 

after a resource was acquired and before it was released, 

could result in either the release of erroneous information 

to other processes, or the permanent locking of the 

~esource. Another source of difficulty was the possibility 
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of unrecoverable deadlocks, 

3. The technique was too co1:tplex - conplexity was introduced in 

t~vo main \vays, either through the need to perform analysis 

to ensure that a set of processes would not deadlock or by 

the limitations placed on the programner by the techni'lue 

making problems hard to solve. 

Various approaches to improving the reliability of concurrent 

progamming by the incorporation of error recovery were then examined. 

These too had their difficulties, however, out of all the techniques 

examined in both areas, five constructs seemed to provide a basis for 

the kind of system that was required. They were :-

1. The recovery block - a clear, simple structure whose value 

had already been demonstrated by its use in fault tolerant 

sequential programs, 

2. Deadlines/safe programming - also clear and well-structured, 

these were needed to overcome the problem of looping errors, 

undetectable in any other way, 

J. Atomic actions 

implementation 

this 

strategy 

construct, 

defined 

though having no 

for it, fitted the 

requirements set out in chapter two for a transaction 

orientated program structure which could support automatic 

control over resource usage, 
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4. Communicating processes - another concept which had not been 

tested in practical impler.1entation, but which offered a 

well-structured means of handling messages between processes 

and which did not require the use of shared resources, 

S. Reverse procedures these provided a simple means of 

expressing compensation mechanisms. However there were 

reservations about them, especially concerning software 

errors within them. 

The next chapter then showed the relationships between atonic 

actions and recovery blocks. Based on this it was demonstrated how 

the recovery cache mechanism, used to support recovery blocks, coul:i 

be adapted to combine the automatic acquisition and release of 

resources with the collecton of checkpoint information about t hem . 

The use of this mechanism oeant that deadlocks could arise when 

atomic action were competing for resources and a method to overcome 

this problem was developed. The strategy adopted was one of 

detecting an incipient deadlock and recovering from it. Detection 

was carried out by analysing the relationships b etween atomic actions 

with respect to outstanding resource requests and the resourc es each 

atomic action already owned. These relationships were r ecorded by 

means of a graph - a cycle in this graph indicating t hat a deadlock 

had arisen. One feature of this system v1as that only two actions 

coulci be involved in a deadlock thereby simplifying the task of 

breaking it. This was achieved by selecting one of the actions , 

judged to be the least imp'ortant, and using the recovery cache 
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mechanism to wind it back to its start, thus releasing the resources 

it held and breaking the deadlock. The selection of the action to be 

backed out should be based, if possible, on a priority assigned to 

the action, but if the priorities of the two actions are equal some 

other criterion must be used. Several criteria were suggested, but 

none of them were guaranteed to identify the "best" action to back 

out in all cases. 

Various aspects of the control of synchronisation were then 

discussed, and progran structures were suggested that could aviod the 

problems that were uncovered. At this stage we had a system which 

could support uncooperative processes (that is processes which hold 

resources for the duration of transactions and do not communicate 

with each other) and the interface to it had the characteristics that 

,.,ere set out in chapter two. Unfortunately the system could not 

support cooperative processes and so its usefulness was strictly 

limited. Chapter 4 introduced the concept of the shared atoctic 

action which allowed a subset of cooperative processes, styled 

closely-cooperative processes, to be implemented. This extension 

allowed a process within a shared action to cooperate with the other 

processes in the action, forcing their recovery to be coupled. The 

interface provided was, hmJever, too uncontrolled and methodologies 

were developed to enable processes to interact in relative security. 

ttm.,ever, even with this improvement, the structure, though useful in 

certain cases, was not sufficiently general and so other ways of 

allowing cooperation between processes had to be found. 



PAGE 188 

Chapter five turned to the use of cor.rMunicating processes and 

J.ntroduced the t1ARSHAL, a reliable " secretary". However the use of 

this structure was shmm to lead, in certain col11JTlon cases , to 

unnecessary coupling between actions, meaning that actions which 

should have been independent of each other were all wound back, if 

one of them failed. This structure was therefore rejected and we 

then exaMined the \vay in \vhich resources were used by programr:~ers . 

This led to the identification of three distinct classes - mutable, 

reusable and consumable. ~·lutable resources (those which held 

information for relatively long periods of time) could be controlled 

by the interface developed in chapter three , but the other types 

needed special interfaces. For reusable resources (those that are 

involved in an operation without their final state being affected) a 

PASCAL type HITH statement was suggested to indicate the points \vhere 

they should be acquired and released. This structure, similar to the 

REGION s t atement described in section 2.2.3, limits the user 

slightly, but conforms to the requirements of chapter two. 

~·inally we investigated the class of consumable resources (those 

used to pass information between processes), introducing the new type 

torming operations POOL and SEQUENCE. It was then shown ho\v 

resources defined with these oper ators could be used to comnunicate 

between actions and a system structure \vas described which allowed 

recovery to take place without affecting actions independent of the 

one that was in error. Two methods of recovery were allmved by this 

structure. Firstly actions could be coupled by the conceptual 

construction of shared atomic actions involving t\¥0 comMunicating 
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processes and secondly a compensation nechanism \las suggested, to 

allow actions to remain uncoupled. The programmer interface provided 

to these facilities was again very simple, and allowed for 

considerable flexibility in progran construction. 

He can see then that the system descrihed in this thesis ,.,ill 

support fault-tolerant concurrent programming with a simple user 

1nterface, as was required of it. However one area has not been 

tully resolved. That is the question of the efficiency of the 

mechanisms that have been developed. Throughout this thesis the 

various factors involved have been discussed, and it would seem that 

the advantages to be gained frot!l using the system will outweigh any 

inefficiencies in it. 

6.2 Directions for future research 

Having summarised the work that has been presented in this 

thesis and shown that the aims set out in chapter one have been ~et, 

we must examine some of the avenues down which further research could 

be directed. So~e of these are concerned with general questions 

about the system itself, but others will have bearing on specific 

proble~s that arise in highly reliable concurrent systems. 
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6.2.1 Implementation-

So far only experimental implementations of parts of the system 

have been carried out, and there is still a considerable quantity of 

work to be done in the evaluation of the efficiency of the structures 

described. This is especially true of their use of multi-procesors, 

where the problems that arise are quite different to those 

encountered in a multi- programning implementation . The type of 

multi-processor used will also affect the implenentation carried out, 

tor where resources are shared between processors there must also be 

a com1'1on storage area in which system information required by all the 

processors is held. If the hardware available is distributed, that 

is the procesors are only connected by coomunication lines, the use 

of shared resources (if any exist) would be difficult to control, so 

the implementation of the inter-process comnunication features that 

have been described would take priority. Individual processors in a 

distributed network may also support multi-prograruned processes 

introducing an additional level of complexity. To allow t he 

implementation of reusable resources the use of service processes 

could be investigated. These are processes· which can perform a 

specific set of operations for other processes, but have the reusable 

characteristic that their state is always the same when a re(}uest for 

an operation is received. An example of such a process \vould be a 

processor offering fast f loating point computations to other 

processors in a network. 
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If distributed processes are not used, the main area of 

investi~ation is in the developnent of efficient hardware recovery 

cache mechanisms which can support the locking protocols tve have 

described. Lee et al (Lee 79) have susgested t ha t their hardware 

cache can be augmented to include support for other than sequential 

programs and this device would be an interesting start point for 

experiments. The system they have designed could only be used, as it 

stands , to support a multi-programoerl version of the structures tve 

have described, but incorporating interfaces to several buses tvould 

allow multi-processor inplementations to be investigated. Deadlines 

are also an area where much work needs to be done. The basic type 

ALAR~ introduced in section 3.9.2 leads to unstructured use and is 

not linked closely enough with the recovery structure of a prograu . 

The published work of Campbell et al (Li e 80 , Hor) tends to be 

theoretical rather than practical, though the structures they have 

introduced are excellent. The use of such f acilities hmvever, has 

not been investigated properly, and there appears to be no data 

available on how the programmer best detennines the appropriate time 

interval to specify for a section of code . Obviously specific 

applications will have predefined time limits, but a set of 

guidelines that could be applied to programs will help the design 

process by indicating where these limits are unrealistic or where 

program efficiency need be improved. 

One further topic t-Thich could be investigated is the enhancer.Jen t 

of the data protection facilities provided by the system. Hith the 

current design a user may access any shared resource and the sys tem 
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will lock it, however the addition of a capability mechanism, such as 

that described by Needham (Nee 79), would allow invalid requests to 

De trapped, improving the reliability of the system considerably. A 

certain amount of control over resource access can also be achieved 

through manageQent of the production of software, using methods of 

seperate compilation and program derivation such as those defined for 

the ADA language (Ich 79) and its support environment. The modular 

nature of the constructs that have been developed making then ideally 

suited for such treatment. 

6.2.2 Systems without interrupts -

Une area of development that has been suggested by Brinch Hansen 

(BrH 78) is the use of the concept of communicating processes in the 

development of systems without an interrupt mechanism (at least not 

one that is visible to the programner). This would be achieved by 

having processes which explicitly wait for each event that can occur 

in the system and perform the necessary processing when they occur; 

returning to their wait state when this has been done. The overall 

effect of this should be to make event handling easier to program and 

more reliable, whilst still maintaining the essential non-determinisTn 

of the interrupt mechanism. Brinch Hansen envisaged such a systen 

using the direct process to process com1unication he describes, but 

the Pool structure developed in chapter five can also be used to 

support this type of operation. For example, an (unreliable) 

teletype handler could be represented as sho\vn in fig . 6.1. 
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KEYBOARD, PRINTER ; POOL OF CHAl\; -- char by char hard\vare 
READ,PRINT ; POOL OF BUFFER; -- whole line buffers 
TASK TTY; 
CH : Cl~R; B:BUFFER; 

LOOP 
SELECT 

HHEN KEYBOARD -> CH : -- key has been struck 
BEGIN 

BUFFER.FLUSll; new line so clear buffer 
\HilLE CH<>EOL 00 -- read in up to end of line 
BEGI~ 

PRl~TER:=CH; -- echo character 
RUFFER.PUT(CH); --store character 
CH :=KEYBOARO; -- get next character 

END; 
READ:=BUFFER; make line availahle to user 

END; 
UHEN PRINT - > B : -- user wishes to output a line 

BEGI~ 

\lHILE NOT BUFFER . e·1PTY DO 
PRINTER := BUFFER . GET; -- type line 

PRI~TER :=EOL ; -- end line character 
E~m; 

END SELECT; 
Etm LOOP; 

Fig. 6.1 

6.2.3 ~base for software testing and development -

One of the perennial pr oblems of computing is the need to have 

systems providing a service continuously twenty-four hours a day , 

seven days a week , whilst still requiring new soft-vmre to be 

developed and integra ted into the system. These ne\.r protjram modules 

will introduc e errors and need to be thour oughly exercised before 

they can be allowed to t ake up their intended place in the systel:l· 

However , some of this t esting must be car ried out on the real systen , 

off line testing not being fully adequate , and so a neans of safely 

introducing new modules into the system must he found. 
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This can be easily achieved using the structures we have 

developed by allowing any atonic module to be converted into a 

recovery block (if it is not already written that way) with the new 

software as its primary. Then, should an error occur in the 

execution of the new module, the system can fall back to the previous 

version of the module which has been made the secondary alternate. 

An extra facility would be the ability to make the use of the new 

module conditional so that it was only used at predefined intervals, 

the old module being used as a primary for all the other occasions. 
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