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Abstract 

T helper 17 (Th17) cells potently produce interleukin (IL)-17, which is essential for Th17 

cell-mediated pathogen clearance. Failure to regulate Th17 cells can increase Th17 cell 

numbers and IL-17 production, and is associated with autoimmune disease pathology. 

Therefore, understanding how Th17 cell responses are controlled may improve 

treatments in instances of Th17 cell dysregulation. Investigations in mice and humans 

have mainly studied the cytokine signals that determine Th17 cell responses. However, 

the strength of TCR signalling has previously been shown to be a further factor capable 

of determining effector T cell development. The central hypothesis of my thesis is, 

therefore, that the strength of TCR stimulation is also capable of regulating Th17 cell 

responses. I also investigated if T-cell density, a parameter often overlooked in 

investigations, can also affect Th17 cell responses. Cell density has been shown 

previously to be capable of modulating many parameters including the expression of 

certain Th17 cell-related transcription factors.  

 

To assess the effect of T-cell stimulation strength on Th17 cell responses, human CD4+ 

T-cells were activated with high or low strength stimuli administered by bead-bound 

antibodies which activate the TCR/CD3 complex and the costimulatory molecule CD28, 

or by monocyte-derived dendritic cells pulsed with decreasing superantigen 

concentrations. Experiments were performed in the presence of pro-Th17 cell 

cytokines IL-1β, TGFβ and IL-23. In both systems low strength TCR stimulation 

profoundly and significantly promoted Th17 cell responses, both proportionately and 

absolutely. The enhancement of Th17 cell responses by low TCR stimulation only 

occurred in the presence of co-stimulation through CD28. Furthermore, it was revealed 

by chromatin immunoprecipitation that low strength stimulation promoted Th17 cell 

responses by allowing binding of a Ca2+ regulated transcription factor NFATc1 to the IL-

17 promoter in a Ca2+ dependent manner. 

 

To investigate how low strength T-cell stimulation might promote human Th17 cell 

responses in vivo, 20 healthy donors were genotyped for a single nucleotide 

polymorphism within the gene Protein Tyrosine Phosphatase-N22 (PTPN22), which is 
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highly associated with the autoimmune diseases type I diabetes and rheumatoid 

arthritis. PTPN22 encodes a TCR signalling molecule, Lyp, which in minor allele carriers 

confers both reduced TCR and Ca2+ signalling. Culture of genotyped memory CD4+ T-

cells with anti-CD3/anti-CD28 stimulation and pro-Th17 cell cytokines revealed a trend 

indicating that the presence of the minor T allele promoted both IL-17 and IFN- 

production but decreased regulatory IL-10 secretion.  

 

Regulation of Th17 cells by T-cell density was explored by culturing memory CD4+ T-

cells at decreasing T-cell densities in the presence of either pro-Th17 or pro-Th1 cell 

cytokines. Low T-cell densities profoundly promoted Th17 cell responses both 

proportionately and absolutely. No effect was observed on the IFNy response within 

cultures containing pro-Th1 cell cytokines, suggesting that T-cell density specifically 

affects Th17 cell responses. STAT3 activation, important for IL-17 expression, can be 

regulated by cell density. Analysis of STAT3 activation by western blot revealed higher 

STAT3 activation in low density cultured T-cells compared to high density cultured T-

cells, which may provide an explanation for the increased Th17 cell responses 

observed. 

 

The data within this thesis provide interesting and novel mechanisms by which human 

Th17 cell responses are regulated. I have demonstrated that Th17 cell responses are 

favoured by both low strength TCR stimulation and low T-cell density. These data 

highlight the diversity of factors capable of affecting Th17 cell responses in vitro; 

factors of which in the majority of studies have been overlooked.  
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1. Chapter 1: Introduction 

T-cells are vital for instigating a successful adaptive immune response. They are 

capable of recognising virtually any invading pathogen and co-ordinating an 

appropriate immune response, resulting in the successful clearance of infection. 

Defects in T-cell responses can propagate persistent and damaging infections or result 

in chronic autoimmune diseases; highlighting the importance of T-cells, and the need 

for an appropriate response. By improving our understanding of the events that 

control the development and expansion of T-cells, new or improved therapies may be 

developed to ‘re-set’ the immune system in individuals whose T-cell responses have 

become deregulated.  

1.1 T-cells 

The first line of defence confronting an invading pathogen is the innate immune 

response. The cells of the innate immune system are able to recognise and respond to 

pathogens in a non-specific manner. The innate immune response is also able to 

activate the highly specialised cells of the adaptive immune response which, unlike the 

innate response, are able to specifically recognise the pathogen and can provide long 

lasting immunity (1, 2). The adaptive immune system has two main lines of defence: 

The humoral and cellular responses mediated by B-cell lymphocytes and T-cell 

lymphocytes, respectively. T-cells were discovered in the 1950s by Gell and Benaceraf 

(3–5). The role of T-cells is to recognise both intra and extracellular pathogens and 

orchestrate their immune clearance. One of the main features distinguishing T-cells 

from B-cells is the way that they recognise antigen. T-cells recognise denatured protein 

antigens via their T cell receptor (TCR) whereas B-cells recognise native protein via 

membrane-bound immunoglobulin (referred to as B-cell receptors) that are specific for 

discontinuous peptide epitopes (6). T-cells can only recognise and bind denatured 

peptide antigen when the peptide is associated with multi-histocompatibility complex 

(MHC) molecules expressed on antigen presenting cells (APC). The T-cell recognition 

process is termed MHC restriction and was defined by Zinkernagel and Doherty (7). T-

cell recognition and binding to peptide-MHC (pMHC) occurs through the TCR (8, 9) and 

T-cells may be divided into two populations depending on expression of the 
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heterodimers comprising the TCR either: αβ T-cells or γδ T-cells. Which TCR 

heterodimers are expressed is determined during T-cell development within the 

thymus. αβ T-cells may be further subdivided by expression of cell surface markers 

CD4 and CD8 whose expression is also determined during thymic development (1, 10).  

1.1.1 T-cell Receptor  

The TCR allows the T-cell to recognise peptide antigen, by specifically binding to pMHC. 

αβ T-cells have a TCR which is formed from herterodimeric α and β chains (11, 12). 

Each chain is composed of an N-terminal variable domain (Vα and Vβ) and constant 

domain (Cα and Cβ), and the chains are linked together via a disulphide bond. The α- 

and β-chains are anchored to the cell surface by a transmembrane region and each 

chain has a short cytoplasmic tail at the C-terminal end, which is thought to be 

incapable of signal transduction. To facilitate signal transduction the TCR associates 

with the CD3 complex (discussed in section 1.4.4). Each Vα and Vβ domain of the TCR 

consists of 3 hypervariable regions called complementarity determining regions (CDR), 

these CDR determine the peptide specificity and affinity of the TCR. Hypervariability 

within CDR produces a diverse population of TCR, allowing detection of a wide range of 

peptide antigens. TCR variation is produced during thymic development, by random 

recombination of genes encoding the α- and β-chains (Figure 1). Approximately 70 

Variable (V) α segments and 52 Vβ segments exist. The α-chain is produced by random 

recombination of a Vα segment with one of 61 Junctional gene segments (Jα). The β 

chain is produced by recombination of one Vβ segment to one of two Diversity (D) 

segments (Dβ), this then undergoes recombination with one of 13 Jβ segments. The Vα 

and Vβ segments then undergo recombination with the constant (C) regions Cα and Cβ 

respectively. Recombination is mediated by the enzyme VDJ recombinase which 

recognises recombination signal sequences (RSS) that flank the gene segments (13). 

The recombinase enzymes are encoded by recombination activating genes (RAG) 1 and 

2. The lymphocytes of RAG-/- mice are unable to produce functional TCR, and so the 

lymphocytes fail to survive thymic selection and therefore RAG-/- mice contain no 

mature T or B lymphocytes (14, 15). The absence of mature T and B lymphocytes 

makes RAG-/- mice a useful tool in immunological research particularly for studying 

tissue transplantation (16). TCR variability is further increased by random insertion of 
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nucleotides between the connection sites of VDJ gene segments. Theoretically 1015 

different αβ TCR can be generated; however humans only contain 1012 T-cells. Peptide 

cross-reactivity is a characteristic of T-cell antigen recognition, allowing recognition of 

virtually any antigen from a limited number of T-cells (11, 13, 17).   

 

β chainα chain

Variable 
region  (V)

Constant 

region  (C)

Hinge 

Transmembrane
region

Cytoplasmic tail
Disulphide bond

 
Figure 1. αβ T-cell receptor VDJ recombination.  Recombination of the α- and β-chains of the TCR is 
mediated by enzyme VDJ recombinase encoded by the RAG genes. Transcription and splicing of the V 
(D), J, and C segments generates mRNA that is translated to yield the TCR α- and β-chain proteins. The α- 
and β-chains pair-up shortly after synthesis, resulting in the αβ TCR heterodimer. The figure is adapted 
from Immunobiology Janeway et al. (18)  

 

1.1.2 T-cell Receptor Selection 

It is important to have both a T-cell population capable of expressing a diverse array of 

TCRs, and a TCR repertoire that does not initiate immune responses against self. T-cell 

development and selection of appropriate TCRs occurs within the thymus (19). During 

thymic selection the αβTCR interacts with MHC molecules expressed by thymic stromal 

cells. The process of positive selection ensures that TCR recognition of antigen is 

MHC/Human Leukocyte Antigen (HLA) restricted. Positive selection occurs during the 

CD4+/CD8+ double positive stage of TCR development. T-cells expressing TCRs that bind 

to pMHC with low avidity, but with a sufficient strength to transduce TCR signals, are 

able to survive the positive selection checkpoint (20). T-cells capable of recognising 

pMHC turn off the genes encoding the TCR and increase TCR surface expression. In 

addition, TCR  recognition of pMHC protects the T-cell from apoptosis and also 

stimulates the expression of chemokine receptors allowing T-cell trafficking to the 

medulla (21). T-cells which do not recognise pMHC will not receive low avidity signals 

and will therefore die by neglect through lack of TCR stimulation. The positive selection 
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process ensures that surviving T-cells are self-MHC restricted. The process of MHC/HLA 

restriction during positive selection contributes to T-cell mediated rejection of grafts in 

organ transplantation. Recipient T-cells bind to the non-self MHC/HLA molecules of the 

transplanted organ with high avidity eliciting an immune response.  

 

Positive selection does not remove high affinity self-reactive T-cells, which may 

instigate immune responses against self in the periphery. In order to distinguish self-

antigens from foreign antigens, T-cells also undergo negative selection, which is also 

termed central tolerance. Negative selection in the thymus causes T-cells expressing 

high avidity self-reactive TCRs to be eliminated by apoptotic clonal deletion (22). The 

negative selection process requires the exposure of the developing thymocytes to self-

antigens, including antigens that have highly restricted tissue expression. The cells 

contributing to central tolerance in the thymus include: Medullary thymic epithelial 

cells (mTECs), bone marrow derived cells, DC and cortical thymic epithelial cells (cTECs) 

(23). DCs and mTECs significantly contribute to negative selection by expressing high 

levels of MHC and co-stimulatory molecules. In addition mTECs are capable of 

presenting tissue-specific self-antigen (TSA) due to the expression of the autoimmune 

regulator (Aire) protein, which is located in mTEC nuclei. Aire initiates TSA expression 

within mTECs, and presentation of Aire-induced TSAs to T-cells allows negative 

selection (24). T-cells with TCRs that recognise TSAs in the context of self-MHC are 

deleted. The TSA transcriptional start sites within mTec however differ from 

transcriptional start sites within the periphery, therefore peptides presented in the 

thymus may differ from peripheral peptides. The important role played by Aire in 

central tolerance was highlighted by the development of a multi-organ autoimmune 

disease in humans deficient in Aire, called Autoimmune polyendocrinopathy-

candidiasis-ectodermal dystrophy (APECED) (25). Aire deficiency leads to decreased 

TSA expression in the thymus, allowing the escape of self-reactive T-cells into the 

periphery. Although thymic DCs express vastly lower levels of Aire than mTECs, they 

are also important for negative selection (26). The DC subsets located within the 

thymus arise either from intra-thymic precursors or extra-thymically. The presentation 

of antigen by thymic DCs allows the deletion of self-reactive T-cells within the thymus 

and therefore contributes to negative selection. In addition antigen presentation by 
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thymic DCs is essential for the induction of thymic derived natural regulatory T-cell 

(nTregs) in both mouse and human sytems (23, 27). Furthermore recent investigations 

suggest that Aire regulates the transfer of TSAs to thymic DCs, allowing the indirect 

presentation of TSAs by thymic DCs to T-cells (28). In addition central tolerance can 

also be regulated by editing self-reactive TCR through further VDJ recombination (29, 

30), which occurs extra-thymically and is dependent on RAG expression (31) .  

1.1.3 CD4 and CD8 lineage commitment 

During thymic development αβ T-cells determine their lineage commitment towards 

either a CD4+ T-helper cell or CD8+ cytotoxic T-cell. Committing the T-cell to express 

either CD4 or CD8 restricts the T-cell to the recognition of antigen in the context of 

either MHC class 2 or MHC class 1 molecules respectively. CD4 and CD8 are 

immunoglobulin family members and transmembrane glycoproteins that directly bind 

to MHC class II and MHC class 1 molecules, and play a role in stabilising the TCR:pMHC 

interaction. In addition CD4 and CD8 molecules can function within the TCR complex to  

augment TCR signalling by recruitment of Lck, a TCR signalling molecule (32, 33).  

 

In addition to TCR selection, αβ T-cell development within the thymus also commits T-

cells to either a CD4+ or CD8+ lineage, and the major developmental stages of the T-

cells within the thymus can be distinguished by CD4 and CD8 expression. Early 

thymocytes are double negative for both CD4 and CD8 molecules. Thymocytes then 

proceed to the CD4/CD8 double positive stage of development which is the stage at 

which the αβ TCR is initially expressed. Finally T-cell lineage commitment results in two 

populations of single positive mature thymocytes expressing either CD4+ or CD8+ (34, 

35). Therefore, during the double positive stage, the decision to express either CD4 or 

CD8 on the T-cell surface is made. Two models were originally proposed to explain 

how CD4 or CD8 lineage commitment is determined: the stochastic model or the 

instructive model. The stochastic model suggested that inappropriate co-receptor 

expression results in thymocyte elimination, whereas the instructive model proposed 

that CD4 or CD8 expression appropriately matches the MHC restriction of the TCR. 

More recently, another model has been proposed where CD4 or CD8 commitment is 

determined by TCR signal strength, rather than by expression of the co-receptors 
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themselves (35). This model, termed the quantitative instructive model, proposes that 

stronger and weaker signals lead to CD4 and CD8 commitment, respectively. More 

recently a transcription factor, T-helper inducing-POZ krüppel factor (Th-POK), has 

been found to regulate lineage commitment (36). This finding has led to the instructive 

model being favoured where Th-POK is regulated by TCR signal strength/duration 

leading to either CD4 or CD8 expression (34, 36).    

1.1.4 Peripheral Tolerance 

Only ~1-3% of thymocytes survive and exit the thymus (22). Within the thymus T-cells 

expressing high affinity self-reactive TCR are removed, however some T-cells 

expressing low affinity self-reactive TCRs are able to escape the thymus to populate 

secondary lymphoid organs. Peripheral tolerance mechanisms allow low affinity self 

reactive T-cells to be regulated (37). Immunological ignorance is one such mechanism. 

Physical anatomical barriers, such as the blood-brain barrier, can prevent potentially 

self-reactive TCR from recognising TSA (38). Naive T-cells, guided by CCR7 gradients, 

circulate from the blood to lymphoid organs where they scan DCs for foreign antigens. 

Failure to ligate TCRs results in the naive T-cell being circulated again through the 

lymphoid system. TSAs are expressed at low density within lymphoid organs, which is 

insufficient to activate self-reactive T-cells (39). The absence of TSA within the lymph 

system, maintains the naive T-cell in state of ignorance, preventing T-cell migration to 

tissues with high TSA density expression. More recently CD45- stromal cells have been 

observed to expess Aire and to cross-present TSA MHCI complexes within lymph nodes 

(40). Stromal TSA cross-presentation however occured in a non-immunogenic fashion, 

inducing tolerance in the self-reactive CD8+ T-cells following TCR ligation.   

 

A further tolerance mechanism protecting against self-reactive T-cells is clonal anergy. 

Anergy occurs when TCR ligation occurs in the absence of CD28 co-stimulation 

resulting in long term T-cell hyporesponsiveness characterised by repressed TCR 

signalling and Interleukin (IL)-2 production. Microbial derived ligands activate Toll like 

receptors (TLRs) expressed on DCs, which induce DC maturation. Maturation results in 

the up-regulation of CD80/CD86 molecule expression on the DC cell surface. CD80 and 

CD86 bind to CD28, inducing signalling, and prevent the induction of anergy. Self-
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antigens are not associated with TLR activating ligands and therefore only TCR derived 

signals are provided preventing the T-cell from making an immunogenic response.  

 

T-cells are also capable of activating cell intrinsic pathways to limit their own response. 

TSA are expressed at high density in peripheral tissues, and engagement with self-

reactive TCR results in high avidity binding. High strength TCR signalling can induce the 

expression of FAS and FASL on the T-cell surface (41). When FASL interacts with FAS it 

triggers T-cell death causing deletion of the T-cell, termed activation induced cell death 

(AICD). Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is another molecule induced on the 

T-cell surface shortly after T-cell activation. CTLA-4 is a structural homologue of CD28 

which binds to CD80/CD86 with higher affinity. CTLA-4 can inhibit TCR signalling by 

competing with CD28 for CD80/CD86 binding sites (29). Furthermore CTLA-4 has been 

demonstrated to trans-endocytose CD80/CD86 from the cell surface of APC to further 

inhibit CD28 signalling (42). In addition, ubiquitin ligases such as Grail, and CBL-B can 

also be up-regulated in response to strong TCR signals; these ligases interfere with TCR 

and CD28 signalling by tagging these receptors with ubiquitin (29, 43). Grail is capable 

of ubiquitinating a number of membrane associated TCR signalling components, 

including the TCR itself (44). Ubiquitination targets these TCR signalling molecules for 

proteasome degradation, which inhibits TCR signalling and leads to the induction of T-

cell anergy. Central and peripheral tolerance mechanisms are sufficient to ensure 

immunity occurs in response to foreign antigen alone. Failure to regulate tolerance 

mechanisms however, can lead to the induction of debilitating autoimmune diseases.  

1.2 Antigen Presentation 

1.2.1 Major Histocompatibility Complex 

T-cells are restricted to recognising antigen when presented by MHC molecules, known 

in humans as Human Leukocyte Antigen (HLA). In general, the MHC class II pathway 

processes and presents antigens from endocytosed pathogens present in vesicles, 

which are topologically extracellular antigens (45). Comparatively the MHC class I 

pathway processes and presents endogenously synthesised peptides such as those 

from viruses and certain bacteria (45). In addition the cross-presentation pathway 
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allows antigens from infected or abnormal cells to be acquired by DCs and presented 

by MHC class I molecules allowing CD8+ T-cell priming with the addition of DC derived 

co-stimulation (46). However, the majority of peptides bound to both MHC class I and 

class II molecules are endogenous self-peptides which are thought to regulate T-cell 

homeostasis and activation in the periphery (47).  

1.2.2 MHC Class I 

MHC class I molecules (HLA A, B, C) are recognised by CD8+ cytotoxic T-cells, whose 

function is to kill infected cells by releasing cytotoxins such as perforin and granzymes. 

MHC class I molecules present peptides from obligate intracellular pathogens that 

‘hijack’ the cells biosynthetic machinery, such as viruses and certain intracellular 

bacteria and parasites (48). All nucleated cells may be subject to viral attack, thus 

nearly all cells express MHC class I. Red blood cells do not have a nucleus and are 

therefore MHC class I negative and so provide a site where infection can pass 

undetected, as occurs at the blood stage of infection with the parasite Plasmodium 

falciparum (49). 

 

MHC class I is a heterodimer consisting of 4 extracellular domains α1, α2, α3, and β2 

microglobulin. The α1 and α2 domains constitute the peptide binding sites that 

present degraded protein fragments (50). MHC class 1 molecules are assembled within 

the ER. Successful assembly requires peptide antigen to bind to the MHC class I 

molecule. Peptides are degraded within the cytosol by the multisubunit proteasome 

complex. Transporter associated with antigen processing (TAP), a heterodimer 

composed of subunits TAP1 and TAP2, transports proteasome degraded peptides from 

the cytosol to the endoplasmic reticulum. TAP is able to bind peptides with a degree of 

size and sequence specificity (51). TAP then transfers the peptide to the assembling 

MHC class I molecule (48, 50). Tapasin enhances peptide transfer by increasing TAP 

stability and facilitating peptide transfer to the assembling MHC class 1 molecules (52). 

Once peptide is loaded onto the MHC class I molecule, the resulting peptide-MHC 

(pMHC) is transported to the plasma membrane. The MHC class I binding domain is a 

groove with the sides formed by α-helices and the floor by 8 stranded β-pleats. Closed 

ends dictate that only peptides of 8-10 amino acids in length can bind (53). The 
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peptide-binding motif of the groove contains anchor residues which bind specific 

amino acids, and these are spaced by non-anchor residues which are less stringent in 

amino acid specificity. The groove allows a variety of peptides to bind, but conserved 

residues and closed ends limit the number of potential antigens capable of binding. 

This allows predictions to be made for peptides that can bind a given MHC class 1 

molecule (53, 54).  

1.2.3 MHC Class II 

MHC class II molecules (HLA, DO, DP, DQ, & DR in humans) are recognised by CD4+ T-

cells. Unlike MHC class I molecules, MHC class II molecules present peptide from 

extracellular locations (55). Extracellular pathogens/antigens are internalised by 

phagocytosis or pinocytosis, and are then degraded by lysosomal proteases and the 

low pH within the vesicle (56). Class II molecules are formed by a heterodimer of 

membrane spanning α (consisting of α1 and α2 domains) and β (consisting of β1 and 

β2 domains) chains, very similar those domains comprising the MHC class I molecules. 

Like MHC class I, the MHC class II binding groove contains anchor residues. However, 

unlike MHC class I, MHC class II has an open ended peptide binding groove, formed by 

the α1 and β1 domains, allowing greater flexibility in peptide size than MHC class I 

(57). MHC class II molecules are assembled within the ER. As extracellular antigens 

enter the cell via endocytosis, MHC class II molecules bind peptides within the 

phagosome, rather than the ER (58). A chaperone protein called invariant protein (li) 

stabilises the class II heterodimer and prevents inappropriate binding of antigen to the 

class II binding groove. MHC αβ:li are transported through the trans golgi network, and 

may then traffic to the plasma membrane prior to being sorted into the endocytic 

pathway (58, 59). Endocytic organelles have a low pH allowing protein degradation. 

MHC αβ:li entry to endosomes allows li degradation by proteasomes, leaving behind a 

Class II-associated invariant chain peptide fragment termed CLIP. CLIP is removed by 

chaperone protein HLA-DM which directly binds to αβ:CLIP, and facilitates peptide 

sampling by the MHC class II binding grove (59, 60). Successful loading then results in 

pMHC class II expression on the APC surface. MHC class II expression is limited to a 

small group of cells termed ‘professional’ APC including macrophages, dendritic cells 
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(DC), and B-cells, all are capable of presenting exogenous antigen to CD4+ T-cells in an 

MHC class II restricted manner. 

1.2.4 Antigen presentation to T-cells 

Naive T-cells are mainly primed within lymphoid tissues by professional APCs. 

Professional APCs are specialised for antigen presentation and T-cell activation, 

furthermore professional APCs can convey pathogen related information to the T-cells. 

Pathogen information is acquired by the APC in two forms: through the antigenic 

structure, and by the signals received from pattern recognition receptors (PRR) (61). 

Parasites, microbes and viruses contain evolutionarily conserved molecular patterns 

known as pathogen associated molecular patterns (PAMPs). PAMPs are present in 

various forms including lipopolysaccharide (LPS) and peptidoglycan (PGN) from 

bacteria, and double stranded RNA from viruses. PAMPs are recognised by a number 

of different PRRs, including TLRs, retinoic acid inducible gene I (RIG-I) –like receptors 

(RLRs), and nucleotide oligomerisation domain (NOD) like receptors (62). PRR are 

expressed on both hematopoietic and non-hematopoietic cells and provide innate 

recognition of pathogens. Activation of PRR initiates signalling pathways that allow the 

expression of innate response genes which allow professional APC to release pro-

inflammatory chemokines and cytokines (63). For example PGN, a component of 

bacterial cell walls, binds to TLR2 (64). Activation of TLR2 results in activation of the 

Mitogen-associated protein Kinase (MAPK) and NfκB pathways which allow expression 

of pro-inflammatory genes. In addition caspase-1 is also activated which processes 

pro-IL-1β into active IL-1β for secretion.  

 

Within the lymphoid tissues DCs/professional APCs can deliver the pathogen derived 

information that they acquired in the periphery to T-cells. Three main signals are 

delivered to the T-cell which can result in T-cell activation and the generation of an 

effector T-cell response. Signal 1 is delivered to naive T-cells which express a TCR 

specific for the antigenic peptide presented by MHC molecules. Signal 2 is provided by 

co-stimulatory molecules (CD80 and CD86) which can bind and signal through CD28 

which is expressed on the T-cell surface. Signal 2 provides information about the 

pathogenic potential of the pathogen; indicated by the extent of DC maturation (65). 
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High CD80/CD86 molecule expression does not ensure T-cell activation; CTLA-4 can 

also bind to CD80/86 but initiates a signalling pathway that confers negative regulation 

of T-cell activation (65). The information received by the APC upon maturation also 

allows secretion of small quantities of cytokines (signal 3) which signal to direct the T-

cell towards a specific effector T-cell response (66). The weak PRR-induced cytokine 

secretion is subsequently amplified by DC-T-cell cross talk through CD40/CD40L (63, 

67). These signals act together to determine the development of distinct effector CD4+ 

T-cell phenotypes. Professional APC must therefore be capable of detecting the type of 

pathogen and conveying this information to T-cells in order to elicit the correct 

immune response, mediating pathogen clearance.  

CD40CD40L

CD80
CD86

TCR

CD28
CTLA-4

IL-12R

IL-12 secretion

Antigen presenting cellT-cell

 

Figure 2. The interaction between T-cell and APC that results in T-cell activation.  Signal 1 is provided 
by MHC class II presentation of antigen recognised by an antigen-specific TCR. Signal 2 is provided by co-
stimulatory molecules (e.g. CD80/CD86) binding to CD28, though this interaction may be inhibited by 
CTLA4. Signal 3 is provided by polarising soluble or membrane bound molecules, for instance IL-12p70 
secretion detected on the T-cell surface by IL-12R allowing a Th1 response (68).  

1.3 Antigen-presenting cells 

1.3.1 Dendritic Cells 

In the 1970’s Steinman and Cohn described a distinct population of large stellate cells 

that were highly capable at antigen presentation and T-cell stimulation, which they 

termed dendritic cells (DCs) (69, 70). DCs are able to sample tissue antigens and then 

migrate to lymphoid tissue to inform the adaptive immune system of dangers to the 

peripheral tissues (71). Immature DCs constantly endocytose material from the 

environment, however are poor at antigen presentation. DCs express a wide range of 

PRR on their cell surface, which allow DCs to make an innate immune response to 
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danger signals in the periphery. PRR triggering initiates signalling pathways such as the 

MyD88 and MAPK pathways, which result in ‘DC maturation’ (61, 63). DC maturation 

increases the cells’ capability to process and present antigen in MHC class II molecules 

on the cell surface and to upregulate co-stimulatory molecules (e.g. CD80/86). In 

addition ligation of PRR activates distinct signalling pathways leading to secretion of 

different cytokines profiles depending the PRR molecules triggered (72). For example 

Dectin-1 agonist curdlan induces secretion of enhanced IL-1β and IL-23, where as TLR4 

agonist LPS induced enhance IL-6 and IL-12-p70 secretion (73). Following PPR-

mediated activation, DC stop endocytosing material from the microenvironment (63). 

Mature DCs are then able to mediate antigen-specific T-cell expansion and 

differentiation into appropriate effector T-cell responses. Interactions between DC and 

T-cells are not unidirectional. T-cells are able to signal to DC via CD40/CD40L 

interactions licensing the DC to prime CD8+ cytotoxic T lymphocyte (CTL) responses, 

explaining the dependence of CD8+ CTL on T helper cells (74).  

 

DCs are widely distributed in low numbers within the body. There are a number of DC 

subtypes which are characterised based upon tissue location, migratory capacity and 

immune function. All DC subtypes are capable of taking up and presenting antigen. 

Two main classes of DC are found in mice: classical/conventional DC (cDC) and 

plasmacytoid DC (pDC) (71, 75, 76). cDCs are located in the lymphoid tissue, interface 

and connective tissues and may be further subdivided in to CD8α-CD11b+ (CD8α-) or 

CD8α+ CD11b- (CD8α+) cDCs. CD8a- cDCs have a strong capacity to migrate to T-cell 

areas following TLR stimulation where they activate CD4+ T-cells. The CD8a+ DCs are 

particularly good at cross-presentation of antigen to CD8+ T-cells, initiating CTL 

responses, and are also good at inducing Th1 cell responses (77). pDC are present in 

the spleen and lymphoid tissues but are also found to circulate in the peripheral blood. 

pDC can be activated via TLR engagement alone (78). TLR binding of CpG rich DNA 

motifs or double stranded DC initiates signalling pathways that activate pDC’s allowing 

rapid production of large quantities of IFNa in response to viral infection (75).  

However the relationship between mouse and human DC subsets is not clear; partially 

due to the low frequencies of DC in peripheral blood, which is the main experimental 

source of human immune cells (79). Human cDC are identified by CD11c+ and HLA-DR+, 
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whereas human pDC are CD304+. CD8a is not expressed by human DC, and so three 

further markers are used to distinguish human cDC subsets CD16, CD141 and CD1b/c 

(80). More recently in humans the CD11c+CD141+ DC has been demonstrated to cross-

present antigen and produce IL-12p70 similar to its murine CD8a+ DC counterpart (81). 

A recent investigation has revealed that human peripheral blood DC are very similar to 

human splenic DC, supporting the use of blood DC to investigate human DC biology 

(79).  

 

DCs are important at instigating immunity, however evidence now demonstrates that 

they are also capable of regulating T-cell responses; DCs with a regulatory capacity are 

termed tolerogenic DCs. Mature cDC can display tolerogenic function, secreting anti-

inflammatory cytokines such as IL-10. Tolerogenic DC (tolDC) function can be induced 

during DC maturation if DC are activated by pathogen derived molecules in the 

presence of immune suppressive cytokines such as IL-10 and Transforming growth 

factor (TGF)-β (82). In addition tolerogenic DCs can be generated in vitro by treatment 

with pharmacological immunosuppressive drugs such as vitamin D3 and 

dexamethasone which suppress NfκB dependent maturation. TolDC offer a potential 

new therapy for the treatment of autoimmune diseases with experimental models 

highlighting the promise of tolDC cellular therapy (83) .   

1.3.2 B-cells   

B-cells are lymphocytes capable of both antigen presentation and secretion of 

antibodies that recognise and bind native protein antigen. Naive B cells are activated 

and able to capture antigen via their specific membrane bound B-cell antigen receptor 

(BCR). When Ag binds to the BCR the event triggers AgBCR internalisation and 

activation of the B-cell. B-cells are able to process and present the internalised antigen 

on MHC class II to CD4 T-cells; B-cells also upregulate CD86 on the cell surface 

providing signal 2 (84). Compared to DC, B-cells are considered poor APC. This is in part 

due to low numbers of circulating antigen specific B-cells and their absence from 

skin/mucosal sites (84). However, B-cells can contribute highly as APC, and are capable 

of inducing T-cell activation or tolerance (85), as highlighted by failures in T-cell 

responses in their absence (86, 87). In addition B-cell antigen presentation is 
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particularly efficient when antigen load is low. The BCR allows antigen specific uptake 

of antigen which permits much greater quantities of low abundance antigen to be 

processed and loaded onto MHC class II molecules (88). B-cells also secrete cytokines 

and are able to promote T-helper cell responses including Th1, T helper 2 (Th2) or 

regulatory T-cell phenotypes (89, 90). Furthermore B cells, like T-cells, may also be 

further subdivided based upon their cytokine secretion profile which determines their 

function (91). B-cells can produce cytokines including IL-12, Interferon-gamma (IFNy) 

and Tumour necrosis factor (TNF)-α and B effector type two cells can secrete IL-4 and 

IL-13 (91, 92). In addition regulatory B cells (Bregs) are characterised by the secretion 

of IL-10, allowing Bregs to inhibit T-cell proliferation and effector cytokine production 

(91). B-cells can also play an important role in the pathogenesis of autoimmune 

diseases by producing autoantibodies which recognise self-proteins, and via 

production of inflammatory cytokines (88). B-cell depletion therapies (such as 

rituximab therapy) are used to treat auto-antibody associated autoimmune diseases 

such as Rheumatoid Arthritis (RA) (93). The mechanism by which the therapy acts is 

not fully understood but is thought to occur by either: directly removing the source of 

the auto-antibodies, removing the source of cytokine/chemokine secretion (which can 

alter the T-cell response), or by preventing priming of auto-reactive T-cells.  

1.3.3 Macrophages & monocytes 

Macrophages are highly phagocytic cells located in mainly non-lymphoid tissues and 

inflammatory sites where they are specialised to up take nectrotic or apoptotic 

material; macrophages can clear ~2x1011 erythrocytes per day for host reuse (94). A 

number of different macrophage subtypes have been characterised based upon their 

tissue of residence e.g. kupffer cells in the liver or microglia in neuronal tissue. 

Macrophages are capable of antigen presentation and can also initiate pro- or anti-

inflammatory responses depending on the means of activation (95). The classical view 

of macrophage activation is via dual TNFα and IFNy/β signalling. This signalling 

requirement is often initiated via activation of certain TLRs/IL-1R resulting in 

endogenous TNFα and IFNγ/β production. In response to these signals macrophages 

are able to upregulate expression of both MHC class II and CD80/86 (94, 96). 

Macrophages can initiate Th1 and Th2 cell responses and have also been 
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demonstrated to have regulatory/tolerogenic function (96). In addition, classically 

activated macrophages have been demonstrated to express IL-6, IL-23 and IL-1β 

expression and could regulate T helper 17 (Th17) cell responses.  

 

Monocytes are increasingly being acknowledged as being capable of determining the 

polarisation of T-cell immune responses (97). TLR-activated monocytes rather than DC 

are capable of initiating Th17 cell responses (98, 99). Monocytes are present at sites of 

infection and T-cell priming, allowing monocytes to influence T-cell responses via cell-

cell contacts and cytokine secretion.  

1.4 T-cell-APC interactions 

1.4.1 T-cell - APC interactions within the lymph node 

Antigen presentation to T-cells predominantly occurs within the lymph nodes. Many 

antigens enter the body in non-lymphoid organs, requiring migration of APC to the 

lymphoid organs. Migration occurs through changes in adhesive interactions and 

expression of chemokines such as Chemokine (C-C motif) Ligand-7 (CCL-7) (100). T-cells 

present within the lymph nodes are guided towards interactions with DC by the 

fibroblastic reticular cell (FRC) network which also provides survival factors including 

IL-7 (101). Following entry into the lymph node, antigen presenting DCs stably position 

themselves on to the FRC network allowing T-cells to rapidly sample antigens. In 

comparison to random distribution of DCs, the FRC is thought to increase T-cell-DC 

interactions. Upon finding a DC with a relevant antigen epitope, the T-cell binds and 

forms a longer interaction that lasts for several hours, studies show that after 24-30 

hours T-cells disengage from DCs (100).  

1.4.2 Immunological synapse 

Formation of an immunological synapse allows cross-talk between the T-cell and APC, 

controlling downstream effects (102). Initial TCR-pMHC interactions have low affinity 

compared to antibody-antigen interactions, thus initial contacts are made by accessory 

molecules such as CD2 and Leucocyte Functional Antigen (LFA-1), whose ligands, LFA-3 

and Intercellular adhesion molecule (ICAM)-1 respectively, are present on APC. These 

interactions bring the APC and T-cell together in close proximity. Non-specific TCR-
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pMHC interactions result in dissociation of the two cells. Specific cross-linking of the 

TCR to pMHC results in the generation of TCR signals through Lck phosphorylation and 

calcium influx (103). Following TCR-pMHC ligation and initiation of TCR signalling, T-cell 

movement ceases. TCR signalling events also lead to changes in cytoskeletal 

arrangement and aggregation of cell surface receptors around the synapse between 

the TCR and APC (104). As the synapse matures, its composite molecules are organised 

into distinct areas called the supra-molecular activation complexes (SMAC) which may 

be viewed by confocal microscopy as a ‘bulls-eye’ structure (105). Multiple TCRs 

comprise the central region (cSMAC), whereas adhesion molecules such as LFA 

comprise the periphery (pSMAC) (103). A difference in the pattern of IS formation 

between differentiated effector T-cells has been observed (105, 106). Th1 cells can 

form a mature IS with a distinct cSMAC and pSMAC, whereas Th2 cells form multifocal 

IS. Furthermore the composition of the synapse differed between effector T-cell 

phenotypes, e.g. CD45 was excluded from the Th2 cell IS interface but was included in 

the Th1 cell IS interface.  
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Figure 3.  The Immune Synapse.  The image demonstrates the ‘bullseye’ formation of the immune 
synapse as viewed face on.  Figure adapted from Huppa & Davis Nature Reviews Immunology 2003 
(107).  

1.4.3 T-cell Receptor Complex 

The TCR αβ chains span the T-cell cell membrane. The αβ chains have a positively 

charged transmembrane domain that is structurally unfavourable; they also lack 

signalling capabilities due to a short cytoplasmic region. To neutralise the positive 
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charge and allow downstream signalling, the αβ chains form a complex with CD3 

molecules, including CD3 γ, δ, ε, and ζ, with a stoichiometry (TCRαβ, CD3γε, CD3δε and 

CD3ζζ) that neutralises the positive charge (108). The CD3 molecules cytoplasmic tails 

contain Immunoreceptor Tyrosine-based Activation Motifs (ITAM) and Antigen 

Recognition Activation Motifs (ARAM). Following TCR engagement these motifs are 

phosphorylated allowing activation of downstream signalling pathways that modulate 

gene expression within the nucleus (109, 110). 

1.4.4 TCR signalling pathway 

T-cells are able to detect a single pMHC ligand, however it requires >10 of these 

specific TCR-pMHC binding events to increase and maintain Ca2+ levels (107). In the 

absence of CD4 the initiation of TCR signalling requires a higher affinity TCR ligation 

than in the presence of CD4, between 25-30 pMHC complexes are required to be 

bound to increase Ca2+ levels. TCR recognition of pMHC and immune synapse 

formation results in Ca2+ signal transduction from the TCR to the nucleus, modulating 

gene expression and activating the T-cell to enable effector functions (107). TCR 

ligation results in activation of Src protein tyrosine kinases, Lck and Fyn, which 

phosphorylate ITAM motifs on CD3 molecules. Phosphorylation of CD3 molecule ITAM 

motifs in turn allows ζ-chain-associated protein-70 (Zap-70) recruitment; from this 

point a cascade of phosphorylation events occur allowing diversification of the TCR 

signal through a number of signalling pathways (111–113). Important targets of ZAP-70 

are linker for the activation of T-cells (LAT), a transmembrane protein. LAT is able to 

recruit phospholipase C-γ1 (PLC- γ1) and is activated by inducible T-cell kinase (Itk). 

PCL-γ1 hydrolyses membrane lipid PI(4,5)P2 into secondary messenger proteins 

diacylglycerol (DAG) and IP3. DAG activates two major pathways Ras and protein kinase 

(PK)Cθ. Ras initiates MAPK pathway that leads to extracellular signal-regulated kinase 1 

(Erk1). Erk1 activates activator protein-1 (AP-1), a transcription factor which forms a 

component of many transcriptional complexes. DAG binding and activation of PKCθ 

regulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

activation. NF-κB is associated with inhibitor of NF-κB (IκB) in the cytosol of resting T-

cells. T-cell activation results in PCKθ mediated activation of NF-κB through IκB 
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phosphorylation, allowing NF-κB nuclear translocation and transcriptional activity 

(112–114). 

 

In addition to DAG, the secondary messenger molecule IP3 is also generated by TCR- 

activated PLCγ1. IP3 stimulates ER Ca2+ store release into the cytoplasm. Ca2+ store 

release in turn triggers sustained influx of extracellular Ca2+ through Ca2+ release-

activated Ca2+ channels (CRAC) (115). Increased intracellular Ca2+ activates the Ca2+-

dependent enzyme calcineurin, a serine-threonine phosphatase that activates 

transcription factors including Nuclear Factor of Activated T-cells (NFAT), NF-κB, and 

Cyclic-AMP- responsive-element-binding protein (CREB) (112, 115).  

  

An alternative TCR signalling pathway has also been described, which is independent 

of Lat and PLCγ1 (116). The alternative pathway results in MAPK p38 activation 

through direct phosphorylation by ZAP-70 (117). In addition the use of classical vs 

alternative pathway differs in naive and memory T-cells (118). Naive T-cells have low 

expression of PLCγ1 and therefore impaired signalling via the classical PLCγ1 pathway. 

Instead it is reported that naive T-cells signal via the alternative pathway, activating 

p38 through direct phosphorylation of MAPK by ZAP-70. Activation of p38 in naive T-

cells via the alternative pathway results in the expression of vitamin D receptor (VDR), 

which in turn activates PLCγ1. Following priming memory T-cells are therefore able to 

signal via the classical PLCy1 pathway. The differential use of downstream TCR 

signalling pathways in naive and memory T-cells potentially explains the differences in 

their antigen response times (118). 
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Figure 4. T-cell Receptor signalling pathway. Following TCR binding of pMHC the TCR signalling pathway 
is activated. Early signalling events include the activation of Src family kinases such as Lck, Fyn and Zap-
70. Zap-70 target Lat which in turn recruits PCLγ1. Activated PCLγ1 hydrolyses PIP2 to DAG and IP3 which 
inturn initiates a number of signalling pathways including the NFκB, MAPK and the Ca

2+
/NFAT pathways. 

The transcription factors activated by these pathways are then capable of altering T-cell gene expression 
within the nucleus.  

 

1.4.5 CD28 signalling pathway 

CD28 is a member of the immunoglobulin superfamily and is a homodimeric 

transmembrane protein expressed by T-cells. It is recruited to the cSMAC by the 

presence of PYAP motifs (119). CD28 interacts with CD80 (B7-1) and CD86 (B7.2) which 

are both expressed on APC following activation through TLRs (120). CD28, like the TCR, 

is capable of PI3K- and Itk-recruitment and Lck activation (121). TCR and CD28 

signalling activates some of the same signalling pathways and so concerted TCR and 

CD28 ligation is thought to increase the duration and intensity of TCR signalling. In 

addition to increasing TCR sensitivity, CD28 ligation within the synapse also increases 

T-cell survival by inducing anti-apoptotic molecule Bcl-XL (122). Futhermore CD28 

binding provides signal 2 which is required for T-cell activation and to prevent the 

induction of anergy (119). 
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CD28 binding to CD80/CD86 in addition to TCR:pMHC allows full TCR activation. The 

cytoplasmic domains of CD28 lack catalytic activity. However, tyrosine phosphorylation 

of YMNM binding motifs facilitates downstream signalling by providing binding sites 

for signalling molecules PI3K and GrB via their SH2 domains (123, 124). PI3K binding 

produces PIP2 and PIP3 lipids which indirectly activate PKCθ, PKB and PDK1; molecules 

capable of regulating pathways involved in protein synthesis, cell metabolism, and 

survival. The importance of Grb and PI3K pathways is highlighted by the interference 

of IL-2 expression resulting from mutations within the Y and M residues of YMNM 

motifs (120). Phosphorylation of guanine nucleotide exchange factor, Vav1, by Grb, 

leads to the activation of c-jun kinase (JNK). Vav1 induces Ca2+ release and enhances 

NFAT and AP-1 activation and NFAT mediated il-2 transcription (125). Interestingly, 

Vav1 is able to activate Ras-related C3 botulinum toxin substrate 1 (Rac1) allowing 

remodelling of the actin cytoskeleton. Furthermore Vav1 allows clustering of the 

TCR/CD3 complex, indicating the importance of CD28/TCR cooperative effects. CD28 

signalling also allows upregulation of immunoglobulin super-family and TNF-super 

family co-factors, which also contribute to signalling from the IS (126). Previous 

investigations have shown that CD28 signalling is Cyclosporin A (CysA)-resistant, 

whereas the TCR pathway is CysA-sensitive, indicating differences in the signalling 

pathways induced (127). However, more recent investigations have revealed that the 

CD28 signalling pathway is also CysA sensitive, and this finding is consistent with CD28-

enhanced Ca2+ and NFAT induction (126, 128). CD28 signalling is inhibited by CTLA-4, 

which competes with CD28 for CD80/CD86 binding sites. CTLA-4 is also able to inhibit 

TCR signalling, by recruiting an intracellular phosphatase SHP2 (SH2–domain-

containing protein tyrosine phosphatase 2) that is capable of dephosphorylating CD3 

subunits. CTLA-4 is absent from naive T-cells, but mRNA expression is detected within 

a few hours of priming. Signalling via CTLA-4 is also capable of inhibiting cell cycle 

progression and preventing activation of transcription factors: NFκB, NFAT, and AP-1 

(119, 124).  

1.4.6 CD4 and CD8 contribution to T-cell signalling 

CD4 and CD8 promote T-cell adhesion by binding to monomorphic regions of MHC 

class II and MHC class I, respectively. CD4/CD8 molecules are thought to act by cross-
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linking the TCR: maximising TCR recruitment to the IS. More recent data demonstrate a 

predominant role of CD4/CD8 in delivering tyrosine kinase Lck to the IS to initiate TCR 

signalling (129). Interestingly Th2 cells have two-fold lower CD4 expression than Th1 

cells, and CD4 is excluded from lipid rafts in Th2-APC. Furthermore Th2 and Th1 cells 

form morphologically distinct immune synapses (106). Lower CD4 expression together 

with CD4 exclusion from lipid rafts in Th2-APC interactions may explain why Th2 cells 

compared to Th1 cells have a reduced capacity to form mature IS (106, 130). 

Furthermore, Th2 cells also have a reduced capability to elevate Ca2+ signalling, which 

is thought to be due in part to reduced CD4 expression (130).  

1.5 CD4+ T-cells in the periphery 

1.5.1 Naive and Memory T-cells 

Antigen-inexperienced or ‘naive’ T-cells are released into the periphery following 

successful passage of a T-cell through the positive and negative selection criteria of the 

thymus. Naive T-cells circulate via the lymphatic system between the secondary 

lymphoid organs and the blood. Naive T-cells may also express receptors allowing 

migration to non-lymphoid tissue, including α4β7 integrin which allows homing to the 

small intestine (131). Human naive T cells may be identified through expression of 

CD45RA, which is downregulated following antigen recognition, and expression of 

CD45RO (a CD45 isoform whose CD45RA, B and C exons have been spliced out) is 

upregulated on antigen experienced memory T-cells; these markers are used to 

separate human naive and memory CD4+ T-cell populations.  

 

Following antigen recognition, the expression of CD62L and CCR7 also increases on the 

T-cell surface allowing extravasation and lymphoid homing. Expression of CD62L and 

CCR7 also allows T-cells to migrate through high endothelial venules found in 

secondary lymphoid organs. The number of effector T-cells usually peaks a week into 

the immune response and ~90% of the effector T-cells die during the following week, 

leaving behind a long lived memory T-cell subset that is predominantly quiescent 

(132). Memory T-cells can be subdivided into Central Memory (TCM) and Effector 

Memory (TEM) T-cells (133). TEM cells express CD62L, and also combinations of 
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chemokine receptors and adhesion molecules, which allow migration to sites of 

inflammation. TEM cells can also rapidy produce effector cytokines within hours of TCR 

triggering (134). When TEM cells are TCR stimulated under neutral conditions they 

retain the pattern of cytokine expression designated during priming, for example a Th1 

or Th17 cell phenotype, however TEM cells may produce a different cytokine profile if 

stimulated in the presence of an opposing polarising conditions (135).  

 

TCM cells are the predominant memory CD4+ T-cell in peripheral blood and 

constitutively express secondary lymphoid homing receptor CCR7 along with CD62L, 

and so are enriched within the lymph nodes and tonsils (133). TCM cells are very 

sensitive to antigenic stimulation and are less reliant on co-stimulation (135). Upon 

antigenic stimulation TCM produce IL-2 and rapidly proliferate. TCM cells however do not 

produce effector cytokines immediately after TCR stimulation, but following 

proliferation TCM cells are capable of differentiating into effector T-cell phenotypes 

(133). Following TCR stimulation TCM cells quickly loose CCR7 expression which marks 

the transition from TCM to TEM  cell, and CCR7 expression is sufficient to separate the 

effector and central memory subsets (135).  

1.6 Effector T-cell subsets 

1.6.1 Regulatory T cells 

Regulatory T-cells (Treg) critically function in the maintainance of peripheral tolerance: 

by regulating lymphocyte activation/expansion, and by preventing tissue destruction 

and inflammation (134). Treg cells have a suppressive action on the function of a range 

of immune cells including: CD4+ T cell proliferation and effector cytokine production, 

CD8+ T cell granule release, and B cell antibody production (136). Treg cells are also 

equipped to suppress inflammation via mechanisms that include: the production of 

inhibitory cytokines IL-10, TGF-β, and IL-35, cytolysis via secretion of Granzyme A or B 

and perforin, high CD25 expression causing death by IL-2 deprivation, and suppression 

of DC maturation via interaction of CTLA-4 and CD86 (137). Activation of Treg cells 

occurs in an antigen-specific manner; suppression occurs in a non-antigen specific 

manner via bystander effects on neighbouring effector T-cells. Furthermore, infectious 
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tolerance allows Treg cells to create a regulatory milieu favouring the outgrowth of 

Treg cells with distinct TCR specificity (138). In vivo, Treg cells exist as either naturally 

occurring Treg (nTreg) cells or inducible (or adaptive) Treg (iTreg) cells. A number of T-

cells with regulatory properties have also been developed in vitro for use as cell 

therapies.   

 

nTreg cells develop in the thymus during early foetal/neonatal T-cell development. The 

polyclonal nTreg cell population released to the periphery constitutes 5-10% of CD4+ T-

cells in mice and are characterised, in part, by expression of transcription factor 

Forkhead box p3 (Foxp3). The development of nTreg cells within the thymus occurs 

following high affinity TCR ligation of self-pMHC presented by Aire+ mTec cells and 

accessory signalling via CD28 or CD40 which allows stable Foxp3 expression (139–141). 

The association of Foxp3 with nTreg cells was discovered as a result of identifying 

Foxp3 as the defective gene in the Scurfy mouse model; an X-linked recessive mutant 

with hyperactive CD4+ T-cells and increased pro-inflammatory cytokine production 

(142, 143). nTreg cells fail to develop in Scurfy mice, causing a breakdown in peripheral 

immune tolerance. Human and murine FOXP3 is highly conserved. FOXP3 mutations in 

humans can result in the development of immune dysregulation polyendocrinopathy, 

enteropathy, X linked syndrome (IPEX) (144). Over 20 FOXP3 mutations have been 

identified so far and the clinical outcome is determined by the location of the 

mutation. The most critical outcome is a severe autoimmunity which must be treated 

by a bone marrow transplantation (144, 145). Thymus-derived nTreg cells are CD4+ and 

in addition to Foxp3, express high levels of CD25 (IL-2α), CTLA-4 and glucocorticoid-

induced TNFR-related protein (GITR), all important to nTreg cell function (141). High 

CD25 expression is thought to be maintained by the frequent contacts with self-

antigen (146, 147). High CD25 is functionally important to regulatory T-cell (Treg) cells 

by sequestering IL-2 preventing the proliferation of inflammatory effector T-cells 

populations. The importance of CD25 to human nTreg cell function is highlighted by 

the observation that a patient with CD25 deficiency developed pathology 

indistinguishable from IPEX (148).  
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Peripheral CD4+ T-cells may also be induced or converted to a regulatory phenotype 

termed adaptive or inducible Treg (iTreg) cells. iTreg cells may be generated from 

Foxp3- naive or effector CD4+ T-cells in vitro or within lymphoid tissue and are 

generally marked by upregulation of Foxp3 expression and CD25 (149, 150). In contrast 

to nTreg, iTreg cells usually have a more restricted TCR specificity (137). However, as 

nTreg and iTreg cells express similar markers, distinguishing the populations is not yet 

possible. Of the CD4+ iTreg two main phenotypes are described: T helper 3 (Th3) cells 

are induced by TGF-β, and regulatory T-cell type 1 (Tr1) cells are induced by IL-10 

(151). Th3 cells, commonly referred to as iTreg cells, are induced from Foxp3-CD4+ T-

cells in the presence of TGF-β. High doses of ova induced oral tolerance via CD4+ T-cell 

secretion of TGF-β ameliorating experimental tracheal eosinophilia (152). Tumours 

secreting TGF-β can suppress immunity by converting immature DC to a tolerogenic 

phenotype secreting TGF-β, and promoting the proliferation of Treg cells (153). Along 

with TGF-β, IL-2 is also important for the development of Foxp3+ iTreg. IL-2 enhances 

Signal transducer and activator of transcription (STAT)-5 signalling and can act in 

concert with TCR stimulation to induce epigenetic modifications at the Foxp3 locus 

that stabilise TGF-β-induced Foxp3 expression (150). Tr1 cells are another subset of 

iTreg induced by IL-10 or IL-10-conditioned DC. Tr1 cells mediate their suppression via 

IL-10- and TGF-β-dependent mechanisms, although they are generally Foxp3- (154, 

155). IL-27 alone or together with TGF-β has been demonstrated to induce IL-10-

producing Tr1 cells (156). Furthermore, IL-27 allows the expansion of Tr1 cells via 

induction of c-Maf, leading to transactivation of IL-21 and Tr1 cell expansion (157). The 

adoptive transfer of Tr1 cells can suppress autoimmunity, graft vs host disease, and 

colitis (158). A loss of iTreg can be a characteristic of autoimmunity; depletion of Treg 

cells has been associated with inflammatory colitis, RA and diabetes. The balance 

between Treg cells and effector CD4+ T cell populations appears important to immune 

regulation, and Treg may provide a promising therapeutic tool. Ex vivo generation and 

expansion of antigen specific Treg cells remains difficult. In vitro induction and 

expansion of iTreg allows generation of large numbers of Treg cells which may be 

administered for therapeutic purposes (159). Although cellular therapy with Treg cell is 

promising it is important that a delicate balance is achieved to prevent the 

development of infection and cancer (143). 
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1.6.2 T helper 1 (Th1) cells 

Mossman and Coffman originally described Th1 and Th2 cells in 1986 based upon the 

observation of T-cells with distinct cytokine profiles/activity (160). Th1 cells are critical 

for co-ordinating the clearance of intracellular pathogens, including bacteria, such as 

Listeria and Mycobacterium tuberulosis and also viruses and parasites (161). Th1 cells 

are also associated with the delayed type hypersensitivity response (162). For a long 

time Th1 cells were considered to be the main drivers of autoimmune pathogenesis, 

however some of these data have been recently reviewed and re-interpreted since the 

discovery of Th17 cells and the role of IL-23 ((163, 164) (Discussed in section 1.7). The 

signature cytokine of Th1 cells is the pro-inflammatory cytokine interferon gamma 

(IFNγ), but Th1 cells also produce IL-2, IL-3, Granulocyte Macrophage-Colony 

Stimulating Factor (GM-CSF) and TNF-β (165, 166). In addition, Th1 cells also provide 

help for B-cell production of complement fixing antibody IgG2a in mice or IgG1 in 

humans, mediating antibody-dependent cell mediated cytotoxicity (ADCC) (167, 168). 

Natural Killer (NK) cells and cytotoxic T- lymphocytes are also activated by Th1 cells 

(169). Like a number of effector T-cells, Th1 cells also produce IL-10 to limit tissue 

damage, and the levels of IFNy and IL-10 must be carefully regulated to minimise 

pathology whilst preventing persistent infection (170).   

 

Th1 cell responses are induced by the cytokines IFNy, IL-12 and IL-18, which activate 

transcription factors required to express Th1 response genes. The cytokines required 

to initiate a Th1 cell response can be derived from innate immune cells. NK cells are an 

innate immune cell capable of producing IFNy as a result of  DC derived IL-12 in 

combination with IL-18 or IL-15 (171, 172). Production of IFNy by the Th1 cell induces a 

positive feedback loop, maintaining NK cell production of IFNy, which reinforces the 

Th1 phenotype. Signalling via IFNy and the TCR induces the expression of IL-12Rβ2 on 

the cell surface of naive T-cells (173, 174). IL-12 is produced by DC activated with TLR3, 

TLR4, TLR7 and TLR9 either alone or in synergy (175). Binding of IL-12 and IFNy to their 

respective cytokine receptors activates Janus kinases (JAKs), which phosphorylate 

tyrosine residues on the intracellular cytokine receptor domains, creating binding sites 

for STAT proteins. Once bound STAT proteins are activated and dimerise, allowing 

transportation to the nucleus where they affect transcriptional regulation. Sustained 
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IL-12 signalling via IL-12Rβ2 in T-cells activates STAT4, which is further enhanced by IL-

2 (176). IL-12 signalling via STAT4 in concert with TCR signalling upregulates expression 

of IL-18Rα (177). IL-18 functions in synergy with IL-12 to augment IFNy production and 

to increase expression of IL-12Rβ2, potentiating the Th1 cell phenotype (178, 179).  

 

In addition to STATs, T box expressed in T cells (Tbet) is an essential regulator of the 

Th1 cell phenotype. Tbet is induced independently of STAT4, via IFNy-mediated 

activation of STAT1 (180). Tbet induces IFNy production and represses IL-4 expression. 

Furthermore induction of Tbet in Th2 cells induces a Th1 cell phenotype, Tbet is thus 

termed a master regulator of Th1 cell phenotype (181). Tbet in conjunction with Runx3 

allows maximal Ifny expression, and silences Il-4 expression (182). Furthermore, Tbet 

represses Socs1 and Socs3 expression by directly binding to their promoter regions 

(183). Tbet plays an important role in stabilising the Th1 cell phenotype by increasing 

Ifny expression, thereby initiating a positive feedback loop (184). In addition, Tbet is 

capable of inducing C-X-C chemokine receptor 3 (CXCR3) expression allowing migration 

of Th1 cells to sites of inflammation (185). Chemokine receptors do not strictly 

coordinate with T cell phenotype but CXCR3 and CCR5 are most strongly associated 

with the Th1 cell phenotype (186).   

1.6.3 T helper 2 (Th2) cells 

Th2 cells are critical to mediating the clearance of extracellular pathogens including 

helminths. A dysregulated Th2 cell response can result in atopy and asthma through 

the induction of IgE production (169). The function of Th2 cells is mediated by their 

effector cytokines IL-4, IL-5, IL-9, and IL-13 (187). IL-4 and IL-13 play a similar and key 

role in instructing IgE class switching in B cells, though IL-4 acts more potently on B-cell 

class switching than IL-13. IL-13 can also activate mast cells and eosinophils and 

induces airway MMP production. Secretion of IL-5 and IL-9 allows Th2 cell mediated 

eosinophil recruitment, and the production of mucins from epithelial cells respectively.  

IL-25 is also produced by Th2 cells and is a member of the IL-17 cytokine family (IL-

17E). IL-25 enhances the production of Th2 cell cytokines and is capable of inducing 

CCL5- mediated eosinophil recruitment (161). Th2 cells tend to be characterised by 
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expression of chemokine receptors CCR3, CCR4, and CCR8, allowing localisation to 

mucosal tissue (186). 

 

Th2 cell differentiation requires IL-4 signalling. There are no known stimuli that induce 

production of pro-Th2 factors such as IL-4, IL-9, or IL-25 by DC, suggesting other 

cellular sources may promote Th2 responses (188). Previous studies have 

demonstrated that membrane bound factors such as Inducible T-cell co-stimulator 

(ICOS) can regulate DC mediated Th2 clone expansion (189). Three more recent 

investigations have provided evidence that basophils, rather than DC, provide MHC 

class II dependent IL-4 to allow Th2 differentaition (190–192). Basophils were 

demonstrated to endocytose soluble ovalbumin, then process and present antigen 

both in vitro and in vivo (190). Depletion of basophils in response to T.muris impaired 

Th2 responses and the clearance of infection (191, 192). However the role of Basophils 

to drivers of Th2 cell responses has been refuted more recently (193, 194). Th2 cell 

cytokine responses were dramatically impaired by CD11c+ cell depletion whereas 

basophil depletion resulted in only minor impairment. This has lead to a decription of a 

model whereby Th2 cytokine secretion in response in allergen antigens is initially 

mediated by DC and may be amplified by basophils. IL-4 binding to the IL-4R can 

induce STAT6 activation, enhancing the expression of transcription factors GATA3 and 

c-maf, thereby further increasing surface expression of IL-4R (169, 195). STAT6-

deficient mice do not develop Th2 cell responses and overexpression of STAT6 in Th1 

cells downregulates IL-12Rβ and increases expression of GATA3 and c-maf (195, 196). 

Together these experiments have demonstrated the importance of STAT6 to the 

development of Th2 cell responses. 

 

GATA-3 is the master transcription factor of the Th2 cell lineage (197). Naive T-cells 

have low basal expression of GATA-3, but its expression is upregulated during Th2 cell 

development via IL-4-mediated STAT-6 activation (198). IL-4 signalling is sufficient to 

induce an up-regulation of GATA-3 mRNA, however expression of GATA3 is augmented 

by TCR activation which increases the translational stability of GATA-3 via the PI3K 

pathway (199). STAT6-independent mechanisms of GATA3 activation via Notch 

signalling have also been suggested to be essential for Th2 cell induction (197). In vitro 
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Th2 cell differentiation has been described to be impaired in the absence of 

physiological Notch signals. Th2 cells produce high levels of IL-4 that can reinforce 

GATA3 expression, providing a positive feedback loop and phenotype stability (200). 

GATA3 deletion prevents expression of IL-5 and IL-13, however IL-4 is still capable of 

being produced via transcription factor c-Maf (201, 202). GATA3 also acts by inducing 

an open chromatin conformational state within the IL-4, IL-5, and IL-13 promoters that 

allows binding of transcription factors, and protein expression (197).   

 

GATA3 inhibits Th1 cell differentiation and thus IFNy production. Expression of GATA3 

in Th1 cells is able to induce expression of Th2 cell response genes (203). IL-4 also 

exerts an antagonistic effect on Th1 cell development, however GATA-3 can inhibit Th1 

cell development independently of IL-4 (204). T-cell activation allows the upregulation 

of IL-12Rβ2 on naive T-cells, which unlike IL-12Rβ1 is not constitutively expressed. 

Ectopic GATA-3 can supress expression of the IL-12Rβ2 and IL-12 responsiveness, 

preventing STAT4 activation and therefore Th1 cell responses (205). GATA3 is also 

capable of IFNy inhibition by blocking Runx3 mediated IFNy production. Mutual 

antagonism between Tbet and GATA3 has been described to increase the 

transcriptional imbalance promoting lineage divergence contributing to the stability of 

the Th1 and Th2 cell phenotypes (200).  

1.6.4 T helper 22 (Th22) cells 

IL-22 can be produced by Th17 cells in response to IL-23 signalling (206). IL-22 is, also 

expressed by Th1, NK and NKT cells, but to a lesser degree. More recently an IL-22+ 

CD4+ T-cell population has been described as an independent T-cell lineage termed 

Th22 cells (207). Th22 cells do not co-express IFNy, IL-4, or IL-17. Approximately one 

third of ex vivo IL-22+ cells from psoriatic or atopic dermatitis lesions were IL-22 single 

positive and a further third were dual positive for IL-22 and IL-17. IL-22 single positive 

cells were found to be enriched within the CCR10+ CD4+ fraction (207). In addition 

CCR4 is also expressed by Th22 cells  (208). CCR10 and CCR4 allows migration towards 

their cognate chemokines expessed by skin tissues (208). The IL-22R is highly expressed 

in epithelial tissue, and Th22 cells are thought to play an important role in mediating 

innate epithelial and keratinocyte defence (207). Th22 cells are also proposed to be 
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important in wound healing. Furthermore, by synergising with factors including IL-17, 

TNFα, and Oncostatin M, IL-22 plays an important role in autoimmune diseases of the 

skin, including psoriasis (209, 210). IL-22 can have both pro- and anti-inflammatory 

effects in vivo; ascertaining the function of IL-22 is complicated as the surrounding 

cytokine milieu has a prominent role in dictating the immune outcome (211, 212).  

 

Induction of Th22 cells arises via IL-1β, IL-6 and/or TNF-α signalling, which are factors 

also associated with Th17 cell induction (207, 213). Langerhans cells or dermal DC are 

also able to induce Th22 cells (214). Transcriptome analysis has revealed enhanced 

expression of transcription factors Basonuclin-2 (BNC-2) and FOXO-4 within Th22 cells, 

although it is currently unknown if and how these factors may be involved in Th22 cell 

polarisation (207). As expected expression of Retinoic acid related orphan receptor 

(ROR)-yt, Tbet and GATA-3 is reduced within Th22 cells. For Th22 cells to be defined as 

a distinct T-cell subset, a master transcription factor for Th22 cells must be identified. 

One proposed is the Aryl Hydrocarbon Receptor (AhR) transcription factor. AhR was 

established as important for Th17 cell induction increasing both IL-17 and IL-22 

expression within mouse models (215). Interestingly, AhR-/- mice could still produce IL-

17 but were unable to produce IL-22 (216). Contrary to these data it has been 

subsequently found that AhR ligands reduce IL-17 production but enhance the 

generation of Th22 cells (217). The broad expression of the AhR in T-cells may indicate 

that it is not a master transcription factor for the Th22 cell subset. More investigations 

are therefore required to further assess the factors controlling Th22 cell induction and 

regulation.      

1.6.5 T helper 9 (Th9) cells 

Th9 cells represent another potential T-cell subset, their description was based upon 

discrete production of IL-9 by murine CD4+ T-cells (218). Th2 cells were originally 

described to secrete high levels of IL-9 in conjunction with IL-4, mediating immunity 

against helminth infection and allergy. It was later found that TGF-β could induce IL-9 

production from IL-17+ memory T-cells (219). However, in the presence of IL-4, TGF-β 

allowed Th2 cells to be converted to an IL-9-producing subset termed Th9 cells (218). 

Th9 cells were found to express high levels of IL-17RB (also expressed by naive and Th2 
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cells, but not Th1 or Th17 cells), which is the receptor for IL-25. The combination of IL-

4 and TGF-β enhanced IL-9 production from Th9 cells, but IL-25 in concert with TGF-β is 

also capable of inducing IL-9 expression by Th9 cells (220). Transcription factor 

Interferon regulatory factor 4 (IRF4), also expressed in Th2 and Th17 cells, has recently 

been described to be crucial for IL-9 expression by ‘Th9’ cells (221). Chromatin 

immunoprecipitation demonstrates that IRF4 binds to the Il-9 promoter and at present 

IRF4 seems a promising candidate as the master transcription factor for Th9 cells. In 

vitro generated T-cells are however heterogeneous. If T-cell subsets are not sorted by 

flow cytometry, the signature factors assigned to a subset may be representative of 

the heterogenous population as a whole, rather than the subset enriched within the 

total cell population (200, 221).   

1.6.6 Follicular helper T cells (TFH) 

T helper cells have long been recognised for their capability to ‘help’ in the activation 

and differentiation of B-cells; follicular helper T cells (TFH) are now recognised as being 

specifically equipped to mediate B-cell help (222). TFH cells continuously express 

CXCR5, the receptor for Chemokine (C-X-C motif) ligand-13 (CXCL13) which is secreted 

by follicular stromal cells, ensuring that TFH cells reside permanently within B cell 

follicles. TFH cell function is dependent on the transcription factors B cell lymphoma 

(BCL)-6 and c-maf, which allow expression of CXCR5, IL-21, ICOS and programmed 

death-1 (PD-1) (223, 224). Induction of B-cell lymphoma-6 (BCL-6) and c-maf has 

recently been demonstrated to be directly regulated by global transcriptional regulator 

in T-cells, BATF (225). BATF, an AP-1 family member, is essential in Th17 cell and TFH 

development, but is dispensable to the development of Th1, Th2, B cells and DC (225). 

TFH cells require the presence of IL-6 for induction of BATF and thus TFH cell generation; 

many BATF-regulated genes are initially activated by IL-6 (225). TFH cell induction and 

phenotype maintenance has also been demonstrated to require IL-21, but molecules 

including: IL-10, ICOS and PD-1 are also expressed by TFH cells allowing B-cell 

expansion, differentiation and isotype switching (222). Naive T-cells capable of high 

affinity TCR interactions with pMHC, appear to be predominantly those cells selected 

to become TFH cells (223). It is still not clear whether TFH cells represent an independent 

subset, however they appear discrete from other T-cell subsets in their ability to 
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localise to B- cell follicles and in their capacity to express molecules which can provide 

B-cell help (226). Since the discovery of Th17 cells, there has been an increase in the 

number of potential new T-cell subsets present either in vivo or capable of being 

induced in vitro. This has occurred in part due to the advances in multicolour flow 

cytometry; it seems that the true complexity of T helper cells and their subsets is just 

beginning.  

1.7 T helper 17 (Th17) cells 

In the 2005 November issue of Nature Immunology two publications (one by Park et al 

and the other by Harrington et al) looked at two mouse models of autoimmunity, and 

described the existence of a distinct T helper cell subset capable of producing IL-17 

(227, 228). These findings were based on in vitro and in vivo experiments indicating 

that Th1/Th2-independent cytokine and transcriptional programs gave rise to IL-17-

producing CD4+ T cells. Until these publications, due to difficulties in inducing 

substantial Th17 cell populations from naïve CD4+ T cells, it was unclear if Th1 and 

Th17 cells arose from a common Th1 cell precursor (164). Park et al and Harrington et 

al, using IFNγ and IL-4 neutralising antibodies along with IL-23, resolved this in mouse 

models inducing distinct Th17 populations from naïve mouse CD4+ T cells. Since these 

publications, a vast amount of research has been performed to ascertain the function, 

induction and maintenance of Th17 cells along with their roles in infection and 

autoimmune disease.  

1.7.1 Th17 & infection 

Th17 responses are important for the clearance of a number of pathogens. Hyper IgE 

syndrome is caused by a STAT3 mutation that prevents Th17 cell responses (229). 

Hyper IgE syndrome patients have a devastating susceptibility to S. aureus, S. Pyogenes 

and C. albicans. Mounting an appropriate Th17 response is key to clearance of C. 

albicans infection; reduced Th17 responses are found in chronic mucocutaneous 

candidiasis patients (230, 231). Furthermore, murine candidiasis models have 

demonstrated that either IL-23p19 or IL-17 deficiency results in severe candidiasis 

whereas IL-12p35 deficiency did not. Th17 cells may also have a role in the immune 

response against other fungal infections (232). For example neutralisation of IL-23 or 
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IL-17 increases the disease severity and fungal burden during Pneumocystis carinii 

infection. Th17 cells also mediate protection against bacterial infections. Borrelia 

burgdorferi and Mycobacterium bovis BCG peptides induce Th17 responses. B. 

burgdorferi causes Lyme Arthritis and is capable of inducing innate cell production of 

IL-6, IL-1β, and TGF-β via TLR2 activation. The cytokines induced as a result of TLR2 

activation in turn induce Th17 cells within the joint synovium which can lead to Lyme 

Arthritis  (232). Within IL-17R or IL-23p19 deficient mice the importance of Th17 cells 

for the clearance of Kleibsiella pneumonia infection in the lung is also clear (233, 234). 

In addition, IL-17 is also important for the clearance of Helicobacter pylori and 

Salmonella species (230). Th1 cell responses are induced by Bordetella pertussis 

infection and are thought to be protective (235), but more recent studies have 

demonstrated that Th17 cell responses are also important for clearance of B.pertussis 

infection (236). B. pertussis activates TLR4 signalling which stimulated DCs to secrete of 

IL-1β, IL-23 and TNFα, enhancing IL-17 expression from T-cells resulting in clearance of 

the B.pertussis infection. Together these studies highlight that the clearance of many 

pathogens, particularly C.albicans relies on a Th17 cell mediated response, with 

deficiencies in mounting a Th17 response associated with chronic infections.  

1.7.2 Th17 function in autoimmunity 

In the western world autoimmune diseases such as RA, Type I diabetes (T1D), and 

multiple sclerosis (MS) are a prevalent health problem that reduce the patients quality 

of life/life expectancy and also have a vast economic burden. Th1 cells were originally 

thought to mediate both experiment autoimmune encephalomyelitis (EAE) (a model of 

multiple sclerosis) and type II collagen-induced arthritis (CIA) (237). However, the 

discovery of Th17 cells altered our view of the role of Th1 cells in autoimmunity. 

Support for Th1-mediated autoimmune pathogenesis had in part stemmed from 

studies neutralising the p40 subunit of IL-12 and IL-12p40-/- mouse models (238, 239). 

These investigations suggested that IL-12, and therefore Th1 responses, promoted 

autoimmunity. IL-17 was understood to play an important role in the induction of 

inflammation prior to 2005 and the discovery of Th17 cells. Th17 cell responses are 

promoted by IL-23 and the IL-23 and IL-12 receptors share a common subunit called 

p40 which is required for both cytokines to signal. Discovering that the IL-23R specific 
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p19 subunit can pair with p40 to form the IL-23R, led to a re-evaluation of IL-12/p40 

data (240). Subsequent studies found that p19-/- mice did not develop CIA whereas 

p35-/- (IL-12-specific subunit) did (163), indicating that immune responses requiring IL-

23 may be more important to the development of CIA than those, such as Th1 cell 

responses which require IL-12 signalling. Although the role of Th1 and Th17 cells in the 

development of autoimmunity is still disputed in diseases such as RA. In addition, IL-23 

can also drive the expansion of a pathogenic autoreactive T-cell population in EAE 

characterised by expression of IL-17A, IL-17F and IL-6 (Th17) (164, 241). The role of Th1 

and Th17 cells in the development of autoimmunity is still disputed in diseases such as 

RA; however these data demonstrate that autoimmunity is not purely a Th1 cell 

mediated event.  

1.7.3 Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a chronic and debilitating autoimmune disease that affects 

~1% of the adult population (242). RA is characterised by the destruction of articular 

cartilage, progressive destructive joint inflammation, synovial hyperplasia, and in some 

cases systemic inflammation that affects organs including the lungs and heart (243). RA 

is a complex disease of unknown aetiology and a number of factors are associated with 

disease onset including genetic associations (244) and environmental factors such as 

smoking and obesity (245, 246). The importance of T-cells in the pathogenesis of RA, 

has been highlighted by the strong genetic association of T-cell related genes including: 

HLA, PTPN22, CD28 and CTLA-4 (247). Based largely upon data derived from mouse 

models RA was originally considered to be a Th1 cell mediated disease, although the 

severity of CIA increased in the absence of either IFNy or the IFNy receptors (237, 248). 

Prior to the discovery of Th17 cells, increased numbers of IL-17+CD3+ T-cells were 

observed within the joint synovium of RA patients (249). As described above 

antibodies blocking IL-23, which expand Th17 cell populations, decreased CIA 

pathogenesis (163). Enhanced levels of IL-17 have been observed in both the synovial 

fluid and serum of RA patients in comparison to healthy controls (250). Furthermore, 

the concentration of IL-17 is increased in RA synovial fluid compared to osteoarthritis 

(OA; a non-inflammatory arthritis) and RA peripheral blood (251). Although the 

concentrations of IL-17 found within the joint are low when compared to IL-1β and 
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TNFα, it is thought that IL-17 can enhance the effects of these and other cytokines 

(252). Within the joint Th17 cells exert their effects on a variety of cell types to cause 

joint destruction. Th17 but not Th1 cells induce the production of IL-6, IL-8, and 

destructive MMP1 and MMP3 from synovial fibroblasts. These effects were 

independent of TNFα, suggesting that IL-17 neutralisation alongside anti-TNF therapy 

may be beneficial for RA therapy (253). IL-17 also promotes inflammation by increasing 

angiogenesis and by enhancing monocyte and neutrophil cell migration/invasion (252, 

254, 255). Monocytes and macrophages are induced by IL-17 to produce IL-6, IL-1β and 

TNFα along with COX-2, Prostaglandin E2 (PGE2) and MMPs resulting in inflammation, 

tissue destruction and further Th17 cell differentiation (252, 254, 255). Chondrocytes 

and osteoblasts also produce IL-6 and IL-1β in response to IL-17 resulting in 

inflammation and further Th17 cell differentiation. Th17 cells are directly capable of 

mediating bone destruction and cartilage degradation (256). Th17 cells promote 

osteoclastogenesis directly by expressing Receptor Activator of NFκB Ligand (RANKL) 

and TNF or indirectly by inducing RANK expression by synovial fibroblasts, which result 

in synovial macrophage differentiation to bone resorbing osteoclasts (257, 258). IL-17 

therefore promotes disease progression via inflammation and joint destruction. 

Moreover many of these disease progressing factors are inhibited by IFNy including 

bone resorption and neutrophil migration (254, 257). However, although evidence 

demonstrates that IL-17 is a key mediator of inflammation in RA, more recent 

investigations have demonstrated that of the cells producing IL-17 within the RA 

synovium, T-cells constitute only a small proportion, and that the majority of IL-17 co-

localised to mast cells (259, 260). However, these investigations have assessed IL-17 

expressing cells in established RA, whether Th17 cells play a more important role in the 

pathogenesis of early RA requires further investigation. 

1.7.4 Multiple Sclerosis 

MS is a demyelinating disease of the central nervous system (CNS). Th1 and Th17 cells 

are both have been suggested to have a role in MS disease development. Patients 

exhibit different forms of the disease with varying pathologies, which are suggested to 

be due to the proportions of Th1 or Th17 cells at sites of inflammation (261). The 

number of Th17 cells was found to be significantly increased in the cerebrospinal fluid 
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(CSF) of relapsing remitting MS patients during relapse, and high levels of IL-17 were 

found within the CSF and plaques of these MS patients (261). Th17 cells can express 

CD146 allowing better attachment to the brain endothelium than Th1 cells. (262). 

Furthermore expression of CCR6 and CD6 by Th17 cells allows entry into the CNS in the 

EAE mouse model (263). As in RA, IL-17 is the main cause of Th17 pathogenicity in MS 

inducing secretion of inflammatory factors including IL-8, IL-6, TNFα, GM-CSF, and 

macrophage inflammatory protein-2 (MIP-2) by a wide range of cell types (261). 

Furthermore a main function of IL-17 in MS pathogenesis is the breakdown of the 

blood brain barrier enhancing the recruitment of neutrophils, monocytes and 

macrophages, leading to sustained myelin and axon damage (264, 265).  

1.7.5 Diabetes 

The role of Th17 cells has been less clear in autoimmune diabetes. Inhibition of IL-17 

by neutralising anti-IL-17 treatment was found to prevent diabetes onset in NOD mice 

(266). Anti-IL-17 treatment ameliorates disease pathogenesis by decreasing islet 

inflammation and autoantibody formation. Interestingly the treatment increased the 

frequency of auto-antibody specific IL-17+ T-cells, which may be why administration 

with recombinant IL-25 (which inhibits Th17 responses) was more effective at 

preventing diabetes onset than anti-IL-17 (266). Monocytes isolated from T1D patients 

were found to spontaneously secrete pro-Th17 cytokines IL-1β and IL-6, and a modest 

yet significant increase in the number of Th17 cells in T1D patients compared to 

healthy controls was observed (267). However, Th1 cells have an important role in 

diabetes onset. Transfer of autoreactive Th1 or Th17 cells into NOD/Servere combined 

immunodeficiency (SCID) mice demonstrated that anti-IFNy treatment prevented 

disease induction whilst anti-IL-17 treatment did not. Th17 were found to convert to 

IFNy producing Th1 cells following adoptive transfer (268). The role of Th17 cells in 

diabetes remains controversial, current data indicates that Th17 cells may play a role 

although Th1 cell responses remain important in diabetes disease pathology   

1.7.6 Therapies against Th17 cells 

Th17 cells have also been demonstrated to have a role in promoting the pathogenesis 

of inflammatory bowel disease, Crohn’s disease and psoriasis (269). The therapeutic 
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targeting of Th17 cells is therefore promising for a number of autoimmune disease 

treatments. Therapies against Th17 in autoimmunity could either directly target IL-17 

secretion by neutralisation, or by block the pathways that lead to Th17 cell 

development. A phase 1 trial using a humanised monoclonal antibody neutralising IL-

17A has demonstrated positive results in RA (270). Monoclonal antibody blockade of 

the p40 subunit common to both IL-23 and IL-12 (and thus preventing both IL-12- and 

IL-23-mediated signalling) has had promising results in phase II trials in psoriatic 

arthritis (271). Furthermore, the anti-IL-1R antagonist anakinra has been successfully 

used to treat RA; one mechanism for this may be through decreasing numbers of Th17 

cells (269). Anti-IL-17 therapy may also be powerful when used in combination with 

therapies which are already successful such as anti-TNFα (272). A highly specific ligand 

against RORγt and RORα has also been described in mice to inhibit Th17 generation 

and may be a future therapeutic tool (273). 

1.8 Th17 effector molecules 

1.8.1 Interleukin-17 

Th17 cells are characterised by the expression of a number of phenotypic markers 

important for their function and localisation. Expression of a select group of cytokines 

and chemokines confers Th17-mediated effects. The Il-17 gene previously known as 

CTLA-8 was discovered in 1993 (274). The IL-17 family of cytokines is composed of six 

members: IL-17A (was known as CTLA-8 now commonly known as IL-17 ), IL-17B, IL-

17C, IL-17D, IL-17E (IL-25) and IL-17F (275). Both IL-17A and IL-17F are encoded on 

chromosome 6 and share the greatest level of homology (approximately 60%), and are 

structurally and functionally similar. IL-17 is secreted as a disulphide-linked 

glycoprotein homodimer of 25-30kDa. Both IL-17A and IL-17F are active as 

homodimers, but IL-17 is 10-fold more potent than IL-17F. Heterodimers of IL-17 and 

IL-17F have also been found, called IL-17A/F, which have an intermediate level of 

potency (276). It has been suggested that the IL-17A/F heterodimer may potentially 

represent the dominant composition of the IL-17 cytokine, but it does not appear to 

have a distinct function and all homo- and hetero-dimeric forms are capable of utilising 

the same receptor (277, 278). Initially IL-17 expression was identified in memory CD4+ 
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T cells, but expression of IL-17 is not confined to Th17 cells: CD8+ T cells, natural killer 

(NK) cells, γδ T cells, mast cells and neutrophils are all capable of IL-17 production 

(260, 279). The IL-17 family members IL-17B, IL-17C, and IL-17D are largely produced 

by non-immune cells. IL-17B is highly expressed in human and murine spinal cord, and 

is also expressed, at a lower level, in a number of tissues including the heart and brain 

(280). IL-17D is widely expressed in skeletal muscle, adipose tissue and the brain (281). 

In contrast, expression of IL-17C is highly restricted to the adult prostate and fetal 

kidney. Th2 cells in addition to IL-4, IL-5 and IL-13 can also express IL-17E (IL-25) as an 

effector cytokine, but IL-25 is also expressed by other tissues (282). 

 

IL-17 signals via the IL-17 receptor (IL-17R), which is a ubiquitously distributed type 1 

transmembrane receptor. The IL-17 receptor family is comprised of five members: IL-

17RA, -RB, -RC, -RD, and –RE (277). As with all cytokine receptors the IL-17R is 

multimeric, but like IL-17, the IL-17R lacks structural homology with other known 

cytokine receptors, which has contributed to the lack of understanding in the IL-17 

signalling pathway. IL-17RA has an unusually large cytoplasmic tail, found capable of 

activating inflammatory events, such as NF-κB activation and IL-6 transcription, events 

typically associated with IL-1β and TNFα (277). In humans IL-17 binds with high affinity 

to IL-17RA, unlike IL-17A/F and IL-17F, which bind with intermediate and low affinities 

to this receptor subunit, respectively. However, all homo- and hetero-dimeric forms 

bind with comparable affinity to IL-17RC and this receptor subunit, therefore, could be 

a therapeutic target (283, 284). Transfection studies have revealed that IL-17RA and -

RC expression are both required for IL-17 signalling and the IL-17R is most likely 

composed of at least two IL-17RA subunits and one IL-17RC subunit (285). 

  

Understanding of IL-17 signal transduction has been limited, in part, by the lack of 

homology with other cytokine families, and has thus led to a ‘bottom up’ approach to 

revealing the pathway (277). Identification of IL-6 as an IL-17 target gene furthered the 

understanding of the IL-17 signalling pathway and its synergistic action with cytokines 

including IL-1β, IFNy and TNFα (277). The IL-17R contains a functional domain similar 

to the Toll/IL-1R domain, termed SEF IL-17R (SEFIR). SEFIR is capable of recruiting 

adaptor molecule Act1, which is an activator of NFκB (286). The importance of Act-1 in 
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the IL-17 signalling pathway is highlighted within Act1-deficient cells which fail to 

respond to IL-17 (287). IL-17R activation via Act1 leads to activation of the 

transcription factor Nuclear Factor κB (NFκB) and MAPK pathways (288). TNF Receptor 

Associated Factor (TRAF) 6 is essential in the convergence of the NFκB and MAPK 

pathways, and is activated during IL-17 signalling. AP-1 binding sites are present in a 

number of IL-17 gene targets and some investigations suggest that IL-17 triggers 

activation of AP-1, whilst others suggest IL-17 is capable of only weak AP-1 induction 

and that during IL-17 signalling the AP-1 site within the IL-6 promoter is dispensable 

(289). The transcription factors and genes activated as a result of IL-17 signalling are 

similar to those activated by the TLR and IL-1 signalling pathways (277). The IL-17 

receptor family however bares little homology to such innate type receptors and so is 

unlikely to be a duplicate.   

IL-17A
IL-17A/F IL-17F

IL-17RAIL-17RC
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AP-1
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Cell membrane

 

Figure 5. The IL-17 signalling pathway.  Binding of Il-17A/IL-17F homo- or heterodimers to the IL-17R 
allows signalling via the NFκB and MAPK pathways. The IL-17R is throught to be composed of two IL-
17RA subunits and one IL-17RC subunit.  

 

1.8.2 Interleukin-21 

IL-21 is an IL-2 family member, containing the common γ chain, and binds to a 

heterodimeric receptor consisting of an IL-21-specific receptor subunit and a common 
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γ-chain receptor. The IL-21 receptor is highly expressed on B-cells but is also expressed 

on T-cells and NK cells, conferring IL-21 responsiveness (290). Unlike other common γ 

chain receptor family members that signal via STAT5, IL-21 preferentially signals via 

STAT1 and STAT3. IL-21 drives in vitro TH17 differentiation via an autocrine mechanism, 

regulated by STAT3 (291). IL-21 can also be produced in substantial amounts by Th17 

cells, but is also produced by NK and Natural Killer T-cells (NKT) cells following 

exposure to mycobacterial antigens, providing a potential route of Th17 induction in 

vivo (292). IL-21 plays an important role in driving terminal differentiation of B-cells 

(293). In suboptimal IL-2/IL-15 conditions, IL-21 is capable of enhancing NK 

proliferation, and is also capable of driving CD8+ T-cell proliferation (294). In addition 

IL-21 promotes inflammation by inducing expression of chemokine CXCL8 in 

macrophages which attracts neutrophils (294). Furthermore, IL-21 has been 

demonstrated to contribute to the pathogenesis of two autoimmune animal models of 

RA (295).  

1.8.3 Interleukin-22 

IL-22 is part of the IL-10 family of cytokines and has 80.8% homology to its murine 

counterpart. The IL-22 receptor is part of the cytokine receptor family class 2 

consisting of two subunits, IL-22R1 and IL-10R2 (296). IL-22R1 expression is restricted 

to non-immune cells such as epithelia whereas IL-10R2 is ubiquitously expressed. A 

soluble IL-22 receptor called IL-22 binding protein also exists. IL-22 is able to activate 

STAT3 via the JAK/STAT pathway and IL-22 expression is upregulated by inflammatory 

mediators such as LPS, IL-1β and TNF-α (296). Although all inflammatory T helper 

effector lineages can produce IL-22, Th17 cells are a predominant source, with 

production 120-fold greater than by Th1 cells and 700-fold greater than by Th2 cells 

(206). IL-23 enhanced IL-22 production when Th17 cells were cultured in the presence 

of TGF-β and IL-6, however within an established Th17-differentiated cell population 

less than 10% express IL-22 (206). Recent investigations have revealed a population of 

IL-17-independent IL-22+ cells, produced largely from CCR10+ T-cells that also produce 

IL-10 with or without TNF-α. These cells have recently been termed Th22 cells (207), 

and are covered in greater detail in section 1.6.4. IL-22 is important for mucosal 

immunity, however it is also a major player in the chronic autoimmune skin disease 
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psoriasis (297). IL-22 can induce keratinocyte proliferation and the production of 

antimicrobial peptides, both of these factors are associated with psoriasis, further 

implicating a pathogenic role for Th22 cells which are capable of migrating to skin 

tissue (207, 298). Recently, it was shown that neutralising antibodies against IL-22 

reduced pathology in a mouse model of psoriasis (299). IL-22 is also important in 

mediating host defence against bacteria: a protective effect of IL-22 has been 

demonstrated against bacterial pneumonia (299). Furthermore, it has been suggested 

that IL-22 induces the production of anti-microbial proteins by epithelial cells, which 

can bind to and kill gram- bacteria such as K.pneumoniae (300).  

1.8.4 GM-CSF 

Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) can be an indirect 

differentiating factor for Th17 cells and an effector cytokine. GM-CSF can be secreted 

in response to factors such as LPS and IL-1 by a number of cell types including 

macrophages, endothelial cells and T-cells (301). GM-CSF signals through its 

heteromeric receptor which is expressed by a variety of cells including monocytes, 

lymphocytes, granulocytes and endothelial cells (302). GM-CSF has been demonstrated 

to have an important role in the autoimmune pathogenesis in animal models such as 

EAE and CIA ((303, 304). Prior investigations have demonstrated that GM-CSF can 

indirectly promote T cell proliferation and Th1 responses by stimulating macrophages 

(304). More recent investigations have demonstrated that GM-CSF inhibits apoptosis 

and promotes Th17 cell development by inducing IL-6 secretion from TLR activated DC 

(305). Naive and effector CD4+ T-cells do not express the GM-CSF receptor; therefore 

GM-CSF promotes IL-17 expression in T-cells via an indirect mechanism. APC secreted 

IL-23 enhances RORyt expression in T-cells which in turn can drive the production of 

GM-CSF from T-cells (306). The GM-CSF produced by T-cells positively feeds back to 

induce CD11c+ DC to produce more IL-23 which signals to further indirectly promote 

Th17 cell responses. In addition IL-1β, in concert with IL-23, is also able to induce Th17 

cell production of GM-CSF (307). GM-CSF is also produced by Th1 cells, however GM-

CSF induced IL-23 secretion drives Th17 cell responses and inflammation in EAE (306, 

307). An important role of Th17 cells is to recruit and activate neutrophils, and Th17-

derived GM-CSF is especially important for mediating neutrophil activation 
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independently of IL-17 (308). Prior to the discovery of Th17 cells, the majority of IL-17+ 

T-cells induced in response to M.bovis BCG were found to express GM-CSF although 

proportions of IL-17+ and IL-17/GM-CSF+ cells were low (309). However GM-CSF is not 

strictly viewed as a Th17 marker, but thought of as a marker of the Th17 cells 

pathogenic potential (310).    

1.8.5 CCR6/CCL20 

Chemokines are a family of chemotactic cytokines capable of inducing cell migration. 

Chemokine receptor expression determines the migratory capability of T-cells and 

therefore chemokine expression profiles can be used in addition to effector cytokines 

to define the immune function of memory T helper subsets. One of the most widely 

recognised chemokine receptors expressed on Th17 cells is CCR6 (311). All IL-17+ 

memory T-cells isolated ex vivo are CCR6+, although not all CCR6+ T-cells are IL-17+. 

CCR6 is also expressed on certain DC subsets, naive and memory B cells, NK and NKT 

cells, CD25high regulatory T-cells and on subsets of CD45RO+ effector/memory T-cells 

(312–314). Unlike most chemokine receptors capable of binding a wide array of 

chemokines, CCR6 selectively binds CCL20 and β-defensins (315). CCR6 plays an 

important role in allowing T-cell migration to sites of inflammation or to the gut and 

small intestine, both tissues expressing CCL20 (316, 317). Th17 cells are also capable of 

producing substantial amounts of CCL20 in comparison to other T helper subsets. Joint 

synoviocytes also express CCL20 which allows recruitment of Th17 cells into the RA 

joint; CCR6 blockade in SKG mice (a spontaneous arthritis model caused by a mutation 

within ZAP-70 which alters thymic selection) suppressed disease onset and severity 

(318). In vitro CCR6 expression can be induced de novo from naive T-cells following TCR 

engagement in a pro-inflammatory cytokine milieu in combination with TGF-β. CCR6 

expression is however transient and is lost during prolonged culture. Recently 

differential methylation of a non-coding region of the CCR6 gene, which has 

transcriptional activity, has been described by Steinfelder et al (319). Pharmacological 

demethylation of this non-coding region led to stable CCR6 expression on the T-cells. A 

number of transcriptional regulators are suggested to be capable of binding to this 

region including ETS1, GATA, NFAT and CREB; although it appears that the region acts 

mainly as a methylation-sensitive enhancer allowing stable CCR6 expression. C.albicans  
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specific Th17 cells may be characterised by co-expression of CCR6 and CCR4 (320). 

However CCR6 and CCR4 can also be expressed by Foxp3+ T regulatory cells (321). Th17 

cells also express a number of Th1- (CCR2, CXCR3, CCR5) and Th2- (CCR4) associated 

chemokine receptors (321). CCR6 is expressed by many non-Th17 cell subsets but at 

lower frequencies than Th17 cells (316). A number of chemokine trafficking receptors 

can be expressed by Th17 cells however CCR6 is expressed by all ex vivo Th17 cell 

subsets and is essential for Th17 cell migration in response to CCL20 and functional 

effects (316). These data demonstrate that chemokine receptor expression is not 

sufficient to define an effector T-cell subset and that it is important to assess 

additional phenotypic markers. 

1.9 Regulation of Th17 cell responses 

1.9.1 Regulation of murine Th17 responses  

Studying in vitro the factors that regulate Th17 cell differentiation/response improves 

our understanding of how Th17 cells respond to different immune situations and may 

reveal how certain disease states, characterised by abnormal Th17 cell responses, 

arise. In addition understanding how Th17 cells are generated in vitro provides an 

initial tool for assessing the efficacy of treatments designed to reset the Th17 cell 

response. In mice one method to induce in vitro Th17 cell differentiation from naïve 

CD4+ T-cells results in 40-60% IL-17+ cells within the total T-cell population (322). The 

conditions employed to achieve this differentiation included TGF-β, IL-6, and TCR 

stimulation, along with neutralising antibodies against IFNγ and IL-4. However other 

groups have reported the induction of far lower proportions of Th17 cells, i.e. ranging 

from 5-20%. The variations in the capability of laboratories to induce Th17 cells have 

been attributed to subtle differences in the culture conditions employed including: the 

type of medium and serum used, and the genetic background of the mouse models. 

The culture medium Iscoves Modified Dulbeccos Medium (IMDM) was found to better 

support murine Th17 cell responses than the more commonly used medium, Roswell 

Park Memorial Institute medium (RPMI) (215). Compared to RPMI, IMDM contains a 4-

times higher concentration of tryptophan which acts as a ligand for a proposed Th17 

cell transcription factor, AhR. The serum used in culture media was also found to affect 
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in vitro Th17 cell differentiation. Foetal bovine serum (FBS) contains high 

concentrations of endogenous latent TGF-β (several nanograms per millilitre) (323). 

TGF-β is required for murine Th17 cell generation, however high endogenous 

concentrations of TGF-β in combination with exogenous TGF-β creates a TGF-β 

concentration which is inhibitory to Th17 cell induction (323). An alternative to FBS is 

serum replacement which does not contain endogenous TGF-β. The conditions for 

murine in vitro Th17 cell differentiation are generally defined as: IMDM media 

supplemented with serum replacement with the addition of TGF-β, IL-6, anti-IFNy, 

anti-IL-4 (the neutralising antibodies are included in order to discourage development 

of Th1 cells and Th2 cells, respectively), and a TCR/CD28 activating stimulus (discussed 

in more detail in Chapter 2), though groups do differ in their use of cytokine cocktail.  
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Figure 6. The induction of murine Th17 cells by IL-6 and TGF-β signalling. IL-6 binds to the IL-6 receptor 
which results in receptor dimerisation and STAT3 activation, active phosphorylated STAT3 is able to 
translocate to the nucleus to participate in the transcription of Th17 response genes. Socs3 is capable of 
blocking the STAT3 activation pathway and therefore inhibits Th17 responses. Latent TGF-β upon 
activation is cleaved from LAP and is capable of binding to the TGF-βR. TGF-βR signalling via Alk5 allows 
Smad activation and translocation to the nucleus but this event can be blocked by Smad7.  
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1.9.2 Induction of human Th17 cells by TGF-β 

The addition of IL-6 and TGF-β to human naive T-cells does not result in the 

polarisation of high proportions/numbers of IL-17+ cells. The requirement for TGF-β for 

the induction of Th17 cells in both mice and humans has been highly debated. Some 

studies reported that human Th17 cell differentiation can occur in the absence of TGF-

β. For instance, Acosta-Rodriguez et al showed that IL-1β and IL-6 in the absence of 

TGF-β promoted Th17 cell induction (324) and Wilson et al found that a combination 

of IL-23 and IL-1β was sufficient for Th17 cell differentiation, again in the absence of 

TGF-β (325). Evans et al demonstrated that in cultures containing bulk CD4+ T-cells and 

RMPI+10% FBS, that TGF -β (1-3ng/mL) had an inhibitory effect on Th17 cell responses 

(98). In contrast, many groups have reported that human Th17 cell generation does 

require TGF-β. Manel et al demonstrated that under serum-free the addition of 

exogenous TGF-β was required for the induction of the Th17 cell-specific transcription 

factor RORc (326). However, TGF-β can inhibit RORc activity, but addition of either: IL-

1β, IL-6 and IL-21 or IL-23 was able to relieve TGF-β-mediated ROR inhibition. Volpe et 

al (327) and Yang et al (328) also confirmed that TGF-β is required for human Th17 cell 

induction when in combination with: IL-23, IL-1β and IL-6 (327) or IL-21 (328). As in 

mice, discrepancies between groups were attributed to high concentrations of 

endogenous TGF-β within FCS or human sera. Serum-free media, or media 

supplemented with serum replacement, which do not contain endogenous TGF-β are 

used for in vitro human Th17 cell differentiation. More recent data demonstrated that 

TGF-β indirectly favours Th17 cell responses by inhibiting Th1 cell responses. 

Compared to Th1 and Th2 cells, Th17 cells have lower expression of clusterin, higher 

bcl2 expression, and reduced apoptosis in the presence of TGF-β (329). Murine Th17 

cells have also been induced from naive CD4+ T-cells in the absence of TGF-β using IL-6, 

IL-23 and IL-1β. Interestingly Th17 cells generated in the presence of IL-23 but not TGF-

β are observed to be more pathogenic in an EAE mouse model (330). Together these 

data indicate that IL-17 expression can be induced in the presence or absence of TGF-

β, depending on the presence of other pro-Th17 cytokines. However the inclusion of 

TGF-β in the pro-Th17 cytokine milieu may further promote Th17 cell induction in an 

indirect manner by inhibiting Th1 cell and Th2 cell responses.  
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1.9.3 Induction of human Th17 cells by IL-1β 

Investigations have assessed further cytokine combinations that might promote in 

vitro human Th17 cell induction. IL-1β is thought to be important for human Th17 cell 

responses. Early studies found that IL-1β was capable of promoting IL-17 expression in 

conjunction with IL-23 or in the presence of IL-6 (324, 325). TLR2 ligation on 

Langerhans cells results in the secretion of IL-1β which promotes Th17 cell responses 

(331). Interestingly Evans et al found IL-1β, TNFα, and IL-6 incapable of directly 

inducing Th17 cells (98). Instead TLR-activated monocytes were capable of Th17 cell 

induction in a cell contact-dependent manner though the precise mechanism was not 

revealed. Annunziato et al found IL-1β and IL-23 were sufficient to induce Th17 cell 

responses from CD161+ CD4+ CD45RA+ T-cells (332). Expression of IL-1βRI has been 

found to correlate with IL-17 expression (333). The expression of IL-1βRI is thought to 

commit T-cells to produce IL-17 before TCR triggering. Although cord blood naive CD4+ 

cells do not express the IL-1βRI, expression of this receptor is readily induced by IL-7, 

IL-15 and TGF-β. IL-17 expression by IL-1βRI+ cells was enhanced by CD3/CD28 

stimulation and IL-1β and further enhanced when in combination with IL-23, TGF-β, IL-

6, and IL-21 (333). However IL-1βR1- cells can also produce IL-17 in response to TCR 

triggering, and interestingly in response to IL-1β. In the presence of IL-1β and IL-2, 

expression of Foxp3 is down regulated allowing Foxp3+ Treg cells to be converted into 

IL-17+ T-cells with diminished Treg cell suppressor function (334). In addition, inhibition 

of the IL-1β signalling pathway suppresses Th17 cell proliferation, further 

demonstrating the importance of IL-1β to Th17 cell responses (335). Increasingly the 

human and murine requirement for IL-1β does not appear to be as different as initially 

suggested. IL-1R expression also correlates with the Th17 cell phenotype in mice; IL-

1βR-/- mice have diminished Th17 cell responses and decreased EAE disease severity. 

IL-1β was able to promote Th17 cell responses in the absence of TGF-β and can 

maintain the Th17 cell phenotype in the absence of TCR signalling (336). Moreover, 

murine fate mapping studies have demonstrated that IL-1βR expression may be used 

to identify ex-Th17 cells, which have switched to an IFNy-secreting phenotype (337).  
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1.9.4 Regulation of human Th17 cells by IL-23 

The requirement for IL-23 was one of the factors that led to the discovery of Th17 cells 

as an independent subset (338). Like IL-6, IL-23 activates the transcription factor 

STAT3, which is important for the expression of Th17 cell response genes including 

RORc and IL-17A (339, 340). The IL-23R is expressed on memory CD45RA- T-cells rather 

than naive CD45RA+ T-cells, and therefore IL-23 is most likely important for the 

maintenance, rather than induction, of Th17 cells. (325). In line with evidence 

suggesting that IL-23 acts as an amplifying/stabilising factor, IL-23 alone is unable to 

induce IL-17 production, but acts in synergy with other cytokines to promote Th17 cell 

responses. Th17 cell phenotype was promoted in vitro by the direct addition of IL-23 to 

CD3/CD28-activated human naive T-cells when in combination with either TGF-β and 

IL-6/ or IL-1β (341). IL-23 is also important for the conversion of Foxp3+ Treg cells to a 

Th17 cell phenotype when in combination with IL-2, IL-β and TGF-β (342). 

Furthermore, in mice IL-23 promoted Th17 cell responses by inhibiting both Foxp3 and 

Tbet expression, though similar effects were also observed by a combination of TGF-β 

and IL-6 (343). IL-23 is produced by APC, not T-cells, in response to a wide array of 

pathogens and endogenous products, indicating the importance of Th17 cell responses 

in immunity. Pathogens capable of stimulating IL-23 production by APC include S. 

aureus, S. pyrogenes, T. gondii, B. pertussis, K. Pneumonia, C. albicans. Pathogen 

derived products including PGN and LPS along with ATP, PGE2, CD40L are also capable 

of inducing IL-23 (bold indicates that both IL-12 and IL-23 may be induced) (231, 338). 

Therefore, a number of studies have demonstrated that Th17 cell responses may be 

promoted by co-culture of APC that have been activated with factors capable of 

stimulating IL-23 secretion (338, 344–346). However, mutations inhibiting IL-12Rβ1 

expression, the receptor binding subunit common to both IL-12 and IL-23, had less of 

an effect on reducing Th17 cell responses than a STAT3 mutation, suggesting that IL-23 

is not essential for STAT3-dependent Th17 cell responses (347). 

1.9.5 Induction of human Th17 cells by IL-21 

IL-21 is another cytokine that has been proposed to be required for human Th17 cell 

development (348). IL-21, like IL-23 and IL-6, is capable of activating the STAT3 

signalling pathway, which is important to the expression of a number of Th17 cell 
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response genes as mentioned above (339, 340, 349). Zhou et al demonstrated that IL-

21 can be induced by IL-6 and is important for Th17 cell differentiation by activating an 

autocrine IL-21 feedback loop (348). Autocrine IL-21 is capable of up-regulating IL-23R 

expression, allowing synergistic IL-21 and IL-23 signalling and STAT3 activation, which 

in turn upregulates transcription of Roryt (348), confirmed by Wei et al (291). The IL-21 

autocrine feedback loop has been demonstrated to require the transcription factor 

IRF4 (350). A requirement for IL-21 has also been demonstrated for human Th17 

differentiation in combination with TGF-β as mentioned above (328). Korn et al 

demonstrated that IL-21 can induce an alternative pathway, preventing Foxp3+ Treg 

induction in an IL-6-independent manner (351). However, Sonderegger et al found that 

IL-21 and IL-21R were not required for the differentiation of Th17 cells in mice, and 

demonstrated that IL-6, instead of IL-21, was sufficient to drive STAT3-mediated Th17 

responses (352) Furthermore, IL-21 and IL-21R deficient mice were still capable of 

developing Th17 cell responses and developed comparable or even enhanced EAE 

disease severity when compared to wild-type mice (353). Overall it appears that IL-21 

is dispensable for Th17 cell responses and can be replaced by IL-6 or IL-23 which also 

active the STAT3 pathway; however in the absence of these cytokines, Th17 cell 

responses may be induced or sustained by IL-21.  

1.9.6 Further factors regulating human Th17 cell responses 

Due to difficulties in inducing high proportions of IL-17+ cells in vitro, particularly from 

naive CD4+ T-cells, investigations have sought to find a ‘factor X’ to achieve this. 

Therefore a large number of additional factors have been assessed for their capability 

to promote in vitro human Th17 cell responses. Many groups have employed 

neutralising antibodies against IFNγ and IL-4 to prevent differentiation to either a Th1 

cell or Th2 cell lineage, respectively. PGE2 is a natural antagonist of IFNγ and has been 

demonstrated to have a positive effect on Th17 cell differentiation (346, 354, 355). 

PGE2 is able to inhibit IL-12 and IFNy expression and therefore is able to indirectly 

promote Th17 cell responses. PGE2 is also capable of upregulating IL-1βR and IL-23R 

expression, amplifying IL-23 expression, and furthermore synergises with IL-23 and IL-

1β to drive RORc expression (354, 356). More recently, TGF-β and IL-6 were shown to 

induce autocrine IL-9 production, which promoted Th17 cell responses (357). However, 
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IL-9 is negatively regulated by IL-23, and IL-9 is thought to enhance naturally occurring 

Foxp3+ Treg functions (358). In addition, uric acid, a danger signal released from 

damaged cells, has been found to promote DC-driven Th17 cell responses in mice by 

inducing secretion of IL-1α/β, IL-6 and IL-18 (359). A further factor capable of 

promoting Th17 responses, via STAT3, is B-cell activating Factor (BAFF), a cytokine and 

a member of the TNF superfamily (360). Silencing of BAFF ameliorated CIA disease 

severity and diminished Th17 cell generation (361), whereas BAFF overexpression 

increased the number of Th17 cells and aggravated EAE disease severity (360). 

Together these investigations highlight the diversity of factors capable of regulating 

Th17 cell responses. 

 

On the basis of data obtained through microarray assays it has been suggested that 

CD161 is a human Th17 cell surface marker and that CD161- cells are unable to 

differentiate to a Th17 cell phenotype (362). CD161 is the equivalent of murine NK1.1, 

a surface marker of NK cells (332). Cosmi et al suggested that in humans, IL-17 

producing CD4+ T cells originate from an NK-like CD4+ precursor and that all IL-17-

producing cells are contained within the CD161+ fraction of CD4+ T cells (362). Further 

research has demonstrated that umbilical cord blood naïve CD4+ T cells expressing 

CD161+ are capable of differentiating to a Th17 cell phenotype, whereas CD161-CD4+ T 

cells are unable to produce IL-17 (363). CD161+ Th17 cells were proven not to be NKT 

cells as they have a broad TCR repertoire compared to NKT cells, which have a limited 

TCR repertoire. Additionally, antigen recognition by CD161+ Th17 cells is MHC Class II-

restricted whereas antigen recognition by NKT cells is CD1-restricted (363).  

 

The application of murine in vitro differentiation conditions to human naïve CD4+ T 

cells has proved unsuccessful in inducing large proportions of Th17 cells; combinations 

of TGFβ, IL-1β or IL-21, and IL-23 only marginally improves proportions of Th17 cells. It 

has been suggested that the presence of contaminating pre-activated T-cells within 

human Th17 cell cultures can have a strong inhibitory effect on naïve T-cell 

differentiation towards a Th17 cell phenotype (364). The presence of contaminating 

memory Th17 cells may also account for the small induction of Th17 cells from naive T-

cells. Obtaining truly naïve CD4+ T cells from humans is more difficult than in mice. 
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Humans are continually exposed to pathogens and naive T-cell selection relies on 

magnetic separation or flow cytometric cell sorting, which particularly with magnetic 

cell separation results in insufficiently pure populations. Mice can be housed in 

pathogen- free conditions allowing truly naïve CD4+ T cells to be obtained more easily. 

Manel et al attempted to induce Th17 cell differentiation from antigen-inexperienced 

naive CD4+ T-cells by using human naïve umbilical cord blood CD4+ T cells (326). 

However, when culturing these cells in serum-free medium in the presence of TGF-β, 

IL-1β and either IL-6, IL-21 or IL-23, only 2-8% of cells differentiated into Th17 cells. The 

proportion of Th17 cells induced was found to be dependent on the concentration of 

TGF-β. However, this investigation further demonstrates that it is more difficult to 

achieve high percentages of Th17 cells from naive human T-cells in vitro compared to 

in murine naive T-cells. Nevertheless, the consensus at present is that the cytokine 

milieu for human Th17 cell responses requires IL-1β, TGF-β (if using a serum 

replacement) and a STAT3 activating cytokine such as IL-23 or IL-21. 

 

In conclusion, it is generally accepted that a combination of TGF-β and IL-6 promotes 

substantial Th17 cell differentiation in certain mouse models. In contrast, for induction 

of human Th17 responses a combination of TGF-β, IL-1β, and IL-23 is required. 

However, the proportion of Th17 cells induced from human CD4+ T-cells, particularly 

when differentiated from naive CD4+ T-cells, remains very low. This has meant that the 

factor(s) required for optimal Th17 cells responses, particularly in humans, is still an 

area of investigation.   
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Figure 7. Summary of cytokine regulation of human Th17 cell induction. Activation of TGF-β results in 
cleavage of latent TGF-β from LAP and TGF-β binding to the TGF-βR. TGF-βR signalling via Alk5 allows 
Smad activation and translocation to the nucleus where Smads participate in RORc transcription and 
repression of IFNy expression. STAT3 activation and translocation to the nucleus, as a result of either IL-
23 or IL-21 signalling, also participates in RORc expression but also IL-17 transcription. In addition 
signalling via IL-1β activates the NfκB pathway, which can also regulate Il-17 expression.  

1.9.7 Th17 Transcriptional Regulation 

The differentiation of Th1 cells and Th2 cells is dependent on cytokine signalling 

through the STAT family of transcription factors, which are capable of upregulating the 

Th1 cell- and Th2 cell-lineage specific transcription factors T-bet and GATA3, 

respectively (365). Characterisation of Th17 cells demonstrated that induction of Th17 

cell-associated gene expression was not dependent on Th1/Th2 cell-associated 

transcription factors: STAT1, 4, 6, T-bet or GATA3 (366). A deficiency in STAT3 impairs 

Th17 cell differentiation and furthermore hyper-active STAT3 increases Th17 cell 

responses, demonstrating the importance of STAT3 signalling for Th17 cell 

development (348, 367). STAT3 has repressive effects on the transcriptional activity of 

both T-bet and Foxp3, which are required for Th1 and Treg cell development, 

respectively (367). Chromatin Immunopreciptation sequencing (ChIPseq) is a technique 

which allows the identification of protein associated DNA. Studies employing ChIPseq 

have demonstrated that STAT3 is capable of binding to a number of Th17-response 

genes including the Il-17a and Il-17f promoters. Although STAT3 is capable of binding 
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to the Il-17 promoter, it is not considered the essential transcription factor for Th17 

response gene expression (339). STAT3 overexpression in Roryt-/- mice does not lead to 

Il-17 transcription; whereas the overexpression of Roryt does cause an increase in Il-17 

expression (though STAT3 is required for Rorγt expression) (348, 367). Therefore 

STAT3 is necessary but not sufficient for Il-17 expression (368). Chen et al showed that 

a deficiency in SOCS3 (suppressor of cytokine signalling 3), which is a negative 

regulator of STAT3, greatly increases Il-17 expression (369). Although SOCS3 is also 

induced by IL-21 and IL-6, TGF-β is capable of inhibiting SOCS3 expression, thereby 

prolonging STAT3 activation (370). 

 

In 2006 Ivanov et al demonstrated that RORγt (RORC in humans), was the key 

transcription factor mediating differentiation of the Th17 lineage (371). RORyt and 

isoform RORy1 are encoded by a single gene Rory (also known as RORC). Both isoforms 

have the same DNA binding domain. RORyt is preferentially expressed in thymic cells 

and Th17 cells, whereas RORy1 is expressed in a variety of cells including muscle and 

kidney (372). RORγt-deficient mice have greatly reduced numbers of Th17 cells and 

secretion of IL-17, whereas Rorγt-overexpression via retroviral transduction markedly 

increased both IL-17A and IL-17F production (371). Multiple RORyt binding sites have 

been found within the Il-17 promoter (373); but the capability of RORyt binding to the 

Il-17 promoter can be controlled by additional factors. For example, transcription 

factor Runt-related transcription factor 1 (Runx1) can interact with both RORγt and 

Foxp3 to regulate Il-17 expression (374). Co-immunoprecipitation studies by Zhang et 

al demonstrated that Runx1 and RORγt directly interact to allow the expression of Il-

17A and differentiation of Th17 cells. However, in the absence of pro-inflammatory 

cytokines Runx1 was able to interact with Foxp3, allowing FoxP3 to bind to RORγt and 

inhibit RORγt-mediated Il-17 transcription. Conversely in the presence of pro-

inflammatory cytokines Runx1 is able to bind RORyt, preventing Foxp3-mediated 

inhibition of RORyt and thus allowing Il-17 transcription. Runx1 is therefore important 

to the differential regulation of Treg and Th17 cells. More recently, transcription 

factors c-Rel and RelA/p65, members of the NF-κB family, have been found to regulate 

RORy and RORyt transcription, and promote Th17 differentiation (375). IL-1βR 

signalling activates the NF-κB signalling pathway, allowing IκBα phosphorylation which 
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inturn releases C-Rel and p65 for nuclear migration and rorγ and rorα expression. 

Within RORyt-deficient mice some Th17 cells remain indicating that further factors 

may be involved in Th17 cell responses (376). STAT3- dependent expression of RORα 

has also been found present in Th17 cells. As with RORγt, overexpression of Rorα 

increased Th17 cell differentiation, however RORα deficiency resulted in only a small 

decrease in IL-17 indicating a minor role for RORα in Th17 cell generation. Co-

expression of RORγt and RORα led to enhanced Th17 cell differentiation whereas a 

double RORγt/RORα deficiency caused a global impairment of Th17 cell induction and 

protected mice from EAE.  

 

Further transcription factors have also been demonstrated to regulate IL-17 expression 

and Th17 development.  One such transcription factor thought to augment Th17 cell 

development is the ligand dependent transcription factor AhR, a type 1 nuclear 

receptor. AhR is expressed by both Th17 and Treg cells; however expression is higher 

in Th17 cells (215). Mice deficient in AhR were observed to have reduced Th17 cell 

induction along with a milder pathology of EAE (215). The culture medium IMDM 

contains natural agonists of AhR, which offers better support for the development of 

Th17 cells than the standard culture media RPMI which has only a low Th17 cell 

polarising effect (215). It is not fully understood how AhR regulates Th17 cell 

responses, but some evidence suggests that AhR is capable of preventing STAT1 

activation, which is inhibitory to Th17 cell development (377). However, more recent 

data indicates that AhR may be more importantly involved in the expression of Il-22 

from Th22 cells than for Il-17 expression from Th17 cells as AhR agonists inhibited Il-17 

expression but promoted Il-22 (216, 217). More recently Interferon regulatory factor-4 

(IRF4) has also been identified as a transcription factor important for Th17 cell 

development (378). IRF4 is vital for the development of Th2 cells but in its absence 

Th17 cells also fail to develop. Irf4-/- T helper cells have reduced expression of RORγt 

and increased expression of Foxp3. In murine T-cells activated in the presence of pro-

Th17 cytokines, Rho-associated coiled coil containing protein kinase 2 (ROCK2) induced 

phosphorylation of IRF4 which caused an increase in the expression of both Il-17 and Il-

21. Furthermore, IRF4 is one of few factors that link the Th17 and Th2 cell phenotypes 

(368). The AP-1 family member basic leucine zipper activating transcription factor 
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(BATF) is expressed in Th1, Th2, Treg and Th17 cells (379). However, in Batf-/- mice, 

which were resistant to EAE only IL-17 expression was reduced. TCR signalling can also 

regulate IL-17 transcription, by activating NFATc1, a member of the NFAT transcription 

factor family, dicussed in more detail in Chapter 3 (368).  

 

1.9.8 T-Cell Plasticity 

As described in section 1.6 the Th1 and Th2 cell lineages were discovered by Mossman 

and Coffman in 1986 who at the time commented that their research ‘raises the 

question of T-cell diversity’, and they predicted that ‘it is quite possible that other T-

cell types exist in vivo (160, 380). Until recently CD4+ effector T cells (CD4+CD45RO+) 

have continued to be grouped into distinct effector lineages, termed the Th1/Th2 cell 

paradigm. This paradigm was based on the activation of discrete cytokine pathways in 

the naive T-cell, which resulted in the upregulation of unique transcription factor and 

cytokine profiles that mediate distinct immune responses. In recent years, as predicted 

by Mossman and Coffman, this paradigm has been overturned to include a wider 

range of lineages. One of the most surprising and interesting findings during the last 

couple of years has been the evidence suggesting that the effector lineages are not 

terminally differentiated. Effector memory T cells have a high potential for phenotype 

switching by modulating cytokine expression and therefore subset/function.  

 

Discovery of the Th17 cell subset has led to a broader understanding of T-cell plasticity. 

It was quickly established in both mice and humans that Th17 cells could acquire the 

capability to produce IFNy and switch off IL-17 production. Th17 cells highly express a 

part of the IL-12R, IL-12Rβ2, which is the receptor subunit not shared with the IL-23R, 

conferring Th17 cell responsiveness to IL-12. In the absence of TGF-β but in the 

presence of IL-12, T-cells are capable of switching from a Th17 to a Th1 cell phenotype, 

which is dependent on the activation of transcription factors STAT4 and T-bet (311, 

381, 382). Inducible Treg cells were also found to be capable of switching towards a 

Th17 cell phenotype and vice versa (373, 374, 383). TGF-β induces both RORyt and 

Foxp3 expression in T-cells, and plasticity between these two subsets has been 

demonstrated to be controlled by the presence/absence of pro-inflammatory 
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cytokines. In the absence of IL-6, Foxp3 expression is induced by TGF-β and binds 

directly to RORyt preventing Il-17 transcription, conversely, the presence of IL-6 

prevents TGF-β-induced Foxp3 expression, allowing RORyt binding, resulting in Th17 

cell induction. Furthermore, SOCS1 is highly expressed in Treg cells and loss of SOCS1 

leads to the loss of Foxp3 expression and the conversion of Treg cells to Th1 cells 

characterised by high IFNy expression. The CNS2 methylation status of Foxp3 is 

important to the maintenance of Foxp3 expression. In the absence of SOCS1, ex-

Foxp3+ T-cells were characterised by IFNy-induced methylation of the CNS2 region 

(384). Switching of more stable T helper cell phenotypes, such as Th2 cells, to another 

subset has also been demonstrated. For instance, in response viral infection Th2 cells 

can switch to a hybrid Th2/Th1 cell phenotype capable of producing both IL-4 and IFNy 

(385). The hybrid Th2/Th1 cell was induced by viral infection which induced type 1 and 

2 IFNs and IL-12. The presence of type 1 and type 2 interferons and IL-12 in 

conjunction with TCR stimulation activated STAT1 and STAT4 to allow stable T-bet 

expression alongside GATA3, allowing the T-cell to produce both IL-4 and IFNy. 

Together these investigations have revealed that, at least in vitro, effector T-cells, not 

limited to Th17 cells, can acquire the different immunogenic capabilities to the 

phenotype expressed ex vivo. This switch is dependent on the in vitro culture 

conditions (an overview of T-cell plasticity is provided in Figure 8). 

Th1

CD4+ 
T-cell

Th17

Th1/
Th2

Th2

Th9

iTreg

Viral Infection

IL-4 + TGF-β

TGF-β

TGF-β + 
pro-inflammatory cytokines

IL-12

IL-4
IL-12

TGF-β
IL-1β or IL-21

IL-23
TGF-β
IL-10

 
 
Figure 8.  CD4

+
 T-cell plasticity.  T helper cells retain a degree of plasticity which allows the effector 

phenotype to be changed depending on the surrounding micro-environment and the cells capacity to 
respond to these factors. Currently the literature indicated that certain phenotype switches occur more 
readily than others. The arrows indicate the direction of phenotype change and the cytokine factors 
presently understood to be required to facilitate this. 
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An influential paper by Hirota et al has extended our understanding of T-cell 

phenotype plasticity by fate-mapping Th17 cells in a mouse model, assessing Th17 cell 

plasticity in vivo (386). By using a knock in mouse strain with a gene encoding a Cre 

recombinase in the Il-17a locus. The investigators track cells by eYFP expression which 

occurs when Il-17 expression is initiated and eYFP expression is maintained.  

Maintainance of eYFP expression allows cells which are or have produced IL-17 to be 

tracked, regardless of their current production of IL-17. A number of interesting 

findings resulted from this investigation. Under chronic conditions, T-cells that were 

Th17 cells rapidly switched to produce IFNy. The Th17 to Th1 cell phenotype switch 

only occurred upon the downregulation of CCR6; this event allowed the expression of 

the IL-12Rβ2 and T-bet. In comparison, Th17 cell responses occurred within 3 days of 

an acute infection response to C. albicans, but by day 5 eYFP+ and therefore IL-17+ cells 

were largely quiescent. The quiescent state induced was explained by the anti-

inflammatory milieu produced from APC in the infected skin which downregulated 

inflammatory gene expression. Therefore acute inflammation is cleared by decreased 

expression of IL-17 rather than the switch to another effector phenotype as observed 

in the chronic immune response. As observed in vitro, the capacity for T-cells to switch 

phenotype was controlled by the cytokine milieu. Indeed microenvironments such as 

those created within the synovial joint during RA have been demonstrated to 

contribute to phenotype switching, allowing unstable Th17 cells to convert to Th17/1 

or Th1 cells maintaining the presence of proinflammatory effector T-cells in the joint.  

 

Although current data indicates that effector T-cells are capable of making a number of 

phenotypic transitions, certain transitions do not appear to be made (e.g. Th2 to  Th17 

or Treg, or Th1 to Treg), thus raising the question of what controls commitment vs 

flexibility. Current investigations in the T helper cell field are trying to elucidate the 

factors controlling which transitions are made and why. It has been suggested that 

certain phenotypes offer increased stability than others and therefore once the cell is 

in a stable state it is unlikely to return to an unstable state. The absence of self-

reinforcing transcription circuitry in Th17 cells and Treg cells is thought to increase the 

instability of the phenotypes and therefore contributes to their increased capacity to 

switch phenotype (200). In addition, Th17 cells retain responsiveness to IL-12 which is 
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in contrast to Th2 cells which rapidly lose expression of IL-12R, becoming more 

refractory to Th1 cell phenotype switching (200). Due to the involution of the adult 

thymus, it may be that the immune system evolved to allow memory T-cells to 

respond to multiple infections by switching phenotype (387). The discovery of T-cell 

plasticity has complicated investigations seeking to determine the factors required for 

certain T helper cell responses. It now seems relevant to assess the capability of both 

naive and memory T-cells to differentiate towards a Th17 cell phenotype.  

1.10  T-cell regulation by strength of stimulation 

T-cell survival in the thymus is dictated by the TCR receiving either ‘strong’ or ‘weak’ 

signals that result in positive or negative selection, and life or death of the cell. 

Although cytokines play an important role, peripheral T-cell fate is also controlled by 

the strength of TCR binding to pMHC. The affinity and avidity of signals received by the 

TCR at the immune synapse can determine the proliferation, differentiation and death 

of the T-cell. Overall stimulation ‘strength’ may be determined by a variety of factors 

including: the rate of TCR triggering (determined by both antigen concentration and 

affinity); the availability of co-stimulation, and the duration of T-cell-APC interactions 

(388).  

1.10.1 Stimulation strength and naive/memory T-cell activation 

Depending on the T-cell maturation state different TCR signalling thresholds are 

required to activate the T-cell (389). Memory T-cells have been observed to require 

formation of approximately 100 pMHC:TCR complexes to trigger detectable IL-2 

secretion whereas naive T-cells have a greater TCR triggering threshold and so require 

~15 fold more pMHC to secrete a similar concentration of IL-2. TCR signalling 

thresholds in naive and memory T-cells can be reduced via CD28 signalling (390). 

Differences in the triggering thresholds of naive and effector T-cells are thought to be 

also controlled by variations in adhesion molecules and CD45 isoform expression, 

which together contribute to overall TCR engagement and downstream signalling 

thresholds (391, 392). More recent evidence indicates different TCR signalling 

pathways are induced in naive T-cells compared to memory T-cells (393). Naive T-cell 

activation induced the Erk signalling pathway, which had inhibitory effects on Ca2+ 
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mobilisation. Conversely, memory T-cell activation induced the MAPK p38 pathway, 

which did not attenuate Ca2+ mobilisation. Together these data may explain the 

weaker and slower response of naive T-cells compared to memory T-cells. Professional 

APCs are capable of lowering the signalling thresholds required to activate naive T-

cells, as professional APC have higher cell surface expression of co-stimulatory and 

adhesion molecules (388). Non-professional APC, despite similar TCR engagement, are 

unable to reduce the TCR signalling threshold, as they do not express sufficient co-

stimulatory/adhesion molecules and so are unable to activate naive T-cells.  

 

Different experimental approaches can be used to modulate the rate of TCR triggering. 

Altering the antigen dose allows quantitative assessment of T-cell stimulation 

requirements capable of determining effector T-cell phenotypes. In the 1970’s 

investigations first began assessing the effect of stimulation strength upon 

antibody/humoral (Th2 mediated) responses compared to cellular (Th1 mediated) 

responses (394). High antigen doses were found to induce an antibody response 

whereas low doses of antigen induced a cellular response, providing the first evidence 

that the strength of TCR binding can modulate the immune response. Further studies 

have demonstrated the effect of different antigen doses on Th1 cell and Th2 cells 

responses (395, 396). High doses of bacterial flaggelin or Trichuris muris were found to 

favour Th2 cell responses whereas low doses favoured Th1 cell responses in vivo. 

However, data in this field are conflicting, in vitro investigations assessing dust mite 

allergen dose responses in allergic donors found that Th2 cell responses were induced 

by low allergen doses (0.003-0.01 μg/mL), whereas high doses (10-30 μg/mL) induced 

little IL-4 (397). These results were however, highly dependent on the nature of the 

antigen used, as antigens themselves are capable of modulating APC phenotype 

through TLR ligation and cytokine secretion, and there are also variations in antigen 

processing and epitope presentation (398–400). In contrast, increasing the immunising 

dose of a peptide antigen such as collagen IV enhanced Th1 cell responses compared 

to Th2. Furthermore, Th2 responses were induced by low dose collagen IV 

immunisation, and similar findings were observed with an MHC peptide analog (401, 

402). Although conflicting data were also presented using antigenic peptide dose 

models, differences are most likely explained by different dosing ranges and/or the 
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different antigenic peptides used. Overall the data indicates that low strength 

stimulation through low antigen dose favours Th2 cell responses, whereas high 

strength favours Th1 cell development (403, 404).  

 

A further mechanism to modulate TCR-signal strength is via altered peptide ligands 

(APLs) which can be used to modulate the affinity/quality of the pMHC:TCR 

interaction. APLs are immunogenic peptides altered at the amino acid residues that 

participate in TCR binding, resulting in production of peptides with different TCR 

binding affinities. The presence of endogenous APL potentially makes these models 

relevant to the in vivo situation (405). APLs have been a useful tool to assess the effect 

of TCR-pMHC affinity upon T-cell effector phenotype (406). Use of a moth cytochrome 

c APL, 500-1000-times less potent than wild-type peptide (as assessed by reduced 

proliferation), demonstrated that the wild-type peptide yielded Th1 cell responses, 

whereas the weaker stimulating APL resulted in a mixed Th1/Th2 cell response. The 

addition of IL-2, which overcame the difference in proliferation, did not overcome the 

Th2 cell response induced by the APL (402). A different APL reduced the binding 

affinity to I-As but enhanced binding to I-Ab (407). In vivo priming of CD4+ T-cells in low 

affinity I-As mice resulted in Th2 cell responses whereas priming in high affinity I-Ab 

mice resulted in Th1 cell responses. These data were confirmed in a further study using 

a myelin basic protein APL (402, 408). Differences in MHC peptide binding affinity are 

most likely to confer a difference in TCR signal strength by priming T-cells with a high 

vs low density of pMHC, resulting in the promotion of Th1 cell vs Th2 cell phenotypes, 

respectively. These data provided the first evidence that TCR-pMHC binding affinities 

can provide T-cells with signals that determine can the effector phenotype (407).  

 

Changing the duration of T-cell-APC interactions can also modulate TCR signal strength 

(392). Interactions of short duration are insufficient to stimulate naive T-cell responses, 

as the required signalling threshold for IL-2 receptor expression is not provided and 

proliferatiion is not induced. However, prolonged TCR-APC interaction of naive T-cells 

enhances IL-2R expression and induces proliferation. Effector CD4+ T-cells have been 

demonstrated to have different requirements for the duration of TCR signalling; one 

hour is sufficient for IL-2R expression and proliferation, whereas prolonged 
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interactions can be inhibitory (392). In addition, the effector phenotypes may also be 

dictated by the duration of TCR signalling (409). A short (24h) duration of TCR 

stimulation, induced a Th1 cell population proportionally comprising >70% of the total 

population (phenotype was assessed at day 7). By comparison Th2 cell responses from 

naive T-cells required a duration of 96h TCR stimulation to induce a Th2 population 

proportionally comprising >60% of the total population. This was explained by 

requirement of Th2 cells for simultaneous TCR and IL-4 receptor signalling, due to 

demethylation of the Il-4 promoter requiring prolonged TCR stimulation. In 

comparison demethylation of the Ifny promoter occurs rapidly and does not require 

prolonged TCR stimulation, allowing Ifny expression after a short duration of TCR 

stimulation. Interestingly, in the absence of skewing cytokines, naive T-cells, activated 

for periods in excess of 72 hours, developed ‘spontaneous’ Th1 cell and Th2 cell 

responses, most likely because of endogenous cytokine production. In addition, long 

duration of T-cell interaction with a high affinity APL resulted in Th1 cell responses 

whereas low affinity APL over a moderate duration favoured Th2 cell responses, 

providing evidence for how variation in TCR signalling combine to affect T cell 

phenotype (410). 

 

The presence and quality of co-stimulation can also contribute to modulation of overall 

TCR signal strength. CD28 signalling has the capability to lower TCR signalling 

thresholds and also has an affect on Th1 cell and Th2 cell responses (411). Disruption 

of CD28-CD80 interactions, via CTLA4Ig addition during priming, was found to be 

capable of blocking IL-4 expression but did not affect IFNy expression. CD28 

contributes to stimulation strength in combination with TCR stimulation. Low strength 

T-cell activation using an APL in concert with CD28 stimulation augmented IL-4 

expression whereas CD28 co-stimulation could not overcome the inhibitory effect of 

high strength TCR signalling delivered by a wild-type peptide. Conversely, CD28 only 

augmented Ifny expression in conjunction with high doses of wild-type peptide (412). 

Interestingly, CD28 blockade, which abolished IL-4 production in vitro, could be 

reversed in the presence of IL-2. These data highlight the importance of separating the 

requirement of CD28 stimulation from that of IL-2, which is also induced as a result of 

CD28 signalling (413). Although data are limited, discrete effects of CD80 and CD86, 
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the CD28 binding molecules, have also been described. Treatment of murine naive T-

cells with αCD80 promoted Th1 cell responses whereas αCD86 promoted Th2 cell 

responses (414). Moreover, neutralisation of CD80 can lead to disease attenuation in a 

BSA-antigen induced model of arthritis by enhancing IL-4 responses (415).  

 

Clearly T-cell effector fate in the context of Th1 cell and Th2 cell phenotypes is affected 

by the overall strength of stimulation received, and the various means by which this 

may occur are depicted in Figure 9. How stimulation strength signals are interpreted 

and interact with the cytokine signalling pathways is still poorly understood. 

Furthermore, the majority of investigations have only assessed the effect of 

stimulation strength upon Th1 and Th2 cell responses, how newly identified subsets, 

such as Th17, are regulated by stimulation strength is poorly understood.    

 

Potency of TCR:pMHC interactions Duration of stimulation Density of stimulation

Determined by the affinity or 
half-life of TCR-pMHC interaction

Determined by antigen 
persistence or stability/number 

of T-cell:APC interactions
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Figure 9. The variables that can influence the quality and quantity of T-cell stimulation strength. A 
concert of factors contribute to the overall strength of T-cell stimulation in vivo including the potency of 
TCR:pMHC binding, the duration or half life of the interaction, the number of interacting molecules and 
the availability of co-stimulatory molecules that are capable of lowering the signalling threshold, 
adapted from Corse et al (416). 
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1.11 Hypothesis 

I hypothesised that human Th17 cell responses would be promoted by high strength 

TCR stimulation. This hypothesis was based upon experiments perfomed using murine 

T-cells which have revealed that Th17 cell responses may be promoted by high 

strength TCR stimulation. Having addressed the role of stimulation strength upon 

human Th17 cell responses, and disproving the above hypothesis, I next hypothesised 

that reduced TCR signalling conferred by the PTPN22 genetic polymorphism would 

promote human Th17 cell responses. Finally I hypothesised that in vitro T-cell culture 

density will modulate the human Th17 cell response. This is based upon the impact 

that T-cell density can have on factors including: cell-cell contacts, autocrine/paracrine 

cytokine signalling, and the regulation of transcription factors such as STAT3 and AhR. 

Within this thesis I therefore aimed to assess the effect of factors other than cytokine 

signalling, that may be capable of modulating human Th17 cell responses in vitro.  

 

The aims of this thesis are to: 

1. Investigate the effect of TCR stimulation strength on Th17 cell responses and to 

determine the mechanism by which this operates 

2. Assess if Th17 cell responses are modulated by the PTPN22 genetic 

polymorphism which alters TCR stimulation strength and is associated with 

Rheumatoid Arthritis 

3. Investigate if T-cell density is a parameter capable of modulating human Th17 

cell responses.  
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2 Chapter 2. Regulation of human Th17 cell responses by 

stimulation strength 

2.1 Introduction 

In recent years our understanding of the CD4+ T helper cell family has been 

dramatically increased. The Th1/Th2 cell dichotomy has been reviewed since the 

description of new effector T-cell phenotypes, including Th17 cells. Furthermore, it is 

apparent that rather than differentiating into terminal lineages, CD4+ T-cells retain the 

capability to switch phenotype, termed T helper cell plasticity (200). Th17 cells are 

important for mediating the clearance of pathogens such as C.albicans (231). However, 

IL-17 contributes to tissue inflammation and evidence indicates that dysregulation of 

Th17 cells can initiate organ specific autoimmune disease pathologies, including MS 

and RA (417–419). Understanding how Th17 cell responses are regulated is important 

for improving treatments where Th17 cells contribute to disease pathology. The 

majority of research assessing the regulation of Th17 cell responses has focussed on 

the cytokine milieu required. However, T helper cell phenotype is determined by 3 

signals: Signal 1 is provided by the ‘strength’ of TCR interactions with pMHC; signal 2 is 

provided by costimulation through CD28, and signal 3 is dependent on the cytokine 

milieu secreted by APC and the surrounding environment. Although investigations 

have furthered our understanding of human Th17 cell regulation, the proportions of 

Th17 cells induced in human in vitro cell cultures remain far lower than those induced 

in mouse in vitro cell cultures. This general inability to induce large numbers of Th17 

cells in human in vitro systems may indicate that there are further factors, other than 

the cytokines already established, that are capable of regulating human Th17 cell 

responses. Previous investigations have demonstrated that Th1 and Th2 cells are 

regulated not only by the cytokine milieu (signal 3) but also by the strength of T-cell 

stimulation (signals 1 and 2). Therefore, establishing how human Th17 cells are 

regulated by stimulation strength may provide novel insights into Th17 cell regulation, 
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increase our understanding of the Th17 cell response in disease, and potentially 

improve therapies and treatments against Th17 cells.     

2.1.1 Th17 and stimulation strength 

Investigations within mouse models have begun to explore if and how Th17 cell 

responses are regulated by TCR activation strength. A recent investigation by 

Bouguermouh et al (420) using murine T-cells revealed that both naive and memory 

CD4+ T-cell development towards a Th17 cell phenotype required a high strength TCR 

stimulation, which was delivered via plate bound anti-CD3 (10ug/ml) (421). 

Interestingly, the T-cell maturation state determined the requirement for anti-CD28 

co-stimulation in Th17 cell induction. CD28 co-stimulation was found to significantly 

decrease murine naive CD4+ T-cell differentiation towards a Th17 cell phenotype; 

however, CD28 co-stimulation did not decrease the induction of Th17 cells from 

memory T-cells. Concentrations of anti-CD28 as low as 0.06 μg/mL were capable of 

suppressing Th17 cell development from murine naive T-cells. However, the addition 

of CTLA4-Ig, which interferes with the interaction between CD28 and CD80/86, only 

marginally augmented Th17 cell proportions and IL-17 secretion from human naive 

CD4+ T-cells. These data indicate that CD28 co-stimulation may be less inhibitory to 

human Th17 cell responses than it is in mice. These data also potentially indicate a 

difference between the T-cell stimulation strength requirements of human and mouse 

T-cells for the generation of Th17 cells. A further study has revealed that CD28-/- mice 

have decreased Th17 cell generation when compared to wild-type mice, and that the 

addition of CTLA-Ig decreased Th17 cell induction, contradicting the above study by 

Bouguermouh et al (420). Furthermore, blocking of CTLA-4 resulted in an increased 

Th17 cell response and potentiated the disease severity in experimental autoimmune 

myocarditis, a Th17 cell-mediated disease model. Thus, the role of CD28 co-stimulation 

in regulating Th17 development remains unclear. More recently, it was demonstrated 

that the expression of IL-17A and -17F is differentially controlled by TCR signalling. 

Using inducible T-cell kinase-/- (Itk-/-) mice, TCR signalling was reduced, demonstrated 

by decreased phospholipase-Cγ phosphorylation and Ca2+ mobilisation. It was revealed 

that Itk-/- mice have reduced IL-17 expression despite normal expression of RORyt. 
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Interestingly, increasing the dose of anti-CD3 stimulation preferentially induced the 

expression of IL-17A over -17F (422).  

 

Together these investigations reveal that murine Th17 cell responses can be regulated 

by the strength of T-cell activation signals. However, these investigations are limited 

and contradictory, and further investigations are required to clarify the role of T-cell 

stimulation strength in the induction of mouse Th17 cell responses. As the cytokine 

signalling requirements for mouse and human Th17 cell induction have already been 

demonstrated to differ, it is important to assess, if and how, T-cell stimulation strength 

affects human Th17 cell responses (363). The aim of this Chapter is therefore to assess 

in human T-cells if T-cell stimulation strength can modulate the Th17 response. 
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2.2 Aims 

The aims of Chapter 2 were to: 

1. Assess how human Th17 cell responses were affected by variations in 

stimulation strength administered by anti-CD3/anti-CD28  

2. Characterise high and low strength stimulated cells for the expression of RORc 

and cytokines associated with Th17 and non-Th17 cells 

3. Assess the proliferation and viability of high and low strength stimulated cells 

4. Investigate if the difference in Th17 cell response between high and low 

strength stimulated T-cells were both proportional and absolute 

5. Assess the effect of the duration of stimulation on Th17 cell responses 

6. Compare how stimulation strength affects memory and naive T-cell Th17 cell 

responses 

7. Investigate how modulating stimulation strength with a more physiological 

stimulus affects Th17 cell responses 

8. Assess if high strength stimulation via TCR/CD3 or CD28 causes the modulation 

in Th17 cell responses 
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2.3 Experimental approach 

To address the hypothesis that high strength T-cell stimulation would promote human 

Th17 cell responses I compared the response of human CD4+ T-cells cultured with 

different ratios of anti-CD3/anti-CD28 beads. Anti-CD3/anti-CD28 antibody mediated 

activation of human cells is a commonly used technique which does not rely upon 

antigen specificity. Antibody bound beads were favoured over the use of immobilised 

plate bound anti-CD3 and soluble CD28 as it was considered that maintaining antibody 

mobility may better mimic the APC:T-cell interaction. Based upon the literature human 

Th17 cell responses were shown to be promoted by IL-1β, IL-23, and TGF-β at 10 

ng/mL, I therefore cultured T-cells under with this combination and concentration of 

cytokines for a proTh17 culture system.  

 

Unless otherwise stated, unfractionated CD4+ T-cells were isolated by magnetic 

separation to a purity of >90% (Figure 92). CD4+ T-cells were stimulated at a high 

strength stimulus of 1 bead:1 CD4+ T-cell or a low strength stimulus of 1 bead:50 CD4+ 

T-cells in the presence of pro-Th17 cytokines IL-1β, IL-23, and TGF-β each at a 

concentration of 10ng/mL. The culture media was IMDM containing 5% serum 

replacement; each well of a 24 well plate contained a total culture volume of 1 mL 

containing 1x106 cells. At day 3 of culture 10 u/mL of IL-2 and 10 ng/mL of IL-23 were 

given to each culture well. The kinetics of splitting the different stimulation strength 

cultures is outlined below Figure 10. The basis for splitting/refreshing T-cell cultures 

was determined by lightening of the media colour and the amount of space that the 

cells had. The effect of T-cell stimulation strength upon Th17 cell responses was 

assessed at Day 6, unless otherwise stated. At day 6 T-cells were restimulated with 

PMA/Ionomycin for one hour and then cultured in the presence of Brefeldin A for a 

further 4 hours. Intracellular IL-17 and IFNy expression was determined by the gating 

strategy outlined below Figure 11.  
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Day 3
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Day 4
Remove 50% of HiD media
Replenish with media 
containing IL-23 (10ng/mL) & 
IL-2 (10 u/mL).

Day 5
Split HiD and LoD (1 well to 2)
Replenish with media 
containing IL-23 (10ng/mL) & 
IL-2 (10 u/mL)

Day 6
Restimulate wells  with 
PMA/Ionomycin for 
intracellular cytokine staining

 

Figure 10. The THi/TLo culture system. 1 x 10
6
 CD4

+
 T-cells were cultured in IMDM with 10% serum 

replacement in a 1mL volume on a 24 well plate. T-cells were cultured with either 1x10
6
 (THi) or 

0.02x10
6
 (TLo anti-CD3/antiCD28 beads in the presence of proTh17 cytokines IL-1β, IL-23 and TGF-β. T-

cells were incubated at 37˚C 5% CO2 for 6 days. During the 6 day culture cells were split as indicated 
above. Splitting of wells was based upon lightening of the media and a high cell confluency within the 
well. Day 4 and 5 media was replenished to a volume of 1 mL with IMDM + 10% serum replacement 
containing 10ng/mL of IL-23 and 10 U/mL of IL-2. At day 6 T-cells were restimulated with 
PMA/Ionomycin as described in section 7.5.2 and results were analysed as indicated in Figure 11.   
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Figure 11. THi/TLo gating strategy. The lymphocyte population was gated on using FSC/SSc. The 
negative quadrant gates for cytokine expression were set on the BFA-alone treated cells providing the 
background staining for each stimulated population. These quadrants were then used to set the 
quadrants for the PMA/Ionomycin stimulated cells.   
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2.4 Results 

2.4.1 Ex vivo proportion of IL-17 and IFNy expressing cells 

To assess the effect of stimulation strength on Th17 cell responses, total 

(unfractionated) CD4+ T-cells were used. Total CD4+ T-cells were used because 

generating Th17 cell responses from naive human T-cells is difficult to perform and 

results in very low proportions of Th17 cell induction, as discussed in Chapter 1. By 

using total CD4+ T-cells prior investigation have demonstrated that greater proportions 

of Th17 cells may be generated and so using total CD4+ T-cells provides a better initial 

model for assessing how stimulation strength affects Th17 cell repsonses. Total CD4+ T-

cells contain both naive and memory T-cells and therefore potentially already contain 

a proportion of Th17 cells within the memory CD4+ T-cell fraction. Investigations 

generally compare the Th17 and Th1 cell responses as measured by production of their 

signature cytokines, IL-17 and IFNy, respectively. Therefore, to determine the 

proportion of ex vivo Th1 and Th17 cells comprised within the starting population, 

freshly isolated CD4+ T-cells were stimulated for 4 hours with Phorbol 12-myristate 13-

acetate (PMA)/Ionomycin and stained for intracellular IL-17 and IFNy. The results in 

Figure 12 show that the proportion of IL-17+ cells in ex vivo CD4+ T-cells was ~0.5%, a 

finding also reported by Evans et al (98). The ex vivo Th1 proportion was found to be 

substantially higher at just under 10%. 
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Figure 12.  Proportions of IL-17- and IFNy-producing cells present in the ex vivo CD4
+ 

T-cell population. 
Freshly isolated CD4

+
 T-cells were rested for 1 hour and subsequently stimulated with PMA/Ionomycin 

for 4 hours, the last 3 hours in the presence of Brefeldin A. IL-17 and IFNy expression was assessed by 
intracellular cytokine staining followed by flow cytometry. Data are representative of 3 independent 
experiments. 
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2.4.2 Titration of stimulation strength 

The effect of stimulation strength on Th17 cell responses was investigated by culturing 

CD4+ T-cells in the presence of decreasing numbers of anti-CD3/anti-CD28 expander 

beads. The magnetic expander beads are pre-conjugated with anti-CD3 and anti-CD28 

antibodies, which allow for T-cell activation in a non-antigen-specific manner. The 

manufacturer recommends to use a bead:T-cell ratio of 1:1. Cultures were performed 

in the presence of pro-Th17 cell cytokines; IL-1β, TGF-β, and IL-23. Following 6 days of 

culture, CD4+ T-cells were restimulated for 5 hours with PMA/Ionomycin, and IL-17 and 

IFNy production was assessed by intracellular cytokine staining (ICS) and flow 

cytometry. 
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Figure 13.  Reduced anti-CD3/anti-CD28 stimulation promotes Th17 cell responses.  Human CD4
+
 T 

cells were activated with decreasing ratios of anti-CD3/anti-CD28 expander beads to CD4
+
 T cells: 1:1, 

1:10, 1:25, 1:50, and 1:100. As a control T cells were cultured in the absence of anti-CD3/anti-CD28 
expander beads (No Beads). After 6 days, T-cells were restimulated for 5 hours with PMA/Ionomycin, 
the last 4 hours in the presence of Brefeldin A. Proportions of IL-17- and IFN-γ-producing cells were 
determined by intracellular cytokine staining followed by flow cytometry. Plots are representative of 3 
independent experiments and the histograms below demonstrate the percentage of cells expressing IL-
17 (black bars) or IFNy (white bars) from the 3 independent experiments. Error bars represent SEM. P 
values calculated using a paired T-test; *p=<0.05 **p=<0.01. 
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The difference in stimulation strength was clearly visible by the difference in T-cell 

clustering and blasting, both events which mark T-cell activation. T-cells with a low 

strength stimulus took a longer time to form clusters and blasts than T-cells stimulated 

with a higher strength stimulus. Figure 13 demonstrates that as the stimulation 

strength decreased the proportion of IL-17+ cells increased. An ~6-fold increase in IL-17 

expression was observed when the bead:T-cell ratio decreases from 1:1 to 1:50. Below 

a 1:50 bead:T-cell ratio the effect of low strength stimulation reaches a plateau; no 

further marked increase was observed at a 1:100 bead:T-cell ratio. Interestingly, 

although the proportion of IFN-y+ cells also increased as the stimulation strength 

decreased, the increase observed was less marked than that of the IL-17+ population. 

Only a 1.7-fold increase in IFNγ+ cells was observed when the bead:T-cell ratio 

decreased from 1:1 to 1:50. A similar effect is also observed in the IL-17/IFN-y dual 

positive cell population which increased by ~2.6 fold as stimulation strength 

decreased.  

 

The experiment was repeated >20 times focussing on a high strength stimulus of a 1:1 

(THi) bead:T-cell ratio compared to a low strength stimulus of a 1:50 (TLo) bead:T-cell 

ratio, where a striking effect of stimulation strength on IL-17 expression was observed. 

Figure 14 confirms data in Figure 13, demonstrating that Th17 cell responses are 

significantly increased by TLo stimulation when compared to THi stimulation. 

Furthermore, TLo stimulation also significantly increases the proportion of IFNy+ and 

IL-17+IFNy+ dual positive cells compared to THi stimulation, but as observed in Figure 

13 the increase within these latter populations is less marked than that of the IL-17+ 

fraction. A high level of donor-to-donor variability occurs in T-cell cytokine 

responsiveness and these may be due to differences in the proportions of memory 

versus naive T-cells in donors. Further experiments compared stimulation strength via 

the THi vs TLo stimulation strength model: THi is defined as T-cell activation at a ratio 

of 1 bead:1 T-cell, TLo is defined as T-cell activation at a ratio of 1 bead: 50 T-cells both 

stimulations are performed in the presence of pro-Th17 cell cytokines unless otherwise 

stated.  
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Figure 14.  TLo stimulation promotes Th17 cell responses.  Human CD4
+
 T cells were activated with anti-

CD3/anti-CD28 expander beads under THi (1:1  bead:cell ratio) or TLo (1:50  bead:cell ratio) conditions. 
After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin. the last 4 hours in the presence 
of Brefeldin A. Proportions of IL-17- and IFN-γ-producing cells were determined by intracellular cytokine 
staining followed by flow cytometry. (A) Is a representative plot of 24 independent experiments, (B) 
percentages of single and double producers n=24; horizontal bars represent the median value; error 
bars represent SEM; p-values calculated using Wilcoxon test, ***p<0.0001. Effectivity of pairing was 
analysed using Spearman one tailed approximation; IL-17 p=0.0067, IL-17/IFNy p=0.0192, and IFNy 
p=0.0048, each graph demonstrates effective pairing.  

 

Previous investigations in mice have revealed that Th2 cell responses are also favoured 

by low strength stimulation (403, 406). Therefore, to assess if TLo stimulation would 

also induce high proportions of the Th2 cell signature cytokine IL-4, CD4+ T-cells 

following THi or TLo stimulation were examined for the expression of intracellular IL-4 

at day 6. Figure 15 reveals that although TLo stimulation favours IL-4+ cell responses 

compared to THi stimulation, only a low proportion of cells are IL-4+, most likely due to 

the absence of pro-Th2 cell cytokines. It is interesting to note that whilst a moderate 

proportion of cells are IL-17+/IFNy+ dual positive, a IL-17+/IL-4+ dual positive population 

is absent, and may indicate reduced plasticity between the Th17 and Th2 cell 

phenotypes as compared to Th17 and Th1 cells.  
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Figure 15.  TLo stimulation  does not promote large proportions of IL-4
+
 cells.  CD4

+
 T-cells were 

stimulated under THi or TLo conditions. After 6 days T-cells were restimulated for 5 hours with 
PMA/Ionomycin. the last 4 hours in the presence of Brefeldin A. Proportions of IL-17- and IFN-γ-
producing cells were determined by intracellular cytokine staining followed by flow cytometry. Plots are 
representative of 3 independent experiments andhe histogram adjacent demonstrates the percentage 
of IL-4 expressing cells from the 3 independent experiments. Error bars represent SEM, P value 
calculated using paired T-test, NS= not signficant. 

2.4.3 Cytokine secretion 

Differences in cytokine secretion capabilities of THi and TLo cells were investigated by 

Enzyme Linked Immunosorbant Assay (ELISA). At day 6, THi and TLo cells were washed, 

counted and resuspended at 1x106 cells/ml. Because TCR/CD3 activation may lead to a 

temporary downregulation of the surface TCR/CD3 complex (423), T cells were 

stimulated for 24 h with PMA and ionomycin. These reagents bypass the TCR but 

activate the same TCR signalling pathways (i.e. PKC and Ca2+; (424)). Culture 

supernatants were assessed for IL-17 and IFNy by ELISA. Interestingly, although a large 

increase in IL-17 secretion is seen in TLo cell compared to THi cell supernatants, the 

concentration of IFNy is comparable in both THi and TLo cultures (Figure 16). The IFNy 

secretion differs from the intracellular IFNy staining data, however the IL-17 secretion 

and intracellular data match. TLo stimulation resulted in the secretion of greater 

concentrations of IL-17 than IFNy. Overall both ELISA and intracellular staining indicate 

that TLo stimulation results in a greater IL-17 response compared to THi stimulation, 

despite both conditions receiving a pro-Th17 cell cytokine milieu.  
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Figure 16. TLo stimulation promotes IL-17 secretion.  Human CD4
+
 T cells were stimulated under THi or 

TLo conditions. After 6 days T-cells were washed, replated at 1x10
6
 cells/well and restimulated with 

PMA/Ionomycin.  After 24 h cell-free supernatants were harvested and levels of IL-17 and IFN-γ were 
measured by ELISA; error bars represent SEM, N=3. 

 

2.4.4 Requirement for pro-Th17 cytokines 

The signalling pathways activated via CD3/TCR and co-stimulatory molecule CD28 can 

determine the T-cell phenotype, along with the cytokine milieu. In order to assess if 

the addition of pro-Th17 cell cytokines, (IL-1β, TGF-β, and IL-23) affects Th17 cell 

responses, THi and TLo stimulated cells were cultured in the presence or absence of 

pro-Th17 cell cytokines and intracellular IL-17 and IFNy production was determined at 

day 6. In the absence of pro-Th17 cell cytokines the proportion of IL-17+ cells in both 

THi and TLo cells remained low, but was marginally increased in TLo compared to THi 

cells (Figure 17). However, the absence of pro-Th17 cell cytokines substantially 

increases the proportion of IFNy+ cells in TLo but not THi cultures. The pro-Th17 cell 

cytokines most likely act in part to prevent the expansion of the pre-existing Th1 cell 

population, but THi stimulation alone may further suppress IFNy expression by 

potentially inducing a regulatory rather than an effector cell phenotype (explored 

further in Chapter 3) (425). In the presence of pro-Th17 cell cytokines the proportion 

of IL-17+ cells in TLo stimulated cell cultures was markedly increased compared to THi 

stimulated cell cultures. These data demonstrate that both the strength of stimulus 

and cytokine milieu contribute to the effector phenotype; furthermore, these data 

contradict prior suggestions that the cytokine milieu is able to negate the effects of 

stimulation strength (67).  
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Figure 17.  Promotion of Th17 responses by TLo stimulation requires pro-Th17 cell cytokines. Human 
CD4

+
 T cells were stimulated under THi or TLo conditions in the presence (top) or absence (bottom) of 

pro-Th17 cell cytokines IL-1β, IL-23 and TGF-β. After 6 days T-cells were restimulated for 5 hours with 
PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. Proportions of IL-17- and IFN-γ-
producing cells were determined by intracellular cytokine staining followed by flow cytometry. Plots are 
representative of 3 independent experiments and the histogram below demonstrates the percentage of 
IL-17 expressing cells from the 3 independent experiments. Error bars represent SEM. P values 
calculated using a paired T-test; *p=<0.05. 

2.5 Further characterisation of THi & TLo cells 

2.5.1 RORc 

IL-17 is the predominant marker, and mediator of Th17 cell effects, however further 

factors are also used to characterise the Th17 cell phenotype. Transcription factor 

RORγt (RORc in humans) is required for transcription of Il-17 and has been identified as 

the Th17 cell-defining transcription factor (371). THi and TLo cells were assessed by 

flow cytometry for the expression of RORc and also for intracellular cytokines, IL-17 
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and IFNy. Figure 18 demonstrates that both THi and TLo cells express RORc and the 

majority of IL-17+ TLo cells were also positive for RORc. Interestingly a large proportion 

of cells present in both THi and TLo cultures are RORc+/IL-17-.  
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Figure 18.  IL-17-producing T-cells express RORc.  CD4
+
 T-cells were cultured under THi or TLo 

conditions. After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin the last 4 hours in 
the presence of Brefeldin A. Expression of IL-17 and RORc was determined by intracellular staining 
followed by flow cytometry. Plots are representative of 4 independent experiments. 
 

2.5.2 IL-21 & IL-22 

Initially it was suggested that IL-21 and IL-22 were also expressed by Th17 cells (292). 

Recently a number of new T cell phenotypes have been described including IL-22+ IL-

17- cells, which have been termed Th22 cells (207, 214). Th22 cells are thought to be 

important in the pathogenesis of the autoimmune disease psoriasis (211). THi and TLo 

cells were investigated for their expression of IL-21 and IL-22 in conjunction with IL-17 

by ICS and flow cytometry following PMA/Ionomycin stimulation at day 6 of culture. 

THi stimulation resulted in almost no detectable IL-21 or IL-22 expression as 

demonstrated in Figure 19. TLo cells had increased expression of both IL-21 and IL-22 

when compared to THi cells. However, very little IL-21 production was observed in TLo 

stimulated cell cultures. This is a potentially surprising finding as Th17 cell secretion of 

IL-21 is a mechanism reported to result in Th17 cell phenotype maintenance. Autocrine 

IL-21 signalling initiates a positive feedback signal that maintains RORyt expression, via 

the activation of the STAT3 signalling pathway (426). The pro-Th17 cytokine cocktail 

added to THi/TLo stimulated cell cultures does not contain IL-6 which is required to 

initiate IL-21 expression. For human Th17 cell induction a cytokine cocktail containing 

IL-1β is used rather than IL-6 (332). Moreover IL-23 can activate the STAT3 signalling 
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pathway which may also negate the requirement for IL-21 (367). A large proportion of 

the cells were IL-22+/IL-17+, a finding similar to previous investigations (427). In 

addition, a small proportion of the cells were IL-22+/IL-17-, which may represent the 

more recently described Th22 cell subset. It has been proposed that the Aryl 

hydrocabon receptor (AhR) is the Th22 cell-specific transcription factor, although it is 

also associated with in vivo Th17 cells (208, 216). As TLo cells are cultured in IMDM 

medium which is known to contain AhR-activating ligands, IL-22+ cells may be induced 

or expanded through the AhR signalling and transcription pathway (217). All IL-17+ cells 

are not however IL-22+, this may be due to the cytokine milieu employed. IL-23 in 

conjunction with IL-1β has been described to inhibit IL-22 expression and can regulate 

the Th17/Th22 cell balance in favour of Th17 cells (428). TLo induced Th17 cells 

express both IL-17 and the signature transcription factor RORc, however expression of 

IL-17 in conjunction with IL-21 or IL-22 is not always observed.  
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Figure 19. Expression of IL-21 and IL-22 by THi and TLo cells.  CD4
+
 T-cells were stimulated under THi or 

TLo conditions. After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin the last 4 hours 
in the presence of Brefeldin A. Proportions of IL-17- , IL-21- and IL-22-producing cells were determined 
by intracellular cytokine staining followed by flow cytometry. Plots are representative of 3 independent 
experiments and the adjacent histograms demonstrate the percentage of IL-17 and/or IL-21 or IL-22 
expressing cells from the 3 independent experiments. Error bars represent SEM 
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2.5.3 Proliferation & Viability 

A consideration when assessing the culture of CD4+ T cells activated with different 

stimulation strengths is that T-cell proliferation and viability will differ. The difference 

in the number of cell divisions can also affect the T-cell effector phenotype (429, 430).  

2.5.4 Proliferation 

Carboxyfluoroscein succinimidyl ester (CFSE) methodology was performed to assess 

the proliferative capability of THi and TLo stimulated cells. CFSE is a cell permeable 

fluorescent dye that upon cell proliferation is equally divided between daughter cells, 

therefore, when visualised by flow cytometry the T-cells that have divided have 

reduced fluorescent intensity. THi and TLo stimulated cells were stained on day 0 with 

CFSE and cultured until day 6 under pro-Th17 cell cytokine conditions. The dilution of 

CFSE and also the expression of IL-17 and IFNy were then assessed by ICS and flow 

cytometry. A control population of non-TCR-stimulated cells were also CFSE-labeled; 

these cells will contain undiluted CFSE as they have not been activated and therefore 

allow for gating of non-proliferative cells. The majority of THi and TLo stimulated cells 

were CFSEdim indicating that these cells had proliferated. However, a higher proportion 

of cells in the TLo cultures had not undergone division when compared to the THi 

stimulated cells (33% ± 3.7% for TLo vs 14% ± 3.4% for THi n=3) (Figure 20). The IL-17+ 

cells (and IFNy+ cells) largely resided within the CFSEdim fraction of the population, 

indicating that effector cytokine production is associated with cell division and is not 

induced from the non-proliferating cells by PMA/Ionomycin stimulation (Figure 20 

A+B). Further computational analysis of CFSE dilution revealed four rounds of cell 

division (G1-G4) in THi and TLo cell cultures. Slightly greater proportions of THi 

stimulated cells were present within divisions G1-2 as compared to the G1-2 divisions 

of TLo stimulated cells (Figure 20C, D). However, both THi and TLo stimulated cells 

have similar proportions of T-cells in the later G3 and G4 phase of cell divisions. The 

greater proportion of THi stimulated cells present in the G1/2 phase of divisions may 

indicate that the proliferation of some THi stimulated cells has been halted at an 

earlier stage than in TLo stimulated cells. A further possibility is that these cells may 

have been activated at a later time point within the culture and have not reached the 

later G3-G4 division stages. The highest proportions of IL-17+ cells were present within 
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the G4 stage of division. Despite comparable proportions of T-cells in THi and TLo 

stimulated cell cultures having reached this stage, only TLo cells have IL-17 expression, 

suggesting that low IL-17 expression in THi is not because they have not proliferated to 

the G3/G4 stage.  
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Figure 20. The proliferative response of T-cells stimulated under THi or TLo conditions.  Human CD4
+
 T-cells were labelled with CFSE and cultured under THi or TLo conditions.  

After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. Expression of IL-17 (A) or IFNy (B) in proliferating cells was 
assessed by flow cytometry. Plots are representative of 3 independent experiments (C) Cell generation gates were determined by FlowJo Proliferation Platform, and are 
representative of 3 independent experiments. (D) Percentages of cells in each cell generation, gates determined as in A and C; data representative of 3 independent experiments. 
(E) The percentage of cells present in each generation gate from the total cell population; N=3 independent experiments. 
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2.5.5 Absolute numbers of Th17 cells 

I next explored the possibility that as a greater proportion of THi cells had proliferated 

compared to TLo cells, enrichment of Th17-cells within the TLo population may be 

proportional rather than absolute. To investigate this, on day 6 of THi/TLo stimulated 

culture, the total numbers of living cells were counted and used to calculate the 

absolute number of Th17 cells resulting from the THi and TLo cultures. Figure 21 

reveals that TLo cultures resulted in significantly greater absolute numbers of IL-17+ 

cells in comparison to THi cultures. Thus, TLo stimulation results in both proportionally 

and absolutely more Th17 cells than THi stimulation.  
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Figure 21.  The increase in IL-17
+
 cells in TLo stimulated cultures is absolute.  Human CD4

+
 T-cells were 

cultured for 6 days under THi or TLo stimulation conditions. The number of living T-cells at day 6 was 
determined by trypan blue viability staining. The absolute number of IL-17

+
 T-cells was calculated using 

the proportion of IL-17
+
 cells determined by flow cytometry; N=3. Error bars represent SEM; p-values 

calculated using a T-test *p<0.05.  
 
 

2.5.6 Viability  

Activation induced cell death (AICD) is an essential mechanism in the maintenance of 

T-cell homeostasis that activates the programmed cell death pathway (431). AICD is 

usually mediated by expression and binding of death ligand FasL to Fas receptor 

present on T-cells. Cell death may occur in a cell-autonomous manner termed ‘suicide’  
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Figure 22.  THi and TLo stimulated T-cells have comparable viability.  Human CD4
+
 T-cells were cultured 

under THi or TLo conditions for 6 days. (A) 1 well of THi- or TLo-stimulated T-cells was harvested and the 
percentage of dead and alive cells was determined by trypan blue staining. N=3, error bars represent 
SEM. (B) At day 6 following 5 hours restimulation with PMA/Ionomycin, cells were stained with Viaprobe 
and expression of intracellular IL-17 and IFNy was determined by intracellular cytokine staining followed 
by flow cytometry. The top row represents the viability of ungated cells acquired. The bottom row 
depict representative plots of IL-17 and IFNy expression from Viaprobe-negative cells. Plots are 
representative of 3 independent experiments. 

 

or as the result of cell-cell contract termed ‘fratricide’ (432). AICD can be induced in 

vitro by activating T-cells via TCR in the presence of IL-2, followed by activating the 

cells via TCR ligation alone (433, 434). The resulting effect is the expansion of the T-cell 

population and then a decrease in T-cell number. To assess if differences in cell death 

between THi and TLo cultures was a possible cause for phenotypic differences, cell 

viability was assessed. Viability of cells in THi and TLo cultures was primarily assessed 

by viability staining of cells with trypan blue on day 6, and counting alive and dead cell 

populations. Comparable percentages of viable and non-viable cells between THi and 

TLo cultures were found (Figure 22A). Further phenotypic assessment was carried out 
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using a flow cytometric viability stain, Viaprobe. Within both the THi and TLo cell 

cultures assessed at day 6, ~15-20% of cells were dead (Viaprobe+), similarly to results 

observed by trypan blue staining (Figure 22A, B (top row)). Furthermore, when viable 

cells were gated (Viaprobe-), co-staining with IL-17 revealed that TLo stimulation still 

resulted in a greater proportion of IL-17+ cells than THi stimulation (Figure 22 B bottom 

row). The low proportion of IL-17+ cells in THi cultures is therefore unlikely to be a 

result of a dilution effect caused by the greater numbers of dead cells.     

2.5.7 Exhaustion 

I next hypothesised that THi stimulation may result in an exhausted cell state, 

preventing THi cell responsiveness to PMA/Ionomycin. T-cell exhaustion results in a 

dysregulated effector function, and is commonly associated with chronic infection and 

cancer. Unlike T-cell anergy, exhaustion arises in the presence of co-stimulation, and 

onset occurs gradually over time (435). To assess for exhaustion THi and TLo cells were 

assessed for their IL-17/IFNy response following PMA/Ionomycin stimulation at day 6 

or after resting T cells for an additional 4 or 8 days (i.e. day 10 or 14 of culture). Resting 

the cells until day 10 further increased proportions of both IL-17+ and IFNy+ cells in TLo 

cell cultures (Figure 23). Conversely, within THi stimulated cell cultures a marginal 

increase in the proportion of IFNy+ cells occured following resting, but no such increase 

was associated within the IL-17+ fraction. Resting of THi cells, if they are in an 

exhausted state, did not enhance IL-17 responses; however, TLo stimulated Th17 cell 

responses were further benefitted by a resting period of 4 days.   
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Figure 23. Resting of THi cells does not increase the proportion of IL-17
+
 cells.  Human CD4

+
 T-cells 

were cultured under THi or TLo conditions. At day 6 the T-cells were either restimulated for flow 
cytometry analysis (left hand column) or anti-CD3/CD28 beads were removed and the CD4

+
 T-cells were 

replated in the presence of IL-2 and IL-23 until day 10 (middle column) or until day 14 (right column). At 
each time point the T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours in the 
presence of Brefeldin A, and assessed for intracellular IL-17 and IFNy by flow cytometry. Plots are 
representative of 3 independent experiments and the histograms below demonstrate the percentage of 
cells expressing IL-17 (left) or IFNy (right) from the 3 independent experiments. Error bars represent 
SEM; ; p-values calculated using a 2 way ANOVA *p<0.05 **p<0.01.  
 

2.5.8 Th17 responses of naïve versus memory CD4+ T-cells 

Within the periphery CD4+ T-cells exist in different states of maturation, depending on 

antigen experience. Antigen-inexperienced naive T-cells were originally thought to 

differentiate into terminally differentiated effector T-cell lineages. However, recent 

investigations clearly demonstrate that T helper cells retain the capability to switch 
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phenotype following antigen encounter. Furthermore, induction of a Th17 cell 

phenotype from naive human CD4+ T-cells has still not been convincingly achieved, 

potentially due in part to employing the incorrect cytokine milieu or stimulation 

strength. The response of naive and memory T-cells to THi and TLo stimulation was 

next compared (Figure 24). As with total CD4+ T-cells both naive and memory Th17 cell 

responses were favoured by TLo stimulation. However, memory CD4+ T-cells cultured 

with TLo stimulation resulted in a far greater IL-17 response than naive CD4+ T-cell 

cultures. As with total CD4+ T-cells, TLo stimulation of memory CD4+ T-cells compared 

to THi stimulation, resulted in a less marked increase in the proportion of IFNy+ cells 

than IL-17+ T-cells. Conversely, in the naive culture the proportion of IFNy+ expression 

was reduced following TLo stimulation compared to THi stimulation, indicating that 

TLo culture does not favour naive IFNy responses. However, the effect of pro-Th1 

cytokines in concert with TLo stimulation remains to be determined. Due to 

imperfections in magnetic separation techniques, it cannot be excluded that the IL-17+ 

cells induced from TLo stimulated naive T-cells were a result of contaminating memory 

T-cells rather than true Th17 cell differentiation, as proportions of IL-17+ cells are low.  

2.5.9 Duration of TCR stimulation affects Th17 cell responses 

Prior investigations have demonstrated that TCR signal strength can be modulated by 

the duration of TCR stimulation. I therefore assessed if Th17 cell responses could be 

modulated by the duration of TCR stimulation. Using a THi stimulation (1 bead: 1 T-

cell), memory CD4+ T-cells were activated for 24, 48 or 72 hours with anti-CD3/CD28 

beads under pro-Th17 cell cytokine conditions. At each time point the anti-CD3/anti-

CD28 beads were removed and T-cells washed and re-cultured under pro-Th17 cell 

conditions until day 6 (control conditions underwent the same procedure except 

activating beads remained in culture). Data in Figure 25 reveal that if TCR activating 

beads were removed prior to 72 hours, Th17 cell responses increased when compared 

to the time point control. However by 72 hours of activation, if the stimulus is 

removed no increase in IL-17 response is observed in comparison to the continued 

presence of the beads for the 6 days. These data indicate that high strength 

stimulation for greater than 48 h is inhibitory to Th17 cell responses. TCR stimulation 

for 48 hours appeared to be optimal for Th17 cell responses though as short as 24 
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hours also yielded enhanced Th17 cell responses. These data may indicate how Th17 

cell responses correspond with the signalling duration requirements of Th1 and Th2 

cells (409). Iezzi et al found that optimal murine Th2 cell responses (>60% IL-4+) were 

induced by a 96 hour stimulation with anti-CD3/anti-CD28 96 hour stimulation. 

Whereas, murine Th1 cell responses (>70% IFNy+)  were induced by a 24  hour 

stimulation, therefore the duration of CD3/CD28 stimulation required by Th17 cells 

may fall in between that required by Th1 and Th2 cells. Although, the duration of  
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Figure 24.  Naive and memory T-cell responses to THi and TLo stimulation . Human CD45RA+CD4+ 
naive or CD45RO+CD4+ memory T-cells were cultured under THi or TLo conditions. After 6 days T-cells 
were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. 
Proportions of IL-17- and IFN- -producing cells were determined by intracellular cytokine staining 
followed by flow cytometry. Plots are representative of 2 independent experiments and the histograms 
adjacent (Top- Naive) (Bottom- Memory) demonstrate the percentage of cells expressing IL-17 and/or 
IFNy from the 2 independent experiments. Error bars represent SEM.  
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Figure 25.  A shorter duration of TCR stimulation promotes Th17 cell responses. Human CD45RO
+
CD4

+
 

memory T-cells were cultured under THi conditions. After either 24, 48 or 72 hours of stimulation, anti-
CD3/anti-CD28 beads were removed and the T-cells were washed, replated and cultured until day 6. 
Control populations at each time point were washed and cultured but remained in the presence of anti-
CD3/CD28 beads. At day 6, T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours 
in the presence of Brefeldin A and the expression of intracellular IL-17 was assessed by flow cytometry. 
Data are of 3 independent experiments. Error bars represent SEM. P values were calculated using a 
Paired T-test; *< 0.05, **<0.01.  
 

stimulation required by naive and memory T-cells also differs, naive T-cells require 

prolonged TCR activation compared to memory (392). 

2.5.10 Modulation of APC derived stimulation strength 

Anti-CD3/anti-CD28 beads, are a useful tool for in vitro T-cell activation, but provide a 

less physiologically relevant stimulus than APC. Antibody engagement of TCR occurs at 

higher orders of magnitude than those of pMHC (436). To assess the effect of 

stimulation strength on Th17 cell responses by modulation of APC derived stimulation, 

total CD4+ T-cells were cultured with different numbers of allogeneic DC that had been 

matured with peptidoglycan. Peptidoglycan is a TLR2 agonist that activates signalling 

pathways which lead to the secretion of pro-Th17 cytokines including IL-1β and IL-23 

(331, 437). A high strength stimulus of 1 DC:1 T-cell (DCHi) was compared to a low 

strength stimulus of 1 DC:10 T-cells (DCLo). IL-17 and IFNy responses were compared 

at day 6 of culture. Interestingly, low strength DC stimulation increased the proportion 

of IL-17+ cells in comparison with high strength DC stimulation (Figure 26). 
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Figure 26. Modulating the strength of T-cell stimulation with moDC.  Human CD4+ T-cells were 
cultured for 6 days with allogeneic PGN-activated moDC at either a 1:1 moDC:CD4

+
 T-cell ratio (DC Hi) or 

a 1:10 moDC: CD4
+
 T-cell ratio (DC Lo). Day 6 cells were restimulated for 5 hours with PMA/Ionomycin 

and expression of IL-17 and IFN-γ were determined by intracellular flow cytometry. Plots are 
representative of 3 independent experiments and the histograms adjacent demonstrate the percentage 
of cells expressing IL-17 from the DCHi (white bars) and DCLo (black bars) of the 3 independent 
experiments. Error bars represent SEM. P values calculated using an unpaired T-test; *p=<0.05. 
 

However, whilst indicating that low strength stimulation favours Th17 cell induction, 

modulating the number of allogenic DC also affects a number of parameters other 

than TCR/co-timulation including: the concentration of DC released cytokines, surface 

molecule interactions, and the overall cell culture density. To minimise these 

differences and to specifically assess the differences in TCR activation a different 

model using APC and super antigen was employed. Superantigens are toxins released 

by bacteria such as Staphylococcus aureus which are capable of non-antigen-specific T-

cell activation, by cross-linking the Vβ region of the TCR to MHC molecules expressed 

on APC (438). Co-culture of immature DC with autologous CD4+ T-cells at a 1:10 ratio, 

in the presence of superantigen (staphylococcus enterotoxin B (SEB)), revealed that 

decreased concentrations of SEB and thus TCR stimulation favours IL-17 responses 

(Figure 27). In addition, high concentrations of SEB appeared inhibitory to IL-17 

responses, with proportions of IL-17+ cells reduced in comparison to background IL-

17+. The highest proportion of IFNy+ cells were induced from an SEB concentration 10-

fold higher than the concentration required for optimal proportions of IL-17+ cells. In 

addition when compared to the IL-17 response, the IFNy response did not appear to be 

as sensitive to inhibition by high strength stimulation.    



Chapter 2. Regulation of human Th17 cell responses by stimulation strength  

89 

 

2.7 1.2

10.7

2.9 1.0

5.0

1.3 0.3

5.2

10.3 3.7

7.9

1.0 0.4

5.3

5.7 2.7

11.3

IFN-γ

IL
-1

7

1000 100 10

1 0.1 No SEB

SEB (pg/mL)

 

Figure 27. Low strength activation by autologous moDC and SEB favours Th17 generation.  Human 
CD4+ T-cell were cultured for 6 days with autologous moDC at a 1moDC:10CD4+ T-cell ratio with 
decreasing concentrations of SEB (1000-0 pg/ml). Day 6 cells were restimulated for 5 hours with 
PMA/Ionomycin and expression of IL-17 and IFN-γ were determined by intracellular flow cytometry. 
Results are representative of 3 independent experiments. 
 

2.5.11 Modulating stimulation strength via either anti-CD3 or anti-CD28  

Anti-CD3/anti-CD28 bead stimulation did not reveal if low strength signals via the TCR 

or CD28 determined Th17 cell responses. Previous data in murine models indicates 

CD28 co-stimulation inhibits Th17 cell responses (421). My SEB titration data, however, 

indicated that low strength stimulation via the TCR may promote IL-17 expression. I 

therefore next addressed if lowering the stimulation strength via TCR/CD3 alone was 

sufficient for Th17 cell responses. To this aim, biotinylated beads were coated with 

different concentrations of anti-CD3 in the presence or absence of anti-CD28. T-cells 

were cultured at a constant ratio of 1 bead: 2 CD4+ T-cells (manufacturer’s recommend 

ratio) whilst providing different signal strengths via the different anti-CD3/CD28 

concentrations and combinations. Figure 28 indicates that only a marginal change to 

the proportion of IFNy+ cells was observed and these were not correlated to the 
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change in CD3 or CD28 stimulation; this may be due to the presence of pro-Th17 cell 

cytokines rather than pro-Th1 cell cytokines. However IL-17 responses were similar to 

those observed during SEB titration (Figure 27) whereby lower concentrations of anti-

CD3 mAb and thus TCR stimulation favoured Th17 cell responses. Importantly, these 

effects were only observed in the presence of CD28 co-stimulation; the absence of 

anti-CD28 abrogated a Th17 cell response but not Th1 cell response (Figure 28). 

Together these data provide novel insights into the regulation of human Th17 cell 

responses demonstrating that, alongside pro-Th17 cytokines, low strength TCR 

stimulation in the presence of CD28 co-stimulation promotes human Th17 cells.   
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Figure 28. Low strength CD3/TCR stimulation promotes Th17 cell responses and is dependent on CD28 
stimulation.  Human CD4+ T-cells were cultured for 6 days at a 1:10 bead:T-cell ratio. Beads were 
loaded with decreasing concentrations of (40-2.5μg/ml) of anti-CD3 +/- 10μg/ml CD28. At day 6 T-cells 
were restimulated for 5 hours with PMA/Ionomycin and expression of IL-17 and IFN-γ was determined 
by intracellular flow cytometry. Results are representative of 3 independent experiments. 
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2.6 Discussion   

Th17 cells are required for protection against certain pathogens but also play a role in 

the pathogenesis of autoimmunity (290). Since the discovery of Th17 cells 

investigations have focussed on the factors which control their induction. Although a 

clear role has been demonstrated for cytokine signalling in regulating Th17 cell 

induction, my data have revealed a novel role for TCR stimulation strength in 

regulating human Th17 cell responses. Low strength stimulation via anti-CD3/anti-

CD28 beads or APC in a pro-Th17 cell cytokine milieu promotes Th17 cell responses in 

vitro, whereas high strength stimulation poorly supported IL-17 responses. 

Furthermore, CD28 stimulation was found to be required for optimal human Th17 cell 

responses. It was previously suggested that the strength of TCR stimulation was 

unlikely to be a determinant of T-cell phenotype as polarising cytokines are capable of 

overruling the effects of stimulation strength (67). Contrary to this, my data have 

revealed that reduced Th17 cell responses occur as a result of high strength 

stimulation but are not reversed by the presence of pro-Th17 cell cytokines. Although 

it remains a possibility that a different cytokine milieu may allow THi stimulated cells to 

make a Th17 cell response; my data suggest that the cytokine milieu in conjunction 

with the appropriate strength of TCR signalling promote Th17 cell responses.  

2.6.1 Stimulation strength and Th17 cells 

Total number of TCR 
molecules activated

Costimulation
+/- CD28 stimulation

Duration of TCR
activation

Strength of TCR-pMHC binding
- Altered peptide ligand

Altering T-cell
stimulation strength

 

 
Figure 29. Methods of altering T-cell stimulation strength.  Boxes with bold outline indicate methods of 
altering T-cell stimulation strength performed within this study.  
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The overall strength of T-cell stimulation may be determined by a number of factors 

including the rate and duration of TCR triggering, the affinity of TCR for pMHC, the 

number of TCR activated, and the signal threshold which can be modulated via CD28 

signalling (Figure 29) (388). Our investigations vary the strength of stimulation by 

modulating the number of expander beads/DC, by varying the amount of anti-CD3 or 

superantigen present per bead or DC, respectively, or by modulating the duration of T 

cell stimulation (Bold out-lined boxes in Figure 29). Data of each model consistently 

demonstrated that Th17 cell responses were promoted by low strength T cell 

activation; the anti-CD3/superantigen titration data suggest that this effect is 

mediated through varying the signalling strength through the TCR/CD3 complex. 

Furthermore, my data demonstrated a requirement for CD28 co-stimulation for Th17 

cell responses. More investigations are required to assess if different anti-CD28 

concentrations in the presence or absence of anti-CD3 have more discrete effects on 

modulating Th17 cell responses. Some investigations into the effect of TCR stimulation 

strength on murine Th17 cell responses have already been conducted. Bouguermouh 

et al found that high concentrations of anti-CD3 alone induced optimal Th17 cell 

responses in mouse T-cells but that CD28 co-stimulation in the presence of anti-CD3 

had an inhibitory effect. Furthermore, using LPS-matured DC, Bouguermouh et al also 

found that Th17 cell responses were increased at higher DC:T cell ratios and were 

further increased when stimulated with immature DC. This further increase in the 

presence of immature DC was thought to be due to the inhibitory effect of increased 

CD80/86 expression on mature DC, leading to activation of the CD28 signalling 

pathway. These investigations contradict my data; however, Bouguermouh et al also 

demonstrated differences between the naive and memory CD4+ T-cell response 

towards CD28 co-stimulation. I believe that the majority of the Th17 cell responses 

resulting from TLo culture are derived from memory T-cells because Th17 cell 

proportions are diminished in naive cultures, but heightened in memory cultures 

(Figure 24). Bouguermouh et al found that memory T-cells were not affected by the 

presence of anti-CD28 stimulation, which due to the importance of memory T-cells to 

TLo Th17 responses, most likely contributes to the differences between our results. 

Like Bouguermouh et al, Gomez Rodriguez et al also demonstrated that IL-17A 

expression required a high dose of anti-CD3 stimulation. Differences in anti-CD3 dosing 
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ranges most likely explain this discrepancy; our low dose (2.5 ug/mL) is more 

comparable with their high dose (5 ug/mL). However, the strength of TCR signal 

induced by soluble vs plate bound anti-CD3 can differ and so may not be directly 

comparable (439). Plate bound anti-CD3 slowly induced a high level of Erk signalling 

which was sustained, whereas soluble anti-CD3 rapidly induced Erk signalling but 

signalling declined after 30 minutes. My data also reveal that using low concentrations 

of SEB (0.01 pg/mL) (Figure 27) resulted in increased Th17 cell responses, whereas 

comparisons to more physiological stimuli have not been drawn by Gomez-Rodriguez 

et al. Furthermore, data are conflicting within murine investigations regarding the role 

of CD28 co-stimulation on Th17 cell responses. Gomez-Rodriguez et al have 

demonstrated optimal Th17 cell responses in the presence of CD28 and higher 

concentrations of CD3, where as Bouguermouh et al found CD28 co-stimulation 

inhibitory to Th17 cell development (421, 422). More recently, raftlin, a protein 

present within the lipid raft capable of TCR signal modulation, was demonstrated to 

affect Th17 cell responses (422, 440). Raftlin modulates the amount of Lck in resting T-

cells. Raftlin-/- T-cells have reduced resting Lck and a reduced intensity of TCR 

signalling. Raftlin-/- mice produced less IL-17, and data in wild-type mice also suggested 

that high strength anti-CD3 stimulation (10 ug/mL) promoted IL-17 responses (440). 

These differences may be attributed to the type and concentration of CD3/CD28 

antibody and/or differences in the cytokine milieu. Our data, like that of another 

recent human Th17 cell study by Evans et al, demonstrate a clear requirement for 

CD28 co-stimulation for Th17 cell responses (99). 

 

My experiments have assessed the avidity of TCR signalling rather than the affinity of 

TCR: pMHC interactions. Assessing the effect of TCR binding affinity on Th17 cell 

responses would be an interesting future research avenue and could be explored using 

altered peptide ligands (APL). Ex vivo human T-cells express a vast array of TCR with 

different pMHC specificities and so APL experiments could not be performed with ex 

vivo polyclonal human T-cells. The effect of TCR:pMHC affinity on Th17 cell responses 

could be explored in TCR transgenic mice specific for a certain peptide, by comparing 

the wild-type peptide to an APL with either enhanced or decreased affinity for the TCR. 
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It would also be beneficial to assess a wider array of effector phenotypes when 

assessing the stimulation strength requirements of certain subsets. Th1 and Th2 cells 

have already been demonstrated to be regulated by stimulation strength (400). More 

recent data demonstrate that other CD4+ T-cell phenotypes are regulated by 

stimulation strength. Low doses of a strong agonist APL were found to promote Foxp3+ 

Treg (425). Follicular helper T-cells may also be regulated by strength of TCR binding; 

high TCR signal strength induces IL-21 expression, promoting follicular helper T-cells 

(441). A high strength TCR signal requirement for IL-21 expression may be an alternate 

cause of reduced IL-21 expression from TLo stimulated cells; however, THi stimulation 

also did not result in IL-21 expression (Figure 19). As with prior investigations into the 

effects of stimulation strength on Th1 and Th2 cell responses, a lack of consistency in 

the dosing ranges and the type of peptide used can lead to different conclusions. 

Therefore if more phenotypes were assessed using the same dosing ranges our 

understanding of how TCR signalling regulates effector CD4+ T-cell phenotypes would 

be substantially improved.  

 

Different Th17 cell markers were assessed to characterise THi and TLo stimulation 

induced Th17 cells, the most important marker being IL-17A (IL-17). IL-17A allows Th17 

cells to recruit neutrophils and drives the inflammatory responses to clear certain 

infections. As a result of TLo stimulation, IL-17A responses were increased both at the 

level of number of IL-17-producing cells and the total level of secreted IL-17 protein 

(Figure 16). Gomez-Rodriguez et al report that IL-17A and IL-17F are differentially 

regulated by TCR stimulation: IL-17A is more sensitive to Ca2+ signalling than IL-17F 

(422). This is because the IL-17A promoter contains a cross-species-specific binding site 

for the Ca2+ regulated transcription factor NFATc1, important for IL-17A expression.  

Within my investigation only IL-17A was assessed. However IL-17A has increased 

potency compared to IL-17F and as both types are capable of binding to the IL-17 

receptor, the high levels of IL-17A secretion by TLo-induced Th17 cells would indicate 

that these cells are capable of mediating Th17 cell responses (276). However, it may be 

interesting to assess the expression of IL-17F in THi and TLo stimulated cells in future 

studies. IL-17A can suppress the expression of IL-17F expression (442). IL-17A-/- mice 
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over-expressed IL-17F, which resulted in increased GM-CSF secretion and neutrophil 

numbers, indicating that IL-17F is capable of functionally compensating for the absent 

IL-17A. As IL-17F expression is not regulated by TCR stimulation and THi stimulated 

cells have low IL-17A expression, IL-17F may still be expressed and allow THi 

stimulated cells to function as Th17 cells.  

2.6.2  RORc in THi and TLo 

RORyt/RORc is a transcription factor critical to IL-17 responses (371). Both THi and TLo 

cell populations contained a similar proportion of RORc+ cells, though a large 

proportion of RORc+/IL-17- cells existed within both populations, particularly within the 

THi cell population (Figure 18). IL-17 transcription is regulated by a complex range of 

factors and RORc expression alone is most likely not sufficient for IL-17 expression. 

Possibly the presence of the RORc+/IL-17- population is explained by the absence of 

further transcription factors, such as STAT3, which together with RORc mediate IL-17 

transcription (443). Conversely, inhibitory transcription factors, such as Foxp3 may be 

present preventing the RORc expressed from transcribing IL-17 (374). It is known that 

in human T-cells TCR activation results in Foxp3 expression (444), and the involvement 

of Foxp3 in the THi/TLo stimulation model is further investigated in Chapter 3. The IL-

17+ cell population is RORc+ confirming its importance in IL-17 expression.  

2.6.3  Differentiation vs Expansion 

A key issue, due to using a CD4+ population containing both naive and memory T-cells, 

is whether the Th17 cell population observed arises due to de novo Th17 cell 

differentiation or preferential expansion of a pre-existing IL-17+ population. The ex-

vivo CD4+ T cell population following PMA/Ionomycin stimulation was <0.5% IL-17+. 

Evans et al argue that it is unlikely that the resulting IL-17 population (up to 28%) 

resulting from 3 day culture is due to expansion of a pre-existing IL-17+ cells alone, 

however THi/TLo stimulated cells are phenotyped at day 6, increasing the chances of 

pre-existing Th17 cell expansion (98). The doubling time of CD4+ T-cells during the first 

7 days of activation is ~11 hours (445). Therefore as T-cell expansion is exponential it is 

possible that selective expansion of pre-exisiting Th17 cells could account for the 

proportion of IL-17+ cells observed rather than Th17 cell differentiation. Determining 
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whether low strength TCR signalling favours expansion of existing Th17 cells or de novo 

Th17 cell induction would require ex vivo sorting of Th17 cells. As production of IL-17 is 

the most important hallmark of Th17 cells, cells would have to be stimulated with, for 

instance, PMA/Ionomycin or anti-CD3/anti-CD28 beads, in order to perform a cytokine 

secretion assay for the isolation of Th17 cells. These cells could then be labelled with 

CFSE and their ability to proliferate and produce IL-17 could be followed in response to 

THi and TLo stimulation over time. However, such an approach would require a high 

initial stimulus on day 0, most likely counteracting the effects of subsequent TLo 

stimulation, and may therefore not be appropriate for this purpose. Ideally, a specific 

surface marker for Th17 cells would be used to track differentiation or expansion of 

Th17 cells. However, our current knowledge indicates that although Th17 cells are 

associated with the surface expression of molecules CCR6 or CD161, these markers 

may also be expressed, to a lower extent, by Th1 cells (362). Therefore in this model 

determining if the increase in Th17 cells observed following TLo stimulation is due to 

differentiation of Th17 cells or expansion of pre-existing Th17 cells is difficult to assess.  

2.6.4  Naive T-cells 

Naive T-cells may offer a means of assessing Th17 cell differentiation vs expansion as 

naive T-cells have not been polarised and so pre-existing Th1 or Th17 cells are not 

present. However in vitro human naive T-cell Th17 differentiation has not been 

convincingly achieved (327, 328). Figure 24 demonstrated that culture of naive T-cells 

under TLo conditions resulted in reduced IL-17 responses compared to memory T-cell 

TLo stimulation. The small proportion of IL-17+ cells observed in naïve TLo cell 

populations could be due to the expansion of contaminating memory T-cells from the 

magnetic cell sort. Sorting naive T-cells to >99%+ by flow cytometry would reduce the 

chance of contaminating memory T-cells and therefore a pre-existing Th17 cell 

population. In comparison to in vitro murine naive T-cell differentiation where a 

combination of TGF-β and IL-6 can induce up to 60% IL-17+ cells, human naive T-cell 

culture towards a Th17 cell phenotype induces very low Th17 cell numbers (322). 

Figure 17 demonstrated that the cytokine milieu is important in combination with the 

correct stimulation conditions. The potential remains that naive TLo responses were 

reduced due to an incorrect Th17 cell cytokine milieu for human naive T-cells. It would 
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therefore be interesting to assess the effect of any new cytokine factors found to 

promote Th17 cells in conjunction with THi/TLo stimulation in the future. In addition, 

due to T-cell plasticity, investigating the factors that regulate memory T-cell Th17 cell 

induction is also relevant. The development of new techniques may allow human Th17 

cell induction or expansion to be assessed.   

2.6.5 Potential contribution of CD45 to stimulation strength 

By comparison to human naive Th17 cell differentiation, generation of Th17 cells from 

human memory CD45RO+ T-cells is far easier to achieve. These differences may be due 

simply to naive T-cells requiring a factor as yet unidentified to become Th17 cells; 

though it should be pointed out that murine naive and memory T-cells have similar 

cytokine requirements. Differences in the signalling pathways induced by TCR 

signalling in naive and memory T-cells may modulate the activation of transcription 

factors that regulate Th17 cell induction/expansion (393, 446). For instance, activation 

of the Erk signalling pathway was found to be increased following TCR triggering in 

human naive T-cells compared to memory T-cells (393). Furthermore, Erk signalling can 

act to decrease Ca2+ signalling which would modulate NFAT activation and 

transcriptional effects. A further unexplored possibility is the role of CD45. CD45 exists 

in multiple forms due to alternative splicing of 3 exons: A,B, and C, CD45RO have all 3 

exons spliced out (447). CD45 isoforms RA and RO are used to select human naive and 

memory T-cells, respectively, but are not used in the selection of murine naive and 

memory T-cells (448, 449). CD45 is abundantly expressed on the cell surface, but the 

ligand for CD45 remains unknown (450). CD45 affects TCR signalling by regulating the 

phosphorylation of Lck; sustaining a basal pool of active Lck. Modulating CD45 

expression in vivo can alter both thymocyte differentiation and peripheral T-cell 

activation (451). Cell line studies have revealed that isoforms of CD45 can alter T-cell 

activation via the TCR, by activating different signalling pathways resulting in different 

expression of cytokines (452, 453). More specifically, CD45RABC isoforms are capable of 

significantly increasing Ca2+ mobilisation in response to TCR stimulation, whereas 

CD45R0 does not have the same capacity to modulate Ca2+ mobilisation (391). My data 

indicates an important role for stimulation strength in modulating Th17 cell responses. 

However differences in the naive and memory T-cell Th17 cell response to THi and TLo 
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stimulation are still observed. One possibility is that differences in CD45 isoform 

expression, used to select naive and memory T-cells, may contribute to the overall 

threshold of T-cell signal, and may determine their capability to generate a Th17 cell 

response (447, 454, 455). However, the role of discrete CD45 isoforms in TCR signalling 

has not been clarified. It is also thought that the anti-CD45 antibodies used within 

these investigations can affect the early TCR signalling events. Within my investigations 

negative selection is employed to separate naive and memory-cells and therefore is 

unlikely to affect early TCR signalling. However it may be interesting to explore if 

differences in Th17 responses from naive and memory T-cells in humans compared to 

mice is due to the enrichment of different CD45 isoforms (450), whose ligand remains 

unknown. 

2.6.6 Cell death 

T-cells in response to high strength stimulation can be killed via AICD through 

expression of FAS-FASL, whereas expression of anti-apoptotic factor FLIP can prevent 

AICD. Th17 cells have recently been reported to express higher levels of FLIP and have 

an increased capability to survive AICD (456). THi and TLo cultures contained similar 

proportions of dead cells at day 6; however one would expect that if THi stimulation 

did result in greater cell death that this should increase the proportion of Th17 cells 

rather than diminish it. The possibility that THi stimulated cells were exhausted was 

also explored. Day 6 T-cells were rested by removing the anti-CD3/CD28 stimulation 

with the aim to reverse the effects of exhaustion. However, although resting of TLo 

cultures resulted in a further increase in IL-17+ cells, resting of THi stimulated cells did 

not increase the proportion of IL-17+ cells. It may be that removing the anti-CD3/anti-

CD28 stimulus is not sufficient to rest the cells. Methods to reverse the effects of 

exhaustion are not fully understood, at least not for CD4+ T-cells. In CD8+ T-cells, 

blocking PD-1 signalling can reverse exhaustion, providing evidence that exhaustion is 

not terminal (435). Furthermore, PD-1 blockade has been demonstrated to increase 

the secretion of  Th17 and Th1 cell cytokines, both of which are low following THi 

stimulation (457). Therefore, it may be interesting to assess the effect of PD-1 

blockade in conjunction with anti-CD3/anti-CD28 bead removal on the Th17 (and Th1) 

cell responses induced from THi stimulated cells. Furthermore, when assessing the 
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duration of T-cell stimulation, it was observed that a shorter duration of stimulation 

favoured Th17 cell responses despite the T-cell receiving a THi strength stimulus 

(Figure 25). It may therefore also be interesting to assess if there are differences in PD-

1 expression following bead removal at early vs late time points, which may inhibit 

Th17 cell development. Previous investigations have also demonstrated that a 

persistent high dose of antigen beyond day 10 can impair memory T-cell differentiation 

(433). THi and TLo culture occurred over 6 days, 4 days less than found to impair 

memory T-cell responses, which may indicate that the duration of THi/TLo stimulation 

is not long enough to induce exhaustion. However the binding affinity of anti-CD3 is 

most likely orders of magnitude higher than of antigen, which may increase T-cell 

signalling leading to exhaustion of THi cells (436).  

2.6.7 T-cell anergy 

Our data indicate that anergy induced by THi stimulation is also not likely to contribute 

to the limited Th17 cell responses. THi stimulation (with anti-CD28) results in a high 

proportion of proliferative cells. Anergy is defined as being rapidly initiated following 

initial antigen encounter in the absence of co-stimulation preventing a proliferative 

response (434). There are also limited data indicating a role for cell division in 

regulating effector T-cell phenotype (409, 458). Th2 responses required 7-8 cell 

divisons whereas Th1 cell responses were observed following 2-3 divisions (409). Gett 

and Hodgkin also found that IL-4 expression increased at divisons 7-8 although Th1 cell 

responses in the presence of IL-12 were not examined (458). However, a difference in 

the number of cell divisions does not appear to be a cause of the difference in THi and 

TLo Th17 cell response. Both THi and TLo cultures have a comparable number of cells 

within the later cell division stages as observed by CFSE labelling. These later division 

stages are where the majority of IL-17 expression is observed in TLo but not THi 

stimulated cells (Figure 20), indicating that a failure to reach the same number of 

cellular divisions is not inhibiting Th17 cell responses under THi conditions. 

2.6.8 Stimulation strength in vivo  

Investigations continue to indicate an effect of stimulation strength upon T-cell 

effector phenotypes. It is therefore interesting to consider what role this may have in 
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vivo. Kapsenburg argues that if stimulation strength alone can dictate the T-cell 

phenotype then the protective T-cell response during infection would be induced by 

bacterial load rather than by the type of pathogen (67). It is widely accepted that the 

type of immune response is dictated by the type of pathogen rather than by pathogen 

load. However, successful clearance of certain pathogens is dictated by antigen load; 

Leishmania major infection at low doses induces a protective Th1 cell response, 

whereas at high doses it suppresses Th1 responses, and induces a non-protective Th2 

response (459). More recently, antigen dose has been demonstrated to affect the 

Akt/mTOR pathway, which is a determinant of Treg vs effector T-cell induction (460). 

Low doses of peptide induced Foxp3 expression, whereas high doses induced effector 

cytokine production such as IL-17 and IL-6, but also higher IL-10.  However, antigen 

dose is not the only way by which stimulation strength can be modulated. The number 

of APC and the distances between APC and T-cells can modulate T-cell responses in 

vitro (461). This may represent different in vivo situations such as T-cell-APC 

interactions within the lymph nodes compared to the periphery. Two photon 

microscopy technology is beginning to increase our understanding of APC-T-cell 

interactions within lymph nodes, indicating a role for the duration of stable contacts in 

determining effector function (462). Interestingly, APL with reduced MHC affinities also 

have a reduction in the half-life of MHC binding and this results in a more than 10-fold 

reduction in the number of DC presenting the low affinity antigen within lymph nodes 

(39). Modulating the strength of stimulation by changing the number of activating 

monocyte derived dendritic cells (moDC) was observed to affect Th17 cell responses 
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Figure 26). Furthermore the affinity of antigen for the MHC complex can also 

determine which effector T-cell phenotype is induced (402, 408). Naturally occurring 
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APLs also exist: four naturally occurring APLs have been identified within the flagellar 

FliC protein homologues of both Salmonella serovars and other Gram-negative 

bacteria. IFNy responses were reduced in FliC APL stimulated T-cells compared to wild 

type peptide (463). Therefore, in vivo stimulation strength in the lymph node may be 

altered via the amount of peptide capable of being expressed by DC, which may affect 

the type of T cell phenotype induced.  

2.6.9 Stimulation strength and autoimmunity 

My data may also provide an explanation as to why a variety of autoimmune diseases 

are characterised by Th17 cells. Autoreactive T cells that escape negative selection 

have been shown to express low affinity TCR and may therefore, by nature of their 

TCR, preferentially develop a Th17 cell responses favoured by low strength TCR 

activation (464, 465). Furthermore, many genes associated with autoimmune diseases 

are those relating to TCR signalling including MHC class II, Protein Tyrosine 

Phosphatase-N22 (PTPN22 – the focus of Chapter 4)  and CTLA-4 (466), indicating that 

regulation of TCR signalling plays an important role in maintaining tolerance. The effect 

of stimulation strength in regulating T-cell responses has also been harnessed as a 

therapeutic tool. Antigen-specific immunotherapies have been used to treat 

autoimmune diseases such as MS where some of the T-cell antigen specificity is known 

(467). High dose antigen specific therapy induces IL-10 secretion however also induces 

a harmful burst of cytokine release following T-cell activation. This problem was not 

observed following administration of low antigen doses. More recently dose escalation 

studies have revealed that when doses of a peptide analogue are slowly increased, a 

tolerogenic population of IL-10-producing T-cells are induced (468, 469). Potentially, if 

administration of the low dose therapy were continued in mice, rather than escalated, 

the outcome may be a harmful Th17 cell response, rather than a tolerogenic IL-10 

response. Prior investigation have sought to harness APL to modulate the immune 

response in MS (470). Compared to wild-type peptide, administration of an APL with 

reduced binding can switch the immune response away from an inflammatory Th1 cell 

response towards a Th2 cell response. Th17 cell responses are also important in the 

pathogenesis of MS. Investigating how Th17 cells are affected by differences in TCR-
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affinity rather than avidity may reveal if Th17 cell responses can be ameliorated in 

response to APL therapy.  

2.6.10 Conclusion  

The data presented within this Chapter indicate a novel role for low strength TCR 

stimulation in promoting human Th17 cell responses. Investigating how the strength of 

TCR signalling pathway promotes Th17 cell responses will further contribute to our 

understanding in this field. Therefore the focus of the next Chapter will be to 

determine by what mechanism TLo stimulation promotes Th17 cell responses and, 

conversely, how THi stimulation prevents Th17 cell responses.  
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3 Chapter 3: How does low strength stimulation favour Th17 

responses? 

3.1 Introduction 

In Chapter 2, I demonstrated that low strength T-cell stimulation, administered by 

either anti-CD3/anti-CD28 coated beads or APC, promoted an increase in the 

proportion and absolute numbers of IL-17-producing T-cells. Th17 responses were only 

promoted by low strength stimulation when in the presence of pro-Th17 cell cytokines. 

I next aimed to establish the mechanism by which low strength stimulation (TLo) 

promotes Th17 responses or, conversely, by which high strength stimulation (THi) 

prevents Th17 responses. The factors below were explored for their capability to 

regulate the generation of Th17 cells in the context of THi and TLo stimulation. 

3.1.1 IL-10 

The strength of stimulation can affect the expression of many transcription factors and 

cytokines, some of which can have an inhibitory effect on the generation of Th17 cell 

responses. Treg-associated cytokines such as IL-10 and TGF-β, and also STAT1 

activating cytokines IFNy and IL-27 are capable of suppressing Th17 cell responses 

(471, 472). IL-10 is a cytokine typically associated with a Treg phenotype, although is 

also expressed, to a lesser degree, by most effector T-cells in order to restrain the 

inflammatory response (473). High affinity peptides have been shown to promote the 

generation of IL-10- secreting Treg (474) and the IL-10R is found highly expressed on 

Th17 cells, making Th17 cells sensitive to IL-10 (475). In addition, IL-10, secreted by 

macrophages, has been demonstrated to inhibit Th17 cell generation (476). Therefore, 

THi stimulation may promote the expression of IL-10 to inhibit Th17 responses.   

3.1.2 TGF-β 

TGF-β is also produced by Treg and is required for the induction of both Treg and Th17 

cell phenotypes (326). Investigations have indicated that in the absence of pro-

inflammatory cytokines, high concentrations of TGF-β can promote Treg phenotypes, 

particularly the Foxp3+ Treg (383). Conversely, TGF-β in combination with pro-
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inflammatory cytokines such as IL-1β promoted human Th17 responses (326). 

However, the requirement for TGF-β in Th17 responses has been greatly debated 

(477). High concentrations of TGF-β were found to exert an inhibitory effect on Th17 

cell differentiation by preventing IL-23R expression and inducing Foxp3 expression in 

naïve T-cells (383). Furthermore, TGF-β is capable of increasing the proportion of 

Foxp3+/RORyt+ T-cells, and Foxp3 is able to directly bind RORyt inhibiting RORyt 

directed IL-17 expression, altering the transcriptional balance in favour of Foxp3 and a 

regulatory phenotype. Investigations have also demonstrated that TGF-β promotes 

Th17 cell differentiation indirectly by inhibiting Th1 and Th2 responses (329, 477). In 

addition, T-cell responsiveness to TGF-β can be modulated by TCR stimulation (478, 

479). Therefore, assessing the role of TGF-β within THi and TLo stimulated cell cultures 

may reveal how Th17 cell responses are regulated by T-cell stimulation strength.   

3.1.3 Foxp3 

The transcription factor Foxp3 is a defining marker of natural Treg and is critical to 

their function (480). As mentioned above, Th17 and Treg cells have reciprocal 

developmental pathways: the expression of both Foxp3 and RORyt can be induced by 

TGF-β (481). Foxp3 is a master regulatory gene, and is thought to be capable of 

inhibiting RORyt-mediated Il-17 transcription by directly binding to RORyt (373). 

Evidence links TCR signal strength to the induction of Foxp3 expression in CD4+ T-cells 

(425). Low doses of strong agonist peptides increased the number of Foxp3 expressing 

T-cells; however the presence of TGF-β raised the maximum dose of TCR agonist 

required to induce in vitro Foxp3. In addition, it has also been demonstrated that 

repeated exposure to superantigen increased the proportion of Foxp3+ Treg (482). Low 

strength TCR signals have also been demonstrated to promote the induction of 

peripheral Treg (149, 425). The addition of TGF-β and retinoic acid was capable of 

overcoming the inhibition of Foxp3 expression during high strength stimulation (483). 

Furthermore, in human CD4+ T-cells, following in vitro TCR activation, Foxp3 is 

transiently expressed an event termed activation-induced Foxp3 (444). Activation-

induced Foxp3 does not, however, confer suppressive activity (484). Differential Foxp3 

and IL-17 regulation has also been linked to the TCR signalling pathway (485). IL-1 

receptor associated kinase 1 (IRAK-1) is capable of inactivating TCR activated 
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transcription factor NFATc2. NFATc2 inactivation by IRAK-1 prevented NFAT:Smad3 

interactions and resulted in the inhibition of Foxp3 expression, but promoted Th17 

responses by activating STAT3. The regulation of Foxp3 expression in THi and TLo 

stimulated cells may therefore contribute to the difference in Th17 response observed.   

3.1.4 Nuclear-Factor of activated T-cells (NFAT) 

The NFAT transcription factor family are regulated by a Ca2+ dependent signalling 

pathway induced by TCR activation (446). NFATs allow differences in TCR signal 

strength to be translated into the expression of different genetic profiles and therefore 

T-cell phenotype. TCR activation results in Ca2+ release from both intracellular stores 

and the cytosol, which then binds to calmodulin and in turn activates the phosphatase 

calcineurin (486). Active calcineurin is capable of dephosphorylating NFATs leading to 

NFAT activation and nuclear translocation, where they can regulate gene transcription, 

depicted in Figure 30 (446). The NFAT family is comprised of five distinct family 

members: NFAT1 (also known as NFATc2 and NFATp) NFAT2 (also known as NFATc1 

and NFATc), NFAT3 (also known as NFATc4), NFAT4 (also known as NFATc3 and NFATx) 

and NFAT5 (also known as TonEBP and OREBP) (487). NFAT1, 2 & 4 are all Ca2+ 

regulated and present in immune cells. NFATs have weak DNA binding capabilities, 

meaning they generally implement their effect in concert with other transcriptional 

partners, including cytokine induced transcription factors: AP-1, Runx and Smads (446, 

488). Evidence indicates that the activation of particular NFAT family members can 

depend on the strength of TCR signalling/Ca2+ signalling, which, can in turn, induce 

different T- cell phenotypes (489). The transcription of Th1 and Th2 cell cytokines is in 

part regulated by different NFAT family members whose activation/translocation can 

be dictated by the amount of Ca2+ signalling induced as a result of the strength of T-cell 

stimulation. More recently, subsets of T helper cells have been observed to express 

molecules that allow the level of Ca2+ signalling induced to be determined (490). Th2 

cells have higher Trpm4 expression than Th1 cells, which acts to increase Ca2+ flux 

allowing NFATc1 nuclear localisation in Th2 cells. Foxp3 is capable of forming a 

transcriptional complex with NFATs, and it is proposed that depending on the choice of 

NFAT transcriptional partner an inflammatory transcriptional program can be 

converted to a regulatory programme (491). More recently, NFATc1 and c2 have been 
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demonstrated to be crucial to TCR-mediated IL-17 expression in human T-cells (492). 

Therefore THi and TLo stimulation may alter the regulation of NFAT activity to either 

promote or inhibit the Th17 cell response. 
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Figure 30. The calcium, calcineurin, NFAT signalling pathway in T-cells.  TCR ligation and subsequent 
activation of PCLγ allows IP3 to bind to the IP3 receptor to initiate intracellular Ca

2+
 store release. Store 

depletion allows CRAC channels in the plasma membrane to open allowing an influx of Ca
2+

. Ultimately 
this allows the activation of the serine phosphatase, calcineurin, and the dephosphorylation of NFAT. 
Dephosphorylated NFAT can then translocate into the nucleus and bind with other transcription factors 
to regulate gene expression. NFATs are then returned to the cytoplasm following phosphorylation by 
kinases (493).  
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3.2 Aims 

A number of factors regulated by the strength of T-cell stimulation may affect Th17 cell 

responses. The aims of this Chapter were to establish the mechanism by which THi 

stimulated cells may be prevented from generating an IL-17 response, or the 

mechanism promoting TLo stimulated IL-17 responses. 

 Assess if inhibitory secreted factors cause the difference in THi/TLo Th17 

responses 

 Establish if activation-induced Foxp3 modulates the capability of THi/TLo 

stimulated cells to generate Th17 cell responses.  

 Investigate the differences in the regulation of the NFATc1 pathway in THi and 

TLo cells 

 

3.3 Experimental Approach 

To assess the mechanism underpinning the difference in Th17 cell response conferred 

by high strength or low strength stimulation, I used the THi and TLo model of T-cell 

stimulation outlined in Chapter 2. Based upon literature searches I generated 

hypotheses that may explain why high strength stimulation may result in reduced Th17 

cell responses in comparison to low strength. Using the THi/TLo model the possibility 

that the factors: IL-10, TGF-β, Foxp3, or Ca2+/NFAT signalling were the cause of the 

differential IL-17 response was explored.  
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3.4 Results 

3.4.1 The role of IL-10 in determining Th17 responses in high and low strength 

stimulated T-cell cultures 

High strength TCR signalling administered by an APL can drive an IL-10 regulatory T cell 

phenotype in murine models (474). I firstly investigated if THi stimulation results in 

increased endogenous IL-10 production compared to TLo stimulation, which may be 

inhibitory to Th17 responses. IL-10 secretion was assessed by ELISA in day 3 

supernatants of THi and TLo cultures. Figure 31 shows that, although not significant 

that the average concentration of IL-10 secreted by THi cells is raised compared to TLo 

cells.  
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Figure 31. THi cells secrete higher levels of the regulatory cytokine IL-10 than TLo cells.  Human CD4
+
 T 

cells were stimulated under THi or TLo conditions. After 3 days cell-free supernatants were harvested 
and levels of IL-10 measured by ELISA; N=3; Error bars represent SEM.  

 

I next assessed if the level of IL-10 produced by THi stimulated cells was inhibitory to 

their capability of generating a Th17 cell response. THi and TLo cells were cultured in 

the presence of an anti-IL-10 receptor antibody to block IL-10 signalling. The addition 

of αIL-10R antibody to THi cultures however, did not affect the proportion of IL-17+ 

cells in comparison to the isotype matched control. In addition, comparable 

proportions of intracellular IL-17+ and IFNy+ cells were observed within the control and 

isotype control populations of THi cultures (Figure 32), indicating minimal non-specific 

binding or activity of the isotype control. IL-10R blockade was also performed on TLo 

cultures. TLo cells secreted lower concentrations of IL-10 than THi cells. Therefore, the 

Th17 response was not strikingly affected by IL-10R blockade in TLo cultures. The 

possibility remained that αIL-10R was inactive and therefore could not affect the Th17 

cell response in THi cultures. To exclude this possibility, recombinant IL-10 was added 
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to TLo stimulated cells to assess if high IL-10 concentrations prevented Th17 cell 

responses. The maximum concentration detected within THi cultures (10 ng/mL) was 

added to TLo cultures on day 0. The addition of rIL-10 to TLo conditions, however, had 

no inhibitory effect on the proportion of IL-17+ or IFNy+ T-cells present within the 

culture when compared to the control populations (Figure 33). Together these data 

suggest that IL-10 was not responsible for the low Th17 cell response in THi cultures. 
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Figure 32. Blockade of IL-10 signalling does not increase THi Th17 responses.  Human CD4
+
 T cells were 

stimulated under THi or TLo conditions in the presence or absence of anti-IL-10R or isotype control. 
After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence 
of Brefeldin A. Proportions of IL-17- and IFN-γ-producing cells were determined by intracellular cytokine 
staining followed by flow cytometry. Plots are representative of 3 independent experiments and the 
histogram below demonstrates the percentage of cells expressing IL-17 from the 3 independent 
experiments. Error bars represent SEM.  
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Figure 33. Addition of rIL-10 to TLo does not inhibit Th17 responses.  Human CD4
+
 T cells were 

stimulated under THi or TLo conditions in the presence or absence of 10ng/ml rIL-10. After 6 days T-cells 
were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. 
Proportions of IL-17- and IFN-γ-producing cells were determined by intracellular cytokine staining 
followed by flow cytometry. Plots are representative of 3 independent experiments and the histogram 
adjacent demonstrates the percentage of cells expressing IL-17 from the 3 independent experiments. 
Error bars represent SEM. 

 

3.4.2 The role of TGF-β in determining Th17 cell responses in high and low strength 

stimulated T-cell cultures 

TGF-β is a highly pleotropic cytokine, and TGF-β signalling can have opposing effects 

depending on the cell type and surrounding environment (494). As described above 

TGF-β is required for Th17 cell responses, however, at high concentrations it can be 

inhibitory to Th17 cell development, instead inducing a regulatory T-cell phenotype. I 

proposed that THi stimulation may induce endogenous TGF-β expression and that in 

concert with exogenous TGF-β, added as part of the pro-Th17 cell cytokine cocktail, 

may contribute to the inhibition of Th17 cell responses.  



Chapter 3: How does low strength stimulation favour Th17 responses?  

111 

 

 

THi TLo

0.4 0.3

15.2

0.9 0.3

3.1

SS
c

LAP
 

Figure 34. THi cells express increased LAP/TGF-β compared to TLo cells.  Human CD4
+
 T cells were 

stimulated under THi or TLo conditions. After 6 days expression of LAP was determined by flow 
cytometry. Plots are representative of 3 independent experiments and the histogram adjacent 
demonstrates the percentage of LAP expressing cells from the 3 independent experiments. Error bars 
represent SEM. P values calculated using a paired T-test; **p=<0.01. 

 

I firstly assessed if THi had greater expression of membrane-bound TGF-β compared to 

TLo. Following THi or TLo culture for 6 days, T-cells were surface stained for the 

expression of latency associated peptide (LAP)-TGF-β. THi cells were observed to have 

increased cell surface expression of LAP-TGF-β compared to TLo cells (Figure 34). It was 

next assessed if the increased expression of TGF-β-LAP was inhibitory to Th17 cell 

responses under THi conditions. A small molecular inhibitor (SB505124) of the activin 

receptor-like kinase (Alk) 4, 5, and 7 mediated TGF-β signalling pathway was used to 

block TGF-β signalling (495). In Figure 35 different concentrations of SB505124 were 

used in the presence or absence of exogenous TGF-β to assess if an optimal level of 

TGF-β could be achieved that would promote Th17 cell responses in THi cultures. TGF-

β blockade in the presence or absence of exogenous TGF-β increased the proportion of 

IFNy+ cells in THi and TLo conditions. However, TGF-β blockade in the 

presence/absence of exogenous TGF-β did not enhance the proportion of IL-17+ cells in 

THi cultures above that of the +TGF-β control condition. Whereas, TGF-β was found to 

be important for TLo IL-17 responses; in the absence of exogenous TGF-β or in the 

presence of SB505124, the proportion of IL-17+ cells was decreased. The activity of 

SB505124 was confirmed by the dose dependent increase in the proportion of IFNy+ 

cells and the decreased proportion of IL-17+ cells (Figure 35 bottom left). Together 

these data indicate that although TGF-β is important for TLo IL-17 responses, that 

increased expression of LAP-TGF-β on THi is not inhibitory to Th17 cell responses. 
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Figure 35. TGF-β is required for high IL-17 production by TLo stimulated cells, and high LAP/TGF-β 
expression by THi cells does not inhibit Th17 responses.  Human CD4

+
 T cells were stimulated under THi 

or TLo conditions in the presence or absence of TGF-β and in the presence of absence of SB505124 (5-
0.05uM). After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the 
presence of Brefeldin A. Proportions of IL-17- and IFN-γ-producing cells were determined by intracellular 
cytokine staining followed by flow cytometry, N=3. Error bars represent SEM; p-values calculated using a 
T-test *p<0.05.  

 

The addition of as little as 25 pg/ml of TGF-β to LPS activated DC co-cultured with Treg 

depleted naive T-cells has been found to deviate T-cells from a Th1 to a Th17 cell 

response (322). TGF-β added to THi/TLo cultures as part of the pro-Th17 cytokine 

milieu is 400-times in excess of this and therefore may be too high and potentially limit 

TLo Th17 responses. The concentration of TGF-β within TLo cultures was therefore 

titrated and the proportions of IL-17- and IFNy-producing cells were assessed by ICS 

and flow cytometry. Figure 36 shows that as the TGF-β concentration decreased from 

10 ng/mL, to 0.1 ng/mL the proportion of IL-17+/IFNy- cells marginally decreased. 

Interestingly, the total proportion of IL-17+ cells (single and double positive) remained 

constant. Reduced TGF-β appeared to increase the number of dual IL-17+/IFNy+ cells 

along with the proportion of IFNy+ cells. These data indicated that reducing the 

concentration of TGF-β below 10 ng/mL did not enhance the proportion of IL-17+ cells, 
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and in addition suggested that TGF-β may support Th17 cell responses in part through 

inhibition of IFNy expression. TGF-β may encourage phenotype switching towards IL-

17+ rather than IFNy+/IL-17+, thereby promoting Th17 cell induction or expansion in the 

culture (479).  

 

**

IL-17 IL-17/IFNy IFNy

 

Figure 36. Higher concentrations of TGF-β are required for optimal TLo-induced Th17 generation. 
Human CD4

+
 T cells were stimulated under TLo conditions in the presence or absence of TGF-β (10-0.1 

ng/mL). After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the 
presence of Brefeldin A. Proportions of IL-17, IL-17/IFNy-y, and IFN-γ producing cells were determined 
by intracellular cytokine staining followed by flow cytometry; n=3; error bars represent SEM p-value 
calculated using a paired T-test **p<0.01.  

 

I also assessed if inhibition of TGF-β and IL-10 signalling in concert would promote 

Th17 responses in THi cultures. IL-10 is capable of enhancing TGF-βRII expression on 

active T-cells, making them more responsive to TGF-β (478). Another investigation has 

demonstrated that TGF-β is important for Th17 cell expression of IL-10 in mouse T-cells 

(473). Therefore heightened IL-10 secretion may make THi stimulated cells more 

responsive to the increased LAP-TGF-β available on the cell surface and/or increased 

LAP-TGF-β expression may stimulate further IL-10, which may inhibit THi TH17 cell 

responses. I therefore assessed if combined inhibition of the TGF-β and IL-10 signalling 

pathways would promote Th17 cell responses in THi stimulated cells. Initial data 

(Figure 37) however, did not indicate any effect of combined IL-10R and TGF-β 

signalling pathway inhibition on THi IL-17 responses. I therefore ceased to pursue this 

line of investigation any further in order to investigate new hypotheses. 
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Figure 37. Combined inhibition of IL-10 and TGF-β signalling does not promote Th17 responses from 
THi stimulated cells.  Human CD4

+
 T cells were stimulated under THi conditions in the presence or 

absence of TGF-β (10ng/ml), SB505124 (0.05μM), and/or αIL-10R. After 6 days T-cells were restimulated 
for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. Proportions of IL-17- 
and IFN-γ-producing cells were determined by intracellular cytokine staining followed by flow 
cytometry; black bars =IL-17 and white bars =IFNy; N=1. 
 

3.4.3 Do THi secrete Th17 inhibitory factors? 

To rule out the possibility that a secreted factor was responsible for THi being unable 

to generate Th17 cells, conditioned media experiments were performed. Day 3 

conditioned media from THi or TLo cells were added to TLo cells. If inhibitory factors 

were secreted from THi stimulated cells into the media, reduced TLo Th17 cell 

responses would be expected. Addition of either THi or TLo conditioned media to day 0 

TLo culture did not affect the proportion of IL-17+ or IFNy+ cells (Figure 38).  
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Figure 38. THi conditioned medium does not contain a factor inhibitory to Th17 generation.  Human 
CD4

+
 T-cells were stimulated under THi or TLo conditions. After 72 hours cell-free supernatant was 

harvested. Human CD4
+
 T-cells stimulated under TLo conditions for 6 days in the presence of absence of 

50% THi or TLo 72h conditioned media. After 6 days T-cells were restimulated for 5 hours with 
PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. Proportions of IL-17- and IFN-γ-
producing cells were determined by intracellular cytokine staining followed by flow cytometry. Data are 
representative of 3 independent experiments.  

 

The small decreases observed are most likely reflected by decreased quality of media 

following 3 days culture and a freeze thaw cycle rather than by specific Th17 inhibitors. 

Potentially a better control would have been to take culture media from unstimulated 

day 3 cells, and freeze thawing in the same way as above; however unstimulated cells 

would not have the same metabolic activity and so would also not be directly 

comparable either. The possibility remains that the 72 hour time point may be too late 

to observe the inhibitory effects of rapidly secreted and stimulation strength 

dependent factors such as IL-2 upon Th17 cell responses. However conditioned media 

experiments performed after this thesis indicated that THi 24 hour or 48 hour 

conditioned media did not have an inhibitory effect upon TLo conditions. Furthermore 

certain soluble factors e.g. indolamine 2-3-dioxygenase (IDO) are short-lived and so 

won’t be picked up in conditioned media experiments. Furthermore, addition of 

recombinant IFNy to TLo cultures did not reduce the proportion of IL-17+ cells 

compared to control conditions (Figure 39). Together with the IL-10 and TGF-β 

neutralisation data, these data indicate that a T-cell secreted factor is most likely not 

the cause of the inability to generate a Th17 cell response under THi conditions.  

 



Chapter 3: How does low strength stimulation favour Th17 responses?  

116 

 

4.6 0.2

2.8

3.4 0.6

2.8

3.3 0.5

3.9

3.9 0.2

2.3

Donor 1 Donor 2

TLo

+ rIFNγ

IFNγ

IL
-1

7

 

Figure 39. Addition of rIFNy does not inhibit TLo Th17 responses. Human CD4
+
 T cells were stimulated 

under TLo conditions in the presence or absence of rIFNy (10ng/ml). After 6 days T-cells were 
restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. 
Proportions of IL-17- and IFN-γ-producing cells were determined by intracellular cytokine staining 
followed by flow cytometry. Plots are of two independent experiments. 

 

3.4.4 THi stimulated cells express master regulatory transcription factor Foxp3  

I next hypothesised that a T-cell intrinsic factor could inhibit the capability of THi cells 

to become IL-17+ cells. A strong candidate for this is the master regulatory 

transcription factor Foxp3. It was hypothesised that a high strength T-cell stimulus may 

induce a higher proportion of T-cells to express activation-induced Foxp3, which may 

inhibit IL-17 transcription. To assess if an increased number of THi cells express Foxp3 

than TLo cells, intracellular Foxp3 was assessed on day 6 of culture. I observed that a 

higher number of THi stimulated cells expressed Foxp3 at day 6 than TLo cells (Figure 

40).  
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Figure 40. THi cells express increased Foxp3 compared to TLo.  Human CD4
+
 T-cells were stimulated 

under THi or TLo conditions. After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin, the 
last 4 hours in the presence of Brefeldin A. Proportions of IL-17- and Foxp3 expressing cells were 
determined by intracellular staining followed by flow cytometry. Plots are representative of 4 
independent experiments and the histogram adjacent demonstrates the percentage of Foxp3 expressing 
cells from the 4 independent experiments. Error bars represent SEM. P values calculated using a paired 
T-test; *p=<0.05. 

 

THi stimulation resulted in ~14% Foxp3+ T-cells at day 6 compared to ~3% in TLo 

cultures, and the IL-17+ cells were largely Foxp3-. I next assessed the kinetics of Foxp3 

expression in THi and TLo cultures. A time course was performed assessing intracellular 

Foxp3 and IL-17 expression at days 3, 6 and 10 in THi and TLo cultures. Interestingly, in 

both THi and TLo cultures the proportion of Foxp3 expressing cells was high at day 3 of 

culture, indicating the induction of activation-induced Foxp3 under both conditions 

(Figure 41). However, at day 3 almost double the proportion of THi stimulated cells 

express Foxp3 compared to TLo cells. Furthermore, in TLo cultures the proportion of 

Foxp3 expressing cells declined sharply from day 3 to 6 and was inversely proportional 

to the number of cells expressing IL-17. In contrast, the decline in the proportion of 

Foxp3 expressing cells in THi cultures from day 3 to 6 was less striking than that 

observed in TLo cultures, and a distinct Foxp3+ population was still observed in THi 

cultures at day 6. Despite the reduction in the proportion of Foxp3 expressing cells by 

day 10 in THi cultures, the proportion of cells expressing IL-17 did not increase to the 

proportion observed in TLo cultures. Unlike TLo cultures, the proportion of Foxp3 

expressing cells in THi cells was not inversely proportional to the number of IL-17 

expressing cells. The higher proportion of Foxp3+ cells at day 3 of THi culture and the 

prolonged kinetics of Foxp3 expression may prevent Th17 cell responses in THi 

cultures.  
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Figure 41. An inverse relationship between Foxp3 and IL-17 expression in TLo but not THi conditions.  
Human CD4

+
 T-cells were stimulated under THi or TLo conditions for 3, 6, or 10 days. To generate day 10 

cells, on day 6 anti-CD3/anti-CD28 beads were removed and the CD4
+
 T-cells were replated in the 

presence of IL-2 and IL-23 until day 10. At each time point the T-cells were restimulated with 
PMA/Ionomycin for 5 hours, the last 4 hours in the presence of Brefeldin A, and assessed for 
intracellular IL-17 and Foxp3 by flow cytometry. Data are representative of 3 independent experiments; 
n=3; error bars represents SEM; IL-17 data shown in Figure 23 (Chapter 2) is plotted in this graph. 

 

An observation arguing against a role for FoxP3 in inhibiting Th17 responses under THi 

condition was made during the experiments using the TGF-β signalling inhibitor 

SB505124. I measured the expression of intracellular FoxP3 in one of these 

experiments and found that SB505124 reduced Foxp3 expression in THi stimulated 

cells (Figure 42). Despite the reduction in Foxp3+ cells the proportion of IL-17+ cells 

remained low, however as TGF-β is also important for pro-Th17 pathways this is not 

the optimal experiment to address if activation-induced Foxp3 inhibits THi IL-17 

responses. One way to achieve this would be to knock-down expression of the Foxp3 

gene. Knockdown systems do not result in 100% inhibition of gene expression and are 

difficult to achieve in human primary T-cells. Moreover, gene knock-downs are often 

only transient and do not carry over inhibition into daughter cells. THi and TLo 

stimulated  
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Figure 42. TGF-β inhibition inhibits Foxp3 expression in THi and TLo cells.  Human CD4
+
 T-cells were 

stimulated under THi or TLo conditions in the presence or absence of  SB505124 (5 or 0.5 μM). After 6 
days T-cells were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of 
Brefeldin A. Proportions of IL-17- and Foxp3-expressing cells were determined by intracellular staining 
followed by flow cytometry; N=1. 

 

cultures over a 6 day period undergo multiple rounds of cell division, and would most 

likely not maintain the gene knockdown. Therefore, in vitro genetic knockout was 

deemed not be an appropriate system to address this question. Another way to 

achieve this is to use a natural human knockout system. Immunodysregulation 

polyendocrinopathy and enteropathy X-linked (IPEX) syndrome, is a rare disease 

caused by mutations within the Foxp3 gene which causes either a complete absence of 

Foxp3 or a loss of Foxp3 function in the patient: providing a human knockout system 

for functional Foxp3. IPEX patients are very rare and symptoms become apparent in 

infancy (496). I obtained a Peripheral blood mononuclear cell (PBMC) sample from an 

infant with IPEX syndrome. The mutation was present in exon 10 of the Foxp3 gene, 

resulting in non-functional rather than absent Foxp3. It was hypothesised that if high 

Foxp3 induced by THi stimulated culture was the cause of reduced IL-17 responses 

then this would not be observed within the IPEX cells when cultured under THi and TLo 

conditions.  
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Figure 43. Presence of non-functional Foxp3 does not reverse THi inhibition of Th17 generation.  IPEX 
patient PBMC were stimulated under THi or TLo conditions. T-cells were restimulated for 5 hours with 
PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. Proportions of IL-17- and IFN-γ-
producing cells were determined by intracellular cytokine staining followed by flow cytometry; N=1.   

 

Data in Figure 43 demonstrates that in IPEX PBMC THi culture still resulted in 

diminished Th17 cell responses compared to TLo. Despite the absence of functional 

Foxp3, TLo stimulation still resulted in greater proportions of IL-17+ cells than THi 

stimulation. There was little difference in the proportion of IFNy+ cells between THi 

and TLo cultures. These data suggest that the high proportions of Foxp3+ cells induced 

by THi stimulation did not prevent Th17 cell responses. Cumulatively, although the 

expression of these factors is raised in THi stimulated T-cells, investigations indicate 

that these factors do not directly contribute to the reduced Th17 cell response 

observed in THi cells. I therefore next investigated how the strength of stimulation 

may directly affect Th17 cell responses.   

3.4.5 TCR stimulation strength, Ca2+ signalling and NFATs 

TCR activation leads to induction of a calcium-dependent signalling pathway which 

leads to expression of NFAT transcription factors (446). NFATs are important partners 

in mediating transcription of Th1- and Th2-cell associated cytokines IFNy and IL-4 (489, 

490). Recently, an NFATc1 binding site has been described within the proximal IL-17 

promoter contributing to IL-17 transcription (492). NFATc1 expression is controlled by 

the level of Ca2+ signalling in T-cells. I hypothesised that high strength TCR stimulation 

would increase Ca2+ signalling and that high Ca2+ signalling might be inhibitory to Th17 

cell responses, via NFATc1. To assess this, a Ca2+ ionophore, ionomycin, was added to  
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Figure 44. Ionomycin inhibits TLo induction of Th17. Human CD4
+
 T-cells were stimulated under THi or 

TLo conditions. or TLo conditions  in the presence or absence of 500nM Ionomycin (TLo+) added daily 
for the first 4 days of culture. After 6 days T-cells were restimulated for 5 hours with PMA/Ionomycin, 
the last 4 hours in the presence of Brefeldin A. Proportions of IL-17- and IFN-γ-producing cells were 
determined by intracellular cytokine staining followed by flow cytometry; n=3; error bars represent 
SEM.   

 

TLo cultures to investigate if increased Ca2+ signalling would have an inhibitory effect 

on Th17 cell responses. The addition of Ionomycin to TLo cultures was observed to 

decrease the proportion of IL-17+ cells by nearly 50%, almost to the level of THi 

stimulated cells (Figure 44). Interestingly, in comparison to IL-17, the proportion of 

IFNy+ cells increases by nearly 50%. These data indicate that higher Ca2+ signalling is 

inhibitory to Th17 responses. I therefore next hypothesised that TCR stimulation 

strength may modulate the cellular location and/or capability of NFATc1 to bind to the 

IL-17 promoter and therefore affect IL-17 expression.  
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Figure 45. NFATc1 translocates from the cytoplasm into the nucleus in both THi and TLo stimulated 
cells. Human CD4

+
 T-cells were stimulated under THi or TLo conditions. After 6 days T-cells were either 

restimulated for 2 hours with PMA/Ionomycin (+) or left untreated (-). Cytoplasmic and nuclear lysates 
were prepared and expression of NFATc1 determined by Western blotting. Blots are representative of 3 
independent experiments. 

 

I investigated if T-cell stimulation strength affected the induction, translocation or 

binding of NFACTc1 to the IL-17 promoter in THi or TLo stimulated cells. Firstly, the 

presence and location of NFATc1 was assessed in day 6 THi and TLo stimulated cells by 
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western blot. Both THi and TLo stimulated cells were found to express NFACTc1 in the 

cytoplasm of day 6 cells (Figure 45). In both THi and TLo stimulated cells, when 

restimulated with PMA and ionomycin, NFATc1 expression in the cytoplasm was 

reduced. Nuclear expression of NFATc1 in THi cells was higher at day 6 than TLo. 

Following restimulation with PMA/Ionomycin, expression of NFATc1 was increased in 

the nucleus of TLo cells and was also further increased in THi stimulated cells. Together 

these data demonstrated that both THi and TLo stimulated cells express NFATc1 and 

both were capable of NFATc1 translocation to the nucleus following restimulation.  

 

Having established that NFATc1 translocation is not impaired in THi or TLo cells, I next 

assessed if the nuclear NFATc1 was capable of binding to the IL-17 promoter in THi and 

TLo stimulated conditions. Using chromatin immunoprecipitation (ChIP), Figure 46 

reveals that, compared to the isotype control, there is no increase in NFATc1 binding 

to the IL-17 promoter in either day 6 THi cells or those restimulated with PMA 

ionomycin. Conversely, in day 6 TLo cells there was an ~20 fold increase in NFATc1/IL-

17 promoter binding after PMA/ionomycin stimulation. These data indicate that 

differences in the binding capabilities of a TCR regulated transcription factor may be 

the cause of reduced Th17 cell responses under THi conditions.  
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Figure 46. NFATc1 binds to the IL-17 promoter in TLo but not THi stimulated cells.  Human CD4
+
 T-cells 

were stimulated under THi or TLo conditions. After 6 days T-cells were either restimulated for 2 hours 
with PMA/Ionomycin (+) or left untreated (-). NFATc1 binding to the IL-17 promoter was assessed by 
ChIP. N=2; error bars represent SEM.  ChIP data were geneated by Dr Jelena Mann from cells cultured 
and restimulated by H. Purvis. 
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3.5 Discussion  

The data described in this Chapter investigated the mechanism by which strength of 

stimulation is capable of determining the Th17 cell response, as observed in Chapter 2. 

Using the THi/TLo anti-CD3/anti-CD28 bead model in the presence of pro-Th17 cell 

cytokines, TLo stimulation was found to promote Th17 cell responses (Chapter 2). A 

number of potential mechanisms to explain the regulation of Th17 cells by stimulation 

strength were excluded. However, investigations within this Chapter revealed that the 

most likely cause of increased Th17 cell responses, resulting from TLo compared to THi 

stimulation, were due to differences in the regulation of the Ca2+/NFATc1 signalling 

pathway. Reduced NFATc1 binding to the IL-17 promoter was observed in THi cells 

compared to TLo cells, which has been demonstrated in previous studies to regulate IL-

17 expression (492). In addition Ca2+ signalling can be modulated depending on the 

strength of TCR stimulation and is the signalling molecule which determines NFATc1 

activation (486, 497). Increased Ca2+ signalling via the addition of ionomycin to TLo 

cultures resulted in decreased IL-17 responses (Figure 44). High strength Ca2+ 

signalling, induced by ionomycin or high strength anti-CD3/anti-CD28 stimulation, 

appears to be inhibitory to Th17 cell responses. Together these data indicate that the 

strength of stimulation regulates Th17 cell responses, in part, by modulating the 

capacity of NFATc1 to bind to the IL-17 promoter and that lL-17 expression is sensitive 

to the strength of Ca2+ signalling. Therefore low strength TCR stimulation mostly likely 

promotes Th17 cell responses via a Ca2+/NFATc1 dependent mechanism.  

3.5.1 Regulation of NFAT activation and localisation 

Prior investigations have revealed that Th2 cell responses are favoured by low strength 

TCR stimulation, whereas Th1 cells are favoured by high strength TCR stimulation (403, 

489). One mechanism for this was proposed to be due to differential NFAT activation 

(489). The activation of different NFAT family members (i.e. NFATc1 or NFATc2) has 

been suggested to be regulated by the level of Ca2+ flux induced in T-cells (489). 

Reduced Ca2+ signalling preferentially activates NFATc1 in CD8+ T-cells (498). 

Furthermore low potency TCR signalling has been demonstrated to result in greater 

nuclear localisation of NFATc1 initiating Th2 cell responses, whereas NFATc2 remained 

located within the cytoplasm (489). The balance between NFATc1 and NFATc2 has not 
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been addressed within this study. However, in THi or TLo cultures no difference was 

observed in the capability of NFATc1 to localise to the nucleus. Despite the nuclear 

location, NFATc1 was only observed to bind to the IL-17 promoter in TLo conditions. In 

addition, these data contradict that of Gomez Rodriguez et al who found that high 

strength TCR stimulation was required for NFAT-mediated IL-17 expression (422). 

Although, as described in Chapter 2 these differences may be attributed to the use of 

mouse vs human T-cells, and in the definition of high vs low strength stimulation. 

Whilst data in Figure 45 demonstrated that THi and TLo stimulated cells are capable of 

increasing NFATc1 nuclear localisation following PMA/Ionomycin stimulation, a higher 

basal amount of NFATc1 was also observed within the nuclear fraction of THi. Recent 

investigations assessing NFAT localisation of NFATs in Treg have revealed that NFATc1 

and NFATc2 are constitutively localised within the nucleus (499, 500). In addition, ChIP 

analysis revealed that NFATs are constitutively bound to known Foxp3 target genes 

including the Il-2 promoter within Treg (500). In non-Treg, NFATs only bound to DNA 

following stimulation. These data may provide insights into the regulation of THi/TLo-

induced Th17 responses. High constitutive NFATc1 in the nucleus of THi cells may 

indicate the induction of a Treg phenotype, or nuclear NFATc1 may be bound to target 

genes that repress Th17 target gene expression. Furthermore Li et al demonstrate that 

constitutive nuclear localisation of NFATs within Treg is independent of calcineurin 

activity (500), raising the question of how NFATs can become constitutively localised in 

the nucleus. In resting T-cells, NFAT proteins are retained within the cytoplasm by 

being highly phosphorylated at their nuclear localisation sequence by kinases such as 

casein kinase 1 and glycogen synthase kinase 3 (GSK-3). Ca2+ signalling activates the 

calmodulin-dependent phosphatase calcineurin, which dephosphorylates NFATs 

allowing nuclear localisation. The balance between calcineurin and NFAT kinases may 

be important to the retention of NFAT within the nucleus. Differences in the regulation 

of NFAT phosphatases and kinases may also affect the regulation of NFATc1 in THi and 

TLo cells. Investigations have revealed differences in the balance of GSK-3 in Treg 

compared to effector T-cells. Treg were observed to have increased GSK-3 following 

TCR stimulation, facilitating shuttling of NFATs out of the nucleus, whereas GSK-3 was 

decreased in non-Treg following TCR stimulation (499). Assessing the balance of NFAT 
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phosphatases vs kinases may reveal why NFATc1 has a different capacity to regulate IL-

17 expression in THi and TLo stimulated cells.    

3.5.2 NFAT transcriptional partners 

Both THi and TLo cells were capable of increased nuclear localisation of NFATc1 

following PMA/Ionomycin restimulation, however, only in TLo cells was NFATc1 bound 

to the IL-17 promoter. Evidence suggests that NFAT transcriptional activity is not only 

controlled by nuclear localisation, but that the transcriptional binding partners formed 

by NFATs are also important in determining the capability of NFATs to regulate gene 

expression (446). NFATs can bind to a number of transcriptional partners including: 

Foxp3, AP-1, Runx, and STATs (446). Potentially the difference observed, in NFATc1 

binding to the IL-17 promoter in THi/TLo stimulated cells, is due to the availability of 

other transcriptional partners. Data in Chapter 2 revealed that RORc availability is most 

likely not a constraint in either THi or TLo stimulated cells. However, Figure 40 in the 

current Chapter indicates that THi stimulated cells have higher expression of Foxp3 

than TLo cells. NFATs are capable of inducing de novo Foxp3 expression (501) and can 

form transcriptional binding partners with Foxp3 (491). In addition, Foxp3 is capable of 

repressing the NFAT:AP-1 transcription activities (491), which may prevent IL-17 

expression. However, the reduction in Foxp3 expression, following T-cell resting or in 

IPEX PBMC did not ‘rescue’ IL-17 expression. AP-1 is a prominent NFAT binding partner 

and a key transcription factor induced by the MAPK pathway. Inhibition studies have 

indicated the importance of MAPK/AP-1 in IL-17 transcription (492). Investigations 

have demonstrated that the MAPK pathway is regulated by stimulation strength; 

strong TCR stimulation increases MAPK signalling leading to IFNy expression (497). 

Therefore the availability of AP-1 may also be modulated by stimulation strength and 

affect IL-17 expression. Runx protein family members can also function as 

transcriptional co-factors for NFATs; Runx 3 is capable of inhibiting Il-4 expression via 

interacting with NFATc1 (502). Runx protein expression was not assessed within this 

study but is known to be important to Th17 and Treg cell responses. Runx1 can bind to 

RORyt and activate Il-17 transcription, however Runx1 is also capable of binding Foxp3 

which is required for Foxp3 inhibition of RORyt-mediated Il-17 transcription (374). 

Therefore, Runx family members may also be capable of binding to NFATs present in 
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the nucleus of THi cells and modulate their transcriptional capabilities. THi stimulation 

therefore may prevent Th17 cell responses by either inducing transcriptional co-factors 

that repress NFAT/IL-17 promoter interactions or by preventing the expression of 

transcription factors that allow NFAT/IL-17 promoter binding.  

3.5.3 Epigenetic regulation  

Epigenetic instability of both cytokine and transcription factor gene loci are thought to 

be a major factor mediating CD4+ T-cell plasticity (503). DNA is wrapped around four 

core histones: post-translational modifications to histones controls transcription factor 

access to DNA (504). Epigenetic modifications to certain histones are associated with 

either gene activation or gene repression. Th1 cells have hyperacetylated histone H3 in 

the Ifny gene promoter, but not Il-4. In both Th1 and Th2 cells, Il-17 and Il-17F 

promoter regions are hypoacetylated which corresponds to a lack of Il-17 expression in 

these cells (504). In Th17 cells, hyper H3 actelylation of Il-17 locus allows Il-17 

transcription (505). Cytokine stimulation can initiate these epigenetic modifications 

contributing the T-cell plasticity. IL-12 can cause IL-17 gene silencing via epigenetic 

remodelling of the RORc locus. In Th17 cells the TBX21 promoter encoding Tbet and 

the IFNy promoter are maintained in a ‘poised’ state, which is thought to contribute to 

the capacity of Th17 cells to readily switch to express IFNy (503, 506). TGF-β signalling 

may be important to preventing IFNy expression in Th17 cells (503). THi stimulation 

may result in repressive epigenetic modifications to the IL-17 promoter potentially 

explaining why NFATc1 does not bind. It would therefore be interesting to assess the 

acetylation of H3 and/or further DNA modifications in THi vs TLo stimulated cells. 

Investigations into thymic T-cell development indicate that TCR signalling can control 

epigenetic modifications within T-cells (507). In addition, CD28 co-stimulation induced 

stable histone acetylation of the Il-2 promoter/enhancer allowing IL-2 expression in 

peripheral T-cells (508). Investigating the contribution of TCR signal strength to the 

control of epigenetic modifications within T-cell may also reveal additional insights into 

how cytokine and TCR signals integrate to regulate T-cell function.    
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3.5.4 TGF-β function in THi and TLo cultures 

TGF-β is important for the development of both Th17 cell and Treg cells. In the 

absence of inflammatory cytokines, Foxp3 expression and iTreg differentiation is 

induced, but in the presence of IL-1β or IL-6, RORyt expression and Th17 cell 

differentiation is induced. High concentrations of TGF-β are inhibitory to Th17 cell 

development, but favour Treg development (383). The T-cell culture model described 

in this thesis was set up with serum-free media containing a TGF-β-free serum-

replacement. This prevents suppressive effects of endogenous TGF-β associated with 

the use of bovine sera (323). Addition of TGF-β at a concentration of 10 ng/mL was 

found to be optimal in supporting Th17 cell responses in TLo cultures. However, 

varying TGF-β concentrations had no effect on THi Th17 cell responses. Expression of 

LAP-TGF-β is higher on THi cells than TLo however the inhibition of TGF-β signalling did 

not result in increased Th17 cell responses in THi cells. In TLo cultures, TGF-β signalling 

appears to be critical to Th17 cell responses (Figure 35). Inhibition of TGF-β signalling 

reduced IL-17 expression and increased the number of IFNy-producing T-cells. Reduced 

TGF-β signalling correlated with an increased IL-17/IFNy dual positive response; this 

may be due to TGF-β capacity to control the IFNy ‘poised’ transcriptional state (503). 

Expression of latent TGF-β on the cell surface is a proposed mechanism by which Treg 

deliver TGF-β to mediate their suppressive effects (509). However, a remaining 

possibility is that THi stimulated cells have a reduced capacity to activate LAP-TGF-β. 

For example, it has been shown that reduced expression of TGF-β-activating factors 

(e.g. thrombospondin) can lead to an accumulation of latent TGF-β on the cell surface 

(510). Thus, the observed high expression of latent TGF-β on THi cells does not 

necessarily result in enhanced TGF-β activity. Furthermore, T-cell responsiveness to 

TGF-β can also be modulated by TCR stimulation. Expression of TGF-βRII is reduced 

following TCR stimulation although IL-10 signalling is capable of enhancing TGF-βRII 

expression and restoring TGF-β responsiveness (478). T-cell responsiveness to TGF-β 

can also be reduced by CD28 co-stimulation in the presence of high avidity TCR 

stimulation (479). The expression of the TGF-β receptors by THi and TLo cells was not 

examined. Differences in receptor expression would contribute to TGF-β sensitivity and 

signalling of THi cells and therefore would also contribute to differences in the capacity 

to generate a Th17 cell response (511). However, the decrease in Foxp3 expression 
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that resulted from TGF-β blockade in both HiD and LoD cultures indicates that THi/TLo 

cells are responsive to TGF-β (Figure 42) and so this is most likely not the reason for 

low Th17 in THi, although further experiments would be required to confirm this 

finding.    

3.5.5 Are THi regulatory T-cells? 

An increased proportion of THi stimulated cells expressed Foxp3 at day 3 and 6 

compared to TLo cells (Figure 41). Foxp3 expression was detected using the 206D 

antibody clone, which is not associated with non-specific binding following T-cell 

activation (512). The transiency of Foxp3 expression in THi and TLo cells suggests that 

the Foxp3 expressed is activation-induced in both cultures. A greater number of THi 

cells expressed Foxp3 than TLo, but as Foxp3 expression was transient, it does not 

indicate that THi stimulated cells are regulatory T-cells. However, a population of IL-10- 

secreting Foxp3- regulatory T-cells has been described in TCR transgenic mice. IL-10- 

secreting Foxp3- Treg were induced in vitro in the presence of immunosuppressive 

drugs vitamin D3 and Dexamethasone, or in vivo via high dose peptide administration 

(154). It would be interesting to assess if the THi stimulated cells that have not 

developed into either an IL-17- or IFNy-producing T-cell are a type of iTreg. 

Collectively, these data indicate that the THi stimulated cells display a number of Treg 

characteristics: high surface TGF-β, high IL-10 secretion, higher basal nuclear NFAT, 

higher (although transient) Foxp3 at day 6. Adaptive T-reg have been observed to be 

induced by low strength stimulation (425). The inhibitory effect of high strength 

stimulation on Foxp3 expression is prevented by TGF-β and IL-2, both of which are 

present during THi/TLo cultures (483). Assessing the capacity of THi cells to inhibit 

proliferation may indicate their regulatory potential. 

3.5.6 Inhibition of Foxp3 expression  

The increased expression of Foxp3 with the THi population did not appear to be the 

cause of reduced IL-17 responses in THi stimulated cells. Reducing Foxp3 expression by 

either resting T-cells until day 10 or inhibiting TGF-β signalling did not increase the 

proportion of IL-17 producers. Furthermore, THi stimulation of IPEX patient cells which 

have a defective form of Foxp3 also did not increase Th17 cell responses. One caveat in 
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this experiment is that the Foxp3 mutation is present within exon 10. Foxp3 binds to 

RORc via peptides encoded within exon 2, therefore the mutated Foxp3, although non 

functional in the patient, has possibly retained the capability to bind to RORc and 

inhibit IL-17 expression (373, 513). To eliminate the possibility that increased 

expression of Foxp3 in THi cultures inhibits Th17 cell generation, development of a 

strong human T-cell Foxp3 knockout system would be required, or, alternatively, a 

sample from an IPEX patient with a mutation present in the RORc binding domain or 

absence of the Foxp3 protein would be helpful in resolving this issue. However, overall, 

investigations conducted so far do not indicate that activation-induced Foxp3 prevents 

THi stimulated Th17 cell responses. Furthermore, these data are in agreement with 

findings that show activation-induced Foxp3 does not confer suppressive effects on 

secretion of IL-2 or IFNy from T-cells (444).  

3.5.7 Conclusion 

Together the data presented within this chapter have indicated that TLo stimulation 

promotes Th17 cell responses via a Ca2+/NFATc1 dependent pathway. High strength 

TCR stimulation most likely results in increased Ca2+ signalling, which is inhibitory to 

Th17 cells responses by either directly affecting the capacity of NFATc1 to bind to the 

IL-17 promoter, or potentially by affecting the expression of NFATc1 transcriptional 

partners, or by modulating DNA accessibility. Further investigations are required to 

precisely investigate how stimulation strength regulates the transcriptional apparatus 

leading to IL-17 transcription and therefore Th17 cell responses. However, my research 

interests turned towards investigating how an RA associated genetic polymorphism, 

which modulates TCR signalling strength may affect Th17 cell responses.  
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4 Chapter 4: The regulation of Th17 cell responses by PTPN22  

4.1 Introduction 

I established in Chapters 2 and 3 that the strength of T-cell stimulation influenced Th17 

cell responses. A low strength stimulus, administered by either anti-CD3/anti-CD28 

coated beads or APC, promoted Th17 cell responses (514). Increased Th17 responses 

are known to contribute to the pathogenesis of a number of autoimmune diseases 

including RA (515). Genome wide association studies (GWAS) have uncovered an 

increasing number of genetic variants associated with increased susceptibility to RA 

that encode molecules involved in T-cell receptor (TCR) signalling and activation, 

including CD28, CTLA4, CD2-CD58, PTPRC, CD40, CD247, PTPN22, PTPN2, IL2RA, IL2RB, 

RBPJ, PIP4K2C, and REL (516). Notable among these are the protein tyrosine 

phosphatases (PTP) PTPN22, PTPRC and PTPN2, which function as negative regulators 

of TCR signalling and set the thresholds of T cell activation that control T-cell 

differentiation and effector function (404, 489). Thus, inherited perturbations in T-cell 

activation may underpin the development of autoimmunity. One of the strongest 

genetic risk factors for RA is a missense single nucleotide polymorphism (SNP) at the 

PTPN22 locus. PTPN22 encodes Lyp (or PEP in mice) and the C1858T SNP in PTPN22 

results in an arginine-tryptophan substitution at codon 620 (R620W) (517).  

4.1.1 Regulation of TCR signalling by Lyp 

PTP Lyp/Pep is known to negatively regulate immune-receptor signalling cascades, 

notably the src family kinases (SFKs) Lck, Zap-70, Fyn and TCR tyrosine residues in T-

cells and Syk and Fyn in B-cells (518). In addition, Lyp also regulates FcγR signalling in 

NK cells and has been implicated in regulating DC maturation pathways (519). Lyp/Pep 

is a 105 KDa protein characterised by a 300 amino acid N terminal protein tyrosine 

phosphatase (PTP) motif and a 200 amino acid C terminal containing four polyproline 

motifs (P1-4) (520). The P1 motif, closest to the N terminal, allows Lyp to interact with 

the SH3 domain of protein tyrosine kinase (PTK) Csk, allowing negative regulation of 

TCR signalling. In resting T-cells, tyrosine phosphorylated Lyp is detectable, but is 

strongly induced by TCR signalling (521). Lyp negatively regulates downstream TCR 
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signals in part by dephosphorylating the autophosphorylation sites on TCR signalling 

molecules, including Lck, Fyn and Zap-70 (522). Lck is a SFK that positively regulates 

TCR signalling by phosphorylating ITAMs on TCRζ, CD3 and ZAP-70 to increase TCR 

signalling, events which are prevented by active Lyp (518). Recent investigations have 

found that Lyp forms a constitutive complex with Lck (521). Dephosphorylation of Lck 

Y505 and autophosphorylation of Y394 activates Lck. Lyp inactivates Lck via the Y394 

autophosphorylation site. Activated Lck is also capable of inactivating Lyp by 

phosphorylating Lyp Y536 (521). ZAP-70 is a further substrate for Lyp, but Lyp may also 

negatively target ZAP-70 signalling intermediates such as Grb2 and Vav, affecting 

CD28/CTLA4 signalling and regulation (523). Further research is required to fully 

understand the molecular interactions made by Lyp and the signalling effects that 

occur.   

4.1.2 C1858T conferred changes to Lyp function  

The R620W substitution occurs within the P1 motif, which is critical for Lyp binding to 

Csk. Lyp acts with Csk to inhibit TCR signalling; therefore the mutation may be 

expected to be a loss-of-function mutation. However, the majority of data suggest the 

opposite is true; the substitution disrupts constitutive Csk dependent Lyp-Lck 

interactions, which reduces Lyp inactivation and increases T-cell signalling inhibition 

(521). Moreover, a recent investigation has revealed that Lyp can inhibit T-cell 

activation when dissociated from Csk (524). Further observations suggesting that the 

C1858T SNP confers a gain-of-function mutation include: increased catalytic activity of 

Lyp phosphatase, and decreased downstream Ca2+ signalling (525). In addition, the risk 

T-allele has a dose dependent effect on reducing TCR signalling. In the majority of 

autoimmune disorders associated with the C1858T SNP, including RA, the odds ratio 

(OR) for developing disease is significantly greater for 1858T homozygotes than the OR 

for heterozygotes (526) This is proposed to be due to functional compensation of 

LypW by LypR, which is not possible in LypW homozygotes. 

4.1.3 PTPN22 and effector T-cell responses 

PTPN22 1858T SNP can alter the peripheral T-cell repertoire (527, 528). The strength of 

TCR signal is critical to thymic selection and increased Lyp function can increase the 
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TCR signalling thresholds required for negative selection which is proposed to allow 

the release of self reactive T-cells into the periphery (529). Furthermore PTPN22 can 

alter the development of nTreg (530). In comparison to wild-type, PTPN22 knock-out 

mice had increased Ca2+ flux and an enhanced proportion of thymic nTreg; implying 

that the PTPN22 gain-of-function mutation may affect Treg development. Two further 

studies have demonstrated in human C1858T genotyped T-cells that TCR signalling, 

measured by Ca2+ flux, is decreased in T-allele carrying donors, supporting a gain-of-

function mutation (528, 531). In addition, the number of effector T-cells was also 

increased in human T-allele carriers (528); and IL-2 and IL-10 production were reduced 

following TCR stimulation. Although data obtained from human cells indicates that 

C1858T is a gain-of-function mutation, this has not been supported in all experimental 

models.  One study suggested that PTPN22 is a loss-of-function mutation (532), which 

was also observed in a study using a knock-in mouse strain where R619W mutation 

(equivalent of R620W) has been introduced into the germline (519).  

 

I previously observed that Th17 cell responses were promoted by low strength T-cell 

stimulation and that this occurred by a NFAT/Ca2+ dependent mechanism (514). The 

presence of the minor T allele has been observed in human cells to affect T-cell signal 

strength by decreasing Ca2+ mobilisation and reducing T-cell IL-10 secretion (528). I 

proposed that the decrease in TCR signalling previously found to occur in PTPN22 T-

allele carriers would promote the Th17 cell response, when compared to major C-allele 

carrying homozygotes.  
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4.2 Aims 

In order to investigate the above hypothesis this Chapter aimed to: 

 Genotype healthy donors for the PTPN22 C1858T allele 

 Investigate the proportion T-cell phenotype of donor PBMC and assess if 

associations between genotype and IL-17 and IFNy expression can be found 

 Assess the proportion and absolute numbers of cells expressing IL-17+ and 

IFNy+ that arise from the culture of PTPN22 genotyped memory CD4+ T-cells 

stimulated with either: THi, Tint, or TLo stimulation strengths 

 Assess the cytokine secretion profile associated with PTPN22 genotyped 

memory CD4+ T-cells stimulated with either THi/Tint/TLo.  

4.2.1 Experimental approach 

To assess what affect the PTPN22 C1858T polymorphism has on Th17 cell responses 

‘healthy human’ donors were genotyped for the C1858T polymorphism by restriction 

fragment length polymorphism. Either PBMC or Memory CD4+ T-cells (purity >95%) 

were cultured on 24 well plates in IMDM media supplemented with 5% serum 

replacement in a volume of 1 mL containing 1 x106 cells. PBMC or Memory CD4+ T-cells 

were activated with either 1:1 1:10 or 1:50 bead:T-cell ratios. Cultures were performed 

in the presence of pro-Th17 cell cytokines IL-1β, IL-23, and TGF-β each at a 

concentration of 10 ng/mL. T-cells were cultured as depicted in Figure 47 until day 6.  

To assess differences in the primary response to stimulation of the genotyped donor T-

cells, cell free supernatants were obtained and assessed for the presence of IL-17, IFNy 

and IL-10 by ELISA. At day 6 T-cells were restimulated with PMA/Ionomycin for one 

hour and then cultured in the presence of Brefeldin A for a further 4 hours. Alive T-cell 

counts were also determined by trypan blue staining and used in combination with 

flow cytometry data in order to calculate the absolute number of cytokine expressing 

cells within the cultures. These data from each genotyped donor were then assessed 

for correlations between PTPN22 C1858T genotype and Th17 cell response.   
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Cytokines
IL-1β 10ng/mL
TGF-β 10ng/mL
IL-23 10 ng/mL

CD45RO+CD4+ T-cell

Anti-CD3/anti-CD28 bead

THi
1 bead : 1 CD4+

TLo
1 bead : 50 CD4+

Day 3
Split THi and TInt (1 well to 2)
Add IL-23 (10ng/mL) & IL-2 
(10 U/mL) to all wells

Day 4
Split TLo (1 well to 2)
Remove 50% of media from THi
and TInt wells  and replace with 
media containing IL-23 
(10ng/mL) & IL-2 (10 u/mL)

Day 5
Split THi and TInt (1 wells to 
2) & TLo (2 well to 3)
Replenish with media 
containing IL-23 (10ng/mL) 
& IL-2 (10 u/mL)

Day 6
Restimulate wells  with 
PMA/Ionomycin for 
intracellular cytokine staining

TInt
1 bead : 10 CD4+

 

Figure 47. An experimental model to assess how the presence of the PTPN22 C1858T variant affects 
Th17 cell responses.  1 x 10

6
 CD45RO

+
CD4

+
 T-cells were cultured in IMDM with 10% serum replacement 

in a 1mL volume on a 24 well plate. T-cells were cultured with either 1x10
6
 (THi), 1x10

5
 (Tint), or 

0.02x10
6
 (TLo anti-CD3/anti-CD28 beads in the presence of proTh17 cytokines IL-1β, IL-23 and TGF-β 

each at 10 ng/mL. T-cells were incubated at 37˚C 5% CO2 for 6 days. During the 6 day culture cells were 
split as indicated above. Splitting of wells was based upon lightening of the media and a high cell 
confluency within the well. Day 4 and 5 media was replenished to a volume of 1 mL with IMDM + 10% 
serum replacement containing 10 ng/mL of IL-23 and 10 U/mL of IL-2. At day 6 T-cells were restimulated 
with PMA/Ionomycin as described in section 7.5.2 and results were analysed as indicated in Figure 11.  



Chapter 4: The regulation of Th17 cell responses by PTPN22  

135 

 

4.3 Results 

4.3.1 Genotyping healthy donors 

20 healthy Caucasian European blood donors were PTPN22 genotyped. Genotyping 

was performed using optimised primers for a C1858T natural restriction site by 

restriction fragment length polymorphism (RFLP). Table 1 shows that of the 20 

individuals genotyped 16 were homozygous for the major C-allele (1858CC), 3 were 

heterozygous (1858CT), and 1 was homozygous for the minor T-allele (1858TT). My 

cohort had more than double the expected T-allele frequency of the UK (~10.5%), 

however only one donor was homozygous for the minor T-allele.  

 

Number of 
donors 

PTPN22 1858 
genotype 

Age range Males Females 

16 CC 22-44 6  10 

3 CT 23-56 1 2 

1 TT 25 1 0 
 
Table 1. PTPN22 genotypes of healthy donors. Whole blood from 20 healthy individuals was genotyped 
by restriction fragment length polymorphism for PTPN22 C1858T SNP.   

 

4.3.2 Genotyped donor PBMC IL-17 responses 

The T-allele is known to predominantly affect T-cells (particularly memory T-cells (528)) 

and B-cells and therefore variations in the proportion of T-cells within PBMC may 

affect the cytokine response observed following in vitro culture. I therefore firstly 

assessed the proportion of CD3+/CD4+ T-cells and memory CD4+ T-cells present within 

the PBMC of genotyped donors. PBMC were isolated from genotyped donors and the 

proportion of ex vivo CD3+CD4+ T-cells and CD3+CD4+CD45RO+ were determined by 

surface staining. Figure 48 A and B demonstrate that the proportion of CD4+ T-cells and 

CD4+CD45RO+ T-cells between individual donor PBMC were highly variable, and did not 

appear to correlate with PTPN22 genotype. One explanation for variability in T-cell 

proportion may be due to differences in donor age; however, the variability observed, 

particularly in the proportion of memory T-cells, may mask any potentially subtle 

effects of PTPN22.  
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Figure 48.  CD3/CD4 and CD45RO expression by PTPN22 genotyped donor PBMC populations. Human 
PBMC were isolated from genotyped donors. The proportions of CD3/CD4

+
 and CD45RO

+
 T-cells were 

determined by surface staining PBMC at day 0 for CD3, CD4 and CD45RO expression  by flow cytometry. 
(A) The percentage of CD3/CD4

+
 cells present within the total PMBC population acquired is depicted for 

each donor. (B) CD3/CD4
+
 T-cells were gated and the proportion of CD45RO

+
 T-cells present is depicted. 

Each bar represents one donor.  

 

 

Nevertheless, the PBMC of the genotyped donors were cultured under pro-Th17 

cytokine conditions at three different stimulation strengths THi (1 bead:1 T-cell), Tint 

(1 bead:10 T-cell) and TLo (1 bead:50 T-cell). As the PTPN22 SNP may alter the TCR 

signalling thresholds, different stimulation strengths were assessed to maximise the 

chance of observing if the PTPN22 risk-allele alters Th17 responses. As observed in 

Chapter 2, generally the highest IL-17 response is observed under TLo conditions 

(Figure 49). However the response is highly variable between donors and does not 

appear to correlate with PTPN22 genotype. Variations in the proportion of memory 

CD4+ T-cells may contribute to the range of IL-17 responses and may alter or mask any 

potential effects of the PTPN22 allele variants. In addition, IL-17 can also be produced 

by CD8+ T-cells (termed Tc17 cells) and γδT-cells within the PBMC population which 

may further any mask effect of PTPN22 variants (533, 534). Due to these variations, I 

decided to refine the experiment by selecting memory CD4+ T-cells from PTPN22 

C1858T genotyped donors.  
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Figure 49. Proportion of IL-17 response is variable between genotyped donor PBMC populations.  
Human PBMC were cultured under THi (1 bead: 1T-cells), Tint (1 bead: 10 T-cells), or TLo (1 bead: 50 T-
cells) conditions in the presence of pro-Th17 cytokines. After 6 days T-cells were restimulated for 5 
hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. Proportions of IL-17-
expressing cells were determined by intracellular staining followed by flow cytometry (A) THi, (B) Tint, 
(C) TLo.  

 

4.3.3 Proportion of intracellular cytokine expression in memory CD4+ T-cells 

Memory T-cells were isolated from 8 donors including all 3 T-allele carrying donors. T-

cells were stimulated under THi, Tint, and TLo conditions in the presence of pro-Th17 

cell cytokines and the T-cell phenotype on day 6 was determined by intracellular 

cytokine staining. I firstly examined if the C1858T genotype correlated with differences 

in the proportion of IL-17+, IL-17/IFNy+, and IFNy+ cells. As previously observed, TLo 

stimulation generally favoured IL-17 responses (Figure 50 TLo, right column), though in 

some donors Tint (Figure 50 middle column) also resulted in high proportions of IL-17+ 
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cells. The homozygote 1858T donor has a marked increase in IL-17 expression as 

stimulation strength decreased. Within some of the 1858CT and 1858CC donors the 

increase in the proportion of IL-17+ cells was less marked, however this was variable.  
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Figure 50. Percentage of individual donor cytokine responses.  Human memory T-cells were cultured 
under THi, Tint, or TLo conditions in the presence of pro-Th17 cytokines. After 6 days T-cells were 
restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. 
Proportions of IL-17 and IFNy expressing cells were determined by intracellular staining followed by flow 
cytometry. Graphs depict the individual donor responses; the percentage of IL-17

+
 cells (top row) IFNy

+
 

(middle row) and IL-17/IFNy
+
 (bottom row). 

 

As no striking pattern of cytokine expression was observed in Figure 50, I grouped the 

data based upon C1858T genotype. Interestingly, at a Tint stimulus the proportion of 

IL-17+ cells appeared to increase as the T-allele dose increased, although this was not 

significant. However at a TLo stimulus, although the minor T allele homozygote had the 

highest proportion of IL-17+ cells, a dose dependent effect was not observed. 

Compared to IL-17, the proportion of IFNy producing cells were less affected by 
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stimulation strength and responses did not correlate to PTPN22 genotype. However, 

the proportion of IFNy+ cells and the capability of IFNy responses to be generated may 

be limited by the presence of a pro-Th17 cytokine milieu and the variations observed 

may be due to differences in the proportion of ex vivo IFNy+ cells. The most striking 

results were observed within the IL-17+/IFNy+ population under Tint and TLo conditions 

where a trend of increased IL-17+/IFNy+ cell proportions occurred as the dose of the T-

allele increased. Although the proportion of IL-17+/IFNy+ expressing cells was low this 

phenotype has been described as highly pathogenic (330).    
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Figure 51. Percentage of cytokine response grouped by PTPN22 C1858T genotype.  Human memory T-
cells were cultured under THi, Tint, or TLo  conditions in the presence of pro-Th17 cytokines. After 6 
days T-cells were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of 
Brefeldin A. Proportions of IL-17 and IFNy expressing cells were determined by intracellular staining 
followed by flow cytometry. Graphs depict the proportion of cytokine response grouped by genotype. 
CC N=4, CT N=3, TT N=1.  The IL-17+ cells (top row) IFNy+ (middle row) and IL-17/IFNy+ (bottom row). 

 

As the cohort contains only one T-allele carrying donor I could not draw statistical 

significance from these results. I therefore assessed if the presence of the T-allele 

affects Th17 cell responses. I grouped the CT and TT donor results and compared to 

the C-allele homozygotes; however, despite increasing the sample size of each 
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population no statistical significance was observed. The data demonstrate a trend that 

at a Tint stimulus the presence of the T-allele marginally increased the proportion of IL-

17+ cells, but also the proportion of IFNy+ cells. The analysis further demonstrates that 

at a TLo stimulus the proportion of IL-17+ and IFNy+ cells were similar between C-allele 

and T-allele groups. The most striking observation remains within the IL-17+/IFNy+ 

population at the Tint and TLo stimuli.  
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Figure 52. Percentage of cytokine response from T allele carriers vs non-carriers.  Human memory T-
cells were cultured under THi, Tint, or TLo  conditions in the presence of pro-Th17 cytokines. After 6 
days T-cells were restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of 
Brefeldin A. Proportions of IL-17 and IFNy expressing cells were determined by intracellular staining 
followed by flow cytometry. Graphs depict the proportion of cytokine response grouped non-T-allele 
carriers vs T-allele carriers. C N=4, T N=4. The IL-17+ cells (top row) IFNy+ (middle row) and IL-17/IFNy+ 
(bottom row). 

 

As I only had one T-allele donor for my experiments, I checked the reproducibility of 

the current data by repeating the T-allele donor data. I repeated the experiments with 

T-allele donor memory T-cells one month later. Figure 53 demonstrates that the 

proportions of cytokine producing T-cells are reproducible at a Tint stimulus with the 

same donor.  
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Figure 53. T-allele homozygote T-cell response is reproducible. Human memory T-cells from T-allele 
homozygote donor where isolated from peripheral blood one month apart. Memory T-cells were 
cultures with Tint stimulation in the presence of pro-Th17 cytokines. After 6 days T-cells were 
restimulated for 5 hours with PMA/Ionomycin, the last 4 hours in the presence of Brefeldin A. 
Proportions of IL-17 and IFNy expressing cells were determined by intracellular staining followed by flow 
cytometry. Each plot represents an independent experiment from the same donor.  
 

 

Comparing C-allele homozygotes to T-allele carriers did not demonstrate any statistical 

significance. I therefore calculated the sample size required for the currently observed 

differences to be statistically significant and the power of the current data. Table 2 

demonstrates that the power of the C vs T allele differences observed were generally 

low (<0.2) or very low (<0.1). However, the more striking results (Tint IL-17+ and IL-

17+/IFNy+) observed in Figure 52 had the highest power of >0.2. For the currently 

observed differences to be statistically significant sample sizes in excess of 15 would be 

required. Increasing the sample sizes does not guarantee the statistical significance of 

the resulting data, but these analyses provide an indication of the scale required for 

future experiments. 
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Condition 
Sample size C vs T 

for each group 
Difference between % means Standard Deviation Power Target Power 

Sample Size 

for each group 

THi IL-17 4 0.15 1.29 0.05 0.9         1580 

Tint IL-17 4 2.86 2.89 0.22 0.9 23 

TLo IL-17 4 2.28 4.30 0.10 0.9 76 

THi IFNy 4 0.51 3.29     0.06 0.9 743 

Tint IFNy 4 2.69 3.43 0.16 0.9 35 

TLo IFNy 4 0.79 1.9 0.08 0.9 123 

THi IL-17/IFNy 4 0.08 0.31 0.06 0.9 309 

TInt IL-17/IFNy 4 1.06 0.79 0.36 0.9 16 

TLo IL-17/IFNy 4 1.19 1.44 0.17 0.9 32 

 
Table 2. Power and sample size analysis of percentage of cytokine responses, comparing C-allele to T-allele carrier responses.  The proportion of cytokine response resulting 

from THi, Tint or TLo were grouped as C-allele homozygotes vs T-allele carriers, N=4 for each grouping. The difference between the group mean cytokine percentages were 

calculated and the average standard deviation of the two groups was used as the assumed standard deviation. A 2-sample T-test was used to calculate the power of the observed 

results and to calculate the sample size required for a target power of 0.9 (90% confidence in rejecting the null hypothesis). Power and Sample Size analysis was performed using 

Mini-tab II. 
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4.3.4 Absolute number of intracellular cytokine expressing memory CD4+T-cells 

I next assessed for differences in the absolute numbers of IL-17+, IL-17+/IFNy+ and IFNy+ 

cells resulting from THi, Tint and TLo stimulation conditions between PTPN22 

genotyped donors. The number of alive T-cells at day 6 of culture was determined and 

in combination with day 6 intracellular cytokine staining, used to calculate the absolute 

number of cytokine producing cells. Figure 54 demonstrates that as stimulation 

strength decreased, the number of IL-17+ and IL-17+/IFNy+ cells increased within each 

donor population, whereas the number of IFNy+ cells, although variable, did not 

change as substantially in response to stimulation strength.  
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Figure 54.  Absolute numbers of IL-17 and IFNy expressing cells. Human CD4

+
 T-cells were cultured for 

6 days under THi, TInt or TLo stimulation conditions. The number of living T-cells at day 6 was 
determined by trypan blue viability staining. The absolute number of IL-17

+
 T-cells was calculated using 

the proportion of IL-17
+
 cells determined by flow cytometry. Graphs depict the individual donor 

responses; the number of IL-17
+
 cells (top row) IFNy

+
 (middle row) and IL-17/IFNy

+
 (bottom row). 
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As observed above, the variation between individual donors is high and an association 

with the number of cytokine-expressing cells is not readily observable. I therefore 

grouped the data based upon genotype. Figure 55 demonstrates that at a THi stimulus 

the number of cells producing IL-17, IFNy or IL-17/IFNy were similar between all three 

genotypes. In comparison to the proportion of cytokine producing cells only a minor 

increase in IL-17+ cell numbers occurred in the presence of the T-allele at a Tint 

stimulus. Furthermore, the dose dependent increase in IL-17+/IFNy+ cell number was 

not observed. However, at a TLo stimulus the number of IL-17+ and IL-17+/IFNy+ cells 

appeared to increase in a T-allele dose-dependent manner, however these 

observations are not significant and in a larger cohort these results may fall at the 

higher end of natural variation in this system.  
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Figure 55. Absolute numbers of IL-17 and IFNy expressing cells grouped by PTPN22 C1858T genotype.  
Human CD4

+
 T-cells were cultured for 6 days under THi, TInt or TLo stimulation conditions. The number 

of living T-cells at day 6 was determined by trypan blue viability staining. The absolute number of IL-17
+
 

T-cells was calculated using the proportion of IL-17
+
 cells determined by flow cytometry. Graphs depict 

the number of cytokine producing cells grouped by genotype. CC N=4, CT N=3, TT N=1.  The IL-17
+
 cells 

(top row) IFNy
+
 (middle row) and IL-17/IFNy

+
 (bottom row). 
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4.3.5 Absolute T-cell response CC vs T-allele carriers 

To assess if these results were statistically significant, I compared the C-allele 

homozygotes to the T-allele carriers, increasing the sample size of each group, 

however as observed above, no statistical significance was achieved (Figure 56).  
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Figure 56. Absolute numbers of IL-17 and IFNy expressing cells grouped as T-allele carriers vs non-
carriers.  Human CD4

+
 T-cells were cultured for 6 days under THi, TInt or TLo stimulation conditions. The 

number of living T-cells at day 6 was determined by trypan blue viability staining. The absolute number 
of IL-17

+
 T-cells was calculated using the proportion of IL-17

+
 cells determined by flow cytometry. 

Graphs depict the number of cytokine producing cells grouped non-T-allele carriers vs T-allele carriers. C 
N=4, T N=4. The IL-17

+
 cells (top row) IFNy

+
 (middle row) and IL-17/IFNy

+
 (bottom row).  

 
 

The analysis confirmed that the presence of the T-allele, in this model, had no effect 

on IFNy+ cell numbers, but that under TLo stimulation the presence of the T-allele 

appeared to promote the number of IL-17+ and IL-17+/IFNy+ cells, although this is not 

significant. To estimate the scale required for future experiments I performed power 

and sample size analysis (Table 3). The majority of results had low (<0.2) or very low 

(<0.1) power and correspondingly the sample size required for these differences to be 

significant were in excess of 30 donors/group. The difference in the number of IL-17 
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and IL-17/IFNy producing cells between C-allele homozygotes and T-allele carriers had 

the highest power of > 0.3. The sample size required for the observed differences to be 

statistically significant was estimated to be 13-16 donors per group to reach a target 

power of 0.9. However, a weakness of these data is that the ex vivo proportion and 

absolute number of IL-17+ and IFNy+ cells were not assessed, which would have 

allowed the data to be normalised to the starting IL-17 and IFNy proportions.   
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Condition 
Sample size C vs T 

for each group 

Difference between means 

Cell number 
Standard Deviation Power Target Power 

Sample Size 

for each group 

THi IL-17 4 3872 21957 0.05 0.9        13387 

Tint IL-17 4 19454 37639 0.10 0.9 80 

TLo IL-17 4 62640 45364 0.38 0.9 13 

THi IFNy 4 17192 19963     0.18 0.9 30 

Tint IFNy 4 23363 53564 0.08 0.9 112 

TLo IFNy 4 21875 23583 0.2 0.9 26 

THi IL-17/IFNy 4 250 4349 0.05 0.9 361 

TInt IL-17/IFNy 4 8221 9033 0.19 0.9 27 

TLo IL-17/IFNy 4 19286 16010 0.30 0.9 16 

 
Table 3. Power and sample size analysis of absolute cell numbers, comparing C-allele to T-allele carrier responses.  The proportion number of cytokine producing cells resulting 

from THi, Tint or TLo were grouped as C-allele homozygotes vs T-allele carriers, N=4 for each grouping. The difference between the group mean cytokine percentages were 

calculated and the average standard deviation of the two groups was used as the assumed standard deviation. A 2-sample T-test was used to calculate the power of the observed 

results and to calculate the sample size required for a target power of 0.9 (90% confidence in rejecting the null hypothesis). Power and Sample Size analysis was performed using 

Mini-tab II.   
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4.4 Secretion of IL-17, IFNγ and IL-10 

I lastly assessed if the secretion of cytokines IL-17, IFNy and IL-10 would be affected by 

the presence of the 1858T allele. Prior investigations have revealed that IL-10 

responses are decreased within T-allele carriers compared to C-allele carriers, whereas 

IFNy responses were not affected (528). Due to the low yield of memory T-cells from 

two donors, there were only sufficient T-cells from 6 donors to perform ELISA analysis 

on. T-cell cytokine secretion was assessed in 3 CC-homozygotes, 2 CT-heterozygotes 

and 1 TT-homozygote.  

4.4.1 IL-17 secretion 

To assess the primary cytokine secretion response, memory CD4+ T-cells from 

genotyped donors were stimulated in the presence of pro-Th17 cell cytokines under 

THi, Tint, or TLo stimulation conditions for 72 hours. Supernatants were assessed for 

IL-17, IFNy, and IL-10 by ELISA. Figure 57 demonstrates IL-17 secretion from memory T-

cells was highest within THi stimulated cultures. This was true for the secretion of all 

measured cytokines, which differs from the flow data, though is most likely due to the 

earlier time point assessed and the activation of ex vivo memory T-cells already 

capable of expressing IL-17, IFNy, or IL-10. At a THi stimulus all donors were observed 

to secrete a similar concentration of IL-17, except for one of the C-allele homozygote 

donors whose IL-17 response was ~3-fold higher than the other donors. To observe 

differences between genotypes, the data were grouped accordingly (Figure 58). The IL-

17 response at THi stimulus appear greatest from the C-allele homozygotes, however, 

the outlying donor may have affected the result. IL-17 secretion from Tint and TLo 

stimulated cells, were very low compared to THi stimulation and differences between 

the genotypes were not observed. Similar observations were made when comparing C-

allele homozygotes to T-allele carriers (Figure 59).  
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Figure 57. Individual donor secretion of IL-17. Human memory T-cells were cultured under THi, Tint, or 
TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 supernatants were collected and 
IL-17 secretion was determined by ELISA. Graphs depict the individual donor responses performed in 
triplicate. Error bars represent SD.  

 

CC CT TT
0

1000

2000

3000

4000

5000

PTPN22 Status

p
g

/m
l

CC CT TT
0

1000

2000

3000

4000

5000

PTPN22 Status

p
g

/m
l

CC CT TT
0

1000

2000

3000

4000

5000

PTPN22 Status

p
g

/m
l

IL-17

THi TInt TLo

 
Figure 58. Secretion of IL-17 grouped by PTPN22 C1858T genotype.  Human memory T-cells were 
cultured under THi, Tint, or TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 
supernatants were collected and IL-17 secretion was determined by ELISA. Graphs depict the mean 
genotype grouped donor responses. CC N=4, CT N=3, TT N=1. Error bars represent SD. 
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Figure 59.  Secretion of IL-17 T-allele carriers vs non-T-allele carriers. Human memory T-cells were 
cultured under THi, Tint, or TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 
supernatants were collected and IL-17 secretion was determined by ELISA. Graphs depict the mean 
genotype grouped donor responses. Error bars represent SD. Graphs depict the mean genotype grouped 
donor responses. C N=4, T N=4. Error bars represent SD. 
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4.4.2 IFNy secretion 

I next examined the secretion of IFNy after 72 hours THi, Tint, or TLo stimulation. The 

same donor that had 3-fold higher IL-17 also had 3-fold higher IFNy secretion (Figure 

60). The raised cytokine secretion from this donor is not likely to be due to a technical 

error as the error bars depict 3 technical repeats and minimal intra-assay variation is 

observed. Compared to the remaining donors the T-allele homozygote had the highest 

IFNy secretion, though when data are compared based on genotype this response is 

similar to the C-allele homozygotes (Figure 61). The secretion of IFNy appeared to be 

reduced in T-allele carriers compared to C-allele homozygotes (Figure 62), although the 

low sample size and variability in donor response means these data should be 

interpreted cautiously.  

4.4.3 IL-10 secretion 

I lastly assessed the secretion of IL-10 by PTPN22 C1858T genotyped donors. IL-10 

secretion is highly variable between individuals at both THi and Tint stimulation 

strengths, though intra-assay variation is small (Figure 63). The variations observed in 

IL-10 secretion were not due to a single outlying donor. When the data were grouped 

according to donor genotype, the T-allele homozygote appears to have reduced IL-10 

secretion compared to C-allele homozygotes at THi and Tint stimuli (Figure 64). 

However, a dose dependent effect with the heterozygote IL-10 response falling 

between C-allele and T-allele homozygotes was not observed. Most interestingly, at a 

Tint stimulus when T-allele carriers were compared to C-allele homozygotes (Figure 

65), IL-10 secretion was lower in T-allele carrying donors, similar to that observed by 

Rieck et al, however this result was also not significant (528). 
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Figure 60. Individual donor secretion of IFNy.  Human memory T-cells were cultured under THi, Tint, or 
TLo conditions in the presence pro-Th17 cytokines for 3 days. A day 3 supernatants were collected and 
IFNy secretion was determined by ELISA. Graphs depict the individual donor responses performed in 
triplicate. Error bars represent SD.  
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Figure 61. Secretion of IFNy grouped by PTPN22 C1858T genotype.  Human memory T-cells were 
cultured under THi, Tint, or TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 
supernatants were collected and IFNy secretion was determined by ELISA. Graphs depict the mean 
genotype grouped donor responses. CC N=4, CT N=3, TT N=1. Error bars represent SD. 
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Figure 62. Secretion of IFNy T-allele carriers vs non-T-allele carriers.  Human memory T-cells were 
cultured under THi, Tint, or TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 
supernatants were collected and IFNy secretion was determined by ELISA. Graphs depict the mean 
genotype grouped donor responses. Error bars represent SD. Graphs depict the mean genotype grouped 
donor responses. C N=4, T N=4. Error bars represent SD. 
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Figure 63. Individual donor secretion of IL-10.  Human memory T-cells were cultured under THi, Tint, or 
TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 supernatants were collected and 
IL-10 secretion was determined by ELISA. Graphs depict the individual donor responses performed in 
triplicate. Error bars represent SD.  
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Figure 64. Secretion of IL-10 grouped by PTPN22 C1858T genotype. Human memory T-cells were 
cultured under THi, Tint, or TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 
supernatants were collected and IL-10 secretion was determined by ELISA. Graphs depict the mean 
genotype grouped donor responses. CC N=4, CT N=3, TT N=1. Error bars represent SD. 
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Figure 65. Secretion of IL-10 T-allele carriers vs non-T-allele carriers.  Human memory T-cells were 
cultured under THi, Tint, or TLo conditions in the presence pro-Th17 cytokines for 3 days. At day 3 
supernatants were collected and IL-10 secretion was determined by ELISA. Graphs depict the mean 
genotype grouped donor responses. Error bars represent SD. Graphs depict the mean genotype grouped 
donor responses. C N=4, T N=4. Error bars represent SD. 
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Condition 
Sample size C vs T 

for each group 

Difference between means 

pg/mL 
Standard Deviation Power Target Power 

Sample Size 

for each group 

THi IL-17 3 1338 1226 0.26 0.9         19 

Tint IL-17 3 142 217.9 0.12 0.9 51 

TLo IL-17 3 31.4 82.4 0.07 0.9 146 

THi IFNy 3 6314 9652     0.12 0.9 51 

Tint IFNy 3 159 1039 0.05 0.9 899 

TLo IFNy 3 1.7 412 0.05 0.9 1237905 

THi IL-10 3 580 899 0.12 0.9 51 

TInt IL-10 3 1156 805 0.4 0.9 12 

TLo IL-10 3 21.5 75 0.06 0.9 260 

 
Table 4. Power and sample size analysis of ELISA data, comparing C-allele to T-allele carrier responses.  The cytokine secretion responses resulting from 3 days THi, Tint or TLo 
stimulation in the presence of pro-Th17 cytokines were grouped as C-allele homozygotes vs T-allele carriers, N=3 for each grouping. The difference between the group mean 
cytokine percentages were calculated and the average standard deviation of the two groups was used as the assumed standard deviation. A 2-sample T-test was used to calculate 
the power of the observed results and to calculate the sample size required for a target power of 0.9 (90% confidence in rejecting the null hypothesis). Power and Sample Size 
analysis was performed using Mini-tab II.        
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4.4.4 ELISA power and sample size analysis 

Lastly I performed power and sample size analysis on the ELISA data for the C-allele 

homozygotes vs T-allele carrier data within Figure 59, 58, and 61. Generally lower 

powers were observed for these data than for the flow cytometry data, due in part to 

increased donor-to-donor variation and the very low sample size. The most interesting 

trend, and that also observed by Rieck et al, of reduced IL-10 secretion by T allele 

carriers had a power of 0.4. For this response to achieve a power of 0.9 a sample size 

of 12 would be required for future experiments. However, largely the slight differences 

observed were small and therefore far greater sample sizes are required. Differences 

in cytokine secretion will, at early time points, be affected by the proportion of cells 

capable of secreting certain cytokines. Therefore greater efforts in normalising for T 

cell effector phenotype may allow the true contribution of the PTPN22 C1858T SNP to 

be assessed. By obtaining larger sample sizes, true differences are more likely to be 

observed.  

4.4.5 Conclusion 

Together the data in this Chapter provide initial insights in to how variations in the 

function of a TCR signalling component contributed by a single nucleotide 

polymorphism, may affect T cell responses. A trend of marginally increased IL-17 

responses was observed in donors with the risk T-allele, which is thought to confer 

reduced TCR signalling. Like a previous study (528) IL-10 secretion also appeared to be 

reduced in T-allele carriers compared to C allele homozygotes. However, groups 

contained very low sample sizes and to assess the significance of these initial 

observations, the study needs extending to include greater numbers of genotyped 

individuals. These data suggest that variations in the C1858T SNP might contribute to 

T-cell effector phenotype, though further investigations are required to confirm these 

data.  



Chapter 4: The regulation of Th17 cell responses by PTPN22  

155 

 

4.5 Discussion 

Investigations within previous Chapters revealed that Th17 cell responses were 

promoted by low strength TCR stimulation via a Ca2+ dependent mechanism. I assessed 

how an autoimmune-associated genetic polymorphism in the PTPN22 gene, that has 

been described to alter TCR signalling, might affect Th17 cell responses. Th17 cell 

responses are known to be important to the pathogenesis of a number of autoimmune 

diseases including RA. One of the genetic polymorphisms most highly associated with 

RA is the PTPN22 C1858T SNP. Presence of the risk T-allele results in the expression of 

Lyp peptide which has increased activity compared to the wild-type Lyp peptide (535). 

Lyp is thought to reduce TCR signalling in humans, and the SNP confers increased 

activity in an allele-dose dependent manner, therefore further reducing TCR signalling. 

I hypothesised that the presence of the risk T-allele would decrease TCR signalling and 

would promote Th17 cell responses. Some data presented within this Chapter may 

support this hypothesis. T-cell stimulation with Tint or TLo stimuli marginally enhanced 

the proportion/number of IL-17 and IL-17/IFNy populations in (risk) T-allele carrying 

donors compared to C-allele homozygotes. Furthermore, regulatory IL-10 secretion by 

T-allele carriers appeared reduced compared to C-allele homozygotes. However, only 

four out of the 20 donors genotyped had the risk T-allele and the differences observed 

were not statistically significant. Sample size calculations have revealed that depending 

on the stimulus and the biological effect measured, that sample sizes in excess of 12 

are required to assess if the currently observed differences in cytokine response by T-

allele carriers compared to C-allele homozygotes are statistically significant.  

4.5.1 Increasing the donor sample size 

Due to the low frequency of T-allele carriers, particularly homozygotes, analysing the 

effect of the C1858T SNP was difficult. A recent meta-analysis of PTPN22 1858C/T-

allele distribution found that 10.5% of healthy individuals are expected to carry the T-

allele in UK, rising to 15.3% in RA patients (536). Tables 2, 3, and 4 demonstrate that 

increased sample sizes are required to assess the effect of the risk-allele on T-cell 

phenotype. A future project would need to increase the C and T-allele sample sizes to 

~20 donors. Obtaining T-allele carrier T-cells is a limiting factor as they make up only 
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~10% of the population. A potential for increasing the frequency of T-allele carrying 

donors is to use RA patients whose T-allele frequency is increased to 15.3%. However, 

RA patients have an inflammatory disease which may affect the T-cell phenotype and 

capability to respond within this model. If RA patients were to be used the efforts 

would need to be made to reduce variations in: age, disease state, and management. 

Ideally sample sizes could be increased by gaining access to a large cohort such as the 

Twins-UK bioresource (>600 twins) allowing peripheral blood to be obtained from 

healthy genotyped donors. A further way to assess the effect of Lyp on T-cell 

responses would be to use a Lyp inhibitor (524); such experiments would indicate how 

Lyp contributes to effector T-cell responses but not reveal how the SNP modulates T-

cell function. However, currently the main conclusion drawn from these data is that 

the study needs extending to include greater donor sample sizes, in order to confirm if 

the interesting observations so far are true. 

4.5.2 1858T and effector T-cell function 

Data within this Chapter sought to address the effect of the PTPN22 1858T allele on T-

cell effector function by stimulating T-cells with different stimulation strengths in the 

presence of pro-Th17 cell cytokines. Previously Rieck et al demonstrated that CD4+ T-

cells from T-allele carriers, when activated with anti-CD3/CD28 beads for 24 hours, had 

a significant decrease in IL-10 secretion, and also observed decreased trends in IL-2 

and IL-4 secretion, when compared to C-allele homozygotes (528). The number of 

memory T-cells in T-allele carriers was found to be reduced compared to C-allele 

homozygotes, as was the capability of memory T-cells to induce Ca2+ flux suggesting 

that T-cell activation was reduced. I also observed a small decrease in IL-10 secretion 

by T-allele carriers compared to C-allele, though this was not significant. Rieck et al had 

a sample size of 6 for each allele. My sample size calculations revealed that for the 

difference observed in my data to be significant, 12 donors would be required, double 

that of the previous study. However, the presence of pro-Th17 cytokines may have 

affected IL-10 secretion. Differences in IFNy and IL-17 secretion appeared distorted by 

a potential outlier, and although efforts were made to control for age and sex, 

differences in these may contribute to the variations observed. However, the 

proportion and number of IL-17+ and IL-17/IFNy+ cells were slightly enhanced in T-
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allele carrying donors. With further investigation this may reveal that perturbations in 

T-cell signalling conferred by the C1858T SNP may favour inflammatory T-cell 

responses. To extend this study, the expression of IL-10 by Th17 cells (473, 537) could 

be explored by flow cytometry. As the proportion and number of IL-17+ cells may be 

increased within T-allele carriers, but IL-10 secretion may be decreased this might 

imply differences in the capacity of T-allele carrier Th17 cells to express IL-10. Th17 cell 

expression of IL-10 is important to limiting Th17 cell inflammatory responses; it is 

therefore possible that a reduction of Th17 cell IL-10 expression may potentiate an 

inflammatory state (537). Therefore, it may be interesting to assess if the presence of 

the T allele effects Th17 cell secretion of IL-10, via flow cytometry. Th17 cells which are 

not capable of limiting their inflammatory response may contribute to the chronicity of 

autoimmune disease. Currently, data presented within this Chapter suggest that the 

risk T-allele may reduce regulatory responses (as previously observed) and enhance 

inflammatory IL-17 and IL-17/IFNy responses, but further investigation is required. 

4.5.3 Type of stimulus 

T-cells were activated with anti-CD3/anti-CD28 beads to assess the effect of the 

PTPN22 C1858T SNP on T-cell effector function. The majority of differences in the 

proportion of IL-17 responses were observed at a Tint stimulus, which may be due to 

differences in Ca2+ mobilisation by C- vs T-allele carriers. It would be interesting to 

assess the capability of C-allele and T-allele carriers to mobilise Ca2+ in response to the 

different bead stimuli via flow cytometry, which would also confirm that Ca2+ 

mobilisation is affected by the T-allele SNP. Furthermore, decreased T-cell proliferation 

has been observed in 1858T allele carriers and so it may be interesting to assess 

effector T-cell responses in combination with CFSE labelling (531, 538). Stimulation 

using bead-bound antibodies is less physiologically relevant than the use of APC such 

as DC. However, using DC to stimulate T-cells may entail problems particularly in an 

autologous T-cell/DC system. Recent investigations have demonstrated that DC in 

619W knock-in mice (equivalent of T-allele carriers) are hyperresponsive, indicating 

the Lyp may regulate DC maturation pathways (519). Lyp is expressed in DC, however if 

Lyp regulates SFK-dependent pathways important to DC maturation and function is 

currently unknown. SFKs expressed in DC can regulate TLR, chemokine and cytokine 
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signalling (539) and have been shown to regulate the balance of IL-12 and IL-23 

secreted by DC (540). Therefore the T-cell response of T-allele carriers may be further 

affected within autologous DC-T-cell co-cultures by effect on DC function. To assess 

the effect of the T-allele using a physiological stimulus an MLR would be best 

comparing co-cultures of genotyped DC (CC, CT, TT) with T-cells (CC, CT, TT).  

4.5.4 Does the minor T-allele increase or decrease TCR signalling 

A recent investigation has revealed that the 1858T SNP may be a loss-of-function 

rather than a gain-of-function mutation (519). The investigation by Zhang et al used a 

knock-in mouse model to demonstrate that although the SNP causes a gain-of-function 

per se, the presence of the T-allele enhances Lyp/Pep protein degradation, which can 

reduce TCR signalling. The degradation was mediated by the calcium-dependent 

calpain protease calpain-1 which reduced the cellular expression of Pep/Lyp in risk 

allele carriers. A loss-of-function mutation was further suggested by progressive 

thymus and spleen enlargement in addition to increased T-cell numbers within the 

thymus, lymph nodes, spleen and peripheral memory T-cells of Pep619W (Lyp620W 

equivalent in mice) mice, suggestive of enhanced activation. These findings suggest 

that Lyp mutations increase rather than decrease TCR signalling strength (541). If Th17 

cell responses are favoured by low strength TCR stimulation, a reduction in Th17 cell 

responses would be expected. Initial data within this Chapter indicated that IL-17 

responses at an intermediate stimulus observed a minor increase in the presence of 

the T-allele. If TCR signalling is increased as a result of the 1858T allele this may 

counter our previous findings. Data in Chapter 3 demonstrated that Th17 responses 

are sensitive to high Ca2+. Depending on the affinity/avidity of TCR binding, the level of 

Ca2+ signalling induced may differ. Calpain1 is a calcium-dependent protease and so 

the strength of TCR stimulation may affect the activity of calpain1, and in turn affect 

the capability of calpain-1 to mediate Lyp/Pep degradation (542). Zhang et al did not 

assess for differences in Ca2+ mobilisation between knock-in and wild-type mice. 

Previous investigations have demonstrated that Ca2+ mobilisation is impaired within 

1858 T/T human individuals, which may affect the capability of calpain1 to degrade 

Pep/Lyp (528). Prior investigations have demonstrated that Ca2+ mobilisation is 

specifically decreased within memory CD4+ T-cell and memory B cell populations (519, 
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528). Therefore, although Zhang et al demonstrates similar Lyp degradation in human 

T-allele carrying PBMC populations, the use of PBMC may ‘mask’ the effect of the T-

allele on Ca2+ mobilisation within memory CD4+ T-cells. Furthermore, the degradation 

of Lyp may be further affected in RA patients by auto-antibodies against calpostatin 

(543). Calpostatin is a natural calpain inhibitor, and levels are elevated in RA patients 

implying that calpain activity may be elevated in these patients. In concert, these 

factors may contribute to ones risk for developing autoimmunity; whether these 

factors modulate effector T-cell phenotype remains to be determined. The majority of 

data in humans indicates that the C1858T SNP confers a gain-of-function mutation; 

however, peptide availability and function can be modulated by a number of factors, 

highlighting the importance of assessing the protein rather than transcriptional 

products.      

4.5.5  Conclusion 

I investigated how an autoimmune associated genetic polymorphism, which is thought 

to decrease TCR signalling in human T-cells, might affect human Th17 cell responses. 

The data obtained revealed interesting trends indicating that the presence of the risk 

T-allele may marginally enhance the proportion and number of IL-17+ and IL-17+/IFNy+ 

cells at a Tint or TLo stimulus. Further investigations are required to increase sample 

sizes but some interesting and potentially novel trends associated with Th17 cell 

responses have been observed. More investigations are required to reveal how the 

SNP affects Lyp/Pep function; however it remains interesting to assess if and how an 

autoimmune associated genetic polymorphism may affect immune function and 

contribute to disease pathogenesis.   
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5 Chapter 5. Regulation of Th17 cell responses by T-cell density 

5.1 Introduction 

In Chapters 2 and 3 I established that in vitro human Th17 cell responses were 

promoted by low strength TCR stimulation. The mechanism for this was most likely 

due to the induction of inhibitory levels of Ca2+ and a failure of NFATc1 to bind to the 

IL-17 promoter under high strength stimulating conditions. In vitro T-cell responses are 

modulated not only by the cytokine milieu and TCR signal strength but also by the 

interactions with the surrounding cells. The in vitro culture density of T-cells can 

modulate a number of parameters, including autocrine and paracrine cytokine 

responsiveness, cell-cell contacts via adhesins and notch molecules, and cell viability 

(Figure 66). I became interested in the effect that T-cell density may have on Th17 cell 

responses.   
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Figure 66.  The mechanisms by which T-cell density may modulate T-cell responses 

 

Studies investigating the effect of T-cell density on T-cell responses are limited. Cell 

density can have a critical role on in vitro T-cell survival (544). Resting T-cells rapidly 

died via apoptosis at low density, but survived at high density due to increased 

secretion of T-cell survival factors. In a further study, ex vivo expansion of T-cells in a 
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PBMC population was also affected by cell density (545). T-cell expansion in the 

presence of soluble anti-CD3-Fc was greatest at a high cell density of 1x105 cells/mL 

compared to a low density of 1x103 cells/mL. Anti-CD3-Fc needs to be cross-linked to 

Fc receptors on monocytes to be active. At reduced cell densities the T-cell-monocyte 

contacts were reduced and resulted in decreased availability of TCR stimulation, which 

in turn reduced T-cell expansion. This study also revealed increased apoptosis at low 

cell densities which was attributed to reduced expression of a survival factor catalase. 

These data were also supported by a further study (546). To my knowledge only one 

study has assessed how memory T-cell responses are regulated by cell density (547). A 

clonal Th1 cell population was found to be more susceptible to the apoptotic effects of 

low cell density than a clonal Th2 cell population. However, this study observed a poor 

association between T-cell density and apoptosis  Together, these data indicate that in 

vitro density of T-cell culture can affect T-cell proliferative responses; however, no 

investigations as yet appear to have addressed the effect that cell culture density has 

upon the capability of T-cells to generate specific effector cytokine responses.  

 

The influence of T-cell density in modulating T-cell responses may not purely be an in 

vitro phenomenon. The T-cell pool is surprisingly stable throughout life and is 

maintained by T-cell homeostasis, which precisely regulates T-cell survival, 

proliferation and apoptosis. However, different densities of T-cells can occur in vivo 

depending on the cellular location (548). The lymph nodes and spleen contain higher 

densities of T-cells than peripheral sites. In addition, peripheral sites which contain 

replicating pathogens, such as the gut and skin, have markedly greater T-cell numbers 

than that at sites such as the liver. Certain T-cell densities created in vitro may be more 

representative of the situation at one immune site compared to another. Investigating 

how T-cell responses are regulated by density will increase our understanding and may 

lead to the development of better therapeutics. In a recent review O’Garra, Gabrysova 

& Spits discussed the necessity to investigate the influence of in vitro T-cell density 

upon T-cell phenotype (549); commenting that different in vitro T-cell densities may 

contribute to the variation in T-cell response observed to certain stimuli. Addressing if 

T-cell density affects T-cell responses will potentially provide greater understanding of 

how Th17 cell responses are controlled and may have implications for the 
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interpretation of in vitro T-cell investigations. As yet no investigations assessing the 

effect of in vitro T-cell density on Th17 cell responses have been performed. I therefore 

assessed if and how T-cell density can modulate Th17 cell responses in vitro.   

5.2 Aims  

The aims of this Chapter were to: 

 Assess if T-cell density affects Th17 cell responses both proportionally and 

absolutely 

 Investigate if Th17 cells are specifically affected by T-cell density or if this 

phenomenon extends to Th1 cells  

 Investigate the mechanism by which T-cell density promotes Th17 cell 

responses 
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5.3 Experimental Approach 

To address the hypothesis that T-cell density would affect human Th17 cell responses 

and following an initial titration, I compared the IL-17 response of human 

CD4+CD45RO+ T-cells cultured at a 1:1 bead:T-cell ratio at either 1x106 (HiD) or 

0.0625x106 (LoD) cells/mL. Memory CD4+ CD45RO+ T-cells were isolated by magnetic 

separation to a purity of >95% (Figure 91). T-cell cultures were performed in IMDM 

containing 5% serum replacement, with one well of 24 well culture plate containing 1 

mL of media. Cultures were performed in the presence of pro-Th17 cytokines IL-1β, IL-

23, and TGFβ each at a concentration of 10ng/mL unless otherwise stated. At day 3 of 

culture 10 U/mL of IL-2 and 10 ng/mL of IL-23 were given to each culture well. Splitting 

of the different high density and low density culture conditions is outlined below. The 

effect of T-cell density upon Th17 cell responses was assessed at Day 6. T-cells were 

restimulated with PMA/Ionomycin for one hour and then cultured in the presence of 

Brefeldin A for a further 4 hours. Intracellular IL-17 and IFNy expression was 

determined by the gating strategy outlined in Figure 11. 
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Cytokines
IL-1β 10ng/mL
TGF-β 10ng/mL
IL-23 10 ng/mL

CD4+ T-cell

Anti-CD3/anti-CD28 bead
HiD

1 bead : 1 CD4+

5.3x105 cells/cm2

LoD
1 bead : 1 CD4+

3.2051 x 104 cells/cm2

Day 3
Split HiD (1 well to 2)
Add IL-23 (10ng/mL) & IL-
2 (10 U/mL) to all wells

Day 4
Remove 50% of HiD media
Replenish with media 
containing IL-23 (10ng/mL) & 
IL-2 (10 u/mL).

Day 5
Split HiD and LoD (1 well to 2)
Replenish with media 
containing IL-23 (10ng/mL) & 
IL-2 (10 u/mL)

Day 6
Restimulate wells  with 
PMA/Ionomycin for 
intracellular cytokine staining

Cytokines
IL-1β 10ng/mL
TGF-β 10ng/mL
IL-23 10 ng/mL

CD45RO+CD4+ T-cell

Anti-CD3/anti-CD28 bead

THi
1 bead : 1 CD4+

TLo
1 bead : 50 CD4+

Day 3
Split THi (1 well to 2)
Add IL-23 (10ng/mL) & IL-2 
(10 U/mL) to all wells

Day 4
Split  Thi and TLo (1 well to 2)
Replenish with media 
containing IL-23 (10ng/mL) & IL-
2 (10 u/mL)

Day 5
Split THi (2 wells to 3) & TLo (1well to 2)
Replenish with media containing IL-23 
(10ng/mL) & IL-2 (10 u/mL)

Day 6
Restimulate wells  with 
PMA/Ionomycin for 
intracellular cytokine staining

 

Figure 67. The HiD/LoD culture system. CD45RO
+
CD4

+
 T-cells were cultured in IMDM with 10% serum 

replacement in a 1mL volume on a 24 well plate at a density of 5.3x10
5
 cells/cm

2
 (HiD) or 3.2051x10

4
 

cells/cm
2
 (LoD). With anti-CD3/antiCD28 beads at a 1:1 bead:T-cell ratio in the presence of proTh17 

cytokines IL-1β, IL-23 and TGF-β. T-cells were incubated at 37˚C 5% CO2 for 6 days. During the 6 day 
culture cells were split as indicated above. Splitting of wells was based upon lightening of the media and 
a high cell confluency within the well. Day 4 and 5 media was replenished to a volume of 1 mL with 
IMDM + 10% serum replacement containing 10ng/mL of IL-23 and 10 U/mL of IL-2. At day 6 T-cells were 
restimulated with PMA/Ionomycin as described in section 7.5.2 and results were analysed as indicated 
in Figure 11.  
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5.4 Results 

5.4.1 Does density affect Th17 cell responses? 

To address if T-cell density affects Th17 cell responses in vitro, the number of memory 

CD4+ T-cells was titrated, decreasing from 2x106 to 0.0625x106 T-cells/mL in two-fold 

serial dilutions. Each cell density was cultured at a 1 bead: 1 T-cell ratio (equivalent of a 

THi) for 6 days in the presence of pro-Th17 cell cytokines.  
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Figure 68. Low cell density promotes IL-17 responses.  CD45RO

+
CD4

+
 T-cells were cultured with anti-

CD3/CD28 beads (1:1 ratio) at two-fold decreasing densities (2x10
6
 – 0.0625x10

6
) with pro-Th17 

cytokines. At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours in the 
presence of Brefeldin A. Expression of IL-17 and IFNy was determined by intracellular staining followed 
by flow cytometry. Plots are representative of 3 independent experiments and the histograms below the 
plots demonstrate the percentage of cells expressing IL-17 or IFNy from the 3 independent experiments. 
Error bars represent SEM, P-values calculated using One-way ANOVA with Bonferroni post test; *P<0.05  
***P<0.001.  
 



Chapter 5. Regulation of Th17 cell responses by T-cell density  

166 

 

 

On day 6 the signature cytokines of Th17 and Th1 cells, IL-17 and IFNγ respectively, 

were assessed by intracellular flow cytometry. Interestingly, I found that as the T-cell 

density decreases the proportion of IL-17+ cells increases (Figure 68). In addition, the 

proportion of IL-17+/IFNy+ was also observed to increase as density decreases, whereas 

the proportion of IFNy+ cells was unaffected by cell density. Although all conditions 

received a high strength stimulus (1bead: 1T-cell), a low T-cell density appears to 

permit Th17 cell responses.  

5.4.2 Cytokine availability 

A possible explanation for these data might be that cells cultured at a low cell density 

have a greater concentration of the pro-Th17 cell cytokines on a per cell basis. To 

assess this, 4-fold decreasing T-cells densities were cultured in the presence of either 

10 ng/mL of pro-Th17 cell cytokines, or the same per cell cytokine concentration of 10-

5ng/cell. Interestingly, despite reducing the total cytokine concentration within the low 

density culture increased Th17 cell responses were still observed, and were only 

marginally reduced compared to the 10 ng/mL culture (Figure 69). The proportion of 

IFNy+ cells increased as the cytokine concentration decreased, which is potentially due 

to reduced TGF-β which can suppress Th1 cell responses (329). These data indicate 

that the increased Th17 cell response resulting from low density culture is not likely to 

be due to increased cytokine availability.  
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Figure 69. Cytokine availability is not a limiting factor. Memory CD4

+
 T-cells were cultured with anti-

CD3/CD28 beads (1:1 ratio) at four-fold decreasing densities (1x10
6
 – 0.0625x10

6
). Cells were cultured 

for 6 days in the presence of either 10ng/mL (top row) or 10
-5

ng/mL (bottom row) of pro-Th17 cytokines 
At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours in the presence of 
Brefeldin A. Expression of IL-17 and IFNy was determined by intracellular staining followed by flow 
cytometry. Plots are representative of 3 independent experiments.  

5.4.3 Does density affect Th1 cell responses? 

I next assessed if the affect of cell density was specific to Th17 cell responses or if Th1 

cell responses were also influenced. T-cells were cultured at decreasing T-cell densities 

in the presence of pro-Th17 cell or pro-Th1 cell cytokines, or in the presence of IL-2 

alone (Th0). IFNy responses resulting from pro-Th1 cell culture appeared to be 

unaffected by T-cell density (Figure 70). In addition, under Th0 cell conditions the 

proportion of IFNy also remained constant, yet even in the absence of pro-Th17 cell 

cytokines a slight increase in IL-17 response was observed at lower cell densities. These 

data indicate that low T-cell density seemed to preferentially promote Th17 cell 

responses and that this is most striking in the presence of pro-Th17 cell cytokines.  
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Pro-Th17 Th0 Pro-Th1

 
Figure 70. T-cell density does not affect memory Th1 cell responses. Memory CD4

+
 T-cells were 

cultured with anti-CD3/anti-CD28 beads (1:1 ratio) at four-fold decreasing densities (1x10
6
 – 0.0625x10

6
 

in the presence of pro-Th17, pro-Th1 or Th0 cell cytokines. At day 6 T-cells were restimulated with 
PMA/Ionomycin for 5 hours, the last 4 hours in the presence of Brefeldin A. Expression of IL-17 and IFNy 
was determined by intracellular staining followed by flow cytometry. Data of 4 independent 
experiments are shown; error bars represent SEM. P values were calculated using a Two way ANOVA 
with Bonferroni post test **=P<0.01. 
 

I focussed subsequent experiments on a high density culture of 1x106 c/mL (HiD) and a 

low density culture of 0.0625x106 c/mL (LoD). I performed repeat experiments at these 

densities under pro-Th17 cell cytokine conditions to study the effect of T-cell density 

on IL-17 and IFNγ responses. Figure 71 demonstrates that significantly greater 

proportions of IL-17+ cells occur as a result of LoD culture compared to HiD culture. 

Although high variation was observed (most likely due to donor-to-donor variation), 

matched-pair analysis revealed a significant difference between HiD and LoD Th17 cell 

responses. The proportions of IFNγ+ and IL-17/IFNγ+ did not differ significantly as a 

result of T-cell density. High variation in the IFNy response between donors was also 

observed. As memory T-cells were used this may be due to variations in the starting 

population of Th1 cells within the isolated CD45RO+ CD4+ population.   
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Figure 71. LoD favours IL-17 responses compared to HiD.  Memory CD4

+
 T-cells were cultured with anti-

CD3/anti-CD28 beads (1:1 ratio) at either 1x10
6
c/mL (HiD) or 0.0625x10

6
c/mL (LoD) in the presence of 

pro-Th17 cytokines. At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours 
in the presence of Brefeldin A. Expression of IL-17 and IFNy was determined by intracellular staining 
followed by flow cytometry. Percentages of IL-17 and IFNγ single and double producers from 9 
independent experiments are shown. Bar represents median. P-values calculated using a Wilcoxson 
matched pairs test **P<0.01. 

5.4.4 Modulating T-cell density with APC derived stimulation 

I next assessed if cell density would modulate Th17 responses when T-cells were 

activated with a physiologically relevant stimulus. Autologous PGN and C.albicans 

activated DC were cultured at a 1 DC: 1 T-cell ratio at either a high density of 1x106 or a 

low density of 0.25x106 T-cells/well. PGN activates DC via the TLR2 pathway inducing 

secretion of pro-Th17 cell cytokines and C.albicans hyphae are well documented as 

Th17 cell inducing antigens (550). Figure 72 demonstrates that APC stimulation at a 

low T-cell density also resulted in a significant increase in the proportion of IL-17+ cells 

compared to a high T-cell density. Furthermore, a significant decrease in IFNy 

expression was observed as a result of low density culture compared to high density. 

Considering that the nature of stimulation in an autologous setting should be antigen 

specific and the the proportion of cells capable of responding is likely to be below 5% 

the percentages of IL-17+ cells is surprisingly high. This finding may potentially be 

explained by bystander activation and/or selective expansion of antigen specific T-

cells. In summary these data confirm that T-cells cultured at low density activated by 

either anti-CD3/anti-CD28 beads or DC promote Th17 cell responses.    
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Figure 72. T-cells stimulated with APC at low density promote IL-17 responses.  Memory CD4

+
 T-cells 

were cultured with autologous DC activated with PGN and C.albicans (1:1 ratio) at either 1x10
6
 T-

cells/mL or 0.25x10
6
 T-cells/mL.  At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, 

the last 4 hours in the presence of Brefeldin A. Expression of IL-17 and IFNy was determined by 
intracellular staining followed by flow cytometry.  Data of 3 independent experiments are shown; error 
bars represent SEM. P-values calculated using a Two way ANOVA with Bonferroni Post Test *P<0.05 . 

5.4.5 Activation and cell death 

I next addressed the kinetics of HiD and LoD activation by measuring CD25 expression. 

CD25 is the α-chain of the IL-2 receptor and is expressed by human T-cells when they 

have been activated via the TCR (551). To assess if HiD and LoD cultured T-cells had 

been activated, cell surface expression of CD25 was assessed at 0, 48, and 144 hours of 

culture. Data in Figure 73 demonstrates that CD25 expression in both HiD and LoD 

culture populations had increased within 48 hours of culture, and expression was 

maintained until day 6 of culture. Pictures of HiD and LoD culture in Figure 74 clearly 

demonstrate differences in the kinetics of T-cell expansion in HiD and LoD T-cell 

cultures. T-cell clustering was observed in both conditions by 48 hours, although 

clusters are far smaller at a low density. At 72 hours HiD cells were split explaining why 

smaller clusters appear to have formed at 96 hours. Together these data indicate that 

T-cells in both HiD and LoD cultures cluster and proliferate. The possibility that HiD or 

LoD culture resulted in increased cell death was also investigated. Day 6 HiD and LoD 

cells were stained with viability dye, Viaprobe. Data depicted in Figure 75 

demonstrates that comparable levels of cell death were observed within both culture 

densities. However, although the mean values are comparable, high variability in cell 
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death is also observed, therefore more repeats including the early apoptosis marker, 

annexin V, would be of benefit.  
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Figure 73. HiD and LoD T-cell expression of activation marker CD25.  Memory CD4

+
 T-cells were 

cultured under HiD or LoD conditions. Cell surface expression of CD25 was determined prior to culture 
(0 h), 48 h, and 144 h by flow cytometry.  Thin solid line represents isotype control; thick solid line 
represents HiD, and thick dotted line represents LoD. Plots are representative of 3 independent 
experiments. 
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Figure 74. HiD and LoD culture kinetics.  Memory CD4

+
 T-cells were cultured under HiD or LoD 

conditions. At 48, 72 and 96 hours pictures of cultures were taken at 4 x magnification. Data are 
representative of 15 independent experiments. 

 
Figure 75. HiD and LoD cell death.  Memory CD4

+
 T-cells were cultured under HiD or LoD conditions. At 

day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 in the presence of Brefeldin 
A.  Cells were viability stained with Viaprobe prior to intracellular cytokine staining. Data are 
representative of 3 independent experiments of percentage of Viaprobe

+ 
cells. Error bars represent 

SEM.  
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5.4.6 Are responses proportional and absolute? 

The possibility remained that the effect of LoD culture on Th17 cell responses was 

proportional rather than absolute. The absolute number of live T-cells at day 6 was 

assessed by trypan blue staining and together with day 6 flow cytometry data the 

absolute cell counts were determined. Figure 76 reveals that significantly more IL-17+ 

cells resulted from LoD culture compared to HiD culture, this was despite the higher 

absolute number of IL-17+ cells within HiD conditions. In comparison HiD culture 

yielded greater numbers of IFNy+ cells than LoD culture. The total number of IL-

17+IFNy+ cells was unaffected by cell density. However, these results do not take into 

account the difference in the starting number of IL-17+ and IFNy+ cells within the 

different densities. I therefore next compared the expansion of HiD and LoD cell 

populations from day 0 to day 6. The absolute number of IL-17+ and IFNy+ cells was 

determined in the starting population of memory CD4+ T-cells. These data were used 

to calculate the total cell expansion, and the expansion of individual cytokine secreting 

populations by comparing the fold change from day 0-6 (calculated as above). Figure 

77 demonstrates that the total cell expansion was significantly increased in LoD 

cultures compared to HiD. Interestingly very little difference was observed in the 

expansion of IFNy+ cells between HiD and LoD cultured cells. However, like the total 

cell expansion, a striking increase in the expansion of the IL-17+ and IL-17+/IFNy+ 

populations was observed in LoD culture compared to HiD culture. It is also striking to 

note that IFNy expression is unaffected by this parameter. These data potentially 

indicate preferential expansion of the IL-17 population in LoD conditions, although it is 

not possible to confirm this from these data.  



Chapter 5. Regulation of Th17 cell responses by T-cell density  

173 

 

 

*
P=0.029

 
Figure 76. LoD culture increases the absolute number of IL-17

+
 cells.  Memory CD4

+
 T-cells were 

cultured under HiD or LoD conditions. At day 6 T-cells were counted with trypan blue. The absolute 
number of IL-17 and IFNy single and double producers was determined by restimulating cells with 
PMA/Ionomycin for 5 hours, the last 4 hours in the presence of Brefeldin A. Expression of IL-17 and IFNy 
was determined by intracellular staining followed by flow cytometry. Data are representative of 3 
independent experiments. Error bars represent SEM. P values were calculated using Paired T-test 
*P<0.05, 
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Figure 77. Increased T-cell expansion is observed in LoD cultures.  Day 0 T-cells were stimulated with 
PMA/Ionomycin stimulation for 5 hours the last 4 in the presence of Brefeldin A and expression of IL-17 
and IFNy was determined by intracellular staining followed by flow cytometry.  The absolute number of 
IL-17 and IFNγ single and double producers at day 0 per density was calculated Memory CD4

+
 T-cells 

were cultured under HiD or LoD conditions. At day 6 T-cells were counted with trypan blue. The absolute 
number of IL-17 and IFNy single and double producers was then determined by restimulation with 
PMA/Ionomycin for 5 hours and intracellular IL-17 and IFNγ staining. The fold change in T-cell expansion 
was then determined using the absolute cell numbers at day 0 and 6. Data are representative of 3 
independent experiments. Error bars represent SEM. P values were calculated using Paired T-test 
*P<0.05, **P<0.01.   

5.4.7 Naive T-cell response to cell density 

To address if LoD culture caused preferential expansion of Th17 cells rather than 

induction, the effect of cell density was assessed in naive CD4+ T-cells. Naive CD4+ T-

cells were cultured at HiD and LoD in the presence of pro-Th17 or pro-Th1 cell 

cytokines. Pro-Th17 cell culture resulted in poor IL-17 responses although IL-17 

responses were increased within LoD conditions (Figure 78). LoD culture of naive T-

cells in pro-Th1 conditions is inhibitory to Th1 cell responses, which is more in line with 

previous investigations into T-cell density (547) than the memory Th1 cell response 
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observed above (Figure 70). IL-17 expression was increased at LoD, but proportions 

were substantially reduced compared to those observed in memory T-cell cultures. 

This may be due to the incorrect cytokine milieu or an inability of human naive T-cells 

to directly differentiate into Th17 cells. These data suggest, but do not confirm, that 

the effect of cell density is due to preferential expansion rather than induction, as the 

final Th17 cell proportion appears to be dependent on the day 0 proportion of IL-17+ 

cells.   

5.4.8 Secreted factor 

I wanted to establish why a low T-cell density would promote Th17 cell responses 

compared to a high T-cell density, but not affect Th1 cell responses. I firstly assessed if 

an inhibitory/promoting factor was secreted in to the media of HiD/LoD cells by 

performing a conditioned media experiment. Figure 79 shows data, similar to those 

observed in Chapter 3, revealing no repressive or enhancing affect (beyond those most 

likely explained by decreased media quality) of HiD/LoD conditioned media on IL-17 or 

IFNy responses. Based on these data it was decided to assess whether other 

parameters were affected by cell density. 
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Figure 78. Naïve CD4

+
 T-cell response to HiD/LoD culture. Naive CD4

+
 T-cells were cultured under HiD 

or LoD conditions for 6 days in the presence of pro-Th17 or pro-Th1 cytokines. At day 6 T-cells were 
restimulated with PMA/Ionomycin for 5 hours the last 4 in the presence of Brefeldin A and expression of 
intracellular IL-17 and IFNγ was determined by intracellular cytokine staining followed by flow 
cytometry. Plots are representative of 2 independent experiments and the histograms adjacent 
demonstrate the percentage of cells expressing IL-17 or IFNy from the 2 independent experiments. Error 
bars represent SEM.  
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5.4.9 Cell contact 

I hypothesised that cell-to-cell contacts might play a role in determining T-cell 

phenotype. Notch signalling is a cell contact dependent mechanism that determines 

cell fate and lineage commitment (552) and can determine CD4+ T-cell effector 

phenotypes (553, 554). Recent investigations demonstrate that Notch signalling affects 

human Th17 cell responses (555). Notch ligand Delta like ligand (DLL)-4 has been found 

to promote Rorc activation and IL-17 production. I hypothesised that cell-cell contacts 

would be modulated by the differences in cell density and that Notch signalling may be 

modulated and affect density dependent Th17 cell responses. I therefore firstly 

assessed if cell-cell contacts were affecting density dependent Th17 cell responses. 

LoD conditions most likely result in reduced T-cell-T-cell and/or T-cell-bead contacts as 

the cells are initially more spread out. To assess if increased cell contacts were 

inhibitory to Th17 cell responses, HiD and LoD cells were cultured on U-bottom 96-well  
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Figure 79.  Th17 inhibiting/promoting factors are not contained within HiD/LoD conditioned media. 
Memory CD4

+
 T-cells were cultured under HiD or LoD conditions. At 72 hours conditioned media was 

removed from HiD and LoD cells. At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, 
the last 4 hours in the presence of Brefeldin A. Expression of IL-17 and IFNy was determined by 
intracellular staining followed by flow cytometry. Plots are representative of 2 independent 
experiments. 

 

plates (increasing cell contacts) or flat-bottom 96-well (control) plates (461). Figure 80 

demonstrates that increased cell-cell contact as a result of U-bottom culture had no 
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significant effect on LoD mediated IL-17 response when compared to the flat bottom 

plate. Moreover, on either flat-bottom or U-bottom plates LoD culture favoured Th17 

cell responses compared to HiD. The fact that U-bottom plates did not prevent Th17 

cell responses indicated that Notch signalling may be unlikely to affect Th17 cell 

responses in this system. Notch signalling occurs when one of four Notch receptors 

(N1-4) is bound by a cell bound Notch ligand. There are five notch ligands ( DLL 1, 3, 

and 4 and Jagged 1 and 2) which upon binding allow Notch to undergo proteolytic 

cleavage by γ-secretase and the translocation of the intracellular domain into the 

nucleus (552). If Notch signalling were important to HiD or LoD Th17 cell responses, 

inhibition of Notch signalling would provide an initial indication. I therefore assessed 

the effect of Notch signalling using a gamma-secretase inhibitor (GSI) which inhibits 

cleavage of the Notch intracellular domain (N-ICD) by gamma-secretase, in turn 

preventing N-ICD nuclear translocation (556). The GSI was added to HiD and LoD 

culture at either day 0, 3 or 0 and 3. Figure 81 demonstrates a small decrease in both 

IL-17 and IFNγ expression in both HiD and LoD conditions; however the effect was not 

striking, indicating that Notch signalling may not be important to T-cell responses 

within this system. However, no positive control was included and so the inhibitor may 

not be functional. An assessment of the inhibitors ability to prevent gamma-secretase 

cleavage in a population of cells known to function via Notch signalling would provide 

a positive control for this. Nevertheless as cell contact and Notch did not look like 

probable causes of differences in HiD and LoD T-cell responses, the research direction 

changed course.   

IL-17 IL-17/IFNγ IFNγ

 
Figure 80. Increased T-cell contacts do not prevent LoD culture promoting Th17 responses.  Memory 
CD4

+
 T-cells were cultured under HiD or LoD conditions on either a flat-bottom or U-bottom 96 well 

plate. At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours in the 
presence of Brefeldin A. Expression of IL-17 and IFNy was determined by intracellular staining followed 
by flow cytometry. Data are of 3 independent experiments. Error bars represent SEM. 
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Figure 81. Inhibition of Notch signalling does not affect HiD or LoD culture.  Memory CD4

+
 T-cells were 

cultured under HiD or LoD conditions. DAPT γ secretase inhibitor was added to cultures at Day 0, 3 or 0 
and 3 (1μM). At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours in the 
presence of Brefeldin A. Expression of IL-17 and IFNy was determined by intracellular staining followed 
by flow cytometry. Plots are representative of 2 independent experiments and the histograms below the 
plots demonstrate the percentage of cells expressing IL-17 from the 2 independent experiments. Error 
bars represent SEM.  
 
 

5.4.10 Aryl Hydrocarbon Receptor 

The aryl hydrocarbon receptor is a highly conserved transcription factor that responds 

to small synthetic and natural chemicals (557). AhR is associated with Th17 cells and 

can promote Th17 cell responses (216). IMDM media is widely used for the in vitro 

generation of Th17 cells and contains 4-fold greater levels of tryptophan, which acts as 

a ligand for the AhR causing its activation and nuclear translocation (215). Previous 

investigations have revealed that AhR nuclear localisation is dependent on cell density 

in a keratinocyte cell line (558). The investigation found AhR expression was 
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predominantly nuclear at sparse cell densities, nuclear and cytoplasmic at 

subconfluence, and cytoplasmic at confluence. I hypothesised that the AhR may be 

located in the cytoplasm rather than nucleus of HiD cells preventing IL-17 expression. A 

time course assessing AhR expression by real time PCR indicated that LoD resulted in 

greater AhR expression at 96 hours compared to 48 (data not shown) and prompted 

further investigation into AhR regulation. To assess if differences in IL-17 expression 

between HiD and LoD cultures occurred post 48 hours I assessed IL-17 expression over 

a time course. Figure 82 demonstrates that following 72 hours, differences in the IL-17 

response began to occur. IL-17 expression from LoD cells steadily increased, peaking at 

day 6 when the cells are usually phenotyped, whereas, HiD IL-17 responses remained 

low across all time points. I therefore assessed AhR protein expression at 48, 72 and 96 

hours. HiD and LoD cells were cultured in the presence or absence of pro-Th17 cell 

cytokines. Total cell lysates were taken at each time point and assessed for AhR 

expression by western blot.  

 
Figure 82. Time course of HiD and LoD IL-17 expression.  Memory CD4

+
 T-cells were cultured under HiD 

or LoD conditions. At 72, 96, 120 or 144 hours were restimulated with PMA/Ionomycin for 5 hours, the 
last 4 hours in the presence of Brefeldin A. Expression of IL-17 was determined by intracellular staining 
followed by flow cytometry. Bars represent 2 independent experiments. HiD white bars LoD black bars. 
Error bars represent SEM. 

 

Although both cell densities had increased AhR expression in the presence of pro-Th17 

cell cytokines, LoD culture resulted in greater AhR expression, particularly at 72 hours. 

To investigate the cellular location of AhR expression in HiD and LoD cultured cells, 

cytoplasmic and nuclear lysates were taken at 72, 96 and 120 hours. 
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Figure 83. Expression of AhR.  Memory CD4

+
 T-cells were cultured under HiD or LoD conditions in the 

presence or absence of pro-Th17 cell cytokines. At 48, 72, or 96, whole cell lysates were prepared and 
expression of AhR determined by Western blot. Loading control GAPDH. Blots are representative of 2 
independent experiments.  

 

Figure 84 indicates that in the presence of pro-Th17 cell cytokines the majority of AhR 

is present within the cytoplasm of HiD and LoD cells. Expression of AhR is again 

increased in LoD conditions compared to HiD. Interestingly over time the expression of 

AhR in the nucleus increases in LoD cells, peaking at 120 hours, though expression 

remains low compared to cytoplasmic expression. These data indicate that within LoD 

culture AhR expression is increased, however striking differences in AhR location are 

not observed. Although AhR is suggested to be important for Th17 cell responses, how 

AhR mediates this remains poorly understood. Increased expression of AhR in LoD cells 

may be due to increased availability of AhR ligands present in IMDM media on a per 

cell basis. Moreover increased expression of AhR may be an effect of increased 

proportions of Th17 cells with LoD culture rather than a cause. Further investigations 

are therefore required to determine if and how the AhR may affect density dependent 

Th17 cell responses. 
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Figure 84. Localisation of AhR.  Memory CD4

+
 T-cells were cultured under HiD or LoD conditions in the 

presence or absence of pro-Th17 cell cytokines. At 72, 96 or 120 hours, cytoplasmic and nuclear lysates 
were prepared and expression of AhR determined by Western blot. Loading controls for cytoplasmic and 
nuclear loading were GAPDH and Lamin. Blots are representative of 3 independent experiments. 
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5.4.11 HiD and LoD activation of STAT3 

STAT3 is an important transcription factor for mediating Th17 cell responses (559). 

STAT3 signalling may be initiated by binding of cytokines including IL-6, IL-23 and IL-21 

to their respective receptors, which induces receptor dimerisation and allows JAKs to 

bind (348). JAKs create phosphorylation sites on the dimerised receptors allowing STAT 

binding. JAKs are then able to phosphorylate the receptor bound STATs, causing STAT 

activation, dimerisation, and subsequently nuclear translocation. STAT3 is a key 

transcription factor in Th17 cell responses. Recent ChIP sequencing studies 

demonstrated STAT3 binding to promoter sites of IL-17 response genes including 

Roryt, Rora, Il-17a and f and Il-21 (339). Three investigations have indicated that STAT3 

activation can be determined by cell density (560–562). These investigations have 

been conducted in non-T-cell lines and although the data are conflicting they do 

demonstrate that STAT3 can be regulated by cell density. I therefore proposed that cell 

density was affecting the activation of STAT3 in HiD and LoD cells and that this would 

in turn affect Th17 cell responses. I therefore assessed the activation of STAT3 in HiD 

and LoD cells at 72 hours (Figure 85). Active STAT3 is measured by a phosphorylation 

event at Tyr705. Total STAT3 expression is consistent between HiD and LoD conditions 

in the presence or absence of cytokines. STAT3-Try705p activation is increased in LoD 

conditions in the presence of pro-Th17 cell cytokines compared to HiD. The increased 

activation of a pro-Th17 cell transcription factor may account for the difference in 

Th17 cell response.  

 

STAT3 Tyr705p
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HiD LoD
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Figure 85. Activation of STAT3 in HiD and LoD culture.   Memory CD4

+
 T-cells were cultured under HiD 

or LoD conditions in the presence or absence of pro-Th17 cytokines. At 72, 96 or 120 hours whole cell 
lysates were prepared and expression of STAT3Tyr705p (top) STAT3 (middle) and GAPDH loading control 
(bottom) were determined by Western blot. Blots are representative of 3 independent experiments.    
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HiD cultures potentially have reduced Th17 cell responses because of reduced 

availability of STAT3 activating cytokines. Despite addition of IL-23 to HiD and LoD 

cultures at days 0 and 3, the possibility remained that IL-23 may be limited in HiD 

cultures. IL-21 is also a STAT3- activating cytokine and is associated with a Th17 cell 

phenotype. IL-21 can be endogenously produced by T-cells to initiate a positive 

feedback loop that enhances Th17 responses (348, 349). Although IL-21 expression has 

not been assessed in HiD/LoD cultures I also addressed if the addition of IL-21 would 

enhance HiD Th17 cell responses. Therefore STAT3 activating cytokines IL-23 and/or IL-

21 were added to HiD cultures daily until 72 hours. Figure 86 demonstrates that 

despite increased addition of IL-23 and/or IL-21, HiD cells still fail to increase Th17 cell 

responsiveness. Therefore IL-23 and/or IL-21 availability does not appear to be a 

limiting factor for HiD Th17 cell responses. It would also be interesting to assess the 

expression of IL-23 and IL-21 receptors on HiD and LoD cells to investigate if 

differences in STAT3 activation were due to cytokine responsiveness. 
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Figure 86. Increase IL-23 or IL-21 availability does not increase HiD IL-17 responses.  Memory CD4

+
 T-

cells were cultured under HiD or LoD conditions. Daily IL-23 (10ng/mL) and/or IL-21 (10ng/mL) were 
added to cultures for the first 3 days of culture. At day 6 T-cells were restimulated with PMA/Ionomycin 
for 5 hours, the last 4 hours in the presence of Brefeldin A. Expression of IL-17 was determined by 
intracellular staining followed by flow cytometry. Data are of 2 independent experiments. Error bars 
represent SEM.   
 

 

In order to assess if the increased STAT3 expression is essential to LoD Th17 cell 

responses, the effect of STAT3 inhibition was assessed. Inhibition of STAT3 was 

performed with STAT3 inhibitor S3I-201 (NSC74859). S3I-201 is a chemical probe 

inhibitor that prevents STAT3 dimerisation and STAT3 DNA binding (563). Addition of 

the STAT3 inhibitor to LoD cells was performed at 72 hours the time at which STAT3 

activation was observed to increase in LoD cells. The inhibitor was added at either 

double the IC50 (200nM) or the IC50 (100nM). The preliminary experiment (Figure 87 A) 

yielded promising results. STAT3 inhibition at 200nM (double the IC50) resulted in 

substantially reduced IL-17 responses compared to either LoD or DMSO control 

populations. However a repeat experiment in a different donor did not yield the same 

response (Figure 87B). At 200nM the inhibitor had little effect on Th17 cell responses, 

whereas 100nM did cause inhibition of Th17 cell responses compared to LoD and 

DMSO controls. However, in both donors the IFNy response was substantially 

decreased by the STAT3 inhibitor. During both cultures I observed that T-cell 

proliferation was stunted and that cell death increased in the presence of the inhibitor. 
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Figure 87. Inhibition of STAT3 activation in LoD cultures.  Memory CD4

+
 T-cells were cultured under 

LoD conditions. STAT3 inhibitor S31-201 or DMSO control were added to cultures at 72 hours (200nM). 
At day 6 T-cells were restimulated with PMA/Ionomycin for 5 hours, the last 4 hours in the presence of 
Brefeldin A. Expression of IL-17 and IFNy was determined by intracellular staining followed by flow 
cytometry.  Plots are of 2 independent experiments, (A) Donor 1 (B) Donor 2.   

 

These effects have been previously described on tumour cells with preferentially 

activated STAT3 (564). Viability markers were not included in these experiments but 

would have been beneficial to gate out dead cells which may have contributed to the 

differences in donor responses. STAT3 is an important regulator of cell cycle 

progression (565), which most likely explains the observed effect on cell growth. 

Future experiments should also assess the effect of STAT3 inhibition on HiD cell growth 

as a control. In summary, although low cell density has been found to promote Th17 

cell responses, the mechanism for this finding remains elusive; however data within 

this Chapter provide promising future lines of investigation to determine how T-cell 

density affects Th17 cell responses.   
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5.5 Discussion 

The data presented within this Chapter provide a novel insight into the regulation of 

human Th17 cell responses by cell density. Data demonstrate that low density culture 

of T-cells results in increased Th17 cell responses compared to high density culture 

with either anti-CD3/anti-CD28 bead or APC stimulation. Conversely modulating T-cell 

density had no effect on memory Th1 cell responses. Present data indicate that 

increased STAT3 activation may be the mechanism promoting Th17 cell responses in 

LoD conditions although further investigations are required. These data provide a 

novel and interesting insight into the potential of regulation of human Th17 cell 

responses by T-cell density. 

5.5.1 T-cells and cell density  

Very few investigations have assessed the effect of in vitro T-cell density on T-cell 

responses. Prior investigations, largely focussed on how density affects T-cell 

proliferation (546). Generally high cell densities promote proliferation and prevent 

apoptosis in resting PBMC populations. However the conditions required for optimal 

proliferation and cell survival may not be the same conditions required for a specific 

effector T-cell response. The importance of considering in vitro T-cell density was 

recently highlighted in an investigation into the cytokine release syndrome (CRS) (566). 

CRS was induced with detrimental effects as a result of the TGN1412 antibody, a CD28 

superagonist, which was intended to treat RA. TGN1412 however caused massive 

cytokine release in phase I trials, but had not done so within in vitro trials from freshly 

isolated PBMC (567). Romer et al found that previous in vitro trials would have 

revealed the potential for CRS by culturing PBMC at a high density for two days which 

restores antibody sensitivity by up-regulating the functional activity of monocytes that 

increase CD4+ T-cell activity (566). Data within this Chapter indicate that in vitro T-cell 

density can influence cytokine secretion patterns and the phenotype of effector T-

cells. Low cell density preferentially promotes Th17 cell responses compared to Th1 

cells although it would also be interesting to explore further T helper cell phenotypes 

including Th2, Treg, and Th9 cells. By gaining a greater understanding of how cell 

density contributes to in vitro T-cell responses this may increase our understanding of 
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T-cell regulation in disease and improve the in vitro to in vivo transition in therapeutic 

trials.     

5.5.2 STAT3 

My initial data indicate that STAT3 activation may be density-dependent, although as 

with AhR expression this may be an effect rather than a cause of density-dependent 

Th17 cell responses. Low cell density correlated with increased STAT3 activation whilst 

reduced STAT3 activation was observed in high density culture. STAT3 is an important 

regulator of a number of Th17 response genes (339). Hyper IgE Syndrome patients 

have a dominant negative STAT3 mutation and are deficient in Th17 cells, highlighting 

the importance of STAT3 in Th17 cell responses (559). Prior investigations have 

observed that cell density can modulate STAT3 activation. Within a breast epithelial 

cell line, STAT3 activation increases as cell confluence increases but diminished post 

confluence (562). Similar effects were observed within both a Caco-2 cell line and a 

squamous carcinoma cell line (560, 561). These data appear to contradict the data 

observed in  

Figure 85. There are however striking differences between these and my experiments 

which may account for the contradiction. These investigations have used non-immune 

immortalised cell lines which may have different regulation of STAT3 activation. 

Furthermore, different mechanisms were found to regulate density dependent STAT3 

activation in each of these models. One investigation demonstrated that increased 

squamous cell confluence caused the down-regulation of cyclin dependent kinase  2 

(cdk2), a negative regulator of STAT3 (561). In comparison, in a breast carcinoma cell 

line, density dependent STAT3 activation was due to cell-cell adhesions (562). These 

studies indicate that mechanism by which STAT3 is regulated by cell density may be 

cell-specific. 

 

 A further difference is that STAT3 activation in T-cells is partly controlled by the 

cytokine milieu. In the absence of pro-Th17 cell cytokines STAT3 activation was 

reduced. A density dependent mechanism may provide conditions allowing cytokine 

responsiveness. It may therefore be interesting to further analyse differences in 

cytokine receptor expression between HiD and LoD cells. In particular the IL-23R may 
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be interesting to assess. IL-23 is part of the pro-Th17 cell milieu and signalling via the 

IL-23R is capable of activating STAT3, although IL-23R expression on HiD and LoD cells 

remains unknown. Initial data has revealed that STAT3 inhibition reduces Th17 cell 

responses at LoD indicating that STAT3 may be important in mediating the density 

dependent effect on Th17 cell responses. High variability was observed in the response 

to STAT3 inhibitors. This may in part be due to the affect on cell proliferation and 

viability. As proliferation was affected, future experiments should compare the effect 

of STAT3 inhibition on HiD proliferation. Furthermore, viability staining would allow 

dead cells to be gated out, which may minimise variation. These investigations are still 

in their infancy and further repeats of STAT3 inhibition are required. More extensive 

signalling analysis could include assessment of Socs3 expression, a negative regulator 

of STAT3 and Th17 responses (369). Future experiments also need to address if 

activated STAT3 is a cause or an effect of density dependent Th17 cell responses, and 

explore how density may modulate STAT3 activation (568). 

5.5.3 Aryl hydrocarbon receptor 

The AhR transcription factor has been described to be important to Th17 cell 

responses and is associated with in vivo Th17 cell phenotype (216). Prior data had 

indicated that AhR location and activation could be determined by cell density. AhR 

expression was enhanced in LoD conditions compared to HiD, however only minimal 

differences were observed in AhR localisation at the two densities. Only a small 

increase in AhR nuclear localisation was observed in LoD cells compared to HiD. 

Further investigations are required to determine if differences in AhR expression 

contribute to density dependent Th17 cell responses. However, as differences, 

particularly in nuclear localisation, are not striking it seems unlikely that AhR is the 

major cause of density dependent Th17 cell responses. One potential mechanism by 

which AhR may modulate Th17 cell responses from within the cytoplasm is by STAT 

binding. STAT1 and STAT5 are capable of repressing Th17 cell responses (377, 569). 

AhR has recently been demonstrated to be capable of binding to STAT1 and STAT5, 

and inhibits the repressive effects that these STATs have on Th17 cell responses (377). 

It is possible that the increased AhR present within the cytoplasm of LoD cells prevents 

STAT1 from repressing Th17 cell responses. Assessing the difference in STAT1 
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activation and location in HiD and LoD cells would be interesting to assess, and if 

differences were observed then performing a STAT1 co-immunoprecipitation with AhR 

would indicate if AhR was capable of sequestering STAT-1. 

5.5.4 Cell-cell contact and Notch signalling 

Previous studies indicated that density modulates cell-cell contact and contributes to 

density dependent effects. In a prior investigation T-cells were cultured in U-bottom 96 

well plates to increase cell-cell contacts (461). Repeating this experiment did not 

indicate that cell contact contributed to the density dependent differences in T-cell 

responses. Another mechanism that has previously been demonstrated to block cell 

contacts is to culture cells in the presence of anti-LFA-1 and anti-CD18 antibodies 

(547). These antibodies are capable of preventing T-cell interactions by blocking T-cell 

aggregation which occurs during T-cell activation. A further mechanism to explore cell-

cell contacts is by culturing cells in the presence of a Ca2+ chelator. Notch signalling is 

capable of determining Th17 cell responses and is dependent on DC expression of 

Notch ligands in a cell contact dependent manner (554). However my data indicated 

that Notch signalling was unlikely to contribute to density dependent Th17 cell 

responses, as gamma-secretase inhibition had no effect on T-cell responses; although 

the conclusions drawn from these experiments are limited due to the absence of a 

positive control. T-cells are capable of expressing Notch ligands, but in previous studies 

the Notch ligands that regulated Th17 cell responses were provided by APC (555) and 

may therefore explain why Th17 cell responses in this model appear to be Notch 

signalling independent. 

5.5.5 T-cell viability 

Prior investigations into the effects of density upon T-cell responses have 

demonstrated that apoptosis is increased at low cell density (544, 545). The effect of 

apoptosis upon density dependent Th17 cell induction may therefore merit further 

investigation than conducted within this Chapter. High cell density culture is thought 

to reduce T-cell apoptosis via secretion of catalase. Catalase present in high density 

conditioned media can reduce apoptosis in low density cells by protecting against 

hydrogen peroxide present in the low density extracellular milieu (546). These 
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investigations were conducted in serum free conditions, therefore the use of serum 

replacement in HiD and LoD culture potentially provides factors capable of preventing 

apoptosis and supporting low density culture (546). Investigations into the effect of 

cell density upon Th1 and Th2 cell clones have demonstrated that Th1 cells are more 

susceptible to the effects of T-cell density than Th2 cells (547). Recent studies have 

demonstrated that Th17 cells are more resistant to Fas mediated apoptosis than Th1 

cell, but more susceptible than Th2 cells (456). Data within this Chapter however 

demonstrate that memory Th1 cell responses were not modulated by T-cell density. If 

density dependent apoptosis were occurring, then Th1 cell responses, which are highly 

susceptible to apoptosis, would be expected to be affected by density. Furthermore, 

initial analysis of viability did not indicate vast differences between HiD and LoD 

culture, which may explain why Th1 cell responses were not affected by density. 

However, assessing if density affects T-cell apoptosis and provides a selective pressure 

on the population would be interesting to assess.  

5.5.6 In vivo T-cell density 

Gorak-Stolinska et al comment that higher effector cell densities are analogous to sites 

of inflammation in vivo such as the rheumatoid joint or Mycobacterium infections 

(547). Regarding Th17 cells, recent literature indicates that Th17 cell are particularly 

important in the pathogenesis of early RA driving chronic joint destruction (253). 

Furthermore, Th17 cell fate mapping studies have demonstrated that chronic infection 

causes IL-17+ cells to switch to the production of IFNy. In comparison, the clearance of 

an acute C.albicans infection was associated with IL-17+CD4+ T-cells. By day 5 when the 

infection was cleared, IL-17 expression had switched off (337). In these situations it is 

possible that cell density is one of many factors that contribute to the limitation of 

Th17 cell responses. Low cell density at either early infection or the initial stages of 

autoimmunity may allow the expansion of Th17 cells, as density increases this may 

constrain/inhibit the Th17 cell response, prompting a change in T-cell phenotype. 

Analysing the effect of cell density upon T-cell phenotype in vivo would however be 

more difficult to address; but harnessing fate mapping studies along with 

immunohistochemistry or in vivo imaging may facilitate these investigations (337, 570).  
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5.5.7 Conclusion       

In summary, these data provide a novel insight into the regulation of human Th17 cell 

responses by T-cell density. Low cell density promotes Th17 cell responses in vitro and 

these effects may be regulated by T-cell density dependent activation of STAT3. The 

potential remains that these effects are an in vitro phenomenon. However, simple cell 

culture parameters such as cell density can clearly have a profound influence on T-cell 

effector phenotype. This has implications when data derived from in vitro culture are 

extrapolated to the in vivo setting. Increased investigation within this area may 

increase the consistency of data assessing the factors that regulate T-cell responses 

and provide greater understanding of how T-cell responses are regulated.  

 

 



Chapter 6. General Discussion  

190 

 

6 Chapter 6. General Discussion 

Within this thesis I aimed to investigate factors, other than the cytokine milieu, that 

were capable of regulating the human Th17 cell response. Prior to the identification of 

Th17 cells, studies established that T-cell stimulation strength could determine Th1 

and Th2 cell responses (394). In recent years, studies in mice have indicated that 

murine Th17 cell responses can be affected by stimulation strength (398–400) and 

therefore, I hypothesised that stimulation strength would also influence human Th17 

cell responses. Having found an effect of stimulation strength upon Th17 cell 

responses I also sought to assess an in vivo situation that may permit stimulation 

strength dependent Th17 cell responses associated with autoimmunity. In addition, I 

finally assessed the influence of T-cell density on Th17 cell responses, a parameter 

largely ignored in in vitro culture conditions. The major finding within this thesis are 

summarised in Figure 88. 

 

Major 
Findings

Low strength 
stimulation promotes 

Th17 responses

Low T-cell density 
promotes Th17 

responses

Mechanism in part 
dependent on 
Ca2+/NFATc1 

May be via a STAT3 
dependent pathway?

In vitro culture conditions  
exert a strong influence on T-
cell responses and can alter 
experimental conclusions 

PTPN22 risk T-allele (decreases 
TCR signal strength) may 

enhance Th17 cell responses –
further investigation required  

Figure 88. Major findings from thesis entitled: Regulation of human T helper 17 cell responses.  
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6.1 Summary of Findings 

6.1.1 Chapter 2 

The initial focus of my thesis was to investigate how stimulation strength may affect 

human Th17 cell responses. T-cells were activated with different ratios of anti-

CD3/anti-CD28 beads, in the presence of pro-Th17 cytokines (IL-1β, TGF-β, and IL-23). 

It was established that low strength TCR stimulation promoted human Th17 cell 

responses both proportionally and absolutely. The availability of CD28 co-stimulation 

and the presence of pro-Th17 cytokines are both essential factors for low strength 

Th17 cell responses. Moreover, these data counter prior claims that the cytokine 

milieu is capable of reversing the effect of stimulation strength (67): THi stimulated 

cells in the presence of pro-Th17 cytokines did not generate IL-17+ T-cells. 

Furthermore, the use of a more physiologically relevant stimulus of moDC also 

demonstrated that lower strength stimulation provided by APC promotes Th17 cell 

responses. The strength of stimulation was reduced either by decreasing the allogeneic 

moDC:T-cell ratio or by decreasing the concentration of super-antigen at a fixed ratio 

of autologous moDC and T-cells; both demonstrated that reduced stimulation strength 

promotes Th17 cell responses. Figure 89 depicts the stimulation strength requirements 

for some of the CD4+ T helper subsets, and correlates where my finding that human 

Th17 cell responses are favoured by low strength stimulation with these. However the 

diagram forms only an estimate as the direct investigative comparisons have not been 

made and in addition much of the data regarding the other subsets has been 

performed in mice.  
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Figure 89. The stimulation strength requirements of CD4+ T helper subsets. My data indicate that 
human Th17 cell responses are favoured by low strength stimulation (514). iTreg are favoured by low 
doses of strong agonists (425) but also in vivo generation of IL-10 producing iTreg are promoted by high 
affinity and high peptide dose (474). Th2 cells may like human Th17 be favoured by low affinity peptides 
or low antigen doses (402, 403) but can also be induced at very high doses depending on the antigen 
(404). Th1 cells are induced by high affinity peptide or high dose antigen (402, 403). 

6.1.2 Chapter 3 

Having established a role for stimulation strength in human Th17 cell responses a 

number of hypotheses were explored to explain the mechanism by which this 

occurred. Although markers of regulatory T-cells including IL-10, TGF-β, and Foxp3 

were elevated in THi conditions compared to TLo, further analysis did not reveal that 

these factors were capable of inhibiting THi Th17 cell responses. However, 

investigations assessing NFATc1, a TCR/Ca2+ regulated transcription factor important to 

IL-17 expression (492), revealed that NFATc1 binding to the IL-17 promoter was 

enhanced in TLo stimulated cells compared to THi cells. Furthermore, the addition of a 

Ca2+ ionophore, ionomycin, inhibited TLo IL-17 responses by ~50%, indicating that high 

Ca2+ signalling, such as that induced by high strength TCR signalling, is potentially 

inhibitory to human Th17 cell responses. However, the difference in NFATc1 binding to 

the promoter was not due to differences in NFATc1 translocation to the nucleus, 

indicating that THi culture alters the capacity of NFATc1 to bind to the IL-17 promoter. 

Potential mechanisms may include chromatin regulation or the binding of repressive 

transcriptional elements. The data within Chapter 3 currently indicates that in part low 

strength stimulation favours Th17 responses via a NFATc1/Ca2+ dependent mechanism.  
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6.1.3 Chapter 4 

The findings from Chapters 2 and 3 raised the question of how low strength 

stimulation may affect Th17 responses in vivo, and may promote Th17 responses as 

associated with autoimmune diseases, including RA (261, 266, 269, 571). Interestingly, 

many of the genes associated with increased risk of developing RA are genes that 

function as part of the TCR signalling pathway and stimulation strength (516). For 

example, a SNP within the PTPN22 gene encoding the protein tyrosine phosphatase 

Lyp is highly associated with the pathogenesis of RA (517). Lyp is a negative regulator 

of TCR signalling and expression of the PTPN22 1858T allele is thought to confer a gain-

of-function mutation resulting in enhanced inhibition of TCR signalling (521). I 

investigated if ‘healthy’ human memory T-cells from T-allele carriers would have 

enhanced Th17 responses due to reduced TCR signalling conferred by the PTPN22 

C1858T SNP. I genotyped 20 individuals for the C1858T SNP and then assessed IL-17, 

IFNy and IL-10 responses, that resulted from memory T-cells stimulated with anti-

CD3/anti-CD28, by ICS and/or ELISA. Although the proportion and absolute IL-17 and 

IL-17/IFNy response was marginally higher in the T-allele carriers than C-allele 

homozygotes, and the IL-10 secretion was lower, the number of genotyped individuals 

was insufficient to draw statistical significance. Sample size analysis revealed that for 

statistical significance to be drawn from more striking observations an excess of 12 

donors per group would be required.  

6.1.4 Chapter 5 

I lastly investigated the role that T-cell density may have in determining Th17 cell 

responses. Cell density is a variable of in vitro tissue culture that has been largely 

ignored, evident by the absence of publications within this field. In addition, although 

the majority of publications may state cell number or ratio, they do not refer to the 

plate well size and therefore cell density can be a further variable between 

experiments. Data generated within Chapter 5 demonstrated a profound role for cell 

density in modulating Th17 effector responses, where a low T-cell density promoted 

both absolute and proportional Th17 responses despite receiving a high strength 

stimulus. Furthermore the proportion of IFNy+ T-cells, when cultured in the presence 

of pro-Th1 cytokines, were unaffected by T-cell density indicating that the effect may 
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be more specific to Th17 cell responses. The mechanism for density dependent Th17 

cell responses was explored, addressing factors including: excess cytokine availability, 

cell-contact, Notch signalling and AhR translocation, though investigations did not 

indicate that these were responsible. STAT3, a transcription factor important to Th17 

cell responses (559), has been demonstrated to have altered activation depending on 

the density of non-immune cells (560–562). I found that STAT3 activation was indeed 

higher in LoD cells compare to HID, though inhibition of STAT3 in LoD cells had variable 

effects. Although the mechanism determining density-dependent Th17 cell responses 

is still being explored, data thus far indicate that STAT3 signalling may play a role in the 

low density mediated Th17 cell responses.  

 

The findings outlined above are interesting in themselves; however, collectively this 

thesis further highlights the importance of assessing simple cell culture factors such as 

in vitro T-cell density, and the type and/or strength of stimulation employed during an 

investigation, which can have dramatic effects on results. Within the Th17 cell field cell 

culture medium has also been demonstrated to affect T-cell responses, with IMDM 

favouring Th17 responses compared to conventional RPMI (215), but the question 

remains which condition better represents the in vivo situation? Furthermore, within 

in vivo mouse models it is acknowledged that certain mouse models more readily lead 

to a specific T-cell response. For example the DBA/2 mouse strain is biased towards a 

Th2 response, whereas the C57BL/6 is biased to Th1 (572), and therefore the strain of 

mouse chosen could alter the interpretation of an investigation. Together these 

findings emphasise the need to further investigate in vitro culture 

conditions/experimental models, which may allow the development of more 

standardised techniques that will hopefully permit better comparison to the human in 

vivo system in the future. However, although the in vitro systems currently used are 

artificial, they are useful for delineating mechanisms capable of controlling Th17 

development. For example, although there is no physiological relevance of IMDM and 

RMPI in vitro culture media, the comparison of these media highlighted that AhR 

signalling is an important mechanism in Th17 development, and may be important in 

vivo.  
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6.2 Future investigations 

6.2.1 T-cell density 

There are many future lines of investigation that can stem from the research 

performed within this thesis. Primarily the mechanism underpinning the promotion of 

IL-17+ cells by low density culture needs to be confirmed. The data depicted in Chapter 

5 indicate that enhanced STAT3 activation may explain the difference in response. 

Although the importance of STAT3 in this system remains to be determined, data with 

the literature do clearly indicate that STAT3 is important for Th17 cell responses.  It 

may therefore be of more benefit to establish how cell density in the model leads to 

differential STAT3 activation. One study demonstrated that cell-contact dependent 

mechanisms can contribute to density-dependent STAT3 activation which may require 

further exploration in the HiD/LoD system (562). In addition, the requirement of pro-

Th17 cytokines for low density-dependent Th17 cell responses may indicate that 

differences in cytokine receptor expression may confer the observed difference in 

STAT3 activation. In the event that enhanced STAT3 activation in LoD cells is a marker 

of Th17 cell induction rather than the cause of density-dependent responses there are 

further lines of investigation that may be pursued. For example, IL-2 has been 

demonstrated in murine models to inhibit Th17 cell responses by inducing STAT5 

activation which binds to the Il-17 promoter to block STAT3 binding (573). One 

investigation has revealed that in mouse T-cells stimulated with the same peptide 

dose, only T-cells cultured at a high density where able to sense IL-2 and 

phosphorylate STAT5 (146). The high and low densities assessed were comparable to 

the HiD and LoD densities used in my investigation, furthermore data observed within 

our laboratory indicates that anti-CD3/anti-CD28 stimulation enhances T-cell IL-2 

secretion. Therefore a further possibility is that IL-2 production and T-cell 

responsiveness at high density inhibits Th17 responses. 

 

Once the mechanism of density-dependent Th17 cell responses has been established it 

would be interesting to assess if this is an in vitro phenomenon or if it has in vivo 

relevance. However, assessing the affect of T-cell density in vivo may be difficult. 

Although not in vivo, a simple experiment to create a more physiological situation 
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would be to perform T-cell:DC co-cultures upon epithelial cell layers, which may alter 

density dependent T-cell responses by changing cell-cell contacts. One potential 

method of assessing density in vivo may be to employ the novel nano-magnetic 

labelling technology which has been used to guide stem cells to damaged tissue and 

DC cell therapies to target sites in mice (574, 575). To assess the effect of density on T-

cell responses in vivo, T-cells could be labelled with nano-magnets and injected into 

mice, an external magnet allows the T-cells to be guided or held to a certain tissue area 

which can be assessed by MRI. Depending on the number of labelled cells injected this 

would increase or decrease the density of T-cells in a single locale. APC primed with 

Th17 promoting stimuli could also be magnetically labelled to allow the differences in 

the immune response conferred by T-cell density to be assessed.  

6.2.2 Influence of stimulation strength 

The strength of T-cell stimulation as discussed in Chapters 2 and 3 can be determined 

by a number of factors including the rate and duration of TCR triggering, the affinity of 

TCR for pMHC, the number of TCR activated, and the signal threshold which can be 

modulated via CD28 signalling (388). Within my investigations the strength of 

stimulation was modulated by altering the number of expander beads/DC, or by 

altering the amount of anti-CD3/super-antigen present per bead/DC respectively. In 

addition the effect of the duration of stimulation on Th17 responses was also briefly 

explored. In each model varying stimulation strength it was found that low strength 

stimulation favoured Th17 cell responses. 

 

Further investigation into the regulation of Th17 cell responses by low strength 

stimulation in an antigen-specific manner would also be interesting. By using a TCR 

transgenic mouse model, the strength of stimulation may be modulated by altering the 

quantity of peptide loaded, or by using altered peptide ligands which reduce the 

quality of MHC to peptide binding or T-cell to pMHC binding (400). These experiments 

would allow the T-cell response to be assessed in an antigen-specific manner, which is 

not possible when using human T-cells due to the TCR polyclonality. Compared to T-

cell activation by an antibody, antigen-specific T-cell activation of TCR-transgenic 

mouse T-cells provide a more physiologically relevant stimulus. The physiological 
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relevance of a fully TCR-transgenic T-cell response is also unclear (576), but these 

investigations would improve and compliment our understanding of Th17 cell 

regulation and allow comparison to in vitro induced human Th17 cell responses.  

 

Differences in NFATc1:IL-17 promoter binding were observed in THi and TLo cultures 

and the addition of ionomycin reduced Th17 cell responses by 50%. These results, 

however, do not comprehensively establish if differences in Ca2+ signalling are 

responsible for the difference in Th17 response. Future analysis of stimulation strength 

dependent T-cell responses may be benefitted by including analysis of Ca2+ signalling, 

to confirm that Ca2+ flux does indeed differ. Furthermore, conclusions would have 

been strengthened by assessing if NFATc1:IL-17 promoter binding was decreased in 

TLo cultures following the addition of Ionomycin, which reduced IL-17 responses by 

50%. In addition, as loss/gain-of function effect of the SNP is still uncertain, the data 

within Chapter 4 concerning the PTPN22 SNP would also be strengthened in future by 

assessing differences in Ca2+ signalling. The effect of the risk T-allele has previously 

been demonstrated to attenuate Ca2+ signalling in memory T-cells (528), though there 

is still some debate over whether the SNP confers a gain or loss-of-function mutation 

(519). By establishing in healthy donors if Ca2+ signalling is attenuated, this would 

confirm if the T-allele was able to reduce stimulation strength and allow the SNP effect 

to be quantified. Methods to assess Ca2+ signalling in these situations could include 

confocal microscopy or flow cytometry.  

 

Although my investigations have established that low strength stimulation promotes 

Th17 cell responses I could not contextualise these findings with the other human T-

cell effector phenotypes. To achieve this, the effect of stimulation strength on the 

broad spectrum of T helper subsets is required. One means by which this could be 

achieved is by culturing T-cells under Th1, Th2, Treg inducing conditions, assessing the 

effects of different stimulation strengths on phenotype by using a broad panel of 

defined cytokine markers. Furthermore, it is not only the strength of T-cell activation 

that is important to determining T-cell phenotype: different molecules comprising the 

immune synapse can also contribute to ‘stimulation strength’. Different signalling 
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pathways are activated depending on the stimulatory molecule bound (e.g. CD3, CD5, 

CD28), which can result in differences in transcription and therefore T-cell response. 

An example of this was recently highlighted where CD5 co-stimulation was found to 

have a novel role in naive Th17 cell induction (577). In the presence of anti-CD3, anti-

CD5 co-stimulation was observed to be favourable in comparison to CD28 stimulation 

at inducing a Th17 cell response, thought to be due to elevated IL-23R expression on T-

cells by CD5. However, although the secretion of IL-17 is high, the proportions of Th17 

cells remained low (on average 3.7%), as observed in previous studies assessing human 

Th17 induction from naive T-cells. Furthermore, induction of IFNy+ populations was 

greater than IL-17+ under CD3/CD5 stimulation compared to CD3/CD28 stimulation. In 

addition, cell adhesion molecules/integrins such as CD2, ICAM-1 and LFA-1 contribute 

to the strength of immune synapse formation, modulate TCR signalling thresholds, and 

can modulate Th1 and Th2 responses (106, 578, 579). Therefore, addressing the effect 

of different stimulation strengths and routes of modulation upon T-cell responses may 

reveal novel mechanisms by which naive and/or memory Th17 cell responses are 

induced or regulated.     

6.2.3 Potential role of IL-2 

IL-2 is mainly a T-cell derived growth factor that supports both T-cell proliferation and 

survival (1). Activation of T-cells via TCR and CD28 results in rapid secretion of IL-2 

proportional to the strength of stimulation via an AP-1/NFAT dependent pathway (2, 

3). However, investigations have found IL-2 to have an inhibitory effect upon murine 

Th17 cell induction (4). The inhibitory effect of IL-2 is thought to be due to the 

activation of the STAT5 signalling pathway (5). STAT5 can directly repress the Il-17A 

locus, but in addition, STAT3 and STAT5 compete for the same Il-17A binding sites and 

the balance of these two transcription factors has been found to determine the 

capability of IL-2 to repress Th17 cell induction. Furthermore, IL-2 signalling has also 

been demonstrated to decrease expression of gp130, a subunit within the IL-6R family, 

preventing IL-6 signalling and thereby decreasing STAT3 activation (6).  

 

Until recently, IL-2 had not been observed to inhibit human Th17 cell responses (7). 

The presence of IL-2 in combination with IL-1β was found to enhance human Th17 cell 
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responses, and blockade of IL-2 signalling prevented IL-17 expression (8). Furthermore, 

the combination of IL-1β and IL-2 was been found to be sufficient to convert human 

nTreg cells into Th17 cells, indicating a further discrepancy between the human and 

murine differentiation systems (9). Human Th17 cell differentiation does not require 

IL-6 and therefore this may be one reason for the difference in the murine-human 

observation. However, very recently IL-2 was observed to reduce IL-17 expression in 

human memory Th17 cell clones, potentially suggesting parity between the murine 

and human systems (10). 

 

Within this thesis, the role of IL-2 upon both high stimulation strength (THi) and high 

density (HiD) conditions was not explored; this was mainly due to the historic support 

for the use of IL-2 in human Th17 cell cultures. However, as IL-2 is an early effector 

molecule induced by TCR stimulation and increases as a result of increased stimulation 

strength it is a limitation of this thesis that the contribution of IL-2 has not been 

addressed within these systems. Nevertheless, recent experiments, outside of this 

thesis, have explored the potential inhibitory role of IL-2 within the HiD/LoD model. 

The addition of an anti-IL-2 neutralising antibody at 10 ug/mL at days 0 and 3 was not 

observed to enhance the proportion of IL-17+ cells, but did reduce T-cell proliferation. 

Furthermore, the addition of 2000 U/mL of IL-2 daily to LoD cultures was also observed 

to have no inhibitory effect upon the proportion of IL-17+ cells, despite LoD cells, like 

HiD cells, being IL-2 responsive from 24 hours as marked by expression of CD25 (Figure 

69). In addition, STAT5 phosphorylation, which mediates the negative effects of IL-2 on 

IL-17 expression in mouse T-cells, was assessed by western blot in HiD and LoD cells at 

72 and 96 hours. STAT5 phosphorylation was found to be enhanced within LoD cell 

lysates compared to HiD cell lysates at both time points. Together these data suggest 

that IL-2, if inhibitory to human Th17 cell responses, is not the sole factor contributing 

to the inability of HiD/THi cultures to generate IL-17+ T-cells.  
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6.2.4 Regulation of Th17 cells by miRNA 

The study of immunology is moving towards gaining a greater understanding of the 

signalling and transcriptional regulation of discrete populations of T-cells. As previously 

mentioned I think that assessing differences in chromatin regulation conferred by 

stimulation strength would prove informative. A further area that would also be 

tempting to investigate is the role and regulation of miRNAs on stimulation strength 

dependent Th17 cell responses. Recently microRNAs (miRNAs) have been 

demonstrated to play an important role in immune regulation, including T helper cell 

subset development  (586).  miRNAs are non-coding RNAs of 21-24 nucleotides in 

length that regulate gene expression through different mechanisms, including 

inhibition of mRNA translation or the induction of mRNA degradation(587). miRNAs 

have been found associated with a Th17 cell phenotype. miRNA-326 contributes to 

multiple sclerosis disease progression by promoting Th17 responses through 

repression of Est-1, a negative regulator of Th17 (588). Another group reported the co-

expression of miRNA-146a and IL-17 in RA patients (589) and, more recently, it was 

demonstrated that expression of miR-133b and miR-206 is co-regulated with IL-17 

production in murine and human T cells (590). In addition, studies have demonstrated 

that TCR signalling and strength can be regulated by miRNA. MiR-181a has been shown 

to enhance TCR sensitivity by downregulating multiple phosphatases and lowering the 

TCR signalling threshold (591). Moreover, CD28 stimulation upregulates miRNA-214 

which targets Pten a negative regulator of TCR signalling (592). Therefore it would be 

tempting to compare the miRNA profiles of THi and TLo stimulated cells to assess if 

certain miRNAs are capable of regulating stimulation strength-dependent Th17 

responses. The requirement of miRNA for THi and TLo responses could be assessed 

initially by knocking down dicer, a cytoplasmic ribonuclease essential to miRNA 

maturation and function (593). If miRNA are found to be important, a miRNA array 

could be performed to identify potential miRNAs capable of differentially regulating 

stimulation strength dependent responses. The function of the identified miRNAs 

could be confirmed by specific miRNA over-expression or knock-down.   
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6.2.5 PTPN22 C1858T SNP and T-cell regulation 

A further project to explore is that of PTPN22 regulation of T-cell responses. Although 

the data presented within Chapter 4 indicated only a small effect of the minor T-allele 

on Th17 cell responses, further studies have revealed that alteration to PTPN22 

function conferred by the SNP can alter T-cell responses. Moreover, src family kinases 

(SFKs) are also involved in the regulation of many immune receptor signalling 

pathways including TLR, chemokine, and Fc Receptors (539). PTPs regulate SFK-

dependent pathways and therefore perturbations to SFK signalling conferred by 

polymorphisms in PTPs are likely to affect the immune response (594). Therefore an 

interesting project may be to assess the contribution of PTPN22 SNPs to T-cell 

development and function by taking a broader approach. The capability of Lyp to 

regulate DC maturation and function and how this changes with the presence of the 

minor T-allele has not been explored in detail. Alterations to DC function would be 

predicted to affect T-cell development and phenotype by altering the cytokine milieu 

and the provision of co-stimulation as seen by Zhang et al (519). In order to perform 

this study the availability of Pep-/- mouse models would be a particularly useful model, 

as Lyp inhibitors which could be used for human DC and T-cell investigations are less 

selective (595). Furthermore, the availability of sufficient numbers of healthy human 

genotyped donors would be essential to finally confirm experimental findings. This 

study could provide new information on how a SNP in the PTPN22 increases 

susceptibility to certain autoimmune diseases.  

6.2.6 Conclusion 

In conclusion, this thesis demonstrates a profound and novel role for stimulation 

strength and T-cell density in determining in vitro human Th17 cell responses. Low 

strength stimulation was found to promote Th17 cell responses via a Ca2+/NFATc1 

dependent pathway: a finding that may have implications for the type of therapies and 

treatments used to control Th17 cell associated pathologies. Moreover, this research 

suggests that perturbations to TCR signalling associated with RA may affect the 

balance of the T-cell response, potentially favouring Th17 cell development. In 

addition, Th17 cell responses were also favoured by a low T-cell density. Although the 

mechanism is yet to be determined, this finding provides a novel insight into how Th17 
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cell responses are regulated in vitro and may alter our interpretation of how successful 

in vitro defined therapies against Th17 cells are. In addition to the main findings, this 

research also serves to highlight the dramatic effect that alterations to in vitro culture 

conditions can have on immune responses: supporting calls for standardisation of 

human in vitro and ex vivo T-cell analysis and careful comparison with in vivo murine 

systems.  
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7 Chapter 6 Materials and Methods 

7.1 T-cell isolation and culture 

7.1.1 Source of Cells  

Buffy coats or Leucocyte Reduction System (LRS) cones were obtained from the 

National Blood Service. Peripheral blood samples, were obtained with informed 

consent following approval by the Newcastle and North Tyneside Research Ethics 

Committee 2.  

7.1.2 Isolation of peripheral blood mononuclear cells 

PBMC were obtained from Buffy coat, LRS cone, or peripheral blood by density 

gradient centrifugation over Lymphoprep. Lymphoprep separates the PBMC from red 

blood cells and granulocytes using a density gradient. The buffy coat was firstly diluted 

1:4, (LRS cone 1:2; peripheral blood 1:1) using pre-warmed Hanks Balanced Salt 

Solution (HBSS; Ca2+ and Mg2+ free; Sigma; St Louis USA) supplemented with 2mM 

ethylenediamine tetraacetic acid (EDTA) (Sigma), a metal ion chelator that prevents 

binding of Ca2+ dependent cadherins and the clumping of cells. 20 mL of the diluted 

buffy coat, cone, or peripheral blood was layered onto 15 mL of Lymphoprep and then 

centrifuged at 895 g (low acceleration, brake off, room temperature) for 30 minutes. 

PBMC were then retrieved from the Lymphoprep and plasma interface and were then 

washed in cold HBSS + 1% FBS (Gibco; Paisley, UK) at 600 g for 7 minutes (4°C) to 

remove any residual Lymphoprep (Axis-shield PoC; Oslo, Norway) and debris. PBMC 

were washed a second time in cold HBSS + 1% FBS at 250 g for 7 minutes to remove 

platelets. PBMC were kept cold throughout to prevent cell adhesion and activation. 

PBMC were filtered through a 100 μM nylon filter (BD Biosciences; Oxford, UK) to 

remove any clumps or debris and then cells were counted on a Burker counting 

chamber.  

7.1.3 Isolation of naïve CD4+ T-cells   

The EasySep human naïve CD4+ T-cell enrichment kit (StemCell Technologies; 

Vancouver, Canada) was used to extract naïve CD4+ T-cells from PBMC by negative 
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selection. The RoboSep was used in conjunction with the kit for the automated 

isolation of naive CD4+ T-cells. The naïve T-cell enrichment kit enriches naïve CD4+ T-

cells using a cocktail of monoclonal antibodies against CD8, CD14, CD16, CD19, CD20, 

CD36, CD56, CD123, TCRγ/δ, and glycophorin A. These antibodies are complexed to an 

anti-dextran antibody to form bispecific Tetrameric Antibody Complexes (TAC), which 

recognise both the cell surface antigen expressed on the unwanted cells and dextran-

coated magnetic nanoparticles. A separate biotinylated anti-CD45RO antibody and a 

bispecific TAC against biotin and dextran, which is included in the enrichment cocktail, 

is used to remove CD4+CD45RO+ memory T-cells. The cells labelled by the cocktail and 

magnetic nanoparticles are removed using a magnet, leaving the pure population of 

naïve CD4+ T-cells in suspension. The procedure was followed according to 

manufacturer’s instructions. Following isolation the cells were counted using a Burker 

counting chamber. The purity of the naïve CD4+ T-cells was measured by cell surface 

staining for CD4 and CD45RA using the surface staining protocol described below and 

analysed by flow cytometry. Purity was >90% (Figure 90). 
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Figure 90. Naive CD4
+
 T-cell purity.  Naïve CD4

+
 T-cells were isolated from PBMC by negative selection 

using the RoboSep naive CD4
+
 T-cell enrichment kit. Naïve CD4

+
 T-cell purity was measured by staining 

for CD4 and CD45RA. T-cells were gated on forward scatter side scatter to remove cell debris. Data are 
representative of 3 independent experiments. 

7.1.4 Isolation of memory CD4+ T-cells 

The EasySep human memory CD4+ T-cell enrichment kit (StemCell Technologies) was 

used to extract memory CD4+ T-cells from PBMC by negative selection. The RoboSep 

was used for automated isolation. The memory CD4+ T-cell enrichment kit enriches 
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memory CD4+ T-cells using a cocktail of bispecific TAC recognising CD8, CD14, CD16, 

CD19, CD20, CD36, CD45RA CD56, CD123, TCRγ/δ, and glycophorin A on unwanted 

cells, and dextran-coated magnetic microparticles. The cells labelled by the cocktail 

and magnetic microparticles are removed using a magnet, leaving the remaining pure 

population of memory CD4+ T-cells in suspension. 

 

The procedure was followed according to manufacturer’s instructions. Following the 

magnetic isolation procedure isolated cells were counted using a Burker counting 

chamber. The purity of the memory CD4+ T-cells was measured by cell surface staining 

for CD4 and CD45RO using the surface staining protocol described below and analysed 

by flow cytometry. Purity was routinely >90% (Figure 91).   
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Figure 91. Memory CD4
+
 T-cell purity.  Memory CD4

+
 T-cells were isolated from PBMC by negative 

selection using the RoboSep memory CD4
+
 T-cell enrichment kit. Memory CD4

+
 T-cell purity was 

measured by staining for CD4 and CD45RO. Firstly cells were gated on forward scatter and side scatter 
to remove cell debris. Data are representative of 6 independent experiments.  
 

7.1.5 Isolation of CD4+ T-cells 

RosetteSep Human CD4+ T-cell Enrichment Kit (StemCell Technologies) was used to 

extract CD4+ T-cells from buffy coats or LRS cones. The enrichment antibody cocktail 

negatively selects CD4+ T-cells by cross linking unwanted CD4- cells to red blood cells, 

forming immunorosettes. The mixture is layered over a density gradient media, e.g. 

Lymphoprep, and centrifuged. The increased density of the rosetted cells causes them 

to pellet, leaving the enriched CD4+ T-cell population at the interface between the 

plasma and Lymphoprep layers, allowing easy removal with a Pasteur pipette.  
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The procedure was followed according to manufacturer’s instructions. After washing, 

the resultant CD4+ T-cells were resuspended in Phosphate buffered saline (PBS) + 2% 

FBS and counted using a Burker counting chamber. The purity of the CD4+ T cells was 

measured by cell surface staining for CD3 and CD4 using the surface staining protocol 

described 7.5.1 and analysed by flow cytometry. Purity was found to be routinely >90% 

(Figure 92). 

 

Figure 92. CD4
+
 T-cell purity.  CD4

+
 T-cells were isolated directly from buffy coats or LSR cones using 

RosetteSep CD4
+
 T-cell enrichment cocktail. Purified CD4

+
 T cells were stained with CD3 and CD4 to 

measure T-cell purity. Cells were firstly gated on forward scatter vs side scatter in order to remove 
debris. Data are representative of 3 independent experiments.  
 

7.2 Cryopreservation of T-cells 

Following cell separation and isolation, T-cells were either cultured or cryopreserved.  

Cyropreservation allows long term cell storage of cells for future use. Cyropreservation 

of cells requires them to be cooled between -80˚C and -197˚C (liquid nitrogen boiling 

point), which prevents biological processes from occurring, including those controlling 

cell death. To prevent cellular damage during cryopreservation a cryoprotectant, such 

as Dimethyl Sulphoxide (DMSO; Sigma), is added. DMSO lowers the freezing 

temperature and prevents the formation of ice crystals; however DMSO is toxic to 

cells. Toxic effects of DMSO are minimised when used in a 10% solution with FBS. In 

addition, ensuring that all reagents are pre-cooled for freezing and pre-warmed for 

thawing protects cells during cyropreservation. Briefly, ice-cold cells were pelleted at 

400g, for 7 minutes, at 4˚C. Following aspiration of the supernatant, cells were 

resuspended at a concentration of 10x106 cells/mL in ice cold FBS + 10% DMSO, and 

transferred to a pre-cooled cryovial (1 mL/ vial). Cells were then transferred to -80˚C in 
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a polystyrene box to control the rate of freezing. For long term cell storage after 1 

week cells were transferred to liquid nitrogen.  

7.3 CD4+ T-cell culture  

Isolated CD4+ T-cells were plated to a concentration of 1x106 cells/mL, in 1 mL of IRS10 

(Iscoves Modified Dulbeccos Medium (IMDM, Sigma) containing 10% Knockout Serum 

Replacement (Invitrogen; New York, USA) with Penicillin/Streptomycin (100 μg/mL, 

Gibco) and L-glutamine (2mM, Cambrex; Wiesbaden, Germany) in a 24 well plate. CD4+ 

T-cells were activated using anti-CD3/anti-CD28 T cell expander Dynabeads 

(Invitrogen). To measure the effects of stimulation strength the ratios of anti-CD3/anti-

CD28 expander beads and CD4+ T-cells were titrated. Following titration a high and low 

strength stimulus were chosen for T-cell activation: 1:1 (THi) or 1:50 (TLo) bead:T-cell 

ratio, respectively. To induce specific effector T-cell responses, day 0 CD4+ T-cells were 

cultured in the presence of skewing cytokines (Table 5). Cells were cultured at 37°C, 

5% CO2 for 6 days (longer term cultures in which the cells are rested are described 

below). On day 3 of culture the appropriate cytokines (see Table 5) were added to 

cells. As the cells proliferated during culture, cells were split as and when required, in 

part indicated by a change in media colour.      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 93. THi/TLo Th17 culture conditions.  Human CD4

+
 T cells are activated with anti-CD3/anti-CD28 

expander beads under THi (1:1  bead:cell ratio) or TLo (1:50  bead:cell ratio) conditions in the presence 
of pro-Th17 cytokines TGF-β, IL-1β, & IL-23. At day 3 IL-2 and IL-23 are added to cultures. At day 6 the T-
cells are phenotyped by Intracellular flowcytometry and/or ELISA.   
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Post day 3 refreshing or splitting was performed using IRS10 containing IL-2 (10 IU/mL) 

and IL-23 (10 ng/mL) for Th17 conditions or for Th1, Th2 and Th0 cell conditions IRS10 

containing 10 IU/mL IL-2. For any additional reagents used in the investigation of Th17 

cell responses, their concentrations, and addition times are shown in Table 6. At day 6 

the.cells were restimulated with PMA/ionomycin  in the presence of BFA (as described 

7.5.2) and the T-cell phenotype was assessed by intracellular cytokine staining and 

flow cytometry (as described 7.5.3) measuring the proportion of IL-17+ or IFNy+ cells.   

 

T helper cell 

phenotype 

Cytokines added Day 0 Cytokines added Day 3 

Th1 
IL-12 (10ng/mL; Peprotech; 

London, UK) 

IL-2 (10 IU/mL Roche West sussex, 

UK) 

Th2 
IL-4 (10ng/mL; Immunotools; 

Friesoythe, Germany) 

IL-2 (10 IU/mL) 

Th17 

IL-1β (10ng/mL; Peprotech) 

TGF- β (10ng/mL; Peprotech) 

IL-23 (10ng/mL; R&D Systems) 

IL-2 (10 IU/mL) 

IL-23 (10ng/mL) 

Th0 IL-2 10 (IU/mL) IL-2 (10 U/mL) 

.  
Table 5. Cytokines and concentrations used for T helper cell responses 

 

Factor Concentration Addition Company 

Anti-IL-4 20 μg/mL Day 0 & 3 eBioscience; SanDiego, USA 

Rat IgGk Isotype 20 μg/mL Day 0 & 3 eBioscience 

Anti-CDw210 (IL-10R) 20 μg/mL Day 0 & 3 BD Bioscience  

Rat IgG2ak Isotype 20 μg/mL Day 0 & 3 BD Bioscience 

Alk 5 inhibitor SB505124 5, 0.5, 0.05 μM Day 0 & 3 Sigma 

DAPT inhibitor 1 μM 
Day 0, 3 or 0 & 

3 
Enzo Life Sciences (Exeter, UK) 

Recombinant human IL-10 10 ng/mL Day 0 & 3 Peprotech 

Ionomycin 500 nM Days 0-3 Daily Sigma 

S115 STAT3 inhibitor 200-50 μM 48 or 72 hours Selleck (Boston, USA) 

Table 6. Additional reagents used during Th17 cell cultures.  
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7.3.1 CD4+ T-cell culture: resting cultured CD4+ T-cells 

For T-cell culture past day 6, the T-cells were harvested at day 6 into a 5 mL round 

bottom polystyrene tube. The tube was placed into an EasySep magnet for 3 minutes 

to remove the anti-CD3/anti-CD28 beads: the magnetic beads are attracted to the 

magnet leaving the T-cells in suspension. The T-cells were poured out into a universal 

tube and were then pelleted in PBS + 2% FBS at 400g for 7 minutes (room 

temperature). Following resuspension of the cell pellet the cell number and viability 

were assessed by cell counting with trypan blue (Sigma) using a Burker counting 

chamber. Trypan blue is able to pass through the membrane of dead cells, but not 

alive cells, making dead cells appear blue when viewed under a microscope. Cells were 

cultured in IRS10 at a concentration of 1x106 cells/mL in a 24 well plate in the presence 

of IL-2 (10 IU/mL) and IL-23 (10 ng/mL) for Th17 cell cultures and incubated at 37°C, 5% 

CO2 until day 10 or 14. If required, media was refreshed with IRS10 containing 10 U/mL 

IL-2 and 10 ng/mL IL-23. At day 10 or 14 the cells were restimulated with 

PMA/ionomycin  in the presence of BFA (as described 7.5.2) and the T-cell phenotype 

was assessed by intracellular cytokine staining and flow cytometry (as described 7.5.3) 

measuring the proportion of IL-17+ or IFNy+ cells.  

 

7.3.2 CD4+ T-cell culture: anti-CD3 and anti-CD28 titrations using the MACS T-cell 

activation/expansion Kit 

In addition to the anti-CD3/anti-CD28 T cell expander Dynabead titrations described 

above, the MACS T-cell Activation/Expansion Kit (Miltenyi Biotec; Cologne, Germany) 

was also used to assess stimulation strength. By using magnetic beads bound with anti-

biotin antibody, anti-CD3-Biotin and anti-CD28-Biotin can be conjugated to the anti-

biotin beads at a chosen concentration. Anti-biotin magnetic beads were loaded with 

40, 10 and 2.5 μg/mL of anti-CD3-biotin +/- 40, 10 and 2.5 μg/mL of anti-CD28-biotin, 

according to the manufacturer’s instructions. Following the conjugation of antibody to 

bead, 1x106 CD4+ T-cells were cultured in IRS10 with the beads at the manufacturer 

recommended ratio of 1 T-cell:2 beads. Cells were cultured under pro-Th17 cell 

cytokine conditions (Table 5). At day 6 for ELISA analysis the cells were harvested and 
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pelleted at 400g for 7 minutes at 4˚C. Cell culture supernatant was removed and 

transferred to microcentrifuge tubes and frozen at -20°C for analysis by ELISA (as 

described below). A separate well of day 6 T-cells were restimulated with 

PMA/ionomycin  in the presence of BFA (as described 7.5.2) and the cells were 

phenotyped by intracellular cytokine staining and flow cytometry (as described 7.5.3) 

generally measuring the proportion of IL-17+ or IFNy+ cells.   

7.3.3 Memory CD4+ T-cell culture: affect of cell density 

Memory CD4+ T-cells were isolated using EasySep Human Memory T-cell enrichment 

kit as described above. Memory CD4+ T-Cells were cultured in 24 well plates in IRS10 in 

a total culture volume of 1 mL with anti-CD3/CD28 beads at a 1:1 (THi) ratio. To 

achieve different densities, T-cells at a starting density of 1x106 cells/mL were 

combined with anti-CD3/CD28 beads at a 1:1 ratio, cells and beads were then serially 

diluted in IRS10 either two or four fold as indicated. Pro-Th17, pro-Th1, or Th0 cell 

cytokines were added to each T-cell culture density at the indicated concentration 

(Table 5). Titration of cytokines in parallel with T-cell density was achieved by adding 

pro-Th17 cell cytokines at the usual concentration with the 1x106 cell density and then 

serially diluting cytokines in combination with the T-cells and beads. Cells were 

incubated at 37˚C 5% CO2 and refreshed as indicated above. At day 6 the cells were 

restimulated with PMA/ionomycin  in the presence of BFA (as described 7.5.2 ) and the 

T-cell phenotype was assessed by intracellular cytokine staining and flow cytometry (as 

described 7.5.3) measuring the proportion of IL-17+ or IFNy+ cells.   

7.3.4 Memory CD4+ T-cell culture: duration of T-cell activation 

1x106 memory CD4+ T-cells were cultured in 24 well plates in IRS10 in a total culture 

volume of 1 mL with anti-CD3/CD28 beads at a 1:1 ratio (THi) in the presence of pro-

Th17 cytokines (Table 5). Cells were cultured for 24h, 48h, or 72 h, after which cells 

were either harvested into a 5 mL round bottom tube or a universal tube (beads not 

removed). The T-cells in the round bottom tube were placed into an EasySep magnet 

for 3 minutes to remove the anti-CD3/anti-CD28 beads. Both T-cell poplulations (+/- 

beads) were then pelleted in Hanks + 1% FBS at 400g for 7 minutes (room 

temperature). Following resuspension of both cell populations pellets, the number of 
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viable cells was determined by trypan blue staining using a Burker counting chamber. 

Cells were re-cultured at a concentration of 0.5x106 cells/mL in the presence or 

absence of pro-Th17 cell cytokines (Table 5). Cells were cultured for 6 days at 37°C 5% 

CO2. At day 6 the cells were restimulated with PMA/ionomycin  in the presence of BFA 

(as described 7.5.2) and the T-cell phenotype was assessed by intracellular cytokine 

staining and flow cytometry (as described 7.5.3) measuring the proportion of IL-17+ or 

IFNy+ cells.   

7.4 Isolation and culture of monocyte derived dendritic cells 

Generation of monocyte derived dendritic cells (moDC) from monocytes was based 

upon the established method described by Sallusto and Lanzavecchia, and Romani et al 

(596, 597).  Culture of CD14+ monocytes with IL-4 and granulocyte macrophage-colony 

stimulating factor (GM-CSF) for 6 days induces an immature DC phenotype without cell 

division. Maturation of moDC is achieved by 24h culture of immature moDC with 

inflammatory stimuli, such as lipopolysaccharide, peptidoglycan, or TNFα.  

7.4.1 Isolation of CD14+ monocytes from PBMC 

Monocytes were separated from the PBMC using CD14 positive selection by magnetic 

activated cell sorter (MACS, Miltenyi Biotec). The principle of MACS separation is that 

the magnetic MicroBeads are conjugated to an antibody raised against CD14. When 

the MicroBeads are added to PBMC, the MicroBeads bind to monocytes expressing 

CD14. When the labelled PBMC were passed through a MACS column placed within a 

magnet the unlabelled CD14- cells pass through the column whereas the labelled 

CD14+ cells are retained within the column. Once the column is removed from the 

magnet the CD14+ cells can be eluted.  

 

The procedure was followed according to manufacturer’s instructions. Briefly, it was 

ascertained from previous separations that the PBMC population contains 15-30% 

CD14+ monocytes. Throughout the separation MACS buffer (Dulbeccos phosphate 

buffered saline (DPBS, Lonza), + 2 mM EDTA + 0.5% FBS) was used and kept ice cold, 

and all centrifugation steps were performed at 4°C. Firstly the PBMC were washed in 

MACS buffer at 400 g for 7 minutes. PBMC were then resuspended in MACS buffer 
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(800 μL per 100x106 cells) and CD14 MicroBeads (Miltenyi Biotec) were added (100 μL 

per 100x106 cells) for 15 minutes at 4°C and the solution was gently shaken every 5 

minutes to ensure appropriate mixing. PBMC were then washed in MACS buffer at 400 

g for 7 minutes to remove unbound CD14 MicroBeads. During centrifugation the MACS 

magnet was prepared by rinsing an LS MACS column (Miltenyi Biotec) with 3 mL MACS 

buffer. Following centrifugation the cell pellet was resuspended to a concentration of 

100x106 cells/mL in MACS buffer and transferred to the pre-washed LS column. Once 

the cell suspension had passed through the column the column was then washed a 

further 3 times with 3 mL of MACS buffer to remove any remaining CD14- cells. Finally 

the column was removed from the magnet and placed over a universal tube and the 

CD14+ monocytes were eluted from the column using 5 mL of MACS buffer. The 

purified CD14+ monocytes were then centrifuged at 400 g for 7 minutes, 4°C, and 

resuspended MACS buffer. Cells were then counted using a Burker counting chamber. 

The required number of CD14+ monocytes were centrifuged at 400 g for 7 minutes in 

order to remove residual MACS buffer. CD14+ monocytes were then carefully 

resuspended to prevent activation, in either RF10 (RPMI (Sigma) with 

Penicillin/Streptomycin (100 μg/mL), L-glutamine (2mM) and FBS (10%)) for future use 

in allogeneic DC:T cell cultures or in complete cell serum-free media, CellGro DC 

(CellGenix; Freiburg, Germany), for autologous DC:T-cell cultures.  

7.4.2 Culture of monocyte-derived dendritic cells 

CD14+ monocytes were cultured at a concentration of 0.5x106 cells/mL in either 1 mL 

of RF10, or 1 mL of CellGro in a 24 well plate. To each well IL-4 (Immunotools) and GM-

CSF (Immunotools) were added to a final concentration of 50 ng/mL. Following plating, 

monocytes were cultured for 6 days at 37°C in 5% CO2 to induce monocyte 

differentiation to an immature DC phenotype. On day 3, IL-4 and GM-CSF were 

refreshed by carefully removing 450 μL supernatant and replacing with 500 μL pre-

warmed RF10 or CellGro containing 50 ng of IL-4 and 50 ng GM-CSF. moDC were 

activated for 24h on day 6 by the addition of 50 μg/mL of S.aureus peptidoglycan 

(InvivoGen; Toulouse, France), a TLR2 agonist which induces the release of pro-Th17 

cell cytokines from dendritic cells, to produce PGN-matured DC. PGN maturation was 

performed in the presence of Candida albicans allergen extract in Chapter 5 at a final 
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concentration of 1:5000 w/v (Soluprick, ALK Abello; Berkshire, UK). Alternatively, 

moDC were left untreated to produce immature DC. On day 7 moDC were incubated 

on ice for 1 h to reduce cell adherence. The cells were then harvested into a universal 

tube, washed twice in HBSS + 1% FBS at 400g for 7 minutes (4°C), and resuspended in 

IRS10. Cell number and viability was assessed by cell counting with trypan blue using a 

Burker counting chamber. The moDC were used to activate T-cells as described in 

7.4.3, 7.4.4, & 7.4.5. 

7.4.3 T cell activation: Mixed Lymphocyte Reaction 

In order to assess the effects of stimulation strength upon Th17 generation from T-

cells using DC activation, a mixed lymphocyte reaction (MLR) was used. The principle 

of a MLR is that the TCR on allogeneic T-cells will react to the mismatched MHC 

molecules present on the DC resulting in an alloresponse. Day 7 PGN-matured DC  

were co-cultured with allogeneic T-cells (either at: 1x106:1x106, 1x105:1x106, 2x104:106 

DC:T-cell ratio) in 1 mL IRS10 for 6 days at 37˚C 5% CO2. At day 6 the cells were 

restimulated with PMA/ionomycin  in the presence of BFA as described 7.5.2 and the 

T-cell phenotype was assessed by intracellular cytokine staining and flow cytometry 

7.5.3 measuring the proportion of IL-17+ or IFNy+ cells.   

7.4.4 T cell activation: superantigen DC: T-cell 

For the culture of autologous T-cell and DC cultures in the presence different 

concentrations of super antigen staphylococcal enterotoxin B (SEB) day 7 immature 

CellGro DC were harvested as described in 7.4.2. CD4+ T-cells were isolated and frozen 

(as described in 7.1.5 and 7.2) until the moDC were generated and the autologous T-

cells were resurrected on the day that the autologous T-cell:DC co-cultures were 

seeded. Immature DC were cultured with autologous CD4+ T-cells in a total volume of 1 

mL IRS10 using 1x105 DC:1x106 T-cells in the presence of pro-Th17 cell cytokines (Table 

5), and in the presence or absence of SEB at a concentration of 1000 - 0.1 pg/mL 

(Sigma). Cells were cultured for 6 days at 37 °C, 5% CO2. At day 6 the cells were 

restimulated with PMA/ionomycin  in the presence of BFA as described 7.5.2 and the 

T-cell phenotype was assessed by intracellular cytokine staining and flow cytometry 

7.5.3 measuring the proportion of IL-17+ or IFNy+ cells.   
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7.4.5 T cell activation: DC: T-cell density 

Autologous DC populations were harvested at day 7 as described in 7.4.2. Each DC 

population was resuspended in IRS10 to a concentration of 2x105 cells/mL. Autologous 

T-cells were resuspened to a concentration of 2x106 cells/mL. T-cells and DC were then 

mixed together at 1:1 volume/volume ratio. 1 mL/well of this T-cell:DC mix achieved 

the high density of 1x106 T-cell:1x105 DC (1 DC:10 T-cell ratio). A low T-cell:DC density 

was achieved by a four-fold dilution of the T-cell:DC mix resulting in a final cell 

concentration of 0.25x106 T-cell:0.25x105DC/well. Cells were cultured in IRS10 alone 

(no cytokines were added) until day 6. If required, cells were either split or media 

refreshed with pre-warmed IRS10. At day 6 the cells were restimulated with 

PMA/ionomycin  in the presence of BFA as described 7.5.2 and the T-cell phenotype 

was assessed by intracellular cytokine staining and flow cytometry 7.5.3 measuring the 

proportion of IL-17+ or IFNy+ cells.   

7.5 Flow Cytometry 

Flow cytometry allows multiple markers of cell phenotype to be analysed within an 

individual cell. Furthermore multiple cells may be analysed simultaneously allowing 

phenotypic analysis within a heterogeneous cell population. The size, complexity, 

phenotype and health of a cell may all be assessed by flow cytometry. The flow 

cytometer passes one cell at a time through a laser using hydrodynamic localisation, 

generally allowing the detection of cells 1-15 μM in diameter. The size and complexity 

of a cell are assessed by using the forward scatter and side scatter of light as a cell 

passes through the laser. Forward scatter (FSc) measures the size of a cell, by detecting 

the scatter of light around the cell, whereas side scatter (SSc) measures the complexity 

and granularity of a cell by detecting the diffraction of light from a cell as it passes 

though a laser beam.  

 

Generally cells are phenotyped for cell surface or intracellular molecules by using 

antibodies conjugated to a variety of flurophores. The lasers of the cytometer excite 

the fluorophore to a higher energy level, and upon the return of the flurophore to 

ground state, energy is emitted as light. The energy of the light emitted is determined 

by the energy level required to excite the flurophore and that light has a specific 
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wavelength and therefore colour. The cytometer detects this light by passing it 

through a series of filters and mirrors so that certain wavelengths are received by the 

appropriate detectors. This is then translated into a voltage proportional to the 

amount of fluorescence emitted, which may then be represented graphically.  

7.5.1 Cell surface staining of T-cells 

For the detection of cell surface molecule expression cells (0.2-2x106) were washed 

and resuspended in 200 μL of Fluorescence active cell sorting (FACS) buffer (PBS 

(Cambrex Bioscience) + 3% FBS + 2mM EDTA + 0.01% sodium azide (Sigma)) and 

transferred to a 96-well v-bottom plate. The plate was centrifuged at 400 g, for 3 

minutes at 4°C to pellet the cells, and cells were resuspended in 50 μL FACS buffer. To 

block non-specific binding to Fc receptors, human IgG was added at a final 

concentration of 200 μg/mL. Antibodies were added at the appropriate dilutions (Table 

8) and incubated for 30 minutes, in the dark, at 4°C. Cells were then washed twice in 

cold FACS buffer. Cells were resuspended in 300 μL FACS buffer and directly acquired 

on a BD FACSCanto II, or cells were fixed overnight in 1% formaldehyde and acquired 

the next day. Data was analysed using FlowJo software (Tree Star, Inc., Ashland, OR, 

USA). 

7.5.2 PMA/Ionomycin Stimulation for intracellular cytokine staining 

Large concentrations of cytokines within a cell are required for detection by flow 

cytometry. To achieve this, chemical stimulation may be used to turn on active 

transcriptional machinery, inducing production of cytokines for which the cell has 

active transcription. A combination of phorbol 12-myristate 13-acetate (PMA) and 

ionomycin provides sufficient stimulation to detect a large number of cytokines. 

Ionomycin initiates a rise in intracellular Ca2+ levels, which in conjunction with PMA, an 

activator of protein kinase C, stimulates cytokine production. To concentrate the 

protein within the cell Brefeldin A, a chemical capable of interfering with protein 

transport from the within the endoplasmic reticulum to the golgi apparatus, is 

employed. 
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Cells were stimulated with PMA (10 ng/mL, Sigma) and ionomycin (1 μg/mL, Sigma) 

(control wells were left untreated) and incubated for 1 hour at 37˚C 5% CO2. Brefeldin 

A (10 μg/mL, Sigma) was then added to both PMA/ionomycin stimulated and 

untreated wells and incubated for a further 4 hours at 37˚C 5% CO2. Cells were then 

harvested into 1.5 mL microcentrifuge tubes and pelleted at 400g for 7 minutes (room 

temperature). Cells were then phenotyped for intracellular markers as described 

below.  

7.5.3 Intracellular staining of T-cells 

For intracellular cytokine detection cells were stimulated with PMA/ionomycin as 

described above. Cells were resuspended in 300 μL FACS buffer and 150 μL/well (x 2 

wells: an unstained and a stained well for each condition) was transferred to a 96 well 

v-bottom plate. All centrifugation steps were performed at 400 g for 3 minutes at 4°C. 

Cell surface staining was performed as described in 7.5.1 if required. Cells were 

washed once in 150 μL/well FACS buffer, resuspended in 150 μL of 

fixation/permeabilisation buffer (ebioscience) and incubated for 30 minutes at 4°C in 

the dark. The buffer contains formaldehyde which fixes the cells by cross-linking 

primary amino groups in proteins to nitrogen atoms in proteins or DNA. The buffer also 

contains saponin which permeabilises the cell membrane allowing antibody to access 

intracellular molecules. Cells were washed twice in permeabilisation buffer. This buffer 

contains saponin at a higher concentration allowing permeabilisation of the nuclear 

membrane for transcription factor detection. Cells were resuspended in 

permeabilisation buffer (50 μL/well) containing 1% mouse serum (for mouse 

antibodies) or rat serum (for rat antibodies) to block non-specific binding of the 

antibody. Cells were then incubated in the dark at 4°C for 15 minutes. Antibodies were 

added directly to the wells (for dilutions refer to Table 8 and incubated in the dark at 

4°C for 30 minutes. Cells were then washed twice in permeabilisation buffer (150 

μL/wash) and resuspended in 300 μL of FACS buffer and directly acquired on a BD 

FACSCanto II. Data was analysed using FlowJo software (Tree Star, Inc., Ashland, OR, 

USA). 
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7.5.4 CFSE staining of CD4+ T-cells 

To assess cell proliferation using flow cytometry cells are stained with 

carboxyfluoroscein succinimidyl ester (CFSE), a fluorescent dye. CFSE is able to enter 

the cell where it is retained due to covalent binding of succinimidyl groups to 

intracellular molecules. This process causes the CFSE to fluoresce making it detectable 

using flow cytometry. As a cell divides the amount of CFSE divides equally between the 

two daughter populations and thus the degree of proliferation may be determined by 

observing the decrease in fluorescence intensity in the cells. 

 

Following CD4+ T-cell isolation, the cells were transferred into a 50 mL centrifuge tube 

and washed twice in cold PBS at 400 g for 5 minutes at 4°C. Cells were resuspended at 

a final concentration of 1x107 cells/mL. CFSE (Invitrogen) was added at a concentration 

of 4 μM/mL and cells resuspended by pipetting up and down. An aliquot of CD4+ T-cells 

which were not treated with CFSE were retained for use as negative controls. Cells 

were incubated with agitation at 37°C in 5% CO2, for 10 minutes. Following this, cells 

were washed twice in 15 mL of RF10 at 400 g at 4°C so that proteins present within FBS 

would bind any unbound CFSE. CD4+ T-cells were then rested for 30 minutes at 37°C at 

5% CO2. Cells were then counted with trypan blue using a Burker counter. Cells were 

cultured as required and acquired on a BD FACSCanto II. Data was analysed using 

FlowJo software (Tree Star, Inc., Ashland, OR, USA). For controls non-CFSE stained CD4+ 

T-cells were cultured in separate wells (negative control) and CFSE labelled non-

activated cells (positive control for compensation and gating of a CFSEhi population).    

7.5.5 Annexin V/Viaprobe staining 

Staining with a combination of Annexin V and Via-Probe allows detection of apoptotic 

and/or dead cells. During early apoptosis, the cell membrane flips to expose 

phosphatidylserine residues, which can be detected by Annexin V. Dual staining with 

Via-Probe, which binds to double-stranded DNA of membrane compromised non-

viable cells, allows discrimination between viable, early apoptotic and dead cells. 

 

Following culture of T-cells under THi/TLo culture conditions the cells were harvested, 

washed in FACS buffer, and resuspended in 100 μL of 1 x binding buffer (0.01 M 
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Hepes/NaOH (pH 7.4), 0.14 M NaCl, 2.5 mM CaCl2 made in-house). Then, 5 μL of 

Annexin V-APC (BD Biosciences) and 5 μL of Via-Probe (BD Biosciences) were added to 

the cells. The cells were vortexed and incubated at room temperature for 15 minutes 

in the dark. Following incubation 400 μL of Annexin V 1 x binding buffer was added to 

each tube and the cells were acquired on a BD FACSCanto II within 1 hour of staining. 

Data was analysed using FlowJo software (Tree Star, Inc., Ashland, OR, USA). 

 

Via-Probe alone can be used to stain for dead or dying cells in order to assess cell 

viability. Cells were harvested and washed in 150 μL of FACS buffer. Cells were 

resuspended in 50 μL of FACS buffer and 5 μL of Via-Probe was added. Cells were 

incubated at room temperature for 10 minutes in the dark. The cells were then 

washed in 100 μL of FACS buffer and intracellular cytokine staining procedure was 

performed as described in Intracellular staining of T-cells.  

7.5.6  Settings and Controls 

To ensure that the binding observed was specific for the marker of interest, isotype 

controls were used to measure non-specific antibody binding. Concentrations of the 

isotype controls were adjusted to the same concentration as the antibody against the 

marker of interest. Isotype staining employed the same protocol as that used to stain 

the cells in 7.5.3. An example of isotype staining is shown in Figure 94A. To ensure that 

the fluorescent signal detected, was not due to leakage from another fluorophore 

channel, the compensation was set accordingly. An example of multi-colour 

compensation settings are shown in Figure 94B.    
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A

B

Compensation beads 
stained with anti-IFNy FITC 

Compensation beads 
stained with anti-IIL-17 Alexa-647

 
Figure 94. Isotype control (A) and compensation examples (B). (A) Cells were gated initially in forward 
scatter/side scatter to remove cell debris. Staining was performed according 7.5.3. Dilutions of 
antibodies used are shown in Table 9. (B) Compensation was performed using BD anti-mouse Ig 
compensation beads (BD) or stained cells. Samples were acquired using a BD FACSCanto II and data was 
analysed using FlowJo analysis software.  

7.6  Enzyme linked immunosorbant assay 

An Enzyme-Linked Immunosorbant Assay (ELISA) allows the quantification of a specific 

protein to be determined within a sample. The protein of interest is sandwiched 

between two antibodies, a capture antibody bound to the surface of a well of a 96 well 

plate, and a biotinylated detection antibody. Addition of streptavidin (which binds to 

biotin with high affinity) conjugated to the enzyme horseradish peroxidise (HRP) and a 

substrate for the HRP enzyme results in a proportional change in fluorescence 

dependent on the amount of the protein of interest present within in the sample. This 

may then be compared to a standard curve of known protein concentrations to 

calculate the quantity of protein in the sample. 
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7.6.1 Preparation of cells for ELISA 

For the detection of cytokines in culture supernatants, cells were harvested and 

pelleted into microcentrifuge tubes at 400g for 7 minutes (room temperature) to 

remove any cells/debris. The cell culture supernatant was then transferred to fresh 

microcentrifuge tubes and frozen at -20˚C for later analysis by ELISA. 

 

To assess cytokine secretion in response to restimulation, cells were harvested, 

washed at 400 g for 7 minutes at room temperature and then counted with trypan 

blue using a Burker counting chamber. Cells were resuspended and plated out at 1x106 

cells/mL on a 24 well plate. Cells were incubated for 1 hour at 37°C, 5% CO2 to allow 

the cells to settle. Following incubation one well of cells were left untreated and one 

well was stimulated with PMA (10 ng/mL) and ionomycin (1 μg/mL), for each condition 

assessed. The cells were incubated for 24 hours at 37°C, 5% CO2. Cells were then 

harvested and pelleted at 400 g for 7 minutes (room temperature). The cell culture 

supernatant was then transferred to fresh microcentrifuge tubes and frozen at -20˚C 

for later analysis by ELISA. 

7.6.2 ELISA 

To measure the concentration of cytokines present in collected supernatants, 96 well 

flat bottom EIA/RIA High Bind ELISA plates (Corning Costar; Sigma) were incubated at 

4°C overnight with the appropriate concentration of capture antibody (50 μl/well, 

Table 7). The capture antibodies were pre-diluted in coating buffer (0.06M 

Na2HPO4/0.08M NaHPO4.H20) at the appropriate dilution (Table 7). For measurement 

of IL-17, the IL-17 ReadySETGo! kit was used according to the manufacturer’s 

instructions (eBioscience). The following day, the capture antibody was discarded and 

the plate was washed once in wash buffer (PBS + 0.1% Tween-20) before adding 100 

μL/well of block buffer (PBS + 1% bovine serum albumin (BSA)) for 1-2 hours at room 

temperature. During the blocking incubation, samples where diluted in diluent (PBS + 

1% BSA + 0.1% Tween-20). Following incubation, the plates were washed 3 times in 

wash buffer and the pre-diluted samples and standards were added to the appropriate 

wells (50 μL per well) and incubated at 4°C overnight. The following day the plate was 

washed 4 times in wash buffer, and the appropriate concentration of biotinylated 
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detection antibody (50 μL/well, (Table 7) was added to each well and incubated at 

room temperature for 1 hour. Following incubation, the wells were washed 4 times in 

wash buffer and Streptavidin-HRP (Dako; Cambridge, UK) (50 μL/well, 1/1000) was 

added to each well and incubated at room temperature for 30 minutes. The plates 

were finally washed 5 times in wash buffer, and then o-Phenylenediamine 

dihydrochloride (OPD) substrate was added to each well (Sigma, 50 μL/well). 1 OPD 

tablet was dissolved in 13 mL of citrate phosphate buffer (0.03M citric acid/ 0.05M 

NaHPO4/0.03M Na2HPO4.2H20) and H2O2 (6 μL, 30% stock) was added immediately 

prior to use. The plates were left for 20-40 minutes depending on the cytokine of 

interest (Table 7) for the colour to develop. The reaction was stopped by the addition 

of H2SO4 (50 μL, 3M). The absorbance was read at the appropriate wavelength (Table 

7) using a Tecan sunrise plate reader (Tecan Group; Mannerdorf, Switzerland).  

7.6.3 ELISA Analysis 

ELISA data was analysed by plotting a standard curve of known concentrations of the 

cytokine of interest against the measured absorbance values. The equation of the line 

was calculated and this was used to calculate the unknown concentration of the 

cytokines present within the analysed samples. An example standard curve is 

demonstrated in Figure 95. The detection limit of the standard curve was determined 

by multiplying the background absorbance by 2.  

ELISA Standard Curve: IL-17 y = 0.0052x + 0.0362

R2 = 0.9996
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Figure 95. ELISA Standard Curve: A representative standard curve from an IL-17A ELISA plate. The 
absorbance was plotted against known concentrations of IL-17 using a scatter plot. The line of best fit 
was estimated using MS Excel. Values which were within the linear portion of the curve were selected. 
The equation y = mx + c and the R

2
 value were calculated and used to determine the unknown 

concentration of IL-17 present in samples.   
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Cytokine 
Capture 

antibody 

Top standard 

pg/mL 

Detection 

antibody 

Develop 

(minutes) 

Absorbance 

(nM) 

Human IL-10 2 μg/mL  2000 1 μg/mL 30-40 490 

Human IL-17 1/250 (kit) 500 1/250 (kit) 15-20 450 

Human IFN-γ 1 μg/mL 2000 1 μg/mL 20-30 490 

Table 7.  Concentrations of antibodies and standards for cytokine ELISA.  

 

7.7  Western Blotting 

7.7.1 Whole Cell Lysates 

Whole cell lysis buffer; 10 mL CellLytic M (Sigma) + 100 μL of 100x Halt Phosphatase 

Inhibitor Cocktail (Thermo Scientific; Wilmington Delaware) + 1 x Protease Inhibitor 

(serine and cysteine) Cocktail Tablet (Roche), was prepared and stored in 1 mL aliquots 

at -20˚C. Prior to use the whole cell lysis buffer was thawed on ice. Samples were 

normalised for cell number and transferred to a 1.5 mL microcentrifuge tube. In order 

to remove any residual phenol red the cells were washed once in ice cold PBS and 

pelleted at 13,000 g for 1 minute at 4˚C. Following careful removal of PBS to leave a 

dry cell pellet, 50 μL of whole cell lysis buffer was added to <1x106 cells. The pellet was 

then resuspended in the whole cell lysis buffer by vortexing and cell debris was 

removed by centrifugation at 13,000 g for 10 minutes at 4˚C. The whole cell lysate was 

then carefully removed from the pellet and transferred to pre-cooled microcentrifuge 

tubes and stored at -80˚C for use in western blotting.      

7.7.2 Preparation of cells to assess NFATc1 localisation  

At the required time point cells were either left untreated or re-stimulated with PMA 

(10 ng/mL) and ionomycin (1 μg/mL) and incubated at 37°C, 5% CO2 for 2 hours. 

Following the incubation the cells were harvested and washed in cold PBS by 

centrifugation at 400 g for 7 minutes at 4˚C. The washed cells were used for nuclear 

and cytoplasmic extraction as described below. 
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7.7.3 Nuclear and Cytoplasmic Extraction 

Nuclear and Cytoplasmic extracts were produced using the NE-PER Nuclear and 

Cytoplasmic extraction reagents (Thermo Scientific). The NE-PER kit allows preparation 

of nuclear extracts without mechanical homogenisation or multiple centrifugation or 

freeze/thaw cycles, thus maintaining the integrity of the protein.  Reagents within the 

kit act in the following manner; CER 1 causes swelling of the cell, inducing cell 

membrane stress; CER II lyses the cell membrane allowing the collection of cytoplasmic 

proteins whilst leaving the nucleus intact; NER extracts nuclear proteins from the 

pellet.  

 

The protocol was followed according to manufacturer’s instructions.  Briefly, cells were 

resuspended in 1 mL ice cold PBS and transferred into labelled pre-cooled 1.5 mL 

microcentrifuge tubes. Cells were pelleted by centrifugation at 400 g for 3 minutes at 

4°C. The supernatant was carefully removed and discarded, leaving the cell pellet as 

dry as possible. Ice-cold CER I with 1 μL protease inhibitors per 100 μL CER 1 was added 

to the cell pellet at the appropriate volume, vortexed vigorously for 15 seconds to fully 

resuspend the pellet and then incubated on ice for 10 minutes. NER extracts nuclear 

proteins from the pellet. Ice-cold CER II was then added to each tube at the 

appropriate volume, vortexed for 5 seconds and incubated for 1 minute. The tube was 

then vortexed for another 5 seconds and the centrifuged for 5 minutes at 13,000 g at 

4°C. The supernatant was then immediately transferred to a pre-cooled 1.5 mL 

microcentrifuge tube and stored at -80°C for use in western blotting. The remaining 

pellet containing the nuclei was resuspended in ice-cold NER + 1 μL protease inhibitors 

per 100 μL. Cells were then vortexed for 15 seconds and placed on ice with vortexing 

every 10 minutes for 15 seconds for a total of 40 minutes. The tubes were then 

centrifuged at 16,000 g for 10 minutes at 4°C and the supernatant immediately 

transferred to a pre-cooled 1.5 mL microcentrifuge tube and stored at -80°C for use in 

western blotting.   

7.7.4 Bradford Assay 

The Bradford assay is used to determine protein concentrations. Coomassie dye when 

bound to protein results in a colour change (red to blue) and an absorbance shift from 
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470 to 590 nm. The change in fluorescence is proportional to the amount of protein 

present. 

 

Frozen lysates were thawed on ice, while standards were prepared using BSA diluted in 

water. Lysates were diluted 1:10 in the appropriate lysis buffer. Standards and lysates 

were then diluted 1:15 with room temperature Bradford reagent (Sigma). Standards 

and sample were added to a 96 well flat bottom plate (150μL/well). The absorbance 

was read at 595 nm using a Tecan sunrise plate reader. The protein concentration of 

lysates was analysed, by plotting a standard curve of known concentrations of the BSA 

against the measured absorbance values. The equation of the line was calculated and 

this was used to calculate the unknown concentration of the proteins present within 

the lysates. The detection limit of the standard curve was determined by multiplying 

the background absorbance by 2. Samples were normalised to the lowest protein 

concentration prior to denaturation for loading onto Sodium dodecyl sulphate (SDS)-

polyacrylamide gels.   

7.7.5 SDS-Polyacrylamide Gel Electrophoresis  

SDS-polyacrylamide Gel Electrophoresis (PAGE) allows proteins to be separated based 

upon size.  Denatured polypeptides are bound by SDS molecules that impart a negative 

charge on the polypeptide chain proportional to molecular weight (MW). Samples are 

run alongside a ladder of known MW markers allowing protein size to be estimated. 

Polyacrylamide gels are formed when acrylamide monomer polymerises with cross-

linking agent bis-acrylamide, which is initiated by the addition of ammonium persulfate 

and N,N,N’,N’-tetramethylenediamine (TEMED). The gel resolution is determined by 

the pore size of the polyacrylamide gel. The pore size is controlled by the 

concentration of polyacrylamide; the pore size decreases as the ratio of 

polyacrylamide increases. Stacking gels, with a large pore size (4% polyacrylamide) 

allow the protein sample to concentrate on the resolving gel surface.  Proteins may 

then be separated by size when voltage is applied; smaller polypeptides migrate easily, 

where as larger polypeptides are retarded through frictional resistance.  
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7.7.6 Gel casting and protein loading 

To cast gels, glass plates (Biorad) were set up on a gel casting stand (Biorad). Ethanol 

was pipetted into the plates to check for leaks and then removed. Using a Pasteur 

pipette plates were 2/3 filled with resolving gel (for the recipe see below). Saturated 

butanol was pipetted on top to remove oxygen from the gel, allowing polymerisation 

and formation of a level gel interface. Once set, butanol was poured off and the 

stacking gel (for the recipe see below) was pipetted on top of the resolving gel using a 

Pasteur pipette. An appropriate sized comb was then inserted into the top of the gel 

and the gel was left to set at room temperature. 

 

Resolving gel (10%) 

 7.5 mL acrylimide stock solution (Sigma) 

 9 mL resolving gel buffer (0.75M Tris base, 7 mM SDS,  pH 8.8 with HCL),  

 2 mL distilled H2O, 

 180 μL ammonium persulfate stock solution (0.44M Ammonium persulfate)  

 18 μL TEMED (Sigma) added immediately prior to gel casting.  

Stacking gel 

 1.8 mL acrylimide stock solution 

 5 mL stacking gel buffer (0.25M Tris base, 7 mM SDS,  pH 6.8 with HCL) 

 4 mL distilled H20 

 50 μL ammonium persulfate stock solution 

 10 μL TEMED added immediately prior to gel casting.  

 

Once set the combs were carefully removed from the gels and the wells were rinsed 

with running buffer (25 mM TRIS Base, 0.2 M Glycine, 3.5 mM SDS, pH 8.3) using a 

Pasteur pipette. Gels were placed within the gel tank (Biorad Mini Protean II) and 

running buffer was placed in the inner and outer chambers.   

 

Protein samples of known concentration were denatured into polypeptides in loading 

buffer (1 μL of β-mercaptoethanol per 25 μL 4x NuPage Sample buffer (Invitrogen)) at 

a 4:1 sample:loading buffer ratio for whole cell lysates or 5:1 for nuclear or cytoplasmic 
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lysates. Samples were heated to 70°C for 10 minutes to denature proteins, then 

returned to room temperature and pelleted. Samples were loaded onto the gel (10 

μL/well). One lane of the gel was used for a PageRuler prestained protein ladder 

(Fermentas). The gel was run at 80 volts for ~1.5 h depending on protein size and the 

resolution required.  

7.7.7 Protein transfer 

Transfer of proteins from gel onto hydrophobic Polyvinylidene Fluoride (PVDF) 

membrane was achieved using a Geni Blotter (Idea Scientific; Minneapolis, USA). PVDF 

membrane was pre-soaked in methanol prior to use. Following careful removal of the 

gels from the plates the Genie Blotter was loaded according to manufacturer’s 

instructions using transfer buffer (0.025 M Tris Base, 0.2 M Glycine diluted with 20% 

v/v methanol and H2O). Blotting was performed at 4°C at 12 volts for 120 minutes.  

7.7.8 Blotting 

Following transfer, the membrane was washed with Tris buffered saline (0.01 M Tris 

base + 0.14 M SDS pH to 7.6 with HCL) + 10% w/v Tween (TBST) for 5 minutes at room 

temperature with agitation. After washing the membrane, non-specific binding sites 

were blocked with TBST + 5% w/v milk and incubated for 1 hour at room temperature 

with agitation. The membrane was then washed 2 times in 25 mL of TBST. The 

membrane was blotted with primary antibody (Table 9) diluted in TBST + 5% 

immunoglobulin depleted BSA (Sigma) and incubated overnight at 4°C with agitation. 

The following day the membrane was washed 3 times with TBST for 5 minutes at room 

temperature with agitation. The membrane was then incubated with an appropriate 

HRP-linked secondary antibody (Table 9) in 10 mL TBST + 5% w/v milk, for 1 hour at 

room temperature with agitation. Following this the membrane was washed 3 times 

for 5 minutes in TBST.  Visualisation of bands was performed using either ECL or ECL+ 

(Amersham Biosciences; Buckinghamshire UK) for 0.5 - 2 minutes according to the 

manufacturer’s instructions. The membrane was exposed to Kodak film for 0.5 – 1 

minute, and developed using Photosol X-Ray developer and fixed using Photosol fixer 

(PhotonImaging Systems; Wiltshire, UK). Detection was also performed using Syngene 

Gel Doc (Syngene; Cambridge UK) for 0.5 to 10 minutes.           
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7.7.9 Stripping Blots  

To re-blot membranes with different antibodies membranes were stripped using SDS 

and β-mercaptoethanol. Stripping buffer was made as described below, heated to 

60˚C, and poured over blots in a sealed container and incubated for 30 minutes with 

agitation. Following stripping, blots were washed twice for 10 minutes with TBST to 

remove residual stripping buffer, then blocked for 1 hour with TBST + 5% milk, after 

which the membrane was incubated overnight with primary antibody and developed 

as described above.  

 

Stripping Buffer 

 1.7 mL  β-Mercaptoethanol 

 50 mL 10% SDS 

 15.63 mL 1 M Tris Base (pH 6.8) 

 182.7 mL dH2O   

7.8 Chromatin immunoprecipitation 

Chromatin immunoprecipitation (ChIP) is a powerful technique that provides a “snap-

shot” of protein-DNA interactions at a chosen time point. ChIP allows the binding of 

transcription factors to specific regions in the genome to be assessed and offers 

insights into the transcriptional regulation of genes of interest. Briefly, stages of ChIP 

include: formaldehyde cross-linkage of DNA and proteins, cell lysis in an SDS buffer and 

chromatin shearing by sonication. Sonication increases the specificity of procedure 

allowing the presence of a protein within a region of the genome, e.g. the gene 

promoter, to be determined. Then immunoprecipitation is performed by incubating 

the sonicated lysates with antibodies which immune-select specific proteins The 

antibody is then pulled-down with agarose beads. The pulled down protein co-

precipitates with genome fragments that were bound to the protein at the time of 

cross-linkage. Co-precipitated DNA is then eluted from beads, washed, and detached 

from proteins and purified using spin columns. The immune-selected co-precipitated 

DNA is then used in a real-time polymerase chain reaction (PCR) reaction with a primer 

set specific for a region of interest in the genome to assess transcription factor 

association. 
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I did not perform the ChIP experiments; however the details of the experiment 

performed by Dr J Mann are described below. Chromatin immunoprecipitation (ChIP) 

assay was carried out using cross-linked chromatin prepared from 6-day cultures of THi 

or TLo cells that were left untreated or were restimulated with PMA/ionomycin for 2 

hours. The antibodies which were used for immunoprecipitation were anti-NFAT1c 

(clone 7A6; Santa Cruz Biotechnology; Heidelburg, Germany) or isotype-matched IgG 

control (Abcam; Cambridge, UK). Briefly, 5 μg of isotype-matched IgG control or anti-

NFAT1c antibody were incubated overnight with 20 μg chromatin. The complexes were 

precipitated with Protein G–sepharose beads for 2 hours, then washed sequentially in 

low-salt buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 

150mM NaCl]), high-salt buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-

HCl, pH 8.1, 500mM NaCl), and lithium chloride buffer (0.25 M LiCl, 1% Nonidet P-40, 

1% deoxycholate, 1mM EDTA, 10mM Tris-HCl, pH 8.1). Beads were then washed twice 

with Tris-EDTA (TE) buffer and eluted with 500 μL of elution buffer (1% SDS, 0.1 M 

NaHCO3). The cross-links were reversed, and DNA was obtained by phenol-chloroform 

extraction and ethanol purification. PCR amplification of the human IL17A proximal 

NFAT1c binding site was carried out using specific oligonucleotide primers 5‘-

gcagctctgctcagcttctaa-3‘ and 5‘-ttcaggggtgacaccatttt-3‘. All reactions were normalized 

to the isotype control and relative level of transcriptional difference calculated using 

the following equation: [1/(2A)] × 100. A = cycle threshold of the antibody group – the 

cycle threshold of the IgG Isotype control group and 2A compensates for the 

exponential phase of the real time PCR reaction. 

7.9  PTPN22 c1858t Genotyping 

7.9.1 DNA Extraction 

Purification of total DNA from peripheral blood was achieved using QIAamp DNA Mini 

Kit (Qiagen; Crawley, UK). Briefly, samples were equilibrated to room temperature. 20 

μL of QIAGEN Protease was transferred into the bottom of a 1.5 mL microcentrifuge 

tube. 200 μL of the whole blood sample was added to the tube. 200 μL of QIAGEN AL 

lysis buffer was added to the sample and mixed by vortexing for 15 seconds. The 
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sample was then incubated at 56°C for 10 minutes on a heat block. To remove drops 

from the inside the lid the sample was briefly centrifuged. 200 μL of 100% ethanol was 

added and the sample mixed by vortexing for 15 seconds, and again briefly 

centrifuged. The mixture was then carefully pipetted onto the QIAamp Mini spin 

column (in a 2 mL collection tube) without wetting the rim, and centrifuged at 5000 g 

for 1 minute. The filtrate was discarded and the QIAamp spin column was placed into a 

clean 2 mL collection tube. 500 μL of Buffer AW1 was then carefully pipetted onto the 

QIAamp spin column and centrifuged at 5000 g for 1 minute. The filtrate was discarded 

and the QIAamp spin column was placed into a clean 2 mL collection tube. 500 μL pf 

Buffer AW2 was then carefully pipette onto the QIAamp spin column and centrifuged 

at 13000 g for 3 minutes. The QIAamp spin column was then placed into a new 2 mL 

collection tube and centrifuged again at 13000 g for 1 minute in order to eliminate any 

AW2 buffer carryover. The QIAamp Mini spin column was then placed into a clean 1.5 

mL microcentrifuge tube, and the collection tube containing the filtrate was discarded. 

To elute DNA, 50 μL of AE Buffer was carefully pipetted onto the spin column, 

incubated at room temperature for 1 minute, and then centrifuged at 5000 g for 1 

minute. This was then repeated with another 50 μL of AE buffer in order to maximise 

DNA elution. The concentration and quality of DNA was then determined using a 

NanoDrop (ND-1000 Spectrophotometer Thermo-Scientific) calibrated using RNAse 

free H20 and AE buffer.  

7.9.2 Polymerase Chain Reaction for rs2476601 - optimisation 

Primers specific for rs2476601 (PTPN22 C1858T SNP) (Forward; 5’ 

CAACTGCTCCAAGGATAGATG 3’, Reverse; 5’ CTCAAGGCTCACACATCAGC 3’) were 

resuspended in RNase free H20 (Sigma), and aliquots stored at -80°C to minimise 

‘freeze/thaw’. Primers were firstly optimised for annealing temperature and MgCl2 

concentration, a co-factor for the Taq polymerase enzyme. A PCR reaction was 

performed using varied concentrations of MgCl2 on a temperature gradient. Briefly, 

the  PCR mix (detailed below) containing either 1 mM, 2 mM or 3 mM MgCl2 final 

concentrations were assessed in parallel with an annealing temperature gradient set 

on the Thermocycler (Peltier Thermal Cycler, MJ Research) between 55˚C-65˚C. 
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A 2% agarose gel (3 g of agarose (Severn Biotech; Kidderminster, UK) dissolved in 150 

mL Tris-Borate-EDTA (TBE) + 1 μL ethidium bromide, which intercalates with nucleic 

acids) was used to analyse the PCR products. PCR products were mixed with loading 

dye (3 μL of loading dye was added to each 15 μL PCR reaction and 10 μL was loaded 

per well). A 100 base pair ladder (New England Biolabs; Ipswich, USA) was added to the 

gel in order to assess that the PCR product was the correct length. The gel was run at 

100 V for ~1 hour. The gel was visualised under UV using the Syngene gel dock 

(Syngene). Figure 96 demonstrates that 1 μM MgCl2 55°C were optimal conditions for 

the PTPN22 rs2476601.   

7.9.3 Optimised PCR reaction 

 DNA (50 ng/μL) 

 Forward Primer (100mM) 

 Reverse Primer (100mM) 

 10 x PCR buffer (500 mM KCl, 100 mM Tris-HCl pH 8.3) 

 MgCl2 (25mM) 

 dNTPs (8mM) 

 AmlpiTaq Gold DNA Polymerase (Applied Biosystems) 

 H2O to make up to 15 μL 

7.9.4 Optimised Thermocycling conditions 

  96°C for 14 minutes (initial denaturation) 

 96°C for 30 seconds (denaturation) 

 55°C for 30 seconds (annealing)                 x 35 cycles 

 72°C for 30 seconds (extension) 

 72°C  5 minutes final extension 

55 56 57 58 59 60 61 62 63 64 65 ˚C

 

Figure 96. Optimised conditions for PTPN22 rs2476601 PCR.  A single product at the correct size is seen. 
The box indicates optimal PCR conditions using,1 μM MgCl2, and an annealing temperature of 55˚C 
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7.9.5 DNA Genotyping of rs2476601 

Genomic DNA from 20 donors was genotyped by restriction fragment length 

olymorphism for a single nucleotide polymorphism (SNP) in rs2476601. Genomic DNA 

from each donor was isolated using the DNA extraction method described above. PCR 

was performed for each genomic DNA sample in a total reaction volume of 15 µl as 

described above using the optimised conditions. For the restriction digests 10 µl of PCR 

product were digested for 3 hours at 37°C with XcmI restriction enzyme (New England 

Biolabs) with 10x NEB2 enzyme buffer and water. Digested products were then run on 

a 2% agarose gel (3 μL of loading dye was added to each 15 μL PCR reaction and 10 μL 

was loaded per well). The gel was visualised under UV using the Syngene gel dock 

(Syngene). The restriction enzyme cuts at the T-allele, when visualised uncut bands 

were of 184 base pairs in length and cut bands were 141bp/43bp in length, for 

example see Figure 97. 

CC CC CT TT CC

 

Figure 97. Example of  rs2475501 restriction digested bands.  The large undigested C-allele homozygote 
bands, T-allele homozygote digested band and the heterozgote (one undigested and one digested band 
for each allele) 
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Antibody Fluorochome Isotype Clone Cat No Dilution Company 

Annexin V Allophycocyanin - - 575504 5 μL/test BD 

Anti-human CD3 Pacific Blue Mouse IgG1 k UCHT1 558117 1:50 BD 

Anti-human CD3 PerCP Mouse IgG1 k SK7 347344 1:20 BD 

Anti-human CD4 FITC Mouse IgG1 k RPA-T4 555346 1:20 BD 

Anti-human CD4 PE Mouse IgG1 k RPA-T4 555347 1:20 BD 

Anti-human CD8 APC Mouse IgG1k RPA-T8 555369 1:10 BD 

Anti-human CD45RA FITC Mouse IgG2b k HI100 555488 1:20 BD Pharmingen 

Anti-human CD45RO FITC Mouse IgG2a k UCHL1 555492 1:20 BD Pharmingen 

Anti-human IL-1R1 FITC Goat IgG AAFH02 FAB269F 1:20 R & D Systems 

Anti-human IL-4 PE Mouse IgG1 k 8D4-8 12-7049-41 1:50 eBioscience 

Anti-human IL-17 Alexa 647 Mouse IgG1 k eBio64DEC17 51-7179-42 1:20 eBioscience 

Anti Human IL-21 PE Mouse IgG1 k eBio3A3-N2 12-7219-71 1:20 eBioscience 

Anti-human IL-22 PE Mouse IgG1 142928 IC7821P 1:20 R&D Systems 

Anti-human IFN-γ FITC Mouse IgG1, k 4S.B3 11-7319-82 1:100 eBioscience 

Anti-human IFN-γ PE Mouse IgG2b, k 25723.11 340452 1:10 BD 

Anti-human IFN-γ Alexa 700 Mouse IgG1, k B27 557995 1:50 BD 

Anti-human Foxp3 Pacific Blue Mouse IgG1, k 206D 320116 1:50 Biolegend 

Anti-human Foxp3 PE Mouse IgG1, k 206D 320107 1:10 Biolegend 

Anti-human RORγt PE Rat IgG2a AFKJS-9 12-6988-80 1:20 eBioscience 

Anti-human LAP-TGFβ PE Mouse IgG1 27231 FAB2463P 1:10 R&D Sytstems 

Via-Probe 7-AAD   555861 10μL/test BD 

Table 8. Table of flow cytometry antibodies used within the study 
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Antibody Isotype Clone Cat. Number Dilution Company 

Anti-human AhR Mouse IgG RTF1 Ab2770 1:5000 Santa Cruz Biotech 

Anti-GAPDH Rabbit D16H11 5174 1:5000 Cell Signalling 

Anti-Lamin Rabbit Unknown 2032 1:2000 Cell Signalling 

Anti-human NFATc1 Mouse IgG Clone 7A6 SC-7294 1:5000 Santa Cruz Biotech 

Anti-human STAT 3 Rabbit Unknown 9132 1:2000 Cell Signalling 

Anti-human STAT3 P Tyr 705 Rabbit D3A7 9145 1:2000 Cell Signalling 

Anti-mMouse IgG- HRP Horse - 7076 1:5000 Cell Signalling 

Anti-rabbit IgG HRP Goat - 7074 1:5000 Cell Signalling 

Table 9. Table of western blot antibodies used with the study 
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