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Abstract

This Thesis investigates formal models of concurrency that are often used in the process

of the design of asynchronous circuits, namely transition systems and Petri nets. The aim

of the Thesis is to relate various classes of transition systems and nets, so that different

models can be used at different design stages. We characterise three classes of transition

systems: the sequential Semi-elementary Transition Systems, and two classes of step

transition systems, where arcs are labelled by sets of concurrently executed events: TSENI

and TSENIapost Transition Systems. All three classes can be employed to describe the

behaviour of safe Petri nets used in circuit design. Semi-elementary Transition Systems are

generated by Semi-elementary Net Systems, which are basically Elementary Net Systems

with added self-loops. TSENI (TSENIapost ) Transition Systems are step transition systems

generated by Elementary Net Systems with Inhibitor Arcs executed according to the a-

priori (resp. a-posteriori) semantics, and called ENI-systems (resp. ENIapost -systems). The

relationship between each class of transition systems and nets is established via the notion

of a region in the process of solving the synthesis problem for the appropriate class of nets.

The Thesis compares the three classes of transition systems and gives examples of their

use in the specification of asynchronous circuits behaviour.
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Chapter 1

Introduction

The last decade has seen a significant growth of interest in the design of asynchronous

digital hardware systems [16], which offer a number of potential advantages for developing

systems exhibiting high-performance and reliability. These include:

• High modularity : One can independently design, re-use and maintain system mod-

ules.

• Avoiding problems with clock distribution: The clocks generate their signals asyn-

chronously and are not used as a global coordination mechanism; they are treated

just as specific real-time components.

• Operational scalability : Even if one component of the system runs more slowly, the

system itself does not fail; there is a significant degree of robustness to parameter

variations, for example, temperature and power voltage.

One of the most active areas of research on asynchronous digital hardware is that of

a formal support for their design and verification. Over the past decade, a number of

different formal models have been proposed and studied for that purpose. The progress

made was substantial, but in many cases the state of the art is still below that required

of a fully developed formalism. In particular, there are several open problems when it

comes to relating different models for representing behaviours of concurrent asynchronous

digital hardware. Some models, such as Reachability Graphs and Transition Diagrams,

are better suited for the representation of low-level operational behaviour of asynchronous

digital hardware and its formal verification, while others, such as Petri Nets and Change

Diagrams, are more adequate for representing the static structure of asynchronous digital

1



CHAPTER 1. INTRODUCTION 2

hardware and ultimately for its automatic synthesis from high-level specifications. It

is now generally accepted that rather than having a single model for the design and

verification of asynchronous digital hardware, different models should be used at different

stages of the design process. It is this context in which the relationship between different

formal models of concurrent systems becomes a crucial issue.

1.1 Modelling Using Petri Nets

Petri nets1 are a formalism for modelling systems with concurrent behaviour. They are

usually employed as a syntax-level or system-level model. The user of such a model can

specify causality, concurrency, choice and conflicts in terms of events and local conditions

between events. Expressing all those and other relationships or characteristics locally

cannot, however, guarantee that some global properties of the behaviour intended by

the user will be automatically fulfilled by the system. Such properties, both safety and

progress ones, are typically characterised at a semantical or behavioural level, namely the

level of states and transitions. Transition systems2 provide a means for explaining the

operational semantics of system behaviour. It is often the case that the designer prefers

to use a transition system to capture the intended behaviour. For example, in [45, 49] the

key aspects of synchronisation between two pipelines with data flowing in two opposite

directions were much easier to define in the form of a state graph. Since many methods

and tools for asynchronous hardware design are based on Petri nets [18, 32, 33, 42], an

important task is to synthesise a Petri net model from a state-based description. The

pipeline example and other examples of circuit synthesis, which involve transformations

between concurrency models and Petri nets were presented in [22]. Most of them require

1A Petri net system (or place/transition system) is a quadruple (S, T,W,Min), where: S is a set of
places, T is a set of transitions disjoint from S, W : (S × T ) ∪ (T × S) → N is a weight function and
Min : S → N is the initial marking. In the graphical representation for Petri nets, places are depicted
by circles and transitions by boxes. An arrow is drawn from s ∈ S to t ∈ T (from t to s) if W (s, t) > 0
(W (t, s) > 0); it is labelled with the value of W (s, t) (W (t, s)). The initial marking is distinguished by
placingMin(s) tokens (dots) in every circle corresponding to s ∈ S. Places in a Petri net can be interpreted
as local states. Global states are called markings and are given by any function M : S → N . A transition
t is enabled at a marking M if for all s ∈ S, M(s) ≥ W (s, t). An enabled transition can be executed
(can fire), producing a new marking M ′ such that for every s ∈ S : M ′(s) = M(s)−W (s, t) +W (t, s).
A Petri net is pure if for all s ∈ S and t ∈ T , W (s, t) ·W (t, s) = 0, and bounded if there is k ∈ N such
that for every reachable marking M (obtained by firing a sequence of transitions starting from Min) and
for all s ∈ S, M(s) ≤ k. A Petri net is safe if it is bounded with k = 1.

2Transition systems are usually defined as labelled graphs (S,E, T, sin), where: S is a set of states,
E is a set of events, T ⊆ S × E × S is a set of transitions (not to be confused with transitions in Petri
nets), and sin is the initial state.
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passing through an intermediate semantic level of transition systems.

1.2 The Synthesis Problem

In general, the synthesis problem for Petri nets is to construct a Petri net for a given

transition system in such a way that the reachability graph of the net is isomorphic to the

transition system. This problem was solved for the class of Elementary Net Systems3 in

[27], using the notion of a region which links nodes of transition systems (global states)

with conditions in the corresponding nets (local states). In other words, regions in a tran-

sition system correspond to the places (conditions) of the synthesised net. The solution

was later extended to pure and bounded Place/Transition Nets [13], general Petri Nets

[37], Safe Nets [47], Flip-Flop Nets [43] and Elementary Net Systems with Inhibitor Arcs

[17, 39, 40, 41]. It turned out that using all possible regions leads to exponential synthesis

algorithms and, in [7], it was proved that the synthesis problem for the class of Elemen-

tary Net Systems is NP-complete. Other synthesis methods were discussed in [12] and

[26], following the idea that not all the regions are actually needed. Practical algorithms

for the synthesis problem were studied in, e.g. [5], [6] and [22]. It was stressed in [22]

that the class of Petri nets normally used for hardware synthesis is restricted to Safe

Nets. Such nets are closely related to Elementary Net Systems, whose transition systems

have been studied in [38]. With a certain re-formulation, the results of [38] have been

found amenable to symbolic manipulation (based on binary decision diagrams) yielding

algorithms and software for hardware design [22].

3An elementary net system is a quadruple (B,E, F, cin ), where: B is a set of conditions (places), E
is a set of events (transitions) disjoint from B, F ⊆ (B × E) ∪ (E × B) is a flow relation and cin ⊆ B

is the initial case. In diagrams, conditions are depicted as circles, events as boxes, and elements of the
flow relation as directed arcs. The initial case is indicated by single tokens placed in every b ∈ cin . The
global states of an elementary net system are called cases and are any subsets c ⊆ B. An event e is
enabled at a case c if all its input conditions (pre-conditions) are in c and all of its output conditions
(post-conditions) are not. An enabled event e can be executed and produce a new case by removing
tokens from the pre-conditions of e and placing a token in every post-condition of e. An elementary
net system is contact-free if for every case c, which can be reached from the initial case cin by firing a
sequence of events, and every event e the following hold: if all pre-conditions of e are marked (are in c)
then none of its post-conditions is marked. The firing rule for the Elementary Net Systems differs from
the one for the Petri Net Systems. Nevertheless, for every safe and pure Petri net one can construct an
elementary net with the same behaviour. Conversely, any contact-free elementary net can be viewed as a
safe net, and for a non contact-free one an equivalent safe net can be built using complementary places.
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1.3 Synthesis Problems Considered in this Thesis

We will now outline the contributions made by this Thesis, and compare them with related

work in the area of net synthesis.

We here solve the synthesis problem for various extensions of Elementary Net Systems

which still remain in the class of safe nets. The first class, discussed in chapter 2, are

the Semi-elementary Net Systems which extend the Elementary Net Systems by allowing

self-loops.4 The transition systems generated by them are the Semi-elementary Transition

Systems, and are defined by a system of axioms which differs slightly from that introduced

for the Elementary Transition Systems in [38]. For this extension, there was no need to

modify the definition of a region and we use the one from [38].

Semi-elementary Transition Systems are sequential transition systems (i.e. transitions

are labelled with individual events) without self-loops.5 The latter means that every

transition changes the state of a system. Such a restriction is justified when designing

asynchronous circuits. In the asynchronous interpretation of a system behaviour, we can

only state that one transition takes place in a finite but unbounded amount of time after

some other transition, but we cannot tell the exact time at which each of the transitions

takes place. In the synchronous interpretation, each transition takes place during a tick of

the clock, so that two consecutive transitions are executed during two consecutive clock

ticks. Asynchronous systems can also be modelled as synchronous systems (see [2]), by

adding ‘wait’ or ‘null’ transitions in the form of self-loops at some states in which the

system remains for an arbitrary period of time. Therefore, transition systems without

self-loops seem more appropriate for the design of asynchronous systems where empty

(null) transitions are not needed and every event is treated as significant (changing the

state of the system). Due to this restriction (no self-loops in the transition systems)

Semi-elementary Net Systems cover almost (but not exactly) the class of Safe Nets. This

restriction was dropped in [46] where the thus extended class of the Semi-elementary Net

Systems coincided with the class of Safe Nets.

In [28], it was shown that Elementary Transition Systems, despite being sequential,

contain all the necessary information about the concurrency in the systems they model.

4A self-loop in a semi-elementary net is a pair consisting of an event e ∈ E and a condition b ∈ B

such that (b, e), (e, b) ∈ F . Such a b is sometimes called a side-condition.
5A self-loop in a transition system is created by a transition (s, e, s) ∈ T with the same source and

target.
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More precisely, it is possible to deduce from the sequential graph of the system behaviour

which two events can be executed concurrently. However, this is not the case for the

Semi-elementary Transition Systems, and two semi-elementary net systems with different

independence relation on events can generate the same semi-elementary transition sys-

tem, as shown below. In the net depicted in (a), the events a and b are concurrent, while

(a)

a b

(b)

a b

(c)

a b

ab

in the net depicted in (b), they are mutually exclusive. However, the transition systems

produced by both nets are the same (see (c)), showing that the information about the

concurrency between events in the system is lost when passing from nets to transition sys-

tems. In section 2.3 of chapter 2, we address this problem by introducing an additional

stage of the design during which self-loops generated in the process of net synthesis can

be re-interpreted. More precisely, some of the self-loops can be removed, if they create

unnecessary constraints on the concurrency within the system. Other are left to act as

standard self-loops, allowing an event connected to a condition by such a self-loop to con-

sume the token from the condition, while being executed, and return it back afterwards.

The third option for the re-interpretation of a self-loop in the synthesised net is to change

it to a ‘positive’ context arc (see [36]), which means that an event connected in this way

to a condition can be executed when the condition is marked, but without consuming

the token. This interpretation is useful in the circuit design, as it captures the situation

when an action modelled by an event is that of checking the state of the wires (it does

not change this state, however).

A different approach to the concurrency aspect of the synthesis problem was presented

in [47], where the information about concurrency between events was included in the

definition of a transition system: the Asynchronous Transition Systems introduced there

are sequential transition systems for which there is an explicit independence relation

defined on events. This is presumably a model which is the closest to those presented
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in this Thesis in the sense that Asynchronous Transition Systems are synthesised to Safe

Nets.

1.4 Step Transition Systems

Another way of overcoming the limitation of Semi-elementary Transition Systems with

respect to the modelling of concurrency is to use step transition systems, whose transitions

are labelled by sets of concurrently executed events. The rest of this Thesis (chapters

3-8) considers such transition systems. Moreover, we change the way of modelling non-

elementarity in nets. Instead of using self-loops, we employ inhibitor arcs (arcs ending

with a small circle), like the one between condition b3 and event b in the diagram (b)

below, which indicates that b can only be executed if b3 is empty. It can be seen that the

sequential behaviour of a net with a self-loop in (a) and the one with an inhibitor arc in

(b) is the same (as shown in (c)).

(a)

b1

b3

b2

b4

a b

(b)

b1

b3

b2

b4

a b

(c)

{b1, b2}

{b2, b3} {b1, b4}

{b3, b4}

a b

a

Chapters 3-8 deal with the synthesis problem for the Elementary Net Systems with

Inhibitor Arcs derived from step transition systems. According to [19], the non-sequential

behaviour of nets with inhibitor arcs can be interpreted in two different ways which opens

up the possibility to choose the semantics more suitable for the application at hand. The

first interpretation, called the a-posteriori semantics, treats events as instantaneous (their

occurrence takes zero time), while the second one, the a-priori semantics, assumes that

events take some time to complete. Which of the two semantics should be applied depends

on the properties of events which the net is supposed to model, and on the properties of

the enabling mechanism (see [19, 29]). Although Elementary Net Systems with Inhibitor

Arcs can be represented by Safe Nets with self-loops, the synthesis problem for these
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nets was only solved for some variants of the a-posteriori semantics [37, 47]. The main

contribution of this Thesis is a solution of the synthesis problem for the Elementary Net

Systems with Inhibitor Arcs executed under the a-priori semantics (ENI-systems) and a

complete characterisation (axiomatisation) of the transition systems generated by them

(TSENI Transition Systems). This is achieved in chapters 3-6. The a-posteriori semantics

for nets with inhibitor arcs is then considered in chapter 7 (the nets are called ENIapost -

systems and their transition systems TSENIapost Transition Systems). The two semantics

are then compared in chapter 8.

The synthesis of nets from step transition systems was first considered in [37] to deal

with the concurrent behaviour of the general Petri nets, and later in [3]. The transitions of

the PN-transition Systems in [37] are labelled with finite multisets over the set of events

E (empty steps and autoconcurrency are allowed). In [3], there are two definitions of

step transition systems. The first one defines a step transition system as a sequential

transition system equipped with a binary relation between states and finite multisets of

events. Although the transitions are still labelled with single events like in Asynchronous

Transition Systems, this additional relation carries information not only about the inde-

pendence between events (like in Asynchronous Transition Systems) but also about states

at which particular multisets of events are enabled. The second definition introduces step

transition systems over a commutative monoid. These have transitions labelled with the

elements of a monoid and in that they extend the original definition of step transition

systems of [37] (the set of finite multisets over E used for labelling transitions in [37]

constitutes the free commutative monoid generated by E). The step transition systems

of [37] and [3] satisfy the ‘intermediate state’ property which states that every step can

be split into two consecutive substeps:

s
α+β
−→ s′ ⇒ ∃s′′ ∈ S : s

α
−→ s′′ ∧ s′′

β
−→ s′.

In [37], the above property follows from the two regional axioms defining PN-transition

Systems, while in [3] it is a part of the definition. Step transition systems defined in

this Thesis have their transitions labelled with finite sets of events. We do not allow

empty steps, while autoconcurrency is ruled out by an axiom which demands that there

are no self-loops in transition systems. Such an axiom means that in the synthesised

(safe) inhibitor net every event has at least one pre-condition, which guarantees non-
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autoconcurrent behaviour of the event. Hence, sets of events are used as steps instead of

multisets. In [47], steps are defined as sets as well, but there it was due to the fact that

the independence relation determining which two events can be executed concurrently is

irreflexive. To ensure that steps of TSENI and TSENIapost Transition Systems represent

sets of concurrent events, we introduce step axioms which relate the enabledness of a step

at some state with the enabledness of the events in the step at this state. For a more

restrictive definition of a step in TSENIapost Transition Systems, an additional step axiom

is needed which relates a step with its target state. None of the step axioms involves

sequences of events. The ‘intermediate state’ property is not a part of the definition of

TSENI nor TSENIapost Transition Systems, but for the latter it follows from the defining

axioms. TSENI Transition Systems do not satisfy the ‘intermediate state’ property, and

thus they are different from any other class considered in the literature.

1.5 Regions

In order to synthesise inhibitor nets from step transition systems, we introduce a new

definition of a region. The standard definition of a region for the Elementary Transition

Systems [27, 38], which is adopted for the sequential Semi-elementary Transition Systems,

states that a region is a set of states in a transition system with which all transitions

labelled with the same event have the same ‘crossing’ relationship (either they all enter

the region, or all exit it, or all do not cross its ‘border’). We generalise this definition to

cope with sets of events (steps). A region r is now a set of states such that the ‘crossing’

relationship of a step with respect to r depends on containing some special event. For a

fixed step and a fixed region this special event is unique.

There are other approaches in the literature to define regions for more complex nets,

and to deal with step transition systems. In the case of Asynchronous Transition Systems

[47], a region (called a condition) is a subset of states (treated as idle transitions) and

transitions. For the purpose of synthesising pure bounded Place/Transition Nets [13],

the notion of a region was generalised to a multiset of states with which every transition

carrying the same label has the same ‘gradient’ (each transition with the same label

translates uniformly the multiplicities of the region). The standard definition of a region

is then a special case, when multiplicities are 1 or 0, and can be used to determine whether
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a particular state is inside (1) or outside (0) a region treated as a set. Yet another

definition of a region was used for the synthesis of general Petri Nets from step transition

systems [37]. As previously, a region aims to characterise a place in a synthesised net,

and is represented by two functions. The first function is defined on states of a transition

system and specifies the number of tokens held in a place (corresponding to the region

described by the function) under markings which correspond to the states. The second

function is defined on the set of events and returns two values which represent the ‘weights’

of arcs in the synthesised net between the place (region) and events.

Regions as Morphisms

In [8], a uniform approach to the synthesis problem was proposed based on regions defined

as morphisms from a given transition system into a classifying transition system - called

a type of nets - which describes the behaviour of the class of nets under consideration.

To synthesise a net from a sequential transition system TS = (S,E, T, sin) one needs to

find regions in the form of morphisms (σ, η) : (S,E, T ) → τ , where τ is an uninitialised

classifying transition system.6 For Elementary Transition Systems, a region r ⊆ S can be

represented as a morphism (σ, η), where σ is a characteristic function σ = χr : S → {0, 1}

and η : E → {−1, 0, 1} is such that η(e) = σ(s′) − σ(s) for every transition s
e

−→ s′

in T . The classifying transition system is then τEN = ({0, 1}, {−1, 0, 1}, {0
0

−→ 0, 0
1

−→

1, 1
−1
−→ 0, 1

0
−→ 1}). The diagram below, taken from [8], illustrates the concept of regions

as morphisms for Elementary Transition Systems.

'

&

$

%
TS

σ−1(0)

σ−1(1)

c

a b

c

τEN

0

1
0

0

+1−1

Nr

r

a

b

c

6A morphism for uninitialised transition systems (σ, η) : (S,E, T ) → (S′, E′, T ′) is a pair of maps

σ : S → S′ and η : E → E′ such that s
e

−→ s′ in T implies σ(s)
η(e)
−→ σ(s′) in T ′.
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By identifying every place in the net being generated with such a morphism, one can

build atomic nets Nr = ({r}, E, F, cin), where the flow relation F is given by η (η(a) = +1

means that a deposits a token in r; η(b) = −1 means that b consumes a token from r;

and η(c) = 0 means that c does not make any changes in r) and the initial case, cin , by σ

(r is initially marked if sin ∈ r = σ−1(1)). Solving the synthesis problem amounts then to

gluing a set of such atomic net systems (by identifying common events), provided that the

set of regions is admissible, i.e. it contains witnesses for the satisfaction of every instance

of two separation axioms. The first one, called the state separation property, ensures

that there are enough regions to distinguish every two different states in the transition

system. The second axiom, usually referred to as the event/state separation property,

states that for every event e and every state s at which this event is not enabled, there is

a region which disallows e at s. For all classes of nets, whatever the definition of a region,

a solution to the synthesis problem requires some variant of these regional axioms to be

fulfilled. When representing regions as morphisms, these two axioms can uniformly be

expressed in terms of functions σ and η, for all types of nets τ .

A classifying transition system, τ , which is needed to define regions as morphisms,

characterises the behaviour of synthesised nets. More precisely, it describes all possible

‘quantitative’ changes which may happen in a place of a net of that type. For pure

nets (those without side-conditions), the definition of a type allows to determine the

function η of a morphism (region) from the function σ. Since the values of σ represent

the number of tokens in a place modelled by the morphism, in pure nets there is only

one way of interpreting the changes in that place. The execution of an event can add

tokens to the place, or take some away, or leave it unaffected. With the introduction of

side-conditions, the uniqueness of η for a given σ is no longer true, as the same change

in the number of tokens in a place can result from different combinations of tokens being

added and removed at the same time. Since the function η is responsible for the modelling

of relationships between events and the place modelled by (σ, η), care must be taken in

order that one can distinguish between a place being a side-condition of an event, and

not connected to that event at all. This is another occasion to observe that non-pureness

may lead to ambiguity in interpreting the relationship between events and places and, as

a consequence, to an ambiguity in interpreting the independence relation on events. As a

result, the function η for non-pure nets is more complex than that needed for the regions of
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pure nets. Nevertheless, there is still a clear quantitative interpretation of the changes that

can take place in side-conditions of non-pure nets. They can be viewed as two consecutive

changes of consuming (removing) and producing (adding) tokens. This suggest that the

values of η for non-pure regions should be represented by pairs of numbers rather than by

single numbers. When it comes to the inhibitor nets, it is difficult to give a quantitative

interpretation of the inhibitor arc between a place and an event. The execution of such

an event requires the place to be empty and does not change the number of tokens. Thus,

from the quantitative point of view, it behaves like an event which is not connected to

the place. To distinguish between these two situations, the function η should be provided

with more information, in case of returning 0 (or no change) for some e. We need to

inspect all the transitions labelled by e in the transition system, and the values of σ for

their sources and targets. Although the Elementary Net Systems with Inhibitor Arcs can

be synthesised under the general framework where regions are represented as morphisms

with the classifying transition system τINH (see below the diagram taken from [4]), there

is still a difficulty with interpreting the action of inhibition in a quantitative sense. Hence

the values of η, labelling arcs in the diagram of τINH , were given names (representing the

relationships between a place of an inhibitor net and events, and so the possible changes

in the place caused by the executions of the events) rather than numerical values. For an

event e, η(e) = input means that the place corresponding to (σ, η) is a pre-condition of e;

η(e) = output means that the place (σ, η) is a post-condition of e; η(e) = inh means that

the place (σ, η) is connected to e by an inhibitor arc; and η(e) = nop states that there is

no connection between e and the place modelled by (σ, η).

τINH

0 1

nop nop

inh

output

input

The type τINH describes the sequential firing rule of inhibitor nets (the changes in a

place caused by single events). In [3], the idea of types of nets was generalised to extended

or enriched types of nets in order to define regions as morphisms in step transition systems.
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1.6 Minimisation of Synthesised Net

The basic net solution to the synthesis problem is constructed using all the regions as

places (conditions), and the result is usually called a saturated net system [27, 38, 37, 39].

Such a solution is generally exponential in size of the original transition system. In [26],

a method was presented for constructing all net solutions to the synthesis problem for

the Elementary Net Systems, and especially those which are polynomial in the size of

the transition system. This method is general enough to be applicable to other classes of

transition systems and nets, and it is based on an idea of admissible sets of regions, which

are sets of regions sufficient for building net solutions for a given synthesis problem (the

transition systems generated by any net solution is isomorphic to the transition system

generated by the saturated net). It was proved in [26] that the set of regions is admissible

if it contains witnesses for the satisfaction of every instance of the regional separation

axioms. A possible admissible set of regions of an elementary transition system is the set

of minimal regions (minimal with respect to set inclusion). The properties of minimal

regions and their use in the synthesis of Elementary Net Systems were investigated in [12].

In particular, it turned out that net systems constructed on the basis of minimal regions

(minimal nets) are contact-free, and are decomposable into state machine components.

The admissibility of the set of minimal regions was proved for the synthesis of Elementary

Net Systems with Inhibitor Arcs as well [17, 40]. In [17], where the sequential behavior

of Elementary Net Systems with Inhibitor Arcs was studied, the ability to decompose a

minimal net into state machine components was used to detect superfluous inhibitor arcs.

In this Thesis, we prove that minimal regions form an admissible set for the synthesis of

Elementary Net Systems with Inhibitor Arcs from step transition systems. The elimina-

tion of superfluous inhibitor arcs is then done by taking advantage of properties of the

non-minimal regions. The method based on non-minimal regions does not depend on the

decomposability of a net into state machine components, and therefore can possibly be

generalised to non-safe nets. Minimal regions were important for the synthesis of pure

safe nets from Excitation-closed Transition Systems (a class wider than Elementary Tran-

sition Systems) [23]. The aim of that work was to design an efficient algorithm for the

synthesis of Petri nets, and the structure of minimal regions was investigated to find the

best way to generate minimal nets. The role of minimal regions was reflected in the form
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of the second regional axiom (the first one is not used) for Excitation-closed Transition

Systems which, if satisfied, is automatically satisfied for the set of minimal regions. The

problem of finding an irredundant set of regions (minimal admissible set of regions, where

none of the regions is redundant), and eventually an optimal solution to the synthesis

problem (generated on the basis of irredundant set of regions and fulfilling some addi-

tional requirements, e.g., having the minimal number of places or being contact-free), was

considered in [26] for Elementary Transition Systems, and in [23] for Excitation-closed

Transition Systems.

1.7 Other Formulations of the Synthesis Problem

We deal with the synthesis problem in its classical form, i.e. we aim to obtain a Petri net

N from a transition system TS in such a way that the transition system generated by N

is isomorphic to TS. However, there are also other ways of defining the synthesis prob-

lem. In [5], algorithms were given to solve the synthesis problem for bounded nets from

transition systems as well as from regular languages. The synthesis problem from lan-

guages (the synthesised net should behave according to a given language) is weaker than

that from transition systems, and requires only a variant of the event/state separation

axiom to be fulfilled. Further generalisation of the above problem was introduced in [24],

where (possibly) unbounded nets are synthesised from specifications given by two regular

languages which constitute a lower and upper bound for the language of the synthesised

net. The second problem considered in [24] was the synthesis of nets from determinis-

tic context-free languages. In [21, 23, 46], the net realisation of a transition system is

sought up to some form of bisimilarity rather than isomorphism. Again, this weaker defi-

nition of the synthesis problem allows one to ignore the state separation property and, in

consequence, to consider wider class of transition systems.

1.8 A Summary of the Contributions

In general, the work presented in this Thesis can be seen as contributing to the theory of

synthesis of concurrent systems, in particular asynchronous circuits, as well as the theory

of relationship between different models of concurrency. On the technical level, the Thesis

is concerned with two models of concurrency, namely transition systems and Petri nets.
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The relationship between these models is developed using techniques derived from the

theory of regions as well as category theory. The detailed contributions are as follows:

• The definition and axiomatisation of Semi-elementary Transition Systems. This

class of transition systems is an extension of the Elementary Transition Systems

which allows to model the behaviour of asynchronous circuits. (Chapter 2)

• The synthesis procedure for the Semi-elementary Net Systems. (Chapter 2)

• The definition of behavioural transformations for the Semi-elementary Transition

Systems and the proof that these transformations do not lead outside the class of

Semi-elementary Transition Systems. The transformations are based on identifying

a subgraph in a transition system called a ladder. Ladder-like structures are typical

for asynchronous hardware behaviours with conflicts. (Chapter 2)

• The definition of a region for step transition systems generated by nets with inhibitor

arcs. (Chapter 3)

• The definition and axiomatisation of TSENI Transition Systems. TSENI Transition

Systems are particularly useful for the modelling of asynchronous controller and

arbiter behaviour. (Chapter 3)

• The synthesis procedure for the ENI-systems. (Chapter 3)

• The definition of behaviour preserving morphisms for TSENI Transition Systems

and ENI-systems. (Chapter 4)

• The definition of the category of TSENI Transition Systems and the category of

ENI-systems. (Chapter 5)

• The definition of functors between the category of ENI-systems and category of

TSENI Transition Systems, and the proof that they form an adjunction (precisely

coreflection). (Chapter 5)

• A proof that minimal regions constitute an admissible set for the synthesis of ENI-

systems. This is an important result from the point of view of extending the Petrify

tool [22] to incorporate inhibitor arcs. The algorithms used by the Petrify tool rely

on the fact that minimal regions are sufficient. (Chapter 6)
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• A novel method for eliminating superfluous inhibitor arcs from the synthesised nets.

This method is more operational than the other one presented in the literature,

because it does not depend on the decomposability of a synthesised net into state

machine components. (Chapter 6)

• The definition and axiomatisation of TSENIapost Transition Systems. (Chapter 7)

• The synthesis procedure for the ENIapost -systems. (Chapter 7)

Some of the results contained in this Thesis were presented at two international confer-

ences, [39, 40], and published as a journal article [41].

1.9 Outline of the Thesis

In section 2.1, we introduce Semi-elementary Transition Systems and the corresponding

class of nets, following the treatment presented in [38]. In section 2.2, we study various op-

erations which can be performed on Semi-elementary Transition Systems and their impact

on the structure of the corresponding nets. Section 2.3 discusses different ways in which

self-loops in nets can be interpreted, depending on the degree of concurrency exhibited

by the system. Section 2.4 provides an illustration of the use of the presented theoretical

results in deriving a semi-elementary net system for a transition system defining the be-

haviour of a counterflow pipeline synchronisation from [45]. Chapter 2 closes with section

2.5 which discusses the possibility of allowing self-loops in the Semi-elementary Transition

Systems.

Section 3.1 introduces TSENI Transition Systems, and in section 3.2, we establish their

basic properties. Section 3.3 recalls the syntax and semantics of ENI-systems, and the

next section shows that all the transition systems generated by ENI-systems are TSENI

transition systems. In section 3.5, we provide a construction of an ENI-system for a given

TSENI transition system. Section 3.6 contains the proof of consistency of translations

between ENI-systems and TSENI Transition Systems.

Section 4.1 introduces behaviour preserving morphisms for the TSENI Transition Sys-

tems, and section 4.2 introduces a class of behaviour preserving morphisms for the ENI-

systems.

In section 5.1, we define the category of ENI-systems (CATENI ), and the category of
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TSENI Transition Systems (CATTSENI ). In sections 5.2 and 5.3, functors between the

categories CATTSENI and CATENI are introduced, and section 5.4 contains the proof that

the two functors form an adjunction.

Section 6.1 examines properties of regions and minimal regions of TSENI Transition

Systems. In section 6.2, we define for a given TSENI transition system a net which uses

only minimal regions (NMin), and prove that it constitutes an ENI-system. Section 6.3

examines the relationship between NSat (the ENI-system obtained from the original con-

struction, which uses all the regions) and NMin , by defining a net morphism between the

two nets. It is proved that the transition systems generated by both nets are isomorphic.

Section 6.4 looks at the possibility of a further minimisation of NMin , by removing some

of its inhibitor arcs.

Chapter 7 discusses TSENIapost Transition Systems and ENIapost -systems in the same

way as the transition systems and nets for the a-priori semantics were treated in chapter 3.

In chapter 8, we study the relationship between transition systems that arise from the

a-priori and a-posteriori semantics.

Finally, chapter 9 discusses the directions for further research.



Chapter 2

Synthesis of Nets with Self-loops

In this chapter we deal with Semi-elementary Net Systems which are basically the Elemen-

tary Net Systems of [38] with added self-loops. That such an extension is necessary can be

shown in the following way. Imagine that an event is caused by (pre-)conditions some of

which should remain true when the event is executed. In other words, the execution of an

event in some operational case of an elementary net system should not necessarily make

one of its pre-conditions false. A simple example of such an effect is shown in figure 2.1.

Here, the state of the output of each gate1 is represented by a pair of conditions, one for

the True value and the other for False. Thus, the events labelled with rising (e.g., a+) and

falling (e.g., a−) transitions have the above conditions as preconditions, which is depicted

by single arcs directed from the conditions to events. On the other hand, each gate has

inputs which are the outputs of other gates and the state of these inputs determines the

circumstances under which the gate’s output changes its state. In terms of the net model

this means that each event must also include as its preconditions the conditions modelling

the state of its inputs. However, since the change of the output of the gates does not affect

the change of its inputs, it would be irrational to assume that such a precondition has to

become False once the event has been executed. A consistent way to adequately model

this situation would be to declare such a precondition also as a postcondition of the event.

Note that in the net model of the circuit such relationship between conditions and events

is depicted by two single-headed arcs - an obvious situation of a self-loop in the net2.

The above example, requiring the use of self-loops in nets (historically, Petri nets with

self-loops have been called non-pure), can be easily extended to modelling situations where

1The list of gate symbols is given in the appendix.
2For simplicity, bidirectional arcs are often used to represent self-loops in Petri nets.

17
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a

b

c

(a)

(b)

a = 1

a = 0

c = 0 c = 1

b = 1

b = 0

a+ a−

c+

c−

c−

b+ b−

Figure 2.1: Example of a net with self-loops.
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a circuit interacts with its environment through input and output signals. The transitions

of input signals are associated with events which set to True the preconditions of events

modelling the internal or output signal transitions. In some cases, these conditions have

to remain True until some other event in the environment resets them to False. While

self-loops are intuitively obvious at the syntactic level, it often happens that a behaviour

of that sort is easier to capture at the transition system level [45, 49].

In the view of the above practical motivation, we present in this chapter a simple

extension of the class of Elementary Net Systems to Semi-elementary Net Systems by

allowing self-loops to be present3. Similarly, we formulate axioms for transition systems

so as to check their semi-elementarity. Note that Semi-elementary Transition Systems

are simply those generated by Semi-elementary Net Systems.

We aim at a characterisation of certain local transformations defined for transition

systems which do not lead outside the class of Semi-elementary Transition Systems. The

transformations we are interested in correspond to adding self-loops in the associated

semi-elementary nets and, as a result, they are particularly easily implementable. The

transformations are based on identifying a specific pattern (subgraph) in a transition

system, called a ladder, from which it is possible to delete some (but not all) transitions,

called rungs, without disturbing the rest of the transition system. It is important to

stress that ladders are typical for asynchronous hardware behaviours with conflicts, such

as arbitration and latches with independent clocks.

2.1 Semi-elementary Transition Systems and Nets

In this section we prepare the necessary formalism for the discussion in section 2.2. Es-

sentially, we present a simple extension to the model of Elementary Transition Systems

of [38] which allows one to consider non-pure nets (i.e. nets with self-loops). The result-

ing model is sufficient for our purposes although it is worth noting that there are other

ways of representing non-pure nets using more expressive classes of transition systems, as

discussed at the end of section 2.3. The presentation in this section closely follows that

in [38]. The proofs are not included as they can easily be obtained by suitably modifying

those found in [38].

3In fact, this is almost an extension to Safe Nets since for each place in a semi-elementary net system
a unique complement place can be added without changing the net’s behaviour.
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2.1.1 Transition Systems

A transition system is a quadruple TS = (S,E, T, sin), where S is a non-empty finite set

of states, E is a finite set of events, T ⊆ S ×E × S is the transition relation, and sin ∈ S

is the initial state. We assume TS satisfies the following three conditions (or axioms):

AX1 For every (s, e, s′) ∈ T , s 6= s′.

AX2 For every e ∈ E there are s, s′ ∈ S such that (s, e, s′) ∈ T .

AX3 For every s ∈ S \ {sin} there are (si, ei, si+1) ∈ T , for i = 0, 1, . . . , n, such that

s0 = sin and sn+1 = s.

We will often write s
e

−→ s′ if (s, e, s′) ∈ T , and s
e

−→ (or
e

−→ s) if (s, e, s′) ∈ T (resp.

(s′, e, s) ∈ T ), for some s′. Also, for s
e

−→ s′, we will call s the source and s′ the target

of this transition. Figure 2.2 shows a transition system represented as a labelled directed

graph.

Note that we relaxed some of the constraints imposed on a transition system in [38]; in

particular, axiom (A2) of [38] which did not allow multiple arcs between a pair of states.

This restriction was introduced to avoid the so-called non-simple nets, where different

events may have the same sets of pre- and post-conditions.

Let TS = (S,E, T, sin) be a transition system fixed throughout the rest of this section.

Definition 2.1.1 [38] A set of states r ⊆ S is a region of TS if the following two

conditions are satisfied:

(s, e, s′) ∈ T ∧ s ∈ r ∧ s′ 6∈ r ⇒ ∀(s1, e, s′1) ∈ T : s1 ∈ r ∧ s′1 6∈ r

(s, e, s′) ∈ T ∧ s 6∈ r ∧ s′ ∈ r ⇒ ∀(s1, e, s
′
1) ∈ T : s1 6∈ r ∧ s′1 ∈ r.

A region different from S and ∅ will be called a non-trivial region. ⊓⊔

If we denote by RTS the set of non-trivial regions then by Rs we will mean the set of

non-trivial regions containing a state s ∈ S,

Rs = {r ∈ RTS | s ∈ r}.

The sets of pre-regions and post-regions of an event e ∈ E are defined as follows:

◦e = {r ∈ RTS | ∃(s, e, s′) ∈ T : s ∈ r ∧ s′ 6∈ r}
e◦ = {r ∈ RTS | ∃(s, e, s′) ∈ T : s 6∈ r ∧ s′ ∈ r}.

Regions of a transition system correspond to conditions (local states) in the corre-

sponding net.
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Proposition 2.1.1 [38] A set of states r ⊆ S is a region if and only if its complement

r = S \ r is a region. Moreover, for every e ∈ E, e◦ = {r | r ∈ ◦e}. ⊓⊔

Proposition 2.1.2 [38] If s
e

−→ s′ then Rs \ Rs′ =
◦e and Rs′ \ Rs = e◦. Moreover,

◦e ⊆ Rs and e◦ ∩ Rs = ∅ and Rs′ = (Rs \ ◦e) ∪ e◦. ⊓⊔

The next definition characterises the relationship between an event and a region in

which a transition labelled by the event is completely (i.e., both its source and target

states are) inside the region.

Let r ∈ RTS be a non-trivial region and e be an event. By

Be
r = {(s, e, s′) ∈ T | s ∈ r ∧ s′ ∈ r}

we will denote the set of all the arcs labelled by e which are ‘buried’ in r. The set of

co-regions of an event e ∈ E is then defined as follows:

◦
e = {r ∈ RTS | Be

r 6= ∅ ∧ Be
r = ∅}.

The co-regions of an event e correspond to those conditions in the associated net which

form a self-loop with e.

The following proposition adds to the properties of regions associated with an event

observed in propositions 2.1.1 and 2.1.2.

Proposition 2.1.3 If e ∈ E and r ∈
◦
e then r 6∈ ◦e ∪ e◦ and r 6∈ ◦e ∪

◦
e ∪ e◦. Moreover,

if s
e

−→ s′ then
◦
e ⊆ Rs ∩ Rs′. ⊓⊔

Transition system TS is said to be semi-elementary if it satisfies, in addition to (AX1)-

(AX3), the following two regional axioms:

AX4 For all s, s′ ∈ S, if Rs = Rs′ then s = s′.

AX5 For all s ∈ S and e ∈ E, if ◦e ⊆ Rs and
◦
e ⊆ Rs then s

e
−→.

Figure 2.2 shows a semi-elementary transition system TS0 which has 4 regions: r1 =

{sin , s1}, r2 = {s2, s3}, r3 = {sin , s2} and r4 = {s1, s3}. The pre-, post- and co-regions of

a and b are as follows: ◦a = {r3}, a
◦ = {r4},

◦
a = ∅ and ◦b = {r1}, b

◦ = {r2},
◦

b = {r3}.
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sin

s1 s2

s3

a b

a

Figure 2.2: Semi-elementary transition system TS0.

2.1.2 Nets

We now introduce the class of Petri nets which will be dealt with in this chapter.

A net is a triple N = (B,E, F ) where B is a finite set of conditions, E is a finite set

of events disjoint from B, and F ⊆ (B × E) ∪ (E × B) is a flow relation. It is assumed

that for every x ∈ E there are y, z ∈ B such that (x, y), (z, x) ∈ F and (y, x), (x, z) 6∈ F .

Note that the above constraint excludes events having their connections with condi-

tions only via self-loops. Note that this means that every event must have at least one

‘pure’ predecessor and one ‘pure’ successor condition (c.f. axiom (AX1)). By a self-loop in

N we will mean a pair, e ∈ E and x ∈ B, such that (e, x) ∈ F and (x, e) ∈ F . Moreover,

for every x ∈ B ∪ E, we denote:

•x = {y | (y, x) ∈ F ∧ (x, y) 6∈ F} (pre-elements),
x• = {y | (x, y) ∈ F ∧ (y, x) 6∈ F} (post-elements),
•
x = {y | (x, y) ∈ F ∧ (y, x) ∈ F} (co-elements).

A semi-elementary net system is a tuple N = (B,E, F, cin), where NN = (B,E, F ) is

the underlying net and cin ⊆ B is the initial case (in general, a case is a subset of B). We

use the standard way of graphical representation of nets, i.e, conditions are represented

by circles, events by boxes and cases by tokens placed within circles. We will assume that

N is fixed until the end of this section.

The semantics of N is given through the transition relation. We first define the

transition relation, →NN
, of the underlying net NN , as follows:

→NN
= {(c, e, c′) ∈ 2B × E × 2B | c \ c′ = •e ∧ c′ \ c = e• ∧

•
e ⊆ c ∩ c′}.

We then define the state space of N , CN , which is the least subset of 2B containing

cin which satisfies:

(c, e, c′) ∈ →NN
∧ c ∈ CN ⇒ c′ ∈ CN ,
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and finally define →N , the transition relation of N , as →NN
restricted to CN ×E ×CN .

Moreover,

EN = {e ∈ E | ∃c, c′ ∈ CN : (c, e, c′) ∈ →N}

is the set of active events of N .

We will often use c
e

−→ whenever (c, e, c′) ∈ →N , for some c′, and say that an event

e is enabled at case c. The difference between elementary [38] and semi-elementary net

systems is that the latter allow an event to be executed only if its co-conditions are true,

but the state of these conditions cannot be changed by the event. Such co-conditions may

however be pre- or post-conditions for some other event(s), which can change their state.

The following proposition is basically the same as the one of [38] except for its first

statement, which requires co-conditions to be taken into account.

Proposition 2.1.4 The following hold:

1. (∀c ∈ CN )(∀e ∈ E) [c
e

−→ ⇔ (•e ∪
•
e ⊆ c ∧ e• ∩ c = ∅)].

2. (∀(c, e, c′) ∈ →N ) [c′ = (c \ •e) ∪ e•].

3. (∀(c1, e, c2), (c3, e, c4) ∈ →N ) [c1 \ c2 = c3 \ c4 ∧ c2 \ c1 = c4 \ c3].

4. (c, e, c1), (c, e, c2) ∈ →N ⇒ c1 = c2. ⊓⊔

2.1.3 Relating Transition Systems and Nets

It is straightforward to construct a transition system for any semi-elementary net system.

Let N = (B,E, F, cin) be a semi-elementary net system. Then

TSN = (CN , EN ,→N , cin)

is the transition system generated by N .

Theorem 2.1.1 TSN is a semi-elementary transition system. ⊓⊔

The definition of a net system associated with a transition system from [38] needs to

be modified, as follows. Let TS = (S,E, T, sin) be a semi-elementary transition system.

Then NTS = (RTS, E, FTS, Rsin ) where

FTS = {(r, e) | e ∈ E ∧ r ∈ ◦e ∪
◦
e} ∪ {(e, r) | e ∈ E ∧ r ∈ e◦ ∪

◦
e}

is the net system associated with TS.
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Theorem 2.1.2 NTS is a semi-elementary net system. ⊓⊔

For the semi-elementary transition system depicted in figure 2.2, the associated semi-

elementary net system, NTS0
, is shown in figure 2.3.

r3

r4

r1

r2

a b

Figure 2.3: Semi-elementary net system NTS0
.

Proposition 2.1.5 Let TS = (S,E, T, sin) be a semi-elementary transition system and

N = (RTS, E, FTS, Rsin ) be a semi-elementary net system associated with it. Then

1. EN = E,

2. CN = {Rs | s ∈ S},

3. →N = {(Rs, e, Rs′) | (s, e, s′) ∈ T}. ⊓⊔

We end with a result which states a basic consistency of the two translations defined

in this section.

Theorem 2.1.3 Let TS be a semi-elementary transition system and NTS be a semi-

elementary net system associated with it. Then TSNTS
, the transition system generated

by NTS, is isomorphic to TS. ⊓⊔

2.2 Transforming Transition Systems

This section contains the main technical results of this chapter. We aim at a charac-

terisation of certain local transformations defined for transition systems which do not

lead outside the class of Semi-elementary Transition Systems. The transformations we

are interested in correspond to adding self-loops in the associated semi-elementary nets

and, as a result, they are particularly easily implementable. The transformations are

based on identifying a specific pattern (subgraph) in a transition system, called a ladder,

from which it is possible to delete some (but not all) transitions, called rungs, without

disturbing the rest of the transition system.
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2.2.1 Self-loops

We start by proving two results. The first captures the effect which adding of self-loops

to a net has on the transition system generated by it.

For a transition system TS = (S,E, T, sin) and a set of transitions T0 ⊆ T , we will

denote by TS[T0] the maximal transition system with the initial state sin included in TS

after removing the arcs T0.

Proposition 2.2.1 Let TS = (S,E, T, sin) be a semi-elementary transition system and

N = (RTS, E, FTS, Rsin ) be the semi-elementary net system associated with it. Moreover,

let a ∈ E and ∅ 6= X ⊆ RTS be such that (a, x) 6∈ FTS and (x, a) 6∈ FTS, for all x ∈ X.

Define

N ′ = (RTS, E, FTS ∪
⋃

x∈X

{(a, x), (x, a)}, Rsin ).

Then N ′ is a semi-elementary net system such that TSN ′ is a semi-elementary transition

system isomorphic to TS[T0] where

T0 = {(s, a, s′) ∈ T | (s, a, s′) 6∈
⋂

x∈X

Ba
x}.

Proof: Clearly, N ′ is a semi-elementary net system. From (x, a), (a, x) 6∈ FTS, for all

x ∈ X , it follows that →N ′⊆→N . This and proposition 2.1.5 means that it suffices to

prove that for every (s, e, s′) ∈ T ,

(Rs, e, Rs′) 6∈ →NN′⇔ e = a ∧ (s, e, s′) 6∈
⋂

x∈X

Ba
x.

Note that (s, e, s′) ∈ T implies (Rs, e, Rs′) ∈ →N and consider three cases.

Case 1: (s, e, s′) ∈ T and e 6= a. Then, (Rs, e, Rs′) ∈ →NN′ follows from (Rs, e, Rs′) ∈ →N

and the fact that the flow relation for e 6= a is unchanged.

Case 2: (s, a, s′) ∈ T \
⋂

x∈X Ba
x. This means (s, a, s′) 6∈

⋂
x∈X Ba

x. Then there is x ∈ X

such that (s, a, s′) 6∈ Ba
x. Then, by (x, a), (a, x) 6∈ FTS, (s, a, s

′) ∈ Ba
S\x. Hence s 6∈ x and

so x 6∈ Rs. But (x, a) is an arc in N ′. As a result, (Rs, a, Rs′) 6∈ →NN′ .

Case 3: (s, a, s′) ∈
⋂

x∈X Ba
x. Then x ∈ Rs ∩ Rs′, for all x ∈ X , which together with

(Rs, a, Rs′) ∈ →N yields (Rs, a, Rs′) ∈ →NN′ .

That TSN ′ is semi-elementary follows directly from theorem 2.1.1. ⊓⊔
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The next result shows that if two semi-elementary transition systems ‘differ’ only by

a set of a-labelled transitions then, provided that the shared a-labelled transitions are

buried in a set of regions, the nets corresponding to the two transition systems ‘differ’ by

a set of self-loops.

Proposition 2.2.2 Let TS = (S,E, T, sin) be a transition system, a ∈ E be an event,

and TS ′ = (S,E, T ′, sin) be a semi-elementary transition system obtained from TS by

adding at least one transition labelled by a.

If there is a non-empty set of regions R ⊆ RTS′ such that

⋂

x∈R

Ba
x = {(s, a, s′) | (s, a, s′) ∈ T ∩ T ′}

then TS is generated by N obtained from NTS′ by adding two arcs, (a, x) and (x, a), for

every x ∈ R, unless such arcs are already in NTS′.

Proof: Since a ∈ E and TS is a transition system (see (AX2)),
⋂

x∈R Ba
x 6= ∅ in TS ′.

Moreover, since we added at least one arc, Ba
S\x 6= ∅ in TS ′, for some (at least one) x ∈ R.

Let X ⊆ R be the set of all such x ∈ R. Hence there is no arc (in either direction) between

x and a in NTS′ ((a, x) 6∈ FTS′ and (x, a) 6∈ FTS′ ), for x ∈ X . Thus TS ′ and X satisfy the

assumptions of proposition 2.2.1 (with TS ′ playing the role of TS). Hence after adding

(a, x) and (x, a) to NTS′, for all x ∈ X , we obtain N which generates transition system

TS isomorphic to TS ′[T ′
0] where T

′
0 = {(s, a, s′) ∈ T ′ | (s, a, s′) 6∈

⋂
x∈X Ba

x} ( note that

T ′
0 = {(s, a, s′) ∈ T ′ | (s, a, s′) 6∈ T ∩T ′} since

⋂
x∈X Ba

x =
⋂

x∈R Ba
x). One can now see that

TS is isomorphic to TS, because TS was a transition system and from axiom (AX3) we

know that every state was reachable from the initial state, so the arcs removed from TS ′

are exactly those which were added to TS. ⊓⊔

2.2.2 Ladders and Rungs

We now turn our attention to special sub-structures of transition systems which, as we

already mentioned, can provide a basis for local transformations on transition systems.

Definition 2.2.1 Let TS = (S,E, T, sin) be a transition system.

1. A path in TS is a sequence of states and events σ = s1e1s2 . . . sn−1en−1sn such

that n ≥ 1 and (si, ei, si+1) ∈ T for 1 ≤ i < n. We will denote states(σ) =

{s1, . . . , sn−1, sn}.



CHAPTER 2. SYNTHESIS OF NETS WITH SELF-LOOPS 27

2. Let σ = s1e1s2 . . . sn−1en−1sn and σ′ = s′1e1s
′
2 . . . s

′
n−1en−1s

′
n be two paths in TS and

a ∈ E be such that |states(σ)| = |states(σ′)| = n, states(σ) ∩ states(σ′) = ∅ and

(sk, a, s
′
k) ∈ T , for some 1 ≤ k ≤ n. Then the triple

ldd = (σ, a, σ′)

is called a ladder in TS. We will also denote I(ldd) = {i | (si, a, s′i) ∈ T} and

rungs(ldd) = {(si, a, s′i) | i ∈ I(ldd)}. ⊓⊔

A schematic representation of a ladder from the last definition is shown below:

s1 s2 sk sn

s′1 s′2 s′k s′n

e1 e2 ek−1 ek en−1

e1 e2 ek−1 ek en−1

a a a

Note that the ladder can have ‘missing’ rungs and also that we do not make any assump-

tions about other transitions labelled by a in the graph of TS.

Our first result states that if (σ, a, σ′) is a ladder then each pre-region of a contains all

the states of path σ and, similarly, each post-region of a contains all the states of path σ′.

Proposition 2.2.3 Let ldd = (σ, a, σ′) be a ladder, and r be a region in a transition

system TS.

1. If r ∈ ◦a then states(σ) ⊆ r.

2. If r ∈ a◦ then states(σ′) ⊆ r.

Proof: (1) Let ldd and TS be as in definition 2.2.1 (see also figure 2.4 for illustration).

From r ∈ ◦a and (sk, a, s
′
k) ∈ rungs(ldd) we have sk ∈ r and s′k 6∈ r. Suppose k − 1 ≥ 1.

From
ek−1

−→ sk and
ek−1

−→ s′k and sk ∈ r and s′k 6∈ r we have sk−1 ∈ r and s′k−1 6∈ r. We can

continue the same procedure: if k − 2 ≥ 1 then from
ek−2

−→ sk−1 and
ek−2

−→ s′k−1 and sk−1 ∈ r

and s′k−1 6∈ r we have sk−2 ∈ r and s′k−2 6∈ r etc. Hence {s1, . . . , sk−1} ⊆ r. Similarly, one

can show that {sk+1, . . . , sn} ⊆ r.

(2) The proof of this part is similar to that of (1). ⊓⊔
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�
�

�
�

r
s1 s2 sk sn

s′1 s′2 s′k s′n

e1 e2 ek−1 ek en−1

e1 e2 ek−1 ek en−1

a a a

a a a

Figure 2.4: An illustration for proposition 2.2.3.

Recall that our aim is to be able to delete certain transitions from a transition system in

such a way that the corresponding transformation on a semi-elementary net would simply

consist in adding one or more self-loops. In particular, deleting a transition should neither

create nor destroy any region (condition) in the associated net. The next proposition

shows that the rungs of a ladder in a transition system do possess the latter property.

Proposition 2.2.4 Let ldd be a ladder in a transition system TS = (S,E, T, sin). If

TS ′ = (S,E, T ′, sin) is a transition system obtained from TS by deleting some (but not

all) arcs from rungs(ldd) then RTS = RTS′.

Proof: Let ldd and TS be as in definition 2.2.1. It suffices to show that the result holds

after deleting a single arc (sk, a, s
′
k) ∈ rungs(ldd). Note that T ′ = T \ {(sk, a, s′k)} in such

a case.

Showing that RTS ⊆ RTS′ is straightforward. We prove that RTS′ ⊆ RTS by assuming

that there is r ∈ RTS′ such that r 6∈ RTS. From the definition of region we know that

there are arcs (s, e, s′) ∈ T and (ŝ, e, ŝ′) ∈ T which have different ‘crossing relationship’

with r. We consider two cases.

Case 1: e 6= a. The arcs (s, e, s′) and (ŝ, e, ŝ′) belong to TS ′, so r cannot be a region in

TS ′, a contradiction.

Case 2: e = a. Since r is a region in TS ′ we can assume, without loss of generality,

that (sk, a, s
′
k) is (ŝ, a, ŝ

′). According to the assumptions, not all arcs in rungs(ldd) were

deleted. Suppose (sm, a, s
′
m), where 1 ≤ m ≤ n and m 6= k, is still in TS ′.

If (sm, a, s
′
m) has different crossing relationship with r than (s, a, s′) we have a contra-

diction, because they both belong to TS ′, so r cannot be a region in TS ′.
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Assume that (sm, a, s
′
m) has the same crossing relationship with r as (s, a, s′). Suppose

s, sm ∈ r and s′, s′m 6∈ r. We have three cases to consider:

1. sk 6∈ r and s′k ∈ r (see figure 2.5 for illustration);

2. sk ∈ r and s′k ∈ r; and

3. sk 6∈ r and s′k 6∈ r.

In all three cases it is easy to show that there exist (si, ei, si+1) ∈ T and (s′i, ei, s
′
i+1) ∈ T

on the paths σ and σ′ respectively which has different crossing relationships with r (since

states(σ) ∩ states(σ′) = ∅) and they are not removed from TS ′. Hence r cannot be a

region in TS ′. All other cases, s, sm 6∈ r and s′, s′m ∈ r etc. are similar.

Hence RTS = RTS′. ⊓⊔

'

&

$

%

r

s

s′

sm

s′m

s′k

sk

a a a

σ′

σ

Figure 2.5: An illustration for proposition 2.2.4.

The next result complements the previous one in that it shows that different rungs in

a ladder can be separated by a region such that one of the rungs is buried in it and the

other not. Intuitively, this means that we can ‘deactivate’ one of the two rungs by adding

a suitable self-loop in the corresponding net.

Proposition 2.2.5 Let ldd = (σ, a, σ′) be a ladder in a semi-elementary transition system

TS. Then for every two distinct arcs τ, τ ′ ∈ rungs(ldd) there is a region r ∈ RTS such

that τ ∈ Ba
r and τ ′ 6∈ Ba

r .

Proof: Let ldd be as in definition 2.2.1. Suppose i 6= j ∈ I(ldd) are such that for all

r ∈ RTS, (si, a, s
′
i) ∈ Ba

r ⇔ (sj , a, s
′
j) ∈ Ba

r . From proposition 2.2.3 it follows that:

(∀r ∈ ◦a) si, sj ∈ r ∧ (∀r ∈ a◦) si, sj 6∈ r. As a result, every region r ∈ RTS either
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contains both si and sj or none of them. Hence Rsi = Rsj and, by (AX4), we obtain

si = sj. This, however, contradicts i 6= j and |states(σ)| = n. ⊓⊔

We now can prove the main result of this chapter, theorem 2.2.1. It characterises situ-

ations under which deleting rungs from a ladder has no effect on being a semi-elementary

transition system.

Theorem 2.2.1 Let TS = (S,E, T, sin) be a semi-elementary transition system and ldd

be a ladder such that rungs(ldd) are the only a-labelled arcs in TS.

If TS ′ = (S,E, T ′, sin) is a transition system obtained from TS by deleting all but one arc

from rungs(ldd) then TS ′ is semi-elementary.

Proof: Let ldd be as in definition 2.2.1 (see also figure 2.6 for illustration). TS ′ satisfies

the assumptions of proposition 2.2.4, so RTS = RTS′. Hence, since (AX4) was true for

TS, it is true for TS ′ as the sets of states and non-trivial regions are the same. We now

prove that (AX5) is satisfied. Suppose τ = (sk, a, s
′
k) is the only arc from rungs(ldd)

which belongs to TS ′. From proposition 2.2.5 it follows that:

(∀j ∈ I(ldd) \ {k}) (∃rj ∈ RTS) τ ∈ Ba
rj

∧ (sj, a, s
′
j) 6∈ Ba

rj

which implies

(∗) (∀j ∈ I(ldd) \ {k}) (∃rj ∈ RTS) τ ∈ Ba
rj

∧ rj 6∈ Rsj .

Axiom (AX5) is satisfied for all e 6= a, because it was satisfied for TS, and the set of states

is unchanged, the set of regions is unchanged, and the set of e-labelled arcs is unchanged.

What we need to show is that in TS ′: (∀s ∈ S) ◦a ⊆ Rs ∧
◦
a ⊆ Rs ⇒ s

a
−→. We first

observe that ◦a (in TS) is the same as ◦a (in TS ′) since RTS = RTS′. Moreover,
◦
a (in

TS) is a subset of
◦
a (in TS ′). Thus, the only property we need to check is:

(∗∗) (∀j ∈ I(ldd) \ {k})
◦
a 6⊆ Rsj (in TS ′).

But we know that in TS ′:
◦
a = {r | r ∈ RTS′ ∧ (sk, a, s

′
k) ∈ Ba

r}. This and (*) yields:

(∀j ∈ I(ldd) \ {k}) (∃rj ∈ RTS = RTS′) rj ∈
◦
a ∧ rj 6∈ Rsj (in TS ′).

Hence (**) holds. ⊓⊔
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Figure 2.6: An illustration for theorem 2.2.1.

We can further observe that by applying propositions 2.2.1 and 2.2.2 to the two tran-

sition systems, TS and TS ′, in theorem 2.2.1 we can also relate the corresponding nets.

More precisely, the construction can proceed by taking the regions rj used in the proof of

theorem 2.2.1, and connecting these by means of a self-loop with the event a in the net

corresponding to TS. To conclude, local transformations of semi-elementary transition

systems dealt with in theorem 2.2.1 correspond to adding self-loops on the level of the

associated semi-elementary nets.

Our final observation in this section is that ladders, in the form introduced in definition

2.2.1, are typical behavioural structures for asynchronous circuits with conflicts. However,

it is important to add that, from the technical point of view, their definition can be

generalised by not demanding that σ and σ′ be directed paths (the paths in definition

2.2.1 are true directed paths), but only that for all 1 ≤ i < n either

(si, ei, si+1) ∈ T and (s′i, ei, s
′
i+1) ∈ T,

or

(si+1, ei, si) ∈ T and (s′i+1, ei, s
′
i) ∈ T.

A schematic diagram for such a generalised ladder is given below.

s1 s2 sk sn

s′1 s′2 s′k s′n

e1 e2 ek−1 ek en−1

e1 e2 ek−1 ek en−1

a a a

It is worth noting that such a generalisation has no effect on the results proved in sec-

tion 2.2.2, i.e. propositions 2.2.3, 2.2.4, 2.2.5 and theorem 2.2.1 still hold.
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2.3 Self-loops and Contextual Nets

Semi-elementary nets defined in this chapter allow a self-loop such as

xe

to be interpreted in the classical way: x is both pre- and post-condition of an event e.

Such an x must be marked if e is to be executed and in operational terms, the execution

of e implies taking the token from x and placing it back again, effectively preventing any

other event which has x as its pre-condition from being executed.

A semi-elementary net N = (RTS, E, FTS, Rsin ) associated with a semi-elementary

transition system TS = (S,E, T, sin) is saturated with conditions (i.e. uses all the non-

trivial regions) and also may have many redundant self-loops joining conditions and events.

The number of conditions can be reduced by restricting the net only to minimal regions

(see, for example, [12, 22]). When it comes to self-loops, some of them can create unnec-

essary constraints on the degree of concurrency present in the system, and in the design

process one may need to take further steps aimed at remedying the situation4. More

specifically, once a satisfactory semi-elementary net has been constructed, the designer

can build the final version of the net by suitably re-interpreting some of its self-loops, in

at least three different ways:

• a self-loop between x and e is redundant,

• a self-loop between x and e is a classical one, i.e. the token is taken by e from x

and then put back again when e is executed,

• a self-loop between x and e is like a positive context relationship of [36] where the

token in x is needed for e to be enabled but is not consumed by e when it is executed

and hence can be shared with another event.

4Note, however, that a semi-elementary transition system does not in general provide enough infor-
mation needed for such a step (in particular, information about the independence relation on events) so
it has to come from outside the specification.
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The three different ways of reinterpreting a self-loop are illustrated below:

x

x

x

x

e

e

e

e

A class of nets which allow the last two ways of interpreting self-loops within a single

model are contextual nets of [36]. In our notation, a contextual net is a tuple

CN = (B,E, F, PC, cin)

such that (B,E, F, cin) is a semi-elementary net (as defined in section 2.1) and PC ⊆ B×E

is a positive context relation such that (F ∪ F−1) ∩ PC = ∅. We also denote, for every

e ∈ E, ê = {x | (x, e) ∈ PC}. Note that [36] also allows negative contexts (similar to

inhibitor arcs in Petri nets) which are omitted here since we do not generate them in the

process of re-interpreting self-loops.

A crucial property of contextual nets is the way in which they define concurrent

execution of sets of events. A case c ⊆ B enables a non-empty set of events G ⊆ E if,

for every e ∈ G, •e ∪
•
e ∪ ê ⊆ c and e• ∩ c = ∅ and, furthermore, for all e 6= f ∈ G,

(•e ∪ e•∪
•
e) ∩ (•f ∪ f •∪

•

f) = ∅ and ê ∩ (•f ∪
•

f) = f̂ ∩ (•e ∪
•
e) = ∅. Note, however, that

it is not necessarily the case that ê ∩ f̂ = ∅.

In operational terms, the above enabling rule means that a positive context relation

between event e and condition x requires x to be marked for e to be enabled, but the

execution of e does not prevent other events which have x as a positive context from being

executed concurrently with e.

Using the above definitions, the task of synthesis of Petri net from state based speci-

fication can be split into two stages:

- construct a semi-elementary net from a semi-elementary transition system,

- turn a semi-elementary net into a contextual net by reinterpreting some of its self-

loops.
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The two stages are illustrated below:

CNNTSTS --
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It is not difficult to see that CN will always be a contextual net since, by construction,

(F ∪F−1)∩PC = ∅. Note also that the resulting contextual net CN will always generate

the same transition system when restricted to single event executions, but the level of

concurrency may be different (see [36] for detailed discussion of contextual nets and, in

particular, the relationship between positive contexts and concurrency).

To summarise the discussion in this section, from the designer’s point of view, there are

two ways in which concurrency aspects of the system being synthesised can be dealt with.

In the first approach, concurrency is present right from the start, which in our framework

means that transition systems should be capable to explicitly model concurrency (or

independence relation) among events. There are models of transition systems which could

be used here, for example, step transition systems of [37] and asynchronous transition

systems of [11, 44, 47]. The former represent concurrency by labelling transitions with

sets of events executed concurrently, while the latter employs an explicit independence

relation on events, from which concurrency on the operational level can be retrieved.

The other approach, and one which we adopted in this chapter, deliberately delays the

consideration of issues related to concurrency to a later stage of the design. In our case

this means that only after deriving a net specification of the system will the designer

consider such issues as independence among events. No matter, however, which of the

approaches is taken, the final result will always be the same (or equivalent).

More recently, in [46], it was proved for the Asynchronous Transition Systems (the

extension of the Semi-elementary Transition Systems by allowing self-loops) that once

the solution to the synthesis problem is found (by the procedure which ignores the inde-

pendence relation), one can always build a net which is still a solution to the synthesis

problem for a given transition system, but preserves its independence relation.
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2.4 Application of Semi-elementary Transition Sys-

tems and Nets

In this section we briefly illustrate how the theory developed in the previous sections

can be applied in synthesising a net model from an initial specification of a system by

means of a transition system. Our example originates from [45], where a counterflow

pipeline processor (CFPP), now called the Sproull’s processor, is described. In a CFPP

there are two mutually synchronised pipelines connecting an instruction fetch unit and

a register file. Instructions flow in one direction, along the instruction pipeline, while

results are propagated in the opposite direction (counterflow) through the result pipeline.

The instructions and results interact as they pass according to the rules specified in [45].

When an instruction and result are present in the same pipe stage the instruction may use

the data from the result pipeline, produce further result and update the data in the result

pipeline. The key part in the distributed control structure of the processor is played by

a device which provides mutual synchronisation between the two pipelines. This device

is supposed to be placed into each stage of the counterflow pipeline. The original idea

of synchronisation is due to Charles Molnar, who described it in the form of a transition

system, which is reproduced in figure 2.7(a,b). This figure also gives the meaning of the

signals and the corresponding events and the states of the stage control. There are five

possible states for each pipeline stage:

1. E: neither an instruction nor a result is present,

2. I: only an instruction is present,

3. R: only a result is present,

4. F: both an instruction and a result are present,

5. C: the pipeline rules have been enforced, and both instruction and result are free to

move on.

The transition system depicted in figure 2.7(b) is not a semi-elementary transition system

because RF = RC thus violating (AX4). In [49], it was shown how to transform this initial

transition system to the ‘asymmetric’ one, shown in figure 2.7(c), or the ‘symmetric’ one,

shown in figure 2.7(d). Both transformations involve inserting a ‘dummy’ event and
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yield semi-elementary transition systems. Note that in the symmetric case there was a

possibility to preserve the trace equivalence (up to the hiding the dummy event). In the

asymmetric case, however, the system cannot execute event AR after executing PR from

state C - the original model allowed that possibility. Both solutions were studied and

explained in [49]. For our purposes, let us look further at the asymmetric case.

The transition system shown in figure 2.7(c) can be converted into a semi-elementary

net. This is shown in figure 2.8. In the (a) part of this figure we showed all the regions

which give rise to the conditions in the net depicted in the (b) part. Note that to avoid

excessive cluttering of arcs we use double-headed arcs to indicate self-loops in parts (b)

and (c). The (c) part of figure 2.8 shows the contextual net version of the net model,

which is simpler. Note that the transformation to the contextual net involves certain

interpretation of self-loops. Firstly, we can simplify the net by removing region r8, which

is redundant since the semi-elementarity axioms (AX4-AX5) are satisfied for all events

without r8, and r8 is not minimal since r8 = r4 ∪ r5. Together with r8, we remove

the arcs incident to it. Secondly, we can remove self-loops between r6 and AI (and

r7 and PI) as they are redundant since axiom (AX5) is satisfied for both these events

without them. Thirdly, we keep the self-loops between r6 and AR (and r7 and PR) as

classical ones, which means that the transitions labelled AR and PR are meant to be

in conflict with EX or ǫ (dummy) and AI, respectively. This would allow us to refine

them further into some subnets detailing their functionality. The fact that a token is

effectively removed by AR and PR from r6 and r7, respectively, would mean that their

corresponding refined actions are in the critical sections, thus preventing them from being

executed concurrently. Finally, the pair of self-loops (r3,EX) and (r1, ǫ) can be put into

a positive context relationship, indicating that neither EX nor ǫ have effect on their

respective co-regions. Even if EX and ǫ are further refined into sub-actions, the latter

would inherit their contextual relationship with r3 and r1.

What is also important is that this transition system has a ladder structure; for ex-

ample, with respect to events AR or PR. It is easy to see that the ladder satisfies the

conditions of theorem 2.2.1. We could therefore remove some of the ladder rungs labelled

with AR and PR up to the point when only a single rung of each of them still remains.

For example, if we consider the case shown in figure 2.8(a), the rungs labelled with PR

will be buried in region r7 which is the union of r2 and r5. Now, removing the PR rung
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control exec

PI

AI

AR

PR

EX

States :

E − Empty

I − Instruction

R−Result

F − Full

C − Complete

Events :

AI − accept instruction

PI − pass instruction

AR− accept result

PR− pass result

EX − execute instr.

(a) (b) Original transition system.

E

R I

F

C

AR
PR

AI
PI

AI AR

EX

PI PR

(c) Semi-elementary transition system.

E

R I1

F

C

I2

AR
PR

AI

AI AR

EX PR

ǫ

PI

PI

(d) Semi-elementary transition system.

E

R

E ′

I

F

C

AR AI

PR

AI

PI

AR

PI PR

d

EX

Figure 2.7: Counterflow pipeline example: constructing semi-elementary transition sys-
tems.
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Regions :

r1 = {E, I1, I2}

r2 = {R,E}

r3 = {R,F,C}

r4 = {F, I1}

r5 = {C, I2}

r6 = r2 ∪ r4

r7 = r2 ∪ r5

r8 = r4 ∪ r5

(a)

E

R I1

F

C

I2

AR
PR

AI

AI AR

EX PR

ǫ

PI

PI

(b)

r1

r3

r6 r7

r5 r4

r2

r8

AR PR

EX

PI AI

ǫ

(c)

r1

r3

r6 r7

r5 r4

r2

AR PR

EX

PI AI

ǫ

Figure 2.8: Counterflow pipeline example: constructing semi-elementary and contextual
nets from ladder transition system.
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between C and I2 makes the remaining PR rung between R and E buried in regions r7,

r2 and r6. In terms of the associated net, this would correspond to adding the connections

with double-headed arcs between event PR and conditions r2 or r6. All such nets remain

semi-elementary, with the same structure, except that they differ in the self-loop condi-

tions, which constrain concurrency of some events. With the circuit design techniques

available from Safe Nets [18, 22, 33], one can adjust the specification at the semantic

level by changing the structure of ladders. This can be advantageous since adding some

ordering constraints (by rung removal) often helps to satisfy timing or mutual exclusion

requirements.

2.5 Remark on Self-loops in Transition Systems

It should be noted that our allowing of self-loops in net models is not semantically con-

cerned with having self-loops in the transition systems. Self-loops (an arc labelled with

some event leading to the same state) in transition systems have a different interpretation

from the one we intended to capture. With our extension we would like to stay within

the limits of modelling systems where each event is significant in the sense that it changes

the state of the system. Such an assumption is perfectly acceptable for modelling asyn-

chronous systems. As could be noted from our examples, the effect of our co-regions and

self-loop conditions on events is always made in conjunction with pre- and post-conditions.

However, the theory can be easily extended to allow self-loops in the transition systems.

It would mean dropping axiom (AX1), and changing the definition of the Semi-elementary

Net Systems in such a way that some events can be connected with the rest of the net by

means of self-loops only or, in the extreme, be isolated. While we can agree for the former,

the latter would mean that we cannot control the behaviour of the disconnected events

and introduce autoconcurrency. In [46], where the solution for the synthesis of the nets

with self-loops presented here was extended to allow self-loops in the transition systems,

the above problem was dealt with by adding to the set of places of the synthesised net a

special place (marked under the initial case) to which all potentially isolated events are

attached by self-loops. The class of Semi-elementary Transition Systems with self-loops

is exactly the class of transition systems generated by the general Safe Nets (as proved in

[46]).



Chapter 3

Synthesis of Nets with Inhibitor Arcs

In this chapter, we investigate the relationship between Elementary Net Systems with

Inhibitor Arcs (ENI-systems) [29] and transition systems [2, 31]. ENI-systems are the

Elementary Net Systems of [38] with added inhibitor arcs, as shown in figure 3.1. The

meaning of all the elements of N is standard except for the inhibitor arcs between, e.g.,

the condition b4 and event e, which is represented by an edge ending with a small circle,

and indicates that e can only be fired if b4 is empty. This has a clear interpretation if one

N

b1

b3

b2

b4

b5

b6

e f

TSN

cin

c1 c2

c3

{e} {f}

{e, f}

{f}

Figure 3.1: An ENI-system N , and the TSENI transition system it generates, TSN .

considers purely interleaving net semantics: N can execute e or f or ef (i.e., e followed

by f). However, when we consider a non-interleaving semantics based on step sequences,

then there is a problem whether or not the concurrent step {e, f} should be allowed.

Basically, both interpretations are possible, as discussed in [19]. The one in which it

is possible to execute {e, f} is called there the a-priori semantics, and that in which

{e, f} is disallowed is called the a-posteriori semantics. In the a-posteriori interpretation

[20, 36], the resulting semantics is a variant of the standard causal partial order model

of behaviour. In the a-priori interpretation [14, 30], inhibitor arcs force one to use a

40
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more general view of causality in system’s behaviour in which the classical causality is

augmented with weak causality (see [29] for details). In the a-priori semantics, one can

interpret events as taking some time to complete. For example, when the event f in N

is being executed, no token is placed in b4 immediately, giving a chance to execute e at

the same time as f . In the a-posteriori semantics, the occurrence of an event can be

understood as taking zero time. Under this semantics, the execution of f places a token

in b4 at the same moment as the token of b2 is removed, blocking immediately any event

of N for which b4 is an inhibitor condition. In such a case e and f cannot be executed

at the same time. In this chapter we will interpret all inhibitor arcs using the a-priori

semantics. Chapter 7 deals with the a-posteriori semantics, where the nets are called

ENIapost -systems to distinguish them from the ones considered here.

The class of transition systems generated by ENI-systems will be called Transition

Systems of Elementary Nets with Inhibitor Arcs (TSENI). They constitute a subclass of

step transition systems [37] (however, they are different from any known to us class of

transition systems considered previously in the literature). In such transition systems,

concurrency is represented explicitly since the moves between different states are labelled

by steps (sets) of concurrently executed actions rather than by single events. As we will

see, this is in general unavoidable if one wants to faithfully model the non-interleaving

semantics. We will define translations between ENI-systems and TSENI Transition Sys-

tems which preserve their behavioural properties. The translation from transition systems

to nets (net synthesis) is based on the notion of a region [9, 13, 27, 37, 38, 47] which is

suitably modified to match the operational meaning of inhibitor arcs. For the ENI-system

N , the corresponding transition system is shown in figure 3.1.

3.1 TSENI Transition Systems

In this section, we introduce TSENI Transition Systems which are the class of transition

systems generated by ENI-systems. We approach the final definition gradually, by in-

troducing the six axioms characterising TSENI Transition Systems and proving some of

their properties.

Let E be a non-empty set of events fixed throughout the rest of this thesis. A transition

system is a quadruple TS = (S, U, T, sin), where:
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TS1 S is a non-empty finite set of states.

TS2 U ⊆ 2E is a finite set of steps ; every u ∈ U is finite and non-empty.

TS3 T ⊆ S × U × S is the transition relation.

TS4 sin ∈ S is the initial state.

We assume that TS satisfies the following three axioms:

A1 For every (s, u, s′) ∈ T , s 6= s′.

A2 For every u ∈ U , there are s, s′ ∈ S such that (s, u, s′) ∈ T .

A3 For every s ∈ S \ {sin}, there are (s0, u0, s1), (s1, u1, s2), . . . , (sn−1, un−1, sn) ∈ T

such that s0 = sin and sn = s.

The first axiom excludes transition systems with self-loops, while the second ensures that

all the steps in U are used as labels of transitions in TS . We do not require that U be

subset closed as this will be a property dealt with later, in proposition 3.2.3. The third

axiom implies that all the states in TS are reachable from the initial state. Throughout

the rest of this section, the transition system TS will be fixed. We will use s
u

−→ s′ to

denote (s, u, s′) ∈ T , and respectively call s the source and s′ the target of this transition.

Moreover, ETS =
⋃

u∈U u will denote all the events appearing in steps labelling transitions

in TS .

Our transition systems are essentially a subset of the general step transition systems of

[37]. A major remark which we need to make now is that, unlike [38], we cannot base our

transition systems on arcs labelled by single events. For example, consider the following

two ENI-systems:

N1

a bc d

N2

a bd c
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They generate the following transition systems, according to their a-priori semantics:

TSN1

c1in
{a} {b}

{d}
{c}

{a, b}

TSN2

c2in
{a} {b}

{c}
{d}

{a, b}

If we were to exclude transitions labelled with non-singleton steps then the two transition

systems would become indistinguishable, although they correspond to nets with different

behavioural properties. We could try to remedy the situation by augmenting the two

transition systems with information about the (in)dependency of events a and b (similarly

as it is done in the Asynchronous Transition Systems of [11, 44, 47]). This could, of course,

provide us with information that in both transition systems a and b can be executed

concurrently at the initial states. However, this would not be enough to determine the

states resulting from executing {a, b}. As a result, to capture faithfully the behaviour

of N1 and N2, we would have to provide such an information essentially amounting to

the inclusion of the whole transition labelled {a, b} in the description of the transition

systems.

We now introduce a notion central to the whole approach as it links nodes of transition

system (global states) with conditions in the corresponding net (local states).

Definition 3.1.1 A set of states r ⊆ S is a region if the following two conditions are

satisfied:

1. If s
u

−→ s′ and s ∈ r and s′ 6∈ r then there is e ∈ u such that

(a) if u′ ⊆ u \ {e} and s
u′

−→ s′′ then s′′ ∈ r,

(b) if q
v

−→ q′ and e ∈ v then q ∈ r and q′ 6∈ r.

2. If s
u

−→ s′ and s 6∈ r and s′ ∈ r then there is e ∈ u such that

(a) if u′ ⊆ u \ {e} and s
u′

−→ s′′ then s′′ 6∈ r,

(b) if q
v

−→ q′ and e ∈ v then q 6∈ r and q′ ∈ r. ⊓⊔
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Intuitively, a region is a subset of states with which all steps containing certain event

have the same ‘crossing’ relationship. As we will show in proposition 3.1.3, the event e

appearing in definition 3.1.1 is unique. Such an event will be called r-crossing in u.

The set of non-trivial regions (i.e. those different from S and ∅) will be denoted by

RTS . Moreover, for every state s ∈ S, we will denote by Rs the set of non-trivial regions

containing s,

Rs = {r ∈ RTS | s ∈ r}.

The sets of pre-regions, ◦u, and post-regions, u◦, of a step u ∈ U are defined as:

◦u = {r ∈ RTS | ∃(s, u, s′) ∈ T : s ∈ r ∧ s′ 6∈ r}
u◦ = {r ∈ RTS | ∃(s, u, s′) ∈ T : s 6∈ r ∧ s′ ∈ r}.

We will use ◦e and e◦ instead of respectively ◦{e} and {e}◦, for every e ∈ ETS .

Consider the transition system TS 0 in figure 3.2. It has four non-trivial regions:

r1 = {sin , s2}, r2 = {sin , s1}, r3 = {s1, s3} and r4 = {s2, s3}. Moreover, the pre- and

post-regions of a, b and {a, b} are: ◦a = {r1}, ◦b = {r2}, ◦{a, b} = {r1, r2}, a◦ = {r3},

b◦ = {r4} and {a, b}◦ = {r3, r4}.

sin

s1 s2

s3

{a} {b}

{a, b}

Figure 3.2: Transition system TS 0 - a running example.

Being a pre- or post-region of a step u is a global property, in the following sense:

Proposition 3.1.1 If s
u

−→ s′ then

1. r ∈ ◦u implies s ∈ r and s′ 6∈ r,

2. r ∈ u◦ implies s 6∈ r and s′ ∈ r.

Proof: (1) r ∈ ◦u means that there is p
u

−→ p′ such that p ∈ r and p′ 6∈ r. From

definition 3.1.1(1b) it follows that if we take v = u, q = s and q′ = s′, we obtain s ∈ r

and s′ 6∈ r.

(2) The proof is similar, using definition 3.1.1(2b) instead of definition 3.1.1(1b). ⊓⊔
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We say that a step u ∈ U is enabled at a state s ∈ S if there is s′ ∈ S such that

s
u

−→ s′. We will denote this by s
u

−→. We say that a step u ∈ U leads to a state s′ ∈ S

if there is s ∈ S such that s
u

−→ s′. We will denote this by
u

−→ s′.

In what follows, we will assume the transition system TS satisfies a fourth axiom:

A4 If s
u

−→ and e ∈ u then s
{e}
−→.

(A4) means that a step u cannot be enabled at a state if any of its events is disabled.

This will later be generalised to a stronger property that none of the non-empty subsets

of u is disabled. However, to prove it we will need another axiom, (A6).

Corollary 3.1.1 For every e ∈ ETS , {e} ∈ U .

Proof: Follows directly from (A2) and (A4). ⊓⊔

The above corollary is important in that it ensures that ◦e and e◦ are defined for all

e ∈ ETS . In particular, this means that the set VTS below is well defined:

VTS = {u ⊆ ETS | u 6= ∅ ∧ ∀ e, f ∈ u : (e 6= f ⇒ ( ◦e ∪ e◦) ∩ ( ◦f ∪ f ◦) = ∅)}.

Intuitively, VTS comprises sets of events which are potential steps in the transition system

as they share neither pre- nor post-regions. For TS 0 in figure 3.2, we have VTS0
=

{{a}, {b}, {a, b}}.

Corollary 3.1.2 For every r ∈ RTS , there is e ∈ ETS such that r ∈ ◦e or r ∈ e◦.

Proof: Follows directly from (A3), (A4) and definition 3.1.1. ⊓⊔

The pre- and post-regions of a step can be represented as the union of respectively

pre- and post-regions of events it comprises.

Proposition 3.1.2 If u ∈ U then ◦u =
⋃

e∈u
◦e and u◦ =

⋃
e∈u e

◦.

Proof: Let r ∈ ◦u. This means that there is p
u

−→ p′ such that p ∈ r and p′ 6∈ r. By

definition 3.1.1(1b), there is e ∈ u such that if q
v

−→ q′ and e ∈ v then q ∈ r and q′ 6∈ r.

From (A4) it follows that there is p′′ ∈ S such that p
{e}
−→ p′′. Hence p ∈ r and p′′ 6∈ r

and, as a result, r ∈ ◦e.
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Suppose now that e ∈ u and r ∈ ◦e. This means that there is p
{e}
−→ p′ such that p ∈ r

and p′ 6∈ r. From definition 3.1.1(1b) we have that if q
v

−→ q′ and e ∈ v then q ∈ r and

q′ 6∈ r. We know that u ∈ U . From (A2) it follows that there are s, s′ ∈ S such that

s
u

−→ s′. Hence, since e ∈ u, s ∈ r and s′ 6∈ r. As a result, r ∈ ◦u.

The second part of this proposition can be proved similarly, using definition 3.1.1(2b)

instead of 3.1.1(1b). ⊓⊔

The next four results state some basic properties of TS . The first shows that event e

appearing in definition 3.1.1 is always unique. Intuitively, this corresponds to the property

of Petri nets that the sets of tokens consumed by concurrently executed events are disjoint.

After that we prove that the definition of the set of potential steps of TS is consistent

with the definition of U . In proposition 3.1.5 we re-establish some of the properties of

regions formulated in [38] within our present setting. More precisely, we demonstrate

that the complement of a region is also a region, and that post-regions of a step u are

the complements of pre-regions of u. We also show how regions containing the target or

source state of a transition are related using the pre- and post-regions of the step labelling

this transition. Finally, in proposition 3.1.6, we prove the property which ensures that

the synthesised nets are contact-free [38].

Proposition 3.1.3 Event e ∈ u which satisfies definition 3.1.1(1) (or 3.1.1(2)) is unique.

Proof: Assume that there are e1 6= e2 which can play the role of e in definition 3.1.1(1).

From (A4) it follows that s
{e1}
−→ s1 and s

{e2}
−→ s2, for some s1, s2. Since definition 3.1.1(1a)

holds for e = e1, we can take u′ = {e2} ⊆ u \ {e1} and have s2 ∈ r. Moreover, since

definition 3.1.1(1b) holds for e = e2, we can take v = {e2} and have s2 6∈ r. Hence we

obtained a contradiction.

Similarly, we can prove the uniqueness of e in definition 3.1.1(2). ⊓⊔

Proposition 3.1.4 U ⊆ VTS .

Proof: Let u ∈ U and e 6= f ∈ u. By (A2), there is a transition s
u

−→ s′.

We show that ◦e∩ ◦f = ∅ by contradiction (the case e◦ ∩ f ◦ = ∅ is similar). Suppose

that r ∈ ◦e ∩ ◦f . This and (A4) and proposition 3.1.1(1) implies that there are se, sf 6∈

r such that s
{e}
−→ se and s

{f}
−→ sf . By proposition 3.1.2, we have r ∈ ◦u, so, by
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proposition 3.1.1(1), s ∈ r and s′ 6∈ r. Hence, by proposition 3.1.3, there is a unique g ∈ u

such that s
{g}
−→ s′′ and s′′ 6∈ r, for some s′′. But this produces a contradiction with the

already established properties of e and f .

We then prove that e◦ ∩ ◦f = ∅ by contradiction (the case f ◦ ∩ ◦e = ∅ is symmetric).

Suppose that r ∈ e◦ ∩ ◦f . From (A4) it follows that s
{e}
−→ se and s

{f}
−→ sf , for some

se, sf ∈ S. On the one hand, by r ∈ e◦ and proposition 3.1.1(2), s 6∈ r. On the other

hand, by r ∈ ◦f and proposition 3.1.1(1), s ∈ r. We obtained a contradiction.

Thus u ∈ VTS . ⊓⊔

Proposition 3.1.5 The following hold:

1. r ⊆ S is a region if and only if S \ r is a region.

2. If u ∈ U then u◦ = {S \ r | r ∈ ◦u}.

3. If s
u

−→ s′ then Rs \Rs′ =
◦u and Rs′ \Rs = u◦.

Moreover, ◦u ⊆ Rs and u◦ ∩Rs = ∅ and Rs′ = (Rs \ ◦u) ∪ u◦.

Proof: (1) follows from definition 3.1.1, and (2) is obvious. To show (3) suppose that

r ∈ Rs \ Rs′ . Then s ∈ r and s′ 6∈ r. This and s
u

−→ s′ means that r ∈ ◦u. Now, let

r ∈ ◦u. From proposition 3.1.1 it follows that s ∈ r and s′ 6∈ r. Hence r ∈ Rs \ Rs′ . We

have proved that Rs \ Rs′ =
◦u. Similarly, we can show Rs′ \ Rs = u◦. The second part

of (3) is also easy to show. ⊓⊔

Proposition 3.1.6 Let s ∈ S and e ∈ ETS be such that ◦e ⊆ Rs. Then e
◦ ∩ Rs = ∅.

Proof: Assume e◦ ∩ Rs 6= ∅. Let r ∈ e◦ ∩ Rs. Then s ∈ r. From r ∈ e◦ and propo-

sition 3.1.5(2) we have S \ r ∈ ◦e. But ◦e ⊆ Rs, so S \ r ∈ Rs. This means s 6∈ r, a

contradiction. ⊓⊔

The next axiom TS must fulfil is usually called the state separation property [9, 38].

A5 For all s, s′ ∈ S, if Rs = Rs′ then s = s′.

It essentially means that TS is deterministic, by excluding transition systems like TS 1 in

figure 3.3. Formally, we have the following result.

Proposition 3.1.7 If s
u

−→ s′ and s
u

−→ s′′ then s′ = s′′.
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Proof: From proposition 3.1.5(3) we have Rs′ = (Rs \
◦u) ∪ u◦ and Rs′′ = (Rs \

◦u) ∪ u◦,

which means that Rs′ = Rs′′ . Hence, by (A5), s′ = s′′. ⊓⊔

All the notions that we have introduced so far were essentially related to the ordinary

arcs appearing in ENI-systems. The next definition is different in that it attempts to

capture, for each event e, those regions (conditions in the corresponding net) which are

linked to e by means of an inhibitor arc. We start with an auxiliary definition. Let

e ∈ ETS be an event, and r ∈ RTS be a non-trivial region. Then

Be
r = {(s, {e}, s′) ∈ T | s ∈ r ∧ s′ ∈ r}

is the set of all the transitions labelled by {e} which are inside r. Having introduced Be
r ,

the set of inhibitor-regions (I-regions) of e is defined as follows:

e = {r ∈ RTS | Be
r = ∅ ∧ Be

S\r 6= ∅}.

We can extend the last notion to any set of events u ∈ U , through u =
⋃

e∈u e. Referring

to the transition system TS 0 in figure 3.2, one can see that a = {r4}, b = {r3} and,

according to the last definition, {a, b} = {r3, r4}.

Proposition 3.1.8 If s
{e}
−→ s′ then r ∈ e implies s, s′ 6∈ r.

Proof: r ∈ e means that there is p
{e}
−→ p′ such that p, p′ 6∈ r, and s 6∈ r or s′ 6∈ r. Suppose

s 6∈ r and s′ ∈ r. This means that r ∈ e◦. Hence, by proposition 3.1.1 and p
{e}
−→ p′, p 6∈ r

and p′ ∈ r, which contradicts p, p′ 6∈ r. Similarly, we obtain a contradiction if we assume

that s ∈ r and s′ 6∈ r. ⊓⊔

It is straightforward to show that a step can be executed at a state only if the I-regions

of the former do not comprise the latter.

Proposition 3.1.9 If s
u

−→ s′ then u ∩Rs = ∅.

Proof: Suppose that r ∈ u ∩Rs 6= ∅. Then there is e ∈ u such that r ∈ e. Hence, by

proposition 3.1.8, if p
{e}
−→ p′ then p, p′ 6∈ r. In particular, by (A4) and s

u
−→ s′ and e ∈ u,

s 6∈ r. On the other hand, by r ∈ Rs, s ∈ r, a contradiction. ⊓⊔
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We can now define our desired class of transition systems. The transition system

TS is a TSENI transition system if it satisfies, in addition to (A1)-(A5), the following

axiom:

A6 Let s ∈ S and u ∈ VTS be such that, for every e ∈ u, ◦e ⊆ Rs and e ∩Rs = ∅. Then

s
u

−→.

The last axiom is a variation of the forward closure property [38] or the event/state

separation property [9]. In particular, it can be used to prove that the set of steps U is

(almost) subset closed (cf. proposition 3.2.3), and also excludes transition systems like

TS 2 in figure 3.3 (to make TS 2 a valid TSENI transition system one must add transition

s2in
{a,b}
−→ s3).

It is easy to check that the transition system TS 0 in figure 3.2 is indeed a TSENI

transition system.

TS 1

s1in

s1 s2

{a} {a}

TS 2

s2in

s1 s2

s3

{a} {b}

{b} {a}

Figure 3.3: Transition systems which are not TSENI.

3.2 Properties of TSENI Transition Systems

We now formulate and prove some useful properties of the TSENI transition system TS .

Proposition 3.2.1 For every e ∈ ETS ,
◦e and e◦ are non-empty sets and ◦e, e◦ and e

are mutually disjoint sets.

Proof: Let e ∈ ETS . From (A1), (A2) and corollary 3.1.1 it follows that there are

s 6= s′ ∈ S such that s
{e}
−→ s′. From proposition 3.1.5(3) we have Rs \ Rs′ = ◦e

and Rs′ \ Rs = e◦, so e◦ ∩ ◦e = ∅. Moreover, by (A5), we have Rs 6= Rs′. Thus,

without loss of generality, we may assume that ◦e 6= ∅. Then there is r ∈ ◦e, and

from proposition 3.1.5(2) we get that S \ r ∈ e◦. Hence e◦ 6= ∅. We now show that

(e◦ ∪ ◦e) ∩ e = ∅. Suppose that r ∈ e. Then there exists s
{e}
−→ s′ such that s 6∈ r and
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s′ 6∈ r. Hence r 6∈ ◦e∪ e◦ because from proposition 3.1.1 we have that r ∈ ◦e would imply

s ∈ r and s′ 6∈ r, and r ∈ e◦ would imply s 6∈ r and s′ ∈ r. ⊓⊔

Proposition 3.2.2 For every u ∈ U , ◦u and u◦ are non-empty disjoint sets.

Proof: Follows from propositions 3.1.2, 3.1.4 and 3.2.1. ⊓⊔

The next result implies that the set of steps U is subset closed, if we only ignore the

empty subset.

Proposition 3.2.3 If s
u

−→ and ∅ 6= v ⊂ u then s
v

−→.

Proof: Let s
u

−→. By propositions 3.1.5(3) and 3.1.9, we have ◦u ⊆ Rs and u ∩Rs = ∅.

From corollary 3.1.1 it follows that {e} ∈ U , for all e ∈ u. Using proposition 3.1.2, we

obtain that ◦e ⊆ Rs and e ∩Rs = ∅, for all e ∈ u. Also, by proposition 3.1.4, u ∈ VTS .

Thus all the conditions in axiom (A6) are satisfied for v. Hence s
v

−→. ⊓⊔

It is worth noting that TSENI Transition Systems do not enjoy the ‘intermediate state’

property which is true of other classes of transition systems considered in the literature

[37]. This property states that if a non-singleton step u is enabled at state s then for

every partition v, w of u there are states q and r such that:

s
v

−→ q
w

−→ r.

That such a property does not hold for TSENI Transition Systems is easy to show. For

example, we can take TS 0 in figure 3.2 with u = {a, b} and s = sin . Note that in this

way we have also shown that the TSENI Transition Systems are not covered by any of

the classes of transition systems generated by ordinary Petri nets.

Although, in general, we cannot split up a step into two consecutive steps, we still

have two properties close to the ‘diamond’ property of transition systems [28].

Proposition 3.2.4 Let u and v be disjoint sets of events such that u∪v ∈ VTS and s ∈ S.

If s
u

−→ and s
v

−→ then s
u∪v
−→.

Proof: Follows easily from (A6) and propositions 3.1.5(3) and 3.1.9. ⊓⊔

Proposition 3.2.5 If s
u

−→ s′
v

−→ s′′ and s
v

−→ s′′′ then s
u∪v
−→ s′′.
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Proof: We first show that u∪v ∈ VTS . Since u ∈ VTS and v ∈ VTS , we only consider pairs

of events e, f such that e ∈ u and f ∈ v.

Suppose that r ∈ ◦e ∩ ◦f . Then r ∈ ◦u ∩ ◦v. From s
u

−→ s′ and r ∈ ◦u and

proposition 3.1.1, we have s′ 6∈ r. But from s′
v

−→ s′′ and r ∈ ◦v and proposition 3.1.1,

we have s′ ∈ r, a contradiction. Hence ◦e ∩ ◦f = ∅.

Suppose that r ∈ e◦ ∩ f ◦. Then r ∈ u◦ ∩ v◦. From s
u

−→ s′ and r ∈ u◦ and

proposition 3.1.1, we have s′ ∈ r. But from s′
v

−→ s′′ and r ∈ v◦ and proposition 3.1.1,

we have s′ 6∈ r, a contradiction. Hence e◦ ∩ f ◦ = ∅.

Suppose that r ∈ ◦e∩ f ◦ (the case r ∈ ◦f ∩ e◦ is symmetric). Then r ∈ ◦u∩ v◦. From

s
u

−→ s′ and r ∈ ◦u and proposition 3.1.1, we have s ∈ r. But from s
v

−→ s′′′ and r ∈ v◦

and proposition 3.1.1, we have s 6∈ r, a contradiction. Hence ◦e ∩ f ◦ = ∅.

We have shown that u ∪ v ∈ VTS . Hence, by proposition 3.2.4, there is p ∈ S such

that s
u∪v
−→ p. From proposition 3.1.5(3) it follows that Rs′ = (Rs \

◦u) ∪ u◦ and Rs′′ =

(Rs′ \ ◦v) ∪ v◦. Hence Rs′′ = (((Rs \ ◦u) ∪ u◦) \ ◦v) ∪ v◦. Also, by u ∪ v ∈ VTS , we have

◦v∩u◦ = ∅. Hence Rs′′ = (Rs \
◦(u ∪ v))∪ (u ∪ v)◦. Moreover, by proposition 3.1.5(3), we

have Rp = (Rs \ ◦(u ∪ v))∪ (u ∪ v)◦. Hence Rp = Rs′′ and, by (A5), we obtain p = s′′. ⊓⊔

3.3 ENI-systems

In this section we recall (with only few notational adjustments) the definition of ENI-

systems from [29]. We first define their syntax.

A net with inhibitor arcs is a tuple N = (B,E, F, I) such that B and E ⊆ E are

finite disjoint sets, F ⊆ (B × E) ∪ (E × B) and I ⊆ B × E. The meaning and graphical

representation of B (conditions), E (events) and F (flow relation) is the same as in the

standard net theory. An inhibitor arc (b, e) ∈ I means that e can be enabled only if b is

not marked (in the diagrams, it is represented by an edge ending with a small circle). We

denote, for every x ∈ B ∪ E,

•x = {y | (y, x) ∈ F} (pre-elements),
x• = {y | (x, y) ∈ F} (post-elements),

x = {y | (x, y) ∈ I ∪ I−1} (I-elements).

The dot-notation extends in the usual way to sets, for example, •X =
⋃

x∈X
•x. It is

assumed that for every e ∈ E,

e• 6= ∅ 6= •e and e• ∩ •e = •e ∩ e = e•∩ e = ∅. (3.1)
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An elementary net system with inhibitor arcs (ENI-system) is a tuple

N = (B,E, F, I, cin)

such that NN = (B,E, F, I) is the (underlying) net with inhibitor arcs and cin ⊆ B is the

initial case (in general, any subset of B is a case). We will assume that N is fixed until

the end of this section.

The concurrency semantics of ENI-systems will be based on steps of simultaneously

executed events. We first define valid steps :

VN = {u ⊆ E | u 6= ∅ ∧ ∀ e, f ∈ u : (e 6= f ⇒ (•e ∪ e•) ∩ (•f ∪ f •) = ∅)}. (3.2)

The transition relation of NN , denoted by →NN
, is given by:

→NN
= {(c, u, c′) ∈ 2B × VN × 2B | c \ c′ = •u ∧ c′ \ c = u• ∧ u ∩ c = ∅}. (3.3)

The state space of N , denoted by CN , is the least subset of 2B containing cin such that

if c ∈ CN and (c, u, c′) ∈ →NN
then c′ ∈ CN . The transition relation of N , denoted by

→N , is then defined as →NN
restricted to CN × VN × CN . The set of active steps of N

is given by

UN = {u ∈ VN | ∃c, c′ ∈ CN : (c, u, c′) ∈ →N}.

We will use c
u

−→N c′ to denote that (c, u, c′) ∈ →N . Also, c
u

−→N if (c, u, c′) ∈ →N , for

some c′. Similarly, we will write
u

−→N c if (c′, u, c) ∈ →N , for some c′.

A step sequence of N is a sequence ̺ = u1 . . . un of sets in UN for which there are

cases c1, . . . , cn satisfying cin
u1−→N c1, c1

u2−→N c2, . . . , cn−1
un−→N cn. We will denote this

by cin [̺〉cn. For the ENI-system N in figure 3.1, we have the following:

{b1, b2, b5} [ {e} 〉 {b2, b3, b5} {b1, b2, b5} [ {f} 〉 {b1, b4, b5}

{b1, b2, b5} [ {e}{f} 〉 {b3, b4, b5} {b1, b2, b5} [ {e, f} 〉 {b3, b4, b5}.

The above definition of the semantics of N is what is referred to as the a-priori

semantics in [19]. The a-posteriori semantics will be discussed in chapter 7.

Proposition 3.3.1 The following hold:

1. Let c ∈ CN and u ∈ VN . Then c
u

−→N if and only if •u ⊆ c and (u•∪ u) ∩ c = ∅.

2. If c
u

−→N c′ then c′ = (c \ •u) ∪ u•.
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3. If c
u

−→N c′ and d
u

−→N d′ then c \ c′ = d \ d′ and c′ \ c = d′ \ d.

4. If c
u

−→N c′ and c
u

−→N c′′ then c′ = c′′.

Proof: (2), (3) and (4) follow easily from definitions. To show (1), suppose c
u

−→N . Then

there is c′ ∈ CN such that c
u

−→N c′. From (3.3), •u ⊆ c and u• ∩ c = ∅ and u ∩ c = ∅.

Suppose now that •u ⊆ c and (u•∪ u) ∩ c = ∅. Define c′ = (c \ •u) ∪ u•. It is easy to

show that c \ c′ = •u and c′ \ c = u•. Hence, by (3.3) and c ∈ CN , c
u

−→N c′ and thus

c
u

−→N . ⊓⊔

Figure 3.4 shows an example of ENI-system N0.

b1

b3

b2

b4

a b

Figure 3.4: ENI-system N0.

Note that {b1, b2}
{a,b}
−→N0

{b3, b4} and {b1, b2}
{a}
−→N0

{b2, b3}, but {b2, b3}
{b}
−→N0

does not

hold.

3.4 Transition Systems of ENI-systems

The construction of a transition system for a given ENI-system is straightforward. Let

N = (B,E, F, I, cin) be an ENI-system. Then

TSN = (CN , UN ,→N , cin)

is the transition system generated by N .

Figure 3.5 shows the transition system generated by the ENI-system N0 in figure 3.4.

Note that it is isomorphic to the TSENI transition system TS 0 in figure 3.2. Hence TSN0

is a TSENI transition system and, as it turns out, this is true in general.

Theorem 3.4.1 TSN is a TSENI transition system.
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cin = {b1, b2}

{b2, b3} {b1, b4}

{b3, b4}

{a} {b}

{a, b}

Figure 3.5: Transition system of N0, TSN0
.

Proof: Clearly, TSN is a transition system. What we need to prove is that it satisfies

(A1)-(A6).

(A1) Suppose c
u

−→N c′ and c = c′. Then, by (3.3), u• = •u = ∅, contradicting (3.1).

(A2) and (A3) follow directly from the definition of CN and UN .

(A4) Suppose c
u

−→N and e ∈ u. By proposition 3.3.1(1), •u ⊆ c and (u•∪ u) ∩ c = ∅.

We also have •e ⊆ •u, e• ⊆ u• and e ⊆ u, so •e ⊆ c and (e•∪ e) ∩ c = ∅. Thus, from

proposition 3.3.1(1) it follows that c
{e}
−→N .

Before proving (A5) and (A6) we show that, for every b ∈ B, rb = {c ∈ CN | b ∈ c} is

(possibly trivial) region in TSN . Moreover,

∅ 6= rb 6= CN ⇒ rb ∈ RTSN
. (3.4)

Suppose c
u

−→N c′, where c ∈ rb and c
′ 6∈ rb. Then b ∈ c and b 6∈ c′. By (3.3), c \ c′ = •u

and c′ \ c = u•. Hence b ∈ •u and b 6∈ u•, and we can choose e ∈ u such that b ∈ •e. We

now observe that if d
v

−→N d′ and e ∈ v then d ∈ rb and d
′ 6∈ rb (since, by (3.3), b ∈ d and

b 6∈ d′). Moreover, if v ⊆ u \ {e} and c
v

−→N c′′ then c′′ ∈ rb, since by (3.2), b 6∈ v• ∪ •v.

The second part of definition 3.1.1 can be shown in a similar way. Hence rb is a region in

TSN . Clearly, if ∅ 6= rb 6= CN then rb is a non-trivial region and (3.4) holds.

(A5) Suppose that c 6= c′ ∈ CN . Without loss of generality we may assume that there is

b ∈ c \ c′. Hence c ∈ rb and c
′ 6∈ rb. Thus, by (3.4) and rb ∈ Rc \Rc′, (A5) holds.

(A6) Suppose that c ∈ CN and u ∈ VTSN
are such that, for every e ∈ u, ◦e ⊆ Rc and

e ∩Rc = ∅. We first show that c
{e}
−→N , for every e ∈ u. Let e ∈ u. Since e ∈ ETSN

and

(A4) and (A2) hold, there are d, d′ ∈ CN such that d
{e}
−→N d′.

Consider any b ∈ •e. Then b ∈ d and b 6∈ d′, and so d ∈ rb and d′ 6∈ rb. Hence, by

(3.4), rb ∈ RTSN
and rb ∈ ◦e. From ◦e ⊆ Rc we have rb ∈ Rc which means b ∈ c. As a

result, •e ⊆ c.
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Consider now any b ∈ e•. Then b 6∈ d and b ∈ d′, and so d 6∈ rb and d
′ ∈ rb. Hence, by

(3.4), rb ∈ e◦. This and e◦ ∩ Rc = ∅ (follows from ◦e ⊆ Rc and proposition 3.1.6) means

that rb 6∈ Rc, and so b 6∈ c. Hence e• ∩ c = ∅.

Suppose that e ∩ c 6= ∅. Then there is b ∈ e such that b ∈ c, and so c ∈ rb. By

(3.3) and e ∩ e• = ∅, b 6∈ d and b 6∈ d′. Thus d 6∈ rb and d′ 6∈ rb. As a result, by (3.4),

rb ∈ RTSN
and d, d′ ∈ CN \ rb. Hence Be

CN \rb
6= ∅. Suppose now that f

{e}
−→N f ′ belongs

to Be
rb
. This means f, f ′ ∈ rb and we have b ∈ f and b ∈ f ′. But this and (3.3) contradict

b ∈ e. Hence Be
rb

= ∅ and, as a result, rb ∈ e. Since e ∩Rc = ∅, rb 6∈ Rc which means

b 6∈ c, a contradiction with b ∈ e ∩ c. Hence e ∩ c = ∅ which, together with •e ⊆ c and

e• ∩ c = ∅, yields c
{e}
−→N .

We proved that c
{e}
−→N , for every e ∈ u. Moreover, we have already shown that b ∈ •e

implies rb ∈ ◦e, and b ∈ e• implies rb ∈ e◦, for all e ∈ u. This and u ∈ VTSN
means that

u ∈ VN . Hence c
u

−→N . ⊓⊔

3.5 ENI-systems of TSENI Transition Systems

The translation from TSENI Transition Systems to ENI-systems is based on the pre-

post- and I-regions of events appearing in a transition system. Let TS = (S, U, T, sin) be

a TSENI transition system. The net system associated with TS is defined as

NTS = (RTS , ETS , FTS , ITS , Rsin )

where FTS and ITS are defined thus:

FTS = {(r, e) ∈ RTS × ETS | r ∈ ◦e} ∪ {(e, r) ∈ ETS × RTS | r ∈ e◦}

ITS = {(r, e) ∈ RTS × ETS | r ∈ e}.
(3.5)

Directly from the definition of NTS we obtain that, for every e ∈ ETS ,

◦e = •e and e◦ = e• and e = e . (3.6)

Theorem 3.5.1 NTS is an ENI-system.

Proof: We can always assume that RTS ∩ ETS = ∅. From (3.5) we have FTS ⊆ RTS ×

ETS ∪ ETS × RTS and I ⊆ RTS × ETS . Hence to prove that NTS is an ENI-system it

suffices to show that (3.1) holds. By proposition 3.2.1 and (3.6), •e and e• and e are

mutually disjoint sets, for all e ∈ ETS . Moreover, again by proposition 3.2.1 and (3.6),

•e 6= ∅ 6= e•. Hence (3.1) holds. ⊓⊔
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The above construction would produce a net which is saturated both with conditions

and inhibitor arcs. Notice however that, due to corollary 3.1.2 and (3.6), NTS does not

contain any isolated conditions nor trivial inhibitor arcs (i.e. the inhibitor arcs (b, e) such

that •b = ∅ = b•).

3.6 Consistency of the Translations

In this section we show that the ENI-system associated with a TSENI transition system

TS generates a transition system which is isomorphic to TS .

Proposition 3.6.1 Let TS = (S, U, T, sin) be a TSENI transition system and N = NTS

be the ENI-system associated with it.

1. CN = {Rs | s ∈ S}.

2. →N = {(Rs, u, Rs′) | (s, u, s′) ∈ T}.

Proof: We first note that from the definition of CN , every c ∈ CN is reachable from cin

in N , and from axiom (A3), that every s ∈ S is reachable from sin in TS .

We first show that if c
u

−→N c′ and c = Rs, for some s ∈ S, then there is s′ ∈ S such

that s
u

−→ s′ and c′ = Rs′. We have that c \ c′ = •u and c′ \ c = u• and u ∩ c = ∅.

This means •e ⊆ c and e ∩ c = ∅, for all e ∈ u. This and (3.6) implies that ◦e ⊆ c and

e ∩ c = ∅, for all e ∈ u. Hence ◦e ⊆ Rs and e ∩Rs = ∅, for all e ∈ u. Moreover, by

u ∈ VN and (3.6), we have u ∈ VTS . Hence from (A6) it follows that s
u

−→ s′, for some

s′ ∈ S. Then, by proposition 3.1.5(3), Rs′ = (Rs \ ◦u) ∪ u◦. At the same time, from

proposition 3.3.1(2), c′ = (c \ •u) ∪ u•. Hence, by (3.6) and proposition 3.1.2 and c = Rs,

c′ = Rs′.

As a result, we have shown (note that cin = Rsin ∈ {Rs | s ∈ S}) that CN ⊆ {Rs | s ∈

S} and →N ⊆ {(Rs, u, Rs′) | (s, u, s′) ∈ T}.

We now will prove that {Rs | s ∈ S} ⊆ CN . By definition, Rsin ∈ CN . What needs

to be shown is that if s
u

−→ s′ and Rs ∈ CN then Rs′ ∈ CN . By propositions 3.1.5(3)

and 3.1.9, we have ◦u ⊆ Rs and (u◦∪ u) ∩Rs = ∅. So, using (3.6) and proposition 3.1.2,

•u ⊆ Rs and (u•∪ u)∩Rs = ∅. Moreover, from proposition 3.1.4 and (3.6) we obtain that

u is a valid step in N . Hence, by proposition 3.3.1(1), we have Rs
u

−→N . This implies
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(Rs \
•u) ∪ u• ∈ CN . On the other hand, by proposition 3.1.5(3) and s

u
−→ s′, we have

Rs′ = (Rs \ ◦u) ∪ u◦. Hence, by (3.6) and proposition 3.1.2, Rs′ ∈ CN .

What remains to be shown is that {(Rs, u, Rs′) | (s, u, s′) ∈ T} ⊆ →N . Suppose

s
u

−→ s′. From propositions 3.1.5(3) and 3.1.9 it follows that Rs \Rs′ =
◦u, Rs′ \Rs = u◦

and u ∩Rs = ∅. We have already proved that CN = {Rs | s ∈ S}. So there are c, c′ ∈ CN

such that c = Rs and c
′ = Rs′ . From (3.6) and proposition 3.1.2 it follows that c \ c′ = •u

and c′ \ c = u• and u ∩ c = ∅. Since s
u

−→ s′, from proposition 3.1.4 and (3.6), it follows

that u is a valid step. Hence, by (3.3), c
u

−→N c′. ⊓⊔

Theorem 3.6.1 Let TS = (S, U, T, sin) be a TSENI transition system and N = NTS be

the ENI-system associated with it. Then TSN is isomorphic to TS.

Proof: Let ψ : S → CN be a mapping given by ψ(s) = Rs, for all s ∈ S (note that, by

proposition 3.6.1(1), ψ is well defined). We will show that ψ is an isomorphism for TS

and TSN .

Note that ψ(sin) = Rsin . From proposition 3.6.1(1) it follows that ψ is onto. More-

over, by (A5), ψ is injective. Hence ψ is a bijection. We then observe that, by proposi-

tion 3.6.1(2), (s, u, s′) ∈ T if and only if (ψ(s), u, ψ(s′)) ∈ →N . Hence ψ is an isomorphism

for TS and TSN . ⊓⊔

3.7 A-priori Behaviour in Asynchronous Circuits

Asynchronous circuits, unlike synchronous ones, are not regulated by any special clock

which controls the entire circuit. As a consequence, signal delays must be taken into

account in any asynchronous circuit theory. The survey [15] presented the historical

development of the subject of asynchronous circuits theory, and discussed those aspects

of the theory that deal with the behaviour of circuits under the assumption that there are

(unbounded - Part I, or bounded - Part II) delays in the circuit components and wires. In

Part I, several models of the behaviour of asynchronous sequential circuits1 were discussed.

They differ in the assumptions made about the delays present in a circuit. The ‘gate-

and-wire-delay’ model associates a delay with every gate and every wire in the circuit,

while the ‘gate-delay’ model only assumes delays in gates. In the ‘feedback-delay’ model,

1A circuit is called sequential when its output cannot be determined by the input signals only (like in
combinational circuits) but depends as well on the past history of the circuit.
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the delays are associated with ‘feedback wires’, i.e. the wires whose removal deletes all

the feedback loops from the circuit. The ‘cutting’ of feedback wires produces a circuit

which can be analysed like a combinational circuit where the output depends on the input

signals and the feedback set (the set of variables associated with the ‘cut’ feedback wires).

The feedback set is not uniquely defined for a given circuit.

The following example, taken from [15] and first introduced in [34], explains the be-

haviour of a circuit depicted in figure 3.6 under the assumptions of the feedback-delay

model. The state of a circuit is determined by seven state variables: one input variable,

y2

y1

y3

y4

y5

y6

x r

r
r

r

Figure 3.6: Langdon’s circuit.

x, and six delay variables: y1, . . . , y6. The changes of the input value introduce changes of

other variables in the circuit. We will denote by Yi the new (next) value of yi (i = 1, . . . , 6)

which are the functions of all input and delay variables. The state (x, y1, . . . , y6) of the

circuit is stable if Yi(x, y1, . . . , y6) = yi, for every i = 1, . . . , 6. For the Langdon’s circuit

the functions Yi are as follows:

Y1 = y2 ∨ y5
Y2 = y3 ∨ y4
Y3 = x ∧ y2
Y4 = x ∧ y6
Y5 = x ∧ y1
Y6 = ¬y1

Suppose that the feedback set is {y1, y3}. The next values of the state variables, expressed
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in terms of x, y1, y3, are:
Y1 = x ∨ y3
Y2 = y3 ∨ (x ∧ (¬y1))
Y3 = x ∧ (y3 ∨ (¬y1))
Y4 = x ∧ (¬y1)
Y5 = x ∧ y1
Y6 = ¬y1

Starting in the state 0.000001 (the full stop is used to separate the values of the input

and delay variables) and changing the input to 1 gives the state 1.0∗10∗101 in which both

y1 and y3 are unstable (indicated by an asterisk written after the value of the variable).

If y1 changes first, the circuit reaches the state 1.100010 which is stable. Although y3

was unstable for some time, it is no longer unstable. It has ‘lost the race’ to y1. If

y3 changes first, the circuit reaches the state 1.0∗11101 in which y1 is unstable. This

instability will lead to the next change producing the stable state 1.111010. If y1 and

y3 respond to the change of x at ‘exactly’ the same time, the state 1.111010 is reached

directly from 1.0∗10∗101. The diagram below shows the transition system of the circuit

behaviour described above projected on the subset of signals {x, y1, y3}. The states are

represented by triples of the form x.y1y3. Note that the transition system depicted below

1.0∗0∗

1.10 1.0∗1

1.11

{y1+} {y3+}

{y1+, y3+}

{y1+}

is a TSENI transition system. It should be added that although the set of stable states is

independent from the choice of a feedback set, the transitions among the states are not.

The choice of a different feedback set in the example above, e.g. {y1, y2}, would produce

a different transition system.

More recently, in [48], the precise modelling of asynchronous controller and arbiter

behaviour was discussed. The stress was put on the specification of all possible causal

relationships between events (rising and falling of input and output signals) in the circuit.

Firstly, step transition systems were found more appropriate for the modelling purposes,

as their graphs show which concurrent events might accidentally occur simultaneously.

Secondly, one of the introduced relationships between events, called biased concurrency
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(b-concurrency) has the form of ‘weak causality’ of [29]. Formally, b-concurrency is defined

as follows (see [48]). An input signal IS is b-concurrent to an output signal OS if and

only if

1. the environment generates the IS independently of the OS, and

2. the IS prevents the OS if the OS has not yet occurred.

At the net level, modelling b-concurrency requires nets with inhibitor arcs equipped with

the a-priori concurrent semantics. The b-concurrency can be useful for the ‘pessimistic’ de-

sign. In general, however, in the models which specify required and desired behaviour, the

designer does not wish the OS to be prevented. For that reason, [48] introduces another

relation based on b-concurrency, called time-constrained b-concurrency (tcb-concurrency),

which assumes that OS has to be generated before or at the latest simultaneously with

IS.



Chapter 4

Morphisms for ENI and TSENI

In this chapter we introduce morphisms for the ENI-systems, and for the TSENI Tran-

sition Systems. The net morphisms we define are of the form (α, β) : N1 → N2, where

α is a partial function mapping conditions of N2 into conditions of N1 and β is a partial

function which maps events of N1 into events of N2, and are similar to the N-morphisms

of [38]. Net morphisms preserve the environments of events and initial cases, in the sense

that conditions of N1 and N2 related by α either both belong or both do not belong to

their respective initial cases. The crucial difference is due to the presence of inhibitor arcs,

and we require that N2 exhibits at least the same degree of concurrency as N1. Our net

morphisms, unlike the N-morphisms of [38], do not enjoy the property of being uniquely

determined by the way events are mapped. That is, two net morphisms (αi, βi) : N1 → N2

(i = 1, 2) which satisfy β1 = β2 can be different. This is due to the fact that we do not

require nets to be simple and allow isolated conditions. Transition system morphisms are

of the form (σ, η) : TS 1 → TS 2, where σ is a total function mapping states of TS 1 into

states of TS 2 and η is a partial function which maps events of TS 1 into events of TS 2,

and are similar to the transition system morphisms defined in [47]. Transition system

morphisms preserve initial states, and step transitions if a step in TS 1 is mapped into

a non-empty set of events of TS 2. The partiality of η allows for some events of TS 1 to

be treated as internal, and such events are not required to be mapped into any events of

TS 2. Labelling transitions with steps, rather than with single events, can be viewed as

embedding an independence relation on events explicitly in the graph of the transition sys-

tem. Morphisms between TSENI transition systems enjoy the property of being uniquely

determined by the way events are mapped. That is, two transition system morphisms

(σi, ηi) : N1 → N2 (i = 1, 2) which satisfy η1 = η2 are the same.

61
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4.1 Transition Systems Morphisms

In this section we introduce morphisms between TSENI transition systems. Below, for

any (partial or total) function f : X → Y we will denote by dom(f) the domain of f , by

codom(f) the codomain of f , and by f̂ the lifting of f to a total function f̂ : 2X → 2Y

defined, for every X ′ ⊆ X , by

f̂(X ′) = f(X ′ ∩ dom(f)).

Definition 4.1.1 Let TS i = (Si, Ui, Ti, s
i
in) (for i = 1, 2) be TSENI transition systems.

A transition system morphism from TS 1 to TS 2 is a pair of functions f = (σ, η) : TS 1 →

TS 2 such that the following hold.

MTS1 σ : S1 → S2 is a total function satisfying σ(s1in) = s2in .

MTS2 η : ETS1
→ ETS2

is a partial function, which is injective on every u ∈ U1.

MTS3 For every (s, u, s′) ∈ T1, either η̂(u) = ∅ and σ(s) = σ(s′), or (σ(s), η̂(u), σ(s′)) ∈

T2. ⊓⊔

Transition system morphisms defined above are similar to the ones defined in [47]. They

preserve the initial states, and step transitions if a step in TS 1 is mapped into a non-empty

set of events of TS 2. The partiality of η allows for some events of TS 1 to be treated as

internal, and such events are not required to be mapped into any events of TS 2. Directly

from (MTS3), (A2), and proposition 3.1.4, we obtain the following.

Corollary 4.1.1 For every u ∈ U1, η̂(u) ∈ VTS2
∪ {∅}.

This means that transition system morphisms preserve the independence of events locally

within the steps, due to (MTS3) where steps are used instead of individual events. There

is no need to assume this separately, like it was done for the morphisms of Asynchronous

Transition Systems in [47]. Notice that labelling transitions with steps, rather than with

individual events only, can be viewed as embedding an independence relation on events

explicitly in the graph of a transition system. The first result we prove shows that a

transition system morphism f : TS 1 → TS 2 is determined by the way in which steps in

TS 1 have been transformed into steps in TS 2.
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Proposition 4.1.1 Let TS 1 and TS 2 be TSENI transition systems, and f = (σf , ηf) and

g = (σg, ηg) be transition system morphisms from TS 1 to TS 2 such that ηf = ηg. Then

f = g.

Proof: We prove that σf (s) = σg(s), for every s ∈ S1, by induction on the smallest number

k of transitions it takes to reach s from s1in (such an induction is valid due to (A3)).

The base case is k = 0. Then s = s1in and we have, by (MTS1), σf (s
1
in) = s2in = σg(s

1
in).

Suppose that k > 0. Let ̺ be a path of length k defined by the following sequence of

transitions in T1:

(s1in , u1, s1), (s1, u2, s2), . . . , (sk−2, uk−1, sk−1), (sk−1, uk, s).

By the induction hypothesis, σf (sk−1) = σg(sk−1). We consider two cases (recall that

η̂f = η̂g).

Case 1: η̂f (uk) = η̂g(uk) = ∅. Then from (MTS3) it follows that

σf (s) = σf (sk−1) = σg(sk−1) = σg(s).

Case 2: η̂f (uk) = η̂g(uk) 6= ∅. Then from (MTS3) it follows that

(σf(sk−1), η̂f(uk), σf (s)) ∈ T2 and (σg(sk−1), η̂g(uk), σg(s)) ∈ T2.

As TS 2 is a TSENI transition system, it is deterministic, by proposition 3.1.7. Hence, by

σf(sk−1) = σg(sk−1) and η̂f(uk) = η̂g(uk), we obtain σf (s) = σg(s). ⊓⊔

In the next proposition we show how transition system morphisms preserve regions.

Proposition 4.1.2 Let TS 1 and TS 2 be TSENI transition systems and f = (σ, η) :

TS 1 → TS 2 be a transition system morphism from TS 1 to TS 2. If r ⊆ S2 is a region in

TS 2 then σ−1(r) is a region in TS 1. Moreover, the following hold.

1. For all u ∈ U1, σ−1(r) ∈ ◦u ⇔ η̂(u) 6= ∅ ∧ r ∈ ◦η̂(u)

σ−1(r) ∈ u◦ ⇔ η̂(u) 6= ∅ ∧ r ∈ η̂(u)◦.

2. For all e ∈ dom(η), σ−1(r) ∈ e ⇐ r ∈ η(e) ∧ σ−1(r) 6= ∅.

Proof: We first show that r′ = σ−1(r) is a region in TS 1.

Suppose that (s, u, s′) ∈ T1, s ∈ r′ and s′ 6∈ r′. Then σ(s) ∈ r and σ(s′) 6∈ r. Hence

σ(s) 6= σ(s′) and so, by (MTS3), η̂(u) 6= ∅ and (σ(s), η̂(u), σ(s′)) ∈ T2. Let d ∈ η̂(u) be



CHAPTER 4. MORPHISMS FOR ENI AND TSENI 64

the r-crossing event in η̂(u). From (A4) it follows that σ(s)
{d}
−→ in TS 2. Let e ∈ u be the

unique event1 such that d = η(e). Again, from (A4) it follows that s
{e}
−→ in TS 1. We will

show that e is the r′-crossing event in u and thus that r′ is a region (since the argument

is symmetric if s 6∈ r′ and s′ ∈ r′).

Consider w ⊆ u \ {e} such that (s, w, q) ∈ T1. To show that q ∈ r′ we consider two

cases:

Case 1: η̂(w) = ∅. Then, by (MTS3), σ(s) = σ(q). Hence σ(q) ∈ r and so q ∈ r′.

Case 2: η̂(w) 6= ∅. Then, by (MTS3), (σ(s), η̂(w), σ(q)) ∈ T2. Since η is injective on

steps in TS 1, d 6∈ η̂(w). Hence, since r is a region and d is the r-crossing event in η̂(u),

σ(q) ∈ r. Thus q ∈ r′.

Consider now (q, v, q′) ∈ T1 such that e ∈ v. We need to show that q ∈ r′ and q′ 6∈ r′.

Since η(e) = d ∈ η̂(v) 6= ∅, by (MTS3), (σ(q), η̂(v), σ(q′)) ∈ T2. Hence, since r is a region

and d is the r-crossing event in η̂(u), σ(q) ∈ r and σ(q′) 6∈ r. Thus q ∈ r′ and q′ 6∈ r′.

We now move on to the second part of the proposition. Let u ∈ U1. To show the (⇒)

implication, we proceed as follows. By σ−1(r) ∈ ◦u, there exists (s, u, s′) ∈ T1 such that

s ∈ σ−1(r) and s′ 6∈ σ−1(r). Hence σ(s) ∈ r and σ(s′) 6∈ r which means σ(s) 6= σ(s′).

Thus, by (MTS3), (σ(s), η̂(u), σ(s′)) ∈ T2. Hence η̂(u) 6= ∅ and r ∈ ◦η̂(u).

To show the reverse (⇐) implication, assume that η̂(u) 6= ∅ and r ∈ ◦η̂(u). By

u ∈ U1 and (A2), there is a transition (q, u, q′) ∈ T1. From (MTS3) it follows that

(σ(q), η̂(u), σ(q′)) ∈ T2. Moreover, from proposition 3.1.1(1) and r ∈ ◦η̂(u), we have

σ(q) ∈ r and σ(q′) 6∈ r. Hence q ∈ σ−1(r) and q′ 6∈ σ−1(r), and thus σ−1(r) ∈ ◦u. A

similar argument applies to post-regions.

Finally, we will prove that, for every e ∈ dom(η), r ∈ η(e) and σ−1(r) 6= ∅ imply

σ−1(r) ∈ e. Let d = η(e). From (A2) and corollary 3.1.1, we have (s, {e}, s′) ∈ T1, for

some s and s′. Hence, by (MTS3), (σ(s), {d}, σ(s′)) ∈ T2. This, proposition 3.1.8, and

r ∈ d yield σ(s), σ(s′) 6∈ r. Hence s, s′ 6∈ σ−1(r). Moreover, σ−1(r) 6= ∅, so σ−1(r) is non-

trivial and Be
S1\σ−1(r) 6= ∅. Suppose now that Be

σ−1(r) 6= ∅. Then there is (s, {e}, s′) ∈ T1

such that s, s′ ∈ σ−1(r) and, consequently, σ(s), σ(s′) ∈ r. Moreover, from (s, {e}, s′) ∈ T1

and (MTS3) it follows that (σ(s), {d}, σ(s′)) ∈ T2. Hence Bd
r 6= ∅, which contradicts r ∈ d.

As a result, Be
σ−1(r) = ∅, and so σ−1(r) ∈ e. ⊓⊔

1Notice that the injectivity of η on every step u ∈ U1 guarantees the uniqueness of e.
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The condition σ−1(r) 6= ∅ in the last implication of proposition 4.1.2 is needed to

guarantee that region σ−1(r) is non-trivial. This problem is discussed in example 4.1.2.

Example 4.1.1 The implication in proposition 4.1.2(2) cannot be reversed. Figure 4.1

shows two transitions systems such that for a suitable morphism and e ∈ dom(η), σ−1(r) ∈

e but r 6∈ η(e). The details of this counterexample are as follows. The morphism f̃ =

(σ̃, η̃) : TS 1 → TS 2 is defined by:

σ̃(sin) = s′in σ̃(s1) = s′1 σ̃(s2) = s′2

σ̃(s3) = s′3 η̃(a) = a′ η̃(b) = b′.

The regions in TS 1 are:

r1 = {sin , s1} r2 = {sin , s2}

r3 = {s2, s3} r4 = {s1, s3}

and the pre-regions, post-regions and I-regions of events are given by:

◦a = {r2} a◦ = {r4} a = {r3}

◦b = {r1} b◦ = {r3} b = {r4}.

The regions in TS 2 are:

r′1 = {s′in , s
′
1} r′2 = {s′in , s

′
2}

r′3 = {s′2, s
′
3} r′4 = {s′1, s

′
3}

and the pre-regions, post-regions and I-regions of events are given by:

◦a′ = {r′2} a′
◦ = {r′4} a′ = ∅

◦b′ = {r′1} b′
◦ = {r′3} b′ = ∅.

Since σ̃−1(r′i) = ri, for i = 1, 2, 3, 4, to produce a counterexample one can take e = a and

r = r′3, or e = b and r = r′4. ⊓⊔

Example 4.1.2 Proposition 4.1.2 states that, if r ⊆ S2 is a region in TS 2 then σ−1(r) is

a region in TS 1. Notice that it does not assume that r nor σ−1(r) are non-trivial regions.

It may happen that for a non-trivial r, σ−1(r) will be trivial. Consider, for example, the

transition systems in figure 4.1, and the transition system morphism f = (σ, η) : TS 1 →

TS 2 defined as follows:

σ(sin) = s′in σ(s1) = s′1 σ(s2) = s′in

σ(s3) = s′1 η(a) = a′ η(b) − not defined.

In the above example σ is not injective. Observe that σ−1(r′1) = S1 and σ−1(r′3) = ∅. ⊓⊔
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TS 1

sin

s1 s2

s3

{a} {b}

{a, b}

TS 2

s′in

s′1 s′2

s′3

{a′} {b′}

{a′, b′}

{b′} {a′}

Figure 4.1: Transition systems for examples 4.1.1 and 4.1.2.

4.2 Inhibitor Nets and their Morphisms

In this section we will introduce a class of morphisms for the ENI-systems.

Definition 4.2.1 Let Ni = (Bi, Ei, Fi, Ii, c
i
in) (i = 1, 2) be ENI-systems. A net morphism

from N1 to N2 is a pair (α, β) : N1 → N2 such that the following hold.

MENI1 α : B2 → B1 is a partial function.

MENI2 β : E1 → E2 is a partial function.

MENI3 For every b ∈ dom(α), α(b) ∈ c1in if and only if b ∈ c2in.

MENI4 For every e ∈ E1 \ dom(β), α−1(•e) = ∅ = α−1(e•).

MENI5 For every e ∈ dom(β):

α−1(•e) = •β(e),
α−1(e•) = β(e)•,

β(e) ∩ M(α,β) ⊆ α−1(e),

where M(α,β) = {b ∈ B2 | b ∈ c2in ∨ ∃e ∈ dom(β) : b ∈ β(e)•}. ⊓⊔

In the above definition M(α,β) denotes a set of all the conditions of a net N2 which are

potentially marked by at least one case reachable from c2in when N1 is simulated by N2

according to (α, β). The net morphisms defined above are similar to the N-morphisms of

[38]. They preserve initial cases, in the sense that α−1(c1in) ⊆ c2in , and the environments

of events. The crucial difference is due to the presence of inhibitor arcs. The condition

β(e) ∩ M(α,β) ⊆ α−1(e) means that, in the net N2, we can have more concurrency (less

inhibition). Notice that we only take into account I-conditions ofN2 which can potentially

disable events, i.e. those which can potentially be marked when N2 simulates N1. The
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net version of proposition 4.1.1 is not true, i.e. two net morphisms (αi, βi) : N1 → N2

(i = 1, 2) which satisfy β1 = β2 can be different2. This is due to the fact that we do not

require nets to be simple (see [38]) and allow isolated conditions.

Example 4.2.1 Figure 4.2 shows two ENI-system. We can define a net morphism g =

(α, β) : N1 → N2 between them in the following way:

α(b′1) = b1 α(b′3) = b3 β(e) = e′.

Notice that α(b′2), α(b
′
4), α(b

′
5) and β(f) are not defined. The pre-conditions, post-

conditions and I-conditions of events in N1 are given by:

•e = {b1} e• = {b3} e = ∅

•f = {b2} f • = {b4} f = {b3}.

The pre-conditions, post-conditions and I-conditions of events in N2 are given by:

•e′ = {b′1} e′• = {b′3} e′ = {b′4, b
′
5}

•f ′ = {b′2} f ′• = {b′4} f ′ = {b′3}.

N1

b1

b3

b2

b4

e f

N2

b′1

b′3

b′2

b′4b′5

e′ f ′

Figure 4.2: ENI-systems for example 4.2.1.

It is straightforward to check that g is well defined net morphism. Observe that for e:

α−1(e) = ∅ and β(e) = {b′4, b
′
5} and M(α,β) = {b′1, b

′
2, b

′
3}, so the inclusion in (MENI5)

holds. Notice that although N2 has more inhibitor arcs than N1, it has no more active

inhibitor arcs when it simulates N1. Both inhibitor conditions of e′ in N2 give rise to

passive inhibitor arcs: b′5 is never marked in N2, and b
′
4 is never marked in N2 when N1

is simulated (f ′ will never be executed as it is not an image of any event in N1). ⊓⊔

2The N-morphisms of [38] enjoy the property of being uniquely determined by the way events are
mapped.
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Proposition 4.2.1 Let (α, β) : N1 → N2 be a net morphism between ENI-systems N1

and N2. Then, for every X ⊆ B1,

α−1(X) ∩ (c2in \ α−1(c1in)) = ∅.

Proof: Suppose that there is d such that: (i) d ∈ α−1(X), and (ii) d ∈ (c2in \ α−1(c1in)).

From (i) it follows that d ∈ dom(α). From (ii) it follows that d ∈ c2in which means, by

(MENI3), that α(d) ∈ c1in . The latter in turn gives d ∈ α−1(c1in) contradicting (ii). ⊓⊔

The following proposition is similar to the result obtained for the Elementary Net

Systems in [38].

Proposition 4.2.2 Let Ni = (Bi, Ei, Fi, Ii, c
i
in) (i = 1, 2) be ENI-systems and (α, β) :

N1 → N2 be a net morphism. Moreover, let fα : CN1
→ 2B2 be a mapping such that, for

every c ∈ CN1
,

fα(c) = α−1(c) ∪ (c2in \ α−1(c1in)).

Then the following hold:

1. For every c ∈ CN1
, fα(c) ∈ CN2

.

2. If (c, u, c′) ∈ →N1
and β̂(u) = ∅ then fα(c) = fα(c

′).

3. If (c, u, c′) ∈ →N1
and β̂(u) 6= ∅ then (fα(c), β̂(u), fα(c

′)) ∈ →N2
.

Proof: (1) Let c ∈ CN1
and ̺ be a shortest step sequence of N1 such that c1in [̺〉c. The

proof proceeds by induction on the length k of ̺.

The base case is k = 0. Then c = c1in and, by (MENI3), we have α−1(c1in) ⊆ c2in . Hence

fα(c
1
in) = α−1(c1in) ∪ (c2in \ α−1(c1in)) = c2in ∈ CN2

.

In the induction step, k > 0. Let ̺ = ̺′u and c1in [̺
′〉c′

u
−→N1

c in N1. By the induction

hypothesis, c′′ = fα(c
′) ∈ CN2

. From c′
u

−→N1
c and proposition 3.3.1(2) it follows that

c = (c′ \ •u) ∪ u• in N1, and we consider two cases.

Case 1: β̂(u) = ∅. Then

fα(c) = α−1(c) ∪ (c2in \ α−1(c1in))
= α−1((c′ \ •u) ∪ u•) ∪ (c2in \ α−1(c1in))

(MENI4)
= fα(c

′) ∈ CN2
.
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Case 2: β̂(u) 6= ∅. Denote w = β̂(u). We will show that w is enabled at c′′ ∈ CN2
. First,

knowing that u ∈ VN1
, we will prove that w ∈ VN2

. Clearly, for every pair e2 6= f2 ∈ w

we can find a pair e1 6= f1 ∈ u such that β(e1) = e2 and β(f1) = f2. Then

(•e2 ∪ e•2) ∩ (•f2 ∪ f •
2 )

(MENI5)
= (α−1(•e1) ∪ α−1(e•1)) ∩ (α−1(•f1) ∪ α−1(f •

1 ))
= α−1((•e1 ∪ e

•
1) ∩ (•f1 ∪ f

•
1 ))

(3.2)
= ∅.

Hence w ∈ VN2
. Since c′′ ∈ CN2

, we can use proposition 3.3.1(1) to show that w is enabled

at c′′. We need to prove that •w ⊆ c′′, w•∩ c′′ = ∅ and w ∩ c′′ = ∅. By w ∈ VN2
, it suffices

to prove that if f ∈ w then •f ⊆ c′′, f • ∩ c′′ = ∅ and f ∩ c′′ = ∅. Let e ∈ u be such that

β(e) = f .

We first show that

•f ⊆ c′′ = fα(c
′) = α−1(c′) ∪ (c2in \ α−1(c1in)).

From (MENI5) it follows that α−1(•e) = •f . Hence what we need to show is that

α−1(•e) ⊆ α−1(c′) ∪ (c2in \ α−1(c1in)).

Now, from c′
u

−→N1
c it follows that •e ⊆ c′. Hence α−1(•e) ⊆ α−1(c′) and so •f ⊆ c′′.

We next show that f •∩c′′ = ∅. By (MENI5), α−1(e•) = f •. From c′
u

−→N1
c it follows

that e• ∩ c′ = ∅, so α−1(e•) ∩ α−1(c′) = ∅. Consequently, f • ∩ α−1(c′) = ∅. Moreover,

f • ∩ (c2in \ α−1(c1in)) = ∅ which follows from f • = α−1(e•) and proposition 4.2.1. Hence

f • ∩ c′′ = ∅.

We now show that f ∩ c′′ = ∅. From (MENI5) we have f ∩ M(α,β) ⊆ α−1(e), and

from c′
u

−→N1
c it follows that e ∩ c′ = ∅. Hence

f ∩ M(α,β) ∩ α
−1(c′) ⊆ α−1(e) ∩ α−1(c′) = ∅.

Consequently, f ∩ M(α,β) ∩ α−1(c′) = ∅. Moreover, f ∩ M(α,β) ∩ (c2in \ α−1(c1in)) = ∅

which follows from f ∩ M(α,β) ⊆ α−1(e) and proposition 4.2.1. Hence

f ∩ M(α,β) ∩ (α−1(c′) ∪ (c2in \ α−1(c1in))) = ∅.

We now show that c′′ = α−1(c′) ∪ (c2in \ α−1(c1in)) ⊆ M(α,β). Suppose b ∈ c′′. It implies

that b ∈ c2in \ α−1(c1in) from which it immediately follows that b ∈ M(α,β), or b ∈ α−1(c′)

which means α(b) ∈ c′. But c′ ∈ CN1
, so α(b) ∈ c1in which by (MENI3) means b ∈ c2in , or
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there exists g ∈ E1 such that α(b) ∈ g• (so b ∈ α−1(g•) and α−1(g•) 6= ∅). From (MENI4)

and (MENI5) it follows that g ∈ dom(β) and α−1(g•) = β(g)•. So b ∈ β(g)• for some

g ∈ dom(β) and, consequently, b ∈ M(α,β). So f ∩ c′′ = ∅. Hence we have shown that

c′′
w

−→N2
.

Let c̃ = (c′′ \ •w) ∪ w• in N2. We have c̃ ∈ CN2
and it suffices to show that fα(c) = c̃

in order to prove that fα(c) ∈ CN2
. We proceed as follow:

fα(c) = fα((c
′ \ •u) ∪ u•)

= α−1((c′ \ •u) ∪ u•) ∪ (c2in \ α−1(c1in))

= α−1(c′ \ •u) ∪ α−1(u•) ∪ (c2in \ α−1(c1in))

= (α−1(c′) \ α−1(•u)) ∪ α−1(u•) ∪ (c2in \ α−1(c1in))

(prop. 4.2.1)
= ((α−1(c′) ∪ (c2in \ α−1(c1in))) \ α

−1(•u)) ∪ α−1(u•)

= (fα(c
′) \ α−1(•u)) ∪ α−1(u•)

= (c′′ \ α−1(•u)) ∪ α−1(u•)

(MENI4,MENI5)
= (c′′ \ •w) ∪ w•

= c̃.

(2,3) These parts were proved while showing (1). ⊓⊔



Chapter 5

Categories of ENI and TSENI

Category Theory provides notions and methodology for relating different mathematical

models. In this approach models are treated as categories where, for example, systems (or

their behaviours) are represented as objects of the category, and the relationship between

systems is given in the form of morphisms. Different models are ‘categorically’ related by

the use of functors. The properties of functors can indicate which of the related models is

more abstract (gives less information about the behaviour of the systems, concentrating

on some selective features), and which one is more concrete (more behavioural features

are expressed in the model).

In this chapter, we define two functors to relate ENI-systems and TSENI Transition

Systems, and prove that they form an adjunction. The first functor (the left adjoint)

embeds the TSENI Transition Systems in ENI-systems, while the second functor (the

right adjoint) gives the behaviour of an ENI-system in the form of a TSENI transition

system. The embedding of the TSENI Transition Systems in ENI-systems is full and

faithful (TS is isomorphic to TSNTS
), making the adjunction a coreflection. ENI-systems,

on the other hand, are not embedded in the TSENI Transition Systems. The right adjoint

is not full and faithful proving that the adjunction is not a reflection. Indeed, an ENI-

system N does not need to be isomorphic to NTSN
as illustrated below.

N

b1

b2 b3

a b

TSN

cin

c1 c2

{a} {b}

NTSN

r1 r2 r3

r4 r5 r6

a b

71
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As a consequence, ENI-systems and TSENI Transition Systems are not equivalent models.

TSENI Transition Systems, as a more abstract model, are embedded in the net model.

The categories of various other classes of nets and transition systems were defined and

studied in, for example, [11, 37, 38], while [47] presents a comprehensive study on how to

relate different models of concurrency by the use of categorical notions.

In the rest of this chapter, we will denote the composition of two functions or partial

functions by “◦”. For two partial functions f : X → Y and g : Y → Z, the composition

g ◦ f : X → Z will be understood as follows. For all x ∈ X ,

g ◦ f(x) =

{
z if there is y ∈ Y such that f(x) = y and g(y) = z

undefined otherwise.

5.1 Categories CATENI and CATTSENI

We start by recalling some basic definitions concerning categories and functors from [1],

[10] and [35].

Definition 5.1.1 A category K comprises a collection of objects of K, called K0, together

with, for each pair A, B of objects of K, a distinct (possibly empty) collection of morphisms

from A to B, called K1, subject to the conditions (C1) and (C2) below. We write f : A→

B to indicate that f is a morphism from A to B, and then refer to A as the source of f

and to B as the target of f . For two morphisms, f and g, such that the target of f is

the source of g, there is the composite morphism denoted by g ◦ f . The source of g ◦ f

is the source of f , and the target of g ◦ f is the target of g. For every object A of K, we

will denote by idA a distinguished morphism from A to A, called the identity of the object

A.

C1 (h ◦ g) ◦ f = h ◦ (g ◦ f) whenever either side of the equality is defined.

C2 If f : A→ B, then f ◦ idA = idB ◦ f = f . ⊓⊔

Definition 5.1.2 Let C and D be two categories. A functor F : C → D is a pair of

functions F0 : C0 → D0 and F1 : C1 → D1 such that the following hold.

F1 If f : A→ B in C, then F1(f) : F0(A) → F0(B) in D.

F2 For every object A of C, F1(idA) = idF0(A).



CHAPTER 5. CATEGORIES OF ENI AND TSENI 73

F3 If g◦f is defined in C, then F1(g)◦F1(f) is defined in D and F1(g◦f) = F1(g)◦F1(f).

Whenever it does not lead to ambiguity, we will denote F0 and F1 by F . ⊓⊔

Definition 5.1.3 Let F : C → D be a functor.

1. F is faithful (or an embedding) if for every pair A, B of objects of C and for every

pair f : A → B and g : A → B of morphisms of C, the inequality f 6= g implies

F (f) 6= F (g).

2. F is full if for every pair A, B of objects of C and for every morphism g : F (A) →

F (B) in D, there exists a morphism f : A→ B in C such that F (f) = g. ⊓⊔

We now define two categories: the category of TSENI Transition Systems with mor-

phisms defined as in section 4.1, and the category of ENI-systems with morphisms defined

as in section 4.2. To define these categories, we need to say what are the identity mor-

phisms, and define the compositions of two morphisms. Let TS = (S, U, T, sin) be a

TSENI transition system, and σid : S → S and ηid : ETS → ETS be total identity

functions. Then idTS = (σid , ηid) will denote an identity morphism idTS : TS → TS .

Let TS i = (Si, Ui, Ti, s
i
in) (for i = 1, 2, 3) be TSENI transition systems, and f =

(σf , ηf ) : TS 1 → TS 2 and g = (σg, ηg) : TS 2 → TS 3 be two transition system morphisms.

Then the composition of the morphisms is defined by g◦f = (σg◦σf , ηg◦ηf ) : TS 1 → TS 3,

where σg ◦σf is a total function composition and ηg ◦ ηf is a partial function composition.

It is straightforward to prove that the TSENI Transition Systems with transition system

morphisms form a category. We will denote it by CATTSENI .

Let N = (B,E, F, I, cin) be an ENI-system, and αid : B → B and βid : E → E

be two total identity functions. Then idN = (αid , βid) will denote an identity morphism

idN : N → N .

Let Ni = (Bi, Ei, Fi, Ii, c
i
in) (for i = 1, 2, 3) be ENI-systems, and f = (αf , βf) : N1 →

N2 and g = (αg, βg) : N2 → N3 be two net morphisms. Then the composition of the

morphisms is defined as follows: g ◦ f = (αf ◦ αg, βg ◦ βf) : N1 → N3, where both αf ◦ αg

and βg ◦ βf are partial function compositions. Notice that α’s and β’s are composed in

different order.

We now show that g ◦ f is a net morphism. It is clear that αf ◦ αg : B3 → B1

and βg ◦ βf : E1 → E3 are partial functions. (MENI3), (MENI4) and the first parts of
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(MENI5) are straightforward to show. We prove the last part of (MENI5), i.e. βg ◦ βf(e)

∩ M(αf◦αg ,βg◦βf ) ⊆ (αf ◦ αg)
−1(e), for every e ∈ dom(βg ◦ βf). From the fact that f and

g are net morphisms we have:

∀ e ∈ dom(βg) : βg(e) ∩ M(αg ,βg) ⊆ α−1
g (e), (5.1)

∀ e ∈ dom(βf ) : βf(e) ∩ M(αf ,βf ) ⊆ α−1
f (e). (5.2)

Consider b ∈ βg ◦ βf (e) ∩ M(αf◦αg ,βg◦βf ). This means b ∈ βg(βf(e)), moreover, b ∈ c3in

or there exists e′ ∈ dom(βg ◦ βf ) such that b ∈ βg ◦ βf(e′)•. Thus b ∈ βg(βf (e)) and,

moreover, b ∈ c3in or there exists e′′ = βf(e
′) ∈ dom(βg) such that b ∈ βg(e

′′)•. From

(5.1) we have b ∈ α−1
g (βf (e)) and then αg(b) ∈ βf(e). So b ∈ dom(αg) and, if b ∈ c3in we

have from the fact that g is a net morphism (MENI3), αg(b) ∈ c2in . If, on the other hand,

there exists e′ ∈ dom(βg ◦ βf) such that b ∈ βg(βf(e
′))•, then from the fact that g is a net

morphism (MENI5), there exists e′ ∈ dom(βf) such that b ∈ α−1
g (βf (e

′)•). Consequently,

there exists e′ ∈ dom(βf) such that αg(b) ∈ βf(e
′)•. We have proved that αg(b) ∈ βf(e)

and, moreover, αg(b) ∈ c2in or there exists e′ ∈ dom(βf) such that αg(b) ∈ βf(e
′)•. Since

f is a net morphism we have, by (5.2), αg(b) ∈ α−1
f (e), which means αf ◦ αg(b) ∈ e and,

finally, b ∈ (αf ◦αg)
−1(e). It is now easy to see that the ENI-systems with net morphisms

form a category. We will denote it by CATENI .

5.2 A Functor from CATENI to CATTSENI

To define a functor we need to show how the objects and morphisms of one category are

mapped into objects and morphisms (respectively) of another category. In section 3.4, we

have shown how to construct the TSENI transition system, TSN , for a given ENI-system,

N .

The next proposition defines the mapping between morphisms of CATENI and mor-

phisms of CATTSENI .

Proposition 5.2.1 Let Ni = (Bi, Ei, Fi, Ii, c
i
in) (i = 1, 2) be ENI-systems and (α, β) be

a net morphism from N1 to N2. Moreover, let fα : CN1
→ CN2

be a total function defined

as follows:

fα(c) = α−1(c) ∪ (c2in \ α−1(c1in))
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and fβ : ETSN1
→ ETSN2

be a mapping defined by fβ = β. Then (fα, fβ) is a transition

system morphism from TSN1
to TSN2

.

Proof: (MTS1) and (MTS3) follow directly from proposition 4.2.2. Note that ETSN1
⊆ E1

and β : E1 → E2 is a partial function. Moreover, from proposition 4.2.2(3) we have

that, if e ∈ ETSN1
and β(e) is defined, then β(e) ∈ ETSN2

. Hence fβ is a well defined

partial function. What is left to show is the injectivity of fβ = β on steps. Suppose

that u ∈ UN1
. We need to show that for all different e, f ∈ u ∩ dom(β), β(e) 6= β(f).

Assume that β(e) = β(f). Then, by (MENI5), α−1(•e) = α−1(•f) 6= ∅. Thus there is

x ∈ α−1(•e) ∩ α−1(•f) = α−1(•e ∩ •f). Hence α(x) ∈ •e ∩ •f which contradicts u ∈ UN1

(since u ∈ VN1
). ⊓⊔

Now we are ready to define a functor from CATENI to CATTSENI .

Theorem 5.2.1 Let H : CATENI → CATTSENI be a mapping defined, for every ENI-

system N and net morphism (α, β), by H(N ) = TSN and H(α, β) = (fα, fβ). Then H

is a functor.

Proof: Let N = (B,E, F, I, cin) and Ni = (Bi, Ei, Fi, Ii, c
i
in) (i = 1, 2, 3) be ENI-systems.

Let idN = (αid , βid) : N → N be an identity morphism and f = (αf , βf) : N1 → N2 and

g = (αg, βg) : N2 → N3 be two net morphisms. Then (F1) follows from proposition 5.2.1.

We will show that H(idN ) = idTSN
(i.e. (F2)) and H(g ◦f) = H(g)◦H(f) (i.e. (F3)). To

prove the former we observe that H(αid , βid) = (fαid
, fβid

) where, for every c ∈ CN and

e ∈ ETSN
,

fαid
(c) = α−1

id (c) ∪ (cin \ α−1
id (cin)) = c ∪ (cin \ cin) = c

fβid
(e) = βid(e) = e.

The latter is proved in the following way. We have:

H(g ◦ f) = H((αg, βg) ◦ (αf , βf))

= H(αf ◦ αg, βg ◦ βf)

= (fαf ◦αg
, fβg◦βf

)

H(g) ◦H(f) = H(αg, βg) ◦H(αf , βf)

= (fαg
, fβg

) ◦ (fαf
, fβf

)

= (fαg
◦ fαf

, fβg
◦ fβf

).
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Figure 5.1: An illustration for theorem 5.2.1 where the black circle denotes α−1
g ◦α−1

f (c1in).

Since it is clear that fβg◦βf
= fβg

◦ fβf
, it suffices to show that fαf◦αg

= fαg
◦ fαf

1.

We have, for every c ∈ CN1
,

fαf◦αg
(c) = (αf ◦ αg)

−1(c) ∪
(
c3in \ (αf ◦ αg)

−1(c1in)
)

= α−1
g ◦ α−1

f (c) ∪
(
c3in \ α

−1
g ◦ α−1

f (c1in)
)
.

From α−1
f (c1in) ⊆ c2in and α−1

g (c2in) ⊆ c3in it follows that α−1
g ◦ α−1

f (c1in) ⊆ α−1
g (c2in) ⊆ c3in.

Hence, for every c ∈ CN1
,

fαg
◦ fαf

(c) = fαg
(fαf

(c))

= fαg

(
α−1
f (c) ∪ (c2in \ α

−1
f (c1in))

)

= α−1
g

(
α−1
f (c) ∪ (c2in \ α

−1
f (c1in))

)
∪

(
c3in \ α

−1
g (c2in)

)

= α−1
g

(
α−1
f (c)

)
∪ α−1

g

(
c2in \ α

−1
f (c1in)

)
∪

(
c3in \ α

−1
g (c2in)

)

= α−1
g ◦ α−1

f (c) ∪
(
α−1
g (c2in) \ α

−1
g ◦ α−1

f (c1in)
)
∪

(
c3in \ α

−1
g (c2in)

)

= α−1
g ◦ α−1

f (c) ∪ (c3in \ α
−1
g ◦ α−1

f (c1in)).

Thus, for every c ∈ CN1
, fαg

◦ fαf
(c) = fαf ◦αg

(c) which completes the proof. ⊓⊔

1We will prove this as an exercise, as fαf◦αg
= fαg

◦ fαf
follows directly from proposition 4.1.1 and

fβg◦βf
= fβg

◦ fβf
.
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5.3 A Functor from CATTSENI to CATENI

We have shown how to construct a functor H from CATENI to CATTSENI . In this section,

we will define a functor in the opposite direction. To build the ENI-system, NTS , for a

given TSENI transition system, TS , we will use the construction from section 3.5.

The next proposition defines a mapping between morphisms of CATTSENI and mor-

phisms of CATENI .

Proposition 5.3.1 Let TS i = (Si, Ui, Ti, s
i
in) (i = 1, 2) be TSENI transition systems, and

(σ, η) : TS 1 → TS 2 be a transition system morphism. Moreover, let fσ : RTS2
→ RTS1

be

a mapping such that fσ(r) = σ−1(r), for every r ∈ RTS2
such that ∅ 6= σ−1(r) 6= S1, and

fη : ETS1
→ ETS2

be a mapping defined by fη = η. Then (fσ, fη) is a net morphism from

NTS1
to NTS2

.

Proof: Let NTS i
= (RTS i

, ETS i
, FTS i

, ITS i
, Rsi

in
), for i = 1, 2. We observe that (MENI1)

holds since fσ is a partial function from RTS2
to RTS1

(follows from proposition 4.1.2),

and (MENI2) holds since fη is a partial function from ETS1
to ETS2

. To show (MENI3),

for every r ∈ dom(fσ) we need to demonstrate that fσ(r) ∈ Rs1
in

⇔ r ∈ Rs2
in
. This is

equivalent to showing s1in ∈ σ−1(r) ⇔ s2in ∈ r which clearly holds since σ(s1in) = s2in . To

prove (MENI4), for every e ∈ ETS1
\dom(η) we need to show that f−1

σ (•e) = ∅ = f−1
σ (e•).

Assume that r ∈ f−1
σ (•e) 6= ∅. Then fσ(r) ∈

•e and so σ−1(r) ∈ •e (in NTS1
) which means

σ−1(r) ∈ ◦e (in TS 1). From corollary 3.1.1 and proposition 4.1.2(1) we have that η(e) is

defined, a contradiction. Hence f−1
σ (•e) = ∅. The same can be shown for f−1

σ (e•). Finally,

to show (MENI5), we need to prove that, for every e ∈ dom(η),

f−1
σ (•e) = •η(e) and f−1

σ (e•) = η(e)• and η(e) ∩ M(fσ ,fη) ⊆ f−1
σ (e).

The first equality can be proved as follows (note that by corollary 3.1.1, {e} ∈ U1).

r ∈ f−1
σ (•e) ⇔ fσ(r) ∈ •e = ◦e

⇔ σ−1(r) ∈ ◦e
(prop. 4.1.2(1))

⇔ r ∈ ◦η(e) = •η(e).

The second equality can be proved in a similar way.

To prove the last part of (MENI5) notice that, r ∈ M(fσ ,fη) means that r ∈ RTS2
and,

moreover, r ∈ Rs2
in
or there is e ∈ dom(η) such that r ∈ η(e)•. If r ∈ Rs2

in
, then s2in ∈ r
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and together with σ(s1in) = s2in we have s1in ∈ σ−1(r). So σ−1(r) 6= ∅. If r ∈ η(e)•, for

some e ∈ dom(η), then σ−1(r) 6= ∅ follows from corollary 3.1.1 and proposition 4.1.2(1).

The inclusion follows then from the fact that, for r ∈ η(e) = η(e) and σ−1(r) 6= ∅,

proposition 4.1.2(2) states that σ−1(r) ∈ e = e. Hence fσ(r) ∈ e, and so r ∈ f−1
σ (e). ⊓⊔

The next theorem defines a functor from CATTSENI to CATENI .

Theorem 5.3.1 Let J : CATTSENI → CATENI be a mapping defined, for every TSENI

transition system TS and transition system morphism (σ, η), by J(TS ) = NTS and

J(σ, η) = (fσ, fη). Then J is a functor.

Proof: Let TS = (S, U, T, sin) and TS i = (Si, Ui, Ti, s
i
in) (for i = 1, 2, 3) be TSENI

transition systems. Let idTS = (σid , ηid) : TS → TS be an identity morphism and

f = (σf , ηf ) : TS 1 → TS 2 and g = (σg, ηg) : TS 2 → TS 3 be two transition system

morphisms. Then (F1) follows from proposition 5.3.1. We now show that J(idTS ) = idNTS

(i.e. (F2)) and J(g ◦ f) = J(g) ◦ J(f) (i.e. (F3)) also hold.

The former follows from fσid
(r) = σ−1

id (r) = r and fηid (e) = ηid (e) = e, for r ∈ RTS

and e ∈ ETS . The latter can be shown as follows. We have:

J(g ◦ f) = J((σg, ηg) ◦ (σf , ηf))

= J(σg ◦ σf , ηg ◦ ηf )

= (fσg◦σf
, fηg◦ηf )

J(g) ◦ J(f) = (fσg
, fηg) ◦ (fσf

, fηf )

= (fσf
◦ fσg

, fηg ◦ fηf ).

We then observe that fσg◦σf
= (σg ◦ σf )−1 = σ−1

f ◦ σ−1
g = fσf

◦ fσg
and fηg◦ηf = ηg ◦ ηf =

fηg ◦ fηf which completes the proof. ⊓⊔

5.4 An Adjunction between Functors H and J

The two functors J : CATTSENI → CATENI and H : CATENI → CATTSENI are closely

related since, in categorical terms, they form an adjunction. We recall some definitions

from [10] and [35].

Definition 5.4.1 Given two functors F,G : A → B, between categories A and B, a

natural transformation τ : F → G is a function which assigns to each object A of A a
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f

A′

A

?

G(f)F (f)

τ(A′)

τ(A)

G(A′)F (A′)

G(A)F (A)

??
-

-

Figure 5.2: Natural transformation τ : F → G.

morphism τ(A) : F (A) → G(A) of B in such a way that every morphism f : A→ A′ in A

yields a diagram as in figure 5.2 which is commutative. The morphism τ(A) for an object

A is called the component of the natural transformation τ at A. ⊓⊔

In the above definition, the commutativity of the diagram in figure 5.2 means that the

equality G(f) ◦ τ(A) = τ(A′) ◦ F (f) holds.

Definition 5.4.2 Let A and B be categories. If F : A → B and G : B → A are

functors, we say that F is a left adjoint to G and G is a right adjoint to F provided

there is natural transformation τ : idA → G ◦ F 2 such that for any objects A of A and

B of B and any morphism f : A → G(B), there is a unique morphism g : F (A) → B

such that f = G(g) ◦ τ(A). The triple (F,G, τ) constitutes an adjunction. The natural

transformation τ is called the unit of the adjunction. ⊓⊔

We will use the term reflection for an adjunction in which the right adjoint is full and

faithful, and coreflection for an adjunction in which the left adjoint is full and faithful

(see [47]). It was proved in [35] that an adjunction is a coreflection (reflection) if every

component of its unit (resp. counit) is an isomorphism.

Before proving the next theorem, we consider an ENI-system N = (B,E, F, I, cin)

and the related transition system H(N ) = TSN = (CN , UN ,→N , cin). By (3.4), for every

b ∈ B, rb = {c ∈ CN | b ∈ c} is a (possibly trivial) region in TSN . We need to prove one

more property of the regions in H(N ) = TSN before presenting the main result of this

section.

Proposition 5.4.1 Let N = (B,E, F, I, cin) be an ENI-system and H(N ) = TSN be the

transition system generated by N . Then, for all b ∈ B and e ∈ ETSN
, the following hold:

2idA : A → A is an identity functor which maps objects and morphisms of A onto themselves.
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1. rb ∈
◦e (in H(N )) ⇔ b ∈ •e (in N ).

2. rb ∈ e◦ (in H(N )) ⇔ b ∈ e• (in N ).

Proof: (1) To show the (⇒) implication we proceed as follows. rb ∈
◦e (in H(N )) implies

that there exists c
{e}
−→N d such that c ∈ rb and d 6∈ rb. Hence b ∈ c and b 6∈ d. From (3.3)

it follows that c \ d = •e and so b ∈ •e (in N ).

To show the reverse implication, assume that b ∈ •e (in N ). From (A2), corollary 3.1.1

and e ∈ ETSN
it follows that there exist d, d′ ∈ CN such that d

{e}
−→N d′. From b ∈ •e and

d \ d′ = •e we have that b ∈ d and b 6∈ d′. Hence d ∈ rb and d
′ 6∈ rb. So rb is a non-trivial

region in H(N ) = TSN and rb ∈
◦e.

(2) Can be proved in a similar way. ⊓⊔

Theorem 5.4.1 Let τ : idCATTSENI
→ H◦J be a function, where τ(TS ) : TS → H◦J(TS )

is a morphism defined as follows.

τ(TS ) = ([τ(TS )]0, [τ(TS )]1)

where [τ(TS )]0 : S → CNTS
and [τ(TS )]1 : ETS → ETSNTS

are total functions defined

below.
∀ s ∈ S : [τ(TS )]0(s) = Rs

∀ e ∈ ETS : [τ(TS )]1(e) = e.
(5.3)

Then, J : CATTSENI → CATENI and H : CATENI → CATTSENI form an adjunction with

J as left adjoint and τ as a unit (see figure 5.3).

Proof: Clearly, τ is a natural transformation. We need to show that, for every TSENI

transition system TS 1 in CATTSENI and every ENI-system N2 in CATENI , if there is a

transition system morphism f : TS 1 → H(N2) then there is a unique net morphism

g : J(TS 1) → N2 such that

f = H(g) ◦ τ(TS 1). (5.4)

Let TS 1 = (S1, U1, T1, s
1
in) and N2 = (B2, E2, F2, I2, c

2
in). From the definitions of the

functors,
J(TS 1) = NTS1

= (RTS1
, ETS1

, FTS1
, ITS1

, Rs1
in
)

H(N2) = TSN2
= (CN2

, UN2
,→N2

, c2in).
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H(g) = (fα, fβ)

ψ = (ψ0, ψ1) = τ(TS1)

g = (α, β)f = (σ, η)

?
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Figure 5.3: Illustration for theorem 5.4.1.

Let τ(TS 1) = ψ. It follows from theorem 3.6.1 that ψ is an isomorphism and a well defined

transition system morphism from TS 1 to TSNTS1
. For f = (σ, η), we define g = (α, β) in

the following way. α : B2 → RTS1
is a mapping such that, for b ∈ B2,

α(b) =

{
σ−1(rb) if S1 6= σ−1(rb) 6= ∅
undefined otherwise

and β : ETS1
→ E2 is defined by β(e) = η(e). Notice that σ−1(rb) 6= S1 and σ−1(rb) 6= ∅

implies rb 6= CN2
and rb 6= ∅.

We will prove that g = (α, β) is a net morphism from J(TS 1) to N2. We observe that

(MENI1) and (MENI2) hold since α is a partial function and β is a partial function (as

η : ETS1
→ ETSN2

⊆ E2 is a partial function). To show (MENI3), for all b ∈ dom(α), we

need to demonstrate that α(b) ∈ Rs1
in
⇔ b ∈ c2in . This holds, since

α(b) = σ−1(rb) ∈ Rs1
in

⇔ s1in ∈ σ−1(rb) ⇔ σ(s1in) ∈ rb
(MTS1)
⇔ c2in ∈ rb ⇔ b ∈ c2in .

To prove (MENI4), for every e ∈ ETS1
\ dom(β), we need to show that α−1(•e) = ∅ =

α−1(e•). Note that η(e) is not defined. Assume that α−1(•e) 6= ∅. Then there is b ∈ B2

such that b ∈ α−1(•e) which means α(b) ∈ •e. From the definition of α and the fact that

(in NTS1
) •e = ◦e, we have σ−1(rb) ∈ ◦e. Hence, from proposition 4.1.2(1) we obtain that

η(e) is defined, a contradiction. The same way of reasoning applies to α−1(e•).
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Finally, to show (MENI5), we need to prove that for all e ∈ dom(β) = dom(η),

α−1(•e) = •β(e) and α−1(e•) = β(e)• and β(e) ∩ M(α,β) ⊆ α−1(e).

First we prove that α−1(•e) = •β(e).

b ∈ α−1(•e) ⇔ α(b) ∈ •e = ◦e (in NTS1
)

⇔ σ−1(rb) ∈
◦e (a condition in NTS1

is a region in TS 1)

(prop. 4.1.2(1))
⇔ rb ∈ ◦η(e) (in H(N2))

(prop. 5.4.1(1))
⇔ b ∈ •η(e) (in N2)

⇔ b ∈ •β(e).

That α−1(e•) = β(e)• can be proved in a similar way. We now prove that β(e) ∩ M(α,β) ⊆

α−1(e) holds (in N2). b ∈ β(e) ∩ M(α,β) implies b ∈ η(e). From (A2) and corollary 3.1.1 it

follows that there exist c, c′ ∈ CN2
such that c

{η(e)}
−→ N2

c′ and c = σ(s), c′ = σ(s′) for some

s, s′ ∈ S1. From (3.3) we have c\c′ = •η(e), c′\c = η(e)• and η(e) ∩ c = ∅. Since b ∈ η(e),

we have that b 6∈ c. By the definition of an inhibitor net, we have η(e)•∩ η(e)= ∅. Since

b ∈ η(e), we have b 6∈ η(e)• = c′ \ c, which together with the fact that b 6∈ c means b 6∈ c′.

Hence b 6∈ c and b 6∈ c′, and so c, c′ 6∈ rb.

Recall that b ∈ M(α,β) = {b ∈ B2 | b ∈ c2in ∨ ∃g ∈ dom(β) : b ∈ β(g)•}.

If b ∈ β(g)• for some g ∈ dom(β), then from the already proved part of (MENI5) we

have b ∈ α−1(g•), so b ∈ dom(α). If b ∈ α−1(Rs1
in
) we have again b ∈ dom(α). If

b ∈ c2in \ α−1(Rs1
in
), then b belongs to every case reachable in N2 when NTS1

is simulated

(this follows from proposition 4.2.1 and the fact that for g ∈ dom(β), α−1(•g) = •β(g)

and α−1(g•) = β(g)• which was already proved). But this contradicts b 6∈ c, c′. So

b ∈ β(e) ∩ M(α,β) implies b ∈ dom(α), and thus that σ−1(rb) is not trivial. Consequently,

rb is non-trivial and hence Bη(e)
CN2

\rb
6= ∅. Suppose now that f

{η(e)}
−→ N2

f ′ belongs to Bη(e)
rb

.

Then f, f ′ ∈ rb and we have b ∈ f and b ∈ f ′. But this and (3.3) contradicts b ∈ η(e).

Hence Bη(e)
rb

= ∅ and, as a result, rb ∈ η(e) (in H(N2)). From proposition 4.1.2(2) and

σ−1(rb) 6= ∅, σ−1(rb) ∈ e. Since b ∈ dom(α), α(b) ∈ e. Hence, in NTS1
, α(b) ∈ e and so

b ∈ α−1(e) in N2. This means that the inclusion β(e) ∩ M(α,β) ⊆ α−1(e) holds. Thus we

have shown that g = (α, β) is a net morphism from J(TS 1) to N2.

We now want to show that H(α, β) ◦ τ(TS 1) = f where f = (σ, η), τ(TS 1) = (ψ0, ψ1)

and H(α, β) = (fα, fβ). What we need to show is that (fα, fβ) ◦ (ψ0, ψ1) = (σ, η), i.e.



CHAPTER 5. CATEGORIES OF ENI AND TSENI 83

(fα ◦ ψ0, fβ ◦ ψ1) = (σ, η). It is enough to prove that fβ ◦ ψ1 = η, and then fα ◦ ψ0 = σ

follows from proposition 4.1.1.

It is easy to show that fβ◦ψ1 = η holds. The first of the functions involved ψ1 : ETS1
→

ETSNTS1

(see (5.3)) is a total identity function (notice that from proposition 3.6.1(2) we

have ETS1
= ETSNTS1

). The second function fβ : ETSNTS1

→ ETSN2
is defined as follows:

fβ = β = η, where η : ETS1
→ ETSN2

. So fβ ◦ ψ1(e) = fβ(ψ1(e)) = fβ(e) = η(e) for all

e ∈ dom(η).

We now prove the uniqueness of g = (α, β). Assume that there is another net mor-

phism g′ = (α′, β ′) satisfying (5.4). Then H(α, β) ◦ (ψ0, ψ1) = (σ, η) and H(α′, β ′) ◦

(ψ0, ψ1) = (σ, η). From the above it follows that (fα, fβ) ◦ (ψ0, ψ1) = (fα′ , fβ′) ◦ (ψ0, ψ1)

which means that:

fα ◦ ψ0 = fα′ ◦ ψ0 (5.5)

fβ ◦ ψ1 = fβ′ ◦ ψ1. (5.6)

From (5.6) we obtain fβ = fβ′ and consequently β = β ′.3 From (5.5) we have fα(Rs) =

fα′(Rs), for all s ∈ S1, which means

∀ s ∈ S1 : α−1(Rs) ∪ (c2in \ α−1(Rs1
in
)) = α′−1(Rs) ∪ (c2in \ α′−1(Rs1

in
)).

Observe that the sets α−1(Rs1
in
) and α′−1(Rs1

in
) are equal. From corollary 3.1.2 and

(3.6) we know that every condition in NTS1
is a pre- or post-condition of some event.

This and (MENI3), (MENI4) and (MENI5) gives us

α−1(Rs1
in
) = (

⋃
e∈dom(β)

•β(e) ∪
⋃

e∈dom(β) β(e)
•) ∩ c2in

(β=β′)
= (

⋃
e∈dom(β′)

•β ′(e) ∪
⋃

e∈dom(β′) β
′(e)•) ∩ c2in

= α′−1(Rs1
in
).

Hence we obtain

∀ s ∈ S1 : α−1(Rs) = α′−1(Rs)

∀ s ∈ S1 ∀ b ∈ B2 : b ∈ α−1(Rs) ⇔ b ∈ α′−1(Rs)

∀ s ∈ S1 ∀ b ∈ B2 : α(b) ∈ Rs ⇔ α′(b) ∈ Rs

∀ s ∈ S1 ∀ b ∈ B2 : s ∈ α(b) ⇔ s ∈ α′(b)

∀ b ∈ B2 ∀ s ∈ S1 : s ∈ α(b) ⇔ s ∈ α′(b)

∀ b ∈ B2 : α(b) = α′(b)

Thus α = α′, which gives g = g′, a contradiction. ⊓⊔

3It is essential to prove that α = α′ as well, as we do not have the net version of proposition 4.1.1.
Notice that proving β = β′ first was important.
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The adjunction between J and H is in fact a coreflection as every τ(TS ) is an isomor-

phism (theorem 3.6.1).

Example 5.4.1 We now illustrate the last theorem with the following example (see fig-

ure 5.4). Consider the TSENI transition system TS 1 shown in figure 5.4. It has four non-

trivial regions: r1 = {s1in , s2}, r2 = {s1in , s1}, r3 = {s1, s3} and r4 = {s2, s3}. Moreover,

the pre-, post- and I-regions of a and b are: ◦a = {r1}, ◦b = {r2}, a◦ = {r3}, b◦ = {r4},

a = {r4} and b = {r3}. We can build NTS1
and then TSNTS1

using constructions from

sections 3.4 and 3.5. Note that, according to theorem 3.6.1, TSNTS1
is isomorphic to TS 1.

Consider now ENI-system N2 and the TSENI transition system generated by it, TSN2
.

The reachable cases of N2 are:

c2in = {b1, b2, b5} c1 = {b3, b2, b5}

c2 = {b1, b4, b5} c3 = {b3, b4, b5}.

We have the following regions of TSN2
associated with every b ∈ B2:

rb1 = {c2in , c2} rb2 = {c2in , c1} rb3 = {c1, c3}

rb4 = {c2, c3} rb5 = {c2in , c1, c2, c3} rb6 = ∅.

Observe that rb5 = CN2
and rb6 = ∅ are trivial regions. Let us define a transition system

morphism f = (σ, η) from TS 1 to TSN2
in a following way.

σ(s1in) = c2in σ(s1) = c1 σ(s2) = c2in

σ(s3) = c1 η(a) = e η(b) − not defined.

According to the construction in theorem 5.4.1 the net morphism g = (α, β) from NTS1

to N2 is defined by:

α(b1) = σ−1(rb1) = r1

α(b2) − not defined, because σ−1(rb2) = S1

α(b3) = σ−1(rb3) = r3

α(b4) − not defined, because σ−1(rb4) = ∅

α(b5) − not defined, because rb5 = CN2

α(b6) − not defined, because rb6 = ∅

β(a) = e

β(b) − not defined.

Recall that fα(ψ0(s)) = fα(Rs) = α−1(Rs) ∪ (c2in \ α−1(Rs1
in
)). In our example, we have
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TS 1

s1in

s1 s2

s3

{a} {b}

{a, b}

NTS1

r1

r3

r2

r4

a b

TSNTS1

{r1, r2}

{r2, r3} {r1, r4}

{r3, r4}

{a} {b}

{a, b}

TSN2

c2in

c1 c2

c3

{e} {f}

{e, f}

{f} {e}

N2

b1

b3

b2

b4

b5

b6

e f

Figure 5.4: Example 5.4.1 (an illustration for theorem 5.4.1).
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c2in \ α−1(Rs1
in
) = {b2, b5}. We can now verify that fα(ψ0(s)) = σ(s) for all s ∈ S1.

Rs1
in

= {r1, r2} α−1(Rs1
in
) = {b1} fα(Rs1

in
) = {b1} ∪ {b2, b5} = c2in

Rs1 = {r2, r3} α−1(Rs1) = {b3} fα(Rs1) = {b3} ∪ {b2, b5} = c1

Rs2 = {r1, r4} α−1(Rs2) = {b1} fα(Rs2) = {b1} ∪ {b2, b5} = c2in

Rs3 = {r3, r4} α−1(Rs3) = {b3} fα(Rs3) = {b3} ∪ {b2, b5} = c1

We observe that fα(CNTS1
) = {c2in , c1}. ⊓⊔



Chapter 6

Minimisation of ENI-systems

In this chapter we consider the synthesis of ENI-systems using minimal regions (i.e. mini-

mal w.r.t. set inclusion). We show that minimal regions are sufficient to solve the synthesis

problem for ENI-systems. We show as well how to reduce the number of inhibitor arcs

without changing the behaviour of the resulting net. It turns out that the redundancy in

the number of regions and in the number of inhibitor arcs are linked, and both can be

tackled at the same time. The synthesis problem for the Elementary Nets Systems with

Inhibitor Arcs was studied in [17], but only for sequential behaviours. We compare the

method of eliminating inhibitor arcs presented in this chapter with the one developed in

[17]. As it turns out, the two methods delete the same inhibitor arcs.

6.1 Properties of (Minimal) Regions

Let TS = (S, U, T, sin) be a TSENI transition system fixed for the rest of this chapter.

The results in this section were formulated for transition systems describing sequential

behaviour: Elementary Transition Systems in [12, 17, 22], and Condition Event Transition

Systems in [12]. Here we show that they hold for the TSENI Transition Systems, where

non-sequential behaviour is represented explicitly.

Proposition 6.1.1 If r′ and r are regions in RTS such that r′ ⊂ r then rdiff = r \ r′ ∈

RTS .

Proof: First we prove that definition 3.1.1(1) holds for rdiff . Let s
u

−→ s′, s ∈ rdiff = r \ r′

and s′ 6∈ rdiff . We need to consider two cases (see figure 6.1).

Case 1: s′ ∈ r′. Since r′ is a region, there is e ∈ u such that:

87
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(i) If u′ ⊆ u \ {e} and s
u′

−→ s′′ then s′′ 6∈ r′.

(ii) If q
v

−→ q′ and e ∈ v then q 6∈ r′ and q′ ∈ r′.

To show definition 3.1.1(1) for rdiff it suffices to prove that s′′, q ∈ r in the formulae above.

Suppose that s
u′

−→ s′′, u′ ⊆ u \ {e} and s′′ ∈ S \ r in (i). Then we have s ∈ r (by

s ∈ rdiff ) and s
′′ 6∈ r (by s′′ ∈ S \ r). Since r is a region, there is e′ ∈ u′ such that:

(iii) If w
h

−→ w′ and e′ ∈ h then w ∈ r and w′ 6∈ r.

From (iii) with w = s, w′ = s′ and h = u (notice that e′ ∈ u) we obtain s′ 6∈ r, which

produces a contradiction with s′ ∈ r′ ⊂ r. Hence s′′ ∈ r in (i).

Suppose now that q
v

−→ q′, e ∈ v and q ∈ S \ r in (ii). Then we have q 6∈ r and

q′ ∈ r′ ⊂ r. Since r is a region, there exists e′′ ∈ v such that:

(iv) If u′′ ⊆ v \ {e′′} and q
u′′

−→ s′′′ then s′′′ 6∈ r.

(v) If p
v′

−→ p′ and e′′ ∈ v′ then p 6∈ r and p′ ∈ r.

From (A4) and q
v

−→ q′ it follows that there exists q′′ such that q
{e}
−→ q′′. By (ii),

q′′ ∈ r′ ⊂ r. If e 6= e′′ then q′′ 6∈ r, by (iv) with u′′ = {e} and s′′′ = q′′, producing a

contradiction. Suppose e = e′′. Then (v) is satisfied with p = s, p′ = s′ and v′ = u. This

implies s 6∈ r, contradicting s ∈ rdiff ⊂ r. Hence q ∈ r in (ii).

Case 2: s′ 6∈ r. Since r is a region, there is e ∈ u such that:

(vi) If u′ ⊆ u \ {e} and s
u′

−→ s′′ then s′′ ∈ r.

(vii) If q
v

−→ q′ and e ∈ v then q ∈ r and q′ 6∈ r.

Now, to show definition 3.1.1(1) for rdiff it suffices to prove that s′′, q 6∈ r′ in the formulae

above.

Suppose that s
u′

−→ s′′, u′ ⊆ u \ {e} and s′′ ∈ r′ in (vi). Since r′ is a region and s 6∈ r′,

there exists e′ ∈ u′ such that:

(viii) If w
h

−→ w′ and e′ ∈ h then w 6∈ r′ and w′ ∈ r′.

From (viii) with w = s, w′ = s′ and h = u (notice that e′ ∈ u) we obtain s′ ∈ r′, which

contradicts s′ 6∈ r (because r′ ⊂ r). Hence s′′ 6∈ r′ in (vi).

Suppose now that q
v

−→ q′, e ∈ v and q ∈ r′ in (vii). Then q ∈ r′ and q′ 6∈ r′ (because

q′ 6∈ r). Since r′ is a region, there exists e′′ ∈ v such that:
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Figure 6.1: An illustration for proposition 6.1.1.

(ix) If u′′ ⊆ v \ {e′′} and q
u′′

−→ s′′′ then s′′′ ∈ r′.

(x) If p
v′

−→ p′ and e′′ ∈ v′ then p ∈ r′ and p′ 6∈ r′.

From (A4) and q
v

−→ q′ it follows that there exists q′′ such that q
{e}
−→ q′′. By (vii), q′′ 6∈ r

and hence q′′ 6∈ r′. If e 6= e′′ then q′′ ∈ r′, by (ix) with u′′ = {e} and s′′′ = q′′, producing a

contradiction. Suppose e = e′′. Then (x) is satisfied with p = s, p′ = s′ and v′ = u. This

implies s ∈ r′, contradicting s ∈ rdiff = r \ r′. Hence q 6∈ r′ in (vii).

That definition 3.1.1(2) holds for rdiff can be proved in a similar way. Hence rdiff is a

region. Moreover, as rdiff 6= ∅, rdiff ∈ RTS . ⊓⊔

Proposition 6.1.2 If r′ and r′′ are disjoint regions in RTS then r′ ∪ r′′ is a (possibly

trivial) region.

Proof: Define r = r′ ∪ r′′. If r = S then r is a trivial region in TS . Suppose r 6= S. From

r′ ∈ RTS it follows that S \ r′ ∈ RTS . Moreover, r′′ ⊂ S \ r′ (because r′ ∩ r′′ = ∅ and

r 6= S). Hence, by proposition 6.1.1, (S \ r′) \ r′′ = S \ (r′∪ r′′) ∈ RTS which in turn gives

r′ ∪ r′′ ∈ RTS . ⊓⊔

Definition 6.1.1 A region r ∈ RTS is minimal if r′ 6⊂ r for every r′ ∈ RTS . ⊓⊔

The proof of the next result is similar to that of property 3.3 in [22].

Theorem 6.1.1 Every r ∈ RTS can be represented as a disjoint union of minimal regions.

Proof: If r is minimal then the result holds. If r is non-minimal then there exists a

minimal region r′ ⊂ r. From proposition 6.1.1 it follows that r′′ = r \ r′ is a region in

RTS . If r
′′ is minimal we have r = r′ ∪ r′′. Otherwise, we continue in the same way with
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r′′ instead of r. In this way we will build a sequence of mutually disjoint, minimal regions

which will be finite as S is finite1, and whose union is equal to r. ⊓⊔

Proposition 6.1.3 Let r be a non-minimal region in RTS , u ∈ U , e ∈ ETS and s ∈ S.

1. If r ∈ ◦u then there exists a minimal region r′ ⊂ r such that r′ ∈ ◦u.

2. If r ∈ u◦ then there exists a minimal region r′ ⊂ r such that r′ ∈ u◦.

3. If r ∈ e then for every minimal region r′ ⊂ r, r′ ∈ e.

4. If r ∈ Rs then there exists a minimal region r′ ⊂ r such that r′ ∈ Rs.

Proof: (1) There exists s
u

−→ s′ such that s ∈ r and s′ 6∈ r. From theorem 6.1.1 it follows

that r can be represented as a disjoint union of a set R of minimal regions. Let r′ be a

minimal region in R such that s ∈ r′. Since s′ 6∈ r, s′ 6∈ r′. Hence r′ ∈ ◦u.

(2) Can be proved similarly as (1).

(3) From the definition of an inhibitor region of e, it follows that for every non-trivial

region r′ ⊂ r, r′ ∈ e.

(4) Follows directly from theorem 6.1.1. ⊓⊔

6.2 Minimal ENI-systems

Let NTS = (RTS , ETS , FTS , ITS , Rsin ) be an ENI-system associated with TS (see (3.5)).

NTS will be called saturated because it uses all the non-trivial regions as conditions; we

will denote it by NSat .

Let R ∈ 2RTS be a set of non-trivial regions of TS . Then

Min(R) = {r ∈ R | r is minimal}

will denote the set of minimal regions in R.

We now define a net system NMin (called minimal), which is obtained from NSat by

deleting all the conditions associated with non-minimal regions and adjacent arcs:

NMin = (Min(RTS ), ETS , F̂TS , ÎTS ,Min(Rsin ))

1It is only here that we use the assumption that S is finite.
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where F̂TS and ÎTS are defined thus:

F̂TS = {(r, e) ∈ RTS × ETS | r ∈ Min( ◦e)}

∪ {(e, r) ∈ ETS ×RTS | r ∈ Min(e◦)}

ÎTS = {(r, e) ∈ RTS × ETS | r ∈ Min( e )}.

(6.1)

Directly from the definition of NMin we have that, for every e ∈ ETS ,

•e = Min( ◦e) and e• = Min(e◦) and e = Min( e ). (6.2)

Proposition 6.2.1 NMin is an ENI-system.

Proof: Since NSat is an ENI-system, it suffices to show that, for every e ∈ ETS , e
• and •e

are both non-empty sets in NMin . Thus, by (6.2), it suffices to show that for all e ∈ ETS ,

Min(e◦) 6= ∅ 6= Min( ◦e). From proposition 3.2.1 it follows that e◦ 6= ∅ 6= ◦e, for all

e ∈ ETS . And the former follows directly from corollary 3.1.1 and proposition 6.1.3(1,2).

⊓⊔

The following proposition shows that any active step of events from NMin is a valid

step in NSat , although in the latter there are more conditions.

Proposition 6.2.2 UNMin
⊆ VNSat

.

Proof: Let u ∈ UNMin
⊆ VNMin

. We need to show that u ∈ VNSat
. From the definition of a

valid step in ENI-system, (3.2), (3.6) and (6.2) we have:

VNSat
= {u ⊆ ETS | u 6= ∅ ∧ ∀ e, f ∈ u : (e 6= f ⇒ ( ◦e ∪ e◦) ∩ ( ◦f ∪ f ◦) = ∅)}

VNMin
= {u ⊆ ETS | u 6= ∅ ∧ ∀ e, f ∈ u :

(e 6= f ⇒ (Min( ◦e) ∪Min(e◦)) ∩ (Min( ◦f) ∪Min(f ◦)) = ∅)}.

Let e, f ∈ u and e 6= f .

We will prove that ◦e ∩ ◦f = ∅. Suppose there is r ∈ ◦e ∩ ◦f . Then r ∈ RTS is

non-minimal due to the definition of VNMin
and UNMin

⊆ VNMin
. From corollary 3.1.1 and

proposition 6.1.3(1) it follows that there is a minimal region r′ ⊂ r such that r′ ∈ ◦e. We

consider two cases.

Case 1: r′ ∈ ◦f . Then r′ ∈ Min( ◦e) ∩Min( ◦f). Since u ∈ UNMin
⊆ VNMin

, we obtain a

contradiction.

Case 2: r′ 6∈ ◦f . Then r \ r′ ∈ ◦f (see figure 6.2(a)). (Notice that proposition 6.1.1

guarantees that r \ r′ ∈ RTS .) We observe that r′ ∈ f . From u ∈ UNMin
we have that
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Figure 6.2: An illustration for proposition 6.2.2.

there exist c, c′ ∈ CNMin
such that c

u
−→NMin

c′. From proposition 3.3.1(1) it follows that

•u ⊆ c and u ∩ c = ∅ (in NMin). Hence,
•e ⊆ c and f ∩ c = ∅ which, after applying (6.2),

means that Min( ◦e) ⊆ c and Min( f ) ∩ c = ∅. But r′ ∈ ◦e, r′ ∈ f and the fact that r′ is

minimal imply r′ ∈ Min( ◦e) and r′ ∈ Min( f ), a contradiction. Hence ◦e ∩ ◦f = ∅.

To prove e◦ ∩ f ◦ = ∅, suppose that there exists r in e◦ ∩ f ◦. From proposition 3.1.5(2)

it follows that S \ r ∈ ◦e ∩ ◦f , which contradicts the previously proven fact.

What remains to be shown is ◦e ∩ f ◦ = ∅ (the case e◦ ∩ ◦f = ∅ is symmetric).

Suppose that there is a non-minimal region r ∈ ◦e ∩ f ◦. From corollary 3.1.1 and propo-

sition 6.1.3(1) it follows that there is a minimal region r′ ⊂ r such that r′ ∈ ◦e. We again

consider two cases.

Case 1: r′ ∈ f ◦. Then r′ ∈ Min( ◦e) ∩ Min(f ◦). Since u ∈ UNMin
⊆ VNMin

, we obtain a

contradiction.

Case 2: r′ 6∈ f ◦. Then r \ r′ ∈ f ◦ (see figure 6.2(b)). We observe that r′ ∈ f . From

u ∈ UNMin
we have that there exist c, c′ ∈ CNMin

such that c
u

−→NMin
c′. From proposi-

tion 3.3.1(1) it follows that •u ⊆ c and u ∩ c = ∅ (in NMin). Hence,
•e ⊆ c and f ∩ c = ∅

which, after applying (6.2), means that Min( ◦e) ⊆ c and Min( f ) ∩ c = ∅. But r′ ∈ ◦e,

r′ ∈ f and the fact that r′ is minimal imply r′ ∈ Min( ◦e) and r′ ∈ Min(f), a contradic-

tion. Hence ◦e ∩ f ◦ = ∅. ⊓⊔

6.3 TSNSat
and TSNMin

are Isomorphic

In this section we examine the relationship between the behaviour of the saturated and

minimal net constructed for a TSENI transition system TS = (S, U, T, sin). First we

define a mapping between ENI-systems NSat and NMin as follows: (α̃, β̃) : NSat → NMin ,
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where α̃ : Min(RTS ) → RTS and β̃ : ETS → ETS are both total identity functions. Notice

that,

∀ X ⊆ RTS : α̃−1(X) = Min(X). (6.3)

Proposition 6.3.1 (α̃, β̃) is a net morphism from NSat to NMin.

Proof: (MENI1) and (MENI2) are clearly satisfied. For (MENI3) we need to show that

for every r ∈ dom(α̃), α̃(r) ∈ Rsin ⇔ r ∈ Min(Rsin ). It follows easily from the fact that

Min(Rsin ) = α̃−1(Rsin ) (see (6.3)). (MENI4) holds since for all e ∈ ETS , e ∈ dom(β̃).

Finally, we show that (MENI5) holds as follows. For every e ∈ ETS ,

r ∈ •β̃(e) (in NMin) ⇔ α̃(r) ∈ •e (in NSat) ⇔ r ∈ α̃−1(•e) (in NMin)

r ∈ β̃(e)• (in NMin) ⇔ α̃(r) ∈ e• (in NSat) ⇔ r ∈ α̃−1(e•) (in NMin)

r ∈ β̃(e) (in NMin) ⇔ α̃(r) ∈ e (in NSat) ⇔ r ∈ α̃−1( e ) (in NMin)

Hence (α̃, β̃) is a well defined net morphism from NSat to NMin . ⊓⊔

Consider the mappings fα and fβ defined in proposition 5.2.1 for a net morphism (α, β)

between two ENI-systems N1 and N2. According to proposition 5.2.1, (fα, fβ) : TSN1
→

TSN2
is a transition system morphism. We will show that for the specific (α̃, β̃) defined

above, (fα̃, fβ̃) is in fact an isomorphism. Before proving this we have the following result.

Proposition 6.3.2 Let e ∈ ETS and s ∈ S in TS.

1. If Min( ◦e) ⊆ Min(Rs) then
◦e ⊆ Rs and e◦ ∩ Rs = ∅.

2. If Min( e ) ∩Min(Rs) = ∅ then e ∩ Rs = ∅.

Proof: (1) Suppose that r ∈ ◦e is a non-minimal region such that r 6∈ Rs. From proposi-

tion 6.1.3(1) and corollary 3.1.1 it follows that there exists a minimal region r′ ⊂ r such

that r′ ∈ ◦e. Clearly, r 6∈ Rs implies r′ 6∈ Rs, a contradiction with Min( ◦e) ⊆ Min(Rs).

Hence ◦e ⊆ Rs holds.

Suppose now that there exists r ∈ e◦ ∩ Rs. Then S \ r ∈ ◦e and S \ r 6∈ Rs, and we

proceed as before, obtaining a contradiction with Min( ◦e) ⊆ Min(Rs). Hence e
◦∩Rs = ∅

is satisfied.

(2) Suppose that r ∈ e ∩ Rs is a non-minimal region. From proposition 6.1.3(4) we have

that there exists a minimal region r′ ⊂ r such that r′ ∈ Rs. From proposition 6.1.3(3) we

have r′ ∈ e, which contradicts Min( e ) ∩Min(Rs) = ∅. Hence e ∩ Rs = ∅. ⊓⊔
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Proposition 6.3.3 (fα̃, fβ̃) is an isomorphism from TSNSat
to TSNMin

.

Proof: From proposition 3.6.1(1) it follows that for NSat = NTS , CNSat
= {Rs | s ∈ S}.

As a result, fα̃ : {Rs | s ∈ S} → CNMin
and, for all s ∈ S,

fα̃(Rs)
(prop.5.2.1)

= α̃−1(Rs) ∪ (Min(Rsin ) \ α̃
−1(Rsin ))

(6.3)
= α̃−1(Rs) ∪ (α̃−1(Rsin ) \ α̃

−1(Rsin ))
= α̃−1(Rs).

Hence, for all s ∈ S, fα̃(Rs) = α̃−1(Rs)
(6.3)
= Min(Rs) ∈ CNMin

. Thus fα̃ maps the set of

regions containing a specific state into its subset of minimal regions. We will prove that

fα̃ is a bijection.

First we show that fα̃ is injective. Suppose Rs1 6= Rs2 and Min(Rs1) = Min(Rs2).

Then, there exists a non-minimal region r ∈ Rs1\Rs2 (the case r ∈ Rs2\Rs1 is symmetric).

From proposition 6.1.3(4) it follows that there exists a minimal region r′ ⊂ r such that

r′ ∈ Rs1 . Since Min(Rs1) = Min(Rs2) and r
′ is a minimal region, we obtain r′ ∈ Rs2. This

implies that s2 ∈ r′ ⊂ r and, as a result, that r ∈ Rs2 . Hence we obtained a contradiction,

and so fα̃ is injective.

We now show that fα̃ is onto. For all s ∈ S, fα̃(Rs) ∈ CNMin
. We need to prove that

for every c ∈ CNMin
, there exists s ∈ S such that Min(Rs) = c. To the contrary, suppose

that this is not the case. We observe that fα̃(Rsin ) = Min(Rsin ). Thus there exists a

step sequence ̺ = ̺′u of sets of UNMin
such that Min(Rsin )[̺〉c

′ and c′ 6= Min(Rs), for all

s ∈ S, and there exists s′ ∈ S such that Min(Rsin )[̺
′〉Min(Rs′)

u
−→NMin

c′. We will show

that u is enabled at Rs′ in NSat , i.e.

Min(Rs′)
u

−→NMin
⇒ Rs′

u
−→NSat

. (6.4)

From proposition 3.3.1(1) we have •u ⊆ Min(Rs′), u
•∩Min(Rs′) = ∅ and u ∩Min(Rs′) = ∅

(in NMin). Hence, •e ⊆ Min(Rs′) and e ∩Min(Rs′) = ∅, for all e ∈ u ⊆ ETS . By (6.2)

we have Min( ◦e) ⊆ Min(Rs′) and Min( e ) ∩Min(Rs′) = ∅, for all e ∈ u. From this and

proposition 6.3.2(1,2) it follows that ◦e ⊆ Rs′, e
◦ ∩Rs′ = ∅ and e ∩ Rs′ = ∅, for all e ∈ u

which, after applying (3.6), means that •e ⊆ Rs′, e
• ∩ Rs′ = ∅ and e ∩ Rs′ = ∅, for all

e ∈ u (in NSat). We recall that from proposition 6.2.2 we have u ∈ UNMin
⊆ VNSat

, and

Rs′ ∈ CNSat
is satisfied as well. So, we can apply proposition 3.3.1(1) to obtain Rs′

u
−→NSat

which proves (6.4). This implies that there exists s′′ ∈ S such that Rs′
u

−→NSat
Rs′′ and
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then from proposition 3.3.1(2) and (3.6) we get Rs′′ = (Rs′ \
◦u) ∪ u◦. Notice that u is a

step in TS as u ∈ UNSat
= U (see proposition 3.6.1(2)). From Min(Rs′)

u
−→NMin

c′ and

proposition 3.3.1(2) we have the following:

c′ = (Min(Rs′) \ •u) ∪ u•

(6.2)
= (Min(Rs′) \Min( ◦u)) ∪Min(u◦)

(6.3)
= (α̃−1(Rs′) \ α̃−1( ◦u)) ∪ α̃−1(u◦)

= α̃−1((Rs′ \
◦u) ∪ u◦)

= α̃−1(Rs′′)

(6.3)
= Min(Rs′′).

Hence we obtained a contradiction, and thus proved that fα̃ is onto. Thus fα̃ is a bijection

from {Rs | s ∈ S} to {Min(Rs) | s ∈ S}, and fα̃(Rsin ) = Min(Rsin ).

The second mapping, f
β̃
: ETSNSat

→ ETSNMin
, defined in proposition 5.2.1 by f

β̃
= β̃

is a bijection as well, as β̃ is a total identity function from ETS to ETS , ETSNSat
= ETS

(by proposition 3.6.1(2)) and ETSNMin
= ETSNSat

(by proposition 4.2.2(3) and (6.4)).

Finally, we need to prove that

Rs
u

−→NSat
Rs′ ⇔ Min(Rs)

u
−→NMin

Min(Rs′).

The “⇒” implication follows from proposition 4.2.2(3). We need to show that the reverse

implication holds as well. Let Min(Rs)
u

−→NMin
Min(Rs′). From the already proved (6.4)

we have that Rs
u

−→NSat
. This implies that there exists s′′ ∈ S such that Rs

u
−→NSat

Rs′′

and then from proposition 3.3.1(2) and (3.6) we get Rs′′ = (Rs \ ◦u)∪ u◦. From this and

(6.3) we obtain

Min(Rs′′) = α̃−1((Rs \ ◦u) ∪ u◦)

= (α̃−1(Rs) \ α̃−1( ◦u)) ∪ α̃−1(u◦)

= (Min(Rs) \Min( ◦u)) ∪Min(u◦)

(prop.3.3.1(2),(6.2))
= Min(Rs′).

Hence, Min(Rs′′) = Min(Rs′). Since fα̃ is an injective function, Rs′′ = Rs′ . Consequently,

we have Rs
u

−→NSat
Rs′ . ⊓⊔

Theorem 6.3.1 TS is isomorphic to TSNMin
.

Proof: From theorem 3.6.1 we have that TS is isomorphic to TSNSat
. Proposition 6.3.3

states, on the other hand, that TSNSat
is isomorphic to TSNMin

. Hence TS is isomorphic

to TSNMin
. ⊓⊔
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An alternative way of proving that TSNSat
and TSNMin

are isomorphic (proposition 6.3.3)

would be to employ the theory presented in [26], which is based on admissible sets of

regions in a transition system TS. An admissible set of regions is m ⊆ RTS such that the

saturated net, and the net obtained from TS by the process of synthesis which uses only

regions fromm as conditions, generate isomorphic transition systems. For the Elementary

Net Systems, it was proved that m is admissible if it contains witnesses for every instance

of the state separation and event/state separation axioms. This theory can easily be

extended to the ENI-systems. As a consequence, to prove that TSNSat
and TSNMin

are

isomorphic, it is enough to show that the set of minimal regions of a TSENI transition

system TS is admissible. That is, we need to prove that Min(RTS ) contains witnesses for

every instance of the separation axioms (A5) and (A6). We first show this for (A5).

Let s, s′ ∈ S. We need to prove that if Min(Rs) = Min(Rs′) then s = s′. Suppose

that Min(Rs) = Min(Rs′) and s 6= s′. Since TS satisfies (A5) as a TSENI transition

system, we have Rs 6= Rs′. Hence, without loss of generality, there is r ∈ Rs \ Rs′ and r

is non-minimal (the case r ∈ Rs′ \ Rs is symmetric). Note that s ∈ r and s′ 6∈ r. From

proposition 6.1.3(4) we obtain that there exists minimal region r′ ⊂ r such that r′ ∈ Rs.

We also have s′ 6∈ r′ as s′ 6∈ r. Hence r′ ∈ Rs\Rs′, which contradicts Min(Rs) = Min(Rs′).

We now show that there are witnesses among minimal regions for the satisfaction of

every instance of (A6). Let s ∈ S, u ∈ {u ⊆ ETS | u 6= ∅ ∧ ∀ e, f ∈ u : (e 6=

f ⇒ (Min( ◦e) ∪Min(e◦)) ∩ (Min( ◦f) ∪Min(f ◦)) = ∅)} and, for every e ∈ u, Min( ◦e) ⊆

Min(Rs) and Min( e )∩Min(Rs) = ∅. We need to show that s
u

−→. From u ∈ {u ⊆ ETS |

u 6= ∅ ∧ ∀ e, f ∈ u : (e 6= f ⇒ (Min( ◦e) ∪Min(e◦)) ∩ (Min( ◦f) ∪Min(f ◦)) = ∅)} and,

Min( ◦e) ⊆ Min(Rs) and Min( e ) ∩ Min(Rs) = ∅, for every e ∈ u, we can deduce that

u ∈ VTS, applying reasoning similar to that in proposition 6.2.2. From proposition 6.3.2

we have ◦e ⊆ Rs and e ∩Rs = ∅, for every e ∈ u. And TS is a TSENI transition system

which satisfies (A6). Hence s
u

−→.

6.4 Reduced ENI-systems

In this section we will further reduce NMin without changing its behaviour, by removing

some inhibitor arcs. Below we denote the disjoint union of sets by ⊎.

Proposition 6.4.1 Let r′ ⊆ r be regions in RTS and u ∈ U .
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1. If r ∈ ◦u then r′ ∈ ◦u ∪ u.

2. If r ∈ u◦ then r′ ∈ u◦∪ u.

Proof: (1) There exists s
u

−→ s′ such that s ∈ r and s′ 6∈ r. If s ∈ r′ then, because s′ 6∈ r′

(by s′ 6∈ r), we have r′ ∈ ◦u. Suppose that s 6∈ r′. From the definition of a region and

(A4) it follows that there exist e ∈ u and s′′ ∈ S such that s
{e}
−→ s′′ and s′′ 6∈ r. From

proposition 3.1.1(1) and r ∈ ◦e we obtain that for all p
{e}
−→ p′, p ∈ r and p′ 6∈ r. This

means p′ 6∈ r′, and therefore there is no arc labelled with e inside r′ or coming into r′.

There are no arcs labelled with e coming out of r′ as well, because, by proposition 3.1.1(1),

this would mean that all such arcs would be coming out of r′, contradicting s 6∈ r′. So, in

this case r′ ∈ e ⊆ u.

(2) The proof of this part is similar to that of (1). ⊓⊔

Proposition 6.4.2 Let r be a non-minimal region of RTS and u ∈ U .

1. If r ∈ ◦u then there exist minimal regions r′ and ri (i = 1, . . . , n) such that r′ ∈ ◦u,

ri ∈ u (for i = 1, . . . , n) and r = r′ ⊎
⊎n

i=1 ri.

2. If r ∈ u◦ then there exist minimal regions r′ and ri (i = 1, . . . , n) such that r′ ∈ u◦,

ri ∈ u (for i = 1, . . . , n) and r = r′ ⊎
⊎n

i=1 ri.

Proof: (1) From proposition 6.1.3(1) it follows that there exists a minimal region r′ ⊂ r

such that r′ ∈ ◦u. Then r′′ = r \ r′, which according to proposition 6.1.1 is a region in

RTS , does not belong to ◦u (see proposition 3.1.1(1)). Hence from proposition 6.4.1 it

follows that r′′ ∈ u. Thus there is e ∈ u such that r′′ ∈ e. If r′′ is minimal then n = 1 and

r1 = r′′. If r′′ is non-minimal, theorem 6.1.1 says that it can be represented as a disjoint

union of minimal regions r1, . . . , rn (n ≥ 2), and from proposition 6.1.3(3) it follows that

for all i = 1, . . . , n, ri ∈ e. Consequently, in both cases, ri ∈ u (for i = 1, . . . , n).

(2) The proof of this part is similar to that of (1). ⊓⊔

Note that the representation of a non-minimal region r, given in proposition 6.4.2,

does not need to be unique (see the last paragraph of example 6.4.1).

Proposition 6.4.3 Let e ∈ ETS and r be a non-minimal region in RTS such that r ∈ ◦e.

Then there are minimal regions r′ ∈ ◦e and ri ∈ e (i = 1, . . . , n; n ≥ 1) such that
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r = r′ ⊎
⊎n

i=1 ri. Moreover, if one deletes the set of inhibitor arcs I = {(r1, e), . . . , (rn, e)}

from NSat or NMin then the transition system of the resulting net remains the same (up

to isomorphism).

Proof: From proposition 6.4.2(1) and corollary 3.1.1 it follows that the above representa-

tion of r is possible. Recall that CNSat
= {Rs | s ∈ S} and CNMin

= {Min(Rs) | s ∈ S}.

Suppose a condition corresponding to the region r′ is marked at Rs. This means r′ ∈ Rs

and so s ∈ r′. Consequently s 6∈ ri (i = 1, . . . , n) as the minimal regions in the repre-

sentation are mutually disjoint. Hence ri 6∈ Rs (i = 1, . . . , n) which means they are not

marked. In this case the inhibitor arcs (ri, e) are not needed. If r′ is not marked at Rs

then e is not enabled and it does not matter whether the ri’s are marked or not. Thus

in both cases the marking of the ri’s does not change the enabledness of e at any case

Rs. Hence the inhibitor arcs in I can be removed without changing the transition system

generated by the net. ⊓⊔

We will denote by ITS the union of all the sets I in proposition 6.4.3, after taking

into account every e ∈ ETS , every non-minimal pre-region r of e, and every possible

representation of r described there. The net obtained from NMin by deleting all the

inhibitor arcs in ITS , will be called reduced and denoted by

NRcd = (Min(RTS ), ETS , F̂TS , ÎTS \ ITS ,Min(Rsin )).

Clearly NRcd is an ENI-system and, directly from proposition 6.4.3, we obtain:

Theorem 6.4.1 TSNMin
is isomorphic to TSNRcd

.

Definition 6.4.1 We introduce the following notions.

1. An ENI-system N ′ is a state machine if its initial case is a singleton set and every

event has exactly one pre-condition and one post-condition.

2. A state machine component of an ENI-system N = (B,E, F, I, cin) is a state ma-

chine N ′ = (B′, E ′, F ′, I ′, c′in) such that B′ ⊆ B, E ′ = {e ∈ E | (e• ∪ •e) ∩ B′ 6= ∅},

F ′ = F ∩ (B′ ×E ′ ∪ E ′ ×B′), I ′ = I ∩ (B′ ×E ′) and c′in = cin ∩ B′.

3. A state machine decomposition of N is a set of state machine components, Ni =

(Bi, Ei, Fi, Ii, c
i
in) (i = 1, . . . , n) such that B =

⋃n
i=1Bi, E =

⋃n
i=1Ei and F =

⋃n
i=1 Fi. ⊓⊔
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In [12] it was shown that the states of an elementary transition system can be decom-

posed into disjoint minimal regions; moreover any such decomposition induces a state

machine component. The set of all possible decompositions determines a set of state ma-

chine components which cover the minimal net associated with this elementary transition

system. In this chapter we have proved, in theorem 6.1.1, that any non-trivial region

of a TSENI transition system can be represented as a disjoint union of minimal regions.

The decomposability of minimal ENI-systems into state machines can then be proved

in a similar way as it was done in [12] for Elementary Net Systems. For example NMin

(NRcd) considered in example 6.4.1 has two state machine components: one induced by

the decomposition S = r2 ⊎ r3 ⊎ r5 and the other by S = r1 ⊎ r4 ⊎ r5.

The ability of decomposing a net into state machine components can be useful for

finding those inhibitor arcs which can be removed from the net without changing its

behaviour. In [17], where the sequential behaviour of Elementary Net Systems with

Inhibitor Arcs was investigated, it was shown that inhibitor arcs which are present within

a state machine component are superfluous. We will show that the method of eliminating

inhibitor arcs introduced in this section for ENI-systems is similar in effect to the method

described in [17].

Theorem 6.4.2 Let SMi = (Bi, Ei, Fi, Ii, c
i
in) (i = 1, . . . , l) be the state machine compo-

nents of NMin. Then (rinh , e) ∈ ITS if and only if there exists SMk (1 ≤ k ≤ l) such that

(rinh , e) ∈ Ik.

Proof: Let (rinh , e) ∈ ITS . Then there exists a non-minimal region r ∈ RTS such that

r ∈ ◦e and r can be represented as r = r′ ⊎
⊎n

i=1 ri (n ≥ 1), where r′ ∈ ◦e and ri ∈ e

(for i = 1, . . . , n) are minimal regions. Let 1 ≤ ik ≤ n be such that rik = rinh . We

have S \ r ∈ e◦. Define r′′ as S \ r, if it is minimal; otherwise define r′′ as a minimal

post-region of e appearing in the representation of S \ r in proposition 6.4.2(2). Then

S = r′ ⊎ r′′ ⊎
⊎n

i=1 ri ⊎
⊎m

j=1 rj, where m ≥ 0 and rj ∈ e (j = 1, . . . , m) are minimal

regions. Define SMk as a state machine component of NMin induced by the decomposition

of S given above. Clearly, (rinh , e) ∈ Ik.

To prove the reverse implication we assume that (rinh , e) ∈ Ik for some 1 ≤ k ≤ l.

Then there are rpred , rsucc ∈ Bk such that (rpred , e), (e, rsucc) ∈ Fk and rpred , rsucc and rinh

are mutually disjoint non-empty sets (they are minimal regions from the decomposition
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associated with SMk). Hence, by proposition 6.1.2, r = rpred ∪ rinh is a non-trivial region

in TS and r ∈ •e = ◦e in NSat . By proposition 6.4.3, we finally have (rinh , e) ∈ ITS . ⊓⊔

Example 6.4.1 Figure 6.3 shows the saturated ENI-system NSat = NTS associated with

a TSENI transition system TS, and two stages of minimisation of NSat . The regions in

TS are:

r1 = {sin , s1} r2 = {sin , s2} r3 = {s1, s3}

r4 = {s2, s3} r5 = {s4} r6 = {sin , s1, s2, s3}

r7 = {sin , s1, s4} r8 = {sin , s2, s4} r9 = {s1, s3, s4}

r10 = {s2, s3, s4}

and the pre-regions, post-regions and I-regions of events are:

◦a = {r2, r8} a◦ = {r3, r9} a = {r4, r5, r10}

◦b = {r1, r7} b◦ = {r4, r10} b = {r3, r5, r9}

◦c = {r3, r4, r6} c◦ = {r5, r7, r8} c = {r1, r2}.

The minimal regions of TS are: r1, r2, r3, r4 and r5. To obtain NMin, we minimise NSat

by removing conditions associated with non-minimal regions and the adjacent arcs. At

this stage two inhibitor arcs are deleted: (r10, a) and (r9, b). The resulting NMin has still

redundant inhibitor arcs which can be identified by looking at non-minimal pre-regions

of events in NSat , and representing them as disjoint unions of minimal pre-regions and

I-regions, as described in proposition 6.4.2. For event a we have: r8 = r2 ⊎ r5, for b:

r7 = r1 ⊎ r5, for c: r6 = r3 ⊎ r2 and r6 = r4 ⊎ r1. Thus, by proposition 6.4.3, the

following inhibitor arcs are redundant: (r5, a), (r5, b), (r2, c) and (r1, c). Notice that the

representation of a non-minimal pre-region, given in proposition 6.4.2, does not need to

be unique; for example, as in the case of r6. In such a situation we can eliminate more

inhibitor arcs. At the end of this process we obtain NRcd . ⊓⊔
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Figure 6.3: Minimisation of the ENI-system for a given TSENI transition system.



Chapter 7

A-posteriori Semantics

In this chapter, we will be interested in Elementary Net Systems with Inhibitor Arcs

executed under the a-posteriori semantics (ENIapost -systems). We provide here a complete

characterisation of the class of transition systems generated by ENIapost -systems which

we call Transition Systems Modelling Elementary Nets with Inhibitor Arcs under the a-

posteriori semantics (TSENIapost ). For the elementary net system with inhibitor arcs in

figure 7.1(a), N , the corresponding TSENI transition system is shown in figure 7.1(b) and

the TSENIapost transition system in figure 7.1(c).

(a) N

b1

b3

b2

b4

e f

(b) TSN (a-priori)

cin

c1 c2

c3

{e} {f}

{e, f}

{f}

(c) TSN (a-posteriori)

cin

c1 c2

c3

{e} {f}

{f}

Figure 7.1: Elementary net system with inhibitor arcs N and the transition systems it
generates.

In section 7.2, we formulate some important properties of the TSENIapost Transition

Systems. In particular, like other classes of transition systems (see [37]), TSENIapost

Transition Systems enjoy the ‘intermediate state’ property. This property, as we recall,

does not hold for the TSENI Transition Systems.

102
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7.1 TSENIapost Transition Systems

In this section, we introduce TSENIapost Transition Systems which will later be shown to

be the class of transition systems generated by ENIapost -systems. We approach the final

definition gradually, by introducing the seven axioms characterising TSENIapost Transition

Systems. We prove the properties of TSENIapost Transition Systems if they differ from

the ones introduced and proved for TSENI Transition Systems. Otherwise, we state them

without proofs. The definition of a region and the definitions of pre-, post- and I-regions

remain the same as for TSENI Transition Systems.

Let TS = (S, U, T, sin) be a transition system defined as in chapter 3 by TS1-TS4

(fixed throughout the rest of this section). We assume that TS satisfies the following four

axioms:

A1* For every (s, u, s′) ∈ T , s 6= s′.

A2* For every u ∈ U , there are s, s′ ∈ S such that (s, u, s′) ∈ T .

A3* For every s ∈ S \ {sin}, there are (s0, u0, s1), (s1, u1, s2), . . . , (sn−1, un−1, sn) ∈ T

such that s0 = sin and sn = s.

A4* If s
u

−→ and e ∈ u then s
{e}
−→.

The above axioms are shared by the TSENIapost and TSENI Transition Systems. As

a consequence, the following properties which were true for the TSENI Transition Sys-

tems hold for the TSENIapost Transition Systems as well. The proofs were given for the

corresponding properties of the TSENI Transition Systems in chapter 3. We quote their

numbers in square brackets.

Proposition 7.1.1 [proposition 3.1.1] If s
u

−→ s′ then

1. r ∈ ◦u implies s ∈ r and s′ 6∈ r,

2. r ∈ u◦ implies s 6∈ r and s′ ∈ r. ⊓⊔

Corollary 7.1.1 [corollary 3.1.1] For every e ∈ ETS , {e} ∈ U . ⊓⊔

Proposition 7.1.2 [proposition 3.1.2] If u ∈ U then ◦u =
⋃
e∈u

◦e and u◦ =
⋃
e∈u

e◦. ⊓⊔
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Proposition 7.1.3 [proposition 3.1.3] There exists exactly one event e ∈ u which satisfies

definition 3.1.1(1) (or 3.1.1(2)). ⊓⊔

Proposition 7.1.4 [proposition 3.1.5] The following hold:

1. r ⊆ S is a region if and only if S \ r is a region.

2. If u ∈ U then u◦ = {S \ r | r ∈ ◦u}.

3. If s
u

−→ s′ then Rs \Rs′ =
◦u and Rs′ \Rs = u◦.

Moreover, ◦u ⊆ Rs and u◦ ∩Rs = ∅ and Rs′ = (Rs \
◦u) ∪ u◦. ⊓⊔

Proposition 7.1.5 [proposition 3.1.6] Let s ∈ S and e ∈ ETS be such that ◦e ⊆ Rs.

Then e◦ ∩ Rs = ∅. ⊓⊔

Proposition 7.1.6 [proposition 3.1.8] If s
{e}
−→ s′ then r ∈ e implies s, s′ 6∈ r. ⊓⊔

To characterise fully TSENIapost Transition Systems we will need a new notion of a

potential step in TS. The set of all potential steps SVTS is defined as follows:

SVTS = VTS ∩ {u ⊆ ETS | u 6= ∅ ∧ ∀e, f ∈ u : (e 6= f ⇒ e◦∩ f = ∅ ∧ f ◦∩ e = ∅)}.1

SVTS comprises sets of events which share neither pre- nor post-regions. Moreover, a

post-region of an event from u ∈ SVTS cannot be an I-region of some other event from u.

The above definition of the set of potential steps in TS is more restrictive than the one

used for TSENI Transition Systems. There the conditions involving I-regions were not

needed and the set of all potential steps of a transition system TS was defined as VTS .

We will assume from now on that the transition system TS satisfies an additional

axiom which was not used for TSENI Transition Systems.

A5* If
u

−→ s and e ∈ u then
{e}
−→ s.

The new axiom (A5*) will be necessary to prove that the definition of the set of potential

steps of TS is consistent with the definition of U .

Proposition 7.1.7 U ⊆ SVTS .

1Recall that VTS = {u ⊆ ETS | u 6= ∅ ∧ ∀e, f ∈ u : (e 6= f ⇒ ( ◦e ∪ e◦) ∩ ( ◦f ∪ f◦) = ∅)}.
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Proof: Let u ∈ U and e 6= f ∈ u. By (A2*), there is s
u

−→ s′.

Suppose that r ∈ ◦e∩ ◦f . This and (A4*) and proposition 7.1.1(1) implies that there

are se, sf 6∈ r such that s
{e}
−→ se and s

{f}
−→ sf . By proposition 7.1.2, we have r ∈ ◦u, so,

by proposition 7.1.1(1), s ∈ r and s′ 6∈ r. Hence, by proposition 7.1.3, there is a unique

g ∈ u such that s
{g}
−→ s′′ and s′′ 6∈ r, for some s′′. But this produces a contradiction with

the already established properties of e and f . That e◦ ∩ f ◦ = ∅ can be proved similarly.

Now, we prove that e◦ ∩ ◦f = ∅ (the case f ◦ ∩ ◦e = ∅ is symmetric). Let r ∈ e◦ ∩ ◦f .

From (A4*) it follows that s
{e}
−→ se and s

{f}
−→ sf , for some se, sf ∈ S. On the one

hand, by r ∈ e◦ and proposition 7.1.1(2), s 6∈ r. On the other hand, by r ∈ ◦f and

proposition 7.1.1(1), s ∈ r. We obtained a contradiction.

Finally, we prove that e◦∩ f = ∅ (the case f ◦∩ e = ∅ is symmetric). Let r ∈ e◦∩ f .

From (A5*) it follows that se
{e}
−→ s′ and sf

{f}
−→ s′, for some se, sf ∈ S. On the one

hand, by r ∈ e◦ and proposition 7.1.1(2), s′ ∈ r. On the other hand, by r ∈ f and

proposition 7.1.6, s′ 6∈ r. We obtained a contradiction. ⊓⊔

It is straightforward to show that a step can be executed at a state only if the I-regions

of the former do not comprise the latter. Due to the new axiom (A5*) we can also prove

that a step can only lead to a state which is not contained by its I-regions.

Proposition 7.1.8 If s
u

−→ s′ then u ∩Rs = ∅ and u ∩Rs′ = ∅.

Proof: Suppose that r ∈ u ∩Rs 6= ∅. Then there is e ∈ u such that r ∈ e. Hence, by

proposition 7.1.6, if p
{e}
−→ p′ then p, p′ 6∈ r. In particular, by (A4*) and s

u
−→ s′ and

e ∈ u, we have s 6∈ r. On the other hand, by r ∈ Rs, we have s ∈ r, a contradiction.

Suppose now that r ∈ u ∩Rs′ 6= ∅. Then there is e ∈ u such that r ∈ e. Hence, by

proposition 7.1.6, if p
{e}
−→ p′ then p, p′ 6∈ r. By axiom (A5*) and s

u
−→ s′ and e ∈ u, we

have s′ 6∈ r. On the other hand, by r ∈ Rs′, we have s′ ∈ r, a contradiction. ⊓⊔

We now can define the desired class of transition systems. A transition system TS

is a TSENIapost transition system if it satisfies, in addition to (A1*)-(A5*), the following

two axioms:

A6* For all s, s′ ∈ S, if Rs = Rs′ then s = s′.
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A7* Let s ∈ S and u ∈ SVTS be such that, for every e ∈ u, ◦e ⊆ Rs and e ∩Rs = ∅.

Then s
u

−→.

The first of the last two axioms was used for the TSENI Transition Systems as well. It

excludes non-deterministic transition systems like TS 1 shown in figure 3.3. The second

axiom is a variation of the forward closure property [38] (or the event/state separation

property [9]). It was used for the TSENI Transition Systems, but there u was a set of

events from VTS . Axiom (A7*) excludes transition systems like TS 2 in figure 3.3. As

a consequence the transition systems from figure 3.3 are neither TSENI nor TSENIapost

transition systems.

7.2 Properties of TSENIapost Transition Systems

We now formulate some properties of a TSENIapost transition system TS = (S, U, T, sin).

The properties shared with TSENI Transition Systems are given without proofs.

Proposition 7.2.1 [proposition 3.2.1] For every e ∈ ETS ,
◦e and e◦ are non-empty sets

and ◦e, e◦ and e are mutually disjoint sets. ⊓⊔

Proposition 7.2.2 [proposition 3.2.2] For every u ∈ U , ◦u and u◦ are non-empty dis-

joint sets. ⊓⊔

Proposition 7.2.3 [proposition 3.2.3] If s
u

−→ and ∅ 6= v ⊂ u then s
v

−→. ⊓⊔

Proposition 7.2.4 [proposition 3.1.7] If s
u

−→ s′ and s
u

−→ s′′ then s′ = s′′. ⊓⊔

It is worth noting that, unlike TSENI Transition Systems, TSENIapost enjoy the ‘in-

termediate state’ property which is true of other classes of transition systems considered

in the literature [37].

Proposition 7.2.5 If s
u

−→ s′ then for every non-empty v ⊂ u there exists s′′ ∈ S such

that s
v

−→ s′′ and s′′
u\v
−→ s′.

Proof: From proposition 7.2.3 it follows that v, u \ v ∈ U and s
v

−→ s′′ for some s′′ ∈ S.

By proposition 7.1.7, we have U ⊆ SVTS . Hence, u \ v ∈ SVTS . To prove that s′′
u\v
−→ we

need to show that the conditions in the axiom (A7*) hold. First we show that for every
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e ∈ u \ v, ◦e ⊆ Rs′′. From proposition 7.1.2 it follows that ◦u =
⋃
e∈u

◦e, for every u ∈ U .

Hence, for every e ∈ u \ v,

◦e ⊆ ◦(u \ v)
u∈SVTS= ◦u \ ◦v

prop. 7.1.4(3)
= (Rs \Rs′) \ (Rs \Rs′′) ⊆ Rs′′ .

Next we need to prove that for every e ∈ u \ v, e ∩Rs′′ = ∅. To the contrary, suppose

there is r ∈ e ∩Rs′′ 6= ∅ for some e ∈ u \ v. Since r ∈ e there exist p, p′ ∈ S such that

p
{e}
−→ p′ and p, p′ 6∈ r. From s

u
−→ s′ and (A4*) we have s

{e}
−→ which, together with

proposition 7.1.6, gives s 6∈ r. Since s
v

−→ s′′, s 6∈ r and s′′ ∈ r (by r ∈ Rs′′) we can apply

definition 3.1.1(2) and obtain that there is f ∈ v such that if q
{f}
−→ q′ then q 6∈ r and

q′ ∈ r. From (A4*) we have s
{f}
−→ sf for some sf ∈ S. Hence, s 6∈ r and sf ∈ r. As a

result, r ∈ f ◦. Since r ∈ e, we have r ∈ e ∩ f ◦ 6= ∅. But this produces a contradiction

with u ∈ SVTS , as e, f ∈ u and e 6= f (e ∈ u \ v and f ∈ v). Hence e ∩Rs′′ = ∅, for every

e ∈ u \ v. Thus all the conditions in axiom (A7*) are satisfied for s′′ and u \ v. Hence

s′′
u\v
−→ s′′′, for some s′′′ ∈ S.

We finally need to prove that s′ = s′′′. From proposition 7.1.4(3), s
u

−→ s′, s
v

−→ s′′

and s′′
u\v
−→ s′′′ we have:

Rs′ = (Rs \ ◦u) ∪ u◦,

Rs′′ = (Rs \ ◦v) ∪ v◦,

Rs′′′ =
(
Rs′′ \ ◦(u \ v)

)
∪ (u \ v)◦.

It is then easy to verify, using v ⊂ u ∈ SVTS and proposition 7.2.2, that:

Rs′′′ =
((
(Rs \ ◦v) ∪ v◦

)
\ ◦(u \ v)

)
∪ (u \ v)◦

=
((
(Rs \ ◦v) ∪ v◦

)
\ ( ◦u \ ◦v)

)
∪ (u◦ \ v◦)

= (Rs \ ◦u) ∪ u◦

= Rs′.

Hence Rs′′′ = Rs′ and, by (A6*), we obtain s′′′ = s′. ⊓⊔

Corollary 7.2.1 If
u

−→ s and ∅ 6= v ⊂ u then
v

−→ s.

Proof: Follows directly from proposition 7.2.5. ⊓⊔

Corollary 7.2.2 Let u ∈ U and |u| = n. If s
u

−→ s′ then for every enumeration of the

events from u, (ei1 , ei2, . . . , ein), there exist transitions

(s0, {ei1}, s1), (s1, {ei2}, s2), . . . , (sn−1, {ein}, sn)

in T such that s0 = s and sn = s′.
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Proof: Follows easily from proposition 7.2.5. ⊓⊔

An event sequence of TS is a sequence σ = e1e2 . . . en of events from ETS for which

there are states s0, s1, . . . , sn satisfying (s0, {e1}, s1), (s1, {e2}, s2), . . . , (sn−1, {en}, sn) ∈ T .

We will denote it by s0
σ
; sn, and call s0 the source and sn the target of σ. We will say

that an event sequence σ is enabled at a state s ∈ S if there is s′ ∈ S such that s
σ
; s′.

We will denote this by s
σ
;.

Corollary 7.2.3 Let u ∈ VTS (where |u| = n), and (ei1 , ei2 , . . . , ein) and (ej1, ej2, . . . , ejn)

be enumerations of the events from u. Let σ1 = ei1ei2 . . . ein and σ2 = ej1ej2 . . . ejn be

event sequences enabled at s, s
σ1

; s1 and s
σ2

; s2. Then s1 = s2.

Proof: Follows from the fact that u ∈ VTS, proposition 7.1.4(3) and axiom (A6*). ⊓⊔

7.3 ENIapost-systems

An elementary net system with inhibitor arcs (ENIapost -system) is a tuple

N = (B,E, F, I, cin)

such that NN = (B,E, F, I) is the (underlying) net with inhibitor arcs, defined as for

ENI-systems, and cin ⊆ B is the initial case. We will assume that N is fixed until the

end of this section.

The difference between ENIapost -systems and ENI-systems lies in the definitions of

their concurrency semantics, precisely in the definition of the valid steps. The concurrency

semantics of ENIapost -systems will be based, as before, on steps of simultaneously executed

events. We first introduce a new definition of a valid step. A non-empty set of events

u ⊆ E is a valid step, denoted u ∈ SVN , if for all e 6= f ∈ u,

(•e ∪ e•) ∩ (•f ∪ f •) = ∅ and e• ∩ f = ∅ and f • ∩ e = ∅. (7.1)

We recall that for ENI-systems the set of valid steps VN was defined2 using only the first

out of the three constraints of (7.1).

The transition relation of NN , denoted by →NN
, is given by:

→NN
= {(c, u, c′) ∈ 2B × SVN × 2B | c \ c′ = •u ∧ c′ \ c = u• ∧ u ∩ c = ∅}. (7.2)

2VN = {u ⊆ E | u 6= ∅ ∧ ∀e, f ∈ u : (e 6= f ⇒ (•e ∪ e•) ∩ (•f ∪ f•) = ∅)}.
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Notice that the above definition differs from a similar definition for ENI-system, (3.3),

only in the fact that now u ∈ SVN .

The state space of N , denoted by CN , is the least subset of 2B containing cin such

that if c ∈ CN and (c, u, c′) ∈ →NN
then c′ ∈ CN . The transition relation of N , denoted

by →N , is then defined as →NN
restricted to CN × SVN ×CN . The set of active steps of

N is given by

UN = {u ∈ SVN | ∃c, c′ : (c, u, c′) ∈ →N}.

The above definition of the operational semantics of N is what is referred to as the

a-posteriori semantics in [19].

Proposition 7.3.1 The following hold:

1. Let c ∈ CN and u ∈ SVN . Then c
u

−→N if and only if •u ⊆ c and (u•∪ u) ∩ c = ∅.

2. If c
u

−→N c′ then c′ = (c \ •u) ∪ u• and u ∩ c′ = ∅.

Proof: (1) Suppose c
u

−→N . Then there is c′ ∈ CN such that c
u

−→N c′. From (7.2),

•u ⊆ c and u• ∩ c = ∅ and u ∩ c = ∅.

Suppose now that •u ⊆ c and (u•∪ u)∩ c = ∅. Define c′ = (c \ •u)∪ u•. It is easy to show

that c \ c′ = •u and c′ \ c = u•. Hence, by (7.2), c
u

−→N c′ and thus c
u

−→N .

(2) The first part follows easily from (7.2). We need to prove that u ∩ c′ = ∅. Suppose

there is b ∈ u ∩ c′. Then either b ∈ c′ \ c or b ∈ c′ ∩ c. In the first case b ∈ u•, and since

b ∈ u there exist e, f ∈ u such that b ∈ e• and b ∈ f , and we obtain a contradiction with

u ∈ SVN (if e 6= f) or with (3.1) (if e = f). In the second case b ∈ c, and we obtain a

contradiction with u ∩ c = ∅. ⊓⊔

Notice that by using stronger definition for a valid step, c
u

−→N c′ means not only that

u ∩ c = ∅ (which was true for ENI-systems), but that u ∩ c′ = ∅ is satisfied as well.

To compare solutions to the synthesis problem (in chapter 8), we will need net isomor-

phism up to the names of conditions. Let Ni = (Bi, E, Fi, Ii, c
i
in) (i = 1, 2) be net systems

with inhibitor arcs (ENIapost -systems or ENI-systems) with the same sets of events. N1

and N2 are isomorphic if there exists a bijection f : B1 → B2 satisfying, for every b ∈ B1
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and e ∈ E, the following conditions:

1. (b, e) ∈ F1 ⇔ (f(b), e) ∈ F2,

2. (e, b) ∈ F1 ⇔ (e, f(b)) ∈ F2,

3. (b, e) ∈ I1 ⇔ (f(b), e) ∈ I2,

4. b ∈ c1in ⇔ f(b) ∈ c2in .

We will denote this by N1
∼= N2.

7.4 Transition Systems of ENIapost-systems

The construction of a transition system for a given ENIapost -system is straightforward.

Let N = (B,E, F, I, cin) be an ENIapost -system. Then

TSN = (CN , UN ,→N , cin)

is the transition system generated by N .

Theorem 7.4.1 TSN is a TSENIapost transition system.

Proof: Clearly, TSN is a transition system. We need to prove that it satisfies (A1*)-

(A7*).

(A1*) Suppose c
u

−→N c′ and c = c′. Then, by (7.2), u• = •u = ∅, contradicting (3.1).

(A2*) and (A3*) follow directly from the definition of CN and UN .

(A4*) Suppose c
u

−→N and e ∈ u. By proposition 7.3.1(1), •u ⊆ c and (u•∪ u) ∩ c = ∅.

We also have •e ⊆ •u, e• ⊆ u• and e ⊆ u, so •e ⊆ c and (e•∪ e) ∩ c = ∅. Thus, from

proposition 7.3.1(1) it follows that c
{e}
−→N .

(A5*) Suppose
u

−→N c and e ∈ u. Then there is c′ ∈ CN such that c′
u

−→N c. From

proposition 7.3.1(2) we have c = (c′ \ •u)∪ u•. From proposition 7.3.1(1) we have •u ⊆ c′

and (u•∪ u)∩c′ = ∅, and as a result •(u \ {e}) ⊆ c′, (u\{e})•∩c′ = ∅ and (u \ {e}) ∩ c′ =

∅. Since u\{e} ∈ SVN we can apply proposition 7.3.1(1) to obtain c′
u\{e}
−→N . Let c′′ ∈ CN

be such that c′
u\{e}
−→N c′′. From proposition 7.3.1(2), c′′ = (c′ \ •(u \ {e})) ∪ (u \ {e})•.

It can be easily verified that •e ⊆ c′′, e• ∩ c′′ = ∅ and e ∩ c′′ = ∅ (by e ∩ c′ = ∅ and

e ∩ (u \ {e})•
u∈SVN= ∅). Hence c′′

{e}
−→N ce, for some ce ∈ CN . From proposition 7.3.1(2)

we have ce = (c′′ \ •e) ∪ e•. It is then easy to verify that ce = c. Hence we have proved

that
{e}
−→N c, for every e ∈ u.
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Before proving (A6*) and (A7*) we show that, for every b ∈ B, rb = {c ∈ CN | b ∈ c}

is (possibly trivial) region in TSN . Moreover,

∅ 6= rb 6= CN ⇒ rb ∈ RTSN
. (7.3)

Suppose c
u

−→N c′, where c ∈ rb and c
′ 6∈ rb. Then b ∈ c and b 6∈ c′. By (7.2), c \ c′ = •u

and c′ \ c = u•. Hence b ∈ •u and b 6∈ u•, and we can choose e ∈ u such that b ∈ •e. We

now observe that if d
v

−→N d′ and e ∈ v then d ∈ rb and d
′ 6∈ rb (since, by (7.2), b ∈ d and

b 6∈ d′). Moreover, if v ⊆ u \ {e} and c
v

−→N c′′ then c′′ ∈ rb, since by (7.1), b 6∈ v• ∪ •v.

Thus the first part of definition 3.1.1 is satisfied; the second part can be shown in a similar

way. Hence rb is a region in TSN . Clearly, if ∅ 6= rb 6= CN then rb is a non-trivial region

and (7.3) holds.

(A6*) Suppose that c 6= c′ ∈ CN . Without loss of generality, we may assume that there

is b ∈ c \ c′. Hence c ∈ rb and c
′ 6∈ rb. Thus, by (7.3) and rb ∈ Rc \Rc′ , (A6*) holds.

(A7*) Suppose that c ∈ CN and u ∈ SVTSN
are such that, for every e ∈ u, ◦e ⊆ Rc and

e ∩Rc = ∅. We first show that c
{e}
−→N , for every e ∈ u.

Let e ∈ u. Since e ∈ ETSN
and (A4*) and (A2*) hold, there are d, d′ ∈ CN such that

d
{e}
−→N d′.

Consider any b ∈ •e. Then b ∈ d and b 6∈ d′, and so d ∈ rb and d
′ 6∈ rb. Hence, by (7.3),

rb ∈ RTSN
and rb ∈ ◦e. From ◦e ⊆ Rc we have rb ∈ Rc which means b ∈ c. As a result,

•e ⊆ c.

Consider now any b ∈ e•. Then b 6∈ d and b ∈ d′, and so d 6∈ rb and d′ ∈ rb. Hence, by

(7.3), rb ∈ e◦. This and e◦ ∩ Rc = ∅ (follows from ◦e ⊆ Rc and proposition 7.1.5) means

that rb 6∈ Rc, and so b 6∈ c. Hence e• ∩ c = ∅.

Suppose that b ∈ e ∩ c 6= ∅. Then c ∈ rb. By (7.2) and e ∩ e• = ∅, b 6∈ d and b 6∈ d′. Thus

d 6∈ rb and d
′ 6∈ rb. As a result, by (7.3), rb ∈ RTSN

and d, d′ ∈ CN \ rb. Hence Be
CN \rb

6= ∅.

Suppose now that f
{e}
−→N f ′ belongs to Be

rb
. This means f, f ′ ∈ rb and we have b ∈ f and

b ∈ f ′. But this and (7.2) contradict b ∈ e. Hence Be
rb
= ∅ and, as a result, rb ∈ e. Since

e ∩Rc = ∅, rb 6∈ Rc which means b 6∈ c, a contradiction with b ∈ e ∩ c. Hence e ∩ c = ∅

which, together with •e ⊆ c and e• ∩ c = ∅, yields c
{e}
−→N .

We proved that c
{e}
−→N , for every e ∈ u. Moreover, we have already shown that b ∈ •e

implies rb ∈
◦e, b ∈ e• implies rb ∈ e◦, and b ∈ e together with rb 6= ∅ implies rb ∈ e, for

all e ∈ u. This and u ∈ SVTSN
means that u ∈ SVN . Hence c

u
−→N . ⊓⊔



CHAPTER 7. A-POSTERIORI SEMANTICS 112

7.5 ENIapost-systems of TSENIapost Systems

The reverse translation, from TSENIapost Transition Systems to ENIapost -systems, is based

on the pre- post- and I-regions of events appearing in a transition system.

Let TS = (S, U, T, sin) be a TSENIapost transition system. The net system associated

with TS is defined as

NTS = (RTS , ETS , FTS , ITS , Rsin )

where FTS and ITS are defined thus:

FTS = {(r, e) ∈ RTS × ETS | r ∈ ◦e} ∪ {(e, r) ∈ ETS × RTS | r ∈ e◦},

ITS = {(r, e) ∈ RTS × ETS | r ∈ e}.
(7.4)

Directly from the definition of NTS we obtain that, for every e ∈ ETS ,

◦e = •e and e◦ = e• and e = e . (7.5)

The proof of the next theorem is omitted as it is similar to the proof of the corresponding

property of ENI-systems, theorem 3.5.1.

Theorem 7.5.1 NTS is an ENIapost -system. ⊓⊔

The above construction produces a net which is saturated both with conditions and

inhibitor arcs.

7.6 Consistency of the Two Translations

In this section, we show that the ENIapost -system associated with a TSENIapost transition

system TS generates a transition system which is isomorphic to TS .

Proposition 7.6.1 Let TS = (S, U, T, sin) be a TSENIapost transition system and N =

NTS be the ENIapost -system associated with it.

1. CN = {Rs | s ∈ S}.

2. →N= {(Rs, u, Rs′) | (s, u, s′) ∈ T}.

Proof: Note that from the definition of CN , every c ∈ CN is reachable from cin in N ; and

that from axiom (A3*), every s ∈ S is reachable from sin in TS .
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We first show that if c
u

−→N c′ and c = Rs, for some s ∈ S, then there is s′ ∈ S such

that s
u

−→ s′ and c′ = Rs′. We have that c \ c′ = •u and c′ \ c = u• and u ∩ c = ∅.

This means •e ⊆ c and e ∩ c = ∅, for all e ∈ u. This and (7.5) implies that ◦e ⊆ c and

e ∩ c = ∅, for all e ∈ u. Hence ◦e ⊆ Rs and e ∩Rs = ∅, for all e ∈ u. Moreover, by

u ∈ SVN and (7.5), we have u ∈ SVTS . Hence from (A7*) it follows that s
u

−→ s′, for

some s′ ∈ S. Then, by proposition 7.1.4(3), Rs′ = (Rs \ ◦u)∪ u◦. At the same time, from

proposition 7.3.1(2), c′ = (c \ •u) ∪ u•. Hence, by (7.5) and proposition 7.1.2 and c = Rs,

c′ = Rs′.

As a result, we have shown (note that cin = Rsin ∈ {Rs | s ∈ S}) that CN ⊆ {Rs | s ∈ S}

and →N ⊆ {(Rs, u, Rs′) | (s, u, s′) ∈ T}.

We now will prove that {Rs | s ∈ S} ⊆ CN . By definition, Rsin ∈ CN . What needs

to be shown is that if s
u

−→ s′ and Rs ∈ CN then Rs′ ∈ CN . By propositions 7.1.4(3)

and 7.1.8, we have ◦u ⊆ Rs and (u◦∪ u) ∩Rs = ∅. So, using (7.5) and proposition 7.1.2,

•u ⊆ Rs and (u•∪ u)∩Rs = ∅. Moreover, from proposition 7.1.7 and (7.5) we obtain that

u is a valid step in N . Hence, by proposition 7.3.1(1), we have Rs
u

−→N . This implies

(Rs \ •u) ∪ u• ∈ CN . On the other hand, by proposition 7.1.4(3) and s
u

−→ s′, we have

Rs′ = (Rs \
◦u) ∪ u◦. Hence, by (7.5) and proposition 7.1.2, Rs′ ∈ CN .

What remains to be shown is that {(Rs, u, Rs′) | (s, u, s′) ∈ T} ⊆ →N . Suppose

s
u

−→ s′. From propositions 7.1.4(3) and 7.1.8 it follows that Rs \Rs′ =
◦u, Rs′ \Rs = u◦

and u ∩Rs = ∅. We have already proved that CN = {Rs | s ∈ S}. So there are c, c′ ∈ CN

such that c = Rs and c
′ = Rs′ . From (7.5) and proposition 7.1.2 it follows that c \ c′ = •u

and c′ \ c = u• and u ∩ c = ∅. Since s
u

−→ s′, from proposition 7.1.7 and (7.5), it follows

that u is a valid step. Hence, by (7.2), c
u

−→N c′. ⊓⊔

The proof of the following theorem is omitted as it is similar to the proof of the

corresponding property of ENI-systems, theorem 3.6.1.

Theorem 7.6.1 Let TS = (S, U, T, sin) be a TSENIapost transition system and N = NTS

be the ENIapost -system associated with it. Then TSN is isomorphic to TS. ⊓⊔



Chapter 8

Comparing A-priori and A-posteriori
Semantics

In this chapter we will compare the TSENIapost and TSENI Transition Systems. We

will give (in section 8.1) sufficient conditions for building, for any TS ∈ TSENIapost \

TSENI, a transition system called sat(TS) such that sat(TS) ∈ TSENI \ TSENIapost

and the nets associated with them by the process of synthesis are isomorphic (NTS
∼=

Nsat(TS)). Similarly, we will formulate (in section 8.2) sufficient conditions to create, for

any TS ∈ TSENI\TSENIapost , a transition system called prun(TS) such that prun(TS) ∈

TSENIapost \ TSENI and NTS
∼= Nprun(TS). In both cases, we discuss the possibility of

weakening the present conditions (see section 8.3).

To compare TSENI and TSENIapost Transition Systems we observe that neither class

is a proper subset of the other, and that there are transition systems which satisfy the

axioms of both TSENI and TSENIapost class. This is illustrated in figure 8.1, where

TS1 ∈ TSENI \TSENIapost , TS2 ∈ TSENI∩TSENIapost and TS3 ∈ TSENIapost \TSENI.

TS 1

sin

s1 s2

s3

{e} {f}

{e, f}

{f}

TS 2

sin

s1 s2

s3

{e} {f}

{e, f}

{f} {e}

TS 3

sin

s1 s2

s3

{e} {f}

{f}

Figure 8.1: Comparison between TSENI and TSENIapost Transition Systems.
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8.1 Saturating TSENIapost Transition Systems

In this section, we consider a transition system TS = (S, U, T, sin) ∈ TSENIapost\ TSENI

and investigate whether it is possible to find a TSENI transition system whose associated

net would be isomorphic to that of TS.

Proposition 8.1.1 If TS ∈ TSENIapost\ TSENI then there exists u ∈ VTS \ SVTS and

s ∈ S such that for every e ∈ u, ◦e ⊆ Rs and e ∩Rs = ∅.

Proof: Since TS ∈ TSENIapost\ TSENI we have that all axioms (A1*)-(A7*) are satisfied

for TS and as a consequence (A1)-(A5) are satisfied as well. The only axiom which makes

TS fail to be a TSENI transition system is (A6). Hence, (A7*) is satisfied and (A6) is

not satisfied for TS. We introduce some symbols for the subformulae appearing in (A7*)

and (A6), where u ⊆ ETS and s ∈ S are such that (A6) fails to hold:

α u ∈ SVTS

β u ∈ VTS

γ ∀e ∈ u : ◦e ⊆ Rs ∧ e ∩Rs = ∅
δ s

u
−→

(A6) is false, so β is true, γ is true and δ is false. (A7*) is true, so α ∧ γ ⇒ δ is true,

which means α ∧ γ is false. Since γ is true, α is false. So β ∧ ¬α ∧ γ is true. ⊓⊔

From proposition 8.1.1 it follows that in TS ∈ TSENIapost\ TSENI there is a set of events

u ⊆ ETS and a state s ∈ S such that u is not enabled as a step at s according to the

a-posteriori axioms (A1*)-(A7*), but it would be enabled at s under the a-priori axioms

(A1)-(A6). This suggests that by adding to TS an appropriate transition, for every

s ∈ S and u ⊆ ETS which satisfy the conditions of proposition 8.1.1, we could obtain

a TSENI transition system whose associated net is isomorphic to that of TS. Before

proving this hypothesis, we need to define the targets of transitions added in that way. A

good candidate for the target of the transition associated with certain s ∈ S and u ⊆ ETS

would be s′ such that there exists an event sequence

ρu = ei1ei2 . . . ein , where (ei1 , ei2, . . . , ein) is an enumeration of events from u, (8.1)

and s
ρu
; s′. Notice that corollary 7.2.2 guarantees that for u ∈ U such an event sequence

always exists, but for u ∈ VTS we can only say, following corollary 7.2.3, that if it exists
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then the state s′ is well defined as it does not depend on the chosen enumeration. Un-

fortunately, for some u ∈ VTS and s ∈ S such a sequence does not exist, as shown in

figure 8.2.

(a) TS ∈ TSENIapost \ TSENI

sin

s1 s3

s2s4 s6

s5

{a} {c}

{b}

{b}

{c}

{a}

(b) NTS

r1

r4

r2

r5

r3

r6

a b c

Figure 8.2: TS ∈ TSENIapost\ TSENI and the associated net, NTS.

The regions of TS depicted in figure 8.2 are:

r1 = {sin , s2, s3, s5} r2 = {sin , s1, s3, s6} r3 = {sin , s1, s2, s4}

r4 = {s1, s4, s6} r5 = {s2, s4, s5} r6 = {s3, s5, s6}

and the pre-regions, post-regions and I-regions of events are given by:

◦a = {r1} a◦ = {r4} a = {r5}

◦b = {r2} b◦ = {r5} b = {r6}

◦c = {r3} c◦ = {r6} c = {r4}.

Notice that {a, b}, {a, c}, {b, c}, {a, b, c} ∈ VTS, but {a, b}, {a, c}, {b, c}, {a, b, c} 6∈

SVTS, because b
◦∩ a = {r5} 6= ∅, a◦∩ c = {r4} 6= ∅ and c◦∩ b = {r6} 6= ∅. The transition

system TS satisfies axioms (A1*)-(A7*) and (A1)-(A5), but does not satisfy (A6). Hence

TS ∈ TSENIapost\ TSENI. The set u = {a, b, c} ∈ VTS \ SVTS cannot be enumerated in

any way to constitute an event sequence of three events which is enabled at s = sin . In

such a case, it is difficult to tell whether the target s′ for the transition associated with

s ∈ S and u ⊆ ETS should be sought among the existing states of TS or a new state

should be added. Foreseeing many complications if adding new states was necessary, we

will only be interested in the situation when for every s ∈ S and u ⊆ ETS satisfying the
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conditions stated in proposition 8.1.1, there is an event sequence ρu as in (8.1) with a

source at s.

Let TS = (S, U, T, sin) be a transition system in TSENIapost \ TSENI that satisfies the

following condition.

If s ∈ S ∧ u ∈ VTS \ SVTS ∧ ∀e ∈ u : ◦e ⊆ Rs ∧ e ∩Rs = ∅ then there is

an event sequence ρu (as in (8.1)) such that s
ρu
; s′, for some s′ ∈ S.

The target of the event sequence ρu, s
′, will be denoted by fin(s, u).

(8.2)

We then define the saturation of TS as the quadruple sat(TS) = (S ′, U ′, T ′, s′in) given by:

T ′ = T ∪ {(s, u, fin(s, u)) | s ∈ S ∧ u ∈ VTS \ SVTS ∧

∀e ∈ u : ◦e ⊆ Rs ∧ e ∩Rs = ∅},
U ′ = U ∪ {u ⊆ ETS | ∃s ∈ S : (s, u, fin(s, u)) ∈ T ′ \ T},
S ′ = S,

s′in = sin .

It is immediate to see that sat(TS) is a transition system, i.e. it satisfies (TS1)-(TS4). Be-

fore showing that sat(TS) is a TSENI transition system, we need to prove some properties

which relate the regions of TS with the regions of sat(TS).

Proposition 8.1.2 If r ∈ RTS then r ∈ Rsat(TS).

Proof: We prove the first part of definition 3.1.1. Let s
u

−→ s′ and s ∈ r and s′ 6∈ r in

sat(TS).

Case 1: u ∈ U .

Hence s
u

−→ s′ and s ∈ r and s′ 6∈ r in TS. Since r ∈ RTS there exists an r-crossing event

e in u, in TS. We will show that e is the r-crossing event in u in sat(TS) as well.

Let u′ ⊆ u \ {e} and s
u′

−→ s′′ in sat(TS). Notice that u′ ∈ U since u′ 6= ∅ and u′ is a

subset of u (proposition 7.2.3). Since r is a region in TS we have s′′ ∈ r. Let q
v

−→ q′ and

e ∈ v in sat(TS) (note that e is the r-crossing event in u, in TS). We need to consider

two cases.

1. If v ∈ U then from definition 3.1.1, for r in TS, we have q ∈ r and q′ 6∈ r.

2. If v ∈ U ′\U then, from the definition of U ′, for every f ∈ v, ◦f ⊆ Rq and f ∩Rq = ∅

(in TS). Hence from axiom (A7*) for TS we have, for every f ∈ v, q
{f}
−→ qf for

some qf ∈ S. In particular, q
{e}
−→ qe, where q ∈ r and qe 6∈ r as e is the r-crossing

event in u in TS. Since v ∈ U ′ \ U , we have v ∈ VTS, which together with r ∈ ◦e
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and q ∈ r gives qf ∈ r, for all f 6= e, f ∈ v (in TS). From (8.2) we have that q′ is

the target of some event sequence ρv (as in (8.1)), such that q
ρv
; q′ in TS. Since

none of the transitions associated with ρv except the one labelled with e crosses the

border of r, we have q′ 6∈ r.

Case 2: u ∈ U ′ \ U .

From the definition of U ′, we have that for every f ∈ u, ◦f ⊆ Rs and f ∩Rs = ∅ (in TS).

Hence from axiom (A7*) for TS we have, for every f ∈ u, s
{f}
−→ sf for some sf ∈ S.

From (8.2) we have that s′ is the target of some event sequence ρu (as in (8.1)), such that

s
ρu
; s′ in TS. Hence there exists e ∈ u such that the transitions labelled with it leave

r. So, for s
{e}
−→ se, we have se 6∈ r. Since u ∈ VTS and s ∈ r and r ∈ ◦e in TS we have

sf ∈ r, for all f 6= e, f ∈ u. We will prove that e is the r-crossing event in u, in sat(TS).

Let u′ ⊆ u \ {e} and s
u′

−→ s′′ in sat(TS). Since s′′ is the target of some event sequence

ρu′ (as in (8.1)), such that s
ρu′
; s′′ in TS, and all the events from u′ are enabled at s and

none of the transitions labelled with them crosses the border of r, we have s′′ ∈ r. Let

q
v

−→ q′ and e ∈ v in sat(TS) (note that e is the event from u for whom s
{e}
−→ se and

s ∈ r and se 6∈ r). We consider two cases.

1. If v ∈ U then from the fact that r is a region in TS and r ∈ ◦e we have q ∈ r and

q′ 6∈ r.

2. If v ∈ U ′ \ U then from the definition of U ′ we have, ◦f ⊆ Rq and f ∩Rq = ∅, for

every f ∈ v (in TS). Hence from axiom (A7*) for TS we have, for every f ∈ v,

q
{f}
−→ qf for some qf ∈ S. From the fact that r ∈ ◦e in TS we have q ∈ r and

qe 6∈ r. Since v ∈ VTS we obtain qf ∈ r, for all f 6= e, f ∈ v. From (8.2) we have

that q′ is the target of some event sequence ρv (as in (8.1)), such that q
ρv
; q′ in

TS. Since none of the transitions associated with ρv except the one labelled with e

crosses the border of r, we have q′ 6∈ r.

The second part of definition 3.1.1 for r in sat(TS) can be shown in a similar way. Hence

r is a region in sat(TS). Moreover, it is non-trivial since r ∈ RTS and S = S ′. ⊓⊔

Proposition 8.1.3 If r ∈ Rsat(TS) then r ∈ RTS.

Proof: Follows easily from the construction of sat(TS). Specifically, from the fact that

S = S ′ and T ⊂ T ′. ⊓⊔
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Corollary 8.1.1 Let TS be a transition system in TSENIapost\ TSENI that satisfies

(8.2). Then

1. ETS = Esat(TS).

2. For every e ∈ ETS : r ∈ ◦e (in TS) ⇔ r ∈ ◦e (in sat(TS)).
3. For every e ∈ ETS : r ∈ e◦ (in TS) ⇔ r ∈ e◦ (in sat(TS)).

4. For every e ∈ ETS : r ∈ e (in TS) ⇔ r ∈ e (in sat(TS)).
5. For every s ∈ S : r ∈ Rs (in TS) ⇔ r ∈ Rs (in sat(TS)).
6. VTS = Vsat(TS).

Proof: Follows directly from propositions 8.1.2 and 8.1.3, and the construction of the

transition system sat(TS). ⊓⊔

Proposition 8.1.4 sat(TS) is a TSENI transition system.

Proof: (A1) Let (s, u, s′) ∈ T ′. If u ∈ U then s 6= s′ follows from (A1*) which is satisfied

for TS ∈ TSENIapost . Suppose now that u ∈ U ′ \ U and s = s′. From (8.2) we have that

there exists an enumeration of the events from u, (ei1 , ei2 , . . . , ein), and an event sequence

σ = ei1ei2 . . . ein such that s
σ
; s′. Since u ∈ U ′ \ U , we have for every e ∈ u, ◦e ⊆ Rs in

TS. In particular, ◦ein ⊆ Rs. Let r ∈ ◦ein ( ◦ein 6= ∅, by proposition 7.2.1). From
{ein}−→ s

and proposition 7.1.1 we obtain s 6∈ r. Hence r 6∈ Rs, a contradiction.

(A2) and (A3) Follow directly from the construction of sat(TS) and the fact that TS ∈

TSENIapost .

(A4) If u ∈ U then this axiom is satisfied since (A4*) is satisfied for TS. Let u ∈ U ′ \ U

and s
u

−→. From the definition of U ′ we have that for all e ∈ u, ◦e ⊆ Rs and e ∩Rs = ∅

in TS. Since TS ∈ TSENIapost and (A7*) is satisfied we obtain that s
{e}
−→ in TS, and so

in sat(TS).

(A5) Follows from corollary 8.1.1(5) and axiom (A6*) for TS.

(A6) From corollary 8.1.1(6) and 8.1.1(5), we have that VTS = Vsat(TS) and that the sets

of regions containing some s ∈ S = S ′ are the same for TS and sat(TS). Hence, in the

antecedent of the implication of (A6) we have that: s ∈ S, u ∈ VTS, and for every e ∈ u,

◦e ⊆ Rs and e ∩Rs = ∅ in TS. We need to show that s
u

−→ in sat(TS). If u ∈ SVTS

then, since (A7*) is satisfied for TS, we have s
u

−→ in TS and thus s
u

−→ in sat(TS). If

u 6∈ SVTS then u ∈ VTS \ SVTS. Since ◦e ⊆ Rs and e ∩Rs = ∅, for every e ∈ u, we have

from (8.2) and the construction of sat(TS) that (s, u, fin(s, u)) ∈ T ′ \ T . So in this case

u is enabled at s in sat(TS) as well. ⊓⊔
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Theorem 8.1.1 Let TS be a transition system in TSENIapost\ TSENI which satisfies

(8.2). Then there is a transition system sat(TS) ∈ TSENI such that NTS
∼= Nsat(TS).

Proof: Follows from propositions 8.1.2, 8.1.3, 8.1.4 and corollary 8.1.1. ⊓⊔

Proposition 8.1.5 Let TS be a transition system in TSENIapost\ TSENI which satisfies

(8.2). Then sat(TS) ∈ TSENI \ TSENIapost .

Proof: We show that sat(TS) does not satisfy (A5*). From proposition 8.1.1 we have that

there exists u ∈ VTS \ SVTS and s ∈ S such that for every e ∈ u, ◦e ⊆ Rs and e ∩Rs = ∅.

Since u 6∈ SVTS there are f1, f2 ∈ u such that f1 6= f2 and f1
◦∩ f2 6= ∅. From ◦e ⊆ Rs

and e ∩Rs = ∅, for e ∈ {f1, f2}, and (A7*) we have s
{f1}
−→ and s

{f2}
−→. These transitions

are in sat(TS) as well, together with (s, {f1, f2}, s′), where s′ = fin(s, {f1, f2}). If
{f1}

6→ s′

then sat(TS) does not satisfy (A5*). Let
{f1}
−→ s′. Hence f1

◦ ⊆ Rs′. Suppose
{f2}
−→ s′. Since

f1
◦∩ f2 6= ∅ there exists r ∈ f1

◦∩ f2 and s′ ∈ r. From
{f2}
−→ s′ and r ∈ f2 and proposition

7.1.6 (or 3.1.8), we have s′ 6∈ r, a contradiction. Thus,
{f2}

6→ s′ and, as a consequence,

sat(TS) does not satisfy (A5*). ⊓⊔

We now give sufficient and necessary conditions for (8.2) to be satisfied. First we

introduce the idea of a ‘blocking’ relationship for the events of TS. Let {e, f} ∈ VTS. We

will say that e blocks f if e◦∩ f 6= ∅, and denote this by e ⊣ f . Let u ∈ VTS. A directed

graph of the relation ⊣ on the events u will be called the blocking graph of u, i.e. it is

defined as follows:

BG(u) = (u, {(e, f) ∈ u× u | e ⊣ f}).

The vertices of the graph are labelled with the events from u and an arc from e ∈ u to

f ∈ u means that e blocks f . If TS is not clear from the context, we will use BGTS(u)

to denote BG(u).

Let G = (V,A) be a directed graph. A directed circuit is a sequence v1, v2, . . . , vn (n ≥ 1)

of distinct vertices of G such that (v1, v2), . . . , (vn−1, vn), (vn, v1) ∈ A. A directed graph

that has no directed circuit is called acyclic.

The adjacency matrix X = [xij ] of G is a |V | × |V | binary matrix whose element

xij =

{
1 if there is an arc from ith vertex to jth vertex,
0 otherwise.

An adjacency matrix X is called lower triangular if xij = 0, for i ≤ j.

We will need the following theorem from [25].
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Theorem 8.1.2 [25] A directed graph G is acyclic if and only if its vertices can be ordered

such that the adjacency matrix X is a lower triangular matrix. ⊓⊔

Proposition 8.1.6 Let TS ∈ TSENIapost . Suppose that there are u ∈ VTS and s ∈ S

such that s
{f}
−→, for every f ∈ u. Then there is no enumeration of events from u which

can be executed in a sequence from s if and only if BG(u) contains a directed circuit.

Proof: (⇒) To prove this implication we assume that BG(u) contains no directed cir-

cuit and show how to order events from u = {f1, . . . , fn} to build an event sequence

which is enabled at s. Since s
{fi}
−→, we have ◦fi ⊆ Rs, fi

◦ ∩ Rs = ∅ and fi ∩Rs = ∅,

for i = 1, . . . , n (see propositions 7.1.4(3) and 7.1.8). Suppose an event sequence σi =

f1f2 . . . fi, where 1 ≤ i < n, is enabled at s. Hence there is a sequence of transitions

(s0, {f1}, s1), . . . , (si−1, {fi}, si) where s0 = s and sk ∈ S (k = 1, . . . , i). From proposition

7.1.4(3) we have Rsk = (Rsk−1
\ ◦fk) ∪ fk

◦ for k = 1, . . . , i. Since u ∈ VTS,

Rsi =
(
Rs \ (

◦f1 ∪ . . . ∪
◦fi)

)
∪ (f1

◦ ∪ . . . ∪ fi
◦).

For fi+1 to be enabled at si we need to ensure that two conditions of (A7*) are satisfied.

The first one, ◦fi+1 ⊆ Rsi, is satisfied as u ∈ VTS and ◦fi+1 ⊆ Rs. The second one,

fi+1 ∩Rsi = ∅, can only be violated if fk
◦∩ fi+1 6= ∅ for some 1 ≤ k ≤ i. Hence an

event sequence σ = f1f2 . . . fn, for an enumeration (f1, f2, . . . , fn) of events of u, would be

enabled at s if fi
◦∩ fj = ∅ (fi 6⊣ fj) for every i < j, where i, j = 1, . . . , n. The following

shows it is possible. Since BG(u) contains no directed circuit we have, by theorem 8.1.2,

that its vertices can be ordered such that the adjacency matrix X is a lower triangular

matrix. Let an enumeration (fi1 , . . . , fin) be ordered in this way. Hence, in matrix X , we

have xfik ,fil = 0, for k ≤ l. This guarantees that in the event sequence σX = fi1 . . . fin ,

fik 6⊣ fil if k < l, where k, l = 1, . . . , n. Hence, s
σX
;.

(⇐) Suppose there is an enumeration of events from u, (f1, f2, . . . , fn), such that an event

sequence σ = f1f2 . . . fn is enabled at s. We will write fi
σ
≺ fj if fi precedes fj , directly

or indirectly, in the event sequence σ. We now show that the following holds for σ.

For all 1 ≤ i, j ≤ n, i 6= j : if fi ⊣ fj then fj
σ
≺ fi. (8.3)

Let fi ⊣ fj and fi
σ
≺ fj for some 1 ≤ i, j ≤ n, i 6= j. Then we have fi

◦∩ fj 6= ∅ and a

sequence of transitions in TS,

(s0, {f1}, s1), . . . , (si−1, {fi}, si), . . . , (sj−1, {fj}, sj), . . . , (sn−1, {fn}, sn),
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where s0 = s. From proposition 7.1.4(3) we have for every transition (sk−1, {fk}, sk)

(k = 1, . . . , n), Rsk = (Rsk−1
\ ◦fk)∪fk

◦. Since u ∈ VTS,
◦fk ∩fi

◦ = ∅, for every k ≥ i+1.

Hence fi
◦ ⊆ Rsj−1

. From (sj−1, {fj}, sj) ∈ T and proposition 7.1.8 we have fj ∩Rsj−1
= ∅.

But fi
◦∩ fj 6= ∅, a contradiction. Thus (8.3) holds.

Since BG(u) contains a directed circuit, there are events fi1 , . . . , fik ∈ u (2 ≤ k ≤ n)

such that fi1 ⊣ fi2 ⊣ . . . ⊣ fik ⊣ fi1 . From (8.3) we have fi1
σ
≺ fik

σ
≺ . . .

σ
≺ fi2

σ
≺ fi1 .

Notice that while ⊣ relation is not a transitive relation,
σ
≺ is. So, we obtain fi1

σ
≺ fi1 , a

contradiction. ⊓⊔

The blocking graph BG(u) for u = {a, b, c}, for transition system TS in figure 8.2, is

depicted in figure 8.3. We can observe that, since BG(u) contains a directed circuit, this

TS does not satisfy condition (8.2).

a

c b

Figure 8.3: BG({a, b, c}) for the transition system TS in figure 8.2.

8.2 Pruning TSENI Transition Systems

In this section, we consider a transition system TS = (S, U, T, sin) ∈ TSENI \TSENIapost

and try to determine whether it is possible to find a TSENIapost transition system whose

associated net would be isomorphic to that of TS.

Proposition 8.2.1 Let TS ∈ TSENI \ TSENIapost . Then TS does not satisfy (A5*).

Proof: Since TS ∈ TSENI \ TSENIapost , it satisfies axioms (A1)-(A6) and, as a conse-

quence, axioms (A1*)-(A4*) and (A6*). The only axioms which might not be satisfied by

TS are (A5*) or (A7*). Suppose (A7*) is not satisfied. We introduce some symbols for

the subformulae appearing in (A7*) and (A6), where u ⊆ ETS and s ∈ S are such that

(A7*) fails to hold:

α u ∈ SVTS

β u ∈ VTS

γ ∀e ∈ u : ◦e ⊆ Rs ∧ e ∩Rs = ∅
δ s

u
−→
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(A7*) is not satisfied, so α is true (and so is β), γ is true and δ is false. Then β ∧ γ is

true and δ is false contradicting (A6). That means (A7*) is satisfied and the only axiom

which can fail for TS is (A5*). ⊓⊔

We now need a couple of results concerning TSENI Transition Systems.

Proposition 8.2.2 Let TS ∈ TSENI and u, v, w ∈ U be steps such that u = v ∪ w and

v ∩ w = ∅. If s
u

−→ s′ and s
v

−→ s′′ and s′′
w

−→ s′′′ are transitions in TS, then s′ = s′′′.

Proof: From s
u

−→ s′, s
v

−→ s′′, s′′
w

−→ s′′′ and proposition 3.1.5(3) we have:

Rs′ = (Rs \
◦u) ∪ u◦,

Rs′′ = (Rs \ ◦v) ∪ v◦,

Rs′′′ = (Rs′′ \ ◦w) ∪ w◦.

Hence,

Rs′′′ =
((
(Rs \

◦v) ∪ v◦
)
\ ◦w

)
∪ w◦.

Since u ∈ VTS (proposition 3.1.4), ◦u ⊆ Rs and u◦ ∩ Rs = ∅ (proposition 3.1.5), and

u = v ∪ w we obtain

Rs′′′ =
(
Rs \ (

◦v ∪ ◦w)
)
∪ (v◦ ∪ w◦).

Proposition 3.1.2 for u, v and w implies ◦u = ◦v∪ ◦w and u◦ = v◦∪w◦. Hence Rs′′′ = Rs′.

Then, since TS satisfies (A5) as a TSENI transition system, we obtain s′ = s′′′. ⊓⊔

Proposition 8.2.3 Let TS ∈ TSENI and there exists a transition s0
u

−→ s such that
{e}

6→ s for some e ∈ u. Then there is f ∈ u such that f 6= e and f ◦∩ e 6= ∅.

Proof: From axiom (A4) we have s0
{e}
−→. Hence ◦e ⊆ Rs0 and e ∩Rs0 = ∅ (see proposi-

tions 3.1.5 and 3.1.9). From proposition 3.2.3 we have that s0
u\{e}
−→ s′, for some s′ ∈ S.

So,

Rs′
prop. 3.1.5

=
(
Rs0 \

◦(u \ {e})
)
∪ (u \ {e})◦.

Since u ∈ VTS (see proposition 3.1.4), ◦e ⊆ Rs′. Suppose e ∩Rs′ = ∅. Then, by (A6),

we have s′
{e}
−→, which by proposition 8.2.2 implies s′

{e}
−→ s. But

{e}

6→ s, a contradiction.

Hence, e ∩Rs′ 6= ∅. This and e ∩Rs0 = ∅ imply that there is f ∈ u such that f 6= e and

f ◦∩ e 6= ∅. ⊓⊔
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Corollary 8.2.1 Let TS ∈ TSENI and there exist s ∈ S and u ∈ U such that
u

−→ s and
{e}

6→ s, for some e ∈ u. Then for every s′ ∈ S, if
u

−→ s′ then there exists e′ ∈ u such that
{e′}

6→ s′.

Proof: Let s′ ∈ S be such that
u

−→ s′ and
{e′}
−→ s′, for every e′ ∈ u. From

u
−→ s and

{e}

6→ s

and proposition 8.2.3 we have that there is f ∈ u such that f 6= e and f ◦∩ e 6= ∅. Hence

there is r ∈ RTS such that r ∈ f ◦∩ e. Since
{f}
−→ s′ (e′ = f) and r ∈ f ◦ and proposition

3.1.1, we have s′ ∈ r. But,
{e}
−→ s′ (e′ = e) and r ∈ e and proposition 3.1.8 imply s′ 6∈ r, a

contradiction. ⊓⊔

Observe that, according to the above corollary, if (A5*) is satisfied for a step u ∈ U at

some s ∈ S then it will be satisfied for u at any state s ∈ S. So, we can say that ‘a step

u satisfies (A5*)’ without mentioning the state at which it is satisfied.

Proposition 8.2.4 Let TS ∈ TSENI and there is u ∈ U which satisfies (A5*). Then for

every ∅ 6= u′ ⊂ u, u′ satisfies (A5*).

Proof: From (A2) we have s
u

−→ s′, for some s, s′ ∈ S. From proposition 3.2.3, u′ ∈ U .

Suppose u′ does not satisfy (A5*). Then from proposition 8.2.3 there are e, f ∈ u′ such

that f 6= e and f ◦∩ e 6= ∅. Hence, there is r ∈ RTS such that r ∈ f ◦∩ e. Since

TS ∈ TSENI we have from proposition 3.1.2 that u◦ =
⋃

e∈u e
◦. So, r ∈ u◦ and hence

s′ ∈ r. But this and r ∈ e implies
{e}

6→ s′, contradicting the fact that u satisfies (A5*). ⊓⊔

Let TS = (S, U, T, sin) be a transition system in TSENI \ TSENIapost which satisfies the

following condition.

If (s, u, s′) ∈ T and u does not satisfy (A5*) then there is

an event sequence ρu (as in (8.1)) such that s
ρu
; s′.

(8.4)

We then define the pruning of TS as the quadruple prun(TS) = (S ′, U ′, T ′, s′in) given by:

T ′ = T \ {(s, u, s′) ∈ T | (s, u, s′) does not satisfy (A5*)},
U ′ = U \ {u ∈ U | ∃(s, u, s′) ∈ T \ T ′},
S ′ = S,

s′in = sin .

Notice that the condition (8.4) allows safe removal of transitions from TS without creating

isolated (or non-reachable) states in prun(TS). Corollary 8.2.1 guarantees, on the other
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hand, that U ′ is well defined. It is immediate to see that prun(TS) is a transition system,

i.e. it satisfies (TS1)-(TS4).

Before we show that prun(TS) is a TSENIapost transition system, we need to prove

some properties which relate the regions of TS with those of prun(TS).

Proposition 8.2.5 If r ∈ RTS then r ∈ Rprun(TS).

Proof: Follows easily from the construction of prun(TS). Specifically, from the fact that

S = S ′ and T ′ ⊂ T . ⊓⊔

Proposition 8.2.6 If r ∈ Rprun(TS) then r ∈ RTS.

Proof: Let r be a region in prun(TS). We need to show that it is a region in TS. Suppose

s
u

−→ s′ and s ∈ r and s′ 6∈ r in TS. We consider two cases.

Case 1: u ∈ U ′.

Since r ∈ Rprun(TS) there exists e ∈ u such that the following are satisfied in prun(TS):

(a) if u′ ⊆ u \ {e} and s
u′

−→ s′′ then s′′ ∈ r,

(b) if q
v

−→ q′ and e ∈ v then q ∈ r and q′ 6∈ r.

We need to show that the above is true in TS as well. We will show that e is the r-

crossing event in u in TS. Let u′ ⊆ u \ {e} and s
u′

−→ s′′ in TS. Since u satisfies (A5*),

u′ satisfies (A5*) as well (see proposition 8.2.4). So s′′ ∈ r, as u′ ∈ U ′ and (a) is satisfied

in prun(TS). Let q
v

−→ q′ and e ∈ v in TS. If v ∈ U ′ then q ∈ r and q′ 6∈ r follow

from the fact that (b) is satisfied in prun(TS). If v ∈ U \ U ′ then by (8.4) there exists

in TS an event sequence ρv = e1e2 . . . en, where (e1, e2, . . . , en) is an enumeration of the

events from v, such that q
ρv
; q′ and ek = e for some 1 ≤ k ≤ n. This event sequence is

in prun(TS) as well. For every event in ρv there is a transition ti = (qi−1, {ei}, qi), where

i = 1, . . . , n and q0 = q, qn = q′. Since TS ∈ TSENI and satisfies (A4) we have q
{ei}
−→ for

i = 1, . . . , n. Moreover, since r ∈ ◦ek (in prun(TS)) we have qk−1 ∈ r and qk 6∈ r, and

q ∈ r. Since r ∈ Rq in prun(TS) and q
{ei}
−→ (i = 1, . . . , n), we deduce that none of the

transitions ti (i = 1, . . . , n) enters into region r. Hence, since qk 6∈ r, we have that qi 6∈ r

for i = k + 1, . . . , n, as otherwise some ti would need to enter into r. Thus q′ 6∈ r.

Case 2: u ∈ U \ U ′.

Then, u ∈ U and u does not satisfy (A5*). By (8.4), there exists in TS an event sequence
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ρu = e1e2 . . . en, where (e1, e2, . . . , en) is an enumeration of the events from u, such that

s
ρu
; s′. This event sequence is in prun(TS) as well. For every event in ρu, there is a

transition ti = (si−1, {ei}, si), where i = 1, . . . , n and s0 = s and sn = s′. Since s ∈ r

and s′ 6∈ r, there is 1 ≤ k ≤ n such that sk−1 ∈ r and sk 6∈ r. Since TS ∈ TSENI and

satisfies (A4) we have s
{ei}
−→ for i = 1, . . . , n. From the fact that r ∈ Rs in prun(TS) and

s
{ei}
−→ (i = 1, . . . , n) we deduce that none of the transitions ti (i = 1, . . . , n) enters into r.

Hence, since s, sk−1 ∈ r and sk 6∈ r, tk is the only transition among the ti’s which crosses

the border of r. We need to prove that ek is the r-crossing event in u in TS.

Let u′ ⊆ u \ {ek} and s
u′

−→ s′′ in TS. We need to show that s′′ ∈ r. If u′ ∈ U ′

then s′′ ∈ r follows from r ∈ Rprun(TS) and the fact that transitions labelled with the

events from u′ do not cross the border of r. If u′ ∈ U \ U ′ then by (8.4) there is an event

sequence in TS, ρu′ (as in (8.1)), such that s
ρu′
; s′′. Since s ∈ r and none of the transitions

associated with the events in ρu′ crosses the border of r, we have s′′ ∈ r. Suppose now

that q
v

−→ q′ and ek ∈ v in TS. We need to show that q ∈ r and q′ 6∈ r. If v ∈ U ′ then

this follows from r ∈ Rprun(TS) and the fact that sk−1
{ek}−→ sk, sk−1 ∈ r and sk 6∈ r. If

v ∈ U \ U ′ then we can apply similar reasoning as the one used in Case 1.

The second part of definition 3.1.1 for r in TS can be shown in a similar way. Hence

r is a region in TS. Moreover, it is non-trivial since r ∈ Rprun(TS) and S = S ′. ⊓⊔

Corollary 8.2.2 Let TS be a transition system in TSENI \ TSENIapost which satisfies

(8.4). Then

1. ETS = Eprun(TS).

2. For every e ∈ ETS : r ∈ ◦e (in TS) ⇔ r ∈ ◦e (in prun(TS)).
3. For every e ∈ ETS : r ∈ e◦ (in TS) ⇔ r ∈ e◦ (in prun(TS)).

4. For every e ∈ ETS : r ∈ e (in TS) ⇔ r ∈ e (in prun(TS)).
5. For every s ∈ S : r ∈ Rs (in TS) ⇔ r ∈ Rs (in prun(TS)).
6. VTS = Vprun(TS).

7. SVTS = SVprun(TS).

Proof: Follows directly from propositions 8.2.5 and 8.2.6, and the construction of the

transition system prun(TS). ⊓⊔

Proposition 8.2.7 prun(TS) is a TSENIapost transition system.

Proof: (A1*),(A2*) follow from TS ∈ TSENI and the construction of prun(TS).

(A3*) follows from (A3) for TS, the construction of prun(TS) and (8.4).
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(A4*) holds due to the construction of prun(TS) and the fact that TS satisfies (A4).

(A5*) follows from proposition 8.2.1 and the fact that the construction of prun(TS)

removes all the steps u which violate this axiom.

(A6*) follows from corollary 8.2.2(5) and axiom (A5) for TS.

(A7*) is satisfied for TS as it is shown in the proof of proposition 8.2.1. The construction of

prun(TS) removes steps which do not satisfy (A5*) in TS. From proposition 8.2.3 we have

that such steps of TS are not potential steps in prun(TS), u 6∈ SVTS
coro. 8.2.2(7)

= SVprun(TS).

Hence the implication in the axiom (A7*) holds for prun(TS) as well. ⊓⊔

Theorem 8.2.1 Let TS be a transition system in TSENI \ TSENIapost which satisfies

(8.4). Then there is a transition system prun(TS) ∈ TSENIapost such that NTS
∼=

Nprun(TS).

Proof: Follows from propositions 8.2.5, 8.2.6, 8.2.7 and corollary 8.2.2. ⊓⊔

Proposition 8.2.8 Let TS be a transition system in TSENI \TSENIapost which satisfies

(8.4). Then prun(TS) ∈ TSENIapost\ TSENI.

Proof: We need to show that prun(TS) 6∈ TSENI. From proposition 8.2.1 we have that

TS does not satisfy (A5*). Therefore, there is a transition (s, u, s′) ∈ T for which (A5*)

does not hold and, according to the construction of prun(TS), it is removed from TS

((s, u, s′) 6∈ T ′). But, from (A4) we have s
{e}
−→ for every e ∈ u, in TS, and consequently

in prun(TS). By u ∈ VTS and corollary 8.2.2(6), u ∈ Vprun(TS). So u and s satisfy all

the conditions in (A6), but (s, u, s′) 6∈ T ′. Thus, prun(TS) fails to satisfy (A6), and so

prun(TS) 6∈ TSENI. ⊓⊔

Sufficient and necessary conditions for (8.4) to be satisfied are expressed using a block-

ing graph of a step appearing in condition (8.4).

Proposition 8.2.9 Let TS ∈ TSENI and s
u

−→ s′ be a transition in TS. Then there is

no enumeration of events from u which can be executed in a sequence from s if and only

if BG(u) contains a directed circuit.

Proof: Since u ∈ U and TS ∈ TSENI, we have from proposition 3.1.4 that u ∈ VTS,

and from (A4) that s
{f}
−→, for every f ∈ u. The rest of the proof is similar to that of

proposition 8.1.6, as it uses the common properties of TSENI and TSENIapost Transition

Systems. ⊓⊔
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We observe that TS shown in figure 8.4 does not satisfy condition (8.4), since there

is a step {a, b} ∈ U such that BG({a, b}) contains a directed circuit.

(a) TS ∈ TSENI \ TSENIapost

sin

s1 s2

s3

{a} {b}

{a, b}

(b) NTS

r1

r3

r2

r4

a b

(c) BG({a, b})

a

b

Figure 8.4: TSENI transition system which does not satisfy condition (8.4).

8.3 Discussion

In this chapter, we compared the TSENIapost and TSENI Transition Systems. It was shown

that for any TS ∈ TSENIapost \TSENI satisfying the condition (8.2), there is a transition

system sat(TS) ∈ TSENI \ TSENIapost , such that NTS
∼= Nsat(TS). We mentioned that

when TS ∈ TSENIapost \TSENI does not satisfy the condition (8.2), the problem is much

more complicated. In particular, some additional states might be required to build a

TSENI transition system whose associated net is isomorphic to NTS. For the TS from

figure 8.2(a), the procedure of ‘saturation’ leads to the TSENI transition system depicted

in figure 8.5(a). We can see that one extra state, s7, was added. The number of regions

of the new ‘saturated’ transition system will be the same as number of regions of TS, and

we only need to add s7 to the post-regions of every event. The nets associated with TS,

in figure 8.2(b), and its ‘saturated’ version, in figure 8.5(b), are isomorphic. Notice that

the transition system in figure 8.5(a) is not a TSENIapost transition system. So, by adding

extra transitions, we are loosing the ability to fulfill (A5*), exactly like when the process of

‘saturation’ is applied to the TSENIapost transition system satisfying the condition (8.2).

The generalisation of the process of ‘saturation’ for TSENIapost (but not TSENI) transition

systems which are not satisfying the condition (8.2) looks promising. One only needs to

ensure that by adding extra states, we do not violate the state separation property, (A5),

of the TSENI transition system we create.
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(a) TS

sin

s1

s3

s2

s4

s6

s5

s7

{a}

{c}

{b}

{b} {c}

{a}

{a, b, c}

{a, b}

{b, c}

{a, c}

(b) NTS

r1

r4

r2

r5

r3

r6

a b c

Figure 8.5: TS ∈ TSENI \ TSENIapost and the net associated with it, NTS.
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The generalisation of the ‘pruning’ procedure for a transition system TS ∈ TSENI \

TSENIapost , which does not satisfy the condition (8.4), to obtain a TSENIapost transition

system with isomorphic net, will certainly fail. Take, for example, the TSENI transi-

tion system in figure 8.4(a). After deleting transition (sin , {a, b}, s3), for which (A5*) is

not satisfied, we obtain a transition system which is both TSENI and TSENIapost tran-

sition system (see figure 8.6(a)), and the net associated with it (see figure 8.6(b)) is not

isomorphic to that of the transition system in figure 8.4.

(a) TS

sin

s1 s2

{a} {b}

(b) NTS

r1 r2 r3

r4 r5 r6

a b

Figure 8.6: TS ∈ TSENI ∩ TSENIapost and the net associated with it, NTS.



Chapter 9

Conclusions

This Thesis has tackled the synthesis problem for various extensions of Elementary Net

Systems under the assumption that the resulting nets remain safe. These extensions

are, in particular, relevant from the point of view of the modelling of the behaviour of

asynchronous circuits, but one can also envisage their usefulness in other application areas

(such as distributed systems).

From the technical point of view, the approach proposed by the Thesis is based on

the notion of a region of a transition system which represents the global behaviour of

the synthesised net. In the first class of transition systems considered here, introduced

in chapter 2 and corresponding to the Semi-elementary Net Systems, it was sufficient to

change only the set of axioms defining them, whereas the definition of a region was carried

forward from the standard treatment of the Elementary Transition Systems. However,

this extension was not entirely satisfactory from the application point of view, as the

potential independence relation between the events in a transition system is not properly

represented by the Semi-elementary Transition Systems. Such a realization motivated

new line of research for the synthesis problem, characterised by explicit structural and

semantical constructs for transition systems and nets based on inhibitor arcs and the

derived step sequence semantics. The resulting class of transition systems, introduced in

chapter 3, needs a completely new definition of a region as well as a new set of axioms

(both regional axioms and step axioms). On the net level, self-loops used by the Semi-

elementary Net Systems had been replaced by inhibitor arcs, while the semantics expressed

in terms of interleaving sequences had been changed to a step semantics (a-priori and

a-posteriori) directly capturing the concurrent behaviour of a system being modelled.

Unlike any other model of concurrent behaviour, the a-priori step sequence semantics is

131
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capable of faithfully expressing the behaviour of asynchronous circuits with critical races.

Consequently, Elementary Net Systems with Inhibitor Arcs equipped with the a-priori

semantics became a focal point of the research presented in this Thesis.

A central result of the research presented in this Thesis is the novel definition of a

region for the TSENI Transition Systems that enabled the development of an algorithm

for the synthesis of ENI-systems. Moreover, it turned out that ENI-systems may be

synthesised on the basis of the minimal regions only; such a result is important from

the point of view of automatic tools, such as Petrify, which employ minimal regions for

efficient synthesis. It is therefore expected that the work presented here would be of direct

relevance for further development and extending the applicability of such tools.

The Thesis proposes a particularly efficient way of removing redundant inhibitor arcs

from a synthesised ENI-system, and it is likely that such a method can be generalised to

other classes of Petri nets, such as Place/Transition Nets with Inhibitor Arcs. It is worth

noting that removing redundant inhibitor arcs is an important way of reducing the size

of resulting implementations.

9.1 Directions for Further Research

There are several directions for extending the results presented in this Thesis both as far

as the theory and implementation of the synthesis technique are concerned.

The work presented in Chapter 2 addressed problems related to structural transforma-

tions of transition systems that do not lead outside the class of Semi-elementary Transition

Systems. To our knowledge, such a problem has not received sufficient attention in the

literature, and the results presented here are the only ones currently available. There are

at least two ways in which the work on structural transformations could be extended.

First, it would be important to base the approach on a wider set of substructures in tran-

sition systems than the ladders of transition systems. In particular, it would be relevant

to investigate lattice-like structures that are often identifiable in the behavioural patterns

generated by asynchronous circuits. Secondly, it would be interesting to investigate what

kinds of such substructures can still be used in the framework of step transition systems,

such as TSENI Transition Systems. Moreover, future research on transition system trans-

formations should be extended to the algorithmic aspects and practical implementations.
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As already mentioned, the theory presented in this Thesis can provide a theoretical

foundation for further development of automatic synthesis tools, such as Petrify, in order

to cover also the class of nets with inhibitor arcs. On the other hand, the theory of

synthesis of ENI-systems can be extended to the general class of Place/Transition Nets

with Inhibitor Arcs by applying the idea of treating regions as morphisms. The set of

axioms defining the initial transition system could be revised as well, so that the regional

axioms would be replaced with ones which describe properties of the transition systems

and not the nets which are synthesised.

In chapter 8, the comparison between the a-priori and a-posteriori semantics of nets

with inhibitor arcs was carried out under certain restrictive conditions. In future, the

processes of saturating the TSENIapost Transition Systems and the pruning of TSENI

Transition Systems could be investigated after allowing the sets of states of transition

systems to change, and thus generalise the results obtained here.

Finally, the Thesis has not addressed issues related to the semantics of the ENI-

systems based on event structures which to our knowledge has not yet been discussed in

the literature. Such a treatment would provide an additional insight into the fundamental

relationships between the events in the system represented by a net with inhibitor arcs.

We regard the problem of defining an event structure semantics of ENI-systems as a

challenging one. The main reason is that the mutual dependencies between events in

an ENI-system cannot be based on the usual independence relation [29]. Moreover, the

standard causality semantics based on partial orders is also insufficient. A satisfactory

treatment can be provided by replacing the independence relation with two new relations,

and also adding the so-called weak causality to complement that used by the standard

approach [29]. It is not yet clear how to define event structures taking a proper account

of the differences between the way causality relationships are represented in ENI-systems

and, e.g., in Elementary Net Systems, and we consider the problem of bridging this gap

as a significant topic for future research.



Appendix

The diagram below gives the symbols of commonly used logic gates.

x y

y = ¬x

x1

x2
y

y = x1 ∧ x2

x1

x2
y

y = x1 ∨ x2

One- and two-input gates: NOT, AND, OR.
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