
A Toolkit for model checking of

electronic contracts

Thesis by

Abubkr A. Abdelsadiq

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Newcastle University

Newcastle upon Tyne, UK

January 2013

Abstract

In the business world, contracts are used to regulate business interactions

between trading parties. In this context, an electronic contracting systems

can be used to monitor business–to–business interactions to ensure that

they comply with the rights (permissions), obligations and prohibitions

stipulated in contract clauses. Such an electronic contracting system will

require an executable version of the contract (e-contract) for compliance

checking. It is important to be verify the correctness properties of an e-

contract before deploying it for compliance checking. Model checkers are

widely used for automatic verification of concurrent systems. However,

such tools for e-contracts with means for expressing directly and intu-

itively key concepts that appear recurrently in contracts, such as execu-

tions of business operations, granting (cancellation, suspension, fulfilment,

violation, etc.) of rights, obligations and prohibitions to role players are

not yet available.

This thesis rectifies the situation by developing a high-level e-contract

verification toolkit using the Spin model checker. A formal Contractual

Business-To-Business interaction (CB2B) model based on the concepts of

contract compliance checking developed earlier at Newcastle university

has been constructed. Further, Promela, the input language of the Spin

model checker, has been extended in a manner that enables specification

of contract clauses in terms of contract entities: role players, business

operations, rights, obligations and prohibitions. A given contract can now

be expressed using extended Promela as a set of declarations and a set of

Event-Condition-Action rules. In addition, the designer can specify the

correctness requirements to be verified in Linear-Temporal-Logic directly

in terms of the contract entities. A notable feature is that the CB2B model

automatically checks for contract independent properties: properties that

must hold for all contracts. For example, at run time, a contract should

not simultaneously grant a role player a right to perform an operation

and also prohibit it. Thus, the toolkit hides much of the intricate details

of dealing with Promela processes communicating through channels and

enables a designer to build verifiable abstract models directly in terms of

contract entities.

The usefulness of the toolkit is demonstrated by trying out a number of

contract examples used by researchers working on contract verification.

The thesis also shows how the toolkit can be used for generating test

cases for testing an implemented system.

Acknowledgment

It is a pleasure to express my sincere gratitude and respect to my supervisor Prof.

Santosh Shrivastava. I would like to thank him for his support and assistance that

made this thesis possible. His advice has been invaluable, and his patience in helping

me clarify and express ideas and plans has been very influential during my study. My

gratitude is also extended to Dr. Carlos Molina-Jimenez for his advice, and for his

willingness for deep discussions and provide feedback during our meetings. I am very

grateful to the Systems group in the computing department at Newcastle University

for giving me the opportunity to attend their talks and learn from them.

Lastly, and most importantly, I am infinitely grateful to my family, my wife

Samira, my son Mohamed and my little daughter Monia for their unconditional love,

endless patience and encouragement when it was most required. I also thank my

grandparents Salem and Rahma who always encouraged me to pursue my ambitions

and supported me throughout my life.

iii

Declaration

I declare that this thesis is my own work and it has not been previously submitted,

either by me or by anyone else, for a degree or diploma at any educational institute,

school or university. To the best of my knowledge, this thesis does not contain

any previously published work, except where the person’s work has been cited and

included in the list of references. Some of the material in this thesis has been published

in conference proceedings, below is the list of publication.

1. A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava. A high-level model–

checking tool for verifying service agreements. In: Proceedings of the 6th IEEE

International Symposium on Service Oriented System Engineering (SOSE 2011).

Irvine, CA, Nov. 2011, pp. 297-304.

2. A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava. On Model Checker

Based Testing of Electronic Contracting Systems. In: Proceedings of the 12th

IEEE Conf. on Commerce and Enterprise Computing (CEC 2010). Shanghai,

Dec. 2010, pp. 88-95.

iv

Contents

Contents v

List of Figures ix

1 Introduction 1

1.1 Research tasks and objectives . 5

1.2 Thesis overview . 7

2 Background and related work 9

2.1 Functional aspects of a contract . 10

2.2 Machine-readable contracts . 11

2.2.1 Formal contract language (FCL) 13

2.2.1.1 FCL expressions and axioms 14

2.2.1.2 FCL contract example: 15

2.2.2 The contract language (CL) 17

2.2.2.1 CL syntax . 17

2.2.2.2 CL contract example 19

2.2.3 Contract-oriented diagram (C-O diagram) 20

2.2.3.1 C-O diagram visual elements 20

2.2.3.2 Refining C-O diagrams 21

2.2.3.3 An example using C-O diagrams 22

v

CONTENTS

2.2.4 X-Contract language . 24

2.2.5 EROP contract language . 26

2.2.5.1 Buyer/Seller contract 27

2.2.5.2 Modelling Buyer/Seller contract in EROP 28

2.3 Contract conflicts . 30

2.4 Analysis of contract conflicts . 32

2.4.1 Principles of model–checking (using Spin) 33

2.4.2 Analyzing x-contracts with Spin 35

2.4.3 Analyzing EROP contracts with Spin 36

2.4.4 Analyzing CL contracts with CLAN 36

2.5 Discussion . 37

2.6 Approach taken . 39

3 The EROP model 40

3.1 The Contract Compliance Checker 41

3.1.1 Monitoring business events . 41

3.1.2 Observing compliance with contract rules 43

3.2 The architecture of the CCC . 44

3.2.1 Main components . 44

3.2.2 Contract analysis algorithm 46

3.3 The CCC as a reactive system . 47

3.3.1 Safety properties . 47

3.3.2 Liveness properties . 48

3.3.3 The CCC reactive system explained 49

3.4 Conflicts in EROP contracts . 52

3.4.1 Contract-independent conflicts 53

3.4.2 Contract-dependent conflicts 55

vi

CONTENTS

3.5 Discussion . 56

4 CB2B formal model 57

4.1 CB2B model: principles of operation 58

4.1.1 The business event generator (BEG) 59

4.1.2 The contract rule manager (CRM) 61

4.1.3 The CB2B model rule base . 62

4.2 CB2B model implementation in Promela 63

4.2.1 Execution cycle . 63

4.2.2 Key features . 65

4.2.3 Example . 66

4.2.4 Verification of contract properties 68

4.3 The CB2B model notation . 70

4.3.1 Mapping contract entities into Promela 70

4.3.1.1 Role players . 71

4.3.1.2 Business operations 74

4.3.1.3 Right . 75

4.3.1.4 Obligation . 76

4.3.1.5 Prohibition . 76

4.3.1.6 Business events . 77

4.3.2 Contract rule template . 79

4.3.3 Manipulating contract status 81

4.4 CB2B model operations . 82

4.5 Contract model checking with CB2B model 84

4.5.1 Contract example re-visited 86

4.5.1.1 Complete code of the contract example 89

4.5.1.2 Rule–base of the contract example 91

vii

CONTENTS

4.5.2 Contract example with priority rules conflict 92

4.6 The use of CB2B model for testing 96

4.6.1 Spin based test–case generation tool 96

4.6.2 Test–case generation steps . 97

4.6.3 Limitations of Spin counterexamples 98

4.7 Evaluation of CB2B system state . 99

4.8 Discussion . 104

5 Case studies 105

5.1 Internet provision contract . 105

5.2 Storage service consumption contract 113

5.3 Buyer/seller contract . 117

5.4 Performance issues . 124

6 Conclusions and future work 126

6.1 Conclusions . 126

6.2 Future work . 128

Appendix A 129

viii

List of Figures

1.1 Service agreement monitoring . 1

1.2 Model Checking . 4

1.3 A formal model based on EROP system 5

1.4 Contract model checking framework. 6

2.1 Contract entities . 10

2.2 C-O diagram box structure . 20

2.3 AND/OR refinements . 21

2.4 SEQ refinement and repetition in C-O diagrams 21

2.5 Top level C-O diagram of TSP/client contract 22

2.6 . 23

2.7 Buyer and Seller Contract FSM . 26

2.8 Spin structure . 34

3.1 Contract regulated interactions . 41

3.2 The architecture of the CCC . 46

3.3 CCC as reactive system . 50

4.1 CB2B as a reactive system . 58

4.2 CB2B formal model. 64

4.3 State transitions in the executable contract model 66

ix

LIST OF FIGURES

4.4 ECA Contract rules . 67

4.5 Business event generator template . 78

4.6 Contract rule manager template . 79

4.7 CB2B Rule template . 80

4.8 Contract model checking framework. 85

4.9 Contract rules in extended Promela 86

4.10 Inconsistent assignment of prohibition and obligation 88

4.11 Correct version of contract rule ’a’ . 89

4.12 E-ticket refund contract rules . 93

4.13 Priority rule conflict illustrated with timeline 95

4.14 General structure of test case synthesis tool using CB2B model 97

4.15 Comparison between restricted and non-restricted model runs. 102

4.16 Random run of restricted and non-restricted contract executions . . . 103

5.1 Internet provision contract rule set 108

5.2 Internet provision contract run with Spin model checker 110

5.3 Spin’s counterexample when CANCEL is prohibited and permitted . 113

5.4 Storage service contract . 115

5.5 Buyer/Seller contract rules . 120

5.6 Buyer/Seller contract rules cont. 121

x

Chapter 1

Introduction

Fulfilling a given business function such as order processing electronically requires

business partners to exchange electronic business documents and to act on them.

Naturally, the exchanges and actions undertaken need to comply with the business

agreement (contract) currently in force between the partners. An agreed on contract

normally specifies the obligations, permissions (rights) and prohibitions that the sig-

natories should be held responsible for and states the actions or penalties that may

be taken when any of the stated agreements are not met.

Service Agreement
Monitor (SAM)

Gateway ServiceClient

O
rg

an
iz

at
io

n
b
o
u
n
d
ar

y

Figure 1.1: Service agreement monitoring

Contract compliance checking can be automated with the help of electronic con-

tracting systems that can be used for detecting violations, facilitating dispute resolu-

tion and determining liability by providing an audit trail of business interactions.

1

Figure 1.1 shows an example of a contract system where a service provider uses

a SAM for monitoring the service agreement configuration. Essentially, the service

agreement monitor will require machine interpretable specifications of relevant parts

of the service agreement. The provider uses a service agreement monitor loaded with

an executable version of the service agreement (e-contract). The gateway acts as

a check-point that can determine whether or not the client’s actions are contract

compliant as informed by the service agreement monitor. Similarly, it can prevent

the use of the service in cases of agreement violations.

However, the intended meaning of contract clauses expressed in a natural language

can be remarkably hard to capture and represent in a rigorous and concise manner

for computer processing. Consider a hypothetical service agreement signed between

a client and a provider of storage services, with the following clauses:

1. The Client is entitled to use the service in normal quota mode of 100 GB or
exceeded quota mode of 120 GB.

2. Clients that exhaust their normal quota are obliged to either:

(a) Submit a single payment of £5 within the next 72 hours.

(b) Bring the quota back to normal within the next 72 hours by deleting
sufficient number of files.

3. Violation of clause 2 will give the Service Provider the right of suspension.

A contract could contain inconsistencies in the form of conflicting clauses. A

typical type of contract conflict occurs when a contract participant is simultaneously

obliged and forbidden to perform the same action, or is both permitted and forbidden

to perform the same action. Recalling the above contract clause, it will be considered

as a conflict if actions such as ‘use’, ‘bring quota back’, or ‘suspend‘ are characterised

as permitted and prohibited or obliged and prohibited at the same time. The need

to analyse and reason about contracts is therefore extremely important. Thus, there

is a strong case for developing tools for contract validation and verification.

2

The clauses of a natural language contract include a combination of role players,

business operations, rights, obligations and prohibitions, as well as their temporal

aspects. Furthermore, the language clauses also specify exceptional behaviours arising

from deviation from the original obligations (the required actions in case an obligation

is not fulfilled) and of prohibitions (the required actions in case a prohibited action

is performed). The actions that come into force where exceptional behaviours take

place can be regarded as reparations and are known respectively as contrary-to-duties

(CTDs) and contrary-to-prohibitions (CTPs).

A key requirement of an e-contract language is to capture the main elements of

natural language contracts such as role players, business operations, rights, obligations

and prohibitions and allow their representation in a machine interpretable notation.

For this purpose, several notations for the specification of contractual clauses have

been suggested in the literature. For example, some have chosen to encode contract

clauses as event–condition–action (ECA) rules because of their widespread usage in

the business world for representing business agreements. Others have chosen to use

a logic-based solution, and the spectrum of contract notation types is reviewed in

Chapter 2 below. However, inconsistencies can be accidently introduced into an

executable contact, which might cause the monitoring facilities of contract compliance

or contract enactment services to malfunction, as well as possibly leading to conflict

between the contract parties.

Model checking is a widely accepted and useful technique that is actively applied

for finding bugs in software and hardware designs. The essential idea of model check-

ing is depicted in Figure 1.2. Typically, model checkers build a reachability graph

from finite state descriptions of the system and search for violations of the proper-

ties such as temporal specifications under investigation by exhaustively exploring the

reachable state space. The key element of model checking is that, if there are one or

more execution traces or sequences in the system under analysis that do not satisfy

3

a given temporal formula, then at least one of the offending execution-traces will be

returned as a counter-example which can be used to trace the source of the error. If

no counterexamples are returned, then one can claim that all executions of the system

satisfy the properties prescribed in the temporal formula.

MODEL

CHECKER

Finite State

Description

Temporal

Specification

Verification or

Counter-example

Figure 1.2: Model Checking

In order to simplify the mechanical verification of e-contract models with general

purpose model checking tools, it is highly desirable that the verification tools are sup-

ported with means for directly and intuitively expressing key concepts that usually

appear in contracts, such as the execution of business operations, or the granting,

cancellation, suspension, fullfilment, or violation of rights, obligations and prohibi-

tions to role players. Unfortunately model checking tools with these highly desirable

constructs are not available yet. A possible but daunting and time consuming way

to address the problem is to build such a tool from scratch. A more pragmatic alter-

native is to build such a tool using an existing model checker. As most of these were

designed for validation of distributed applications such as communication protocols,

so they will need enhancements with contract-specific constructs.

4

1.1 Research tasks and objectives

The goal of this research is to develop high level model checking toolkit for electronic

contracts. We build on existing work on contract compliance checking; and a well–

known Spin model checker. In this work, we developed a formal model called CB2B

(for Contractual Business–to–Business interactions) based on the concepts of EROP

(for events, rights, obligations and prohibitions) model for contract compliance check-

ing developed earlier at Newcastle university (discussed in Chapter 3). The EROP

model defines an architecture of Contract Compliance Checker (CCC) that observes

the interactions between the business partners and forms an interpretation of their

outcome.

We build on the facilities of Spin model checker in the verification and validation

of e-contracts. The contract compliance checker CCC of EROP is modelled as a

reactive system, converted into Promela and validated with Spin to observe properties

of interest which are regarded as safety and liveness properties. The verification

facilities such as simple assertions and verification of temporal logic formulae, offered

by Spin, are exploited at large to reason about certain properties of models of EROP

language contracts.

Figure 1.3: A formal model based on EROP system

The toolkit enables one to: (i) specify the contract as ECA rules that can be

automatically interpreted by a general model checking tool; (ii) automatically validate

5

contract independent properties which are those properties that must hold for all

contracts; (iii) check for contract dependent properties which are specific to individual

contracts.

Contract in English

ECA Rules in extended
Promela

LTL Formulae

CB2B Formal model

Model of
Contractual Business-to-
Business Environment

Promela VARS, CONS,
Processes, Channels, etc...

Input to

Spin

Contract Correctness
Requirements

Prepare list of

Manual conversion

Verification results
Output

Manual conversion

Figure 1.4: Contract model checking framework.

The design process supported by a verification tool is illustrated in Figure 1.4.

The general purpose model checker Spin and its input language Promela are used

with some extensions, for the verification of contracts. The following assumptions

are made. Firstly, the contract has been negotiated by the contracting parties and

drawn up in English or another natural language. Secondly, the designer manu-

ally converts the clauses of the English contract into ECA rules written in the ex-

tended Promela language, and these rules are executed by the contractual business–

to–business (CB2B) interaction model as discussed in detail in Chapter 4. In parallel,

the designer manually prepares a list of contract correctness requirements deduced

from the contract clauses and expresses them in Linear Temporal Logic (LTL) for-

mulae. Thirdly, the designer inputs the CB2B model together with the rules and the

6

LTL formulae into the Spin verifier and runs it to output verification results.

The CB2B model of the tool hides much of the intricate details of the construction

of interacting processes over communication channels. It enables a designer to re-use

essential components (shown in dashed boxes in Figure 1.4) to encode a contract for

model checking directly as ECA rules in terms of the contract entities of business

operations, and role players with their rights, obligations and prohibitions. In other

words, the CB2B model offers an executable environment for the e–contract rules,

and thus the executable behaviour of the contract can be exercised and tested before

its deployment. Another key feature is that the verified contract model can be used

for the generation of test cases to validate the actual implementation of the contract

for specific properties. The tool is evaluated for the verification of several contract

examples used by researchers working on contract verification.

1.2 Thesis overview

Chapter 2 presents background information that is relevant to contract representation

and analysis tools. Different contract states are discussed that have to be considered

in contract representation notations, and different contract analysis tools which em-

ploy model checking techniques for the validation and verification of contracts are

examined.

Chapter 3 discusses basic concepts of contract compliance checker using the EROP

model. These concepts underpin the e-contract model checking framework with CB2B

model. The internal structure of the CCC is described and the process of contract

compliance checking is demonstrated with an illustrative example. It is also discussed

how the contract compliance checker CCC is modelled as a reactive system, along with

how contract correctness requirements are specified as safety and liveness properties

and verified with the Spin model checker.

7

Chapter 4 presents the contractual business–to–business formal model (CB2B)

that essentially models a contract compliance checker system inspired by the CCC

system. This also explained how the input language Promela of the Spin model

checker is extended to specify different elements of the contract such as role player,

business operation, rights, obligations and prohibitions. Finally, the representation of

a contract model and its verification process are demonstrated in a number of simple

examples.

Chapter 5 presents a number of case studies. The developed tool is used for the

representation and verification of several contracts in which the contract rules are

derived from natural language contracts, these then modeled as ECA rules written

in extended Promela and verified with the Spin model checker. Errors are injected

into the models to see how they would be detected using the verification procedure.

Finally, Chapter 6 discusses future research directions and gives the conclusions of

the present work.

8

Chapter 2

Background and related work

This Chapter presents general background information about contracts, and concen-

trates on business contracts that are used to regulate electronic business-to-business

interactions. The relevant literature of contract representation approaches, contract

conflicts and contract analysis tools is reviewed. The range of notations which aim to

represent contract clauses are examined from different perspectives, and then different

approaches to the representation of contracts are exemplified, including classic logic

based notations [10], deontic logic based contract languages [45], visual notations [14]

and other representations based on finite-state-machines (FSM) [49, 51].

The next section briefly reviews electronic contracts in the world of computing

and describes their functional requirements. In this work we focus on the terms and

conditions of business–to–business (B2B) legal contracts concerned with purchase

orders fulfilment, supply chain management etc., rather than service level agreements

(SLAs) that specify quality of service, such as bandwidth and response. Subsequent

sections then review the notations used for representing contracts and their temporal

aspects as well as contrary-to-duties (CTDs) and contrary-to-prohibitions (CTPs)

[45].

9

2.1 Functional aspects of a contract

The functional aspects of a contract are determined by constraints imposed concern-

ing rights, obligations and prohibitions and temporal aspects specifying deadlines

associated with them. For instance, in terms of its functional requirements, some

entities of the storage service contract shown earlier (Page 2) are role players (service

provider, client), business operations (use, exceed and suspend), rights(use up to 100

GB), obligations (suspend when maximum quota 120 GB is exceeded).

Figure 2.1 depicts a general view of the main entities comprising a business con-

tract. Informal descriptions of the functional requirements of a business contract are

given below.

Contract

Role Plyers Business Operations

Rights, obligations and Prohibitions

R1 R2

Rn

O1 O2

On

P1 P2

Pn

RP1 RP2

RPn

BO2

BO1

BO3

Figure 2.1: Contract entities

• Role player - an agent employed by one of the interacting parties, that takes

on and plays a role defined in the contract. For example, client and service

provider are instances of role players.

• Business operation - an activity defined in the contract for the ultimate purpose

of producing value, executed as a shared interaction between two role players

10

using a B2B messaging protocol (e.g. [13]). Business operations constitute the

vocabulary of a business contract, for example use, bring Quota back, pay and

suspend are examples of business operations.

• Right or permission - is a business operation that a role player is allowed to

execute. For example, the client has the right to use 10 gigabyte of the storage

service.

• Obligation - is a business operation that a role player must execute, or face

the penalty of being sanctioned. An example of an obligation is to pay for an

invoice within 72 hours after receiving it.

• Prohibition - a business operation that a role player must not execute, or face

the penalty of being sanctioned. An example of a prohibition, it is not allowed

to exceed the maximum quota of storage service.

2.2 Machine-readable contracts

In order to implement machine-readable business contracts or e-contracts, it is neces-

sary that the unstructured contract document is transformed into rigorous contract

representation. This is an important phase, since it can help e-contract developers

to analyse the complex and hard-to-detect interdependencies between the contract

clauses. Moreover, the contract rules can easily be transformed into programming

languages and processed by e-contract systems such as compliance monitoring ser-

vices. This section first introduces the general issues concerning the representation of

contracts in a machine-readable notation, and reviews the work that has been done

by many researchers to develop different notations aiming for contract representation.

The following client/provider contract example will be modeled using different

contract notations that will be reviewed in this Chapter, it is inspired by previous

11

research [10] that discusses different contract representations down to the system–

state level of granularity.

A testing service provider (TSP) will do the testing job and deliver the

testing-report to the client within 2 days from receiving the testing-job

order. The client, in turn, will make payment within 5 days from the date

of receiving the report. If the TSP does not deliver the report on time,

then a fixed amount is to be deducted from the price for each day for

delay for up to 3 days. If the client does not produce payment on time,

then a fixed amount is to be added to the price due for each day of delay

for up to 3 days.

In a machine–operated contractual business world, the constraints of a contract

similar to the above are written in an executable format. So, it is required for such

systems that different contract states have to be determined during the contract

execution. For example, an acceptable state of contractual business exchange is a

state in which contract parties have fulfilled their obligations, whereas a tolerable

state is a state in which contract party’s violations can be endured with sanctions,

and finally an unacceptable state is a violation of the contract constraints [10].

As a result, different properties of the contract in force can be analysed, and

e–contract systems can keep track of the evolution of a contract execution from its

initial state to the current state of business exchange. From a business perspective,

this is important for auditing purposes, likewise; from a technical perspective it is

important in order to invoke the appropriate contract clause or its exception in the

appropriate state, so that business evolves as expected.

12

2.2.1 Formal contract language (FCL)

The formal contract language (FCL) [10] adapts notations found in modal languages

such as modal action logic which syntactically define the state space of business ex-

change. The proposed language is a high level representation of contract states and

transitions; it is capable of representing the temporal elements of states and transi-

tions in a contract. Each state in FCL corresponds to descriptions of the contractual

business exchange. The propositions considered in the FCL language are factual and

normative propositions. The factual propositions concern the properties according to

which the business exchange is conducted in the real world, such as testing-orders have

been submitted or the customer’s debts have been cleared ; whereas normative propo-

sitions state the permissions, obligations and prohibitions that describe the deontic

status of business participants, for example the customer is forbidden to cancel orders

after 24 hours, or the TSP has the right to cancel orders at any time. The language

uses first order logic for the factual propositions and employs deontic modalities for

normative propositions.

A simple notation have been used in FCL to model business e-contracts. The

normative propositions can take the form such as ∆AX. Here ∆A is a deontic operator

(O for obligation, P for permission) imposed on a contract party A, and X itself is a

factual or normative proposition, read as: the contract party A has a legal relation

∆ to bring about X. For example, if a clause states that: the TSP is obliged to

Submit the Testing Report to the Customer, the FCL would specify this obligation

as: OTSPTesting Report - representing the obligation OTSP that the TSP must submit

the Testing Report or he will be considered to be violating the agreement.

Transitions in FCL correspond to actions by contract parties which alter the cur-

rent state of the contractual business exchange. Labels of the form A : X denote

that a contract party A has performed the appropriate action.Similarly, labels such

as not A : X denote that it is not the case that the contract party A has performed

13

the appropriate actions. In each state the transitions advance by evaluating both

the active regulatory elements of the contract, such as permissions, obligations and

prohibitions and the actions performed by the contract party responsible.

2.2.1.1 FCL expressions and axioms

FCL language expressions of the form [τ]P denote that P necessarily holds in all

states that are reachable following transition τ , which is the label for a transition.

In a similar way, expressions such as ¬[τ]¬P denote that P possibly holds in states

that are reachable following transition τ . An expression such as 〈τ〉T hold at a state

S, when there is a transition labelled τ out of S, where T is the constant symbol for

true; []P denotes that P is true in all states. The FCL can also specify temporal

elements of the contract. For example, (A : X)t denotes that contract party A needs

to conduct an action about X at time t, or (∆AX)t denotes that agent A has a

pending ∆ about X at t, where t may specify absolute or relative temporal relations

such as (before(t1), after (t2) or between(t1 , t2)).

Axioms can also be added to contract representations written in FCL. For example,

there could be an axiom which states that in any state of the business exchange where

a contract party bears an obligation it is always possible for him to fulfill the pending

obligation. Similarly, at any state another axiom could state that the obligation

can possibly be violated. Axioms of this type could be respectively specified as

follows, where A ranges over contract parties and X ranges over states of the business

exchange:

[](OAX → 〈A : X〉 T)

[](OAX → 〈not A : X〉 T)

14

2.2.1.2 FCL contract example:

For a contract example specified in this FCL language, recall the TSP/client con-

tract introduced in the previous section. The initial state S0 in a business exchange

regulated by this contract can be characterised by:

OTSPTestingReport

〈TSP : TestingReport〉 T

〈not TSP : TestingReport〉 T

OTSPTestingReport denotes an obligation on the TSP to deliver the Testing

Report to the client. The TSP can discharge this obligation 〈TSP : TestingReport〉

T and deliver the TestingReport to the Customer or he can choose not to do so

〈not TSP : TestingReport〉 T . The business exchange in state S1 which follows the

transition labeled 〈TSP : TestingReport〉 T would be characterised by:

TestingReport

¬OTSPTestingReport

OCustomerPay

〈Customer : Pay〉 T

〈not Customer : Pay〉 T

In this representation of the contract, Pay stands for payment is made by the

customer, and the normative proposition ¬OTSPTestingReport asserts that the TSP’s

obligation to submit the testing-report is discharged. As shown in the first obligation

on the TSP at S0 the expressions 〈Customer : Pay〉 T and 〈not Customer : Pay〉

T provide two options for the Customer to Pay or not to Pay respectively. A partial

representation of the contract is characterised by:

initial

OTSPTstRpt

¬TstRpt

¬Pay

15

where TSP refers to the Testing Service Provider, and TstRpt implies the submission

of Testing Report.

(1)[](OTSPTstRpt → [TSP : TstRpt](TstRpt∧OCustomerPay∧¬OTSPTstRpt))

(2)[](OTSPTstRpt → [not TSP : TstRpt](¬TstRpt ∧ ¬OCustomerPay ∧

¬OTSPTstRpt ∧OTSPTstRpt′ ∧ tolerable))

(3)[](OCustomerPay → [Customer : Pay](Pay ∧ ¬OCustomerPay ∧ final))

(4)[](OCustomerPay → [not Customer : Pay](¬Pay ∧ ¬OCustomerPay∧

OCustomerPay′ ∧ tolerable))

(5)[](OTSPTstRpt′ → [TSP : TstRpt′](TstRpt′ ∧ ¬OCustomerTstRpt′∧

OTSPPay′′))

(6)[](OTSPTstRpt′ → [not TSP : TstRpt′](¬TstRpt′ ∧ unacceptable))

continue.........

The initial state of this contract is interpreted as follows. The contract starts

with an obligation on TSP to submit the TstRep (OTSPTstRep), the TstRep has not

been delivered yet (¬TstRep), and still no payments have been made (¬Pay). The

predicates initial, final, tolerable and unacceptable in some of the expressions deter-

mine the specific states of the contractual business exchange. In order to illustrate

the tolerable state for example, we consider clause (2) and (6) in the FCL contract

above. In clause (2), the contract tolerates failure to the obligation to submit test-

ing report OTSPTstRpt by another obligation OTSPTstRpt′. In the second obligation

OTSPTstRpt′ the contract party TSP is given a chance to fulfil his obligations (maybe

with sanctions), whereas in clause (6) the second violation to submit the report will

be considered as unacceptable state and might cause to terminate business exchange

between the contract parties. The contract language FCL introduced here highlights

important aspects of the executable notation of e-contracts, it has shown important

different states that need be considered by all e–contract representation notations.

16

2.2.2 The contract language (CL)

Contract language (CL) [19, 45] is another high level language for the representation

of business e-contracts. It is a combination of deontic, dynamic and temporal logics

for the representation of obligations, permissions and prohibitions and their tempo-

ral aspects. The language can also specify exceptional behaviours arising from the

violation of the contract’s obligations or prohibitions.

2.2.2.1 CL syntax

The language of CL defines a contract specific syntax. The developers of CL resem-

ble the syntax of deontic logic to model the contract clauses. Basically, the con-

tract clauses CO, CP and CF denote respectively obligation, permission, and prohibi-

tion clauses. The language also gives mean to specify exceptional behaviours arising

from the violation of obligations and of prohibitions. These respectively known as

Contrary-to-duties (CTD) and contrary to prohibitions (CTP). CL contract are writ-

ten using the following syntax [19]:

C := CO | CP | CF | C ∧ C | [β]C | ⊤ | ⊥

CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α)

α := 0 | 1 | a | a | α & α | α;α | α + α

β := ǫ | 0 | 1 | a | a | β & β | β ; β | β + β | β∗

A contract clause written in CL language is specified as an obligation CO, per-

mission CP or prohibition CF . The conjunction of two clauses is C ∧ C, which is

intuitively understood as both clauses have to be satisfied. A clause can be preceded

by the dynamic logic square brackets [β]C where β is the condition which precedes

the clause C. This is interpreted as, if action β is performed then the contract C must

be executed; if β is not performed, the contract is trivially satisfied. The symbols ⊤

17

and ⊥ refer to a trivially satisfied contract and impossible contract respectively; the

former is a contract that is satisfied by any sequence of actions whereas the later is

the contract that cannot be satisfied with any sequence of actions. Note that, instead

of F⊥(α) or O⊥(α), a trivially satisfied contract clause can be simply written as F (α)

or O(α) to denote obligations without violations and prohibitions without violations

respectively. An obligation OC(α) must be satisfied by an implicitly responsible con-

tract party, or in case of violation a reparation C (exception) has to be executed. An

obligation can also be specified as an exclusive disjunction of two other obligation

clauses (CO ⊕ CO) to satisfy only one of them. The forbidden action FC(α) means

that the specified action is forbidden and in case of violation where the action is

performed then a reparation C has to be executed. With CL different operators can

be used to construct action expressions from basic ones:

• (&) stands for concurrent actions.

• (;) stands for actions to occur in sequence.

• (+) stands for a choice between actions.

• ∗ is the Kleene star.

• The complement of an action (.) such as a is a.

Consider this clause from an Internet service provision contract: when the band-

width limit is (e)xtended, the client has two obligations to choose from: either to

(p)ay or (d)elay and (n)otify, in case of violation the price must be paid twice. This

would be represented in CL as: [e]OO(p;p)(p + d&n)

The basic actions of this contract are A = {e, p, n, d}. Executing this expression is

conditional upon the action e. If it occurs, there is an obligatory choice between p or

d&n is activated. If violated, the reparation O(p; p) is another obligation for paying

at double the price, where the double occurrence of p implies payment twice. The CL

18

language expression shown above does not offer reparation for the double payment

obligation (O(p; p)). This means that if the latter obligation is violated then the

whole contract is violated.

2.2.2.2 CL contract example

In this example, the TSP/client contract from the previous sections can be written

with CL syntax [19] as follows:

1− [ContractStart]OO[2Days](TSPSubmitTstRep)
(TSPSubmitTstRep)

2− [TSPSubmitTstRep]OO[5Days](CPayForTstRep)(CPayForTstRep)

3− [TSPSubmitTstRep]O[3Days](TSPSubmitTstRep′)

4− [TSPSubmitTstRep′]O(TSPPayF ine)

5− [CPayForTstRep]O[5Days](CPayForTstRep′)

6− [CPayForTstRep′]O(CPayFine)

The CL contract lines from 1-6 specify the obligations on contract parties (TSP

and client) and reparations for their violations. A commencement date is assumed

represented by the action ContractStart. The first line provides a reparation clause

to the action TSPSubmitTstRep, that the TSP submitted testing report to the client,

which is to tolerate the TSP’s failure to submit the report so that he can re-submit

within 2 days (O([2Days](TSPSubmitTstRep)). The second line is conditional upon what ap-

pears in the square brackets [TSPSubmitTstRep]. If the condition is satisfied then the

client is supplied with an obligation to pay for the testing service (CPayForTstRep);

and in case of failure, it is given a reparatory choice O[5Days](CPayForTstRep)

which is conditional on an incremental fine within five days. The fourth and sixth

lines specify obligations to pay fines when the clauses in lines 3 or 5 are violated.

19

2.2.3 Contract-oriented diagram (C-O diagram)

Contract-oriented diagram (C-O diagram) [34] introduces an approach for the spec-

ification of e-contracts in a more user friendly way. It is based on visual models

to enhance the perception of knowledge, and the intuitive understanding, reading

and maintenance of electronic contract specifications. This visual model defines a

hierarchical tree diagram used to specify contract clauses.

2.2.3.1 C-O diagram visual elements

Figure 2.2 depicts the basic element of a C-O diagram called a box. This box corre-

sponds to a contract clause with four fields in order to specify the normative aspects:

legal relations of the contract P, reparation R, conditions g and time restrictions tr.

P R

g

tr

agent

name

Figure 2.2: C-O diagram box structure

Each box can be identified by a name and agent, or contract party. The name

uniquely describes the intended clause and references the box from other clauses. The

agent indicates who is the actor behind the action to be performed. The left-hand

side of the box specifies the conditions and restrictions. The guard (g) specifies the

conditions under which the contract clause must be taken into account. The time

restriction (tr) specifies the time frame in which the contract clause must be satisfied.

The propositional content (P), in the centre, is the main field of the box, and it is

used to specify the normative aspects of obligations, permissions and prohibitions

that in relation to actions, and/or the actions themselves. The other field in these

boxes, on the right-hand side, is the reparation (R). This reparation, if specified

20

by the contract clause, is another contract that must be satisfied in cases where the

main norm is not satisfied, considering that the clause is eventually satisfied if this

reparation is satisfied.

Caluse Caluse

Sub Caluse1 Sub Caluse 2Sub Caluse1 Sub Caluse 2

Or-refinementAnd-refinement

Figure 2.3: AND/OR refinements

Caluse Caluse

Sub Caluse1 Sub Caluse 2Sub Caluse1 Sub Caluse 2

Or-refinementAnd-refinement

Figure 2.4: SEQ refinement and repetition in C-O diagrams

2.2.3.2 Refining C-O diagrams

The basic elements of a C-O diagram can be refined by using AND,OR,SEQ re-

finements (see Figures 2.3 and 2.4). Intuitively AND-refinement and OR-refinement

imply respectively both of the contract subclauses or only one of them must be sat-

isfied. The SEQ refinement is used to specify a temporal relationship of a sequence

between the contract subclauses. Note that C-O diagrams implement a hierarchical

structure in which a parent clause is only considered fulfilled if its subclauses are

fulfilled. In this way, a hierarchical tree is built with the clauses defined by the con-

tract, where the leaf clauses correspond to clauses that cannot be divided into further

subclauses. Repetition in C-O diagrams is represented as an arrow going from a sub-

clause to one of its ancestor clauses or to itself, as shown in Figure 2.4. This means

the repetitive application of all the subclauses of the target clause after satisfying the

21

source subclause. It is worth mentioning that, instead of the formal contract nota-

tions shown in the previous subsections, the C-O diagram visual model is introduced

in order to provide an alternative approach for those untrained final users who want

to use formal representations of contracts.

2.2.3.3 An example using C-O diagrams

Our running example can be specified using this visual notation to illustrate the com-

pound action, propositional content (P), guard (g) and reparation (R).

Clause Agent Modality Action Reparation

C1 TSP Obligation

(O1)

Submit testing report within 2

days (a1)

TSP pays penalty for each

day delay (max 3 days) (r1)

C2 Client Obligation

(O2)

Make payment within 5days

after receiving the report (a2)

Client pays penalty for each

day delay (max 3 days) (r2)

Table 2.1: Norms of the TSP/client contract example

SEQ

Submit Pay

TSP

Client

-

O a1

O a2

TSP\Client contract

Figure 2.5: Top level C-O diagram of TSP/client contract

22

 Submitted

TSP

O a1

2 days

O r1

Submit Late submition

OR
Submit

O a1 O a1

TSP TSP

(a)

 Paid

Client

O a2

5 days

O r2

Pay Late payment

OR
Pay

O a2 O a2

Client Client

O rn

No payment

O r2

 Paid

3 days

Pay

OR

O r2

Client Client

(b)

Figure 2.6: (a) Decomposition of clause Submit (b) Decomposition of clause Pay
and the reparation clause Late payment.

23

Figure 2.5 shows the top level of the C-O digram; it shows a sequence (SEQ)

relationship between the contract obligations Submit and Pay (see Table.2.1)). The

decomposition of clause Pay into subclauses can be seen in Figure 2.6(b). Using the

‘OR’ operator in this decomposition implies that one of the two obligations can be

chosen; a client can pay within 5 days so that the obligation (Oa2) is discharged, or,

as a reparation, the Late payment clause would handle this deviation and add the

agreed upon penalty amount. The hierarchical representation of the contract using

C-O digram has increased the perception of the the CL language discussed in the

previous section.

Through the visual notation in the C-O Digram, a contract developer can recognise

some of the conflicts in contract and identify them visually. For example, two boxes in

a C-O diagram intend to represent two obligations may reveal contradictory actions

imposed on the contract parties. For example a contract party is permitted and

forbidden to do the same action, obliged and forbidden to do another action, etc.

However, contract conflict detection with C-O diagrams is still a manual process

relying on human capabilities.

2.2.4 X-Contract language

In the X-Contract language [49], contracts are modelled as finite state machines

(FSMs) [24], with one FSM for each contracting party. With X-Contracts relevant

parts of standard conventional contracts can be described by means of FSMs. Such

a description becomes quite suitable for model checking [49]. The following example

shows how business contract clauses are represented as X-Contracts:

24

1. Offer

(a) The supplier may use his discretion to send offers to the purchaser.

(b) The purchaser is entitled to accept or reject the offer, but he shall notify his
decision to the supplier.

2. Commencement and completion

(a) The contract shall start immediately upon signature.

(b) The purchaser and the supplier shall terminate the contract immediately after
reaching a deal for buying an item.

From the contract in English text, the sets of rights and obligations for the pur-

chaser and the supplier are extracted and then expressed in terms of operations for

FSMs. What follows is the set of rights and obligations extracted from the contract

document:

• Purchaser’s rights

– SendAccepted (right to accept offers)

– SendRejected (right to reject offers)

• Purchaser’s obligations

– StartEcontract (obligation to start the contract)

– SendAccepted or SendRejected (obligation to reply to offers)

– EndEcontract (obligation to terminate the contract)

• Supplier’s rights

– SendOffer (right to send offers)

• Supplier’s obligations

– StartEcontract (obligation to start the contract),

– EndEcontract (obligation to terminate the contract)

Figure 2.7 shows how the sets rights and obligations are mapped into FSMs. For

the validation of X-Contracts with Spin model checker, the X-Contract shown in

this example is converted manually into Promela and then verified automatically.

With regard to our research, two important observations follow from this example:

25

waiting for
offer

Decideing
to buy

End

Deal

ContractSigned

StartContract

Purchaser

OfferRejected

SendRejected
7DayTimeOut

εOfferRcvd
ε

OfferAccepted

SendAceepted ,
EndContract

Editing
offer

Waiting for
response

End

Deal

ContractSigned

StartContract

Supplier

OfferEdited

SendOffer
7DayTimeOut

εOfferRejectRcvd
ε

OfferAcceptedRcvd

EndContract

Disbute

5DayTimeOut

ε

Figure 2.7: Buyer and Seller Contract FSM

(i) it shows that the challenging task of converting contracts written in the English

language into mathematically rigorous notation such as FSMs is achievable; (ii) this

suggests that the analysis of contract correctness requirements can be performed

mechanically, for example, via model checking techniques. However, a limitation of

FSMs in modeling contracts is that although FSMs can capture a ‘change’ of the

contract, but cannot elegantly describe it in terms of its internal data, or the changes

in this data that occur after the execution of each business operation in the state

transition diagram. In other words, the expressive power of FSMs mainly lies in

modelling the control part of the contract.

2.2.5 EROP contract language

The language of EROP [50] standing for events, rights, obligations and prohibitions.

Unlike the contract languages discussed so far, a contract model specified in EROP

26

can easily be transformed into an executable e-contract notation and monitored or

enacted by the appropriate e-contract systems. The EROP language can be used for

describing business contracts with event-condition-action rules (ECA) that explicitly

manipulate the partners rights, obligations and prohibitions. ECA rules are then

used to monitor contract compliance [50]. The concepts thast underpin this language

are described in Chapter 3 as we will be using them in our work as well. The main

constructs of the EROP language are the declaration sections and the contract rule

base. In the declaration section EROP defines data types such BusinessOperation,

RolePlayer and allow contract rights, obligations and prohibitions to be initialised.

The ECA rules of EROP are expressed as follows:

e ≡(Business event), c1 → a1; ...; cm → am; where c1, ..., cm are mutually exclusive

conditions for compliance checking and a1, ..., am are actions. When the business

event arrives and condition ci holds, action ai is executed. In general conditions and

actions can be composite, in that they might consist of several primitive conditions

and actions. Also, conditions that always evaluate as true can be omitted; this results

in simpler rules of the form e ≡ (Business event) → a.

2.2.5.1 Buyer/Seller contract

A hypothetical EROP contract [38] between buyer and seller is shown below, in

which clause C1 grants the buyer a right; and clause C2 imposes an obligation on the

seller. Clause C7 is an example of clauses that take into account problems caused by

infrastructure level problems; such problems can be referred to as business problems,

indicating problems caused by semantic errors in business messages which prevent

their processing, and technical problems such as problems caused by faults in networks

and hardware/software components [38, 50].

• C1 - The buyer has the right to submit a Purchase Order (right), between 9 am
and 5 pm, Mon to Fri.

27

• C2 - The seller has the obligation to respond to the purchase order with accep-
tance or rejection within 24 hours (obligation).

• C3 - The seller’s failure to respond to the Purchase Order within the 24 hours
deadline will result in abnormal contract termination with offline settlement.

• C4 - If the purchase order is accepted, the seller is obliged to submit an invoice
within 24 hours (obligation).

• C5 - The buyer has the obligation to pay the due amount within seven days of
receiving the invoice (obligation).

• C6 - The seller is obliged to deliver the goods within seven days of receiving
payment (obligation).

• C7 - This contractual transaction terminates when either

– C7.1 - The seller rejects the purchase order, or

– C7.2 - The seller successfully delivers the goods.

2.2.5.2 Modelling Buyer/Seller contract in EROP

Here we show how the previous contract can be modelled in EROP rule base notation.

This is a manual process in which the user of the language identifies the role players of

the contract and the business operations subject to regulation by the contract rules.

The following set of the contract rules are derived from clauses C3, C4, C6, C7 and

C8 of the above contract. The declaration section contract also shows rule players

and business operations as declarations of EROP abstract data types, a complete

reference to EROP can be found in [50].

Contract Declaration:

RolePlyer buyer, seller;

BusinessOperation POSubmission, Invoice, Payment, POCancellation, Refund;

BusinessOperation GoodsDelivery, POAcceptance, PORejection;

The following contract rules are derived from clauses C3 and C4 of the above

contract:

28

Rule "R3"

when

e matches (botype == "POAcceptance",

outcome == "Success"

originator == "seller",

responder == "buyer")

RespondToPO in seller.obligs

then

seller.obligs -= RespondToPO;

seller.obligs += Invoice("24h");

end

Rule "R4"

when

e matches (botype == "Invoice",

outcome == "Success",

originator == "seller",

responder == "buyer")

Invoice in seller.obligs

then

seller.obligs -= Invoice;

buyer.obligs += Payment("7d");

end

In the following, Rule 6 is derived from C6 and C7, while Rule 8 is derived from
clause C8.

Rule "R6"

when e matches (botype == "Payment",

originator == "buyer",

responder == "seller"),

Payment in buyer.obligs

then

Success:

buyer.obligs -= Payment;

seller.obligs += GoodsDelivery("7d");

TecFail:

BizFail:

buyer.obligs -= Payment;

buyer.obligs += Payment("7d");

seller.rights += POCancellation();

Otherwise:

pass;

end

Rule "R8"

when

e matches (botype == "Payment,

"originator == "buyer",

responder == "seller")

e.outcome != "Success"

counthappened("Payment", "buyer",

"seller", "InitFail", "*")

+ counthappened("Payment", "buyer",

"seller", "TecFail", "*")

+ counthappened("Payment", "buyer",

"seller", "BizFail", "*") >= 3

then

terminate("TecFail");

end

The contract rules R3, R4, R6 and R8 show samples of the EROP language repre-

sentation contracts. The rules are distinguished by unique names and each rule is

triggered by an event ‘e’ of a particular type. For example R3 identifies contract rule

that handles a notification of purchase order acceptance (POAcceptance). The rule’s

header (When part) is encoded to monitor business events ‘e’ of type POAcceptance,

which is an event expected to be originated by the seller and responded to it by the

buyer. The rule also encoded to check, in the seller’s ROP set, that the seller is obliged

to respond to buyer or not. Thus, the rule header is guarded by the occurrence of the

29

POAcceptance business event as well as the other fields shown in the ‘When’ part of

the rule. The consequences part of the rule (Then part) is encoded to discharge the

obligation on the seller to respond to the buyer and adds a new obligation on her to

send the invoice within 24 hours.

The implementation of the other rules R4, R6 and R8 is not different from R3 that

discussed. Small additions to R6 and R8 is that in R6 the rule is encoded to handle

business failures (BizFail) and in R8 the rule is encoded to cope with no more that

3 business failures and technical failures all together. Rule 8 shows as a consequence

of exceeding the threshold of failures would cause contract termination. Note that

the declaration part of EROP language shown above the rules is used to declare the

business operations used in the contract, role players and any other variables needed

to encode the contract rules

2.3 Contract conflicts

The previous sections have shown how contracts found in the business world may

serve as a basis for defining machine-oriented contracts (e-contracts). Ideally the

electronic representation of contracts should be shown to be contradiction-free. This

is a necessary requirement prior to implementing an executable version of contract

for compliance monitoring or enactment.

The types of conflicts arising in systems where the behaviour of participants is

regulated by norms are classified in [23]. For example, conflicts in a system of norms

can arise when a pair of norms have an opposite subject and compliance with one

norm causes conflict with another. This conflict is identified by legal philosophers

using the impossibility-of-joint-compliance test; other researchers resolve this conflict

through an obedience statement for a norm, which is basically a proposition stating

what the subject to a norm can do if he obeys the norm so that the conflict can be

30

detected when two norms are logically inconsistent. Another conflicts are clash or

collide [23], when an agent is in a situation where its actions or omissions result in

the violation of an obligation, or result in the violation of a permission.

In fact, many of these conflicts can be encountered in business contract specifica-

tions. It can be argued that electronic contract rules that are consistent with standard

deontic logic SDL [5], the logic of permissions, obligation and prohibitions, may not

pose any direct inconsistencies for a contract party’s actions, so that the contract

party will never find himself in a situation where he will be obliged to perform and at

the same time prohibited from performing an action or bringing it about. However,

indirectly inconsistent situations cannot be avoided even with the SDL language. For

instance, it may be the case that it is obligatory for a client to pay a provider upon

receipt of ordered goods, and simultaneously it may be prohibited for the client to

pay using credit cards for some reason, yet a credit card may be the only way for the

client to perform payment.

A previous study has identified four different causes of conflicts in contracts [18].

The first two are being both obliged and forbidden to perform the same action (e.g.,

O(a) ∧ F (a)), and being both permitted and forbidden to perform the same action

(e.g., P (a) ∧ F (a)). The other two kinds of conflicts correspond to obligations to

perform contradictory actions (e.g., O(a) ∧ O(b) with a#b), and permissions and

obligations concerning contradictory actions (e.g., P (a)∧O(b) with a#b), where a#b

means that actions ‘a’ and ‘b’ are mutually exclusive.

Conflicts could be encountered in business contracts when more than one rule

appears to be applicable [26]; consider the following example:

Rule A - if customer returns the purchased e-ticket for any reason, within 7 days,

then the purchase amount, minus a 10% penalty fee, will be refunded.

Rule B - if customer returns the purchased e-ticket because the flight is canceled

by the seller (travel agent), before the due date, then the full purchase amount will

31

be refunded.

A conflict would occur if the ticket is canceled by the seller in the overlapping

period between rule A and rule B within 7 days from the ticket issuing date, so both

rules are applicable. This conflict between rules A and B can be solved through the

use of priority rule as shown below:

Priority rule (A and B) - if both rule A and rule B are applicable, then rule B

must be applied, so the full purchase amount will be refunded.

The priority rule applies in situations when the customer returns the e-ticket

within 7 days because the flight is canceled. In this case rule A and B conflict by

each other. This conflict can be easily resolved by the priority rule which gives higher

priority to rule B than rule A.

2.4 Analysis of contract conflicts

Contract analysis is a process aimed at detecting potential errors that can be intro-

duced by inconsistent contract clauses. As discussed above, contracts could contain

inconsistencies in the form of conflicting clauses. For instance, two or more clauses

could conflict or be inconsistent if in certain conditions one of the rules is triggered

by an event but the actions defined in the body of the rules contradict some other

rules. Different tools have been used for the verification and analysis of contracts,

most of which are model checkers. For example the Spin model checker is used for the

verification of safety and liveness properties of e-contracts [36]. The use of Spin has

been demonstrated for validating an ECA rule based contract compliance checker that

monitors the interactions between business partners. The same Spin model checker

has also been used for the verification of Web service specifications modeled as syn-

chronous interactions [21]. Other model checkers such as MCMAS [3], NuSMV [7],

VeriSoft [22] and CLAN [19] have also been successfully used for the verification of

32

contracts. For example, the specification of contract regulated service compositions

written in WS-BPEL are translated into timed automata which are automatically

verified by the MCMAS model-checker [4]. The NuSMV model checker is also used to

verify the properties of contracts written in CL contract language [41]. The VeriSoft

model checker has been suggested for the validation of business processes [53]. Petri

nets [39] are also used to model the behaviour of the participants of a contractual

protocol, where a process view of agreements between parties means that a contract

is modelled as it evolves over time in terms of actions or more general events that

effect changes in its state [9]. CLAN is another model checker that is implemented

for performing the automatic analysis of conflicting clauses written in CL language.

This is not a general model checker however, but was designed and implemented only

for the verification of contracts written in CL language.

We have seen that different model checkers have been successfully used for the

analysis of contract properties. Next we discuss the main principles of model checking

using Spin model checker. Notice that, apart from the contract–dedicated model

checker CLAN, the principles of model checking with Spin are quite similar to the

other model–checker introduced in this section.

2.4.1 Principles of model–checking (using Spin)

Spin [27] is a freely available, mature and well documented model checker designed

to validate the correctness properties of asynchronous process systems. It validates

abstract models written in the Promela language against safety and liveness correct-

ness claims that can be expressed as basic assertions and linear temporal logic (LTL)

formulae [28]. Recall that safety is concerned with a program not reaching a bad state

and that liveness is concerned with a program eventually reaching a good state [33].

In response to the detection of a violation of a given property, Spin produces coun-

terexamples that show how the property was violated. A counterexample is actually

33

an execution trace from the initial state of the model through to the state where

the violation of the property takes place. Figure 2.8 depicts the Spin structure: in a

Promela model describing the behaviour of a system, and an LTL property expressing

a correctness property that the Promela model is expected to observe are presented to

Spin for analysis. Spin produces a counterexample if the LTL is violated, otherwise,

it outputs nothing.

Promela model

LTL property

Spin Counter-
example

Figure 2.8: Spin structure

Promela is a process modeling language, which can generally be seen as a fairly

standard imperative programming language although it does have some novel fea-

tures. Its intended use is for describing concurrent systems. It is a non-deterministic,

multi-process language which incorporates guarded commands and communication

channels. Processes are global objects that represent the concurrent entities of the

distributed system. Message channels and variables can be declared either globally

or locally within a process. Processes specify behavior, channels and global variables

define the environment in which the processes run. Given a program in Promela,

Spin verifies the model for correctness by performing random or iterative simulations

of the modeled system’s execution, or it can perform an exhaustive verification of

the generated system’s state space. During simulations and verifications, Spin looks

for the absence of deadlocks, unspecified receptions, and unexecutable (dead) code.

The verifier can also be used to prove the correctness of system invariants and it can

34

find non-progress execution cycles. Finally, it supports the verification of linear time

temporal constraints by formulating them in temporal logic formulae. Each model

can be verified with Spin under different types of assumptions about the environment.

Once the correctness of a model has been established, that fact can be used in the

construction and verification of subsequent models.

2.4.2 Analyzing x-contracts with Spin

Analyzing x-contracts with the Spin model checker relies on model-checking algo-

rithms to determine whether or not a contract model satisfies a list of correctness

requirements. The validation process following a widely used model-based validation

approach for validating such requirements, including correct commencement, prece-

dence, and the absence of livelocks as defined in a previous study [49]. With the Spin

model checker, the correctness requirements of an x-contract are specified as safety

and liveness properties through linear temporal logic. Informally, a safety property is

a statement which claims that something bad will not happen, and a liveness property

is a statement which claims that something good will eventually happen. Further-

more, it can be argued that most correctness requirements in traditional business

contracts can readily be expressed either as safety or liveness properties [49].

For the verification of the safety and liveness properties of a contract, an x-contract

has to be derived and represented as a set of FSMs, one for each of the contracting

parties that interact with each other. Conceptually this assumes that an FSM is

located within each contracting party and that these FSMs communicate with each

other through communication channels.

In order to use the Spin model checker for the verification of x-contracts, the

first step is to convert the FSMs into Promela language. After that, Spin can by

default verify general safety properties that must hold true for any x-contract, for

example deadlocks. The validation of the remaining specific safety properties is done

35

through simple assertions inserted within the Promela code. Through these steps,

the validation of x-contracts with Spin follows the classical model checking technique

of software systems.

2.4.3 Analyzing EROP contracts with Spin

Spin has been used for the validation of EROP contracts specified as a set of ECA

rules. In a practical approach, an abstracted model of a contract compliance checker

(CCC) [51] system has been modelled as a reactive system, converted into Promela

and validated with Spin to observe the properties of interest which are regarded as

safety and liveness properties. This checks the consistency of the ECA rules and

the behaviour of the CCC in response to both valid, or contractually compliant or

invalid events erroneously supplied by the parties. Other properties considered are

contract specific properties, such as deadline extensions granted exactly as stated in

the clauses and so forth.

In has been suggested that a large proportion of errors in ECA rules, such as rule

redundancy, submed rules or conflicting rules can be detected by conventional model

checkers [36]. With Spin, general types of potential errors that might be accidentally

introduced into ECA contract rules can be detected as violations of safety and liveness

properties, such as deadlocks, non-progress cycles, unexpected messages and incorrect

final states. With default settings, Spin has been used to validate these requirements

and for subtle errors linear temporal logic (LTL) expressions have been suggested to

verify rule conflicts.

2.4.4 Analyzing CL contracts with CLAN

Section 2.3.3 has described the contract language CL and demonstrated through

an example how it is used to specify the permissions, obligations and prohibitions

of contract clauses. A CLAN tool is used for the automatic analysis of conflicting

36

clauses in contracts written in the CL, and it enables the automatic analysis of the

contract for normative conflicts as well as the automatic generation of a monitor for

the contract [19].

CLAN has been implemented to verify the correctness of specific contracts written

in CL language. In particular CLAN considers the contract conflicts omitted in the

previous studies discussed in sections 2.4.1 and 2.4.2 using a different approach based

on deontic logic. For conflict analysis, the tool performs exhaustive search on clauses

written in CL language to detect conflicts that arise for four reasons [19]: (i) obligation

and prohibition on the same action; (ii) permission and prohibition on the same

action; (iii) obligation to perform mutually exclusive actions; and (iv) permission and

obligation to perform mutually exclusive actions.

2.5 Discussion

Model-checking tools have been successfully used by different researchers to reason

about contracts. The success model checking techniques for contracts arises from

their ability to operate on two specifications: the operational specifications of system

behaviour expressed as state-machines, Petri nets, for examples and the declarative

specification of behavioural requirements expressed in temporal logic [9]. However, a

disadvantage of these approaches is that contracts written in languages such as FCL,

x-contract and EROP still need to be re-written in the input language of the model

checker in order to be model checked. The only tool reviewed here that accepts direct

contract language is CLAN, which has been demonstrated in modelling a number

of contracts. However, the CL language itself is unable to express complex contract

clauses; for example, it is not possible to express basic arithmetic statements or declare

role players. Other special purpose tools for reasoning about policies for conflicts for

instance are also suggested in [12, 32, 38]

37

Several types of notation for the specification of contractual clauses and their

analysis tools have been reviewed in this chapter, others have been published [4, 6,

13, 31, 42, 47]. The main conclusion that can be drawn is that many of the existing

rigorous contract notations lack expressive power and are not very intuitively clear

for non-experts. The developers of these languages have not considered the close col-

laboration required between domain experts such as software engineers and business

managers. An exception to this statement would be the EROP language, whose devel-

opers have chosen to encode contract clauses as ECA rules because of the widespread

usage of such rules in the business world for representing business agreements. The

language offers a more user friendly notation likely to be familiar to non-experts who

might frequently want to discuss contract terms and conditions with software engi-

neers tasked to implement or analyse contracts. But although these features of the

EROP language are appealing, it lacks the soundness of other languages grounded in

well-established logics.

Moreover, subtle inconsistencies can be introduced via the ECA representation

of contract clauses. Examples of these inconsistencies are situations where there

is no rule to deal with payment or a situation where the rule that deals with the

payment is triggered twice and the client is double charged. Likewise, the rules

might allow conflicting situations where the client is simultaneously obliged to and

prohibited from submitting payment; or where the client is simultaneously permitted

to and prohibited from submitting payment. It is argued here that these logical

errors should be uncovered at the design stage and if possible corrected, in order to

prevent confronting policy managers with flawed rules that are likely to hinder proper

interactions between clients and providers.

38

2.6 Approach taken

Model checking is a widely accepted solution and is adopted in this study to develop

a tool to verify the correctness properties of contracts. However, as stated earlier

verification tools with means for directly and intuitively expressing key concepts that

often appear in contracts, such as executions of business operations, the granting,

cancellation, suspension, fullfilment, or violation of rights, obligations and prohibi-

tions for role players, are still lacking. We base our work on EROP model [38] and

the EROP language [50]. We develop an abstract version of the EROP language that

is directly verifiable using a general model checking tool Spin. The main advantage

of this approach are:

• Large class of business contracts can be represented as a set of ECA rules and
then verified with the Spin model checker.

• The ECA rules of the abstract version of EROP can be translated relatively
easily into executable concrete versions of EROP that run with a rule engine
(Drools [11]).

• Instead of the natural language contract, the ECA rules may be used as in-
termediate representations of the contract in communications between software
engineering team and business managers.

The next Chapter describes the EROP system [38] in more detail and defines the

practical contract compliance checking process by observing that business operations

executed by a role players must abide by rights, obligations and prohibitions, together

with any additional constraints, as stipulated in contract clauses. The Chapter then

explains how the EROP system is modelled as a reactive system, and how contract

correctness requirements are specified as safety and liveness properties and verified

with the Spin model checker. Following that, our toolkit based on EROP model and

EROP language will then be introduced and discussed in Chapter 4.

39

Chapter 3

The EROP model

The EROP language [50] was introduced in the previous Chapter. Here the underly-

ing model (contract compliance checker CCC) [38] that underpins the EROP language

is discussed in more detail; we describe its main components and its executable be-

haviour for monitoring contracts. The CCC model supports the representation and

monitoring of contracts, and is composed of an ontology and an architecture. It ob-

serves the interactions between business partners, forms an interpretation of their

outcome, and checks their contractual compliance by matching executed operations

with their sets of rights, obligations, and prohibitions, and by reacting accordingly to

them.

It is also discussed here that the CCC can be modelled as a reactive system,

and different properties of a contract then can be verified as safety and liveness

requirements using model checking techniques. The main concepts of EROP, its

contract compliance checker CCC and its input language (EROP) are underpinning

our toolkit for e-contract model checking that will be introduced in Chapter 4.

40

3.1 The Contract Compliance Checker

The contract compliance checker (CCC) is provided with an executable specifica-

tion of the contract in force and monitors business events related to the actions of

contract participants with the contract clauses specified in the rule-based and event-

driven EROP language. The language is used in a similar fashion to contracts in

natural language, where contractual clauses are expressed as business rules which are

conditional statements associating events and conditions to lists of actions altering

the rights, obligations and prohibitions of the contract participants.

3.1.1 Monitoring business events

The function of the CCC is to maintain a record of the observed events and act as an

arbiter to help provide answers to queries regarding fulfilling the contract obligations.

Figure 3.1 below depicts the logical communication paths between business partners

and the CCC. The interaction between partners takes place through a well defined

set of primitive business operations such as purchase order submission, invoice no-

tification, and so on; each operation typically involves the transfer of one or more

business documents.

InternetBuyer Seller

Contract Compliance
 Checker

(CCC)

 Business events

Figure 3.1: Contract regulated interactions

41

A business operation would normally be implemented by a business conversation.

This is a well defined message interaction protocol with stringent message timing and

validity constraints where, normally a business message is accepted for processing

only if it is timely and satisfies specific syntactic and semantic validity constraints.

RosettaNet Partner Interface Processes and ebXML industry standards serve as good

examples of such conversations [13, 30]. Following the ebXML specification [13], once a

conversation is started, or in other words a business operation is initiated, it is always

completed to produce an execution outcome event from the set {Success, BizFail,

TecFail} whose elements represent respectively a successful conclusion, a business

failure or a technical failure. BizFail and TecFail events model the hopefully rare

execution outcomes when, after a successful initiation, a party is unable to reach the

normal end of a conversation due to exceptional situations. TecFail models protocol

related failures detected at the middleware level, such as a late, syntactically incorrect,

or missing message. BizFail models semantic errors in a message detected at the

business level, such as invalid address for the delivery of goods extracted from the

business document.

Failure outcomes play an important role in making electronic contracts tolerant

against infrastructure level problems, since they provide a way of incorporating spe-

cific exceptional clauses to deal with them [37]. For example, an exceptional payment

clause might read along the lines of : failure to meet a payment deadline due to busi-

ness or technical reasons will grant 5 days extension to the buyer. Another example

would be: If the total number of business and technical failures exceed an agreed

bound, then online processing will be terminated.

It is assumed that the CCC is able to observe B2B interactions at the level of

granularity of the outcome events of business operations. The events are delivered to

the CCC exactly once in temporal order; these events are logged by the CCC. Each

such event contains information that includes the termination status (Success, BizFail

42

or TecFail), name of the operation, the timestamp and other attributes so that the

operation can be further classified’ for example, in terms of role player performing

the operation.

Business partners exercise their contractual rights, obligations and prohibitions

by executing their corresponding business operations. As operations are executed,

rights, obligations and prohibitions are granted to and revoked from business part-

ners. In general at a given moment, each business partner can have several rights,

several obligations and several prohibitions, in force. This idea is at the heart of the

functionality of the CCC that in observing the outcome events of business operations.

With each participant also termed a role player, a ROP set is associated with the set

of rights, obligations and prohibitions currently in force. The set B = {bo1, . . . , bon} of

business operations is used to specify all the primitive business operations stipulated

in a contract.

3.1.2 Observing compliance with contract rules

The execution of business operation boi is said to be contract compliant if it satisfies

the following three requirements, and is said to be non–contract compliant if it does

not:

• C1) boi ∈ B;

• C2) it matches the ROP set of its role player, meaning that the role player has

a right/obligation/prohibition to perform that operation;

• C3) it satisfies the constraints stipulated in the contractual clauses.

A business operation that meets the first requirement is termed valid, or else it is

termed an unknown business operation. A valid business operation that satisfies the

second requirement is termed matched, otherwise it is termed a mismatched business

43

operation; a matched business operation that does not meet the third requirement is

termed an out-of-context business operation. Consider the example contract clause:

the buyer is obliged to submit payment within 5 days of sending the purchase order.

A payment operation performed by the buyer within 5 days, which is a constraint,

will be contract compliant, whereas the operation performed after 5 days will be out

of context.

A terminated contractual interaction is classed as normally terminated if there are

no pending obligations because they have been fulfilled. On the other hand, a contract

violation occurs if the termination leaves one or more unfulfilled obligations. Note that

contract violation is defined based on the final, terminated state of the contractual

interaction and is distinct from the violation or non fulfilment of an obligation that

could occur during an interaction; such violations normally lead to sanctions coming

into force and, if these are honoured, then the contractual interaction could still end

normally. The concepts presented in this section form a sound basis for constructing

contract compliance checking systems and rule based contract languages [38].

3.2 The architecture of the CCC

The overall architecture of the CCC as shown in Figure 3.2 is based on an event

condition action (ECA) mechanism. As stated in the previous Section, business

events (b-events) are supplied by the business partners to the CCC through the

business conversation monitoring channel and carry information about the business

operations executed.

3.2.1 Main components

The main components of the CCC architecture (Figure 3.2) are the Event Queue, the

Time Keeper, the Event Logger, Relevance Engine and the Contract Rule Repository.

44

• The ROP set - stores the current set of rights obligations and prohibitions of

the buyer and seller.

• The b-event logger - a permanent storage for keeping records about all the events

that arrive to the CCC.

• The b-event queue - stores business events until they are removed for processing

by the relevance engine.

• The contract rule repository - contains a list of ECA rules that describe the

contract in force.

• The timer keeper - keeps track of deadlines associated with each right, obligation

and prohibition stored in the ROP sets. Deadlines are set or reset (set/reset)

by the relevance engine. When a deadline expires, a timeout b-event is sent to

the b-event queue.

• The relevance engine - the relevance engine analyses queued events and triggers

any relevant rules among those it holds in its contract rules base.

Notice that, in this structure the events in contract rules are the b-events; whereas

their conditions correspond to the constraints imposed on the execution of business

operations. For instance, a contract clause states that payment must be performed

within five days of sending the purchase order. Some conditions, such as the num-

ber of failures, are related to the history of the interaction, and consequently their

verification involves consultation of the historical records (cons. hist. records) kept

by the b-event logger. The actions in the rules include the operations add and delete

(add/del) executed against the ROP sets to add and delete rights, obligations and

prohibitions. The effect of an action is the updating of the state of the ROP sets

after the occurrence of a b-event.

45

b-event Logger

B
ev

en
t

Q
u
eu

e

Contract Rule
Repository

R
ig

h
ts

O
b
li

g
s

P
ro

h
ib

s

R
ig

h
ts

O
b
li

g
s

P
ro

h
ib

s

Calause
consultation

Relevance
Engine

ROP Set
access

Timeout events

Current ROP set

Tim
eouts

S
el

le
r

B
u
y
er

b-events from business
conversation

Time Keeper

Figure 3.2: The architecture of the CCC

3.2.2 Contract analysis algorithm

A core function of the CCC is to determine if the logged b–events are contract com-

pliant or not. For this, the relevance engine analyses queued events and triggers any

relevant rules among those it holds in its contract rules base, following this algorithm:

1. Fetch the first event e from the event queue;

2. Identify the relevant rule for e;

3. For the selected rule r, if conditions C1, C2 and C3 are satisfied (and thus the

operation is contract compliant), execute the actions listed in the body of the

rule. The main action here is updating such as by the addition and deletion of

rights, obligations and prohibitions of the current state of the ROP sets; then

return to step 1.

The design and implementation of the CCC and the associated EROP language

have been described in a previous study [50], which also illustrates how the clauses of

a contract would be coded using EROP. Section 2.2.6 has also shown how the clauses

of a natural language contract are written in EROP language.

46

3.3 The CCC as a reactive system

Before discussing how the CCC can be modelled as a reactive system, the nature of a

reactive system is first described and its main properties discussed. A reactive system

is a system that responds (reacts) to external events. The need to specify and reason

about properties of reactive system motivated the development of temporal logic,

which is an extension of the classical logic, specifically adding operators related to time

[20]. The temporal logic contains operators such as ‘©’ (i.e. the next moment in time),

‘�’ (at every future moment), and ‘♦’ (at some future moment) to extend classical

logic. These additional operators help designers express correctness properties (e.g.

safety and liveness) that they wish to verify against a given reactive system.

3.3.1 Safety properties

The safety properties of a system are claims that something ‘bad’ will not happen

[40]. For example, a safety property dictates that a given activity will never be per-

formed most probably, because it is bad and undesirable. Examples of bad thing in

electronic contracts are actions that if happen lead to conflicts. Hence, typical safety

properties of contracts are statement claiming that actions that bring the contractual

parties into a conflict states never happen. Such properties can be described using

temporal formulae of the form ‘�¬(...)’ or always not (...). For instance, the following

properties P1, P2 and P3 are typical safety properties of contracts, specified in the

temporal logic LTL:

P1 : � ¬(pay on time ∧ penalised)

P2 : � ¬(obliged to pay ∧ prohibited to pay)

P3 : � ¬(paid ∧© obliged to pay)

Bad things can be represented by an assertion Pi which is evaluated to be true

in exactly those states in which the bad condition holds true. For a safety property

47

to be true, ¬Pi must be an invariant at any moment during the contractual business

exchange. From the discussion discussion of contract conflicts in Chapter 2, it is not

difficult to realise that a large of contract conflicts can be expressed in terms of safety

properties (e.g. P2), which if violated it would signal inconsistent specifications in the

contract rules. The verification of safety properties can be achieved through a search

of the system state space. If the invariant is violated by a specification of the system

and accordingly concerns the safety property, then there will be a finite behaviour

that which shows the invariant violation.

3.3.2 Liveness properties

A liveness property captures the fact that something ‘good’ must eventually occur

[40]. In other words, a liveness property states that a given activity will eventually, at

some point in the future be performed, seemingly because it is desirable and good for

it to happen. Properties of this type are usually described by temporal formulae of

the form ‘♦(...)’ i.e eventually (...). For instance, the following Q1 and Q2 assertions

are liveness properties and can be specified in temporal logic LTL. They claim that

something will eventually occur during the system execution.

Q1 : ♦ (paid ∧ payment = 3.0)

Q2 : � (purhase order cancelled =⇒ ♦(money refunded))

In contract applications, examples of good things are actions that when they hap-

pen do not lead to conflicts of any type. In order to explain this property, consider

the refund business operation (property Q2) of a contractual business exchange: a

customer is penalised or prevented from performing refund by, for instance, not per-

mitting or prohibiting the customer to execute refund operation by erroneous rule.

In a situation like this, a sensible form of liveness is associated with the guarantee of

a response to the business operation requested.

48

3.3.3 The CCC reactive system explained

As discussed earlier in relation to the architecture of the CCC, the significance of

the ROP sets in the EROP model is that they allow the CCC to be abstracted as a

conventional reactive system [38]. Thus, its correctness requirements can be expressed

as safety and liveness properties. As a reactive system, the CCC remains in a given

state si waiting for the arrival of events. When a business event ej arrives and is

determined to represent a contract–compliant operation, the system enters state sj.

The state space heavily depends on the set of valid operations B = bo1, ..., bon. For

each partner, a given boi can belong to at most one of its three ROP sets at any time.

This can be illustrated using the following hypothetical contract example from [38]

which includes a few rights, obligations, and prohibitions.

• Cl1 : The buyer has the right to submit a Purchase Order (right), between 9
am and 5 pm, Mon to Fri.

• Cl2 : The seller has the obligation to respond to the purchase order with accep-
tance or rejection within 24 hours (obligation).

• Cl3 : The seller’s failure to respond to the Purchase Order within the 24 hours
deadline will result in abnormal contract termination with offline settlement.

• Cl4 : If the purchase order is accepted, the seller is obliged to submit an invoice
within 24 hours (obligation).

• C5 : The buyer has the obligation to pay the due amount within seven days of
receiving the invoice (obligation).

• Cl6 : The seller is obliged to deliver the goods within seven days of receiving
payment (obligation).

• Cl7 : This contractual transaction terminates when either

– Cl7.1 : The seller rejects the purchase order, or

– Cl7.2 : The seller successfully delivers the goods.

In Figure 3.3, Ø represents the empty set; e, c, T , Inv, TO and Sub stand for

business event, condition, true, invoice, timeout, and submit, respectively. Notice

that, for simplicity, only the name and execution outcome attributes of the business

49

Figure 3.3: CCC as reactive system

events are shown in this illustration. Likewise, only the business events with Success

and TO execution outcomes from contract compliant operations are shown. Business

events with neither InitF ,TecFail or BizFail execution outcomes nor those related

to unknown and out-of-context executions will be shown. In the discussion, Cl1, Cl2,

Cl3, and so on refer to the clauses of our contract example.

State s0 corresponds to Cl1: The state s0 corresponds to the start of the interaction

where the seller has the right to submit a PO. Once started, the interaction will

complete either normally resulting in one of the acceptable final states with no pending

50

obligations or abnormally in a nonacceptable state with obligations still pending thus

indicating a contract violation.

State s1 corresponds to Cl2: From s0 the interaction enters s1 when a business

event e = (SubPO, Success) is notified and the required conditions (c = T) hold. The

right SubPO has been removed from RB as it has been exercised by the execution of

the SubPO operation. The obligation RespondPO is added to OS.

State s4 corresponds to Cl4: From s1 the interaction progresses to s4 when the

seller successfully executes the AcceptPO operation within the 24 hours deadline.

The obligation RespondPO has been removed from OS since it has been fulfilled by

the execution of the AcceptPO operation and the obligation SubInv has been added

to OS; thus, it appears as a pending obligation in s4.

State s2 corresponds to Cl2 and Cl7.1: From s1 the interaction progresses to the

acceptable final state s2 when the seller successfully executes the RejectPO operation

within the 24 hours deadline constraint. The obligation RespondPO has been removed

from OS since it has been fulfilled by the execution of the operation RejectPO.

State s3 corresponds to Cl3: From s1 the interaction progresses to the abnormal

final state s3 if the seller fails, for example, due to BizFail or TecFail reasons to honour

his RespondPO obligation before the expiry of the 24 hours deadline. RespondPO is

left in OS as a pending obligation.

State s6 corresponds to Cl5: From s4 the interaction progresses to s6 when the

seller successfully executes SubInv operation within the 24 hours deadline constraint.

The obligation SubInv has been removed from OS since it has been fulfilled by the

execution of the SubInv operation and the obligation SubPay has been added to OB;

consequently, it appears as a pending obligation in this state.

State s5 corresponds to Cl4: From s4 the interaction progresses to the abnormal

final state s5 when the buyer fails to successfully execute the operation SubInv within

the 24 hours deadline to fulfil his SubInv obligation. The obligation SubInv is left

51

pending in OS.

State s8 corresponds to Cl6: From s6 the interaction progresses to s8 when the

buyer successfully executes the SubPay operation within the seven day deadline.

The obligation SubPay has been removed from OB since it has been fulfilled by

the execution of the operation SubPay, and the obligation Delivery has been added

to OS; thus it appears as a pending obligation in s8.

State s7 corresponds to Cl5: From s6 the interaction progresses to the abnormal

final state s7 when the seven day timeout to execute the operation SubPay expires,

leaving the obligation SubPay pending in OB.

State s10 corresponds to Cl7.2: From s8 the interaction progresses to the accept-

able final state s10 when the seller successfully executes the Delivery operation within

the 7 day deadline. Notice that in s10 the ROP sets are left empty, with no pending

rights, obligations or prohibitions.

State s9 corresponds to Cl6: From s8 the interaction progresses to the abnor-

mal final state s9 when the seven day timeout to successfully execute the operation

Delivery expires. The Delivery obligation is left pending in OS.

3.4 Conflicts in EROP contracts

Representing natural language contracts in the EROP language provides a better

structured set of contract clauses than those natural language representations. How-

ever, this elegant representation of contract clauses as ECA rules still requires the

careful analysis of consistency between the contract rules. Conflicts that lead to in-

consistent contract rules could have been inherited from the original contract clauses

or might arise during the manual conversion of natural language contract into ECA

rules. In either case, the analysis of these conflicts is advisable before producing an

executable version of the contract. The advantage of using EROP language is that it

52

produces a high level representation as ECA rules of the contract clauses in such a

way as to be familiar to both business managers and software engineers.

To this end, and for the purpose of the automatic analysis of contract clauses

modeled as ECA rules (as in the EROP language), two main types of conflicts are

considered here: contract-independent and contract-dependent conflicts. The former

identify contract properties that must satisfied by all contracts. For example, at run

time, a contract should not simultaneously grant a role player a right to perform an

operation and simultaneusly impose a prohibition on it. For instance, S0 in Figure 3.3

shows that the buyer is permitted to submit a purchase order, however, an erroneously

configured rule may simultaneously prohibits him from doing so.

In the latter conflicts, properties are considered that may occur in specific con-

tracts. For example, consider Cl2 clause from the contract shown in Section 3.3.3:

The buyer has the obligation to pay the due amount within seven days of receiving

the invoice, a conflict may occur here if the seller requests payment after the buyer

rejects the purchase order. A possible erroneous contract execution which could lead

to this conflict is: S0 → S1 → S2 → S6 (see Figure 3.3). Both contract–dependent

and contract–independent types of conflicts are discussed in more detail below.

3.4.1 Contract-independent conflicts

These conflicts are considered to be contract–independent because they are specific

to individual contracts. Such conflicts may appear in contract clauses that specify

deontic properties of business operations such as rights, obligations and prohibitions.

These deontic properties can be treated as three mutually exclusive values. This

means that, at each point in time a business operation can only have one restricted

property, such as right, obligation or prohibition during an execution trace of the

contract. In fact, this assumption is rooted in SDL logic [5], and can help us to cap-

ture a set of complex and hard-to-detect conflicts in contract clauses. These conflicts

53

are hard to detect in contract couched in natural language because they are infor-

mally specified, structureless, scattered between the contract clauses, or sometimes

indirectly elicited from the contract language. The SDL defines an inter-dependency

between the rights(permissions), obligations and prohibitions. Consider this example

from [23]; if obligation is taken as a primitive, permission and prohibition are defined

as follows:

• It is permitted that A: Permission(CP, A) ≡ ¬Obligation(CP, ¬A)

• It is prohibited that A: Prohibition(CP, A) ≡ ¬ Permission (CP, A) ≡ Obliga-
tion (Agent,¬A)

where A denotes to either a specific action of a Contract Party (CP) or a system

state. These definitions capture the common intuition that what is obligatory must

be permitted, and that what is prohibited can neither be permitted nor obligatory

[23]. It follows that a wide range of contract conflicts may occur in a contract execution

trace (ceti) with one or more business operation boi ∈ BO from the set of all business

operations. The existence of a conflict can be formally captured using the following

expression: boi ⊢ 〈R(boi) ∧O(boi)〉 || 〈R(boi) ∧ P (boi)〉 || 〈O(boi) ∧ P (boi)〉, where:

〈R(boi) ∧O(boi)〉 is a simultaneous right and obligation to boi

〈R(boi) ∧ P (boi)〉 is a simultaneous right to and prohibition on boi

〈P (boi) ∧O(boi)〉 is a simultaneous prohibition on and obligation to boi

Let us use ceti to refer to an arbitrary contract execution trace, where an execution

trace ceti, refers to the execution of business operations for one or more contract par-

ticipant (also called a computation or a run) from the set CET = {cet1, cet2, ..., cetn};

n ≥ 1 of contract execution traces.

Each ceti includes a subset of business operations boi ∈ BO, and each boi has a

deontic property P which characterises the contractual business operation as right,

obligation or prohibition, and its values are mostly updated by the contract rules

in response to actions of the contract parties. The initial state and final state of

54

an execution trace ceti are bo0, bof ∈ BO respectively, where the former (bo0) is a

business operation which starts the contract execution trace ceti, and bof the business

operation which concludes the contract execution trace. This envisioning of contract

execution suggests that the problem of detection of contract independent conflicts is

about ensuring that each ceti is conflict-free. Moreover, if a conflict is captured, the

responsible contract rule causing that conflict can be identified by means of analysis

of the conflicting execution tract ceti. The problem then can be solved by fixing the

contradictory clauses.

3.4.2 Contract-dependent conflicts

Contract-dependent conflicts may occur when specific contract-dependent correctness

requirements are invalid or lead to contradictions between contract parties. Most of

the conflicting scenarios shown in Section 2.3 fall in to this category. Let us return to

the Buyer/Seller contract at Section 3.3.3. We stated two crucial requirements: a) the

contractual interaction always terminates in one out of several acceptable final states;

b) the contractual interaction always progresses through a valid sequence of states. In

particular, it is desirable to verify that ‘a Seller is penalised a fixed amount of money

if he fails to deliver the purchased items on time’. Likewise, verify that the operation

‘reject purchase order’ always takes place after the occurrence of an ‘offer’ operation

and within the permitted period for rejection. Recall that the term conflict used to

refers to an inconsistency within a single clause or two or more contract clauses that

may lead to a contradiction between the contract parties.

55

3.5 Discussion

This Chapter discussed the main components of the contract compliance checker of

EROP model and how it can be abstracted as a reactive system. As discussed in

Section 2.4.2, an abstract model of the CCC has been modelled using Promela and

verified using Spin model checker [36]. Thus, different properties of a business contract

model have been verified using the general purpose model checking tool (Spin).

We believe that the facilities of the Spin model checker can be reused in a better

way to assist in the verification and validation of business contracts. In particular,

the standard Promela can be extended [48] with the concept of business operations

and operators to manipulate it. For example, in extended Promela, the designer can

include in his model operations such as assign obligation delivery to the seller, and

express queries like ‘is the buyer currently obliged to pay?’ Like many other model-

checkers, Spin can accept and verify correctness constraints, for example where the

buyer is never obliged to and prohibited from paying, abstracted as safety and liveness

properties and expressed in LTL formulae [49].

The next Chapter introduces a formal Contractual B2B model (CB2B) based on

EROP concepts. We discuss how Spin and an extended version of Promela that

adds specific constructs aimed at capturing concepts frequently found in contracts

can work together as a pragmatic tool for contract model checking. Such a tool can

be built using the concepts of contract compliance checking CCC described at the

beginning of this Chapter (Section 3.1.1). With the appropriate level of abstraction

of the contract and contractual B2B environment, contract models of manageable

sizes can be built with extended Promela and verified by Spin. So that the ECA

rules expressed in extended Promela can be automatically analysed using well known

model checking techniques and readily available technology.

56

Chapter 4

CB2B formal model

The contractual business–to–business model (CB2B) considered in this chapter ab-

stracts the behaviour of the contract compliant checker CCC of the EROP language.

It is empowered with a set of operations which facilitate access to the contract el-

ements such as role player obligations held in the system memory. In earlier work,

Promela was used to model the CCC and the rules [36]. The lack of data types other

than the built-in types bit, byte and array is seen as a serious restriction to the use

of Promela as a specification language rather than a protocol modeling language.

However, the language can be extended with user–defined data types [48]. Using its

typedef construct, and the inline and/or cpp macros can be used to define opera-

tions on such new data types. On this basis, we have implemented an abstract data

type extension to the standard Promela called BIS OP. A set of operations on the

BIS OP data type have also been implemented to maintain information about ROP

sets. These additional concepts not only simplify the task of writing rules, but also

help the designer to specify the correctness requirements in LTL with parameters that

map directly to contract concepts. Here, different aspects of the the CB2B model, its

implementation and the CB2B’s model checking framework are described.

57

4.1 CB2B model: principles of operation

In this thesis, we have used the reactive system paradigm to design and develop an

abstract architecture for contractual business to business interactions. Our architec-

ture (Figure 4.1) is general and abstract enough that it can be used for i) verifying

the logical correctness of contracts regarded as ECA systems; ii) implementing them

and iii) testing the correctness of their implementations. Another salient point of

the architecture is its modularity which allows reuse of its components at design,

implementation and testing stages.

do

{

:: c1 -> PO

:: c2 -> ACC

:: c3 -> REJ

:: c4 -> PAY

:: !c1&!c2&!c3;!c4 break

od

end-state:

}

BEG

exe rule PAY

res

CCC

PAY

state information
contract compliant or

non-contract compliant

CRM

ROP=

{1000}

s0

s1

s2

sf

ROP=

{0110}

ROP=

{0001}

ROP=

{0000}

Rule base

rule PO

rule ACC

rule REJ

rule PAY

PO

ACC

PAY

REJ

Application being monitored

Figure 4.1: CB2B as a reactive system

To explain the concepts of CB2B model, we will use the following hypothetical

contractual clauses:

1. The buyer can place a Purchase Order (PO) with the seller to buy an item.

2. The seller is obliged to reply with either Accept (ACC) or Reject (REJ) after

receiving purchase order.

3. A rejection shall be taken as completion of the contractual interaction.

58

4. The buyer shall place Payment (PAY) after receiving an acceptance of the

purchase order.

The contract example is oversimplified, for instance, it does not account for excep-

tional situation like unsuccessful completion of the execution of an operation. Neither

does it include deadline to complete them. In the following discussions, we use the

symbol → to denote the business events chronological sequence, thus a → b denotes

that a happened before b. The main components of the CB2B model are discussed

in detail next.

4.1.1 The business event generator (BEG)

Wemodel the external environment (application being monitored) by a Business Event

Generator (BEG) which is responsible for generating finite sequences of events that

represent potential contract runs of the contract being monitored. A contract run

(also called an execution path) is a specific execution of the contract from its initial

to its final state following one of the paths encoded in the contract. For example the

contract example includes two contract runs: PO → ACC → PAY and PO → REJ .

We assume that events are observed at the granularity of outcome events (see

section 3.1.1). Under this assumption, monitoring of a contractual interaction based

on the execution of operations from the set B = {bo1, . . . , bon}, reduces to monitoring

the occurrence of business events from the set E = {e1, . . . , en}. Each ei notifies about

the execution of its corresponding boi and contains in addition to the name of the

operation, the termination status which could be S (success), BF (business failure) or

TF (technical failure), the timestamp and as many additional attributes as necessary.

Since the elements of B are one–to–one mapped to the elements of E, we often use

the name of the business operation (for example pay, deliver, cancel, etc.) to refer

to the event that notifies of its execution, under the understanding that the event

includes all the attributes needed by the rules for processing it.

59

At the heart of the BEG is an do—od construct with guarded (::) commands,

that can generate n types of events, for instance, events from the set E and if needed,

events that do not belong to E. In the example shown in the figure, the BEG is

programmed to generate events that correspond to the four business operations (PO,

ACC, REJ and PAY) included in the contract example, so it generates the events:

PO, ACC, REJ and PAY . In the same order c1, c2, c3 and c4 represent conditions

that evaluate to TRUE (T) or FALSE (F). The → arrow at the right of the conditions

means generate. For example, c1 → PO means that if c1 evaluates to T , event PO

is available for generation; conversely, c1 = F disables this possibility. Similarly

c2 evaluates to T , event ACC becomes available for generation. When two or more

conditions evaluate to T one of the guarded commands is chosen non–deterministically

and the corresponding event is generated. When none of the conditions evaluates to T

(! represents a logical negation), the do–od block is abandoned (!c1, !c2, !c3, !c4; break)

and the BEG stops at a valid end state (end-state:). This transition means the

completion of a contract run and consequently, of an event sequence. If necessary,

the BEG can be re–started to generate another sequence of events (that correspond

to another contractual run), by means of bringing it manually or automatically to

the beginning of the block.

The conditions can be used for constraining the type and number of events in-

cluded in the sequences. At one end of the spectrum one can use conditions that

always evaluate to T which is equivalent to using no conditions. At the other end of

the spectrum one can use conditions that always evaluate to F . In the first situa-

tion the BEG will generate events randomly whereas in the second, no events will be

generated at all. In practice, the conditions include parameters that contain infor-

mation about the state of the CCC which is fed back to the BEG through the state

information line. For example, we can place a condition that prevent a given event

from being included more than one time in a given sequence. Similarly, we can use

60

conditions to force the BEG to generate only events that are likely to be declared

contract compliant by the CCC. As we will explain it later on, we use conditions at

validation time to constrain the state space of the validation and focus the attention

to specific properties at different stages of the design.

4.1.2 The contract rule manager (CRM)

The main component of the CCC when regarded as a reactive system (see Figure. 4.1)

is a Contract Rule Manager (CRM) which is supported by a Rule base. The CRM is

the dynamic component and is responsible for storing and managing the state of the

system. In our contractual applications, it stores and keeps track of the state of the

contractual interaction between the business partners. The current state of the CCC

—and in particular, of the CRM— is determined by the business partners’ rights,

obligations and prohibitions currently pending (awaiting execution in the current

state).

The formal definition of the current set of Rights, Obligations and Prohibitions

(ROP) is presented in [38]. Yet to make this discussion self—contained, we will briefly

discuss the concept here.

For a formal definition of the current set of Rights, Obligations and Prohibitions

(ROP) (see Section 4.3.1), we use boolean variables to represent the rights, obligations

and prohibitions of the contractual parties. These variables are turned 1 and 0,

ON and OFF, respectively, as the contractual interaction progresses. ON indicates

pending (in force, enabled, etc.), whereas OFF indicate disabled (revoked, etc.). Let

us return to our contract example which includes, in particular to the clause states: a

buyer’s right to execute PO, a seller’s obligation to execute either ACC or REJ and

a buyer’s obligation to execute PAY.

We can use a vector (ROP = {0000}) of four boolean variables to represent the

right and the three obligations, where the left most bit represents the buyer’s right

61

the to execute PO, the second bit represents the seller’s obligation to execute ACC,

the third bit represents the seller’s obligation to execute REJ and the fourth bit

represents the buyer’s obligation to execute PAY.

Thus ROP = {1000} indicates that a right to execute PO is currently granted,

ROP = {0110} indicates that obligation to execute either ACC or REJ is currently

pending, ROP = {0001} indicates that an obligation to execute PAY is currently

pending, ROP = {0000} indicates that no rights, obligations or prohibitions are

currently pending. As shown in Figure. 4.1, we use this ROP variable to determine

the states of the CRM as the contractual interaction progresses. Thus in the initial

state s0 the buyer’s right to execute PO is granted. The CRM progresses to state s1,

presumably when the buyer executes PO where the right to execute PO is disabled

and the obligation to execute ACC or REJ is pending. From state s1 the CRM

might progresses to state s2, presumably when the seller’s excutes ACC, where the

obligation to execute PAY is pending. Alternatively, from state s1 the CRM might

progress to state sf , presumably, when the seller to reject the purchase order executes

REJ. From state s2 the CRM progresses to state presumably when the buyer executes

PAY, where no rights, obligations or prohibitions are left pending.

4.1.3 The CB2B model rule base

The rule base of CB2B model is a file that contain the list of ECA rules (e.g. rule PO,

rule ACC, rule REJ and PAY) that model the contractual clauses. In the architecture

of CB2B model, events from the set E and rules from the rule base are in one to one

correspondence. Thus for each individual event ei there is an individual rule Ri that

contains the logics to handle it. In our particular example, the rule base contains a

rule called PO to handle the event PO produced by the BEG, a rule called ACC to

handle the event ACC, a rule called REJ to handle the event REJ , and a rule called

PAY to handle the event PAY .

62

Upon request from the CRM, an individual rule can be executed (for example rule

PAY) to produce a response (res) that indicates whether the event under examiation

correspond to a contract compliant business operation or not; equally important,

the execution of a rule alters the current state of the set of rights, obligations and

prohibitions and consequently, the current state of the CRM.

4.2 CB2B model implementation in Promela

The CB2B model is constructed with Promela (the Spin input language) using two

processes BEG and CRM and two uni-directional channels BEG2R and R2BEG (see

Figure 4.2). The business event generator (BEG) process represents the external

world. The contract rules manager (CRM) process together with the ROP sets and

the ECA rules represent the CCC. The contract rules are composed in a separate

file and offered to CRM via the usual #include mechanism. There is rule for each

business event bei representing the outcome the execution of an operation. So for a

business operation say, ‘submit purchase order’, there will be rule for the operation

terminating successfully (S), or optionally, depending on whether the contact has

clauses dealing with failure outcomes, for the operation terminating in a technical

failure (TF) or in a business failure (BF).

4.2.1 Execution cycle

The executable behaviour of the CB2B Promela model can be seen as the following

set of read and write process operations:

1. The BEG process writes the generated event bei in the input channel BEG2R;

2. The CRM reads bei from the input channel; and

3. The contract rule Ri corresponding to bei event is activated;

63

ECA electronic contract rules

R1 ,R2 ,......,Rn

R,O,P

Business

 operation

R,O,P

Business

 operation

R,O,P

Business

 operation

Contract

 Rule

Manager

(CRM)

Business

 Event

Generator

(BEG)

1 2

3

5

6

4

LTL Formulae

 R2BEG

 BEG2R

R,O,P

Business

 operation

Figure 4.2: CB2B formal model.

4. The Ri checks bei against the ROP sets (condition C2), and executes the action

if the associated condition, C3, is satisfied;

5. The Ri writes the decision made regarding contract compliance in the output

channel R2BEG;

6. BEG process extracts the decision from the output channel to resume the event

generation process

With the CB2B model and extended Promela, a contract is specified by declaring

a set of business operations, role players, rules and global variables necessary for

recording some aspect of contract execution that might be required by the rules or

LTL formulae. At the core of the extension made is the abstract data type Business

Operation (BIS OP). Each instance of Business Operation is always associated with

a ROP set and supports a list of operations (methods) such as SET R(a, 0) and

64

IS R(a) to respectively grant the right to execute operation a to a role player and to

query if the right is enabled. In addition, operations and control structures have been

implemented as syntactic sugar to supplement Promela constructs such as statement

sequencing, atomic sequencing, concurrent execution and case selection.

4.2.2 Key features

The CB2B model characterised by unique features facilitating the composition of

contract models as a set of ECA rules and allow their verification using model checking

techniques. Below, we list the salient features of CB2B model that facilitate model

checking of contracts using Spin:

1. Supports an expressive high-level ECA rule notation [1]. It is a rule-based con-

tract language aims to capture and represent the natural language contract

in more rigorous and concise manner suitable for both human and computer

processing.

2. Facilitates the construction of LTL formulae such as always Prohibited (CPi,

Ai), which means action Ai of a contract party (CPi) must remain prohibited in

every state during the contractual business exchange. Similarly other temporal

properties can be used, such as next, eventually and until.

3. The ability to specify contrary-to-duties (CTDs) and contrary-to-prohibition(CTPs)

where the former specify what obligation is to be demanded when the original

obligation is not fulfilled, and the later specify what penalty is to be applied in

cases where a prohibition is violated.

4. The automatic detection of contract-independent conflicts. This is a key feature

of the CB2B model which is enabled through embedded assertions that automat-

ically assert contract-independent properties that must hold for all contracts.

65

We discussed the contract-independent conflicts in Section 3.2.2. The macros

responsible for the assertion of the contract–independent properties can found

in Appendix A.

4.2.3 Example

This section uses a simple example to illustrate how ECA rules are coded in a CB2B

model. Later sections show the full implementation and verification of certain prop-

erties of this example. Although it is simple and small, the example reveals important

problems linked to the manual translation of contracts into a machine-oriented format

(in this case ECA rules). The contract says: There is an obligation to choose between

doing ‘b’ or ‘c’ after ‘a’, and a prohibition on doing ‘b’ if ‘b’ has been performed.

R(a)

+O(b)
+O(c)

- R(a)

+R(a)

-O(c)
-O(b)

S1

S0

S2

S3

+R(a)
+P(b)
-O(c)

CR(a)/ea
CR(b)/eb

CR(c)/ec

CR(c)/ec

CR(b)/eb

CR(a)/ea

CR(b)/eb

Figure 4.3: State transitions in the executable contract model

Figure 4.3 shows that each state is characterised by the contract entities (R)ights,

(O)bligations and (P)rohibitions that become active or inactive after each state tran-

sition. The plus ‘+’ and the minus ‘-’ are used to show the effect of a business event

Bei on the contract status where ’+’ and ’-’ model the granting and revoking of a

contract rights, obligations and prohibitions. The contract transitions occur when

66

business events are generated, ROP sets evaluated and any other conditions might

have been obtained during the business exchange are held to be true in the transi-

tion’s source state. In Figure 4.3 this conditional transition is shown as bei/CR(bei).

Figure 4.4 shows the pseudo–code of contract rules a, b and c that are manually

extracted from the contract text described above.

CR(a)
{

 IF IS_R(a)
 {
 SET_R(a, FALSE)
 SET_O(b, TRUE)
 SET_O(c, TRUE)
 }

 }

Contract Rule 'a'

CR(b)
{
 IF IS_O(b)
 {
 SET_O(b, FALSE)
 SET_O(c, FALSE)
 SET_P(b, TRUE)
 SET_R(a, TRUE)
 }

 IF IS_P(b)
 {
 SET_O(c, FALSE)
 SET_R(a, TRUE)
 }
 }

Contract Rule 'b'

CR(C)
{

 IF IS_O(C)
 {
 SET_O(b, FALSE)
 SET_O(c, FALSE)
 SET_R(a, TRUE)
 }

 }

Contract Rule 'C'

Figure 4.4: ECA Contract rules

The example illustrates how the CB2B model for monitoring the contract compli-

ance reacts to stimulus of business events bei and activates the corresponding contract

rule CRi to update the contract status, where updates will alter the current ROP set

values. The vocabulary of this contract example consist of (a, b, c). The set of busi-

ness events in this example are bea,beb,bec, and the occurrence of each business event

bei activates a contract rule CRi in which a specific behaviour of a contract party is

encapsulated. For example, in S0 the model is initialised with the right to execute

‘a’, which is shown as R(a) in s0), and thus the CB2B model would react to the

business event bea by activating the contract rule CR(a) and then evaluate any other

conditions which may hold in S0 to change the contract status to S1. Similarly the

CB2B model reacts to ‘b’ and ‘c’ and consult CR(b) and CR(c) but the system state

does not change because none of them were rights, obligations or prohibitions.

A contractual tracei, which is a finite sequences of business events bei for which

67

the contract rules CRi are evaluated and the ROP set is updated, is considered to

be concluded if the eventual objective of the contract in force is reached; Figure 4.3

concluded contract states are S1 and S2. For example, trace1 : a → c implies that if

business event bea is fired in S0 and the contract rule CR(Boa) is activated then two

obligations O(b) and O(c) become active in state S1. This means that either O(b) or

O(c) can be fulfilled from S1 forwards. Thus, the emergence of an event corresponding

to any of these would discharge them both. So in trace1 if a contract party has chosen

the action ‘c’), ignoring the two obligations O(b) and O(c) in S1, this is considered a

violation of the whole contract and may promote legal action. Gaining the right to

perform ‘a’ again, R(a) is added in S2 is similar to the initial state of the contract,

and thus the contract compliance checking process is restarted from S0 to monitor

future business events. Other possible contractual traces could be: trace1: a, b, c, a, b,

trace2: a, b, b, b, b and trace3: a, b, a. In fact, real contractual traces would be more

complex than those shown here, and may include many reparations of the original

obligations.

4.2.4 Verification of contract properties

The verification of contract properties with the support of the CB2B model can be

achieved through LTL formulae or assertion statements. Different contract properties

can be formalised using temporal logic formulae and directly verified with the Spin

model checker. With Spin version 6, an LTL formula is specified globally with the

following syntax:

ltl [name] ’{’ formula ’}’

For example, LTL formulae can be written as follows:

ltl p1 { []<> p }

ltl p2 { always eventually p }

68

Spin offers both symbolic (p1) and textual (p2) alternatives to specify the temporal

properties of an LTL formula. The LTL formulae specified in p1 and p2 are identical,

they both mean that ‘p’ will happen at least once in the future. With regard to the

verification of contract properties using CB2B model, with the textual form one could

write the following formula:

ltl p3 { always not(obliged(b,seller) && prohibited(b,seller))}

That is, it will always not be accepted for a seller to be simultaneously obliged to

and prohibited from doing the same action ‘b’. Recall that properties of this kind are

generic and categorised as contract independent properties, as discussed in Chapter

2.

The contract-dependent properties are different, being specific to each contract.

For instance, consider the following property in p4:

ltl p4 {always(done(b,seller) implies eventually always

(prohibited(b,seller)))}

That is, whenever an action ‘b’ is executed, it always implies that eventually ‘b’

will be prohibited. In cases of violation, the contract rules as well as the contract

document will be revisited again to resolve the problem. In some cases a contract

developer contacts business managers to clarify the ambiguity of the contract.

Verification through assertions is a simple verification tool offered by Spin. The

language Promela is supplemented with a construct called the assert statement. State-

ments of the form assert(boolean condition) are always executable. If the boolean

condition holds, then the statement has no effect. If, however, this condition does

not hold, then the statement will produce an error report during the execution of

verification with Spin.

Given a CB2B model and a set of contract rules written in extended Promela, in

describing a system comprising BEG and CRM processes we can use Spin for two

69

purposes. Firstly, it can execute the CB2B model via (’Spin program name’); that is,

performing on a run of the contract, carrying out random choices where necessary.

Alternatively, it can generate a structure representing ‘all’ of the possible runs of the

system (via ’Spin -a program name’); acting effectively as a generating automaton

describing all possible behaviours of the program.

4.3 The CB2B model notation

This section introduces a high level notation to represent a contract as ECA rules

and to specify its basic entities such as business operations, business events and role

players in order to allow the verification of certain properties of e-contracts using

model checking techniques. The primitives that we have added to Promela in this

notation are at user level only without any changes to the Spin input language, and

can be used to build contract models at different levels of abstraction for the purpose

of exploring specific properties of the system.

4.3.1 Mapping contract entities into Promela

Programs written in Promela basically consist of processes, message channels, and

variables. Processes are global objects that represent the concurrent entities of the

distributed system. Message channels and variables can be declared either globally

or locally within a process. Processes specify behaviour, and channels and global

variables define the environment in which the processes run. Promela models can be

analyzed with the Spin model checker to verify that the modeled system produces

the desired behaviour.

In order to map the contract entities to Promela, the language can be extended

to add user defined data types and to offer a high level notation to configure contract

entities. A key feature of the high-level notation is that it hides many of the intricate

70

details of the construction of state machine models using pure Promela. It enables a

designer to directly encode a contract for model checking as ECA rules in terms of the

contract entities of business operations and role players with their rights, obligations

and prohibitions. This facilitates the process of the verification of certain properties of

a contract using model checking techniques. We will explain next the new constructs

and extension we added to Promela to facilitate contract model checkering with Spin

and the CB2B model.

4.3.1.1 Role players

A role player is an entity that participates in the execution of business operations

on behalf of the contracting business parties. We extend Promela with a RolePlayer

construct, so the designer can use it to declare RolePlayer(RolePlayerName1, Role-

PlayerName2, ...). For example the statement RolePlayer(Buyer, Seller) declares a

Buyer and a Seller role players. Using our macros extensions, the declaration of role

player is translated automatically into the Promela basic mtype data type, as well as,

a declaration of a Bitvector. The Bitvector construct (explained below) is initialised

with each role player declaration. It holds a history of the execution status (1 or 0) of

the business operations performed by that role player during the contract run. The

macros mapping this high level representation of RolePlayer into Promela basic data

types are:

===

* Counts the number of arguments *

* TAKES BETWEEN 1-10 ARGUMENTS (gcc’s testsuite) *

* *

===

#define gnu_count(y...) _gnu_count1 (, ##y)

#define _gnu_count1(y...) _gnu_count2 (y,10,9,8,7,6,5,4,3,2,1,0)

#define _gnu_count2(_,x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,n,ys...) n

===

* Macros for role player - (declare up to three role players) *

===

71

#define RolePlayer(types...) _ROLE_PLAYER_N(gnu_count(types),types)

#define _ROLE_PLAYER_N(n,types...) _ROLE_PLAYER(n,types)

#define _ROLE_PLAYER(n,types...) _ROLE_PLAYER_##n(types)

#define _ROLE_PLAYER_0()

#define _ROLE_PLAYER_1(a) mtype={a} \

BITV_32 a##exTrace;

#define _ROLE_PLAYER_2(a,b) mtype={a,b} \

BITV_32 a##exTrace; \

BITV_32 b##exTrace;

#define _ROLE_PLAYER_3(a,b,c) mtype={a,b,c} \

BITV_32 a##exTrace; \

BITV_32 b##exTrace; \

BITV_32 c##exTrace;

The Bitvector in the RolePlayer declaration is an unsigned piece of memory (see

[48] for the full implementation of the Bitvector), where each bit can be individually

set, reset and tested. Promela’s built-in integer types have been used to represent

the bit vectors: byte (max 8 bits), short (max 16 bits) and int (max 32 bits) .

To show an example, the following is a declaration of a Bitvector of 32 bits named

Buyer Execution Trace:

BITV_32 Buyer_Execution_Trace;

After this declaration, the 32 bits of the Buyer Execution Trace’s Bitvector can

be manipulated in different ways. The following list shows the set of operations that

can be used with a Bitvector :

SET_ALL_0(Buyer_Execution_Trace) to set all the vector bits with zero

SET_ALL_1(Buyer_Execution_Trace) to set the vector bits with one

SET_1(Buyer_Execution_Trace,i) to set the vector bit in index i with one

SET_0(Buyer_Execution_Trace,i) to set the vector bit in index i with zero

Below is a list of the macros that define operations RESET (rolePlayer), SET X

(boName,rolePlayer) and IS X (boName,rolePlayer) that built using the Bitvector

operations.

===

* Macros to set, test or reset role player execution trace *

72

===

#define SET_X(name,rolePlayer) \

SET_1(rolePlayer##exTrace, name##_##bo.id)

#define IS_X(name, rolePlayer) \

IS_1(rolePlayer##exTrace, name##_##bo.id)

#define RESET(rolePlayer) \

SET_ALL_0(rolePlayer##exTrace);

The macro RolePlayer(RolePlayerName1) concatenates the parameter RolePlay-

erName1 (of mtype data type) with the suffix exTrace and declares it as a global

Bitvector. For example, declaration such as RolePlayer(SELLER, BUYER) declares

Seller and Buyer of Promela mtype data type and two bit vectors SELLERexTrace

and BUYERexTRace respectively. The RolePlayer(RolePlayerName1) macro use the

concatenation operator ## to affix each role player name with ’exTrace’ to distinguish

it. In a contract model, each role player is initialised with a set of business operations

(see next section). During the contract execution these business operations can be

manipulated in different ways. For example, if the contract declares ‘Cancel’ business

operation, then operation such as SET X(Cancel, Seller) will alter the execution trace

of the seller and use the seller’s Bitvector to flag the business operation Cancel as

executed. In fact, what happens is that a command such as SET X(Cancel, Seller)

issues the Bitvector command SET 1(executionTraceSeller, Cancel bo.id).

The other commands IS X(name, rolePlayer) and RESET(rolePlayer) operate in

the same manner, and both make use of bitvector operations. The former can be

issued as IS 1(exTraceSeler, Cancel bo.id) to assert that the business operation has

been executed, whereas the later is used to reset the whole execution trace of the

Seller to zeros. The latter normally performed when a contract goal has been reached

in particular run.

73

4.3.1.2 Business operations

Business operations are the activities (for example, purchase order, payment, cancella-

tion, delivery) that contractual parties are expected to execute to observe their rights,

obligations and prohibitions. The construct BIS OP (name) can be used for declar-

ing a business operation. For example, the statements BIS OP(PO); BIS OP(ACC);

BIS OP(PAY) declare three business operations, purchase order, accept and payment,

respectively. A contract Business operation declared as BIS OP(name) is built upon

the typdef Promela data type. Within its construct it defines the basic properties

such as name, id, status, right, obligation and prohibition, and a set of operations

(performed by macros) to manipulate the BIS OP(name). Notice that the business

operations declared with the construct BIS OP(name) are declared globally to allow

all of the running processes access to its data items. Next we show a macro that

declares a business operation as Promela typedef datatype, along with, a business

event of Promela mtype datatype.

===

* BIS_OP abstract data type *

===

typedef BIS_OP

{

byte name;

byte role_pl;

bool right;

bool oblig;

bool prohib;

bool executed;

byte id;

byte status;

}

===

* BIS_OP(name) macro *

===

#define BIS_OP(name) BIS_OP name##_##bo; \

mtype= { name }

74

4.3.1.3 Right

A right is a business operation that a role player is allowed to execute. It can have a

deadline; if it does not, it is assumed to last until revoked, or until the end of the business

partnership. For example, in a Buyer-Seller scenario, the right to submit a purchase order

is a right with no deadline. The rights set is all the rights granted to a role player at

a given time. Rights are dynamic, they can be added and removed before the business

transaction is concluded. The following macros can be used to set, reset or inquire a right

property of business operation. It can be noted that macros SET R(bo,r), SET O(bo,o) and

SET P(bo,p) use Promela assertion method to assert that, updates in the ROP set during

the contract execution do not cause contract–independent conflicts, that we discussed in

Chapter 3, Section 3.3.1.

====================================

* SET_R(bo,r) inline and macro *

====================================

inline SET_R(bo,r)

{

bo.right=r;

/*Assert for contract-independent conflicts*/

assert(!(bo.right==1 && bo.oblig==1));

assert(!(bo.right==1 && bo.prohib==1));

}

=======================

* Set Right *

* macro *

=======================

#define SET_R(name,r) \

SET_R(name##_##bo,r)

=====================

* Inquire Right *

* macro *

=====================

#define IS_R(name, rp) \

name##_##bo.right == 1 && name##_##bo.role_pl == rp

75

4.3.1.4 Obligation

An obligation is a business operation that a role player must execute, or face the
penalty of being sanctioned. An example of an obligation is the obligation to pay
an invoice within seven days that is imposed on the buyer after the seller sends an
invoice. The obligations set is the set of all the obligations granted to a role player.
Obligations are dynamic, they can be added and removed as the business exchange
progresses. The following macros can be used to set, reset or inquire an obligation
property of business operation.

/********************************/

/* SET_O(bo,o) inline and macro */

/********************************/

inline SET_O(bo,o)

{

bo.oblig=o;

/*Assert for contract-independent conflicts*/

assert(!(bo.oblig ==1 && bo.prohib ==1));

assert(!(bo.oblig ==1 && bo.right ==1));

}

#define SET_O(name,o) \

SET_O(name##_##bo,o)

=======================

* Inquire Obligation *

* macro *

=======================

#define IS_O(name, rp) \

name##_##bo.oblig == 1 && name##_##bo.role_pl == rp

4.3.1.5 Prohibition

A prohibition is a business operation that a role player must not execute, or face the a

penalty of being sanctioned. An example of a prohibition is that the contract forbids

the Seller from canceling a purchase order. The prohibitions set is the set of all the

prohibitions granted to a role player. Prohibitions are dynamic: they can be added

and removed as the business exchange progresses. The following macros can be used

to set, reset or inquire a prohibition property of business operation.

=======================================

* SET_P(bo,p) inline and macro *

=======================================

76

inline SET_P(bo,p)

{

bo.prohib=p;

/*Assert for contract-independent conflicts*/

assert(!(bo.prohib ==1 && bo.right ==1));

assert(!(bo.prohib ==1 && bo.oblig ==1));

}

#define SET_P(name,p) \

SET_P(name##_##bo,p)

=======================

* Inquire Prohibition *

* macro *

=======================

#define IS_P(name, rp) \

name##_##bo.prohib == 1 && name##_##bo.role_pl == rp

4.3.1.6 Business events

The business event is a message carrying information about something happening during

the business exchange. In the CB2B system, events model the execution of business opera-

tions which take place over a given time interval. In our extension, these are declared within

the BIS OP (name) macro. Once a BIS OP is declared, a business event with the same

name is declared as well. During the execution of a contract model, the business events

are generated and sent by the BEG to the CRM. The BEG and CRM are implemented as

a standard PROMELA processes. The structure and functionality of the BEG is contract

independent. Thus we have designed the BEG template shown below that can be reused

after parametrisation. Figure 4.5 describes a cyclic construct of the BEG process. This

construct is used by CB2B model for generating events from the business event generator

process (BEG). It provides a powerful way of generating business events nondeterministi-

cally. Thus, it precisely models the generation of business events as it takes place in actual

B2B interactions.

This construct executes repeatedly. With each execution, it nondeterministically selects

one out of the N (four in this example) business event within the do–od block. The events

77

 proctype BEG()
 {
 do
 :: B_E (Bei , Status)
 :: B_E (Bei , Status)
 :: B_E (Bei , Status)
 :: B_E (Bei , Status)

 :: - - - -
 :: - - - -
 od
}

BEG template

proctype BEG()
 {
 do
 :: B_E (a , S)
 :: B_E (a , TF)
 :: B_E (b , BF)
 :: B_E (a , TO)
 :: B_E (b , S)
 :: B_E (c , S)
 od
}

BEG template with example

Figure 4.5: Business event generator template

represent the execution of business operations a, b, and c and their execution outcomes. For

instance, the event B E(a, S) represents the execution of operation ‘a’ with a success (S)

outcome. Similarly B E(a, TF) represents the execution of a but with a technical failure

(TF) outcome. The event B E(c,BF) models the execution of ‘c’ with a business failure

(BF) outcome. The business event generator construct is programmed to generate any

combination of the business events which correspond to business operations characterised

as a contract compliant business events or non-contract compliant business events. However,

by default it only generates the contract compliant business events. From the point of view

of model checking, a particularly important case is the generation of sequences of events

corresponding only to the execution of contract compliant operations. This considerably

reduces the size of the state space for exploration, yet still enables checking that rules are

responding correctly to contract compliant business operations (by not flagging them as

non-contract compliant). A recommended way of model checking would be first to verify

the rules using the restricted state space of contract compliant operations and to remove

uncovered errors. Then the state space of exploration can be extended by releasing the

restriction on BEG to generate all combinations of business events.

All the business event generated by the BEG are handled by the the Contract Rule

Manager (CRM) process. The CRM is responsible for calling individual rules for execu-

tions as dictated by the arrival of business events. Like the BEG, the CRM is implemented

78

as a conventional PROMELA process. Its structure and functionality is contract indepen-

dent. Thus we have designed the CRM template shown below that can be reused after

parametrisation.

 proctype CRM()
 {
 do
 :: CONTRACT(BizEvent1);
 :: CONTRACT(BizEvent2);
 ...
 od
 }

CRM template

 proctype CRM()
{
 do
 :: CONTRACT(a);
 :: CONTRACT(b);
 :: CONTRACT(c);

 od
}

CRM template with example

Figure 4.6: Contract rule manager template

BizEvent1 and BizEvent2 are names of business events received from the BEG. As many

events as needed can be included in the do–od block. For example, the CRM template can

be parameterised as follows to tune it to a contract that involves four operations: a, b, c.

4.3.2 Contract rule template

Figure 4.7 shows the rule template of CB2B model. Since in our model rules and events

are in one to one correspondence, Bei is the name of the rule and of the event expected to

trigger it. Among other parameters, an event always indicate the status of the execution

which is success (S), Business Failure (BF) or Technical Failure (TF).

To account for different execution outcomes of the operation represented by the event,

the body of the rule (statements within the WHEN....END(Bei) keywords) is composed of

one or more (normally three) independently executable blocks. Each of them is guarded

by an EVENT(Bei, ROPi, Status) that evaluates to either true or false. When the event

Bei triggers the rule, one or none of the blocks executes. In either case the rule produces

a Rule Decision (RD) that is notified to the contract rule manager process, indicating that

Bei was declared contract compliant or non contract compliant by the rule.

When none of the executable blocks executes, the rule decision is NCC (Non Contract

Compliant). However, when one of the blocks is executed, the rule decision is CC (Con-

79

 RULE(Bei)
 {
 WHEN ::EVENT(Bei , ROPi, Status)
 ->{
 Statements
 - - - - - -
 - - - - - -
 SET_R(BO1, 1);
 SET_O(BO2, 1);
 SET_P (BO3, 1);
 - - - - - -
 - - - - - -
 RD(Bei,RolePlyer,msg1,msg2);
 }
 :: EVENT(Bei , ROPi, Status)
 ->{
 - - - - - -
 - - - - - -
 RD(Bei,RolePlyer,msg1,msg2);
 }
 :: - - - - - -

 :: - - - - - -
 END(Bei);
 }

Contract rule template

Figure 4.7: CB2B Rule template

tract Compliant), unless other conditions inside the executable block are considered. For

example, when an event Bei arrives and its corresponding operation is currently in ROP i

and its status is success then the execution block guarded by EVENT(Bei, ROP i, success)

executes; however, if the operation that corresponds to the event is currently in the ROP i,

but the status of the event is BusinessFailure, the block guarded by EVENT(Bei, ROPi,

BusinessFailure) executes instead. As it will be seen in Chapter 5, the ECA rule template

and the set of operations that have been defined on the BIS OP(Bei) abstract data type

(refer to Table 4.1 and Table 4.2) can be used to implement large class of business contracts.

Thus, various business contracts, especially those can be represented by EROP language(see

Section 2.2.6), can be relatively easy modelled using our CB2B model notation.

80

4.3.3 Manipulating contract status

A contract designer composes the set of ECA rules to manipulates the contact status through

the set of macros discussed here in this section. For full implementations of the macros

introduced here refer to Appendix A.

Initiation of rights, obligations and prohibitions: Each operation is associated

(expected to be executed by) to a role player as a right, obligation or prohibition. The initial

state of the rights, obligations and prohibitions imposed on a given operation is declared

with the help of the construct INIT(BizOper, RolePlayer, R,O,P). BizOper is the name of

operation. RolePlayer is the name of the role player associated to the operation. R,O,P

are bits (set to either 0 or 1) that represent, a right, obligation or prohibition, respectively.

For example, INIT(PO, BUYER, 1,0,0) declares that the buyer has the right to execute

operation PO ; similarly, INIT(OFFER, SELLER, 0,0,1) declares tht the seller is prohibited

from executing the OFFER operation.

Grant/revoke rights, obligations and prohibitions: As the contractual interaction

progresses, rights, obligations and prohibitions are granted (SET) and revoked (RESET).

The operations SET R(BizOper, boolvalue), SET O (BizOper, boolvalue), SET P(BizOper,

boolvalue) can be used, respectively, for setting/ resetting rights, obligations and prohi-

bitions. BizOper is the name of a business operations whereas boolvalue is 1 or 0. For

example, the statement SET R(PO, 0); revokes the right to execute operation PO. Sim-

ilarly, the statement SET O(PAY, 1); imposes and obligation to execute a PAY opera-

tion. Subsequently, when the obligation is fulfilled, the designer can include the statement

SET O(PAY, 0); to remove the obligation to pay.

Inquire status of rights, obligations and prohibitions: The operations IS R (Bi-

zOper, RolePlayer), IS O(BizOper, RolePlayer), IS P(BizOper, RolePlayer) return either

T of F and can be used for inquring about the status rights, obligations and prohibitions.

BIZOper is the business operation of interest whereas RolePlayer is the role player asso-

ciated to the right, obligation or prohibition. For example, to enquire if the buyer has

currently the right to execute a purchase order operation we can use IS R(PO,BUYER)

81

which will return either T if he has or F if he has not. Similarly, the execution of the state-

ment IS O(REFUND, SELLER) will return T if the seller is currently obliged to execute

a REFUND operation.

Set/Reset execution status of operations: The execution status of operations is set

to F in the initial state, by default. Subsequently, we can use the operation SET X(BizOper,

RolePlayer) to set the status of the operation BizOper to T. For example, the statement

SET X(PO, BUYER); can be used to register that the buyer has executed the operation

PO.

Enquire about execution of operations: The operations IS X(BizOper, RolePlayer)

which returns either T of F can be used for inquiring if the operation BizOper has been

executed at least once by the role player RolePlayer. For example, the statement IS X(PAY,

BUYER) will return F if the buyer has not executed yet the operation PAY ; otherwise, it

will return F.

4.4 CB2B model operations

Table 4.1 summarises the operations defined for the BIS OP abstract data type.

The parameter boName is used for the business operation name. There are ‘SET’

methods to grant/remove a right, obligation or prohibition and ‘IS’ methods to test

whether a role player has a right, obligation or prohibition restriction with respect to

a business operation. The SET X method is used to record that the operation has

been executed; that status can be checked by the IS X method. These methods are

useful when implementing rules for clauses such as ‘send a reminder if the payment

has not been made’ or ‘extend payment deadline if a technical failure has occurred

for payment’ (see [37] for more examples).

82

Name Description

BIS OP(Bei) Declares business operations of Promela type typedef with the
fields: name, id, RolePlayer, right, obligation, prohibition,
execution status. The rule field name takes the same value of
the business event name (Bei). Ex. - BIS OP (offer)

SET R(Bei, 1) Gives (removes, when second parameter is 0) right to execute
the business operation of Bei. Ex.- SET R(offer, 1)

SET O(Bei, 1) Assigns (removes, when second parameter is 0) obligation to
execute the business operation of Bei. Ex.- SET O (pay, 1)

SET P(Bei, 1) Sets (removes, when second parameter is 0) prohibition to
execute the business operation of Bei. Ex.- SET P(cancel, 1)

IS R(Bei, RolePlayer) Returns 1 if RolePlayer has permission to excute the business
operation of Bei, 0 otherwise. Ex.- IS R(offer, Seller)

IS O(Bei, RolePlayer) Returns 1 if RolePlayer is obliged to excute the business op-
eration of Bei, 0 otherwise. Ex.- IS O (pay, Seller)

IS P(Bei, RolePlayer) Returns 1 if RolePlayer is prohibited to execute the business
operation of Bei, 0 otherwise. Ex.- IS P (cancel, Buyer)

SET X(Bei, RolePlayer) Sets execution status of the business operation of Bei to 1.
The default value is 0. Ex.- SET X (offer, Seller) means offer
has been executed by the Seller.

IS X(Bei, RolePlayer) Returns 1 if Bei has been executed by the RolePlyaer.

INIT(Bei, RolePlayer,R,O,P) Initialise BIS OP(Bei) with (R)ight, (O)bligation or
(P)rohibition and add it to a RolePlayer. Ex.- INIT(
offer, Seller,1,0,0)- The Seller is given the right to execute
an offer.

Table 4.1: BIS OP operations list.

Table 4.2 shows the operations and control structures that have been implemented

as syntactic sugar; these supplement Promela constructs for purposes such as state-

ment sequencing, atomic sequencing, concurrent execution, case selection, repetition

and unconditional jumps. With this high level notation built upon the Promela ba-

sic data types, the business operations defined in the contract model are declared

globally with BIS OP(Bei). Then an expression such as INIT(Bei, RolePlayeri,0,1,0)

associates the Bei with the RolePlayeri, the last three bits denote that a business op-

eration Bei can be initialised as a right, obligation or prohibition respectively (since

the second bit is set to one, this example is initialised with an obligation). Similarly,

an operation such as SET O(Bei,0) discharges the obligation imposed on RolePlayeri.

Finally, an obligation on Bei associated with the RolePlayeri denotes that it is oblig-

atory for the RolePlayeri bearing this obligation to perform the action Bei. In the

83

Appendix A we list a full implementation of the macros we developed in this work.

Name Description

CONTRACT(Bei) Includes the contract Rulei into the contract rule manager (CRM)
based on the received business event Bei. CONTRACT(Bei)
blocks until the the business event Bei is generated. Ex.- CON-
TRACT(offer) becomes executable if the business event offer is
received, and if executed, then the contract rule Rule(offer) is
loaded to handle the event offer.

EVENT(Bei, ROPi, Status) Blocks until the business event (Bei) occurs, the ROP entity
(ROPi) (right, obligation or prohibition) and its execution sta-
tus are evaluated to true. Ex. EVENT(Refund, IS O(Refund,
CLIENT), SC(Refund)).

B E(RolePlyeri, Bei, Status) Sends business event Bei of a business operation belong to
RolePlyeri with status (S, BF, TF or TO) to the Contract Rule
Manager(CRM). Ex.- B E(Seller, offer, S).

SC(Bei), BF(Bei), TF(Bei), TO(Bei) Returns 1 if a business event Bei submitted is flagged with suc-
cess (S), business failure (BF), technical failure (TF) or timeout
(TO) execution status respectively, 0 otherwise. Ex.- SC(Refund),
BF(Refund), TF(Refund), TO(Refund).

RD(Bei, RolePlayer, m1, m2) The (R)ule (D)ecision (RD) notifies about the outcome of the
rule execution. The parameter m1 could be a CCR,CCO or
CCP(that is a (C)ontract (C)ompliant (R)ight, (O)bligation
or (P)rohibition, respectively) or alternatively a NCC ((N)ot
(C)ontract (C)ompliant). The parameter m2 is either CON or
CND (continue contract or contract ended respectively). Ex.-
RD(offer, Seller, CCO, CON).

SYN(Bei){
Statements
−−−−
−−−−
}

NYS(Bei)

Used within the contract rules blocks to synchronise with the busi-
ness operation of Bei. The statements within SYN..NYS body are
executed when the history of the execution status of Bei is eval-
uated to true.

Table 4.2: CB2B operations list.

4.5 Contract model checking with CB2B model

The CB2B model is supported by the verification framework shown in Figure 4.8. It

can be initialized with a set of ECA rules, where the rules have been coded using our

extended Promela language. Three assumptions are made; firstly that the contract

has been negotiated by the contracting parties and drawn up in English (or other

natural) language. Secondly, it is assumed that the designer manually converts the

clauses of the English contract into ECA rules written in extended Promela language

which are executed by the processes and channels of the CB2B model. In parallel,

84

the designer manually prepares a list of contract correctness requirements deduced

from the contract clauses into LTL formulae. Finally, the designer inputs the CB2B

model together with the rules and the LTL formulae into the Spin verifier and runs

it to output verification results.

Contract in English

ECA Rules in extended
Promela

LTL Formulae

CB2B Formal model

Model of
Contractual Business-to-
Business Environment

Promela VARS, CONS,
Processes, Channels, etc...

Input to

Spin

Contract Correctness
Requirements

Prepare list of

Manual conversion

Verification results
Output

Manual conversion

Figure 4.8: Contract model checking framework.

It is worth mentioning that electronic contracts are likely to experience modifi-

cations, for example after re–negotiations, during their life-cycle. However, modi-

fications of the contract usually lead to several problems in terms of conflicts and

deadlock/livelock freedom. A reliable solution to these frequent updates of the con-

tract clauses consists of the application of model checking techniques in order to

verify if specific properties of the monitorable contract are preserved by any changes

which may be caused by introducing new clauses. It is advisable to expose each new

version of the contract to the procedure described in Figure 4.8, possibly with some

short-cuts taken depending on the severity of the updates. The next subsection revis-

85

iting the contract example discussed throughout this chapter and model it with the

notation discussed above, and then verify it with the CB2B verification framework.

4.5.1 Contract example re-visited

Revisiting the contract example discussed earlier in section 4.2.3 helps to show how

the different elements of the contract such as rights, obligations and prohibitions as

well as the set of contract rules, will be specified in extended Promela (see Figure

4.9 for the contract rules) and then verified using the CB2B model. Recall that the

contract fragment is ‘there is an obligation to choose between doing ‘b’ or ‘c’ after ‘a’,

and a prohibition on doing ‘b’ if ‘b’ has been performed. Applying our verification

framework to this example reveals a contract defect that is not easily detected in the

original text or during the conversion into ECA rules.

RULE(a)
 {
 WHEN::EVENT(a,IS_R(a,CLIENT),SC(a))
 ->{
 SET_R(a,0);
 SET_O(b,1);
 SET_O(c,1);
 SET_X(a,CLIENT);
 DONE(CLIENT);
 RD(a,CLIENT,CCR,CO);
 }
 END(a);
 }

Contract Rule 'a'

RULE(b)
 {
 WHEN::EVENT(b,IS_O(b,CLIENT),SC(b))
 ->{
 SET_O(b,0);
 SET_O(c,0);
 SET_P(b,1);
 SET_R(a,1);
 SET_X(b,CLIENT);
 DONE(CLIENT);
 RD(b,CLIENT,CCO,CND);
 }
 ::EVENT(b,IS_P(b,CLIENT),SC(b))
 ->{
 SET_O(c,0);
 SET_X(b,CLIENT);
 DONE(CLIENT);
 RD(b,CLIENT,CCP,CO);
 }
 END(b);
 }

Contract Rule 'b'

RULE(c)
 {
 WHEN::EVENT(C,IS_O(c,CLIENT),SC(c))
 ->{
 SET_O(c,0);
 SET_O(b,0);
 SET_R(a,1);
 SET_X(c,CLIENT);
 DONE(CLIENT);
 RD(c,CLIENT,CCO,CO);
 }
 END(c);
 }

Contract Rule 'c'

Figure 4.9: Contract rules in extended Promela

We can see that these rules closely resemble the pseudo-code discussed earlier

(Section 4.2.3). A comparison of these rules against their equivalent in standard

Promela would reveal that these rules are far more readable, compact and intuitively

clear. The reason for this is that they take advantage of our new contract concepts.

For instance, for Rule(c), a query to check if a role player is obliged to execute

operation c can be coded intuitively as a single line: IS O(c). Likewise in Rule(b), a

86

single line, SET P(b, 1), is enough to prohibit a role player from executing operation

b. Each rule ends with a decision such as RD(a,CLIENT,CCR,CO) sent to the event

generator indicating whether the operation is a contract compliant right, obligation

or prohibition (CCR, CCO or CCP respectively) or noncontract compliant (NCC);

where CO is short for continue, indicating that event generation should continue.

The complete verification process of this contract with the CB2B verification

framework follows the next steps below:

1. Extract the contract entities from the text and re-write the contract as a set of

ECA rules using the CB2B rule template (Figure 4.9).

2. Prepare the list of requirements as LTL formulae (e.g. P1 below).

3. Run Spin model checker for exhaustive verification and observe the output - in

case of violations the Spin model checker returns a counterexample.

ltl P1 {[]((IS_X(b,CLIENT)-> [](IS_P(b,CLIENT))))}

That is, always after its first execution, a role player client is prohibited to per-

form the operation ‘b’ again forever. Recall that the model can detect the contract

independent-conflicts discussed in 3.2.1 automatically. Thus, writing properties such

as P2 below to verify that it is always not possible to be simultaneously obliged on

and prohibited to execute the business operation ‘b’ is redundant:

ltl P2 {[](not(IS_O(b,CLIENT) && IS_P(b,CLIENT)))}

In fact, as discussed earlier, properties of this type such as P2 can be detected

through assertions that are implemented as part of the CB2B operations SET R(),

SET O() and SET P(). Thus, Spin would automatically examine them after each op-

eration execution, and in case of violation is detected the counterexample is returned.

The verification of property P1 passed the test; this means that ‘b’ will be pro-

hibited after its first execution forever. It is important to test such properties of the

87

contract before its deployment in a contract monitoring service. This is because the

real implementation of a rule such as ‘b’ may impose sanctions, termination or legal

action whenever the contract rule is violated, which in turn may badly affect the

business exchange and lead to disputes if the decisions made by monitoring service

were not accurate.

The verification of the contract independent properties, or for properties such as

P2, did not pass the test. Spin complained and returned a counterexample after

the execution trace : a → b → a. During the contract compliance checking, the

ROP set is manipulated in the rule for ‘a’: checking that there is a right to perform

‘a’ (IS R(a) returns True), and, if so, that right is now removed since ‘a’ has been

performed and an obligation to perform ‘b’ or ‘c’ is inserted, only one of them will be

chosen non–deterministically. In the rules for ‘b’ and ‘c’, the right to perform ‘a’ is

inserted again. At first glance, these rules seem to be an accurate representation of the

contract. However, it turns out that the rules do not meet this requirement formalised

in P1 which informally states that there should be no simultaneous obligation and

prohibition on executing the operation ‘b’.

a b
a

O(b)
P(b), R(a)

P(b), O(b)

Figure 4.10: Inconsistent assignment of prohibition and obligation

Figure 4.10 shows the membership of the ROP set for one particular execution:

operations ’a’ followed by ’b’ followed by ’a’, and in the second execution of ’a’, ’b’

is chosen again; now there is obligation as well as prohibition to perform ’b’. The

corrected version is shown in Figure 4.11 where the obligation to perform operation

b is enabled only when there is no prohibition on it.

An advantage of the CB2B verification framework is that the contract is specified

as a set of ECA rules. As a result, once a contract has been verified, the ECA rules

88

RULE(a)
 {
 WHEN::EVENT(a,IS_R(a,CLIENT),SC(a))
 ->{
 SET_R(a,0);
 if
 ::!IS_P(b,CLIENT)
 -> SET_O(b,1);

 -> SET_O(c,1);
 ::SET_O(c,1);
 fi;
 SET_X(a,CLIENT);

 DONE(CLIENT);
 RD(a,CLIENT,CCR,CO);
 }
 END(a);
 }

Contract Rule 'a'

Figure 4.11: Correct version of contract rule ’a’

from the CB2B formal model can be translated relatively easily into their executable

counterpart, such as EROP rules. We now therefore have a systematic way of gen-

erating a machine interpretable contract, although it has not yet been implemented.

Another key point is that the rules are specified in a separate document in a high

level notation based on the contract entities to simplify the close collaboration re-

quired between domain experts such as software engineers and business practitioners

through the intuitively understandable format of the contract’s ECA rules. In fact,

decision to adopt the verification tools in the business world should consider these

usability issues.

4.5.1.1 Complete code of the contract example

/* Import required files */

#include "setting.h"

#include "BizOperation.h"

/* import contract rules*/

#include "contract_rules.h"

/*Declare global variables*/

byte RefundAmount;

89

RolePlayer(CLIENT);

RuleMessage(S,BF,TF,TO);

BIS_OP(START);

BIS_OP(a);

BIS_OP(b);

BIS_OP(c);

/* Define LTL formulae */

/*ltl X {[]((IS_X(b,CLIENT)-> [](IS_P(b,CLIENT))))}*/

/* Business Event Generator process (BEG)*/

proctype BEG()

{

BEGIN_INIT:

{

INIT(a,CLIENT,1,0,0);

INIT(c,CLIENT,0,0,0);

INIT(b,CLIENT,0,0,0);

}

END_INIT:

/* GENERATING BUSINESS EVENTS */

do

:: B_E(CLIENT,a,S);

:: B_E(CLIENT,b,S);

:: B_E(CLIENT,c,S);

od;

}

/* CONTRACT RULE MANAGER process (CRM)*/

proctype CRM()

{

do

:: CONTRACT(a);

:: CONTRACT(b);

:: CONTRACT(c);

od;

}

/* Initialise model processes */

init

{

atomic

{

run BEG();

90

run CRM();

}

}

4.5.1.2 Rule–base of the contract example

The contract ECA rules saved in a separate file (contract rules.h), and imported to

the CB2B model using the command #include “contract rules.h” as shown in the

previous section.

RULE(a)

{

WHEN::EVENT(a,IS_R(a,CLIENT),SC(a))

->{

SET_R(a,0);

if

::!IS_P(b,CLIENT)

-> SET_O(b,1);

-> SET_O(c,1);

::SET_O(c,1);

fi;

SET_X(a,CLIENT);

DONE(CLIENT);

RD(a,CLIENT,CCR,CO);

}

END(a);

}

RULE(b)

{

WHEN::EVENT(b,IS_O(b,CLIENT),SC(b))

->{

SET_O(b,0);

SET_O(c,0);

SET_P(b,1);

SET_R(a,1);

SET_X(b,CLIENT);

DONE(CLIENT);

RD(b,CLIENT,CCO,CND);

}

::EVENT(b,IS_P(b,CLIENT),SC(b))

->{

91

SET_O(c,0);

SET_X(b,CLIENT);

DONE(CLIENT);

RD(b,CLIENT,CCP,CO);

}

END(b);

}

RULE(c)

{

printf("Cancel business operation");

WHEN::EVENT(C,IS_O(c,CLIENT),SC(c))

->{

SET_O(c,0);

SET_O(b,0);

SET_R(a,1);

SET_X(c,CLIENT);

DONE(CLIENT);

RD(c,CLIENT,CCO,CO);

}

END(CANCEL);

}

In this contract example we have shown the full implementation of the CB2B

contract model. We have shown the global declaration part, where the contract global

variables and rules are accessed and manipulated by CB2B processes. The code listing

above also shows how the model imports the contract rules (from the contract rules.h),

the set of macros extensions (from the BizOperation.h) and setting.h (model channels,

messages etc.). The extension .h given to the files is not compulsory, Spin will accept

other extensions such as .c .pml .txt etc.

4.5.2 Contract example with priority rules conflict

A well known class of inconsistency that impact contracts is conflicts at level that –

if not addressed – result in conflicts at rule implementation level. A conflict happens

when two or more contradictory actions (operations) appear to be in force simulta-

neously. Consider the following example (discussed earlier in Section 3.2.1):

92

• Rule A - if customer returns the purchased e-ticket for any reason, within 7

days, then the purchase amount, minus a 10% penalty fee, will be refunded.

• Rule B - if customer returns the purchased e-ticket because the flight was can-

celed by the seller (travel agent), before the due date (up to one year), then the

full purchase amount will be refunded.

A conflict would occur if the ticket is canceled by the seller in the overlapping

period between rule A and rule B, within 7 days of the ticket issuing date, so both

rules are applicable.

RULE(RNR7D)
{
 WHEN::EVENT(RNR7D, IS_R(RNR7D, CLIENT),
 SC(RNR7D))
 ‐>{

 RefundAmount = 9;
 SET_R(RNR7D, 0);

 SYN(CANCEL, AGENCY)
 ‐>{
 RefundAmount = 10;
 }
 NYS(CANCEL)

 SET_X(RNR7D, CLIENT);
 RD(RNR7D, CLIENT, CCO, RST);

 }

 END(RNR7D);
}

Contract Rule RNR7D

RULE(RFC365D)
 {
 WHEN::EVENT(RFC365D, IS_R(RFC365D, CLIENT),
 SC(RFC365D))
 ‐>{
 RefundAmount = 10;
 SET_R(RFC365D, 0);
 SET_X(RFC365D, CLIENT);
 RD(RFC365D, CLIENT, CCO, RST);
 }

 END(RFC365D);
 }

Contract Rule RFC365D

RULE(CANCEL)
 {
 WHEN::EVENT(CANCEL, IS_R(CANCEL, AGENCY)
 ,SC(CANCEL))
 ‐>{
 SET_R(CANCEL, 0);
 SET_X(CANCEL, AGENCY);
 RD(CANCEL, AGENCY, CCR, CO);
 }

 END(CANCEL);
 }

Contract Rule CANCEL

Figure 4.12: E-ticket refund contract rules

This contract needs to consider both the client’s refund and the travel agency’s

cancellation business operations. Two contract rules are defined to handle the refund

operations. Rule(RNR7D) for refund for no reason (RNR) within seven days (7D),

this could happen if the buyer changed his mind about the flight, and (RFC365D)

for refund for canceled e-ticket (RFC) within one year (365D), this normally happens

93

when the Seller cancels the flight. Furthermore, Rule(CANCEL) is added for han-

dling the cancellation business event (CANCEL) from the travel agent. The contract

is initialised with right to the client to perform RNR7D and RFC365D, as well as a

right to the travel agent to cancel the ticket at any time. Figure 4.12 above shows rule

implementation to this contract using extended Promela. Each rule can be triggered

by an event from the set of business events (RNR7D, RFC365D and CANCEL). By

default, the set of the contract rules respond only to the contract compliant busi-

ness events. In response to such events, the contract status is updated; for example

rights, obligation or prohibitions may be applied, or permissible operations might be

prohibited. Note that the block SYN, NYS in Rule(RNR7D) is to synchronise with

cancel business operation (hence the name SYN() is used). Basically, SYN(CANCEL,

AGENCY) checks for the execution history of cancel business operation. If it has been

found executed, the rule would guarantee full refund to the client. By default, the

client would be penalised 10% as a cancelation for no reason penalty. Figure 4.13,

shows different possible timelines of the execution of the refund operation.

Figures 4.13(a) and 4.13(b) respectively show that the business event RNR7D is

permitted within 7 Days, and the business event RFC365D is permitted within the

whole year. In both timelines no cancellation business events have been witnessed.

Figure 4.13(c), shows that the seller has the right to cancel the flight ticket for the

whole year, whereas the grey arrows in a,b and c show different points in time in which

the business events RNR7D, RFC365D and CANCEL may occur. Figure 4.13(d),

shows possible scenario when both of the contract rules RNR7D and RFC365D can

be executed within the first 7 after the commencement of the contract date. In such

a situation, the buyer might be penalised if he return the flight ticket for no reason

within 7 Days, however, the full refund amount must be returned as the seller has

already canceled the flight.

94

Rest of the year d)7 Days

Seller cancel ticket
(CANCEL)

Buyer refund ticket
(RNR7D)

b)One year

Buyer refund ticket
(RFC365D)

c)One year

Seller cancel ticket
(CANCEL)

a)7 Days

Buyer refund ticket
(RNR7D)

Rest of the year

Figure 4.13: Priority rule conflict illustrated with timeline

In order to verify that the above contract rules consider the discussed possible

conflict, Spin is first executed with its default settings with the feature for assertion

violations detection is enabled to verify the contract-independent conflicts. Then for

the contract-dependent conflicts, the following two formulae P1 and P2 can be verified.

P1 verifies that whenever RNR7D and CANCEL are executed, the RefundAmount

must be paid in full, whereas P2 verifies that whenever RNR7D is executed and ticket

is not canceled, then the Client must be penalised.

ltl P1{[]((IS_X(RNR7D,CLIENT)&&IS_X(CANCEL,AGENCY))->

(RefundAmount==10))}

ltl P2{[]((IS_X(RNR7D,CLIENT)&& not(IS_X(CANCEL,AGENCY)))->

(RefundAmount==9))}

The current implementation of the contract does not complain about P1 and P2;

the verification ended with no problems. This would ensure that there will be no case

when a client refund the ticket within 7 Days for no reason while the ticket is has

95

already been cancelled and refunded £9 instead of £10. Injecting the Rule(RNR7D)

with an error, such as changing the refund amount to 10 or any other value, and

verify for P2 will cause Spin to complain and return counterexample instantly after

receiving the RNR7D business event and execute the body of Rule(RNR7D).

4.6 The use of CB2B model for testing

The basic idea behind model checker based testing is simple and elegant: construct a

behaviour model of the system under test (SUT) and validate the behaviour using a

model checker (e.g., use Promela language for constructing the model and verify using

Spin, [27]). Such a validated model can then be used for generating executable test

cases for the SUT; the model also acts as an oracle, since it also indicates the expected

outputs the SUT should produce under given conditions. A principal challenge here

is the construction of a model that is sufficiently small (abstract, simple) to enable,

as far as possible, exhaustive checking (full validation) by the model checker; at the

same time, the model should be realistic enough to be able to generate test cases

that exercise the SUT. Different techniques have been proposed in order to force a

model checker to create traces suitable as test cases. The traces are generated as

counterexamples for property violations; such traces are known as witness traces,

which serve to illustrate that a system property is satisfied. Model checker based

testing techniques have received wide attention in the software engineering community

see [25, 43, 46, 52].

4.6.1 Spin based test–case generation tool

A schematic view of test case synthesis tools such TGV [8] for the generation of

test cases is shown in bold in Figure 4.14. Then, given a reference model, and some

criterion, a set of test cases [54] is produced. The reference model is intended to

96

represent the behaviour of the system under test. The role of the synthesis tool

(SPIN) is to select test cases from behaviours of the system specification. Thus, a

second input which is a criterion or test purpose is required. This criterion is aimed

to precisely match the system functionalities to be tested. The output of the tool

is a set of test cases describing the behaviours of the system under test along with

verdicts associated with those behaviours.

Synthesis tool

SPIN

Test case

Counterexample

Test purposes

LTL propery

CB2B formal model

Reference

ECA rules in extended
Promela

Model of
Contractual Business-to-
Business Environment

Promela VARS, CONS,
Processes, Channels, etc...

to

Execution Sequence

input

output

e
1

e2 e3 en ()
- - - - - - -
- - - - - - -

Figure 4.14: General structure of test case synthesis tool using CB2B model

4.6.2 Test–case generation steps

Generating test cases with the CB2B model and the general Spin model checker in-

volves three steps. Firstly, an abstract reference model of the SUT is built. Then

the test purpose concerning the property of interest such as when the SUT progresses

from state Si to state Sj after being presented with input ei is formed as LTL formula.

Thirdly, the LTL is negated and presented to the model checker (the synthesis tool)

with the challenge to execute the abstract model to show that the negated LTL claim

can be violated. As a result, the model checker then produces witnesses that include

97

transitions from Si to Sj when ei is provided. As explained in [44], counterexam-

ples (or witnesses) produced by model checkers contain abstract parameters that are

meaningful to the abstract model but meaningless to the SUT. Thus they serve only

as raw data to produce executable test cases that can be fed into the SUT to exercise

a run. We note that a verified CB2B model (the reference) will by default generate

sequences with events corresponding to the execution of contract–compliant opera-

tions only. However, the model can be tuned to generate sequences which include

unknown and non–compliant business events; different categories of non–compliant

business events have been discussed in Chapter 3. Once a test–case is generated, a

test verdict of pass or fail is then associated with it, so it can be used to test the

correctness of behaviours of the actual implementation of the contract rules.

4.6.3 Limitations of Spin counterexamples

Model–checker based approaches, for test–case generation, offer many advantages:

They are fully automated and flexible. However, because model–checkers in general

were not originally designed as test–case generation tools, there are many limitations

for using them for this purpose. In this section we list the main limitation of using

Spin for generating test–cases. We note that the list of limitations discussed below

might be applicable to a large class of model checkers not only Spin.

• The enormous state space of finite–state models of practical software specifica-

tions often leads to the state explosion problem: Spin model checker might run

out of memory or time before it can analyze the complete state space.

• Because Spin does a depth–first search (DFS) of the state–machine model, it

produces very long counterexamples (which means very long test–cases). We

note that Spin offers switch which finds the shortest counterexample, this might

be used to find found a test sequence with the shortest possible length.

98

• A large percentage of the test-cases produced using Spin model checker are

redundant. Various heuristics approaches suggested to tackle the redundancy

of test–cases (see for example [15–17]).

• Finally, a major weakness of this approach is the reliance of this method on

a manual translation of the specification to the model–checker input language,

which requires some skill and ingenuity. In our case, we tried to tackle this

problem by developing an intuitive high–level notation (by extending Promela,

the input language of Spin model checker) to model the contract rules.

The B2B contractual interactions can give rise to highly complex execution pat-

terns, and it is quite unrealistic to assume that these can be produced manually

for testing purposes. Testing tool support is therefore would help at design time to

validate the consistency of the contractual clauses and later, to produce test case val-

idation sequences to test the correctness of the actual implementation. This Section

has briefly illustrated the idea of using the CB2B model and Spin model checker to

generate test–cases for electronic contracts. An earlier version of the CB2B model

[2] has been used to demonstrate this tool for test–case generation while testing an

electronic contract system [51].

4.7 Evaluation of CB2B system state

As discussed with respect to the executable behaviour of the CB2B model in Sec-

tion 4.2.1, the contract passes through several states according to several transitions.

Figure 4.3 depicts some possible transitions that can be generated from or lead to

other states (Si, Si−1 and Si+1). In this context a transition can be observed each

time a business event Bei arrives from the business event generator (BEG) to the

contract rule manager (CRM). In terms of Promela language, this involves write and

read operations to a global channel between two asynchronous processes. In fact,

99

if the business event written to the channel between the two processes is conforms

to the ROP entities of rights, obligations and prohibitions, a transition is generated

(Si → Si+1); otherwise the state Si is maintained until another business event oc-

curs. The set of reachable states from an initial state through consecutive sequence

of transitions is called a reachability graph (or RG for short). Formally, that is a

3-tuple (S0, Tr, S), where S0 is the set of initial states, Tr is the set of transition rela-

tions, and S is a set of states. The RG is a representation of the system’s behaviour.

It facilitates the discovery of relations and anomalies in system behaviour. Hence,

starting from the initial state, a RG is constructed with all the reachable states that

are attainable from the former through all possible subsequent transitions.

Fundamentally, in order to derive the system state, Spin translates each process

template into a finite automaton. The global behavior of the concurrent system is

obtained by computing an asynchronous interleaving product of automata, with one

automaton per asynchronous process behavior. The resulting global system behaviour

is itself again represented by an automaton. This interleaving product is often referred

to as the state space of the system, and, because it can easily be represented as a

graph, it is also commonly referred to as the global reachability graph [29].

In the worst case, the global reachability graph has the size of the Cartesian prod-

uct of all component systems. Although in practice size of global reachability never

approaches this worst case, the reachable portion of the Cartesian product can also

easily become prohibitively expensive to construct exhaustively. Spin is supported

by a number of complexity management techniques which have been developed to

combat this problem [29].

Sometimes it is not enough to rely on Spin techniques to combat the complexity

problem of Promela models. Different techniques can be employed, and here a tech-

nique called restriction is used to reduce the size of the state space and the complexity

of the model. This restriction called slicing [35]. The size of the state space and its

100

complexity is reduced by removing states, transitions and strengthening guards in the

model. The resulting model is a smaller model that covers only a subset of the state

space of the original model. M r, Ar and Ar
s may be used to refer to the restricted

model, its automaton and state space, respectively. Notice that in M r the guards in

the BEG have been strengthened so that it generates only matched events; that is,

events that satisfy conditions C1 and C2 as discussed Section 3.1. In other words, the

model is suitable for exploring the behaviour of the rules when they are triggered by

matched events. A more general model M with automaton A and state space As can

be built by removing the guards in the BEG of M r so that the business event gener-

ator can provide the rules with events that satisfy condition C1 but not necessarily

C2. Model M can be used to explore the behaviour of the rules when triggered by

any event. Since Ar
s ⊂ As, all the behaviour of M r is covered by M . The motivation

for using M r at this early stage of the design is that Ar
s is small; in other words, it

is easy to reason about and amenable to exhaustive and rapid verification. It focuses

on the exploration of a specific part of the state space As, where the designer can use

M r to prove the absence of errors in M r and claim that M is free from those errors

as well.

Next the effect of the restriction technique on contract model which models the

contract example presented in Page (74) is shown. The exhaustive verification of

the contract model is run with the restriction technique discussed above as well as

without it. Then the results are compared in the following:

===

* Run with Spin default options with restriction *

===

State-vector 68 byte, depth reached 100, errors: 0

225 states, stored

9 states, matched

234 transitions (= stored+matched)

1 atomic steps

hash conflicts: 0 (resolved)

101

Stats on memory usage (in Megabytes):

0.018 equivalent memory usage for states (stored*(State-vector +

overhead))

0.251 actual memory usage for states (unsuccessful compression:

1394.52%)

state-vector as stored = 1155 byte + 16 byte overhead

2.539 total actual memory usage

=========================[End Of Spin report]======================

===

* Run with Spin default options with out restriction *

===

State-vector 68 byte, depth reached 103, errors: 0

515 states, stored

75 states, matched

590 transitions (= stored+matched)

1 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.041 equivalent memory usage for states (stored*(State-vector +

overhead))

0.252 actual memory usage for states (unsuccessful compression:

609.93%)

state-vector as stored = 496 byte + 16 byte overhead

2.539 total actual memory usage

========================[End Of Spin report]=======================

0

50

100

150

200

250

300

350

400

450

500

550

600

650

State vector Number of states Number of transitions

Restricted run

Non-restricted run

Figure 4.15: Comparison between restricted and non-restricted model runs.

102

From the two Spin reports and the summary comparison shown in 4.15, it can be

seen that without restriction the number of states and transitions is comparatively

larger. For illustration, Figure 4.16 is used to show two random contract runs with

the same random seed number. In Figure 4.16a, the CB2B model only responds

to the contract compliant business operations, thus the execution trace does s not

include message of NCC type (i.e the rule reports the business event is Non-Contract

Compliant); the messages were CCR (Contract Compliant Right), CCO (Contract

Compliant Obligation) or CCP (Contract Compliant Prohibition). However, Figure

4.16b, shows that the first contract compliant business operation witnessed by the

event (a, s) at the bottom of the sequence after number of executions included b, s →

c, s → c, s → b, s (where ‘s’ indicates the business operation is successful).

Non-Contract Compliant
business operations

Contract Compliant
business operations

Contract Compliant
business operations

(a) - Restricted execution (b) - Non restricted execution

Figure 4.16: Random run of restricted and non-restricted contract executions

103

4.8 Discussion

This Chapter has described different aspects of the CB2B formal model and its use

for the verification of contracts. The CB2B model hides much of the intricate details

of the construction of interacting state machines and enables a designer to encode a

contract for model checking directly as ECA rules in terms of the contract entities

of business operations, and role players with rights, obligations and prohibitions.

Equally importantly, the designer can specify the correctness requirements, in linear

temporal logic, directly in terms of the contract entities. The primitives that added

to Promela are at user level without any changes to the Spin source code and can

be used to build contract models at different levels of abstraction aimed at exploring

specific properties of the system.

What distinguishes the high level notation of the e-contract developed in this

study is the executable behaviour offered by the CB2B model. Unlike previous work

which has only considered the representation of the contract norms, this approach

provides an executable notation on which the capabilities of the Spin model checker

can be directly exploited for the verification of the contract model.

For example, a contract designer can use the interactive mode of the Spin model

checker and verify the execution of the described business events in any order and

observe the execution output. Alternatively, a simulation that takes one execution

path randomly is also available in Spin. More importantly, a designer can perform

an exhaustive verification that would discover potential deadlocks or livelocks in the

contract rules. In fact, with our approach to contract modelling the whole features

of the Spin model checker become available to the contract designer. Another very

useful function of our CB2B model is that it can be used for generating executable

test cases for testing actual implementation of contracts, this is discussed in Section

4.6.

104

Chapter 5

Case studies

This chapter uses the tool for representation and verification of number of e-contracts

that that has been derived from natural language descriptions, modelled as ECA

rules. It is shown that our representation of a contract model captures the contract’s

essential elements of business operations, role players, rights, obligations and prohi-

bitions, and it alsi handles CTDs and CTPs. With the help of CB2B model Spin

automatically detects contract-independent conflicts as discussed in Chapter 3 and

contract-dependent conflicts as discussed in Chapter 2 and Chapter 3. These can

be specified with relative ease in terms of contract elements as safety and liveness

requirements and then verified with the Spin model checker.

5.1 Internet provision contract

The example used is an Internet provision contract between an Internet service

provider (ISP) and a client, where the ISP gives the client contractual access to

the Internet. The original contract in this example has been used before [45] to illus-

trate contract language CL. Two parameters for the Internet service in the contract

are considered: high and low, which denote the volume of the client’s Internet traffic.

105

1. Whenever Internet traffic is high then the client must pay $ X or the client
must notify the service provider by sending an e-mail specifying that he will
pay later within 24 hours.

2. In case the client delays the payment, after notification he must lower Internet
traffic within 24 hours to the low level, and pay $ 2.X.

3. If the client does not lower the Internet traffic within 24 hours, then the client
will have to pay $ 3.X.

4. The provider does not have permission to cancel the contract without previous
written notification by normal post and by e-mail.

Step 1 - Declaration Part

/*Declaration of some variables*/

bool INTERNET_HIGH;

/*Declaration of Role Players*/

RolePlayer(CLIENT,ISP);

/*Declaration of Business Operation*/

BIS_OP(PAY24H); /*Client - Pay within 24 hours*/

BIS_OP(PAY48H); /*Client - Pay within 48 hours*/

BIS_OP(DE_NO_48H);/*Client - Delay note within 48 hours*/

BIS_OP(LOWER24H); /*Client - Lower within 24 hours*/

BIS_OP(SEND); /*ISP - Send cancellation email*/

BIS_OP(WRITE); /*ISP - Write cancellation letter*/

BIS_OP(CANCEL); /*ISP - Cancel Internet service*/

Step 2 - Contract initialisation

RESET(CLIENT);

RESET(ISP);

INIT(PAY24H,CLIENT,0,1,0);

INIT(PAY48H,CLIENT,0,0,0);

INIT(DE_NO_48H,CLIENT,0,1,0);

INIT(SEND,ISP,1,0,0);

INIT(WRITE,ISP,1,0,0);

INIT(CANCEL,ISP,0,0,0);

INIT(LOWER24H,CLIENT,0,0,0);

106

Step 3 - Deriving contract rules

The natural language of the Internet provision contract is manually converted into

the following ECA rules:

1. Rule(PAY24H) - Client pays within 24 hours.

2. Rule(PAY48H) - Client pays within 48 hours.

3. Rule(DE NO 48H) - Client delays payment and sends delay notification within
48 hours.

4. Rule(LOWER24H) - Client lowers Internet traffic within 24 hours after his
decision to delay payment.

5. Rule(SEND) - ISP sends cancellation email to the Client.

6. Rule(WRITE) - ISP writes cancellation letter to the Client.

7. Rule(Cancel) - ISP cancels the Internet service.

Figure 5.1 shows how the Internet provision contract rules are implemented as a

set of ECA rules with the extended Promela. For example, the implementation of

Rule(PAY24H) allows it to respond to business events with success or timeout status,

as discussed business events and their status in detail in Chapter 3. Thus, when

Rule(PAY24H) is executed within 24 hours, and the business event (PAY24H) is suc-

cessfully received (i.e. with status ’S’), the expression Event(PAY24H, IS O(PAY24H,

CLIENT), SC(PAY24H)) is evaluated to be TRUE. In such a case the obligation is

considered fulfilled and reset with the operation (SET O(PAY24H,0)). Also, the rule

decision RD(PAY24H, CLIENT, CCO, CND) states that: the business event PAY24H

generated by the CLIENT implies that the business operation is a contract-compliant

obligation (CCO), and the contract execution trace for the client is ended (CND).

Otherwise, the expression Event(PAY24H, IS O(PAY24H, CLIENT) is evaluated as

FALSE, and the rule decision is considered non-contract- compliant (NCC) business

operation.

107

RULE(LOWER24H)
 {
 WHEN::EVENT(LOWER24H,IS_O(LOWER24H,CLIENT),
 SC(LOWER24H))
 ->{
 SET_O(LOWER24H,0);
 SET_O(PAY48H,1);
 Payment=2;
 INTERNET_HIGH=FALSE;
 SET_X(LOWER24H,CLIENT);
 DONE(CLIENT);
 RD(LOWER24H,CLIENT,CCR,CO);
 }
 ::EVENT(LOWER24H,IS_O(LOWER24H,CLIENT),
 TO(LOWER24H))
 ->{
 SET_O(LOWER24H,0);
 SET_O(PAY48H,1);
 Payment=3;
 SET_X(LOWER24H,CLIENT);
 DONE(CLIENT);
 RD(LOWER24H,CLIENT,CCO,CO);
 }
 END(LOWER24H);
 }

Contract Rule LOWER24H

 RULE(PAY24H)
 {
 WHEN::EVENT(PAY24H,IS_O(PAY24H,CLIENT),SC(PAY24H))
 ->{
 SET_O(PAY24H,0);
 SET_O(DE_NO_48H,0);
 Payment=1;
 SET_X(PAY24H,CLIENT);
 DONE(CLIENT);
 RD(PAY24H,CLIENT,CCO,CND);
 }
 ::EVENT(PAY24H,IS_O(PAY24H,CLIENT),TO(PAY24H))
 ->{
 SET_O(PAY24H,0);
 RD(PAY24H,CLIENT,CCO,CO);
 }
 END(PAY24H);
 }

Contract Rule PAY24H

RULE(PAY48H)
 {
 WHEN::EVENT(PAY48H,IS_O(PAY48H,CLIENT),SC(PAY48H))
 ->{
 SET_O(PAY48H,0);
 SET_X(PAY48H,CLIENT);
 RD(PAY48H,CLIENT,CCO,CND);
 DONE(CLIENT);
 }
 ::EVENT(PAY48H,IS_O(PAY48H,CLIENT),TO(PAY48H))
 ->{
 printf("CONTRACT VIOLATED");
 printf("PAY48H PENDING OBLIGATION");
 RESET(CLIENT);
 RD(PAY48H,CLIENT,CCO,CNL);
 }
 END(PAY48H);
 }

Contract Rule PAY48H

RULE(DE_NO_48H)
 {
 WHEN::EVENT(DE_NO_48H,IS_O(DE_NO_48H,CLIENT),
 SC(DE_NO_48H))
 ->{
 SET_O(DE_NO_48H,0);
 SET_O(PAY24H,0);
 SET_O(LOWER24H,1);
 SET_X(DE_NO_48H,CLIENT);
 DONE(CLIENT);
 RD(DE_NO_48H,CLIENT,CCO,CO);
 }
 ::EVENT(DE_NO_48H,IS_O(DE_NO_48H,CLIENT),
 TO(DE_NO_48H))
 ->{
 printf("CONTRACT VIOLATED");
 printf("DE_NO_48H PENDING OBLIGATION");
 RD(DE_NO_48H,CLIENT,CCO,CNL);
 }
 END(DE_NO_48H);
 }

Contract Rule DE_NO_24H

RULE(SEND)
 {
 WHEN::EVENT(SEND,IS_R(SEND,ISP),SC(SEND))
 -> {
 SET_R(SEND,0);

 SYN(WRITE,ISP)
 ->{
 SET_R(CANCEL,1);
 }
 NYS(WRITE);

 SET_X(SEND,ISP);
 RD(SEND,ISP,CCR,CO);
 }
 END(SEND);
 }

Contract Rule SEND

 RULE(WRITE)
 {
 WHEN::EVENT(WRITE,IS_R(WRITE,ISP),SC(WRITE))
 ->{
 SET_R(WRITE,0);
 SYN(SEND,ISP)
 ->{
 SET_R(CANCEL,1);
 }
 NYS(SEND);
 SET_X(WRITE,ISP);
 RD(WRITE,ISP,CCR,CO);
 }
 END(WRITE);
 }

Contract Rule WRITE

 RULE(CANCEL)
 {
 WHEN::EVENT(CANCEL,IS_R(CANCEL,ISP),SC(CANCEL))
 ->{
 SET_X(CANCEL,ISP);
 }
 RD(CANCEL,ISP,CCR,CNL);
 END(CANCEL);
 }

Contract Rule CANCEL

Figure 5.1: Internet provision contract rule set

108

Step 4 - Prepare LTL Formulas

As an example, three LTL formulae are listed below P1, P2 and P3 to verify

arbitrary contract-dependent properties. In P1 it is verified that, whenever the busi-

ness operation of lower traffic within 24 hours is executed, and the business event

LOWER24H corresponding to it is successfully received, the payment penalty to pay

double the original price is applied. The LTL formula in P2 verifies that, whenever

the business operation to lower traffic within 24 hours times out, the payment penalty

to pay triple the original price is applied. Finally, P3 verifies that the ISP will be

granted the right to cancel after he sent an email and wrote a cancellation letter to

inform the client.

ltl P1 {[]((((IS_X(LOWER24H,CLIENT)&&SC(LOWER24H)) -> (Payment==2))))}

ltl P2 {[]((((IS_X(LOWER24H,CLIENT)&&TO(LOWER24H)) -> (Payment==3))))}

ltl P3 {[](((IS_X(SEND,ISP) && (IS_X(WRITE,ISP)))->(IS_R(CANCEL,ISP))))}

Step 5 - Verification

After the previous steps 1-4, the contract is ready for verification using the Spin

model checker. The set of contract rules shown in Figure 5.1 is tested and found to sat-

isfy the contract-independent properties, as well as the contract dependent properties

specified in P1, P2 and P3 above. In fact, we have now reached the final specifications

of the set of rules after a number of verification runs and many refinements.

Figure 5.2 shows a random contract run consisting of a number of business opera-

tions shared between the contract parties Client and ISP and dictated by the contract

in force. As shown in step 2 earlier, the contract is initialised with the client is being

obliged to submit payment, or to delay the payment and send delay notification to

the ISP. Simultaneously, the ISP is permitted to terminate the Internet service for

whatever reason if he sends an email and writes a cancellation letter to the Client in

advance.

109

Client ISP

Delay notification
within 48 hours - Clinet is

obliged to lower within 24H

Send email about canclation
of the Internet service

An obligation to lower
the Internet within 24

hours timeout - Now Client is
obliged to pay 3 times
the original payment

Write a letter about canclation
of the Internet service - Now
the ISP has the right to cancel

Payment occured within 48
hours, and after lower

oblgation timeout

ISP canceled the Internet
service

Figure 5.2: Internet provision contract run with Spin model checker

110

The random business operations of the Client participating in the contract run as

depicted in Figure 5.2 can be shown in the following sequence:

(DE NO 48H,S) → (LOWER24H, TO) → (PAY 48, S).

This run starts when the Client has decided to delay and notify the ISP about

his delayed payment within 48 hours as required in the contract rule (DE NO 48H).

Having done that, the client becomes obliged to lower traffic and pay double the price.

However, the business event LOWER24H,TO implies that the Client has failed to

fulfill his obligation to lower traffic within 24 hours. When the obligation to lower

times out, the client must pay triple the original price.

Finally, witnessing the business event PAY48H,S following LOWER24H,TO im-

plies that payment by the client has occurred within 48 hours after lowering the

Internet traffic, which means that the contract is ended successfully without pending

obligations and a late payment penalty has been applied. Note that the LTL formula

specified in P3 verifies this contract requirement is valid. In a worse scenario, the

payment business operation within 48 hours may timeout, so instead of the above

sequence of business events we may see the following sequence:

(DE NO 48H,S) → (LOWER24H, TO) → (PAY 48H, TO).

In such a case, the contract is considered violated and it must be terminated to

resolve this matter offline. Resolving the offline obligation is modelled by restarting

a new contract session from its initial state with an assumption that the pending

obligation has been resolved offline.

Recalling the random contract run depicted in Figure5.2, the sequence of con-

tract business operations for the Internet service provider (ISP) participating in the

contractual business run can be shown in the following sequence:

(SEND,S) → (WRITE,S) → (CANCEL,S).

111

We know from clause 4 of the contract that the ISP does not have permission

to cancel the Internet service unless he sent an email and wrote a cancellation let-

ter. These contract clauses are modeled with contract rules SEND and WRITE (see

Figure 5.1), and the LTL formula P3 verifies that this property hold for all contract

executions.

We can inject an error into rule SEND or rule WRITE by withdrawing from the

ISP the right to cancel when both SEND and WRITE are executed. Such an error

may occur as a result of omission or the bad interpretation of contract clause number

4. After this update, a verification for the property P3 reveals a counterexample after

the sequence SEND,S → WRITE,S , which is the shortest path to this failure. This

means that both business operations (READ and WRITE) have been executed and

the ISP has not been granted the right to cancel the service. The implementation of

such erroneous contract rules would means that the ISP would not be able to cancel

the service and this may cause disputes between the ISP and the Client.

In another error injection example, the contract could initialize with a prohibition

on the ISP to perform the cancel business operation. In this case Spin should detect

the error automatically and report it as an assertion violation counterexample. Exe-

cuting Spin with its default settings with the option for assertion violation detection,

Spin stop its verification process and returns a violation report part of which is shown

below. It can be sees that the assertion statement shows that there is a state where

the contract permits the cancel business operation and prohibits it at the same time.

Spin: INTERNET1.c:278, Error: assertion violated

Spin: text of failed assertion:

assert(!(((CANCEL_bo.right==1)&&(CANCEL_bo.prohib==1))))

#processes: 3

Another key feature of verification using the CB2B model and the Spin model

checker is that a contract designer can can detect that the cancel business operation

112

has been reported as a non-contract compliant shown as a NCC message in the re-

turned counterexample. Figure 5.3 depicts Spin’s counterexample when this contract

independent property has been violated. The returned counterexample also shows

that the contract rule CANCEL’s decision when it is triggered to handle the business

event (CANCEL,S) is considers it non-contract compliant. This is because the rule

Client ISP

Succesful payment within
24 hours, and contract ended

normally (CND) from
the Client side

Executing this rule after
 initializing the contract with
prohibition to cancel shows
the action is non-contract

compliant (NCC)

SEND business operation
reported as Contract Compliant

rghit (CCR)

Executing the the contract rule
 WRITE causes Spin to

complain when CANCEL is
permitted and reports

counterexample

Figure 5.3: Spin’s counterexample when CANCEL is prohibited and permitted

can only handle the situation when the ISP has been permitted, or given the right to

perform the CANCEL business operation. The same rule can handle prohibition as

well, but so long as there is no sanction or penalties described in the contract in case

of prohibition violation, it can be ignored.

5.2 Storage service consumption contract

This section presents a hypothetical contract for service agreement signed by a client

agreeing on the terms and conditions provided by the storage service provider (SSP).

113

The contract is intended to regulate storage service consumption with some restric-

tions on the amount of space that can be used by a Client. This contract shows

another example of the use of contracts for the management and regulation of online

services that can be offered as Cloud services and consumed by different types of

users.

1. The Client is entitled to use the service in normal quota mode of 100 GB or
exceeded quota mode of 120 GB.

2. Clients that exhaust their normal quota are obliged to either:

(a) Submit a single payment of £5 within the next 72 hours.

(b) Bring the quota back to normal within the next 72 hours by deleting
sufficient number of files.

3. Violation of clause 2 will give the right to the storage service provider to suspend
the service.

Step 1 - Declaration Part

/*Declaration of Role Players*/

RolePlayer(CLIENT);

/*Declaration of Business Operation*/

BIS_OP(START); /*Start the contract*/

BIS_OP(EXC_100GB); /*Exceeds 100 GB */

BIS_OP(PAY5D_72H); /*Pay 5 pounds within 72 hours*/

BIS_OP(BRING_QB_72);/*Bring quota back within 72 hours*/

Step 2 - Contract initialisation

RESET(CLIENT);

INIT(START,CLIENT,1,0,0);

INIT(EXC_100GB,CLIENT,0,0,0);

INIT(PAY5D_72H,CLIENT,0,0,0);

INIT(BRING_QB_72,CLIENT,0,0,0);

Step 3 - Deriving the contract rules
The natural language of the storage service contract is manually converted into

the following ECA rules:

114

1. Rule(START) - Client starts storage storage service.

2. Rule(EXC 100GB) - Client exceeds 100GB.

3. Rule(PAY5D 72H) - Client pays £5 within 72 hours.

4. Rule(BRING QB 72H) - Client brings the quota back within 72 hours.

We can see in the implementation of the rules below that, Rule(EXC 100GB) and

Rule(PAY5D 72H) handle both the success and timeout of business obligations. In

case of the timeout of an obligation the whole contract might be restarted.

RULE(PAY5D_72H)
 {
 WHEN::EVENT(PAY5D_72H,IS_O(PAY5D_72H,CLIENT),
 SC(PAY5D_72H))
 ->{
 SET_O(PAY5D_72H,0);
 SET_O(BRING_QB_72,0);
 SET_X(PAY5D_72H,CLIENT);
 DONE(CLIENT);
 RD(PAY5D_72H,CLIENT,CCO,CO);
 }
 ::EVENT(PAY5D_72H,IS_O(PAY5D_72H,CLIENT),
 TO(PAY5D_72H))
 ->{
 printf("PAY5D_72H Timeout");
 RD(PAY5D_72H,CLIENT,CCO,RST);
 }
 END(PAY5D_72H);
 }

Contract Rule PAY5D_72H

 RULE(START)
 {
 WHEN::EVENT(START,IS_R(START,CLIENT),SC(START))
 ->{
 SET_R(START,0);
 SET_P(EXC_100GB,1);
 SET_X(START,CLIENT);
 DONE(CLIENT);
 RD(START,CLIENT,CCR,CO);
 }
 END(START);
 }

Contract Rule START

RULE(EXC_100GB)
 {
 WHEN::EVENT(EXC_100GB,IS_P(EXC_100GB,CLIENT),
 SC(EXC_100GB))
 ->{
 SET_P(EXC_100GB,0);
 SET_O(PAY5D_72H,1);
 SET_O(BRING_QB_72,1);
 SET_X(EXC_100GB,CLIENT);
 DONE(CLIENT);
 RD(EXC_100GB,CLIENT,CCP,CO);
 }
 END(EXC_100GB);
 }

Contract Rule EXC_100GB

RULE(BRING_QB_72)
 {
 WHEN::EVENT(BRING_QB_72,IS_O(BRING_QB_72,CLIENT),
 SC(BRING_QB_72))
 ->{
 SET_O(BRING_QB_72,0);
 SET_O(PAY5D_72H,0);
 SET_X(BRING_QB_72,CLIENT);
 DONE(CLIENT);
 RD(BRING_QB_72,CLIENT,CCO,CO);
 }
 ::EVENT(BRING_QB_72,IS_O(BRING_QB_72,CLIENT),
 TO(BRING_QB_72))
 ->{
 printf("BRING_QB_72 Timeout");
 RD(BRING_QB_72,CLIENT,CCO,RST);
 }
 END(BRING_QB_72);
 }

Contract Rule BRING_QB_72

Figure 5.4: Storage service contract

115

Step 4 - Prepare LTL formulae

As in the previous example, some of the properties of interest are specified as LTL

formulae. For example, the LTL formula P1 verifies that, whenever a client starts

using the storage service, he is prohibited from exceeding 100GB. The LTL formula

in P2 verifies that whenever the prohibition in P1 is violated, and 100GB of storage

service is exceeded, the Client must choose between paying £5, or bringing the quota

back within 72 hours.

ltl P1 {[](IS_X(START,CLIENT)->(IS_P(EXC_100GB,CLIENT)))}

ltl P2 {[]((IS_X(EXC_100GB,CLIENT))->(IS_O(PAY5D_72H,CLIENT)&&

IS_O(BRING_QB_72,CLIENT)))}

Step 5 - Verification

The contract properties of interest are verified in the same manner as in the

previous example. Note here that clause 2 is interpreted as a prohibition to exceed

100GB of storage space (EXC 100GB). In this case a violation to this clause would

cause the client to have to choose between two obligations: either he pays £5, or

brings the quota back to 100 GB or less. If one of the obligations timeout, it would

be considered as a violation to the whole contract. If the whole contract is violated,

a new session of the contractual interaction is started.

The LTL formulae P1 and P2 have been verified successfully. In P1 it is checked

that the contract always prohibts exceeding 100GB once it has been started. In

P2, it is verified that, if the normal quota of 100GB is exceeded, there must be two

obligations (PAY 5D 72H and BRING QB 72) and the CLINET must choose one

of them. As in the previous examples, the LTL formulae do not specify the entire list

of contract-dependent requirements, as only some examples are included.

116

5.3 Buyer/seller contract

A hypothetical example of a buyer/seller contract is considered in this section. Al-

though this contract is not comprehensive (for example, invoicing is not stipulated),

it does contain clauses of considerable degree of complexity. Also, this contract in-

cludes clauses consider BizFail and TecFail events that may encountered during the

contractual business exchange. Notice that following the ebXML specifications [13]

(discussed in Section 3.1), it is assumed that once a conversation is started, (i.e., a

business operation is initiated) it always completes to produce an execution outcome

event from the set Success, BizFail, TecFail whose elements represent respectively a

successful conclusion, a business failure or a technical failure. TecFail models protocol

related failures detected at the middleware level, such as a late, syntactically incorrect

or a missing message. BizFail models semantic errors in a message detected at the

business level, e.g., the goods-delivery address extracted from the business document

is invalid.

1. Offers and purchase orders

1.1 The seller is entitled to send an offer to the buyer.

1.2 The buyer has the right to use its sole discretion to ignore an offer or respond
to it by submitting a corresponding purchase order.

1.3 Failure to respond to the offer within 10 days shall complete the contractual
transaction.

2. Discounts

2.1 The seller agrees to grant 15% discount to purchase orders submitted within
7 days of the receipt of the offer.

2.2 A purchase order submitted after 7 days (but not exceeding 10 days) will
be processed but granted no discount unless clauses 4.1 or 4.2 apply.

2.3 Purchase orders submitted after 10 days will not be processed online.

117

3. Payment

3.1 The buyer is obliged to submit payment within 5 days of sending the pur-
chase order.

3.2 Payments made after 5 days will incur a 10% fine and, if submitted, not
considered for online processing, unless clause 4.3 applies.

4. Delayed purchase orders and payments

4.1 A delayed purchase order due to business reasons shall be granted only 10%
discount.

4.2 A delayed purchase order due to technical problems shall be granted 15%
discount.

4.3 Failure to meet a payment deadline due to business or technical reasons will
grant:

4.3.1 a payment deadline extension of 5 days to the buyer.

4.3.2 right of purchase order cancellation to the seller.

5. Cancellation and refunds

5.1 The seller is obliged to refund payments received after cancellations.

6. Number of failures

6.1 If the total number of business and technical failures exceed an agreed
bound, then online processing will be terminated

Step 1 - Declaration Part

/*Declaration of some variables*/

byte Discount;

byte Fine;

/*Declaration of Role Players*/

RolePlayer(SELLER, BUYER);

/*Declaration of Business Operation*/

BIS_OP(OFFER); /*Offer submission*/

BIS_OP(PO7D); /*Purchase order submitted within seven days*/

BIS_OP(POCNL); /*Purchase order cancellation*/

BIS_OP(REFUND); /*Refund payment after cancellation*/

BIS_OP(PO10D); /*purchase order submitted within ten days*/

BIS_OP(PAY5DAY); /*Payment within 5 Days*/

BIS_OP(PAY5DEXT); /*Payment within 5 Days extension*/

118

Step 2 - Contract initialisation

RESET(BUYER);

RESET(SELLER);

INIT(OFFER,SELLER,1,0,0);

INIT(POCNL,SELLER,0,0,0);

INIT(REFUND,SELLER,0,0,0);

INIT(PO7D,BUYER,0,0,0);

INIT(PO10D,BUYER,0,0,0);

INIT(PAY5DAY,BUYER,0,0,0);

INIT(PAY5DEXT,BUYER,0,0,0);

Step 3 - Prepare LTL Formulae

ltl P1 {[]((IS_X(OFFER, SELLER)-> IS_R(PO7D, BUYER)))}

ltl P2 {[](((IS_X(PO10D, BUYER)&&BF(PO10D)))->(Discount==10))}

ltl P3 {[](((IS_X(PO10D, BUYER)&&TF(PO10D)))->(Discount==15))}

ltl P4 {[]<>(((IS_X(PAY5DEXT, BUYER)))->(Fine==10))}

ltl P5 {[](IS_O(REFUND, SELLER)->(IS_X(POCNL, SELLER)))}

The LTL properties P1 to P5 are samples of the contract requirements in this case

study. P1 verifies that the execution of an offer business operation gives the right to

the buyer to submit purchase order within 7 days. P2 verifies that if purchase order

within 10 days executed and business failure encountered, then the buyer becomes

eligible for 10% discount.

Similarly P3 checks that a technical failure grants the buyer 15% discount. The

formula in P4 checks that the contract model handles the payment when 5 days

deadline is timeout; the event is infinitely often occurs, and whenever it occurs the

seller must pay extra 10% fine of the total payment. Finally, P5 would check that

the obligation to refund occurs only after the seller has cancelled purchase order.

Step 4 - Deriving the contract rules

The natural language of the Buyer/Seller contract is manually converted into the

following ECA rules:

119

1. Rule(OFFER) - Seller submits an offer.

2. Rule(PO7D) - Buyer submits purchase order in 7 days.

3. Rule(POCNL) - Seller cancels purchase order.

4. Rule(PO10D) - Buyer submits purchase order in 10 days.

5. Rule(PAY5DAY) - Buyer submits payment in 5 days.

6. Rule(PAY5DEXT)- Buyer submits payment after first 5 days period is extended.

RULE(OFFER)
 {
 WHEN::EVENT(OFFER,IS_R(OFFER,SELLER),
 SC(OFFER))
 ->{
 SET_R(OFFER,0);
 SET_R(PO7D,1);
 SET_X(OFFER,BUYER);
 RD(OFFER,BUYER,CCR,CO);
 }
 END(OFFER);
 }

Contract Rule OFFER

RULE(POCNL)
{
 WHEN::EVENT(POCNL,IS_R(POCNL,SELLER),
 SC(POCNL))
 ->{
 SET_R(POCNL,0);
 SET_X(POCNL,SELLER);
 RD(POCNL,SELLER,CCR,CO);
 }
 END(POCNL);
}

Contract Rule POCNL

RULE(REFUND)
{
 WHEN::EVENT(REFUND,IS_O(REFUND,SELLER),
 SC(REFUND))
 ->{
 SET_O(REFUND,0);
 SET_X(REFUND,SELLER);
 DONE(SELLER);
 RD(REFUND,SELLER,CCO,CND);
 }
 END(REFUND);
}

Contract Rule REFUND

 RULE(PO7D)
 {
 WHEN::EVENT(PO7D,IS_R(PO7D,BUYER),SC(PO7D))
 ->{
 Discount= 15;
 SET_R(PO7D,0);
 SET_O(PAY5DAY,1);
 SET_X(PO7D,BUYER);
 RD(PO7D,BUYER,CCR,CO);
 }
 ::EVENT(PO7D,IS_R(PO7D,BUYER),TO(PO7D))
 ->{
 SET_R(PO7D,0);
 SET_O(PO10D,1);
 RD(PO7D,BUYER,CCR,CO);
 }
 END(PO7D);
 }

Contract Rule PO7DAYS

RULE(PO10D)
{
 WHEN::EVENT(PO10D,IS_O(PO10D,BUYER),
 SC(PO10D))
 ->{
 Discount = 0;
 SET_O(PO10D,0);
 SET_O(PAY5DAY,1);
 SET_X(PO10D,BUYER);
 RD(PO10D,BUYER,CCO,CO);
 }
 ::EVENT(PO10D,IS_O(PO10D,BUYER),
 TF(PO10D))
 ->{
 Discount = 15;
 SET_X(PO10D,BUYER);
 ADDTF(PO10D);
 RD(PO10D,BUYER,CCO,CO);
 }
 ::EVENT(PO10D,IS_O(PO10D,BUYER),
 BF(PO10D))
 ->{
 Discount = 10;
 SET_X(PO10D,BUYER);
 ADDBF(PO10D);
 RD(PO10D,BUYER,CCO,CO);
 }
 ::EVENT(PO10D,IS_O(PO10D,BUYER),
 TO(PO10D))
 ->{
 SET_X(PO10D,BUYER);
 RD(PO10D,BUYER,CCO,CNL);
 }
 ::MF(PO10D)
 ->{
 SET_O(PO10D,0);
 RD(PO10D,BUYER,CCO,CNL);
 }
 END(PO10D);
 }

Contract Rule PO10D

Figure 5.5: Buyer/Seller contract rules

120

 RULE(PAY5DEXT)
{
 WHEN::EVENT(PAY5DEXT,IS_O(PAY5DEXT,BUYER),
 SC(PAY5DEXT))
 ->{
 Fine=10;

 SYN(POCNL,SELLER)
 ->{
 SET_O(REFUND,1);
 }
 NYS(POCNL);

 SET_O(PAY5DEXT,0);
 SET_R(POCNL,0);
 SET_X(PAY5DEXT,BUYER);
 DONE(BUYER);
 RD(PAY5DEXT,BUYER,CCO,CND);
 }
 ::EVENT(PAY5DEXT,IS_O(PAY5DEXT,BUYER),
 BF(PAY5DEXT))
 ->{
 ADDBF(PAY5DEXT);
 RD(PAY5DEXT,BUYER,CCO,CO);
 }
 ::EVENT(PAY5DEXT,IS_O(PAY5DEXT,BUYER),
 TF(PAY5DEXT))
 ->{
 ADDTF(PAY5DEXT);
 RD(PAY5DEXT,BUYER,CCO,CO);
 }
 ::EVENT(PAY5DEXT,IS_O(PAY5DEXT,BUYER),
 TO(PAY5DEXT))
 ->{
 RD(PAY5DEXT,BUYER,CCO,CNL);
 }
 ::MF(PAY5DEXT)
 ->{
 RD(PAY5DEXT,BUYER,CCO,CNL);
 }
 END(PAY5DEXT);
 }

Contract Rule PAY5DEXT

RULE(PAY5DAY)
{
 WHEN::EVENT(PAY5DAY,IS_O(PAY5DAY,BUYER),
 SC(PAY5DAY))
 ->{
 SET_O(PAY5DAY,0);
 SET_X(PAY5DAY,BUYER);
 DONE(BUYER);
 RD(PAY5DAY,BUYER,CCO,CND);
 }
 ::EVENT(PAY5DAY,IS_O(PAY5DAY,BUYER),
 BF(PAY5DAY))
 ->{
 Discount= 10;
 ADDBF(PAY5DAY);
 RD(PAY5DAY,BUYER,CCO,CO);
 }
 ::EVENT(PAY5DAY,IS_O(PAY5DAY,BUYER),
 TF(PAY5DAY))
 ->{
 Discount= 15;
 ADDTF(PAY5DAY);
 RD(PAY5DAY,BUYER,CCO,CO);
 }
 ::EVENT(PAY5DAY,IS_O(PAY5DAY,BUYER),
 TO(PAY5DAY))
 ->{
 SET_O(PAY5DAY,0);
 SET_O(PAY5DEXT,1);
 SET_X(PAY5DAY,BUYER);
 RD(PAY5DAY,BUYER,CCO,CO);
 }
 ::MF(PAY5DAY)
 ->{
 SET_O(PAY5DAY,0);
 SET_O(PAY5DEXT,1);
 SET_R(POCNL,1);
 SET_X(PAY5DAY,BUYER);
 RD(PAY5DAY,BUYER,CCO,CO);
 }
 END(PAY5DAY);
}

Contract Rule PAY5DAY

Figure 5.6: Buyer/Seller contract rules cont.

Unlike the previous case studies, here some of the contract rules such as Rule(PO10D),

Rule(PAY5DAY) and Rule(PAY5DEXT) consider business and technical failures as-

sociated with the business events. For example, Rule(PAY5DEXT) shows how these

failures are handled; ADDBF(PAY5DEXT) and ADDTF(PAY5DEXT) increment the

business failures or technical failures of a contract model respectively. The model as-

sumes a maximum of one technical or business failure only, operation MF(PAY5DEXT)

becomes executable if the maximum failure is reached, so the proper action (as de-

scribed in the contract) can be taken. We note that the Rule(PAY5DEXT) also

handles the case when purchase orders are canceled after the buyer has submitted

payment; within the SYN..NYS construct, the seller is obliged to refund if the pur-

chase order cancellation (POCNL) has been executed. Figure 5.5 and Figure 5.6 show

the ECA rules of the buyer/seller contract model.

121

This contract has been been verified using an earlier version of the CB2B model

[2], and used for test case generation to test an actual implementation of a contract

compliance checker. An executable version in EROP language is developed and in-

stalled in the contract compliance checker CCC [38] which then becomes the SUT.

For the same natural language contract, a contract model in our extended Promela is

developed (as in our buyer/seller example above) and validated with respect to con-

tract correctness requirements (such as termination in acceptable final states, checking

that deadline extensions have been granted exactly as stated in the clauses, refund has

taken place properly and so forth). This validated model is then used for generating

test cases and applying them to the SUT. Informally, an execution sequence or execu-

tion trace is a sequence of business operations executed by the business partners that

drive the interaction from its initial to a final state. The system under test (CCC)

implements the contract in force and can examine a trace and determine whether an

event, representing a business operation is contract compliant or not. An example

of execution trace is PO7DAYS → PAY 15DSCTF means that the successful execu-

tion of a purchase order submitted within seven days was followed by the execution

of a payment entitled to 15% discount that, unfortunately, completed in a technical

failure.

Generally the notation ei → ej is used to indicate that event ei precedes event

ej, and the name of the operation is appended with S, BF , TF or TO, to indicate,

respectively, that the execution produced success, business failure, technical failure

or that the time out to complete the execution expired. Since it is assumed that

the abstract model is correct after its verification, it is reasonable to expect that a

correctly functioning CCC should consume (accept) the execution sequences produced

by the contract model. Likewise, since the events are actually state transition events,

the execution of such a given sequence should drive the SUT from its initial state to

one of its final states that matches the state of the model that consumes the same

122

sequence.

The SUT is instrumented to accept the traces produced by the model. A Java

application was written to produces concrete business events from the abstract ones.

At this stage the generated events become ready to be imported into the SUT. Note

here timeout events need special attention. When a timeout event is encountered in

the sequence, its presence is used to ensure that the corresponding deadline in the

time module expires straight away. To ascertain what state the SUT is in, it was also

instrumented so as to reveal the contents of its ROP sets. In this way it is possible

to check whether or not the ROP sets of the SUT match those of the model as state

transitions occur: a mismatch indicating a flaw in the SUT. We are thus able to

automate the testing of the CCC.

For example, the behaviour of the SUT can be shown when the following fragment

is presented as input: OFFERTF → OFFERS → PAY 7DAYTO. The SUT goes

through correct state transitions, beginning with the initial state where the seller’s

ROP set indicates that it has the right to make an offer, and the buyer’s ROP set

is empty. The first attempt at an offer fails and after a successful offer event is

encountered, the seller’s ROP set becomes empty and the buyer is given a right to

submit a purchase order within seven days. However, no such operation is performed

and the seven day timeout event occurs, and so the buyer is given a right to submit

the purchase order within 10 days:

Type: init, Status: S

Seller ROP set:{ROPEntity-BO Type:OFFER, ROP Type:Right}

Buyer ROP set :{Empty}

Type: OFFER, Status: TF

Seller ROP set:{ROPEntity-BO Type:OFFER, ROP Type:Right}

Buyer ROP set :{Empty }

Type: OFFER, Status: S

123

Seller ROP set:{Empty }

Buyer ROP set:{ROPEntity-BO Type:PO7D, ROP Type:Right }

Type: PO7D, Status: TO

Seller ROP set:{Empty }

Buyer ROP set:{ROPEntity-BO Type:PO10D ROP Type:Right }

Suppose there is a flaw in the SUT. Say for example the rule that deals with the

timeout of the purchase order within seven days fails to grant the buyer the right to

submit the purchase order within 10 days. In this case the ROP sets will be empty

and will not correspond to those of the model; and flaw is detected.

Type: PO7D, Status: TO

Seller ROP set: {Empty }

Buyer ROP set: {Empty }

5.4 Performance issues

One of the main problems with model checking is how to restrain the state space

explosion. It can be caused by the level of detail or the level of concurrency within

the validation model [27]. Optimising parameters such as the number of states, state

vector size, size of search stack and the verification time can considerably improve

the process of model verification. The state vector in the Promela model is the

set of information stored by Spin to uniquely identify the system state. It contains

information on the global variables, contents of each channel, process counter and the

local variables in each process. The size of the state vector represents the amount of

storage space it occupies. This in turn determines the state space of the model for

the set of all possible states which occur during the computation. State space size is

the total space required to store the state vectors corresponding to all states. If the

124

size of a single state vector is m bytes and there are n states in the Promela model,

the state space size is m ∗ n bytes.

The contract models discussed in this Chapter executed on a HP Compaq PC with

Intel(R) Core(TM)2, CPU 6300 @ 1.86 GHz 1.86 GHz and 1.98 GB of RAM. The

operating system is Microsoft Windows XP Professional, Version 2001, Service Pack

3. The models verified using Spin Version 6.1.0 and iSpin version 1.0.3. All contract

models experimented with the default options of iSpin with few changes. For example,

the assertion violation box check–box on, the storage mode exhaustive and the search

algorithm depth–first search (DFS). The next table summarises some performance

metrics returned by Spin during the verification of the models. As the table shows,

we have been able to verify interesting properties of contracts with reasonable size.

We discussed our technique to maintain the state space of CB2B models in detail in

Section 4.7.

Internet-provision

contract

Storage service

contract

Buyer/Seller

contract
Stored

states

Memory

usage

Elapsed

time

Stored

states

Memory

usage

Elapsed

time

Stored

states

Memory

usage

Elapsed

time

29950

states

5.664

Mbyte

0.047

seconds

287

states

2.539

Mbyte

0.015

seconds

317228

states

317228

states

0.672

seconds

State-vector size State-vector size State-vector size

96 byte 68 byte 152 byte

Table 5.1: Number of states and elapsed time of the case studies

125

Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis developed a toolkit for the model checking of electronic contracts. It has

employed the facilities of the Spin model checker and its input language Promela with

some extensions for the process of modelling contracts. The extensions aimed to use

the language of a high-level of notation in order to facilitate the composition of a

contract model as a set of ECA rules. With the high level notation of the language

the user can intuitively write contract rules, thus benefiting from the well-known and

widely used Spin model checker for the verification and validation of the correctness

of contracts.

For contract verification, this thesis considers two major types of contract con-

flicts: contract–independent conflicts, which are general conflicts that may affect any

contract, and contract–dependent conflicts specific to each contract. In Chapter 3,

a contract compliance checker (CCC) was modelled as a reactive system, and the

contract correctness requirements to detect both contract–dependent and contract–

independent conflicts are specified as safety and liveness properties.

126

In Chapter 4, the Spin model checker and its input language Promela were used

to develop a contract verification model (CB2B) based on the concepts of EROP

system, its contract compliance checker and its rule–based EROP language. The

CB2B is abstracting the behaviour of the contract compliant checker CCC of EROP

system and empowered with a set of operations facilitates manipulation of contract

elements (e.g. rights, obligations, prohibitions , etc...) held in the system memory.

Furthermore, we have implemented an abstract data type extension to the standard

Promela called BIS OP. We also implemented a set of operations on the BIS OP data

type to maintain information about ROP sets. This extension, facilitated writing the

contract models in a way mimicking the EROP language, however, our contracts can

be automatically verified with the Spin model checker. Chapter 4 also describe a tool

for test–case generation using our CB2B model.

Chapter 5 demonstrated our tool for the representation and verification of a num-

ber of contracts derived from natural language descriptions, modelled as ECA rules

and input to the CB2B model for contract compliance checking. It was shown that:

(i) our representation of a contract model captures the contracts essential elements

of business operations, role players, rights, obligations and prohibitions and handles

CTDs and CTPs; (ii) with the help of the CB2B model, Spin automatically detects

contract independent conflicts (discussed in Chapter 3), (iii) contract-dependent con-

flicts can be specified with relative ease in terms of contract elements as safety and

liveness requirements which were verified by the Spin model checker.

We believe that the CB2B model can be used as an integral tool of a framework

for building contractual applications. Within this context the CB2B model could

play a key role operating as i) validator of logical inconsistencies of contracts and ii)

generator of sequences of executions of contractual business operations. Execution

sequences describe the behaviour encoded in the contract, thus they can be used for

many purposes, including testing as discussed in Section 4.4. Also, they can be used

127

for verifying conformance of the contract, for example, against i) an upgraded version

of the contract expected to be equivalent ii) a business process that is supposed to

implement the contractual interaction. In both cases the problem can be solved by

means of comparison of the sequences generated by the contract written in CB2B

model against the sequences under question.

6.2 Future work

The work presented here can be extended to provide comprehensive support for ver-

ification and validation of contracts. Three suggested areas are:

• Translation - The current work has not discussed how contract models written

in our notation are translated into a real electronic contract, say, in the EROP

language. It is assumed that this translation can be accomplished manually with

relative ease, but it would be nice to have a translation tool that automates this

process.

• IDE contract testing tool - The knowledge gained from this work can be used

for building suitable modelling and testing tools for an integrated development

environment for electronic contracting systems.

• Another open issue is how to handle large number of execution sequences. Spin

—the model checker used in this dissertation— is not at its best in this regard.

It generates each sequence as an independent file (a counter example) that it

writes onto the disk. To exacerbate the problem, Spin generates a large number

of duplicate counter examples.

128

Appendix A

In this appendix we list the macros that have been implemented to facilitate writing

ECA rules and model check them using Spin and the CB2B model. In the macros

listed below we use the following abbreviations in the macros variable and parameters.

The arrow → indicates the contract entity from which the abbreviations has been

derived. A brief description to the macros shown here can be found in Table 4.1 and

Table 4.2 in Chapter 4, Section 4.4.

bo --> Bsiness Operation.

r --> Right.

o --> Obligation.

p --> Prohibition.

oblig --> Obligation.

prohib --> Prohibition.

role_pl --> Role Player.

rp --> Role Player.

S --> Success.

BF --> Business Failure.

TF --> Technical Failure.

TO --> Timeout.

129

A.1 CB2B model macros

/**/

/* BIS_OP typedef definition and macro */

/* Note: the macro declares business */

/* operation and business event using */

/* the same parameter name. */

/**/

typedef BIS_OP

{

byte name;

byte role_pl;

bool right;

bool oblig;

bool prohib;

byte id;

byte status;

}

/************************/

/* BIS_OP(name) macro */

/************************/

#define BIS_OP(name) BIS_OP name##_##bo; \

mtype= { name }

/*************************************/

/* Setting right, obligation and */

/* prohibition macros. */

/* */

/* Note: the macros also use the */

/* assert command from Promela to */

/* assert for contract-independent */

/* conflicts discussed in the thesis */

/*************************************/

/************************/

/* SET_R(bo,r) macro */

/************************/

inline SET_R(bo,r)

{

bo.right=r;

assert(!(bo.right==1 && bo.oblig==1));

assert(!(bo.right==1 && bo.prohib==1));

}

#define SET_R(name,r) \

SET_R(name##_##bo,r)

130

/************************/

/* SET_O(bo,o) macro */

/************************/

inline SET_O(bo,o)

{

bo.oblig=o;

assert(!(bo.oblig ==1 && bo.prohib ==1));

assert(!(bo.oblig ==1 && bo.right ==1));

}

#define SET_O(name,o) \

SET_O(name##_##bo,o)

/************************/

/* SET_P(bo,p) */

/************************/

inline SET_P(bo,p)

{

bo.prohib=p;

assert(!(bo.prohib ==1 && bo.right ==1));

assert(!(bo.prohib ==1 && bo.oblig ==1));

}

#define SET_P(name,p) \

SET_P(name##_##bo,p)

/*************************************/

/* Inquiring for right, obligation */

/* or prohibition macros. */

/*************************************/

/************************/

/* IS_R(name,rp) macro */

/************************/

#define IS_R(name,rp) \

name##_##bo.right==1 && name##_##bo.role_pl==rp

/************************/

/* IS_O(name,rp) macro */

/************************/

#define IS_O(name,rp) \

name##_##bo.oblig==1 && name##_##bo.role_pl==rp

/************************/

/* IS_P(name,rp) macro */

/************************/

131

#define IS_P(name,rp) \

name##_##bo.prohib==1 && name##_##bo.role_pl==rp

/*************************/

/* SET_X(name,rp) macro */

/*************************/

#define SET_X(name,rp) \

SET_1(rp##exTrace,name##_##bo.id)

/***************************************/

/* SYN(bo,rp) and NYS(bo) macros */

/* to test the execution history of */

/* business operation(bo) belong a */

/* particular RolePlayer (rp) */

/***************************************/

#define SYN(bo,rp) if:: \

((IS_X(bo,rp)))

#define NYS(bo) :: else skip \

fi;

/***/

/* INIT(bo,r,o,p,rp) inline and macros. */

/* */

/* The parameters are business operation bo and */

/* initial right, obligation or prohibition and */

/* the role player. */

/***/

inline INIT_WITH_5(bo,rp,r,o,p)

{

d_step

{

counter=_counter_+1;

bo.role_pl=rp;

bo.right=r;

bo.oblig=o;

bo.prohib=p;

bo.id=_counter_;

}

}

/***/

/* INIT(bo,rp) inline and macros. */

/* */

/* The parameters are business operation bo, */

132

/* initial right, obligation or prohibition and */

/* the role player. */

/***/

inline INIT_WITH_2(bo,rp)

{

d_step

{

counter=_counter_+1;

bo.role_pl=rp;

bo.executed=0;

bo.id=_counter_;

}

}

/***/

/* The macros for INIT_WITH_5(bo,rp,r,o,p) and */

/* INIT_WITH_2(bo,rp) */

/***/

#define INIT(types...) _INIT_N(gnu_count(types),types)

#define _INIT_N(n,types...) _INIT(n,types)

#define _INIT(n,types...) _INIT_##n(types)

#define _INIT_2(x,y) INIT_WITH_2(x##_##bo,y)

#define _INIT_5(a,b,c,d,f) INIT_WITH_5(a##_##bo,b,c,d,f)

/**/

/* Macros/inlines for different purposes for CB2B model */

/**/

/* To use WHEN instead of if as in EROP language */

#define WHEN if

/* To test if the status of business event is Succeeded */

#define SC(name) \

name##_##bo.status==S

/* To test if the status of business event is Business failure */

#define BF(name) \

name##_##bo.status==BF

/* To test if the status of business event is Technical failure */

#define TF(name) \

name##_##bo.status==TF

/* To test if the status of business event is Time-Out */

133

#define TO(name) \

name##_##bo.status==TO

/* To test the event conditions */

#define EVENT(name,msg1,msg2) \

((msg1==1)&&(msg2==1));

/*******************************/

/* Rule decision inline and */

/* macro */

/*******************************/

inline RD(rp,msg1,msg2)

{

CRM2BEG! msg1(msg2);

}

#define RD(name,rp,msg1,msg2) \

RD(rp,msg1,msg2) \

/***/

/* Test if the business event */

/* is Right, Obligation or Prohibition */

/* */

/***/

#define bizEvent(name) \

name##_##bo.right==1||name##_##bo.oblig==1

||name##_##bo.prohib==1

/***/

/* Macro to set the status of business */

/***/

inline SET_STATUS(bo,stat){

bo.status=stat;

}

#define SET_STATUS(name,stat) \

name##_##bo.status=stat

/****************************/

/* Macro\ inline DONE */

/* resets global variable */

/* _counter_ and resets */

/* execution trace of Role */

/* Player (rp) */

/****************************/

inline DONE(rp)

134

{

counter= 0;

}

#define DONE(rp) \

DONE(rp##exTrace); \

SET_ALL_0(rp##exTrace);

/**************************************/

/* When_Event(name) inline and macro, */

/* this will be used by CONTRACT(name)*/

/* macro. This considers S, TO status */

/* of business events only. */

/**************************************/

inline When_Event(name){

if

::BEG2CRM ? [name,S] -> BEG2CRM ? _,_

::BEG2CRM ? [name,TO] -> BEG2CRM ? _,_

fi;

}

#define When_Event(name) \

When_Event(name)

/***/

/* When_Event(name, status) inline and */

/* macro. This is a another implementation */

/* to When_Event. It takes any event */

/* with any status. Current implementation */

/* of CB2B uses When_Event(name) shown above */

/***/

inline When_Event(name,status){

BEG2CRM ? [name,status] -> BEG2CRM ? _,_

}

#define When_Event(name,status) \

When_Event(name,status)

/**********************************/

/* CONTRACT(name) macro, this */

/* used to block executing the */

/* contract rules until their */

/* corresponding business events */

/* are emerged. */

/**********************************/

#define CONTRACT(name) \

When_Event(name); \

ContractRule(name)

135

/***/

/* Macro to generate business events */

/***/

#define B_E(rp,name,status) \

bizEvent(name); \

SET_STATUS(name,status); \

sendEvent(name,status); \

RuleDecision(rp);

/**/

/* As in gcc’s testsuite.This counts the */

/* number of arguments between 1-10 */

/**/

#define gnu_count(y...) _gnu_count1 (, ##y)

#define _gnu_count1(y...) _gnu_count2 (y,10,9,8,7,6,5,4,3,2,1,0)

#define _gnu_count2(_,x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,n,ys...) n

/***/

/* This to declare messages used by the CB2B as */

/* Promela mtype */

/***/

#define RuleMessage(types...) _TYPES_TO_MTYPE_N(gnu_count(types)

,types)

#define _TYPES_TO_MTYPE_N(n,types...) _TYPES_TO_MTYPE(n,types)

#define _TYPES_TO_MTYPE(n,types...) _TYPES_TO_MTYPE_##n(types)

#define _TYPES_TO_MTYPE_0()

#define _TYPES_TO_MTYPE_1(x) mtype={x}

#define _TYPES_TO_MTYPE_2(x,y) mtype={x,y}

#define _TYPES_TO_MTYPE_3(x,y,z) mtype={x,y,z}

#define _TYPES_TO_MTYPE_4(a,b,c,d) mtype{a,b,c,d}

/***/

/* To define role player - SIMILAR TO THE ABOVE */

/***/

#define RolePlayer(types...) _ROLE_PLAYER_N(gnu_count(types)

,types)

#define _ROLE_PLAYER_N(n,types...) _ROLE_PLAYER(n,types)

#define _ROLE_PLAYER(n,types...) _ROLE_PLAYER_##n(types)

#define _ROLE_PLAYER_0()

#define _ROLE_PLAYER_1(a) mtype={a} \

BITV_32 a##exTrace;

#define _ROLE_PLAYER_2(a,b) mtype={a,b} \

BITV_32 a##exTrace; \

BITV_32 b##exTrace;

136

#define _ROLE_PLAYER_3(a,b,c) mtype={a,b,c} \

BITV_32 a##exTrace; \

BITV_32 b##exTrace; \

BITV_32 c##exTrace;

#define _ROLE_PLAYER_4(a,b,c,d) mtype={a,b,c,d} \

BITV_32 a##exTrace; \

BITV_32 b##exTrace; \

BITV_32 c##exTrace; \

BITV_32 d##exTrace;

/**/

/* DEF_BizOperStatus to define possible status to our */

/* operations TAKES BETWEEN 1-4 ARG */

/**/

#define DEF_BizOperStatus(types...) _TYPES_TO_STATUS_N(gnu_count

(types) ,types)

#define _TYPES_TO_STATUS_N(n,types...) _TYPES_TO_STATUS(n

,types)

#define _TYPES_TO_STATUS(n,types...) _TYPES_TO_STATUS_##n

(types)

#define _TYPES_TO_STATUS_0()

#define _TYPES_TO_STATUS_1(x) mtype={x}

#define _TYPES_TO_STATUS_2(x,y) mtype={x,y}

#define _TYPES_TO_STATUS_3(x,y,z) mtype={x,y,z}

#define _TYPES_TO_STATUS_4(a,b,c,d) mtype{a,b,c,d}

/**/

/* To Define contract rule as inlines */

/* TAKES BETWEEN 1-4 ARG */

/**/

#define RULE(types...) _TYPES_TO_INLINE_N(gnu_count

(types),types)

#define _TYPES_TO_INLINE_N(n,types...) _TYPES_TO_INLINE(n

,types)

#define _TYPES_TO_INLINE(n,types...) _TYPES_TO_INLINE_##n

(types)

#define _TYPES_TO_INLINE_0()

#define _TYPES_TO_INLINE_1(x) inline x##_##nil()

#define _TYPES_TO_INLINE_2(x,y) inline x##_##y()

#define _TYPES_TO_INLINE_3(x,y,z) inline x##_##y##_z()

#define _TYPES_TO_INLINE_4(a,b,c,d) inline a##_##b##_##c

##_##d()

/***/

137

/* ContractRule is called by CONTRACT(name) macro */

/* to execute the rules correspond to the business */

/* correspond to the parameter name of CONTRACT(name) */

/* macro. */

/***/

#define ContractRule(types...) _TYPES_TO_EX_INLINE_N(gnu_count

(types),types)

#define _TYPES_TO_EX_INLINE_N(n,types...) _TYPES_TO_EX_INLINE(n

,types)

#define _TYPES_TO_EX_INLINE(n,types...) _TYPES_TO_EX_INLINE_##n

(types)

#define _TYPES_TO_EX_INLINE_0()

#define _TYPES_TO_EX_INLINE_1(x) x##_##nil()

#define _TYPES_TO_EX_INLINE_2(x,y) x##_##y()

#define _TYPES_TO_EX_INLINE_3(x,y,z) x##_##y##_z()

#define _TYPES_TO_EX_INLINE_4(a,b,c,d) a##_##b##_##c##_##d()

A.2 External macros

/*

* From Towards Efficient Model Checking,

* Phd Dissertation by Theo Ruys 2001, chapter 4

*/

#define BITV_U(x,n) unsigned x : n

#define BITV_8 byte

#define BITV_16 short

#define BITV_32 int

/* this const is 0111....111 */

#define ALL_1S 2147483647

/* set bit i to 0 and 1, respectively */

#define SET_0(bv,i) bv=bv&(~(1<<i))

#define SET_1(bv,i) bv=bv|(1<<i)

/* set all bit to 0 and 1, respectively */

#define SET_ALL_0(bv) bv=0

#define SET_ALL_1(bv,n) bv=ALL_1S>>(31-n)

/* is bit i 0 or 1, respectively */

#define IS_0(bv,i) (!(bv&(1<<i)))

#define IS_1(bv,i) (bv&(1<<i))

138

/* Ben-Ari version from Principles of the Spin Model Checker

* Springer 2008, p 192.

* #define IS_1(bv,i) (bv >> i & 1)

*/

A.3 Global declaration for CB2B model

/***/

/* Global variables, channels, macros used by CB2B */

/***/

#define setting() \

#define YES 1

#define NO 0

#define TRUE 1

#define FALSE 0

#define ACCEPT 1

#define REJECT 0

/* Global variable used by INIT macro */

byte _counter_=0;

/* Channel to send event from BEG to CRM */

chan BEG2CRM = [1] of {mtype,mtype};

/* Channel to send rule decision from CRM to BEG */

chan CRM2BEG = [0] of {mtype,mtype};

/* Messages used by the CB2B model for communication */

RuleMessage(CC,CCR,CCO,CCP,NCC,CO,OCX,CNL,CND,RST);

139

References

[1] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava. “A high-level model-

checking tool for verifying service agreements”. In: Proceedings of the 6th IEEE

International Symposium on Service Oriented System Engineering. SOSE ’11.

Irvine, CA, 2011, pp. 297 –304.

[2] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava. “On Model Checker

Based Testing of Electronic Contracting Systems”. In: Proceedings of the 12th

IEEE Conf. on Commerce and Enterprise Computing. CEC ’10. Shanghai,

China, 2010, pp. 88 –95.

[3] L. Alessio and R. Franco. “Mcmas: A model checker for multi-agent systems”.

In: Proceedings of TACAS. Springer Verlag, 2006, pp. 450–454.

[4] L. Alessio, Q. Hongyang, and S. Monika. “Towards Verifying Contract Regu-

lated Service Composition”. In: Web Services, IEEE International Conf. on 0

(2008), pp. 254–261.

[5] B. F. Chellas. Modal Logic: An Introduction. Cambridge: Cambridge University

Press, 1980.

[6] K.W. Chiu, S. C. Cheung, and T. Sven. “A Three-Layer Architecture for E-

Contract Enforcement in an E-Service Environment”. In: Hawaii International

Conf. on System Sciences 3 (2003), 74a.

140

REFERENCES

[7] A. Cimatti et al. “NUSMV: A New Symbolic Model Verifier”. In: Proceddings

of the 11th International Conf. on Computer Aided Verification. London, UK:

Springer-Verlag, 1999, pp. 495–499.

[8] J. Claude and J. Thierry. “TGV: theory, principles and algorithms: A tool for

the automatic synthesis of conformance test cases for non-deterministic reactive

systems”. In: International Journal on Software Tools for Technology Transfer

7.4 (2005), pp. 297–315.

[9] A. Daskalopulu. “Model Checking Contractual Protocols”. In: CoRR cs.SE/0106009

(2001).

[10] A. Daskalopulu and T. Maibaum. “Towards Electronic Contract Performance”.

In: Proceedings of the 12th Int. Workshop on Database and Expert Systems

Applications. DEXA ’01. Washington, DC, USA: IEEE Computer Society, 2001,

pp. 771–.

[11] Drools. JBoss. url: http://www.jboss.org/drools/.

[12] N. Dunlop, J. Indulska, and K. Raymond. “Methods for Conflict Resolution in

Policy-Based Management Systems”. In: Proceedings of the 7th International

Conf. on Enterprise Distributed Object Computing. EDOC ’03. Washington,

DC, USA: IEEE Computer Society, 2003, pp. 98–.

[13] ebXML: Business Process Spec. Spec. v2.0.4. http://docs.oasisopen.org/ ebxml-

bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf. 2006.

[14] Gregorio D. Enrique M., M. Emilia Cambronero, and Gerardo Schneider. “A

Model for Visual Specification of E-contracts”. In: Services Computing, IEEE

International Conf. on 0 (2010), pp. 1–8.

[15] Gordon F. and Franz W. “Creating Test-Cases Incrementally with Model-

Checkers”. In: GI Jahrestagung (2). 2007, pp. 381–386.

141

http://www.jboss.org/drools/

REFERENCES

[16] Gordon F. and Franz W. “Redundancy based test-suite reduction”. In: Proceed-

ings of the 10th international conference on Fundamental approaches to soft-

ware engineering. FASE’07. Braga, Portugal: Springer-Verlag, 2007, pp. 291–

305. isbn: 978-3-540-71288-6.

[17] Gordon F., Franz W., and Paul A. “Issues in using model checkers for test

case generation”. In: J. Syst. Softw. 82.9 (Sept. 2009), pp. 1403–1418. issn:

0164-1212.

[18] S. Fenech, G. J. Pace, and G. Schneider. “Automatic Conflict Detection on

Contracts”. In: Proceedings of the 6th International Colloquium on Theoretical

Aspects of Computing. ICTAC ’09. Kuala Lumpur, Malaysia: Springer-Verlag,

2009, pp. 200–214.

[19] S. Fenech, G. J. Pace, and G. Schneider. “CLAN: A Tool for Contract Analysis

and Conflict Discovery”. In: Proceedings of the 7th International Symposium on

Automated Technology for Verification and Analysis. ATVA ’09. Macao, China:

Springer-Verlag, 2009, pp. 90–96.

[20] M. Fisher. “Temporal Logic”. In: John Wiley and Sons, Ltd, 2011, pp. 9–48.

[21] X. Fu, T. Bultan, and J. Su. “Analysis of interacting BPEL web services”. In:

Proceedings of the 13th international Conf. on World Wide Web. WWW ’04.

New York, NY, USA: ACM, 2004, pp. 621–630.

[22] Patrice G. “Model checking for programming languages using VeriSoft”. In:

Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. POPL ’97. Paris, France: ACM, 1997, pp. 174–186.

[23] G. K. Giannikis and A. Daskalopulu. “Normative conflicts in electronic con-

tracts”. In: Electron. Commer. Rec. Appl. 10.2 (2011), pp. 247–267.

[24] A. Gill. Introduction to the Theory of Finite State Machines. New York: McGraw-

Hill, 1962.

142

REFERENCES

[25] F. Gordon, W. Franz, and A. Paul. “Testing with model checkers: a survey”.

In: Softw. Test., Verif. Reliab. 19.3 (2009), pp. 215–261.

[26] B.n N. Grosof, Y. Labrou, and H. Y. Chan. “A declarative approach to business

rules in contracts: courteous logic programs in XML”. In: Proceedings of the 1st

ACM Conf. on Electronic commerce. EC ’99. Denver, Colorado, United States:

ACM, 1999, pp. 68–77.

[27] G. Holzmann. The Spin model checker: primer and reference manual. Addison-

Wesley Professional, 2003.

[28] G. J. Holzmann. Design and validation of computer protocols. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1991.

[29] G. J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on Software

Engineering 23 (1997), pp. 279–295.

[30] http://www.rosettanet.org/. 2002.

[31] P. R. Krishna, K. Karlapalem, and A. R. Dani. “From Contracts to E-Contracts:

Modeling and Enactment”. In: Inf. Technol. and Management 6 (4 2005),

pp. 363–387.

[32] E. C. Lupu and M. Sloman. “Conflicts in Policy-Based Distributed Systems

Management”. In: IEEE Trans. Softw. Eng. 25.6 (1999), pp. 852–869.

[33] Jeff Magee and Jeff Kramer. Concurrency - state models and Java programs.

Wiley, 1999, pp. I–XIII, 1–355.

[34] E. Martinez et al. “A Model for Visual Specification of E-contracts”. In: Pro-

ceedings of the 2010 IEEE International Conf. on Services Computing. SCC

’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–8.

143

REFERENCES

[35] L. I. Millett and T. Teitelbaum. “Issues in Slicing PROMELA and Its Applica-

tions to Model Checking, Protocol Understanding, and Simulation”. In: STTT

2.4 (2000), pp. 343–349.

[36] C. Molina-Jimenez and S. Shrivastava. “Model checking correctness properties

of a middleware service for contract compliance”. In: Proceedings of the 4th In-

ternational Workshop on Middleware for Service Oriented Computing. MWSOC

’09. Urbana Champaign, Illinois: ACM, 2009, pp. 13–18.

[37] C. Molina-Jimenez, S. Shrivastava, and M. Strano. “Exception Handling in Elec-

tronic Contracting”. In: Proc. 11th IEEE Conf. on Commerce and Enterprise

Computing (CEC’09). Jul 20–23, Vienna, Austria: IEEE CS, 2009, pp. 65–73.

[38] Carlos Molina-Jimenez, Santosh Shrivastava, and Massimo Strano. “A Model

for Checking Contractual Compliance of Business Interactions”. In: IEEE Trans-

actions on Services Computing 5.2 (2012), pp. 276–289. issn: 1939-1374. doi:

http://doi.ieeecomputersociety.org/10.1109/TSC.2011.37.

[39] T. Murata. “Petri Nets: Properties, Analysis and Applications.” In: Proceedings

of the IEEE 77.4 (1989), pp. 541–580.

[40] S. Owicki and L. Lamport. “Proving Liveness Properties of Concurrent Pro-

grams”. In: ACM Trans. Program. Lang. Syst. 4.3 (1982), pp. 455–495. issn:

0164-0925.

[41] G. Pace, C. Prisacariu, and G. Schneider. “Model checking contracts: a case

study”. In: Proceedings of the 5th international Conf. on Automated technology

for verification and analysis. ATVA’07. Tokyo, Japan: Springer-Verlag, 2007,

pp. 82–97.

[42] G. Paul et al. CrossFlow: Cross-Organizational Workflow Management in Dy-

namic Virtual Enterprises. Enschede, 2000.

144

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSC.2011.37

REFERENCES

[43] M. Pezze and M. Young. Software Testing and Analysis: Process, Principles and

Techniques. Wiley, 2008.

[44] A. Pretschner et al. “One evaluation of model-based testing and its automa-

tion”. In: Proceedings of the 27th international Conf. on Software engineering.

ICSE ’05. St. Louis, MO, USA: ACM, 2005, pp. 392–401.

[45] C. Prisacariu and G. Schneider. “A formal language for electronic contracts”. In:

Proceedings of the 9th IFIP WG 6.1 international Conf. on Formal methods for

open object-based distributed systems. FMOODS’07. Paphos, Cyprus: Springer-

Verlag, 2007, pp. 174–189.

[46] S. Rayadurgam and M. P. E. Heimdahl. “Test-Sequence Generation from Formal

Requirement Models”. In: The 6th IEEE International Symposium on High-

Assurance Systems Engineering: Special Topic: Impact of Networking. HASE

’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 23–31.

[47] M. Rouached, O. Perrin, and C. Godart. “A Contract Layered Architecture for

Regulating Cross-Organisational Business Processes”. English. In: 3rd Interna-

tional Conf. on Business Process Management - BPM 2005. Ed. by Wil M. P.

van der Aalst et al. Vol. 3649. Nancy/France: Springer-Verlag GmbH, 2005,

pp. 410–415.

[48] T. C. Ruys. “Towards Effective Model Checking”. PhD thesis. Enschede: Uni-

versity of Twente, 2001.

[49] E. Solaiman, C. Molina-jimenez, and S. Shrivastava. “Model Checking Cor-

rectness Properties of Electronic Contracts”. In: In proceedings of the Interna-

tional Conf. on Service Oriented Computing (ICSOC03). Springer-Verlag, 2003,

pp. 303–318.

145

REFERENCES

[50] M. Strano, C. Molina-Jimenez, and S. Shrivastava. “A Rule-Based Notation to

Specify Executable Electronic Contracts”. In: Proceedings of the International

Symposium on Rule Representation, Interchange and Reasoning on the Web.

RuleML ’08. Orlando, Florida: Springer-Verlag, 2008, pp. 81–88.

[51] M. Strano, C. Molina-Jimenez, and S. Shrivastava. “Implementing a Rule–Based

Contract Compliance Checker”. In: Proceedings of the 9th IFIP Conf. on e-

Business, e-Services, and e-Society (I3E’2009). Nancy, France: Springer, 2009,

pp. 96–111.

[52] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.

Morgan–Kaufmann, 2006.

[53] W. Wang et al. “E-process design and assurance using model checking”. In:

Computer 33.10 (2000), pp. 48 –53.

[54] M. Young and M. Pezze. Software Testing and Analysis: Process, Principles and

Techniques. John Wiley & Sons, 2005.

146

	Contents
	List of Figures
	1 Introduction
	1.1 Research tasks and objectives
	1.2 Thesis overview

	2 Background and related work
	2.1 Functional aspects of a contract
	2.2 Machine-readable contracts
	2.2.1 Formal contract language (FCL)
	2.2.1.1 FCL expressions and axioms
	2.2.1.2 FCL contract example:

	2.2.2 The contract language (CL)
	2.2.2.1 CL syntax
	2.2.2.2 CL contract example

	2.2.3 Contract-oriented diagram (C-O diagram)
	2.2.3.1 C-O diagram visual elements
	2.2.3.2 Refining C-O diagrams
	2.2.3.3 An example using C-O diagrams

	2.2.4 X-Contract language
	2.2.5 EROP contract language
	2.2.5.1 Buyer/Seller contract
	2.2.5.2 Modelling Buyer/Seller contract in EROP

	2.3 Contract conflicts
	2.4 Analysis of contract conflicts
	2.4.1 Principles of model–checking (using Spin)
	2.4.2 Analyzing x-contracts with Spin
	2.4.3 Analyzing EROP contracts with Spin
	2.4.4 Analyzing CL contracts with CLAN

	2.5 Discussion
	2.6 Approach taken

	3 The EROP model
	3.1 The Contract Compliance Checker
	3.1.1 Monitoring business events
	3.1.2 Observing compliance with contract rules

	3.2 The architecture of the CCC
	3.2.1 Main components
	3.2.2 Contract analysis algorithm

	3.3 The CCC as a reactive system
	3.3.1 Safety properties
	3.3.2 Liveness properties
	3.3.3 The CCC reactive system explained

	3.4 Conflicts in EROP contracts
	3.4.1 Contract-independent conflicts
	3.4.2 Contract-dependent conflicts

	3.5 Discussion

	4 CB2B formal model
	4.1 CB2B model: principles of operation
	4.1.1 The business event generator (BEG)
	4.1.2 The contract rule manager (CRM)
	4.1.3 The CB2B model rule base

	4.2 CB2B model implementation in Promela
	4.2.1 Execution cycle
	4.2.2 Key features
	4.2.3 Example
	4.2.4 Verification of contract properties

	4.3 The CB2B model notation
	4.3.1 Mapping contract entities into Promela
	4.3.1.1 Role players
	4.3.1.2 Business operations
	4.3.1.3 Right
	4.3.1.4 Obligation
	4.3.1.5 Prohibition
	4.3.1.6 Business events

	4.3.2 Contract rule template
	4.3.3 Manipulating contract status

	4.4 CB2B model operations
	4.5 Contract model checking with CB2B model
	4.5.1 Contract example re-visited
	4.5.1.1 Complete code of the contract example
	4.5.1.2 Rule–base of the contract example

	4.5.2 Contract example with priority rules conflict

	4.6 The use of CB2B model for testing
	4.6.1 Spin based test–case generation tool
	4.6.2 Test–case generation steps
	4.6.3 Limitations of Spin counterexamples

	4.7 Evaluation of CB2B system state
	4.8 Discussion

	5 Case studies
	5.1 Internet provision contract
	5.2 Storage service consumption contract
	5.3 Buyer/seller contract
	5.4 Performance issues

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	Appendix A

